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Preface  

Distributed algorithms are algorithms designed to run on hardware consisting 
of many interconnected processors. Pieces of a distributed algorithm run con- 
currently and independently, each with only a limited amount of information. 
The algorithms are supposed to work correctly, even if the individual processors 
and communication channels operate at different speeds and even if some of the 
components fail. 

Distributed algorithms arise in a wide range of applications, including telecom- 
munications, distributed information processing, scientific computing, and real- 
time process control. For example, today's telephone systems, airline reservation 
systems, banking systems, global information systems, weather prediction sys- 
tems, and aircraft and nuclear power plant control systems all depend critically 
on distributed algorithms. Obviously, it is important that the algorithms run 
correctly and efficiently. However, because the settings in which they run are so 
complicated, the design of such algorithms can be an extremely difficult task. 

This book contains a comprehensive introduction to the field of distributed 
algorithms--a collection of the most significant algorithms and impossibility re- 
sults, all presented in a simple automata-theoretic setting. Mathematical proofs 
are given (or at least sketched) for virtually all of the results. Algorithms are 
analyzed according to precisely defined complexity measures. Altogether, this 
material provides an excellent foundation for a deep understanding of distributed 
algorithms. 

This book has been written with several audiences in mind. First, it is orga- 
nized as a textbook for a first-year graduate computer science course, especially 
for students interested in computer systems, theory, or both. It can also be used 
as a text for a short course for designers of distributed systems. Finally, it is 
intended as a reference manual for designers, students, researchers, and anyone 
else interested in the field. 

The book contains algorithms for many typical problems, including problems 
of consensus, communication, resource allocation, and synchronization, in several 
different system settings. The algorithms and results are organized according to 
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basic assumptions about the distributed setting. The first level of organization 
is according to the timing model--synchronous, asynchronous, or partially syn- 
chronous--and the second level is according to the interprocess communication 
mechanism--shared memory or message passing. Several chapters are devoted 
to each type of system model; the first chapter in each group presents a formal 
model for that type of system, while the rest of the chapters contain the algo- 
rithms and impossibility results. Throughout, the presentation is rigorous, yet 
it is firmly grounded in intuition. 

Because this field is so large and active, this book does not attempt to cover 
everything. The results that are included have been selected because they are 
the most fundamental. These are not always the optimal results, in terms of the 
complexity measures; they are generally those that are simple and that illustrate 
important general methods of design or reasoning. 

This book will make you familiar with many of the most important problems, 
algorithms, and impossibility results in the area of distributed computing. You 
will be able to recognize the problems when they arise in practical settings, 
apply algorithms like the ones contained here to solve them, and invoke the 
impossibility results to argue that the problems are not solvable. The book will 
also give you a good feeling for the various system models and their capabilities, 
so that youcan design new algorithms yourself (or even prove new impossibility 
results). Finally, this book should convince you that it is feasible to reason 
carefully about distributed algorithms and systems: to model them formally, 
give precise specifications for their required behavior, prove rigorously that they 
satisfy their specifications, identify appropriate complexity measures, and analyze 
them according to these measures. 

Using this Book 

P r e r e q u i s i t e s .  The only prerequisites for reading the book are knowledge 
of basic college-level discrete mathematics (including mathematical induction 
and asymptotic analysis), some programming skill, and reasonable familiarity 
with computer systems. The sections about randomized algorithms also require 
knowledge of basic probability. An undergraduate-level course about sequential 
algorithms and their analysis is helpful, but not necessary. 

C h a p t e r  dependenc i e s .  This book has been designed so that the material 
using the different models can be read fairly independently. An outline of signifi- 
cant chapter dependencies is presented in Figure A. For example, if you prefer to 
move quickly to the material on asynchronous networks, you can skip Chapters 
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F i g u r e  A" Chapter dependencies. 

5-7. You can also read a good part  of the algorithm chapters without reading 

the modelling chapters on which they are formally dependent. 

S t a r r e d  s ec t i ons .  This book contains several sections whose titles are starred 
in the table of contents. These sections contain material that is less fundamental 
or more advanced than the other sections. You can omit these sections on a first 
reading without much harm. 

C o u r s e s .  Prel iminary versions of this book have been used for many years in 
an introductory graduate-level course at MIT, and for three years in a summer 
course for system designers in computer  software and applications companies. 
This book contains enough material for a one-year course, so you will have to 
select material for shorter courses (but watch the chapter dependencies). 
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For example, in a one-semester course emphasizing asynchronous network 
computing, you could cover Chapters 3, 4, 6, 7.2, 12, and 14-21, referring to 
material from the modelling chapters (Chapters 2, 8, and 9) and filling in a few 
definitions from Chapters 10, 11, and 13 as needed. In a one-semester course 
emphasizing a thorough study of distributed consensus, you could cover Chapters 
2-9, 12, 13.1, 15, 17, 21, 23, and 25. There are many other possibilities. If you 
yourself are a researcher in this area, then you might want to supplement this 
book as a course text with more advanced or specialized results from the research 
literature in your favorite area. 

In a one-week or two-week short course for system designers, you could cover 
the highlights of all the chapters, discussing key results and key proof ideas at a 
high level instead of presenting a lot of detail. 

E r ro r s .  I would appreciate hearing about any errors that you find in the book, 
as well as receiving any other constructive suggestions you may have. Sugges- 
tions for additional problems would be especially welcome. Please email your 
comments to distalgs@theory.lcs.mit.edu. 
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Chapter 1 

In troduc t ion  

1.1 The Subject Matter 

The term distributed algorithms covers a large variety of concurrent algorithms 
used for a wide range of applications. Originally, this term was used to refer 
to algorithms that were designed to run on many processors "distributed" over 
a large geographical area. But over the years, the usage of this term has been 
broadened, so that it now includes algorithms that run on local area networks and 
even algorithms for shared memory multiprocessors. This has happened because 
it has become recognized that the algorithms used in these various settings have 
a great deal in common. 

Distributed algorithms arise in many applications, including telecommuni- 
cations, distributed information processing, scientific computing, and real-time 
process control. An important  part of the job of building a system for any of 
these applications is the design, implementation, and analysis of distributed al- 
gorithms. The algorithms that arise, and the problems that they are designed to 
solve, form the subject matter of the field of study covered in this book. 

There are many different kinds of distributed algorithms. Some of the at- 
tr ibutes by which they differ include 

�9 The interprocess communication (IPC) method: Distributed algorithms 
run on a collection of processors, which need to communicate somehow. 
Some common methods of communication include accessing shared mem- 
ory, sending point-to-point or broadcast messages (either over a long dis- 
tance or local area network), and executing remote procedure calls. 

�9 The timing model: Several different assumptions can be made about the 
timing of events in the system, reflecting the different types of timing in- 
formation that might be used by algorithms. At one extreme, processors 
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can be completely synchronous, performing communication and compu- 
tation in perfect lock-step synchrony. At the other extreme, they can be 
completely asynchronous, taking steps at arbitrary speeds and in arbitrary 
orders. In between, there are a wide range of possible assumptions that 
can be grouped together under the designation partially synchronous; in 
all of these cases, processors have partial information about the timing of 
events. For example, processors might have bounds on their relative speeds 
or might have access to approximately synchronized clocks. 

The failure model: The hardware upon which an algorithm runs might be 
assumed to be completely reliable. Or, the algorithm might need to tolerate 
some limited amount of faulty behavior. Such faulty behavior can include 
processor failures: processors might just stop, with or without warning; 
might fail transiently; or might exhibit more severe Byzantine failures, 
where a failed processor can behave arbitrarily. Faulty behavior can also 
include failures of the communication mechanisms, including message loss 
or duplication. 

The problems addressed: Of course, the algorithms also differ in the prob- 
lems that they are supposed to solve. The typical problems that are con- 
sidered are those that arise in the application areas mentioned above. They 
include problems of resource allocation, communication, consensus among 
distributed processors, database concurrency control, deadlock detection, 
global snapshots, synchronization, and implementation of various types of 
objects. 

Some kinds of concurrent algorithms, such as Parallel Random Access Ma- 
chine (PRAM) algorithms and algorithms for fixed-connection networks (for ex- 
ample, arrays, trees, and hypercubes), are not covered in this book. The al- 
gorithms presented here are distinguished within the larger class of concurrent 
algorithms by having a higher degree of uncertainty and more independence of 
activities. Some of the types of uncertainty and independence that the algorithms 
in this book must contend with include 

�9 unknown number of processors 

�9 unknown network topology 

�9 independent inputs at different locations 

�9 several programs executing at once, starting at different times, and oper- 
ating at different speeds 
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�9 processor nondeterminism 

�9 uncertain message delivery times 

�9 unknown message ordering 

�9 processor and communication failures 

Fortunately, not every algorithm has to contend with all of these types of un- 
certainty! 

Because of all this uncertainty, the behavior of distributed algorithms is often 
quite difficult to understand. Even though the code for an algorithm may be 
short, the fact that many processors execute the code in parallel, with steps 
interleaved in some undetermined way, implies that there are many different 
ways in which the algorithm can behave, even for the same inputs. Thus, it 
is generally impossible to understand the algorithm by predicting exactly how 
it will execute. This can be contrasted with other kinds of parallel algorithms 
such as PRAM algorithms, for which we can often predict exactly what the 
algorithm will do at every point in time. For a distributed algorithm, instead of 
understanding everything about its behavior, the best that we usually can do is 
to understand certain selected properties of its behavior. 

The study of distributed algorithms has developed over the past 15 years 
into a fairly coherent field. The general style of work in this field is more or less 
as follows. First, problems of significance in practical distributed computing are 
identified, and abstract versions of these problems, suitable for mathematical 
study, are defined. Then, algorithms that solve the problems are developed. 
These are described precisely and proved to solve the stated problems, and 
their complexity, according to various measures, is analyzed. Designers of such 
algorithms typically try to minimize their complexity. Also, impossibility results 
and lower bounds are proved, demonstrating limitations on what problems can 
be solved and with what costs. Underlying all of this work are mathematical 
models for distributed systems. 

These results comprise a very interesting mathematical theory. But they 
are more than a mathematical theory: the problem statements can be used to 
formulate specifications for portions of real systems, the algorithms can (in many 
cases) be engineered for practical use, and the impossibility results can help to 
tell designers when to stop trying to build something. All of these results, as well 
as the underlying mathematical models, can provide designers with assistance 
in understanding the systems they build. 
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1.2 Our Viewpoint 

This book contains a study of the field of distributed algorithms. Because this 
field is so large and active, we cannot give an exhaustive study. Since we have 
had to select, we have tried to choose the most fundamental results in the area, 
both theoretically and practically speaking. These are not always the optimal 
results in terms of the complexity measures; instead, we have favored those that 
are simple and that illustrate important general methods of design or reasoning. 
The results we present involve a small number of problems that are typical of 
this area, including leader election, network searching, spanning tree construc- 
tion, distributed consensus, mutual exclusion, resource allocation, construction 
of objects, synchronization, global snapshots, and reliable communication. These 
problems recur in many different applications. We consider the same problems 
in several different system models. 

One feature of this book is that we present all the algorithms, impossibility 
results, and lower bounds in terms of a more or less unified formal framework. 
This framework consists of a small number of formal, automata-theoretic models 
for various types of distributed systems, together with some standard ways of 
reasoning about systems using the models. Our framework is automata-theoretic, 
rather than being based on any particular formal language or formal proof logic; 
this allows us to present results in terms of basic set-theoretic mathematics with- 
out worrying too much about language details. It also allows flexibility, in that 
a variety of languages and logics could be used to describe and reason about 
algorithms in the same framework. Using a formal framework permits a rigorous 
treatment of all the results. 

Some more remarks about rigor are in order. A rigorous treatment is espe- 
cially important in the area of distributed algorithms because of the many subtle 
complications that arise. Without such care, it is difficult to avoid mistakes. 
However, it is not clear how we could make a completely rigorous presentation 
both reasonably short and intuitively understandable. In this book, we compro- 
mise and use a mixture of intuitive and rigorous reasoning. Namely, we give 
precise descriptions of appropriate formal models. We sometimes give precise 
descriptions of algorithms in terms of the formal models, sometimes English de- 
scriptions, and sometimes both. The degree of rigor in correctness arguments for 
algorithms varies greatly: sometimes we give rather formal proofs and sometimes 
only intuitive sketches. We hope, however, that we have provided enough tools 
for you to expand our intuitive sketches into formal proofs when you want to. 
We generally present impossibility arguments rather rigorously, in terms of the 
formal models. 

Because there are so many different settings and problems to consider, it 
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is not obvious how best to organize the presentation of the material. We have 
chosen to organize it primarily according to the formal models-- in particular, 
according to those aspects of the models that seem to make the most difference 
in the results, and secondarily by abstract problem statements. The deepest 
distinctions among the models seem to be based on timing assumptions, but 
IPC mechanisms and failure assumptions are also important  factors. 

The timing models we consider are the following. 

The synchronous model: This is the simplest model to describe, to pro- 
gram, and to reason about. We assume that components take steps si- 
multaneously, that is, that execution proceeds in synchronous rounds. Of 
course, this is not what actually happens in most distributed systems, but 
the synchronous model can be useful anyway. Understanding how to solve 
a problem in the synchronous model is often a useful intermediate step 
toward understanding how to solve it in more realistic models. For exam- 
ple, it is sometimes possible for a real distributed system to "simulate" a 
synchronous system. Also, impossibility results for the synchronous model 
carry over directly to less well-behaved models. On the other hand, it is ira- 
possible or inefficient to implement the synchronous model in many types 
of distributed systems. 

The asynchronous model: Here we assume that the separate components 
take steps in an arbitrary order, at arbitrary relative speeds. This model 
is also reasonably simple to describe, although there are a few subtleties, 
mainly involving liveness considerations. It is harder to program than the 
synchronous model because of the extra uncertainty in the order of events. 
However, the asynchronous model does allow the programmer to ignore 
specific timing considerations. Since the asynchronous model assumes less 
about time than is guaranteed by typical distributed systems, algorithms 
designed for the asynchronous model are general and portable: they are 
guaranteed to run correctly in networks with arbitrary timing guarantees. 
On the other hand, the asynchronous model sometimes does not provide 
enough power to solve problems emciently, or even to solve them at all. 

The partially synchronous (timing-based) model: Here we assume some re- 
strictions on the relative timing of events, but execution is not completely 
lock-step as it is in the synchronous model. These models are the most 
realistic, but they are also the most difficult to program. Algorithms de- 
signed using knowledge of the timing of events can be efficient, but they can 
also be fragile in that they will not run correctly if the timing assumptions 
are violated. 
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The next basis we use for classification is the IPC mechanism. In this book, 
we consider both shared memory and message passing. We present the shared 
memory model first, because it is more powerful and simpler to understand, 
and because many of the techniques and results for the shared memory setting 
can be adapted for use in the network setting. Next, we organize the material 
according to the problem studied. And finally, we study many of the problems 
under different failure assumptions. You should see, as we present the same 
problems in a variety of different models, that apparently minor differences in 
assumptions can make a big difference in the results. We have tried to identify 
and highlight such differences. 

We have tried to make our presentation as modular as possible by composing 
algorithms to obtain other algorithms, by developing algorithms using levels of 
abstraction, and by transforming algorithms for one model into algorithms for 
other models. This helps greatly to reduce the complexity of the ideas and allows 
us to accomplish more with less work. The same kinds of modularity can serve 
the same purposes in practical distributed system design. 

1.3 Overv iew of Chapters  2 -25  

The specific topics that this book covers are as follows. 

M o d e l s  and  p r o o f  m e t h o d s .  The material on formal models and proof meth- 
ods is presented in separate chapters--Chapters 2, 8, 9, 14, and 23--heading the 
major subdivisions of the book (synchronous network algorithms, asynchronous 
shared memory algorithms, asynchronous network algorithms, and partially syn- 
chronous algorithms). This material is isolated into separate chapters for easy 
reference. You may prefer to skip some of the modelling material on the first 
reading, returning to it as needed for understanding the material in the suc- 
ceeding "algorithm chapters." We have tried to construct the book so that the 
algorithm chapters can be read, and mostly understood, without too much formal 
modelling work. 

The models we use are all based on state machines, often having an infinite 
number of states and usually having explicit names associated with their transi- 
tions. A state machine can be used to model either a component of a distributed 
system or an entire distributed system. Each state of the machine represents an 
instantaneous snapshot of the component or system, including such information 
as the state of the memory of each processor, the program counter for each run- 
ning program, and the messages that are in transit in the communication system. 
The transitions describe changes that occur in the system, such as the sending 
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or receipt of a message, or the changes caused by some local computation. We 
present separate state machine models for synchronous networks, asynchronous 
systems, and timing-based systems. 

One important  use of a formal model for distributed systems is as a basis for 
specification of the problems to be solved and verification of algorithm correct- 
ness. Such specification and verification can be done using many stylized and ad 
hoc methods. However, certain methods are used so frequently that we describe 
them explicitly in the modelling chapters. These include the method of invariant 
assertions and the method of simulations. An invariant assertion is a property 
that is true of all reachable states of a system. Assertions are generally proved 
by induction on the number of steps in a system execution. A simulation is a 
formal relationship between a pair of systems, one representing the problem to 
be solved and another representing the solution, or one representing a high-level, 
abstract solution and another a detailed solution. Simulation relationships are 
also generally proved using induction. 

Chapter 2 contains the first model, for synchronous networks. It is a very 
simple model that just describes synchronized rounds of message exchange and 
computation. Chapter 8 contains a general model for asynchronous systems, 
the input/output automaton (I//O automaton) model. The name of the model 
refers to its explicit distinction between input and output transitions, that is, 
those communicated to the system by its environment and those communicated 
to the environment by the system. In an I /O automaton, several transitions may 
be possible from any given state; for example, transitions involving different 
processors may be performed in any order. Since the model allows so much 
flexibility in the order of transitions, a notion of liveness is included, allowing 
us to express the notion that certain transitions must eventually happen. A 
useful feature of this model is that it has a parallel composition operation, which 
allows a combination of system components modelled as I /O automata also to be 
modelled as an I /O automaton. Often, the correctness of a composed automaton 
can be proved in a modular fashion, based on proofs of the correctness of its 
components. 

The model in Chapter 8 is general enough to describe both asynchronous 
shared memory systems and asynchronous networks (as well as many other types 
of asynchronous systems); Chapters 9 and 14 contain the additional structure 
needed to tailor the model for shared memory systems and message-passing 
systems, respectively. 

Finally, in Chapter 23, we present models for timing-based systems. These 
models are, once again, state machines, but this time the states include infor- 
mation about timing, such as the current time and scheduled times for various 
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events. These models allow us to describe typical constructs for timing-based 
systems, such as local clocks and timeouts. 

Synchronous network algorithms. The simplest model that we consider 
(that is, the one with the least uncertainty) is the synchronous network model, in 
which all the processors communicate and compute in synchronous rounds. We 
do not consider synchronous shared memory algorithms, since these constitute a 
large subject of study in their own right (see the Bibliographic Notes at the end 
of this chapter). In the network setting we assume that the processors are located 
at the nodes of a graph or digraph, G, and communicate with their neighbors 
using messages sent along the edges of G. 

In Chapters 3-7, we consider several typical distributed problems in syn- 
chronous networks. In Chapter 3, we begin with a simple example involving 
computation in ring networks. The problem is to elect a unique leader in a 
ring network, assuming that the processors at the nodes are identical except for 
unique identifiers (UIDs). The main uncertainty here is that the set of UIDs ac- 
tually possessed by the processors is unknown (although it is known that no two 
processors have the same UID); in addition, the size of the network is usually 
unknown. The main application for this problem is a local area ring network 
that operates as a token ring, in which there is always supposed to be a single 
token circulating, giving its current owner the sole right to initiate communi- 
cation. Sometimes, however, the token gets lost, and it becomes necessary for 
the processors to execute an algorithm to regenerate the missing token. This 
regeneration procedure amounts to electing a leader. We present some basic 
complexity-theoretic results about the leader-election problem. In particular, we 
prove bounds for the time and the amount of communication (i.e., the number of 
messages) that are required. 

Next, in Chapter 4, we give a brief survey of basic algorithms used in more 
general networks. Specifically, we describe some algorithms used to solve such 
fundamental problems as electing a leader, conducting a breadth-first search, find- 
ing shortest paths, finding a minimum spanning tree, and finding a maximal in- 
dependent set of nodes. Typical forms of uncertainty here are unknown UIDs 
and an unknown network graph. 

Then, in Chapters 5 and 6, we consider problems of reaching consensus in 
a distributed network. These are problems in which a collection of distributed 
processors are required to reach a common decision, even if there are initial 
differences of opinion about what that decision ought to be. Many different 
consensus problems arise in practice: for example, the processors could be mon- 
itoring separate altimeters on board an aircraft and could be attempting to reach 
agreement about the altitude. Or the processors could be carrying out separate 
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fault diagnosis procedures for some other system component and could be at- 
tempting to combine their individual diagnoses into a common decision about 
whether or not to replace the component. 

The uncertainty that we consider here stems not only from differences in 
initial opinions, but also from failures, either of links or of processors. In Chapter 
5, we consider the case where links can fail by losing messages. In Chapter 6, 
we consider two different types of processor failures: stopping failures, where 
faulty processors can, at some point, just stop executing their local protocols, 
and Byzantine failures, where faulty processors can exhibit completely arbitrary 
behavior (subject to the limitation that they cannot corrupt portions of the system 
to which they have no access). We present bounds on the number of tolerable 
faults, on the time, and on the amount of communication. 

Finally, in Chapter 7, we consider some extensions and variations on the 
basic consensus problems, including agreement on a small set of values rather 
than just a single value, approximate agreement on a real value, and distributed 
database commit. 

A s y n c h r o n o u s  s h a r e d  m e m o r y  a l g o r i t h m s .  After warming up with syn- 
chronous algorithms (in which there is only a little uncertainty), we begin the 
more dimcult study of asynchronous algorithms. Now we no longer assume that 
processors operate in lock-step synchrony, but rather that they can interleave 
their steps in an arbitrary order, with no bounds on individual processor speeds. 
Typically, the interactions with the external world (via input and output events) 
are ongoing, rather than just involving an initial input and final output. The 
results in this setting have a very different flavor from those for synchronous 
networks. 

Chapters 10-13 contain asynchronous shared memory algorithms. The first 
problem we consider, in Chapter 10, is that of mutual exclusion. This is one 
of the most fundamental problems in the area of distributed algorithms, and 
historically the first problem to receive serious theoretical study. Essentially, 
the problem involves managing access to a single, indivisible resource that can 
only support one user at a time. Alternatively, it can be viewed as the problem 
of ensuring that certain portions of program code are executed within critical 
regions, where no two programs are permitted to be in critical regions at the 
same time. This problem arises in both centralized and distributed operating 
systems. Besides the basic uncertainty about the order of steps, there is also 
uncertainty about which users are going to request access to the resource, and 
when. 

We present a series of shared memory mutual exclusion algorithms, starting 
with a classical algorithm invented by Dijkstra in 1965, and proceeding through 
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a series of algorithms with successively better correctness guarantees. Most of 
these results are based on shared memory that can only be accessed using read 
and write operations; for this read/wri te  shared memory model, we also present 
a lower bound on the number of shared variables that must be used. We also 
consider the problem using a stronger type of shared memory--read-modify-wri te  
memory; for this case, we give upper and lower bounds on the size of the needed 
shared memory. In addition to presenting the algorithms and lower bounds, we 
also use the mutual exclusion problem as a case study to illustrate many concepts 
of general importance for asynchronous distributed algorithms. These concepts 
include the general modelling methods; notions of atomicity, fairness, progress, 
and fault-tolerance; invariant assertion and simulation proofs; and time analysis 
techniques. 

In Chapter 11, we discuss generalizations of the mutual exclusion problem 
to more complicated resource allocation problems; these involve more resources 
and have more elaborate requirements about their usage patterns. For example, 
we consider the Dining Philosophers problem, a prototypical resource allocation 
problem involving allocation of pairwise shared resources in a ring of processors. 

In Chapter 12, we reconsider consensus problems in the asynchronous shared 
memory model. The main result of this chapter is the fundamental fact that a 
very basic consensus problem cannot be solved in this setting in the presence 
of faults, if the shared memory supports only read and write operations. In 
contrast, stronger types of shared memory, such as read-modify-write memory, 
admit simple solutions to this problem. 

Next, in Chapter 13, we present atomic objects. Up to this point in the 
book, we assume that all accesses by processors to shared memory are instan- 
taneous. Atomic objects admit separate invocation and response actions, but 
otherwise behave very similarly to instantaneous-access shared variables. We 
define atomic objects and prove basic results showing how they can be used to 
construct systems; in particular, they can be used in place of shared variables. 
We also consider several algorithms that implement powerful atomic objects us- 
ing weaker primitives--ei ther shared variables or atomic objects of weaker types. 
An interesting property that these algorithms have is wait-freedom, which means 
that any operation on the implemented object must complete regardless of the 
failure of other concurrent operations. 

We show how to implement a snapshot atomic object using read/wri te  shared 
memory; a snapshot atomic object admits a snapshot operation that returns 
values for all the memory locations at once. We also show how to implement 
a multi-writer/multi-reader atomic object using single-writer read/wri te  shared 
memory. 
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A s y n c h r o n o u s  n e t w o r k  a l g o r i t h m s .  In Chapters 15-22, we proceed to the 
study of algorithms that operate in asynchronous networks. As for synchronous 
networks, the system is modelled as a graph or digraph with processors at the 
nodes and communication links on the edges, but now the system does not op- 
erate in rounds. Now, messages can arrive at arbitrary times and the processors 
can take steps at arbitrary speeds. The system components can be said to be 
more "loosely coupled" than they are in either the synchronous network setting 
or the asynchronous shared memory setting. Thus, the amount of uncertainty in 
the model is again increased. 

We begin in Chapter 15 by reconsidering the problems and algorithms of 
Chapter 4 in the asynchronous network setting. For example, we reconsider the 
problems of leader election, breadth-first search and shortest paths, broadcast 
and convergecast, and minimum spanning tree. Although some of the algorithms 
carry over to the new setting with little change, most of them require significant 
modification. In particular, it is rather difficult to extend the simple synchronous 
minimum spanning tree algorithm of Chapter 4 to the asynchronous setting. 

Chapter 15 should convince you that the task of programming asynchronous 
networks is difficult. This difficulty motivates the following four chapters, Chap- 
ters 16-19, where we introduce four techniques for simplifying the task. These 
techniques are formulated as algorithm transformations that allow an asynchro- 
nous network to simulate simpler or more powerful models. These transforma- 
tions permit algorithms designed for the simpler or more powerful models to run 
in the more complex asynchronous network model. 

The first technique, described in Chapter 16, is the introduction of a syn- 
chronizer. A synchronizer is a system component that enables asynchronous 
networks (without failures) to simulate the synchronous networks of Chapters 2- 
4 (those without failures). We give efficient implementations and contrast these 
implementations with a lower bound result that seems to say that any such sim- 
ulation must be inefficient. The apparent contradiction turns out to depend on 
the type of problem being solved. 

The second technique, described in Chapter 17, is the simulation of the asyn- 
chronous shared memory model by the asynchronous network model. This per- 
mits asynchronous shared memory algorithms such as those developed in Chap- 
ters 10-13 to be used in asynchronous networks. 

The third technique, described in Chapter 18, is the assignment of consistent 
logical times to events in an asynchronous distributed network. This technique 
can be used to allow an asynchronous network to simulate one in which the 
nodes have access to perfectly synchronized real-time clocks. An important use 
of this capability is to allow an asynchronous network to simulate a centralized 
(nondistributed) state machine. 
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Chapter 19 contains our fourth technique, the monitoring of asynchronous 
network algorithms while they run. This might be done, for example, for the 
purpose of debugging, for producing backup versions, or for detecting stable 
properties of the algorithm. A stable property is one that, once it occurs, will 
persist forever; examples are system termination or deadlock. It turns out that 
a fundamental primitive that helps in the detection of stable properties is the 
ability to produce a consistent global snapshot of the state of the distributed 
algorithm. We show some ways in which such a snapshot can be produced and 
describe how a snapshot can be used to detect stable properties. 

Having developed some powerful tools, we return to considering specific prob- 
lems in the asynchronous network setting. In Chapter 20, we revisit the problem 
of resource allocation. For example, we show some ways of solving the mutual 
exclusion and Dining Philosophers problems in asynchronous networks. 

In Chapter 21, we consider the problem of computing in an asynchronous 
network in the presence of stopping faults. First, using a transformation devel- 
oped in Chapter 17, we show that the impossibility result for consensus carries 
over from the shared memory setting to the network setting. We then consider 
some ways around this inherent limitation; for instance, we give a randomized 
algorithm to solve consensus, show how to solve consensus using modules known 
as failure detectors, and show how to reach approximate agreement rather than 
exact agreement. 

In Chapter 22, we consider the data link problem. Data link protocols are 
designed to implement a reliable communication link in terms of unreliable un- 
derlying channels. We begin by presenting the Alternating Bit protocol, a simple 
protocol that, in addition to being interesting in its own right, is also well known 
as a standard case study in the field of concurrent algorithm verification. We also 
present a variety of other algorithms and impossibility results for this problem, 
for settings in which different types of failure behavior are considered for the 
underlying channels. 

P a r t i a l l y  s y n c h r o n o u s  a l g o r i t h m s .  Partially synchronous models lie prop- 
erly between synchronous and asynchronous models. In partially synchronous 
models, we assume that processors have some knowledge of time, for example, 
access to real time or approximate real time, or some type of timeout facility. 
Or, we might assume that processor step times and/or  message delivery times 
are between known upper and lower bounds. Since partially synchronous sys- 
tems have less uncertainty than asynchronous systems, you might think that they 
ought to be easier to program. However, there are extra complications that arise 
from the t iming~for  example, algorithms are often designed so that their cor- 
rectness depends crucially on timing assumptions. Thus, algorithms and proofs 
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for the partially synchronous setting are often more complicated than those for 
the asynchronous setting. 

In Chapter 24, we present upper and lower bounds for the time requirements 
of solving the mutual exclusion problem in the timed setting, while in Chapter 25, 
we obtain upper and lower bounds for consensus. Since partially synchronous 
distributed algorithms are a subject of current research, the results we present 
for this model are necessarily preliminary. 

1.4 Bibliographic Notes  

The major source for the material in this book is the research literature, espe- 
cially the many papers presented in the Association for Computing Machinery's 
annual symposium on Principles of Distributed Computing (PODC). Other sym- 
posia that contain a substantial number of papers in this area include the annual 
symposia on Foundations of Computer Science (FOCS), Theory of Computing 
(STOC), and Parallel Algorithms and Architectures (SPAA), and the annual 
Workshop on Distributed Algorithms (WDAG). Much of this work has also ap- 
peared by now in computer science journals such as the Journal of the A CM, 
Distributed Computing, Information and Computation, the SIAM Journal on 
Computing, A cta Informatica, and Information Processing Letters. The results 
in these papers are presented in terms of a great many different models and at 
varying levels of rigor. 

There have been a few previous attempts to collect and summarize some of 
the material in this area. The chapter by Lamport and Lynch on distributed 
computing in the Handbook of Theoretical Computer Science [185] is a sketchy 
overview of some of the modelling and algorithmic ideas. Two books by Raynal 
[249, 250] present descriptions of the areas of mutual exclusion algorithms and 
asynchronous network algorithms, respectively. Another book, by Raynal and 
Helary [251], presents results on network synchronizers. Chandy and Misra [69] 
present a substantial collection of distributed algorithms, in terms of the UNITY 
programming model. Tel [276] presents another view of the field. 

Results about the P RAM model for synchronous shared memory systems 
are collected in a paper by Karp and Ramachandran [166]. Results about syn- 
chronous parallel algorithms for fixed-connection networks are collected in a 
book by Leighton [193]. Lynch, Merritt, Weihl, and Fekete [20?] and Bernstein, 
Hadzilacos, and Goodman [50] present many algorithms for concurrency con- 
trol and recovery in distributed data processing systems. Hadzilacos and Toueg 
[143] present results about the implementation of distributed systems based on 
communication systems with an atomic broadcast primitive. 
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This book uses many concepts from graph theory. A standard reference for 
these is the classical book by Harary [147]. 

1.5 N o t a t i o n  

We collect here some mathematical notation that we use throughout the book. 
N denotes the natural numbers, {0, 1, 2 , . . .  }. 
N + denotes the positive natural numbers, {1, 2 , . . .  }. 
R >~ denotes the nonnegative real numbers. 
R + denotes the positive real numbers. 

denotes the empty string. 
I f  fl is any sequence and S is any set, then fl]S denotes the subsequence of/3 

consisting of all the elements of S in ft. 



Part  I 

Synchronous Network 
Algorithms 

The first part of this book consists of Chapters 2-7. These chapters contain 
algorithms and lower bound results for the synchronous network model, in which 
processors in a network take steps and exchange messages in synchronous rounds. 

The first chapter in this part, Chapter 2, just presents our formal model 
for synchronous networks. You can skip this chapter for now and return to it 
as you need to while reading the algorithm chapters, Chapters 3-7. Chapter 3 
deals with the simple problem of electing a unique leader in a ring network. 
Chapter 4 contains a survey of basic algorithms used in synchronous networks 
based on arbitrary graphs. Chapters 5 and 6 deal with basic problems of reaching 
consensus in synchronous networks, in the presence of link and processor failures, 
respectively. Finally, Chapter 7 contains extensions and variations of the basic 
consensus problems. 
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Chapter 2 

Modelling I: Synchronous 
Network Model 

This is the shortest chapter in the book. That is because all it has to accomplish 
is to present a simple computational model for synchronous network algorithms. 
We present the model separately so that you can use this chapter as a convenient 
reference while reading Chapters 3-7. 

2.1 Synchronous Network Systems 

A synchronous network system consists of a collection of computing elements 
located at the nodes of a directed network graph. In Chapter 1, we referred to 
these computing elements as "processors," which suggests that they are pieces 
of hardware. It is often useful to think of them instead as logical software 
"processes," running on (but not identical to) the actual hardware processors. 
The results that we present here make sense in either case. We will use the 
convention of calling the computing elements "processes" from now on in the 
book. 

In order to define a synchronous network system formally, we start with a 
directed graph G = (V,E). We use the letter n to denote IVI, the number 
of nodes in the network digraph. For each node i of G, we use the notation 
out-nbrsi to denote the "outgoing neighbors" of i, that is, those nodes to which 
there are edges from i in the digraph G, and in-nbrsi to denote the "incoming 
neighbors" of i, that is, those nodes from which there are edges to i in G. We 
let distance(i, j) denote the length of the shortest directed path from i to j in G, 
if any exists; otherwise distance(i, j )  = oc. We define diam, the diameter, to be 
the maximum distance(i, j) ,  taken over all pairs (i, j) .  We also suppose that we 



18 2. M O D E L L I N G  I: S Y N C H R O N O U S  N E T W O R K  M O D E L  

have some fixed message alphabet M, and we let null be a placeholder indicating 

the absence of a message. 
Associated with each node i E V, we have a process, which consists formally 

of the following components: 

�9 statesi, a (not necessarily finite) set of states 

�9 starti, a nonempty subset of statesi known as the start states or initial 

states 

�9 msgsi, a message-generation func t ion  mapping statesi x out-nbrsi to ele- 
ments of M U {null} 

�9 transi, a state-transit ion func t ion  mapping statesi and vectors (indexed by 
in-nbrsi) of elements of M U {null} to statesi 

That is, each process has a set of states, among which is distinguished a subset 
of start  states. The set of states need not be finite. This generality is important,  
since it permits us to model systems that include unbounded data structures 
such as counters. The message-generation function specifies, for each state and 
outgoing neighbor, the message (if any) that process i sends to the indicated 
neighbor, starting from the given state. The state-transition function specifies, 
for each state and collection of messages from all the incoming neighbors, the 
new state to which process i moves. 

Associated with each edge (i, j )  in G, there is a channel, also known as a 
link, which is just a location that can, at any time, hold at most a single message 
in M. 

Execution of the entire system begins with all the processes in arbitrary start 
states, and all channels empty. Then the processes, in lock-step, repeatedly 
perform the following two steps: 

1. Apply the message-generation function to the current state to generate the 
messages to be sent to all outgoing neighbors. Put  these messages in the 
appropriate channels. 

2. Apply the state-transition function to the current state and the incoming 
messages to obtain the new state. Remove all messages from the channels. 

The combination of the two steps is called a round. Note that we do not, in 
general, place restrictions on the amount of computation a process does in order 
to compute the values of its message-generation and state-transition functions. 
Also note that the model presented here is deterministic, in the sense that the 
message-generation function and the state-transition function are (single-valued) 
functions. Thus, given a particular collection of start  states, the computation 
unfolds in a unique way. 
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H a l t i n g .  So far, we have not made any provision for process halting. It is easy, 
however, to distinguish some of the process states as halting states, and specify 
that no further activity can occur from these states. That is, no messages are 
generated and the only state transition is a self-loop. Note that these halting 
states do not play the same role in these systems as they do in traditional finite- 
state automata. There, they generally serve as accepting states, which are used to 
determine which strings are in the language computed by the machine. Here, they 
just  serve to halt the process; what the process computes must be determined 
according to some other convention. The notion of accepting state is normally 
not used for distributed algorithms. 

V a r i a b l e  s t a r t  t i m e s .  Occasionally, we will want to consider synchronous sys- 
tems in which the processes might begin executing at different rounds. We model 
this situation by augmenting the network graph to include a special environment 
node, having edges to all the ordinary nodes. The job of the associated environ- 
ment process is to send special wakeup messages to all the other processes. Each 
start  state of each of the other processes is required to be quiescent, by which 
we mean that it does not cause any messages to be generated, and it can only 
change to a different state as the result of the receipt of a wakeup message from 
the environment or a non-null message from some other process. Thus, a process 
can be awakened either directly, by a wakeup message from the environment, or 
indirectly, by a non-null message from another, previously awakened, process. 

U n d i r e c t e d  g r a p h s .  Sometimes we will want to consider the case where the 
underlying network graph is undirected. We model this situation within the 
model we have already defined for directed graphs simply by considering a di- 
rected graph network with bidirectional edges between all pairs of neighbors. In 
this case, we will use the notation nbrsi to denote the neighbors of i in the  graph. 

2.2 Fa i lures  

We will consider various types of failures for synchronous systems, including 
both process failures and link (channel) failures. 

A process can exhibit stopping failure simply by stopping somewhere in the 
middle of its execution. In terms of the model, the process might fail before or 
after performing some instance of Step 1 or Step 2 above; in addition, we allow 
it to fail somewhere in the middle of performing Step 1. This means that the 
process might succeed in putting only a subset of the messages it is supposed to 
produce into the message channels. We will assume that this can be any subse t - -  
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we do not think of the process as producing its messages sequentially and failing 
somewhere in the middle of the sequence. 

A process can also exhibit Byzantine failure, by which we mean that it can 
generate its next messages and next state in some arbitrary way, without neces- 
sarily following the rules specified by its message-generation and state-transition 
functions. 

A link can fail by losing messages. In terms of a model, a process might 
at tempt to place a message in a channel during Step 1, but the faulty link might 
not record the message. 

2.3 Inputs and Outputs 

We still have not provided any facility for modelling inputs and outputs. We 
use the simple convention of encoding the inputs and outputs in the states. In 
particular, inputs are placed in designated input variables in the start states; the 
fact that a process can have multiple start states is important  here, so that we 
can accommodate different possible inputs. In fact, we normally assume that 
the only source of multiplicity of start states is the possibility of different input 
values in the input variables. Outputs appear in designated output variables; 
each of these records the result of only the first write operation that is performed 
(i.e., it is a write-once variable). Output  variables can be read any number of 
times, however. 

2.4 Executions 

In order to reason about the behavior of a synchronous network system, we need 
a formal notion of a system "execution." 

A state assignment of a system is defined to be an assignment of a state to 
each process in the system. Also, a message assignment is an assignment of a 
(possibly null) message to each channel. An execution of the system is defined 
to be an infinite sequence 

Co, M1,  N I ,  C1, M2 ,  N2,  C2, . . . , 

where each C~ is a state assignment and each M~ and N~ is a message assignment. 
C~ represents the system state after r rounds, while Mr and N~ represent the 
messages that are sent and received at round r, respectively. (These may be 
different because channels may lose messages.) We often refer to C~ as the state 
assignment that occurs at time r; that is, time r refers to the point just after r 
rounds have occurred. 
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If c~ and c~ ~ are two executions of a system, we say that c~ is indistinguishable 
i 

from c~ ~ with respect to a process i, denoted c~ ~ c~ ~, if i has the same sequence 
of states, the same sequence of outgoing messages, and the same sequence of 
incoming messages in c~ and c~ ~. We also say that c~ and c~ ~ are indistinguishable 
to process i through r rounds if i has the same sequence of states, the same 

sequence of outgoing messages, and the same sequence of incoming messages 
up to the end of round r, in c~ and c~ ~. We also extend these definitions to the 

situation where the executions being compared are executions of two different 
synchronous systems. 

2.5 Proo f  Methods  

The most important proof method for reasoning about synchronous systems 
involves proving invariant assertions. An invariant assertion is a property of 

the system state (in particular, of the states of all the processes) that is true in 

every execution, after every round. We allow the number of completed rounds to 
be mentioned in assertions, so that we can make claims about the state after each 

particular number r of rounds. Invariant assertions for synchronous systems are 
generally proved by induction on r, the number of completed rounds, starting 
with r - 0. 

Another important method is that of simulations. Roughly speaking, the goal 

is to show that one synchronous algorithm A "implements" another synchronous 
algorithm B, in the sense of producing the same input /output  behavior. The 
correspondence between A and B is expressed by an assertion relating the states 

of A and B, when the two algorithms are started on the same inputs and run 

with the same failure pattern for the same number of rounds. Such an assertion 

is known as a simulation relation. As for invariant assertions, simulation rela- 

tionships are generally proved by induction on the number of completed rounds. 

2.6 Complex i ty  Measures  

Two measures of complexity are usually considered for synchronous distributed 
algorithms: time complexity and communication complexity. 

The time complexity of a synchronous system is measured in terms of the 

number of rounds until all the required outputs are produced, or until the pro- 
cesses all halt. If the system allows variable start times, the time complexity is 
measured from the first round in which a wakeup occurs, at any process. 

The communication complexity is typically measured in terms of the total 
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number of non-null messages that are sent. Occasionally, we will also take into 
account the number of bits in the messages. 

The time measure is the more important  measure in practice, not only for 
synchronous distributed algorithms but for all distributed algorithms. The com- 
munication complexity is mainly significant if it causes enough congestion to 
slow down processing. This suggests that we might want to ignore it and just 
consider time complexity. However, the impact of the communication load on 
the time complexity is not just a function of an individual distributed algorithm. 
In a typical network, many distributed algorithms run simultaneously, sharing 
the same network bandwidth. The message load added to a link by any single al- 
gorithm gets added to the total message load on that link, and thus contributes 
to the congestion seen by all the algorithms. Since it is difficult to quantify 
the impact that any one algorithm's messages have on the time performance of 
other algorithms, we settle for simply analyzing (and attempting to minimize) 
the number of messages generated by individual algorithms. 

2.7 R a n d o m i z a t i o n  

Instead of requiring the processes to be deterministic, it is sometimes useful 
to allow them to make random choices, based on some given probability dis- 
tributions. Since the basic synchronous system model does not permit this, 
we augment the model by introducing a new random function in addition to 
the message-generation and transition functions, to represent the random choice 
steps. Formally, we add a randi component to the automaton description for 
each node i; for each state s, randi(s) is a probability distribution over some 
subset of statesi. Now in each round of execution, the random function randi is 
first used to pick new states, and the msgsi and transi functions are then applied 
as  u s u a l .  

The formal notion of execution used in a randomized algorithm now includes 
not only state assignments and message assignments, but also information about 
random functions. Specifically, an execution of the system is defined to be an 
infinite sequence 

Co, D1, M1, N1, C1, D2, 2112, N2, C2, �9 �9 �9 , 

where each C~ and D~ is a state assignment and each M~ and N, is a message 
assignment. D~ represents the new process states after the round r random 
choices. 

Claims about what is computed by a randomized system are usually proba- 
bilistic, asserting that certain results are achieved with at least a certain proba- 
bility. When such a claim is made, the intention is generally that it is supposed 
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to hold for all inputs and, in case of systems with failures, for all failure patterns. 
To model the inputs and failure patterns, a fictitious entity called an adversary is 
usually assumed to control the choices of inputs and occurrences of failures, and 
the probabilistic claim asserts that the system behaves well in competition with 
any allowable adversary. General treatment of these issues is beyond the scope 
of this book; we will just provide special case definitions as they are needed. 

2.8 Bibliographic Notes  

The general notion of a state machine model has its roots in the traditional 
finite-state automaton model. Basic material on finite-state machines appears in 
many undergraduate textbooks such as those of Lewis and Papadimitriou [195] 
and Martin [221]. The particular kind of state machine model defined here is 
extracted from numerous papers in distributed computing theory, for example, 
the Byzantine agreement paper by Fischer and Lynch [119]. 

The idea of invariant assertions seems to have been first proposed by Floyd 
[124] for sequential programs and generalized by ashcroft [15] and by Lamport 
[175] for concurrent programs. Similar ideas have appeared in many other places. 
The idea of simulations also has numerous sources. One of the most important 
is the early work on data abstraction in sequential programs embodied, for ex- 
ample, in Ciskov's programming language CLU [198] and in work of Milner [228] 
and Hoare [158]. Later work that extended the notion to concurrent programs 
includes papers by Park [236], Lamport [177], Lynch [203], Lynch and Tuttle 
[218], and Jonsson [165]. 



This Page Intentionally Left Blank



Chapter 3 

Leader Elect ion in a 
Synchronous  Ring 

In this chapter, we present the first problem to be solved using the synchronous 
model of Chapter 2: the problem of electing a unique leader process from among 
the processes in a network. For starters, we consider the simple case where the 
network digraph is a ring. 

This problem originally arose in the study of local area token ring networks. 
In such a network, a single "token" circulates around the network, giving its 
current owner the sole right to initiate communication. (If two nodes in the 
network were to at tempt simultaneously to communicate, the communications 
could interfere with one another.) Sometimes, however, the token may be lost, 
and it becomes necessary for the processes to execute an algorithm to regenerate 
the lost token. This regeneration procedure amounts to electing a leader. 

3.1 The  P r o b l e m  

We assume that the network digraph G is a ring consisting of n nodes, numbered 
1 to n in the clockwise direction (see Figure 3.1). We often count mod n, allowing 
0 to be another name for process n, n + 1 another name for process 1, and so 
on. The processes associated with the nodes of G do not know their indices, nor 
those of their neighbors; we assume that the message-generation and transition 
functions are defined in terms of local, relative names for the neighbors. However, 
we do assume that each process is able to distinguish its clockwise neighbor from 
its counterclockwise neighbor. The requirement is that, eventually, exactly one 
process should output the decision that it is the leader, say by changing a special 
status component of its state to the value leader. There are several versions of 
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F i g u r e  3.1" A ring of processes. 

the problem: 

1. It might also be required that all non-leader processes eventually output  the 

fact that they are not the leader, say by changing their status components 

to the value non-leader. 

2. The ring can be either unidirectional or bidirectional. If it is unidirectional, 

then each edge is directed from a process to its clockwise neighbor, that 

is, messages can only be sent in a clockwise direction. 

3. The number n of nodes in the ring can be either known or unknown to 
the processes. If it is known, it means that the processes only need to 
work correctly in rings of size n, and thus they can use the value n in their 
programs. If it is unknown, it means that the processes are supposed to 

work in rings of different sizes. Therefore, they cannot use information 
about the ring size. 

4. Processes can be identical or can be distinguished by each start ing with a 

unique identifier (UID) chosen from some large totally ordered space of 

identifiers such as the positive integers, N + . We assume that each process's 
UID is different from each other's in the ring, but that there is no constraint  
on which UIDs actually appear in the ring. (For instance, they do not 
have to be consecutive integers.) These identifiers can be restr icted to be 
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manipulated only by certain operations, such as comparisons, or they can 
admit  unrestr icted operations. 

3.2 Impossibi l i ty  Result  for Identical Processes  

A first easy observation is that if all the processes are identical, then this prob- 
lem cannot be solved at all in the given model. This is so even if the ring is 
bidirectional and the ring size is known to the processes. 

T h e o r e m  3.1 Let A be a system of n processes, n > 1, arranged in a bidirec- 
tional ring. I f  all the processes in A are identical, then A does not solve the 
leader-election problem. 

P r o o f .  Suppose that there is such a system A that solves the leader-election 
problem. We obtain a contradiction. We can assume without any loss of gen- 
erality that each process of A has exactly one start  state. This is so because if 
each process has more than one start  state, we could simply choose any one of 
the start  states and obtain a new solution in which each process has only one 
start  state. With this assumption, A has exactly one execution. 

So consider the (unique) execution of A. It is s traightforward to verify, 
by induction on the number r of rounds that have been executed, that all the 
processes are in identical states immediately after r rounds. Therefore, if any 
process ever reaches a state where its status is leader, then all the processes in 
A also reach such a state at the same time. But this violates the uniqueness 
requirement. 

Theorem 3.1 implies that the only way to solve the leader-election problem 
is to break the symmetry somehow. A reasonable assumption derived from what 

is usually done in practice is that the processes are identical except for a UID. 
This is the assumption we make in the rest of this chapter. 

3.3 A Basic  Algori thm 

The first solution we present is a fairly obvious one, which we call the L CR 
algorithm in honor of Le Lann, Chang, and Roberts,  from whose papers this 

algorithm is extracted. The algorithm uses only unidirectional communication 
and does not rely on knowledge of the size of the ring. Only the leader performs 
an output.  The algorithm uses only comparison operations on the UIDs. Below 

is an informal description of the L CR algorithm. 
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L C R  a l g o r i t h m  ( i n f o r m a l ) :  

Each process sends its identifier around the ring. When  a process receives 

an incoming identifier, it compares  that  identifier to its own. If the incoming 

identifier is greater than its own, it keeps passing the identifier; if it is less 

than its own, it discards the incoming identifier; if it is equal to its own, 

the process declares itself the leader. 

In this algorithm, the process with the largest UID is the only one that outputs  

leader. In order to make this intuit ion precise, we give a more careful description 

of the a lgori thm in terms of the model of Chapter  2. 

L C R  a l g o r i t h m  ( f o r m a l ) :  

The message alphabet  M is exactly the set of UIDs. 

For each i, the states in statesi consist of the following components:  

u, a UID, initially i's UID 
send, a UID or null, initially i's UID 
status, with values in {unknown, leader}, initially unknown 

The set of s tar t  states starti consists of the single state defined by the given 
initializations. 

For each i, the message-generation function msgsi is defined as follows: 

send the current value of send to process i + 1 

Actually, process i would use a relative name for process i + 1, for example, 

"clockwise neighbor";  we write i + 1 because it is simpler. Recall from 

Chapter  2 that  we use the null  value as a placeholder indicating the absence 

of a message. So if the value of the send  component  is null, this msgi 

function does not actually send any message. 

For each i, the t rans i t ion function transi is defined by the following pseu- 
docode: 

send := null 
if the incoming message is v, a UID, then 

case 

v > u: send : - v  
v = u: status := leader 
v < u: do nothing 

endcase 
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The first line of the transit ion function definition just cleans up the state from 
the effects of the preceding message delivery (if any). The rest of the code 
contains the interesting work- - the  decision about whether to pass on or discard 
the incoming UID, or to accept it as permission to become the leader. 

This description is written in what should be a reasonably readable pro- 
gramming language, but note that it has a direct translation into a process state 
machine in the model in Chapter  2. In this translation, each process state consists 
of a value for each of the variables, and the transitions are describable in terms 

of changes to the variables. Note that the entire block of code written for the 
transi function is supposed to be executed indivisibly, as part  of the processing 
for a single round. 

How do we go about proving formally that the algorithm is correct? Correct- 
ness means that exactly one process eventually performs a leader output.  Let 

/max denote the index of the process with the maximum UID, and let Umax denote 
its UID. It is enough to show that (1) process/max outputs leader by the end of 
round n, and (2) no other process ever performs such an output.  We prove these 
two properties, respectively, in Lemmas 3.2 and 3.3. 

Here and in many other places in the book, we attach the subscript i to a 
state component name to indicate the instance of that state component belonging 

to process i. For example, we use the notation ui to denote the value of state 
component u of process i. We generally omit the subscripts when writing the 
process code, however. 

L e m m a  3.2 Process imax outputs leader by the end of round n. 

P r o o f .  Note that Umax is the initial value of variable U/max , the variable u at 
process /max, by the initialization. Also note that the values of the u variables 
never change (by the code), that they are all distinct (by assumption),  and that 
/max has the largest u value (by definition of/max). By the code, it suffices to 
show the following invariant assertion: 

A s s e r t i o n  3.3.1 Af ter  n rounds, s ta tus im .x -  leader. 

The normal way to try to prove an invariant such as this one is by induction on 
the number of rounds. But in order to do this, we need a preliminary invariant 
that says something about the situation after smaller numbers of rounds. We add 
the following assertion: 

A s s e r t i o n  3.3.2 For 0 < r < n -  1, after r rounds, sendima~+r = 

' U r e a  x . 

(Recall that addition is modulo n.) This assertion says that the maximum value 
appears in the send component at the position in the ring at distance r from 

?,max. 
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It is straightforward to prove Assertion 3.3.2 by induction on r. For r = 0, 
the initialization says that sendim~x = Umax after 0 rounds, which is just what is 
needed. The inductive step is based on the fact that every node other than/max 
accepts the maximum value and places it into its send component, since Umax is 
greater than all the other values. 

Having proved Assertion 3.3.2, we use its special case for r = n -  1 and one 
more argument about what happens in a single round to show Assertion 3.3.1. 
The key fact here is that process /max accepts Umax as a signal to set its status 
to leader. D 

L e m m a  3.3 No process other than imax ever outputs the value leader. 

P r o o f .  It is enough to show that all other processes always have status = 
unknown. Again, it helps to state a stronger invariant. If i and j are any two 
processes in the ring, i ~: j ,  define [i, j )  to be the set of indices {i, i + 1 , . . .  , j -  1 }, 
where addition is modulo n. That  is, [i, j )  is the set of processes starting with i 
and moving clockwise around the ring up to and including j ' s  counterclockwise 
neighbor. The following invariant asserts that no UID v can reach any send 
variable in any position between/max and v's original home i: 

A s s e r t i o n  3.3.3 For any r and any i, j ,  the following holds. After 
r rounds, if i 7~ imax and j C [imax, i) then sendj 7~ ui. 

Again, it is straightforward to prove the assertion by induction; now the key fact 
used in the proof is that a non-maximum value does not get past/max. This is 
because /max compares the incoming value with Um~x, and Umax is greater than 
all the other UIDs. 

Finally, Assertion 3.3.3 can be used to show that only process/max can receive 
its own UID in a message, and hence only process/max can output leader, ff] 

Lemmas 3.2 and 3.3 together imply the following: 

T h e o r e m  3.4 LCR solves the leader-election problem. 

Halting and n o n - l e a d e r  o u t p u t s .  As written, the LCR algorithm never fin- 
ishes its work, in the sense of all the processes reaching a halting state. We can 
augment each process to include halting states, as described in Section 2.1. Then 
we can modify the algorithm by allowing the elected leader to initiate a special 
report message to be sent around the ring. Any process that receives the report 
message can halt, after passing it on. This strategy not only allows processes 
to halt, but could also be used to allow the non-leader processes to output non- 
leader. Furthermore, by attaching the leader's index to the report message, this 
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strategy could also allow all the participating processes to output the identity 
of the leader. Note that it is also possible for each non-leader node to output 
non-leader immediately after it sees a UID greater than its own; however, this 
does not tell the non-leader nodes when to halt. 

In general, halting is an important  property for a distributed algorithm to 
satisfy; however, it cannot always be achieved as easily as in this case. 

C o m p l e x i t y  ana lys i s .  The time complexity of the basic LCR algorithm is n 
rounds until a leader is announced, and the communication complexity is O (n 2) 
messages in the worst case. In the halting version of the algorithm, the time 
complexity is 2n and the communication complexity is still O (n2). The extra 
time needed for halting and for the non-leader announcements is only n rounds, 
and the extra communication is only n messages. 

T r a n s f o r m a t i o n .  The preceding two remarks describe and analyze a general 
transformation, from any leader-election algorithm in which only the leader pro- 
vides output and no process ever halts, to one in which the leader and the non- 
leaders all provide output and all processes halt. The extra cost of obtaining the 
extra outputs and the halting is only n rounds and n messages. This transfor- 
mation works for any combination of our other assumptions. 

V a r i a b l e  s t a r t  t imes .  Note that the LCR algorithm works without modifi- 
cation in the version of the synchronous model with variable start times. See 
Section 2.1 for a description of this version of the model. 

B r e a k i n g  s y m m e t r y .  In the problem of electing a leader in a ring, the key 
difficulty is breaking symmetry. Symmetry-breaking is also an important part 
of many other problems that need to be solved in distributed systems, includ- 
ing resource-allocation problems (see Chapters 10-11 and 20) and consensus 
problems (see Chapters 5-7, 12, 21, and 25). 

3.4 An Algorithm with O (n log n) Communication 
Complexity 

Although the time complexity of the LCR algorithm is low, the number of mes- 
sages used by the algorithm seems somewhat high, a total of O (n2). This might 
not seem significant, because there is never more than one message on any link 
at any time. However, in Chapter 2, we discussed why the number of messages is 
an interesting measure to try to minimize; this is because of the possible network 
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F i g u r e  3.2: Trajectories of successive tokens originating at process i in the HS algo- 
rithm. 

congestion that can result from the total communication load of many concur- 
rently running distr ibuted algorithms. In this section, we present an algorithm 
that lowers the communication complexity to O (n log n). 

The first published algorithm to reduce the worst-case complexity to O (n log n) 
was that of Hirschberg and Sinclair, so we call this algorithm the HS algorithm. 

Again, we assume that only the leader needs to perform an output,  though the 
transformation at the end of Section 3.3 implies that this restriction is not im- 
portant .  Again, we assume that the ring size is unknown, but now we allow 
bidirectional communication. 

As does the L C R  algorithm, the HS algorithm elects the process with the max- 
imum UID. Now every process, instead of sending its UID all the way around the 
ring as in the L C R  algorithm, sends it so that it travels some distance away, then 
turns around and comes back to the originating process. It does this repeatedly, 
to successively greater distances. The HS algorithm proceeds as follows. 

H S  algorithm (informal): 
Each process i operates in phases 0, 1, 2, . . . .  In each phase l, process i 
sends out "tokens" containing its UID ui in both directions. These are 
intended to travel distance 2 l, then return to their origin i (see Figure 3 .2 )  
If both tokens make it back safely, process i continues with the following 
phase. However, the tokens might not make it back safely. While a ui token 
is proceeding in the outbound direction, each other process j on ui's path 
compares ui with its own UID uj. If ui < uj, then j simply discards the 
token, whereas if ui > uj, then j relays ui. If ui = uj,  then it means that 
process j has received its own UID before the token has turned around, so 
process j elects itself as the leader. 

All processes always relay all tokens in the inbound direction. 

Now we describe the algorithm more formally. This time, the formalization 
requires some bookkeeping to ensure that tokens follow the proper trajectories.  
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For instance, flags are carried by the tokens indicating whether they are travel- 
ling outbound or inbound. Also, hop counts are carried with the tokens to keep 
track of the distances they must travel in the outbound direction; this allows 
the processes to figure out when the directions of the tokens should be reversed. 
Once the algorithm is formalized in this way, a correctness argument of the sort 
given for L CR can be provided. 

H S  algorithm (formal): 
The message alphabet M is the set of triples consisting of a UID, a flag 
value in {out, in}, and a positive integer hop-count. 

For each i, the states in statesi consist of the following components: 

u, of t y p e  UID,  ini t ia l ly  i 's  UID 
send+, conta in ing  e i ther  an e lement  of M or null, 

ini t ia l ly  the  t r ip le  consis t ing of i 's  UID, out, and  1 

send- ,  con ta in ing  e i ther  an e lement  of M or null, 
in i t ia l ly  the  t r ip le  consis t ing of i 's  UID, out, and  1 

status, with  values in {unknown, leader}, ini t ia l ly  unknown 
phase, a nonnega t ive  integer,  ini t ia l ly  0 

The set of start states starti consists of the single state defined by the 
given initializations. 

For each i, the message-generation function msgsi is defined as follows: 

send the  cur ren t  value of send+ to process i + 1 
send the  cur ren t  value of send-  to process i -  1 

For each i, the transition function transi is defined by the following pseu- 
docode: 

send+ :=  null 
s end -  : -  null 
if t he  message from i -  1 is (v, out, h) t hen  

case 
v > u and  h > 1: send+ :=  (v, out, h -  1) 

v > u and  h = 1: send -  : -  (v, in, 1) 
v = u: status :=  leader 

endcase  
if the  message from i + 1 is (v, out, h) t hen  

case 

v > u and h > I: send- : -  (v, out, h -  I) 

v > u and  h -- 1: send+ :=  (v, in, 1) 
v = u: status :-- leader 

endcase  
if the  message f rom i - 1 is (v, in, 1) and  v # u t hen  
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send+ := (v, in, 1) 
if the message from i + 1 is (v, in, 1) and v # u then 

send- := (v, in, 1) 
if the messages from i - 1 and i + 1 are both (u, in, 1) then 

phase := phase + 1 
send+ := (u, out, 2 phase) 
send- := (u, out, 2 phase) 

As before, the first two lines just  clean up the state.  The  next two pieces 
of code describe the handl ing of ou tbound  tokens: tokens with UIDs tha t  are 

greater  t han  ui are either relayed or tu rned  around,  depending on the hop-count, 
and the receipt of ui causes i to elect itself the leader. The next two pieces of 
code describe the handl ing of inbound tokens: they are simply relayed. (A trivial  

hop-count of I is used for inbound tokens.) If process i receives both  of its own 
tokens back, then  it goes on to the next phase. 

C o m p l e x i t y  a n a l y s i s .  We first analyze the communica t ion  complexity. Ev- 
ery process sends out a token in phase 0; this is a total  of 4n messages for the 
token to go out and return,  in both  directions. For 1 > 0, a process sends a 
token in phase 1 exactly if it receives bo th  its phase 1 -  1 tokens back. This is 
exact ly if it has not been "defeated" by another  process within dis tance 2/-1 in 
ei ther direction along the ring. This implies tha t  within any group of 2/-1 + 1 

consecutive processes, at most  one goes on to init iate tokens at phase 1. This 

can be used to show tha t  at most  

processes a l together  ini t iate tokens at phase 1. Then  the total  number  of mes- 

sages sent out at phase 1 is bounded  by 

2/-1 + 1  -- 

This is because phase 1 tokens travel dis tance 2 I. Again, the factor of 4 is 
derived from the fact tha t  the token is sent out in bo th  direct ions--c lockwise  
and counte rc lockwise - -and  tha t  each ou tbound  token must  tu rn  a round and 
return.  

The  total  number  of phases tha t  are executed before a leader is elected and 

all communica t ion  stops is at most  1 + Flog n~ (including phase 0), so the total  
number  of messages is at most  8n(1 + Ilogn~), which is O ( n l o g n ) ,  with a 
constant  factor of approximate ly  8. 

The  t ime complexi ty  for this a lgor i thm is just  O (n). This can be seen by 
not ing tha t  the t ime for each phase 1 is 2.21 - 2 z+l (for the tokens to go out and 
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return). The final phase takes time n - - i t  is an incomplete phase, with tokens 
only travelling outbound. The next-to-last phase is phase l - Ilog n] - 1, and 
its time complexity is at least as great as the total time complexity of all the 
preceding phases. Thus, the total time complexity of all but the final phase is at 
most 

2 �9 2 I-log nl. 

It follows that the total time complexity is at most 3n if n is a power of 2, and 
5n otherwise. The rest of the details are left as an exercise. 

V a r i a b l e  start times. The HS algorithm works without modification in the 
version of the synchronous model with variable start times. 

3.5 Non-Comparison-Based Algorithms 

We next consider the question of whether it is possible to elect a leader with fewer 
than O (n log n) messages. The answer to this problem, as we shall demonstrate 
shortly with an impossibility resu l t - -a  lower bound of f~(n log n) - - i s  negative. 
That  result, however, is valid only in the case of algorithms that manipulate 
the UIDs using comparisons only. (Comparison-based algorithms are defined in 
Section 3.6 below.) 

In this section, we allow the UIDs to be positive integers and permit them 
to be manipulated by general arithmetic operations. For this case, we give two 
algorithms, the TimeSlice algorithm and the VariableSpeeds algorithm, each of 
which uses only O (n) messages. The existence of these algorithms implies that 
the lower bound of f~(n log n) cannot be proved for the general case. 

3 .5 .1  T h e  T i m e S l i c e  Algorithm 

The first of these algorithms uses the strong assumption that the ring size n is 
known to all the processes, but only assumes unidirectional communication. In 
this setting, the following simple algorithm, which we call the TimeSlice algo- 
rithm, works. It elects the process with the minimum UID. 

Note that this algorithm uses synchrony in a deeper way than do the LCR 
and HS algorithms. Namely, it uses the non-arrival of messages (i.e., the arrival 
of null messages) at certain rounds to convey information. 

TimeSl ice  algorithm: 

Computation proceeds in phases 1, 2, . . . ,  where each phase consists of 
n consecutive rounds. Each phase is devoted to the possible circulation, 
all the way around the ring, of a token carrying a particular UID. More 
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specifically, in phase v, which consists of rounds (v - 1)n + 1 , . . .  , vn, only 

a token carrying UID v is permit ted to circulate. 

If a process i with UID v exists, and round (v - 1)n + 1 is reached without 
i having previously received any non-null messages, then process i elects 
itself the leader and sends a token carrying its UID around the ring. As 
this token travels, all the other processes note that they have received it, 
which prevents them from electing themselves as leader or initiating the 
sending of a token at any later phase. 

With this algorithm, the minimum UID U m i n  eventually gets all the way 
around, which causes its originating process to become elected. No messages are 

sent before round ( U m i  n - -  1)n + 1, and no messages are sent after round ~ t m i  n �9 n. 
The total number of messages sent is just n. If we prefer to elect the process with 
the maximum UID rather than the process with the minimum, we can simply let 
the minimum send a special message around after it is discovered in order to 
determine the maximum. The communication complexity is still O (n). 

The good property of the TimeSlice algorithm is that the total number of 

messages is n. Unfortunately, the time complexity is about n �9 U m i n ,  which is an 
unbounded number, even in a fixed-size ring. This time complexity limits the 
practicality of the algorithm; it is only useful in practice for small ring networks 
in which UIDs are assigned from among the small positive integers. 

3.5.2 The VariableSpeeds Algorithm 

The TimeSlice algorithm shows that O (n) messages are sufficient in the case of 
rings in which processes know n, the size of the ring. But what if n is unknown? 
It turns out that in this case, also, there is an O (n) message algorithm, which 
we call the VariableSpeeds algorithm for reasons that will become apparent  in a 
moment.  The VariableSpeeds algorithm uses only unidirectional communication. 

Unfortunately, the time complexity of the VariableSpeeds algorithm is even 
worse than that of the TimeSlice algorithm: 0 (n. 2 ~min). Clearly, no one would 

even think of using this algorithm in practice! The VariableSpeeds algorithm is 
what we call a counterexample algorithm. A counterexarnple algorithm is one 
whose main purpose is to show that a conjectured impossibility result is false. 
Such an algorithm is generally not interesting by i tself--i t  is neither practical 
nor particularly elegant from a mathematical viewpoint. However, it does serve 

to show that an impossibility result cannot be proved. 
Here is the algorithm. 

VariableSpeeds algorithm: 

Each process i initiates a token, which travels around the ring, carrying 
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the UID ui of the originating process i. Different tokens travel at different 
rates. In particular, a token carrying UID v travels at the rate of 1 message 
transmission every 2 ~ rounds, that is, each process along its path waits 2 ~ 
rounds after receiving the token before sending it out. 

Meanwhile, each process keeps track of the smallest UID it has seen and 
simply discards any token carrying an identifier that is larger than this 
smallest one. 

If a token returns to its originator, the originator is elected. 

As for the TimeSlice algorithm, the VariableSpeeds algorithm guarantees that 
the process with the minimum UID is elected. 

C o m p l e x i t y  ana lys i s .  The VariableSpeeds algorithm guarantees that by the 
time the token carrying the smallest identifier Umin gets all the way around 
the ring, the second smallest identifier could only get at most halfway around, 
the third smallest could only get at most a quarter of the way around, and in 
general, the kth smallest could only get at most ~ of the way around. There- 
fore, up to the time of election, the token carrying Umin USeS more messages than 
all the others combined. Since Umin uses exactly n messages, the total number 
of messages sent, up to the time of election, is less than 2n. 

But also, note that by the time Umin gets all the way around the ring, all 
nodes know about this value, and so will refuse to send out any other tokens. It 
follows that 2n is an upper bound on the total number of messages that are ever 
sent by the algorithm (including the time after the leader output).  

The time complexity, as mentioned above, is n .  2 um~n, since each node delays 
the token carrying UID Umin for 2 umin time units. 

V a r i a b l e  s t a r t  t i m e s .  Unlike the LCR and HS algorithms, the VariableSpeeds 
algorithms cannot be used "as is" in the version of the synchronous model with 
variable start times. However, a modification of the algorithm works: 

M o d i f i e d  VariableSpeeds a l g o r i t h m :  

Define a process to be a starter if it receives a wakeup message strictly 
before (i.e., at an earlier round than) receiving any ordinary (non-null) 
messages. 

Each starter i initiates a token to travel around the ring, carrying its UID 
ui; non-starters never initiate tokens. Initially, this token travels "fast," 
at the rate of one transmission per round, getting passed along by all the 
non-starters that are awakened by the arrival of the token, just until it first 
arrives at a starter. (This could be a different starter, or i itself.) After the 
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token arrives at a starter, the token continues its journey, but from now 

on at the "slow" rate of one transmission every 2 u~ rounds. 

Meanwhile, each process keeps track of the smallest starter 's  UID that it 
has seen and discards any token carrying an identifier that is larger than 
this smallest one. If a token returns to its originator, the originator is 
elected. 

The modified VariableSpeeds algorithm ensures that the starter  process with 

the minimum UID is elected. Let imin-start denote this process. 

C o m p l e x i t y  a n a l y s i s .  We count the messages in three classes. 

1. The messages involved in the initial fast transmission of tokens. There are 
just n of these. 

2. The messages involved in the slow transmission of tokens, up to the time 

when imin-start'S token first reaches a starter. This takes at most n rounds 
from when the first process awakens. During this time, a token carrying 

, ~ v = l  ~-~ < n  UID v could use at most ~ messages for a total of at most n n 

messages. 

3. The messages involved in the slow transmission of tokens, after the time 

when imin-start'S token first reaches a starter. This analysis is similar to 
that for the basic VariableSpeeds algorithm. By the time the winning token 
gets all the way around the ring, the kth smallest starter 's  identifier could 
only get at most ~ of the way around. Therefore, the total number of 
messages sent, up to the time of election, is less than 2n. But by the time 
the winning token gets all the way around the ring, all nodes know about 
its value, and so will refuse to send out any other tokens; thus, 2n is an 

upper bound on the number of messages in this class. 

Thus, the total communication complexity is at most 4n. 
The time complexity is n + n .  2 umin-start. 

3.6 Lower Bound for Comparison-Based Algorithms 

So far, we have presented several algorithms for leader election on a synchronous 
ring. The LCR and HS algorithms are comparison based, and the latter achieves 
a communication complexity bound of O (n log n) messages and a time bound of 
O (n). The TimeSlice and VariableSpeeds algorithms, on the other hand, are not 
comparison based, and use O (n) messages, but have a huge running time. In 
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this section, we show a lower bound of Ft(n log n) messages for comparison-based 
algorithms. This lower bound holds even if we assume that communication is 
bidirectional and the ring size n is known to the processes. In the next section, 
we show a similar lower bound of ft(n log n) messages for non-comparison-based 
algorithms with bounded time complexity. 

The result of this section is based on the difficulty of breaking symmetry. Re- 
call the impossibility result in Theorem 3.1, which says that, because of symme- 
try, it is impossible to elect a leader in the absence of distinguishing information 
such as UIDs. The main idea in the following argument is that a certain amount  
of symmetry  can arise even in the presence of UIDs. In this case, the UIDs allow 
symmetry  to be broken, but it might require a large amount  of communication 
to do so. 

Recall that we are assuming throughout  this chapter that the processes in the 
ring are all identical except for their UIDs. Thus, the start  states of the processes 
are identical except for designated components that contain the process UID. In 
general, we have not imposed any constraints on how the message-generation 
and transit ion functions can use the UID information. 

We assume for the rest of this chapter (this section and the next) that there 
is only one start  state containing each UID. (As in the proof of Theorem 3.1, 
this assumption does not cause any loss of generality.) The advantage of this 
assumption is that it implies that the system (with a fixed assignment of UIDs) 
has exactly one execution. 

A comparison-based algorithm obeys certain additional constraints,  expressed 
by the following slightly informal definition. A UID-based ring algori thm is com- 
parison based if the only ways that the processes manipulate the UIDs are by 
copying them, by sending and receiving them in messages, and by comparing 
them for {<, >, =}. 

This definition allows a process, for example, to store any of the various UIDs 
that it has encountered and to send them out in messages, possibly combined 
with other information. A process can also compare the stored UIDs and use 
the results of these comparisons to make choices in the message-generation and 
state-transit ion functions. These choices could involve, for example, whether or 
not to send a message to each of its neighbors, whether or not to elect itself the 
leader, whether or not to keep the stored UIDs, and so on. The impor tant  fact 
is that all of the activity of a process depends only on the relative ranks of the 
UIDs it has encountered, rather than on their part icular values. 

The following formal notion is used to describe the kind of symmetry  that 
can exist, even with VlDs. Let U = (Ul, U 2 , . . . ,  Uk) and V = (Vl, v 2 , . . . ,  Vk) 
be two sequences of UIDs, both of the same length k. We say that U is order 
equivalent to V if, for all i, j, 1 <_ i, j <_ k, we have ui <_ uj if and only if vi <_ vj. 
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Example 3.6.1 Order equivalence 

The sequences (5, 3, 7, 0), (4, 2, 6, 1), and (5, 3, 6, 1) are all order equiv- 
alent if the UID set is the natural  numbers with the usual ordering. 

Notice that  two sequences of UIDs are order equivalent if and only if the 
corresponding sequences of relative ranks of their UIDs are identical. Two tech- 
nical definitions follow. A round of an execution is said to be active if at least 
one (non-null) message is sent in it. The k-neighborhood of process i in ring R 
of size n, where 0 < k < [n/2J,  is defined to consist of the 2k + 1 processes 
i - k , . . .  , i § k, that is, those that are within distance at most k from process i 
(including i itself). 

Finally, we need a definition of what it means for process states to be the 
same, except for the part icular  choices of UIDs they contain. We say that two 
process states s and t correspond with respect to sequences U - -  ( U l ,  u 2 , .  �9 �9 , Uk) 
and V -  (Vl, v 2 , . . . ,  vk) of UIDs provided that the following hold: all the UIDs 
in s are chosen from U, all the UIDs in t are chosen from V, and t is identical 
to s except that each occurrence of ui in s is replaced by an occurrence of vi in 
t, for all i, 1 <_ i <_ k. Corresponding messages are defined analogously. 

We can now prove the key lemma for our lower bound, Lemma 3.5. It says 
that  processes that have order-equivalent k-neighborhoods behave in essentially 
the same way, until information has had a chance to propagate to the processes 
from outside the k-neighborhoods. 

Lemma 3.5 Let A be a comparison-based algorithm executing in a ring R of 
size n and let k be an integer, 0 ~_ k < [n/2]. Let i and j be two processes in A 
that have order-equivalent sequences of UIDs in their k-neighborhoods. Then, at 
any point after at most k active rounds, processes i and j are in corresponding 
states, with respect to the UID sequences in their k-neighborhoods. 

Example 3.6.2 Corresponding states 

Suppose that the sequence of UIDs in process i 's 3-neighborhood is 
(1, 6, 3, 8, 4, 10, 7) (where process i 's UID is 8), and the sequence in 
process j ' s  3-neighborhood is (4, 10, 7, 12, 9, 13, 11) (where process j ' s  
UID is 12). Since these two sequences are order equivalent, Lemma 
3.5 implies that processes i and j remain in corresponding states 
with respect to their 3-neighborhoods, as long as no more than three 
active rounds have occurred. Roughly speaking, the reason this is 
so is that if there are only three active rounds, there has not been 
any opportuni ty for information from outside the order-equivalent 
3-neighborhoods to reach i and j.  
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P r o o f  (of  L e m m a  3.5) .  Without  loss of generality, we may assume that i 

j .  We proceed by induction on the number r of rounds that have been performed 
in the execution. For each r, we prove the lemma for all k. 

Basis: r = 0. By the definition of a comparison-based algorithm, the initial 
states of i and j are identical except for their own UIDs, and hence they are in 
corresponding initial states, with respect to their k-neighborhoods (for any k). 

Inductive step: Assume that the lemma holds for all r ~ < r. Fix k such that i 
and j have order-equivalent k-neighborhoods, and suppose that the first r rounds 
include at most k active rounds. 

If neither i nor j receives a message at round r, then by induction (for r -  1 
and k), i and j are in corresponding states just after r -  1 rounds, with respect to 
their k-neighborhoods. Since i and j have no new input, they make corresponding 
transitions and end up in corresponding states after round r. 

So assume that either i or j receives a message at round r. Then, round r is 
active, so the first r -  1 rounds include at most k -  1 active rounds. Note that 
i and j have order-equivalent ( k -  1)-neighborhoods, and likewise for i -  1 and 
j -  1 and for i + 1 and j + 1. Therefore, by induction (for r -  1 and k -  1), we 
have that i and j are in corresponding states after r -  1 rounds, with respect to 
their ( k -  1)-neighborhoods, and similarly for i -  1 and j - 1, and for i + 1 and 
j + l .  

We proceed by case analysis. 

1. At round r, neither i -  1 nor i + 1 sends a message to i. 

Then, since i -  1 and j -  1 are in corresponding states after r -  1 rounds, 
and likewise for i + 1 and j + 1, we have that neither j -  1 nor j + 1 sends 
a message to j at round r. But this contradicts the assumption that either 
i or j receives a message at round r. 

. At round r, i -  1 sends a message to i but i + 1 does not. 

Then, since i -  1 and j -  1 are in corresponding states after r -  1 rounds, 
j -  1 also sends a message to j at round r, and that message corresponds 
to the message sent by i -  1 to i, with respect to the ( k -  1)-neighborhoods 
of i -  1 and j - 1, and hence with respect to the k-neighborhoods of i and 
j .  For similar reasons, j + 1 sends no message to j at round r. Since i and 
j are in corresponding states after round r -  1, and receive corresponding 
messages, they remain in corresponding states, this time with respect to 

their k-neighborhoods. 

3. At round r, i § 1 sends a message to i but i -  1 does not. 

Analogous to the previous case. 
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4. At round r, both i -  1 and i + 1 send messages to i. 

A similar argument.  D 

Lemma 3.5 tells us that many active rounds are necessary to break symmetry  

if there are large order-equivalent neighborhoods. We now define particular rings 

with the special property that they have many order-equivalent neighborhoods 

of various sizes. Let c, 0 < c ~ 1, be a constant,  and let R be a ring of size 

n. Then R is said to be c-symmetric if for every l, x/rn _< 1 _< n, and for every 

segment S of R of length l, there are at least [ ~ J  segments in R that are order 
equivalent to S (counting S itself). 1 

1 If n is a power of 2, then it is easy to construct a ring that is ~-symmetric. 

Specifically, we define the bit-reversal ring of size n as follows. Suppose that 

n - 2 k. Then we assign to each process i the integer in the range [0, n -  1] whose 
k-bit binary representation is the reverse of the k-bit binary representation of i 

(we use O k as the k-bit binary representation of n, identifying n with 0). 

E x a m p l e  3.6.3 Bi t -reversa l  ring 

For n -  8, we have k -  3, and the assignment is as in Figure 3.3. 

1 L e m m a  3.6 Any bit-reversal ring is ~-symmetric. 

P r o o f .  Left as an exercise. 2 E] 

For values of n that are not powers of 2, there also always exist c-symmetric 
rings, though the general case requires a smaller constant c. 

T h e o r e m  3.7 There exists a constant c such that, for all n C N +, there is a 
c-symmetric ring of size n. 

The proof of Theorem 3.7 involves a fairly complicated recursive construc- 
tion. 3 It is not possible to produce the needed ring simply, say by starting with 

the bit-reversal ring for the next smaller power of 2 and just  adding some extra 
processes; these extra processes would destroy the symmetry.  

So we can assume, for any n, that we have a c-symmetric ring R of size n. 
The following lemma states that if such a ring elects a leader, then it must have 
many active rounds. 

1Try to ignore the square root lower bound condition--it is just a technicality. 
2Note that for the bit-reversal ring, there is no need for the square root lower bound condition. 
3This is where the square root lower bound condition arises. 
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F i g u r e  3.3: Bit-reversal ring of size 8. 

L e m m a  3.8 Let A be a comparison-based algorithm executing in a c-symmetric 
ring of size n, and suppose that A elects a leader. Suppose that k is an integer 

such that x/r-n < 2k-+- i and I cn [ > 2  Then A has more t h a n k  active rounds 
- -  L 2 k + l  j - -  " 

Proof .  We proceed by contradiction. Suppose that A elects a leader, say 
process i, in at most k active rounds. Let S be the k-neighborhood of i; S is a 
segment of length 2k + 1. Since the ring is c-symmetric, there must be at least 

[2-~+lJ > 2  segments in the ring that are order equivalent to S, counting S itself. 

Thus, there is at least one other segment that is order equivalent to S; let j be 
the midpoint of that segment. Now, by Lemma 3.5, i and j remain in equivalent 
states throughout the execution, up to the election point. We conclude that j 
also gets elected, a contradiction. D 

Now we can prove the lower bound. 

T h e o r e m  3.9 Let A be a comparison-based algorithm that elects a leader in 
rings of size n. Then there is an execution of A in which ~ (n  log n) messages 
are sent by the time the leader is elected. 4 

4The ~(n log n) expression hides a fixed constant, independent of n. 
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P r o o f .  Fix c to be the constant whose existence is asserted by Theorem 3.7, 
and use that theorem to obtain a c-symmetric ring R of size n. We consider 
executions of the algorithm in ring R. 

Define k - [~n-___A2J. Then ~ _< 2k + 1 (provided n is sufficiently large), and 

[ ~ n  / > 2 It follows Lemma 3.8 that there than k active rounds, 
! 

by are more 
2 k + 1  - -  " 

that is, that there are at least k + 1 active rounds. 
Consider the r th active round, where ~ + 1 _< r _< k + 1. Since the round 

is active, there is some process i that sends a message in round r. Let S be 

the ( r -  1)-neighborhood of i. Since R is c-symmetric, there are at least [2c~n_l] 

segments in R that are equivalent to S. By Lemma 3.5, at the point just before 
the r th  active round, the midpoints of all these segments are in corresponding 
states, so they all send messages. 

Now let r 1 - -  [ V / - ~ l  -~- 1 and r 2  - -  k + 1 -- I cn4----~2~ + 1. The argument above 

implies that the total number of messages is at least 
L . . . . . 4  

E cn cn 

2 r -  1 -- 2 r -  1 
r = r l  r = r l  

/ ' 2 .  

The second term is O (n), so it suffices to show that the first term is ft(n log n). 
We have 

( ~2~ 1)  
C n  ~ ~ n - -  

2 r -  1 r 
r = r l  r = r l  

= ft (n (ln r2 - In r l ))  

by an integral approximation of the sum, 

= ft(n log n). 

+1) 

This is as needed. D 

3.7 Lower Bound for Non-Comparison-Based 
Algorithms* 

Can we describe any lower bounds on the number of messages for the case of non- 
comparison-based algorithms? Although the ft(n log n) barrier can be broken in 
this case, it is possible to show that this can only happen at the cost of large time 
complexity. For example, suppose that the time until leader election is bounded 
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by t. Then, if the total number of UIDs in the space of identifiers is sufficiently 
large--say, greater than some particular fast-growing function f (n, t ) ~ t h e n  there 
is a subset U of the identifiers on which it is possible to show that the algorithm 
behaves "like a comparison-based algorithm," at least through t rounds. This 
implies that the lower bound for comparison carries over to the time-bounded 
algorithm using identifiers in U. 

We give somewhat more detail, but our presentation is still just a sketch. We 
will define the fast-growing function f ( n ,  t) using Ramsey's  Theorem, which is 
a kind of generalized Pigeonhole Principle. In the statement of the theorem, an 
n-subset is just a subset with n elements, and a coloring just assigns a color to 
each set. 

T h e o r e m  3.10 ( R a m s e y ' s  T h e o r e m )  For all integers n, m, and c, there ex- 
ists an integer g(n, m, c) with the following property. For every set S of size at 
least g(n, m, c), and any coloring of the n-subsets of S with at most c colors, 
there is some subset C of S of size m that has all of its n-subsets colored the 
same color. 

We begin by putting each algorithm into a normal form, in which each state 
simply records, in LISP S-expression format, the initial UID plus all the messages 
ever received, and each non-null message contains the complete state of its sender. 
Certain of these S-expressions are then designated as election states, in which the 
process is identified as having been elected as the leader. If the original algorithm 
is a correct leader-election algorithm, then the new one (with the modified output 
convention) is also, and the communication complexity is the same. 

Our lower bound theorem is as follows. 

T h e o r e m  3.11 For all integers n and t, there exists an integer f ( n ,  t) with the 
following property. Let A be any (not necessarily comparison-based) algorithm 
that elects a leader in rings of size n within time t and uses a UID space of size 
at least f ( n ,  t). Then there is an execution of A in which f~(n log n) messages 
are sent by the time the leader is elected. 

P r o o f  Ske tch .  Fix n and t. Without loss of generality, we only consider 
algorithms in normal form. Since the algorithms involve only n processes and 
proceed for only t rounds, all the S-expressions that arise have at most n distinct 
arguments and at most t parenthesis depth. 

Now for each algorithm A, we define an equivalence relation ----A on n-sets 
(i.e., sets of size n) of UIDs; roughly speaking, two n-sets will be said to be 
equivalent if they give rise to the same behavior for algorithm A. More precisely, 
if V and V ~ are two n-sets of UIDs, then we say that V --A V ~ if, for every 
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S-expression of depth at most t over V, the corresponding S-expression over V ~ 
(generated by replacing each element of V with the same rank element within 
W) give rise to the same decisions, in algorithm A, about whether to send a 
message in each direction and about whether or not the process is elected as 
leader. 

Because the S-expressions in the definition of the equivalence relation have 
at most n arguments  and at most t depth, there are only finitely many =A 
equivalence classes; in fact, there is an upper bound on the number of classes 
that  does not depend on the algorithm A, but only on n and t. Let c(n, t) be 
such an upper bound. 

Now fix algorithm A. We describe a way of coloring n-sets of UIDs, so we 
can apply Ramsey's  Theorem. Namely, we just associate a color with each =A 
equivalence class of n-sets, and color all the n-sets in that  class by that  color. 

Now define f ( n , t )  - g(n, 2n, c(n,t)), where g is the function in Theo- 
rem 3.10, and consider any UID space containing at least f (n , t )  identifiers. 
Then, Theorem 3.10 implies the existence of a subset C of the UID space, con- 
taining at least 2n elements, such that  all n-subsets of C are colored the same 
color. Take U to be the set consisting of the n smallest elements of C. 

Then we claim that  the algorithm behaves exactly like a comparison algo- 
r i thm through t rounds, when UIDs are chosen from U. That  is, every decision 
made by any process, about whether to send a message in either direction or 
about whether the process is a leader, depends only on the relative order of 
the arguments contained in the current state. To see why this is so, fix any 
two subsets W and W ~ of U, of the same size--say m. Suppose that  S is an 
S-expression of depth at most t with UIDs chosen from W, and S ~ is the corre- 
sponding S-expression over W ~ (generated by replacing each element of W with 
the same rank element within W~). Then W and W ~ can be extended to sets 
V and V ~, each of size exactly n, by including the n - rn largest elements of C. 
Since V and V ~ are colored the same color, the two S-expressions give rise to 
the same decisions about whether to send a message in each direction and about 
whether or not the process is elected as leader. 

Since the algorithm behaves exactly like a comparison algorithm through t 
rounds, when UIDs are chosen from U, Theorem 3.9 yields the lower bound. [2 

3.8 Bibliographic Notes 

The impossibility result of Section 3.2 seems to be a part of the ancient folklore 
of this area; one version of this result, for a different model, appears in a paper 
by Angluin [13]. The LCR algorithm is derived from one developed by Le Lann 
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[191], with optimizations due to Chang and Roberts [71]. The HS algorithm is 
due to Hirschberg and Sinclair [156]. 

There have been a series of improvements in the constant in the O (n log n) 
upper bound, culminating in a bound of approximately 1.271n log n + O (n), by 
Higham and Przytycka [155]; this bound works for the unidirectional case. Pe- 
terson [239] and Dolev, Klawe, and Rodeh [97] have given O (n log n) algorithms 
for the unidirectional case. 

The TimeSlice algorithm also seems to be folklore, but is similar to the elec- 
tion strategy used in the MIT token ring network. The VariableSpeeds algorithm 
was developed by Frederickson and Lynch [127], and simultaneously by Vitanyi 
[282]. 

The lower bound results, both for comparison-based and for non-comparison- 
based algorithms, are due to Frederickson and Lynch [127]. Another construction 
of c-symmetric rings is carried out by Attiya, Snir, and Warmuth [27]. Ram- 
sey's Theorem is a standard result of combinatorial theory, and is presented, for 
example, in the graph theory book of Berge [47]. 

The paper by Attiya, Snir, and Warmuth [27] contains other results about 
limitations of computing power in synchronous rings, using proof techniques 
similar to those used in Section 3.6. 

3.9 E x e r c i s e s  

3.1. Fill in more of the details for the inductive proof of correctness of the LCR 
algorithm. 

3.2. For the LCR algorithm, 

(a) Give a UID assignment for which Ft(n 2) messages are sent. 

(b) Give a UID assignment for which only O (n) messages are sent. 

(c) Show that the average number of messages sent is O (n log n), where 
this average is taken over all the possible orderings of the processes 
on the ring, each assumed to be equally likely. 

3.3. Modify the LCR algorithm so that it also allows all the non-leader pro- 
cesses to output non-leader, and so that all the processes eventually halt. 
Present the modified algorithm using the same style of "code" that we 
used for the LCR algorithm. 

3.4. Show that the LCR algorithm still works correctly in the version of the syn- 
chronous model allowing variable start times. (You might have to modify 
the code slightly.) 
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3.5. Carry out a careful proof of correctness for the HS leader-election algo- 
rithm, using the invariant assertion style used for LCR. 

3.6. Show that the HS algorithm still works correctly in the version of the syn- 
chronous model allowing variable start times. (You might have to modify 
the code slightly.) 

3.7. Suppose that the HS leader-election algorithm is modified so that succes- 
sive powers of k are used for path lengths, k > 2, instead of successive 
powers of 2. Analyze the time and communication complexity of the mod- 
ified algorithm, similarly to the way the original HS algorithm is analyzed 
in the book. Compare the results to those for the original algorithm. 

3.8. Consider modifying the HS algorithm so that the processes only send to- 
kens in one direction rather than both. 

(a) Show that the most straightforward modification to the algorithm in 
the text does not yield O (n log n) communication complexity. What  
is an upper bound for the communication complexity? 

(b) Add a little more cleverness to the algorithm in order to restore the 
O (n log n) complexity bound. 

3.9. Design a unidirectional leader-election algorithm that works with unknown 
ring size, and only uses O (n log n) messages in the worst case. Your algo- 
rithm should manipulate the UIDs using comparisons only. 

3.10. Give code for a state machine to express the TimeSlice leader-election 
algorithm. 

3.11. Describe a variant of the TimeSlice algorithm that saves time at the ex- 
pense of additional messages, by allowing some number k of UIDs instead 
of just one to circulate in each phase. Prove the correctness of your algo- 
rithm and analyze its complexity. 

3.12. Give code for a state machine to express the VariableSpeeds leader-election 
algorithm. 

3.13. Show that the unmodified VariableSpeeds algorithm does not necessarily 
have the desired O (n) communication complexity if processes can wake 
up at different times. 

3.14. Prove the best lower bound you can for the number of rounds required, in 
the worst case, to elect a leader in a ring of size n. Be sure to state your 
assumptions carefully. 
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3.15. Give an explicit description of the bit-reversal ring for n -- 16. 

3.16. Prove tha t  the bit-reversal ring of size n - 2 k is l - symmetr ic ,  for any 

k E N  + . 

3.17. Design a c-symmetric ring for non-powers of 2, for some value of c > 0. 

3.18. Consider the problem of electing a leader in a synchronous ring of size n, 
where n is known to all the processes and the processes have no UIDs. 
Devise a randomized leader-election algorithm, that  is, one in which the 

processes can make random choices in addition to just following their code 

deterministically. State carefully the properties tha t  your algori thm sat- 
isfies. For example, is it absolutely guaranteed to elect a unique leader, 
or is there a small probabili ty that  it will fail to do this? Wha t  are the 
expected t ime and message complexities of your algorithm? 

3.19. Consider a synchronous bidirectional ring of unknown size n, in which 
processes have UIDs. Give upper and lower bounds on the number  of mes- 
sages required by a comparison-based algorithm in which all the processes 

compute n mod 2. 
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Chapter 4 

Algorithms in General 
Synchronous Networks 

In Chapter 3, we presented algorithms and lower bounds for the problem of leader 
election in very simple synchronous networks--unidirectional and bidirectional 
rings. In this chapter, we consider a larger collection of problems in a larger 
class of synchronous networks. In particular, we present algorithms for leader 
election, breadth-first search (BFS), finding shortest paths, finding a minimum 
spanning tree (MST), and finding a maximal independent set (MIS), in networks 
based on arbitrary graphs and digraphs. 

The problem of leader election arises when a process must be selected to 
"take charge" of a network computation. The problems of breadth-first search, 
finding shortest paths, and finding a minimum spanning tree are motivated by 
the need to build structures suitable for supporting efficient communication. The 
problem of finding a maximal independent set arises from the problem of network 
resource allocation. (We will revisit many of these problems and algorithms later, 
in Chapter 15, in the context of asynchronous networks.) 

In this chapter, we consider an arbitrary, strongly connected network digraph 
G = (V, E) having n nodes. (Sometimes we will restrict attention to the case 
where all edges are bidirectional, i.e., where the graph is undirected.) We assume, 
as usual for synchronous systems, that the processes communicate only over the 
directed edges of the digraph. In order to name the nodes, we assign them the 
indices 1 , . . . ,  n, but, unlike the ring's indices, these have no special connection 
to the nodes' positions in the graph. The processes do not know their indices, 
nor those of their neighbors, but refer to their neighbors by local names. We 
do assume that if a process i has the same process j for both an incoming and 
outgoing neighbor, then i knows that  the two processes are the same. 
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4.1 L e a d e r  E l e c t i o n  in a G e n e r a l  N e t w o r k  

We start by reconsidering the problem of leader election, this time in a network 
based on an arbitrary strongly connected digraph. 

4 .1 .1  T h e  Problem 

We assume that the processes have unique identifiers (UIDs), chosen from some 
totally ordered space of identifiers; each process's UID is different from each 
other's in the network, but there is no constraint on which UIDs actually appear. 
As in Chapter 3, the requirement is that, eventually, exactly one process should 
elect itself the leader, by changing a special status component of its state to the 
value leader. As in Chapter 3, there are several versions of the problem: 

1. It might also be required that all non-leader processes eventually output 
the fact that they are not the leader, by changing their status components 
to non-leader. 

2. The number n of nodes and the diameter, diam, can be either known or 
unknown to the processes. Or, an upper bound on these quantities might 
be known. 

4.1.2 A Simple Flooding Algorithm 

We give a simple algorithm that causes both leaders and non-leaders to identify 
themselves. The algorithm requires that the processes know diam. The algorithm 
just floods the maximum UID throughout the network, so we call it the FloodMax 
algorithm. 

F l o o d M a x  algorithm (informal): 

Every process maintains a record of the maximum UID it has seen so far 
(initially its own). At each round, each process propagates this maximum 
on all of its outgoing edges. After diam rounds, if the maximum value seen 
is the process's own UID, the process elects itself the leader; otherwise, it 
is a non-leader. 

The code for process i follows. 

F l o o d M a x  a l g o r i t h m  (formal)"  

The message alphabet is the set of UIDs. 

statesi consists of components: 
u, a UID, initially i's UID 
max-uid, a UID, initially i's UID 
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status C {unknown, leader, non-leader}, initially unknown 
rounds, an integer, initially 0 

m s g s ~ :  

if rounds < diam then 
send max-uid to all j E out-nbrs 

t r a n s i  : 

rounds := rounds + 1 
let U be the set of UIDs that arrive from processes in in-nbrs 
max-uid := max({ max-uid} U U) 
if rounds = diam then 

if max-uid = u then status : -  leader 
else status := non-leader 

It is easy to see that FloodMax elects the process with the max imum UID. 

More specifically, define/max to be the index of the process with the max imum 

UID, and Umax to be that UID. We show the following: 

T h e o r e m  4.1 In the FloodMax algorithm, process imax outputs leader and each 

other process outputs  non-leader, within diam rounds. 

P r o o f .  It is enough to prove the following assertion" 

A s s e r t i o n  4 .1 .1  Af te r  diam rounds, statuSima~ 

non-leader for  every j ~ imax. 

- leader and statusj = 

The key to the proof of Assert ion 4.1.1 is the fact that  after r rounds, the maxi- 

mum UID has reached every process that  is within distance r of/max, as measured 

along directed paths in G. This condition is captured  by the invariant" 

A s s e r t i o n  4 .1 .2  For 0 <_ r ~_ diam and for  every j ,  after r rounds, 

i f  the distance f rom imax to j is at mos t  r, then max-uidj  - Umax. 

In particular,  in view of the definition of the diameter  of the graph, Assert ion 4.1.2 

implies that  every process has the max imum UID by the end of diam rounds. 

To prove Assert ion 4.1.2, it is useful to have the following addit ional  auxiliary 

invariants: 

A s s e r t i o n  4 .1 .3  For every r and j ,  after r rounds, roundsj - r. 

A s s e r t i o n  4 .1 .4  For every r and j ,  after r rounds, max-uidj  ~ 

~t max. 
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Assertions 4.1.2, 4.1.3, and 4.1.4, specialized to r = d i a m -  1, plus an argument 
about what happens at round diam, imply Assertion 4.1.1 and therefore the 
result. D 

The FloodMax algorithm can be regarded as a kind of generalization of the 
LCR algorithm of Section 3.3, because the LCR algorithm also floods the maxi- 
mum value throughout the (ring) network. However, note that the LCR algorithm 
does not require any special knowledge about the network, such as its diameter. 
In LCR, a process is elected simply when it receives its own UID in a message, 
rather than after a specified number of rounds as in FloodMax. This strategy is 
particular to ring networks and does not work in general digraphs. 

C o m p l e x i t y  ana lys i s .  It is easy to see that the time until the leader is elected 
(and all other processes know that they are not the leader) is diam rounds. The 
number of messages is diam.iE], where ]El is the number of directed edges in the 
digraph, because a message is sent on every directed edge for each of the first 
diam rounds. 

U p p e r  b o u n d  on  the  d i a m e t e r .  Note that the algorithm also works correctly 
if the processes all know an upper bound d on the diameter rather than the 
diameter itself. The complexity measures then increase so that they depend on 
d rather than diam. 

4.1.3 Reducing the Communication Complexity 

There is a simple optimization 1 that can be used to decrease the communication 
complexity in many cases, although it does not decrease the order of magnitude in 
the worst case. Namely, processes can send their max-uid values only when they 
first learn about them, not at every round. We call this algorithm OptFloodMax. 
The modification to the code for FloodMax is as follows. 

OptFloodMax a l g o r i t h m :  

states~ has  a n  a d d i t i o n a l  component: 

new-info, a Boolean, initially true 

msgs~: 

if rounds < diam and new-info = true then 
send max-uid to all j 6 out-nbrs 

1 "Optimization" is not really the appropriate word to use here. "Improvement" would be 
better,  but  "optimization" is s tandard usage. 
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t rans i  : 

rounds : =  rounds + 1 
let  U be  the  se t  of  U I D s  t h a t  a r r i ve  f r o m  p r o c e s s e s  in in-nbrs 
if m a x  (U) > max-uid t h e n  new-info :=  true else new-info :=  false 
max-uid :=  m a x  ({max-uid}  U U) 
if rounds = diam t h e n  

if max-uid = u t h e n  status :=  leader else status :=  non-leader 

It is easy to believe that this modification yields a correct algorithm. How 
can we prove this formally? One way is to carry out another invariant assertion 
proof similar to the one for FloodMax. However, this would involve repeating a 
lot of the work we have already done for the earlier proof. Instead of starting from 
scratch, we give a proof based on relating the OptFloodMax algorithm formally 
to the FloodMax algorithm. This is a simple example of the use of the simulation 
method for verifying the correctness of distributed algorithms. 

T h e o r e m  4.2 In the OptFloodMax algorithm, process imax o u t p u t s  leader and 
each other process outputs non-leader, within diam rounds. 

P r o o f .  It is enough to prove the following assertion, analogous to Assertion 
4.1.1 in the proof for FloodMax. 

A s s e r t i o n  4.1.5 After diam rounds, statuSimax 

non-leader for every j 7s imaz. 
- leader and statusj = 

We start  by proving a preliminary invariant that says that a process's new-info 
flag is always set to true whenever there is new information that the process is 
supposed to send at the next round. More specifically, it says that if any outgoing 
neighbor of i does not know a UID at least as great as the maximum UID known 
by i, then i's new-info flag must be true. 

A s s e r t i o n  4.1.6 For any r, 0 < r < diam, and any i, j ,  where 
j E out-nbrsi, the following holds: after r rounds, if max-uidj < 
max-uidi then n e w - i n f o i -  true. 

Assertion 4.1.6 is proved by induction on r. The basis case, r = 0, is true 
because all the new-info flags are initialized to true. For the inductive step, 
consider any particular processes i and j,  where j C out-nbrsi. If max-uidi 
increases in round r, then new-infoi gets set to true, which suffices. On the 
other hand, if max-uidi does not increase, then the inductive hypothesis implies 
that either max-uidj was already sufficiently large, or else new-infoi = true just 
before round r. In the former case, max-uidj remains sufficiently large because 
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the value never decreases. In the latter case, the new information is sent from i 
to j at round r, which causes rnax-uidj to become sufficiently large. 

Now, to prove that OptFloodMax is correct, we imagine running it side by 
side with FloodMax, starting with the same UID assignment. The heart of the 
proof is a simulation relation, which is just an invariant assertion that involves 
the states of both algorithms after the same number of rounds. 

A s s e r t i o n  4 .1 .7  For any r, 0 <_ r < diam, after r rounds, the 
values of the u, max-uid, status, and rounds components are the 
same in the states of both algorithms. 

The proof of the simulation assertion, Assertion 4.1.7, is carried out by induction 
on r, just as for the usual sorts of assertions involving only a single algorithm. 
The interesting part of the inductive step is showing that the max-uid values 
remain identical. 

So consider any i, j ,  where j C out-nbrsi. If new-infoi = true before round 
r, then i sends the same information to j in round r in OptFloodMax as it does 
in FloodMax. On the other hand, if new-infoi = false before round r, then 
i sends nothing to j in round r in OptFloodMax, but sends max-uidi to j in 
round r in FloodMax. However, Assertion 4.1.6 implies that, in this case, max- 
uidj >_ max-uidi before round r, so the message has no effect in FloodMax. It 
follows that i has the same effect on max-uidj in both algorithms. Since this is 
true for all i and j,  it follows that the max-uid values remain identical in both 
algorithms. 

Assertions 4.1.7 and 4.1.1 together imply Assertion 4.1.5, as needed. [-7 

The method we just used to prove the correctness of OptFloodMax is often 
useful for proving the correctness of "optimized" versions of distributed algo- 
rithms. First, an inefficient but simple version of the algorithm is proved cor- 
rect. Then a more efficient but more complicated version of the algorithm is 
verified by proving a formal relationship between it and the simple algorithm. 
For synchronous network algorithms, this relationship generally takes the form 
used above--an invariant involving the states of both algorithms after the same 
number of rounds. 

A n o t h e r  i m p r o v e m e n t .  It is possible to reduce the number of messages in 
the FloodMax algorithm slightly further. Namely, if a process i receives a new 
maximum from a process j that is both an incoming neighbor and an outgoing 
neighbor, that is, with which it has bidirectional communication, then i need not 
send a message in the direction of j at the next round. 
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It is possible to elect a leader in a general digraph network with UIDs, but in 
which no information about n or diam is available to the processes. We suggest 
that you stop here and try to construct an algorithm to do this. One possibility 
is to introduce an auxiliary protocol that allows each process to calculate the 
diameter of the network. Ideas presented later in this chapter might also be 

useful. 

4.2 B r e a d t h - F i r s t  S e a r c h  

The next problem we consider is that of performing a breadth-first search (BFS) 
in a network based on an arbi t rary strongly connected directed graph having 
a distinguished source node. More precisely, we consider how to establish a 
breadth-first spanning tree for the digraph. The motivation for constructing such 
a tree comes from the desire to have a convenient structure to use as a basis 
for broadcast  communication. The B FS tree minimizes the maximum communi- 
cation time from the process at the distinguished node to all other processes in 

the network (under the simplifying assumption that it takes the same amount  of 

time for a message to traverse each communication channel). 
The BFS problem and its solutions are somewhat simpler in the case where all 

pairs of neighbors have bidirectional communication, that is, where the network 
graph is undirected. We will indicate the simplifications for this case. 

4 . 2 . 1  T h e  P r o b l e m  

We define a directed spanning tree of a directed graph G = (V, E) to be a rooted 

tree that consists entirely of directed edges in E, all edges directed from parents 
to children in the tree, and that contains every vertex of G. A directed spanning 
tree of G with root node i is breadth-first provided that each node at distance d 
from i in G appears at depth d in the tree (that is, at distance d from i in the 
tree). Every strongly connected digraph has a breadth-first directed spanning 

tree. 
For the BFS problem, we suppose that the network is strongly connected 

and that there is a distinguished source node io. The algorithm is supposed 
to output  the structure of a breadth-first directed sp~nning tree of the network 
graph, rooted at i0. The output  should appear in a distr ibuted fashion: each 
process other than i0 should have a parent component that gets set to indicate 

the node that is its parent in the tree. 
As usual, processes only communicate over directed edges. Processes are 

assumed to have UIDs but to have no knowledge of the size or diameter of the 

network. 
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4.2.2 A Basic Breadth-First  Search Algorithm 

The basic idea for this algorithm is the same as for the s tandard sequential 
breadth-first search algorithm. We call this algorithm SynchBFS. 

S y n c h B F S  algorithm: 

At any point during execution, there is some set of processes that is 
"marked," initially just i0. Process i0 sends out a search message at round 
1, to all of its outgoing neighbors. At any round, if an unmarked process 
receives a search message, it marks itself and chooses one of the processes 
from which the search has arrived as its parent. At the first round after 
a process gets marked, it sends a search message to all of its outgoing 
neighbors. 

It is not hard to see that the SynchBFS algorithm produces a BFS tree. To 
show this formally, we can prove the invariant that after r rounds, every process 
at distance d from i0 in the graph, 1 < d < r, has its parent pointer defined; 
moreover, each such pointer points to a node at distance d -  1 from i0. This 
invariant can, as usual, be proved by induction on the number of rounds. 

C o m p l e x i t y  a n a l y s i s .  The time complexity is at most diam rounds. (Ac- 
tually, this analysis can be refined a little, to the maximum distance from the 

part icular node i0 to any other node.) The number of messages is just IEI - -a  
search message is t ransmit ted  exactly once on each directed edge. 

R e d u c i n g  the  c o m m u n i c a t i o n  c o m p l e x i t y .  As for the FloodMax algorithm, 
it is possible to reduce the number of messages slightly: a newly marked process 
need not send a search message in the direction of any process from which it has 
already received such a message. 

M e s s a g e  b r o a d c a s t .  The SynchBFS algorithm can easily be augmented to 
implement message broadcast.  If a process has a message m that it wants to 
communicate to all of the processes in the network, it can simply initiate an 
execution of SynchBFS with itself as the root, piggybacking message m on the 
search message it sends in round 1. Other processes continue to piggyback m on 
all their search messages as well. Since the tree eventually spans all the nodes, 
message m is eventually delivered to all the processes. 

C h i l d  p o i n t e r s .  In an important  variant of the BFS problem, it is required 
that each process learn not only who its parent in the tree is, but also who all of 
its children are. In this case, it is necessary for each process receiving a search 
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message to respond to that message with a parent or non-parent message, telling 

the sender whether or not it has been chosen by the recipient as the parent. 
If bidirectional communication is allowed between all pairs of neighbors, that 

is, if the network graph is undirected, then there is no difficulty--and little extra 
cos t - - in  adding this extra communication. However, since we are allowing pairs 
of neighbors with only unidirectional communication, some of the parent and 
non-parent messages may need to be sent via indirect routes. For example, a 
parent or non-parent message could be sent via a new execution of SynchBFS, 
using piggybacking as above. In order for such a message to be recognized by 
its intended recipient, the message should also carry the UID of the intended 
recipient (plus a local name by which the recipient knows the sender), which 

should therefore itself be piggybacked on the original search message. Note that 
many executions of these SynchBFS "subroutines" can go on in parallel. In 
order to fit our formal model, in which at most one message can be sent on each 
link at each round, it may be necessary to combine many messages into one. 

For a directed graph with unidirectional communication on some edges, in 
addition to outputt ing parent and child pointers, it may also be useful to have 
processes output  information about the shortest routes from children to their 
parents. Such information could be produced, for example, using additional 

executions of SynchBFS. 

C o m p l e x i t y  a n a l y s i s .  If the graph is undirected, then the total time to com- 
pute a BFS tree, including child pointers, is O (diam), and the communication 

complexity is O ([E[). 
Even if some of the pairs of neighbors have unidirectional communication, 

the time to compute the tree plus child pointers is still only O (diam), because 
the extra BFS executions can all go on in parallel. In this case, the total number 
of messages is O (diamlE[), because at most [E[ messages can be sent at each 
of the O (diam) rounds. However, because a message might contain information 
from up to [E[ concurrent BFS executions, there might be as many as [EIb bits in 
a message, where b is the maximum number of bits needed to represent a single 
UID. This yields a total of O (diamlE[2b) bits of communication. A smaller 
bound on the total number of bits can be obtained by noting that each of the (at 
most [El) concurrent BFS executions uses at most [E[ messages, each having at 
most b bits. So the total number of communication bits is at most O (IEl2b). 

T e r m i n a t i o n .  How can the source process i0 tell when the construction of the 
tree has been completed? If each search message is answered with either a parent 
or non-parent message, then after any process has received responses for all of 
its search messages, it knows who all its children in the BFS tree are and knows 
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that they have all been marked. So, starting from the leaves of the BFS tree, 
notification of completion can be "fanned in" to the source: each process can 
send notification of completion to its parent in the tree as soon as (a) it has 
received responses for all its search messages (so that it knows who its children 
are and knows that they have been marked), and (b) it has received notification of 
completion from all its children. This type of procedure is called a convergecast. 

If the graph is undirected, then the total time to compute a BFS tree, includ- 
ing child pointers, and to propagate notification of completion back to the source 
is O (diam) and the communication complexity is only O (IE[). If unidirectional 
communication is allowed, then the total time, including notification of comple- 

tion, is O (diam2). The reason the behavior is quadratic is that the notification 
/ \ 

\ / 

has to proceed sequentially, one level at a time in the tree. The total number 

of messages is O (diam21EI) and the total number of communication bits is at 
\ / 

most O ([EI2b). 

4.2.3 Applications 

Breadth-first search is one of the most basic building blocks for distributed al- 
gorithms. We give some examples here of how the SynchBFS algorithm can be 
used or augmented to help in performing other tasks. 

B r o a d c a s t .  As we mentioned earlier, a message broadcast can be implemented 
along with the establishment of a BFS tree. Another idea is first to produce a 
BFS tree with child pointers, as described above, and then to use the tree to 
conduct the broadcast. The message need only be propagated along edges from 
parents to their children. This allows the work of constructing the BFS tree to 
be reused, because many messages can be sent on the same tree. Once the BFS 
tree has been constructed, the additional time to broadcast a single message is 
only O (diam), and the number of messages is only O (n). 

G l o b a l  c o m p u t a t i o n .  Another application of BFS trees is the collection of 
information from throughout the network or, more generally, the computation of 
a function based on distributed inputs. For example, consider the problem in 
which each process has a nonnegative integer input value and we want to find 
the sum of all the inputs in the network. Using a B FS tree, this can be done 
easily (and emciently) as follows. Starting from the leaves, "fan in" the results 
in a convergecast procedure, as follows. Each leaf sends its value to its parent; 
each parent waits until it gets the values from all its children, adds them to its 
own input value, and then sends the sum to its own parent. The sum calculated 
by the root of the BFS tree is the final answer. 
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Assuming that  the BFS tree has already been constructed, and assuming 
bidirectional communication on all tree edges, this scheme requires O (diam) 
t ime and O (n) messages. The same scheme can be used to compute many other 
functions, for example, the maximum or minimum of the integer inputs. (What  
is required is that  the function be associative and commutative.)  

E l e c t i n g  a l eade r .  Using SynchBFS, an algorithm can be designed to elect a 
leader in a network with UIDs, even when the processes have no knowledge of n 
or diam. Namely, all the processes can initiate breadth-first searches in parallel. 
Each process i uses the tree thereby constructed and the global computat ion 
procedure just described to determine the maximum UID of any process in the 
network. The process with the maximum UID then declares itself to be the 
leader, and all others announce that  they are not the leader. If the graph is 
undirected, the time is O(diam) and the number of messages is O (diamlEI), 
again because at most IEI messages can be sent at each of the diam rounds. 
The number of bits is at most O (n[EIb), where b is the maximum number of 
bits used to represent a single UID. 

C o m p u t i n g  t h e  d i a m e t e r .  The diameter of the network can be computed by 
having all processes initiate breadth-first searches in parallel. Each process i uses 
the tree thereby constructed to determine max-disti, defined to be the maximum 
distance from i to any other process in the network. Each process i then reuses 
its breadth-first tree for a global computat ion to discover the maximum of the 
max-dist values. If the graph is undirected, the time is O (diam) and the number 
of messages is O (diam[EI) , the number of bits is O (hiE[b). The diameter thus 
computed could be used, for example, in the leader-election algorithm FloodMax. 

4.3 Shortes t  P a t h s  

Now we examine a generalization of the BFS problem. Again, we consider a 
strongly connected directed graph, with the possibility of unidirectional commu- 
nication between some pairs of neighbors. This time, however, we assume that  
each directed edge e = (i, j )  has an associated nonnegative real-valued weight, 
which we denote by weight(e) or weighti,j. The weight of a path  is defined to be 
the sum of the weights on its edges. The problem is to find a shortest path from 
a distinguished source node i0 in the digraph to each other node in the digraph, 
where a shortest path is defined to be a path with minimum weight. 2 A collection 
of shortest paths from i0 to all the other nodes in the digraph constitutes a 
subtree of the digraph, all of whose edges are oriented from parent to child. 

2The mixture of measures of weight and distance is unfortunate, but traditional. 
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As for breadth-first search, the motivation for constructing such a tree comes 
from the desire to have a convenient structure to use for broadcast communi- 
cation. The weights represent costs that may be associated with the traversal 
of edges, for instance, communication delay or a monetary charge. A shortest 
paths tree minimizes the maximum worst-case cost of communicating with any 
process in the network. 

We assume that  every process initially knows the weight of all its incident 
edges, or, more precisely, that the weight of an edge appears in special weight 
variables at both its endpoint processes. We also assume that  each process 
knows the number n of nodes in the digraph. We require that each process 
should determine its parent in a particular shortest paths tree, and also its 
distance (i.e., the total weight of its shortest path) from i0. 

If all edges are of equal weight, then a BFS tree is also a shortest paths 
tree. Thus, in this case, a trivial modification of the simple SynchBFS tree 
construction can be made to produce the distance information as well as the 
parent pointers. 

The case where weights can be unequal is more interesting. One way to 
solve the problem is by the following algori thm--a version of the Bellman-Ford 
sequential shortest paths algorithm. 

Bel lmanFord  a l g o r i t h m :  

Each process i keeps track of dist, the shortest distance from i0 it knows 
so far, together with parent, the incoming neighbor that precedes i in a 
path whose weight is dist. Initially, distio = 0, dist4 = ec for i :/: i0, and 
the parent components are undefined. At each round, each process sends 
its dist to all its outgoing neighbors. Then each process i updates its dist 
by a "relaxation step," in which it takes the minimum of its previous dist 
value and all the values distj + weightj,i, where j is an incoming neighbor. 
If dist is changed, the parent component is also updated accordingly. After 
n -  1 rounds, dist contains the shortest distance, and parent the parent in 
the shortest paths tree. 

It is not hard to see that,  after n -  1 rounds, the dist values converge to the 
correct distances. One way to argue the correctness of BellmanFord is to show 
(by induction on r) that the following is true after r rounds: Every process i has 
its dist and parent components corresponding to a shortest path among those 
paths from i0 to i consisting of at most r edges. (If there are no such paths, 
then dist = cc and parent is undefined.) We leave the details for an exercise. 

C o m p l e x i t y  ana lys is .  The time complexity of the BellmanFord algorithm is 
n -  1, and the number of messages is ( n -  1)[El. 
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ioe  --- 

1 1 

F i g u r e  4.1" Shortest paths stabilize only after 2 rounds, though diam- 1. 

E x a m p l e  4.3.1 T i m e  c o m p l e x i t y  of  B e l l m a n F o r d  

You might suspect that by analogy with SynchBFS, the time com- 
plexity of BellmanFord is actually diam. An example that indicates 
why this is not the case is shown in Figure 4.1. In this example, it 
takes 2 rounds for the correct distance, 2, from i0 to i to stabilize, 
since the path along which that distance is realized has two edges. 
However, the diameter is only 1. 

The BellmanFord algorithm also works using an upper bound on n in place 
of n itself. If no such bound is known, it is possible to use techniques such as 
those described in Section 4.2 to discover one. 

4.4 Min imum Spanning Tree 

The next problem we consider is that of finding a minimum, or minimum-weight,  
spanning tree (MST) in an undirected graph network with weighted edges. 
Again, the main use for such a tree is as a basis for broadcast communica- 
tion. A minimum-weight spanning tree minimizes the total cost for any source 
process to communicate with all the other processes in the network. 

4 .4 .1  T h e  P r o b l e m  

A spanning forest of an undirected graph G - (V, E) is a forest (i.e., a graph that 
is acyclic but not necessarily connected) that consists entirely of undirected edges 
in E and that contains every vertex of G. A spanning tree of an undirected graph 
G is a spanning forest of G that is connected. If there are weights associated 
with the undirected edges in E, then the weight of any subgraph of G (such as 
a spanning tree or spanning forest of G) is defined to be the sum of the weights 
of its edges. 
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Recall that we formalize the underlying undirected graph within our directed 
graph model as a directed graph having bidirectional edges between all pairs of 
neighbors. As in Section 4.3, we assume that each directed edge e = (i, j )  has 
an associated nonnegative real-valued weight, weight(e) - weighti,j, only this 
time, we assume that for all i and j,  weighti,j - weightj, i. We assume that every 
process initially knows the weight of all its incident edges, or, more precisely, that 
the weight of an edge appears in weight variables at both its endpoint processes. 
We assume that the processes have UIDs and know n. The problem is to find a 
minimum-weight (undirected) spanning tree for the entire network; specifically, 
each process is required to decide which of its incident edges are and which are 
not part of the minimum spanning tree. 

4 . 4 .2  B a s i c  T h e o r y  

All known MST algorithms, sequential as well as concurrent, are based on the 
same simple theory, which we describe in this subsection. The basic strategy for 
constructing a minimum spanning tree involves starting with the trivial spanning 
forest consisting of n single nodes and repeatedly merging components along 
connecting edges until a spanning tree is produced. In order to end up with 
a minimum spanning tree, it is important  that the merging occur only along 
certain selected edges--namely,  those that are minimum-weight outgoing edges 
of some component. Justification for this method of selection is provided by the 
following lemma. 

L e m m a  4.3 Let G -  (V, E) be a weighted undirected graph, and let {(V/, Ei) �9 
1 <_ i < k} be any spanning forest for G, where k > 1. Fix any i, 1 <_ i <_ k. Let 
e be an edge of smallest weight in the set 

{e ~" e I has exactly one endpoint in Vi }.  

Then there is a spanning tree for G that includes Uj F_~j and e, and this tree is 
of min imum weight among all the spanning trees for G that include Uj Ej .  

P r o o f .  By contradiction. Suppose the claim is fa lse-- that  is, that there exists 
a spanning tree T that contains Uj Ej, does not contain e, and is of strictly 
smaller weight than any other spanning tree that contains Uj Ej and e. Now 
consider the graph T ~ obtained by adding e to T. Clearly, T ~ contains a cycle, 
which has another edge e ~ =/= e that is outgoing from V/. 

By the choice of e, we know that weight(e') > weight(e). Now, consider the 
graph T" constructed by deleting e I from T I. Then T" is a spanning tree for G, 
it contains Uj Ej and e, and its weight is no greater than that of T. But this 
contradicts the claimed property of T. D 
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Lemma 4.3 provides the justification for the following general strategy for 
constructing an MST. 

General strategy for MST: 
Start with the trivial spanning forest that consists of n individual 
nodes and no edges. Then repeatedly do the following: Select an ar- 
bitrary component C in the forest and an arbitrary outgoing edge e 
of C having minimum weight among the outgoing edges of C. Com- 
bine C with the component at the other end of e, including edge e 
in the new combined component. Stop when the forest has a single 
component. 

Lemma 4.3 can be used in an inductive proof to show that, at any stage in 
the construction, the forest is a subgraph of an MST. Several well-known sequen- 
tial MST algorithms are special cases of this general strategy. For example, the 
Prim-Dijkstra algorithm begins by distinguishing one of the initial single-node 
components and repeatedly adds the minimum-weight outgoing edge from the 
current component, each time attaching a single new node until a complete span- 
ning tree is obtained. For another example, the Kruskal algorithm repeatedly 
adds the minimum-weight edge among all the edges that join two separate com- 
ponents in the current spanning forest, thus combining components until there 
is only one component, which is the final spanning tree. 

In order to use this general strategy in a distributed setting, it would be nice 
to be able to extend the forest with several edges determined concurrently. That 
is, each of several components could determine its minimum-weight outgoing 
edge independently, and then all of the determined edges could be added to the 
forest, thereby causing several combinations of components to occur all at once. 
But Lemma 4.3 does not guarantee the correctness of this parallel strategy. In 
fact, the strategy is not correct, in general. 

Example  4.4.1 Cycle creation in parallel MST algorithm 

Consider the graph in Figure 4.2. The dots represent components 
in the spanning forest. The three edges with weight 1 are the only 
outgoing edges. If the components choose their minimum-weight 
outgoing edges as depicted by the arrows, a cycle would be created. 

The cycle problem is avoidable, however, in the special case where all the 
edges have distinct weights. This is because of the following lemma. 

L e m m a  4.4 If all edges of a graph G have distinct weights, then there is exactly 
one MS T for G. 
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F i g u r e  4.2" A cycle created by concurrent choices of minimum-weight outgoing edges. 

P r o o f .  The proof is similar to the proof of Lemma 4.3. Suppose that there 
are two distinct minimum-weight spanning trees, T and T ~, and let e be the 
minimum-weight edge that appears in only one of the two trees. Suppose (with- 
out loss of generality) that e C T. Then the graph T" obtained by adding e to T ~ 
contains a cycle, and at least one other edge in that cycle, e ~, is not in T. Since 
the edge weights are all distinct and since e ~ is in only one of the two trees, we 
must have weight(e') > weight(e), by our choice of e. Then removing e' from T" 
yields a spanning tree with a smaller weight than T ~, which is a contradiction. 

D 

Now reconsider the general strategy for the case where the graph has dis- 
tinct edge weights, and so, by Lemma 4.4, there is a unique MST. In this 
case, at any stage of the construction, any component in the forest has exactly 
one minimum-weight outgoing edge (which we abbreviate, unpronounceably, as 
MWOE). Lemma 4.3 implies that if we begin the stage with a forest, all of whose 
edges are in the unique MST, then all of the MWOEs, for all components, are 
also in the unique MST. So we can add them all at once, without any danger of 
creating a cycle. 

4 . 4 . 3  T h e  A l g o r i t h m  

We present a distributed algorithm for constructing an MST in an arbitrary 
weighted undirected graph, following the general strategy described in the pre- 
vious subsection. Since components will be allowed to combine concurrently, we 
assume that edge weights are all distinct; near the end of this subsection, we will 
say how this assumption can be removed. We call the algorithm SynchGHS be- 
cause it is based on an asynchronous algorithm developed by Gallager, Humblet, 
and Spira. (We will present the asynchronous algorithm, called simply GHS, in 
Section 15.5.) 
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SynchGHS algorithm: 
The algorithm builds the components in "levels." For each k, the level k 
components constitute a spanning forest, where each level k component 
consists of a tree that is a subgraph of the MST. Each level k component 
has at least 2 k nodes. Every component, at every level, has a distinguished 
leader node. The processes allow a fixed number of rounds, which is O (n), 
to complete each level. 

The algorithm starts with level 0 components consisting of individual nodes 
and no edges. Suppose inductively that the level k components have been 
determined (along with their leaders). More specifically, suppose that each 
process knows the UID of the leader of its component; this UID is used as 
an identifier for the entire component. Each process also knows which of 
its incident edges are in the component 's tree. 

To get the level k + 1 components, each level k component conducts a 
search along its spanning tree edges for the MWOE of the component. 
The leader broadcasts search requests along tree edges, using the message 
broadcast strategy described in Section 4.2. Each process finds, among 
its incident edges, the one of minimum weight that is outgoing from the 
component (if there is any such edge); it does this by sending test messages 
along all non-tree edges, asking whether or not the other end is in the same 
component. (This determination is made by comparing the component 
identifiers.) Then the processes convergecast this local minimum-weight 
edge information toward the leader, taking minima along the way. The 
minimum obtained by the leader is the MWOE of the entire component. 

When all level k components have found their MWOEs, the components 
are combined along all these MWOEs to form the level k + 1 components. 
This involves the leader of each level k component communicating with the 
component process adjacent to the MWOE, to tell it to mark the edge as 
being in the new tree; the process at the other end of the edge is also told 
to do the same thing. 

Then a new leader is chosen for each level k + 1 component, as follows. It 
can be shown that for each group of level k components that get combined 
into a single level k + 1 component, there is a unique edge e that is the 
common MWOE of two of the level k components in the group. (We argue 
this below.) We let the new leader be the endpoint of e having the larger 
UID. Note that this new leader can identify itself using only information 
available locally. 

Finally, the UID of the new leader is propagated throughout the new com- 
ponent, using a broadcast. 
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I 

Figure 4.3" A graph in which each node has exactly one outgoing edge. 
unique cycle. 

Note the 

Eventually, after some number of levels, the spanning forest consists of only 
a single component containing all the nodes in the network. Then a new 
at tempt to find a MWOE will fail, because no process will find an outgoing 
edge. When the leader learns this, it broadcasts a message saying that the 
algorithm is completed. 

A key to the algorithm is the fact that, among each group of level k compo- 
nents that get combined, there is a unique (undirected) edge that is the common 
MWOE of both endpoint components. In order to see why this is so, consider 
the component digraph G ~, whose nodes are the level k components that combine 
to form one level k + 1 component and whose edges are the MWOEs. G ~ is a 
weakly connected digraph in which every node has exactly one outgoing edge. 
(A digraph is weakly connected if its undirected version, obtained by ignoring the 
directions of all the edges, is connected.) So we can use the following property: 

Lemma 4.5 Let G be a weakly connected digraph in which each node has exactly 
one outgoing edge. Then G contains exactly one cycle. 

P r o o f .  The proof is left as an exercise. 

Example  4.4.2 Graph with one outgoing edge per node 

Figure 4.3 shows an example of a graph in which each node has 
exactly one outgoing edge. 

We apply Lemma 4.5 to the component digraph G ~ to obtain the unique 
cycle of components. Because of the way G ~ was constructed, successive edges 
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in the cycle must have nonincreasing weights; therefore, the length of this cycle 
cannot be greater than 2. So the length of the unique cycle is exactly 2. But this 
corresponds to an edge that is the common MWOE of both adjacent components. 

In the SynchGHS algorithm, it is crucial that the levels be kept synchronized. 
This is needed to ensure that when a process i tries to determine whether or 
not the other endpoint j of a candidate edge is in the same component, both 
i and j have up-to-date component UIDs. If the UID at j is observed to be 
different from that at i, we would like to be certain that i and j really are in 
different components, not just that they haven't yet received their component 
UIDs from their leaders. In order to execute the levels synchronously, processes 
allow a predetermined number of rounds for each level. To be certain that all 
the computation for the round has completed, this number will be O (n); note 
that O (diam) rounds are not always sufficient. The need to count this number 
of rounds is the only reason that the nodes need to know n. (In Section 15.5, 
when we revisit this algorithm in the asynchronous network setting, we will use 
a different strategy for synchronizing the components.) 

C o m p l e x i t y  analys is .  Note first that the number of nodes in each level k 
component is at least 2 k. This can be shown by induction, using the fact that 
at each level, each component is combined with at least one other component at 
the same level. Therefore, the number of levels is at most log n. Since each level 
takes time O (n), it follows that the time complexity of SynchGHS is O (n log n). 
The communication complexity is O ((n + IEI). log n), since at each level, O (n) 
messages are sent in total along all the tree edges, and O (IEI) additional mes- 
sages are required for finding the local minimum-weight edges. 

R e d u c i n g  the  c o m m u n i c a t i o n .  It is possible to reduce the number of mes- 
sages to O (n log n § IEI) by using a more careful strategy to find local minimum- 
weight edges. This improvement causes an increase in the time complexity, 
although it does not increase its order of magnitude. The idea is as follows. 

Each process marks its incident edges as "rejected" when they are found to 
lead to a node in the same component; thereafter, there is no need to test them 
again. Also, at each level, the remaining candidate edges are tested one at a 
time, in order of increasing weight, just until the first one is found that leads 
outside the component (or until the candidate edges are exhausted). 

With this improvement, the number of messages sent over tree edges is, 
as before, O (n log n). We carry out an amortized analysis of the number of 
messages used for finding local minimum-weight edges. Each edge gets tested 
and rejected at most once, for a total of O (IEI). An edge that is tested and is 
found to be the local minimum-weight edge, but not the MWOE for the entire 
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component, may be tested again. However, there is at most one such exploration 
originating at each node at each level, adding up to a total of O (n log n). The 
total communication complexity is thus O (n log n + IEI). 

The strategy just described has another advantage. Since each node marks 
both its incident edges that are in the MST and those that are not in the tree, 
there is no need for the final phase in which the leader notifies everyone that the 
algorithm is completed. Each node can simply output the information about its 
adjacent edges as it is discovered. 

N o n - u n i q u e  edge  weigh ts .  Now consider the MST problem for a graph 
whose edge weights are not necessarily distinct. In this case, the SynchGHS 
algorithm can be used, with a small modification. Note first that the SynchGHS 
algorithm only manipulates the weights using {<, >, =} comparisons. 

Given arbitrary edge weights, we can derive a set of distinct edge identifiers 
using the UIDs. The identifer of an edge (i, j)  is the triple (weight~,j, v, v'), where 
v and v' are the UIDs of i and j,  with v < v'. (Thus, (i, j)  and (j, i) have the 
same edge identifier.) A total ordering is defined among the edge identifiers, 
based on lexicographic order among the triples. 

Since SynchGHS manipulates the weights using comparisons only, we can run 
it using the edge identifiers in place of the (real-valued) weights; the resulting 
execution will be the same as if SynchGHS were running with a set of unique 
weights satisfying the same ordering relationships. A tree is thus produced. We 
leave as an exercise the task of showing that this tree is in fact an MST for the 
original graph. 

L e a d e r  e lect ion.  Once an MST (or any spanning tree) is known for a network 
based on an undirected graph, it is easy to elect a unique leader, provided UIDs 
are available. Namely, the leaves of the spanning tree begin a convergecast along 
the paths of the tree; each internal node waits to hear from all but one of its 
neighbors before sending a message to its remaining neighbor. If a node hears 
from all its neighbors without having itself sent out a message, it declares itself 
the leader. Also, if two neighboring nodes get messages from each other at the 
same round, then one of them, say, the one with the larger UID, declares itself the 
leader. The total additional complexity of this leader-election procedure (after 
the MST is constructed)is  just O (n) time and O (n) messages. 

Combining this with the MST complexity analysis, we see that, starting with 
a weighted undirected graph in which the nodes know n (but not diam), a leader 
can be elected in time O (n log n), with O (n log n § IEI) communication. 
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4.5 Maximal Independent Set 

The final problem we consider in this chapter is that of finding a maximal in- 
dependent set (MIS) of the nodes of an undirected graph. A set of nodes is 
called an independent set if it contains no pair of neighboring nodes, and an 
independent set is said to be maximal if it cannot be increased to form a larger 
independent set by the addition of any other nodes. Note that an undirected 
graph can have many different maximal independent sets. We do not require the 
largest possible maximal independent se t - -any  will do. 

The MIS problem can be motivated by problems of allocating shared re- 
sources to processes in a network. The neighbors in the graph G might represent 
processes than cannot simultaneously perform some activity involving shared re- 
sources (for example, database access or radio broadcast). We might wish to 
select a set of processes that could be allowed to act simultaneously; in order to 
avoid conflict, these processes should comprise an independent set in G. Fur- 
thermore, for performance reasons, it is undesirable to block a process if none of 
its neighbors is active; thus, the chosen set of processes should be maximal. 

4 .5 .1  T h e  Problem 

Let G -  (V,E) be an undirected graph. A set I C_ V of nodes is said to be 
independent if for all nodes i, j C I, (i, j )  ~ E. An independent set I is maximal 
if any set I ~ that strictly contains I is not independent. The goal is to compute a 
maximal independent set of G. More specifically, each process whose index is in 
I should eventually output winner, that is, should set a special status component 
of its state to the value winner, and each process whose index is not in I should 
output loser. 

We assume that n, the number of nodes, is known to all the processes. (We 
could, alternatively, use an upper bound on n.) We do not assume the existence 
of UIDs. 

4.5.2 A Randomized  Algori thm 

It is not hard to show that in some graphs, the MIS problem cannot be solved 
if the processes are required to be deterministic. The argument is similar to the 
one in the proof of Theorem 3.1. In this section, we present a simple solution that 
uses randomization to overcome this inherent limitation of deterministic systems. 
To be precise, we note that the randomized algorithm actually solves a weaker 
problem than the one that is stated above, in that it will have a (probability zero) 
possibility of never terminating. We call this algorithm LubyMIS, after Luby, its 
discoverer. 
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LubyMIS is based on the following iterative scheme, in which an arbitrary 
nonempty independent set is selected from the given graph G, the nodes in this 
set and all of their neighbors are removed from the graph, and the process is 
repeated. If W is a subset of the nodes of a graph, then we use nbrs(W) to 
denote the set of neighbors of nodes in W. 

Let graph be a record with fields nodes, edges, and nbrs, initialized 
to 

the indicated components of the original graph G. 
Let I be a set of nodes, initially empty. 

while graph.nodes # r do 

choose a nonempty  set I '  C graph.nodes  that is independent in graph 

I . - I U I  I 

graph " -  the induced subgraph 3 of graph on graph.nodes - I '  - g r a p h . n b r s ( F )  

end while 

It is not hard to see that this scheme always produces a maximal independent 
set. To see why it is independent, note that at each stage, the selected set I ~ is 
independent, and we explicitly discard from the remaining graph all neighbors of 
vertices that are put into I. To see why it is maximal, note that the only nodes 
that are removed from consideration are neighbors of nodes that are put into I. 

The key question in implementing this general scheme in a distributed net- 
work is how to choose the set I ~ at each iteration. Here is where randomiza- 
tion is used. In each stage, each process i chooses an integer vali in the range 
{ 1 , . . . ,  n 4} at random, using the uniform distribution. The reason for the use 
of  n 4 as a bound is that it is sufficiently large so that, with high probability, all 
processes in the graph will choose distinct values. (We do not carry out this 
calculation in this book, but instead refer you to Luby's research paper.) Once 
the processes have chosen these values, we define I ~ to consist of all the nodes i 
that are local winners, that is, those nodes i such that vali > valj for all neigh- 
bors j of i. This obviously yields an independent set, since two neighbors cannot 
simultaneously defeat each other. 

In this implementation it is possible, if the random choices are unlucky, that 
the set I ~ might be empty at some stages; those stages will be "useless," accom- 
plishing nothing. Provided the algorithm does not reach a point after which it 
keeps performing useless stages forever, we can simply ignore the useless stages 
and assert that LubyMIS correctly follows the general scheme. We will, how- 

3The induced subgraph of a graph G on a subset W of its nodes is defined to be the subgraph 
(W, E ' ) ,  where E '  is the set of edges of G that  connect nodes in W. 
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ever, have to take the useless stages into account in the analysis. The algorithm 
follows. 

LubyMIS algorithm (informal): 
The algorithm works in stages, each consisting of three rounds. 

Round 1: In the first round of a stage, the processes choose their respective 
vals and send them to their neighbors. By the end of round 1, when all 
the val messages have been received, the winners-- that  is, the processes 
in F - -know who they are. 

Round 2: In the second round, the winners notify their neighbors. By 
the end of round 2, the losers--that is, the processes having neighbors in 
F - -know who they are. 

Round 3: In the third round, each loser notifies its neighbors. Then all 
the involved processes--the winners, the losers, and the losers' neighbors-- 
remove the appropriate nodes and edges from the graph. More precisely, 
this means the winners and losers discontinue participation after this stage, 
and the losers' neighbors remove all the edges that are incident on the 
newly removed nodes. 

We now describe the algorithm more formally in our model. As described in 
Section 2.7, each process uses a special random function randi, which it applies at 
each round prior to applying the msgsi and transi functions. Here, we use random 
to indicate a random choice from {1, . . .  , n4} ,  using the uniform distribution. 

LubyMIS algorithm (formal): 

s ta tes i :  

round E (1 ,2 ,3 ) ,  initially 1 
val E ( 1 , . . . ,  ha}, initially arbi trary 
awake, a Boolean, initially true 
rem-nbrs, a set of vertices, initially the neighbors in the original graph G 
status E (unknown,  winner, loser), initially unknown 

rand4: 
if awake and r o u n d -  1 then val :-- random 

msgsi :  

if awake then 
case 

round - 1: 
send val to all nodes in rem-nbrs 

r o u n d -  2: 
if s t a t u s -  winner then 
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send  winner  to  all n o d e s  in rem-nbrs  

round = 3: 

if s t a t u s - -  loser t h e n  

s e n d  loser to  all n o d e s  in rem-nbrs  

e n d c a s e  

In the following code, we identify 3 with 0, modulo 3. 

t r a n s i  : 

if awake t h e n  

case  

round = 1: 

if val > v for all i n c o m i n g  va lues  v t h e n  s tatus  :=  winner  

round = 2: 

if a winner  m e s s a g e  a r r i ve s  t h e n  status  :=  loser 

round = 3: 

if s tatus  E { w i n n e r ,  loser}  t h e n  awake :=  false 

rem-nbrs  :=  rem-nbrs  - { j  : a loser m e s s a g e  a r r i ve s  f r o m  j }  

e n d c a s e  

round : =  (round + 1 m o d  3) 

Note that LubyMIS still works correctly if, at some stages, some neighboring 
processes choose the same random values. 

4 .5 .3  A n a l y s i s *  

We have already argued that, provided that LubyMIS does not stall, executing 
useless stages forever, it will produce an MIS. Now we claim that with probability 
one, the algorithm in fact does not stall. More specifically, we claim that at any 
stage of the algorithm, the expected number of edges removed from the remaining 
graph is at least a constant fraction of the total number of remaining edges; this 
implies that there is a constant probability that at least a constant fraction of the 
edges is removed. In turn, this implies that the expected number of rounds until 
termination is O (log n). It also implies that, with probability one, the algorithm 
does in fact terminate. 

The complete analysis of LubyMIS can be found in Luby's original paper; it 
involves substantial counting arguments about graphs. We just state the main 
technical lemma without proof, and indicate how it is used to obtain the needed 
results. For the next three lemmas, fix G = (V, E) and, for an arbitrary node 
i E V, define 

1 
sum(i)-- ~ d(j) ' 

j E nbrs i 

where d(j) is the degree of j in G. Here is the technical lemma: 
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L e m m a  4.6 Let I ~ be defined as in one stage of the LubyMIS algorithm. Then, 
for every i in the graph just before the stage, 

Pr[i E nbrs(I')] >_ 4-1min ( sum(i)2 , 1 ) .  

Using Lemma 4.6, we obtain the bound on the expected number of edges 
removed from the graph: 

L e m m a  4.7 The expected number of edges removed from G in a single stage of 
LubyMIS is at least IEI 8 " 

Proof .  The algorithm ensures that every edge with at least one endpoint in 
nbrs(I') is removed. It follows that the expected number of edges removed is at 
least 

12 ~ d(i) . Pr[i C nbrs(I')]. 

This is because each vertex i has the indicated probability of having a neighbor 
in I'; if this is the case, then i is removed, which causes the deletion of all of 

1 is included to compensate for possible its d(i) incident edges. The factor of 
overcounting of removed edges, since each edge has two endpoints that could 
cause its deletion. 

We next plug in the bound from Lemma 4.6, concluding that the expected 
number of removed edges is at least 

sum(i) ) 1 ~ d ( i ) .  min 1 . 
8 . / ~  2 ' 

Breaking this up according to which term of the min is less, this is equal to 

1(1  ) 
Z 

i:sum(i) <2 i:sum(i) >_2 

Now we expand the definition of sum(i) and also write d(i) as a trivial sum, 
obtaining 

1 ( 1  ~ - ~ 8  ~ d(i___))+ ~ ~ 1). 
d(j) -2i'sum(i)<2 jEnbrsi i:sum(i)>2 jEnbrsi 

Note that each undirected edge (i, j)  contributes two summation terms to the 
expression in parentheses, one for each direction; in each case, the sum of these 
two terms is greater than 1 So the total is at least IE [--] 

�9 8 " 
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Lemma 4.7 can be used to conclude 

L e m m a  4.8 With probability at least 1 the number of edges removed from G 

in a single stage of L ubyMIS is at least El 
1 6 "  

Using both Lemmas 4.7 and 4.8, we conclude: 

T h e o r e m  4.9 With probability one, LubyMIS eventually terminates. 
over, the expected number of rounds until termination is 0 (log n). 

More- 

R a n d o m i z e d  a lgor i thms .  The technique of randomization is used frequently 
in distributed algorithms. Its main use is to break symmetry. For example, 
the leader-election and MIS problems cannot be solved in general graphs by 
deterministic processes without UIDs because of the impossibility of breaking 
symmetry. In contrast, these problems can be solved using randomization. Even 
when there are UIDs, randomization may allow symmetry to be broken faster. 

One problem with randomized algorithms, however, is that their guarantees 
of correctness and/or performance might only hold with high probability, not 
with certainty. In designing such algorithms, it is important to make sure that 
the crucial properties of the algorithm are guaranteed with certainty, not prob- 
abilistically. For example, any execution of LubyMIS is guaranteed to produce 
an independent set, regardless of the outcomes of the random choices. The per- 
formance, however, depends on the luckiness of the random choices. There is 
even a (probability zero) possibility that all processes will repeatedly choose the 
same value, thereby stalling progress forever. Whether or not these are serious 
drawbacks to the algorithm depends on the application for which it is used. 

4.6 Bibliographic Notes  

The FloodMaz and OptFloodMaz algorithms appear to be folklore. Afek and 
Gafni [6] have developed complexity bounds for leader election in complete syn- 
chronous networks. The SynchBFS algorithm is based on the standard sequential 
breadth-first search algorithm appearing, for example, in [83]. The BellmanFord 
algorithm is a distributed version of a sequential algorithm developed (sepa- 
rately) by Bellman and Ford [43, 125]. 

The SynchGHS algorithm is a synchronized (and therefore considerably sim- 
plified) version of the well-known asynchronous MST algorithm developed by 
Gallager, Humblet, and Spira. The LubyMIS algorithm and its analysis appear 
in a paper by Luby [200]. 
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An example of a (probability zero) execution of a randomized algorithm in 
which the processes keep making the same choice appears in [271]. 

4.7 Exerc i s e s  

4.1. Fill in more details in the correctness proof for the FloodMax algorithm. 

4.2. In terms of n, the number diam[E I of messages used in the FloodMax 
algorithm is easily seen to be O (n3). Either produce a class of digraphs 
in which the product diam[Et really is f~(n 3) or show that no such class of 
digraphs exists. 

4.3. For the OptFloodMax algorithm, either prove a smaller upper bound than 
O (n 3) on the number of messages or exhibit a class of digraphs and cot- 
responding UID assignments in which the number of messages is ft(n3). 

4.4. Consider the "further optimized" version of OptFloodMax described at the 
end of Section 4.1.3, which prevents processes from resending max-uid 
information to processes from which they have previously received the 
same information. 

(a) Give code for this algorithm, in the same style as the other code in 
this chapter. 

(b) Prove the correctness of your algorithm by relating it to OptFlood- 
Max, using the same sort of simulation strategy used in the proof of 
correctness for OptFloodMax itself (i.e., in the proof of Theorem 4.2). 

4.5. 

(b) 
(c) 

(d) 

Write the code for the SynchBFS algorithm. 

Prove the correctness of your algorithm using invariant assertions. 

Do the same--parts  (a) and (b)--for the SynchBFS algorithm with 
child pointers. 

Do the same--parts  (a) and (b)--for the SynchBFS algorithm with 
child pointers and notification of completion. 

4.6. Consider the optimized version of SynchBFS described in Section 4.2.2, 
which prevents processes from sending search messages to processes from 
which they have previously received such messages. 

(a) Give code for this algorithm. 
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(b) Prove the correctness of your algorithm by relating it to SynchBFS, 
using the same sort of simulation strategy used in the proof of cor- 
rectness for OptFloodMaz (i.e., in the proof of Theorem 4.2). 

4.7. Describe in detail an algorithm that extends SynchBFS to produce not only 
child pointers, but also information about shortest routes from children in 
the BFS tree to their parents. This information should be distributed along 
those paths so that each process on a path knows the next process along 
the path. Analyze the time and communication complexity. 

4.8. Describe in detail an algorithm that extends SynchBFS to allow the source 
process i0 to broadcast a message to all other processes and obtain an 
acknowledgment that all processes have received it. Your algorithm should 
use O (IEI) messages and O(diam) time. You may assume that the network 
graph is undirected. 

4.9. Analyze the time and communication complexity of the global computation 
scheme, the leader-election scheme and the diameter computation scheme 
at the end of Section 4.2, assuming that communication is allowed to be 
unidirectional between some pairs of neighbors. 

4.10. Devise the most efficient leader-election algorithm you can, for a strongly 
connected directed network in which the processes have UIDs but do not 
have any knowledge of the number of nodes in or diameter of the network. 

(a) Do this assuming that communication is bidirectional between every 
pair of neighbors, that is, that the network graph is undirected. 

(b) Do this without making this assumption. 

Analyze. 

4.11. Develop the most efficient algorithm you can for finding the total number 
of nodes in a strongly connected directed network in which the processes 
have UIDs. 

(a) Do this assuming that communication is bidirectional between every 
pair of neighbors, that is, that the network graph is undirected. 

(b) Do this without making this assumption. 

Analyze. 

4.12. Develop the most efficient algorithm you can for finding the total number 
of edges in a strongly connected directed network in which the processes 
have UIDs. 
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(a) Do this assuming that communication is bidirectional between every 
pair of neighbors, that is, that the network graph is undirected. 

(b) Do this without making this assumption. 

Analyze. 

4.13. Develop the most efficient algorithm you can, for an arbitrary undirected 
graph network, to determine a minimum-height rooted spanning tree. You 
may assume the processes have UIDs, but there is no distinguished leader 
node. 

4.14. (a) Give code for the BellmanFord shortest paths algorithm. 

(b) Prove its correctness using invariant assertions. 

4.15. Give code for the SynchGHS algorithm. 

4.16. Prove Lemma 4.5. 

4.17. In the SynchGHS algorithm, show that it is not the case that O (diam) 
rounds are always sufficient to complete each level of the computation. 

4.18. Show that the version of SynchGHS that uses edge identifiers in place 
of edge weights (described near the end of Section 4.4) in fact produces 
an MST. 

4.19. Research Question: Come up with a better synchronous minimum spanning 
tree algorithm than SynchGHS--better in terms of the time complexity, the 
communication complexity, or both. 

4.20. Give code for the convergecast algorithm outlined at the end of Section 4.4, 
which elects a leader given an arbitrary spanning tree of an undirected 
graph network. 

4.21. Give the best upper and lower bounds you can for the problem of estab- 
lishing an arbitrary spanning tree in an undirected graph network. You 
may assume UIDs, but no weights. State carefully what assumptions you 
use about the processes' knowledge of the graph. 

4.22. Consider a line network, that is, a linear collection of n processes 1 , . . .  , n, 
where each process is bidirectionally connected to its neighbors. Assume 
that each process i can distinguish its left from its right and knows whether 
or not it is an endpoint. 



80 4. A L G O R I T H M S  IN G E N E R A L  S Y N C H R O N O U S  N E T W O R K S  

Assume that each process i initially has a very large integer value vi and 
that it can hold in memory only a constant number of such values at any 

time. Design an algorithm to sort the values among the processes, that is, 
to cause each process i to return one output  value oi, where the multiset 
of outputs is equal to the multiset of inputs and ol _< . . .  _< o~. Try to 
design the most efficient algorithm you can both in terms of the number of 
messages and the number of rounds. Prove your claims. 

4.23. Prove that, under the assumptions given in Section 4.5, but assuming that 
the processes are deterministic rather than probabilistic, there are some 
graphs in which it is impossible to solve the MIS problem. Find the largest 
class of graphs you can for which your impossibility result holds. 

4.24. Suppose that LubyMIS is executed in a ring of size n. Estimate the prob- 
ability that any particular edge is removed from the graph in one iteration 
of the algorithm. 



Chapter 5 

D i s t r i b u t e d  C o n s e n s u s  wi th  
Link Fai lures  

In this and the next two chapters, we study problems of reaching consensus in 
a distr ibuted network. In such problems, each of the processes in the network 
begins with an initial value of a particular type and is supposed to eventually 
output  a value of that same type. The outputs are required to be the s a m e -  
the processes must agree--even though the inputs can be arbitrary. There is 
generally a validity condition describing the output  values that are permit ted for 

each pat tern of inputs. 
When there are no failures of system components, consensus problems are 

usually easy to solve, using a simple exchange of messages. To make matters 
more interesting, the problems are usually considered in settings that include 
failures. In this chapter, we consider basic consensus problems in the presence 
of communication failures, while in Chapter  6, we consider process failures. 
Chapter  7 contains some variations on the basic problems, also in the presence 
of process failures. 

Consensus problems arise in many distr ibuted computing applications. For 
example, processes may at tempt  to reach agreement on whether to commit or 
abort  the results of a distr ibuted database transaction. Or processes may try 
to agree on an estimate of an airplane's altitude based on the readings of mul- 
tiple altimeters. Or they may a t tempt  to agree on whether to classify a system 
component as faulty, given the results of separate diagnostic tests performed by 
separate processes. 

The part icular consensus problem that we present in this chapter is called 
the coordinated attack problem; it is a fundamental problem of reaching consen- 
sus in a setting where messages may be lost. We begin by presenting a basic 
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impossibility result for deterministic systems, and then explore the possibilities 
for randomized solution. We show that the problem can be solved by a random- 
ized algorithm, with a certain (substantial) probability of error. Moreover, that 
probability of error turns out to be unavoidable. 

5.1 T h e  C o o r d i n a t e d  A t t a c k  
Problem Deterministic V e r s i o n  

We begin with an informal (in fact, ambiguous) problem statement, in terms of 
a battlefield scenario. 

Several generals are planning a coordinated attack from different di- 
rections, against a common objective. They know that the only way 
the attack can succeed is if all the generals attack; if only some of the 
generals attack, their armies will be destroyed. Each general has an 
initial opinion about whether his army is ready to attack. 

The generals are located in different places. Nearby generals can 
communicate, but only via messengers that travel on foot. However, 
messengers can be lost or captured, and their messages may thus be 
lost. Using only this unreliable means of communication, the generals 
must manage to agree on whether or not to attack. Moreover, they 
should attack if possible. 

(We suppose that the "communication graph" of generals is undi- 
rected and connected, and that all of the generals know the graph. 
We also assume that there is a known upper bound on the time it 
takes for a successful messenger to deliver a message.) 

If all the messengers are reliable, then all the generals can send messengers 
to all the other generals (possibly in several hops), saying whether or not they 
are willing to attack. After a number of "rounds" equal to the diameter of the 
"communication graph," all the generals will have all of this information. Then 
they can all apply a commonly agreed-upon rule to make the same decision about 
attacking: for example, they can decide to attack exactly if all the generals want 
to do so. 

In a model in which messengers may be lost, this easy algorithm does not 
work. It turns out that this is not just  a problem with this algorithm: we show 
that there is no algorithm that always solves this problem correctly. 

The real computer science problem behind this description is the commit 
problem for distributed databases. This problem involves a collection of pro- 
cesses that have participated in the processing of a database transaction. After 
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this processing, each process arrives at an initial "opinion" about whether the 
transaction ought to be committed (i.e., its results made permanent and released 
for the use of other transactions) or aborted (i.e., its results discarded). A pro- 
cess will generally favor committing the transaction if all its local computation 
on behalf of that transaction has been successfully completed, and will favor 
aborting the transaction otherwise. The processes are supposed to communicate 
and eventually to agree on one of the outcomes, commit or abort. If possible, 
the outcome should be commit. 

Before proving the impossibility result, we state the problem more formally 
and remove the ambiguities. We consider n processes indexed by 1 , . . . ,  n, ar- 
ranged in an arbitrary undirected graph network, where each process knows the 
entire graph, including the process indices. Each process starts with an input in 
{0, 1} in a designated state component. We use 1 to denote "attack," or commit, 
and 0 to denote "don't attack," or abort. We use the same synchronous model 
that we have been working with so far, except that now we allow any number 
of messages to be lost during the course of an execution. (See Section 2.2 for 
the definition.) The goal is for all the processes to eventually output decisions 
in {0, 1}, by setting special decision state components to 0 or 1. There are three 
conditions imposed on the decisions made by the processes: 

A g r e e m e n t :  No two processes decide on different values. 

Validity: 

1. If all processes start  with 0, then 0 is the only possible decision value. 

2. If all processes start with 1 and all messages are delivered, then 1 is 
the only possible decision value. 

T e r m i n a t i o n :  All processes eventually decide. 

The agreement and termination requirements are the natural ones. The va- 
lidity requirement is just one possibil i ty--there are several useful alternatives. 
Validity conditions, in general, express the notion that the value decided upon 
should be "reasonable"; for instance, in this case, the trivial protocol that al- 
ways decides 0 is ruled out by part 2 of the validity requirement. The particular 
validity condition we have stated above is quite weak: for example, if even one 
process starts with 1, the algorithm is allowed to decide 1, and if all processes 
start with 1 and even one message is lost, the algorithm is allowed to decide 0. 
The weak formulation is appropriate because our main focus in this chapter is 
on impossibility results. It turns out that even this weak version of the problem 
is impossible to solve in any graph with two or more nodes. 
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We prove the impossibility result for the special case of two nodes connected 

by one edge. We leave it as an exercise for you to show that impossibility for this 
case implies impossibility for any graph with two or more nodes. In this proof, 

we use the formal definitions of executions and indistinguishability (~) given in 
Chapter 2. 

T h e o r e m  5.1 Let G be the graph consisting of nodes 1 and 2 connected by a 
single edge. Then there is no algorithm that solves the coordinated attack problem 
on  G.  

P r o o f .  By contradiction. Suppose a solution exists, say algorithm A. Without 

loss of generality, we may assume that, for each process, there is only one start 

state containing each input value; this implies that the system has exactly one 

execution for a fixed assignment of inputs and fixed pattern of successful rues- 
sages. Also without loss of generality, we may assume that both processes send 

messages at every round in A, since we can always force them to send dummy 
messages. 

Let c~ be the execution that results when both processes start with value 1 

and all messages are delivered. By the termination requirement, both eventually 
decide, and by the validity condition, part 2, both decide on the value 1. Suppose 

that both decide within r rounds. Now let Ctl be the same as c~, except that all 

messages after the first r rounds are lost. In c~1, both processes also decide on 
1 within r rounds. The communication pattern in C~l is represented in Figure 

5.1. The edges represent messages that are delivered; messages sent but not 
delivered are simply not drawn. 

Starting from c~1, we now construct a series of executions, each of them 
indistinguishable from its predecessor in the series with respect to one of the 

processes; it will follow that all of these executions must have the same decision 
value. 

Let c~2 be the execution that is the same as C~l, except that the last (round 
r) message from process 1 to process 2 is not delivered (see Figure 5.2). Then, 
although process 2 may go to different states after round r in executions c~1 and 

1 
c~2, this difference never gets communicated to process 1; therefore O~ 1 r,~ O~2. 

Since process 1 decides 1 in C~l, it also decides 1 in c~2. By the termination and 

agreement properties, process 2 also (eventually) decides 1 in c~2. 
Next, let c~3 be the same as c~2, except that the last message from process 2 

2 
to process 1 is lost. Since ~2 ~ c~3, process 2 decides 1 in c~3, and by termination 
and agreement, so does process 1. 

Continuing in this way, by alternately removing the last message from process 
i and from process 2, we eventually reach an execution c~' in which both processes 
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1 2 

D D 

round r 

F i g u r e  5.1: Pattern of message exchanges in execution C[ 1. 

start  with 1 and no messages are delivered. By the same reasoning as above, 
both processes are forced to decide 1 in this case. 

But now consider the execution c~" in which process 1 starts with 1 but 

process 2 starts with 0, and no messages are delivered. Then c~" 1 c~', and 
hence process 1 still decides 1 in cd', and so does process 2, by termination and 

agreement. But c~" s c~"', where c~'" is the execution in which both processes 
start  with 0 and no messages are delivered. So process 2 decides 1 in c~'". But 
this yields a contradiction, because the validity condition, part  1, requires that 
both processes decide 0 in c~'". E] 

Theorem 5.1 describes a fundamental limitation on the capabilities of dis- 
t r ibuted networks. It suggests that there is little that can be done to solve basic 
consensus problems such as the distr ibuted database commit problem in the face 
of unreliable communication. However, some versions of this problem must be 
solved in real systems. In order to cope with the limitation of Theorem 5.1, it is 
necessary to strengthen the model or relax the problem requirements. 

One approach is to make some probabilistic assumptions about the loss of 
messages, while keeping the processes deterministic. Then we must allow for 
some possibility of violating the agreement and /or  validity condition. We leave 
the development of an algorithm for this setting for an exercise. A second 
approach is to allow the processes to use randomization, again allowing some 
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1 2 

m D 

round r 

F i g u r e  5.2" Pattern of message exchanges in execution c~2. 

possibility of violating the agreement and/or  validity condition; we discuss this 
approach in Section 5.2. 

5.2 T h e  C o o r d i n a t e d  A t t a c k  Problem Randomized 
Vers ion  

In this section, we consider the coordinated attack problem in the setting where 

processes can be randomized. As in the previous section, we consider n processes 
arranged in an arbitrary, known, undirected graph network. Each process starts 
with an input in {0, 1} in a designated state component; we assume that for each 
process, there is exactly one start  state containing each input value. For this 
section, we assume that the protocol terminates within a fixed number r _> 1 
of rounds; specifically, that by the end of round r, each process is required to 
output  a decision in {0, 1} by setting its decision variable to 0 or 1. We assume 
that a message is sent along each edge at each round k, 1 _< k _< r, and that any 
number of these messages may be lost. 

The goal is essentially the same as before, except that now we weaken the 
problem statement to allow for some probability of error. Namely, we use the 
same validity condition as before, but weaken the agreement condition to allow 
a small probability e of disagreement. We obtain upper and lower bound results 
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for the achievable values of e, in terms of the number r of rounds. As you will 
see, the achievable values of e are not small. 

5 .2 .1  F o r m a l  M o d e l l i n g  

In formalizing this problem, we must be clear about the meaning of the prob- 
abilistic s ta tements- - the  situation is more complicated than it was for the MIS 
problem in Section 4.5. The complication is that the execution that is produced 
depends not only on the results of the random choices, but also on which mes- 
sages are lost. We do not want to assume that message losses are determined 
randomly. Rather, we imagine that they are determined by some "adversary" 
that tries to make things as dimcult as possible for the algorithm; we evaluate 
the algorithm by considering its worst-case behavior over the class of all possible 
adversaries. 

Formally, we define a communication pattern to be any subset of the set 

{(i, j, k ) ' ( i ,  j) is an edge in the graph, and 1 <_ k}. 

A communication pattern -y is defined to be good if k <_ r for every (i, j, k) E "y 
(for this chapter only--we will use another notion of "goodness" in Chapter 6). 
A good communication pattern represents the set of messages that are delivered 
in some execution: if (i, j, k) is in the communication pattern, then it means that 
a message sent by i to j at round k succeeds in getting delivered. 

The notion of adversary that we use here is an arbitrary choice of 

1. An assignment of input values to all the processes 

2. A good communication pattern 

For any particular adversary, any particular set of random choices made by the 
processes determines a unique execution. Thus, for any particular adversary, 
the random choices made by the processes induce a probability distribution on 
the set of executions. Using this probability distribution, we can express the 
probability of events such as the processes all agreeing. To emphasize the role of 
the adversary, we use the notation Pr  B for the probability function induced by a 
given adversary B. 

We now restate the coordinated attack problem in this probabilistic setting. 
The statement uses the parameter e, 0 _< e _< 1. 

A g r e e m e n t :  For every adversary B, 

PrB[some process decides 0 and some process decides 1] _< e. 
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Val id i ty"  Same as before. 

We do not require a termination condition, because we have already assumed 
that all processes decide within r rounds. Our goals are to find an algori thm 
with the smallest possible value of c and to prove that no smaller value of e can 
be achieved. 

5 . 2 . 2  A n  A l g o r i t h m  

For simplicity, we restrict attention in this and the following subsection to the 
special case of an n-node complete graph. We leave the extensions to arbi t rary  
graphs as exercises. For this special case, we present a simple algori thm that 
achieves e -  !. 

r 

The algorithm is based on what processes know about each other's initial 
values and on what they know about each other's knowledge of the initial values, 
and so on. We need some definitions to capture such notions of knowledge. 

First, for any communication pat tern ~, we define a reflexive partial ordering 
_<~ on pairs of the form (i, k), where i is a process index and k is a time, 0 < k. 
(Recall from Chapter  2 that "time k" refers to the point in the execution just  after 
k rounds have occurred.) This ordering represents information flow between the 
various processes at various times. We define the relation by 

1. (i, k) ___~ (i, k') for all i, 1 _< i _< n, and all k, k', 0 _< k _< k'. 

2. If (i, j, k) E ",/, then (i, k -  1) _<~ (j, k). 

3. If (i,k) <_~ (i',k') and (i',k') <_~ (i",k"), then (i,k) <_~ (i", k"). 

The first case describes information flow at the same process. The second case 
describes information flow from the sender to the receiver of a message. The 
third case just  takes the transitive closure. Similar information-flow ideas will 
appear later in the book, for example, in Chapters 14, 16, 18, and 19. 

Now for any good communication pat tern "7, we define the information level, 
level~(i, k) of any process i at any time k, 0 _< k < r, recursively. There are 
three cases: 

1. k - 0 "  
Then define level~(i, k) to be 0. 

2. k > 0 and there is some j r  such that (j, 0) ~ (i, k)" 
Then define level.y(i, k) to be 0. 

3. k > 0 and (j, 0) <_~ (i, k) for every j -7/= i" 
Then for each j # i, let lj denote max {level.~(j, k')" (j, k') <_~/(i, k)}. 
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(This is the largest level that i knows j has reached.) Note that 0 < 
lj _< k -  1 for all j .  Then define level~(i, k) to be 1 + min {lj "j # i}. 

In other words, each process starts  out at level 0; when it hears from all the other 
processes, it advances to level 1. When it hears that all the other processes have 
reached level 1, it advances to level 2, and so on. If B is an adversary with 
communication pat tern 7, we sometimes write levelB(i, k) to mean level~(i,k). 

Example  5.2.1 Information level 

Suppose that n - 2 and r - 6. Let 7 be the good communication 
pat tern consisting of exactly the following triples" 

(1, 2, 1), (1, 2, 2), (2, 1, 2), (1, 2, 3), (2, 1, 4), (1, 2, 5), (2, 1, 5), (1, 2, 6) 

Communication pat tern 7 is depicted in Figure 5.3. The information 
levels for processes 1 and 2, at times k, 0 < k < 6, are as indicated 
by the labels. 

4 �9 '~  5 

F i g u r e  5.3: Good communication pattern 7. 

The following lemma says that the information levels of different processes 
always remain within 1 of each other. 
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Lemma 5.2 For any good communication pattern ~/, any k, 0 <_ k <_ r, and 
any i and j ,  ]level~(i, k) - level~(j, k)] <_ 1. 

Proof. The proof  is left as an exercise. D 

The  following l emma says that ,  in the case where all messages  are delivered, 
the informat ion level is equal  to the number  of rounds.  

Lemma 5.3 If'7 is the "complete" communication pattern containing all triples 
( i , j ,  k), 1 <__ k <_ r, then level~(i, k ) -  k for all i and k. 

Proof. The proof  is left as an exercise. [:] 

The  idea of the a lgor i thm,  which we call RandomAttack, is as follows: 

R a n d o m A t t a c k  algorithm (informal): 

Each  process  i keeps explicit  t rack  of its level, with respect  to the com- 
munica t ion  pa t t e rn  that  occurs in the execution,  in a variable level. Also, 
process  1 chooses a r a n d o m  key value, an integer in the range [1, r]; this 
value is p iggybacked  on all messages.  In addi t ion,  the initial values of all 
processes  are p iggybacked  on all messages.  

After  r rounds,  each process  decides 1 exactly, if its ca lcula ted level is at 
least as large as key and it knows that  all processes '  initial values are 1. 

R a n d o m A t t a c k  algorithm (formal): 

The message a lphabe t  consists  of t r iples  of the form (L, V, k), where L is 
a vector  assigning an integer in [0, r] to each process  index, V is a vector  

assigning a value in {0, 1, undefined} to each process  index, and k is ei ther 
an integer in [1, r] or undefined. 

states~: 
rounds E 1% initially 0 
decision E {unknown, 0, 1}, initially unknown 
key E [1, r] U undefined, initially undefined 
for every j, 1 < j <_ n: 

val(j) E {0, 1, undefined}; initially val(i) is i's initial value and 
val(j) - undefined for all j # i 

level(j) E [-1, r]; initially level(i)= 0 and level(j)= -1  for all j # i 

The  variable level(j) is used to keep t rack  of the largest  level for process  
j that  is known ( through a chain of messages)  to process  i. For j ~ i, 
before i has heard  any th ing  from j ,  level(j) has the default  value - 1 .  In 
the r andom funct ion randi, we use random to indicate a r a ndom choice of 
an integer in [1, r], using the uniform dis t r ibut ion.  
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r a n d i :  

if i = 1 and rounds - 0 then  key "- random 

m s g s i :  

send (L, V, key) to all j ,  where L is the level vector and V is the val vector  

t r l l n s i  l 

rounds := rounds + 1 
let (Lj ,  ~ , k j )  be the message from j ,  for each j from which a message arrives 
if, for some j ,  kj r undefined then  key : -  kj 
for all j r i do 

if, for some i', Vi,(j) r undefined then  val(j) := V/,(j) 
if, for some i', n i , ( j )  > level(j) then  level(j):= maxi, {Li , ( j ) }  

level(i) := 1 + min {level(j):  j ~ i} 
if rounds = r then  

if key r undefined and level(i) >_ key and val(j) -- 1 for all j then  
decision := 1 

else decision : - 0  

In this code, the third line sets the key component; it does not matter if it 
is set more than once, since all values of key that get passed around are the 
same. The fifth line sets the val components for processes j -~ i, again with no 
danger of conflicting assignments. The sixth line updates the level components 
for processes j =/: i; these are intended to contain the largest levels that i knows 
about, for all the other processes. Next, i updates its own level component, 
setting it to be one more than the smallest level it knows about for any of the 
other processes. Finally, if this is the last round r, then i decides according to 
the rule described earlier. 

T h e o r e m  5.4 RandomAttack solves the randomized version of the coordinated 
1 attack problem, for e - -i" 

Proof .  The key to the proof is just the claim that the algorithm correctly 
calculates the levels. That is, in any execution of RandomAttack, with any good 
communication pattern V, for any k, 0 _< k _< 7", and for any i, after k rounds, the 
value of level(i)i is equal to level.r(i , k). Also, after k rounds, if level(i)i > 1, then 
keyi is defined and val(j)i is defined for all j; moreover, these values are equal 
to the actual key chosen by process 1 and the actual initial values, respectively. 

Termination of the RandomAttack algorithm is obvious. For validity, if all 
processes have initial value 0, then obviously 0 is the only possible decision value. 
Now suppose that all processes start with 1 and all messages are delivered. Then 
Lemma 5.3 and the fact that the algorithm correctly calculates the levels imply 
that for each i, level(i)i - r  at the point in round r where the decision is made. 
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Since level(i)~ - r >_ 1 at this point, it follows that  key~ is defined and val(j)~ is 
defined for all j .  Since all possible key values are less than or equal to r, 1 is 
the only possible decision value. 

Finally, we consider agreement.  Let B be any adversary;  we show that  

prB[some process decides 0 and some process decides 1] < c. 

For each i, let li denote the value of level(i)i at the time process i makes its 
decision (in round r). Then  Lemma 5.2 implies that  all the values li are within 
one of each other. If the chosen value of key is strictly greater  than max {li}, 
or if there is some process with an initial value of 0, then all processes decide 
0. On the other hand, if key <_ min {li} and all processes have initial value 1, 
then all processes decide 1. So the only case where disagreement  is possible is 
where k e y -  max {/~}. The probabil i ty of this event is 1 _ c since max {/~} is 

r 

determined by the adversary B and key is uniformly d is t r ibuted  in [0, r]. Q 

Example 5.2.2 Behavior of R a n d o m A t t a c k  

Consider the case where n - 2 and r - 6. Consider the adversary 
B that  supplies input  1 for both processes, together with the good 

1 Theorem 5 4 communicat ion pa t te rn  ~ of Example  5.2.1. Let c -  ~. 
says that  the probabil i ty of disagreement  for adversary B is at most  
c. In fact, this probabil i ty is exactly c" if the value of key chosen by 
process 1 is 5, then process 1 decides 0 and process 2 decides 1; if 
key ~_ 4, then both decide 1; and if k e y -  6, then both decide 0. 

On the other hand, if the adversary  supplies any other combination 
of inputs together with communicat ion pa t te rn  7, then the probabil i ty 
of disagreement  is 0, since both processes decide 0. 

Using the ideas in the proof of Theorem 5.4, we can see that  RandomAttack 
satisfies s tronger validity conditions than we have so far claimed. Namely, we 
can show: 

Validity: 

1. If any process s tar ts  with 0, then 0 is the only possible decision value. 

2. For any adversary B for which all the initial values are 1, 

prB[all processes decide 1] > le, 

where l is the min imum level of any process at t ime r in B. 
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The second of these properties might be useful in some applications, such as 
warfare or dis tr ibuted database commit,  where it is considered desirable to favor 
the positive outcome. If, for example, only a single message is lost, then the 
probabili ty of coordinated attack is guaranteed to be high, at least r -1.  The 

r 

proof that RandomAttack satisfies the stronger validity conditions is left as a 
simple exercise. 

5.2 .3  A Lower  B o u n d  on D i s a g r e e m e n t  

Now we show that it is not possible to do much better than the bound described in 
Theorem 5.4. (Recall from the previous subsection that we are only considering 
n-node complete graphs.) 

T h e o r e m  5.5 Any r-round algorithm for the randomized coordinated attack 
problem has probability of disagreement at least 1 

r + l  " 

For the remainder of this section, we assume a part icular r-round algorithm 
A that solves the coordinated attack problem with disagreement probabili ty e in 
an n-node complete graph; we show that c > 1 

- -  r + l "  

In order to prove the theorem, we need one more definition. If B is any 
adversary, 7 its communication pattern,  and i any process, then we define another 
adversary, prune(B, i). Adversary prune(B, i) simply "prunes out" information 
that i does not hear about in B. B~= prune(B, i) is defined as follows: 

1. If (j, 0) _<~ (i, r), then j ' s  input in B'  is the same as it is in B, and otherwise 
it is 0. 

2. A triple (j, j ' ,  k) is in the communication pat tern of B'  exactly if it is in 
the communication pat tern of B and (j', k) _<~ (i, r). 

That  is, adversary B ~ includes all the messages that i knows about in B, but no 
others, and B ~ specifies that all the inputs that i does not know about in B are 
0. The following lemma says that the pruned version of an adversary is sufficient 
to determine the probability distr ibution of outputs. 

L e m m a  5.6 If  B and B ~ are two adversaries, i is a process, and prune(B, i) = 
prune(B',  i), then PrB[i decides 1 ] -  prB'[i decides 1]. 

P r o o f .  The proof is left as an exercise. 77 

The proof of Theorem 5.5 is based on the following lemma. 
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L e m m a  5.7 Let B be any adversary for which all initial values are 1 and let i 
be any process. Then 

prB[i  decides 1] <_ e(levelB(i, r ) +  1). 

P r o o f .  By induction on levelB(i,r). 
Basis: Suppose levelB(i, r) -- O. Define B' - prune(B,  i). Then prune(B' ,  i) - 

B ' -  prune(B,  i), so by Lemma 5.6, 

prB[i  decides 1 ] -  Pr g' [i decides 1]. (5.1) 

Since levelB(i, r) -- O, there must be some process j =fi i such that (j, 0) ~ 
(i, r), where 7 is the communication pattern of B. Then adversary B ~ specifies 
an initial value of 0 for j and includes no messages with destination j in its 
communication pattern. It follows that prune(B ~, j )  is the trivial adversary for 
which all the initial values are 0 and there are no messages in the communication 
pattern. Let B" denote this trivial adversary. Then p r u n e ( B " , j )  - B"  = 
prune(B ' ,  j ) ,  so by Lemma 5.6, 

prB'[ j  decides 1 ] -  PrB"[j  decides 1]. 

The validity condition implies that 

Pr B'' [j decides 1 ] -  0, 

so therefore 
Pr B' [j decides 1 ] -  0. 

But since there is at most probability e of disagreement, we have that 

IprB'[i decides 1 ] -  prB'[ j  decides 1]l < e. 

Therefore, 
Pr B' [i decides 1] <_ e, 

which by Equation 5.1 implies that 

prB[i  decides 1] < e, 

as needed. 
Inductive step: Suppose levelB(i,r) -- 1 > 0, and suppose that the lemma 

holds for all levels less than 1. Define B ~ - p rune (B , i ) .  Then Lemma 5.6 
implies that 

prB[i  decides 1 ] -  Pr B'[i decides 1]. (5.2) 
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Since levelB(i, r) = l, the definition of level implies that there must be some 
process j such that leveIB,(j, r) _< l - -  1. By the inductive hypothesis, 

prB'[j decides 1] _< e (levelB,(j, r )+ 1) 

< el. 

But since there is at most probability e of disagreement, we have that 

IprB'[i decides 1 ] -  PrB'[j decides 111 < e. 

Therefore, 
Pr B' [i decides 1] _< e(1 + 1), 

which by Equation 5.2 implies that 

PrB[i decides 1] _< c(1 + 1), 

as needed. [-1 

We can now prove the theorem. 

Proof  (of Theorem 5.5).  Let B be the adversary for which all inputs are 
1 and no messages are lost. The probability that all processes decide 1 is at 
most the probability that any of them decides 1, which is, by Lemma 5.7, at 
most e(levelB(i,r)+ 1) <_ e(r + 1). But the validity condition says that all 
processes must decide 1 in all executions generated by this adversary B; hence 
the probability that all decide 1 must be exactly 1. This implies that e(r + 1) _> 1, 
that is, that e > 1 - 7gi, as needed. D 

5.3 Bibl iographic  Note s  

The coordinated attack problem was originated by Gray [142] in order to model 
the problem of distributed database commit. The impossibility result for the 
deterministic version of the problem is also due to Gray [142]. The results on 
randomized coordinated attack are derived from work of Varghese and Lynch 
[281]. 

5.4 Exerc i ses  

5.1. Show that a solution to the (deterministic) coordinated attack problem for 
any nontrivial connected graph implies a solution for the simple graph con- 
sisting of two processes connected by one edge. (Therefore, this problem 
is unsolvable in any nontrivial graph.) 
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5.2. Consider the following variant of the (deterministic) coordinated attack 
problem. Assume that the network is a complete graph of n > 2 partici- 
pants. The termination and validity requirements are the same as those in 
Section 5.1. However, the agreement requirement is weakened to say: "If 
any process decides 1, then there are at least two that decide 1." (That 
is, we want to rule out the case where one general attacks alone, but al- 
low two or more generals to attack together.) Is this problem solvable or 
unsolvable? Prove. 

5.3. Consider the coordinated attack problem with link failures for the simple 
case of two processes connected by an edge. Suppose that the processes 
are deterministic, but the message system is probabilistic, in the sense that 
each message has an independent probability p, 0 < p < 1, of getting 
delivered successfully. (As usual, we allow each process to send only one 
message per round.) 

For this setting, devise an algorithm that terminates in a fixed number 
r of rounds, has probability at most e of disagreement, and likewise has 
probability at most ~ of violating the validity condition. Obtain the smallest 

you can. 

5.4. For the setting described in the previous exercise, prove a lower bound on 
the size of the bound e that can be obtained. 

5.5. Prove Lemma 5.2. 

5.6. Prove Lemma 5.3. 

5.7. Prove carefully the first claims in the proof of Theorem 5.4, that is, that the 
RandomAttack algorithm correctly computes the level values, and correctly 
conveys the initial values and key. 

5.8. For the RandomAttack algorithm, prove the stronger validity properties 
given at the end of Section 5.2.2. That is, prove 

(a) If any process starts with 0, then 0 is the only possible decision value. 

(b) For any adversary B for which all the initial values are 1, 

prB[all processes decide 1] > le, 

where 1 is the minimum level of any process at time r in B. 
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5.9. Generalize the randomized version of the coordinated attack problem to 
allow for probability c of violating the validity condition as welt as of vi- 
olating the agreement condition. Adjust the RandomAttack algorithm so 
that it achieves the smallest possible e for this modified problem statement. 
Analyze. 

5.10. Extend the RandomAttack algorithm and its analysis to arbitrary (not 
necessarily complete) undirected graphs. 

5.11. Prove Lemma 5.6. 

5.12. Extend the lower bound result in Theorem 5.5 to arbitrary (not necessarily 
complete) undirected graphs. 

5.13. What happens to the results of this chapter for the randomized setting, 
if the communication pattern determined by the adversary is not fixed in 
advance as we have assumed, but is determined on-line? More precisely, 
suppose that the adversary is an entity that is able to examine the entire 
execution up to the beginning of any round k, before deciding which round 
k messages will be delivered. 

(a) What bound e on disagreement is guaranteed by the RandomAttack 
algorithm, when working against arbitrary on-line adversaries? 

(b) Can you prove an interesting lower bound on attainable values of e? 
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Chapter 6 

D i s t r i b u t e d  C o n s e n s u s  
P r o c e s s  Fai lures  

wi th  

In this chapter we continue the study of consensus problems in the synchronous 
model, which we began in Chapter 5. This time, we consider the case where 
processes, but not links, may fail. Of course, it is more sensible to talk about 
failure of physical "processors" than of logical "processes," but to stay consistent 
with the terminology elsewhere in the book, we use the term process. We investi- 
gate two failure models: the stopping failure model, where processes may simply 
stop without warning, and the Byzantine failure model, where faulty processes 
may exhibit completely unconstrained behavior. Stopping failures are intended 
to model unpredictable processor crashes. Byzantine failures are intended to 
model any arbitrary type of processor malfunction, including, for example, fail- 
ures of individual components within the processors. 

The term Byzantine was first used for this type of failure in a landmark paper 
by Lamport, Pease, and Shostak, in which a consensus problem is formulated in 
terms of Byzantine generals. As in the coordinated attack problem of Chapter 5, 
the Byzantine generals attempt to agree on whether or not to carry out an attack. 
This time, however, the generals must worry not about lost messengers, but 
about the possible traitorous behavior of some generals. The term Byzantine is 
intended as a pun-- the  battle scenario takes place in ancient Byzantium, and the 
behavior of some of the traitorous generals can only be described as "Byzantine." 

In the particular consensus problem we consider in this chapter, which we call 
simply the agreement problem, the processes start with individual inputs from 
a particular value set V. All the nonfaulty processes are required to produce 
outputs from the same value set V, subject to simple agreement and validity 
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conditions. (For validity, we assume that if all processes begin with the same 
value v, the only allowed decision value is v.) 

The agreement problem is a simplified version of a problem that originally 
arose in the development of on-board aircraft control systems. In this problem, 
a collection of processors, each with access to a separate altimeter, and some 
of which may be faulty, at tempt to agree on the airplane's altitude. Byzantine 
agreement algorithms have also been incorporated into the hardware of fault- 
tolerant multiprocessor systems; there, they are used to help a small collection 
of processors to carry out identical computations, agreeing on the results of every 
step. This redundancy allows the processors to tolerate the (Byzantine) failure of 
one processor. Byzantine agreement algorithms are also useful in processor fault 
diagnosis, where they can permit a collection of processors to agree on which of 
their number have failed (and should therefore be replaced or ignored). 

In both of our failure models, we will need to assume limitations on the 
frequency of occurrence of process(or) failures. How should such limitations 
be expressed? In other work on analysis of systems with processor failures, 
these limitations often take the form of probability distributions governing the 
occurrences of failures. Here, instead of using probabilities, we simply assume 
that the number of failures is bounded in advance, by a fixed number f .  This is 
a simple assumption to work with, since it avoids the complexities of reasoning 
about probabilistic failure occurrences. In practice, this assumption may be 
realistic in the sense that it may be unlikely that more than f failures will occur. 
However, we should keep in mind that the assumption is somewhat problematic: 
in most practical situations, if the number of failures is already large, then it is 
likely that more failures will occur. Assuming a bound on the number of failures 
implies that failures are negatively correlated, whereas in practice, failures are 
usually independent or positively correlated. 

After defining the agreement problem, for both stopping and Byzantine fail- 
ures, we present a series of algorithms. We then prove lower bounds on the 
number of processes needed to solve the problem for Byzantine failures, and on 
the number of rounds needed to solve the problem for either type of failure. 

6.1 T h e  P r o b l e m  

We assume that the network is an n-node connected undirected graph with pro- 
cesses 1 , . . .  , n, where each process knows the entire graph. Each process starts 
with an input from a fixed value set V in a designated state component; we as- 
sume that, for each process, there is exactly one start state containing each input 
value. The goal is for the processes to eventually output decisions from the set 
V, by setting special decision state components to values in V. We use the same 
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synchronous model that we have been using in Chapters 3-5, only this time we 
allow the possibility that a limited number (at most f)  of processes might fail. 
In this chapter, we assume that the links are perfectly reliable--all the messages 
that are sent are delivered. We consider two kinds of process failures: stopping 
failures and Byzantine failures. 

In the stopping failure model, at any point during the execution of the al- 
gorithm, a process might simply stop taking steps altogether. In particular, a 
process might stop in the middle of a message-sending step; that is, at the round 
in which the process stops, only a subset of the messages the process is supposed 
to send might actually be sent. In this case, we assume that  any subset of the 
messages might be sent. A process might also stop after sending its messages 
for some round but before performing its transition for that round. 

For the stopping failure model, the correctness conditions for the agreement 
problem are 

Agreement: No two processes decide on different values. 

Validity: If all processes start with the same initial value v E V, then v is the 
only possible decision value. 

Termination" All nonfaulty processes eventually decide. 

In the Byzantine failure model, a process might fail not just by stopping, but 
by exhibiting arbitrary behavior. This means that it might start in an arbitrary 
state, not necessarily one of its start states; might send arbitrary messages, not 
necessarily those specified by its msgs function; and might perform arbitrary 
state transitions, not necessarily those specified by its trans function. (As a 
technical but convenient special case, we even allow for the possibility that a 
Byzantine process behaves completely correctly.) The only limitation on the 
behavior of a failed process is that it can only affect the system components 
over which it is supposed to have control, namely, its own outgoing messages 
and its own state. It cannot, for example, corrupt the state of another process, 
or modify or replace another process's messages. 

For the Byzantine failure model, the agreement and validity conditions are 
slightly different from those for the stopping failure model: 

Agreement: No two nonfaulty processes decide on different values. 

Val idi ty-  If all nonfaulty processes start with the same initial value v E V, then 
v is the only possible decision value for a nonfaulty process. 

Termination: The termination condition is the same. 

The modified conditions reflect the fact that in the Byzantine model, it is 
impossible to impose any limitations on what the faulty processes might start 
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with or what they might decide. We refer to the agreement problem for the 
Byzantine failure model as the Byzantine agreement problem. 

Relationship between the stopping and  B y z a n t i n e  a g r e e m e n t  p rob-  
lems.  It is not quite the case that an algorithm that solves the Byzantine 
agreement automatically solves the agreement problem for stopping failures; the 
difference is that in the stopping case, we require that all the processes that de- 
cide, even those that subsequently fail, must agree. If the agreement condition 
for the stopping failure case is replaced by the one for the Byzantine failure case, 
then the implication does hold. Alternatively, if all the nonfaulty processes in the 
Byzantine algorithm always decide at the same round, then the algorithm also 
works for stopping failures. The proofs are left as exercises. 

Stronger validity condition for stopping failures. An alternative validity 
condition that is sometimes used for the stopping failure model is as follows. 

Validity: Any decision value for any process is the initial value of some process. 

It is easy to see that this condition implies the validity condition we have already 
stated. We will use this stronger condition in our definition of the k-agreement 
problem, a generalization of the agreement problem, in Chapter 7. In this chap- 
ter, we use the weaker condition we gave earlier; this slightly weakens our claims 
about algorithms and slightly strengthens our impossibility results. For the al- 
gorithms in this chapter, we will indicate explicitly whether or not this stronger 
validity condition is satisfied. 

C o m p l e x i t y  m e a s u r e s .  For the time complexity, we count the number of 
rounds until all the nonfaulty processes decide. For the communication complex- 
ity, we count both the number of messages and number of bits of communication; 
in the stopping case, we base these counts on the messages sent by all processes, 
but in the Byzantine case, we only base it on the messages sent by nonfaulty 
processes. This is because there is no way to provide nontrivial bounds on the 
communication sent by faulty processes in the Byzantine model. 

6.2 Algorithms for Stopping Failures 

In this section, we present algorithms for agreement in the stopping failure model, 
for the special case of a complete n-node graph. We begin with a basic algorithm 
in which each process just repeatedly broadcasts the set of all values it has ever 
seen. We continue with some reduced-complexity versions of the basic algorithm, 
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and finally, we present algorithms that use a strategy known as exponential infor- 
mation gathering (EIG). Exponential information gathering algorithms, though 
costly and somewhat complicated, extend to less well-behaved fault models. 

C o n v e n t i o n s .  In this and the following section, we use v0 to denote a prespec- 
ified default value in the input set V. We also use b to denote an upper bound 
on the number of bits needed to represent any single value in V. 

6.2.1 A Basic Algorithm 

The agreement problem for stopping failures has a very simple algorithm, called 
FloodSet. Processes just propagate all the values in V that they have ever seen 
and use a simple decision rule at the end. 

FloodSet  algorithm (informal): 

Each process maintains a variable W containing a subset of V. Initially, 
process i's variable W contains only i's initial value. For each of f + 
1 rounds, each process broadcasts W, then adds all the elements of the 
received sets to W. 

After f + 1 rounds, process i applies the following decision rule. If W is 
a singleton set, then i decides on the unique element of W; otherwise, i 
decides on the default value v0. 

The code follows. 

FloodSet  algorithm (formal)" 

The message alphabet consists of subsets of V. 

s ta t e s~ :  

rounds E I~, initially 0 
decision C V U {unknown},  initially unknown 
W C V, initially the singleton set consisting of i's initial value 

msgs~:  

if rounds < f then send W to all other processes 

t r a n s i  : 

rounds : -  rounds + 1 
let Xj  be the message from j,  for each j from which a message arrives 
W "- W U Uj  x j  
if r o u n d s -  f + 1 then 

if I W l -  1 then decision : - v ,  where W -  {v} 
else decision "-  vo 
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In arguing the correctness of FloodSet, we use the notation Wi(r) to denote 

the value of variable W at process i after r rounds. As usual, we use the subscript 

i to denote the instance of a state component belonging to process i. We say 

that a process is active after r rounds if it does not fail by the end of r rounds. 
The first easy lemma says that if there is ever a round at which no process 

fails, then all the active processes have the same W at the end of that round. 

L e m m a  6.1 I f  no process fails during a particular round r, 1 <_ r <_ f + 1, then 
Wi(r) - Wj(r)  for all i and j that are active after r rounds. 

P r o o f .  Suppose that no process fails at round r and let I be the set of processes 

that are active after r rounds (or equivalently, after r -  1 rounds). Then, because 
every process in I sends its own W set to all other processes, at the end of round 

r, the W set of each process in I is exactly the set of values that are held by 
processes in I just  before round r. [3 

We next claim that if all the active processes have the same W sets after 
some particular round r, then the same is true after subsequent rounds. 

L a m i n a  6.2 Suppose that Wi(r) - Wj(r)  for all i and j that are active after 
r rounds. Then for any round r', r <_ r' <_ f + 1, the same holds, that is, 
Wi(r') - Wj(r ')  for all i and j that are active after r' rounds. 

P r o o f .  The proof is left as an exercise. [2 

The following lemma is crucial for the agreement property. 

L e m m a  6.3 If  processes i and j are both active after f +  1 rounds, then Wi - Wj 
at the end of round f + 1. 

P r o o f .  Since there are at most f faulty processes, there must be some round r, 

1 < r < f + 1, at which no process fails. Lamina 6.1 implies that Wi(r) - Wj(r)  
for all i and j that are active after r rounds. Then Lemma 6.2 implies that 

W i ( f  + 1) - W j ( f  + 1) for all i and j that are active after f + 1 rounds. [3 

T h e o r e m  6.4 FloodSet solves the agreement problem for stopping failures. 

P r o o f .  Termination is obvious, by the decision rule. For validity, suppose that 

all the initial values are equal to v. Then v is the only value that ever gets sent 
anywhere. Each set W i ( f  + 1) is nonempty, because it contains i 's initial value. 
Therefore, each Wi ( f  + 1) must be exactly equal to {v}, so the decision rule says 
that v is the only possible decision. 
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For agreement, let i and j be any two processes that decide. Since decisions 
only occur at the end of round f + 1, it means that i and j are active after f + 1 
rounds. Lemma 6.3 then implies that Wi(f  + 1) - Wj (f  + 1). The decision rule 
then implies that i and j make the same decision. D 

C o m p l e x i t y  analys is .  FloodSet requires exactly f § 1 rounds until all non- 
faulty processes decide. The total number of messages is O ((f  + 1)n2). Each 
message contains a set of at most n elements (since each element must be the 
initial value of some process), so the number of bits per message is O (nb). Thus, 
the total number of communication bits is O ((f  + 1)n3b). 

A l t e r n a t i v e  dec i s ion  rule .  The decision rule given for FloodSet is somewhat 
arbitrary. Since FloodSet guarantees that all nonfaulty processes obtain the same 
set W after f § 1 rounds, various other decision rules would also work correctly, 
as long as all the processes apply the same rule. For instance, if the value set V 
has a total ordering, then all processes could simply choose the minimum value 
in W. This alternative rule has the advantage that it guarantees the stronger 
validity condition mentioned near the end of Section 6.1. The decision rule given 
for FloodSet does not guarantee this stronger condition, because the default value 
v0 might not be the initial value of any process. 

P r o c e s s  ve r sus  c o m m u n i c a t i o n  fa i lures .  The FloodSet algorithm shows 
that the agreement problem is solvable for process stopping failures. This positive 
result should be contrasted with the impossibility results for the coordinated 
attack problem in a setting with communication failures. (See Theorem 5.1 and 
Exercise 5.1.) 

6.2.2 Reducing the Communication 

It is possible to reduce the amount of communication somewhat from the 
O ((f  + 1)n 2) messages and O ((f  § 1)n3b) bits used by FloodSet. For exam- 
ple, the number of messages can be reduced to 2n 2 and the number of bits of 
communication to O (n2b) by using the following simple idea. Notice that at 
the end, each process i only needs to know the exact elements of its set Wi if 
I W i l -  1; otherwise, i needs to know only the fact that I Wil > 2. So it is plausi- 
ble that each process might need to broadcast only the first two values it sees, 
rather than all values. This idea is the basis for the following algorithm. 

OptFloodSet a l g o r i t h m :  

The processes operate as in FloodSet, except that each process i broadcasts 
at most two values altogether. The first broadcast is at round 1, when i 
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broadcasts  its initial value. The second broadcast  is at the first round r, 

2 < r < f + 1, such that  at the beginning of round r, i knows about  some 
value v different from its initial value (if any such round exists). Then  i 
broadcasts  this new value v. (If there are two or more new values at this 
round, then any one of these may be selected for broadcast . )  

As in FloodSet, process i decides v if its final set W/ is the singleton set 

{v} and otherwise decides v0. 

C o m p l e x i t y  a n a l y s i s .  The number  of rounds for OptFloodSet is the same as 
for FloodSet, f + 1. The number  of messages is at most  2n 2, since each process 
sends at most  two non-null messages to each other process. The number  of bits 
of communicat ion is O (n2b). 

We prove the correctness of OptFloodSet by relating it to FloodSet using a 
simulation relation (a similar s t ra tegy was used in Section 4.1.3 to prove correct- 
hess of OptFloodMax by relating it to FloodMax). This requires first filling in 
the details in the description of OptFloodSet, including explicit rounds, decision, 
and W variables as in FloodSet. We use the notat ion Wi(r) and OWl(r),  respec- 
tively, to denote the values of Wi after r rounds of FloodSet and OptFloodSet, 
respectively. The following lemma describes message propagat ion in FloodSet. 

L e m m a  6.5 In FloodSet, suppose that i sends a round r + 1 message to j ,  and 
j receives and processes it. Then Wi(r) C_ Wj(r  + 1). 

P r o o f .  The proof is left as an exercise. F-I 

The key pruning proper ty  of OptFloodSet is cap tured  by the following lemma. 

L e m m a  6.6 In OptFloodSet, suppose that i sends a round r + 1 message to j ,  
and j receives and processes it. Then 

1. If  IOWi(r)[ - 1, then OWl(r) C_ OWj(r  + 1). 

2. If  IOWg( )l 2, then [OWj(r + 1)l _> 2. 

Moreover, the same two conclusions hold in case i does not fail in the first r 
rounds, and does not send a round r + 1 message to j ,  but just because Opt- 
FloodMax does not specify that any such message is supposed to be sent. 

P r o o f .  The proof is left as an exercise. V1 

Now we run OptFloodSet and FloodSet side by side, with the same inputs 
and same failure pat tern.  Tha t  is, the same processes fail at the same rounds in 
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both executions. Moreover, if process i sends only some of its round r messages 

in one algorithm, then it sends its round r messages to the same processes in 

the other algorithm; more precisely, there is no j to which i sends a message 

at round r in one algorithm but fails to send one that it is supposed to send in 
the other algorithm. We give invariant assertions relating the states of the two 
algorithms. 

L e m m a  6.7 After any number of rounds r, 0 < r < f + 1" 

1. OW~(r) C_ W~(r). 

2. If  [ W / ( r ) [ -  1, then OWi(r) - Wi(r).  

P r o o f .  The proof is left as an exercise. D 

L e m m a  6.8 After any number of rounds r, 0 < r < f + 1" 

If IWi(r)[ > 2, then lOWi(r)[ > 2. 

P r o o f .  By induction. The basis case, r -  0, is true vacuously. Assume now 

that the lemma holds for r. We show that it holds for r + 1. Suppose that 

IWi(~ + ~)1 ___ 2. If Iw~(~)l > 2, th~n by inductive hypothesis we have that 

IOWi(r)l > 2, which implies that ]OW~(r + 1)1 > 2, as needed. 

So ~ssume that  IWi(r)l- 1. Then Lemma 6.7 implies that OWl(r) - Wi(r). 
We consider two subcases. 

1. IWj(r)l  - 1 for ~ll j f rom which i receives a round r + 1 message in 
FloodSet. 
Then for all such j ,  we have by Lemma 6.7 that OWj(r)  - Wj(r) ,  so that 

I o w j ( ~ ) l  - 1. Lemma 6.6 implies that for all such j ,  OWj(r)  C_ OWl(r+1).  
It follows that OW~(r + 1) - W~(r + 1), which is sufficient to prove the 

inductive step. 

2. IWj(r)l > 2 for some j from which i receives a round r + 1 message in 
FloodSet. 
Then by the inductive hypothesis, IOWj(~)l > 2. Then Lemma 6.6 implies 

that I OWi (r + 1)] > 2, as needed. [:3 

L e m m a  6.9 After any number of rounds r, 0 <_ r < f + 1, the rounds and 
decision variables have the same values in FloodSet and OptFloodSet. 

P r o o f  S k e t c h .  The interesting thing to show is that the same decision is made 
by any process i at round f + 1 in the two algorithms. This follows from Lem- 
mas 6.7 and 6.8 for r - f + 1 and the decision rules of the two algorithms. 

if3 
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Theorem 6.10 OptFloodSet solves the agreement problem for stopping failures. 

Proof. By Lemma 6.9 and Theorem 6.4 (the correctness theorem for FloodSet). 
D 

Other ways to reduce communication complexity. There are other ways 
to reduce the communication complexity of FloodSet. For example, recall that 
if V has a total ordering, the decision rule can be modified to simply choose 
the minimum value in W. Then it is possible to modify the FloodSet algorithm 
so that each node just remembers and relays the minimum value it has seen so 
far, rather than all values. This algorithm uses O ((f  + 1)n2b) communication 
bits. It can be proved correct by a simulation relating it to FloodSet (with the 
modified decision rule). This algorithm satisfies the stronger validity condition 
of Section 6.1. 

6.2.3 Exponent ia l  Information Gathering Algor i thms  

In this section, we present algorithms for agreement with stopping failures based 
on a strategy known as exponential information gathering (EIG). In exponen- 
tial information gathering algorithms, processes send and relay initial values for 
several rounds, recording the values they receive along various communication 
paths in a data structure called an EIG tree. At the end, they use a commonly 
agreed-upon decision rule based on the values recorded in their trees. 

EIG algorithms are generally costly for solving agreement with stopping fail- 
ures, both in terms of the number of bits that are communicated and the amount 
of local storage used. The main reason we present this strategy here is that the 
same EIG tree data structure can be used for solving Byzantine agreement, as we 
show in Section 6.3.2. The stopping failure case provides a simple introduction 
to the use of this data structure. A second reason for presenting this strategy 
for stopping failures is that simple stopping failure EIG algorithms can easily be 
adapted to solve the agreement problem for a restricted form of the Byzantine 
failure model known as the authenticated Byzantine failure model. 

The basic data structure used by EIG algorithms is a labelled EIG tree 
T - Tn,$, whose paths from the root represent chains of processes along which 
initial values are propagated; all chains represented consist of distinct processes. 
The tree T has f + 2 levels, ranging from level 0 (the root) to level f + 1 (the 
leaves). Each node at level k, 0 _< k _< f ,  has exactly n - k  children. Each node in 
T is labelled by a string of process indices as follows. The root is labelled by the 
empty string A, and each node with label i l . . .  ik has exactly n -  k children with 
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labels i1 . . .  ikj, where j ranges over all the elements of { 1 , . . . ,  n } -  { i l , . . . ,  ik}. 
See Figure 6.1 for an illustration. 

In 2n  

123 " ' "  12n 231 234 " "  �9 23n 

level 0 

level 1 

n(n-1) level 2 

level 3 

l eve l f+ l  

F i g u r e  6.1" The EIG tree Tn,f. 

In the EIG algorithm for stopping failures, which we call EIGStop, the pro- 
cesses simply relay values on all possible paths. Each process maintains a copy 
of the EIG tree T - Tn,f. The computation proceeds for exactly f + 1 rounds. 
In the course of the computation, the processes decorate the nodes of their trees 
with values in V or null, decorating all those at level k at the end of round k. 
The root of process i's tree gets decorated with i's input value. Also in process 
i's tree, if the node labelled by the string i l  . . .  ik, 1 <_ k <_ f + 1, is decorated by 
a value v E V, then it means that ik has told i at round k that ik-1 has told ik at 
round k -  1 that . . .  that il has told i2 at round 1 that i l ' s  initial value is v. On 
the other hand, if the node labelled by the string i l . . .  ik is decorated by null, 
then it means that the chain of communication i l ,  i 2 , . . . ,  ik, i has been broken 
by a failure. After f + 1 rounds, the processes use their individual decorated 
trees to decide on a value in V, based on a commonly agreed-upon decision rule 
(described below). A more detailed description of the algorithm follows. 

In this algorithm description and in some others later on, it is convenient to 
pretend that each process i is able to send messages to itself in addition to the 
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other  processes;  this can help to make  the a lgor i thm descr ip t ions  more  uniform. 

These  messages  are technical ly  not  p e r m i t t e d  in the model,  bu t  there is no h a r m  

in allowing them because  the fictional t r ansmiss ions  could jus t  be s imula ted  by 

local computa t ion .  

EIGStop algorithm: 
For every s t r ing  x tha t  occurs  as a label of a node of T,  each process  has 

a variable  val(x). Variable val (x ) i s  used to hold the value with which the 

process  decorates  the node labelled x. Initially, each process  i decorates  

the root  of its t ree  with  its own initial value, tha t  is, it sets its val(s to its 

initial value. 

Round 1: Process  i b roadcas t s  val()~) to all processes,  including i itself. 

Then  process  i records the incoming information:  

1. If a message with  value v E V arr ives  at i f rom j ,  then i sets its val(j) 
to v. 

2. If no message with a value in V arr ives at i f rom j ,  then i sets val(j) 
to null. 

Round k, 2 <_ k _< f + 1" Process  i b roadcas t s  all pairs  (x, v), where x is a 

level k -  1 label in T tha t  does not  conta in  index i, v E V, and v - val(x). 1 
T h e n  process  i records the incoming information:  

1. If x j  is a level k node label in T,  where  x is a s t r ing of process  indices 

and j is a single index, and a message saying tha t  val(x) - v E V 
arr ives  at i f rom j ,  then i sets val(xj) to v. 

2. If x j  is a level k node label and no message  with  a value in V for 

val(x) arr ives  at i f rom j ,  then i sets val(xj)  to null. 

At the end of f + 1 rounds,  process  i applies a decision rule. Namely,  

let W be the set of non-null vals tha t  decorate  nodes  of i 's  tree. If W is 

a s ingleton set, then i decides on the unique element  of W; otherwise,  i 

decides on v0. 

It should not  be hard  to see tha t  the t rees  get decora ted  with the values we 

indicated earlier.  T h a t  is, process  i 's  root  gets decora ted  with  i 's  input  value. 

Also, if process  i 's  node labelled by the s t r ing i l  . . .  ik, 1 <_ k <_ f + 1, is decora ted  

by a value v E V, then it mus t  be tha t  ik has told i at round k that  ik-1 has told 

l In order to fit our formal model, in which only one message can be sent from i to each 
other process at each round, all the messages with the same destination are packaged together 
into one large message. 
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ik at round k -  1 that . . .  that il has told i2 at round 1 that il's initial value is 

v. Moreover, if process i 's node labelled by the string i l . . .  ik, 1 <_ k <_ f + 1, is 
decorated by null, then it must be that ik does send a message to i at round k 

giving a value for i1 , . . - ,  ik-1. 

E x a m p l e  6 .2 .1  E x e c u t i o n  o f  EIGStop 
As an example of how the EIGStop algorithm executes, consider the 

case of three processes (n = 3), one of which may be faulty ( f  = 1). 
Then the protocol executes for 2 rounds, and the tree has 3 levels. 

The structure of the EIG tree T3,1 is as in Figure 6.2. 

1 2 

12 32 

F i g u r e  6.2" Structure of EIG tree T3,1. 

Suppose that processes 1, 2, and 3 have initial values 0, 0, and 
1, respectively. Suppose that process 3 is faulty and that it fails 
after sending its round 1 message to 1 but not to 2. Then the three 

processes' trees get filled in as in Figure 6.3. 

Note that process 2 does not discover that process 3's initial value 
is 1 until it hears this from process 1 at round 2. 

To see that EIGStop works correctly, we first give two lemmas that relate the 
values in the various trees. The first lemma describes the initialization and the 
relationships between vals at different processes at adjacent levels in the trees. 

L e m m a  6.11 After f + 1 rounds of the EIGStop algorithm, the following hold: 

1. val()~)i is i's input value. 

2. If  x j  is a node label and val(xj)i - v  E V, then val(x)j - v .  
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process 3 

process 1 process 2 

0 

0 null 1 null 0 null 0 null 0 null 

F i g u r e  6.3: Execution of EIGStop; process 3 fails at round 1. 

1 null 

3. I f  x j  is a node label and val(xj) i  - null, then either val(x)j - null or else 

j fails to send a message to i at round Ixl + 1. 

P r o o f .  The proof  is left as an exercise. [3 

The second lemma describes the relationship between vals at not-necessarily- 

adjacent  levels in the trees. The first two conditions trace the origin of values 

appear ing anywhere in the trees. The third condition is a technical one, assert ing 

that  any value v that  appears  in a tree must  appear  in that  tree at some node 

whose label does not  contain the index i. Loosely speaking, this means that  the 

first t ime that  process i learns a value, it is not as a result of propagat ing the 

value to itself. 

L e m m a  6 .12  Af ter  f + 1 rounds of the EIGStop  algorithm, the following hold. 

1. I f  y is a node label, val(y)i - v C V,  and x j  is a prefix of y, then val(x)j  = 
V .  

2. I f  v E V appears in the set of vals at any process, then v - val()~)i for  

some i. 
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3. I f  v E V appears in the set of vals at process i, then there is some label y 
that does not contain i such that v = val(y)i .  

P r o o f .  Par t  1 follows from repeated use of part  2 of Lemma 6.11. 
For part  2, suppose that v = val(y)i .  If y = A, we are done. Otherwise, let j 

be the first index in y. Par t  1 then implies that v = val()~)j. 
For part  3, suppose to the contrary that v only appears as the val for labels 

containing i and let y be a shortest label such that v = val(y)i.  Then y has a 
prefix of the form xi. But then part  1 implies that val(x)i = v, which contradicts 
the choice of y. V1 

The next lemma provides the key to the agreement property. 

L e m m a  6.13 I f  processes i and j are both nonfaulty,  then Wi = Wj .  

P r o o f .  We may assume that i ~: j .  We show inclusion both ways. 

Suppose v E Wi. Then Lemma 6.12 implies that v = val(x)i  for some label 
x that does not contain i. We consider two cases: 

. 

(a) Ixl _< f .  
Then Ixil < f + 1, so since string x does not contain index i, (non- 
faulty) process i relays value v to process j at round Ixil. This implies 

that val(xi) j  = v, so v E Wj.  

(b) Ix l -  f + 1. 
Then because there are at most f faulty processes and all indices in 

x are distinct, there must be some nonfaulty process l whose index 

appears in x. Therefore, x has a prefix of the form yl, where y is a 

string. Then Lemma 6.12 implies that val(y)l = v. Since process l is 

nonfaulty, it relays v to process j at round lyll. Therefore, val(yl)j  - 
v, so again v E Wj.  

Wj c_ Wi. 
Symmetric  to the previous case. 

The two cases together imply the needed equality. D 

E x a m p l e  6 .2 .2  C a s e s  in t he  p r o o f  of  L e m m a  6.13 

Example 6.2.1 illustrates the two cases, (a) and (b), considered in the 
proof of Lemma 6.13. Process 1 first decorates its tree with a value 

of 1 at round 1, which is not the last round, so as in case (a), process 
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2 decorates its tree with 1 by round 2. In particular,  val(3)l = 1, so 
val(31)2 = 1. 

On the other hand, process 2 first decorates its tree with a value 
of 1 at the last round, round 2, setting val(31)2 = 1. This implies 
that some nonfaulty process index, in this case 1, must appear in the 
node label. Then as in case (b), the value 1 appears at node 31 in 
process l ' s  tree. That  is, val(31)2 = 1, so val(31)l = 1. 

T h e o r e m  6.14 EIGStop solves the agreement problem for stopping failures. 

P r o o f .  Termination is obvious, by the decision rule. 
For validity, suppose that all the initial values are equal to v. Then the only 

values that ever decorate any process's tree are v and null, by Lemma 6.12. Each 
set Wi is nonempty, since it contains i 's initial value. Therefore, each Wi must 
be exactly equal to {v}, so the decision rule says that v is the only possible 
decision. 

For agreement, let i and j be any two processes that decide. Since decisions 
only occur at the end, this means that i and j are nonfaulty. Then Lemma 6.13 
implies that Wi = Wj. The decision rule then implies that i and j make the same 
decision. D 

C o m p l e x i t y  a n a l y s i s .  The number of rounds is f § 1, and the number of 
messages sent is O ( ( f  + 1)n2). (This counts each combined message sent by 
any process to any other at any round as a single message.) The number of bits 
communicated is exponential in the number of failures" O (nf+lb).  

\ / 

A l t e r n a t i v e  d e c i s i o n  ru le .  Since EIGStop guarantees that the same set W 
of values appears in the trees of nonfaulty processes, various other decision rules 
would also work correctly. For instance, if the value set V has a total ordering, 
then all processes could simply choose the minimum value in W. As before, this 
has the advantage that it guarantees the stronger validity condition mentioned 
in Section 6.1. 

It is possible to reduce the amount of communication in the EIGStop algo- 
r i thm in much the same way as we did for FloodSet. As before, each process i 

only needs to know the exact elements of its set Wi in case I Wil - 1. So again, it 
is plausible that the processes might need to broadcast  only the first two values 
they learn about. 

O p t E I G S t o p  a l g o r i t h m :  

The processes operate as in EIGStop, except that each process i broadcasts 
at most two values altogether. The first broadcast  is at round 1, when i 
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broadcasts its initial value. The second broadcast  is at the first round r, 
2 < r _< f + 1, such that at the beginning of round r, i knows about some 
value v different from its initial value (if any such round exists). Then i 
broadcasts the new value v, together with the label of any level r -  1 node 
x that is decorated with v. (If there are two or more possible choices of 
(x, v), then any one of these may be selected for broadcast.)  

As in EIGStop, let W be the set of non-null vals that decorate nodes of i's 
tree. If W is a singleton set, then i decides on the unique element of W; 

otherwise, i decides on v0. 

C o m p l e x i t y  a n a l y s i s .  OptEIGStop uses f + 1 rounds. The number of mes- 
sages is at most 2n 2, since each process sends at most two non-null messages to 

each other process. The number of bits of communication is O (n2(b + ( f  + 1)log n))" 
the value part  of each messages uses O (b) bits, while the label part  uses 

O ( ( f  + 1) log n) bits. 
The correctness of OptEIGStop can be proved by relating it to EIGStop 

using a simulation relation. The proof is similar to the proof of correctness 
of OptFloodSet. Alternatively, a correctness proof that relates OptEIGStop to 

OptFloodSet can be given. Details are left for exercises. 

6.2.4 Byzantine Agreement with Authentication 

Although the EIG algorithms described in this section are designed to tolerate 
stopping failures only, it happens that they can also tolerate some worse types of 
failures. They cannot cope with the full difficulty of the Byzantine fault model, 
where processes can exhibit arbi t rary behavior. However, they can cope with an 
interesting restriction on the Byzantine fault model in which processes have the 
extra power to authenticate their communications, based on the use of digital 
signatures. A digital signature for process i is a t ransformation that i can apply 
to any of its outgoing messages in order to prove that the message really did 
originate at i. . No other process is able to generate i's signature without i's 
cooperation. Digital signatures are a reasonable capability to assume in modern 

communication networks. 
We do not provide a formal definition of the Byzantine model with authenti- 

ca t ion-- in  fact, we do not know of a nice formal defini t ion--but  just describe it 
informally. In this model, it is assumed that processes can use digital signatures 
to authenticate any of their outgoing messages. In the literature, it is usually 
assumed that the initial values originate from some common source, which also 
signs them; here, we assume that each nonfaulty process starts in an initial state 
containing a single input value signed by the source, while each faulty process 
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starts in some state containing some set of input values signed by the source. 
Faulty processes are permitted to send arbitrary messages and perform arbitrary 
state transitions; the only limitation is that they are unable to generate signatures 
of nonfaulty processes or of the source. 

The correctness conditions to be satisfied in this model are the usual ter- 
mination and agreement conditions for Byzantine agreement, plus the following 
validity condition: 

Va l id i ty :  If all processes start with exactly one initial value v E V, signed by 
the source, then v is the only possible decision value for a nonfaulty process. 

It is not difficult to see that the EIGStop and OptEIGStop algorithms, mod- 
ified so that all messages are signed and only correctly signed messages are 
accepted, solve the agreement problem for the authenticated Byzantine failure 
model. The proofs are similar to those given for the stopping failure model and 
are left as exercises. 

6.3 Algorithms for Byzantine Failures 

In this section, we present algorithms for Byzantine agreement, for the special 
case of an n-node complete graph. We begin with one that uses exponential 
information gathering. Then we show how an algorithm that solves Byzantine 
agreement for a binary value set, V = {0, 1}, can be used as a "subroutine" for 
solving Byzantine agreement for a general value set V. Finally, we describe a 
Byzantine agreement algorithm with reduced communication complexity. 

A common property that all these algorithms have is that the number of 
processes they use is more than three times the number of failures, n > 3f.  
This situation is different from what we saw for the stopping failure case, where 
there were no special requirements on the relationship between n and f .  This 
process bound reflects the added difficulty of the Byzantine fault model. In 
fact, we will see in Section 6.7 that this bound is inherent. This might seem 
surprising at first, because you might guess that 2f  + 1 processes could tolerate 
f Byzantine faults, using some sort of majority voting algorithm. (There is a 
standard fault-tolerance technique known as triple-modular redundancy, in which 
a task is triplicated and the majority result accepted; you might think that this 
method could be used to solve Byzantine agreement for one faulty process, but 
you will see that it cannot.) 
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F i g u r e  6 . 4 :  E x e c u t i o n  C~l--false message  is circled. 

6.3.1 An Example 

Before presenting the E I G  Byzantine agreement algorithm, we give an idea of 
why the Byzantine agreement problem is more difficult than the agreement prob- 
lem for stopping failures. Specifically, we give an example suggesting (though 
not proving) that three processes cannot solve Byzantine agreement, if there is 
the possibility that even one of them might be faulty. 

Suppose that processes 1, 2, and 3 solve the Byzantine agreement problem, 
tolerating one fault. Suppose, for example, that they decide at the end of two 
rounds and that they operate in a particular, constrained manner: at the first 
round, each process simply broadcasts its initial value, while in the second round, 
each process reports to each other process what was told to it in the first round 
by the third process. Consider the following execution. 

E x e c u t i o n  Ct l " 

Processes 1 and 2 are nonfaulty and start with initial values of 1, 
while process 3 is faulty and starts with an initial value of 0. In the 
first round, all processes report their values truthfully. In the second 
round, processes 1 and 2 report truthfully what they heard in the 
first round, while process 3 tells 1 (falsely) that 2 sent 0 in round 
1 and otherwise behaves truthfully. Figure 6.4 shows the interesting 
messages that are sent in c~1. In this execution, the validity condition 
requires that processes 1 and 2 both decide 1. 

Now consider a second execution. 
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F i g u r e  6.5" Execution a2--false message is circled. 

Execut ion ct2 : 

This is symmetric to Ct 1. This time, processes 2 and 3 are nonfaulty 
and start with initial values of 0, while process 1 is faulty and starts 
with an initial value of 1. In the first round, all processes report 

their values truthfully. In the second round, processes 2 and 3 report 

truthfully what they heard in the first round, while process 1 tells 3 
(falsely) that 2 sent 1 in round 1 and otherwise behaves truthfully. 

Figure 6.5 shows the interesting messages that are sent in a2. In this 
execution, the validity condition requires that processes 2 and 3 both 

decide 0. 

To get a contradiction, consider a third execution. 

Execut ion Oz 3 : 

Now suppose that processes 1 and 3 are nonfaulty and start with 1 

and 0, respectively. Process 2 is faulty, telling 1 that its initial value 

is 1 and telling 3 that its initial value is 0. All processes behave 
truthfully in the second round. The situation is shown in Figure 6.6. 

Notice that process 2 sends the same messages to 1 in a3 as it does in o~1, and 
sends the same messages to 3 in aa as it does in c~2, in both rounds. In fact, it 

1 and is easy to check that aa and Ct I are indistinguishable to process 1, c~3 ~ a l ,  
a 

similarly c~a ~ c~2. Since process 1 decides 1 in O~1~ it also does so in c~a, and since 

process 3 decides 0 in c~2, it also does so in c~a. But this violates the agreement 
condition for c~a, which contradicts the assumption that processes 1, 2, and 3 
solve the Byzantine agreement problem. We have shown that no algorithm of 

this particularly simple form can solve Byzantine agreement. 
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F i g u r e  6.6: Execution a3--conflicting messages are circled. 

Note that process 1, for example, can tell that some process is faulty in Oz3, 

since process 2 tells 1 that its value is 1, but process 3 tells 1 that 2 said its value 
is 0. The problem is that process 1 is unable to tell which of 2 and 3 is faulty. 

This example does not constitute a proof that three processes cannot solve 

Byzantine agreement with the possibility of a single fault. This is because the 

argument presupposes that the algorithm uses only two rounds and sends partic- 
ular types of messages. But it is possible to extend the example to more rounds 

and arbi t rary  types of messages. In fact, as we will see in Section 6.4, the ideas 
can be extended to show that n > 3 f  processes are needed to solve Byzantine 
agreement in the presence of f faults. 

6.3.2 EIG Algorithm for Byzantine Agreement 

We now give an EIG algorithm for Byzantine agreement, which we call EIG- 
Byz. Unlike the EIGStop algorithm, EIGByz presupposes that the number of 

processes is large relative to the number of faults, in particular,  that n > 3f .  
This is necessary because of the limitations described in Sections 6.3.1 and 6.4. 
Before you read about this algorithm, we suggest that you t ry to construct an 
algorithm of your own for a special case, say n = 7 and f = 2. 

The EIGByz algorithm for n processes with f faults uses the same EIG tree 

data structure,  Tn,I, that is used in EIGStop. Essentially the same propagation 
strategy is used as for EIGStop; the only difference is that a process that receives 
an "ill-formed" message corrects the information to make it look sensible. The 
decision rule is quite different, however-- i t  is no longer the case that a process 
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can t rust  all values tha t  appear  anywhere in its tree. Now processes must  take 
some action to mask values tha t  arrive in false messages. 

EIGByz algorithm" 

The processes propagate  values for f + 1 rounds exactly as in the EIGStop 
algorithm, with the following exceptions. If a process i ever receives a 
message from another  process j tha t  is not of the specified form (e.g., it 
contains complete garbage or contains duplicate values for the same node 
in j ' s  tree), then i "throws away" the message, tha t  is, acts just  as if 
process j did not send it anything at tha t  round. 

At the end of f + 1 rounds, process i adjusts its val assignment so tha t  
any null value is replaced by the default value v0. 

Then to determine its decision, process i works from the leaves up in its 
adjusted, decorated tree, decorating each node with an addit ional  newval, 
as follows. For each leaf labelled x, newval(x):= val(x). For each non-leaf 
node labelled x, newval(x) is defined to be the newval held by a strict 
major i ty  of the children of node x, tha t  is, the element v C V such tha t  
newval(xj) = v for a major i ty  of the nodes of the form xj ,  provided tha t  
such a major i ty  exists. If no major i ty  exists, process i sets ncwval(x) := v0. 
Process i's final decision is newval()~). 

To show the correctness of EIGByz, we start  with some prel iminary asser- 
tions. The first says tha t  all nonfaulty processes agree on the values relayed 
directly from nonfaulty processes. 

Lemma 6.15 After f + 1 rounds of the EIGByz algorithm, the following holds. 
I f  i, j ,  and k are all nonfaulty processes, with i ~ j ,  then val(x)i = val(x)j for 
every label x ending in k. 

P r o o f .  If k r {i, j} ,  then the result follows from the fact that ,  since k is 
nonfaulty, it sends the same message to i and j at round Ix]. If k E {i, j} ,  then 
the result follows similarly from the convention by which each process relays 
values to itself. D 

The next l emma asserts tha t  all nonfaulty processes agree on the newvals 
computed  for nodes whose labels end with nonfaulty process indices. 

Lemma 6.16 After f + 1 rounds of the EIGByz algorithm, the following holds. 
Suppose that x is a label ending with the index of a nonfaulty process. Then there 
is a value v C V such that val(x)i = newval(x)i = v for all nonfaulty processes i. 
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P r o o f .  By induction on the tree labels, working from the leaves u p - - t h a t  is, 

from those of length f + 1 down to those of length 1. 
Basis" Suppose x is a leaf, that  is, that  ]x I - f + 1. Then  Lemma 6.15 

implies that  all nonfaulty processes i have the same val(x)i;  call this common 
value v. Then also newva l (x ) i  - v for every nonfaulty process i, by the definition 
of newval  for leaves. So v is the required value. 

Induc t i ve  step" Suppose Ix] - r, 1 < r _< f .  Then  Lemma 6.15 implies that  
all nonfaulty processes i have the same val(x)i;  call this value v. Therefore, every 
nonfaulty process l sends the same value v for x to all processes, at round r + 1, 
so val(x l ) i  - v for all nonfaulty i and 1. Then the inductive hypothesis  implies 

that  also newva l (x l ) i  - v for all nonfaulty processes i and 1. 
We now claim that a major i ty  of the labels of children of node x end in 

nonfaulty process indices. This is t rue because the number  of children of x is 
exactly n -  r _> n -  f .  Since we have assumed that  n > 3f ,  this number  must  
be strictly greater  than 2f .  Since at most  f of the children have labels ending in 
indices of faulty processes, we have the needed majority.  

It follows that  for any nonfaulty i, newva l (x l ) i  - v for a major i ty  of chil- 
dren xl  of node x. Then  the major i ty  rule used in the a lgor i thm implies that  

newva l (x ) i  - v for all nonfaulty i. So v is the required value. D 

We now argue validity. 

L e m m a  6 .17  I f  all non fau l t y  processes begin with the same  ini t ial  value v E V ,  

then v is the only possible decis ion value f o r  a non fau l t y  process. 

P r o o f .  If all nonfaulty processes begin with v, then all nonfaulty processes 
broadcas t  v at the first round, and therefore val ( j ) i  = v for all nonfaulty processes 
i and j .  Lemma 6.16 implies that  newva l ( j ) i  = v for all nonfaulty i and j .  
Then the major i ty  rule used in the algori thm implies that  newval(,~)i = v for all 
nonfaulty i. Therefore, i 's decision is v, as needed. D 

To show the agreement  property, we need two more definitions. First ,  we say 
that  a subset C of the nodes of a rooted tree is a path covering provided that  
every path from the root to a leaf contains at least one node in C. 

Second, consider any execution c~ of the E I G B g z  algorithm. A tree node x 
is said to be c o m m o n  in c~ provided that  at the end of f + 1 rounds in c~, all the 

nonfaulty processes i have the same newval (x ) i .  A set of tree nodes (e.g., a path 
covering) is said to be c o m m o n  in c~ if all the nodes in the set are common in c~. 
Notice that  Lemma 6.16 implies that  if i is nonfaulty, then for every x,  x i  is a 

common node. 
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L e m m a  6.18 After f + 1 rounds of any execution c~ of EIGByz, there exists a 
path covering that is common in c~. 

P r o o f .  Let C be the set of nodes of the form xi, where i is nonfaulty. As 
observed just  above, all nodes in C are common. To see why C is a path covering, 

consider any path from the root to a leaf. It contains exactly f + 1 non-root 
nodes, and each such node ends with a distinct process index, by construction 

of T. Since there are at most f faulty processes, there is some node on the path 

whose label ends in a nonfaulty process index. This node must be in C. 

The following lemma shows how common nodes propagate up the tree. 

L e m m a  6.19 After f + 1 rounds of EIGByz, the following holds. Let x be any 
node label in the EIG tree. If  there is a common path covering of the subtree 
rooted at x, then x is common. 

P r o o f .  By induction on tree labels, working from the leaves up. 
Basis: Suppose that x is a leaf. Then the only path covering of x's subtree 

consists of the single node x itself. So x is common, as needed. 
Inductive step" Suppose that Ixl - r, 0 _< r < f .  Suppose that there is a 

common path covering C of x's subtree. If x itself is in C, then x is common 

and we are done, so suppose x ~ C. 
Consider any child xl of x. Since x ~ C, C induces a common path covering 

for the subtree rooted at xl. So by the inductive hypothesis, xl is common. Since 

xl was chosen to be an arbi t rary  child of x, all the children of x are common. 
Then the definition of newval(x) implies that x is common. 

As a simple consequence, we obtain 

L e m m a  6.20 After f + 1 rounds of EIGByz, the root node ~ is common. 

P r o o f .  Immediate by Lemmas 6.18 and 6.19. [2 

We now tie the pieces together in the main correctness theorem. 

T h e o r e m  6.21 EIGByz solves the Byzantine agreement problem for n processes 

with f failures, if n > 3 f .  

P r o o f .  Termination is obvious. Validity follows from Lemma 6.17. Agreement 

follows from Lemma 6.20 and the decision rule. [:] 
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C o m p l e x i t y  a n a l y s i s .  The costs are the same as for the EIGStop  algorithm: 

f + 1 rounds, O ( ( f  + 1)n 2) messages, and O ( n f + l b )  bits of communication. 

In addition, there is the new requirement that the number of processes be large 

relative to the number of failures" n > 3f .  

6.3.3 General Byzantine Agreement Using Binary Byzantine 
Agreement 

In this subsection, we show how to use an algorithm that solves Byzantine agree- 
ment for inputs in {0, 1} as a subroutine for solving general Byzantine agreement. 
The overhead is just 2 extra rounds, 2n 2 extra messages, and O (n2b) bits of com- 
munication. This can lead to a substantial savings in the total number of bits 
that need to be communicated, since it is not necessary to send values in V, but 
only binary values, while executing the subroutine. This improvement, however, 
is not sumcient to reduce the number of bits of communication from exponential 

to polynomial in f .  
We call the algorithm TurpinCoan,  after its designers. The algorithm assumes 

that n > 3f.  As earlier, we pretend that each process can send messages to itself 
as well as to the other processes. 

T u r p i n C o a n  algorithm: 
Each process has local variables x, y, z, and vote, where x is initialized to 
the process's input value and y, z, and vote are initialized arbitrarily. 

Round  1" Process i sends its value of x to all processes, including itself. 

If, in the set of messages received at this round, there are > n -  f copies 
of a particular value v E V, then i sets y " -  v; otherwise y " -  null. 

Round  2" Process i sends its value of y to all processes, including itself. If, 
in the set of messages received at this round, there are _> n -  f copies of a 
particular value in V, then i sets vote " -  1; otherwise vote " -  O. Also, i sets 
z equal to the non-nul l  value that occurs most often among the messages 
received by i at this round, with t i esbroken  arbitrarily; if all messages are 

null, then z remains undefined. 

Round  r, r >_ 3" The processes run the binary Byzantine agreement sub- 
routine using the values of vote as the input values. If process i decides 1 
in the subroutine and if z is defined, then the final decision of the algorithm 

is z; otherwise it is the default value v0. 

A key fact about the TurpinCoan algorithm is 

L e m m a  6.22 There is at mos t  one value v E V that is sent  in round 2 messages 

by nonfaul ty  processes. 
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P r o o f .  Suppose for the sake of contradiction that nonfaulty processes i and j 
send round 2 messages containing values v and w respectively, where v, w C V, 

v ~ w. Then i receives at least n - f  round 1 messages containing v. Since there 

are at most f faulty processes, and nonfaulty processes send the same round 1 
messages to all processes, it must be that j receives at least n -  2f  messages 

containing v. Since n > 3f,  this means j receives at least f + 1 messages 
containing v. 

But also, since j sends w in round 2, j receives at least n - f  round 1 messages 

containing w, for a total of at least ( f  + 1 )+  ( n -  f )  > n messages. But the total 
number of round 1 messages received by j is only n, so this is a contradiction. 

D 

T h e o r e m  6.23 The TurpinCoan algorithm solves general Byzantine agreement 
when given a binary Byzantine agreement algorithm as a subroutine, if n > 3 f .  

P r o o f .  Termination is easy to see. 

To show validity, we must prove that if all nonfaulty processes start with 
the same initial value, v, then all nonfaulty processes decide v. So suppose that 

all nonfaulty processes start with v. Then all the _> n -  f nonfaulty processes 
successfully broadcast round 1 messages containing v to all processes. So at 

round 1, all nonfaulty processes set their y variables to v. Then in round 2, each 

nonfaulty process receives at least n -  f messages containing v, which implies 
that it sets its z variable to v and its vote to 1. Since all the nonfaulty processes 

use input 1 for the binary Byzantine agreement subroutine, they all decide 1 in 
the subroutine, by the validity condition for the binary algorithm. This means 

that they all decide v in the main algorithm, which shows validity. 

Finally, we show agreement. If the subroutine's decision value is 0, then v0 is 
chosen as the final decision value by all nonfaulty processes and agreement holds 
by default. 

So assume that the subroutine's decision value is 1. Then by the validity 
condition for the subroutine, some nonfaulty process i must begin the subroutine 

with votei - 1. This means that process i receives at least n -  f round 2 
messages containing some particular value v E V, so since there are at most f 
faulty processes, i receives at least n -  2f  round 2 messages containing v from 
nonfaulty processes. Then if j is any nonfaulty process, it must be that j also 

receives at least n - 2 f  round 2 messages containing v from those same nonfaulty 
processes. By Lemma 6.22, no value in V other than v is sent by any nonfaulty 

process in round 2. So process j receives no more than f round 2 messages 
containing values in V other than v (and these must be from faulty processes). 

Since n > 3f,  we have n -  2f  > f ,  so v is the value that occurs most often in 
round 2 messages received by j.  It follows that process j sets z "-  v in round 2. 
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Since the subroutine's decision value is 1, this means that j decides v. Since this 
argument  holds for any nonfaulty process j ,  agreement holds. [~ 

In the proof of the TurpinCoan algorithm, the limitation of f on the number 
of faulty processes is used to obtain claims about the similarity between the 
views of different processes in an execution. This sort of argument  also appears 
in proofs for other consensus algorithms, for instance the approximate agreement 
algorithm in Section 7.2. 

C o m p l e x i t y  a n a l y s i s .  The number of rounds is r + 2, where r is the number 
of rounds used by the binary Byzantine agreement subroutine. The extra  com- 
munication used by TurpinCoan, in addition to that used by the subroutine, is 
2n 2 messages, each of at most b bits, for a total of O (n2b) bits. 

6.3.4 Reducing the Communicat ion  Cost 

Although the TurpinCoan algori thm can be used to reduce the bit communication 
complexity of Byzantine agreement somewhat, its cost is still exponential in 
the number f of failures. Algorithms that are polynomial in the number of 
failures are much more difficult to obtain in the Byzantine failure model than 
in the stopping failure model. In this section, we present one example; this 
algorithm is not optimal in terms of time complexity, but it is fairly simple 
and uses some interesting techniques. This algorithm is for the special case of 
Byzantine agreement on a value in {0, 1}; the results of Section 6.3.3 show how 
this algorithm can be used to obtain a polynomial algorithm for a general value 
domain. 

The algori thm uses a mechanism known as consistent broadcast for all its 
communication. This mechanism is a way of ensuring a certain amount  of co- 
herence among the messages received by different processes. Using consistent 
broadcast ,  a process i can broadcast a message of the form (re, i, r) at round 
r, and the message can be accepted by any of the processes (including i itself) 
at any subsequent round. The consistent broadcast  mechanism is required to 
satisfy the following three conditions: 

1. If nonfaulty process i broadcasts message ( m , i , r )  in round r, then the 
message is accepted by all nonfaulty processes by round r + 1 (i.e., it is 
either accepted at round r or round r + 1). 

2. If nonfaulty process i does not broadcast  message (rn, i, r) in round r, then 
(rn, i, r) is never accepted by any nonfaulty process. 
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3. If any message (m, i ,r)  is accepted by any nonfaulty process j ,  say at 
round r ~, then it is accepted by all nonfaulty processes by round r ~ + 1. 

The first condition says that  nonfaulty processes '  broadcasts  are accepted 
quickly, while the second says that  no messages are ever falsely a t t r ibu ted  to 
nonfaulty processes. The third condition says that  any message that  is accepted 

by a nonfaulty process (whether from a faulty or nonfaulty sender) must  also be 
accepted by every other nonfaulty process soon thereafter.  

The consistent broadcast  mechanism can be implemented easily. 

C o n s i s t e n t B r o a d c a s t  algorithm: 

In order to broadcast  (m , i , r )  at round r, process i sends a message 
( "init', m, i, r) to all processes at round r. If process j receives an 
("init", m, i, r) message from process i at round r, it sends ("echo", m, i, r) 
to all processes at round r + 1. 

If, before any round r ~ > r + 2, process j has received ("echo", m, i, r) 
messages from at least f + 1 processes, then j sends an ("echo", m, i, r) 
message at round r ~ (if it has not already done so). 

If, by the end of any round r ~ > r + l ,  process j has received ( "echo", m, i, r) 
messages from at least n -  f processes, then j accepts the communicat ion 

at round r ~ (if it has not a lready done so). 

Theorem 6.24  The ConsistentBroadcast algorithm solves the consistent broad- 
cast problem, if n > 3 f .  

P r o o f .  We verify the three properties.  

1. Suppose that  nonfaulty process i broadcas ts  message (m, i, r) at round r. 
Then i sends ("init",  m, i, r) to all processes at round r, and each of the 
> n - f  nonfaulty processes sends ( "echo", rn, i, r) to all processes at round 
r + 1. Then,  by the end of round r + 1, each nonfaulty process receives 
( "echo", m, i, r) messages from at least n -  f processes and so accepts the 
message. 

2. If nonfaulty process i does not broadcas t  message (m, i, r) in round r, then 

it sends no ("init",  rn, i, r) messages, so no nonfaulty process ever sends 
an ("echo", rn, i, r) message. Then  no nonfaulty process ever accepts the 
message, because acceptance requires receipt of echo messages from at 

least n -  f > f processes. 
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. Suppose message (m, i, r) is accepted by nonfaulty process j at round r ~. 
Then j receives ("echo", m, i, r) messages from at least n -  f processes by 
round r ~. Among these n -  f processes, there are at least n -  2 f  > f + 1 
nonfaulty processes. Since nonfaulty processes send the same messages to 
all processes, every nonfaulty process receives at least f + 1 ( "echo", m, i, r) 
messages by round r ~. This implies that every nonfaulty process sends an 
("echo", m, i, r) message by round r ~ + 1, so that  every process receives 
at least n -  f ("echo", m, i, r) messages by round r ~ + 1. Therefore, the 
message is accepted by all nonfaulty processes by round r ~ § 1. 

[-I 

C o m p l e x i t y  a n a l y s i s .  The consistent broadcast  of a single message uses 
O (n 2) messages. 

Now we describe a simple binary Byzantine agreement algori thm that  uses 
consistent broadcast  for all its communication.  Called the PolyByz algorithm, 
it only sends around information about initial values of 1. It uses increasing 
thresholds for broadcast ing messages. 

PolyByz algorithm: 

The algori thm operates in f + 1 stages, where each stage consists of two 
rounds. The messages that are sent (using consistent broadcast)  are all of 
the form (1, i, r), where i is a process index and r is an odd round number. 
That  is, messages are only sent at the first rounds of stages, and the only 
information ever sent is just  the value 1. 

The conditions under which process i broadcasts  a message are as follows. 
At round 1, i broadcasts  a message (1,i, 1) exactly if i 's initial value is 
1. At round 2 s -  1, the first round of stage s, where 2 _< s _< f + 1, i 
broadcasts  a message (1, i, 2 s -  1) exactly if i has accepted messages from 
at least f + s -  1 different processes before round 2 s -  1 and i has not yet 
broadcast  a message. 

At the end of 2 ( f  + 1) rounds, process i decides on 1 exactly if i has 
accepted messages from at least 2 f  + 1 different processes by the end of 
round 2( f  + 1). Otherwise, i decides 0. 

T h e o r e m  6.25 PolyByz solves the binary Byzantine agreement problem, if 
n > 3 f .  

Proof. Termination is obvious. 
For validity, there are two cases. First,  if all nonfaulty processes start  with 

initial value 1, then at least n -  f _> 2 f  + 1 processes broadcast  at round 1. By 
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property 1 of consistent broadcast, all nonfaulty processes accept these messages 
by round 2, so that each nonfaulty process accepts messages from at least 2f  + 1 
different processes by the end of round 2. This is sufficient to imply that each 
nonfaulty process decides 1. 

On the other hand, if all nonfaulty processes start with initial value 0, then 
no nonfaulty process ever broadcasts. This is because the minimum number of 
acceptances needed to trigger a broadcast is f + 1, which is impossible to achieve 
without a prior broadcast by a nonfaulty process. (We are using property 2 of 
consistent broadcast here.) This implies that each nonfaulty process decides 0. 

Finally, we argue agreement. Suppose that nonfaulty process i decides 1; 
it is enough to show that every other nonfaulty process also decides 1. Since i 
decides 1, i must accept messages from at least 2f  + 1 different processes by the 
end of round 2(f  + 1). Let I be the set of nonfaulty processes among these; then 

II] _> f + 1. 
If all the processes in I have initial values of 1, then they broadcast at round 

1, and, by property 1 of consistent broadcast, all nonfaulty processes accept 
these messages by round 2. Then before round 3, 2 each nonfaulty process has 
accepted messages from at least f + 1 different processes, which is enough to 
trigger it to broadcast at round 3; again by property 1 of consistent broadcast, 
all nonfaulty processes accept these messages by round 4. Thus, each nonfaulty 
process accepts messages from at least n -  f _> 2f + 1 different processes by the 
end of round 4, and so decides 1, as needed. 

On the other hand, suppose that one of the processes in I, say j,  does not 
have an initial value of 1. Then it must be that j broadcasts at some round 
2 s -  1, where 2 _< s _< f + 1, which means that j accepts messages from at 
least f + s - 1 different processes before round 2s - 1; moreover, none of these 
messages is from j itself. Then by property 3 of consistent broadcast, messages 
from all of these f + s -  1 processes get accepted by all nonfaulty processes by 
the end of round 2 s -  1, and, by property 1, the message broadcast by j gets 
accepted by all nonfaulty processes by the end of round 2s. It follows that each 
nonfaulty process accepts messages from at least (f  + s -  1) + 1 - f + s different 
processes by the end of round 2s. 

Now there are two cases. If s - f + 1, then each nonfaulty process accepts 
messages from at least 2f + 1 different processes by the end of round 2(f  + 1), 
which is enough to ensure that they all decide 1. On the other hand, if s _< f ,  
then every nonfaulty process accepts sufficiently many messages before round 
2s + 1 to broadcast at round 2s + 1, if it has not done so already. Then by 
property 1 of consistent broadcast, all nonfaulty processes accept messages from 

2We assume that f _~ i, so that there actually is a round 3. 
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all the nonfaulty processes by the end of round 2s § 2. Again, this is enough to 
ensure that they all decide 1, as needed. 

C o m p l e x i t y  analys is .  PolyByz requires 2f  + 2 rounds. There are at most 
n broadcasts, each requiring O (n 2) messages; thus, the number of messages 
is O (n3). The number of bits in each message is O (log n), because messages 
contain process indices. Thus, the total bit complexity is just O (n 3 log n). 

R e l a t i o n s h i p  wi th  the  a u t h e n t i c a t e d  B y z a n t i n e  fa i lure  mode l .  Adding 
a consistent broadcast capability to the ordinary Byzantine model produces a 
model that is somewhat like the authenticated Byzantine failure model discussed 
informally in Section 6.2.4. However, the two are not exactly the same. For 
instance, consistent broadcast is just for broadcasting, not for sending individ- 
ualized messages. More significantly, consistent broadcast does not prevent a 
process i from broadcasting a message saying (falsely) that a nonfaulty process j 
has previously sent a particular message; the nonfaulty processes will all accept 
this message, even though its contents represent a false claim. In the authenti- 
cated Byzantine failure model, the use of digital signatures allows processes to 
reject such messages immediately. However, even though the models are some- 
what different, the consistent broadcast capability is strong enough that it can be 
used to implement, in the ordinary Byzantine model, some algorithms designed 
for the authenticated Byzantine failure model. 

6.4 Number of Processes  for Byzantine Agreement 

We have presented algorithms to solve the agreement problem in a complete 
network graph, in the presence of stopping failures, and even in the presence of 
Byzantine failures. You have probably noticed that these algorithms are quite 
costly. For stopping failures, the best algorithm we gave was the OptFloodSet 
algorithm, which requires f + 1 rounds, 2n 2 messages, and O (n2b) bits of com- 
munication. For the Byzantine case, the EIGByz algorithm uses f + 1 rounds and 
an exponential amount of communication, while PolyByz uses 2(f  + 1) rounds and 
a polynomial amount of communication. Both Byzantine agreement algorithms 
also require n > 3f. 

In the rest of this chapter, we show that these high costs are not accidental. 
First, in this section, we show that the n > 3f  restriction is needed for any 
solution to the Byzantine agreement problem. The next two sections contain 
related results: Section 6.5 describes exactly the amount of connectivity that 
is needed in an incomplete network graph in order for Byzantine agreement to 
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be solvable, while Section 6.6 shows that the n > 3f  bound extends to weaker 
problem statements than Byzantine agreement. The final section of the chapter 
shows that the lower bound of f + 1 on the number of rounds is also necessary, 
even for the simple case of stopping failures. 

In order to prove that n <_ 3f processes cannot solve Byzantine agreement in 
the presence of f faults, we begin by showing the simplest special case: that three 
processes cannot solve Byzantine agreement with the possibility of one fault. 
This result is suggested by the example in Section 6.3.1, although that example 
does not constitute a proof. We then show the general result, for arbitrary n and 
f ,  n < 3f, by "reducing" the problem to the case of three versus one. 

L e m m a  6 .26  

of one fault. 

Three processes cannot solve Byzantine agreement in the presence 

Proof .  By contradiction. Assume there is a three-process algorithm A that 
solves the Byzantine agreement problem for the three processes 1, 2, and 3, even 
if one of these three may be faulty. We construct a new system S using two 

copies of A and show that S must exhibit contradictory behavior. It follows that 
the assumed algorithm A cannot exist. 

Specifically, we take two copies of each process in A and configure them into 
a single hexagonal system S. We start one copy each of processes 1, 2, and 3 
(the unprimed copy) with input value 0, and the other (the primed copy) with 
input value 1. The arrangement is shown in Figure 6.7. 

What is system S, formally? It is a synchronous system, based on a hexagonal 
network graph, within the general model of Chapter 2. Note that it is not a 
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system that is supposed to solve the Byzantine agreement problem--we don't  
care what it does, in fact, only that it is a synchronous system of some kind. We 
will not consider any faulty process behavior in S. 

Remember that in the systems we consider as solutions for the Byzantine 
agreement problem, we assume that the processes all "know" the entire network 
graph. For example, in A, process 1 knows the names 2 and 3 and presumes 
that there are exactly three nodes, named 1, 2, and 3, arranged in a triangle. 
In S, we do not assume that the processes know the entire (hexagonal) network 
graph, but rather that each process just has local names for its neighbors. For 
example, in S, process 1 knows that it has two neighbors, which it knows by the 
names 2 and 3, even though one of them is really 3 ~. It does not know that there 
are duplicate copies of the nodes in the network. The situation is similar to the 
one considered in Chapter 4, where each process only had local knowledge of its 
portion of the network graph. In particular, notice that the network in S appears 
to each process just like the network in A. 

System S is not required to exhibit any special type of behavior. However, 
note that S with any particular input assignment does exhibit some well-defined 
behavior. We will obtain a contradiction by showing that, for the particular input 
assignment indicated above, no such well-defined behavior is possible. 

So suppose that the processes in S are started with the input values indicated 
in Figure 6.7, that is, the unprimed processes with 0 and the primed processes 
with 1; let c~ be the resulting execution of S. 

We first consider execution c~ from the point of view of processes 2 and 3. 
To processes 2 and 3, it appears as if they are running in the triangle system 
A, in an execution Ct 1 in which process 1 is faulty. That is, c~ and a l  are 

2 3 according to the indistinguishable to processes 2 and 3, a ~ c t  1 and a ~ a l ,  
definition of "indistinguishable" in Section 2.4. See Figure 6.8. In a l ,  process 
1 exhibits a peculiar type of faulty behavior-- i t  behaves like the combination of 
processes 1 ~, 2 t, 3 ~, and 1 in a. Although it is peculiar, it is an allowable behavior 
for a faulty process in A, under the assumptions for Byzantine faults. 

Since Ct 1 is an execution of A in which only process 1 is faulty and processes 
2 and 3 begin with input 0, and since A is assumed to solve Byzantine agreement, 
the correctness conditions for Byzantine agreement imply that eventually in a l ,  
processes 2 and 3 must decide 0. Since a is indistinguishable from Ct 1 to processes 
2 and 3, both decide 0 in c~ as well. 

Next consider execution a from the point of view of processes 1 ~ and 2 ~. To 
processes 1 ~ and 2 ~, it appears as if they are running in the triangle system A, 

11 2 I 
in an execution c~2 in which process 3 is faulty. That is, c~ ~ c~2 and c~ ~ c~2. 
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See Figure 6.9. By  the same argument  as above, processes  1 ~ and 2 ~ eventual ly  

decide 1 in c~. 

Finally, consider execut ion c~ from the point of view of processes  3 and 1 ~. 

To processes  3 and 1 ~, it appears as if they are running in the triangle sys tem A, 
3 I t 

in an execut ion c~3 in which process  2 is faulty. That  is, c~ ~ c~3 and c~ ~ c~3. See 

Figure 6.10. By the correctness condit ions for Byzant ine  agreement,  processes  

3 and 1 ~ must  eventual ly  decide in c~3, and their decisions must  be the same. 

Because  process  3 starts with input 0 and process  1 ~ starts with input 1, there is 
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no requirement about what value they agree upon, but the agreement condition 

implies that they agree. Therefore, they decide on the same value in c~ also. 
But this is a contradiction, because we have already observed that in c~, 

process 3 decides 0 and process 1' decides 1. D 

We now use Lemma 6.26 to show that Byzantine agreement is impossible with 

n _< 3 f  processes. We do this by showing how the existence of an n _< 3 f  process 
solution that can tolerate f Byzantine failures implies the existence of a three- 
process solution that can tolerate a single Byzantine failure, which contradicts 

Lemma 6.26. 

T h e o r e m  6 .27  There is no solution to the Byzantine agreement problem for n 

processes in the presence of f Byzantine failures, if 2 <_ n <_ 3 f . 

P r o o f .  For the special case where n - 2, it is easy to see that the problem 
cannot be solved. Informally speaking, suppose that one process starts with 0 
and the other with 1. Then each must allow for the possibility that the other is 
faulty and decide on its own value, in order to ensure the validity property. But 
if neither is faulty, this violates the agreement property. So we may assume that 
n > 3 .  

Assume for the sake of contradiction that there is a solution A for Byzantine 

agreement with 3 _< n _< 3f .  We show how to t ransform A into a solution B to 
Byzantine agreement for three processes, numbered 1, 2, and 3, tolerating one 
fault. Each of the three processes in B will simulate approximately one-third of 
the processes of A. 
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Specifically, we part i t ion the processes of A into three nonempty subsets, I1, 
/2, and /3, each of size at most f .  We let each process i in B simulate the 
processes in Ii, as follows. 

B; 
Each process i keeps track of the states of all the processes in Ii, 
assigns its own initial value to every member of Ii, and simulates 

the steps of all the processes in Ii as well as the messages between 

pairs of processes in Ii. Messages from processes in Ii to processes 
in another subset are sent from process i to the process simulating 

that subset. If any simulated process in Ii decides on a value v, then 
i decides on the value v. (If there is more than one such value, then 
i can choose any such value.) 

We show that B correctly solves Byzantine agreement for three processes. 

Designate the faulty processes of A to be exactly those that are simulated by 
faulty processes of B. 3 Fix any particular execution c~ of B with at most one 

faulty process and let c~ ~ be the simulated execution of A. Since each process of 

B simulates at most f processes of A, there are at most f faulty processes in c~ ~. 

Since A is assumed to solve Byzantine agreement for n processes with at most 

f faults, the usual agreement, validity, and termination conditions for Byzantine 
agreement hold in c~ ~. 

We argue that these conditions carry over to c~. For termination, let i be 
a nonfaulty process of B. Then i simulates at least one process, j ,  of A, and 

j must be nonfaulty since i is. The termination condition for c~ ~ implies that j 

must eventually decide; as soon as it does so, i decides (if it has not already done 
SO). 

For validity, if all nonfaulty processes of B begin with a value v then all the 

nonfaulty processes of A also begin with v. Validity for c~ ~ implies that v is the 
only decision value for a nonfaulty process in c~ ~. Then v is the only decision 
value for a nonfaulty process in c~. 

For agreement, suppose i and j are nonfaulty processes of B. Then they 
simulate only nonfaulty processes of A. Agreement for c~ ~ implies that all of 
these simulated processes agree, so i and j also agree. 

We conclude that B solves the Byzantine agreement problem for three pro- 

cesses, tolerating one fault. But this contradicts Lemma 6.26. [:] 

aWe invoke the technicality that Byzantine faulty processes are allowed to behave completely 
correctly, in order to justify this classification. 
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6.5 Byzantine Agreement in General Graphs 

So far in this chapter, we have considered agreement problems only in complete 
graphs. For complete graphs with n nodes, we showed in Sections 6.3 and 6.4 
that Byzantine agreement can be solved if and only if n > 3f.  In this section, 
we consider the problem of Byzantine agreement in general network graphs. We 
characterize exactly the graphs in which the problem is solvable. 

First, if the network graph is a tree with at least three nodes, we cannot hope 
to solve the Byzantine agreement problem with even one faulty process, for any 
faulty process that is not a leaf could essentially "disconnect" the processes in 
one part of the tree from the processes in another. The nonfaulty processes in 
different components would not even be able to communicate reliably, much less 
reach agreement. Similarly, it should be plausible that if f nodes can disconnect 
the graph, then Byzantine agreement is impossible with f faulty processes. 

To formalize this intuition, we use the following notion from graph theory. 
The connectivity of a graph G, corm(G), is defined to be the minimum number 
of nodes whose removal results in either a disconnected graph or a trivial 1-node 
graph. Graph G is said to be c-connected if conn(G) >_ c. 

Example 6.5.1 Connectivity 

Any tree with at least two nodes has connectivity 1, and an n-node 
complete graph has connectivity n -  1. Figure 6.11 shows a graph 
with connectivity 2. If nodes 2 and 4 are removed, then we are left 
with two disconnected nodes, 1 and 3. 

1 

2 4 

3 

F i g u r e  6.11: A graph G with corm(G) - 2. 

We use a classical theorem of graph theory known as Menger's Theorem. 

Theorem 6.28 (Menger's Theorem) A graph G is c-connected if and only 
if every pair of nodes in G is connected by at least c node-disjoint paths. 
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Now we can characterize those graphs in which it is possible to solve Byzan- 
tine agreement with a given number of faults. The characterization is in terms 
of both the number of nodes in the graph and the connectivity. The proof of the 
impossibility part of the characterization uses methods similar to those used in 
Section 6.4 to prove the lower bound for the number of faulty processes. 

T h e o r e m  6.29 The Byzantine agreement problem can be solved in an n-node 
network graph G, tolerating f faults, if and only if both the following hold: 

1. n > 3 f  

2. conn(G) > 2 f 

P r o o f .  We have already shown, in Theorem 6.27, that n > 3f  processes are 
required to solve Byzantine agreement in a complete graph. It should not be 
hard to believe that in an arbitrary (not necessarily complete) network graph 
we still need n > 3f; this is because an algorithm for an incomplete graph with 
n _< 3f  could also be run in an n-node complete graph. 

We next show the if direction of the proof, namely, that Byzantine agreement 
is possible if n > 3f  and conn(G) > 2f. Since G is 2f  + 1-connected, Menger's 
Theorem, Theorem 6.28, implies that there are at least 2f  + 1 node-disjoint paths 
between any two nodes in G. It is possible to implement reliable communication 
between any pair of nonfaulty processes, i and j,  by having i send a message 
along 2 f +  1 paths between itself and j. Since there are at most f faulty processes, 
the messages received by j along a majority of these paths must be correct. 

Once we have reliable communication between all pairs of nonfaulty pro- 
cesses, we can solve Byzantine agreement just by simulating any algorithm that 
solves the problem in an n-node complete graph. The implementation given 
above for reliable communication is used in place of the point-to-point commu- 
nication in the complete graph. Of course, there is an increase in complexity, 
but that is not the issue here-- the algorithm still works correctly. 

We now turn to the most interesting part of the proof, showing that Byzantine 
agreement can only be solved if conn(G) > 2f. We simplify matters by only 
arguing the case where f - 1; we leave the (similar) argument for larger values 
of f for an exercise. 

So, assume there is a graph G with conn(G) _< 2, in which Byzantine agree- 
ment can be solved in the presence of one fault, using algorithm A. Then there 
are two nodes in G that either disconnect G or reduce it to one node. But if 
they reduce it to one node, it means that G consists of only three nodes, and we 
already know that Byzantine agreement cannot be solved in a three-node graph 
in the presence of one fault. So we can assume that the two nodes disconnect G. 
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Then the picture must be something like Figure 6.11, except that nodes 1 
and 3 might be replaced by arbitrary connected subgraphs and there might be 
several edges between each of processes 2 and 4 and each of the two connected 
subgraphs. (The link between 2 and 4 could also be missing, but this would only 
make things harder.) Again for simplicity, we just consider the case where 1 and 
3 are single nodes. We construct a system S by combining two copies of A. We 
start one copy of each process with input value 0 and the other with input value 
1, as shown in Figure 6.12. As in the proof of Lemma 6.26, S with the given 
input assignment does exhibit some well-defined behavior. Again, we will obtain 
a contradiction by showing that no such behavior is possible. 

So suppose that the processes in S are started with the input values indicated 
in Figure 6.12, that is, the unprimed processes with 0 and the primed processes 
with 1; let c~ be the resulting execution of S. 

We consider c~ from the point of view of processes 1, 2, and 3. To these 
processes, it appears as if they are running in system A, in an execution Ct I in 
which process 4 is faulty. See Figure 6.13. Then the correctness conditions for 
Byzantine agreement imply that eventually in c~1, processes 1, 2, and 3 must 
decide 0. Since c~ is indistinguishable from C~l to processes 1, 2, and 3, all three 
must eventually decide 0 in c~ as well. 

Next consider a from the point of view of processes 1', 2', and 3'. To these 
three processes, it appears as if they are running in A, in an execution a2 in 
which process 4 is faulty. See Figure 6.14. By the same argument, processes 1', 
2', and 3' must eventually decide 1 in c~. 

Finally, consider execution c~ from the point of view of processes 3, 4, and 
1'. To these processes, it appears as if they are running in A, in an execution c~a 
in which process 2 is faulty. See Figure 6.15. By the correctness conditions for 
Byzantine agreement, these three processes must eventually decide in c~3, and 
their decisions must be the same. Then the same is true in c~. 

But this is a contradiction, because we have already shown that process 3 
must decide 0 and process 1' must decide 1 in c~. It follows that we cannot solve 
Byzantine agreement in graphs G with corm(G) _< 2 and f = 1. 

In order to generalize the result to f > 1, we can use the same diagrams, 
with 2 and 4 replaced by se t s /2  a n d / 4  of at most f nodes each and 1 and 3 by 
arbitrary sets I1 and /3  of nodes. Removing all the nodes in /2  and /4  disconnects 
I1 and /3 .  The edges of Figure 6.11 can now be considered to represent bundles 
of edges between the different groups of nodes I1, /2, /3, and /4 .  [-1 
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6.6 Weak Byzantine Agreement 

The same general proof method that we used in Sections 6.4 and 6.5 to prove 

impossibility for Byzantine agreement with n < 3 f  or corm < 2 f  can also be 
used to prove impossibility for other consensus problems. As an example, in 
this section we show how this method can be used to prove impossibility for a 
weaker variant of the Byzantine agreement problem known as weak Byzantine 
agreement. 

The only difference between the problem statement for weak Byzantine agree- 
ment and ordinary Byzantine agreement is in the validity condition. The validity 
condition for weak Byzantine agreement is 
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F i g u r e  6.15: Executions a and a3 are indistinguishable to processes 3, 4, and i t. 

Va l id i ty :  If there are no faulty processes and all processes start with the same 
initial value v C V, then v is the only possible decision value. 

In the ordinary Byzantine agreement problem, if all the nonfaulty processes start  
with the same initial value v, then they must all decide v even i f  there are faul ty  

processes. In weak Byzantine agreement, they are required to decide v only in 
the case where there are no failures. 

Since the new problem statement is weaker than the old one, the algorithms we 
have described for ordinary Byzantine agreement also work for weak Byzantine 
agreement. On the other hand, the impossibility results do not immediately 
carry over; it is plausible that more eMcient algorithms might exist for weak 
Byzantine agreement. However, it turns out that (except for a tiny technicality) 



6.6. W E A K  B Y Z A N T I N E  A G R E E M E N T  141 

the limitations on the number of processes and the graph connectivity still hold. 
(The technicality is that now we need to assume that n > 3, because there is a 
trivial algorithm for weak Byzantine agreement for the special case where n - 2.) 

T h e o r e m  6.30 Assume that n > 3. The weak Byzantine agreement problem 
can be solved in an n-node network graph G, tolerating f faults, if and only if 
both the following hold: 

1. n > 3 f  

2. corm(G) > 2 f 

P r o o f .  The if direction follows from the existence of protocols for ordinary 
Byzantine agreement, as claimed in Theorem 6.29. We give the proof that three 
processes cannot solve weak Byzantine agreement with one possible fault and 
leave the extension to f > 1 and the connectivity argument for exercises. For 

simplicity, we assume that V -  {0, 1}. 
Assume there is a three-process algorithm A that solves the weak Byzantine 

agreement problem for the three processes 1, 2, and 3, even if one is faulty. 
Let c~0 be the execution of A in which all three processes start  with 0 and no 
failures occur. The termination and validity conditions then imply that all three 
processes eventually decide 0 in c~0; let r0 be the smallest round number by which 
all processes decide. Likewise, let Ct 1 be the execution in which all processes start  
with 1 and no failures occur, so all processes eventually decide 1 in C~l. Let r l  
be the number of rounds required and choose r >_ max{r0, Vl, 1}. 

We construct a new system S by pasting 2r copies of A into a ring with 6r 

processes, 3r in the "top half" and 3r in the "bottom half." We start  all the 
processes in the top half with input value 0 and those in the bot tom half with 

input value 1. The arrangement is shown in Figure 6.16. (This time, we have 
not bothered to include prime symbols or other distinguishing notation for the 
multiple copies of the same process of A.) Let c~ be the resulting execution of S. 

By arguing as in the proof of Lemma 6.26, we can show that any two adjacent 
processes in S must decide on the same value in execution c~; this is because it 
looks to the two processes as if they are in the triangle, interacting with a third 
process that is faulty. It follows that all processes in S must reach the same 
decision in c~. Suppose (without loss of generality) that they all decide 1. 

Now to get a contradiction, we argue that some process in the top half of 
S must decide 0. Let B be any "block" of 2r + 1 consecutive processes in the 
top half of S; these all start  with initial value 0 in c~. Now, all the processes 
in B begin in the same state in c~ as the same-named processes do in c~0, and 
send the same messages at round 1. Thus, at round 1, all the processes in B 
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except possibly for the one at each end receive the same messages in c~ as their 

namesakes do in c~0 and so remain in the same states and send the same messages 
at round 2, in the two executions. At round 2, all processes in B except the two 

at each end receive the same messages and remain in the same states, in the 

two executions. Continuing in this way, we see that at round k, 1 _< k <_ r, all 

processes in B except the k at each end receive the same messages and remain in 

the same states, in c~ and c~0. In other words, c~ and c~0 are indistinguishable to 
all processes in B except the k at each end, for k rounds. Informally speaking, 
this is because information does not have time to propagate to those processes 
from outside the block B. 

In particular, c~ and c~0 are indistinguishable to the middle process, process 
i, of block B for r rounds. But since process i decides 0 by the end of round r in 

c~0, it also does so in c~. This contradicts the fact that process i decides 1 in c~. 

D 

6.7 Number  of Rounds  with Stopping Failures 

We complete this chapter by showing that the agreement problem cannot be 

solved in fewer than f + 1 rounds, either for Byzantine or stopping failures. In 
other words, there does not exist an agreement protocol, for either type of failure, 

in which all the nonfaulty processes decide by the end of f rounds. 

We will proceed by assuming that an f-round agreement algorithm exists and 
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obtaining a contradiction. It is convenient for us to impose some restrictions on 
the assumed algorithm, none of which causes any loss of generality. First, we 
assume that the network graph is completely connected; a fast algorithm for an 
incomplete graph could also be run in a complete graph, so there is certainly 
no loss of generality in this restriction. We also assume that all processes that 
decide do so exactly at the end of round f ,  then immediately halt. In this case, 
an algorithm for Byzantine agreement is necessarily an algorithm for stopping 
agreement (see the remark on the relationship between the two problems in Sec- 
tion 6.1). So, for the purpose of obtaining an impossibility result, we can restrict 
attention to the stopping agreement problem only. Also, we assume that every 

process sends a message to every other process at every round k, 1 < k < f 
(unless and until it fails). Finally, we restrict attention to the case where the 
value set V - {0, 1}. 

As for the coordinated attack problem in Chapter  5, it is convenient to carry 
out the proof using the notion of a communication pattern,  which is an indica- 
tion of which processes send messages to which other processes at each round. 
Specializing the previous definition to the case of a complete graph, we define a 

communication pattern to be any subset of the set 

{ ( i , j , k )  " 1 < i , j  < n , i  7~ j, 1 < k}. 

A communication pat tern does not describe the contents of messages, but only 

which processes send to which others, at which rounds. 
We consider three restrictions on communication patterns. First, because the 

algorithm we consider has f rounds, we consider only communication patterns 
in which all triples ( i , j , k )  have k < f .  Second, because we are working with 
the stopping failure model, all the communication patterns that arise satisfy the 
following restriction: if any triple (i, j, k) is missing from the pattern,  then so 
is every triple of the form (i, j~, k~), where k ~ > k. That  is, if process i fails to 
send any of its messages at round k, then it sends no messages at subsequent 

rounds. Third, because we consider executions with at most f failures, all the 
communication patterns that arise contain at most f faulty processes. (We define 
a process i to be faulty in a communication pat tern if some triple of the form 
(i, j, k), k < f ,  is missing from the pattern.)  We say (in the rest of this chapter 
only) that a communication pat tern that satisfies these three restrictions is good. 

Example 6.7.1 Good communication pattern 

An example of a good communication pat tern (for n - f - 4) is 
depicted in Figure 6.17. In this pattern,  process 3 sends a message 
to process 4 but fails to send messages to processes 1 and 2 at round 1. 



Thus, it must be that process 3 stops in round 1 and sends nothing 

in later rounds. Also, process 2 stops just at the end of round 2. 
Processes 1 and 4 are nonfaulty. 

processes 

1 

2 

3 

4 
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round 1 round 2 round 3 round 4 

F i g u r e  6.17: A good communication pattern. 

Now we define a run to be a combination of 

1. An assignment of input values to all the processes 

2. A good communication pattern 

(This is similar to what we called an adversary in Section 5.2.1.) 
For a particular agreement algorithm A, each run p defines a corresponding 

execution, ezec(p), in a natural way. Namely, the initial states of the processes are 
defined by setting the input state components according to the input assignment 

given in p; the messages that are sent are determined from the communication 
pattern of p, using the message transition function of A applied to the prior state 

of the sender process; and states after the initial states are determined using the 

transition function of A. (But after any process fails to send a message, we stop 
applying its state-transition function.) 

In order to give some intuition for the lower bound, we begin by proving the 
theorem for the special case where f = 1. 
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F i g u r e  6.18" Run po--all inputs are 0, and there are no failures. 

T h e o r e m  6.31 Suppose that n >_ 3. Then there is no n-process stopping agree- 
ment algorithm that tolerates one fault, in which all nonfaulty processes always 
decide by the end of round 1. 

P r o o f .  Suppose, to obtain a contradiction, that there is such an algorithm, 

A; we assume that A satisfies all the restrictions listed at the beginning of this 
section. 

The idea is to construct a chain of executions of A, each with at most one 

faulty process, such that (a) the first execution in the chain contains 0 as its 
unique decision value, (b) the last execution in the chain contains 1 as its unique 
decision value, and (c) any two consecutive executions in the chain are indis- 

tinguishable to some process that is nonfaulty in both. Then, since any two 
consecutive executions look the same to some nonfaulty process, say i, process 
i must make the same decision in both executions; therefore, the two execu- 

tions must have the same unique decision value. It follows that every execution 
in the chain must have the same unique decision value, which contradicts the 
combination of properties (a) and (b). 

We start the chain with the execution ezec(po) determined from the run p0 
in which all processes have input value 0 and no process is faulty. This run is 

depicted in Figure 6.18. By validity, the unique decision value in ezec(po) must 
be 0. Starting from execution ezec(po), we form the next execution by removing 
a single message--the one from process 1 to process 2. The result is depicted in 
Figure 6.19. This execution is indistinguishable from ezec(po) to every process 
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D 

N1 

F i g u r e  6.19" The result of removing one message from P0. 

except for 1 and 2. Since n _> 3, there is at least one such process. This process 

is nonfaulty in both  executions. 

Next we remove the message from 1 to 3; this and the previous execution are 

indistinguishable to each process except for 1 and 3, and there is at least one such 

process. We continue in this manner,  removing one message from process 1 at a 

time, in such a way that  every two consecutive executions are indistinguishable 

to some nonfaul ty process. 

Once we have removed all the messages sent by 1, we continue by chang- 

ing process l ' s  input  value from 0 to 1. Of course, the resulting execution is 

indistinguishable from the previous one to every process except 1, since 1 sends 

no messages in either execution. Next, we replace process l ' s  messages one by 

one, and again every consecutive pair of executions is indistinguishable to some 

nonfaul ty process. In this way, we end up with exec(pl), where Pl is defined to 

be the run in which process 1 has input  value 1, all the rest have input  value 0, 

and there are no failures. 

Next,  we repeat  this construct ion for process 2, first removing its messages 

one by one, then changing 2's input value from 0 to 1, and then replacing its 

messages. The resulting execution is exec(p2), where p2 is the run in which 

processes 1 and 2 have input  value 1, the others have input  value 0, and there 

are no failures. Repeat ing this construct ion for processes 3 , . . . ,  n, we end up 

with exec(p~), where Pn is the run in which all processes s tar t  with 1 and there 

are no failures. 



6.7. NUMBER OF ROUNDS WITH STOPPING FAILURES 147 

So we have cons t ruc ted  a chain from exec(po) to  exec(pn) satisfying proper ty  

(c). But  validity implies tha t  the unique decision value in ezec(po) is 0 and the 
unique decision value in exec(p~) is 1, which yields (a) and (b). So we have the 

needed chain, which gives a contradict ion.  E] 

Before moving to the general  case, we will do one more pre l iminary c a s e - - t h e  

case where f -  2. 

T h e o r e m  6 .32  Suppose that n > 4. Then there is no n-process stopping agree- 
ment algorithm that tolerates two faults, in which all nonfaulty processes always 
decide by the end of  round 2. 

P r o o f .  Again suppose tha t  there is such an algori thm. We construct  a chain 
with the same propert ies  (a), (b), (c) as in the previous proof, using a similar 

construct ion.  For each i, 0 _< i <_ n, let pi denote  the ( two-round) run in which 
processes 1 , . . . , i  have input  1, processes i + 1 , . . . , n  have input  0, and there  

are no faults. The  chain s tar ts  with exec(po), ends with exec(pn), and passes 

th rough  all the executions exec(pi) along the way. 
Star t ing  wi th  exec(po), we want  to work toward killing process 1 at the 

beginning. W h e n  we were only dealing with one round, we could simply remove 
messages from process 1 one by one. Now there is no problem in removing 
process l ' s  round 2 messages one by one. But  if we remove a round 1 message 
from 1 to some other  process i in one step of the chain, it is no longer the 
case tha t  the two consecutive executions must  look the same to some nonfaul ty  
process. This is because in round 2, i is able to tell all other  processes whether  

or not it received a message from process 1 in round 1. 
We solve this problem by using several steps to remove the round 1 message 

from 1 to i. In the in te rmedia te  executions tha t  occur along the way, processes 

1 and i are bo th  faulty; this is permissible since f - 2. In part icular ,  we 
s tar t  with an execution in which 1 sends a message to i at round 1 and i is 
nonfaulty. We remove round 2 messages sent by i, one by one, until  we obta in  
an execution in which 1 sends to i at round 1 and i sends no messages at round 
2. Next,  we remove the round 1 message from 1 to i; the result ing execut ion 
is indist inguishable from the preceding one to all processes other  t han  1 and 

i. Then  we replace round 2 messages sent by i one by one, until  we obta in  an 

execut ion in which 1 does not send to i at round 1 and i is nonfaulty. This 
achieves our goal of removing a round 1 message from 1 to i, while ensuring 

tha t  each consecutive pair of executions are indist inguishable to some nonfaul ty  

process. 
In this way, we remove round 1 messages from 1 one by one until  1 sends no 

messages. Then  we change process l ' s  input  from 0 to 1 as before. We continue 
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this procedure "in reverse," replacing process l ' s  round 1 messages one by one. 

Repeating this for processes 2 , . . .  , n gives the needed chain. D 

We now prove the general theorem: 

T h e o r e m  6.33 Suppose that n > f + 2. Then there is no n-process stopping- 
agreement algorithm that tolerates f faults, in which all nonfaulty processes al- 
ways decide by the end of round f .  

The proofs of Theorems 6.31 and 6.32 contain the main ideas for the proof of 

Theorem 6.33. In the general proof, a longer chain is constructed, using f process 

failures. We proceed more formally than we did in the proofs of Theorems 6.31 

and 6.32. We need some notation. 
First,  if p and p~ are runs in both of which process i is nonfaulty, then we 

i p /  ,-,., 
write p ~ to mean that exec(p) i exec(p')-- that is, the executions generated 

i p~ 
by runs p and p~ are indistinguishable to process i. We write p ~ p~ if p ~ for 

some process i that is nonfaulty in both p and J .  And we write p ~ p~ for the 
transitive closure of the ~ relation. 

Next, notice that all the communication patterns that occur in the chains 
in the proofs of Theorems 6.31 and 6.32 have a particularly simple form. We 

capture this form with the following definition. We define a good communication 

pat tern to be regular if for every k, 0 _< k _< f ,  there are at most k processes 

that fail (to send at least one message) by the end of k rounds. We say that a 

run or execution is regular if its communication pat tern is regular. 

Finally, if p is any run and 0 < k < f ,  we define the run if(p, k) - - t he  variant 

of p that is failure-flee after time k - - t o  be the run that has the same input 
assignment as p, and whose communication pat tern is the same as that of p for 

the first k rounds and contains no new failures thereafter. Here are some obvious 

facts involving ff  runs. 

L e m m a  6 .34  I f  p is a regular run, then 

1. For any k, 0 <_ k <_ f ,  if(p, k) is regular. 

2. I f  p~ is identical to p except that some process i that fails in p fails at a 
later round in p~, then p~ is regular. 

3. I f  no process fails at round k + 1, then if(p, k) - f f  (p, k + 1). 

The heart of the proof of Theorem 6.33 is the following strong lemma, which 
says that it is possible to construct a chain between any two regular executions 
having the same input assignment. 
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L e m m a  6.35 Suppose that A is an n-process stopping agreement algorithm that 
tolerates f faults, in which all nonfaulty processes always decide by the end of 
round f . Let p and p~ be two regular runs of A with the same input assignment. 
Then p ~ p~. 

P r o o f .  We show this by proving the following parameter ized claim. The case 

where k - 0 immediately implies the lemma. 

C l a i m  6.36 Let k be an integer, 0 <_ k <_ f .  Let p and p~ be two regular runs 
of A with the same input assignment and with identical communication patterns 
through k rounds. Then p ~ J .  

P r o o f .  The proof of Claim 6.36 is by reverse induction on k, start ing with 

k - f and ending with k - 0. 
Basis: k - f .  This case is trivial because the assumption that p and p~ have 

the same inputs and same communication patterns through f rounds implies that 

p and p~ are identical. 
Inductive step: 0 < k < f - 1 and the claim is true for k + 1. In this case, it 

is enough to show that any regular run p satisfies p ~ i f (p,  k), because we can 

apply this result twice to obtain the required claim. So fix some regular run p. 

By Lemma 6.34, if(p, k) is regular. 
By inductive hypothesis, if(p, k+ 1) ~ p, so it is enough to show that if(p, k) 

ff (p, k + 1). If no process fails at round k + 1 in p, then Lemma 6.34 implies that 
f f (p,k)  - f f ( p , k  + 1) and we are done. So we assume that at least one process 

fails at round k + 1 in p. Let I be the set of processes that do so. 

Let P0 be the run that is identical to if(p, k) except that all processes in I fail 
at the end of round k + 1. Then Lemma 6.34, part  2 (applied to p), implies that 

P0 is regular. 
Since p0 and if(p, k) are regular runs that are identical through k + 1 rounds, 

we can apply the inductive hypothesis to show that Po ~ if(P, k). Therefore, to 

show that if(p, k) ~ i f (p,  k + 1), it is enough to show that po ~ if(P, k + 1). 
Now we construct a chain of regular runs spanning from P0 to if(p, k + 1). 

The only difference between p0 and if(p, k + 1) is that some messages sent by 

processes in I at round k + 1 in P0 are missing in if(p, k + 1). So we remove 
those messages one at a time, while keeping the runs otherwise unchanged. 

For instance, consider the removal of a message from i to j ,  where i C I. Let 

be the run including the message and T be the run without the message; we 
must argue that a ~ ~-. If k + 1 - f ,  then ~ and T are indistinguishable to all 

processes except for i and j;  since n _> f + 2 and i is faulty, this must include at 

least one nonfaulty process. So a ~ ~-, as needed. 
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F i g u r e  6.20- Removal of round k + 1 message from i to j, in proof of Claim 6.36. 

On the other hand, if k + 1 _< f -  1, then define or' and 7' to be the same as 
a and 7- respectively, but  with j failing just  at the s tar t  of round k + 2 (if it has 
not previously failed). See Figure 6.20. 

Both or' and T' are regular, since each of cr and 7 involves at most  k + 1 < f -  1 
failures, and we only introduce one new failure for the new round k + 2. Then  
cr ~ or' and ~- ~ 7', by inductive hypothesis.  And a '  ~ 7', because they are 
indistinguishable to all processes except for i and j.  So again, cr ~ 7. 

This shows that  the needed chain from p0 to if(p, k + 1) can be constructed,  

so p0 ~ ff  (p, k + 1), so p ~ i f (p ,  k), as needed. 

As we noted earlier, Claim 6.36 immediately  implies Lemma 6.35. 

Now we extend Lemma 6.35 to apply to different input  assignments.  

L e m m a  6 .37  Suppose that A is an n-process stopping agreement algorithm that 
tolerates f faults, in which all nonfaulty processes always decide by the end of 
round f . I f  p and p' are two regular runs of A, then p ~ p'. 

P r o o f .  By Lemma 6.35, each run p is related to its failure-free version, that  
is, p ~ i f (p ,  0). So we can assume without  loss of generality that  p and p' in the 
s ta tement  of the lemma are both failure-free. 

If p and p' have the same input assignment,  then they are identical and there 
is nothing to prove. 

Suppose that  p and p' differ in the input  of exactly one process i; say i has 
input  0 in p and input  1 in p'. Then define cr and a '  to be the runs that  are 
identical to p and p', respectively, except that  i fails right at the start .  Then  
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Lemma 6.35 implies that p ~ a and p' ~ a ' .  Also, a ~ a ' ,  because a and a '  are 

indistinguishable to all processes except for i. It follows that p ~ p', as needed. 
Finally, suppose that p and p' differ in the input of more than one process. 

Then we can construct a chain of failure-free runs, spanning from p to p', chang- 
ing exactly one process's input at each step in the chain. The previous case 

applies to each step in this chain. So again, we obtain p ~ p'. N 

Using Lemma 6.37, it is easy to prove Theorem 6.33. We already know 
that all regular runs are related by chains; now we consider the decision values 

that arise in these runs. Assuming that n > f ,  the termination and agreement 
properties imply that for every run p, there is a unique decision value, dec(p), 
that arises in exec(p). The following lemma says that runs that are related by 

or ~ necessarily give rise to the same decision values. 

L e m m a  6 .38  

1. If  p ~ p', then d e c ( p ) -  dec(J).  

2. If  p ,.~ p', then d e c ( p ) -  dec(J) .  

P r o o f .  For part  1, recall that p ~ p' means that there is a process i that 

is nonfaulty in both p and p', such that exec(p) i exec(p'). This implies that 

process i decides on the same value in exec(p) and exec(p'). Therefore, dec(p) - 
d c(J). 

Part  2 follows from part  1. E] 

P r o o f  (of  T h e o r e m  6 .33) .  Suppose there is such an algorithm, A; we as- 

sume that A satisfies the restrictions listed at the beginning of the section. 
Let p0 be the run of A in which all processes start  with 0 and there are no 

faults, and let pl be the run in which all processes start  with 1 and there are 

no faults. Lemma 6.37 implies that p0 ~ pl. Then Lemma 6.38, part  2, implies 

that dec(p) = dec(J).  But the validity condition implies that dec(po) = 0 and 
dec(p1) = 1, a contradiction. N 

W e a k e r  v a l i d i t y  c o n d i t i o n .  Notice that this impossibility proof still works 

if we weaken the validity condition to the one that we used in Section 6.6 for 
the weak Byzantine agreement problem. That  is, we have shown that the weak 

Byzantine agreement problem also requires at least f + 1 rounds, under the 

assumption that n > f + 2. 
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6.8 Bibliographic Notes  

Many of the ideas in this chapter originated in the two seminal papers by Pease, 
Shostak, and Lamport [237] and by Lamport, Shostak, and Pease [187]. These 
two papers contain upper and lower bounds of 3f + 1 for the number of processes 
required for Byzantine agreement, plus an algorithm for agreement with authen- 
tication, all for the case of a completely connected graph. The presentation in 
the second paper is in terms of attacking generals rather than processes. It is the 
second paper that coined the term Byzantine for this fault model. 

In more detail, these two papers define the Byzantine agreement problem 
and motivate it as an abstraction of a problem arising in the SIFT (Software- 
Implemented Fault Tolerance) aircraft control system [289]. The algorithms in 
[237] use an exponential data structure similar to an EIG tree; the Byzantine 
agreement algorithm is similar to EIGByz, while the algorithm using authentica- 
tion is similar to EIGStop. The algorithms in [187] are very much the same but 
are formulated recursively. The impossibility proof for n _< 3f processes in [237] 
involves the explicit construction of detailed scenarios. The impossibility proof 
in [187] introduces the reduction to the case of three versus one that appears in 
the proof of Theorem 6.27. 

Dolev and Strong [93] developed algorithms similar to FloodSet and OptFlood- 
Set for Byzantine agreement in the case where authentication is available. Dolev 
[94] considered the Byzantine agreement problem in graphs that are not nec- 
essarily completely connected. He proved the connectivity bounds represented 
in Theorem 6.29, using explicit construction of scenarios. Dolev, Reischuk, and 
Strong [99] developed algorithms with "early stopping" for certain favorable com- 
munication patterns. Other early stopping algorithms were developed by Dwork 
and Moses [105] and by Halpern, Moses, and Waarts [145]. 

Bar-Noy, Dolev, Dwork, and Strong defined the EIG tree data structure and 
presented the EIGByz algorithm in essentially the form given in this book [39]. 
The TurpinCoan algorithm is from [279]. 

The first polynomial communication algorithm for Byzantine agreement was 
provided by Dolev and Strong [101]; it was subsequently improved by Dolev, Fis- 
cher, Fowler, Lynch, and Strong [96] to yield a time bound of 2f § 3. Coan [82] 
developed a tradeoff algorithm, which decreased the number of rounds to ( l+c ) f ,  
for any c > 0; the communication is polynomial, but the degree of the polynomial 
depends on c. The consistent broadcast primitive and the ConsistentBroadcast 
algorithm are due to Srikanth and Toueg [269]. The PolyByz algorithm is based 
on algorithms by Srikanth and Toueg [269] and by Dolev et al. [96]. Subse- 
quent research by Moses and Waarts [231], Berman and Garay [49], and Garay 
and Moses [133] has produced f + 1 round Byzantine agreement algorithms with 
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polynomial communication; the last of these also achieves the n = 3f + 1 min- 
imum bound on the number of processes. Unfortunately, these algorithms are 
complicated. 

As already noted, the n > 3f lower bound on the number of processes re- 
quired for Byzantine agreement was originally proved in [237, 187], while the 
connectivity lower bound was originally proved in [94]. However, the proofs 
presented in this book were developed by Fischer, Lynch, and Merritt [122]. 
Menger's Theorem was originally proved by Menger [225] and appears in Harary's 
book [147]. 

The weak Byzantine agreement problem was defined by Lamport [178]. The 
lower bound result for the number of processes needed for weak Byzantine agree- 
ment is due to Lamport [178], but the proof given here is due to Fischer, Lynch, 
and Merritt [122]. 

The first lower bound result for the number of rounds required to reach agree- 
ment was proved by Fischer and Lynch [119], for the case of Byzantine failures. 
The result was subsequently extended by Dolev and Strong [93] and by DeMillo, 
Lynch, and Merritt [88] to the case of Byzantine failures with authentication. 
The extension to the case of stopping failures seems to have first been carried 
out by Merritt [226], using ideas of Dolev and Strong [101]. Another proof of 
this result was presented by Dwork and Moses [105]; their proof provides a finer 
analysis of the time requirements for different runs. Feldman and Micali [113] 
obtained a constant time randomized solution using "secret-sharing" techniques. 

A paper by Fischer [117] surveys much of the early work on the agreement 
problem. 

There has been a considerable amount of work at Draper Laboratories in- 
volving the design of fault-tolerant multiprocessors and processor fault-diagnosis 
algorithms, using Byzantine agreement [172, 173]. These designs have been'used 
for safety-critical applications such as unmanned undersea vehicles, nuclear at- 
tack submarines, and nuclear power plant control. 

6.9 E x e r c i s e s  

6.1. Prove that any algorithm that solves the Byzantine agreement problem also 
solves the stopping agreement problem, if the validity condition for stopping 
failures is modified to require only that nonfaulty processes agree. 

6.2. Prove that any algorithm that solves the Byzantine agreement problem, 
and in which all nonfaulty processes always decide at the same round, also 
solves the stopping agreement problem. 
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6.3. Prove Lemma 6.2. 

6.4. Trace the execution of the FloodSet algorithm for four processes and two 
failures, where the processes have initial values 1, 0, 0, and 0, respectively. 
Suppose that processes 1 and 2 are faulty, with process 1 failing in the first 
round after sending to 2 only and process 2 failing in the second round 
after sending to 1 and 3 but not 4. 

6.5. Consider the FloodSet algorithm for f failures. Suppose that instead of 
running for f + 1 rounds, the algorithm runs for only f rounds, with the 
same decision rule. Describe a particular execution in which the correctness 
requirements are violated. 

6.6. (a) Describe another alternative decision rule that works correctly for the 
FloodSet algorithm, besides the ones discussed in the text. 

(b) Give an exact characterization of the set of decision rules that work 
correctly. 

6.7. Extend the FloodSet algorithm, its correctness proof, and its analysis to 
arbitrary (not necessarily complete) connected graphs. 

6.8. Give code for OptFloodSet. Complete the proof given in the text by proving 
Lemmas 6.5, 6.6, and 6.7. 

6.9. Consider the following simple algorithm for agreement with stopping fail- 
ures, for a value domain V. Each process maintains a variable min-val, 
originally set to its own initial value. For each of f + 1 rounds, the processes 
all broadcast their min-vals, then each resets its rnin-val to the minimum 
of its old min-val and all the values it receives in messages. At the end, the 
decision value is min-val. Give code for this algorithm, and prove (either 
directly or via a simulation proof) that it works correctly. 

6.10. Trace the execution of the EIGStop algorithm for four processes and two 
failures, where the processes have initial values 1, 0, 0, and 0, respectively. 
Suppose that processes 1 and 2 are faulty, with process 1 failing in the first 
round after sending to 2 only, and process 2 failing in the second round 
after sending to 1 and 3 but not to 4. 

6.11. Prove Lemma 6.11. 

6.12. Prove Lemma 6.12, part 1. 
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6.13. Consider the EIGStop algorithm for f failures. Suppose that instead of 
running for f + 1 rounds, the algorithm only runs for f rounds, with the 
same decision rule. Describe a particular execution in which the correctness 
requirements are violated. 

6.14. An alternative way to prove the correctness of FloodSet is by relating it to 
EIGStop by a simulation relation. In order to do this, it is convenient to 
first extend EIGStop by allowing each process i to broadcast all values at all 
rounds, not just values associated with nodes whose labels do not contain 
i. It must be argued that this extension does not affect correctness. Also, 
some details in the description of EIGStop must be filled in, for example, 
explicit rounds and decision variables, manipulated in the obvious ways. 
Then FloodSet and the modified EIGStop can be run side by side, starting 
with the same set of initial values, and with failures occurring at the same 
processes at exactly the same times. 

Prove the correctness of FloodSet in this way. The heart of the proof 
should be the following simulation relation, which involves the states of 
both algorithms after the same number of rounds. 

A s s e r t i o n  6.9.1 For any r, 0 < r < f + 1, the following are 
true after r rounds. 

(a) The values of the rounds and decision variables are the same 
in the states of both algorithms. 

(b) For each i, the set Wi in FloodSet is equal to the set of vals 
that decorate nodes of i's tree in EIGStop. 

Be sure to include the statement and proof of any additional invariants of 
EIGStop that you need to establish the simulation. 

6.15. Prove the correctness of OptEIGStop, in either of the following two ways: 

(a) By a simulation of EIGStop, using a proof analogous to the simulation 
proof relating OptFloodSet to FloodSet. 

(b) By relating it to OptFloodSet. 

6.16. Prove the correctness of the EIGStop and OptEIGStop algorithms for the 
authenticated Byzantine failure model. Some key facts that can be used in 
the proof of EIGStop are expressed by the following assertion, analogous 
to the statement of Lemma 6.12: 
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A s s e r t i o n  6.9.2 After  f + 1 rounds: 

(a) I f  i and j are nonfaulty processes, val(y)i = v E V,  and x j  

is a prefix of y, then val(x)j = v. 

(b) I f  v is in the set of vals at any nonfaulty process, then v is 
an initial value of some process. 

(c) I f  i is a nonfaulty process, and v C V is in the set of vals at 
process i, then there is some label y that does not contain i 
such that v = val(y)i.  

These facts follow from the properties of digital signatures. 

6.17. Research Question: Define the authenticated Byzantine failure model for- 
mally and prove results about its power and limitations. 

6.18. Give an example of an execution of EIGStop that shows that EIGStop does 
not solve the agreement problem for Byzantine faults. 

6.19. Consider the EIGByz  algorithm with seven processes and three rounds. 
Arbitrarily select two of the processes as faulty and provide random choices 
for the inputs of all processes and for the message values of the faulty 
processes. Calculate all the information produced in the execution and 
verify that the correctness conditions are satisfied. 

6.20. In the EIGByz  algorithm, show that not every node in the EIG tree need 
be common. 

6.21. Consider the EIGByz  algorithm. Construct explicit executions to show 
that the algorithm can give wrong results if it is run with 

(a) Seven nodes, two faults, and two rounds. 

(b) Six nodes, two faults, and three rounds. 

6.22. The TurpinCoan algorithm uses the threshold n -  f at rounds 1 and 2. 
What other pairs of thresholds would also allow the algorithm to work 
correctly? 

6.23. Suppose we consider the TurpinCoan algorithm with two sets of faulty pro- 
cesses, F and G, rather than just one. Each set has at most f processes. 
Processes in F behave correctly except that they can send incorrect mes- 
sages during rounds 1 and 2. Processes in G are allowed to behave incor- 
rectly during execution of the binary Byzantine agreement subroutine (and 
only then). What  correctness conditions are guaranteed by the combined 
algorithm under these failure assumptions? Prove. 
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6.24. Now you may assume that n > 4f.  Design an algorithm that uses a sub- 
routine for binary Byzantine agreement and solves multivalued Byzantine 
agreement. The algorithm should improve on the TurpinCoan algorithm 
by only requiring one additional round rather than two. 

6.25. Show that there is no upper bound on the time until a nonfaulty pro- 
cess might accept a message (m, i, r) in the ConsistentBroadcast algorithm. 
That is, for any t, produce an execution of ConsistentBroadcast in which 
some nonfaulty process accepts the message at a round r ~ > r + t. 

6.26. Can you design an algorithm to implement the consistent broadcast mech- 
anism in the Byzantine failure model, with f >> 1 faults, having the addi- 
tional property that no nonfaulty process ever accepts a message (m, i, r) 
strictly after round r + 1? 

Either give such an algorithm and prove its correctness, or argue why no 
such algorithm exists. 

6.27. Describe a worst-case execution of PolyByz, that is, one in which there is 
some nonfaulty process i such that the earliest round by which process i 
accepts messages from 2f  + 1 distinct processes is exactly round 2(f  § 1). 

6.28. A programmer at the Flaky Computer  Corporation has modified his im- 
plementation of the PolyByz algorithm so that the acceptance threshold for 
each round of the form 2 s -  1 is s -  1 rather than f + s -  1, and the decision 
threshold is f + 1 rather than 2f  + 1. Is his modification correct? Prove 
or give a counterexample. 

6.29. Design a polynomial communication algorithm for Byzantine agreement 
for a general input value set, without using a subroutine for binary Byzan- 
tine agreement. Your algorithm should use the consistent broadcast mech- 
anism, but you might have to design a better implementation than the 
ConsistentBroadcast algorithm. 

6.30. Design an algorithm for stopping agreement that satisfies the following 
early stopping property" If in an execution of the algorithm only f~ < f 
processes fail, then the time until all the nonfaulty processes decide is at 
most k f ~, for some constant k. Do the same for Byzantine agreement. 

6.31. Design a protocol for four processes in a completely connected graph that 
tolerates either one Byzantine fault or three stopping faults. Try to mini- 
mize the number of rounds. 
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6.32. Research Question: Devise a simple f + 1 round protocol solving Byzantine 
agreement, requiring only 3f  + 1 processes and polynomial communication. 

6.33. This exercise is designed to explore the construction in the proof of Lemma 
6.26, which pastes together two triangle systems to yield a hexagon system. 

(a) Carefully describe an algorithm A for a three-process complete graph 
that solves the no-fault agreement problem, that is, the Byzantine 
agreement problem in the special case where no processes are faulty. 

(b) Now construct system S by pasting together two copies of your al- 
gorithm A, as in the proof of Lemma 6.26. Describe carefully the 
execution of S in which processes 1, 2, and 3 start with input 0, and 
1 ~, 2 ~, and 3 ~ start with input 1. 

(c) Does S solve the no-fault agreement problem (for the hexagon net- 
work)? Either prove that it does or give an execution that shows that 
it does not. 

(d) Does there exist a three-process algorithm A such that arbitrarily 
many copies of A can be pasted together into a ring, and the resulting 
ring will always solve the no-fault agreement problem? 

6.34. What is the largest number of faulty processes that can be tolerated by 
Byzantine agreement algorithms that run in the following network graphs? 

(a) A ring of size n. 

(b) A three-dimensional cube, m nodes on a side, in which nodes are 
connected only to their neighbors in the three dimensions. 

(c) A complete bipartite graph with m nodes in each of its two compo- 
nents. 

6.35. Give a more careful impossibility proof for Byzantine agreement when 
n = 2 and f = 1. 

6.36. Analyze the time, number of messages, and number of communication bits 
for the Byzantine agreement algorithm for general graphs, described in the 
proof of Theorem 6.29. Can you improve on any of these? 

6.37. Show carefully that the simplifications assumed in the proof of Theorem 6.29 
to prove that Byzantine agreement is impossible with f = 1 and corm(G) <_ 
2 are in fact justified. That is, show that the existence of an algorithm for 
the case where nodes 1 and 3 are replaced by arbitrary connected sub- 
graphs implies the existence of an algorithm for the case where they are 
just single nodes. 
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F i g u r e  6.21" Network graph for Exercise 6.38. 

6.38. Reconsider the proof that  Byzantine agreement cannot be reached in the 
graph in Figure 6.11. Why does this proof fail to extend to the graph in 
Figure 6.21? 

6.39. Prove that  Byzantine agreement for f failures, where f > 1, cannot be 
solved in a graph G with corm(G) < 2f. This can be done either using 
the process grouping argument sketched at the end of the proof of Theo- 
rem 6.29, or else using a reduction similar to the one in Theorem 6.27. 

6.40. Give a simple algorithm for weak Byzantine agreement in a network graph 
consisting of two nodes connected by a single link. 

6.41. Complete the proof of Theorem 6.30, by showing impossibility 

(a) When n < 3f  and f > 1. 

(b) When corm(G) < 2f. 

6.42. Consider the Byzantine Firing Squad problem, defined as follows. There 
are n processes in a fully connected network with no input values and 
with variable start  times. That  is, each process begins in a quiescent state 
containing no information and from which it sends only null messages. It 
does not change state until and unless it receives a special wakeup message 
from the outside or a non-null message from another process. A process 
does not know the current round number when it awakens. The model is 
similar to the one in Section 2.1, except that  we do not assume here that  
all processes must receive wakeup messages--only some arbitrary subset 
of the processes. Also, we permit Byzantine faults. 
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The problem is for processes to issue fire signals, subject to the following 
conditions" 

A g r e e m e n t :  If any nonfaulty process issues a fire signal at some round, 
then all nonfaulty processes issue a fire signal at that same round and 
no nonfaulty process issues a fire signal at any other round. 

Va l id i ty :  If all nonfaulty processes receive wakeup messages, then all non- 
faulty processes eventually fire; if no nonfaulty process receives a 
wakeup message, then no nonfaulty process ever fires. 

(a) Design an algorithm to solve the Byzantine Firing Squad problem for 

n > 3 f .  

(b) Prove that the problem cannot be solved if n < 3f. 

6.43. State and give a direct proof of the special case of Theorem 6.33 for f - 3. 

6.44. Does Lemma 6.37 still hold if the runs are not required to be regular? Give 
a proof or a counterexample. 

6.45. In Section 6.7, it is shown that stopping agreement tolerating f faults can- 
not be solved in f rounds. The construction involves the construction of 
a long chain connecting the two runs in which all the processes are non- 
faulty and have the same inputs. The chain, however, is only constructed 
implicitly. 

(a) How long is the chain of runs? 

(b) By how much can you shorten this chain using Byzantine faults rather 
than stopping faults? 

6.46. Research Question: Obtain upper and lower bound results about the time 
required to solve the stopping agreement problem and/or  the Byzantine 
agreement problem, in general (not necessarily complete) network graphs. 



Chapter 7 

M o r e  C o n s e n s u s  P r o b l e m s  

The past two chapters have been devoted to consensus problems--Chapter  5 to 
the coordinated attack problem and Chapter 6 to the agreement problem. In this 
chapter, we finish our study of synchronous distributed consensus by consider- 
ing three other consensus problems: the k-agreement problem, the approximate 
agreement problem, and the distributed database commit problem. As in Chap- 
ter 6, we consider process failures only. 

7.1 k-Agreement 

The first problem we consider is the k-agreement problem, where k is some 
nonnegative integer. The k-agreement problem is a natural generalization of 
the ordinary agreement problem considered in Chapter 6. But now, instead of 
requiring that all processes decide on exactly the same value, we insist only that 
they limit their decisions to a small number, k, of distinct values. 

The original motivation for this problem was purely mathematical-- i t  is inter- 
esting to try to determine how the results of Chapter 6 change when the problem 
requirements are varied in this simple way. But it is possible to imagine practi- 
cal situations in which such an algorithm could be useful. For example, consider 
the problem of allocating shareable resources, such as broadcast frequencies in a 
communication network. It might be desirable for a number of processes to agree 
on a small number of frequencies to use for the broadcast of a large amount of 
data (say, a videotape). Because the communication is by broadcast, any num- 
bet of processes could receive the data using the same frequency. In order to 
minimize the total communication load, it is preferable to keep the number k of 
frequencies that are used small. 

In this section, we prove exactly matching upper and lower bounds o n t h e  
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number of rounds required to solve the k-agreement problem, in a complete 
network graph and for the case of stopping failures only. These bounds are given 
in terms of n, the number of processes; f ,  the number of failures tolerated; and 
k, the allowed number of decision values. 

7 .1 .1  T h e  P r o b l e m  

In the k-agreement problem, just as for the ordinary agreement problem, we 
assume that the network is an n-node connected undirected graph with processes 
1 , . . . ,  n, where each process knows the entire graph. Each process starts with 
an input from a fixed set V and is supposed to eventually output a decision from 
the set V. (Again, we assume that for each process, there is exactly one start  
state containing each input value.) We assume that at most f processes might 
fail. We consider stopping failures only. The required conditions are as follows. 

A g r e e m e n t :  There is a subset W of V, IWI = k, such that all decision values 
are in W. 

Va l id i ty :  Any decision value for any process is the initial value of some process. 

T e r m i n a t i o n :  All nonfaulty processes eventually decide. 

The agreement condition is the natural generalization of the agreement condition 
for the ordinary agreement problem. Notice that we use the stronger validity 
condition for stopping failures given near the end of Section 6.1 rather than the 
weaker one we used in most of Chapter 6; we need this stronger condition for 
the lower bound proof in Section 7.1.3. The ordinary agreement problem with 
the stronger validity condition is exactly the k-agreement problem for k = 1. 

For the results we present in this section, we consider the special case of a 
complete network graph only. We also assume that V comes equipped with a 
total ordering. 

As in Section 6.2.1, we define a process to be active after r rounds, 0 _< r, if 
it does not fail by the end of r rounds. 

7.1.2 An Algorithm 

We present a very simple algorithm, called FloodMin; in fact, it is exactly the 
algorithm sketched in Exercise 6.9, but it runs for a smaller number of rounds. 
As we claimed in Exercise 6.9, when this algorithm runs for f + 1 rounds, it 
guarantees ordinary stopping agreement. It turns out that it still guarantees 
k-agreement when it runs for only [~J + 1 rounds. Thus, roughly speaking, 
allowing k decision values rather than just one divides the running time by k. 
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F l o o d M i n  a l g o r i t h m  ( in fo rma l ) "  

Each process maintains a variable rnin-val, originally set to its own initial 

value. For each of [~J + 1 rounds, the processes all broadcast  their rnin- 
vals, then each process resets its rnin-val to the minimum of its old rnin-val 
and all the values in its incoming messages. At the end, the decision value 

is min-val. 

The code follows. (Compare its structure with that of FloodSet in Sec- 

tion 6.2.1.) 

F l o o d M i n  a l g o r i t h m  ( f o r m a l ) :  

The message alphabet is V. 

s ta t e s~:  

rounds E N, initially 0 
decis ion E V U { u n k n o w n } ,  initially u n k n o w n  

min-va l  E V ,  initially i 's initial value 

msgs~:  

if rounds <_ [~J then send rnin-val to all other processes 

t r a n s {  : 

rounds " -  rounds + 1 
let rnj be the message from j ,  for each j from which a message arrives 
rnin-val := m i n ( { m i n - v a l }  U {rnj " j 7s i}) 
if r o u n d s -  [~=/J + 1 then decis ion " -  rnin-val 

We argue correctness; the proof is similar to that for the FloodSet algorithm 

in Section 6.2.1. Let M(r)  denote the set of rnin-val values of active processes 

after r rounds. We first observe that the set M(r)  can only decrease at successive 

times. 

L e m m a  7.1 M(r)  C_ M ( r -  1) for all r, 1 <_ r <_ ~f J + 1. 

P r o o f .  Suppose that rn E M(r ) .  Then rn is the value of rnin-vali after r rounds, 
for some process i that is active after r rounds. Then either rn = rnin-vali just  

before round r or else rn arrives at i in some round r message, say from j .  But 
in this case, rnin-valj = rn after r -  1 rounds, and j must be active after r -  1 

rounds because it sends a message at round r. It follows that rn E M ( r -  1). K1 

L e m m a  7.2 Let d C N +. I f  at most d -  1 processes fail during a particular 
round r, 1 <_ r <_ [~J + 1, then IM(r)l <_ d, that is, there are at most d different 
min-vals for active processes after round r. 
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P r o o f .  Suppose for the sake of contradiction that at most d -  1 processes fail 
during round r, yet IM(r)l > d. Let m be the maximum element of M(r) and 
let m'  -r m be any other element of M(r). Then m' is an element of M ( r -  1), 
by Lemma 7.1; let i be any process that is active and has rn' = min-vali after 
r -  1 rounds. If i does not fail in round r, then every process receives a message 
containing m' from i at round r. But this cannot occur, because some active 
process has m > m' as its min-val after r rounds. It follows that i fails during 
round r. 

But rn' was chosen to be any arbitrary element of M(r) other than the maxi- 
mum, m. Thus, for every element m'  -r m of M(r ) ,  there is some process that is 
active, has its min-val equal to rn' after r -  1 rounds, and fails during round r. 
By assumption, there are at most d -  1 processes that fail at round r, so there 
can be at most d -  1 elements of M(r) other than m. Therefore, IM(r)l <_ d; 
this is a contradiction. D 

Now we can prove the main correctness theorem. 

T h e o r e m  7.3 The FloodMin algorithm solves the k-agreement problem for the 
stopping failure model. 

P r o o f .  Termination and validity are straightforward. We prove the new agree- 
ment condition. Suppose, to obtain a contradiction, that the number of distinct 
decision values is greater than k in a particular execution having at most f fail- 
ures. Then the number of min-vals for active processes after [k/-J + 1 rounds is 

at least k + 1, that is, IM(L~J + 1)l _> k + 1. By Lemma 7.1, IM(r)l > k + 1 for 

all r, 0 < r _< [~J + 1. Then Lemma 7.2 implies that at least k processes fail in 

each round r, 1 _< r _< [~J + 1. This yields a total number of failures that is at 

least ([~J + 1)k. But this is strictly greater than f ,  which yields a contradiction. 
D 

C o m p l e x i t y  ana lys i s .  The number of rounds is [~/J + 1. The number of 

messages is at most ([~J + 1)n 2, and the number of message bits is at most 

([~J +l)n2b,  where b is an upper bound on the number of bits needed to represent 
a single element of V. 

7 .1 .3  L o w e r  B o u n d *  

I n  this section, we show that the upper bound of [{J + 1 is tight, by proving 
that it is also a lower bound, provided that IV I >_ k + 1. This gives an exact 
characterization of the speedup that is achievable by allowing k output values 
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rather than just 1--essentially, the time is divided by k. As you might expect, 
the ideas of the proof are derived from those used for the proof of the lower bound 
for ordinary agreement, Theorem 6.33, but they are a good deal more advanced 
and more interesting. In fact, they take us into the realm of algebraic topology. 

For the remainder of this section, fix A to be an n-process algorithm that 
solves the k-agreement problem, tolerating the stopping failure of at most f 
processes. Suppose that A halts in r < ~ j  + 1 rounds; that is, that r _< ~ J .  
In order to obtain a contradiction, we need the additional assumption that n _> 
f + k + 1, which means that at least k + 1 processes never fail. 

Without loss of generality, we may assume that all processes that decide do so 
exactly at the end of round r and immediately halt. We also assume that every 
process sends a message to every other process at every round k, 1 _< k <_ r 
(until and unless it fails). Finally, we assume that the value domain V consists 
of exactly the k + 1 elements, O, 1 , . . . ,  k, since that is all we need to obtain a 
contradiction. 

We obtain a contradiction by showing that in one of the executions of A (with 
at most f failures), there are k + 1 processes that choose k + 1 distinct values, 
thus violating k-agreement. 

O v e r v i e w .  Recall the proof of Theorem 6.33, the f + 1 round lower bound for 
ordinary stopping agreement. It uses a chain argument, producing a chain of 
executions that spans from one in which 0 is the only allowable decision to one in 
which 1 is the only allowable decision. We would like to extend this proof to other 
values of k. Unfortunately, in the k-agreement problem, unlike in the ordinary 
agreement problem, the decision values in one execution do not determine the 
decision values in closely related executions. For example, if executions a and 
a '  of an ordinary agreement algorithm are indistinguishable to nonfaulty process 
i, then not only must i's decision be the same in both, but also the decisions 
of all the other nonfaulty processes in both c~ and a '  must be the same as i's 
decision. In a k-agreement algorithm, if a and a '  are indistinguishable to i, then 
i's decision is still guaranteed to be the same in both, but now the decisions of 
the other processes are not determined. Even if a and a '  are indistinguishable 
to n -  1 processes, the decision value of the remaining process is not determined. 

The key idea we use is to construct a k-dimensional collection of executions 
rather than a (one-dimensional) chain. Adjacent executions in this collection are 
indistinguishable to designated nonfaulty processes. We call the k-dimensional 
structure used to organize these executions the Bermuda Triangle (because any 
hypothetical k-agreement algorithm vanishes somewhere in its interior). 
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F i g u r e  7.1" Bermuda Triangle for k -  2. 

E x a m p l e  7.1.1 B e r m u d a  T r i a n g l e  

Figure 7.1 is an example of a Bermuda  Triangle, for the case where 
k = 2. It consists of a large tr iangle " tr iangulated" into a collection 
of "tiny triangles." 

For k > 2, we need a k-dimensional  version of a triangle. Fortunately, such 
a generalization already exists in the field of algebraic topology: it is called 
a k-dimensional  simplex. For example, a one-dimensional simplex is just  an 
edge, a two-dimensional  simplex is a triangle, and a three-dimensional  simplex 
is a te t rahedron.  (Beyond three dimensions, the simplices are much harder  to 
imagine.) 

So, for an a rb i t ra ry  k, we star t  with a k-dimensional  simplex in k-dimensional  
Euclidean space. This simplex contains a number  of grid points, which are the 
points in Euclidean space with integer coordinates.  The k-dimensional Bermuda 
Triangle, B, is obtained by t r iangulat ing this simplex with respect to these grid 
points, obtaining a collection of tiny k-dimensional  simplices. 

The proof involves first assigning an execution to each vertex (grid point) of 
B. The executions in which all processes s tar t  with the same input in { 0 , . . .  , k} 
and there are no failures get assigned to the k + 1 corner vertices of B. For 

instance, in the case where k = 2, we assign an execution in which all processes 
have input 0 to the lower left-hand corner, an execution in which all processes 
have input  1 to the lower r ight-hand corner, and an execution in which all pro- 
cesses have input  2 to the upper  r ight-hand corner (see Figure 7.1). Moreover, 
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for every vertex x on any face of B (of any dimension),  the only inputs appear ing 

in the execution assigned to x are those that  appear  in the executions assigned 

to the corners of the face. For instance, in the case where k = 2, all executions 

assigned to vertices on the lower edge have inputs chosen from {0, 1}. 

Next, to each vertex in B, we assign the index of some process that  is non- 

faulty in the execution assigned to that  vertex. This process assignment  is done 

in such a way that,  for each tiny simplex T, there is a single execution c~ with at 

most  f faults that  is compatible with the executions and processes assigned to 

the corners of T in the following sense: 

1. All the processes assigned to the corners of T are nonfaul ty in c~. 

2. If execution c~ ~ and process i are assigned to some corner of T, then c~ and 

c~ ~ are indistinguishable to i. 

This assignment  of executions and processes to vertices of B has some nice 

properties.  Suppose c~ and i are associated with vertex x. If x is a corner of B, 

then all processes s tar t  with the same input  in c~, so, by the validity condition, 

i must  decide on this value in c~. If x is on an external  edge of B, then in c~ 

each process s tar ts  with one of the two input values that  are associated with 

the corners of B at the two ends of the edge; the validity condition then implies 

that  i must  decide on one of these two values. More generally, if x is on any 

face (of any dimension) of B, then in c~ each process s tar ts  with one of the input  

values that  are associated with the corners of the face; the validity condition then 

implies that  i must  decide on one of these values. Finally, if x is in the interior 

of B, then i is allowed to decide on any of the k + 1 values. 

Our ability to assign executions and indices to the vertices in the manner  just  

described depends on the fact that  the number  r of rounds in each execution is at 

most  [~J, that is, that  f >_ r k. This is because the executions are assigned using a 

k-dimensional  generalization of the chain argument  in the proof of Theorem 6.33. 

The construct ion uses r process failures for each of the k dimensions. 

After having assigned executions and indices to vertices, we "color" each 

vertex with a "color" chosen from the set { 0 , . . .  , k}. Namely, we color a vertex 

x having associated execution c~ and associated process i with the color that  

corresponds to i 's decision value in c~. This coloring has the following properties: 

1. The colors of the k + 1 corners of B are all different. 

2. The color of each point  on an external  edge of B is the color of one of the 

corners at the endpoints  of the edge. 

3. More generally, the color of each point on any external face (of any dimen- 

sion) of B is the color of one of the corners of the face. 
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It turns out that colorings of this k-simplex with exactly these properties have 
been studied in the field of algebraic topology, under the name Sperner colorings. 

At this point, we can apply a remarkable combinatorial result first proved 
in 1928: Sperner's Lemma says that any Sperner coloring of a tr iangulated k- 
dimensional simplex must include at least one tiny simplex whose k + 1 corners 
are colored with all k + 1 distinct colors. In our case, this simplex corresponds 
to an execution with at most f faults, in which k + 1 processes choose k + 1 
distinct values. But this contradicts the agreement condition for the k-agreement 
problem. 

It follows that the hypothesized algorithm cannot exist, that is, there is no 
algorithm for the k-agreement problem tolerating f faults and halting in r _< L~J 
rounds. The rest of this subsection contains more details. 

De f in i t i ons .  We use the definition of a communication pattern from Section 
6.7. Now, we redefine a good communication pattern to be one in which k < r 
for all triples (i, j, k) and in which the missing triples are consistent with the 
stopping failure model. (That is, we use the first two conditions in the definition 
of a good communication pattern in Section 6.7, except that the upper bound for 
the number of rounds is now r instead of f .  For the moment, we do not limit 
the number of failures.) Based on this new definition of a good communication 
pattern, we define a run and define exec(p) for a run p in the same way as in 
Section 6.7. We also say that process i is silent after t rounds in a run if i sends 
no messages in any round numbered t + 1 or higher. 

B e r m u d a  Tr i ang le .  We begin with the k-simplex in k-dimensional Euclidean 
space whose corner vertices are the length k vectors ( 0 , . . . , 0 ) ,  (N, 0 , . . . , 0 ) ,  
(N, N, 0 , . . .  , 0 ) , . . .  , ( N , . . .  , N),  where N is a huge integer to be defined shortly. 
The Bermuda Triangle B is this simplex, together with the following triangu- 
lation into tiny simplices. The vertices of B are the grid points contained in 
the simplex, that is, the points of the form x - (Xl , . . .  ,Xk), where the vector 
components are integers between 0 and N satisfying x l > x2 > "." _> xk. The 
tiny simplices are defined as follows: pick any grid point and walk one step in the 
positive direction along each dimension, in any order. The k + 1 points visited 
by this walk define the vertices of a tiny simplex. 

E x a m p l e  7.1.2 C o o r d i n a t e s  of  v e r t i c e s  in the  B e r m u d a  T r i a n g l e  

The two-dimensional Bermuda Triangle is illustrated in Figure 7.2. 
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( N , N )  

(0, 0) ( N, 0 ) 

a tiny simplex 

F i g u r e  7.2" Two-dimensional Bermuda Triangle. 

L a b e l l i n g  B w i t h  e x e c u t i o n s  a n d  r u n s .  In this section, we describe how to 

assign executions to vertices of B (that is, to "label" the vertices with executions). 
We do this by first augmenting runs by attaching tokens to some of the (process, 

round number) pairs (i, t) in the runs. Such a token should be thought of as 
"giving permission" for process i to fail in round t or later. More than one token 

may be attached to the same pair (i, t). 

More specifically, for any 1 > 0, we define an 1-run to be a run augmented 

with exactly l tokens for each round number t, 1 < t < r, in such a way that 
if some process i fails at some round t, then there is a token attached to some 

pair ( i , t~) , t  ~ <_ t. An /-run contains a total of lr tokens. We are really only 

interested in the two cases where 1 - 1 and l - k, that is, l - runs and k-runs. 
We define a fai lure-f lee l - run  to be a n / - r u n  in which there are no failures and 
in which all tokens are attached to pairs of the form (1, t) (that is, only process 

1 has permission to fail). 
Since each augmented run is constructed from a run, each augmented run 

gives rise to an execution in an obvious way. We extend the notation exec(p), 
which was previously defined for runs, to the case where p is an augmented run. 

In order to label the vertices of B with executions, we label them with k-runs. 
We now define four operations on /-runs, each of which makes only minor 

changes. Each operation can only remove or add a single triple, change the 

value of a single process's input, or move a single token between processes with 
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adjacent  indices within the same round. These operations are very similar to the 

ones used in the proof of Theorem 6.33. The operations are defined as follows. 

1. remove(i, j, t), where i and j are process indices and t is a round number,  
l < t < r .  

This operation removes the triple ( i , j , t )  (which represents  the round t 
message from i to j )  if it is there, and has no effect otherwise. It can only 
be applied if i and j are both silent after t rounds and there is a token 
at tached to some (i, t~), t ~ _< t. 

2. add(i, j, t). 
This operat ion adds the triple (i, j, t) if it is not already there and has no 
effect otherwise. It can only be applied if i and j are both silent after t 
rounds and i is active after t -  1 rounds. 

3. change(i, v). 
This operat ion changes process i 's input  value to v and has no effect if this 
input  value is a lready v. It can only be applied if i is silent after 0 rounds 
and (i, 1) has a token. 

4. move(i, j, t). 
This operat ion moves a token from (i, t) to (j, t), where j is either i + 1 
or i - 1. It can only be applied if (i, t) has a token and if all failures have 
permission from other tokens. 

It should be obvious from the definitions that  when any of these operations is 
applied to a n / - r u n ,  the result is also a n / - r u n .  

Now, for any v C { 1 , . . . ,  k}, we can define a sequence seq(v) of remove, add, 
change, and move operations that  can be applied to any failure-free 1-run p to 
t ransform it into the failure-free 1-run in which all processes have input  v. In 
fact, the same sequence seq(v) can be used for all failure-free 1-runs p. This can 
be done using the methods in the proof of Theorem 6.33; the main difference is the 
explicit movement  of the tokens giving permission to fail. In this construction,  
inputs  of processes are changed to v one at a time, s tar t ing with process 1. As 
before, this construct ion uses r failures in r rounds. 

It turns  out that  the sequences seq(v) can be const ructed so that  they are 
isomorphic for different v - - t h a t  is, they are the same except for the choice of v. 
Now we can (finally) define the paramete r  N used in defining the size of B: N 

is simply the length of the sequence seq(v) (for any v). 
We will use several sequences seq(v) to label the vertices of B. Recall that  

the elements of the value domain are 0, 1 , . . .  ,k. For each v C {0, 1 , . . .  ,k},  
define ~-~ to be the failure-free 1-run in which all processes '  initial values are 
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F i g u r e  7.3: Labelling the Bermuda Triangle with k-runs. 

equal to v. We will apply each sequence seq(v), 1 <_ v <_ k, to the failure-free 
1-run %-1, to generate a sequence of 1-runs to use as preliminary labels for the 
vertices along the edge of B in the vth dimension (the "v-axis"). Then the k-run 
we assign to each vertex x of B will be obtained by "merging" the k 1-runs that 

are preliminary labels of the projections of x on the k axes. 

Example 7.1.3 Labelling Bermuda Triangle with k-runs 

To give some intuition for how this merging works, we give a simpli- 
fied diagram for the case where k = 2 (so V = {0, 1, 2}) and n = 5. 
See Figure 7.3. 

The diagram does not depict all the ver t ices--only those labelled 
by failure-free k-runs. Thus, the only interesting information we need 
to provide is the vector of input values for each depicted vertex. The 
k-run labelling each corner of B is a failure-free k-run in which all 
inputs are equal and where the 0s appear at the lower left, the ls 
at the lower right, and the 2s at the upper right. The chain along 
the horizontal axis is constructed by using seq(1) to span from all 0s 
to all ls, while the chain along the vertical axis is constructed using 
seq(2) to span from all ls to all 2s. 

Note the pat tern of inputs appearing in B. Along the horizontal 
axis, the processes' inputs are changed from 0 to 1 one at a time, 
starting from process 1. Along the vertical axis, the processes' in- 
puts are changed from 1 to 2 one at a time, starting from process 1. 
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In the interior of B, changes take place in both directions at the same 

time. For example, consider the indicated interior vertex with input 

vector 22100. The vectors labelling its projections on the horizon- 
tal and vertical axes are 11100 and 22111, respectively. The vector 
22100 can be changed into 22111 by changing the inputs of the last 
two processes from 0 to 1, moving horizontally in B. Similarly, the 
vector 11100 can be changed into 22100 by changing the inputs of the 
first two processes from 1 to 2, moving vertically in B. The vector 
labelling each node of B consists of values in {0, 1, 2} occurring in 
nonincreasing order. 

Now we give a formal definition for merging. The merge of the sequence 

a l , . . .  , crk of 1-runs is the k-run p defined as follows" 

1. Process i has the input value v in p, where v is the maximum value in 
{1 , . . .  , k} such that i has input value v in a~, or 0 if no such v exists. 

2. A triple ( i , j , t )  is included in p exactly if it is included in all the a~, 
l < v < k .  

3. The number of tokens assigned to a pair (i, t) in p is the sum of the number 

of tokens assigned to the pair (i, t) in all the av. 

To motivate the first condition, we reconsider the way that the merge oper- 
ation is to be used. Each av will be obtained by applying some prefix of seq(v) 
to T~_I. At some point in this sequence, the input value for process i is changed 
from v -  1 to v. If this has already happened in a~ then let us say that process 
i has "converted" in dimension v. The first condition just chooses the largest v 

(if any) such that process i has converted in dimension v. 
The second condition says that a message is missing in the new run p if and 

only if it is missing in any of the runs av being merged. The third condition just 
accumulates the tokens. It is not hard to see that the merge of a sequence of 
l -runs is in fact a k-run. 

Now we put the pieces together and define the labelling of vertices of B with k- 
runs. Let x - (Xl , . . .  ,Xk) be an arbi t rary  vertex of B. For each v E {1 , . . .  ,k}, 
let a~ be the 1-run that results from applying the first x~ operations of seq(v) to 
T~-I. Then the k-run labelling x is the merge of a l , . . .  , crk. Note that there are 
at most rk <_ f tokens in the merged run, and hence at most f failures. For the 
rest of this proof, we fix the labelling of B with k-runs (and executions). 

We end this subsection by giving some close connections among the k-runs 
labelling the vertices of any single tiny simplex T in B. Let Yo, . . .  , Yk be the ver- 
tices of T, in the order determined by the "walk" that generates T (as described 
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in the definition of the Bermuda  Triangle). Let P 0 , . . . ,  Pk be the respective 
k-runs labelling these vertices. 

The first lemma says that  any process that  is faulty in one of these k-runs 
must  have a token in all of them. 

L e m m a  7.4  If  process i is faulty in some pv, 0 < v < k, then i has a token in 

every Pv. 

P r o o f  S k e t c h .  This is because the changes in each sequence seq are so grad- 
ual, in par t icular  because movement  of a token and removal of a triple occur in 
two separate  steps. The detailed proof is left as an exercise. [3 

The second lemma limits the number  of total  failures in all of the runs. 

L e m m a  7.5 For any v C { 0 , . . . ,  k}, let Fv denote the set of processes that fail 

in p~. Let F -  UvF~. Then lFI <_ rk  ~_ f . 

P r o o f .  Left as an exercise. The proof uses Lemma 7.4. [3 

Finally, we consider labelling vertices of T with process indices. A local 
process labelling of T is an assignment  of distinct process indices i 0 , . . . ,  ik to 

the vertices Y 0 , . . . ,  Yk of T in such a way that,  for every v, i~ has no tokens 
in p~. The final impor tan t  proper ty  of the k-runs labelling the vertices of T is 
that  if there is a local process labelling of T, then T is consistent with a single 
execution. 

L e m m a  7.6 Let i 0 , . . .  , ik be a local process labelling of T. Then there is a run 
p with at most  f failures such that for all v, i~ is nonfaulty in p and exec(pv) 
and exec(p) are indistinguishable to process iv. 

P r o o f  S k e t c h .  We define p as follows. We define the initial value for each 
process i in p to be i 's initial value from any one of the p~. For 1 _< t _< r -  1, we 
include the triple (i, j, t) in p exactly if it is in all the p~. Likewise, we include 
(i, j, r),  where the recipient j is not one of the processes i~, exactly if it is in all 
the Pv. Finally, (i, j, r),  where j - iv (for a specific v) is included exactly if it is 
in p~ (for the same v). 

We leave it as an exercise to show that  p has all the needed properties: that  it 
is indeed a run, that  it has at most  f failures, and that  for each v, i~ is nonfaulty 
in p and exec(p~) and exec(p) are indistinguishable to process i~. The proof uses 

Lemma 7.5 to bound the number  of failures. [3 
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L a b e l l i n g  B w i t h  p r o c e s s  i nd i ce s .  Recall that  we are supposed to assign 

process indices to the vertices of B so that  for each tiny simplex T, there is 

an execution that  is compatible with the executions and processes labelling the 

vertices of T. Lemma 7.6 suggests a way of doing this: for each vertex of 

B, we pick a process that  has no tokens in the corresponding k-run, in such a 

way that  the processes chosen for the vertices of any tiny simplex are all distinct.  

Lemma 7.6 then implies the needed compatibi l i ty  condition for each tiny simplex. 

We define a global process labelling for B to be an assignment of processes 

to vertices of B such that  for every vertex x, the process assigned to x has no 

tokens in the k-run labelling x, and such that for each tiny simplex T, all the 

processes assigned to vertices of T are distinct.  A global process labelling for B 

yields a local process labelling for each tiny simplex of B. 

We now construct  a global process labelling for B. (Since the construct ion is 

technical, you might  prefer to skip it on a first reading and proceed directly to 

Lemma 7.10.) We begin the construct ion by associating a set live(p) of processes 

with each k-run p labelling a vertex of B and then choosing one process from 

each set live(p). The sets live(p) will satisfy the following properties: 

1. Each set live(p) consists of exactly n -  rk processes. (Since we have as- 

sumed that  n _> f + k + 1 and f >_ rk, this means that  each set live(p) 
contains at least k + 1 processes.) 

2. The processes in live(p) are chosen from among those that  do not have 
tokens in p. 

3. If p and p~ are two k-runs labelling two vertices of the same tiny simplex 

in B, and if process i E l ive(p)N live(p'), then i has the same rank in both  
sets. 1 

So fix some k-run p. It contains exactly rk tokens; let tokens be the multiset  

of process indices describing the number  of tokens associated with each process. 

We "flatten" the multiset  tokens to obtain a new multiset  newtokens with the 

same number of tokens, but  in which no more than one token is associated with 

any process. Also, any process that has a token in tokens also has a token in 

newtokens. The Flatten procedure works as follows: 

F l a t t e n  p r o c e d u r e :  

newtokens "- tokens 
while newtokens has a duplicate element do 

select such an element, say i 

1The rank of an element i within a finite totally ordered set L is the number of elements of 
L that are less than or equal to i. 



7.1. k - A G R E E M E N T  175 

if there exists j < i such that newtokens(j)= 0, then 
move a token from i to the largest such j 
else move a token from i to the smallest j > i such that newtokens(j) = 0 

Then we define live(p) to be all processes i such tha t  newtokens( i )  = O. 
It is easy to see tha t  this definition of live satisfies the first two propert ies  

required above. To see the th i rd  property,  fix a t iny simplex T, let y0 , . . .  , Yk be 

the vertices of T, in the order de te rmined  by the walk tha t  generates T, and let 

P 0 , . . . ,  Pk be the respective k-runs labelling these vertices. First ,  we note tha t ,  

when we walk the vertices of T in order, if process i ever acquires a token, then  

it always has tokens later in the walk. 

L e m m a  7.7 Let v < v ~ < v". I f  process i has no tokens in p~ but has a token 
in pv', then i has a token in pv,,. 

P r o o f .  Left as an exercise. 

Now we can prove the thi rd  proper ty  for the live sets. 

L e m m a  7.8 I f  i C l ivc(pv)N live(p~),  then i has the same rank in live(p~) and 
live(p ). 

P r o o f .  Assume wi thout  loss of generali ty tha t  v < w. Since i c live(p~) and 

i c live(pw), i has no tokens in either pv or pw. Then L e m m a  7.7 implies tha t  i 

has no tokens in any of the runs Pv , . . .  , P~. 
Since token placements  in adjacent  k-runs differ by at most  the movement  of 

one token from one process to an adjacent  process, and since i has no tokens in 

any of these runs, it follows tha t  the tota l  number  of tokens on processes smaller 

t han  i is the same, say s, in all of the runs p~ , . . .  , p~. Since i c livc(pv), the 

way the Flatten procedure works implies tha t  s < i. (If s _> i, then  the tokens 

tha t  s tar t  on processes smaller than  i would "overflow" in the Flatten procedure  

so tha t  one would end up on i.) Therefore, i is guaranteed  to have the same 

rank, i -  s, in live(pv) and live(pw). 

Now we are ready to label the vertices of B with  process indices. Let x = 

( X l , . . . ,  xk) be any vertex of B, and let p be its k-run; we choose a par t icular  

process index from the set live(p). Namely, let plane(x)  - E i = l k  xi (mod k + 1)', 

we label x with the process having rank plane(x)  in live(p). This choice is 

mot iva ted  by the following fact about  B: 

L e m m a  7.9 I f  x and y are dist inct  vertices of the same t iny simplex, then 

plan ( ) pla  (y). 
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Now we obtain our goal: 

L e m m a  7.10 This labelling of B with process indices is a global process la- 
belling. 

P r o o f .  Because the index for each vertex x is chosen from the set live(p), where 
p is the associated k-run, it must be that that index has no tokens in p. For any 
fixed tiny simplex T, Lemmas 7.8 and 7.9 together imply that the chosen indices 
are all distinct. D 

We summarize what we know about the labellings we have produced: 

L e m m a  7.11 The given labellings of B with k-runs and processes have the fol- 
lowing property. For every tiny simplex T with run labels P0, . . .  , Pk and process 
labels i 0 , . . . ,  ik, there is a run p with at most f failures, such that for all v, iv 
is nonfaulty in p and exec(pv) and exec(p) are indistinguishable to process iv. 

P r o o f .  This follows from Lemmas 7.6 and 7.10. D 

S p e r n e r ' s  L e m m a .  We are nearly done! It remains only to state Sperner's 
Lemma (for the special case of the Bermuda Triangle) and to apply it to obtain a 
contradiction. This will yield the lower bound on the number of rounds required 
to solve k-agreement. A Sperner coloring of B assigns one of a set of k + 1 colors 
to each vertex of B so that 

1. The colors of the k + 1 corners of B are all different. 

2. The color of each point on an external edge of B is the color of one of the 
corners at the endpoints of the edge. 

3. More generally, the color of each interior point on an external face (of any 
dimension) of B is the color of one of the adjacent corners of B. 

Sperner colorings have a remarkable property: there must be at least one tiny 
simplex whose k + 1 vertices are colored with all k + 1 colors. 

L e m m a  7.12 ( S p e r n e r ' s  L e m m a  for  B) For any Sperner coloring of B,  there 
is at least one tiny simplex in B whose k + 1 corners are all colored with distinct 
Colors. 

Now recall that A is the hypothesized k-agreement algorithm, assumed to 
tolerate f faults and halt in at most [/~J rounds. We define a coloring CA of B as 
follows. Given a vertex x labelled with run p and process i, color x with process 

i's decision in the execution exec(p) of A. 
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Lemma 7.13 If A is an algorithm for k-agreement tolerating f faults and halt- 
ing in L~J rounds, then CA is a Sperner coloring of B. 

P r o o f .  By the validity condition of k-agreement. [3 

Now we can prove the main theorem: 

Theorem 7.14 Suppose that n >_ f +k+l .  Then there is no n-process algorithm 
for k-agreement that tolerates f faults, in which all nonfaulty processes always 
decide within L Zk J rounds. 

P r o o f .  Lemma 7.13 implies that CA is a Sperner coloring, so Sperner's Lemma, 
Lemma 7.12, implies that there is a tiny simplex T, all of whose vertices are 

colored distinctly by CA. 
Suppose that T's  k-run labels are P0, �9 �9 �9 , Pk and its process labels are i0, �9 �9 �9 , ik. 

By the definition of CA, this means that all k + 1 different decisions are produced 
by the k + 1 processes i~ in their respective executions exec(p~). But Lemma 7.11 
implies that there is a single run p with at most f failures, such that for all v, 
iv is nonfaulty in p and exec(pv) and exec(p) are indistinguishable to process i~. 
But this implies that in p, the k + 1 processes i0 , . . .  , ik decide on k + 1 distinct 
values, violating the agreement condition for the k-agreement problem. F1 

7.2 Approximate Agreement 

Now we consider the approximate agreement problem in the presence of Byzan- 
tine failures. In this problem, the processes start  with real-valued inputs and 
are supposed to eventually decide on real-valued outputs. They are permit ted to 
send real-valued data in messages. Instead of having to agree exactly, as in the 
ordinary agreement problem, this time the requirement is just that they agree to 
within a small positive real-valued tolerance c. More precisely, the requirements 
are 

Agreement" The decision values of any pair of nonfaulty processes are within 

c of each other. 

Va l id i t y :  Any decision value for a nonfaulty process is within the range of the 
initial values of the nonfaulty processes. 

Termination: All nonfaulty processes eventually decide. 
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This problem arises, for example, in clock synchronization algorithms, where 
processes at tempt to maintain clock values that are close but do not necessarily 
agree exactly. Many real distributed network algorithms work in the presence of 
approximately synchronized clocks, so approximate agreement on clock values is 
usually sufficient. 

Here, we consider the approximate agreement problem in complete graphs 
only. One way of solving the problem is by using an ordinary Byzantine agree- 
ment algorithm as a subroutine. This solution assumes that n > 3f. 

ByzApproxAgreement algorithm" 

The processes run an ordinary Byzantine agreement algorithm to decide 
on a value for each process. All these algorithms run in parallel. In the 
algorithm for process i, i begins by sending its message to all processes 
in round 1, then all processes use the received values as their inputs in 
a Byzantine agreement algorithm. When these algorithms terminate, all 
nonfaulty processes have the same decision values for all processes. Each 
chooses the [~ J th largest value in the multiset of decision values as its own 
final decision value. 

To see that this works, note that if i is nonfaulty, then the validity condition 
for Byzantine agreement guarantees that the value obtained by all nonfaulty 
processes for i is i's actual input value. Since n > 3f,  it follows that the middle 
value in the multiset must be in the range of the initial values of the nonfaulty 
processes. 

Theorem 7.15 ByzApproxAgreement solves the approximate agreement prob- 
lem for an n-node complete graph, if n > 3 f . 

Now we present a second solution, not using Byzantine agreement. The 
main reason we present this solution is that it has an easy extension to the 
asynchronous network model, which we present in Chapter 21. In contrast, the 
Byzantine agreement problem cannot be solved in asynchronous networks. The 
second solution also has the property that it sometimes terminates in fewer than 
the number of rounds required for Byzantine agreement, depending on how far 
apart  the initial values of nonfaulty processes are. The algorithm is based on 
successive approximation. For simplicity, we describe a nonterminating version of 
the algorithm, then discuss termination separately. This algorithm again assumes 

that n > 3f. 
We need a little notation and terminology: First, if U is a finite multiset of 

reals with at least 2f  elements, and u l , . . . ,  uk is an ordering of the elements 
of U in nondecreasing order, then let reduce(U) denote the result of removing 
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the f smallest and f largest elements from U, tha t  is, the multiset  consisting of 
U/+l,  �9 �9 �9 , uk- I .  Also, if U is a nonempty  finite multiset  of reals, and U l , . . .  , Uk is 
again an ordering of the elements of U in nondecreasing order, then let select(U) 
be the multiset  consisting of Ul, U/+l,  u2 f+ l , . .  �9 tha t  is, the smallest element of 
U and every f t h  element thereafter.  Finally, if U is a nonempty  finite multiset  
of reals, then mean(U) is just  the mean of the elements in U. 

We also say tha t  the range of a nonempty  finite multiset  of reals is the 
smallest interval containing all the elements, and the width of such a multiset  is 
the size of the range interval. 

The second solution is as follows: 

ConvergeApproxAgreement algorithm: 

Process i maintains  a variable val containing its latest estimate.  Initially, 
vali contains i's initial value. At each round, process i does the following. 

First, it broadcasts  its val value to all processes, including itself. 2 Then 
it collects all the values it has received at tha t  round into a multiset  W; 
if i does not receive a value from some other process, it simply picks 
some arbi t rary  default value to assign to tha t  process in the multiset,  thus 
ensuring tha t  I W I -  n. 

Then, process / s e t s  val to mean(select(reduce(W))). Tha t  is, process i 
throws out the f smallest and f largest elements of W. From what  is 
left, i selects only the smallest element and every f t h  element thereafter.  
Finally, val is set to the average (mean) of the selected elements. 

We claim tha t  at any round, all the nonfaulty processes' vals are in the range 
of the nonfaulty processes' vals just  prior to the round. Moreover, at each round, 
the width of the multiset  of nonfaulty processes' vals is reduced by a factor of 
at least ~ ~ / - - ~ J  + 1. If n > 3f ,  this is greater than  1. 

Lemma 7.16 Suppose that vali = v just after round r of an execution of 
ConvergeApproxAgreement, where i is a nonfaulty process. Then v is in the 
range of the nonfaulty processes' vals just before round r. 

P r o o f .  If Wi is the multiset  collected by process i at round r, then there are 
at most  f elements of W / t h a t  are not values sent by nonfaulty processes. Then 
all the elements of reduce(Wi) are in the range of nonfaulty processes' vals just  
prior to round r. It follows tha t  the same is true for mean(select(reduce(Wi))), 
which is the new value of vali. D 

2As usual, sending to itself is simulated by a local transition. 
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L e m m a  7.17 Suppose that vali = v and vali, = v t just  after round r of an exe- 
cution of ConvergeApproxAgreement, where i and i ~ are both nonfaulty processes. 
Then 

d 
,v v'l< [o 1j§ 

where d is the width of the range of the nonfaulty processes' vals just before 
round r. 

P r o o f .  Let Wi and Wi, be the respective multisets collected by processes i and 
i' in round r. Let Si and Si, be the respective multisets select(reduce(Wi)) and 
select(reduce(Wi,)). Let c -  L~-~f- lJ  + 1; note that c is exactly the number of 
elements in Si and in Si,. Let the elements of Si be denoted by u 1 , . . . ,  u~ and 

both in nondecreasing order. We begin with a claim those of Si, by u ~ , . . . , u ~ ,  
that says that the reduced multisets differ in at most f elements. 

C l a i m  7.18 Ireduce(W~)- reduce(Wg,)l <_ f . 

P r o o f .  Since nonfaulty processes contribute the same value to both Wi and 
Wi,, we have that I W i -  Wi, I <- f .  We can show that removing a smallest element 
from both multisets does not increase the number of elements in the difference, 
and we can show the same for removing a largest element. Using these two facts 
f times apiece yields the result. D 

Claim 7.18 can be used to show 

I ' < Uj f o r  all j 1 < j < c -  1 C l a i m  7.19 Uj ~ Uj+ 1 and Uj _ +1 , _ _ �9 

P r o o f .  We show the first claim only; the second is symmetric.  Note that uj is 
the ( ( j -  1)f  + 1)st smallest element of reduce(Wi), and u}+ 1 is the ( j r  + 1)st 
smallest element of reduce(W~,). Since, by Claim 7.18, there are at most f 
elements of reduce(Wi,) that are not elements of reduce(Wi), it must be that 

/ V1 l t j  ~ t t j +  1. 

Now we finish the proof of Lemma 7.17 by calculating the required bound. 
We have that 

Iv - -  vlI Imean( )- mean( ,)l 

- -  --1 I (y] .~=l(~t  j --  U}))J  
C 

1 I 
~_ - ( E ~ = l l U  j - ujl ) 

c 

_ _  _ _  C I 1 ( ~ j - - 1  ( m a x  (uj,  u}) -- m i n  (uj,  u j ) ) ) .  
c 
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! ! 
By Claim 7.19, max (uj, uj) <_ min (ltj+l, ttj+l) for all j ,  1 _< j _< c -  1, so 

this latter expression is less than or equal to 

1 (Ej= l (min(u j+ l  ' , 1 , _ c- , Uj+l) - min(uj ,  uj))) + - ( m a x  (Uc, tic) - min(uc, Uc) ), 
C C 

which collapses to 

_1 (max (Uc, U~c) - min (it1, Ul) ) 
C 

! But all of the values Uc, u c, Ul, and u~ are in the range of the nonfaulty processes'  
vals just  before round r, since all elements of reduce(Wi) and reduce(Wi,) are in 

d this range. So this last expression is less than or equal to c, as needed. 

T e r m i n a t i o n .  We convert ConvergeApproxAgreement to a terminating algo- 
rithm, that is, one in which all processes eventually decide. (In fact, all processes 
eventually halt.) Namely, each nonfaulty process uses the range of all the values 
it receives at round 1 to compute a round number by which it is sure that the 
vals of any two nonfaulty processes will be at most e apart .  Each process can do 
this because it knows the value of ~ and the guaranteed rate of convergence, and 
furthermore, it knows that the range of values it receives at round 1 includes the 
initial values of all the nonfaulty processes. Different nonfaulty processes might 
compute different round numbers, however. 

Any process i that reaches its computed round decides on its own current 
val. After doing this, process i broadcasts its val with a special halting tag and 
then halts. After any process j receives a val with a halting tag from i, it uses 
this val as its message from i, not only for the current round, but also for all 
future rounds (until j itself decides to halt, on the basis of j ' s  own computed 
round number).  

Although nonfaulty processes might compute different round numbers, it 
should be clear that the smallest such estimate is correct. Thus, at the time 
the first nonfaulty process halts, the range of vals is already sufficiently small. 
At subsequent rounds, the range of vals of nonfaulty processes never increases, 
although there is no guarantee that it continues to decrease. 

T h e o r e m  7.20 .ConvergeApproxAgreement, with termination added as above, 
solves the approximate agreement problem for an n-node complete graph, if 
n > 3 f .  

C o m p l e x i t y  a n a l y s i s .  There is no upper bound depending only on n, f ,  c 
and the width of the multiset of nonfaulty processes' initial values, for the time 
for all nonfaulty processes to decide in the ConvergeApproxAgreement algorithm. 
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This is because faulty processes can send arbitrary values at round 1, which can 
cause the nonfaulty processes to compute arbitrarily large round numbers for 
termination. 

The exercises discuss bounds on the number of processes and the connectivity 
needed to solve the approximate agreement problem. We will revisit this problem 
in Chapter 21, in the asynchronous network setting. 

7.3 The  C o m m i t  P r o b l e m  

In this, the final section on distributed consensus problems in synchronous sys- 
tems, we present some of the key ideas about the distributed database commit  
problem. As discussed in Section 5.1, the problem arises when a collection of 
processes participate in the processing of a database transaction. After this 
processing, each process arrives at an initial "opinion" about whether the trans- 
action ought to be committed (i.e., its results made permanent and released for 
the use of other transactions) or aborted (i.e., its results discarded). A process 
will generally favor committing the transaction if all its local computation on be- 
half of that transaction has been successfully completed, and otherwise will favor 
aborting the transaction. The processes are supposed to communicate and even- 
tually agree on one of the outcomes, commit  or abort. If possible, the outcome 
should be commit.  

Solutions to this problem have been designed for real distributed networks, 
in which there can be a combination of process and link failures. However, the 
results in Chapter 5 imply that there can be no solution in the case of unlimited 
link failures. Some limitation must therefore be assumed on message loss. 

7 .3 .1  T h e  P r o b l e m  

We consider a simplified version of the commit problem, for networks in which 
there is no message loss, but only process failures. If you are interested in 
implementing the algorithms in this chapter in a real network, you will have 
to add other mechanisms, such as repeated retransmissions, to cope with lost 
messages. We allow any number of process stopping failures. 

We assume that the input domain is {0, 1}, where 1 represents commit and 
0 represents abort. We restrict attention here to the case where the network is a 
complete graph. The correctness conditions are 

Agreement: No two processes decide on different values. 
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Validity: 

1. If any process starts with 0, then 0 is the only possible decision value. 

2. If all processes start with 1 and there are no failures, then 1 is the 
only possible decision value. 

T e r m i n a t i o n :  This comes in two flavors. The weak termination condition says 
that if there are no failures then all processes eventually decide. The strong 
termination condition (also known as the non-blocking condition) says that 
all nonfaulty processes eventually decide. 

Commit  algorithms that satisfy the strong termination condition are sometimes 
called non-blocking commit algorithms, while commit algorithms that satisfy the 
weak termination condition but not the strong one are sometimes called blocking 
commit algorithms. 

Notice that our agreement condition is that no two processes decide on dif- 
ferent values. Thus, we do not allow even a failed process to decide differently 
from other processes. We require this because, in practical uses of a commit 
protocol, a process might fail and later recover. Suppose, for example, that a 
process i decides commit before it fails, and that later, other processes decide 
abort. If process i recovers and retains its commit decision, then there would be 
an inconsistency. 

The formal problem statement is similar to two others we have already consid- 
ered: the coordinated attack problem in Section 5.1 and the agreement problem 
for stopping failures in Section 6.1. The most important  difference between the 
commit problem and the coordinated attack problem is that we are here consid- 
ering process failure and not link failure; there is also a difference in the validity 
condition. The important  differences between the commit problem and the stop- 
ping agreement problem are, first, the particular choice of validity condition, 
and, second, the consideration of a weaker notion of termination. Results in 
Section 6.7 about the stopping agreement problem imply a lower bound of n -  1 
on the number of rounds needed to solve the commit problem with the strong 
termination condition. (Note that the proof of Theorem 6.33 still works with the 
commit validity conditions.) 

In the rest of this section, we give versions of two standard practical commit 
algorithms (for the simplified setting with only process faults). The first, two- 
phase commit, is a blocking algorithm, while the second, three-phase commit, is 
non-blocking. We then give a simple lower bound on the number of messages 
needed to solve the problem, even if only weak termination is required. 
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7 . 3 . 2  T w o - P h a s e  C o m m i t  

The bes t -known practical commit  a lgor i thm is two-phase commit; without  any 

embell ishments,  this simple algori thm guarantees  only weak terminat ion.  

T w o P h a s e C o r n r n i t  a l g o r i t h m "  

The algori thm assumes a dist inguished process, say process 1. 

Round 1: All processes except for process 1 send their initial values to 

process 1, and any process whose initial value is 0 decides 0. Process 1 

collects all these values, plus its own initial value, into a vector. If all 

posit ions in this vector are filled in with ls, then process 1 decides 1. 

O the rwise - - tha t  is, if there is some posit ion in the vector that  contains 0 

or else some posit ion that  is not filled in (because no message was received 

from the corresponding process ) - -process  1 decides 0. 

Round 2: Process 1 broadcasts  its decision to all the other processes. Any 

process other than process 1 that  receives a message at round 2 and has not 

already decided at round 1 decides on the value it receives in that  message. 

See Figure 7.4 for an i l lustration of the communicat ion pa t te rn  used in the failure- 

free runs of TwoPhaseCornmit. a 

T h e o r e m  7.21 TwoPhaseCommit solves the commit problem with the weak ter- 
mination condition. 

P r o o f .  Agreement,  validity, and weak terminat ion are all easy to show. El] 

However, TwoPhaseCornrnit does not satisfy the strong terminat ion condi- 

tion, that  is, it is a blocking algorithm. This is because if process 1 fails before 

beginning its broadcast  in round 2, then no nonfaulty process whose initial value 

is 1 ever decides. In practice, if process 1 fails, then the remaining processes usu- 

ally carry out some sort of termination protocol among themselves and sometimes 

manage to decide. For example, if process 1 fails but  some other process, i, has 

already decided 0 in round 1, then process i can inform the remaining nonfaul ty 

processes that  its decision is 0, and they can also safely decide 0. But  the ter- 

minat ion protocol cannot  succeed in all cases. For example, suppose that  all 

processes except for 1 s tar t  with input  1, but  process 1 fails before sending any 

a Our round designation does not correspond exactly to the usual designation of phases for 
the two-phase commit protocol. Usually, an extra round is added at the beginning, in which 
process 1 requests the commit or abort values from the other processes. Phase 1 then consists 
of this extra round plus our round 1. We do not need the extra round for our simplified model 
and problem statement. 
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F i g u r e  7.4: Communication pattern in TwoPhaseCommit. 

messages. Then no other process ever learns process l ' s  initial value, so, because 
of the validity condition, no process can decide 1. On the other hand, no process 
can decide 0, since as far as any other process can tell, it might be that process 
1 has already decided 1 just before failing, and the inconsistency would violate 
the agreement condition. 

C o m p l e x i t y  a n a l y s i s .  TwoPhaseCommit takes only two rounds. Recall that 
Theorem 6.33 gives a lower bound of f + 1 on the number of rounds for stopping 
agreement. The time bound for TwoPhaseCommit does not contradict this lower 
bound, because TwoPhaseCommit satisfies only the weak termination condition. 
The communication complexity, as measured by the worst-case number of non- 
null messages that are sent in any execution, is 2 n -  2; in particular,  this number 
of messages is sent in a failure-free execution. 

7 . 3 .3  T h r e e - P h a s e  C o m m i t  

Now we describe the ThreePhaseCommit algorithm; this is an embellishment of 

the TwoPhaseCommit algorithm that guarantees strong termination. 
The key is simply that process 1 does not decide 1 unless every process 

that has not yet failed is "ready" to decide 1. Making sure they are ready 
requires an extra round. We first describe and analyze the first three rounds 
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of the algorithm. The rest of the algorithm, needed to obtain the non-blocking 
property, is described afterward. 

T h r e e P h a s e C o m m i t  algorithm, first three rounds" 

Round 1: All processes except for 1 send their initial values to process 1, 
and any process whose initial value is 0 decides 0. Process 1 collects all 
these values, plus its own initial value, into a vector. If all positions in this 
vector are filled in with ls, then process 1 becomes ready but does not yet 
decide. O the rwi se~ tha t  is, if there is some position that contains 0 or else 
some position that is not filled in (because no message was received from 
the corresponding process)- -process  1 decides 0. 

Round 2: If process 1 has decided 0, then it broadcasts decide(O). If not, 
then process 1 broadcasts ready. Any process that receives decide(O) de- 
cides 0. Any process that receives ready becomes ready. Process 1 decides 
1 if it has not already decided. 

Round 3: If process 1 has decided 1, it broadcasts decide(i). Any process 
that receives decide(I) decides 1. 

See Figure 7.5 for an illustration of the communication pat tern used in the failure- 
free runs of ThreePhaseCommit. 4 

Before presenting the termination protocol, we analyze the situation after the 
first three rounds. We classify the states of each process (failed or not) into four 
exclusive and exhaustive categories: 

1. decO: Those in which the process has decided 0. 

2. dec1: Those in which the process has decided 1. 

3. ready: Those in which the process has not decided, but is ready. 

4. uncertain: Those in which the process has not decided and is not ready. 

The key properties of ThreePhaseCommit are expressed by the following 
lemma. It describes certain combinations of states that cannot coexist. 

L e m m a  7.22 After three rounds of ThreePhaseCommit, the following are true: 

1. If  any process's state is in ready or dec1, then all processes' initial values 
are 1. 

4Again, our round designation does not correspond exactly to the usual designation of phases 
for the three-phase commit protocol. An extra request round is usually added at the beginning, 
as well as some explicit acknowledgments. 
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F i g u r e  7.5- Communication pattern in ThreePhaseCommit. 

2. I f  any process's state is in decO, then no process is in dec1, and no non- 
failed process is in ready. 

3. I f  any process's state is in dec1, then no process is in decO, and no non- 
failed process is in uncertain. 

P r o o f .  Straightforward. The most interesting part of the proof is the proof 
of the third condition. For this, we note that process 1 can only decide 1 at 
the end of round 2, after it has already broadcast ready messages. This means 
that process 1 knows at the end of round 2 that each other process has either 
received and processed the ready, thereby entering the ready state, or else has 
failed. (The synchrony of the model is important  here.) [S] 

Now we can prove that most of the conditions of interest hold after the first 
three rounds. 

L e m m a  7.23 After  three rounds of ThreePhaseCommit,  the following are true: 

1. The agreement condition holds. 

2. The validity condition holds. 

3. I f  process 1 has not failed, then all non-failed processes have decided. 
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P r o o f .  The agreement condition follows from Lemma 7.22, as does half of the 
validity condit ion--the half that says that if some process starts with 0, then 0 
is the only possible decision value. The other half of the validity condition can 
be proved by inspection. 

Finally, if process I has not failed, then we claim that every non-failed process 
has decided. This is because process 1 cannot be prevented from deciding by 
any actions of the other processes, and once 1 decides, it immediately broadcasts 
its decision to the other processes, who decide in the same way. ff] 

These three rounds alone are not enough to solve the non-blocking commit 
problem, however, because they do not guarantee strong termination. If process 
1 does not fail, then every nonfaulty process decides, as noted in Lemma 7.23. 
But if process 1 fails, it is possible that the other processes might be left in an 
undecided state. To take care of this case, the remaining processes must execute 
a termination protocol after the first three rounds. The precise details can vary 
somewhat; we describe one possibility below. 

T h r e e P h a s e C o m m i t ,  t e r m i n a t i o n  p r o t o c o l :  

Round ~: All (not yet failed) processes send their current status, 
either decO, dec1, ready, or uncertain, to process 2. Process 2 collects 
all these status values, plus its own status, into a vector. Not all the 
positions in the vector need be filled in--process 2 just ignores those 
that are not. If the vector contains any decO values and process 2 has 
not already decided, then process 2 decides 0. If the vector contains 
any dec1 values and process 2 has not already decided, then process 
2 decides 1. If all the filled-in positions in the vector contain the value 
uncertain, then process 2 decides 0. Otherwise-- that  is, if the only 
values in the vector are uncertain and ready and there is at least one 
ready--process 2 becomes ready but does not yet decide. 

Round 5: In this and the next round, process 2 behaves similarly to 
process 1 in rounds 2 and 3. If process 2 has (ever) decided, then 
it broadcasts its decision, in a decide message. If not, then process 
2 broadcasts ready. Any process that receives decide(O) or decide(I) 
and has not already decided, decides 0 or 1, as indicated. Any process 
that receives ready becomes ready. Process 2 decides 1 if it has not 
already decided. 

Round 6: If process 2 has decided 1, it broadcasts decide(I). Any 
process that receives decide(i), and has not already decided, de- 
cides 1. 
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After round 6, the protocol then continues with three similar rounds 
coordinated by each of processes 3 , . . . ,  n. 

T h e o r e m  7.24 The complete ThreePhaseCommit algorithm, including the ter- 
mination protocol, is a non-blocking commit algorithm. 

P r o o f  Ske tch .  We first claim that the three properties listed in the statement 
of Lemma 7.22 hold after any number of rounds of the full ThreePhaseCommit 
algorithm, not just after three rounds as claimed. This can be shown by induction 
on the number of rounds. 

Then, agreement and half of the validity condit ion--that  if some process 
starts with 0, then 0 is the only possible decision value--follow from the extended 
Lemma 7.22, as before. The other half of the validity condition is true, because 
if there are no failures, all processes decide within the first three rounds. 

We argue the strong termination property. If all processes fail, then this 
property is vacuously true. Otherwise, suppose that i is a nonfaulty process. 
Then during the time when i is the coordinator, every nonfaulty process decides. 

D 

C o m p l e x i t y  ana lys i s .  ThreePhaseCommit, in the version presented here, re- 
quires 3n rounds. Even if we permit all the processes to fail, this is still much 
higher than the bound of approximately n rounds that is generally achieved by 
stopping agreement algorithms of the sort studied in Chapter 6. Of course, the 
stopping agreement algorithms yield a different validity condition, but it is pos- 
sible to modify them slightly to achieve the commit validity condition. So why 
are algorithms like ThreePhaseCommit considered better in practice? 

The main reason is that the ThreePhaseCommit algorithm can be tailored 
to yield low complexity in the failure-free case. If no processes fail, then all 
processes decide by round 3. Then it is possible to add a simple protocol whereby 
processes can detect that every process has decided and can then discontinue 
participation in the rest of the termination protocol. With this addition, the 
entire algorithm requires only a small constant number of rounds and only O (n) 
messages. 

7 .3 .4  L o w e r  B o u n d  o n  t h e  N u m b e r  o f  M e s s a g e s  

We close this chapter (and Part  I) by considering the number of messages that 
must be sent in order to solve the commit problem. Recall that the TwoPhase- 
Commit algorithm uses 2 n -  2 messages in the failure-free case. ThreePhase- 
Commit uses somewhat more, but still O (n) if the algorithm is modified to 
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terminate early. In this section, we prove that it is not possible to do better than 
2n - 2 in the failure-free case, even if we are satisfied with a blocking algorithm. 

T h e o r e m  7.25 Any algorithm that solves the commit problem, even with weak 
termination, uses at least 2 n -  2 messages in the failure-free execution in which 
all inputs are 1. 

For the rest of this section, we fix a particular commit algorithm A and let 
Ctl be the failure-free execution of A in which all inputs are 1. Our object is to 
show that Ctl must contain at least 2 n -  2 messages. 

We again use the definition of a communication pattern from Section 6.7. 

This time, we use a communication pat tern to describe the set of messages that 
are sent in a failure-free execution. (We do not assume, as we have done in the 

past, that all processes send to all other processes at every round.) From any 
failure-free execution c~ of A, we extract  a communication pat tern patt(c~) in the 
obvious way. 

We also use the definition of the ordering <~ for a communication pat tern 
~/, given in Section 5.2.2, to capture the flow of information between various 

processes at various times. We say that process i affects process j in a commu- 
nication pat tern ~ provided that (i, 0) <_~ (j, k) for some k. The key idea in the 
lower bound is stated in the following lemma. 

L e m m a  7.26 For every two processes i and j ,  i affects j in patt(c~l). 

E x a m p l e  7.3.1 L o w e r  b o u n d  for  c o m m i t  

Before proving Lemma 7.26, we give an example to show why it is 

true. Suppose that Ct I (the failure-free execution of A with all inputs 
equal to 1) includes exactly the messages depicted in the left-hand 
diagram in Figure 7.6. 

By the validity and weak termination conditions, all processes 
must eventually decide 1 in a l .  Note that in patt(al) ,  process 4 
does not affect process 1; let us see what problems arise as a result. 

Consider an alternative execution c~, which is the same as Ctl except 
that process 4's input is 0 and every process fails just after it first 
gets affected by process 4. Execution c~ is depicted in the right- 
hand diagram in Figure 7.6; the failures are indicated by Xs. It is 

1 
straightforward to show that Ct 1 ~ Ct l ,  which implies that process 1 
also decides 1 in c~. But this violates the validity condition for c~, 
yielding a contradiction. 

The proof of Lemma 7.26 uses the same argument as in Example 7.3.1. 
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F i g u r e  7.6: Messages sent in al  and ct 1. 

P r o o f .  By the validity and weak terminat ion conditions, all processes must  

eventually decide 1 in C~l. Suppose that  the lemma is false and fix two processes, 

i and j ,  such that  i does not affect j in patt(c~l). By definition, it must  be that  

i -r j .  Const ruc t  c~ by changing process i 's input to 0 and causing every process 

to fail just  after it first gets affected by process i. Then C~l j c~, so process j 

also decides 1 in c~. This violates the validity condition, yielding a contradict ion.  
D 

In order to complete the proof of Theorem 7.25, we must  s imply show that  

the requirement  that  every process affect every other process implies that  there 

must  be at least 2 n -  2 total  messages. We use a lemma about  communicat ion 

patterns:  

L e m m a  7 .27  Let ~ be any communicat ion  pattern. I f  in ~/, each of a set of 

m > 1 processes affects each of the n processes in the system, then there are at 

least n + m -  2 messages (triples) in ~/. 

P r o o f .  By induction on m .  

Basis: m = 1. Let i be the single process that  we have assumed affects each 

of the n processes. Since i affects all n processes, 7 must  contain some message 

to each of the n -  1 processes other than i. This is a total  of at least n -  1 

messages, as needed. 

Inductive step: We assume the lemma holds for m and show it for rn + 1. 

Let I be a set of m + 1 processes that  affect all n processes in 7. Wi thou t  

loss of generality, we can assume that  in round 1, at least one of the processes 

in I sends a message to some process. For if not, then we could remove all 
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the initial rounds in which no process in I sends a message; in the remaining 
communication pattern, all processes in I would still affect all n processes. Let 
i be some process in I that sends a message at round 1 in 7. 

Now consider the communication pattern 7', obtained from 7 by removing 
a single round 1 message sent by i. Then all processes in I -  {i} affect all n 
processes in 7'. By induction, there are at least n + m -  2 messages in 7'- So 7 
contains at least n + m -  1 = n + (m + 1) - 2 messages, as needed. F1 

Now we can complete the proof of Theorem 7.25. 

Proof  (of Theorem 7.25).  By Lemma 7.26, for every two processes i and j ,  
i affects j in patt(c~l). Then Lemma 7.27 implies that there are at least 2 n -  2 
messages in patt( a l ) . [--] 

7.4 Bibl iographic  Notes  

The k-agreement problem has usually been called the "k-set agreement problem" 
in the literature. The problem was first introduced by Chaudhuri in [73] as a 
natural extension of the previously well-studied ordinary agreement problem. 
The FloodMin  algorithm is taken from the work of Chaudhuri, Herlihy, Lynch, 
and Tuttle [75] and is based on an algorithm originally designed by Chaudhuri 
[73]. The lower bound argument for k-agreement is taken from [75, 76, 77]. 
Background for the algebraic topology used in the lower bound argument appears 
in Spanier's classical book on algebraic topology [266]. Sperner's Lemma was 
originally developed by Sperner [267] and is discussed in [266]. 

The work on approximate agreement is taken from a paper by Dolev, Lynch, 
Pinter, Stark, and Weihl [98]. Other work on this problem has been done by 
Fekete [110, 111] and by Attiya, Lynch, and Shavit [241. The material on the 
commit problem, as well as the T w o P h a s e C o m m i t  and T h r e e P h a s e C o m m i t  al- 
gorithms, is taken from a book by Bernstein, Hadzilacos, and Goodman on 
database theory [50]. That  book goes much further than this one in discussing 
practical implementation issues for the protocols, including how to handle recov- 
cry of failed processes. The lower bound on the number of messages for commit 
is taken from work by Dwork and Skeen [106]. 

7.5 Exercises  

7.1. If the FloodMin  algorithm for k-agreement is run for only L~J rounds in- 

stead of L~J + 1, what is the largest number of different decisions that can 
be reached by nonfaulty processes? 
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7.2. Give a good upper bound for the length of sequence seq(v), in the proof 
of Theorem 7.14. In order to do this, you will need to describe an explicit 
construction for the sequence. 

7.3. Prove that the merge of a sequence of l-runs is in fact a k-run. This 
involves showing that the conditions required in the definition of a run are 
satisfied, as well as the conditions involving the tokens. 

7.4. Prove Lemma 7.4. 

7.5. Prove Lemma 7.5. 

7.6. Prove Lemma 7.6. 

7.7. Prove Lemma 7.7. 

7.8. L e t n = 5 ,  k = f = 2 ,  a n d r = l .  

(a) 

(b) 

(c) 

Describe the Bermuda Triangle for these parameter values in detail, 
as well as its labelling with k-runs and process indices. 

Consider the trivial algorithm A that works as follows: all processes 
exchange values once, and each chooses the minimum value it receives. 
Describe the Sperner coloring CA. 

Can you locate a particular tiny simplex in which three different values 
are decided upon, for algorithm A? 

7.9. Fix any n and f ,  where n > 3f,  any e, any w E R >~ and any r C N. De- 
scribe a particular execution of the ConvergeApproxAgreement algorithm 
with termination, for n, f ,  and e, in which the multiset of nonfaulty pro- 
cesses' initial values has width at most w and in which termination takes 
more than r rounds. 

7.10. Research Question: Modify ConvergeApproxAgreement so that the time 
until all processes decide is bounded above by a function of n, f ,  c, and 
the width w of the multiset of nonfaulty processes' initial values. 

7.11. Suppose that, instead of computing mean(select(reduce(W)))in Converge- 
ApproxAgreement, the processes instead compute one of the following: 

(b) mean(reduce(W)) 
(c) m an(W) 
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Does the algorithm still solve the approximate agreement problem? Why 
or why not? 

7.12. Prove that the approximate agreement problem can be solved in a network 
graph G, tolerating f Byzantine faults, if and only if both of the following 
hold: 

(a) n > 3f  

(b) conn(G) > 2f  

7.13. Design an approximate agreement algorithm for the case of stopping fail- 
ures. 

7.14. 

(a) Try to minimize the number of processes needed, relative to the num- 
ber of faults. 

(b) Try to minimize the number of rounds required. 

Formulate a variant of the approximate agreement problem that uses a fixed 
number r of rounds and in which e is not predetermined. Each process 
starts with a real value, as before. After r rounds, the processes should 
output their final values. The validity condition is the same as before. The 
object is now to ensure the best possible agreement, expressed as an upper 
bound on the ratio of the width of the nonfaulty processes' final values to 
the width of the nonfaulty processes' initial values. 

(a) What  ratio is achieved by the ConvergeApproxAgreement algorithm 
in this setting? 

(b) Prove a lower bound on the achievable ratio, in terms of n, f ,  and r. 
(Hint: Use chain argument ideas similar to those used in the proof 
of Theorem 6.33. Your upper and lower bounds probably will not 
match.) 

7.15. Write code for the complete ThreePhaseCommit algorithm (including the 
termination protocol). 

7.16. Prove carefully that Lemma 7.22 extends to any number of rounds of Three- 
PhaseCommit. 

7.17. Give a careful description of a modification to the ThreePhaseCommit al- 
gorithm that permits processes to decide and halt quickly in the failure-free 
case. Your algorithm should use a small constant number of rounds and 
O (n) messages, in the failure-free case. Prove its correctness. 
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7.18. Design an algorithm in the style of the stopping agreement algorithms in 
Chapter 6 that solves the commit problem with strong termination. Try to 
minimize the number of rounds. 

7.19. Research Question: Design an algorithm that solves the commit problem 
with strong termination. Can you simultaneously obtain a worst-case num- 
her of rounds that is n + k for some constant k, a small constant number 
of rounds for deciding and halting in the failure-free case, and a low com- 
munication complexity in the failure-free case? 

7.20. Fill in all the details of the proof of Lemma 7.26. Where does the proof 
fail if we do not force any processes to fail when we construct c~, but only 
change the initial value of process i from 1 to 07 

7.21. Design a non-blocking commit algorithm that uses the fewest messages 
you can manage, for failure-free runs. Can you prove that this number of 
messages is optimal? 
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Part  II 

Asynchronous Algorithms 

The second part consists of Chapters 8-22 and is, in fact, the bulk of the 
book. These chapters make a major shift in computing paradigm, from the lock- 
step synchronous model studied in Chapters 2-7 to the asynchronous model, in 
which system components take steps at arbitrary speeds. 

Like the synchronous model, the asynchronous model is not hard to describe. 
The subtleties mainly involve liveness conditions, for example, requiring that 
each component keep getting chances to take steps. It is, however, harder to 
program than the synchronous model because of the extra uncertainty in the 
order of events. The asynchronous model assumes less about time than is actually 
guaranteed by typical distributed systems. Thus, algorithms designed for the 
asynchronous model are general and portable, in that they are guaranteed to run 
correctly in networks with arbitrary timing behavior. 

The first chapter in Part II, Chapter 8, presents a general model for asynchro- 
nous systems, the input/output automaton model. You can skip this chapter for 
now if you like and refer back to it as needed. The rest of Part II is divided into 
two subparts: Chapters 9-13 covering asynchronous shared memory algorithms, 
and Chapters 14-22, covering asynchronous network algorithms. 
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Chapter 8 

Modelling II: Asynchronous 
System Model 

The purpose of this chapter is to introduce a formal model for asynchronous com- 
puting, the input/output (I/O) automaton model. This is a very general model, 
suitable for describing almost any type of asynchronous concurrent system, in- 
cluding the two types we will study in this book: asynchronous shared memory 
systems and asynchronous network systems. By itself, the I /O automaton model 
has very little structure, which allows it to be used for modelling many different 
types of distributed systems. Additional structure must be added to the basic 
model to enable it to describe particular types of asynchronous systems. What  
the model does provide is a precise way of describing and reasoning about system 
components (e.g., processes or communication channels) that interact with each 
other and that operate at arbitrary relative speeds. 

We begin with the definitions of an I /O automaton and its execution. We 
then define a composition operation by which I /O automata can be combined to 
form a larger automaton representing a concurrent system. We show that this 
composition operation has the nice properties that it should. Then we introduce 
the important  notion of fairness, which specifies that all the components in a 
system get "fair" turns to perform steps every so often. Fairness represents 
a limitation on the arbitrary relative speeds of system components-- i t  rules 
out the possibility that some components are permanently denied turns to take 
steps. We show how fairness interacts with the composition operation. The rest 
of the chapter describes some conventions for specifying problems to be solved 
by systems described as I /O automata, as well as some proof methods that are 
useful for showing that the systems do in fact solve the problems. 
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init( ide(v) i 

send(m) i, j ~ I receive(m) j, i 

F i g u r e  8.1" A process I/O automaton. 

This chapter is intended to be used as a reference for methods of modelling 
asynchronous sys tems--not  only the systems described in this book, but many 
others as well. You need not read this chapter carefully at this point. Instead, 
we suggest that  you begin reading some of the later algorithm chapters, such as 
Chapters 10, 11, 12, and 15, returning to this chapter (as well as to Chapters 9 
and 14) as needed, to supply the formal foundation. 

8.1 I/O Automata 

An I /O automaton models a distributed system component that  can interact 
with other system components. It is a simple type of state machine in which the 
transitions are associated with named actions. The actions are classified as either 
input, output, or internal. The inputs and outputs  are used for communication 
with the automaton 's  environment, while the internal actions are visible only 
to the automaton itself. The input actions are assumed not to be under the 
automaton 's  con t ro l~ they  just arrive from the outside--while the automaton 
itself specifies what output  and internal actions should be performed. 

An example of a typical I /O automaton is a process in an asynchronous 
distributed system. The interface of a typical process automaton with its envi- 
ronment is depicted in Figure 8.1. The automaton Pi is drawn as a circle, with 
incoming arrows labelled by input actions and outgoing arrows labelled by out- 
put actions. Internal actions are not shown. The depicted automaton receives 
inputs of the form init(v)i from the outside world, which are supposed to repre- 
sent the receipt of an input value v. It conveys outputs  of the form decide(v)i, 
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send(m)i,j 
. . . .  ~ _  el, j 

receive(m). 
l, J ...._ 

F i g u r e  8.2" A channel I/O automaton. 

which are supposed to represent a decision of v. In order to reach a decision, 
process Pi may want to communicate with other processes using a message sys- 
tem. Its interface to the message system consists of output actions of the form 
send(rn)i,j, which represents process Pi sending a message with contents m to 
process Pj, and input actions of the form receive(rn)j,i, which represents process 
Pi receiving a message with contents rn from process Pj. When the automaton 
performs any of the indicated actions (or any internal action), it may also change 
state. 

Another example of a typical I /O automaton is a FIFO message channel. A 
typical channel automaton, named Ci,j, is depicted in Figure 8.2. Its input ac- 
tions are of the form send(m)~,j, and its outputs are of the form receive(m)~,j. In 
the usual way of describing a distributed system using I /O automata, a collection 
of process automata and channel automata are composed, matching outputs of 
one automaton with same-named inputs of other automata. Thus, a sendi,j out- 
put performed by process Pi is identified with (i.e., performed together with) a 
sencli,j input performed by channel Ci,j. The important  thing to note is that the 
various actions are performed one at a time, in an unpredictable order. This is 
in contrast with synchronous systems, in which all the processes send messages 
at once and then all receive messages at once, at each round of computation. 

Formally, the first thing that gets specified for an I /O automaton is its "signa- 
ture," which is simply a description of its input, output,  and internal actions. We 
assume a universal set of actions. A signature S is a triple consisting of three 
disjoint sets of actions: the input actions, in(S), the output actions, out(S), 
and the internal actions, int(S). We define the external actions, ext(S), to be 
in(S)U out(S); the locally controlled actions, local(S), to be out(S)Uint(S); and 
acts(S) to be all the actions of S. The external signature, extsig(S), is defined to 
be the signature (in(S), out(S), 0). We will often refer to the external signature 
as the external interface. 

An I/O automaton A, which we also call simply an automaton, consists of 
five components: 

�9 sig(A), a signature 

�9 states(A), a (not necessarily finite) set of states 
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�9 start(A), a nonempty subset of states(A) known as the start states or 
initial states 

�9 trans(A), a state-transition relation, where trans(A) C s t a t e s ( A ) x  
acts(sig(A)) x states(A); this must have the property that for every state 
s and every input action 7r, there is a transi t ion (s, 7r, s') C trans(A) 

�9 tasks(A), a task partition, which is an equivalence relation on local(sig(A)) 
having at most countably many equivalence classes 

We use acts(A) as shorthand for acts(sig(A)), and similarly in(A), and so on. 

We say that A is closed if it has no inputs, that is, if in(A) = O. 
This definition looks somewhat similar to that of a process in the synchronous 

network model in Chapter  2. However, the signature allows for more gen- 

eral types of actions than just  the message-sending and message-receipt actions 
modelled in the synchronous case. As for the set of process states in the syn- 

chrononous network model, the set of states need not be finite. This generality is 

important ,  since it permits  us to model systems that have unbounded data struc- 
tures such as counters and unbounded length queues. As in the synchronous case, 
we allow multiple start  states so that we can include some input information in 
the start  states. 

We call an element (s, 7r, s ' ) o f  trans(A) a transition, or step, of A. The 

transi t ion (s, 7r, s ~) is called an input transition, output transition, and so on, 

based on whether the action 7r is an input action, output  action, and so on. 
Unlike in the synchronous model, the transit ions are not necessarily associated 
with the receipt of a collection of messages; they can be associated with arbi t rary  
actions. 

If for a part icular state s and action 7r, A has some transit ion of the form 

(s, 7r, s~), then we say that 7r is enabled in s. Since every input action is required 
to be enabled in every state, automata  are said to be input-enabled. The input- 
enabling assumption means that the automaton is not able to somehow "block" 
input actions from occurring. This assumption means, for example, that a pro- 
cess has to be prepared to cope in some way with any possible message value 

when a message arrives. We say that state s is quiescent if the only actions that 
are enabled in s are input actions. 

You might think that the input-enabling property is too strong a restriction 
to impose on a general model, because many system components are designed to 

ezpect certain inputs only to occur at designated times. For example, an automa- 
ton designed to model a resource-allocation system (as studied in Chapter  11) 
might expect a user not to submit two requests in a row, before the system has 
granted the first request. However, there are other ways of modelling such re- 
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strictions on the environment, without requiring that the environment actually 
be barred from performing the input. For example, in the resource-allocation 
example, we might say that the environment is not expected to submit a second 
request before receiving a response to the first, but that we do not constrain the 
behavior of the system in the case of such an unexpected input. Or, we might 
require the system to detect the unexpected input and respond with an error 
message. 

There are two major advantages of having the input-enabling property. First, 
a serious source of errors in the development of system components is the failure 
to specify what the component does in the face of unexpected inputs. Using a 
model that requires consideration of arbitrary inputs is helpful in eliminating 
such errors. And second, use of input-enabling makes the basic theory of the 
model work out nicely; in particular, input-enabling makes it reasonable to use 
simple notions of external behavior for an automaton, based on sequences of 
external actions. (Theorem 8.4 is an example of a basic result that fails if we do 
not assume input-enabling.) 

The fifth component of the I /O automaton definition, the task partition 
tasks(A), should be thought of as an abstract description of "tasks," or "threads 
of control," within the automaton. This partition is used to define fairness condi- 
tions on an execution of the automaton--condit ions that say that the automaton 
must continue, during its execution, to give fair turns to each of its tasks. This is 
useful for modelling a system component that performs more than one job--for  
example, participating in an ongoing algorithm while at the same time period- 
ically reporting status information to its environment. It is also useful when 
several automata are composed to yield one larger automaton representing the 
entire system. The partition is then used to specify that the automata being 
composed all continue to take steps in the composed system. Another use of the 
partition is in modelling asynchronous shared memory algorithms, as you will 
see in Chapter 9. We will usually refer to the task-partit ion classes as just tasks. 

We sometimes say that a task C is enabled in a state s; this is just a short 
way of saying that some action in C is enabled in s. 

We give an example of a simple I /O automaton. Here and in most of our de- 
scriptions of I /O automata, the transition relation is described in a precondition- 
effect style. This style groups together all the transitions that involve each par- 
ticular type of action into a single piece of code. The code specifies the conditions 
under which the action is permitted to occur, as a predicate on the pre-state s. 
Then it describes the changes that occur as a result of the action, in the form of 
a simple program that is applied to s to yield s ~. The entire piece of code gets 
executed indivisibly, as a single transition. Grouping the transitions according 
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to their actions tends to produce concise code, because the transitions involving 
each action typically involve only a small portion of the state. 

Programs written in precondition-effect style normally use only very sim- 
ple control structures. This tends to make the translation from programs to 
I /O  automata  t ransparent ,  which makes it easier to reason formally about the 
automata.  

E x a m p l e  8 .1 .1  C h a n n e l  I / O  a u t o m a t o n  

As an example of an I /O  automaton, consider a communication chan- 
nel automaton Ci,j. Let M be a fixed message alphabet. First we 
give the signature, sig(Ci , j ) .  Here and elsewhere, we use the conven- 
tion that if we do not mention a signature component (usually, the 

internal actions), then that set of actions is empty. 

Signature: 
Input: Output: 

send(m)i,j, m E M receive(m)i,j, m e M 

The states, s ta tes (Ci , j ) ,  and the start  states, s tar t (Ci , j ) ,  are most 
conveniently described in terms of a list of state variables and their 

initial values. This is just as in the synchronous setting. 

States: 
queue, a FIFO queue of elements of M, initially empty 

The transitions of Ci,j a r e  described by the following code: 

Transitions: 

send(m)i,j 
Effect: 

add m to queue 

receive(m)i,j 
Precondition" 

m is first on queue 
Effect: 

remove first element of queue 

This code should be self-explanatory: the send action is allowed 
to occur at any time and has the effect of adding the message to 
the end of queue, while the receive action can only occur when the 
message in question is at the front of queue, and has the effect of 
removing it. 

The task partition, tasks(Ci , j ) ,  groups together all the receive 

actions into a single task. That  is, the job of receiving (i.e., delivering) 
messages is thought of as a single task. 

Tasks: 
{receive(m)i,j " m e M} 
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E x a m p l e  8 .1 .2  P r o c e s s  I / O  a u t o m a t o n  

As a second example  of an I / O  au tomaton ,  consider  a process  au- 

t o m a t o n  Pi .  This  a u t o m a t o n  has the ex terna l  interface descr ibed  

below. Here, V is a fixed value set, n u l l  is a special  value not  in V, 

and f is a fixed function,  f : V ~ -+ V. 

Signature: 
Input: 

init(v)i ,  v E V 
receive(v)j,i, v C V,  1 < j < n, j ~ i 

The  s ta tes  and s ta r t  s ta tes  are as follows: 

States: 
val, a vector indexed by {1 , . . . ,  n} of elements in V U {null}, all initially null 

Output" 
decide(v)~, v E V 
send(v)~,j, v E V,  1 ~_ j ~_ n, j ~ i 

The  t rans i t ions  are as follows" 

Transitions: 

init(v)i ,  v E V receive(v)j,i, v e V 
Effect: Effect: 

val(i) "-- v vat(j) "-- v 

send(v)i , j ,  v E V decide(v)i, v e V 
Precondition: Precondition: 

val(i) - v for all j ,  1 < j < n: 
Effect: val(j) ~ null 

none v - f ( v a l ( 1 ) , . . .  , val(n))  
Effect" 

none 

Thus,  the i n i t  act ion causes Pi to fill in the des igna ted  value in its 

own posi t ion in the va l  vector,  while the rece i ve  act ion causes it to 

fill in ano ther  posit ion.  These  values can be u p d a t e d  any number  of 

t imes,  by means  of mult iple  i n i t  or rece i ve  actions.  Pi is allowed to 

send its own value any number  of t imes on any channel.  Pi is also 

allowed to decide any number  of t imes,  based  on new appl icat ions  of 

f to its vector.  
The  task  par t i t ion ,  t a s k s ( P  i ) ,  contains  n tasks: one for all the 

send i , j  act ions for each j ~r i, and one for all the d e c i d e  actions.  

Thus ,  sending on each channel  is r ega rded  as a single task,  as is 

r epor t ing  decisions. 

Tasks: 
for every j ~ i: 

{send(v) i , j  " v e V }  
{ decide(v)i " v e V }  
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Now we describe how an I /O  automaton A executes. An execution fragment 
of A is either a finite sequence, so, 7rl, Sl, 7r2,... , 7r~, s~, or an infinite sequence, 

s0, Trl, Sl ,Tr2,. . . ,Tr~,Sr,  . . . ,  of alternating states and actions of A such that 
(sk, 7rk+l, Sk+l) is a transi t ion of A for every k > 0. Note that if the sequence is 
finite, it must end with a state. An execution fragment beginning with a start  

state is called an execution. We denote the set of executions of A by execs(A). 
A state is said to be reachable in A if it is the final state of a finite execution of 

A. 
If c~ is a finite execution fragment of A and c~ ~ is any execution fragment of A 

that begins with the last state of c~, then we write c~. c~ ~ to represent the sequence 

obtained by concatenating c~ and c~ ~, eliminating the duplicate occurrence of the 

last state of c~. Clearly, c~. c~ ~ is also an execution fragment of A. 

Sometimes we will be interested in observing only the external behavior of 

an I /O  automaton. Thus, the trace of an execution c~ of A, denoted by trace(a), 
is the subsequence of c~ consisting of all the external actions. We say tha t /3  is a 
trace of A if ~ is the trace of an execution of A. We denote the set of traces of 

A by traces (A). 

Example  8.1.3 Execut ions  

The following are three executions of the automaton Ci,j described 

in Example 8.1.1 (assuming that the message alphabet M is equal to 
the set {1, 2}). Here, we indicate the states by putting the sequences 

in queue in brackets; A denotes the empty  sequence. 

[~], send(1)i,j, [1], receive(1)i,j, [~], send(2)i,j, [2], receive(2)i,j, [~] 

[a], [1], [a], [2] 

[A], send(1)i,j, [1], send(1)i,j, [11], send(1)i,j, [111],. . .  

The last two are allowed even though they contain messages that are 

sent but never received. This is because we have (so far) placed no 
restrictions on executions saying that enabled actions must occur. 
In Section 8.3 we introduce fairness requirements, which allow us to 
express such restrictions. 

8.2 O p e r a t i o n s  on  A u t o m a t a  

In this section, we define the operation of composition and the operation of hiding 
output actions for I /O  automata.  
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8.2.1 Composition 

The composition operation allows an automaton representing a complex sys- 
tem to be constructed by composing automata representing individual system 
components. The composition identifies actions with the same name in differ- 
ent component automata. When any component automaton performs a step 
involving 7r, so do all component automata that have 7r in their signatures. 

We impose certain restrictions on the automata that may be composed. 
First, since internal actions of an automaton A are intended to be unobservable 
by any other automaton B, we do not allow A to be composed with B unless the 
internal actions of A are disjoint from the actions of B. (Otherwise, A's perfor- 
mance of an internal action could force B to take a step.) Second, in order that 
the composition operation might satisfy nice properties (such as Theorem 8.4 
below), we establish a convention that at most one component automaton "con- 
trols" the performance of any given action; that is, we do not allow A and B to 
be composed unless the sets of output actions of A and B are disjoint. Third, 
we do not preclude the possibility of composing a countably infinite collection of 
automata,  but we do require in this case that each action must be an action of 
only finitely many of the component automata. This latter restriction is needed 
because otherwise Theorem 8.3 (for example) fails. 

Why do we not simply rule out the composition of infinitely many automata? 
After all, physical computer systems consist of only finitely many components 
(computers, message channels, etc.). The reason for allowing infinite composi- 
tion is that I /O automata are used to model logical systems as well as physical 
systems. A logical system can consist of a large number of logical components, 
intended to be implemented on a physical system with fewer components. In 
fact, some logical systems allow components to be created dynamically, during 
execution~possibly infinitely many components over the course of an infinite 
execution. (For example, database systems can allow the creation of new trans- 
action instances while the system is executing.) The way to model component 
creation using I /O automata is to imagine that all possible components that  
might ever be created arc actually present from the beginning but have special 
wakcup input actions that wake them up when they are supposed to be created. 
With this modelling trick, the ordinary composition operator is adequate for 
describing the way the dynamically created components interact with the rest 
of the system. But it is necessary to allow infinitely many components to be 
combined. 

Formally, we define a countable collection {Si}i~I of signatures to be com- 
patible if for all i, j E I, i # j ,  all of the following hold: 

1. i t(s ) n act (Sj) = 0 
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2. out(S )n o u t ( s j )  = 0 

3. No action is contained in infinitely many sets acts(S i) 

We say that a collection of automata  is compatible if their signatures are com- 
patible. 

When we compose a collection of automata,  output  actions of the compo- 
nents become output  actions of the composition, internal actions of the compo- 
nents become internal actions of the composition, and actions that are inputs to 
some components but outputs of none become input actions of the composition. 

Formally, the composition S = l-lie1 Si of a countable compatible collection of 
signatures {Si}i~I is defined to be the signature with 

�9 o t(s) = 

�9 in t (S)  = Uiei int(Si)  

�9 i (s) = - 

Now the composition A = Y i i c I  Ai of a countable, compatible collection of 
I /O  a u t o m a t a  {Ai}iEI can be defined. It is the automaton defined as follows "1 

�9 sig(A) = [Ii~I sig(Ai) 

�9 states(A) = [lie1 states(Ai)  

�9 s tart(A)  = I-IieI s tart(Ai)  

�9 trans(A) is the set of triples (s, ~, s') such that, for all i E I, if ~ E acts(Ai) ,  
! 

then (si, 7~, s~) E trans(Ai); otherwise si - s i 

�9 t a s k s ( A ) =  Ui~itasks(Ai)  

Thus, the states and start  states of the composition automaton are vectors of 
states and start  states, respectively, of the component automata.  The transitions 
of the composition are obtained by allowing all the component automata  that 
have a particular action ~ in their signature to participate simultaneously in 
steps involving ~, while all the other component automata do nothing. The task 

parti t ion of the composition's locally controlled actions is formed by taking the 
union of the components '  task partitions; that is, each equivalence class of each 

1The II notation in the definition of start(A) and states(A) refers to the ordinary Cartesian 
product, while the II notation in the definition of sig(A) refers to the composition operation just 
defined, for signatures. Also, we are here using the notation si to denote the ith component of 
the state vector s. 
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component automaton becomes an equivalence class of the composition. This 

means that the task structure of individual components is preserved when the 

components are composed. Notice that since the automata Ai are input-enabled, 

so is their composition. It follows that I-IicI Ai is actually an I /O automaton. 
When I is a finite set, we sometimes use the infix operation symbol x to de- 

note composition. For instance, if I = {1 , . . .  , n}, we sometimes denote I-Iicx Ai 
b y A l X - - - x A n .  

Notice that an action 7r that is an output of one component and an input of 

another is classified as an output action in the composition, not as an internal 
action. This is because we want to permit the possibility of further communica- 

tion using 7r. For example, suppose that automaton A has 7r as an output action, 
while automata B and C both have 7r as input actions. Thus, 7r is essentially 

a broadcast action from A to both B and C in the composition A x B x C of 
the three automata. We would like to be able to think about this composition 

in a modular way, first constructing A x B, then composing the result with C. 
According to the way we have defined composition, A x B x C is actually iso- 

morphic to (A x B) x C, the result of first composing A and B, then composing 

the result with C. But if 7r were classified as internal in the composition A x B, 
then we no longer would have this modularity: the composition A x B could 

not even be composed with C, since the first compatibility condition would be 
violated. 

It is possible to "hide" actions that are used for communication between com- 
ponents, thereby preventing them from being used for further communication. 

This is done using the hiding operation defined in Section 8.2.2 in addition to 

the composition operation. 

Example 8.2.1 Composit ion of automata 

Consider a fixed index set I = {1 , . . .  , n} and let A be the composi- 
tion of all the process automata Pi, i E I, from Example 8.1.2 and all 

the channel automata Ci,j, i , j  E I, from Example 8.1.1. In order to 
compose them, we must assume that the message alphabet M for the 
channel automata contains the value set V for the process automata. 
Figure 8.3 depicts the "architecture" for the special case where n = 3. 

The resulting composition is a single automaton representing a 
distributed system. The state of the system consists of a state for each 

process (each a vector of values, one per process), plus a state for 

each channel (each a queue of messages in transit).  Each transition 

of the system involves one of the following: 
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F i g u r e  8.3" Composition of Pis and Ci,js. 

1. An init(v)i input action, which deposits a value in Pi's val(i) 
variable, val(i)i 2 

2. A send(v)~,j output  action, by which P~'s value val(i)~ gets put 
into channel Ci,j 

3. A receive(v)i,j output  action, by which the first message in Ci,j 
is removed and simultaneously placed into Pj's variable val(i)j 

4. A decide(v)i output  action, by which Pi announces its current 
computed value 

A sample trace of this composition, for n - 2, where the value set V 
is N and where f is addition, is 

init(2)l, init(1)2, send(2)1,2, receive(2)1,2, send(i)2,1, 
receive(I)2,1, init(4)l, init(O)2, decide(5)1, decide(2)2 

In the unique system state that is reachable using this trace, P1 has 
val vector (4, 1) and P2 has val vector (2, 0), and both channels are 
empty. Of course, there are many other traces that can arise in 
executions of this composed system. 

2As in the chapters on the synchronous model, we use the convention of subscripting a 
variable by the index of the process at which the variable resides. 
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We close this subsection with three basic results that relate the executions 

and traces of a composition to those of the component automata. The first says 
that an execution or trace of a composition "projects" to yield executions or 

traces of the component automata.  Given an execution, a = so, 7rl, S l , . . .  , of A, 
let alAi be the sequence obtained by deleting each pair 7r~, s~ for which :r~ is not 
an action of Ai and replacing each remaining s~ by (s~)i, that is, automaton Ai's 
piece of the state Sr. Also, given a trace/3 of A (or, more generally, any sequence 
of actions), let/31Ai be the subsequence of 13 consisting of all the actions of Ai 
in/3. We also use the I notation to represent the subsequence of a sequence/3 of 
actions consisting of all the actions in a given set in/3. 

T h e o r e m  8.1 Let {Ai}ieI  be a compatible collection of automata and let A = 

I-IiEI Ai. 

1. I f  a E execs(A), then aIA~ ~ execs(Ai) for every i E I. 

2. I f  ~ E traces(A), then/3lAi E traces(Ai) for every i E I. 

P r o o f .  The proof is left as an exercise. V] 

The other two are converses of Theorem 8.1. The next theorem says that, 

under certain conditions, executions of component automata can be "pasted to- 

gether" to form an execution of the composition. 

T h e o r e m  8.2 Let {Ai}iEI be a compatible collection of automata and let A = 
l--[iEI Ai. Suppose ai is an execution of Ai for every i E I,  and suppose ~ is a 
sequence of actions in ext(A) such that/31Ai = trace(ai) for every i E I.  Then 
there is an execution a of A such that/3 = trace(a) and ai = aiAi for every 
i E I .  

P r o o f .  The proof is left as an exercise. 

The final theorem says that traces of component automata can also 
together to form a trace of the composition. 

[-] 

be pasted 

T h e o r e m  8.3 Let {Ai}iEI be a compatible collection of automata and let A = 
YIiEI Ai. Suppose/3 is a sequence of actions in ext(A).  If/3lAi E traces(Ai) for 
every i E I, then/3 E traces(A). 

P r o o f .  The proof is left as an exercise. [-1 

Theorem 8.3 implies that in order to show that a sequence is a trace of 
a system, it is enough to show that its projection on each individual system 

component is a trace of that component.  
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8.2.2 Hiding 

We now define an operation that  "hides" output  actions of an I /O automaton  
by reclassifying them as internal actions. This prevents them from being used 
for further communication and means that  they are no longer included in traces. 

We first define the hiding operation for signatures" if S is a signature and 
C_ out(S) ,  then hideq,(S) is defined to be the new signature S', where in(S')  - 

in(S) ,  out(S')  - out(S)  - ~, and int(S ')  - int(S)  U ~. 
The hiding operation for I /O au tomata  is now easy to define" if A is an 

au tomaton  and (I) C_ out(A),  then hidee(A) is the au tomaton A' obtained from 
A by replacing s i g ( A ) w i t h  s i g ( A ' ) -  hideq~(sig(A)). 

8.3 Fairness  

In distr ibuted systems, we are usually interested only in those executions of a 
composition in which all components get fair turns to perform steps. In this 
section, we define an appropriate notion of fairness for I /O automata .  

Recall that  each I /O au tomaton  comes equipped with a part i t ion of its locally 
controlled actions; each equivalence class in the parti t ion represents some task 
that  the au tomaton  is supposed to perform. Our notion of fairness is that  each 
task gets infinitely many opportunit ies to perform one of its actions. 

Formally, an execution fragment c~ of an I /O automaton  A is said to be fair 
if the following conditions hold for each class C of tasks(A): 

1. If c~ is finite, then C is not enabled in the final state of c~. 

2. If c~ is infinite, then c~ contains either infinitely many events from C or 
infinitely many occurrences of states in which C is not enabled. 

Here and elsewhere, we use the term event to denote the occurrence of an action 
in a sequence, for example, an execution or a trace. 

We can understand the definition of fairness as saying that  infinitely often, 
each task (i.e., equivalence class) C is given a turn. Whenever this happens, 
either an action of C gets performed or no action from C could possibly be 
performed since no such action is enabled. We can think of a finite fair execution 
as an execution at the end of which the au tomaton  repeatedly gives turns to all 
the tasks in round-robin order, but never succeeds in performing any action since 
none are enabled in the final state. 

We denote the set of fair executions of A by fairezecs(A).  We say tha t /3  is 
a fair trace of A if/3 is the trace of a fair execution of A, and we denote the set 
of fair traces of A by fairtraces(A). 
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E x a m p l e  8.3.1 Fairness  

In Example 8.1.3, the first execution given is fair, because no receive 

action is enabled in its final state. The second is not fair, because it 
is finite and a receive action is enabled in the final state. The third 
is also not fair, because it is infinite, contains no receive events, and 
has receive actions enabled at every point after the first step. 

E x a m p l e  8.3.2 Fairness  

To further illustrate the fairness definition, consider the following 
Clock I /O  automaton,  representing a discrete clock. 

Clock automaton:  

Signature:  

Input: 
request 

Output:  
clock(t), t C N 

Internal" 
tick 

States:  
counter C 1% initially 0 
flag, a Boolean, initially false 

Transit ions:  
tick 

Precondition: 
true 

Effect: 
counter := counter + 1 

request 
Effect" 

flag := true 

Tasks: 
{tick} 
{ clock(t)" t e N} 

clock(t) 
Precondition: 

f l a g -  true 
c o u n t e r -  t 

Effect: 
flag " -  false 

The Clock automaton simply "ticks" forever, incrementing a counter. 
In addition, if a request arrives, Clock responds (in a separate step) 
with the current value of the counter. The following is the sequence 
of actions in a fair execution of Clock" 
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tick, tick, tick, . . . .  

The following is the action sequence of an execution that is not fair: 

tick, tick, tick 

In fact, Clock has no finite fair executions, since tick is always en- 
abled. The following is fair: 

tick, tick, request, tick, tick, clock(4), tick, t i c k , . . . ,  

since once Clock has responded to the single request, no further clock 
action is enabled. Finally, the following is not fair: 

tick, tick, request, tick, tick, t i c k , . . . ,  

because after the request event, the clock task remains enabled but 
no clock action ever occurs. 

We can prove the following analogues to Theorems 8.1-8.3: 

T h e o r e m  8.4 Let {Ai}i~I be a compatible collection of automata and let A = 

I]iei Ai. 

1. I f  c~ E fairexecs(A), then c~]Ai C fairexecs(Ai) for every i C I. 

2. I f  ~ E fairtraces(A), then/3]Ai C fairtraces(Ai) for every i E I. 

T h e o r e m  8.5 Let {Ai} icI  be a compatible collection of automata and let A = 
1-IicI Ai. Suppose ai is a fair execution of Ai for every i C I, and suppose ~ is a 
sequence of actions in ext(A) such that ~lAi = trace(c~i) for every i E I. Then 
there is a fair execution ~ of A such that/3 = trace(a) and c~i = c~lAi for every 
i c I .  

T h e o r e m  8.6 Let {Ai} icI  be a compatible collection of automata and let A = 
Ilia1 Ai. Suppose/~ is a sequence of actions in ext(A).  If/31Ai E fairtraces(Ai) 
for every i E I, then/3 C fairtraces(A). 

P r o o f s .  The proofs are left as exercises. [=] 

Theorems 8.1-8.3 and Theorems 8.4-8.6 make it possible to reason in a mod- 
ular way about the behavior of a dis tr ibuted system modelled as a composition. 
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Example  8.3.3 Fairness 

We consider the fair executions of the system of three processes and 

three channels in Example 8.2.1. In every fair execution, every mes- 
sage that is sent is eventually received. Also, in every fair execution 
containing at least one initi event for each i, each process sends 
infinitely many messages to each other process and each process per- 

forms infinitely many decide steps. 
On the other hand, in every fair execution that does not contain 

at least one init event for each process, no process ever performs 
a decide step. Note that fairness imposes no requirements on the 
occurrence of init events-- the  number of initi events involving each 

Pi can be finite (possibly zero) or infinite. 

We close this section with a theorem that says that every finite execution (or 
trace) can be extended to a fair execution (or trace). 

T h e o r e m  8.7 Let A be any I / O  automaton. 

1. I f  a is a finite execution of A, then there is a fair execution of A that starts 
with a. 

2. If/3 is a finite trace of A, then there is a fair trace of A that starts with/3. 

3. I f  a is a finite execution of A and/3 is any (finite or infinite) sequence of 
input actions of A, then there is a fair execution a .  a' of A such that the 
sequence of input actions in a' is exactly/3. 

~. I f /3  is a finite trace of A and/3'  is any (finite or infinite) sequence of 
input actions of A, then there is a fair execution a .  a' of A such that 
trace(a) =/3  and such that the sequence of input actions in a' is exactly 
~'. 

P r o o f .  The proof is left as an exercise. Eli 

8.4 Inputs and Outputs for Problems 

Problems to be solved by I /O  automata normally have some type of input and 
output; we must model this somehow. In the synchronous model, we generally 
modelled such input and output  in terms of special state variables, assuming that 
inputs are built into designated variables in the start  states and that outputs 
appear in designated write-once variables. It is possible to do the same thing 
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in the asynchronous setting. However, since I /O automata can have input and 
output actions, it is usually more natural to model inputs and outputs of systems 
directly, in terms of input and output actions. 

8.5 Propert ies  and Pr oo f  Methods  

I /O automata can be used not only to describe asynchronous systems precisely, 
but also to formulate and prove precise claims about what the systems do. In 
this section, we describe some of the types of properties that are typically proved 
about asynchronous systems, as well as some of the methods that are typically 
used to prove them. 

In our chapters on asynchronous algorithms, Chapters 10-13 and 15-22, we 
use the methods described here (plus some ad hoc arguments) to prove properties 
of asynchronous algorithms. Whether the arguments are done using one of the 
typical methods or not, they can all be made rigorous using I /O automata. 

8.5.1 Invariant Assert ions 

The most fundamental type of property to be proved is an invariant assertion, 
or just invariant, for short. In this book, we define an invariant assertion of an 
automaton A to be any property that is true of all reachable states of A. 

Invariants are typically proved by induction on the number of steps in an 
execution leading to the state in question. More generally, it is possible to prove 
invariants one (or a few) at a time, making use of the invariants previously proved 
when carrying out subsequent inductive proofs. 

Recall that we also used invariant assertions to prove properties of syn- 
chronous algorithms. In the synchronous setting, invariants are proved about 
the system state after an arbitrary number of rounds. On the other hand, in 
the asynchronous setting, invariants are proved about the system state after an 
arbitrary number of steps. Since the granularity of the reasoning is much smaller 
for asynchronous algorithms, the arguments are typically longer, more detailed, 
and more difficult. 

8 .5 .2  T r a c e  Properties  

An I /O automaton can be viewed as a "black box" from the point of view of 
a user. What the user sees is just the traces of the automaton's executions (or 
fair executions). Some of the properties to be proved about I /O automata are 
naturally formulated as properties of their traces or fair traces. 

Formally, a trace property P consists of the following: 
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�9 sig(P), a signature containing no internal actions 

�9 traces(P), a set of (finite or infinite) sequences of actions in acts(sig(P)) 

That  is, a t race proper ty  specifies both an external  interface and a set (in other 
words, a property)  of sequences observed at that  interface. We write acts(P) as 
shor thand for acts(sig(P)), and similarly in(P), and so on. 

The s ta tement  that  an I / O  au tomaton  A satisfies a t race proper ty  P can 
mean either of (at least) two different things" 

1. extsig (A) - sig (P) and traces (A) C_ traces (P) 

2. extsig(A) - sig(P) and fairtraces (A) C_ traces (P) 

In either case, the intuitive idea is that  every external  behavior that  can be pro- 
duced by A is permi t ted  by proper ty  P.  Note that  we do not require the opposite 
inc lus ion- - tha t  every trace of P can actually be exhibi ted by A. Nevertheless, 
the given inclusion s ta tements  are not trivial" the fact that  A is input-enabled 

ensures that  fairtraces(A) (and so traces(A)) contains a response by A to each 
possible sequence of input actions. If fairtraces(A) C traces(P), then all of the 
resulting sequences must be included in the proper ty  P.  

Since there is some ambigui ty  in what  we mean by an au tomaton  "satisfying 
a t race property," we will say explicitly what  we mean each time the issue arises. 

Example  8.5.1 Automata  and trace propert ies  

Consider au tomata  and trace propert ies with input  set {0} and output  
set {1, 2}. First  suppose that  traces(P) is the set of sequences over 
{0, 1, 2} that  include at least one 1. Then fairtraces(A) C_ traces(P) 
means that  in every fair execution, A must  output  at least one 1. It 
is easy to design an I /O  automaton  for which this is the case- - for  
example, it can include a task whose entire job is to output  1. The 
fairness condition is used to ensure that  this task actually does get 
a chance to output  1. On the other hand, there does not exist any 
au tomaton  A for which traces(A) C_ traces(P), because traces(A) 
always includes the empty  str ing A, which does not contain a 1. 

Now suppose that  traces(P) is the set of sequences over {0, 1, 2} 
that  include at least one 0. In this case, there is no I / O  automa- 
ton A (with the given external  interface) for which fairtraces(A) C_ 
traces(P), because fairtraces(A) must contain some sequence that  
includes no inputs. 

We define a composi t ion operation for trace properties.  Namely, we say that  

a countable collection {Pi}icI of trace propert ies is compatible if their s ignatures 
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are compatible. 
that 

Then the composition P - 1-IicI Pi is the trace property such 

�9 sig(P) = Hi~I sig(Pi) 

�9 traces(P) is the set of sequences /3 of external actions of P such that 
/~Iacts(Pi) E traces(Pi) for a l l / C  I 

8 . 5 . 3  S a f e t y  a n d  L i v e n e s s  P r o p e r t i e s  

In this section, we define two important  special types of trace properties--safety 
properties and liveness properties, give two basic results about these types of 
properties, and indicate how such properties can be proved. 

S a f e t y  p r o p e r t i e s .  We say that a trace property P is a trace safety property, 
or a safety property for short, provided that P satisfies the following conditions. 

1. traces (P) is nonempty. 

2. traces(P) is prefix-closed, that is, if/3 c traces(P) and/3 '  is a finite prefix 
of/3, then/3 '  C traces(P). 

3. traces(P) is limit-closed, that is, if /~1, /~2, . . .  is an infinite sequence of 
finite sequences in traces(P), and for each i , /3 / i s  a prefix of/3/+1, then the 
unique sequence ~ that is the limit of the/3i under the successive extension 
ordering is also in traces (P). 

A safety property is often interpreted as saying that some particular "bad" 
thing never happens. We presume that, if something bad happens in a trace, 
then it happens as a result of some particular event in the trace; therefore, limit- 
closure is a reasonable condition to include in the definition. Also, if nothing 
bad happens in a trace, then nothing bad happens in any prefix of the trace; 
thus, prefix-closure is reasonable. Finally, nothing bad can happen before any 
events occur, that is, nothing bad happens in the empty  sequence A; therefore, 
nonemptiness is a reasonable condition. 

Example 8.5.2 Trace safety property 

Suppose sig(P) consists of inputs init(v), v E V and outputs decide(v), 
v E V. Suppose traces(P) is the set of sequences of init and decide 
actions in which no decide(v) occurs without a preceding init(v) (for 
the same v). Then P is a safety property. 
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If P is a safety property, then the statement that traces(A) C_ traces(P) is 
equivalent to the statement that fairtraces(A) C_ traces(P), which is in turn 
equivalent to the statement that the finite traces of A are all in traces(P). (We 
leave the proof as an exercise.) For a given automaton A, the simplest to prove 
of these three statements is usually that the finite traces of A are all in traces(P). 
This is usually proved by induction on the length of a finite execution generating 
the given trace. The strategy is closely related to the strategy used to prove 
invariants. In fact, by adding a state variable to A to keep track of the trace 
that has been generated so far, the safety property P can be reformulated as an 
invariant about the automaton's  state. 

L i v e n e s s  p r o p e r t i e s .  We say that a trace property P is a trace liveness prop- 
erty, or a liveness property for short, provided that every finite sequence over 
acts(P) has some extension in traces(P). 

A liveness property is often informally understood as saying that some par- 
ticular "good" thing eventually happens (though the formal definition includes 
more complicated statements than this). We assume that no matter what has 
happened up to some point, it is still possible for the good occurrence to happen 
at some time in the future. 

E x a m p l e  8.5.3 T r a c e  l iveness  p r o p e r t y  

Suppose sig(P) consists of inputs init(v), v e V and outputs decide(v), 
v E V. Suppose traces(P) is the set of sequences/3 of init and decide 
actions in which, for every init event in/3, there is some decide event 
occurring later in/3. Then P is a liveness property. The same is true 
for the condition that for every init event in /3, there are infinitely 
many decide events occurring later in ,~. 

One often wants to prove that fairtraces(A) C_ traces(P) for some automaton 
A and liveness property P,  that is, that the fair traces of A all satisfy some 
liveness property. Methods based on temporal logic work well in practice for 
proving such claims. A temporal logic consists of a logical language containing 
symbols for temporal notions like "eventually" and "always," plus a set of proof 
rules for describing and verifying properties of executions. 

Another method for proving liveness claims, which we call the progress func- 
tion method, is specially designed for proving that some particular goal is even- 
tually reached. This method involves defining a "progress function" from states 
of the automaton to a well-founded set and showing that certain actions are 
guaranteed to continue to decrease the value of this function until the goal is 
reached. The progress function method can be formalized using temporal logic. 
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In this book, we prove liveness properties informally; however, all our liveness 
arguments can be formalized using temporal  logic. 

There are two simple theorems that describe basic connections between safety 
and liveness properties. The first says that there are no nontrivial trace properties 
that are both safety and liveness properties. 

T h e o r e m  8.8 If  P is both a safety property and a liveness property, then P is 
the set of all (finite and infinite) sequences of actions in acts(P). 

P r o o f .  Suppose that P is both a safety and a liveness property and let /3 be 
an arbi t rary  sequence of elements of acts(P). I f /3  is finite, then since P is 
a liveness property, /3 has some extension r in traces(P). Then since P is a 
safety p roper ty - - in  particular,  since traces(P) is prefix-closed--i t  must be that 
/3 E traces(P). Thus, any finite sequence of elements of acts(P) must be in 
traces(P). 

On the other hand, if/3 is infinite, then for each i > 1, define/3i to be the 
length i prefix of/3. As shown in the previous paragraph,  each/3i is in traces(P). 
Therefore, since P is a safety p roper ty - - in  particular,  since traces(P) is limit- 
c losed-- i t  must be tha t /3  C traces(P). 

The second theorem says that every trace property can be expressed as the 
intersection (or equivalently, the conjunction) of a safety property and a liveness 
property. 

T h e o r e m  8.9 If P is an arbitrary trace property with traces(P) r O, then there 
exist a safety property S and a liveness property L such that 

1. s i g ( S ) -  s i g ( L ) -  sig(P) 

2. traces(P) - traces(S)n traces(L) 

P r o o f .  Let traces(S) be the prefix- and limit-closure of traces(P), that is, the 
smallest set of sequences over acts(P) that is prefix-closed and limit-closed and 
contains traces(P). Obviously, S is a safety property. Let 

traces ( L ) - traces ( P ) 

U {/3"/3 is a finite sequence and no extension of/3 is in traces(P)}. 

Then we claim that L is a liveness property. To see this, consider any finite 
sequence/3 of actions in acts(P). If some extension of/3 is in traces(P), then 
certainly that extension is in traces (L) since traces (P) C_ traces (L). On the other 
hand, if no extension of/3 is in traces(P), then/3  is explicitly defined to be in 
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traces(L). In either case,/3 has an extension in traces(L), so that L is a liveness 

property. 
Now we claim that traces(P) = traces(S)n  traces(L). It is obvious that 

traces(P) C_ traces(S)n traces(L), since each of S and L is explicitly defined so 
that its traces include those of P. We must show that traces(S) N traces(L) C_ 
traces(P). So suppose for the purpose of contradiction that /3 C traces(S) n 
traces(L) and /3 ~ traces(P). Then by definition of L, /3 is a finite sequence 
having no extension in traces(P). But /3 E traces(S), which is the prefix- and 
limit-closure of traces(P); since/3 is a finite sequence, ~ must be a prefix of an 
element of traces(P). This is a contradiction. F-] 

So far, we have only defined safety and liveness properties for traces. But 
analogous definitions can also be made for safety and liveness properties of exe- 
cutions, and the results are analogous to those for traces. In future chapters, we 
will often classify properties of executions as safety or liveness properties. 

8.5.4 Compositional Reasoning 

In order to prove properties of a composed system of automata, it is often helpful 
to reason about the component automata individually. In this section, we give 
some examples of this sort of "compositional" reasoning. 

First, if A = 1-Ii~I Ai and each Ai satisfies a trace property Pi, then it follows 
that A satisfies the product trace property P = 1-IieI Pi. Theorem 8.10 states 
this more precisely. 

T h e o r e m  8.10 Let {Ai}icI be a compatible collection of automata and let A -  
l-IieI Ai. Let {Pi}iei be a (compatible) collection of trace properties and let 
P - I-Ii~i Pi. 

1. If  extsig(Ai) - sig(Pi) and traces(Ai) C traces(Pi) for every i, 
extsig(A) - sig(P) and traces(A) C_ traces(P). 

then 

2. If  extsig(Ai) - sig(Pi) and fairtraces(Ai) C traces(Pi) for every i, then 
e x t s i g ( A ) -  sig(P) and fairtraces(A) C traces(P). 

P r o o f  Ske tch .  Part  1 can be shown using Theorem 8.1 (which says that every 
trace of the composed system A projects on each Ai to give a trace of Ai). Part  
2 follows analogously from Theorem 8.4. [2] 

E x a m p l e  8.5.4 Sa t i s fy ing  a p r o d u c t  t r a c e  p r o p e r t y  

Consider the composed system of Example 8.2.1. Each process au- 
tomaton Pi satisfies (in the sense of trace inclusion) a trace safety 
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property that asserts that any decidei event has a preceding initi 
event. Also, each channel automaton Ci,j satisfies a trace safety prop- 
erty that asserts that the sequence of messages in receivei,j events is 
a prefix of the sequence of messages in sendi,j events. 

Then it follows from Theorem 8.10 that the composed system 
satisfies the product trace safety property. This means that in any 
trace of the combined system, the following hold: 

1. For every i, any decidei event has a preceding init4 event. 

2. For every i and j ,  i -7(= j ,  the sequence of messages in receivei,j 
events is a prefix of the sequence of messages in sendi,j events. 

Second, suppose that we want to show that a particular sequence of actions 

is a trace of a composed system A = 1-IiEI Ai. This typically arises if A is an 
abstract  system used as a problem specification. Theorem 8.3 shows that, in 
order to do this, it is enough to show that the projection of the sequence on each 
of the system components is a trace of that component.  Theorem 8.6 implies an 
analogous result for fair traces. 

Third, consider the compositional proof of safety properties. Suppose we 

want to show that a composed system A = 1-Ii~I Ai satisfies a safety property 
P.  One strategy is to show that none of the components Ai is the first to violate 
P.  This strategy is useful, for example, when we want to show that a pair of 
components observe a "handshake protocol" between them, alternating signals 
from one to the other. If we can show that neither component is the first to 
violate the handshake protocol, then we know that the protocol is observed. 

Formally, we define the notion of an automaton "preserving" a safety prop- 
erty. Let A be an I /O  automaton and let P be a safety property with acts(P) N 
int(A) = 0 and in(P)n out(A) = 0. We say that A preserves P if for every finite 
sequence ~ of actions that does not include any internal actions of A, and every 

7r E out(A), the following holds. I f /3 lac ts (P  ) E traces(P) and ~TrlA E traces(A), 
then /~Triacts(P ) E traces(P). This says that A is not the first to violate P: 
as long as A's environment only provides inputs to A in such a way that the 
cumulative behavior satisfies P,  then A will only perform outputs such that the 
cumulative behavior satisfies P.  

The key fact about preservation of safety properties is that if all the compo- 
nents in a composed system preserve a safety property, then so does the entire 
system. Moreover, if the composed system is closed, then it actually satisfies the 
safety property. 
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Theorem 8.11 Let {Ai}i~I be a compatible collection of automata and let A = 
l-IicI Ai. Let P be a safety property with a c t s ( P ) n  int(A) - 0 and i n ( P ) N  
out(A) = 0 .  

1. If Ai preserves P for every i C I, then A preserves P. 

2. If  A is a closed automaton, A preserves P, and acts(P) C_ ext(A), then 
traces(A)tacts(P ) C_ traces(P). 

3. If A is a closed automaton, A preserves P, and a c t s ( P ) =  ext(A), then 
traces(A) C_ traces ( P ) . 

P r o o f .  The proof is left as an exercise, ff] 

Example 8.5.5 Automata preserving properties 

Let A be an automaton with output  a and input b, and B an automa- 
ton with output  b and input a. We consider the safety property P 
such that sig(P) has no inputs and has both a and b as outputs,  and 
such that traces(P) is the set of all finite and infinite sequences of 
alternating a's and b's, beginning with an a (plus the empty  sequence 

A). P represents a handshake protocol between A and B, with A 

initiating the handshake. 
Suppose that A has one variable turn, with values in the set {a, b}, 

initialized at a. A's transit ions are as follows. 

T r a n s i t i o n s :  

a b 
Precondi t ion :  

t u r n  = a 

Effect: 

t u r n  :=  b 

Effect: 

t u r n  : =  a 

Thus, A can perform a at the beginning and again each time it 
receives a b input. If it receives two b inputs in a row before it has 
had a chance to respond with the next a, then A can only respond 

with one a. 
Automaton B has one variable turn, with values in the set {a, b}, 

initialized at a, plus a Boolean variable error, initially false. B's  

transitions are as follows. 

T r a n s i t i o n s :  

b a 

Precondi t ion :  

t u r n -  b or e r r o r -  t r u e  

Effect" 

if e r r o r -  f a l s e  then t u r n  " -  a 

Effect: 
if e r r o r -  f a l s e  then  

if t u r n -  a then  t u r n  " -  b 

else e r r o r  " -  t r u e  
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Thus, B can only perform b once each time it receives an a input, 
as long as its environment does not submit two a's in a row. If the 
environment does submit two a's in a row, then B sets an error flag, 
which allows it to output b's at any time. 

Each of A and B preserves P. It follows from Theorem 8.11 that 
every trace of the composition A x B is in traces(P). 

8 .5 .5  H i e r a r c h i c a l  P r o o f s  

In this section, we describe an important  proof strategy based on a hierarchy 
of automata. This hierarchy represents a series of descriptions of a system or 
algorithm, at different levels of abstraction. The process of moving through 
the series of abstractions, from the highest level to the lowest level, is known 
as successive refinement. The top level may be nothing more than a problem 
specification written in the form of an automaton. The next level is typically 
a very abstract representation of the system: it may be centralized rather than 
distributed, or have actions with large granularity, or have simple but inefficient 
data structures. Lower levels in the hierarchy look more and more like the actual 
system or algorithm that will be used in practice: they may be more distributed, 
have actions with small granularity, and contain optimizations. Because of all this 
extra detail, lower levels in the hierarchy are usually harder to understand than 
the higher levels. The best way to prove properties of the lower-level automata is 
by relating these automata to automata at higher levels in the hierarchy, rather 
than by carrying out direct proofs from scratch. 

Chapters 4 and 6 contain examples of such a process of refinement for the 
synchronous setting. For example, in Chapter 6, we first presented an algorithm 
(FloodSet) for agreement in the face of stopping failures that was liberal in its 
use of communication. Then we presented an improved ("lower-level") version 
of the algorithm (OptFloodSet) in which many of the messages were pruned out; 
this yielded a smaller bound on communication. The improved algorithm was 
verified using a simulation relation relating the states of the two algorithms. The 
correctness proof involved showing, by induction on the number of rounds, that 
the simulation relation was preserved throughout the computation. Essentially, 
this strategy involved running the two algorithms side by side, with the same 
inputs and failure pattern, and observing similarities between the two executions. 

How can we extend the simulation method to asynchronous systems? The 
asynchronous model allows much more freedom than does the synchronous model, 
both in the order in which components take steps and in the state changes that 
accompany each action. This makes it more difficult to determine which execu- 
tions to compare. It turns out that it is enough to obtain a one-way relationship 
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between the two algorithms, showing that for any execution of the lower-level 
au tomaton  there is a "corresponding" execution of the higher-level automaton. 
We do this by defining a simulation relation between states of the two automata.  

Specifically, let A and B be two I /O  automata  with the same external in- 
terface; we think of A as the lower-level automaton and B as the higher-level 

automaton. Suppose f is a binary relation over states(A) and states(B), that is, 
f C_ states(A) • states(B); we use the notation u E f (s)  as an alternative way of 
writing (s, u) E f .  Then f is a simulation relation from A to B, provided that 

both of the following are true" 

1. If s E start(A), then f (s) A start(B) ~ O. 

2. If s is a reachable state of A, u E f (s)  is a reachable state of B, and 
(s, 7~, s') E trans(A), then there is an execution fragment c~ of B starting 
with u and ending with some u' E f ( s ' ) ,  such that t race (a ) -  trace(u). 

The first condition, or start condition, asserts that any start  state of A has 
some corresponding start  state of B. The second condition, or step condition, 
asserts that any step of A, and any state of B corresponding to the initial state 
of the step, have a corresponding sequence of steps of B. This corresponding 
sequence can consist of one step, many steps, or even no steps, as long as the 
correspondence between the states is preserved and the external behavior is the 
same. A representation of the step correspondence, for the case where 7~ is an 
external action, appears in Figure 8.4. The following theorem gives the key 

property of simulation relations: 

Theorem 8.12 /f  there is a simulation relation from A to B, then traces(A) C 
traces(B). 

P r o o f .  The proof is left as an exercise. V] 

In particular,  Theorem 8.12 implies that any safety property that is satisfied 
by B is also satisfied by A" if P is a trace safety property, extsig(A) - sig(P), and 
traces(A) C_ traces(P), then also extsig(B) - sig(P) and traces(B) C_ traces(P). 
Proofs of correctness based on simulation relations are quite s tyl ized--so stylized 

that they are amenable to computer  assistance. 

Example 8.5.6 Simulation proof 

As a simple example of a simulation proof, we show that two channel 
automata compose to implement another channel automaton. 

Let C be the communication channel given in Example 8.1.1. (We 
suppress the subscripts in this example.) Let A and B be automata 
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f (s) 

, . . . _  

v 

f (s9 

y -  

S ~ S I 

F i g u r e  8.4: Step correspondence for a simulation relation. 

C: 

D: 

u. queue 

send(m) _ f " ~  
" - ~ . ~  

send(m)__ ( ~  
T f 

~ " ~  pass(m) ( ~ 
A 

s.B. queue s.A. queue 

F i g u r e  8.5" Simulation relation f from D to C. 

receive(m 2 

receive(m) 

that  are the same as C except for some renaming of actions. Namely, 

the outputs  of B are renamed as pass(m) instead of receive(m), and 

the inputs  of A are renamed as pass(m) instead of send(m). Let D 

be the result of composing A and B and then hiding the pass actions. 

Note that  C and D have the same external interface. 

We claim that  traces(D) C_ traces(C). To see this, we define a 

simulation relation f from D to C. See Figure 8.5. 

Namely, if s is a state of D and u is a state of C, then we define 

(s, u) E f ,  provided that  the following holds (we use dot notat ion 

both to denote the value of a given variable in a state and to denote 

a given au tomaton  in a composition)" 
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u.queue is the concatenation of s.A.queue and s.B.queue 
(with s.A. queue coming first) 

To see that f is in fact a simulation relation, we must check the 
two conditions in the definition. The start condition is trivial, because 
the initial states of A, B, and C are all the empty queue. For the 
step condition, suppose that s is a state of D, u E f ( s )  is a state of 
C, and (s, 7r, s') E trans(D). We consider cases, based on the type 
of action being performed. 

1. ;r = send(m).  

Let the corresponding execution fragment of C consist of a sin- 
gle send(m) step. The given step in D adds m to the end of 
s.B.queue, while the step in C adds m to the end of u.queue. 
This preserves the state correspondence given by the definition 

of f. 

. 7r = r e c e i w ( m ) .  

Let the corresponding execution fragment of C consist of a sin- 
gle receive(m) step. The given step in D removes rn from the 
front of s.A.queue. The correspondence between s and u im- 
plies that m is also at the front of u.queue, which implies that 
the receive(m) action is in fact enabled in u. Then the step in 
C removes m from the front of u.queue. Again, this preserves 
the state correspondence given by f .  

3. 7r = pass(m). 

Let the corresponding execution fragment of C consist of 0 steps. 
Since the step of D does not affect the concatenation of the two 
queues, the state correspondence is preserved. 

It follows that f is a simulation relation. Since f is a simulation re- 
lation, Theorem 8.12 implies that traces(D) C_ traces(C), as needed. 

Simulations are sometimes also useful in helping to prove that liveness prop- 
erties of B are satisfied by A. The idea is that a simulation relation from A to 
B actually implies more than just trace inc lus ion~i t  implies a close correspon- 
dence, involving both traces and states, between each execution of A and some 
execution of B. Such a strong correspondence, together with fairness assump- 
tions for A, can sometimes be used to prove the needed liveness properties. 

For example, here is one useful formal definition of a stronger correspondence 
between executions. Let A and B be two I /O automata with the same input and 
output actions. Let c~ and c~' be executions of A and B, respectively, and let f 
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be a binary relation over states(A) and states(B).  Then we say that c~ and c~' 

correspond with respect to f ,  provided that there is a mapping g from indices 
(occurrences) of states in c~ to indices of states in c~ ~, satisfying the following 

properties" 

1. g is monotone nondecreasing. 

2. g exhausts all of c~ ~ (i.e., the supremum of the range of g is the supremum 

of the indices of states in c~). 

3. g-corresponding pairs of states are related by f .  

4. Between successive g-corresponding pairs of states, the traces in c~ and c~ ~ 
are identical. 

Then it is not hard to see that a simulation relation yields this type of corre- 

spondence between executions" 

T h e o r e m  8.13 I f  f is a simulation relation from A to B,  then for every exe- 
cution c~ of A, there is an execution c~ I of B such that c~ and c~ ~ correspond with 
respect to f .  

Theorem 8.13 can be used to prove a liveness property for A, assuming a 

similar liveness property for B. We use this strategy, for example, in our proof 

sketch for a mutual  exclusion algorithm (TicketME, Theorem 10.40) and our 

proof sketch for a data link protocol (Stenning, Lemma 22.2). 

8.6 Complexity  Measures 

Even though the I /O  automaton model is asynchronous, it has a natural  notion 
of time complexity. For a given automaton A, we define upper time bounds for 
any subset of the equivalence classes in the task parti t ion tasks(A).  Specifically, 
for any task C, we may define a bound upperc, which can be either a positive 

real number or oc. Then for any fair execution c~ of A, a real-valued time can 

be associated with every event of c~, subject to the following conditions: 

1. The times are monotone nondecreasing in c~. 

2. If c~ is infinite, then the times approach co. 

3. From any point in c~, a task C can be enabled for time at most upperc 
before some action in C must occur. 
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Roughly speaking, this imposes an upper bound of upperc on the time between 
successive chances by task C to perform a step. A fair execution with times 

associated in this way is called a timed execution. 
Notice that, for a given set of upperc bounds, there are many ways that 

times can be associated with the events of c~, that is, many timed executions. 

We measure the time until some designated event 7r in c~ by the supremum of 

the times that can be assigned to 7r in all such timed executions. Likewise, we 

measure the time between two events in c~ by the supremum of the differences 

between the times that can be assigned to those two events. 

Example 8.6.1 Time analysis 

Let c~ be any fair execution of the system of Example 8.2.1 in which 
all processes receive init inputs. We associate an upper bound of 

with each task of each process and an upper bound of d with the 
single task of each channel. Then the time from when the last process 

receives its first init input in c~ until all processes have performed a 

decide output  is at most t~ + d + t~ = d + 2g. The reason is that it 

takes at most time t~ for the last process that receives an init input 

to perform send events for all its neighbors. Then it takes at most 
time d for all of these messages to be delivered, and then at most 

time t~ for each process to perform decide. 

8.7 Indist inguishable Execut ions  

We define a notion of indistinguishability that will be useful in some impossi- 

bility proofs. This is analogous to the notion of indistinguishability defined in 

Section 2.4 for executions of synchronous systems. 
If c~ and c~ ~ are executions of two composed systems of automata,  each con- 

taining automaton A, then we say that c~ and c~ ~ are indistinguishable to A 
provided that c~lA = c~'lA. 

8.8 Randomizat ion 

As in synchronous systems, it is sometimes useful to allow components in asyn- 
chronous systems to make random choices based on some given probability distri- 

butions. In order to model such random choices, we augment the I /O  automaton 

model to obtain a new probabilistic I /O  automaton model. A probabilistic I /O  
automaton is just  like an I /O  automaton, except that the notion of a transit ion 
is modified: instead of being a triple (s, 7c, s'), it is a triple of the form (s, 7r, P) ,  

where P is a probabili ty distr ibution over some subset of the set of states. (If a 
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step does not involve a random choice, we model it using a trivial distribution 
P.) Every probabilistic I /O automaton A has a nondeterministic version, N'(A), 
which is obtained by replacing each transition (s, 7r, P) by the set of transitions 
(s, 7r, s'), where s' is an element of the domain of P. Thus, Af(A) simply re- 
places random choices with nondeterministic choices. Af(A) is an ordinary I /O 
automaton. 

An execution of probabilistic I /O automaton A is generated by means of a 
series of pairs of choices. In each pair, a nondeterministic choice is made first, to 
determine the next transition (s, 7r, P),  and then a random choice is made, using 
P, to determine the next state. The only restriction on the choices is that the 
nondeterministic choice of the next transition must be "fair," in the sense that 
all the executions generated by all possible sequences of random choices are fair 
executions (in the usual sense)of  the I /O automaton A/'(A). 

As in the synchronous case, claims about what is computed by a randomized 
system are usually probabilistic. When a claim is made, the intention is generally 
that it is supposed to hold for all inputs and all fair patterns of nondeterministic 
choices. As in Chapter 5, a fictitious adversary is usually invented to describe 
these inputs and nondeterministic choices, and the automaton is required to 
behave well in competition with any adversary. 

8.9 Bibliographic Notes 

The I /O automaton model was originally developed in Tuttle's M.S. thesis [217]. 
The important features of the model are summarized in papers by Lynch and Tut- 
tle [217, 218]. Descriptions and proofs of algorithms modelled as I /O automata 
are sprinkled throughout the research literature on distributed algorithms; some 
representative examples appear in the work of Afek et al. and Bloom [3, 4, 53]. 
An example of the use of I /O automata to model systems with dynamic pro- 
cess creation is the framework for modelling database concurrency control algo- 
rithms presented in the book Atomic Transactions, by Lynch, Merritt, Weihl, 
and Fekete [207]. The I /O automaton model has been influenced by many other 
models for concurrent systems, most notably the asynchronous shared memory 
model of Lynch and Fischer [216], the Actor model of newitt  [7, 81], and the 
Communicating Sequential Processes model of Hoare [159]. 

The origins of the notion of invariant assertion are discussed in the Biblio- 
graphic Notes at the end of Chapter 2. The notion of trace property described 
here is adapted from the "schedule module" definition in [217, 218]. The notions 
of safety and liveness are adapted from work by Lamport [175] and by Alpern 
and Schneider [8]. Theorem 8.9 is adapted from [8]. 

A good reference for temporal logic is the book by Manna and Pnueli [219]. 
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Lamport 's  work on Temporal Logic of Actions (TLA) contains a useful temporal 
logic framework [184], plus a well-developed methodology for using the framework 
to verify algorithms. 

The strategy of showing that a sequence projects to give traces of all the 
components of a composed system A, in order to prove that the sequence is 
in fact a trace of the entire system A, is used in [207]. There, the system A 
is an abstract specification of a database system that executes all transactions 
serially. It is shown, by analyzing projections in this way, that certain sequences 
produced by database systems that execute the transactions concurrently are in 
fact traces of A. This is the key to the correctness of these database systems. 
The work on preservation of safety properties is derived from [218]. 

Simulation relations originate from many sources. They are a generalization 
of the notion of refinement mapping used by Lamport in [177]; they are an 
abstraction of the history variables of Owicki and Gries [235]; and they are very 
similar to the simulations of Park [236], the possibilities mappings of Lynch [203, 
214] and of Lynch and Tuttle [217, 218], and the simulations of Jonsson [165]. The 
value of the simulation method for verifying safety properties of asynchronous 
systems is now well established. Many papers and books, for example, [217, 
288, 69, 233, 214, 207, 189, 190], contain substantial examples of its use. A 
fair number of proofs using simulations have been carried out with computer 
assistance and checking. See work by Nipkow [233] and by S0gaard-Andersen, 
Garland, Guttag, Lynch, and Pogosyants [265] for representative examples, the 
former using the Isabelle Theorem Prover and the latter using the Larch Prover. 

The modelling of randomized systems is derived from the work of Segala and 
Lynch [257]. 

General results about models for concurrent systems are well represented in 
the annual International Conference on Concurrency Theory (CONCUR). 

8.10 E x e r c i s e s  

8.1. Consider the composition of the automata Pi and Ci,j, 1 < i , j  < n, in 
Example 8.2.1. 

(a) Describe all the states that arise in the unique execution arising from 
the trace given in that example (for n = 2). 

(b) Now let n = 3. Let m be any arbitrary natural number. Describe 
an execution in which m gets decided by all three processes. In your 
execution, the successive initl values should be some prefix of the 
sequence 0, 4, 8, 12, . . . ,  the successive init2 values should be some 



232 8. M O D E L L I N G  II: A S Y N C H R O N O U S  S Y S T E M  M O D E L  

prefix of 0, 2, 0, 2, . . .  , and the successive init3 values should be some 
prefix of 0, 1, 0, 1, . . . .  

(c) Again let n = 3. This time, let ml ,  m2, and rn3 be three arbi trary 
natural numbers. Describe an execution in which mi gets decided by 
Pi, i E {1, 2, 3}. The successive init values of the three processes 
should be as in (b), above. 

8.2. Prove Theorems 8.1, 8.2, and 8.3. Where are the compatibility conditions 
used? 

8.3. Prove Theorems 8.4, 8.5, and 8.6. Where are the compatibility conditions 
used? Where is the input-enabling condition used? 

8.4. Consider the following two I /O automata. Note that they are not written 
using precondition-effect notation, but just using a brute force listing of all 
the components. 

�9 Automaton A: 
in(A)  = in t (A)  = O, out (A)  - {go}, 
states ( A ) - { s, t }, 
s tar t (A)  = {s}, 
t rans(A)  = {(s, go, t)},  and 
tasks(A I = {{go}}. 

�9 Automaton B: 
in (B)  = {go}, ou t (B)  - { ack}, in t (B)  = { increment} ,  
states ( B ) = { on, of f}  x N, 
s tar t (B)  = {(on, 0)}, 
trans (B)) = {((on, i), increment ,  (on, i + 1)), i C N} U 

i), go, (02 i)), i N} u 
{((off ,  i), go, (o# ,  0)), i e u 
{((of f ,  i), ack, (off,  i -  1)),i e N - { 0 } } ,  and 

tasks ( B ) = { { increment  }, { ack } }. 

For each of the three automata A, B, and A x B, describe the sets of traces 
and fair traces. 

8.5. (a) Define an I /O automaton A representing a reliable message channel 
that accepts and delivers messages from the union of two alphabets, 
M1 and M2. The message channel is supposed to preserve the order 
of messages from the same alphabet. Also, if a message from alpha- 
bet M1 is sent prior to another message from alphabet M2, then the 
corresponding deliveries must occur in the same order. However, if a 
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(b) 

message from M1 is sent after a message from M2, then the deliveries 
are permitted to occur in the opposite order. Your automaton should 
actually exhibit all of the allowable external behaviors. Be sure to 
give all the components of A: the signature, states, start  states, steps, 
and tasks. 

For your automaton, give an example of each of the following: a fair 
execution, a fair trace, an execution that is not fair, and a trace that 
is not fair. 

8.6. Describe a specific I /O automaton having no input actions, whose output 
actions are {0, 1, 2 , . . .  }, and whose fair traces are exactly the sequences in 
set S, defined as follows. S consists of all the sequences of length 1 over the 
output set, that is, all the sequences consisting of exactly one nonnegative 
integer. 

8.7. Prove Theorem 8.7. 

8.8. Let A be any I /O automaton. Show that there is another I /O automaton 
B with only a single task, such that fairtraces(B) C fairtraces(A). (You 
do not need to show fairtraces (B) = fairtraces (A)--inclusion is enough.) 

8.9. Let A be any I /O automaton with a single task. Show that there is another 
I /O automaton B, also with a single task, that is "deterministic" in the 
sense that the following all hold: 

(a) There is exactly one initial state. 

(b) For every state s and every action 7r, there is at most one transition 
of the form ( s, 7r, s'). 

(c) In every state, at most one locally controlled action is enabled. 

Moreover, fairtraces(B) C_ fairtraces(A). (You do not need to show 
fairtraces (B) = fairtraces (A)--inclusion is enough.) 

8.10. State and prove a theorem that combines the results of Exercises 8.8 and 
8.9. 

8.11. Reconsider Exercises 8.8, 8.9, and 8.10 in the case where the equality 
fairtraces(B) = fairtraces(A) is required. If these exercises can be solved 
with this stronger requirement, then solve them. Otherwise, show that they 
cannot be solved. 

8.12. If P is a safety property, prove that the following three are equivalent 
statements about an I /O automaton A: 
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(a) traces (A) C_ traces (P). 

(b) fairtraces(A) C_ traces(P). 

(c) The finite traces of A are all in traces(P). 

8.13. Consider the following trace properties P;  in each case, sig(P) is the sig- 
nature consisting of no inputs and outputs {1, 2}. 

(a) Suppose traces(P) is the set of sequences over {1, 2} in which there 
is no instance of a 1 followed immediately by a 2. Show that P is a 
safety property. 

(b) Suppose that traces(P)is the set of sequences over {1, 2} in which 
every occurrence of 1 is eventually followed by a 2. Show that P is a 
liveness property. 

(c) Suppose that traces(P)is the set of sequences over {1,2} in which 
every occurrence of 1 is immediately followed by a 2. Show that P is 
neither a safety property nor a liveness property. Show explicitly how 
to express P as the intersection of a safety property and a liveness 
property. 

8.14. Formulate careful definitions of safety and liveness properties for execu- 
tions, analogous to those for traces. Prove the analogues of Theorems 8.8 
and 8.9. 

8.15. Prove Theorem 8.11. 

8.16. Prove Theorem 8.12. 



Part  IIA 

Asynch ronous Shared Memory 
Algorithms 

The next several chapters, Chapters 9-13, deal with algorithms for the asyn- 

chronous shared memory  model, in which processes take steps asynchronously 
and communicate via shared memory. 

The first chapter in this part, Chapter 9, simply presents our formal model 
for asynchronous shared memory systems. As before, skip it for now and use 
it as a reference. Chapter 10 deals with the fundamental problem of mutual 

ezclusion, and Chapter 11 deals with the more general problem of distributed 
resource allocation. Chapter 12 contains fundamental results on consensus in 
fault-prone asynchronous systems. Finally, Chapter 13 contains a study of atomic 

objects--powerful abstract objects for programming distributed systems. 
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Chapter 9 

Modelling III: Asynchronous 
Shared Memory Model 

In this chapter, we give a formal model for asynchronous shared memory sys- 

terns. This model is presented in terms of the general I /O automaton model for 

asynchronous systems that we defined in Chapter 8. 

A shared memory system consists of a collection of communicating processes, 
as does a network system. But this time, instead of sending and receiving mes- 

sages over communication channels, the processes perform instantaneous opera- 
tions on shared variables. 

9.1 Shared Memory Systems 

Informally speaking, an asynchronous shared memory system consists of a finite 
collection of processes interacting with each other by means of a finite collection 

of shared variables. The variables are used only for communication among the 
processes in the system. However, so that the rest of the world can interact 

with the shared memory system, we also assume that each process has a port, 
on which it can interact with the outside world using input and output actions. 

The interactions are depicted in Figure 9.1. 
We model a shared memory system using I//O automata, in fact, using just 

a single I//O automaton with its external interface consisting of the input and 
output actions on all the ports. It might seem more natural to use several 

automata, one per process and one per shared variable. However, that leads to 
some complications we would rather avoid in this book. For instance, if each 
process and each variable were an I//O automaton and we combined them using 

ordinary I /O automaton composition, then we would get a system in which an 
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ports processes shared variables 

F i g u r e  9.1- An asynchronous shared memory system. 

operation by a process i on a shared variable x would be modelled by a pair of 

events--an invocation that is an output of process i and an input of variable x, 

followed by a response that is an output of variable x and an input of process 
i. But then the system would also have some executions in which these pairs 
of events are split. For instance, several operations could be invoked before the 

first of them returns. This kind of behavior does not occur in the shared memory 
systems that we are trying to model. 

One way out of this difficulty would be to consider a restricted subset of all 
the possible executions--those in which invocations and corresponding responses 

occur consecutively. A second way out would be to model only the processes as 

I /O automata, but to model the shared variables as state machines of a different 
kind (with invocations and responses combined into single events); in this case, a 
new composition operation would have to be defined to allow combination of the 

process and variable automata into one I /O automaton. Since these approaches 
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introduce their own complexi t ies - - res t r ic ted  subsets of the set of executions, 

pairs of events, a new kind of state machine, or a new opera t ion- -we  sidestep 

all these issues by just  modelling the entire system as one big I / O  au tomaton  A. 

We capture  the process and variable s t ructure  within au tomaton  A by means of 

some locality restr ict ions on the events. 

As in the synchronous network model, we assume that  the processes in the 

system are indexed by 1 , . . .  , n. Suppose that  each process i has an associated set 

of states, statesi, among which some are designated as start states, starts. Also 

suppose that  each shared variable x in the system has an associated set of values, 
valuesx, among which some are designated as the initial values, initialx. Then 

each state in states(A) (the set of states of the system au tomaton  A) consists 

of a state in statesi for each process i, plus a value in values~ for each shared 

variable x. Each state in start(A) consists of a state in start~ for each process i, 

plus a value in initialx for each shared variable x. 

We assume that  each action in acts(A) is associated with one of the processes. 

In addition, some of the internal actions in int(A) may be associated with a 

shared variable. The input actions and ou tpu t  actions associated with process 

i are used for interaction between process i and the outside world; we say they 

occur on port i. The internal actions of process i that  do not have an associated 

shared variable are used for local computat ion,  while the internal actions of i 

that  are associated with shared variable x are used for performing operations 
on x. 

The set trans(A) of transitions has some locality restrictions, which model 

the process and shared variable structure of the system. First, consider an action 

7r that is associated with process i but with no variable; as we noted above, 7r is 

used for local computation. Then only the state of i can be involved in any 7r 

step. That is, the set of 7r transitions can be generated from some set of triples 

of the form (s, 7r, s~), where s, s ~ E statesi, by attaching any combination of states 

for the other processes and values for the shared variables to both s and s ~ (the 

same combination to both). 

On the other hand, consider an action ~ that is associated with both a process 

i and a variable x; as we noted above, ~ is used by i to perform an operation 

on x. Then only the state of i and the value of x can be involved in any 7r step. 

That is, the set of 7r transitions can be generated from some set of triples of 

the form ((s, v), 7~, (s ~, v~)), where s, s ~ E statesi and v, v ~ E valuesx, by at taching 

any combination of states for the other processes and values for the other shared 

variables. There is a technicality: if ~ is associated with process i and variable 
x, then whether or not 7~ is enabled should depend only on the state of process i, 

a l though the resulting changes may also depend on the value of x. That  is, if 

is enabled when the state of i is s and the value of x is v, then 7~ is also enabled 

when the state of i is s and when x has any other value v ~. 
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The task par t i t ion  t a s k s ( A )  must  be consis tent  with the process  s t ructure:  

that  is, each equivalence class (task) should include locally control led act ions of 

only one process.  In m a n y  cases that  we will consider,  there will be exact ly one 

task per p r o c e s s - - t h i s  makes  sense, for example,  if each process is a sequent ial  

p rogram.  In this case, the s t anda rd  definition of fairness for I / O  au tomata ,  

given in Section 8.3, says that  each process  gets infinitely m a n y  chances to take 

steps. In the more  general case, where there can be several tasks per process,  

the fairness definition says that  each task gets infinitely m a n y  chances to take 

steps. 

E x a m p l e  9 .1 .1  S h a r e d  m e m o r y  s y s t e m  

Let  V be a fixed value set. Consider  a shared m e m o r y  sys tem A 

consis t ing of n processes,  numbered  1 , . . .  ,n ,  and a single shared 

variable x with values in V U { u n k n o w n } ,  initially u n k n o w n .  The 

inputs  are of the form i n i t ( v ) i ,  where v E V and i is a process  index. 

The  ou tpu t s  are of the form d e c i d e ( v ) i .  The internal  actions are of 

the form accessi .  All the actions with subscr ipt  i are associa ted with 

process  i, and in addi t ion,  the access  actions are associa ted with 

variable x. 

After process  i receives an i n i t ( v ) i  input ,  it accesses x. If it finds 

x = u n k n o w n ,  then it wri tes  its value v into x and decides v. If it 

finds x - w, where w E V, then it does not  write any th ing  into x, 

but  decides w. 
Formally,  each set s ta tes i  consists  of local variables.  

S t a t e s  o f  i: 
status E {idle, access, decide, done}, initially idle 
input E V tJ {unknown},  initially unknown 
output C V U {unknown},  initially unknown 

The t rans i t ions  are 

T r a n s i t i o n s  o f  i: 

init(v)i 
Effect: 

input := v 
if status = idle then 

status := access 

a c c e s s i  

Precondition: 
status = access 

Effect: 
if x -- unknown then x := input 
output := x 
status := decide 

decide(v)i 
Precondition: 

status -- decide 
output = v 

Effect: 
status := done 
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There is one task per process, which contains all the access and 

decide actions for that process. 
It is not hard to see that in every fair execution c~ of A, any pro- 

cess that receives an init input eventually performs a decide output.  
Moreover, every execution (fair or not, and with any number of init 
events occurring anywhere) satisfies the "agreement property" that 
no two processes decide on different values, and the "validity prop- 
erty" that every decision value is the initial value of some process. 

We can formulate these correctness claims in terms of trace prop- 
erties, according to the definition in Section 8.5.2. For example, let 
P be the trace property such that s i g ( P ) =  extsig(A) and traces(P) 
is the set of sequences/3 of actions in acts(P) satisfying the following 

conditions: 

1. For any i, if exactly one init4 event appears in/3, then exactly 

one decidei event appears in/3. 

2. For any i, if no initi event appears in/3, then no decidei event 
appears in/3. 

3. (Agreement) If decide(v)i and decide(w)j both appear in fl, then 
V ~ W .  

4. (Validity) If a decide(v)i event appears in/3, then some init(v)j 
event (for the same v) appears in/3. 

It is then possible to show that fairtraces(A) c_ traces(P). The proof 
is left for an exercise. 

9.2 E n v i r o n m e n t  M o d e l  

Sometimes it is useful to model the environment of a system as an automaton 
also. This provides an easy way to describe assumptions about the environment 's  
behavior. For instance, in Example 9.1.1, we might like to specify that the 
environment submits exactly one initi input for each i, or maybe at least one for 
each i. For shared memory systems that arise in practice, the environment can 

often be described as a collection of independent user automata, one per port. 

Example  9.2.1 Environment  model  

We describe an environment for the shared memory system A de- 

scribed in Example 9.1.1. The environment is a single I /O  automaton 
that is composed (using the composition operation for I /O  automata 
defined in Section 8.2.1) of one user automaton, Ui, for each process 
index i. Ui's code is as follows. 
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Ui automaton:  

Signature:  

Inpu t :  

decide(  v ) i , v C V 

O u t p u t :  

i n i t ( v ) i ,  v C V 

In ternal :  

d u m m y i  

States:  
s ta tus  C { reques t ,  wai t ,  d o n e } ,  ini t ia l ly reques t  

dec i s ion  C V U { u n k n o w n } ,  ini t ia l ly  u n k n o w n  

error,  a Boolean ,  ini t ia l ly  fa l se  

Trans i t ions :  

i n i t ( v ) i  

Precondi t ion :  

s ta tus  = reques t  or error  = t rue  

Effect: 

if error  = fa lse  then  s ta tus  :=  wai t  

d u m m y i  

Precondi t ion :  

error  = t rue  

Effect: 

none 

Tas ks: 
All local ly cont ro l led  act ions  are in one class. 

dec ide (v ) i  

Effect: 

if e r r o r -  fa l se  then  

if s ta tus  = wai t  then 

dec i s ion  :=  v 
s ta tus  :=  done  

else error  :=  t rue  

Thus, Ui initially performs an initi action, then waits for a de- 
cision. If the shared memory system produces a decision without a 
preceding initi or produces two decisions, then Ui sets an error flag, 
which allows it to output any number of inits at any time. (The 
presence of the dummyi action allows it also to choose not to per- 
form outputs.) Of course, the given shared memory system is not 
supposed to cause such errors. 

The composition of the shared memory system A with all the Ui, 
1 _< i _< n, is depicted in Figure 9.2. This composition is quite well- 
behaved" in any fair execution of the composition, there is exactly 
one initi event and exactly one decidei event for each i. Moreover, the 
decide events satisfy appropriate agreement and validity conditions. 

More formally, let Q be the trace property such that sig(Q) con- 
sists of outputs init(v)~ and decide(v)~ for all i and v, and such that 
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users processes 

init(v___~) l. 

~ d e c i d e ( v ) ,  

F i g u r e  9.2" Users and shared memory system. 

traces(Q) is the set of sequences/3 of actions in acts(Q) satisfying 
the following conditions: 

1. For any i,/3 contains exactly one initi event followed by exactly 
one decidei event. 

2. (Agreement) If decide(v)i and decide(w)j both appear  in r then 
V - - W .  

3. (Validity) If a decide(v)i event appears in fl, then some init(v)j 
event (for the same v) appears in/3. 

Then it is possible to show that fairtraces(Axl-Ii<i<n Ui) g traces(Q). 
The proof is left for an exercise. 



244 9. M O D E L L I N G  III: A S Y N C H R O N O U S  S H A R E D  M E M O R Y  M O D E L  

9.3 Indistinguishable States 

We define a not ion of ind is t inguishabi l i ty  tha t  will be useful in some imposs ib i l i ty  

proofs in C h a p t e r  10. 

Cons ider  an n-process  shared  m e m o r y  sys t em A and a collection of users  Ui, 

1 _< i <_ n. Let  s and s ~ be two s ta tes  of the c o m p o s e d  sys t em A x I - I i< i<n  gi. 
Then  we say tha t  s and s ~ are indistinguishable to process  i if the s ta te  of process  

i, the s ta te  of Ui, and the values of all the shared  var iables  are the same in s and 
i 8/ s ~. We wri te  s ~ to indicate  tha t  s and s ~ are indis t inguishable  to i. 

9.4 Shared Variable Types  

In the general  definit ion we have given for shared  m e m o r y  sys tems,  we have not  

r e s t r i c t ed  the types  of opera t ions  a process  m a y  per form on a shared  var iable  

when it accesses  the variable.  T h a t  is, when a process  i accesses  a var iable  x, 

we have allowed a r b i t r a r y  changes to the s ta te  of i and the value of x to occur,  

depending  in a r b i t r a r y  ways  on the previous  s ta te  of i and value of x. Bu t  in 

pract ice,  shared  var iables  normal ly  suppor t  only a fixed set of operat ions ,  such 

as read and wri te  operat ions ,  or a combined  r ead -mod i fy -wr i t e  operat ion.  In this 

subsect ion,  we define the not ion of a variable type, and say wha t  it means  for a 

shared  m e m o r y  sys t em to observe type  res t r ic t ions .  1 

A variable type consis ts  of 

�9 a set V of values 

�9 an init ial  value v0 E V 

�9 a set of invocations 

�9 a set of responses 

�9 a funct ion f "  invocations x V -+ responses x V 

The  funct ion f says what  happens  when a given invocat ion arr ives  at the variable  

and the variable  has a given value; f descr ibes  the new value the variable  takes  

on and the response  tha t  is r e tu rned .  Note  tha t  a variable type  is not  an I / O  

au toma ton ,  even though  some of its componen t s  look s imilar  to I / O  a u t o m a t o n  

components .  Most  impor tan t ly ,  in a var iable  type,  the invocat ions and responses  

are though t  of as occurr ing  together  as pa r t  of one funct ion appl icat ion,  whereas  

1The definition we use here requires the variable to behave deterministically. This could be 
generalized to allow nondeterminism, but we would rather avoid the complication here, since it 
is not needed for the results in this book. 
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in the I /O  automaton model, inputs and outputs are separate actions (and other 

actions may occur between them). 
Suppose we have a shared memory system A. What  does it mean to say that 

shared variable x in system A is of a given variable type? It means, first, that 
the set valuesx must be equal to the set V of values of the type, and that the set 
initial~ of initial values for x consists of just one element, v0. Moreover, all the 
transitions involving x must be describable in terms of the invocations and re- 
sponses allowed by the type. Namely, each action involving x must be associated 
with some invocation a of the variable type. Moreover, for each process i and 
each invocation a, the set of transitions involving i and a must be describable in 

the following form, where p is some predicate on statesi and g is some relation, 
g C_ statesi • responses • statesi. (In the code, we use the notation state4 to 
denote the state of process i.) 

Trans i t ions  involving i and a 

Precondi t ion :  

p(statei) 
Effect: 

(b, x) := f (a, x) 
statei := any s such tha t  (statei, b, s) E g 

This code means that the determination that variable x is to be accessed 
by process i using invocation a is made according to predicate p (which just 
involves the state of i). If this access is to be performed, then the function f for 
the variable type is applied to the invocation a and the value of variable x to 
determine a response b and a new value for x. The response b is then used by 

process i to update its state, in some way allowed by relation g. 
In the descriptions of shared memory algorithms in this book, transitions 

involving accesses to shared variables of particular types will not be writ ten ex- 
plicitly in terms of predicates p and relations g as above. However, theoretically, 
they could all be expressed in this style. 

Example 9.4.1 Read/write shared variables (registers) 

The most frequently used variable type in multiprocessors is one 
supporting only read and write operations. A variable of this type 

is known as a read/write variable, or a read/write register, or just a 
register. 

A read/wri te  register comes equipped with an arbi t rary set V of 
values and an arbi t rary initial value v0 E V. Its invocations are read 
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and w r i t e ( v ) ,  v E V .  Its responses  are v E V and ack.  2 Its funct ion 

f is defined by: f ( r e a d ,  v) = (v, v) and f ( w r i t e ( v ) ,  w )  = ( a c k ,  v ) .  

Note that  variable x in the sys tem of Example  9.1.1 cannot  be 

descr ibed as a r e a d / w r i t e  register,  because there is no way that  the 

given accesses could be rewri t ten  in the form given above. It is pos- 

sible to rewri te  the a lgor i thm so that  x is a register,  for example,  

by separa t ing  each access into a read and a write step. The result-  

ing process  code might  look as follows. The s t a t u s  value a c c e s s  is 

replaced by two new s t a t u s  values, r e a d  and w r i t e .  

Trans i t ions :  

init( v ) i write( v ) i 
Effect: Precondition: 

input := v status = write 
if status = idle then status := read v = input 

Effect: 
readi x := v 

Precondition: status := decide 
status = read 

Effect: decide( v ) i 
if x = unknown then Precondition: 

output := input status = decide 
status := write output = v 

else Effect: 
output := x status := done 
status := decide 

The task  par t i t ion  again groups  together  all locally control led 

actions of process  i. Al though this code is not  explicitly wr i t ten  in 

te rms  of a predicate  p and a relat ion g, note that  it could easily be 

rewri t ten  in this way. For instance,  for the readi  action, the predicate  

p is s imply " s t a t u s  = r e a d , "  and the relat ion g is jus t  the set of t r iples 

(s ,  b, s ' )  E s t a t e s i  x ( V U { u n k n o w n } )  x s t a t e s i  such that  s' is ob ta ined  

f rom s by the code: 

if b = unknown then 
output := input 
status := write 

else 
output := b 
status := decide 

For the w r i t e ( v ) i  action, the predicate  p is s imply  " s t a t u s  - w r i t e  

and v - i n p u t , "  and the relat ion g is jus t  the set of t r iples (s, b, s ~) E 

2The invocations and responses will sometimes also include additional information such as 
the name of the register. We mostly ignore such complications here. 
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statesi x (V U {unknown}) x statesi such that  s' is obtained from s 

by the code: 

status := decide 

So x is a r ead /wr i t e  shared variable. 

Notice that  when we rewrite the algori thm in this way, the agree- 

ment condition mentioned in Example  9.1.1 is no longer guaranteed.  

Example 9.4.2 Read-modify-write shared variables 

Another  impor tan t  variable type allows the powerful read-modify- 
write operation. In one instantaneous read-modify-wri te  operat ion 

on a shared variable x, a process i can do all of the following: 

1. Read x. 

2. Carry  out some computat ion,  possibly using the value of x, that  

modifies the state of i and determines a new value for x. 

3. Write the new value to x. 

It is not easy to implement  a general read-modify-wri te  operat ion 

using the usual primitives provided by multiprocessors.  The shared 

memory  model requires not  only that each access to the variable be 

indivisible, but  also that  all the processes should get fair turns  to 

perform such accesses. Implement ing this fairness requires some sort 

of low-level arbi t ra t ion mechanism. 

As we have described it, it is not obvious that  read-modify-wri te  

variables can be modelled in terms of variable types: the read-modify-  

write operation appears  to involve two accesses to the variable rather 

than just  one as required. One way to do this is to have a process 

that  wishes to access the variable determine, based on its state, a 

function h to use as an invocation of the variable. The function h 

provides the information from the process 's  state that  is needed to 

determine the t ransi t ion,  expressed in the form of a function to apply 

to the variable. The effect of the function h on the variable when it 

has value v is to change the variable's value to h(v) and re turn  the 

previous value v to the process. The process can then change its 

state, based on its old state and v. 

Formally, a read-modify-wri te  variable can have any set V of 

values and any v0 C V as an initial value. Its invocations are all the 
functions h, where h :  V ~ V. Its responses are v E V. Its function 

f is defined by f (h ,  v) = (v, h(v)). That  is, it responds with the prior 

value and updates  its value based on the submit ted  function. 
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For instance, in Example 9.1.1, the function submitted by a pro- 
cess to the variable is of the form h~, where 

h ~ ( x ) -  ~ v, if x - u n k n o w n  
[ x, otherwise 

The particular hv submitted by a process uses the process's input as 
the value of v. A return value of unknown causes output to be set 
to the value of input, while a return value of v c V causes output to 
be set to v. In either case, status is appropriately modified. 

Example  9.4.3 Other variable types  

Many of the variable types used in shared memory multiprocessors 
include restricted forms of read-modify-write, plus basic operations 
such as read and write. Some popular restricted form of read-modify- 
write include compare-and-swap, swap, test-and-set, and fetch-and- 
add operations. These operations are defined as follows. Fix a set V 
and initial value v0. 

The invocations for compare-and-swap operations are of the form 
compare-and-swap(u, v), u, v c V, and the responses are elements of 
V. The function f is defined for compare-and-swap invocations by 

f(compare-and-swap(u,v) w ) - {  (( w 'v) '  i f u - w  
' , w), otherwise 

That is, if the variable's value is equal to the first argument, u, then 
the operation resets it to the second argument, v; otherwise, the 
operation does not change the value of the variable. In either case, 
the original value of the variable is returned. 

The invocations for swap operations are of the form swap(u), 
u C V, and the responses are elements of V. The function f is 
defined for swap invocations by 

v)  = 

That is, the operation writes the input value u into the variable and 
returns the original variable value v. 

The invocations for test-and-set operations are of the form test- 
and-set, and the responses are elements of V. The function f is 
defined for test-and-set by 

f (test-and-set, v) = (v, 1). 
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That  is, the operat ion writes 1 into the variable and returns the 

original variable value v. (We assume that  1 E V.) 

Finally, the invocations for fetch-and-add operations are of the 
form fetch-and-add(u), u C V, and the responses are elements of V. 

The function f is defined for fetch-and-add by 

f(fctch-and-add(u), v) = (v, v + u). 

Tha t  is, the operation adds the input value u to the variable value 

v and returns the original value v. (This operat ion requires that  the 

set V support  a notion of addition.) 

We can define the executions of a variable type in a natural  way, as finite se- 

quences v0, al ,  bl, Vl, a2, b2, v2 , . . .  , v~ or infinite sequences v0, al ,  bl, Vl, a2, b2, v2, 
. . . .  Here, the v's are values in V, v0 is the initial value of the variable type, the 

a's are invocations, the b's are responses, and the quadruples vk, ak+l, bk~-l, Vk+l 
satisfy the function of the type. (That  is, (bk+l, Vk+l) = f (ak+l ,  vk).) Also, the 
traces of a type are the sequences of a's and b's tha t  are derived from executions 

of the type. 

E x a m p l e  9.4.4 Trace of  a r e a d / w r i t e  variable type  

The following is a trace of a read /wr i te  variable type with V = N 

and v0 = 0: 

read, 0, write (8), ack, read, 8 

We finish this section by defining a simple composition operat ion for variable 
types. This lets us regard a collection of separate variable types, each with its 
own operations, as a single variable type with several components,  and with 

operations acting on the individual components.  
We define a countable collection {Ti}icI of variable types to be compatible 

if all their sets of invocations are disjoint, and likewise for all their sets of re- 

sponses. Then the composition 7- - l-Ii~I 7~ of a countable compatible collection 
of variable types is defined as follows: 

�9 The set V is the Cartesian product  of the value sets of the Ti. 

�9 The initial value v0 consists of the initial values of the 7i. 

�9 The set of invocations is the union of the sets of invocations of the 7~. 

�9 The set of responses is the union of the sets of responses of the 7i. 
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�9 The function f operates "componentwise." That  is, consider f (a ,  w), where 
a is an invocation of ~ .  Function f applies a to the ith component of w, 

using the function of 7~, to obtain (b, v). It returns b and sets the ith 
component of w to v. 

When I is a finite set, we sometimes use the infix operation symbol x to denote 
composition. 

Example 9.4.5 Composition of variable types 

We describe the composition of two read/wr i te  variable types Tz and 

Ty. (You should think of x and y as the names of two registers.) 
Suppose the value sets are V~ and try, respectively, and the initial 

values are Vo,x and Vo,y. 
We can only compose these two types if they are compatible. So 

we disambiguate the invocations and responses of the two types by 

attaching the (literal) subscript x or y. Then the composed type 

T~ x Ty has V~ x Vy as its value set and the pair (Vo,x, Co,y) as its 
initial value. Its invocations are readx, read v, write(v)x, v C Vx, and 
write(v)y, v C try. Its responses are Vx, v C Vx, plus vy, v E V~, plus 

aCkx and ack v. 
Now we consider the function f .  Let w = (v, v ~) be an arbi- 

t ra ry  element of V~ x Vy. Then f is defined for w by f(readx, w) = 
(Vx, w), f(ready, w) - (Vy, w), f (write(v")~,  w) - (ackx, (v", v')), 
and f (wri te(v")y,  w) = (acky, (v, v")). Thus, a read returns the in- 
dicated component of the vector, while a write updates the indicated 
component.  

9.5 Complexity  Measures 

In order to measure time complexity in asynchronous shared memory systems, 

we assume an upper bound of t~ on process step time. Such an upper bound 
allows us to prove upper bounds on the time required for events of interest to 

occur (e.g., for a process that has received an initi input to produce a decidei 
output) .  

More precisely, we establish a time complexity measure for shared memory 

systems as a special case of the time complexity measure defined for general 
I /O  automata  in Section 8.6. That  is, we define an upper bound of t~ for each 
task C of each process; this imposes an upper bound of t~ on the time between 
successive chances by task C to perform a step. We measure the time until some 
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designated event 77 by the supremum of the times that can be assigned to 7r by 

time assignments that respect the upper bounds. Likewise, we measure the time 
between two events of interest by the supremum of the differences between the 

times that can be assigned to those two events. 
Note that our time measure does not take into account any overhead due to 

contention among processes for accessing a common variable. In multiprocessor 
settings where such contention is an issue, the time measure must be modified 
accordingly. 

Other interesting measures of complexity for shared memory systems include 

some static measures such as the number of shared variables and the size of their 
value sets. 

9.6 Failures 

The stopping failure of a process i in a shared memory system is modelled using 

an input action stopi, which causes the stopping failure of all tasks of process i but 
does not affect any other processes. More precisely, a stopi event can change 
only the state of process i, although we do not constrain these state changes 

except for requiring that they permanently disable all the tasks of process i. We 
leave open the issue of whether later inputs to process i are ignored, or cause the 

same changes to the state of process i that they would if no stopi had occurred, 
or cause some other state changes. These distinctions do not matter, because the 

effects of such state changes could never be communicated to any other processes. 
Figure 9.3 depicts the architecture for an asynchronous shared memory sys- 

tem with stopping failures. 

9.7 R a n d o m i z a t i o n  

A probabilistic shared memory system is defined by specializing the general def- 
inition of a probabilistic I /O automaton in Section 8.8 to the case where the I /O 

automaton is a shared memory system. 

9.8 Bibl iographic  N o t e s  

There are no special references for the basic model described in this chapter. It 

is a garden-variety shared memory model, formulated within the I /O automaton 
framework. Another model for shared memory systems was defined by Lynch and 
Fischer [216]; in that model, processes communicate by means of instantaneous 
accesses to shared variables, but not by means of external events. Kruskal, 



252 9. MODELLING III: ASYNCHRONOUS SHARED M E M O R Y  MODEL 

ports .. processes shared variables 

d'l~ 

F i g u r e  9.3" Architecture for asynchronous shared memory system with stopping fail- 
ures. 

Rudolph, and Snir [171] defined the various types of variables used in shared 
memory multiprocesssors. 

Dwork, Herlihy, and Waarts [103] have suggested a time complexity measure 
that takes into account contention for shared memory access. The formal mod- 
elling of probabilistic shared memory systems is derived from work by Lynch, 
Saias, and Segala [208]. 

9.9 E x e r c i s e s  

9.1. Let A be the shared memory system described in Example 9.1.1. 

(a) Prove that fairtraces(A) C traces(P), where P is the trace property 
described in Example 9.1.1. 

(b) Define an interesting trace safety property Q and show that the (not 
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necessarily fair) traces of A satisfy it. That  is, show traces(A) C_ 
traces(Q). Your property should include mention of what can happen 
where there is more than one initi action for the same process i. 

9.2. Prove that fairtraces(A x l-II<i<n gi) C traces(Q), where A is the shared 
memory system described in Example 9.1.1 and Q is the trace property 
described in Example 9.2.1. 

One way to do this is to reformulate Q as the intersection of a safety 
property S and a liveness property L. S can include the agreement and 
validity condition, plus part  of the first cond i t i on~ tha t  for each i, the 
subsequence of actions of i is some prefix of a sequence of the form initi, 
decidei. L can just say that at least one init4 event and at least one decidei 
event occur, for each i. Show that each system component preserves S and 

use Theorem 8.11 to show that traces(A x I-II<i<n Ui) C traces(S). (The 
fact that A preserves S could be argued from the fact that traces(A) C 
traces(P).) Then use the fairness assumptions to show liveness. 

9.3. Prove that the following is an invariant of the system A x Fll<i<n gi of 
Example 9.2.1" If decisiong~ 7~ unknown and decisionuj 7~ unknown, then 
decisionv~ - decisionv~ .3 Do this in two alternative ways" 

(a) Based on the fact that traces(A x YIl<i<n Ui) C traces(S), proved in 
Exercise 9.2. 

(b) Using the usual method for proving invar ian ts - -an  induction on the 
length of an execution leading to a given system state. 

9.4. Does the system described in Example 9.4.1, based on a read/wr i te  regis- 
ter, satisfy the same trace property P as the system in Example 9.1.1? If 
so, prove this. If not, then give a counterexample and then state and prove 
the strongest claims you can for the system's behavior. 

9.5. Research Question: Define an alternative model for shared memory sys- 
tems by using I /O  automata  to model processes only, and by defining a 
new type of state machine (similar to the model for variable types) for 
shared variables. Define an appropriate composition operation to combine 
"compatible" process and shared variable automata  into a single I /O  au- 
tomaton to model the entire system. What  modifications are needed to the 
results in subsequent chapters to fit them to your new definitions? 

aWe use the subscript notation to designate the variables belonging to particular automata. 
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Chapter 10 

M u t u a l  E x c l u s i o n  

In this chapter, we begin the study of asynchronous algorithms. Asynchronous 
algorithms are generally quite different from synchronous algorithms, since they 
must cope with the uncertainty imposed by asynchrony as well as the uncertainty 
caused by distribution. In asynchronous networks, for example, process steps 
and message deliveries do not necessarily take place in lock-step synchrony; 
rather, they may happen in an arbitrary order. 

Instead of moving immediately to the study of asynchronous network algo- 
rithms, we first study algorithms in the asynchronous shared memory setting. 
The main reason we do this is that the setting is somewhat simpler. But also, as 
you will see in Chapter 17, there are close connections between the asynchronous 
shared memory model and the asynchronous network model. For instance, it 
is possible to translate algorithms written for the asynchronous shared memory 
model into versions that can run in asynchronous networks. In this chapter and 
Chapter 11, we will not consider failures very much; asynchrony alone introduces 
enough interesting complications for now. 

The problem we study here is the mutual ezclusion problem, a problem of 
managing access to a single indivisible resource (e.g., a printer) that can only 
support one user at a time. Alternatively, it can be viewed as the problem 
of ensuring that certain portions of program code are executed within critical 
regions, where no two programs are permitted to be in critical regions at the 
same time. It is not known which users are going to request the resource nor 
when they will do so. This problem arises in both centralized and distributed 
operating systems. 

We present several mutual exclusion algorithms for the read/wri te  shared 
memory model, starting with an early algorithm by Dijkstra. Subsequent algo- 
rithms improve on Dijkstra's by guaranteeing fairness to the different users and 
by weakening the type of shared memory that is used. We then give a fundamen- 
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tal lower bound for the number of read/wri te  shared variables that are needed to 
solve the problem. Finally, we give a collection of upper and lower bound results 
for the case where the shared memory consists of stronger, read-modify-write 
shared variables. 

This chapter is quite long. The main reason for its length is that we are using 
it not just to present a collection of algorithms and impossibility results, but also 
to introduce many ideas that will be used in the rest of the book. These include 
techniques for modelling shared memory systems and their environments, state- 
ments of correctness conditions for asynchronous algorithms (including safety, 
progress, and fairness conditions), proof techniques for asynchronous algorithms 
(including operational, invariant assertion, and simulation relation proofs), ways 
of defining and analyzing time complexity for asynchronous algorithms, and tech- 
niques for proving lower bounds. 

10.1 Asynchronous Shared Memory Model 

Before we begin describing any algorithms, we describe the computation model 
we will use in this and the next three chapters. Here, we describe the model briefly 
and informally; a more complete, formal description appears in Chapter 9. 

The system is modelled as a collection of processes and shared variables, 
with interactions as depicted in Figure 10.1. Each process i is a kind of state 
machine, with a set statesi of states and a subset start4 of statesi indicating the 
start states, just as in the synchronous setting. However, now process i also 
has labelled actions, describing the activities in which it participates. These are 
classified as either input, output, or internal actions. In Figure 10.1, the arrows 
entering and leaving the process circles represent the input and output actions 
of the various processes. We further distinguish between two different kinds of 
internal actions: those that involve the shared memory and those that involve 
strictly local computation. If an action involves the shared memory, we assume 
that it only involves one shared variable. 

Unlike in the synchronous setting, there is no message-generation function, 
since there are no messages in this model. All communication between the pro- 
cesses is via the shared memory. 

There is a transition relation trans for the entire system, which is a set of 
(s, 7r, s ~) triples, where s and s ~ are automaton states, that is, combinations of 
states for all the processes and values for all the shared variables, and where 7r 
is the label of an input, output,  or internal action. We call these combinations 
of process states and variable values "automaton states" because, in the formal 
model of Chapter 9, the entire system is modelled as a single automaton. The 
statement that (s, 7r, s ~) E trans says that from automaton state s it is possible to 
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ports processes shared variables 

F i g u r e  10.1" An asynchronous shared memory system. 

go to au tomaton  state s I as a result of performing action 7r. Note that  trans is a 

relation rather than a func t ion- - for  convenience, we allow our model to include 

nondeterminism.  

We assume that  input actions can always happen,  that  is, that  the system is 

input-enabled. Formally, this means that  for every au tomaton  state s and input  

action 7r, there exists s ~ such that  (s, 7r, s ~) C trans. In contrast ,  ou tput  and 

internal steps might  be enabled only in a subset of the states. The intuit ion 

behind the input-enabling proper ty  is that  the input actions are controlled by an 

a rb i t ra ry  external  user, while the internal and output  actions are controlled by 

the system itself. 

The set of t ransi t ions  has some "locality" restrictions. First ,  for any transi-  

t ion that  does not involve the shared memory, only the state of the process that  

performs the action can be involved. On the other hand, for a t rans i t ion  that  

involves a process i and a shared variable x, only the state of process i and the 
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value of variable x can be involved. We assume that the enabling of a shared 
memory action depends only on the process state and not on the value of the 
shared variable accessed. However, the resulting changes to the process state 
and the variable value may depend also on the variable value. 

The shared variable steps are usually constrained further, to be executions of 
operations of particular types, such as read and write. A read step for variable 
x involves changing the process state, based on its previous state and the value 
in x; however, the value of variable x does not change. A write step involves 
writing a designated value to a shared variable, overwriting whatever was there 
before; it may also change the process state. We will mostly consider the model 
in which the variables are accessed using read and write operations, but we will 
also consider some more powerful operations such as read-modify-write. 

The execution of an asynchronous shared memory system is very different 
from that of a synchronous system. This time, processes are assumed to take 
steps one at a time, in an arbitrary order rather than in synchronized rounds. 
This arbi t rary  order is the essence of the asynchronous model. An execution 

is formalized as an alternating sequence, so, ~1, Sl, . . .  , consisting of automaton 
states alternated with actions (each action belonging to a particular process), 
where successive (state, action, state) triples satisfy the transit ion relation. An 
execution may be a finite or an infinite sequence. 

There is one important  exception to the arbitrariness in the order of process 
steps. We do not want to allow a process to stop taking steps when it is supposed 
to be taking steps, that is, when the process is in a state in which some locally 
controlled action (i.e., a non-input action) is enabled. (Although input actions 
are always enabled, we do not assume that they ever occur.) This condition is a 
little tricky to state precisely. 

For example, we might t ry to express it by saying: "If a process takes only 
finitely many steps, then its final state is one in which no locally controlled action 
is enabled." But this is not quite su i~c ien t~we might want also to rule out some 
situations in which a process takes infinitely many steps, but after some point, 
all the remaining steps are input steps. We need to make sure that the process 
itself also gets turns to perform locally controlled actions. 

So, we might t ry to express the needed condition by saying: "If a process 
takes only finitely many steps, then its final state is one in which no locally 
controlled action is enabled, and if a process takes infinitely many steps, then 
infinitely many of these steps are locally controlled steps." But again this is 
not quite r ight - -consider  the situation in which the process receives infinitely 
many inputs and performs no locally controlled actions, but in fact no locally 
controlled actions are enabled. That  situation seems fine, since we could say that 
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the process had "turns" to perform locally controlled steps, but simply had none 

that it "wanted" to perform. 

We account for all these possibilities in the following definition. For each 
process i, we assume that one of the following holds: 

1. The entire execution is finite, and in the final state no locally controlled 

action of process i is enabled. 

2. The execution is infinite, and there are either infinitely many occurrences 

of locally controlled actions of i, or else infinitely many places where no 

such action is enabled. 

We call this condition the fairness condition for this shared memory system. (In 

terms of the I /O  automaton definitions in Chapter  8, this amounts to grouping 
all the locally controlled actions of one process into one task.) 

10.2 T h e  P r o b l e m  

The mutual exclusion problem involves the allocation of a single, indivisible, 

nonshareable resource among n users, U1 , . . . ,  Un. The users can be thought of 

as application programs. The resource could be, for example, a printer or other 
output  device that requires exclusive access in order to ensure that the output  is 

sensible. Or it could be a database or other data structure that requires exclusive 

access in order to avoid interference among the operations of different users. 

A user with access to the resource is modelled as being in a critical region, 
which is simply a designated subset of its states. When a user is not involved 
in any way with the resource, it is said to be in the remainder region. In order 

to gain admit tance to its critical region, a user executes a trying protocol, and 
after it is done with the resource, it executes an (often trivial) exit protocol. This 

procedure can be repeated, so that each user follows a cycle, moving from its 

remainder region (R) to its trying region (T), then to its critical region (C), then 
to its exit region (E), and then back again to its remainder region. This cycle is 

shown in Figure 10.2. 
We consider mutual exclusion algorithms within the shared memory model 

described above--see  Figure 10.1 for the architecture. The shared memory sys- 
tem contains n processes, numbered 1 , . . .  , n, each corresponding to one user Ui. 
The inputs to process i are the tryi action, which models a request by user Ui 
for access to the resource, and the exiti action, which models an announcement  
by user Ui that it is done with the resource. The outputs  of process i are criti, 
which models the granting of the resource to Ui, and rerni, which tells Ui that 

it can continue with the rest of its work. The try, crit, exit, and rem actions 
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T 

1 
C 

F i g u r e  10.2" The cycle of regions of a single user. 

are the only external actions of the shared memory system. The processes are 

responsible for performing the trying and exit protocols. Each process i acts as 

an "agent" on behalf of user Ui. 
Each of the users Ui, 1 <_ i < n, is modelled as a state machine (formally, an 

I / O  automaton) that communicates with its agent process using the tryi, criti, 
ezit4, and remi actions. The external interface (formally, the external signature) 
of Ui is depicted in Figure 10.3. 

= try,. 

crit~ 

= exit~ 

rein i 

F i g u r e  10.3" External interface of user Ui. 

We think of each user Ui as executing some application program. The only 
thing that we assume about Ui is that it obeys the cyclic region protocol, that is, 

that Ui is not the first to violate the cyclic order of actions, tryi, criti, ex i t i , . . .  
(starting with tryi), between itself and its agent process. Formally, we define a 
sequence of tryi, criti, exit4 and rerr~ actions to be well-formed for user i if it is 
a prefix of the cyclically ordered sequence tryi, criti, exiti, remi, tryi, . . . .  Then 

we require that Ui preserve the trace property defined by the set of sequences 
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that are well-formed for user i. (We use the definitions of trace property and 

preserves from Section 8.5.4.) 

In executions of Ui that do observe the cyclic order of actions, we say that 

U~ is 

�9 in its remainder region initially and in between any rerni event and the 

following tryi event. 

�9 in its trying region in between any tryi event and the following criti event. 

�9 in its critical region in between any criti event and the following exiti event. 

During this time, Ui should be thought of as being free to use the resource 

(although we do not model the resource explicitly). 

�9 in its exit region in between any exiti event and the following rerni event. 

Figure 10.4 depicts all the interactions in the system. 
Now we can state what it means for a shared memory system A to solve the 

mutual exclusion problem for a given collection of users. Namely, the combina- 
tion (formally, the composition) of A and the users must satisfy the following 

conditions: 

W e l l - f o r m e d n e s s :  In any execution, and for any i, the subsequence describing 

the interaction between Ui and A is well-formed for i. 

M u t u a l  e x c l u s i o n :  There is no reachable system state (that is, a combination 

of an automaton state for A and states for all the Ui) in which more than 

one user is in the critical region C. 

P r o g r e s s :  At any point in a fair execution 

1. (Progress for the trying region) If at least one user is in T and no 

user is in C, then at some later point some user enters C. 

2. (Progress for the exit region) If at least one user is in E,  then at some 

later point some user enters R. 

We say that a shared memory system A solves the mutual exclusion problem 
provided that it solves it for every collection of users. 

Note that we have stated the correctness conditions in terms of the users' 

regions. Normally, the process states will also be classified according to their 

regions, and these regions will correspond exactly to the user regions. So we can 
equivalently state the correctness conditions in terms of process regions. We will 
talk interchangeably about user regions and process regions in the rest of this 

chapter. 
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= try i �9 

crit~- 

= ex i t  i 

r em  i 

F i g u r e  10.4: Interactions between components for the mutual exclusion problem. 

Note that the progress condition assumes that the execution of the system is 
fair, that is, it assumes that all the processes (and users) continue taking steps. 
If we did not assume this, then it would not be reasonable to require that cr i t  

or re in  outputs eventually be performed. On the other hand, we do not need to 
assume fairness in order to require that the system guarantee well-formedness 
or mutual exclusion. The difference is that the well-formedness and mutual 
exclusion conditions are s a f e t y  p r o p e r t i e s  (properties that say that particular 
"bad" things never happen), while the progress condition is a l i v e n e s s  p r o p e r t y  

(a property that says that some "good" thing eventually happens). 

T r a c e  p r o p e r t i e s .  Still another equivalent way of presenting these correctness 
conditions is in terms of a t race  p r o p e r t y ,  as defined in Section 8.5.2. For example, 
we can define a trace property P,  where s i g ( P )  has all the try,  crit ,  exit ,  and 
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rein actions as outputs, and traces(P) is the set of sequences/3 of these actions 

that satisfy the following three conditions: 

1. /3 is well-formed for each i. 

2. /3 does not contain two crit events without an intervening exit event. 

3. At any point in/3, 

(a) If some process's last event is try and no process's last event is crit, 
then there is a later crit event. 

(b) If some process's last event is exit, then there is a later rein event. 

Then an equivalent restatement of the mutual exclusion problem is the require- 
menU that, for all combinations B of A with users, fairtraces(B) C_ traces(P). 
(Recall that the external actions of B are just the try, crit, exit, and rein actions.) 
Trace property P could also be split into two parts, a safety property encompass- 
ing the well-formedness and mutual exclusion conditions, and a liveness property 
for the progress condition. 

S h a r e d  r e s p o n s i b i l i t y  for  p r o g r e s s .  According to the correctness conditions 
we have given, responsibility for the continuing progress of the entire system 
rests not only with the protocol, but with the users as well. If a user Ui gets 
the resource (by means of a crit4 event) but never returns it (by means of an 
exit~ event), then the entire system grinds to a halt. But if each user eventually 

returns the resource every time it receives it, then the progress condition implies 
that the entire system continues to make progress, repeatedly moving processes 
to new regions (unless all users remain in their remainder regions from some 
point on). 

L o c k o u t .  The progress condition we have stated does not imply that any par- 
ticular requesting user ever succeeds in reaching its critical region. Rather, it is 
a "global" notion of progress, saying only that some user reaches its critical re- 
gion. For instance, the following scenario does not violate the progress condition: 
Starting from an initial state, user U1 enters T. Then user U2 cycles through 
its four regions infinitely many times, while U1 remains in T and the rest of the 
processes remain in R. Our progress condition does not guarantee that U1 ever 
reaches C. 

R e s t r i c t i n g  p r o c e s s  ac t iv i ty .  There is one other cons t ra in t - -a  technical 
one- - tha t  we assume in this chapter: that a process within the shared mem- 
ory system can have a locally controlled action enabled only when its user is in 
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the trying or exit region. This says that a process can be actively engaged in 

executing the protocol only while it has active requests. This assumption is con- 

sistent with the view that each process is simply an agent for its corresponding 
user. 

In practical settings, this assumption might or might not be reasonable. The 

mutual exclusion problem was first studied in the setting of a time-shared unipro- 

cessor, where the users are logically independent processes sharing a single pro- 

cessor. In this setting, allowing a permanent process to manage access to the 
resource would cause extra context-switching, between the manager process and 
the user processes. In a true multiprocessor environment, it is possible to avoid 

the context-switching by using a dedicated processor to manage the resource. 

However, there will generally be many resources to be managed, and all the pro- 

cessors dedicated to managing resources would be unavailable for participation 
in other computational tasks. 

R e a d / w r i t e  s h a r e d  va r i ab l e s .  For most of the chapter (except for Section 

10.9), we assume that the shared variables are read/wri te  variables, also known 
as registers. In one step, a process can either read or write a single shared 

variable, but not both. Thus, the two actions involving process i and register x 
are 

1. (read) Process i reads register x and uses the value read to modify the 
state of process i. 

2. (write) Process i writes a value determined from process i's state to regis- 

ter x. 

We finish this section with a simple lemma saying that processes cannot stop 

taking steps while they are in their trying or exit regions. 

L e m m a  10.1 Let A be an algorithm that solves the mutual  ezclusion problem 

(for all collections of users). Let U1, . . . , U~ be any particular collection of users, 

and let B be the combination of A and the given collection of users. Let s be a 

reachable state of B .  

I f  process i is in its trying or exit region in state s, then some locally con- 

trolled action of process i is enabled in s. 

P r o o f .  Without loss of generality, we may assume that each of the users, 

U1, . . .  , Un, always returns the resource. 
Let c~ be a finite execution of B ending in s, and suppose for the sake of 

contradiction that process i is in either its trying or exit region in state s, and 
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no locally controlled action of process i is enabled in s. Then we claim that no 
events involving i occur in any execution of B that extends c~, after the prefix c~. 
This follows from the fact that enabling of locally controlled actions is determined 
only by the local process state, plus the fact that well-formedness prevents inputs 
to process i while process i is in T or E. 

Now let c~ ~ be a fair execution of B that extends c~, in which no try events 
occur after the prefix c~. Repeated use of the progress assumption, plus the fact 
that the users always return the resource, imply that process i must eventually 

perform either a criti or a rerni action. But this contradicts the fact that c~ ~ 
contains no further actions of i. D 

10.3 Dijkstra's Mutual Exclusion Algorithm 

The first mutual exclusion algorithm for the asynchronous read/wr i te  shared 
memory model was developed in 1965 by Edsger Dijkstra, based on a prior two- 
process solution by Dekker. This algorithm is not the most elegant or efficient 
algorithm now available, nor does it satisfy the strongest conditions. However, 
we present it anyway, for several reasons. First, it is the earliest example we 
can find of an algorithm that we would categorize as "distributed." Second, it 
contains several interesting algorithmic ideas. And third, it is a good example 
to use for illustrating some of the basic reasoning techniques for asynchronous 
shared memory algorithms. 

1 0 . 3 . 1  T h e  Algorithm 

We begin by presenting code for the algorithm in a traditional "pseudocode" 
style, similar to that used in the original paper by Dijkstra. Although this code 
should make sense informally, it is probably not completely clear how it should 
be t ranslated into an instance of our model. We call the algorithm DijkstraME. 

D i j k s t r a M E  algorithm: 

S h a r e d  v a r i a b l e s :  
turn C {1 , . . .  , n}, initially arbitrary, writable and readable by all processes 
for every i, 1 _~ i _~ n" 

flag(i) C {0, 1, 2}, initially 0, writable by process i and readable by all processes 
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P r o c e s s  i:  

** R e m a i n d e r  reg ion  ** 

L: 
try i 
f lag(i):= 1 
while  turn r i do 

if flag(turn) = 0 t hen  turn :=  i 

f lag(i):= 2 
for j -7(= i do 

if f l ag ( j )=  2 then  go to  L 
criti 

** Cr i t i ca l  reg ion  ** 

exiti 
f lag(i) ' -  o 
remi 

The shared variables are turn, an integer in { 1 , . . .  , n}, and flag(i), 1 <_ i <_ n, 
one per process, each taking on values from {0, 1, 2}, initially 0. The turn vari- 

able is a multi-writer/mult i-reader register, writable and readable by all pro- 

cesses. Each flag(i) is a single-writer/multi-reader register, writable only by 
process i but readable by all processes. 

In process i's first stage, it starts by setting its flag to 1 and then repeatedly 
checks the turn variable to see if t u r n -  i. If not, and if the current owner of 

turn is seen not to be currently active, process i sets turn "-  i. Once having 

seen t u r n -  i, process i moves on to the second stage. 

In the second stage, process i again sets its flag, this time to 2, and then checks 
to see that no other process has its j q a g -  2. This check of other processes'  flags 
can be done in any order. If the check completes successfully, process i goes 
to its critical region; otherwise, it returns to the first stage. Upon leaving the 

critical region, process i lowers its flag back to 0. 
Before we can prove anything about DijkstraME, we need to understand it 

as an instance of our formal state machine model. It is not completely obvious 

how to translate the code into an automaton. 

First,  the state of each process should consist of the values of its local vari- 

ables, as you would expect, plus some other information that is not represented 
explicitly in the code, including 

�9 temporary  variables needed to remember values just  read from shared vari- 

ables 
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�9 a program counter, to say where the process is in its code 

�9 temporary variables introduced by the flow of control of the program (e.g., 
the for loop can introduce a set variable to keep track of the indices of 
processes that have already been checked successfully) 

�9 a region designation, R, T, C, or E (R indicates the remainder region, T 
indicates the portion of the code from a tryi event until the next criti event, 
C indicates the critical region, and E indicates the portion of the code from 
an exiti event until the next remi event) 

The unique start state of each process should consist of specified initial values 
for local variables, arbitrary values for temporary variables, and the program 
counter and the region designation indicating the remainder region. The initial 
value for each shared variable is as specified. 

The steps of the automaton should follow the code; however, there are some 
ambiguities in the code that need to be resolved in the automaton. Although 
the code describes the changes to the local and shared variables, it does not 
say explicitly what happens to the implicit variables (the temporaries, program 
counter, and region designation). For example, when a tryi action occurs, i's pro- 
gram counter should move to statement L in the code and i's region designation 
should become T. These changes must be described explicitly in the automaton. 

The code also does not specify exactly which portions of the code comprise 
indivisible steps. However, it is essential to know this in order to reason carefully 
about the algorithm. For DijkstraME, the indivisible steps are the try, crit, exit, 
and rein steps at the user interface, plus individual writes to and reads from 
the shared variables, plus some local computation steps. There is at least one 
minor subtlety: the test for whether flag(turn) = 0 does not require two separate 
reads--since turn was just read in the previous line, a local copy of turn can be 
used. 

We resolve all of these ambiguities by rewriting the DijkstraME code by hand, 
in the precondition-effect style used in Chapter 8. Rewriting in this way makes 
the code a good deal longer, but all the transitions are now described explicitly. 
For readability, we arrange the pieces of code for the different actions in ap- 
proximately the order in which they are supposed to be executed; however, note 
that this order has no significance in the formal model - -any  action is allowed to 
occur at any time when it is enabled. The region designations R, T, C, and E 
are encoded into program counter values: R corresponds to rein; T corresponds 
to set-flag-i, test-turn, test-flag, set-turn, set-flag-2, check, and leave-try; C cor- 
responds to crit; and E corresponds to reset and leave-exit. Note that each code 
fragment is performed indivisibly. 
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D i j k s t r a M E  a l g o r i t h m  ( r e w r i t t e n ) "  

Shared  variables:  
turn C { 1 , . . .  ,n} ,  initially a rb i t r a ry  
for every i, 1 < i < n: 

flag(i) C {0, 1,2}, initially 0 

A c t i o n s  of  i: 
Input :  Internal :  

tryi set-flag- h 
exiti test-turni 

Outpu t :  test-flag(j)~, 1 < j <__ n, j # i 
criti set-turni 
remi s et-flag- 2i 

check(j)~, 1 <_ j < n, j # i 
reset~ 

States  of  i: 
pc 6 { rein, set-f lag-I,  test-turn, test- f lag(j) ,  set-turn, set-flag-2, check, leave-try, crit, 

reset, leave-exit}, init ially rein 
S, a set  of process  indices, init ially 0 

Trans i t ions  of  i: 

tryi set-turn~ 
Effect: Precondi t ion:  

pc :=  set-flag-1 pc = set-turn 
Effect: 

set-flag-l~ turn := i 
Precondi t ion:  pc := set-flag-2 

pc = set-flag-1 
Effect: s et-flag- 2~ 

flag(i) := 1 Precondi t ion:  
pc := test- turn pc = set-flag-2 

Effect: 

f l ag ( i ) :=  2 
s := {i} 
pc : :  check 

test-turni 
Precondi t ion:  

pc = test-turn 
Effect: 

if turn = i then pc := set-flag-2 
else pc := test- f lag(turn) 

test-f lag(j)i  
Precondi t ion:  

pc - test-flag (j) 
Effect: 

if f lag(j)  - 0  then pc " -  set- turn 
else pc " -  test-turn 

check(j)~ 
Precondi t ion:  

p c -  check 
j ~ S  

Effect: 

if f lag(j)  = 2 then 
S : = O  
pc := set-flag-1 

else 
S:=SO{j} 
if ISI = n then pc := leave-try 
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criti reseti 
Precondition: Precondition: 

pc = leave-try pc = reset 
Effect: Effect: 

pc := crit flag(i) := 0 
S:=O 

eziti pc := leave-exit 
Effect: 

pc := reset remi 
Precondition: 

pc = leave-exit 
Effect: 

p c  :--- r e i n  

The translation should be mainly self-explanatory. Note that the new style 
makes it easy to express slight improvements; for instance, the set- turni  action 
can allow process i to go directly to the second stage, without retesting turn. 

10.3.2 A Correctness  Argument  

In this section we sketch a correctness proof for Dijks traME.  This will be a 

somewhat brute-force operational proof, that is, one that consists of ad hoc 

arguments about executions. In the following section, Section 10.3.3, we give an 
alternative, more stylized proof of the mutual exclusion condition using invariant 

assertions. 
We give three lemmas showing that Di jk s t raME satisfies its requirements. 

L e m m a  10.2 Di jk s t raME guarantees wel l - formedness  for  each user. 

More precisely, we mean that in any execution of the combination (composi- 
tion) of Di jk s t raME and any collection of users, the subsequence describing the 

interaction between any Ui and Di jk s t raME is well-formed for user i. 

P r o o f .  By inspection of the code, it is easy to check that Di jk s t raME preserves 
well-formedness for each user. Since, by assumption, the users also preserve well- 

formedness, Theorem 8.11 implies that the system produces only well-formed 

sequences. D 

L e m m a  10.3 Di jk s t raME satisfies mutua l  exclusion. 

More precisely, we mean that in the combination of Di jk s t raME and any 
collection of users, there is no reachable state in which more than one user is in 

the critical region C. 
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I 
s e t ~ 2  ~ 

s e t - f l a g - 2 j  

I 
j finds f l ag ( i )  :t 2 cri t j  

! I I 

~ ti  

f l ag ( i )  = 2 

F i g u r e  10.5" Order of events in the proof of Lemma 10.3. 

P r o o f .  By contradiction. Assume that Ui and Uj, i r j, are simultaneously in 
region C in some reachable state. Consider an execution that leads to this state. 
By the code, both process i and process j perform set-flag-2 steps before entering 
their critical regions. Consider the last such step for each process and assume, 

without loss of generality, that set-flag-2i comes first. Then flag(i) remains equal 
to 2 from that point until process i leaves C, which must be after process j 
enters C, by the assumption that they both end up in C simultaneously. So, 

flag(i) has the value 2 throughout the interval from the set-flag-2j event until 
process j enters C. See Figure 10.5. But, during this time, process j must test 
flag(i) and find it unequal to 2, a contradiction. D 

L e m m a  10.4 DijkstraME guarantees progress. 

P r o o f .  The argument for the exit region is easy: If at any point in a fair 
execution, Ui is in the exit region, then process i keeps taking steps. After at 
most two more of these steps, process i will perform a rerni action, sending Ui 
to its remainder region. 

We consider the progress condition for the trying region. Suppose for the 
sake of contradiction that a is a fair execution that reaches a point where there 
is at least one user in T and no user in C, and suppose that after this point, no 
user ever enters C. 

We begin by removing some complications. First, any process in E keeps 
taking steps, so after at most two steps, it must reach R. So, after some point in 
c~, every process must be in T or R. Second, since there are only finitely many 
processes in the system, after some point in c~, no new processes enter T. Thus, 
after some point in (~, every process is in T or R, and no process ever again 
changes region. This implies that a has a suffix O~ 1 in which there is a fixed 
nonempty set of processes in T, continuing to take steps forever, and no region 
changes occur. Call these processes contenders. 
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Note that after at most a single step in Ctl, each contender i ensures that 
flag(i) >_ 1, and it remains _> 1 for the rest of C~l. So we can assume, without 
loss of generality, that flag(i) > 1 for all contenders i throughout C~l. 

Clearly, if turn is modified during c~1, it is changed to a contender's index. 
Moreover, we have the following claim. 

C l a i m  10.5 In aa, turn eventually acquires a contender's index. 

P r o o f .  Suppose not, that is, suppose the value of turn remains equal to the 
index of a non-contender throughout C~l. Consider any contender i. 

If pc/ever reaches test-turn (i.e., the beginning of the while loop in the original 
code), then we claim that i will set turn to i. This is because i first performs 
a test-turr~ and finds that turn equal to some j ~ i. Then it performs a test- 
f lag(j)i  and finds f lag(j) = 0, since j is not a contender. Process i therefore 
performs set-turni, setting turn to i. 

Now we show that i reaches test-turn. The only way it might not is if i 
succeeds in its checks of all the other processes' flags (in the second stage of the 
original code) and proceeds to leave-try. But by assumption about c~1, we know 
that i does not reach C. So it must be that some check must fail, taking i back 
to set-flag-i, from which it proceeds to test-turn. 

So, i reaches test-turn and thereafter sets turn := i. Since i is a contender, 

this is the needed contradiction. D 

Once turn is set to a contender's index, it is always thereafter equal to some 
contender's index, although the value of turn may change to the index of dif- 
ferent contenders. (This is because it is possible for several processes to be 
simultaneously at set-turn.) Then any later test-turn and subsequent test-flag 
yield f lag(turn) > 1, since for all contenders i, flag(i) _> 1. Thus, turn will not 
be changed as a result of these tests. Therefore, eventually turn stabilizes to a 
final (contender's) index. Let c~2 be a suffix of C t l  in which the value of turn is 
stabilized at some contender's index, say i. 

Next we claim that in c~2, any contender j -r i eventually ends up with its 
program counter looping forever between test-turn and test-flag. (That is, it 
winds up looping forever in the while loop.) This is because if it ever reaches 
check (in the second stage), then, since it doesn't  reach C, it must eventually 
return to set-flag-1. But then it is stuck looping forever, because turn = i 7/= j 
and flag(i) ~ 0 throughout c~2. So let c~3 be a suffix of c~2 in which all contenders 
other than i loop forever between test-turn and test-flag. Note that this means 
that all contenders other than i have their flag variables equal to 1 throughout 

Ct 3 �9 
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cz" some process in T, none in C 
r 

o~ ~" all in T, R, no region changes, flag > 1 for all contenders 

2" turn stabilized at index of contender i 

1~ 3" all contenders j ~ i have flag ~ 2 

F i g u r e  10.6" Successive sumxes in proof of Lemma 10.4. 

y 

. . . . _  

v 

We conclude the argument by claiming that in c~3, process i (the one whose 
index is in turn) has nothing to stand in the way of its reaching C. For example, 
if i performs test-turn, then i finds turn = i and so proceeds to set-flag-2. Then, 
since no other process has flag = 2, process i succeeds in all its checks and 
enters C. 

See Figure 10.6 for a depiction of the successive suffixes that appear in this 
proof. 

T h e o r e m  10.6 DijkstraME solves the mutual ezclusion problem. 

Although the arguments above are correct, they are rather intricate and ad 
hoc. It would be nice to have some more systematic ways of carrying out such 
proofs. In the following section, we give an alternative proof of the mutual 
exclusion condition, using invariant assertions. The progress condition could 

also be proved somewhat more systematically using temporal  logic, but we do 
not do that in this book. 

1 0 . 3 . 3  A n  A s s e r t i o n a l  P r o o f  o f  t h e  M u t u a l  E x c l u s i o n  C o n d i t i o n  

In the synchronous network model, many of the neatest and most systematic 
proofs are based on invariant assertions about the state of the system after some 
number of rounds. In the asynchronous setting, there is no notion of round, 
but invariants can still be used. The method just has to be applied at a finer 
granularity, to verify claims about the system state after any number of individual 

process steps. Of course, it is usually harder to devise statements about the 
state of an asynchronous system after any number of steps than it is to devise 
statements about the state of a synchronous system after any number of rounds. 
And proving such statements is also usually more dimcult. But the effort is 
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generally worthwhile because of the insights that  the invariants provide. Invariant  

assertions are the single most  impor tan t  formal tool for reasoning about  the 

correctness of asynchronous algorithms. 

We now give an assertional proof of the mutual  exclusion condition for the 

DijkstraME algorithm. 

P r o o f  (of  L e m m a  10 .3) .  To prove mutual  exclusion, we must  show 

A s s e r t i o n  10 .3 .1  In any reachable system state, 1 I{i : pc i = crit}l <_ 1. 

We would like to prove this assert ion by induction on the number  of steps in 

an execution. But,  as usual, the given s ta tement  is not s trong enough to prove 

alone in this w a y - - w e  need some auxiliary invariants. We prove Assert ion 10.3.1 

as a consequence of the next two assertions. 

A s s e r t i o n  10 .3 .2  In any reachable system state, if pci E {leave-try, crit, 
reset}, then I Sil = n. 

A s s e r t i o n  10 .3 .3  In any reachable system state, there do not exist 
i and j ,  i ~ j ,  such that i C Sj and j E Si. 

If both  Assertions 10.3.2 and 10.3.3 are true, then Assert ion 10.3.1 follows 

immediately:  Assume, for contradict ion,  that in some reachable system state, 

there are two dist inct  processes, i and j ,  such that  pci - pcj - crit. Then by 

Assert ion 10.3.2, ISil = ISjl = n. But then j C Si and i E Sj, contradict ing 

Assert ion 10.3.3. 

Assert ion 10.3.2 can be proved easily by induction on the length of an exe- 

cution. The basis is t rue vacuously, since all the processes are in R in the initial 

system state. The inductive step is a case analysis, considering all the types of 

actions one at a time. In this case, the only steps that  could cause a violation are 

those that  cause pci to enter the set of listed values and those that  reset Si to 

0, namely, checki and reseti. In the case of a checki, the only way the condition 

pci C {leave-try, crit, reset} could be true after the step is if I SiI = n, which is 
just  what we need. In the case of a reseti, the process leaves the indicated set of 

values after the step, so the s ta tement  is t rue vacuously. 

So it remains to prove Assert ion 10.3.3. This uses two simple facts. The first 

one constrains where process i can be in its code when Si ~ O. 

A s s e r t i o n  10 .3 .4  In any reachable system state, if  Si ~ O, then 
pci c {check, leave-try, crit, reset}. 

1Recall that a system state is a combination of states of the users and processes plus values 
of the shared variables. 
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This is also proved by a simple induction on the length of an execution. The 

basis is easy, since Si = 0 in the initial system state. For the inductive step, the 

only events that could cause a violation of this s ta tement  are events that  cause 

Si to become unequal to 0 and events that  cause pc/ to leave the set of listed 

values, that is, set-flag-2i, check4, and reset4. But set-flag-2i sets pci := check. 
Also, when checki causes pci to leave the set of listed values, it also sets Si := 0. 

Finally, reset sets Si := 0. Thus, all these events preserve the condition. 

The second fact says that  flag(i) = 2 when process i is at certain points in 

its code. 

A s s e r t i o n  10 .3 .5  In any reachable system state, if pci C {check, 
leave-try, crit, reset}, then flag(i)= 2. 

This is also proved by an easy induction on the length of an execution. Put t ing  

these two facts together,  we see the following: 

A s s e r t i o n  10 .3 .6  In any reachable system state, if Si r O, then 
flag(i) = 2. 

Now we can prove Assert ion 10.3.3, again by induction on the length of an 

execution. The basis is easy because in the initial state, all sets Si are empty. 

For the inductive step, the only event that could cause a violation is one that  

adds an element j to Si for some i and j ,  i 7(= j ,  that  is, a check(j)i for some 

i and j ,  i ~: j .  So consider the case where j gets added to Si as a result of a 

check(j)i event. Then it must  be that  flag(j) ~: 2 when this event occurs. But  

then Assert ion 10.3.6 implies that Sj = 0, so i ~ Sj. Thus, this step cannot  

cause a violation. [-1 

10.3.4 Running Time 

In this section, we prove an upper bound on the time from any point in an 

execution when some process is in T and no one is in C, until someone enters C. 

The first difficulty we face in proving such a bound is that it is not clear what 

this "time" should mean- -un l ike  in the synchronous setting, there are no rounds 

to count. Instead,  we just  assume that each step occurs at some point in real t ime 

and that  the execution begins at real t ime 0. We impose an upper  bound of t~ on 

the time between successive steps of each process (when these steps are enabled); 

recall that  all the precondition-effect code for one action is assumed to comprise 
a single step. We also assume an upper  bound of c on the max imum time that  

any user spends in the critical region. In terms of these assumed bounds,  we can 

deduce upper  bounds for the time required for interesting activity to occur. 
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T h e o r e m  10.7 In DijkstraME, suppose that at a particular t ime some user is 

in T and no user is in C. Then within t ime 0 (t~n), some user enters C. 

The constant involved in the big-O is independent of g, c, and n. This proof 
is ad hoc and a little tricky, using ideas from the proof of the progress condition. 

P r o o f .  Suppose the lemma is false and consider an execution in which, at some 
point, process i is in T and no process is in C, and in which no process enters C 
for time at least k~n, for some particular large constant k. Constant  k is chosen 
to be considerably bigger than the constants in the big-O terms in the following 
analysis. 

First,  it is easy to see that the time elapsed from the starting point of the 
analysis until there is no process either in C or E is at most O (g). 

Second, we claim that the additional time until process i performs a test-turni 
is at most O (~n). This is because i can at worst spend this much time checking 
flags in the second stage before returning to set-flag-1. We know that it must 
re turn to set-flag-I, because otherwise it would go to C, which we have assumed 
does not happen this quickly. 

Third, we claim that the additional time from when process i does test-turni 

until the value of turn is a contender index is at most O (~). To see this, we need 
a rather annoying case analysis. If at the time i does test-turni, turn already 
holds a contender index, then we are done, so suppose that this is not the case; 
specifically, suppose that turn = j ,  where j is not a contender. Then within time 

O (e) after this test, i performs a test-flag(j)i.  If process i finds f lag(j)  = 0, then 
i sets turn to i, which is the index of a contender, and we are again done. But 
if it finds f lag(j)  -r 0, then it must be that in between the test-turr~ and the 
test-flag(j)i,  process j entered the trying region and became a contender. If turn 

has not changed in the interim, then turn is equal to the index of a contender 
(j) and we are done. But if turn has changed in the interim, then it must have 
been set to the index of a contender. So again, we are done. 

Fourth, after an additional time O (~), a point is reached at which the value 
of turn has stabilized to the index of some particular contender, say j ,  and 
furthermore no process advances again to set-turn or set-flag-2 (at least until 
time kgn after the starting point of the analysis). 

Fifth, we claim that by an additional time O (gn), all contenders other than j 
will have their program counters in { test-turn, test-flag}. This is because other- 
wise they would reach C, which we have assumed does not happen this quickly. 

Sixth and finally, within an additional time O (gn), j must succeed in entering 
C. This contradicts the assumption that no process enters C within this amount  
of time. 
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Figure 10.7: Order of events and time bounds in proof of Theorem 10.7. 

The order of events in this proof, and the time bounds between them, are 
depicted in Figure 10.7. gl 

10.4 Stronger Conditions for Mutual Exclusion 
Algorithms 

Although the DijkstraME algorithm guarantees mutual exclusion and progress, 
there are other desirable conditions that it does not guarantee. It does not 
guarantee that the critical region is granted fairly to different users; for example, 
it allows one user to be repeatedly granted access to its critical region while other 
users trying to gain access are forever prevented from doing so. This situation 
is sometimes called lockout or starvation. 

Note that the kind of fairness we are talking about here is different from that 
discussed up to this point. So far, we have been talking about fair execution 
of process steps (and user automata steps), whereas now we are talking about 
fair granting of the resource. In order to distinguish these two types of fairness, 
we will call the fair execution of process steps and user automata steps low-level 
fairness, and the fair granting of the resource high-level fairness. In practice, 
high-level fairness might not be critical; in many practical situations in which 
mutual exclusion is used, contention between users is sufficiently infrequent that 
a user can afford to wait until all conflicting users get their turns. The importance 
of high-level-fairness considerations depends on the amount of contention for the 
resource, as well as the criticality of individual user programs. 

Another not-so-attractive property of Dijkstra's algorithm is that it uses a 
shared multi-writer/multi-reader register (turn). Such a variable is difficult and 
expensive to implement in many kinds of multiprocessor systems (as well as in 
nearly all message-passing systems). It would be better to design algorithms thal~ 
use only single-writer/multi-reader registers, or even better, single-writer/single- 
reader registers. 

Many mutual exclusion algorithms that improve upon DijkstraME in vari- 
ous ways have been designed. In the rest of this chapter, we shall look at a 
representative collection of these algorithms. 
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Before proceeding to the algorithms, we define carefully what it means for 
a mutual exclusion algorithm to guarantee high-level fairness. Depending upon 
the context in which the algorithm is used, different notions of high-level fairness 
may be appropriate; we define three notions. Each of these properties is stated for 
a particular mutual exclusion algorithm A composed with a particular collection 

U1,  . . . , U n  of users. 

L o c k o u t - f r e e d o m :  In any low-level-fair execution, the following hold: 

1. (Lockout-freedom for the trying region) If all users always return the 
resource, then any user that reaches T eventually enters C. 

2. (Lockout-freedom for the exit region) Any user that reaches E even- 
tually enters R. 

Note that the lockout-freedom condition, like the basic well-formedness, mutual 
exclusion, and progress conditions, can be expressed as a trace property. 

T i m e  b o u n d  b: In any low-level-fair execution with associated times, the fol- 
lowing hold: 

1. (Time bound b for the trying region) If each user always returns the 
resource within time c of when it is granted, and the time between 
successive steps of each process in T or E is at most g, then any user 
that reaches T enters C within time b. 

2. (Time bound b for the exit region) If the time between successive steps 
of each process in T or E is at most g, then any user that reaches E 
enters R within time b. 

(Note that the value of b will typically be a function of t~ and c.) 

N u m b e r  of  b y p a s s e s  a: Consider any interval of an execution starting when 
a process i has performed a locally controlled step in T, and throughout 
which it remains in T. During this interval, any other user j ,  j :fi i, can 
only enter C at most a times. 

In the first two cases above, we have stated high-level-fairness conditions for the 
exit region that are similar to those for the trying region. However, in most 
algorithms, the exit regions are actually trivial. 

We say that algorithm A is l o c k o u t - f r e e  provided that it guarantees lockout- 
freedom for all collections of users. We extend the other high-level-fairness deft- 
nitions similarly. There are some simple implications among these fairness con- 
ditions: 
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Theorem 10.8 Let A be a mutual exclusion algorithm, let U1, . . .  , U~ be a col- 

lection of users, and let B be the composition of A with U1, . . . , Un. I f  B has any 
finite bypass bound and is lockout-free for the exit region, then B is lockout-free. 

P r o o f .  Consider a low-level-fair execution of B in which all users always return 
the resource, and suppose that at some point in the execution, i is in T. Assume 
for the sake of contradiction that i never enters C. 

Lemma 10.1 implies that eventually i must perform a locally controlled action 
in that trying region, if it has not already done so. Repeated use of the progress 
condition and of the assumption that users always return the resource together 
imply that infinitely many total region changes occur. But then some process 
other than i enters C an infinite number of times while i remains in T, which 
violates the bypass bound. N 

Theorem 10.9 Let A be a mutual exclusion algorithm, let U 1 , . . . ,  Un be a col- 

lection of users, and let B be the composition of A with U I , . . . ,  U~. I f  B has 
any time bound b (for both the trying and the exit region), then B is lockout-free. 

P r o o f .  Consider a low-level-fair execution of B in which all users always return 
the resource, and suppose that at some point in the execution, i is in T. 

Associate times with the events in the execution in any monotone nondecreas- 
ing, unbounded way, so that the times for the steps of each process are at most 

and the times for all the critical regions are all at most c. 
Since the algorithm satisfies the time bound b, i enters C in at most time b, 

so in particular, i eventually enters C, as needed for lockout-freedom. [-1 

In the following sections, we will look at some protocols that satisfy some of 
these stronger high-level-fairness conditions. 

10.5 Lockout-Free Mutual  Exclusion Algori thms 

The first improvements that we present are a trio of algorithms developed by 
Peterson, all of which guarantee lockout-freedom. The first algorithm is for two 
processes only, but it demonstrates most of the basic ideas. This algorithm is 
then extended to n > 2 processes in two ways: first, by using a version of the 
two-process algorithm in a series of n -  1 competitions, and second, by using a 
version of the two-process algorithm in a tournament  to select a single winner. 

10.5.1 A T w o - P r o c e s s  A l g o r i t h m  

We start  with the two-process solution, which we call Peterson2P. Usually, we 
name the two processes in a two-process system processes 1 and 2. This time, 
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for convenience, we count mod 2 and identify 2 with 0, that is, we call the two 

processes 0 and 1. If i E {0, 1}, then we write i to indicate 1 - i, the index of the 

other process. The code, in a tradit ional style, is given below. 

P e t e r s o n 2 P  a l g o r i t h m "  

S h a r e d  var iables :  
turn E {0, 1}, initially arbitrary, writable and readable by all processes 
for every i E {0, 1}: 

_ 

flag(i) E {0, 1}, initially 0, writable by i and readable by i 

P r o c e s s  i: 

** Remainder region ** 

trYi 
flag(i):= 1 
turn "-- i 
waitfor flag(~) - 0 or turn ~ i 
criti 

** Critical region ** 

exit~ 
flag(i)'-- 0 
r e m i  

In the P e t e r s o n 2 P  algorithm, process i starts by setting its f lag to 1, which is 
the same as the processes do in Dijks t raME.  But this time, process i immediately 
proceeds to set turn  : -  i. It then waits to discover either that the other process's 

f lag is 0, or else that turn  ~ i. That  is, either the other process is not currently 
involved in the competit ion at all, or else the turn  variable has been reset by 
the other process since the most recent time when i set it. Thus (and slightly 
strangely),  having the turn  variable set to the index of the other  process gives 

permission for i to enter its critical region. 
How can this program be t ranslated into a state machine in the formal model? 

As before, we need to introduce a program counter, t emporary  variables, and a 

region designation. An ambiguity in the code that needs to be resolved is the 

order in which process i checks the ]tag and the turn  variables, in the waitfor 
statement.  For correctness, it is necessary that both checks be done repeatedly; 

for simplicity, we assume that the checks are done alternately, though looser 

assumptions would also work. 
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We rewrite the algorithm in precondition-effect notation, in order to make 
it easier to carry out a proof. Here, the region designation R corresponds to 
rein; T corresponds to set-flag, set-turn, check-flag, check-turn, and leave-try; C 
corresponds to crit; and E corresponds to reset and leave-exit. 

P e t e r s o n 2 P  algorithm (rewritten)- 

S h a r e d  var iables :  
turn C {0, 1}, initially a rb i t ra ry  
for every i C {0, 1}: 

f lag(i) C {0, 1}, initially 0 

A c t i o n s  o f  i: 
Input :  Internal:  

tryi set-flagi 
exiti set- turni  

Output :  check-flagi 
criti check-turni 
re mi re s e ti 

S t a t e s  o f  i: 
pc E { rein, set-flag, se t - turn,  check-flag, check-turn,  leave-try, crit, reset, leave-exit }, 

initially rein 

T r a n s i t i o n s  o f  i: 

tryi 
Effect" 

pc "-  set-flag 

set-flag~ 
Precondi t ion:  

pc "-  set-flag 
Effect" 

f l a g ( i ) ' -  1 
pc " -  se t - turn 

set- turni  
Precondi t ion:  

pc = se t - turn 
Effect: 

turn := i 
pc := check-flag 

check-flagi 
Precondi t ion:  

pc = check-flag 
Effect: 

if flag(~) ---- 0 then 
pc : -  leave-try 

else 
pc := check-turn 

check-turni 
Precondi t ion:  

pc = check-turn 
Effect: 

if turn # i then 
pc := leave-try 

else 
pc := check-flag 
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cr i t i  r e se t i  

P r e c o n d i t i o n :  P r e c o n d i t i o n :  

pc  = l e a v e - t r y  pc  = r e s e t  

Effect :  Effect:  

pc  : =  cr i t  f l a g ( i )  : =  0 

pc  : =  l e a v e - e x i t  

ex i t i  

Effect" 

pc  " -  r e s e t  

r e m i  

P r e c o n d i t i o n :  

p c -  l e a v e - e x i t  

Effect:  

pc  " -  re in  

We now argue that the Peterson2P algorithm is correct. Well-formedness is 
easy to check. 

L e m m a  10.10 Peterson2P satisfies mutual exclusion. 

P r o o f .  We use an argument based on invariant assertions. It is easy to show 
by induction that 

A s s e r t i o n  10.5 .1  In any reachable system state, if flag(i) - 0, then 
pci E {leave-exit, rein, set-flag}. 

Using Assertion 10.5.1, we can show by induction that 

A s s e r t i o n  10.5 .2  In any reachable system state, if pci C {leave-try, 
crit, reset} and p~ C {check-flag, check-turn, leave-try, crit, reset}, 
then turn 7~ i. 

That  is, if i has won the competition, and if i is a competitor,  then the turn 
variable is set favorably for i, that is, set to the value i. In the inductive step of 
the proof of Assertion 10.5.2, the key events to check are 

o "Successful" check-flagi events, that is, those that cause pc / to  reach leave- 
try 

2. Successful check-turr~ events 

3. set-turn~ events, which cause pq  to take on the value check-flag 

4. set-turni events, which falsify the conclusion turn # i 
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When i does a successful check-flagi, it must be that flag(i) - 0, which implies by 
Assertion 10.5.1 that p q  ~ {check-flag, check-turn, leave-try, crit, reset},  which 
makes the statement true vacuously. When i does a successful check-turni, it 
must be that turn ~ i, which suMces. When i does set-turn~, it explicitly 
sets turn ~ i, which suffices. Finally, when i does set- turfs ,  then the resulting 

pc4 - check-flag, which makes the statement true vacuously. 
This proves Assertion 10.5.2. Now mutual exclusion follows easily" Suppose 

that both i and i are in C, in some reachable state. Then Assertion 10.5.2, 
applied twice--for  i a n d / - - i m p l i e s  that both turn ~ i and turn ~ i. This is a 
contradiction. D 

L e m m a  10.11 Peterson2P guarantees progress. 

P r o o f .  Suppose for the sake of contradiction that a is a low-level-fair execution 
that reaches a point where at least one of the processes, say i, is in T and neither 
process is in C, and suppose that after this point, neither process ever enters 
C. We consider two cases. First, if i is in T sometime after the given point in 
a,  then both processes must get stuck permanently in their check loops, since 
neither ever enters C. But this cannot happen, since turn must stabilize to a 
value that is favorable to one of them. 

On the other hand, suppose that i is never in T after the given point in c~. 
In this case, we can show that flag(i) eventually becomes and stays equal to 0, 
contradicting the assumption that i is stuck in its check loop. D 

L e m m a  10.12 Peterson2P is lockout-flee. 

P r o o f .  The argument for the exit region is trivial; we consider the trying 
region. We show the stronger condition of two-bounded bypass and invoke The- 
orem 10.8. 

Suppose the contrary, that is, that at some point in execution a, process i 
is in T after having performed set-flagi, and thereafter, while i remains in T, 
process i enters C three times. Note that in each of the second and third times, 
it must be that i first sets turn " -  i and then sees turn - i; it cannot see 
flag(i) - O, because flag(i) remains at 1. This means that there are at least two 
occurrences of set-turn~ after the given point in c~, because only i can set turn 
to i. But set-turni is only performed once during one of i's trying regions. This 
is a contradiction. [3 

So we have Theorem 10.13. 

T h e o r e m  10.13 Peterson2P solves the mutual  exclusion problem and guaran- 
tees lockout-freedom. 
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C o m p l e x i t y  a n a l y s i s .  As for the analysis of DijkstraME, let t~ and c be upper 

bounds on process step time and critical section time, respectively. You might 
want to reread our discussion at the beginning of Section 10.3.4 to be sure you 

understand exactly what these bounds mean. 

T h e o r e m  10.14  In Peterson2P, the time from when a particular process i en- 
ters T until it enters C is at most c + 0 (~). 

Proof S k e t c h .  Suppose the bound does not hold and consider an execution 
in which process i is in T at some point, but does not enter C for time at least 

c + kf after that point, for some particular large constant k. The constant k is 

chosen to be considerably bigger than the constants in the big-O terms in the 
following analysis. 

First,  within time at most 3t~, process i performs check-flagi. This can be seen 
by a case analysis, based on the various places where i might be in its t rying re- 

gion. Note that i cannot succeed in any of its checks during this time, because if it 
did, it would go to C within time O (t~), which we have assumed does not happen 

this quickly. Then when process i performs this check-flag~, it must find flag(i) - 
1, because otherwise i would reach C within time O (f). So by Assertion 10.5.1, 

it must be that pq  C {set-turn, check-flag, check-turn, leave-try, crit, reset} at 
that point. 

Then we claim that either crit~ occurs within additional time O (f) or reset~ 
occurs within additional time c + O (f). This is argued by a case analysis, based 

on the value of turn and where the processes are in their code; the key point is that 

the turn variable, once stabilized, will be set favorably to one of the processes. 

But the former case would again mean that i would reach C too soon, so the 

latter must hold, that is, reset~ occurs within additional time c + O (~). 

Now i performs check-flagi again, within additional time O (~). Once again, 
it must find flag(7) - 1. This means that ~ has entered T again, after the resets. 
Then either turn already has taken on the value i, or will do so within additional 
time t~. Then within at most another time O (t~), process i finds conditions favor- 
able for it to enter C. This contradicts the assumption that i does not enter C 
within this amount  of time. Figure 10.8 shows the order of events in this proof 
and the time bounds between them. V1 

10.5.2 An  n -Proces s  A lgor i thm 

For n processes, we can use the idea of the Peterson2P algorithm iteratively, 
in a series of n -  1 competitions at levels 1, 2 , . . . ,  n -  1. At each successive 
competition, the algorithm ensures that there is at least one loser. Thus, all n 
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O(l) l 0(1) I 3l  [ c +O(1) I [ I I 

i in T check - f lag  i reset_ check - f l ag  i t u r n -  i criti 
i 

Figure 1 0 . 8 "  Orde r  of events  and t ime bounds  in the p roof  of T h e o r e m  10.14. 

processes may compete in the level 1 competi t ion,  but  at most  n -  1 processes 

can win. In general, at most  n -  k processes can win at level k. So at most  one 

process can win at level n -  1, which yields the mutual  exclusion condition. 

The code is given below. Here we have reverted to our usual convention of 

numbering the processes 1 , . . .  , n. We call the a lgori thm P e t e r s o n N P .  

P e t e r s o n N P  algorithm: 

S h a r e d  var iables :  
for every k E { 1 , . . . , n -  1}" 

turn(k)  E { 1 , . . . ,  n}, initially arbitrary, writable and readable by all processes 
for every i, 1 _< i _< n: 

f lag(i) E { 0 , . . . ,  n -  1}, initially 0, writable by i and readable by all j :fi i 

P r o c e s s  i: 

** Remainder region ** 

trYi 
f o r k - 1  t o n - 1  do 

f lag(i) "-- k 
turn(k)  " -  i 
waitfor [Vj ~ i" f lag( j )  < k] or [ turn(k)  ~ i] 

crit~ 

** Critical region ** 

exit~ 
~ag( i ) "- o 
remi 

Process i engages in one compet i t ion for each level, 1 _< k _< n -  1. Now each 

level k has its own t u rn  variable, t u rn (k ) .  At each level k, process i behaves 

similarly to the way a process behaves in the P e t e r s o n 2 P  algorithm" it sets 

t u rn ( k )  " -  i, then waits to discover either that  all the other processes '  f lag 
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variables are strictly less than k, or else that turn(k) 7~ i. That  is, either none 
of the other processes is currently involved in the level k competition, or else the 
turn(k) variable has been reset by some other process since i most recently set 
it. 

As before, there are some ambiguities in the code that need to be resolved. 
First, one of the conditions in the waitfor statement involves the flag variables 
for all the other processes. In our model, these variables cannot all be checked 
simultaneously. Rather, we intend that the variables be checked one at a time, 
and we regard the condition as satisfied if all the values seen during these checks 
are less than k. Second, we need to specify some conditions on the order in 
which process i checks the various flag variables and the turn(k) variable, in the 
waitfor statement. For simplicity, we assume that process i cycles through the 

checks, in each cycle first checking all the flag variables in arbi t rary order and 
then checking the turn(k) variable. 

The details appear below. The code is quite similar to that of Peterson2P. 
Note the use of the local variable level to keep track of which competition the 
process is engaged in (or is ready to engage in) and the use of S to keep track 

of processes that have been observed to have flag values smaller than k. 

P e t e r s o n N P  a l g o r i t h m  ( r e w r i t t e n ) "  

S h a r e d  v a r i a b l e s :  
for every k E { 1 , . . . , n -  1}" 

turn(k) E { 1 , . . .  , n},  initially arbi t rary 
for every i, 1 ~_ i ~_ n: 

flag(i) E { 0 , . . . ,  n -  1}, initially 0 

A c t i o n s  of  i: 
Input: Internal: 

tryi set-flagi 
exiti set-turni 

Output:  check-flag(j)~, 1 < j <_ n, j ~ i 
criti check-turni 
remi reseti 

S t a t e s  o f  i: 
pc C { rem, set-flag, set-turn, check-flag, check-turn, leave-try, crit, reset, leave-exit}, initially rein 
level C {1 , . . .  , n - 1}, initially 1 
S, a set of process indices, initially 0 
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T r a n s i t i o n s  o f  i: 

tryi 
Effect: 

pc " -  set-flag 

set-flagi 
Precondition: 

pc " -  set-flag 
Effect: 

flag(i) " -  level 
pc " -  se t - turn 

set- turni  
Precondition: 

pc = set - turn 
Effect: 

turn(level)  := i 
s := {i} 
pc : :  check-flag 

check-f lag(j) i  
Precondition: 

pc = check-flag 
j ~ S  

Effect: 
if f l a g ( j ) <  level then 

S::SU{j} 
if IS] : n then 

S : = 0  
if level < n -  1 then 

level := level + 1 

pc := set-flag 
else 

pc := leave-try 
else 

S : = 0  
pc := check-turn 

check-turni 
Precondition: 

pc = check-turn 
Effect: 

if turn(level)  # i then 
if level < n -  1 then 

level := level + 1 

pc := set-flag 
else 

pc := leave-try 
else 

s:={i} 
pc := check-flag 

criti 
Precondition" 

p c -  leave-try 
Effect" 

pc "-  crit 

exit~ 
Effect" 

pc " -  reset 

reseti 
Precondition: 

pc = reset 
Effect: 

f lag(i) := 0 
level := 1 
pc := leave-exit 

remi 
Precondition" 

p c -  leave-exit 
Effect: 

pc "-  rein 

W e  n o w  a r g u e  t h a t  P e t e r s o n N P  is c o r r e c t .  W e l l - f o r m e d n e s s  is c lear .  F o r  

m u t u a l  e x c l u s i o n ,  t h e  key  i d e a  is t h a t  t h e  level  k c o m p e t i t i o n  o n l y  p e r m i t s  n -  k 

w i n n e r s .  

I n  a n y  s y s t e m  s t a t e  of  P e t e r s o n N P ,  we s a y  t h a t  a p r o c e s s  i is a w i n n e r  at  level  

k p r o v i d e d  t h a t  e i t h e r  level~ > k or  e lse  level~ = k a n d  pc4 E { l e a v e - t r y ,  c r i t ,  r e s e t } .  

( T h i s  l a t t e r  c o n d i t i o n  wil l  o n l y  a r i s e  for  k = n -  1.) W e  a lso  s a y  t h a t  p r o c e s s  i 
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is a competitor at level k, provided that  it is either a winner at level k or else 

leveli - k and pc4 E { check-flag, check-turn}. 

L e m m a  10 .15  PetersonNP satisfies mutual exclusion. 

P r o o f .  In order to prove mutual  exclusion, we prove the following assertion, 

which is analogous to Assert ion 10.5.2 for Peterson2P. An impor tan t  difference 

is that  now the assert ion must  deal with intermediate stages in the process of 

checking flags. 

A s s e r t i o n  10 .5 .3  In any reachable system state of PetersonNP, the 
following are true" 

1. I f  process i is a competitor at level k, if pci - check-flag, and if 
any process j 7~ i in Si is a competitor at level k, then turn(k) 7~ 
i. 

2. I f  process i is a winner at level k and if any other process is a 
competitor at level k, then turn(k) r i. 

The proof, by induction as usual, is left as an exercise. Using Assert ion 10.5.3, 

we prove 

A s s e r t i o n  10 .5 .4  In any reachable system state of PetersonNP, if 
there is a competitor at level k, then the value of turn(k) is the index 
of some competitor at level k. 

Again, the inductive proof is left as an exercise. Finally, we show the following, 

which directly implies the mutual  exclusion condition. 

A s s e r t i o n  10 .5 .5  In any reachable system state of PetersonNP, 
and for any k, 1 <_ k <_ n -  1, there are at most n -  k winners 
at level k. 

The proof of Assert ion 10.5.5 is also an induction, but  not on the length of 

an execution. Rather,  we use induction on the value of k. 

Basis: k - 1. If the s ta tement  is false for k - 1, it means that  all n processes 

are winners at level 1. Then Assert ion 10.5.3 implies that  the value of turn(l)  
cannot  be the index of any of the processes, a contradict ion.  

Inductive step" We assume the s ta tement  for k, 1 _< k _< n -  2, and show it 

for k + 1. Suppose for the sake of contradict ion that the s ta tement  is false for 

k + 1, that  is, that  there are strictly more than n -  (k + 1) winners at level k + 1; 

let W be the set of such winners. Every winner at level k + 1 is also a winner 
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at level k, and by the inductive hypothesis,  the number  of winners at level k is 

at most  n - k. It follows that  W is also the set of winners at level k, and that  
I w l -  k _ 2. 

Then Assert ion 10.5.3 implies that  the value of turn(k + 1) cannot  be the 
index of any of the processes in W. And Assert ion 10.5.4 implies that  the value 
of turn(k + 1) is the index of some compet i tor  at level k + 1. But  every compet i tor  
at level k + 1 is a winner at level k, and so is in W. This is a contradiction.  77 

In order to prove progress, it is enough to prove lockout-freedom (see Exer- 
cise 10.6). And Theorem 10.9 implies that  lockout-freedom is in turn  implied by 
a time bound. A time bound for the exit region is trivial; the following theorem 
gives a time bound for the t rying region. Warning: We do not claim that  this 
bound is t i gh t - -we  leave it as an exercise to t ry  to t ighten i t - - b u t  any bound is 
enough to prove lockout-freedom. 

T h e o r e m  10 .16  In PetersonNP, the time from when a particular process i en- 
ters T until it enters C is at most 2n-lc-+-0 (2~ng). 

P r o o f .  We prove the bound using a recurrence. Define T(0) to be the maxi- 
mum time from when a process enters T until it enters C. For k, 1 _< k _< n -  1, 
define T(k) to be the max imum time from when a process becomes a winner at 
level k until it enters C. We want to bound T(0).  

By the code, we know that  T ( n -  1) <_ g, since only one step is needed to 
enter C after winning the final competit ion.  In order to bound T(0),  we set up 
a recurrence for T(k) in terms of r ( k  + 1), where 0 <_ k <_ n -  2. 

Suppose process i has just  won at level k if k _> 1, or has just  entered T if 
k - 0. Then within time 2g, process i performs set-turn~, setting turn(k+ 1) " -  i. 
Let 7r denote this set-turn~ event. We consider two cases. 

First ,  if turn(k + 1) gets set to some value other than i within time T(k  + 
1) + c + (2n + 2)g after 7r, then i wins at level k + 1 within an addit ional  time 
ng. Then within addit ional  time T(k + 1), i enters C. In this case, the total  time 
from 7r until i 's entrance to C is at most  2r(k  + 1) + c + (3n + 2)g. 

On the other hand, assume that turn(k + 1) does not get set to any value 
other than i within time T(k + 1) + c + (2n + 2)g after 7r. Then  no process can 
set its flag to k + 1 within time T(k + 1) + c + (2n + 1)g after 7r. Let I be the set 
of processes j # i for which flag(j) > k + 1 when 7r occurs. Then  each process 
in I wins at level k + 1 within time at most  ng after 7r (since it finds turn(k + 1) 

unequal  to its index), then enters C within an addit ional  time T(k + 1), then 
leaves C within addit ional  time c and performs reset within addit ional  time g. 
Tha t  is, within time ng + T(k  + 1) + c + g - T(k  + 1) + c + (n + 1)g after 7c, all 

processes in I set their flags to 0. 



10.5. LOCKOUT-FREE MUTUAL EXCLUSION ALGORITHMS 289 

Thus, within time T(k + 1) + c + (n + 1)e after rr, all processes j # i for 

which flag(j) _> k + 1 when rr occurs, set their flags to 0. As we assumed above, 
for an addit ional  time ng after that,  no process sets its flag to k + 1. Tha t  is 
sufficient time for process i to detect that  all the flag variables are less than k + 1 
and so to win at level k + 1. That  is, in this case, process i wins at level k + 1 
within time T(k + 1) + c + (2n + 1)g after zr. Again, within another  T(k + 1), i 

enters C. In this case, the total  t ime from :r until i 's entrance to C is at most  
2T(k + 1) + c + (2n + 1)g. 

The worst-case time is thus at most  2g plus the maximum of the times in the 
two cases above, that  is, 2T(k + 1) + c + (3n + 4)g. Thus, we need to solve the 
following recurrence for T(0): 

T(k) < 2T(k + l) + c + (3n + 4)g, f o r O _ < k _ < n - 2  

T ( n -  1) _< g 

Solving this recurrence yields the claimed time bound. (See the following sub- 
section, Section 10.5.3, for a more detailed solution for a similar recurrence.)  

77 

We have 

T h e o r e m  10 .17  PetersonNP solves the mutual exclusion problem and is lockout- 
free. 

10.5.3 Tournament Algori thm 

Another  way to extend the basic Peterson2P algori thm to more processes is 
to use a version of the basic two-process a lgori thm as a building block in a 
tournament. For simplicity, we assume that  n, the number  of processes, is a 

power of 2. Once again, we number  the processes s tar t ing with 0, as 0 , . . .  , n -  1 
rather than 1 , . . . ,  n. Each process engages in a series of log n competi t ions in 
order to obtain the resource. You should think of these competi t ions as being 
a r ranged  in a complete n-leaf binary tournament tree; the n leaves correspond 
left-to-right to the n processes 0 , . . .  , n -  1. 

We need some notat ion to name the various competit ions,  the roles played 
by the processes in all of the competi t ions,  and the set of potential  opponents  
that  all the processes can have in all the competit ions.  For 0 < i < n -  1 and 
1 < k < log n, we define the following notions. 

�9 comp(i, k), the level k competition of process i, is the str ing consisting of 
the high-order l o g n -  k bits of the binary representat ion of i. In terms 



290 10. MUTUAL EXCLUSION 

0 1 

0 1 2 3 4 5 6 7 

(000) (001) (010) (011) (100) (~01) ( ~ 1 0 )  ( ~ )  

level 3 

level 2 

level 1 

F i g u r e  10.9: Names of competitions in the Tournament algorithm. 

of the tournament  tree, comp(i, k) can be used as a name for the internal 

node that is the level k ancestor of i's leaf. In particular,  the root is named 
by A, the empty  string. 

�9 role(i,k), the role of process i in the level k competit ion of process i, is 

the (log n -  k + 1)st bit of the binary representation of i. In terms of the 

tournament  tree, role(i, k) indicates whether i's leaf is a descendant of the 
left or right child of the node for competit ion comp(i, k). 

�9 opponents(i,k), the opponents of process i in the level k competit ion of 
process i, is the set of process indices with the same high-order log n - k 

bits as i and the opposite (log n -  k + 1)st bit. In terms of the tournament  
tree, the processes in opponents(i, k) are those whose leaves are descendants 

of the opposite child of node comp(i, k), that is, of the child that is not an 
ancestor of i's leaf. 

E x a m p l e  10 .5 .1  T o u r n a m e n t  t ree  

Figure 10.9 shows the tournament  tree for n = 8. For example, note 
that comp(5, 2) - 1, role(5, 2) - 0 and opponents(5, 2) - {6, 7}. 

We call the algorithm the Tournament algorithm. 
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T o u r n a m e n t  a l g o r i t h m :  

S h a r e d  variables:  
for every binary string x of length at most log n -  1: 

turn(x) E {0, 1}, initially arbitrary, writable and readable by exactly those 
processes i for which x is a prefix of the binary representation of i 

for every i, 0 < i _< n -  1" 
flag(i) E {0,... ,log n}, initially 0, writable by i and readable by all j r i 

Process  i: 

** Remainder region ** 

try i 
f o r k - - 1  to logndo 

flag(i):= k 
turn(comp(i,k)) := role(i,k) 
waitfor [Vj E opponents(i,k) : flag(j) < k] or [turn(comp(i,k)) ~ role(i,k)] 

criti 

** Critical region ** 

exiti 
flag(i):= 0 
remi 

This  code is very much like that  of the PetersonNP algori thm.  The main  

difference is that  in each compet i t ion ,  the process  only checks the flags of its 

opponents  in that  compet i t ion.  As in PetersonNP,  we assume that  a process  

checks its opponents  in any order, one at a time. The  tes t ing must  a l ternate  in 

some systemat ic  way; for example,  it can be done in a cycle where all the flags 
are first tes ted,  and then turn. We only sketch the correctness  a rguments  for 

the Tournament  a lgor i thm briefly, since the ideas are so similar  to those for the 

PetersonNP and Peterson2P algori thms.  

Firs t ,  the a lgor i thm should be rewri t ten  in precondit ion-effect  style, making  

explicit the p rog ram counters  and the variables that  accumulate  the sets of pro- 

cesses whose flags have a l ready been checked. Then  not ions such as "winner 

at level k" and "compet i to r  at level k" must  be defined for the Tournament  
algor i thm,  analogously  to the way they were defined for PetersonNP.  

L e m m a  1 0 . 1 8  The Tournament  algorithm satisfies mutual  exclusion. 
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P r o o f  S k e t c h .  The proof uses the same ideas as the invariant assert ion proofs 

of the Peterson2P and PetersonNP algorithms. This time, the key invariant is 

A s s e r t i o n  10 .5 .6  In any reachable system state of the Tournament 
algorithm, and for any k, 1 < k < logn,  at most one process from 
any subtree rooted at level k is a winner at level k. 

This follows immediately from an invariant analogous to the second par t  of 
Assert ion 10.5.3. 

A s s e r t i o n  10 .5 .7  If  process i is a winner at level k and if any level- 
k opponent of i is a competitor at level k, then turn(comp(i, k)) r 
role(i,k). 

As for the second part  of Assert ion 10.5.3, we cannot  prove Assert ion 10.5.7 
directly by induction. We must  s t rengthen it as before to include some informa- 
tion about  what  happens inside the waitfor loop, after the process has discovered 
that  some of its opponents have flag variables with values that  are strictly less 
than k. We leave this s t rengthening and the inductive proof as an exercise for 
the reader, ff] 

In order to show progress and lockout-freedom, we prove a time bound. 

T h e o r e m  10 .19  In the Tournament algorithm, the time from when a particular 
process i enters T until it enters C is at most (n - 1)c + O (n2g). 

P r o o f .  The proof is like the proof of Theorem 10.16. Define T(0) to be the 
max imum time from when a process enters T until it enters C. For k, 1 _< 
k ~_ log n, define T(k)  to be the max imum time from when a process wins at 
level k until it enters C. We want to bound T(0).  By the code, we know that  
T(log n) <_ t~, since only one step is needed to enter C after winning the final 
competit ion.  We bound T(k)  in terms of T(k  + 1), where 0 _< k _~ log n -  1. 

Suppose process i has just  won at level k if k _> 1, or has just  entered T if 
k - 0. Let x denote comp(i, k + 1). Then,  within time 2~, process i sets the 
turn(x) variable to role(i, k + 1). Let ~ denote this event; we consider two cases. 

First ,  if turn(x) gets changed within time T(k  + 1) + c + (2 k+l + 4)t~ after 
7r, then i wins at level k + 1 within an addit ional  time (2 k + 1)t~. Then,  within 
addit ional  time T(k  + 1), i enters C. In this case, the total  time from 7r until i 's 
entrance to C is at most  2T(k + 1) + c + (2 k+l + 2 k + 5)t~. 

On the other hand, assume that  turn(x) does not get changed within time 
T(k  + 1) + c + (2 k+l + 4)t~ after 7r. Then  no level k + 1 opponent of i can set 
its flag to k + 1 within time T(k  + 1) + c + (2 k+l + 3)t~ after 7r. If j is a level 
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k + 1 opponent  of i for which flag(j) _> k + 1 when 7r occurs, then within t ime 
(2 k + 1)~ + T(k + 1) + c + ~ - T(k + 1) + c + (2 k + 2)g after ~, process j sets its 

flag to 0. 
Thus,  within t ime T(k + 1) + c + (2 k + 2)~ after 7r, all level k + 1 opponents j 

of i for which flag(j) _> k + 1 when 7~ occurs, set their flags to 0. As we assumed 
above, for an addit ional  t ime (2 k + 1)t~ after that,  no process sets its flag to k + 1. 
Tha t  is sufficient t ime for process i to detect that  all its level k + 1 opponents '  
flag variables are less than k + 1, and so to win at level k + 1. Tha t  is, in this 
case, process i wins at level k + 1 within t ime T(k + 1) + c + (2 k+l + 3)~ after 7~. 
Wi th in  another  T(k + 1), i enters C. In this case, the total  t ime from 7r until i 's 
entrance to C is at most  2T(k + 1) + c + (2 k+l + 3)g. 

The worst-case t ime is thus at most  2~ plus the max imum of the t imes in the 
two cases above, that  is, 2T(k + 1) + c + (2 k+l + 2 k + 7)t~. Thus,  we need to solve 
the following recurrence for T(0)" 

T ( k ) < _ 2 T ( k + l ) + c + ( 2  k + l + 2  k + 7 ) f ,  f o r 0 _ < k < _ l o g n - 1  

T(log n) < e. 

Choose some constant  a such that  (2 k+l + 2 k + 7) _< a .  2 k. Then we have 

T(0) _< 2T(1) + 2 ~ + a2~ 

_~ 22T(2) + (20 + 21)c Jr- a(2 ~ + 22)g 

<_ 23T(3) + (20 + 21 -+- 22)c -+- a(2 ~ + 22 -F 24)~ 

~_ 2aT(k) + (2 0 + 21 -F...-+- 2 k-1)c JF a(2 ~ + 2 2 -+-�9 22k-2)g 

21~ 71) -JF (2 0 -t- 21 -Jr-...-Jr- 21~ -+- a(2 0 -Jr- 2 2 -Jr-... 22(1~ 

_< - + + o 

= ( n - 1 ) c + O ( n 2 e ) .  

D 

T h e o r e m  10 .20  The Tournament algorithm solves the mutual exclusion prob- 
lem and is lockout-free. 

B o u n d e d  b y p a s s .  The Tournament algori thm does not guarantee  any bound 
on the number  of bypasses.  To see this, consider an execution in which process 
0 enters the tou rnamen t  at its leaf and takes steps with intervening t imes exactly 
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equal to the assumed upper bound t~. Meanwhile, process n -  1 enters the tour- 
nament  at its leaf, going much faster. Process n -  1 can reach the top and win, 
and in fact it can repeat this arbitrari ly many times, before process 0 even wins 
at level 1. This is possible because we have not assumed any lower bound on 
process step times. 

Note that there is no contradiction between unbounded bypass and a time 
upper bound. No process is locked out for very long-- the  unbounded bypasses 
only occur because some processes operate very fast. 

10.6 An Algorithm Using Single-Writer Shared 
Registers 

The mutual  exclusion algorithms we have studied so far use multi-writer shared 
registers (the turn variables) as well as single-writer shared registers (the flag 
variables). Because multi-writer registers are often difficult to implement,  it is 
worth investigating algorithms that use only single-writer shared registers. In 
this section and the next, we present two such algorithms. 

The algorithm in this section solves the mutual  exclusion problem (including 
the progress condition, as usual), but does not guarantee any high-level-fairness 
condition. Its shared registers are all binary. The algorithm in Section 10.7 is 
also lockout-free, but it has the disadvantage of using unbounded size variables. 

We call the first algorithm BurnsME, after Burns, its inventor. 

B u r n s M E  algorithm: 

S h a r e d  var iab le s :  
for every i, 1 _~ i _~ n: 

flag(i) E {0, 1}, initially 0, writable by i and readable by all j :/: i 

P r o c e s s  i: 

** Remainder  region ** 

try i 
L: f lag( i ) := 0 

for j ,  1 < j  < i - 1  do 
if f l a g ( j ) =  1 then goto L 

f lag( i ) := 1 
for j ,  l ~ j ~ i - l d o  

if f l a g ( j ) =  1 then goto L 
M: for j ,  i + l ~ j ~_ n do 

if flag(j) = 1 then goto M 
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criti 

** Cr i t i ca l  r eg ion  ** 

exiti 
f lag(i):= 0 
remi 

The flag values used in BurnsME are 0 and 1 instead of 0, 1, and 2 as in 
DijkstraME. Each process executes three for loops. The first two loops involve 
checking the flags of all processes with smaller indices, while the third loop 
involves checking the flags of all processes with larger indices. If process i passes 
all the tests in all three loops, it proceeds to its critical region. 

L e m m a  10.21  The BurnsME algorithm satisfies mutual exclusion. 

P r o o f .  The proof is similar to the first (operational) proof that  DijkstraME 
satisfies mutual  exclusion (see Lemma 10.3). The main difference is that  now 

the flag variables are set to 1, whereas in DijkstraME they are set to 2. 
Thus, if processes i and j are simultaneously in C, then assume that  i sets 

its flag to 1 first. Then flag(i) keeps the value 1 until process i leaves C. But  
after j sets flag(j) to 1, j must  check that  flag(i) = 0 before j can enter C. (If 
i < j ,  then this is done in the second for loop, while if i > j ,  then it is done in 
the third for loop.) This check must  occur during the interval when the value of 
flag(i) = 1, which yields a contradiction.  D 

Note that  the first for loop in the code is not needed for the mutual  exclusion 
condition. 

L e m m a  10 .22  BurnsME guarantees progress. 

P r o o f .  The argument  for the exit region is easy. For the t rying region, we 
assume for the sake of contradict ion that  a is a low-level-fair execution that  
reaches a point where there is at least one process in T and no process in C, and 
that  after this point, no process ever enters C. Arguing similarly to the way we 
did in the proof of Lemma 10.4, we can assume without  loss of generali ty that  
every process is in T or R and that  no process changes region, in a.  Let the 
contenders be the processes in T. 

Now we part i t ion the contenders into two sets: those that  ever reach label M 
and those that  never do. Call the first set P and the second set Q. There must  
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be some point in a by which all the processes in P have already reached label 
M; note tha t  they never thereafter  drop back to any point in the code prior to 
label M. Let O~1 be a suffix of a in which all processes in P are in the final for 
loop, after label M. 

We claim tha t  there is at least one process in P.  Specifically, the process 
with the smallest index among all the contenders is not blocked from reaching 
label M. 

Let i be the largest index of a process in P.  We claim tha t  eventually in 
O~1, any process j E Q such tha t  j > i has flag(j) set permanent ly  to 0. This 
is because each t ime j executes one of the first two for loops, it discovers the 
presence of a smaller index contender and returns to L. Whenever  it does this, 
it sets flag(j) := 0, and once it has done this, it can never progress far enough 
to set flag(j) := 1. So let a2 be a suffix of a l  in which all processes in Q with 
indices :> i always have their flags equal to 0. 

Now in a2, there is nothing to stop process i from reaching C: every larger- 
index process j has flag(j) = 0, so i will complete the third for loop successfully. 
Thus, i enters C, which is a contradiction. [::] 

T h e o r e m  10.23 BurnsME solves the mutual exclusion problem. 

10.7 The Bakery Algorithm 

In this section we present the Bakery algorithm for mutual  exclusion. It works 
somewhat  the way a bakery does, where customers draw tickets when they enter 
and are served in the order of their ticket numbers.  

The Bakery algori thm only uses s ingle-wri ter /mult i - reader  shared registers. 
In fact, it also works using a weaker form of register known as a safe register, in 
which the registers are allowed to provide arbi t rary  responses to reads tha t  are 
performed concurrently with writes. 

The Bakery algori thm guarantees lockout-freedom and a good t ime bound. 
It guarantees bounded bypass and also a related cond i t i on~ i t  is "FIFO after 
a wait-free doorway" (to be defined below). An unat t rac t ive  proper ty  of the 
Bakery algori thm is tha t  it uses unbounded size registers. 

The code follows. We remark tha t  the code given here can be simplified i f  
we are only interested in the usual sort of registers (and not weaker types of 
registers such as safe registers). We leave this simplification for an exercise. 
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Bakery algorithm: 

S h a r e d  v a r i a b l e s :  
for every i, 1 _< i _< n: 

choosing(i) C {0, 1}, initially 0, writable by i and readable by all j -r i 
number(i) C N, initially 0, writable by i and readable by all j :fi i 

P r o c e s s  i: 

** Remainder  region ** 

try i 
choosing(i) := 1 
numbed(i) := 1 + m~xj~ ~.~b~(j)  
choosing(i) := 0 
for j ~ i do 

waitfor choosing(j) = 0 
waitfor n u m b e r ( j ) =  0 or (number( i ) , i )  < (number ( j ) , j )  

criti 

** Critical region ** 

exit~ 
number(i) "-  0 
remi 

In the Bakery algorithm, the first part of the trying region, until the point 
where process i sets choosing(i) := 0, is designated as the doorway. While in the 

doorway, process i chooses a number that is greater than all the numbers that 
it reads for the other processes. It reads the other processes' numbers one at a 
time, in any order, then writes its own number. While it is reading and choosing 

numbers, i makes sure that choosing(i) = 1, as a signal to the other processes. 
Note that it is possible for two processes to be in the doorway at the same 

time, which can cause them to choose the same number. To break such ties, 

processes compare not just their numbers, but their (number, index) pairs. This 
comparison is done lexicographically, thus breaking ties in favor of the process 

with the smaller index. 
In the rest of the trying region, the process waits for the other processes to 

finish choosing and also waits for its (number, index) pair to become the lowest. 

To prove correctness, let D denote the doorway (i.e., the set of process states 
in which the process is in the doorway), and let T -  D denote the rest of the 
trying region. Well-formedness is easy to see. To show the mutual exclusion 

condition, we use a lemma. 
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L e m m a  10.24 In any reachable system state of the Bakery algorithm, and for 
any processes i and j, i 7~ j, the following is true. If i is in C and j is in 
( r  - D) U C, then (number(i), i) < (number(j), j). 

We give an operational proof, since it can be extended more easily to the safe 
register case. 

P r o o f .  Fix some point s in an execution in which i is in C and j is in ( T -  
D) tJ C. (Formally, s is an occurrence of a system state.) Call the values of 

number(i) and number(j) at point s the correct values of these variables. 
Process i must read choosing(j) = 0 in its first waitfor loop, prior to entering 

C. Let 7r denote this reading event; thus, 7r precedes s. When 7r occurs, j 
is not in the "choosing region" (i.e., the portion of the doorway after setting 
choosing(j) := 1). But since j is in (T - D) tJ C at point s, j must pass through 
the choosing region at some point. There are two cases to consider. 

1. j enters the choosing region after 7r. Then the correct number(i) is chosen 
before j starts choosing, ensuring that j sees the correct number(i) when 
it chooses. Therefore, at point s, we have number(j) > number(i), which 
SOt:tCiCC S. 

2. j leaves the choosing region before 7r. Then whenever i reads j ' s  number 
in its second waitfor loop, it gets the correct number(j) But since i decides 
to enter C anyhow, it must be that (number(i), i) < (number(j),j). This 
again suffices. 

[2 

L e m m a  10.25 The Bakery algorithm satisfies mutual exclusion. 

P r o o f .  Suppose that, in some reachable state, two processes, i and j ,  are both 
in C. Then by Lemma 10.24 applied twice, we must have both (number(i), i) < 
(number(j), j )and  (number(j), j ) <  (number(i),i). This is a contradiction. [7 

L e m m a  10.26 The Bakery algorithm guarantees progress. 

P r o o f .  The exit region is easy, as usual. For the trying region, we again argue 
by contradiction. Suppose that progress is not guaranteed. Then eventually 
a point is reached after which all processes are in T or R, and no new region 
changes occur. By the code, all of the processes in T eventually complete the 
doorway and reach T -  D. Then the process with the lowest (number, index) 
pair is not blocked from reaching C. 
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L e m m a  10.27 The Bakery algorithm guarantees lockout-freedom. 

P r o o f .  Consider a particular process i in T and suppose it never reaches C. 
Process i eventually completes the doorway and reaches T -  D. Thereafter, any 
new process that enters the doorway sees i's latest number and so chooses a 
higher number. Thus, since i doesn't  reach C, none of these new processes reach 
C either, since each is blocked by the test of number(i) in its second wait loop. 

But repeated use of Lemma 10.26 implies that there must be continuing 
progress, including infinitely many crit events, which contradicts the fact that 
all new entrants to the trying region are blocked. D 

T h e o r e m  10.28 The Bakery algorithm solves the mutual exclusion problem 
and is lockout-free. 

C o m p l e x i t y  ana lys i s .  An upper bound for the time from when a process i 
enters the trying region until it enters the critical region is ( n -  1)c + O (n2/~). 
This is not so easy to show; we just give a brief sketch and leave the details for 
an exercise. 

First, it only takes time O (nt~) for process i to complete the doorway; we 
must bound the length of the time interval I that i spends in T -  D. Let P be 
the set of other processes already in T at the moment i enters T -  D. Then only 
processes in P can enter C before i does, and each of these can only do so once. 
It follows that the total time within interval I during which some process is in C 
is at most ( n -  1)c, and that the total time within interval I during which some 
process is in the doorway is at most O (n2t~). 

It remains to bound the residual time within interval I, that is, the total time 
within I during which no process is either in C or in the doorway. We bound 
the residual time by considering the progress of processes in P U {i}. During 
the residual time, note that none of these processes is ever blocked in its first 
waitfor loop, since all the choosing variables are 0. Moreover, some process in 
P U {i} will not be blocked at any step of its second waitfor loop either, and so, 
within residual time O (nt~), will enter C. After it finishes, some other process in 
P U {i} will not be blocked, and so, within an additional residual time O (nt~), 
will enter C, and so on. This continues until i enters C, for a total residual time 
of O (n2e). 

F I F O  a f t e r  a w a i t - f r e e  d o o r w a y .  The Bakery algorithm guarantees a high- 
level-fairness condition that is somewhat stronger than lockout-freedom. Namely, 
if process i completes the doorway before j enters T, then j cannot enter C before 
i does. Note that the algorithm is not actually FIFO based on the time of entry 
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to T, or even the first locally controlled step in T. For example, process 1 could 
enter and set choosing(i) := 1; then process 2 could enter, choose a number, 
and complete the doorway; then process 1 could choose its number. In this case, 
process 1 would choose a larger number than process 2's, allowing 2 to precede 
it into C. 

It would not be useful just to claim that an algorithm was "FIFO after a 
doorway," because there are no constraints on where the doorway might end. 
(If the doorway ended right at the entrance to C, then this claim is completely 
trivial.) However, the doorway in the Bakery algorithm has an interesting prop- 
erty: it is wait-free, which means that a process is guaranteed eventually to 
complete it, if that process continues to take steps, regardless of whether any 
other processes continue to do so. 

Thus, the property of being "FIFO after a wait-free doorway," which is a 
nontrivial and interesting high-level-fairness condition, is satisfied by the Bakery 
algorithm. 

10.8 Lower B o u n d  on the N u m b e r  of  R e g i s t e r s  

We have presented several mutual exclusion algorithms that use read/wr i te  
shared memory. All guarantee the basic conditions of mutual exclusion and 
progress, and most also guarantee some sort of high-level-fairness condition: 
lockout-freedom, a time bound, or a bypass bound. One thing that all the algo- 
ri thms have in common, though, is that they all use at least n shared variables. 

In this section, we show that this is not an accident: it turns out that the 
mutual exclusion problem cannot be solved at all with fewer than n read/wr i te  
shared variables! This is so even if we only require the basic cond i t ions~mutua l  
exclusion and progress; no high-level-fairness requirements are needed for prov- 
ing this lower bound. Also, the impossibility result holds regardless of the size 
of the shared variables (as measured by the number of values they can take 
o n ) ~ t h e y  can be as small as a single bit or even unbounded in size. This result 
represents a fundamental limitation on the power of shared memory systems. 

We need two definitions. First, as in Section 9.3, we say that two system 

states, s and s ~, are indistinguishable to process i, written as s ~ s ~, if the state 
of process i, the state of Ui, and the values of all the shared variables are the 
same in s and s ~. Second, we define a system state s to be idle if all processes 
are in their remainder regions in s. 

In the proof, we consider a fixed collection of user automata. Namely, we 
assume that each user Ui is the most nondeterministic poss ible-- that  it is able to 
perform its try and exit outputs at any time, subject only to the well-formedness 
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condition.  Res t r ic t ing  a t tent ion  to this collection of users does not  cause any 

loss of generality, because the a lgor i thm is supposed  to work for all collections 

of users. We leave it for an exercise to show that ,  for each i, there is in fact a 

single I / O  au toma ton  U / t h a t  exhibi ts  exact ly the allowable nonde te rmin ism.  

10.8 .1  B a s i c  Facts  

The proof  uses two basic facts. The first is that  a process  running  on its own 

from an idle state can reach its critical region. 

L e m m a  10 .29  Suppose that an algorithm A solves the mutual exclusion prob- 

lem (that is, guarantees well-formedness, mutual exclusion, and progress) for 
n > 2 processes, using only read/write shared variables. Suppose that s is a 

reachable idle system state and let i be any process. 
Then there is an execution fragment 2 starting from state s and involving 

steps of process i only, in which process i reaches C. 

P r o o f .  This  follows from the progress  condition. (Formally, the progress  con- 

di t ion is applied to a low-level-fair execut ion containing s in which i enters T 

after the occurrence of s.) [-1 

As an easy consequence,  we have that  a process running  on its own from a 

sys tem state that  appears to be an idle state can reach C. 

L e m m a  1 0 . 3 0  Suppose A solves the mutual exclusion problem for n > 2 pro- 
cesses, using only read/write shared variables. Let s and s I be reachable system 
states that are indistinguishable to process i and suppose that s ~ is an idle state. 

Then there is an execution fragment starting from state s and involving steps 

of process i only, in which process i reaches C. 

The second basic fact is that  any process  that  reaches C on its own must  

write something in shared m e m o r y  before doing so. 

L e m m a  10 .31  Suppose A solves the mutual exclusion problem for n > 2 pro- 
cesses, using only read/write shared variables. Suppose that s is a reachable 
system state in which process i is in the remainder region. Suppose that process 

i reaches C in an execution fragment starting from s that involves steps of i 
only. Then, along the way, i must write some shared variable. 

2This is just an execution that starts in an arbitrary state, not necessarily an initial state of 
the algorithm. 
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P r o o f .  Let O~ 1 be any finite execution fragment  that  s tar ts  from state s, in- 
volves steps of i only, and ends with process i in C. Suppose for the sake of 

contradict ion that  Ct I does not include any write to a shared variable. Let s' 
denote the state at the end of C~l. Since process i does not write any shared 
variable, the only differences between s and s' are in the states of process i and 

user Ui. So s j s' for every j :/: i. 
Repea ted  use of the progress condition implies that  there is an execution 

fragment  s tar t ing from s and not including any steps of process i, in which some 

process reaches C. Since s j s' for every j # i, there is also such an execution 
fragment  s tar t ing from s'. 

But  this easily yields a counterexample  execution a. Execution c~ begins with 
a finite execution fragment  leading to reachable state s, then continues with Ctl, 
thus letting i into C with no shared variable writes. It finishes by letting another  
process go to C without any steps of i, s tar t ing from s'. This violates the mutual  
exclusion condition, because two processes are in C at the end of a.  [-1 

10.8.2 S ing le -Wri ter  Shared Variables  

If the shared variables are constrained to be s ingle-wri ter /mul t i - reader  r ead /wr i t e  
registers (like the variables used in the BurnsME and Bakery algorithms),  then 
Lemmas 10.29 and 10.31 immediate ly  imply the lower bound: 

Theorem 10 .32  If  algorithm A solves the mutual exclusion problem for n >_ 2 
processes, using only single-writer/multi-reader read/write shared variables, then 
A must use at least n shared variables. 

P r o o f .  Consider any process i. By Lemma 10.29, i can reach C on its own, 
s tar t ing from an initial (idle) system state of A. Then Lemma 10.31 implies 
that  i must  write some shared variable along the way. Since this holds for every 
process i, and since each shared variable has only a single writer,  there must  be 
at least n shared variables. D 

10.8.3 Mul t i -Wri ter  Shared  Variables  

But notice that  even the algori thms that  we have presented that  use mult i-writer  
registers (like the DijkstraME and Peterson algori thms) require at least n vari- 
ables. In this subsection, we extend Theorem 10.32 to the case of mult i-writer  
registers. That  is, we prove" 
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T h e o r e m  10 .33  If  algorithm A solves the mutual exclusion problem for n >_ 2 
processes, using only read/write shared variables, then A must use at least n 
shared variables. 

To give the intuit ion for the proof, we star t  by proving two special cases. 

We first show impossibi l i ty  for two processes and one variable, then for three 

processes and two variables. Afterward,  we extend the ideas to the general case. 

T w o  p r o c e s s e s  a n d  o n e  v a r i a b l e .  We use the following definition many 

times in the proofs: we say that  process i covers shared variable x in system 

state s provided that  in state s, process i is enabled to write to x. (That  is, 

process i can write to x in its next step.) 

T h e o r e m  10 .34  There is no algorithm that solves the mutual exclusion problem 
for two processes using only one read/write shared variable. 

P r o o f .  Suppose for the sake of contradict ion that  there is such an algori thm, 

A, using a single shared register x. Let s be an initial (idle) system state. We 

construct  an execution of A that  violates mutual  exclusion. 

Lemmas 10.29 and 10.31 imply that  there is an execution involving process 

1 only, s tar t ing from state s, that  causes process 1 to enter C and to write the 

single shared variable x before doing so. Jus t  before process 1 writes x, it covers 

x. Let Ct 1 be the prefix of this execution up to the first point where process 1 

covers x and let s ~ denote the final state of C~l. Note that  s 2 s ~, since process 

1 does not write anything to shared memory  during c~1. Then Lemma 10.30 

implies that process 2 can reach C on its own, s tar t ing from state s ~. 

The counterexample execution c~ begins with c~1, thus bringing process 1 

to state s ~, where it covers x. It then continues by letting process 2 reach C, 

running on its own from s ~. Next, we resume process 1, allowing it to write x, 

thereby overwrit ing anything process 2 might  have wri t ten on its way to C. This 

eliminates all t races of process 2's execution. So process 1 can continue to run 

just  as it does in its solo execution and reach C. But  this puts both  processes 

in C, which contradicts  the mutual  exclusion requirement.  

Execution c~ is depicted in Figure 10.10. It "splices" several steps of process 

2 into an execution involving process 1 only. [7 

T h r e e  p r o c e s s e s  a n d  t w o  v a r i a b l e s .  

processes and two variables. 

Now we show impossibi l i ty for three 

T h e o r e m  10 .35  There is no algorithm that solves the mutual exclusion problem 
for three processes using only two read/write shared variables. 
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F i g u r e  10.10" Execution (~ for proof of Theorem 10.34. 

P r o o f .  Suppose for the sake of contradic t ion that  there is such an algori thm, 

A, using shared registers x and y. Let s be an initial sys tem state. We construct  

an execution of A that  violates mutual  exclusion. 

We will use the following strategy. Star t ing from s, we will maneuver  pro- 

cesses 1 and 2 only, to a point where each covers one of the two variables x and 

y; moreover,  the result ing state, s ~, will be indist inguishable to process 3 from 

a reachable idle state. Then  we run process 3 on its own from state s ~ until it 

reaches C; L e m m a  10.30 implies that  this is possible. 

Next,  we let each of processes 1 and 2 take one step. Since each covers one 

of the two shared variables, they can thereby eliminate all t races  of process 3's 

execution. Then  we let processes 1 and 2 continue to take steps; since they 

have el iminated all evidence of process 3, they can run as if process 3 had never 

entered its t ry ing region. Thus,  by the progress condition, either 1 or 2 will 

eventual ly reach C. But  this yields two processes in C, contradict ing the mutual  

exclusion condition. 

It remains to show how to maneuver  processes 1 and 2 to cover the two shared 

variables while appear ing  to process 3 to still be in R. We do this as follows (see 
Figure  10.11). 

Firs t ,  we construct  execution c~1 by running process 1 alone from s until it 

first covers a shared variable. Then  we extend O~ 1 t o  Ct 2 by continuing to run 

process 1 alone until it enters C, then E,  then R, then T once again, and again 

covers some shared variable. We extend c~2 to c~3 in the same way. Let the final 

states of c~1, c~2, and c~3 be Sl, s2, and s3, respectively. 
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F i g u r e  10.12" Construction of ~. 

Since there are only two shared variables,  in two of the three s tates  s l, s2, 

and s3, process  1 must  cover the same variable. To be specific, suppose  that  in 

s2 and s3, process  1 covers variable x. (The same a rgument  holds for all the 

other  cases.) 

Now consider what  happens  if we run process  2 alone, s ta r t ing  from state s2. 

We claim that  process  2 can enter C; this follows from L e m m a  10.30, because 

state s2 is indis t inguishable  to process  2 from the last preceding state in c~ in 

which process  1 is in R. Moreover,  we claim that  along the way process  2 must  

write the other shared variable y. For otherwise,  process  2 could reach C, then 

process  1 could take one step, overwri t ing whatever  process 2 wrote  to variable 

x and thus el iminat ing all t races  of 2, and then process  1 could continue and 

violate mutua l  exclusion. 

Now we cons t ruc t  a counte rexample  execut ion a (see Figure  10.12). Execut ion  

c~ begins with (~2, thus br inging process  1 to a point  where it covers x. It then 
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continues by letting process 2 run just  until the first point where it covers y. At 

this point,  we have processes 1 and 2 covering variables x and y respectively. 

But  we are not yet done, because we still need the resulting state to be indis- 

t inguishable to process 3 from some idle state. (In the si tuat ion we have so far, 

process 2 might  have wri t ten x since it last left R, which could be detectable by 
process 3.) 

So we continue; from the point where process 2 covers y, we resume process 

1. It can first write x, thereby eliminating all traces of process 2. Then process 

1 can continue to run just  as it does in its solo execution and reach a point  that  

looks to it like the point after c~3, where it again covers x. This completes the 

construct ion of c~; let s' be the final state of c~. 

We claim that  c~ has all the properties we want. It is easy to see that processes 

1 and 2 cover variables x and y respectively, in state s'. It remains to show that  

s' is indistinguishable to process 3 from a reachable idle state. Let s" be the last 

idle state occurring in a3. Then the only differences between s" and s3 are in 

the state of process 1 and user U1, while the only differences between s' and s3 

are in the states of process 2 and user U2. It follows that s' 3 s", as needed. K] 

T h e  g e n e r a l  case .  The proof for the general case is a natural  extension of the 

proofs for the two special cases, using induction on the number of variables. We 

need one more basic f a c t - - a  s t rengthened version of Lemma 10.31. It says that 

a process must  not only write some variable on the way to C, it must  in fact 

write a variable that  is not covered by another  process. We have already used 

this idea, within the proof of Theorem 10.35. 

L e m m a  10 .36  Suppose A solves the mutual ezclusion problem for n >_ 2 pro- 
cesses, using only read/write shared variables. Suppose that s is a reachable 
system state in which process i is in the remainder region. Suppose that process 

i reaches C in an execution fragment starting from s that involves steps of i 
only. Then, along the way, i must write some shared variable that is not covered 
by any other process in s. 

P r o o f  S k e t c h .  The proof is similar to that of Lemma 10.31. The main differ- 

ence is that  now we must  ensure that the execution fragment involving the other 

processes begins with a single step of each process that  covers a shared variable, 

thus overwriting that  variable. This allows the other processes to eliminate all 

traces of i 's computat ion.  A detailed proof is left for an exercise. D 

We can now prove the main lemma. For any k, 1 _< k _< n, we say that  one 

system state is k-reachable from another  if it is reachable using steps of processes 
1 , . . .  , k only. 
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L e m m a  10 .37  Suppose A solves the mutual  exclusion problem for  n >_ 2 pro- 

cesses, using only read/write shared variables. Assume  that there are exactly 

n -  1 shared variables. Let s be any reachable idle system state. Suppose 

1 <_ k <_ n -  1. Then there are two system states, s ~ and s", each k-reachable 

f rom s, satisfying the following properties: 

1. k distinct variables are covered by processes 1 , . . .  , k in s ~. 

2. s" is an idle state. 

3. s ~ i s" for  all i, k + l < i < n. 

P r o o f .  By induction on k. 

Basis" k - 1. We run process 1 alone from s until it first covers a shared 

variable; Lemmas 10.29 and 10.31 imply that  it is possible to do this. Defining 

s ~ to be the resulting state and s " -  s gives the needed properties.  

Inductive step: Suppose the lemma holds for k, where 1 < k < n -  2; we 

prove it for k + 1. Using the inductive hypothesis,  we obtain a state t l  that  is 

k-reachable from s and in which processes 1 , . . . ,  k cover k dist inct  variables; 

however, tl  is indistinguishable to processes k + 1 , . . . ,  n from some idle state 

that  is also k-reachable from s. Next, we let each of processes 1 , . . . ,  k take 

one step from t l, thereby writ ing the variable that  it covers. Then we let all of 

1 , . . .  , k proceed to R, resulting in a new reachable idle state u l. 

Now we apply the inductive hypothesis  again to obtain a state t2 that  is k- 

reachable from U l and in which processes 1 , . . .  , k cover k dist inct  variables, yet 

which is indistinguishable to processes k + 1 , . . . ,  n from an idle state that  is 

k-reachable from ul.  Again let processes 1 , . . . ,  k write their covered variables 

and re turn to an idle state u2. 

We repeat this procedure a total  of (~k 1) + 1 times, yielding "covering states" 
n - -  t l , . . ,  t(~-i Now, by the Pigeonhole Principle, among these ( k 1) -]- 1 cov- ' k )+1" 

ering states, there must  be two in which processes 1 , . . . ,  k cover the same set 

of k shared variables; call this set X.  Let S l be the first of these two covering 

states and s2 the second. Also, let s~ be the idle state that  was constructed to 

i i s~ for all i, correspond to s l, and likewise s~ for s2. Thus, S l ~ s~ and s2 
k + l < i < n .  

Now consider what happens if we run process k + 1 alone from system state 

k+l ~ and s~ is a reachable idle state, Lemma 10.30 implies that  Sl. Since Sl ~ s 1 
precess k + 1 can eventually enter C. Along the way, by Lemma 10.36, it must  

write to some variable x not in X.  

Now we are ready to define the two needed states, s t and s", both  k + 1- 

reachable from the original state s. (See Figure 10.13.) First ,  to define s ~ (the 
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F i g u r e  10.13-  Construction for the general case. 

state in which k + 1 variables are covered), run process k + 1 from 81 just  

until it first covers a shared variable not in X.  Then resume processes 1 , . . .  , k, 

letting them first write the covered variables, and then proceed to the point  

corresponding to s2, where they cover X again. Let s ~ be the resulting state. 

Note that  s ~ is the same as s2, except for the state of process k + 1. To define s" 

(the idle state), we simply let s " -  s~. 

We claim that  s ~ and s" have all the required properties.  First ,  note that  

only processes 1 , . . .  , k + 1 are involved in the construct ion (including the uses 

of the inductive hypothesis);  so s ~ and s" are both k + 1-reachable from s. Also, 

it should be easy to see that  k + 1 variables are covered in s': the k variables in 

X plus the new variable x covered by process k + 1. Furthermore,  s" - s~ is an 

idle state by the definition of s~. 

It remains only to show that  s ~ and s" are indistinguishable to all processes 

implies that s2 and s" i, k + 2 _< i _< n. But  the definition of s2 and s 2 - s~ are 

indistinguishable to all processes i, k + 1 _< i _< n. And we have already noted 

that  s2 and s ~ are indistinguishable to all processes except k + 1. Put t ing  these 

two facts together implies the needed condition. [:] 

Now Theorem 10.33 follows" 

P r o o f  (o f  T h e o r e m  10 .33) .  Suppose for the sake of contradict ion that  algo- 

r i thm A solves the mutual  exclusion problem for n _> 2 processes using at most  

n -  1 read /wr i t e  shared variables. Wi thou t  loss of generality, we may assume 

that  A has exactly n -  I shared variables. 
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Let s be any initial system state of A. Then Lemma 10.37 implies that there 
are two system states, s' and s", each n -  1-reachable from s, such that all of 

the n -  1 shared variables are covered by processes 1 , . . . ,  n -  1 in s', s" is an 
idle state, and s' L s". Lemma 10.30 implies that there is an execution fragment 
start ing from s' and involving steps of process n only, in which process n reaches 
C. Lemma 10.36 implies that in this execution fragment, process n must write 
some shared variable that is not covered in s'. But all the n -  1 variables are 

covered in s', so this is a contradiction. s 

We emphasize again that Theorem 10.33 holds regardless of the size of the 
shared variables: they can even be unbounded in size. Moreover, no high-level- 

fairness assumption is needed; the progress condition is the only liveness assump- 

tion that is needed for this impossibility result. 

10.9 Mutual  Exclusion Using Read-Modify-Wri te  
Shared Variables 

In this final section, we consider mutual exclusion using read-modify-write shared 
memory. That  is, a process is able, in one instantaneous step, to access a shared 
variable and to use the variable value and the process state to determine a new 
variable value and a new process state. A formal definition appears in Section 9.4. 

You might think that considering the mutual exclusion problem in the read- 
modify-write model is a trivial exercise, because this model is so powerful. The 
read-modify-write model provides fair exclusive access to each shared var iable- -  
each process gets fair turns to access the variable, and when it does so, it can 
perform an arbi t rary computat ion before the variable is released. This is very 
close to what is required of a fair mutual exclusion algorithm, namely, fair ex- 
clusive access to the critical region. It almost seems as though we are assuming 
a solution to the very problem we are trying to solve. 

Indeed, having such a powerful form of shared memory does simplify the 
situation considerably, but it does not make all the difficulties disappear. Along 
with a collection of algorithms, we shall present some nontrivial lower bound 

results. 
We consider the basic mutual exclusion problem first, then consider what 

happens when we add a high-level-fairness requ i rement - -bounded  bypass or 

lockout-freedom. 
For the rest of this section, we assume that the shared memory system only 

contains a single shared variable. This does not cause any loss of generality in the 
read-modify-write model, because several read-modify-write variables could be 
combined into a single mult ipart  read-modify-write variable, anyway. Contrast  
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this with the situation for the read/wr i te  model, for which we have shown that 
the existence of a solution to the mutual  exclusion problem is quite sensitive to 

the number of read/wri te  shared variables. 

10.9.1 The Basic  P r o b l e m  

To see how different the read-modify-write model is from the read/wr i te  model, 
consider the following trivial one-variable algorithm, TrivialME. In this algo- 
rithm, the shared variable x has value 1 exactly if the resource has been granted 
to some process. Any process in the trying region simply tests x until it discov- 
ers x = 0, at which time it immediately sets x := 1. Upon exiting, a process 
resets x := 0. It is straightforward to see that the TrivialME algorithm solves 
the mutual exclusion problem. 

Tr iv ia lME algorithm: 

S h a r e d  var iables :  
x E {0, 1}, ini t ia l ly 0 

A c t i o n s  o f  i: 
Input :  

tryi 
exiti 

Outpu t :  
criti 
r e m i  

Internal :  
testi 
reset~ 

S t a t e s  o f  i: 
pc C {rein,  test,  leave-try,  crit ,  reset,  leave-exit} ,  ini t ial ly rein 

T r a n s i t i o n s  o f  i: 

try~ criti 
Effect: Precondi t ion :  

pc :=  test  pc = leave-try 
Effect: 

testi pc :=  crit 

Precondi t ion :  
pc = test  exit~ 

Effect: Effect: 

if x = 0 then pc := reset 
x : = l  
pc :=  leave-try 
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reseti remi 
Precondi t ion:  Precondit ion:  

pc = reset pc = leave-exit 
Effect: Effect: 

x : = O  pc := rem 
pc := leave-exit  

Theorem 10.38 TrivialME solves the mutual exclusion problem. 

10.9.2 Bounded Bypass 

The TrivialME algorithm does not guarantee any high-level-fairness conditions. 
However, we can easily obtain very strong high-level-fairness conditions, even a 
FIFO condition (based on the first locally controlled step each process takes in 
its trying region), still just using a single shared variable. For example, we have 
the QueueME algorithm. 

QueueME algorithm (informal): 

The processes maintain a queue of process indices, initially empty, in the 
shared variable. A process that enters T adds its index to the end of the 
queue; a process that finds itself at the beginning of the queue goes to C; 
and when a process leaves C, it deletes itself from the queue. 

Expressing this more formally in precondition-effect notation, we have the 
following. 

QueueME algorithm (formal)" 

S h a r e d  var iables :  
queue, a F I F O  queue of process indices, initially empty  

A c t i o n s  o f  i: 
Input :  

tryi 
exit~ 

Outpu t :  
criti 

remi 

Internal:  
enter~ 
test~ 

reset~ 

S t a t e s  o f  i: 
pc E {rem,  enter,  test,  leave-try, crit, reset, leave-exit} ,  initially rem 
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T r a n s i t i o n s  o f  i: 
try~ 

Effect: 
pc := enter 

enter~ 
Precondition: 

pc = enter 
Effect: 

add i to queue 
if i is first on queue then 

pc := leave-try 
else pc := test 

testi 
Precondition: 

pc = test 
Effect: 

if i is first on queue then 
pc := leave-try 

criti 
Precondition: 

p c -  leave-try 
Effect" 

p c -  crit 

exiti 
Effect: 

pc "-  reset 

reset~ 
Precondition: 

pc = reset 
Effect: 

remove first element of queue 
pc := leave-exit 

remi 
Precondition: 

p c -  leave-exit 
Effect: 

pc "-  rein 

It should be easy to see that  Q u e u e M E  guarantees  well-formedness, mutual  

exclusion, and progress. Moreover, it satisfies the high-level-fairness condition 

that  ent ry  to the critical region is F I F O  with respect  to the first locally controlled 

action in the t ry ing  region (the e n t e r  action). This  implies that  Q u e u e M E  guar- 

antees bounded bypass  (with a bound of 1). 

T h e o r e m  10 .39  Q u e u e M E  s o l v e s  the  m u t u a l  e x c l u s i o n  p r o b l e m  a n d  g u a r a n t e e s  

b o u n d e d  bypass .  

The Q u e u e M E  algor i thm is simple and is also fast, at least according to our 

t ime measure,  but  it does have the problem that  the shared variable is very large. 

There  are n! + ( n -  1)! + . . .  different queues consisting of at most  n dist inct  

indices, so the variable must  be able to assume that  many  different values. This  

requires ~ t (n logn)  bits. It would be bet ter  to reduce the size of the shared 

variable, not jus t  in order to save shared memory,  but  also because it is not so 

reasonable to assume ins tantaneous access to such a large variable. An interest ing 
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question is how large the shared variable must be in order to guarantee high-level 
fairness. Can we solve the problem with a variable that takes on a number of 
values that is linear in n? What  about a constant number of values? 

It is not very hard to achieve the same type of FIFO behavior as the QueueME 
algorithm, using a shared variable with only n 2 values (2 log n bits). For example, 
we may use an algorithm based on issuing "tickets" to the critical region. 

T i c k e t M E  algorithm (informal)" 
The shared variable holds a pair (next, granted), of values in {0 , . . .  , n -  1}, 
initially (0, 0). The next component represents the next "ticket" to the 
critical region that is to be issued to a process, while the granted component 
represents the last "ticket" that has been granted permission to enter the 
critical region. When a process enters the trying region, it "takes a ticket," 
that is, it copies and increments the next component. If a process's ticket 
is equal to the granted component, it goes to the critical region. When a 
process exits, it increments the granted component modulo n. 

Now we present the algorithm in the more formal precondition-effect style. 

T i c k e t M E  algorithm (formal)" 

S h a r e d  var iab les :  
(next,  granted), a pair  of e lements  of { 0 , . . .  , n -  1}, initially (0,0) 

A c t i o n s  o f  i: 
Input :  

tryi 
exit~ 

Outpu t :  
criti 
remi 

Internal :  
enter~ 
testi 
reset~ 

S t a t e s  o f  i: 
pc E {rein, enter, test, leave-try, crit, reset, leave-exit}, init ially rein 
ticket E { 0 , . . . , n  - 1} U {null},  init ially null 

T r a n s i t i o n s  o f  i: 

tryi 
Effect: 

pc : -  enter 

enter~ 
Precondi t ion:  

pc = enter 
Effect: 

ticket :-- next 
next := next + 1 mod  n 
if ticket = granted then 

pc := leave-try 
else pc := test 
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testi 
Precondition: 

pc = test 
Effect: 

if ticket = granted then 
pc := leave-try 

criti 
Precondition: 

p c -  leave-try 
Effect: 

p c -  crit 

exiti 
Effect" 

pc "- reset 

reseti 
Precondition: 

pc = reset 
Effect: 

granted := granted + 1 mod n 
ticket := null 
pc := leave-exit 

remi 
Precondition: 

p c -  leave-exit 
Effect" 

pc "-- rein 

T i c k e t M E  satisfies the same correctness conditions as Q u e u e M E ,  including 

being F IFO with respect to the first locally controlled action in the t rying region. 

The proof of the following theorem appears  in Section 10.9.4. 

T h e o r e m  10 .40  T i c k e t M E  solves the m u t u a l  exc lus ion  prob lem and guarantees  

bounded bypass, using n 2 values of  shared m e m o r y .  

Can we do bet ter  than n2? The following theorem gives a simple lower bound 

of n on the number  of shared variable values required to solve bounded bypass 

mutual  exclusion. 

T h e o r e m  10 .41  Let  A be an n-process  m u t u a l  exc lus ion  a lgor i thm guarantee-  

ing bounded bypass, using a single read-modi fy -wr i t e  shared variable. T h e n  the 

l~t11~bcr of  d is t inc t  values the variable can take on is at least n. 

P r o o f .  Suppose that A is an n-process mutual  exclusion algori thm guarantee- 

ing bounded bypass, with a bypass bound of a. Assume again (as in Section 10.8), 

without  loss of generality, that  the users Ui are the most  nondeterminis t ic  pos- 

sible. We proceed by contradiction: we construct  an execution in which some 

process is bypassed more than a times. 

We start  by defining a sequence of finite executions, C~l, c~2,... , c~, each an 

extension of the previous one. Execution ct 1 is obtained by letting process 1 
run alone from an initial system state until it enters C. (The progress condition 

implies that this is possible.) To obtain c~2, we extend ct 1 by letting process 2 

enter the t rying region and take one locally controlled step. Obviously, process 2 
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must  remain in its t rying region after c~2, in order to avoid violating the mutual  
exclusion condition. Then  execution c~i, for 3 _< i <_ n, is const ructed in a similar 
way to c~2" s tar t ing at the end of c~i-1, we let process i enter the trying region 
and take one locally controlled step. Each process i, 3 _< i _< n, also remains in 
its t rying region. 

Define si to be the system state and vi the value of the shared variable after 

c~i, 1 <_ i _< n. We claim that  vi # vj for 1 _< i , j  <_ n, i 7~ j ,  which implies the 
result. 

So assume the contrary, that  is, that  vi - vj for some part icular  i and j ,  
k 

i r j ,  and assume without loss of generali ty that  i < j .  Then  si ~ sj for every 
process k, 1 <_ k _< i. (That  is, the system states after c~i and c~j include the 
same states for processes and users 1 , . . . ,  i, and the same value of the shared 
variable.) 

Now, there is some low-level-fair execution that  extends c~i, involving only 
processes 1 , . . . ,  i, that  causes some process to enter C infinitely many times. 
This follows from the progress assumpt ion (which only applies in low-level-fair 
executions). The same steps can be applied after c~j, again yielding an execution 
in which the same process enters C infinitely many times. Note that  this new 
execution is not  low-level fair: processes i + 1 , . . . ,  j do not perform any steps 
in the port ion of the execution after c~j, even though they are all in T. But  this 
does not matter" low-level fairness is not required for a violation of the bypass 
bound. Jus t  running a sufficiently large port ion of this execution is enough to 
cause process j to be bypassed more than a times by some other process, which 
is the needed contradiction.  

The construct ion is i l lustrated in Figure 10.14. D 

C 

2 3 i j n 

v 3 v ,  v .  

F i g u r e  10 .14:  Construction of execution for the proof of Theorem 10.41. 

Is this lower bound tight, or can it be raised, say to f~(n2)? It turns  out that  
it c a n n o t - - t h e r e  is a counterexample algorithm (i.e., an a lgor i thm that  is not 
of much interest  on its own, that  is neither practical  nor elegant, but  that  does 
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serve to demonstrate  a counterexample to an impossibility conjecture) that only 

requires O (n) values. In fact, the algorithm only needs n + k values, for a small 
constant k. We call this algorithm the BufferMainME algorithm, for reasons 
that will become apparent  in a moment. 

BufferMainME algorithm: 
The basic idea of the BufferMainME algorithm is as follows. The trying 
region is divided into two pieces, called the buffer region and the main 
region. When processes enter the trying region, they go into the buffer; 
no order information is maintained among the processes in the buffer. At 
some time, when the main region is empty, all processes in the buffer go 
to the main region, thereby emptying the buffer. From the main region, 
processes go one at a time, in an arbi t rary order, to the critical region. 

Implementing this idea requires some communication mechanisms, so that 
processes can discover when they should change regions. For a first cut at 
an implementation, suppose that in addition to the usual "agent" processes 
1 , . . .  , n, we allow a dedicated supervisor process that is always allowed to 
take steps. We will design a solution that centralizes system control in the 
supervisor process: the supervisor keeps track of when processes should 
change regions and informs them accordingly. Afterward, we will describe 
how to remove the need for the special supervisor process. 

Using the supervisor process, we have the following strategy. First, let the 
variable have two components, one for a count C {0 , . . .  , n} and one for a 
message chosen from a designated finite set of control messages. This is a 
total of kn values for some constant k, but we can optimize this to n + k 
by using a priority scheme to allow reuse of the variable for different types 
of communication. 

The supervisor maintains local variables buffer-count and main-count, 
counts of the numbers of processes that it has heard about that are in 
the buffer and main regions. When a process enters the trying region, it 
increments the count component of the shared variable to inform the super- 
visor that some new process has entered and then waits in the buffer. The 
supervisor, whenever it sees a non-zero count in the shared variable, ab- 
sorbs the count into its local buffer-count and resets the count component 
of the variable to 0. 

The supervisor can figure out when to move the processes in the buffer to 
the main region, that is, after its main-count is 0. It moves them, one at 
a time, by putting enter-main messages in the message component of the 
shared variable. The supervisor stops moving processes from the buffer 
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to the main region when it sees that its buffer-count  and the count in the 
variable are both equal to O. Then the supervisor moves processes from 
the main region to the critical region, by putting enter-cr i t  messages in the 
message component of the shared variables. 

The control messages that are used are 

�9 enter-main:  The supervisor places this into the message component 
of the shared variable to move a process from the buffer to the main 
region. The first process in the buffer that sees this message picks it 

up and proceeds to the main region. 

�9 ack-main: A process that picks up an en t e r -ma in  message from the 
shared variable leaves this in its place as an acknowledgment to the 

supervisor. The supervisor picks this up. 

�9 enter-crit:  The supervisor places this into the message component of 
the shared variable to move a process from the main region to the 

critical region. The first process in the main region that sees this 
message picks it up and proceeds to the critical region. 

�9 ack-crit: A process that picks up an enter-cr i t  message from the 
shared variable leaves this in its place as an acknowledgment to the 

supervisor. 

�9 done: A process exiting the critical region places this into the message 

component of the shared variable to announce that it is done. 

Now we outline how we can avoid the two separate components in the 
shared variable. Note that the variable is being used for two purposes: 
recording the number of newly entered processes and communicating con- 
trol messages. We will now "time-share" the variable, allowing it to serve 
both purposes, but not at the same time. The variable will at any point 
have a value that is either a count or a control message, but not both. 

Note that, in the algorithm described so far, control-message communi- 
cation proceeds according to a single sequential "thread of control," as 

depicted in Figure 10.15. 

Suppose that this thread were to be interrupted by a newly entering process 
i overwriting a control message with a count (of 1, announcing its own 

arrival). Then (because there are only finitely many processes that can 
enter the system), the system would eventually reach a stable state. The 
supervisor would eventually absorb all count information in the shared 
variable, making the count in the variable permanently equal to 0. At this 



318 10. M U T U A L  E X C L U S I O N  

supervisor process 

F i g u r e  10.15- A thread of control for the bounded bypass mutual exclusion algo- 
rithm. 

point, it would be possible for process i to put the overwritten message 
back in the variable, allowing the thread of control to resume. 

More specifically, the following occurs. When process i enters the trying 
region and sees a control message in the shared variable, it remembers the 
message and replaces it with a count of 1. Process i holds the message until 
it sees that the count is 0, and then overwrites the 0 with the remembered 
message. The result is a mutual exclusion algorithm with bounded bypass 
that uses n + 6 values of the shared variable, assuming the availability of a 
dedicated supervisor process. 

Now we modify this algorithm so that it works in the model we have been 
s tudying- - tha t  is, without a dedicated supervisor process. The idea is to 
allow the processes to cooperate in a distr ibuted simulation of the supervi- 
sot. (The simulation has to be distributed,  since there is no process that is 
guaranteed to be available at all times.) The processes simply take turns 
performing the simulation; in particular,  whenever a process is in the crit- 
ical region, it will be the process responsible for the supervisor simulation. 

The main difficulty of this simulation is that a process leaving C must 
pass the responsibility for the supervisor simulation on to the next process 
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to enter C. This involves communicating all the state information needed 

by the supervisor (in particular,  buffer-count and main-count) to the next 

process. We must use the shared variable for this new type of communica- 
tion, as well as for the other two types of communication we have already 
discussed; again, we time-share. Note that the new state communication 

does not go on at the same time as the control-message communication, so 
there is no interference here. Moreover, interference between the counts of 

newly arrived processes and the communication of state information can 
be managed in the same way as the interference between the counts and 

the control messages. 

One last detail: Sometimes, when a process leaves C, there will be no other 

process to which it can pass responsibility for the supervisor simulation. 
In such a case, it means that there is no other process in the trying region. 

But then there is no interesting information in the supervisor state, anyway, 

so the process can just  abandon responsibility, leaving a special indicator 
in the shared variable. 

Theorem 10.42 The BufferMainME algorithm solves the mutual exclusion prob- 
lem, guaranteeing bounded bypass, using a single read-modify-write shared vari- 
able with only n + k values (for some small constant k). 

10.9.3 L o c k o u t - F r e e d o m  

The lower bound of Theorem 10.41 only holds when the high-level-fairness re- 

quirement is bounded bypass. For the weaker requirement of lockout-freedom, 
the proof does not work. The problem is that lockout-freedom is a property of 
low-level-fair executions, and the bad execution constructed in the proof was not 
fair to processes i + 1 , . . .  , j .  In fact, the result of Theorem 10.41 does not hold 
for lockout-freedom. We have another counterexample algorithm, this one with 

a surprisingly small bound. We call this one the Executive algorithm. 

E x e c u t i v e  algorithm: 

The idea of the algorithm is as follows. As in the BufferMainME algorithm, 
each incoming process increments a count in the shared variable, but this 

.. n before wrapping time the count is only allowed to take on values 0, . , 
back around to 0. The count is absorbed by a (simulated) supervisor, as 
before. 

n When the count wraps around to 0, a group of ~ -t- 1 processes is tem- 
porarily "hidden" from the rest of the system; the resulting system state is 
indistinguishable to all the other processes from the state just  before they 
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all entered. If these hidden processes take no further steps, the rest of the 
system will proceed as if the hidden processes were still in R. However, in 
a low-level-fair execution, the hidden processes will take further steps and 
so can make their presence known. 

To make sure that the processes do not remain hidden, we designate the 
n process that performs the transit ion from 5 to 0 as the executive, and 

give it responsibility for the hidden processes. The executive sends special 
sleep messages to (an arbi t rary set of) ~ processes in the buffer, to put 
them to sleep for a while. Then, having removed ~ processes from the 
competition, the executive reenters the system, incrementing the count on 

n its own behalf once again. Now, with ~ processes sleeping, the algorithm 

runs exactly like the BufferMainME algorithm; the shared variable cannot 
remaining active processes and overflow now, because there are at most 

n In particular,  a second the count in the variable is allowed to reach ~. 
concurrent executive cannot be created. According to the behavior of the 

BufferMainME algorithm, the executive eventually reaches C. 

When the executive reaches C, it takes care of the sleepers by sending them 
wakeup messages and telling the supervisor about them. Again, we must 
time-share the variable for these new types of communication, now with a 
slightly more complicated priority scheme. 

T h e o r e m  10.43 The Executive algorithm solves the mutual exclusion problem, 
guaranteeing lockout-freedom, using a single read-modify-write shared variable 

n with only -~ + k values (for some small constant k). 

We finish this subsection with a lower bound of approximately x/~ on the 

number of values needed for lockout-free mutual exclusion. This bound is not 
n tight with respect to the g + k upper bound, but the proof does contain an 

interesting method of constructing bad low-level-fair executions. 

T h e o r e m  10.44 Let k _> 2. Let A be any system of n -> k2-k2 + 1  processes 
solving the mutual exclusion problem and guaranteeing lockout-freedom, using a 
single read-modify-write shared variable. Then the number of distinct values the 
variable can take on in reachable states of A is at least k. 

P r o o f .  Again, we assume that the users are the most nondeterministic possible. 

We proceed by induction on k. 
Basis: k - 2. Then the inequality says that n _> 2. It is easy to show that the 

variable must take on at least two values, since otherwise the processes could not 
communicate. The formal argument is similar to the one used for Lemma 10.31. 
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I n d u c t i v e  s tep:  Assume now that  the result holds for k _> 2; we show that  it 

holds for k + 1. Suppose n > (k+l)2-(k+l) - 2 + 1, and suppose for contradict ion 

that  the number of values of the shared variable is strictly less than k + 1. By 

the inductive hypothesis,  it follows that  the number  of values is at least k, so it 

must  be exactly k. We now construct  a bad execution to derive a contradiction.  

We define finite execution Ct 1 by running process 1 alone until it enters C; let 

the resulting system state be Sl. Then we extend Ct 1 t o  Ct 2 by running process 2 

just  until a system state s2 is reached in which the shared variable has a value that  

process 2 can cause to recur infinitely many times by running on its own from 

state s2. Such a state must  exist since the variable can assume only finitely many 

values. Likewise, we define c~i, for 3 _< i _< n, by running process i after c~i-1 until 

a system state si is reached in which the variable has a value that  process i can 

cause to recur infinitely many times by running on its own from state si. Let vi 

be the value of the variable in system state si,  for all i, 1 _< i _< n. Since there are 

only k values that  are taken on by the shared variable, the Pigeonhole Principle 

implies that  there must  be two processes, i and j ,  where n -  k _< i < j _< n, such 
m 

that  vi - v j .  Fix these i and j .  Note that  si ~ s j  for all processes m, 1 _< m _< i. 

Now, processes 1, , i const i tute a system with at least k2-k + 1 processes, 
~ ~ ~ 2 

solving the mutual  exclusion problem with lockout-freedom. So, by the inductive 

hypothesis,  they must  use all k values of shared memory. In fact, we can sharpen 

this claim: for every system state s that  is i-reachable 3 from system state si,  and 

every value v of shared memory, there must  be a system state that  i s / - reachable  

from s in which the value of the shared variable is v. (If not, then we could 

use any idle state that  is /-reachable from s as an initial state for a system 

involving processes 1 , . . .  , i, in which the variable takes on fewer than k values. 

This contradicts  the inductive hypothesis .)  Using this sharpened claim, we can 

produce a low-level-fair execution of processes 1 , . . . ,  i that  extends c~i and in 

which all k values of the shared variable recur infinitely many times. 

Now we construct  the bad execution a as follows. It begins with c~j, which 

brings processes 1 , . . .  , j into the system and brings the system state to sj  and 

the variable value to vj  - vi. Next, run processes 1 , . . . ,  i as described above, 

but  from state sj  instead of si; again, these processes cause each of the k values 

of the shared variable to recur infinitely often. 

Now recall that  from its local state in sin, each process rn, i + 1 _< m _< j is 
able to cause the value of the variable in state sm to recur infinitely often. So 

we splice into the main execution of processes 1 , . . .  , i some steps of processes 

i + 1 , . . .  , j as follows" each time the shared variable is set in the main execution 

3As in Section 10.8, we define this to mean  that  the state s is reachable using steps of 

processes  1 , . . . ,  i only. 
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to some value vm, i + 1 < m <_ j, we run process m for just enough steps (but 

at least one step) to let it re turn the value of the shared variable to Vm. These 
insertions yield an infinite execution that is fair to all processes and that locks 
out all processes m, i + 1 _< m <_ j.  [--I 

The key idea to remember in the proof of Theorem 10.44 is the construction of 
bad low-level-fair executions by splicing together execution fragments. Also, note 
that Theorem 10.44 implies what might at first seem to be a paradox. Namely, 
there is a nontrivial inherent cost to solving lockout-free mutual exclusion, even 
though our model already contains something very close to what is needed-- fa i r  
exclusive access to a shared variable for arbi t rary computation. 

Note that there is a gap between the upper bound of Theorem 10.43 and the 
lower bound of Theorem 10.44. Closing this gap is a research question. 

1 0 . 9 . 4  A S i m u l a t i o n  P r o o f  

We close this section by outlining a correctness proof for the TicketME algo- 
r i thm presented in the previous section. Our proof uses the simulation method 
described in Section 8.5.5. We have already used the simulation method to show 
correctness of several a lgori thms--for  example, OptFloodSet--in the synchronous 
model; however, this is our first interesting use of this method for asynchronous 
algorithms. 

We would like to prove that the TicketME algorithm guarantees the same 
correctness conditions as the QueueME algorithm: well-formedness, mutual  ex- 

clusion, progress, and FIFO behavior with respect to the first locally controlled 
event in T. Showing this would imply Theorem 10.40. It turns out that a good 
way to understand the TicketME algorithm is to relate it, not to QueueME, but 
to a new Infinite TicketME algorithm that is just like TicketME except that it 
uses an infinite sequence of tickets rather than counting modulo n. Then Tick- 
etME can be seen as a reduced-complexity version of Infinite TicketME. Here 
are the modifications to TicketME needed to obtain the new Infinite TicketME 
algorithm" 

I n f i n i t e  T i c k e t M E  a l g o r i t h m :  

Shared variables: 
(next, granted) E N x N, initially (0, 0) 

Actions of i: 
As for TicketME. 
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S t a t e s  o f  i: 
ticket C N U {null}, initially null 

T r a n s i t i o n s  o f  i: 

enteri reset~ 
Precondition: Precondition: 

pc = enter pc = reset 
Effect: Effect: 

ticket := next granted := granted + 1 
next := next + 1 ticket := null 
if ticket = granted then pc := leave-exit 

pc := leave-try 
else pc : -  test 

It is easy to show that  I n f i n i t e T i c k e t M E  satisfies all the properties claimed 

for Ticke tME,  since only one ticket is granted at a time and tickets are never 

reused. Then we can show the correctness of T i c k e t M E  by relating it formally 

to Inf ini te  T icke tME,  using the method of simulations. The idea is to run the two 

algori thms side by side, proving that  certain s trong relationships hold between 

the two executions. 

Some invariants for Inf ini te  T i c k e t M E  are useful. (These would natural ly  be 

proved anyway in the course of verifying the a lgor i thm's  properties.)  

L e m m a  10 .45  In any reachable sys tem state of  Inf ini te  T icke tME,  the fol lowing 
are true: 

1. A process i has a non-nul l  t icket exactly i f  pc4 C { tes t ,  leave-try, crit,  reset} .  

2. The non-nul l  t icket values are exactly the integers in the interval  [granted, 

next ) ,  and each is held by exactly one process. 

3. granted <_ next  <_ granted + n. 

~. I f  pci C {leave-try,  crit, exi t} ,  then ticketi - granted. 

The next step is to define a simulation relation f between the system states 

of T i c k e t M E  and Inf ini te  T i c k e t M E  when the two algori thms are combined with 

the same collection of users. This correspondence is simple: we define (s, u) C f 

(alternatively wri t ten as u E f ( s ) )  provided that  the two states are identical 

except that  the various corresponding ticket components  are only required to be 

the same modulo n. We use dot notat ion below to indicate the value of a given 

variable in a given state. 
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1. All user states are identical in s and u. 

2. For every i, s.pc i = u.pc i. 

3. s .granted = u.granted mod n. 

4. s .nex t  = u .nex t  mod n. 

5. For every i, s . t icket i  = u. t icket i  mod n. 

We show that  f is a simulation relation. More precisely, we define T and I 
to be the T i c k e t M E  and Inf ini te  T i c k e t M E  systems, respectively, each modified 
slightly so that  all the actions are classified as external.  We show that  f is a 
simulation relation from T to I. The two conditions that  we need to show are 

1. If s is an initial state of T, then f ( s )  contains an initial state of I. 

2. If s is a reachable state of T,  u E f ( s )  is a reachable state of I,  and (s, 7r, s') 
is a t ransi t ion of T, then there is a step (u, 7r, u') of I, where u' C f ( s ' ) .  

L e m m a  10 .46  f is a s imula t ion  relation f rom T to I .  

P r o o f .  The two conditions given above are s t ra ightforward to prove. For the 
first condition, that  is, the s tar t  condition, a s tar t  state s of T consists of the 
unique s tar t  state of the T i c k e t M E  algori thm and a rb i t ra ry  s tar t  states for the 
users. It is easy to see that  the unique s tar t  state of the Inf ini te  T i c k e t M E  algo- 
r i thm, together with the same star t  states for the users, is in f ( s ) .  

The second condition, that  is, the step condition, is proved by a case analysis, 
according to the type of action being performed. Any locally controlled actions 
of the users are mimicked exactly. For each locally controlled action of the 
algori thm, the existence of a step (s, 7r, s') in T immediately  implies that  the 
same action 7c is enabled in the corresponding state of I, because the enabling 
conditions are based only on the pc values. Also, in every case, the new state u ~ 

is uniquely determined by the definition of Inf ini te  T icke tME.  The only remaining 
thing to show, then, is that  u ~ E f(s~).  

But this is also easy. The only interesting case is an action of the form testi, 
where a process i makes a decision, based on whether ticketi = granted, about  
whether it should proceed to C. We must  verify that  the two algori thms do not 

make different decisions. Because T i c k e t M E  only uses ticket values 0 , . . . ,  n -  
1 and corresponding values in s and u are the same modulo n, the only way 
that  the decisions could be different is if equali ty holds in T i c k e t M E  but not in 
Inf ini te  T icke tME.  That  is, the danger is that  incrementing ticket values modulo 
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n might be blurring distinctions that are important in determining the behavior 

of Infinite TicketME. 
But this turns out not to be a problem. Suppose that s.ticketi - s.granted. 

Then the fact that u C f ( s )  implies that u.ticketi - u.granted mod n. The 
invariants proved in Lemma 10.45 imply that u.granted ~ u.ticketi < u.next 
and u.next ~ u.granted + n. Therefore, u.granted ~ u.ticketi < u.granted + n. 
So it must be that u.ticketi - u . g r a n t e d ,  as needed. E] 

How does Lemma 10.46 help to prove the correctness of TicketME?. 

P r o o f  Ske t ch  (of  T h e o r e m  10.40) .  Lemma 10.46 and Theorem 8.12 imply 
that traces(T) C traces(I). The well-formedness, mutual exclusion, and FIFO 

conditions can all be expressed as properties of traces (when all the actions are 
included, as they are here). So the fact that these three conditions hold for I 

implies that they also hold for T. This implies that TicketME guarantees the 

well-formedness, mutual exclusion, and FIFO conditions. 

But this does not prove that TicketME guarantees progress. The progress 
condition is different from the other three conditions in that it is supposed to 

hold only for the fair executions of an algorithm. To show that this condition 

carries over from Infinite TicketME to TicketME, we would like to know that 

fairtraces(T) C_ fairtraces(I).  It turns out that the simulation relation f can also 
be used to help prove this inclusion. 

The key idea is that a simulation relation actually implies more than just 
inclusion of sets of t races- - i t  really establishes a close correspondence between 

executions of the two algorithms. See Section 8.5.5 for a formal definition of such 

a correspondence. In the present situation, Theorem 8.13 of Section 8.5.5 implies 

that for any execution c~ of T, there is an execution c~ ~ of I that corresponds to 

it in the following very strong sense: 

1. The sequences of actions in c~ and ~ are identical. 

2. States in the same position in c~ and c~ ~ are related by f .  

We obtain such a strong correspondence here because all actions of T and I are 
external. 

Now we argue that fairtraces(T) C_ fairtraces(I).  Let /~ C fairtraces(T) 
and let c~ be any fair execution of T such that /~ - trace(a). Then, by Theo- 
rem 8.13, there is a corresponding execution (~ of I satisfying the two conditions 

enumerated above. In particular, the traces of c~ and c~ ~ are the same, so that 
- trace(c~). We claim that c~ ~ is a fair execution of I. 

There are two ways in which it might fail to be fair. First, there might 

be some process i that is enabled (to take a locally controlled step) from some 
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point on in c~', yet no such step occurs after that point in c~'. Then the strong 
correspondence implies that process i is also enabled from the same point on in 
c~, but no such step occurs after that point in c~. This violates the fairness of c~, a 
contradiction. Second, there might be some user task that is enabled from some 
point on in c~', yet no step of that task occurs after that point in c~'. Again, the 
correspondence implies that the same thing happens in c~, violating the fairness 
of  Ct. 

It follows that c~' is a fair execution of I, which implies that/3 6 fairtraces(I). 
Thus, fairtraces(T) C_ fairtraces(I). Since the progress condition can be ex- 
pressed as a property of fair traces (when all the actions are included, as they 
are here), this implies that the progress condition carries over from Infinite- 
TicketME to TicketME. D 

10.10 Bibliographic Notes  

The DijkstraME algorithm appeared in a short note by Dijkstra [90]. It extended 
a previous two-process algorithm by Dekker to an arbitrary number of processes. 
Before these results, it was not even clear that the problem could be solved with 
only read/write shared memory. The assertional proof that DijkstraME satisfies 
the mutual exclusion condition is adapted from a paper by Goldman and Lynch 
on shared memory modelling [141]. Dijkstra's original note was followed by a 
series of replies, by Knuth, de Bruijn, and Eisenberg and McGuire [168, 86, 
108], each improving on the prior solutions by adding new high-level-fairness 
conditions and/or better performance properties. 

The Peterson2P and PetersonNP algorithms were designed by Peterson [238]. 
The Tournament algorithm is based on a combination of the ideas of Peterson2P 
and those of the tournament protocol of Peterson and Fischer [242]. Our Tour- 
nament algorithm is simpler and easier to prove correct than the tournament 
algorithm in [242]; however, it has the disadvantage that it uses multi-writer 
variables, while the original requires only single-writer variables. 

The BurnsME algorithm is due to Burns [60], and the Bakery algorithm to 
Lamport [174]. A later paper by Lamport [180] contains additional improved 
mutual exclusion algorithms. The lower bound on the number of registers re- 
quired for solving the mutual exclusion problem is due to Burns and Lynch [63]. 

The TicketME algorithm is due to Fischer, Lynch, Burns, and Borodin 
[120, 121]. The results on bounded bypass and lockout-free mutual exclusion 
with read-modify-write shared memory all appear in a paper by Burns, Fis- 
cher, Jackson, Lynch, and Peterson [62]. These results build on earlier work by 
Cremers and Hibbard [84]; in particular, the BufferMainME algorithm is based 
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closely on an algorithm of [84]. Another result in [62], not discussed in this 
n values of chapter, says that lockout-free mutual  exclusion requires at least 

shared memory, if the special assumption is made that processes have only a 
single remainder state. (That is, they cannot retain any memory of prior ex- 
ecutions of the algorithm.) Cremers and Hibbard [85] also designed an n + k 
algori thm to achieve FIFO access to the critical region, using read-modify-write 
shared memory. 

A good source for information about temporal  logic, which can be used to 
formalize the liveness proofs in this chapter and elsewhere in this book, is the 
book by Manna and Pnueli [219]. 

The k-exclusion problem considered in Exercise 10:13 was first defined by 
Fischer, Lynch, Burns, and Borodin [120] and later studied by Shavit [261]. A 
book by Raynal  [249] contains descriptions of many mutual  exclusion algorithms, 
for both the asynchronous shared memory and asynchronous network models. 
Mutual  exclusion is also discussed in books by Ben-Ari [45] and by Peterson and 
Silberschatz [262]. 

10.11  E x e r c i s e s  

10.1. Consider yet another way of defining the mutual  exclusion problem, this 
one in terms of the traces of the shared memory system A alone, rather 
than in terms of the combination of A and the users. That  is, define a trace 
property Q such that traces(Q) is the set of sequences/3 of try, crit, exit, 
and rein actions that satisfy the following three conditions: 

(a) In/3, the system is not the first to violate well-formedness, for any i. 

(b) If/3 is well-formed for every i, then/3 does not contain two crit events 
without an intervening exit event. 

(c) If/3 is well-formed for every i, then the following hold: 

i. If at some point in /3, some process's last event is try and no 
process's last event is crit, then there is a later crit event. 

ii. If at some point in/3, some process's last event is exit, then there 
is a later rein event. 

Prove that if fairtraces(A) C_ traces(Q), then A combined with any collec- 
tion of users satisfies the definition of the mutual  exclusion problem given 
in Section 10.2. 

10.2. Describe a fair execution of the DijkstraME algorithm in which a part icular 
process is locked out. 
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10.3. Show that the second phase of the DijkstraME algorithm (where the flag is 
raised to 2 and the other processes'  flags are tested) is needed to solve the 
problem correctly. 

10.4. Fill in more details in the inductive proof of mutual  exclusion, for the 
DijkstraME algorithm. 

10.5. Consider the t iming analysis for DijkstraME, for the time from a point 
where some user is in T and no user is in C until a point where some user 
enters C. 

(a) Refine the analysis to express the bound in the form king + k2s where 
kl and k2 are part icular constants. Try to make kl and k2 as small as 
possible. 

(b) Construct  an execution of DijkstraME in which the bound is as large 
as you can make it; t ry to match your computed upper bound. 

10.6. The lockout-freedom condition makes sense for those algorithms that guar- 
antee well-formedness, but not necessarily mutual  exclusion or progress. 
Prove carefully that if an algorithm guarantees well-formedness and is 
lockout-free (for all collections of users), then it also guarantees progress 
(for all collections of users). 

10.7. Modify the processes in the Peterson2P algorithm so that they do not 
necessarily perform check-flag and check-turn in strict alternation, but 
according to some looser discipline. Make sure your resulting algori thm 
is still a lockout-free mutual  exclusion algorithm. Prove the correctness of 
your modified algorithm and analyze its time complexity. 

10.8. Design a lockout-free mutual  exclusion algori thm for two processes that 
uses only single-writer~multi-reader read/wr i te  registers. Prove the cor- 
rectness of your algorithm, preferably using invariant assertions. (Hint: 
If you get stuck, you might want to consider the two-process solution in 
[242]. You're on your own for the invariant proof, though.) 

10.9. Prove Assertion 10.5.3. 

10.10. Prove Assertion 10.5.4. 

10.11. Reconsider the time bound proved in Theorem 10.16, for the PetersonNP 
algorithm. Is it tight? Either exhibit an execution in which the exponential 
behavior described there is actually realized, or else give a finer analysis 
with a smaller complexity bound. 
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10.12. Does the PetersonNP algorithm guarantee bounded bypass? Prove that it 
does or give a counterexample. 

10.13. Modify the PetersonNP algorithm to yield a solution to the k-exclusion 
problem, 2 <<_ k < n. This problem allows k processes to coexist inside the 
critical region at the same time. Formally, the mutual exclusion condition 
is modified to forbid more than k users to be in C at once. The progress 
condition for the trying region is also modified, to say that if there is at least 
one user in T and at most k -  1 users are in C, then some user eventually 
enters C. Prove that your algorithm works correctly. State carefully the 
high-level-fairness conditions that your algorithm satisfies. 

10.14. (a) 
(b) 

(c) 

(d) 

Rewrite the Tournament algorithm in precondition-effects form. 

In terms of this rewrite, define the notions of "winner" and "competi- 
tor" carefully. 

Prove Assertion 10.5.7. (Hint: Strengthen it to include some infor- 
mation about what happens when a process is inside the waitfor loop, 
after the process has discovered that some of its opponents have flag 
variables strictly less than k. Then prove the strengthened invariant 
together with the original one by induction.) 

Complete the proof that the Tournament algorithm guarantees mutual 
exclusion. 

10.15. Show how the Tournament algorithm can be adapted for use with n pro- 
cesses, where n is not a power of 2. What  happens to the time complexity? 

10.16. Research Question: Devise a variant of the Tournament protocol that uses 
single-writer/multi-reader registers rather than multi-writer/multi-reader 
registers. Provide a complete correctness proof and analysis. 

10.17. What  happens to the behavior of the BurnsME algorithm if the second 
for loop is removed? Either prove that it still solves the mutual exclusion 
problem or exhibit a counterexample execution. 

10.18. Give an assertional proof showing that the BurnsME algorithm satisfies the 
mutual exclusion condition. To do this, you should rewrite the algorithm 
in precondition-effect form and define explicit variables to keep track of 
checked processes within the for loops. 

10.19. Exhibit a low-level-fair execution of the BurnsME algorithm in which some 
process is locked out. 
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10.20. Carry out a time analysis for the progress condition, for the BurnsME 
algorithm. That  is, assume that c and t~ are upper bounds on critical 
region time and process step time, and consider the time from when there 
is some process in T and no process in C until some process enters C. 

(a) Prove an upper bound for this time. 

(b) Exhibit  a part icular execution in which this time is as large as possible. 

Try to get your bounds in (a) and (b) to be as close as possible. 

10.21. Describe an execution of the Bakery algorithm in which the values taken 
on by the number registers are unbounded. 

10.22. Why does the Bakery algorithm fail if the integers are replaced by the 
integers mod b, for some very large value of b? Describe a specific coun- 
terexample execution. 

10.23. Rewrite the Bakery algorithm in precondition-effect form. While doing 
this, t ry to generalize the algorithm slightly by allowing as much nonde- 
terminism in the order of actions as you can. (The precondition-effect 
notation generally makes it easier to express such nondeterminism than 
does the usual flow-of-control notation.) Give an assertional proof of the 
mutual  exclusion condition for the generalized algorithm. 

10.24. Prove that the Bakery algorithm works correctly even in the following much 
weaker model. Suppose that reads and writes are no longer instantaneous, 
but have duration. Suppose that the shared registers are only guaranteed to 
be safe, that is, to yield the correct value only in the absence of concurrent 
reading and writing. In the event that a read overlaps any write, any value 
might be returned by the read. 

10.25. Does Burns 's  mutual  exclusion algorithm work if the shared registers are 
all safe registers (as defined in Exercise 10.24)? Why or why not? 

10.26. Suppose that the Bakery algorithm only needs to work for the case of 
instantaneous-access shared memory, not the more general model with safe 
registers. Give a simplified version of the algorithm that guarantees the 
same mutual  exclusion and high-level-fairness conditions as the original 
Bakery algorithm. Prove your claims. 

10.27. Fill in the details for the complexity analysis of the Bakery algorithm, 
sketched at the end of Section 10.7. 
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10.28. Give explicit code for a particular user automaton Ui that exhibits all the 
nondeterminism allowed for user / - - i t  should be able to perform its tryi 
and exit~ actions at any time, or never perform them, subject only to the 
well-formedness condition. Your automaton should have the property that 
for any other user automaton V{ for i, fairtraces(Vi) C_ fairtraces(Ui). 

10.29. Give a careful proof for Lemma 10.36. 

10.30. Research Question" How are the results in Section 10.8 affected if, instead 
of the mutual exclusion problem, we consider" 

(a) The k-exclusion problem, 2 < k _< n, as defined in Exercise 10.13. 

(b) A weaker version of the k-exclusion problem, which uses the modified 
mutual exclusion condition as above, but retains the original progress 
condition. 

10.31. Programmers at the Flaky Computer Corporation have designed the fol- 
lowing algorithm for n-process mutual exclusion. They claim that their 
algorithm guarantees mutual exclusion and progress, but do not claim any 
high-level-fairness conditions. 

n o 

S h a r e d  v a r i a b l e s :  
x E {1 , . . .  ,n},  initially a rb i t ra ry  
y E {0, 1}, initially 0 

P r o c e s s  i: 

** Remainder  region ** 

L: 
try i 
x : = i  

if y r 0 then goto L 
y : = l  
if x ~= i then goto L 
criti  

** Crit ical  region ** 

exiti  

y := 0 
remi  

Does this protocol satisfy the two claimed conditions? Either prove that it 
does or give explicit counterexample executions to show that it doesn't. 
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10.32. Research Question: Consider a generalization of the progress condition to 
the k-concurrent progress condition, which only requires progress if there 
are never more than k users concurrently outside of R: 

k - c o n c u r r e n t  p r o g r e s s :  In any fair execution in which there are never 
more than k users outside of R at once: 

(a) (k-concurrent progress for the trying region) If at least one user 
is in T and no user is in C, then at some later point some user 
enters C. 

(b) (k-concurrent progress for the exit region) If at least one user is 
in E, then at some later point some user enters R. 

Give the best upper and lower bounds you can on the number of shared 
read/wri te  variables needed to achieve well-formedness, mutual exclusion, 
and k-concurrent progress. 

10.33. Design a good mutual exclusion algorithm for a read/wri te  shared memory 
model that is a little different from the model used in this chapter. In this 
new model, there is one extra process besides the usual "agent" processes 
1 , . . .  ,n: a supervisor process, which is always permitted to take steps. 
The model should use single-writer/multi-reader shared variables. Prove 
your algorithm's correctness and analyze its complexity. 

10.34. Prove all the claimed properties for the QueueME algorithm. You should 
begin by identifying and proving key system invariants and then use these 
to prove the mutual exclusion condition. Progress can then be proved 
using an argument by contradiction, as usual. The FIFO condition can 
use an ad hoc operational argument. In particular, your proofs should 
yield Theorem 10.39. 

10.35. In the Bakery algorithm, it is not possible to reduce the unbounded ticket 
values by counting modulo any integer; however, this trick works for the 
TicketME algorithm. Explain the reasons for this difference. 

10.36. Consider the BufferMainME algorithm. 

(a) Write precondition-effect code for the supervisor and "agent" pro- 
cesses, for the version of the algorithm with a supervisor. Prove that 
the algorithm works correctly. 

(b) Do the same for the final version of the algorithm, without a supervi- 
sor. (Hint: You might try to relate this to the version with a super- 
visor, using a simulation proof.) 
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10.37. Design a new algorithm that solves mutual exclusion using a single read- 
modify-write shared variable, and is FIFO (with respect to the first locally 
controlled step in the trying region). Try to minimize the number of values 
taken on by the shared variable. You may assume a dedicated supervisor 
process. (Hint: n + k is achievable, for a small constant k.) 

10.38. Show that the Executive algorithm does not guarantee bounded bypass. 

10.39. Research Question: Write code for the Executive algorithm and argue its 
correctness. Can its proof be based formally on the correctness of the 
BufferMainME algorithm? Can a simulation proof be used? 

10.40. Give upper bounds on the time from when a process enters T until it enters 
C, in 

(a) The BufferMainME algorithm 

(b) The Executive algorithm 

Your analysis should be based on the underlying I /O automata rather than 
the code. You will probably find it convenient to write precondition-effect 
code for the algorithms. 

10.41. Why doesn't the idea of the Executive algorithm generalize to allow the 
n values? variable to have only 

10.42. Research Question: Close the gap between the upper and lower bound 
results in Theorems 10.43 and 10.44. (Hint: A partial result appears in 
[62].) 

10.43. Carry out all the details of the proof of Lemma 10.46. 

10.44. Research Question: Redo all the proofs of liveness conditions (progress and 
lockout-freedom) in this chapter using a formal temporal logic. 
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Chapter 11 

R e s o u r c e  Al loca t ion  

In Chapter  10, we considered the mutual exclusion problem, an abstract  resource- 
allocation problem involving access by concurrent users to a single unshareable 
resource. In this chapter, we generalize the problem to include many resources 

instead of just one. This generalization is useful for modelling application pro- 
grams that require several resources for their execution, for example, a printer 

plus a database plus a network port. 
There are more general types of resource-allocation problems than those we 

consider here. For instance: 

1. We do not consider (except in some general definitions and some exercises) 
the possibility that a user might be willing to accept alternative combina- 
tions of resources. For example, a user might request "some printer" rather 

than a specific printer. 

2. We do not consider the possibility that resources might be shared. For ex- 
ample, individual data objects in a database can be thought of as resources 
to be allocated to database transactions. In this case, some sharing is typ- 
ically permitted; for example, two transactions that need only to read an 
object can be allowed concurrent access to the object. 

We begin by defining our generalized resource-allocation problem, including 
the Dining Philosophers problem as an interesting special case. We then give 
several typical solutions. Our last solution is a randomized protocol - -our  first 

example of a randomized protocol for the asynchronous setting. 
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1 1 . 1  T h e  P r o b l e m  

In this section, we begin by giving some ways of specifying conflict relationships 
among users. Then we describe how to use such specifications to define resource- 
allocation problems. Finally, we define the Dining Philosophers problem. 

11 .1 .1  E x p l i c i t  R e s o u r c e  S p e c i f i c a t i o n s  a n d  E x c l u s i o n  
S p e c i f i c a t i o n s  

There are two different ways of looking at the mutual exclusion problem: as 
the problem of allocating an explicitly represented resource or as the problem of 
ensuring that only one user at a time is in its critical region. We can also look 
at generalized resource-allocation problems in these two ways. Thus, we define 
both explicit resource specifications and exclusion specifications as alternative 
ways of describing conflict relationships among users. 

An explicit resource specification Tt for n users consists of 

1. A universal finite set R of objects known as resources 

2. For everyi ,  l _ < i < n ,  a s e t R i C _ R  

The intention is that the resources in Ri should be those that user Ui needs to 
perform its work. We say that two users Ui and Uj conflict with respect to a 
given explicit resource specification if they require some common resource, that 
is, if R~ N Rj r O. 

E x a m p l e  11.1.1 E x p l i c i t  r e s o u r c e  spec i f i c a t i on  

Consider an explicit resource specification for four users, U1, . . .  , U4. 
The set R of resources is {r(1), r(2), r(3), r(4)}. The resource re- 
quirements for the four users are 

U1 : {r(1),r(2)} 
U2 : {r(1),r(3)} 
V3 : 
U4 : 

Thus, U1 needs exclusive possession of resources r(1) and r(2) to 
perform its work, and so on. Users U1 and U2 conflict, as do U1 and 

U3, U2 and U4, and U3 and U4. 

all. 
On the other hand, an exclusion specification does not mention resources at 

Rather, the specification is given in terms of a collection $ of "bad sets" 
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of user indices. A "bad set" is a set of indices of users that  are not allowed 
to perform their work simultaneously. There is one restriction on exclusion 
specifications: the collection of bad sets is required to be closed under superset. 
That  is, if a particular bad set E of users belongs to an exclusion specification 
g, then any superset of E also belongs to $. 

Example 11.1.2 Exclusion specification 

The mutual  exclusion condition can be described by the exclusion 
specification g' = {E C_ {1 , . . .  , n } :  [E[ > 1}. 

Example 11.1.3 Another exclusion specification 

The k-exclusion condition (in which the number of users in the criti- 
cal region at any time is constrained to be at most k) can be defined 
by the exclusion specification g = {E C_ { 1 , . . . , n } :  [E[ > k}. The 
k-exclusion condition is introduced in Exercise 10.13. 

Example 11.1.4 Still another exclusion specification 

For n = 4, consider the exclusion specification g consisting of the 
two-element sets {1, 2}, {1, 3}, {2, 4}, and {3, 4}, plus all the sets that  
contain these two-element sets. In this exclusion specification, note 
that  user U1 does not exclude user U4, and U2 does not exclude U3. 
This means that  U1 and U4 can perform their work simultaneously, 
as can U2 and U3. 

Note that  any explicit resource specification gives rise to an exclusion speci- 
fication that  is equivalent in that  it permits the same combinations of users to 
execute simultaneously. This exclusion specification consists of exactly those sets 
of users that  include at least two users with overlapping resource requirements. 

Example 11.1.5 Corresponding specifications 

The exclusion specification that  corresponds to the explicit resource 
specification in Example 11.1.1 consists of the two-element sets {1, 2}, 
{1,3}, {2, 4}, and {3, 4}, plus all the sets that  contain these two- 
element sets. 

However, it is not the case that  every exclusion specification has a corre- 
sponding explicit resource specification. We leave this for an exercise. 

11.1.2 R e s o u r c e - A l l o c a t i o n  P r o b l e m  

We now describe how to incorporate explicit resource specifications and exclusion 
specifications into resource-allocation problems to be solved by shared memory 



338 11. RESOURCE ALLOCATION 

systems. To be specific, consider a fixed exclusion specification g (which could 
be derived from an explicit resource specification). 

The architecture is exactly the same as we used for the mutual exclusion 
problem in Chapter  10- -a  combination of user automata  and a shared memory 
system automaton (see Figure 10.4). Again, users cycle through their remainder 
(R), trying (T), critical (C), and exit (E) regions, as depicted in Figure 10.2. 
A sequence of interactions between Ui and the shared memory system is well- 
formed for user i if it respects this cyclic order. 

The well-formedness condition on the composed system is as before. 

W e l l - f o r m e d n e s s :  In any execution, and for any i, the subsequence describing 
the interaction between Ui and A is well-formed for i. 

The mutual exclusion condition is now replaced by the more general exclusion 
condition. 

E x c l u s i o n :  There is no reachable system state in which the set of users in their 
critical regions is a set in g. 

The progress condition is as before. 

P r o g r e s s :  At any point in a fair execution, 

1. (Progress for the trying region) If at least one user is in T and no 
user is in C, then at some later point some user enters C. 

2. (Progress for the exit region) If at least one user is in E, then at some 
later point some user enters R. 

We say that a shared memory system A solves the general resource-allocation 
problem for a given collection of users provided that, in combination with those 
users, it satisfies the well-formedness, exclusion, and progress conditions. We 
say that A solves the general resource-allocation problem provided that it solves 
it for every collection of users. 

The progress condition for the trying region is weaker than one might like 
in the present setting. For general resource-allocation problems, we would like 
also to say that users that do not conflict with each other should not prevent 
each other from entering the critical region, even if they hold onto the resources 
forever. We do not know a good way of stating such a condition, for arbi t rary 

exclusion specifications. However, for explicit resource specifications, we can at 
least state the following condition. 

I n d e p e n d e n t  p r o g r e s s :  At any point in a fair execution, 
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1. (Independent progress for the trying region) If Ui is in T and all 
conflicting users are in R, then at some later point either Ui enters C 
or some conflicting user enters T. 

2. (Independent progress for the exit region) If Ui is in E and all con- 
flicting users are in R, then at some later point either Ui enters R or 
some conflicting user enters T. 

For high-level-fairness conditions, the same lockout-freedom and time bound 
conditions that we defined for the mutual exclusion problem also make sense for 
the general resource-allocation problem. We will not discuss the bounded bypass 
condition here. Some simple relationships among these properties are as follows. 
(Compare with Theorem 10.9 and Execise 10.6.) 

L e m m a  11.1 

1. If a general resource-allocation algorithm has any time bound b, then it is 
lockout-free. 

2. If an algorithm in the model of this chapter guarantees well-formedness 
and lockout-freedom, then it also guarantees progress. 

P r o o f .  The proof is left as an exercise. V7 

T r a c e  p r o p e r t i e s .  As we did for similar properties in Chapter 10, we can ex- 
press the well-formedness, exclusion, progress, independent progress, and lockout- 
freedom conditions equivalently in terms of trace properties. Each of these trace 
properties P has a signature consisting of try, crit, exit, and rein outputs (and 
no inputs). The external actions of the combined system are also exactly these 
actions, and the requirement in each case is that the fair traces of the combined 
system are all in traces (P). 

R e s t r i c t i n g  p r o c e s s  ac t iv i ty .  As in Chapter 10, we assume in this chapter 
that a process within the shared memory system can have a locally controlled 
action enabled only when its user is in the trying or exit region. Thus, the 
processes can only be actively engaged in executing the protocol while there are 
active requests. 

11.1.3 Dining Philosophers Problem 

The Dining Philosophers problem, one of the best-known problems in distributed 
computing theory, is a simple special case of our general resource-allocation 
problem. It is usually formulated in terms of an explicit resource specification. 
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Traditionally, the problem is described in terms of the following informal 
scenario. There are n philosophers (users) seated around a table, usually thinking 
(i.e., in R). Between each pair of philosophers is a single fork (resource). From 
time to time, any philosopher might become hungry (i.e., enter T) and attempt 
to eat (i.e., to enter C). In order to eat, the philosopher needs exclusive use of 
the two adjacent forks. After eating, the philosopher relinquishes the two forks 
(i.e., performs an exit protocol E) and resumes thinking (R). 

For each philosopher Pi, we label the forks to the right (counterclockwise) and 
left (clockwise) by f ( i )  and f ( i  + 1), respectively. (As usual, addition is modulo 
n, identifying n with 0.) See Figure 11.1 for the arrangement of philosophers and 
forks for n = 5. 

/ 

F i g u r e  11.1: Dining Philosophers problem ( n -  5). 

In our formal model, there is one user and one agent process for each philoso- 
pher. As usual, the user decides when to request and return the resources, and 
the agent process performs the algorithm. 

The exclusion specification for n dining philosophers consists of the two- 
element sets {{i,i + 1} �9 1 < i < n} together with all sets containing them. 
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11.1 .4  R e s t r i c t e d  Form of So lut ions  

All the solutions we consider in this chapter are of a particular form: there 
is exactly one read-modify-write shared variable associated with each resource, 
accessible only by the processes whose users require the corresponding resource. 

The architecture for solutions to the Dining Philosophers problem in this 
restricted form is depicted in Figure 11.2. Notice that the diagram is very similar 
to the one in Figure 11.1; the new diagram includes the users Ui and relabels 
the processes by their indices. The shared variables correspond exactly to the 
forks f ( 1 ) , . . . ,  f(5). Note that each process i accesses fork variables f ( i )  and 
f ( i  + 1). 

1 4il ili:)l 

F i g u r e  11.2" Dining Philosophers problem, with user automata. 

11.2 Nonexistence of Symmetric Dining 
Philosophers Algorithms 

An interesting class of candidate Dining Philosophers algorithms is the class 
of symmetric algorithms. An algorithm in the given framework is said to be 
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symmetric if all processes are identical and may only refer to their accessible 

fork variables by the local names f(left) and f(right), and if all the shared 
variables have the same initial values. As for the leader-election problem in 
Chapter  3, it is not hard to see that the Dining Philosophers problem cannot be 
solved in the symmetric case. The argument is essentially the same as the one 
for Theorem 3.1: 

T h e o r e m  11.2 There is no symmetric solution to the Dining Philosophers prob- 
tern. 

P r o o f .  Assume for the purpose of contradiction that there is a symmetric 
algorithm for n processes, say A. Consider an execution c~ of A that begins with 
all processes in the same process state and all shared variables with the same 
initial value. Execution c~ then proceeds "round robin," where processes take 
corresponding steps in order, 1 , . . . , n ,  1 , . . . ,  starting with a try step for each 
process. Moreover, all nondeterministic choices are resolved in the same way. 

For example, when a tryl action occurs, a try action will also occur for each 
other process, and the local state changes associated with this action will be the 
same as those for process 1. For another example, if process 1 accesses its left 
variable, then all the other processes also access their left variables, and the state 
changes and variable value changes are the same as those for process 1. 

Then it is straightforward to show, by induction on the number r of round- 
robin "rounds," that all processes are again in the same state and all variables 
have the same value, after r rounds. But the progress property says that some 
process eventually enters C. This implies that all other processes also enter C 
at the same round. But this is a contradiction to the exclusion property. D 

For example, consider the following simple symmetric algorithm. 

WrongDP a l g o r i t h m  ( i n f o r m a l ) :  

Each process, upon entering the trying region, waits first for its right fork 
and then for its left fork. After getting both forks, it goes to C. When a 
process exits C, it puts down both forks before returning to R. 

The formal code follows; right and left are local names used by process i to 
denote the indices i and i + 1 (for its two forks), respectively. 

WrongDP a l g o r i t h m  ( formal )"  

S h a r e d  v a r i a b l e s :  
for every i, 1 _< i < n: 

f ( i ) ,  a Boolean, initially false, accessible by processes i and i -  1 
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A c t i o n s  o f  i: 
Input: Internal: 

tryi test-righti 
exit~ test-lefti 

Output: res et- righti 
criti reset-lefti 
r e m i  

S t a t e s  o f  i: 
pc E {rein, test-right, test-left, leave-try, crit, reset-right, reset-left, leave-exit}, initially rein 

T r a n s i t i o n s  o f  i: 

tryi exiti 
Effect: Effect: 

pc :-- test-right pc := reset-right 

test- righti reset- righti 
Precondition: Precondition: 

pc = test-right pc = reset-right 
Effect: Effect: 

if f (right) = false then f (right) := false 
f ( r ight )  := true pc := reset-left 
pc := test-left 

reset-left~ 
test-lefti Precondition: 

Precondition: pc = reset-left 
pc = test-left Effect: 

Effect: f (left) := false 
if f (left) = false then pc := leave-exit 

f(14t) : =  t ~  

pc := leave-try remi 
Precondition: 

criti pc = leave-exit 
Precondition: Effect: 

pc = leave-try pc := rein 
Effect: 

pc := crit 

Since the W r o n g D P  a lgor i thm is symmetr ic ,  Theo rem 11.2 implies tha t  it 

does not  solve the Dining Phi losophers  problem.  But  it is in terest ing to see what  

goes wrong. It should be clear that  W r o n g D P  does guaran tee  well-formedness 

and does satisfy the exclusion condition; this lat ter  is because the code ensures  

tha t  a process tha t  reaches C has explicit ly "obta ined"  bo th  its adjacent  forks. 
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The progress property, however, fails. Consider an execution in which all 
of the processes enter their trying regions, one after the other. Next, all of the 
processes grab their right forks. At this point, each process is ready to try to 
obtain its left fork. But since all forks have already been picked up, no process 
can do so. The system is now deadlocked--there is no way that any further 
progress can be made. 

Theorem 11.2 implies that it is necessary to break the symmetry of a ring 
network in order to solve the Dining Philosophers problem. There are several 
ways of doing this. The processes could use different programs, or the same 
program but different initial states or unique identifiers. Or, the variables could 
be initialized differently. Or, we could use randomization. In the rest of this 
chapter, we will illustrate some of these approaches. 

11.3 Right-Left Dining Philosophers Algorithm 

In this section, we present a (correct) Dining Philosophers algorithm that we 
call the RightLeftDP algorithm. In addition to satisfying the basic required 
properties, this algorithm also guarantees lockout-freedom. It also has a good 
worst-case time bound: a constant, independent of the size of the ring. The way 
the RightLeftDP algorithm breaks symmetry is by having processes classified 
into two categories, which we call "right" and "left." The two types of processes 
execute slightly different programs, with their category indicating which adjacent 
fork to seek first. 

11.3.1 Waiting Chains 

The constant-time bound property is especially notable. It is certainly desirable, 
in a distributed system, to have time performance that is independent of the size 
of the system. But how can such a small time bound be achieved? 

The RightLeftDP algorithm is one of a general class of algorithms in which 
processes proceed sequentially, waiting first for one fork and then for the other. 
In such algorithms, we must be careful about the order in which the forks are 
sought. For example, if all processes seek their right forks first, then there is the 
possibility of deadlock as in the WrongDP algorithm. There are other orders that 
do not admit the possibility of deadlock but still allow for executions with very 
poor time performance. In particular, some orders can lead to the establishment 
of long waiting chains of processes, each waiting for a resource held by the 
process ahead of it in the chain. 



11.3. R I G H T - L E F T  D I N I N G  P H I L O S O P H E R S  A L G O R I T H M  345 

Example 11.3.1 Waiting chain 

Consider a five-node ring. Suppose that an algorithm in this ring 
has an execution in which the following events occur, in the indicated 
order" 

Process 5 obtains both forks. 
Process 4 obtains its right fork, then waits for its left fork. 
Process 3 obtains its right fork, then waits for its left fork. 
Process 2 obtains its right fork, then waits for its left fork. 

This yields a chain in which process 2 is waiting for a fork held by 3, 
which is waiting for a fork held by 4, which is in turn waiting for a 
fork held by 5. This is a waiting chain of length 3. See Figure 11.3. 

i f ( 5 ) ~  " ~  f(1) 
4 

! 

Q 

II(:i I 

~176 

F i g u r e  11.3: A waiting chain. Solid arrows indicate possession of the fork, while 
dotted arrows indicate waiting. 

The same example, for arbitrary n >_ 3, yields a waiting chain of 
length n -  2. 

Notice that the processes in a waiting chain must  enter the critical region 
sequentially. Thus, for any algorithm of this general type, the worst-case time 
for a trying process to enter the critical region is at least proportional to the 
maximum length of a waiting chain that can be produced. In order to obtain 
a small time bound, then, we must guarantee a small bound on the maximum 
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length of a waiting chain. In fact, the maximum length of the waiting chain 
produced by RightLeftDP is 3. 

11.3.2 The Basic Algorithm 

In the RightLeftDP algorithm, the shared variable associated with each fork 
contains a FIFO queue of process indices, of length at most 2. This queue is 
designed to hold the indices of processes wanting the fork, in the order in which 
they begin trying to get it. Since there are only two processes that can request 
each fork, a length 2 queue suffices. 

For simplicity, we assume here that the number of processes in the ring is 
even. There is a simple modification, left for an exercise, that works in the case 
of an odd number of processes. 

RightLeftDP algorithm (n even): 

There are two different programs: one for the processes with odd indices 
and one for those with even indices. The basic strategy is very simple: odd- 
numbered processes seek their right fork first and even-numbered processes 
seek their left fork first. A process seeks a fork by putting its index at the 
end of that fork's queue. The process obtains the fork when its index 
reaches the front of that fork's queue. When a process exits C, it returns 
both forks by removing its index from their queues before entering R. 

We give the code for a process with an odd index i in precondition-effect 
style. The code for even i is symmetric. 

RightLeftDP algorithm (even n,  o d d  i)" 

S h a r e d  var iables :  
for every i, 1 < i _< n: 

f ( i ) ,  a queue of process indices of length at most 2, initially empty, 
accessible by processes i and i -  1 

A c t i o n s  o f  i: 
Input:  Internal: 

tryi test-right 
exiti test-left 

Output :  reset-right 
criti reset-left 
remi 

S t a t e s  o f  i: 
pc C {rein, test-right, test-left, leave-try, crit, reset-right, reset-left, leave-exit}, initially rein 
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T r a n s i t i o n s  o f  i: 

tryi exit~ 
Effect: Effect: 

pc := test-right pc := reset-right 

test-right~ 
Precondition: 

pc - test-right 
Effect: 

if i is not on f( i) .queue then 
add i to f ( i) .queue 

if i is first on f( i) .queue then 
pc := test-left 

test-lefti 
Precondition: 

pc = test-left 
Effect: 

if i is not on f( i  + 1).queue then 
add i to f ( i  + 1).queue 

if i is first on f( i  + 1).queue then 
pc := leave-try 

crit~ 
Precondition: 

pc = leave-try 
Effect: 

pc := crit 

reset-right~ 
Precondition: 

pc = reset-right 
Effect: 

remove i from f ( i) .queue 
pc := reset-left 

reset-lefti 
Precondition: 

pc = reset-left 
Effect: 

r emove / f rom f ( i  + 1).queue 
pc := leave-exit 

r e m i  

Precondition: 
pc = leave-exit 

Effect: 
p c  :--- r e m  

N ow  we a r g u e  co r rec tness .  T h e  we l l - f o r me d n e s s  c o n d i t i o n  is obvious .  T h e  

exc lus ion  cond i t i on  shou ld  be  easy  to see, b e c a u s e  the  code  e n s u r e s  t ha t  a p r o c e s s  

t ha t  r eaches  C is first on the  q u e u e s  of b o t h  of its forks. We  will p rove  an  expl ic i t  

u p p e r  b o u n d  on  the  t ime  for any  t r y i n g  p roces s  to  r each  the  cr i t ica l  region.  A 

smal l  u p p e r  b o u n d  ( i n d e p e n d e n t  of n)  for the  exi t  r eg ion  is easy  to  see. In v iew 

of L e m m a  11.1, t hese  b o u n d s  are  sufficient  to imp ly  l o c k o u t - f r e e d o m ,  wh ich  in 

t u r n  is sufficient  to  imp ly  p rogress .  

For  the  t ime  b o u n d ,  we a s s u m e  as before  t ha t  t~ is an  u p p e r  b o u n d  on  the  

s tep  t ime  for each  p rocess ,  and  c is an  u p p e r  b o u n d  on  the  t ime  any  use r  s p e n d s  

in the  cr i t ica l  region.  

L e m m a  1 1 . 3  I n  R i g h t L e f t D P ,  the t i m e  f r o m  w h e n  a p a r t i c u l a r  process  i e n t e r s  

T un t i l  it en t e r s  C is at m o s t  3c + 18t~. 
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P r o o f .  The key idea is that  a fork between two processes is either the first fork 
for both  or the second fork for both. This implies (for the case we are assuming, 
where n is even) that  the max imum length of a waiting chain is at most  2. 

Define T to be the max imum time from when any process i enters the t rying 
region until that  process enters the critical region. Our  goal is to bound T. As an 
auxiliary quantity,  we define S to be the maximum time from when any process 
i obtains its first fork until that  process enters the critical region. Formally, we 
say that  process i obtains its first fork at the event where i becomes first on the 
queue for that  fork. (This could be either a step of i or a step of the neighbor 
with which i shares the fork.) 

We star t  by bounding T in terms of S. Consider a process i entering the 
t rying region. With in  time g, it performs a test event rr to t ry  to get its first 
fork. If it obtains the fork immediately,  then within addit ional  time S, process i 
enters the critical region. This  is a total  time of at most  g + S. 

Otherwise,  the neighbor with which i shares the fork, say j ,  has the fork when 
rr occurs. As mentioned above, this fork must  also be j ' s  first fork. Hence the 
addit ional  time until j releases this fork is at most  S + c + t7 (enough time for 
j to reach the critical region, leave the critical region, and release its first fork). 
At the instant  j releases the fork, process i obtains it; this is because of the way 

"obtaining a fork" is defined, and because of the fact that  process i puts its index 
on the queue in event rr. Then,  within addit ional  time S, i reaches the critical 
region. It follows that  in this case process i enters the critical region after a total  
of at most  g + (S + c + g) + S = c + 2t~ + 2S time. 

We conclude that  

T _ < m a x { g + S ,  c + 2 t T + 2 S } - c + 2 g + 2 S .  (11.1) 

Next we bound S. Consider a process i that  has just  obtained its first fork 
(i.e., has become first on the queue for that  fork). With in  time g, it discovers 
this fact, and within an addit ional  time t~, it performs a test action on its second 
fork. If it obtains this second fork immediately,  then, within an addit ional  time 
g, it goes to the critical region, for a total  time of at most  3g. 

Otherwise,  the neighbor with which i shares the fork has it, and it is also the 
neighbor 's  second fork. The time until the neighbor releases the second fork is 
at most  2g + c + 2g (enough time for the neighbor to discover that  it has the fork, 
reach the critical region, leave the critical region, and release the two forks). 

From the point after the neighbor releases the fork, it is at most  time g until 
process i discovers it and an addit ional  time t~ until process i enters the critical 
region. It follows that  in this case process i enters the critical region after at 
most  2g + (2t7 + c + 2g) + 2t7 = c + 8t7 time. 
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We conclude that 

S _< max{3t~, c + 8t~} - c + 8g. (11.2) 

Combining Equations 11.1 and 11.2 yields 

T < 3c + 18f. 
D 

Since it is easy to see that the algorithm also satisfies the independent progress 
condition, we obtain 

T h e o r e m  11.4 The RightLeftDP algorithm solves the Dining Philosophers prob- 
lem and guarantees lockout-freedom, independent progress, a time bound of 3c + 
18t~ for the trying region, and a time bound of 3g for the exit region. 

So, the RightLeftDP algorithm breaks symmetry  by distinguishing the odd- 
and even-numbered processes. Depending on the environment in which this 
algorithm is to be run, it might or might not be reasonable to assume that 
processes have this knowledge. For instance, if it is to be run in a distr ibuted 
network (as we consider in Chapter  17), then an additional protocol may be 
needed for determining this pari ty information and communicating it to all the 
processes. 

11 .3 .3  A G e n e r a l i z a t i o n  

We describe a straightforward way to generalize the strategy in the RightLeftDP 
algorithm to an arbi t rary resource-allocation problem, given by an arbi t rary 
explicit resource specification. The generalization still has the virtue of having a 
time bound that is independent of the number of processes. However, the bound 
is not very smal l - - there  is still room for performance improvement. 

We continue to assume that each resource has an associated shared variable, 
shared by all processes that require that resource. As in RightLeftDP, we assume 
that the variable contains a FIFO queue to record who is waiting for the resource. 
As in RightLeftDP, each process waits for its required resources one at a time. 
To avoid deadlock, however, we assume that the resources are totally ordered 
and allow each process to obtain its needed resources in order, according to 
this total order ing--smalles t  to largest. This strategy is known as hierarchical 
resource allocation. 

It is not hard to see that hierarchical resource allocation guarantees progress. 
Roughly speaking, if process i waits for a resource held by process j ,  then j could 
only be delayed by waiting for a resource that is strictly larger (in the resource 
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ordering) than the one for which i is waiting; since there are only finitely many 
processes, the one that holds the largest resource is not blocked. The FIFO 
nature of the queues also prevents lockout. 

Although hierarchical resource allocation guarantees progress and lockout- 
freedom, the time performance of this strategy is not very good, in general. The 
only upper limit on the length of waiting chains is the total number n of processes, 
leading to time performance that is at least proportional to n. For instance, the 
chain described in Example 11.3.1 can be produced by a hierarchical resource- 
allocation algorithm in which the total order of resources is just the numerical 
order, f(1) ,  f(2) ,  f(3),  f(4) ,  f(5).  

What  we would like is a "good" total ordering of resources, one that produces 
as small a time bound as possible. A reasonable strategy is to try to minimize 
the length of the waiting chains that are produced. 

Suppose we are given a particular explicit resource specification T4, with 
universal resource set R and individual process resource requirements Ri. To 
construct a good total ordering, we first construct the resource graph for this 
specification. The nodes of this graph represent the resources, and there is an 
edge from one node to another exactly if there is some process that uses both 
associated resources. 

Example 11.3.2 Resource graph 

For the Dining Philosophers problem with six nodes, the resource 
graph is as in Figure 11.4. 

II ,,I 

F i g u r e  11.4: Resource graph for Dining Philosophers (n - 6). 

Next, we color the nodes of the graph in such a way that adjacent nodes 
have different colors. We try to minimize the number of colors used. (We do 
not consider the problem of how to obtain a small number of colors. Actually 
obtaining the minimum number is an NP-complete problem, but for our purposes 
here, a small number of colors will do. For example, a greedy algorithm can be 
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used to color the graph with no more than d § 1 colors, where d is an upper 

bound on the degree of any node in the graph.) 

E x a m p l e  11.3.3 C o l o r i n g  of  r e s o u r c e  g r a p h  

The resource graph of Figure 11.4 can be colored with only two colors, 

for example, by coloring the odd-numbered resources with color 1 and 
the even-numbered resources with color 2. 

Now we totally order the colors in an arbitrary way. This induces a partial 
order on the resources, where r(i) < r(j) if and only if the color of r(i) is ordered 

ahead of the color of r(j). Although this is only a partial order, note that it totally 

orders the resources needed by any single process. Since we seek a total ordering 

of all the resources, we simply complete the partial order to a total order in an 
arbitrary way (that is, we use a topological sort of the partial order). 

E x a m p l e  11.3.4 P a r t i a l  o r d e r  of  r e s o u r c e s  

The coloring in Example 11.3.3 induces the partial order on resources 
depicted in Figure 11.5. "Smaller" resources appear at the top of the 

diagram. 

li'  i 
Is<  l 

F i g u r e  11.5" Partial ordering on resources. 

Now we can describe the algorithm. 

Coloring a l g o r i t h m :  

Each process seeks its resources in increasing order according to the total 
ordering constructed above, based on coloring. A process seeks a resource 
by putting its index at the end of that resource's queue. The process 
obtains the resource when its index reaches the front of that resource's 
queue. When a process exits C, it returns all of its resources by removing 
its index from their queues. 

Since any two resources needed by the same process are ordered with respect 
to each other (i.e., are colored differently), an equivalent description of Color- 
ing is that every process seeks its resources in increasing order according to the 
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partial ordering. Notice that, in the special case of the Dining Philosophers prob- 
lem for an even-sized ring, the Coloring algorithm reduces to the RightLeftDP 
algorithm. 

In the Coloring algorithm, the maximum length of a waiting chain is at most 
equal to the number of distinct colors. This is because if a process i waits for 
a resource held by a process j ,  then j may be waiting only for a resource of a 
"larger" color. 

The interesting property to verify for the Coloring algorithm is a time bound 
that is independent of the total numbers of processes and resources. As usual, 
we let g be an upper bound on process step time and c an upper bound on critical 
region time. Also let k be the total number of colors used to color the resources 
and let rn be the maximum number of processes that require any single resource. 
We show that the worst-case time bound is O(mkc + krnkg). We can interpret 
this as saying that the time depends only on "local" parameters,  since the number 
of colors and the number of users per resource need not depend on the size of 
the system. If rn and k are small relative to n (the total number of processes 
in the system), then this bound represents an improvement over the hierarchical 
resource-allocation strategy using an arbi t rary total order; this is because the 
general strategy admits waiting chains of length nearly n. But note that this 
bound is not as small as one might l ike-- instead of being proportional to the 
maximum length of a waiting chain, that is, proportional to k, it is exponential 
in k. 

L e m m a  11.5 Let k be the number of colors and let rn be an upper bound on the 
number of users for a single resource, in an instance of the Coloring algorithm. 
Then the time from when any particular process i enters T until it enters C is 
O(mkc + krnk f). 

P r o o f  Ske t ch .  Suppose the colors are exactly the integers 1 , . . . ,  k. Define 
T( i , j ) ,  where 1 < i _< k and 1 < j _< m, to be the worst-case time from when a 
process reaches any position < j on the queue for a resource of any color _> i, 
until it reaches its critical region. We wish to bound T, the worse-case time from 
entry to the trying region until entry to the critical region. From when a process 
enters the trying region, it is at most time t~ until its index is placed on some 
resource queue. Thus, 

T <_ g + T ( 1 , m ) .  

We bound the T( i , j )  by setting up recurrence equations as we did for the 
RightLe~DP algorithm. The base case is when a process is first on the queue 
for a resource with the highest color: 

T(k, 1)<_ 2t~ 
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This allows time for the process to discover it is first on the queue and then to 
go to the critical region. 

Another case is when a process is first on the queue for a resource with some 
color other than the highest" 

T(i, 1) _< max (2t~, 2t~ + T(i + 1, m)) - 2~ + T(i + 1, m) for every i, 1 _< i < k 

This gives the process time to discover it is first on the queue and then either 
proceed to the critical region or get on another queue, necessarily of a higher- 
colored resource. 

The last case is when a process is in some position other than the first, on 
some queue. 

T ( i , j ) < T ( i , j - 1 ) + c + k s  1) for e v e r y j ,  l < j < m  

This allows time for the predecessor of the process on the queue to reach its 
critical region, then finish the critical region, then release all of its < k resources 
(which will move the original process to the first position on the given queue), 
and then time for the process, now in position 1, to reach the critical region. 

Solving these inequalities yields the claimed bound. For all i, 1 < i < k, we 
obtain that 

T(i, m) <_ ( m -  1)(c + k~) + roT(i, 1). 

Thus, 

and 

So 

Thus, 

T(i, m) <_ m(c + (k + 2)t~) + mT(i + 1, m) for every i, 1 _< i < k, 

f (k ,  m) < + (k + 2)e). 

k 

T(1, m) _< (c + (k + 2 ) g ) E  mi 
i=1  

- o + (k + 2 ) 0 )  

D 

T h e o r e m  11.6 The Coloring algorithm solves the resource-allocation problem 
and guarantees lockout-freedom, independent progress, a time bound of O(mkc + 
krnkg) for the trying region, and a time bound of O(k~) for the exit region. 
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It turns out that there are some executions of the Coloring algorithm with 
time performance that is close to this exponential bound. We leave it as an 
exercise for you to find such executions. Of course, it would be nice to cut down 
the time bound from exponential to linear in the number of colors, but that would 
require a different algorithm. 

11.4 Randomized Dining Philosophers Algorithm* 

The final algorithm we present is a randomized Dining Philosophers algorithm 
that guarantees exclusion (with certainty) and ensures progress with probability 
1. We call this algorithm LehmannRabin after its inventors. In this algorithm, 
all processes are identical; the symmetry is broken by the use of randomization. 

We have several points we hope to make by presenting this algorithm. First, 
it demonstrates that randomized algorithms can be used in the asynchronous set- 
ting as well as the synchronous setting, and that they sometimes can accomplish 
things that cannot be accomplished by nonrandomized algorithms. For example, 
the LehmannRabin algorithm can solve the Dining Philosophers problem even 
though the processes are identical, whereas Theorem 11.2 implies that this can- 
not be done by any nonrandomized algorithm. Actually, we should be careful 
when we say that this algorithm "solves the Dining Philosophers problem": the 
correctness conditions satisfied are not exactly those specified earlier, in that the 
progress condition only holds with probability 1, and not with absolute certainty. 

Second, we show how meaningful probabilistic claims can be made for ran- 
domized asynchronous systems. It is not obvious how to do this, because a 
randomized algorithm does not by itself give rise to a probability distribution 
on executions. For instance, the order in which processes take steps in an asyn- 
chronous algorithm is rather arbitrary, not determined randomly. This order 
must be determined somehow in order to define a probability distribution. 

Third, we demonstrate a Markov-style analysis technique for proving prob- 
abilistic time bound properties. Such properties can in turn be used to prove 
probabilistic liveness properties. 

11.4.1 The Algorithm* 

Because the processes are identical, they are assumed to know their forks by 
local names. As before, we assume that each process knows its forks by the local 
names f (right) and f (left). We use the notation 

- { left, if j - right 
J - right, if j - left 
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Also, the s ta tement  f irst " -  random here means that  first is set either to right 
1 An informal description follows. or left, each with probabil i ty ~. 

L e h m a n n R a b i n  algorithm: 

S h a r e d  var iab le s :  
for every  i, 1 _< i _< n: 

f ( i ) ,  a Boolean,  init ial ly false, accessible by processes  i and i -  1 

P r o c e s s  i: 

** Rema inde r  region ** 

L: 

trY i 
do forever 

first : -  random 
wait  until  f ( f i rs t )  = false 
f (first) : -  true 
if f ( f i rs t )  = false then 

f (first) : -  true 
goto L 

else f (first) := false 

crit~ 

** Cri t ical  region ** 

exiti 
put  down bo th  forks 

r e  l n  i 

Thus, a t rying process i executes a loop, in each i teration a t tempt ing  to 
obtain both of its forks. In each iteration, it chooses a first fork randomly and 
waits as long as necessary to obtain it. After obtaining its first fork, it does 
not wait indefinitely for the second fork. Rather,  it just  checks once to see if 
the second fork is available. If it is, then process i obtains it and proceeds to 
C. If not, then process i gives up on this iteration, puts its first fork down, and 
proceeds to t ry  again in the next iteration. 

To resolve ambiguities,  we give the precondition-effect code. 

L e h m a n n R a b i n  algorithm (rewritten)" 

S h a r e d  var iab le s :  
for every  i, 1 _( i _( n: 

f ( i ) ,  a Boolean,  init ial ly false 
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A c t i o n s  o f  i: 
I n p u t :  I n t e r n a l :  

try~ flipi 
exit~ wait~ 

O u t p u t :  second~ 
criti dropi 
remi reset-right~ 

reset-lefti 

S t a t e s  o f  i: 
pc C {rein, flip, wait, second, drop, leave-try, crit, reset-right, reset-left, leave-exit}, i n i t i a l ly  rein 
first E { right, left }, in i t i a l ly  a r b i t r a r y  

T r a n s i t i o n s  o f  i: 

tryi dropi 
Effect :  P r e c o n d i t i o n :  

pc :=  flip pc = drop 
Effect :  

flipi f (first) :=  false 
P r e c o n d i t i o n :  pc :=  flip 

pc :=f l ip  
Effect :  crit~ 

first :-- random P r e c o n d i t i o n :  

pc : -  wait pc = leave-try 
Effect :  

pc : -  crit wait~ 
P r e c o n d i t i o n :  

pc - wait 
Effect :  

if f ( f i rs t )  = false t h e n  

f (first) :=  true 
pc : -  second 

secondi 
P r e c o n d i t i o n :  

pc - second 
Effect :  

if f (first) - false t h e n  

f ( f i rs t )  : =  true 
pc :-- leave-try 

else pc :=  drop 

exiti 
Effect :  

pc :=  reset-right 

reset-righti 
P r e c o n d i t i o n :  

pc = reset-right 
Effect :  

f (right) :-- false 
pc :=  reset-left 
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reset-le~ remi 
Precondition: Precondition: 

pc = reset-left pc = leave-exit 
Effect: Effect: 

f ( l r  := fal~ pc := ~ n  
pc := leave-exit 

Formally, the object described by this code is a probabilistic I//O automaton,  

as defined in Section 8.8. The random choice steps are exactly the flip steps; in- 
stead of a new state, each of these steps has a probability distr ibution containing 

1 Note that system execution two possible next states, each with probability ~. 
proceeds by means of a combination of nonde termin i s t i c  choices and probabilis- 

tic choices. The nondeterministic choices determine which process takes the 
next step and thereby determine what the next step is, whereas the probabilistic 

choices determine the new state for flip steps. 

1 1 . 4 . 2  C o r r e c t n e s s *  

It is easy to see that the L e h m a n n R a b i n  algorithm guarantees well-formedness, 
exclusion, and independent progress; there is no probability involved in any of 
these claims. Formally, they are claims about the nonde termin i s t i c  version of 
the system, as defined in Section 8.8. However the progress condition is not 
guaranteed with certainty. 

E x a m p l e  11.4.1 E x e c u t i o n  of  L e h m a n n R a b i n  t h a t  d o e s  n o t  m a k e  
p r o g r e s s  

Consider an execution a of L e h m a n n R a b i n  in which the processes 
take steps in round-robin order and always make the same random 
choices. Note that c~ is a fair execution (of the nondeterministic 
version of the system). In a, no process ever reaches C. 

The interesting thing to prove about the L e h m a n n R a b i n  algorithm is that 
it guarantees progress with probability 1. Actually, rather than just proving 
progress with probability 1, we will prove a stronger probabilistic t ime bound 

claim, of the form 7 - - ~  C. Informally speaking, this means that from any reach- 
p 

able state in which some process is in T, with probability at least p and within 
time t, some process is in C. The probability 1 progress condition can then be 
proved by repeated application of this claim. 

In order to make claims about the probability of certain events, we need a 
probability distribution on executions. As described so far, the system includes 
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nondeterministic choices--that  is, which process takes the next s tep- -as  well as 
probabilistic choices. The nondeterministic choices must be resolved in order to 
obtain a purely probabilistic system. In fact, we would like to claim that the 
system has the desired property regardless of how the nondeterministic choices 
are resolved. 

It is useful to imagine that the nondeterministic choices are under the control 
of an adversary. We allow the adversary to select arbitrary processes, as long 
as it allows fair turns to each process that is in its trying or exit region. In fact, 
since we are proving probabilistic time bound statements, we allow the adversary 
to choose not only which process takes the next step, but also the time at which 
that step occurs. The time decisions are subject to an upper bound of t~ on 
process step time and an upper bound of c on critical region time, plus the 
requirement that, if the execution is infinite, the time must pass to infinity. To 
obtain the strongest result, we want to allow the adversary to be as powerful as 
possible; thus, we assume that, when making its decisions about who takes the 
next step and when, it has complete knowledge of the past execution, including 
information about process states and past random choices. 

Formally, an adversary A is a function mapping finite executions to (process, 
time) pairs, indicating the next process to take a step and the time at which 
the step is to be taken. For each particular sequence D of random draws, there 
is a unique timed execution exec(A, D) generated by adversary A with random 
choices given by D. The adversary is restricted so that all timed executions 
in exec(A, D) have the fairness and timing properties described in the previous 
paragraph. 

A fixed adversary A determines a probability distribution on the set of timed 
executions of the algorithm. Since each random choice is just "right" or "left," 

1 there is a probability associated with each (measurable each with probability ~, 
set of) sequences of draws. This probability distribution on the sequences D 
induces a probability distribution on the timed executions exec(A, D).  

We need one more notion for the proof. If 5 / a n d  b/~ are sets of states, then 

we write 5 / - ~  b/~ to mean the following. For every adversary A, if the algorithm 
p 

is started in a state in /,/, then in the probability distribution of executions 
determined by A, the probability that a state in L/~ is reached within time t is at 
least p. Such statements can be combined. For example: 

L e m m a  11.7 

1. I f  ld t bl' bl' t' bl" ~ ld" and ~ , then Lt . 
p pl pp~ 

2. I f  bl _L+ Lt ' , then bl U U " - ~  bl ' U bl " . 
p p 
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Now we have enough machinery to prove the progress property. One techni- 
cality: It happens that some of the constructions in our proof only work for the 
case where n, the size of the ring, is at least 3. So we assume this from now on 
in the chapter and leave as an exercise the (simpler) case where n = 2. 

Define 

�9 7" to be the set of reachable states of LehmannRabin in which some process 
is in T 

�9 C to be the set of reachable states in which some process is in C 

We show that T - ~  C. That  is, from any reachable state in which some process 
1 

16 

is in T, with probability at least ~ ,  some process will be in C within time 14f. 
We prove this claim by five auxiliary claims, expressed by Lemmas 11.8-11.12, 
using the general rules expressed in Lemma 11.7. 

Some shorthand is useful for classifying process states. We let F,  W, S, D, 
and L denote the sets of process states where pc = flip, wait, second, drop, and 
leave-try, respectively; these five sets of states partition the trying region T. We 
further subdivide the W, S, and D states according to the value of first: ~ ,  ~ ,  
and ~ denote the subsets of W, S, and D, respectively, in which f i r s t -  right, 
while ~ ,  S ,  and ~ denote the subsets of W, S, and D, respectively, in which 
first = left. We use the notation ,-+ to denote ~ [J -~ U ~ and analogously for 
~, .  Now we define the sets of system states that we will need in the auxiliary 
claims. 

Define 

�9 s to be the set of reachable states in which some process is in L (i.e., at 
leave-try) 

�9 ~7 -  to be the subset of 7- consisting of states in which all processes are 
either in the remainder or trying region 

�9 ~ to be the subset of ~7 -  consisting of states in which some process is in 
F (i.e., at flip) 

�9 G to be the subset of 7~T consisting of states in which there is a process i 
such that one of the following holds: 

i E ~ U < - S  - a n d i - 1 E  ~* URUF 

i E ~ U - ~ a n d i + l E ~ - - ,  U R U F  
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The first three sets above should be self-explanatory. The last set, G, is the set 
of "good" states, in which two processes are in a situation where, with high 
likelihood, one will soon obtain both its forks. The two situations allowed by 
are depicted in Figure 11.6. A rough intuition is that in a good configuration, 
two neighboring processes have a high probability of having a common second 
fork. If they have a common second fork, then whichever accesses it first will get 
it and succeed in reaching C. 

�9 �9 
�9 �9 

�9 �9 e Qo  �9 

, * 

W R R W 
~-- r 
S F S 

F i g u r e  11.6" Good states of the LehmannRabin algorithm. 

Then we will show the following claims" 

�9 T- Ir C 
1 

�9 7 TA4 u L 
1 

�9 f2 Gu  
1 

4 

1 
4 

�9 
1 

Lemma 11.7 then allows these claims to be combined to yield the needed con- 

clusion, 7- - ~  C. 
1 

16 

We begin by proving the three probability 1 claims, since they are the easiest. 
In fact, they are actually true with certainty, not just with probability 1. 

L e m m a  11.8 s ~ C 
1 

P r o o f .  If a process is at leave-trying, then within time t~, that same process 
will take a step and enter C. El 
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Lemma 11.9 T - - ~  T~T u d 
1 

P r o o f .  If any process is initially in C or enters C within time 3t~, then we are 

done, so assume that  this is not the case. Then all processes are in R U T U E for 

time at least 3g, and no process enters E during this time (because no process 

is in C). But  any processes that  are initially in E re turn  to R within time 3t~. 

This forces all the processes into R U T within time 3g, as needed. [:] 

Lemma 11.10 ~ T - ~  9 c U/2 
1 

P r o o f .  If any process is initially in F U L or enters L within time 3~, then we 

are done, so assume that this is not the case. Then no process enters C within 

time 3t~, so all the system states occurring within time 3g are in 7~T. Then, if 

any process enters F within 3t~ time units, it places the system in $- and we are 

done, so assume also that  this is not the case. This implies, in part icular,  that  

no process enters the t rying region within 3t~ time units. 

By elimination, all processes are initially in R U W U S U D. But  if any is 

initially in S U D, or reaches S U D within time t~, then within an addit ional  t ime 

2g, it goes to F U L, which is a contradiction.  So the only possibil i ty is that  all 

processes are initially in R U W and (since 7~7- C_ 7-), some process is in W. 

Moreover, no process reaches S U D within time t~. Note that  this implies that  

no fork is initially held by any process. 

Because some process is in W, we know that  some process must  take a step 

within time t~. Let i be the first process to take a step. If i is initially in R, then 

it enters the t rying region, a contradict ion.  On the other hand, if i is initially in 

W, then, since no fork is held, i immediately  obtains its first fork. But  this puts  

i in S, again a contradiction.  V] 

So far, we have avoided any arguments  about  probabilities. The remaining 

two claims involve such arguments.  The first of these shows why, from an arbi- 
1 either a t ra ry  state where some process is flipping, with probabil i ty  at least ~, 

good state is soon reached or else some process soon reaches leave-try. 

Lemma II.II 9~ ~ ~' U/2 
1 
4 

P r o o f .  If any process is initially in L, then we are done, so assume that  this is 

not the case. Let i be any process that is initially in F .  Then one of the following 

must  hold initially. 

1. i - l  c ~, u R u F .  
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R 
F 

F 

F i g u r e  11.7: Initial state for Case 1 of proof of Lemma 11.11. 

1 i 's next random choice is left See Figure 11.7. Then with probability ~, 
and i -  l ' s  next random choice is right. So assume this. 

Then within time t~, i flips, putting itself in state ~ because i's next random 
choice was left. There are two cases" 

(a) In the meantime, i -  1 does not access the shared fork. Then we claim 
that i -  l ' s  state must still be in the set ,-~ U R U F; this is argued 
by an examination of the possible transitions out of this set of states, 
using the fact that i -  l ' s  next random choice is right. This brings the 
system state into G, which suffices. 

(b) In the meantime, i -  1 does access the shared fork. Then consider the 
first time it does so. At that time, the shared fork must be i -  l ' s  
second fork (In the cases ~ ,  R, and F,  this is because of the fact that 
i -  l ' s  next random choice is right.) Then i -  1 obtains its second fork 
and goes to L, which suffices. 

2. i + 1 C + ~ *  u R u F .  

See Figure 11.8. This is symmetric with the previous case. 

R F 

F 

F i g u r e  11.8: Initial state for Case 2. 

3. i - l C  , + i - - a n d i + l E  �9 -+. 



11.4. R A N D O M I Z E D  D I N I N G  P H I L O S O P H E R S  A L G O R I T H M *  363 

�9 �9 
�9 �9 

* ~ ~  * 

F 

F i g u r e  11.9" Initial state for Case 3. 

See Figure 11.9. 

This is the interesting case, because the situation looks nothing at all like 
what is supposed to happen in a good state. But because we are working 
in a ring, the fact that the situation around i is unfavorable implies that 
elsewhere in the ring, there must be some other process j such that j + 1 E 
+Z-, and j E *-~ U R U F.  (We leave it as a simple exercise to show this.) 
See Figure 11.10. Then things look much better around process j .  

~ - - ~  ~ "  
, 

-7" 

R 

F 

F i g u r e  11.10" Elsewhere in the ring. 

If j § 1 E ~ U ~-,  then the initial state is already in G, and we are done. 

The only other possibility is that j + l  C ~ a n d j  E * - ~ U R U F .  But 
1 ~ in this case, with probabili ty ~, j + 1 s next random choice is left and j s 

next random choice is right; assume this. Then within time 2~, process 
j + 1 takes two steps, which puts it in ~ .  This means that the resulting 
system state is in G, unless in the meantime, j has moved out of the set 

U R U F.  But if it has, then j has obtained its second fork and gone to 
L, which suMces. 

D 

The final lemma shows why a good state is good: from a good state, with 
1 probabili ty at least ~, some process soon reaches L. 



364 11. R E S O U R C E  A L L O C A T I O N  

Lemma 11.12 G - ~  L; 
1 _ 
4 

P r o o f .  Because the initial state is in G, it is in 7~7", and (at least) one of 
the two conditions indicated in the definition of G holds. Assume without loss of 
generality that the first holds, that is, that there is a process i such that i E ~ U  ~- 
and i - 1 E ,--+ U R U F.  The argument for the second condition is symmetric. 

We use three preliminary claims. Their statements do not involve probability 
explicitly; rather, they involve it implicitly by referring to the values of certain 
future random choices. The first one bounds the amount of time a process can 
remain waiting for its first fork, if a neighbor is favorably oriented. 

C l a i m  11.13 I f  i + 1 E R U T with next random choice left, and i E ~ ,  then 
within time 4~ either i E ~-S or i + 1 E L. 

See Figure 11.11. 

F i g u r e  11.11" Situation for Claim 11.13. 

P r o o f .  This is a (somewhat tedious) argument by cases, based on the state of 
process i + 1. 

1. i §  E L .  

Then we are done. 

2. i + l E ~ - .  U R U F .  

Then, initially, i + 1 does not hold the shared fork. Within time t~, i checks 
the shared fork. If in the meantime i + 1 has not accessed it, then i obtains 

A..__. 

it and goes to "S, as needed. 

Suppose, on the other hand, that i + 1 has accessed the shared fork in the 
meantime and consider the first such time. Because of i + l ' s  state, the 
shared fork must be i + l ' s  second fork. (In the cases ~ ,  R, and F,  this 
is because of the fact that i + l 's  next random choice is left.) Since i + 1 
obtains this fork, it succeeds in reaching L, as needed. Note that the time 
for this case is at most ~. 
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. i + 1 c ~ .  

Then within time t~, i § 1 drops its fork, which then puts the two processes 
in a configuration where i + 1C F,  with next random choice left, and i E ~ .  
(Process i must  still be in ~ because it cannot obtain its first fork until 
process i + 1 drops it.) The resulting state then fits the previous case, so, 

within an additional time t~, either i C ~- or i + 1 E L. The time for this 
case is thus at most 2~. 

4. i + 1 c  -~. 

Then within time t~, i + 1 checks its left fork and either goes immediately 
to L, which satisfies the condition, or goes to ~ ,  which reduces to the 
previous case. The time for this case is thus at most 3t~. 

5. i + 1 c ~ .  

Then within time ~, both i and i + 1 check their shared fork. Whichever 
checks it first gets it. If the first one is i, then we have i C ~-,  as needed. 
If not, then we get i + 1 E -~, which reduces to the previous case. The 
time for this case is thus at most 4f. 

D 

The second claim bounds the time from when a process is ready to test  its 
second resource and a neighbor is favorably oriented, until someone reaches L. 

C l a i m  11.14  Suppose that iC  ~ and either i - 1  E ~ U ~  or i - 1  E ~URUF 
with next random choice right. Then within time ~, some process is in L. 

See Figure 11.12. 

S 

W 

S 

R 
F 

F i g u r e  11.12" Situation for Claim 11.14. 
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P r o o f .  With in  time t~, i checks the shared fork; it obtains it and goes to L 
unless i -  1 has obtained it in the meantime. But if i -  1 has obtained it, then i 
has gone to L, since the shared fork must  be i -  l ' s  second fork. E] 

The final claim combines the previous two. It bounds the time from when a 
process i is waiting for its first fork and both neighbors are favorably oriented, 
until someone reaches L. 

C l a i m  11 .15  I f  i + 1 E R U T with next random choice left, i 6 ~ ,  and i -  1 E 
~, U R U F with next random choice right, then within time 5~, some process is 
in L. 

See Figure 11.13. 

~ o o 0 y 
LT . ~  R 

F 

Figure 11.13: Situation for Claim 11.15. 

P r o o f .  Claim 11.13 implies that  within time 4g, either i reaches ~- or i t 1 
reaches L. In the latter case, we are done, so assume that i reaches ~-.  

If, in the meantime, i -  1 has reached L, we are done, so assume that  it has 
not. Then  i - 1 must  still be in %+ U RU F.  Moreover, if i - 1 is still in ~ U RU F,  
then i -  l ' s  next random choice is still right. So then Claim 11.14 implies that  
in at most  addit ional  time t~, some process reaches L. O 

Now we re turn  to the proof of Lemma 11.12. Recall that  we have assumed 
that  there is a process i such that  i E ~ U ~- and i -  1 E ,-+ O R U F.  See the first 
d iagram in Figure 11.6. If i C ~ ,  then the result follows from Claim 11.15-- the 

1 arises because that  is the probabil i ty that  i + l ' s  next random probabil i ty of 

choice is left and i -  l ' s  next random choice is right. On the other hand, if i E ~-,  
1 then the result follows from Claim 11.14-- the probabil i ty of 5 arises because that  

is the probabil i ty that  i - l ' s  next random choice is right. 

Thus we have: 
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T h e o r e m  11.16 For n >_ 3, the LehmannRabin algorithm satisfies the property 

that 7- - ~  C. 
1 

16 

We can apply Theorem 11.16 repeatedly to show that with probability 1, 
eventually someone reaches the critical region. We leave this for an exercise. 

T h e o r e m  11.17 The LehmannRabin algorithm guarantees well-formedness, mu- 
tual exclusion, and independent progress. It also guarantees progress with prob- 
ability 1. 

11.5 Bibl iographic  Notes  

The Dining Philosophers problem was originally defined by Dijkstra [91], who 
devised an algorithm for an asynchronous shared memory model containing a 
globally shared semaphore variable. The RightLeftDP algorithm seems to be 
folklore; its generalization to the Coloring algorithm is due to Lynch [213]. 

The LehmannRabin algorithm was designed by Lehmann and Rabin [192]. 
An informal proof sketch appears in [192], but it is not clear how to formalize that 
sketch. The proof presented here was developed by Lynch, Saias, and Segala 
[208], following an earlier proof in a similar style by Pnueli and Zuck [244]. 
Lehmann and Rabin [192] gave a modification of the LehmannRabin algorithm 
that  also guarantees lockout-freedom with high probability. 

All of the algorithms in this chapter use shared variables. There has also 
been a considerable amount of work on resource-allocation problems in the asyn- 
chronous network model; see Chapter 20. For example, Chandy and Misra [67] 
present a solution for a general resource-allocation problem in asynchronous net- 
works, together with an extension to a more dynamic version of the problem, 
the Drinking Philosphers problem, in which the resource requirements of pro- 
cesses can change over time. Also, Choy and Singh [80] and Awerbuch and Saks 
[37] present resource-allocation algorithms for asynchronous networks; their al- 
gorithms have good time complexity. 

11.6 Exercises  

11.1. Show that not every exclusion specification has an equivalent explicit re- 
source specification. 

11.2. It is possible to generalize the definition of an explicit resource specifica- 
tion to allow for alternative resource possibilities. Namely, for each i, the 
specification includes a description of resource requirements, in the form of 
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a monotone Boolean formula (i.e., one involving only A's and V's) over the 
set 7~. A formula f(R1,R2,. . .  ,Rk) specifies a collection of "acceptable" 
sets of resources in the obvious way: a set S of resources is acceptable if 
assigning true to all of the resources in S and false to all of the others 
causes the formula f(R1, R2 , . . .  , Rk) to evaluate to true. The meaning of 
the formula is that  the acceptable sets of resources are those sets whose 
exclusive possession authorizes the user to enter the critical region. 

(a) Give a generalized explicit resource specification that  is suitable for 
describing the k-exclusion problem, as defined in Chapter  10, Exercise 
10.13. 

(b) Show that  any generalized explicit resource specification has an equiv- 
alent exclusion specification. 

(c) Show that  any exclusion specification has an equivalent generalized 
resource specification. 

11.3. Prove Lemma 11.1. 

11.4. Research Question: Define a notion of independent progress that  is ap- 
propriate for resource-allocation problems expressed in terms of general 
exclusion conditions. 

11.5. Generalize Theorem 11.2 to apply to a larger class of resource-allocation 
problems than just the Dining Philosophers problem. Try to obtain the 
largest class of resource-allocation problems you can. 

11.6. Is the time upper bound on the RightLeftDP algorithm tight? Exhibit an 
execution whose time is as close to the computed bound of 3c + 18t~ as you 
can get. 

11.7. Modify the RightLeftDP algorithm so that  it works for a ring with an odd 
number of processes. Obtain an upper bound for the time complexity of 
the modified algorithm. The bound should be independent of n. 

11.8. Construct an execution of the Coloring resource-allocation algorithm that  
has time complexity as close to the computed upper bound of 
0 (mkc + krnk~) as you can get. 

11.9. Research Question: Construct a new algorithm for the general resource- 
allocation problem of this chapter, for the model in which there is one 
read-modify-write variable associated with each resource, accessible only 
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by the processes that require the resource. Your new algorithm should have 
a much better time performance than the Coloring algorithm. 

Extend your algorithm to apply to more types of resource-allocation prob- 
lems, such as the two described in the introduction to this chapter. 

11.10. Show that there exists an adversary for the LehmannRabin randomized 
Dining Philosophers algorithm for which the probability of locking out a 
particular process is non-zero. What is the highest probability you can 
achieve? 

11.11. Prove the claim, made in Case 3 of the proof of Lemma 11.11, that there 
must be some process j such that j + 1 E ~-, and j E *-~ U R U F.  

11.12. Use Theorem 11.16 to prove the following, for the LehmannRabin algo- 
rithm: 

(a) From any state in which some process is in T, with probability 1, 
some process eventually reaches C. 

(b) From any state in which some process is in T, and for any t _> 0, with 
probability f ( t) ,  some process reaches C within time t. (You get to 
define f - - t r y  to make it as small as possible.) 

11.13. Consider the LehrnannRabin algorithm for the special case where n = 2. 

For this case, state and prove an interesting claim of the form T - ~  C. 
p 

11.14. A novice programmer at the Flaky Computer Corporation, upon learning 
about the LehmannRabin algorithm, has proposed to improve its time per- 
formance by removing the wait for the first fork. Now instead of waiting 
for its first fork, a process simply tests it just as it does for its second fork. 
If the fork is unavailable, then the process goes back to the beginning and 
flips again. 

Explain patiently to the programmer what is wrong with his algorithm. 

11.15. Research Question: Can you generalize the idea of the LehmannRabin al- 
gorithm to more general resource-allocation problems than just the Dining 
Philosophers problem, while preserving the properties of exclusion, inde- 
pendent progress, and progress with probability 1? 
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Chapter 12 

C o n s e n s u s  

In this chapter, we introduce another complication into our study of the asynchro- 
nous shared memory model: the possibility of failures. We only consider faulty 
processes, not faulty memory. In fact, we only consider the simplest type of 
process failure: stopping failure, whereby a process just stops without warning. 

The problem we study in this chapter is one of consensus. We have already 
considered consensus problems extensively in the setting of synchronous message- 
passing systems, in Chapters 5, 6, and 7. For the case of process failures, we 
have shown that basic consensus problems are solvable, not only for stopping 
failures, but also for less well-behaved Byzantine failures. However, we gave 
several results showing that the costs of solutions, measured in terms of the 

number of processes and the amount  of time required, are necessarily large. 
Perhaps surprisingly, the situation turns out to be very different in the asyn- 

chronous setting, at least for read/wr i te  shared memory. Namely, we present a 
fundamental impossibility result, saying that a basic consensus problem cannot 

be solved at all in the asynchronous read/wr i te  shared memory setting, even if 
it is known that at most one process will fail. The same result holds, as you will 

see in Chapters 17 and 21, for the asynchronous network setting, and the reasons 
are essentially the same. 

The impossibility of consensus is considered to be one of the most fundamen- 
tal results of the theory of distr ibuted computing. It has practical implications 
for any distr ibuted application in which some type of agreement is required. For 
example, processes in a database system may need to agree on whether a transac- 
tion commits or aborts. Processes in a communication system may need to agree 
on whether or not a message has been received. Processes in a control system 
may need to agree on whether or not a particular other process is faulty. Then 
the impossibility result implies that there is no purely asynchronous algorithm 

that reaches the needed agreement and tolerates any failures at all. 
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This means that, in practice, designers must go outside the asynchronous 
model in order to solve such problems, for example, relying on timing information 

or being willing to settle for only probabilistic correctness. 

12.1 T h e  P r o b l e m  

We define a particular consensus problem in the shared memory setting. Our 
presentation is informal, but it can be formalized in terms of the model defined 
in Chapter  9. Chapter  10 contains a similar informal presentation for the mutual  
exclusion problem, plus some guidelines showing how it can be formalized. You 

may find it useful to skim Sections 10.1 and 10.2 now. 
The architecture we use here is essentially the same one we used in Chapters 

9-11, with processes interacting with the environment via ports and communi- 
cating with each other via shared variables. See Figure 10.1, for example. We 
assume that n _> 2, where n is the number of ports. The entire assembly of 
processes and variables is modelled as a single I /O  automaton. We model the 
users as automata Ui also, as we did in Chapters 10 and 11. See Example 9.2.1 
for one collection of users for the agreement problem. We assume a fixed value 
set V, fVf _> 2, for the inputs and decisions. 

This time, we assume that the external interface of each user Ui consists of 
output  actions init(v)i, where v E V is an input value for the shared memory 
system, and input actions decide(v)i inputs, where v E V is a decision value. 
The external interface of the shared memory system includes all the input actions 
init(v)~, where v E V is an input value and i is a port name (i.e., process index), 
and all the output  actions decide(v)i, where v E V is a decision value and i 
is a port  name. Thus, we are assuming that the inputs for the problem arrive 
from the users in input actions. (Note that most of the research papers in this 
area assume that the initial values appear  in designated variables in the initial 
process states, while decisions are writ ten into designated state variables. The 
formulation we use is more consistent with the style we are using elsewhere in the 
book.) Each user automaton must satisfy one restriction: it can only perform 
at most one initi event in an execution; that is, we assume that each process 
receives at most one input. 

It is easy to formalize all of this in terms of I /O  automata,  as in Chapters 10 
and 11. We assume in this chapter that there is exactly one task per process; in 
light of Exercise 8.8, this is not a significant restriction. 

We assume that the processes are subject to stopping failures, by which we 
mean that they might simply stop without warning. Formally, we model this 
by including special stopi input actions, one for each process, in the external 
interface (external signature) of the shared memory system. A stopi event has 
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ports processes shared variables 

init (v ) i 

decide (v) i 

�9 \ I n 

F i g u r e  12.1" Shared memory system for the agreement problem. 

the effect of disabling any future locally controlled actions of process i. The stopi 
actions are not considered to be par t  of the external  interfaces of the user au- 
tomata;  they just  arrive from some unspecified external  environment  (see Section 
9.6). The complete archi tecture is depicted in Figure 12.1. Wi th  this method of 
modelling failures, and according to the formal definitions in Chapter  8, the fair 
executions of the system are those in which each process that  does not fail, as 
well as each user task, gets infinitely many opportunit ies  to perform locally con- 
trolled steps. We say that  an execution of the system is failure-free if it contains 
no stop events. 

We say that  a sequence of init4 and decidei actions is well-formed for user i, 
provided that  it is some prefix of a sequence of the form init(v)i, decide(w)i (i.e., 
the empty  sequence, just  an init(v)i, or a two-action sequence init(v)i, decide(w)i). 
In part icular ,  it does not contain repeated inputs at port  i, nor repeated decisions 
at port  i, nor does it contain any decision without  a preceding input.  Our  as- 
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sumptions about the user automata imply that each Ui preserves well-formedness 

(according to the definition of "preserves" in Section 8.5.4). 

We require the following properties of any execution, fair or not, of the com- 
bined system. 

Well-formedness: For any i, the interactions between Ui and the system are 
well-formed for i. 

Agreement: All decision values are identical. 

Validity: If all init actions that occur contain the same value v, then v is the 

only possible decision value. 

Notice that the agreement and validity conditions are analogous to the cur- 
responding conditions in Section 6.1, for the stopping agreement problem in the 

synchronous model; the main difference is in the input /output  conventions. 
We also need some kind of termination condition. The most basic requirement 

is the following, for failure-free executions. 

Failure-free termination: In any fair failure-free execution in which init events 

occur on all ports, a decide event occurs on each port. 

We say that a shared memory system A solves the agreement problem for a 

particular collection of users Ui if it guarantees the well-formedness, agreement, 

validity, and failure-free termination conditions for the users Ui. We say that i c 

solves the agreement problem if it solves the agreement problem for all collections 
of users. 

We also consider some stronger termination conditions involving fault-toler- 
ance. The strongest condition we consider is the following, for executions in 

which any number of processes might fail: 

Wait-free termination: In any fair execution in which init events occur on all 
ports, a decide event occurs on every non-failing port (i.e., every port i on 

which no stopi event occurs). 

That is, any process that does not fail eventually decides, regardless of the fail- 
ures of any of the other processes. This condition is analogous to the termination 
condition given in Section 6.1, for the stopping agreement problem in the syn- 

chronous setting. This condition is called wait-freedom because it implies that no 
process can ever be blocked, waiting indefinitely for help from any other process. 

Note that we have stated the wait-freedom condition to assume that inputs 
arrive on all ports. We could have stated it equivalently to assume only that 
an input arrives at port i. We leave it as an exercise for you to show that this 

reformulation is in fact equivalent to our original statement. 
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Because the main impossibility result of this chapter involves only a sin- 
gle process failure rather than arbi t rary process failures, we need yet another 
termination condition. 

f - f a i l u r e  t e r m i n a t i o n ,  0 < f _< n:  In any fair execution in which init events 
occur on all ports, if there are stop events on at most f ports, then a decide 
event occurs on every non-failing port. 

It should be easy to see that the failure-free termination and wait-free ter- 

mination conditions are the special cases of the f-failure termination condition 
where f is equal to 0 and n, respectively. The single-failure termination condi- 
tion is the special case where f = 1. 

L e m m a  12.1 Let A be an algorithm in the given architecture and Ui, 1 <_ i <_ n, 
be a collection of users. 

1. If  A guarantees wait-flee termination for the users Ui, then A guarantees 
f-failure termination for the Ui for any f ,  0 <_ f <_ n. 

2. If A guarantees f-failure termination condition for the Ui for any f ,  0 < 
f <_ n, then A guarantees failure-free termination. 

We say that a shared memory system guarantees wait-flee termination, guar- 
antees f-failure termination, and so on, provided that it guarantees the corre- 
sponding condition for all collections of users. 

Trace properties. As we did in Chapters 10 and 11, we can express the cor- 
rectness conditions of this chapter equivalently in terms of trace properties. Each 
of these trace properties P has a signature consisting of init(v)~ and decide(v)~ 
outputs and stopi inputs. The external actions of the combined system are also 
exactly these actions, and the requirement in each case is that the fair traces of 
the combined system are all in traces(P). 

Synchronous termination c o n d i t i o n s .  The wait-free termination condition 
is similar to the termination condition used for the stopping agreement problem 
in the synchronous model, in Section 6.1, as well as to the strong termination con- 
dition used for the commit problem in Section 7.3. The failure-free termination 
condition is similar to the weak termination condition of Section 7.3. 

In most of this chapter, we will consider the case of read/wr i te  shared mem- 
ory, since that is the case in which the impossibility results hold. We allow the 
variables to be mult i -wri ter /mult i -reader  registers. Near the end of the chapter, 

in Sections 12.3 and 12.4, we briefly consider other variable types. 
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12.2 Agreement Using Read/Write Shared Memory 

Throughout this section, we suppose that A is an algorithm in the read/wri te  

shared memory model that solves the agreement problem and guarantees 1-failure 

termination. Our objective is to reach a contradiction, showing that such an A 
cannot exist. 

We first make some simplifying restrictions on A, all without loss of gener- 

ality, and then present some needed terminology. Next, we prove a result about 
the input values. Then, because the proof is easier, we show that the agree- 

ment problem is unsolvable in the read/wri te  shared memory model, if the very 

strong wait-free terminat ion condition is required. Finally, we show the main 
r e su l t~ tha t  not even a single fault can be tolerated. 

12.2.1 Restrictions 

For simplicity, and without loss of generality, we make the following four assump- 

tions: First, we assume that the value set V is just {0, 1}. Second, we consider 
A in combination with a particular collection of users, trivial automata, each of 

which generates a single (arbitrary) init event and does nothing else. 
Third, we assume that A is "deterministic," in the sense that the automaton 

has a unique initial state; that from any automaton state, any process has at most 

one locally controlled step; and that for any automaton state and any init input, 
there is a unique resulting automaton state. This does not restrict generality, 

because if we are given a nondeterministic solution, we could simply prune out 
all but one of the alternatives in each case. (This notion of determinism is similar 

to the one described in Exercise 8.9.) 
Finally, we assume that every non-failed process always has a locally con- 

trolled step enabled, even after it decides. This does not restrict generality 

because we can always include dummy internal steps. 

12 .2 .2  Terminology 

We define an initialization to be an execution of the combination of A and the 
users consisting exactly of n init steps, one for each port, in order of index. 

Thus, the trace of an initialization has the form 

init(vl)l, init(v2)2,..., init(Vn)n 

where Vl , . . .  , vn E V. We define an execution c~ to be input-first provided that 
it begins with an initialization. Our proofs involve only input-first executions. 

We define a finite execution c~ to be O-valent if 0 is the only value that appears 
in a decide event in (~ or in any execution that extends c~; moreover, we insist 
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that the value 0 actually does occur in some such decide event. After a 0-valent 

execution, the algorithm is already committed to 0 as the only decision value, 
even though no actual decide(O) event might yet have occurred. Similarly, c~ is 1- 
valent if the only such value is 1. We say that c~ is univalent if it is either 0-valent 
or 1-valent, and bivalent if each value appears in some extension. Figure 12.2 

depicts a bivalent execution. 

Figure 12.2: Bivalent execution c~. 

The following lemma says that this classification is exhaustive, in the absence 
of failures. That  is, there are no finite failure-free executions after which no 
decision is possible. 

L e m m a  12.2 Each finite failure-free execution c~ of A is either univalent or 
bivalent. 

P r o o f .  Any such c~ can be extended to a fair failure-flee execution c~'. Then 

the failure-free termination condition guaranteed by A implies that in c~', all 

processes eventually decide. D 

If c~ is a finite failure-free execution and i is any process, then define 
extension(c~,i) to be the execution obtained by extending execution c~ by a 
single step of i. The fact that this is well-defined depends on two of the re- 
strictions we made above: that every non-failed process always has a locally 
controlled step enabled and that the system is deterministic. This notation 
is extended to sequences of process indices in the obvious way, for example, 
extension(a, ij)  = extension(extension(a, i), j) .  

12.2.3 Bivalent  Init ia l izat ions  

We begin by showing that A must have a bivalent initialization. This means that 
the final decision value cannot be determined just from the inputs. In contrast,  
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if the a lgori thm is not required to tolerate any faults, then there are simple 

agreement algori thms in which the final value is completely determined by the 

inputs.  We leave the discovery of such algori thms for an exercise. 

L e m m a  12.3 A has a bivalent initialization. 

P r o o f .  Suppose not; then all the initializations are univalent. Note that  the 

initialization a0 consisting of all 0s must  be 0-valent, by the validity condition. 

Similarly, the initialization a l  consisting of all ls  must  be 1-valent. 

Now we construct  a chain of initializations, spanning from c~0 to c~1.1 At each 

step of the chain, we simply change the initial value of a single process from 0 to 

1; thus, any two consecutive initializations in the chain differ only in the input  

to one process. By assumption,  every initialization in the chain is univalent,  so 

there must  be two consecutive initializations in the chain, say c~ and a ~, such that  

c~ is 0-valent and c~ ~ is 1-valent. Suppose that  they differ in the initial value of 

process i. 

Now consider any fair execution that  extends c~ and in which i fails immedi-  

ately after the initialization (i.e., the next action is stopi), but  in which none of 

the other processes ever fails. Then all processes other than i must  eventually 

decide, by the 1-failure terminat ion condition. Since c~ is 0-valent, this decision 

must  be 0. 

Now we claim that it is possible to extend c~ ~ in the same way and still obtain 

a decision of 0. This is because a and c~ ~ are identical except for the initial value 

of i, and i fails immediately  after the initialization in both extensions; thus, the 

rest of the processes can behave in exactly the same way after c~ ~ as after a.  See 

Figure 12.3. 

But  this contradicts  the assumpt ion  that  c~ ~ is 1-valent. E] 

12.2.4 Impossibi l i ty  for Wait-Free Termination 

Now we can prove the first (simpler) impossibi l i ty r e su l t - - the  one for wait-free 

terminat ion.  Namely, we suppose in this subsection that  a lgor i thm A has the 

wait-free terminat ion property, which is s tronger than the 1-failure te rminat ion  

proper ty  we have already assumed. We use the wait-free terminat ion proper ty  

to obtain a contradict ion.  

The contradict ion is based on pinpoint ing a way in which a decision might  

be made. In part icular ,  we define a decider execution a to be a finite failure-free 

input-first  execution satisfying the following conditions: 

1This chain construction is similar to the constructions used in the proof of Theorem 6.33, 
the lower bound on the number of rounds needed for agreement in the synchronous setting. 
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F i g u r e  12.3: Construction for Lemma 12.3. 

1. c~ is bivalent. 

2. For every i, extension(c~, i) is univalent. 

Thus, after a decider execution, no decision has yet been determined, but any 
additional (non-stop) process step will determine the decision. We prove that A 

(with the wait-free termination property) must have a decider execution. 

L e m m a  12.4 A has a decider execution. 

P r o o f .  Suppose the contrary: that any bivalent failure-free input-first execu- 

tion has a one-step bivalent failure-free extension. 
Then start ing with a bivalent initialization (whose existence is guaranteed 

by Lemma 12.3), we can produce an infinite failure-free input-first execution a,  
all of whose finite prefixes are bivalent. Thus, in c~, no process ever decides. 

The construction is simple: at each stage, we start  with a bivalent failure-free 
input-first execution, and we extend it by one step to another bivalent failure-free 
execution. Our assumption at the beginning of this proof says that we can do 
this. 

Since a is infinite, it must contain infinitely many steps for some process, say 

i. We claim that i must decide in c~, which yields a contradiction. 
To see this, modify c~ by inserting a stopj event for each process j that 

only takes finitely many steps, right after its last step in c~. Call the modified 

execution a ' .  Then c~' is a fair execution in which process i does not fail. The 
wait-free termination condition then implies that i must decide in c~'. But c~ and 
a '  look identical to process i, so i decides in c~ also. This is the contradiction 
needed to prove this lemma. D 
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Now we can obtain the contradiction that we need to prove the impossibility 

result for wait-free termination. 

L e m m a  12.5 A does not exist. 

P r o o f .  By Lemma 12.4, we may fix some decider execution c~. Since c~ is 
bivalent, there exist two processes, say i and j ,  such that after c~, a step of i 

leads to a 0-valent execution and a step of j leads to a 1-valent execution. That  

is, extension(c~,i) is 0-valent and extension(c~,j) is 1-valent. Obviously, i r j .  
See Figure 12.4. 

, bivalent 

7 
0-valent 1-valent 

Figure 12.4: Execution a is a decider; extension(a, i) is 0-valent, and extension(a, j) 
is l-valent. 

We complete the proof with a case analysis, getting a contradiction for each 
possibility. 

1. Process i 's step is a read step. 

Consider extending extension(c~,j) in such a way that no process fails, 

process i takes no further steps, and each process except for i takes in- 

finitely many steps. This looks to every process except i like a fair ex- 

ecution in which process i fails immediately and no other process fails. 
Thus, by the wait-free termination condition (in fact, 1-failure termination 
is enough here), all processes except i must eventually decide, and since 
extension(~, j) is 1-valent, they must decide 1. 

Now, note that the states after c~ and extension(a, i) are indistinguishable 

to every process except i, in the sense defined in Section 9.3. This is 
because i's step is just  a read, so the only thing it changes is the state of 

process i. So we can take the same suffix that we previously ran after c~, 
beginning with the step of j ,  and run it after extension(a, i). In this case 
also, all processes except i decide 1, which contradicts the assumption that 

extension(c~, i) is 0-valent. See Figure 12.5. 
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~, bivalent 

i, r e a ~  

0-valent % i x , .  ~~v~ len t  

F i g u r e  12.5" Construction for Case 1. 

2. Process j ' s  step is a read step. 

This case is symmetric to Case 1, and the same argument applies. 

3. Process i's step and process j ' s  step are both writes. 

We distinguish two subcases. 

(a) 

(b) 

Processes i and j write to different variables. 

Consider two executions that extend c~, one by allowing first i to 
take its step and then j ,  and the other allowing first j ,  then i. Since 
the two steps involve different processes and different variables, the 
system state is the same after either execution. See Figure 12.6. 

But then we have a common system state that can be reached after 
either a 0-valent or a 1-valent execution. If we run all the processes 
from this state with no failures, they are required to decide. However, 
either decision yields a contradiction. For instance, if a decision of 0 
is reached, then we have a decision of 0 in an execution extending a 
1-valent prefix. 

Processes i and j write to the same variable. 

As in Case 1, we can run all processes but i after extension(c~, j) until 
they decide 1. This time, note that the states after extension(c~,j) 
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o~ 

i j 

O-valent 1 - v a l e n t  

F i g u r e  12.6" Construction for Case 3(a). 

and extension(a, ij) are indistinguishable to every process except for 

i. This is because the step of j overwrites the value writ ten by i, so 

the only memory of i's step is in the state of process i. So we can take 
the same suffix that we previously ran after eztension(c~, j) and run it 

after extension(a, ij). In this case also, all processes except i decide 

1, which contradicts the 0-valence of extension(a, i). See Figure 12.7. 

0~ 

i, wri 

o-val nt  -va,ent 

F i g u r e  12.7: Construction for Case 3(b). 
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So, we have contradictions in all possible cases, and thus we conclude that 
no such algorithm A can exist. [2 

We have proved the first impossibility theorem" 

T h e o r e m  12.6 For n > 2, there is no algorithm in the read/write shared mem- 
ory model that solves the agreement problem and guarantees wait-free termina- 
tion. 

1 2 . 2 . 5  I m p o s s i b i l i t y  fo r  S i n g l e - F a i l u r e  T e r m i n a t i o n  

Notice that the proof of Theorem 12.6 in the previous section does not work for 

the case where we only assume 1-failure termination. The problem is in the proof 
of Lemma 12.4, where we use the wait-free termination condition to assert that 
process i must decide in a fair execution in which it does not fail. In this section, 
we strengthen Theorem 12.6 to obtain the corresponding result for systems with 
1-failure termination. 

This time, the proof is based on the following lemma, which says that a 
bivalent execution can be extended to allow a given process to take a step, while 
still maintaining bivalence. 

L e m m a  12.7 I f  c~ is a bivalent failure-free input-first execution of A, and i is 
any process, then there is a failure-free extension c~' of ct such that extension(c~', i) 
is bivalent. 

See Figure 12.8. 

~, bivalent 

bivalent 

F i g u r e  12.8" Maintaining bivalence while allowing process i to take a step. 
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At this point, you might prefer to skip ahead to the proof of Theorem 12.8, 
to see how Lemma 12.7 implies the impossibility result, before delving into the 
more technical proof of the lemma. 

P roof .  We prove this lemma by contradiction. Suppose that the lemma is false. 
Then there must be some bivalent failure-free input-first execution c~ of A and 
some process i such that for every failure-free extension c~' of c~, extension(c~', i) is 
univalent. This implies, in particular, that extension(a, i) is univalent; suppose 
without loss of generality that it is 0-valent. 

Since c~ is bivalent, there is some extension c~" of c~ containing a decision of 1. 
We may assume without loss of generality that c~" is failure-free, since otherwise 
we could simply eliminate any stop actions without affecting the decision. Then 
it must be that extension(c~", i) is 1-valent. We consider what happens if i takes 
a step at each point along the "path" from c~ to c~". See Figure 12.9. 

o~ 

od' i ~ / / O - v a l e n t  

/ ~  univalent 

~ % , , , ~  - uniVl_valen~lent 

F i g u r e  12.9" Process i's step leads to univalence. 

At the beginning of the path, i's step yields 0-valence, while at the end, it 
yields 1-valence. At each intermediate point, it yields univalence. Therefore, 
it must be that there are two consecutive points in the path such that at the 
first of these points, i's step yields 0-valence, while at the second, i's step yields 
1-valence. Let a '  be the execution up to the first point. See Figure 12.10. 

Suppose that j is the process that takes the intervening step. We claim that 
j r i. This is true because if j = i, then we have a situation where one step of i 
leads to 0-valence while two steps of i lead to 1-valence; since the processes are 
deterministic, this gives a 0-valent execution with a 1-valent extension, which is 
nonsense. 
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O~ t 

F i g u r e  12.10" Two consecutive points where i yields different valences. 

We finish with a case analysis similar to the one in the proof of Lemma 12.5, 
obtaining a contradiction for each case. 

Process i's step is a read step. 

Then we claim that the states after extension(a', ji) and extension(a', iN) 
are indistinguishable to every process except for i. This is because the 
steps of i involved in these two extensions are both read steps, which do 
not affect anything except the state of process i. 

Consider extending extension(a ~, ij) in such a way that i takes no further 
steps and every other process takes infinitely many steps. By the l-failure 
termination condition, all processes except i must eventually decide, and 
since extension(c~ ~, i) is 0-valent, they must decide 0. By the indistinguish- 
ability claim just above, we can take the same suffix that we previously ran 

after extension(a', iN) and run it after extension(c~',ji). In this case also, 
the processes decide 0, which contradicts the l-valence of extension(c~ ~, ji). 
See Figure 12.11. 

2. Process j ' s  step is a read step. 

The argument is similar to that for Case 1. This time, the states after 
extension(c~', i) and extension(c~', ji) are indistinguishable to all processes 

except j.  We can let all processes except j run after extension(a~,i), 
forcing them eventually to decide 0. Then we can run them in the same way 
after extension((~ ~, ji). They again decide 0, contradicting the l-valence of 

extension(~', ji). 
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F i g u r e  12.11" Construction for Case 1. 

3. Process i's step and process j ' s  step are both writes. 

(a) Processes i and j write to different variables. 

In this case we get the same sort of commutative scenario as in Case 

3(a) of the proof of Lemma 12.5; see Figure 12.6. This implies the 
same contradiction as in that proof. 

(b) Processes i and j write to the same variable. 

In this case, the states after extension(c~', i) and extension(c~', j i )  are 

indistinguishable to all processes except for j ,  because i's step over- 

writes j ' s  step. Running all processes except for j after extension(a ~, i) 
and extension(c~ ~, j i )  yields the same contradiction as before. See Fig- 
ure 12.12. 

K] 

We can now prove the main theorem. 

T h e o r e m  12.8 For n >_ 2, there is no algorithm in the read/write shared mem- 
ory model that solves the agreement problem and guarantees l-failure termina- 
tion. 
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j i 

valent 

1-valentX'~ \ ~  

Figure 12.12:  Construction for Case 3(b). 

P r o o f .  We use Lemma 12.7 to construct a fair failure-free input-first execution 
in which no process ever decides. This contradicts the failure-free termination 
requirement.  

The construction begins with a bivalent initialization, whose existence is guar- 
anteed by Lemma 12.3. Then we repeatedly extend the current execution, in- 
cluding at least one step of process 1 in the first extension, then at least one step 
of 2 in the second extension, and so on, in round-robin order, all while main- 
taining bivalence and avoiding failures. Lemma 12.7 implies that each extension 
step is possible. 

The resulting execution is fair, because each process takes infinitely many 
steps. However, no process ever reaches a decision, which gives the needed 
contradiction. [5] 

12.3 Agreement Using Read-Modify-Write Shared 
Memory 

In contrast  to the situation for read/wr i te  shared memory, it is very easy to 
solve the agreement problem, guaranteeing wait-free termination, using read- 
modify-write shared memory. In fact, a single read-modify-write shared variable 
is enough. 
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RMWAgreement algorithm: 

The shared variable begins with the value unknown. Each process accesses 
the variable. If it sees the value unknown, then it changes the value to its 
own initial value and decides on this value. On the other hand, if it sees a 
value v 6 V, then it does not change the value written in the variable but 
instead accepts the previously written value as its decision value. 

The precondition-effect code for process i of the RMWAgreement algorithm 
is the same as the code in Example 9.1.1, with the addition of some code for 
handling failures. Namely, the state contains an additional component stopped, 
a set of processes, initially empty. There is a new stopi action, which puts i into 
stopped. The accessi and decidei actions have the additional precondition that 
i ~ stopped, and the init~ action only makes its changes if i ~ stopped. 

T h e o r e m  12.9 The RMWAgreement algorithm solves the agreement problem 
and guarantees wait-free termination. 

P r o o f .  Straightforward. Wait-free termination follows, because each process 
i, after receiving an initi input, is immediately enabled to perform an accessi 
and then a decidei. Agreement and validity follow, because the first process to 
perform an access establishes the common decision value. U] 

12.4 Other Types of Shared Memory  

The agreement problem can also be considered using shared memory of other 
variable types besides read/wri te  and read-modify-write. For example, we can 
consider variables with operations such as swap, test-and-set, fetch-and-add, and 
compare-and-swap. These operations are defined in Example 9.4.3. Among the 
known results are the following theorems: 

T h e o r e m  12.10 The agreement problem for any n can be solved with wait- 
free termination, using a single shared variable that allows compare-and-swap 
operations only. 

T h e o r e m  12.11 If n >_ 3, then the agreement problem cannot be solved with 
wait-free termination using shared variables that allow any combination of swap, 
test-and-set, fetch-and-add, read, and write operations. 

Proofs .  The proofs are left for exercises. [3 
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12.5 Computability in Asynchronous Shared 
Memory Systems* 

The agreement problem is only one example of a "decision problem" that can 

be considered in the asynchronous shared memory model with stopping failures. 

In this section, we define the general notion of a decision problem, give some 
examples, and state (without proof) some typical computability results. 

Our definition of a decision problem is based on the preliminary definition of 

a decision mapping. A decision mapping D specifies, for each length n vector w 
of inputs over some fixed value set V, a nonempty set D(w) of allowable length 

n vectors of decisions. The vector w represents the inputs of processes 1 , . . .  , n, 

in order of process index, and, similarly, each vector in D(w) represents the 

decisions of processes 1 , . . . ,  n, also in order of process index. 
We use a decision mapping D in the formulation of a problem to be solved 

by an asynchronous shared memory system. The external interface of the shared 

memory system consists of init(v)~, decide(v)~, and stop~ actions, just as for the 

agreement problem. The well-formedness condition and the various termination 
conditions are defined in exactly the same way as for the agreement problem. 
However, in place of the agreement and validity conditions used in the agreement 

problem, we require only the single validity condition: 

Validity" In any execution in which init events occur on all ports, it is possible 

to complete the vector of decisions that are reached by the processes to a 

vector in D(w),  where w is the given input vector. 

E x a m p l e  12.5.1 The agreement  problem as a dec is ion prob lem 

The agreement problem is an example of a decision problem, based 

on the decision mapping D, defined as follows. For any vector w - 

Vl , . . .  , Vn of inputs in V, the set D(w) of allowable vectors of deci- 
sions is defined by 

1. I f  V l  ~-- v 2  - -  . . .  - -  V n  - -  v ,  t h e n  D(w) c o n t a i n s  t h e  single vector 

x 1, . . .  ,xn such that X l = x2 = . . . .  Xn = v. 

2. If v~ r vj for some i and j ,  then D(w) consists of exactly those 

vectors x i , . . .  ,xn such that X l = x2 . . . .  = Xn. 

It is easy to see that the decision problem based on D is the same as 

the agreement problem. (One apparent difference is that the defini- 
tion of a general decision problem only mentions executions in which 
init inputs arrive on all ports, whereas the definition of the agree- 
ment problem involves other executions as well. But this is not an 
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important  difference, because any finite execution can be extended 
to one in which inputs arrive everywhere.) 

Two other important  examples of decision problems are the k-agreement 
problem and the approximate agreement problem, both of which we studied in 
the synchronous network model in Chapter 7. In the k-agreement problem, where 
k is any positive integer, the agreement and validity conditions of the agreement 
problem are replaced with the following: 

A g r e e m e n t :  In any execution, there is a subset W of V, IWI = k, such that all 
decision values are in W. 

Va l id i ty :  In any execution, any decision value for any process is the initial value 
of some process. 

The agreement condition is weaker than that for ordinary agreement in that it 
permits k decision values rather than only one. The validity condition is a slight 
strengthening of the validity condition for ordinary agreement. It is easy to 
formalize the k-agreement problem as a decision problem. The following can be 
shown, though we omit the proofs here and leave them for exercises: 

T h e o r e m  12.12 The k-agreement problem is solvable with k -  1-failure termi- 
nation in the asynchronous read/write shared memory model using single-writer/ 
multi-reader registers. 

T h e o r e m  12.13 The k-agreement problem is not solvable with k-failure term# 
nation in the asynchronous shared memory model with multi-writer/multi-reader 
registers. 

In the approzimate agreement problem, the set V of values is the set of real 
numbers, and processes are permitted to send real-valued data in messages. Now 
instead of having to agree exactly, as in the agreement problem, the requirement 
is that the processes agree approximately, to within a small positive tolerance 
e. That is, the agreement and validity conditions of the agreement problem are 
replaced with the following: 

A g r e e m e n t :  In any execution, any two decision values are within e of each 
other. 

Val idi ty"  In any execution, any decision value is within the range of the initial 
values. 

Again, it is easy to formalize this problem as a decision problem. 
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T h e o r e m  12.14 The approximate agreement problem is solvable with wait-free 
termination, in the asynchronous read/write shared memory model using single- 
writer/multi-reader registers. 

Proof .  The proof is left as an exercise. ff] 

We close this chapter with a theorem that gives some conditions that im- 
ply that a decision problem cannot be solved with l-failure termination. This 
theorem generalizes Theorem 12.8. 

For any set of length n vectors of elements of V, we define a graph. The 
vertices of this graph are the vectors of length n, and the edges are the pairs of 
vectors that differ in exactly one position. 

T h e o r e m  12.15 Let D be a decision mapping whose associated decision prob- 
lem is solvable with l-failure termination, in the read/write shared memory 
model. Then there must be a decision mapping D' with D'(w) C_ D(w) for 
all w, such that both of the following hold: 

1. If input vectors w and w' differ in exactly one position, then there exist 
y C D' (w) and y' C D' (w') such that y and y' differ in at most one position. 

2. For each w, the graph defined by D'(w) is connected. 

We leave the proof of Theorem 12.15 for an exercise; it uses ideas similar to 
those used in the proof of Theorem 12.8. 

12.6 Bibliographic Notes  

The first result in the literature about the impossibility of agreement in fault- 
prone systems was proved by Fischer, Lynch, and Paterson [123]. This result 
was proved for the asynchronous message-passing setting, for the case of l-failure 
termination. Later, this result and its proof were extended to the asynchronous 
shared memory setting, a slightly stronger model, by Loui and Abu-Amara [199]. 
(See Chapter 17 for relationships between the asynchronous shared memory and 
asynchronous network models.) The result about the impossibility of wait-free 
agreement was proved by Loui and Abu-Amara [199] and independently by Her- 
lihy [150]. The presentation in this chapter follows the proofs of [199]. 

The results about agreement using other types of shared variables besides 
read/write variables are due to Herlihy [150]. Herlihy's paper not only classifies 
which types of variables are capable of solving the agreement problem, but also 
determines which types can "implement" which other types. 
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The problem of k-agreement was originally posed by Chaudhuri [73], in the 
setting of asynchronous networks. Chaudhuri proved that k-agreement can be 
solved with k -  1-failure termination, but the question of whether it can be 
solved with k-failure termination remained open for several years. The (negative) 
answer to this question appeared simultaneously in papers by Herlihy and Shavit 
[152], by Borowsky and Gafni [55], and by Saks and Zaharoglou [253]. Herlihy 
and Shavit presented their result in the context of a topological characterization 
of the problems that can be solved in fault-prone asynchronous read/write shared 
memory systems. They developed that characterization further in [151]. The 
characterization includes consideration of restricted sets of input vectors rather 
than just the complete sets considered in this book. 

The problem of approximate agreement in asynchronous systems was origi- 
nally defined by Dolev, Lynch, Pinter, Stark, and Weihl [98]. Their work was 
carried out in the asynchronous network model. Attiya, Lynch, and Shavit [24] 
developed a wait-free asynchronous shared memory algorithm for approximate 
agreement. 

Biran, Moran, and Zaks [51] characterized the decision problems that can 
be solved in the asynchronous read/write shared memory setting with l-failure 
termination, based on an earlier impossibility result by Moran and Wolfstahl 
[230]. The characterization includes consideration of restricted sets of input vec- 
tors. Theorem 12.15 follows from results in these two papers. These results were 
originally proved for the asynchronous network setting, but the proofs extend to 
the asynchronous read/write shared memory setting. 

Chor, Israeli, and Li [78], Abrahamson [2], and Aspnes and Herlihy [16], 
among others, gave randomized solutions to the agreement problem, using read/write 
shared memory. 

12.7 E x e r c i s e s  

12.1. Prove that the stronger form of the wait-free termination condition in which 
inputs need only arrive at port i is equivalent to the given formulation. 
More specifically, show how to modify a given algorithm A that guarantees 
well-formedness, agreement, validity, and wait-free termination, so that 
the modified version guarantees the same conditions but with the stronger 
wait-free termination condition. 

12.2. Describe an algorithm that solves the agreement problem (without any 
fault-tolerance requirements) in the read/write shared memory model and 

(a) in which there exists a bivalent initialization. 
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(b) in which all initializations are univalent. 

12.3. True or false? 

(a) If A is a (non-fault-tolerant) agreement protocol in the read/write 
shared memory model that satisfies the restrictions in Section 12.1 
and that has a bivalent initialization, then A must have a decider 
execution. 

(b) If A is as in part (a) and is a two-process protocol, then A must have 
a decider execution. 

12.4. Show that Theorem 12.8 still holds if we weaken the problem requirements 
by replacing the validity condition with the following weaker condition: 
There exist two input-first executions, c~0 and c~1, such that 0 is decided 
by some process in c~0 and 1 is decided by some process in c~1. 

12.5. Reconsider the agreement problem using read/write shared memory. This 
time consider a more constrained fault model than general stopping fail- 
ures, in which processes can only fail at the very beginning of computation. 
(That is, all stop events precede all other events.) Can the agreement prob- 
lem be solved in this model, guaranteeing 

(a) 1-failure termination? 

(b) wait-free termination? 

In each case, give either an algorithm or an impossibility proof. 

12.6. Prove that any agreement protocol in the read-modify-write shared mem- 
ory model that guarantees 1-failure termination must have a bivalent ini- 
tialization. 

12.7. Prove Theorem 12.10. 

12.8. Show that for n > 3, the n-process agreement problem with wait-free 
termination cannot be solved using any number of shared variables, where 
each is of a type that is interfering, in the following sense. If a and b are 
invocations of the variable type, then, letting f2(a, v) denote the second 
projection of f(a, v) (i.e., the new value of the variable), at least one of 
the following holds: 

(a) (a and b commute) f2(a, f2(b, v)) - f2(b, f2(a, v)) for all v e V 

(b) (a overwrites b) f2(a, f2(b, v)) - f2(a, v) for all v C V 

(c) (b overwrites a) f2(b, f2(a, v)) - f2(b, v) for all v E V 
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We use notation from Section 9.4. 

12.9. Use the result of Exercise 12.8 to prove Theorem 12.11. 

12.10. Express the following formally as decision problems by giving the decision 
mappings: 

(a) The k-agreement problem 

(b) The approximate agreement problem 

12.11. Prove Theorem 12.12. 

12.12. Prove Theorem 12.13. (Warning: This is very hard.) 

12.13. Consider the approximate agreement problem for n = 2 processes. Give a 
wait-free algorithm for this problem in the asynchronous shared memory 
model with single-writer/multi-reader registers. Prove its correctness and 
analyze its time complexity. 

12.14. Generalize the result of Exercise 12.13 to an arbitrary number n of pro- 
cesses. That is, prove Theorem 12.14. 

12.15. An experienced software designer at the Flaky Computer Corporation has 
come up with a clever idea for solving the agreement problem of this chap- 
ter, for any number of stopping failures, for V = {0, 1}. Her idea is to 
regard 0 and 1 as real numbers and to use a wait-free solution to the 
approximate agreement problem as a "subroutine." Once the processes 
obtain their  answers for the approximate agreement subroutine, they can 
simply round them off to the nearer of 0 or 1 to obtain their final decisions. 

Explain what is wrong with her idea. 

12.16. Consider the two-process wait-free approximate agreement algorithm you 
designed for Exercise 12.13. (We are assuming that your algorithm is 
"deterministic," as defined in Section 12.2.1.) For any input vector (Vl, v2), 
define D~(vl, v2) to be the set of decision vectors that are actually attained 
in input-first executions in which process 1 has input va and process 2 has 
input v2. 

(a) Describe the set D'(0, 1) and its associated graph, as defined just 
before Theorem 12.15. 

(b) Consider the failure-free infinite execution in which processes 1 and 
2 first receive inputs 0 and 1, respectively, and then alternate steps 
1, 2, 1, . . . .  For each input-first prefix ct of this execution, describe the 
set of decision vectors that are actually attained in extensions of a. 
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(c) Describe D'(vl, v2) for every input vector (Vl, v2). 

(d) Show that for each (Vl, v2), the graph defined by D'(vl,  v2) is con- 
nected. 

12.17. Prove Theorem 12.15. (Hint: Fix any algorithm A that solves D with 
l-failure termination, in the read/write shared memory model. For any 
input vector w, define D~(w) to be the set of decision vectors that  are 
actually attained in input-first executions of A with input vector w. For 
part 1, use an argument like the one for Lemma 12.3. For part 2, argue 
by contradiction, using an argument like the one for Theorem 12.8. This 
time, after each finite failure-free input-first execution, consider whether 
the set of attainable decision vectors is connected or disconnected. Use 
an analogue to Lemma 12.7 that says that any "disconnected" c~ can be 
extended to another "disconnected" c~ ~, while allowing any given process i 
to take a step.) 

12.18. Use Theorem 12.15 to prove Theorem 12.8. 

12.19. Use Theorem 12.15 to prove that some other decision problems besides 
ordinary agreement cannot be solved in asynchronous read/write shared 
memory systems with l-failure termination. Define as many interesting 
problems as you can for which impossibility can be proved in this way. 

12.20. Extend the conditions in Theorem 12.15 to a general characterization of the 
decision problems that can be solved in asynchronous read/write shared 
memory systems with l-failure termination. ( Warning: This is very hard.) 
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Chapter 13 

Atomic Objects 

In this chapter, our last on the asynchronous shared memory model, we introduce 
atomic objects. An atomic object of a particular type is very much like an 
ordinary shared variable of that same type. The difference is that an atomic 
object can be accessed concurrently by several processes, whereas accesses to 
a shared variable are assumed to occur indivisibly. Even though accesses are 
concurrent, an atomic object ensures that the processes obtain responses that 
make it look like the accesses occur one at a time, in some sequential order that 

is consistent with the order of invocations and responses. Atomic objects are 
also sometimes called linearizable objects. 

In addition to the atomicity property, most atomic objects that have been 
studied satisfy interesting fault-tolerance conditions. The strongest of these is 
the wait-free terminat ion condition, which says that any invocation on a non- 
failing port eventually obtains a response. This property can be weakened to 
require such responses only if all the failures are confined to a designated set I 
of ports or to a certain number f of ports. The only types of failures we consider 
in this chapter are stopping failures. 

Atomic objects have been suggested as building blocks for the construction 
of multiprocessor systems. The idea is that you should begin with basic atomic 
objects, such as single-writer/single-reader read/write atomic objects, which are 
simple enough to be provided by hardware. Then starting from these basic 
atomic objects, you could build successively more powerful atomic objects. The 
resulting system organization would be simple, modular, and provably correct. 
The problem, as yet unresolved, is to build atomic objects that provide suffi- 
ciently fast responses to be useful in practice. 

Atomic objects are indisputably useful, however, as building blocks for asyn- 
chronous network systems. There are many distributed network algorithms that 
are designed to provide the user with something that looks like a centralized, c o -  
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herent shared memory. Formally, many of these can be viewed as distributed im- 
plementations of atomic objects. We will see some examples of this phenomenon 
later, in Sections 17.1 and 18.3.3. 

In Section 13.1, we provide the formal framework for the study of atomic 
objects. That is, we define atomic objects and give their basic properties, in 
particular, results about their relationship to shared variables of the same type 
and results indicating how they can be used in system construction. 

Then in the rest of the chapter, we give algorithms for implementing particular 
types of atomic objects in terms of other types of atomic objects (or, equivalently, 
in terms of shared variables). The types of atomic objects we consider are 
read/wri te  objects, read-modify-write objects, and snapshot objects. The results 
we present are only examples-- there  are many more such results in the research 
literature, and there is still much more research to be done. 

13.1 Def in i t i ons  and B a s i c  R e s u l t s  

We first define atomic objects and their basic properties, then give a construction 
of a canonical wait-free atomic object of a given type, and then prove some basic 
results about composing atomic objects and about substituting them for shared 
variables in shared memory systems. These results can be used to justify the 
hierarchical construction of atomic objects from other atomic objects. 

Many of the notions in this section are rather subtle. They are important,  
however, not only for the results in this chapter, but also for material involving 
fault-tolerance in Chapters 17 and 21. So we will go slowly here and present the 
ideas somewhat more formally than usual. On a first reading, you might want to 
skip the proofs and only read the definitions and results. In fact, you might want 
to start by reading only the definitions in Section 13.1.1, then skipping forward 
to Section 13.2 and referring back to this section as necessary. 

13 .1 .1  A t o m i c  O b j e c t  Definit ion 

The definition of an atomic object is based on the definition of a variable type 
from Section 9.4. You should reread that section now. In particular, recall that a 
variable type consists of a set V of values, an initial value v0, a set of invoca t ions ,  

a set of responses ,  and a function f : i n v o c a t i o n s  x V --+ responses  x V .  This 
function f specifies the response and new value that result when a particular 
invocation is made on a variable with a particular value. 

Also recall that the e x e c u t i o n s  of a variable type are the finite sequences v0, 

al ,  bl,  Vl, a2, b2, v2, . . .  , vr and infinite sequences vo, al,  bl, Vl, a2, b2, v2, . . .  , 
where the a's and b's are invocations and responses, respectively, and adjacent 
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quadruples are consistent with f .  Also, the traces of a variable type are the 
sequences of a's and b's that are derived from executions of the type. 

If 7- is a variable type, then we define an atomic object A of type 7- to 
be an I /O  automaton (using the general definition of an I /O  automaton from 
Chapter  8) satisfying a collection of properties that we describe in the next few 
pages. In particular,  it must have a particular type of external interface (external 
signature) and must satisfy certain "well-formedness," "atomicity," and liveness 
conditions. 

We begin by describing the external interface. We assume that A is accessed 
through n ports, numbered 1 , . . . ,  n. Associated with each port i, A has some 
input actions of the form ai, where a is an invocation of the variable type, and 
some output  actions of the form bi, where b is a response of the variable type. If 
ai is an input action, it means that a is an allowable invocation on port i, while 
if bi is an output  action, it means that b is an allowable response on port i. We 

assume a technical condition: if ai is an input on port i and if f (a ,  v) = (b, w) 
for some v and w, then bi should be an output  on port i. That  is, if invocation a 
is allowed on port i, then all possible responses to a are also allowed on port i. 

In addition, since we will consider the resiliency of atomic objects to stopping 
failures, we assume that there is an input stopi for each port i. The external 
interface is depicted in Figure 13.1. 

E x a m p l e  13.1.1  R e a d / w r i t e  a t o m i c  o b j e c t  e x t e r n a l  i n t e r f a c e  

We describe an external interface for a 1-writer/2-reader atomic ob- 
ject for domain V. The object has three ports, which we label by 1, 2, 
and 3. Port  1 is a write port, supporting write operations only, while 
ports 2 and 3 are read ports, supporting read operations only. More 
precisely, associated with port 1 there are input actions of the form 
write(v)1 for all v E V and a single output  action ackl. Associated 
with port 2 there is a single input action read2 and output  actions of 
the form v2 for all v E V, and analogously for port 3. There are also 
stop1, stop2, and stop3 input actions, associated with ports 1, 2, and 
3, respectively. The external interface is depicted in Figure 13.2. 

Next, we describe the required behavior of an atomic object automaton A 
of a particular variable type 7-. As in Chapters 10-12, we assume that A is 

composed with a collection of user automata  Ui, one for each port. The outputs 

of Ui are assumed to be the invocations of A on port i, and the inputs of Ui are 
assumed to be the responses of A on port i. The stopi action is not part  of the 
signature of Ui; it is assumed to be generated not by Ui, but by some unspecified 
external source. 
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a l  ..~ 

a2 

_ . . . .  

F i g u r e  13.1" External interface of an atomic object. 

write(v), 

~ rev~d~ ~l I 

read3~ / 

F i g u r e  13.2" External interface of a 1-writer/2-reader read/write atomic object. 
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The only other proper ty  we assume for Ui is that  it preserve a "well-formed- 

ness" condition, defined as follows. Define a sequence of external  actions of user 

Ui to be well-formed for user i provided that  it consists of al ternat ing invocations 

and responses,  s tar t ing with an invocation. We assume that  each Ui preserves 
well-formedness for i (according to the formal definition of "preserves" in Section 

8.5.4). That  is, we assume that  the invocations of operations on each por t  are 

str ict ly sequential,  each waiting for a response to the previous invocation. Note 

that  this sequential i ty requirement  only refers to individual ports;  we allow con- 

currency among the invocations on different ports.  1 Throughout  this chapter,  we 

use the notat ion U to represent  the composi t ion of the separate user au tomata  

v = l-I 

We require that  A x U, the combined system consisting of A and U, satisfy 

several properties.  First ,  there is a well-formedness condition similar to the ones 

used in Chapters  10, 11, and 12. 

W e l l - f o r m e d n e s s :  In any execution of A • U and for any i, the interactions 

between Ui and A are well-formed for i. 

Since we have already assumed that the users preserve well-formedness, this 

amounts  to saying that A also preserves well-formedness. This says that  in 

the combined system A x U, invocations and responses al ternate on each port ,  

s tar t ing with an invocation. 

The next condition is the hardest  one to understand.  It describes the apparent  

a tomici ty  of the operations, for a part icular  variable type T. Note that  a trace 

of 7- describes the correct responses to a sequence of invocations when all the 

operations are executed sequentially, that is, where each invocation after the first 

waits for a response to the previous invocation. The atomici ty  condition says 

that  each trace produced by the combined sys t em- -wh ich  permits  concurrent  

invocations of operations on different p o r t s ~ " l o o k s  like" some trace of T.  

The way of saying this formally is a little more complicated than you might  

expect,  since we want a condition that makes sense even for executions of A x U 

in which some of the invocat ions- - the  last ones on some p o r t s - - a r e  incomplete, 
that  is, have no responses.  So we st ipulate that  each execution looks as if the 

operations that  are completed and some of the incomplete ones are performed 

instantaneously at some points in their intervals. 

In order to define atomici ty  for the system A x U, we first give a more basic 

definition, of atomici ty for a sequence of user actions. Namely, suppose tha t /~  

is a (finite or infinite) sequence of external actions of A x U that  is well-formed 

1in practice, you might want also to allow concurrent access on individual ports. This would 
require some extensions to the theory presented in this chapter; we avoid these complications 
so that we can present the basic ideas reasonably simply. 
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for every i (that is, for every i, /3[ext(Ui) is well-formed for i). We say that /3 
satisfies the atomicity property for 7- provided that it is possible to do all of the 
following: 

1. For each completed operation rr, to insert a serialization point ,,~ some- 
where between rr's invocation and response in/3. 

2. To select a subset (I) of the incomplete operations. 

3. For each operation rr C q), to select a response. 

4. For each operation rr C (I), to insert a serialization point ,,~ somewhere 
after rr's invocation in/3. 

These operations and responses should be selected, and these serialization points 
inserted, so that the sequence of invocations and responses constructed as follows 
is a trace of the underlying variable type T: 

For each completed operation 7r, move the invocation and response 
events appearing in /3 (in that order) to the serialization point ,~. 
(That is, "shrink" the interval of operation rr to its serialization 
point.) Also, for each operation rr E (I), put the invocation appearing 
in /3, followed by the selected response, at ,~. Finally, remove all 
invocations of incomplete operations rr ~ (I). 

Notice that the atomicity condition only depends on the invocation and re- 
sponse events-- i t  does not mention the stop events. We can easily extend this 
definition to executions of A and of A x U. Namely, suppose that c~ is any such 
execution that is well-formed for every i (that is, for every i, c~lext(Ui ) is well- 
formed for i). Then we say that c~ satisfies the atomicity property for 7" provided 
that its sequence of external actions, trace(a), satisfies the atomicity property 
for T. 

Example  13.1.2 Execut ions  with serial izat ion points  

Figure 13.3 illustrates some executions of a single-writer/single-reader 
read/wri te  object with domain V = H and initial value v0 = 0 that 
satisfy the atomicity property for the read/wri te  register variable 
type. The serialization points are indicated by stars. Suppose that 
ports 1 and 2 are used for writing and reading, respectively. 

In (a), a read operation that returns 0 and a write(8) operation 
overlap and the serialization point for the read is placed before that of 
the write(8). Then if the operation intervals are shrunk to their serial- 
ization points, the sequence of invocations and responses is read2, 02, 
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write(8)1, ackl. This is a trace of the variable type. (See Exam- 
ple 9.4.4.) 

In (b), the same operation intervals are assigned serialization 
points in the opposite order. The resulting sequence of invocations 
and responses is then write(8)l, ackl, read2, 82, again a trace of the 
variable type. 

Each of the executions in ( c ) a n d  (d) includes  an incomplete 
write(8) operation. In each case, a serialization point is assigned to 
the write(8), because its result is seen by a read operation. For (c), 
the result of shrinking the operation intervals is write(8)l, ack 1, read2, 82, 
whereas for (d), the sequence is read2, 02, write(8)l, ackl, read2, 82. 
Both are traces of the variable type. (Again, see Example 9.4.4.) 

In (e), there are infinitely many read operations that return 0, 
and consequently the incomplete write(8) cannot be assigned a seri- 
alization point. 

write (8), ack, write (8!, 

I * I I* 
I * I -- I * I 

read~ 0 2 read~ 8 2 
_ 

(a) (c) 

write(8), ack, write(8), 

I*  I I * 
I * I ~ I * 

read2 8~ read~ ( 

(b) 

write(8), 

I * I 
read 2 0 2 

(d) 

I * I 
read, 02 

read 2 

(e) 

F i g u r e  13.3- Executions of a single-writer/single-reader read/write object satisfying 
the atomicity property. 

E x a m p l e  13 .1 .3  E x e c u t i o n s  w i th  no ser ia l i za t ion  po int s  

Figure 13.4 illustrates some executions of a single-writer/single-reader 
read/write object that do not satisfy the atornicity property. In (a), 
there is no way to insert serialization points to explain the occurrence 
of a read that returns 8 followed by a read that returns 0. In (b), 
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write (8), write ( 8 ), ack , 

i I I 
! I I I - I I I i 

read2 82 read2 02 read, 02 read2 02 

(a) (b) 

Figure 13.4: Executions of a single-writer/single-reader read/write object that do 
not satisfy the atomicity property. 

there is no way to explain the occurrence of a read that returns 0, 
after the completion of a write of 8. 

Now we are (finally) ready to define the atomicity condition for the combined 
system A x U. 

A t o m i c i t y :  Let c~ be a (finite or infinite) execution of A x U that is well-formed 
for every i. Then c~ satisfies the atomicity property (as defined just before 
Example 13.1.2). 

We can also express the atomicity condition in terms of a trace property 
(see the definition of a trace property in Section 8.5.2). Namely, define the trace 
property P so that its signature sig(P) is the external interface of A x U and 
its trace set traces(P) is exactly the set of sequences that satisfy both of the 
following: 

1. Well-formedness for every i 

2. The atomicity property for 7- 

(For convenience, we include the stop actions in the signature of P,  even though 
they are not mentioned in the well-formedness and atomicity conditions.) The in- 
teresting thing about P is that it is a safety property, as defined in Section 8.5.3. 
That is, traces(P) is nonempty, prefix-closed, and limit-closed. This is not obvi- 
ous, because the atomicity property has a rather complicated definition, involving 
the existence of appropriate placements of serialization points and selections of 
operations and responses. 

T h e o r e m  13.1 P (the trace property defined above, expressing the combination 
of well-formedness and atomicity) is a safety property. 

The proof of Theorem 13.1 uses KSnig's Lemma, a basic combinatorial lemma 
about infinite trees: 
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L e m m a  13.2 (KSnig ' s  L e m m a )  If  G is an infinite tree in which each node 
has only finitely many children, then C has an infinite path from the root. 

P r o o f  Ske tch  (of T h e o r e m  13.1). Nonemptiness is clear, since A C traces(P). 
For prefix-closure, suppose that /3  C traces(P) and let/3 ~ be a finite prefix of 

/3. Since/3 c traces(P), it is possible to select a set (I) of incomplete operations, 
a set of responses for the operations in ~, and a set of serialization points that 
together demonstrate the correctness of/3. We show how to make such selections 
for fl'- 

Let -~ denote the sequence obtained from fl by inserting the selected seri- 
alization points. Let -y~ be the prefix of "y ending with the last element of fl~. 
Then -y~ includes serialization points for all the complete operations in fl~ and 
some subset of the incomplete operations in/3 ~. Choose ~ ,  the set of incomplete 
operations for fl~, to consist of those incomplete operations in fl~ that have seri- 
alization points in -y~. Choose a response for each operation 7c C ~ as follows: 
If 7r is incomplete in fl, that is, if 7r C ~, then choose the same response that 
is chosen for 7r in ft. Otherwise choose the response that actually appears in ft. 
Then it is not hard to see that the chosen set ~ ,  its chosen responses, and the 
serialization points in 3/ together  demonstrate the correctness of fl~. This shows 
prefix-closure. 

Finally, we show limit-closure. Consider an infinite sequence fl and suppose 
that all finite prefixes of/3 are in traces(P). We use KSnig's Lemma. 

The tree G that we construct in order to apply KSnig's Lemma describes 
the possible placements of serialization points in ft. Each node of C is labelled 
by a finite prefix of fl, with serialization points inserted for some subset of the 
operations that are invoked in ft. We only include labels that are "correct" in 
the sense that they satisfy the following three conditions: 

1. Every completed operation has exactly one serialization point, and that 
serialization point occurs between the operation's invocation and response. 

2. Every incomplete operation has at most one serialization point, and that 
serialization point occurs after the operation's invocation. 

3. Every response to an operation 7r is exactly the response that is calculated 
for 7r using the function of the given variable type T at the serialization 
points. (Start with the initial value v0 and apply the function once for each 
serialization point, in order, with the corresponding invocation as the first 
argument. The response that is calculated for zc is the response obtained 
when the function is applied for the serialization point ,~.) 

Furthermore, in C, 
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1. The label of the root is ~. 

2. The label of each non-root node is an extension of the label of its parent. 

3. The label of each non-root node ends with an element of/3. 

4. The label of each non-root node contains exactly one more element of fl 
than does the label of its parent node (and possibly some more serialization 
points). 

Thus, at each branch point in G, a decision is made about which serialization 
points to insert, in which order, between two particular symbols in ft. By consid- 
ering the prefix-closure construction above, we can see that G can be constructed 
so that every finite prefix fl~ of/3, with every "correct" assignment of serialization 
points prior to the last symbol of/3 ~, appears as the label of some node of G. 

Now we apply KSnig's Lemma to the tree G. First, it is easy to see that each 
node of G has only finitely many children. This is because only operations that 
have already been invoked can have their serialization points inserted and there 
are only finitely many places to insert these serialization points. 

Second, we claim that G contains arbitrari ly long paths from the root. This 
is because every finite prefix/3 ~ of the infinite sequence fl is in traces(P), which 
means that fl~ has an appropriate assignment of serialization points. This as- 
signment yields a corresponding path in G of length Ifl~l. 

Since G contains arbitrari ly long paths from the root, it is infinite. Then 
KSnig's Lemma (Lemma 13.2) implies that G contains an infinite path from 
the root. The node labels on this path yield a correct selection of serialization 
points (and consequently, of incomplete operations and responses) for the entire 
sequence ft. F-1 

Having defined the safety properties for atomic objects--well-formedness and 
a tomici ty- -we now turn to liveness properties. The liveness properties we con- 
sider are termination conditions similar to those we gave for the agreement prob- 
lem, in Section 12.1. The simplest requirement is for failure-free executions, that 
is, those executions in which no stop event occurs. 

Fai lure- free  t erminat ion:  In any fair failure-free execution of A x U, every 
invocation has a response. 

With this one liveness property, we can define "atomic objects." Namely, 
we say that A is an atomic object of variable type 7- if it guarantees the well- 
formedness condition, the atomicity condition for 7-, and the failure-free termi- 
nation condition, for all collections of users. 
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Note that if we wanted to consider only the failure-free case, then we could 

simplify the statement of the atomicity condition, because there would never be 

any need to consider incomplete operations. The reason we have given the more 
complicated statement of the atomicity condition is that we shall also consider 
failures. 

As for the mutual exclusion problem in Section 10.2, it is possible to refor- 
mulate the entire definition of an atomic object equivalently in terms of a trace 

property P. This time, sig(P) includes all the external interface actions of the 
atomic object, including the stop actions as well as the invocation and response 

actions, and traces(P) expresses well-formedness, atomicity, and failure-free ter- 
mination. Then an automaton A with the right interface is an atomic object of 

type T exactly if, for all collections of users, fairtraces(A x U) C_ traces(P). 
We also consider some stronger termination conditions involving fault-tolerance. 

W a i t - f r e e  t e r m i n a t i o n :  In any fair execution of A x U, every invocation on a 

non-failing port has a response. 

That is, any port on which no failure occurs provides responses for all invoca- 
tions, regardless of the failures that occur on any of the other ports. We generalize 

this property to describe termination in the presence of any number of failures. 

f - f a i l u r e  t e r m i n a t i o n ,  0 _< f _< n: In any fair execution of A x U in which 
stop events occur on at most f ports, every invocation on a non-failing 
port has a response. 

Failure-free termination and wait-free termination are the special cases of the f-  

failure termination condition where f is equal to 0 and n, respectively. A further 
generalization allows us to talk about the failure of any particular set of ports. 

/ - f a i l u r e  t e r m i n a t i o n ,  I C_ { 1 , . . .  , n} :  In every fair execution of A x U in 

which the only stop events occur on ports in I, every invocation on a 

non-failing port has a response. 

Thus, f-failure termination is the same as /-failure termination for all sets I 
of ports of size at most f .  We say that A guarantees wait-free termination, 
guarantees I-failure termination, and so on, provided that it guarantees the 
corresponding condition for all collections of users. 

We close this section with a simple example of a shared memory system that 
is an atomic object. 

E x a m p l e  13.1.4 A r e a d / i n c r e m e n t  a t o m i c  o b j e c t  

We define the read/increment variable type to have N as its domain, 

0 as its initial value, and read and increment as its operations. 
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Let A be a shared memory system with n processes in which each 
port  i supports both read and increment operations. A has n shared 
read/wr i te  registers x(i),  1 _< i _< n, each with domain l~l and initial 
value 0. Shared variable x(i) is writable by process i and readable 
by all processes. 

When an increment4 input occurs on port i, process i simply 
increments its own shared variable, x(i). It can do this using only a 
write operation, by remembering the value of x(i) in its local state. 
When a readi occurs on port i, process i reads all the shared variables 
x( j )  one at a time, in any order, and returns the sum. 

Then it is not hard to see that A is a read/ increment  atomic 
object and that it guarantees wait-free termination. For example, to 
see the atomicity condition, consider any execution of A x U. Let 
q) be the set of incomplete increment operations for which a write 
occurs on a shared variable. For each increment operation 7r that is 
either completed or is in (I), place the serialization point ,~ at the 
point of the write. 

Now, note that any completed (high-level) read operation 7r re- 
turns a value v that is no less than the sum of all the x(i) 's  when the 
read is invoked and no greater than the sum of all the x(i) 's  when the 
read completes. Since each increment operation only increases this 
sum by 1, there must be some point within 7r's interval at which the 
sum of the x(i) 's  is exactly equal to the return value v. We place the 
serialization point ,~ at this point. These choices allow the shrinking 
needed to show atomicity. 

1 3 . 1 . 2  A C a n o n i c a l  W a i t - F r e e  A t o m i c  O b j e c t  A u t o m a t o n  

In this subsection we give an example of an atomic object automaton C for 
a given variable type 7- and given external interface. Automaton C guarantees 
wait-free termination. C is highly nondeterministic and is sometimes regarded as 
a "canonical wait-free atomic object automaton" for the given type and external 
interface. It can be used to help show that other automata are wait-free atomic 
objects. 

C automaton (informal): 

C maintains an internal copy of a shared variable of type 7-, initialized 
to the initial value v0. It also has two buffers, inv-buffer for pending 
invocations and resp-buffer for pending responses, both initially empty. 



13.1. DEFINITIONS AND BASIC RESULTS 409 

Finally, it keeps track of the ports on which a stop action has occurred, in 
a set stopped, initially empty. 

When an invocation arrives, C simply records it in inv-buffer. At any 
time, C can remove any pending invocation from inv-buffer and perform 
the requested operation on the internal copy of the shared variable. When 
it does this, it puts the resulting response in resp-buffer. Also at any 
t ime,  C can  remove  any  pend ing  r e sponse  f rom resp-buf fer  and  convey  the 

r e sponse  to the user.  

A stopi event  j u s t  adds  i to stopped, which  enables  a special  d u m m y i  ac t ion  

hav ing  no effect. It  does  not ,  however ,  d isable  the o ther  local ly  con t ro l l ed  

ac t ions  involving i. All the local ly  con t ro l led  ac t ions  involving each po r t  i, 

inc lud ing  the d u m m y i  act ion,  are  g r o u p e d  into one task .  Th i s  m e a n s  tha t  

af ter  a stopi, ac t ions  involving i are  p e r m i t t e d  (but  not  r equ i red)  to cease.  

More precisely, 

C automaton (formal)" 

Signature: 

Input" 
ai's as in the given external interface 
stopi, 1 < i < n 

Output" 
bi's as in the given external interface 

Internal: 
perform(a)i, ai in the external interface, 

l < i < n  
dummyi, 1 < i << n 

States: 
val, a value in V, initially v0 
inv-buffer, a set of pairs (i, a), for ai in the external interface 
resp-buffer, a set of pairs (i, b), for bi in the external interface 
stopped C {1,. . .  , n}, initially empty 

Transitions: 
a /  

Effect: 
inv-b~ff~r : -  inv-b~Tf~r U { (i, a) } 

p~fo~.~(a)~ 
Precondition: 

(i, a) 6 inv-buffer 
Effect: 

inv-buffer := inv-buffer - { (i, a) } 
(b, val) := f (a, val) 
resp-buffer := resp-buffer U { (i, b)} 
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Precondition: 
(i, b) E resp-buffer 

Effect: 
resp-buffer "- resp-buffer - { (i, b)} 

stopi 
Effect" 

stopped "- stopped U { i } 

dummyi 
Precondition" 

i E stopped 
Effect: 

none 

Tasks :  
for every i" 

{perform(a)i" ai is an input} U {bi "b~ is an output} U {dummyi} 

T h e o r e m  13.3  C is an atomic object with the given type and external interface, 
guaranteeing wait-free terminat ion  (for all collections of users). 

P r o o f  S k e t c h .  Well-formedness is s t ra ightforward.  To see wait-freedom, con- 

sider any fair execution a of C x U and suppose that  there are no failures on 

port  i in a.  Then  the dummyi  action is never enabled in c~. The fairness of 

then implies that  every invocation on port  i t r iggers  a performi event and a 

subsequent  response.  

It remains to show atomicity. Consider  any execution c~ of C x U. Let (I) 

be the set of incomplete operations for which a perform occurs in a.  Assign a 

serialization point ,~ to each operat ion 7r that  is either completed in c~ or is in 

(I): place ,~ at the point of the perform. Also, for each 7~ E (I), select the response 

re turned  by the perform as the response for the operation. These  choices allow 

the shrinking needed to show atomicity. [-] 

C can be used to help verify that  other au tomata  are also wait-free atomic 

objects,  as follows" 

T h e o r e m  13.4  Suppose that A is an I / O  automaton with the same external 
interface as C. Suppose that fa ir traces(A x U) C fair traces(C x U) for  every 
composition U of user automata. Then A is an atomic object guaranteeing wait- 
free terminat ion.  

P r o o f  S k e t c h .  Follows from Theorem 13.3. For the well-formedness and 

atomicity,  we use the fact that  the combinat ion of these two conditions is a safety 

proper ty  (Theorem 13.1), plus the fact that  every finite t race can be extended 

to a fair t race (Theorem 8.7). The wai t - f reedom condition follows immedia te ly  

from the definitions. KI 
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We also have a converse to Theorem 13.4, which says that every fair trace 
that is allowed for a wait-free atomic object is actually generated by C: 

Theorem 13.5 Suppose that A is an I /O automaton with the same external 
interface as C. Suppose that A is an atomic object guaranteeing wait-free ter- 
ruination. Then fairtraces(A x U) C_ fairtraces(C x V), for every composition 
U of user automata. 

Proo f .  The proof is left as an exercise. ff] 

13.1.3 Compos i t i on  of Atomic  Objects  

In this subsection, we give a theorem that says that the composition of atomic 
objects (using ordinary I /O automaton composition, defined in Section 8.2.1) is 
also an atomic object. Recall the definitions of compatible variable types and 
composition of variable types from the end of Section 9.4. 

Theorem 13.6 Let {Aj}jE J be a countable collection of atomic objects having 
compatible variable types {Tj}jej  and all having the same set of ports { 1 , . . . ,  n}. 
Then the composition A - H jc j  Aj is an atomic object having variable type 
7 - -  I-Ijcj 7j and having ports { 1 , . . . ,  n}. 

Furthermore, if every Aj guarantees I-failure termination (for all collections 
of users), then so does A. 

In atomic object A, port i handles all the invocations and responses that are 
handled on port i of any of the Aj. According to the definition of composition, 
the state of A has a piece for each Aj. The invocations and responses that are 
derived from Aj only involve the piece of the state of A associated with Aj. 
The stopi actions, however, affect all parts of the state. We leave the proof of 
Theorem 13.6 for an exercise. 

13.1.4 Atomic  Objects  versus Shared Variables 

The definition of an atomic object says that its traces "look like" traces of a 
sequentially accessed shared variable of the underlying type. What good is this? 

The most important  fact about atomic objects, from the point of view of 
system construction, is that it is possible to substitute them for shared variables 
in a shared memory system. This permits modular construction of systems: 
it is possible first to design a shared memory system and then to replace the 
shared variables by arbitrary atomic objects of the given types. Under certain 
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circumstances, the resulting system "behaves in the same way" as the original 

shared memory system, as far as the users can tell. 
In this section, we describe this substitution technique. First we give some 

technical conditions on the original shared memory system that are required for 
the replacement to work correctly. Next, we give the substitution construction. 
Finally, we define the sense in which the resulting system behaves in the same 
way as the original system and prove that, with the given conditions, the result- 
ing system really does behave in the same way. Although the basic ideas are 
reasonably simple, there are a few details that have to be handled carefully in 
order to make the substitution technique work out right. 

We begin with A, an arbi t rary algorithm in the shared memory model of 

Chapter  9. We assume that A interacts with user automata Ui, 1 < i < n. We 
permit  each process i of A to have any number of tasks. We also include stopi 

actions, as discussed in Section 9.6, and assume that each stopi event permanently 
disables all the tasks of process i. 

Now for the technical conditions we mentioned above. Consider A in combi- 
nation with any collection of user automata Ui. W e  assume that for each port i, 
there is a function turni that, for any finite execution c~ of the combined system, 
yields either the value sy s t em  or user. This is supposed to indicate whose turn it 
is to take the next step, after c~. Specifically, we require that if turn~(c~) - sys tem,  

then Ui has no output  step enabled in its state after c~, while if turni(c~) - user,  

then process i of A has no output  or in ternal  step, that is, no locally controlled 
step, enabled in its state after (~. 

For example, all the mutual exclusion algorithms in Chapter  10 and all the 
resource-allocation algorithms in Chapter  11 satisfy these conditions (if we add 
the stop actions). In those cases, turr~(c~) - s y s t em  for any c~ after which U~ is in 
the trying or exit region, and turni(c~) - user  if Ui is in the critical or remainder 
region. In fact, the required conditions are implied by the restriction on process 
activity assumed near the end of Section 10.2 and at the end of Section 11.1.2. 

For consensus algorithms, as studied in Chapter  12, we may define turni(c~) - 

s y s t em  for any c~ that contains an initi event, and turni(c~) - user  otherwise. 
Then to satisfy the conditions we need here, we would have to add a restriction, 
namely, that process i cannot do anything before an initi occurs. This condition 
is satisfied by the only algorithm in Chapter  12, R M W A g r e e m e n t .  

Now we give the substitution. Suppose that for each shared variable x of A, 
we are given an atomic object automaton B~ of the same type and the appropriate 
external interface. That  is, Bx has ports 1 , . . .  , n, one for each process of A. On 
each port,  it allows all invocations and responses that are used by process i in 
its interactions with shared variable x in algorithm A. It also has stopi inputs, 
one for each port, as usual. 
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Then we define Trans(A), the transformed version of A that uses the atomic 

objects B~ in place of its shared variables, to be the following automaton: 

Trans (tl) a u t o m a t o n :  

Trans(A) is a composition of I /O automata, one for each process i and 
one for each shared variable x of algorithm A. For each variable x, the 

automaton is the atomic object automaton Bx. For each process i, the 

automaton is Pi, defined as follows. 

The inputs of Pi are the inputs of A on port i plus the responses of each 

Bx on port i plus the stopi action. The outputs of Pi are the outputs of A 
on port i plus the invocations for each B~ on port i. 

Pi's steps simulate those of process i of A directly, with the following ex- 

ceptions: When process i of A performs an access to shared variable x, 
Pi instead issues the appropriate invocation to Bx. After it does this, it 
suspends its activity, awaiting a response by Bx to the invocation. When 

a response arrives, Pi resumes simulating process i of A as usual. There 

is a task of Pi corresponding to each task of process i of A. 

If a stopi event occurs, all tasks of Pi are thereafter disabled. 

E x a m p l e  13.1.5 A a n d  Trans(A) 

Consider a two-process shared memory system A that is supposed to 
solve some sort of consensus problem, using two read/wri te  shared 
variables, x and y. We assume that process 1 writes x and reads y, 
and process 2 writes y and reads x. The interface between each Ui 
and A consists of actions of the form init(v)i, which are outputs of Ui 
and inputs of A, and actions of the form decide(v)i, which are outputs 

of A and inputs of Ui. In addition, stopi, i E {1, 2} is an input of A. 
The architecture of this system is depicted in Figure 13.5, part (a). 

The architecture of the transformed system Trans(A) is depicted 
in part (b). Note the external interfaces of the automata Bx and By. 
For example, Bz has inputs write(v)1 and read2 and outputs ackl and 
v2. 2 Bz also has inputs stop1 and stop2, which are identified with the 

stop1 input to P1 and the stop2 input to P2, respectively. This means, 
for example, that stop1 simultaneously disables all tasks of P1 and 
also has whatever effect stop1 has on the implementation Bx. 

2For the purpose of disambiguation, such invocation and response actions could also be 
subscripted with the name of the object, here x and y. We avoid this detail in this example 
since there happens to be no ambiguity here. 
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~ - ~  init(v), write(v), 

cide(v) ," 

Q ~ ~ d e c i d e (  v ) - write(v): 

(b) 

F i g u r e  13.5" Transformation of a shared memory system to include atomic objects. 

Now we give a theorem describing what is preserved by transformation 

Trans. Theorem 13.7 first describes conditions that  hold for any execution 

(~ of Trans(A). Execution a does not have to be fair for these conditions to 

hold. These conditions say that  a looks to the users like an execution a~ of 

A. Moreover, the same stop events occur in c~ and a~, although we allow for 

the possibility that  the stop events could occur in different positions in the two 

executions. 

Theorem 13.7 then goes on to identify some conditions under which the 

simulated execution a ~ of the A system is guaranteed to be a fair execution. As 
you would expect, one of the conditions is that  c~ is itself a fair execution of the 

Trans(A) system. But this is not enough--we also need to make sure that  the 

object au tomata  Bx do not cause processing to stop. So we include two other 

conditions that  together ensure that  this does not happen, namely, that  all the 

failures that  occur in a are confined to a particular set I of ports and that  all the 
object au tomata  B~ can tolerate failures on I (formally, they guarantee / - fa i lure  

termination). 

T h e o r e m  13.7 Suppose that ~ is any execution of the system Trans(A) x U. 
Then there is an execution a ~ of A x U such that the following conditions hold: 
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1. ~ and ~ are indistinguishable 3 to U. 

2. For each i, a stopi occurs in ~ exactly if  a stopi occurs in c~ !. 

Moreover, i f  c~ is a fair  execution, i f  every i for  which stopi appears in ~ is in 
I ,  and if  every Bx guarantees I-failure terminat ion (for all collections of users), 
then c~ I is also a fair  execution. 

P r o o f  Ske tch .  We modify a to get c~ ~ as follows. First, since each Bx is an 

atomic object, we can insert a serialization point ,~ in c~ between the invocation 

and response of each completed operation 7r on Bx and also after the invoca- 

tion of each of a subset �9 of the incomplete operations on B~. We also obtain 

responses for all the operations in q). These serialization points and responses 
can be guaranteed to satisfy the "shrinking" property described in the atomicity 

condition. 
Next, we move the invocation and response events for each completed oper- 

ation 7~ on Bx so that they are adjacent and occur exactly at ,~. Also, for each 
incomplete operation 7~ in ~ - - t h a t  is, each incomplete operation that has been 
assigned a serialization point- -we place the invocation, together with the newly 

manufactured response, at ,~. And for each incomplete operation that is not in 

(I)--that is, each incomplete operation that has not been assigned a serialization 

point- -we simply remove the invocation event. There is one additional techni- 
cality: if any stopi event in a occurs after an invocation by process i and before 

the serialization point to which the invocation is moved, then that stopi event is 
also moved to the serialization point, just after the invocation and response. We 

move, add, and remove events in this way for all shared variables x. 
We claim that it is possible to move all the events that we have moved in this 

construction without changing the order of events of any Pi (with one technical 

exception: a response to Pi by some Bx may be moved ahead of a stopi). This 
follows from two facts. First, by construction, Pi performs no locally controlled 

actions while it is waiting for a response to an invocation. And second, while Pi 
is waiting for a response, it is the sys tem's  turn to take steps. This means that 

U~ will not perform any output steps, so Pi will receive no inputs. 
Similarly, we claim that we can add the responses we have added and remove 

the invocations we have removed in this construction without otherwise affecting 
the behavior of Pi. This is because if Pi performs an incomplete operation in c~, 
it does not do anything after that operation. It does not matter if Pi stops just 
before issuing the invocation, while waiting for a response, or just after receiving 

the response. 

3We use the definition of indistinguishable given in Section 8.7. 
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Since we have not changed anything significant by this motion, addition, and 
removal of events, we can simply fill in the states of the processes Pi as in c~. 
(A technical exception" A response to Pi moved before a stopi might cause a 
different change in the state of Pi than it did in c~.) The result is a new execution, 
C~l, also of the system Trans(A) x U. Moreover, it is clear that c~ and Ct 1 are 
indistinguishable to U and have stop events for the same ports. 

Now, c~1 is an execution of Trans(A) x U, which is not exactly what we need; 
rather, we need an execution of the system A x U. But notice that in C~l, all 
the invocations and responses for the object automata  Bz occur in consecutive 
matching pairs. So we replace those pairs by instantaneous accesses to the cor- 
responding shared variables and thereby obtain an execution c~' of the system 
A x U. Then c~ and c~' are indistinguishable to U and have stop events for the 
same ports. This proves the first half of the theorem. 

For the second half, suppose that c~ is a fair execution of Trans(A) x U, that 
I C_ {1 , . . .  , n}, that every i for which stopi appears in c~ is in I, and that each B~ 
guaran tees / - fa i lu re  termination. Then the only stopi inputs received by any B~ 
must be for ports i C I. Thus, since every B~ guaran tees / - fa i lu re  termination, 
it must be that every Bx provides responses for every invocation by a process 

Pi for which n o  8topi event occurs in a. This fact, combined with the fairness 
assumption for processes Pi, is enough to imply that c~' is a fair execution of 
A x  U. F1 

Thus, Theorem 13.7 implies that any algorithm for the shared memory model 
(with some simple restrictions) can be t ransformed to work with atomic objects 
instead of shared variables and that the users cannot tell the difference. 

We give as a corollary the special case of Theorem 13.7 where the atomic 
objects Bx all guarantee wait-free termination. In this case, we can conclude 
that c~' is fair just by assuming that c~ is fair. 

C o r o l l a r y  13.8 Suppose that all the Bx guarantee wait-free termination. Sup- 
pose that c~ is any fair execution of Trans(A) x U. Then there is a fair execution 
~' of A x U such that the following conditions hold: 

1. a and c~' are indistinguishable to U. 

2. For each i, a stopi occurs in (~ exactly if a stopi occurs in c~'. 

P r o o f .  Immediate from Theorem 13.7, letting I -  { 1 , . . . ,  n}. D 

In the special case where A is itself an atomic object, Theorem 13.7 implies 
that Trans(A) is also an atomic object. Including failure considerations, we 
obtain the following corollary. 
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Corollary 13.9  Suppose that A and all the Bx's are atomic objects guarantee- 
ing I-failure termination. Then Trans(A) is also an atomic object guaranteeing 
I-failure termination. 

P r o o f .  First  let c~ be any execution of Trans(A) and a collection of users 

Ui. Then Theorem 13.7 yields an execution a~ of A x U such that  c~ and c~ ~ 

are indistinguishable to U. Since A is an atomic object,  c~ ~ satisfies the well- 

formedness and atomici ty  properties.  Since both  of these are propert ies of the 

external  interface of U, and a and (~ are indistinguishable to U, c~ also satisfies 

the well-formedness and atomici ty  properties.  

It remains to consider t h e / - f a i l u r e  terminat ion condition. Let a be any fair 

execution of Trans(A) and a collection of users Ui such that  every i for which 

stopi appears  in a is in I. Since all the Bx guarantee /-fai lure terminat ion,  

Theorem 13.7 yields a fair execution c~ ~ of A x U, such that  c~ and c~ ~ are indis- 

t inguishable to U and c~ and c~ ~ contain stop events for the same set of ports.  

Thus, every i for which stopi appears in c~ ~ is in I. 

Now consider any invocation in c~ on a port  i for which no stopi event occurs 

in c~--that is, on a non-failing port .  Since c~ and c~ ~ are indistinguishable to U, 

the same invocation appears  in c~ ~. Because A gua ran t ee s / - f a i l u r e  terminat ion,  

there is a corresponding response event in c~ ~. Then, since a and c~ ~ are indistin- 

guishable to U, this response also appears  in c~. This is enough to show/ - fa i lu re  

termination.  [~ 

Hierarchical construction of  s h a r e d  m e m o r y  s y s t e m s .  In the special case 

where each atomic object Bx is itself a shared memory  system, we claim that  

Trans(A) can also be viewed as a shared memory  system. Namely, each process 

i of Trans(A) (viewed as a shared memory  system) is a combination of process Pi 
of Trans(A) and the processes indexed by i in all of the shared memory  systems 

Bx. This combinat ion is not exactly an I / O  au tomaton  composit ion,  because the 

processes in the Bx's are not I / O  automata .  However, the combination is easy 

to describe: the state set of process i of Trans(A) is just  the Car tes ian  product  

of the state set of Pi and the state sets of all the processes indexed by i in all the 

Bx's, and likewise for the s tar t  states. The actions associated with process i of 

Trans(A) are just  the actions of all the component  processes i, and similarly for 

the tasks. 

The si tuat ion is depicted in Figure 13.6. Par t  (a) shows Trans(A), including 
the shared memory  systems Bx plugged in for all the shared variables x of A. (For 

simplicity, we have not drawn the stop input  arrows.) All the shaded processes 

are associated with port  1. Par t  (b) shows the same system as in par t  (a), with 
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F i g u r e  13.6" Hierarchical construction of a shared memory system. 

the processes that are to be combined grouped together. Thus, all the shaded 
processes from part (a) are now combined into a single process 1 in part (b). 

By the definition of Trans(A), the effect of a stopi event in the system of 
part (a) is to immediately stop all tasks of all the processes associated with port 
/ - - the  tasks of Pi as well as the tasks of all the processes i of the Bx's. This 
is the same as saying that stopi stops all tasks of the composed process i in the 
system of part (b), which is just what stopi is supposed to do when that system 
is regarded as a shared memory system. 

H i e r a r c h i c a l  c o n s t r u c t i o n  of  a t o m i c  o b j e c t s .  Finally, consider the very 
special case where shared memory system A is an atomic object guaranteeing 
/-failure termination and each atomic object Bx is a shared memory system 
that guarantees /-failure termination. Then Corollary 13.9 and the previous 
paragraph imply that Trans(A) is an atomic object guarantee ing/ - fa i lure  ter- 
mination and also that it is a shared memory system. This observation says that 
two successive layers of atomic object implementations in the shared memory 
model can be collapsed into one. 
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13.1.5 A Sufficient Condition for Showing Atomicity 

Before presenting specific atomic object constructions, we give a sufficient condi- 
tion for showing that a shared memory system guarantees the atomicity condition. 
This lemma enables us to avoid reasoning explicitly about incomplete operations 
in many of our proofs that objects are atomic. 

For this lemma, we suppose that A is a shared memory system with an 
external interface appropriate for an atomic object for variable type 7-. Also, we 
suppose that Ui, 1 <_ i <_ n, is any collection of users for A; as usual, U -  I-[ Ui. 

L e m m a  13.10 Suppose that the combined system A x U guarantees well-formed- 
ness and failure-free termination. Suppose that every (finite or infinite) execu- 
tion c~ of A x U containing no incomplete operations satisfies the atomicity 
property. Then the same is true for every execution of A x U, including those 
with incomplete operations. 

P r o o f .  Let c~ be an arbitrary finite or infinite execution of the combined system 
A x U, possibly containing incomplete operations. We must show that c~ satisfies 
the atomicity property, that is, that c~[ext(U) satisfies the atomicity property. 

If c~ is finite, then the handling of stop events in a shared memory system im- 
plies that there is a finite failure-free execution c~1, obtained by removing the stop 
events from c~ (and possibly modifying some state changes associated with inputs 
at ports on which a stop has occurred), such that C~llext(U) = c~[ext(U). By ba- 
sic properties of I /O automata (in particular, Theorem 8.7), c~ can be extended 
to a fair failure-free execution c~2 of A x U. Since A guarantees failure-free ter- 
mination, every operation in c~2 is completed. Then, by assumption, c~2 satisfies 
the atomicity property, that is, c~21ext(U) satisfies the atomicity property. But 
C~l[ezt(U) is a prefix of c~2lezt(U). Since, by Theorem 13.1, atomicity combined 
with well-formedness is a safety property and hence is prefix-closed, it follows 
that ~1 l ext(U) satisfies the atomicity property. Since c~[ ext(U) = C~l [ext(U), we 
have that c~lext(U ) satisfies the atomicity property, as needed. 

On the other hand, suppose that c~ is infinite. By what we have just proved, 
any finite prefix c~1 of c~ has the property that C~llext(U) satisfies the atomicity 
property. But c~lext(U ) is just the limit of the sequences of the form C~l[ext(g). 
Since, by Theorem 13.1, atomicity combined with well-formedness is a safety 
property and hence is limit-closed, it follows that alext(U ) satisfies the atomicity 
property, as needed. [2] 
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13.2 Implementing Read-Modify-Write Atomic 
Objects in Terms of Read/Write Variables 

We consider the problem of implementing a read-modify-write atomic object in 
the shared memory model with read/write shared variables. (See Section 9.4 for 
the definition of a read-modify-write variable type.) To be specific, we fix an 
arbitrary n and suppose that the read-modify-write object being implemented 
has n ports, each of which can support arbitrary update functions as inputs. 

If all we require is an atomic object and we are not concerned about tolerating 
failures, then there are simple solutions. For instance, 

R M W f r o m R  W algorithm: 

The latest value of the read-modify-write variable corresponding to the ob- 
ject being implemented is kept in a read/write shared variable x. Using a 
set of read/write shared variables different from x, the processes perform 
the trying part of a lockout-free mutual exclusion algorithm (for example, 
PetersonNP from Section 10.5.2) whenever they want to perform opera- 
tions on the atomic object. When a process i enters the critical region of 
the mutual exclusion algorithm, it obtains exclusive access to x. Then pro- 
cess i performs its read-modify-write operation using a read step followed 
by a separate write step. After completing these steps, process i performs 
the exit part of the mutual exclusion algorithm. 

However, this algorithm is not fault-tolerant: a process might fail while it 
is in its critical region, thereby preventing any other process from accessing the 
simulated read-modify-write variable. In fact, this limitation is not an accident. 
We give an impossibility result, even for the case where only a single failure is 
to be tolerated. 

Theorem 13.11 There does not exist a shared memory system using read/write 
shared variables that implements a read-modify-write atomic object and guaran- 
tees 1-failure termination. 

Proof. Suppose for the sake of contradiction that there is such a system, say B. 
Let A be the RMWAgreement algorithm for agreement in the read-modify-write 
shared memory model, given in Section 12.3. By Theorem 12.9, A guarantees 
wait-free termination and hence guarantees 1-failure termination (as defined for 
agreement algorithms in Section 12.1). Now we apply the transformation of 
Section 13.1.4 to A, using B in place of the single shared read-modify-write 
variable of A. Let Trans(A) denote the resulting system. 
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C l a i m  13 .12  Trans(A) solves the agreement problem of Chapter 12 and guar- 
antees 1-failure termination. 

P r o o f .  The proof of this is similar to that  of Corollary 13.9. First  let c~ be any 
execution of Trans(A) and a collection of users Ui. Then Theorem 13.7 yields 
an execution c~' of A x U such that  c~ and c~' are indistinguishable to U. Since 
A solves the agreement  problem, c~' satisfies the well-formedness, agreement,  
and validity properties.  Then  since c~ and c~' are indistinguishable to U, c~ also 

satisfies the well-formedness, agreement,  and validity properties.  
It remains to consider the l-failure terminat ion condition. Let c~ be any fair 

execution of Trans(A) and a collection of users Ui, in which init events occur 
on all ports  and in which there is a stop event for at most  one port.  Since 
B guarantees  l-failure termination,  Theorem 13.7 yields a fair execution c~' of 
A x U such that  c~ and c~' are indistinguishable to U and contain stop events for 
the same set of ports. Thus,  init events occur on all ports  in c~', and there is a 
stop event for at most  one port  in c~'. 

Now consider any port  i with no stopi event in c~. Since c~ and c~' contain 
stop events for the same ports,  there is also no stopi event in c~'. Because A 
guarantees  l-failure terminat ion,  there is a decidei event in c~'. Then, since c~ 
and c~' are indistinguishable to U, this decidei also appears  in c~. This is enough 
to show 1-failure termination.  [-1 

However, by the pa ragraph  at the end of Section 13.1, Trans(A) is itself 
a shared memory  system in the r ead /wr i t e  shared memory  model. But  then 
Trans(A) contradicts  Theorem 12.8, the impossibil i ty of agreement  with l-failure 
terminat ion in the r ead /wr i t e  shared memory model. 

13.3 Atomic Snapshots of Shared Memory  

In the rest of this chapter,  we consider the implementat ion of par t icular  types 
of atomic objects in terms of other types of atomic objects,  or, equivalently, in 
terms of shared variables. This section is devoted to snapshot  atomic objects, 
and the next is devoted to r ead /wr i t e  atomic objects. 

In the r ead /wr i t e  shared memory model, it would be useful for a process to 
be able to take an instantaneous snapshot of the entire state of shared memory. 
Of course, the r ead /wr i t e  model does not directly provide this capabi l i ty - - i t  
only permits  reads on individual shared variables. 

In this section, we consider the implementat ion of such a snapshot.  We 
formulate the problem as that  of implementing a par t icular  type of atomic object  
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called a snaphot atomic object, using the read/wr i te  shared memory model. The 

variable type underlying a snapshot atomic object has as its domain V the set 

of vectors of some fixed length over a more basic domain W. The operations 
are of two kinds: writes to individual vector components, which we call update 
operations, and reads of the entire vector, which we call snap operations. A 
snapshot atomic object can simplify the task of programming a read/wr i te  system 

by allowing the processes to view the entire shared memory as a vector accessible 
by these powerful operations. 

We start  with a description of the problem, then give a simple solution that 

uses read/wr i te  shared variables of unbounded size. Then we show how the 
construction can be modified to work with bounded-size shared variables. Sec- 

tion 13.4.5 contains an application of snapshot atomic objects in the implemen- 
tation of read/wr i te  atomic objects. 

1 3 . 3 . 1  T h e  P r o b l e m  

We first define the variable type 7- to which the snapshot atomic object will 
correspond; we call this a snapshot variable type. 

The definition begins with an underlying domain W with initial value w0. 

The domain V of T is then the set of vectors of elements of W of a fixed length 
m. The initial value v0 is the vector in which every component has the value w0. 
There are invocations of the form update(i, w), where 1 _< i < m and w E W, with 
response ack, and an invocation snap, with responses v C V. An update(i,w) 
invocation causes component i of the current vector to be set to the value w and 

triggers an ack response. A snap invocation causes no change to the vector but 

triggers a response containing the current value of the entire vector. 

Next we define the external interface that we will consider. We assume that 
there are exactly n - m + p ports, where rn is the fixed length of the vectors 
and p is some arbi t rary  positive integer. The first m ports are the update ports, 

and the remaining p ports are the snap ports. On each port  i, 1 _< i < m, 
we permit  only invocations of the form update(i, w ) - - t h a t  is, only updates to 

the ith vector component are handled on port i. We sometimes abbreviate the 
redundant  notation update(i, w)~, which indicates an invocation of update(i, w) 
on port  i, as simply update(w)i. On each port  i, m + 1 _< i _< n, we permit  only 
snap invocations. See Figure 13.7. 

Notice that we are considering a special case of the general problem, where 
updates to each vector component arrive only at a single designated port  and 
hence arrive sequentially. It is also possible to consider a more general case, 
where many ports allow updates to the same vector component.  Of course, we 
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m update ports 

update(w), 

__. ack, 

update(w) m 

--.~ ackm [ 

p snap ports 

snap ,,,+ l 

V m + l  
--,,..1 

snap n 

12 n 

F i g u r e  13.7: External interface of a snapshot atomic object (stop actions not de- 
picted). 

could also consider the case where update and snap operations are allowed to 
occur on the same port. 

We consider implementing the atomic object corresponding to this variable 
type and external interface using a shared memory system with n processes, 
one per port. We assume that all the shared variables are l -wr i te r /n- reader  
read/wr i te  shared variables. The implementations we describe guarantee wait- 
free termination. 

13.3.2 An Algori thm with Unbounded  Variables 

The UnboundedSnapshot algorithm uses m 1-wri ter /n-reader  read/wr i te  shared 
variables x(i), 1 _< i <_ rn. Each variable x(i) can be writ ten by process i (the 
one connected to port i, which is the port for update(i, w) operations) and can 

be read by all processes. The architecture appears in Figure 13.8. Each variable 
x(i) holds values each of which consists of an element of W plus some additional 
values needed by the algorithm. One of these additional values is an unbounded 
integer "tag." 
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m update ports 

p snap ports 

F i g u r e  13.8" Architecture for UnboundedSnapshot algorithm. 

In the UnboundedSnapshot algorithm, each process i writes the values that  it 
receives in updatei invocations into the shared variable x(i). A process perform- 
ing a snap operation must somehow obtain consistent values from all the shared 
variables, that  is, values that  appear to have coexisted in the shared memory at 
some moment  in time. The way it does this is based on two simple observations. 

Observation 1: Suppose that  whenever a process i performs an update(w)i 
operation, it writes not only the value w into x(i), but also a "tag" that  uniquely 
identifies the update. Then, if a process j that  is a t tempt ing  to perform a snap 
operation reads all the shared variables twice, with the second set of reads 
start ing after the first set of reads is finished, and if it finds the tag in each 
variable x(i) to be the same in the first and second set of reads, then the common 
vector of values returned in the two sets of reads is in fact a vector that  appears 
in shared memory at some point during the interval of the snap operation. In 
particular, this vector is the vector of values at any point after the completion 
of the first set of reads and before the start  of the second set. 

Observation 1 suggests the following simple algorithm. Each process i per- 
forming an update(w) operation writes w into x(i), along with a unique local tag, 
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obtained by starting with 1 for the first update at i and incrementing for each 

successive update at i. 
Each process j performing a snap repeatedly performs a set of reads, one 

per shared variable, until two consecutive sets of reads are "consistent," that is, 
they return identical tags for every x(i). When this happens, the vector of values 
returned by the second set of reads (which must be the same as that returned 
by the first set of reads) is returned as the response to the snap operation. 

It is easy to see that whenever this simple algorithm completes an operation, 
the response is always "correct," that is, it satisfies the well-formedness and 
atomicity conditions. However, it fails to guarantee even failure-free termination: 
a snap may never return, even in the absence of process failures, if new update 
operations keep getting invoked while the snap is active. A way out of this 

difficulty is provided by 
Observation 2: If process j ,  while performing repeated sets of reads on behalf 

of a snap, ever sees the same variable x(i) with four different t ags - - say  tagl, tag2, 
tag3, and tag4--then it knows that some updatei operation is completely contained 
within the interval of the current snap. In particular,  the updatei operation that 

writes tag3 must be totally contained within the current snap. 
To see why this is so, we argue first that the update that writes tag3 must 

begin after the beginning of the snap. This is because it begins after the end 
of the update that writes tag2, and the end of the update that writes tag2 must 
happen after the beginning of the snap interval (since the snap sees tag1). 

Second, we argue that the update that writes tag3 must end before the end of 

the snap. This is because it ends before the beginning of the update that writes 

tag4, and the snap sees tag4. 
Observations 1 and 2 suggest the UnboundedSnapshot algorithm. It extends 

the simple algorithm above so that before an update process i writes to x(i),  it 
first executes its own embedded-snap subroutine, which is just like a snap. Then, 
when it writes its value and tag in x(i),  it also places the result of its embedded- 
snap in x(i). A snap that fails to discover two sets of reads with identical tags 
despite many repeated at tempts  can use the result of an embedded-snap as a 
default snapshot value. A more careful description follows. In this description, 
each shared variable is a record with several fields; we use dot notation to indicate 
the fields. 

UnboundedSnapsho t  a l g o r i t h m :  

Each shared variable x(i), 1 _< i <_ m, is writable by process i and readable 

by all processes. It contains the following fields: 
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valc W, initially w0 
tag E I~t, initially 0 
view, a vector indexed by {1,... ,m} of elements of W, initially identically w0 

When  a snapj input  occurs on port  j ,  m + 1 _< j _< n, process j behaves 

as follows. It repeatedly performs sets of reads, where a set consists of m 

reads, one read of each shared variable x(i) ,  1 _< i _< m, in any order. It 

does this until one of the following happens: 

1. Two sets of reads re turn  the same x(i).tag for every i. 

In this case, the snap re turns  the vector of values x(i).val, 1 <_ i <<_ m, 
re turned by the second set of reads. (This is the same as the vector 

re turned by the first set of reads.) 

2. For some i, four dist inct  values of x(i).tag have been seen. 

In this case, the snap re turns  the vector of values in x(i).view associ- 

ated with the third of the four values of x(i).tag. 

When an update(w)i input  occurs, process i behaves as follows. First ,  it 

performs an embedded-snap. This involves exactly the same work as is 

performed by a snap, except that  the vector determined is recorded locally 

by process i instead of being re turned to the user. Second, process i 

performs a single write to x(i), setting the three fields of x(i) as follows: 

1. x(i).val "- w 

2. x(i).tag is set to the smallest unused tag at i. 

3. x(i).view is set to the vector re turned by the embedded-snap. 

Finally, process i outputs  acki. 

T h e o r e m  13 .13  The UnboundedSnapshot algorithm is a snapshot atomic ob- 
ject guaranteeing wait-free termination. 

P r o o f .  The well-formedness condition is clear. Wait-free terminat ion is also 

easy to see: the key is that  every snap and every embedded-snap must  terminate  

after performing at most  3m + 1 sets of reads. This is because after 3rn + 1 sets 

of reads, there must  either be two consecutive sets with no changes or else some 

variable x(i) with at least four different tags. In either of these two cases, the 

operation terminates.  

It remains to show the atomici ty condition. Fix any execution c~ of the 

UnboundedSnapshot algori thm plus users. In view of Lemma 13.10, we may 
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assume without loss of generality that a contains no incomplete operations. We 

describe how to insert serialization points for all operations. 
We insert the serialization point for each update operation at the point at 

which its write occurs. The insertion of serialization points for snap operations 
is a little more complicated. To describe this insertion, we find it helpful to assign 
serialization points not just to the snap operations but also to the embedded-snap 
operations. 

First, consider any snap or embedded-snap that terminates by finding two 
consistent sets of reads. For each such operation, we insert the serialization 
point anywhere between the end of the first of its two sets of reads and the 
beginning of its second. 

Second, consider those snap and embedded-snap operations that terminate by 
finding four different tags in the same variable. We insert serialization points for 
these operations one by one, in the order of their response events. For each such 
operation 7~, note that the vector it returns is the result of an embedded-snap 
r whose interval is totally contained within the interval of operation ~. Note 
that this operation r has already been assigned a serialization point, since it 
completes earlier than 7~. We insert the serialization point for 7~ at the same 
place as that for r 

It is easy to see that all the serialization points are within the required inter- 
vals. For the update operations and for the snap and embedded-snap operations 
that terminate by finding two consistent sets of reads, this is obvious. For the 
snap and embedded-snap operations that terminate by finding four distinct tags, 
this can be argued by induction on the number of response events for such oper- 
ations in a. 

It remains to show that the result of shrinking the operation intervals to their 
respective serialization points is a trace of the underlying snapshot variable type. 
For this, first note that after any finite prefix a '  of a,  there is a unique vector 
in V resulting from the write events in a ' .  Call this the correct vector after c~'. 
It is enough to show that every snap operation returns the correct vector after 
the prefix of a up to the operation's serialization point. More strongly, we argue 
that every snap and embedded-snap operation returns the correct vector for its 
serialization point. 

This is clear for the operations that terminate by finding two consistent sets 
of reads. For the other snap and embedded-snap operations, we argue this by 
induction on the number of response events for such operations in ~. [:] 

C o m p l e x i t y  a n a l y s i s .  The UnboundedSnapshot algorithm uses m shared vari- 
ables, each of which can take on an unbounded set of values. Even if the un- 
derlying domain W is finite, the variables are still unbounded because of the 
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unbounded tags. For time complexity, a non-failing process executing a snap 
performs at most 3m + 1 sets of reads, or at most (3m + 1)m shared memory 
accesses, for a total time that is O (m2t0, where t~ is an upper bound on pro- 
cess step time. A non-failing process executing an update also performs O (m 2) 
shared memory accesses, for a total time that is O (m2t0; this is because of its 
embedded-snap operation. 

13.3.3 An Algori thm with Bounded  Variables* 

The main problem with the UnboundedSnapshot algorithm is that it uses un- 
bounded-size shared variables to store the unbounded tags. In this subsection, 
we sketch an improved algorithm called BoundedSnapshot, which replaces the 
unbounded tags with bounded data. In order to achieve this improvement in 
efficiency, the BoundedSnapshot algorithm uses some mechanisms that are more 
complicated than simple tags. 

Note that the unbounded tags are used in the UnboundedSnapshot algori thm 
only for the purpose of allowing processes performing snap and embedded-snap 
operations to detect when new update operations have taken place. This infor- 
mation could, however, be communicated using a less powerful mechanism than 
a tag, in particular,  using a combination of handshake bits and a toggle bit. 

The handshake bits work as follows. There are now n + m shared variables" 
variables x(i), 1 < i < m as in the UnboundedSnapshot algorithm, plus new 
variables y(j), 1 <<_ j <<_ n. Each variable x(i) is writable by update process i and 
readable by all processes, as before. Each variable y(j), 1 <_ j <_ m, is writable 
by update process j (specifically, by the embedded-snap part  of update process 
j )  and is readable by all update processes, and each variable y(j), m + 1 <_ 
j < n, is writable by snap process j and readable by all update processes. 
Note that, unlike in the UnboundedSnapshot algorithm, the execution of the snap 
and embedded-snap operations in BoundedSnapshot involve writing to shared 
memory. 

For each update process i, 1 _< i < m, there are n pairs of handshake bits, 
one pair per process j.  The pair of bits for (i, j )  allow process i to tell pro- 
cess j about new updates by process i and also allow process j to acknowledge 
that it has seen this information. Specifically, x(i) contains a length n vector 
comm of bits, where the element comm(j) in variable x ( i ) - -which  we denote by 
x(i) .comm(j)-- is  used by process i to communicate with process j about new 
updates by process i. And y(j) contains a length m vector ack of bits, where 
the element ack(i) in variable y(j)--which we denote by y(j).ack(i)--is used by 
process j to acknowledge that it has seen new updates by process i. Thus, the 
pair of handshake bits for ( i , j )  are x(i).comm(j) and y(j).ack(i). 
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The way these handshake bits are used is roughly as follows. When a process 
i executes an update(w), it begins by reading all the handshake bits y(j).ack(i). 
Then it performs its write to x(i); when it does this, it writes the value w and 
embedded snap response view, as it does in UnboundedSnapshot, and in addition 
writes the handshake bits in comm. In particular, for each j ,  it sets the bit 
comm(j) to be unequal to the value of y(j).ack(i) read at the beginning of the 
operation. 

A process j performing a snap or embedded-snap repeatedly tries to perform 
two sets of reads, looking for the situation where nothing has changed in between 
the two sets of reads. But this time, changes are detected using the handshake 
bits rather than integer-valued tags. Specifically, before each at tempt to find two 
consistent sets of reads, process j first reads all the handshake bits x(i).comm(j) 
and sets each handshake bit y(j).ack(i) equal to the value of x(i).comm(j) just  
read. (Thus, the update operations at tempt to set the handshake bits unequal 
and the snap and embedded-snap operations at tempt to set them equal.) Process 
j looks for changes to the handshake bits comm(j) in between its two sets of 
reads; if it finds such changes on 2m + 1 separate attempts,  then it knows it has 
seen the results of four separate update operations by the same process i and can 
adopt the vector view produced by the third of these operations. 

The handshake protocol described so far is simple and is "sound" in the sense 
that every time a process performing a snap or embedded-snap detects a change, 
a new update has in fact occurred. However, it turns out that the handshake is 
not sufficient to discover every upda te - - i t  is possible for two consecutive updates 
by a process i not to be distinguished by some other process j.  Consider, for 
example, the following situation. 

E x a m p l e  13.3.1 In su f f i c i ency  of  h a n d s h a k e  b i t s  

Suppose that at some point during an execution, x(i).comm(j) = 0 
and y(j).ack(i) = 1, that is, the handshake bits used to tell j about 
i 's updates are unequal. Then the following events may occur, in the 
indicated order. (The actions involving the two processes i and j 
appear in separate columns.) 
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update(wl )i 
i reads y(j).ack(i)= 1 
i writes Wl and sets x(i).eomm(j):= 0 
acki 
update(w2)i 
i reads y(j). ack (i) = 1 

snapj 
j reads x(i).comm(j) = 0 
j sets y(j).ack(i):= 0 
j reads x(i).comm(j) = 0 

i writes w2 and sets x(i).eomm(j):= 0 
acki 

j reads x(i).comm(j)= 0 and decides that no updates have 
occurred since its previous read of x(i) 

In this sequence of events,  process  j per forms three reads of x ( i ) . c o m m ( j ) .  
The first of these is jus t  a p re l iminary  test;  the second and th i rd  are 

par t  of an a t t e m p t  to find two consis tent  sets of reads. Here, process  

j de te rmines  as a resul t  of its second and third  reads tha t  no upda tes  

have occur red  in between.  Th is  is erroneous.  

To overcome this problem,  we augment  the handshake  protocol  with a second 

mechanism:  each x( i )  contains  an addi t ional  toggle bit that  is flipped by process  

i dur ing  each of its write steps. This  ensures  tha t  each update changes the value 

of the shared  variable x( i ) .  In a bit  more  detail ,  the protocol  works as follows: 

BoundedSnapshot algorithm: 
Each  shared  variable x( i ) ,  1 <_ i < m, is wri table  by process  i and readable  

by all processes.  It contains the following fields" 

val c W, initially w0 
comm, a vector indexed by {1 , . . . ,  n} of {0, 1 }, initially identically 0 
toggle E {0, 1}, initially 0 
view, a vector indexed by {1,... , m} of elements of W, initially identically w0 

Also, each shared  variable y( j ) ,  1 < j < n, is wri table  by process  j and 

readable  by processes  i, 1 < i < m. It contains  the following field: 

ack, a vector indexed by {1 , . . . ,  m} of {0, 1}, initially identically 0 

W h e n  a snapj input  occurs on por t  j ,  m + 1 < j < n, process  j behaves  

as follows. It r epea ted ly  a t t e m p t s  to ob ta in  two sets of reads tha t  look 

"consis tent ."  Specifically, in each a t t empt ,  process  j first reads  all the 

relevant  handshake  bits  x ( i ) . c o m m ( j ) ,  for all i, 1 < i < m, in any order.  

Then  for each i, process  j sets y ( j ) . ack ( i )  to be equal  to the value read  in 
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x(i).comm(j); it does this in a single write step. Then process j performs 

two complete sets of reads, the first set finishing before the second set 

begins. If for every i, x(i).comm(j) and x(i).toggle are identical in the two 
reads of x(i), and, moreover, the common value of comm(j) is the same one 

that process j read at the beginning of this attempt,  then the snap returns 
the vector of values x(i).val obtained in the final set of reads. Otherwise, 

process j records which variables x(i) have changed. 

If process j ever records on three separate attempts that the same x(i) 
has changed, then consider the second of these three attempts. The snapj 
operation returns the vector of values in x(i).view obtained in the final read 
of x(i) at that attempt. (It is guaranteed that this vector was written in 
the course of an update operation whose interval is completely contained 

within the interval of the given snapj.) 

When an update(w)i input occurs on port i, 1 _< i _< m, process i behaves 
as follows. First, it reads all the relevant handshake bits y(j).ack(i), 1 <_ 
j <_ n. Second, it performs an embedded-snap, which is the same as a 

snap except that the vector determined is not returned to the user. Third, 

process i performs a single write to x(i), setting the four fields of x(i) as 
follows" 

1. x(i).val := w 

2. For each j ,  x(i).comm(j) is set unequal to the value of y(j).ack(i) 
obtained in the initial read of y(j). 

3. x(i).toggle is set unequal to its previous value. 

4. x(i).view is set to the vector returned by the embedded-snap. 

Finally, process i outputs acki. 

T h e o r e m  13.14 The BoundedSnapshot algorithm is a snapshot atomic object 
guaranteeing wait-flee termination. 

P r o o f  Ske tch .  Well-formedness and wait-freedom are easy to see, as in the 
proof of Theorem 13.13 for the UnboundedSnapshot algorithm. It remains to 
show the atomicity condition. The argument is similar to that for Unbounded- 
Snapshot. 

Again, we fix execution c~ and (in view of Lemma 13.10) assume without loss 

of generality that c~ contains no incomplete operations. The serialization points 

are inserted exactly as for the UnboundedSnapshot algorithm. For example, for a 
snap or embedded-snap operation that terminates by finding two consistent sets 
of reads, we select any point between the end of the first of these two sets and 
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the beginning of the second. As before, it is easy to see that the serialization 
points occur within the required intervals. It remains to show that the result 
of shrinking the operation intervals to their respective serialization points is a 
trace of the snapshot variable type. As before, it is enough to show that every 
completed snap and embedded-snap operation returns the correct vector after the 
prefix of c~ up to the serialization point. 

This time, it is not so easy to show this property for snap and embedded-snap 
operations that terminate by finding two consistent sets of reads. To show this, 
it is enough to prove the following claim. 

C l a i m  13.15 If  a snap or embedded-snap terminates by finding two consistent 
sets of reads, then the following is true for all i. No write event by process i 
occurs between the read of x(i) in the first set and the read of x(i) in the second 
set. 

P r o o f .  By contradiction, using a somewhat detailed operational argument. 
Suppose that a snap on port j terminates by finding two consistent sets of reads, 
yet a write event by process i occurs between 7rl, the read of x(i) in the first 
set, and 7r2, the read of x(i) in the second set. (The argument is the same for an 
embedded-snap.) Let r be the last such write, that is, the last write of x(i) prior 
to 7r2. 

By the fact that the two sets of reads are consistent, the values of x(i).comm(j) 
read in 7rl and 7r2 are equal and, moreover, are the same as the value last written 

in y( j ) .ack( i )  before 71" 1 (aS part of process j ' s  successful at tempt to find the 
consistent sets of reads). Let b denote this common value and let :r0 denote this 
last write event. Also by consistency, the values of x(i).toggle read in :rl and 7r2 
are equal. Let t denote this common value. 

Since r is the last write of x(i) prior to 7r2, it must be that it sets x( i ) . comm(j )  
�9 = b and x(i).toggle "-  t. The update operation containing r must contain an 
earlier read event r of y(j) .  By the way update operations behave, the value of 
y(j) .ack( i)  read by r must be b. (We are using the bar notation here to denote 
bit complementation.) This implies that ~p must precede 7r0. 

Thus, the order of the various read and write events must be the follow- 
ing. (Again, the actions involving the two processes i and j appear in separate 
columns.) 

m 

~" A read by i sees y(j) .ack(i)  - b. 
7r0: A write by j sets y ( j ) . ack ( i ) :=  b. 
7r1: A read by j sees x( i ) . comm(j )  = b and x(i).toggle = t. 

r A write by i sets x ( i ) . c o m m ( j ) : =  b and x(i).toggle := t. 
7r2: A read by j sees x( i ) . comm(j )  = b and x(i).toggle = t. 
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But note that the read event ~ is part of the same update operation as the 
write event r This implies that the two read events 7rl and 7r2 must be returning 
results written by two consecutive writes by process i. However, the toggle bits 
returned by 7rl and 7r2 are identical, which contradicts the way the toggle bits 
are managed. KI 

This shows Claim 13.15, which implies that every snap or embedded-snap 
operation that terminates by finding two consistent sets of reads in fact returns 
the correct vector after the prefix of a up to the serialization point. For the 
other snap and embedded-snap operations, the needed property is argued, as for 
UnboundedSnapshot, by induction on the number of response events for such 
operations in a. 

C o m p l e x i t y  ana lys i s .  The BoundedSnapshot algorithm uses n + m shared 
variables. Each variable x(i) takes on IW]m+12 n+l values, and each variable y(j) 
takes on 2 m values. For time complexity, a non-failing process executing a snap 
makes at most 2rn + 1 at tempts to find two consistent sets of reads. For each 
attempt,  there are at most 4m shared memory accesses, for a total time that is 
0 (m2g). The same bound holds for an update. 

U s i n g  s n a p s h o t s  in p r o g r a m m i n g  r e a d / w r i t e  s h a r e d  m e m o r y  s y s t e m s .  
Snapshot shared variables represent a powerful type of shared memory. For 
example, using a single snapshot shared variable, it is possible to simplify con- 
siderably the Bakery mutual exclusion algorithm of Section 10.7. We leave this 
for an exercise. 

Using the techniques of Section 13.1.4 and a snapshot algorithm such as 
the ones in this section, an algorithm A that uses snapshot shared variables 
can be transformed into an algorithm that uses only single-writer/multi-reader 
read/wri te  shared variables. This transformation requires some simple restric- 
tions on A, as discussed in Section 13.1.4. (Also, technically, the snapshot atomic 
objects used in the transformation have one port corresponding to each process 
of A; process i of A might submit both update and snap operations on the same 
port i. But there is no problem in modifying the snapshot atomic object external 
interface and implementations to permit this.) 

R e a d / u p d a t e / s n a p  va r i ab l e s .  A useful variation on a snapshot shared vari- 
able, which only supports update and snap operations, is a r ead /upda te / snap  
shared variable, which supports read operations on individual locations in the 
shared vector in addition to snap operations returning the entire vector. Of 
course, a model using read /upda te / snap  shared variables has no more power than 
a model using only snapshot variables, because a read can be implemented using 
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a snap. However, the use of r ead /upda t e / snap  shared variables can allow more 
efficient programming,  because it is possible to implement a r e ad /upda t e / snap  
atomic object so that the reads are very fast. We leave this for an exercise. 

13.4 Read/Write Atomic Objects 

Read/wr i te  shared variables (registers) are among the most basic building blocks 
used in shared memory multiprocessors. In this section, we consider the imple- 
mentation of powerful mult i-wri ter /mult i-reader registers in terms of less power- 
ful registers, such as single-writer/single-reader registers. More precisely, we con- 
sider the problem of implementing mult i -wri ter /mult i -reader  read/wr i te  atomic 
objects using single-writer/single-reader shared variables. 

1 3 . 4 . 1  T h e  P r o b l e m  

Fix a domain V and initial value v0 E V. 
In Example 13.1.1, we described an external interface for a 1-writer/2-reader 

read/wr i te  atomic object for domain V. In general, an m-writer~p-reader read /  
write atomic object for domain V has an analogous external interface, where 
ports 1 , . . . , m  are write ports and ports m + 1 , . . . , m  + p are read ports. We 
again let n - m + p. 

Since we consider the implementation of read/wr i te  atomic objects in terms 
of read/wr i te  shared variables, we need a way of distinguishing the high-level 
read and write operations that are submitted by the users at the ports from 
the low-level read and write operations that are performed on the read/wr i te  
shared variables. We use the convention of capitalizing the names of the high- 
level operations. Thus, associated with port i, 1 < i < m, there are WRITE(v)i  
inputs, v E V, and ACKi outputs, and associated with port  j ,  m + 1 < j < n, 
there are READj inputs and vj outputs, v E V. (We don' t  a t tempt  to capitalize 
the values in V.) There are also STOPi inputs, 1 < i < n. 

We consider implementing such an m-writer~p-reader atomic object, where 
n - m +p,  using a shared memory system with n processes, one per port. We as- 
sume that all the shared variables in this system are read/wr i te  shared variables, 
but the numbers of readers and writers will vary in the different algorithms we 
present. All the implementations we describe guarantee wait-free termination. 

1 3 . 4 . 2  A n o t h e r  L e m m a  fo r  S h o w i n g  Atomicity 

We begin with a technical lemma that is useful for showing that a sequence 
of actions of a read/wri te  atomic object external interface satisfies the atomicity 
property for read/wri te  objects. This lemma lists four conditions involving a 
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partial order on operations in/3. If an ordering satisfying these four conditions 
exists, it is guaranteed that  there is some way to insert serialization points so as 
to satisfy the atomicity property. When reasoning about algorithms, it is often 
easier to show the existence of such a partial order than it is to explicitly define 
the serialization points. 

L e m m a  13.16 Let/3 be a (finite or infinite) sequence of actions of a read/write 
atomic object external interface. Suppose that/3 is well-formed for each i, and 
contains no incomplete operations. Let II be the set of all operations in/3. 

Suppose that -< is an irreflexive partial ordering of all the operations in II, 
satisfying the following properties: 

1. For any operation 7r E II, there are only finitely many operations r such 
that r -< 7r. 

2. I f  the response event for 7r precedes the invocation event for r in/3, then 
it cannot be the case that r 7r. 

3. If  7c is a W R I T E  operation in II and r is any operation in II, then either 
7r -< r o r e - <  7r. 

~. The value returned by each READ operation is the value written by the 
last preceding W R I T E  operation according to -4 (or vo, if there is no such 
WRITE).  

Then/3 satisfies the atomicity property. 

Condition 1 is a technical one, ruling out funny orderings in which infinitely 
many operations precede some particular other operation. Condition 2 says that  
the -4 ordering must be consistent with the order of invocations and responses 
by the users. Condition 3 says that  -< totally orders all the W R I T E  operations 
and orders all the READ operations with respect to the W R I T E  operations. 
Condition 4 says that  the responses to READs are consistent with -<. 

P r o o f .  We describe how to insert a serialization point ,~ for every operation 
7r C II. Namely, we insert each serialization point ,~ immediately after the 
latest of the invocations for 7r and for all the operations r such that  r -4 7r. 
Condition 1 implies that  this position is well-defined. We order , ' s  that  are 
thereby placed contiguously in any way that  is consistent with the ordering -< 
on the associated operations; that  is, if 7r and r are two operations whose , ' s  
are placed contiguously, and if r -< re, then ,r precedes ,~. 

We claim that  the total order of the serialization points is consistent with -<; 
that  is, for any operations 7r and r in II, if r -< 7r, then ,r precedes ,~. To see 
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this, assume that  r --< 7r. By construction, ,r  is placed after the latest of the 
invocations for r and for all the operations that  precede r in the -4 order. And 
�9 ~ is placed after the latest of the invocations for 7c and for all the operations 
that  precede 7c in the -4 order. But since r -< 7c, it follows that  any operation 
that  precedes r in -4 also precedes 7r in -<. Since a tie would be broken by 
ordering ,r before ,~, it follows that  ,r  precedes , . ,  as claimed. 

Next, we claim that  these serialization points are within the required inter- 
vals. To see this, consider any operation 7c c II. By construction, the serializa- 
tion point ,~ for 7r must appear after the invocation for 7r. We show that  ,~ 
appears before the response for 7c. Suppose for the sake of contradiction that  
it appears after the response for 7r. Then, by construction, this means that  the 
response for 7r must precede (in ~) the invocation for some operation r where 
r -< 7r. But this contradicts Condition 2. 

It remains to show that  the result of shrinking the operation intervals to their 
serialization points is a trace of the underlying read/wri te  variable type. This 
means that  each READ operation 7r returns the value of the WRITE whose 
serialization point is the last one before , .  (or v0, if there is no such WRITE). 

But Condition 3 says that  -< orders all the WRITE operations in II with 
respect to all operations in II. And by Condition 4 for READ operations, the 
value returned by any READ operation 7r is the value writ ten by the last pre- 
ceding WRITE operation according to -< (or v0, if there is no such WRITE). 
Since the total  order of the serialization points is consistent with -<, it follows 
tha t  77 returns the required value. D 

In the rest of this section, we use Lemma 13.16 to show that  objects guarantee 
the atomicity condition. 

13.4.3 An Algor i thm with U n b o u n d e d  Variables 

Our first algorithm is the VitanyiAwerbuch algorithm, which implements m- 
wri ter /p-reader read/wri te  atomic objects using single-writer/single-reader reg- 
isters. (Recall that  n = m+p. )  This algorithm is simple but has the disadvantage 
that  the shared variables are unbounded in size. 

Vi tany iAwerbuch  algorit hm- 

The algorithm uses n 2 shared variables, which we can imagine to be ar- 
ranged in an n x n matr ix  X,  as depicted in Figure 13.9. The variables 
are named x(i,j): 1 ~_ i, j <_ n. Each variable x(i , j)  is readable only by 
process i and writable only by process j; thus, each process i can read all 
the variables in row i and can write all the variables in column i of X. 

Each shared register x(i, j) has the following fields: 
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WRITE processes  write 

1 ' ' '  m 

READ processes  write 

m + l  ' ' '  n 

WRITE processes  

read 

1 x (1 ,  1) " ' '  

m x ( m ,  1) " " " 

x (1, m )  x (1, r e + l )  �9 �9 �9 x (1, n )  

x ( m , m )  x ( m , m + l )  �9 . .  x ( m , n )  

READ processes  

read 

m + l  x ( m + l ,  1) �9 �9 �9 

n x ( n ,  1) , , ,  

x ( m + l , m )  x ( m + l , m + l )  " ' "  x ( m + l , n )  

x (n ,  m) x (n, m+l)  . . .  x (n, n) 

F i g u r e  13.9: Matrix X of shared registers used in the VitanyiAwerbuch algorithm. 

val E V,  i n i t i a l l y  v0 

tag C 51, i n i t i a l l y  0 

i n d e x E  { 1 , . . .  , m } ,  i n i t i a l l y  1 

We use the abbreviation tagpair for the pair (tag, index). We order tag- 
pairs lexicographically. 

When a WRITE(v ) i  input occurs, process i behaves as follows. First, 
it reads all the variables x ( i , j ) ,  1 <_ j < n (in any order). Let k be the 
greatest tag it finds. Next, process i performs a single write to each x(j ,  i), 
1 < j < n, setting the three fields of x(j ,  i) as follows" 

1. x( j ,  i).val "-  v 

2. x( j ,  i).tag "-  k + 1 

3. x( j ,  i ) . index "-  i 

Finally, process i outputs  A CKi. 

When a READi  input occurs, process i behaves as follows. First, it reads 
all the variables x ( i , j ) ,  1 <_ j <_ n (in any order). Let ( v , k , j )  be any 
(val, tag, index) triple it finds with maximum tagpair = (tag, index). Next, 
process i performs a single write to each x(j ,  i), 1 _< j _< n, setting the 
three fields of x(j ,  i) as follows: 

1. x( j ,  i).val "-  v 

2. x( j ,  i).tag "-  k 
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3. x(j,  i ) . index := j 

(That is, it propagates the best information it has read to all the variables 
it can write.) Finally, process i outputs vi (i.e., outputs value v on port  i). 

T h e o r e m  13.17  The VitanyiAwerbuch algorithm is a read/write atomic object 
guaranteeing wait-free termination. 

In order to prove the correctness of the VitanyiAwerbuch algorithm, we could 
proceed as in the proofs for the snapshot algorithms, explicitly inserting serial- 
ization points and then showing that the atomicity property is satisfied. However, 
for the VitanyiAwerbuch algorithm, it is not easy to see (as it is for the earlier 
algorithms) exactly where the serialization points ought to be placed. A more 
natural  proof strategy here is to establish a partial order of operations based on 
the tagpair values, and then show that this partial order satisfies the conditions 
of Lemma 13.16. 

P r o o f .  Well-formedness and wait-free termination are easy to see. For atom- 
icity, we use Lemma 13.16. 

Let c~ be any execution of the VitanyiAwerbuch algorithm. In view of Lemma 
13.10, we may assume without loss of generality that c~ contains no incomplete 
operations. We begin with a simple claim. 

C l a i m  13.18 For any variable x ( i , j ) ,  
monotone nondecreasing in c~. 

the tagpair = (tag, index) values are 

P r o o f .  Fix i and j. Note that variable x ( i , j )  is writ ten only by process j 
and that, by well-formedness, all operations by j must occur sequentially. Also, 
after any number of complete operations by j ,  all the variables in the j t h  column 
contain the same tagpair. 

Each time j performs an operation, it starts by reading all variables in the 
j t h  row, including the "diagonal" variable x(j,  j).  The tagpair that it writes is 
then chosen to be at least as large as the tagpair that it finds in x ( j , j ) .  But 
this is the same as the tagpair in x ( i , j )  prior to the operation. So the tagpair 
in x(i, j)  after the operation is at least as large as before the operation. This is 
enough to show the claim. [--I 

Next, define II to be the set of operations occurring in c~. For every ( W R I T E  
or READ) operation 7r C II, we define tagpair(Tr) to be the unique tagpair value 
that it writes. 

C l a i m  13.19 All tagpair(Tr) values for distinct W R I T E  operations in c~ are 
distinct. 
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P r o o f .  For W R I T E  operations on different ports this is certainly true, since 

the index fields of the tagpairs are different. 
So consider operations on the same port; by well-formedness, these operations 

occur sequentially. Let ~ and r be two W R I T E  operations on port i and assume 
without loss of generality that ~ precedes r Then ~ completes writing to all the 
variables in the ith column before r begins reading the variables in the ith row. 
In particular, r sees, in the "diagonal" variable x(i, i), a tagpair written by ~ or 
a later operation. By Claim 13.18, this tagpair is at least as large as that of ~. 

Then r chooses a larger, and hence a different, tagpair for itself. D 

Now we define a partial ordering on operations in H. Namely, we say that 
-~ r exactly if either of the following applies" 

1. tagpair(7c) < tagpair(r 

2. tagpair(7c) - tagpair(r 7r is a W R I T E  and r is a R E A D  

It is enough to verify that this satisfies the four conditions needed for Lemma 
13.16 ( w h e r e / 3 -  trace(c~) - c~]ext(A x U)). 

1. For any operation 7r C H, there are only finitely many operations r such 
that r -~ 7r. 

Suppose for the sake of contradiction that operation 7r has infinitely many 
-~ predecessors. Claim 13.19 implies that it cannot have infinitely many 
predecessors that are W R I T E  operations, so it must have infinitely many 
predecessors that are R E A D  operations. Without  loss of generality, we 

may assume that ~ is a WRITE.  

Then there must be infinitely many R E A D  operations with the same tag- 
pair, t, where t is smaller than tagpair(Tc). But the fact that ~ completes in 

implies that tagpair(Tr) eventually gets writ ten to some variable in each 

row. After this happens, Claim 13.18 implies that any R E A D  operation 
that is subsequently invoked is guaranteed to see, and thus to obtain, a tag- 
pair that is _> tagpair(zr) > t. This contradicts the existence of infinitely 
many R E A D  operations with tagpair t. 

2. If the response event for 7r precedes the invocation event for r in ~, then 

it cannot be the case that r -~ ~. 

Suppose that ~'s response precedes the invocation of r When ~ com- 
pletes, its tagpair has been writ ten to all its column variables. Thus by 
Claim 13.18, when r reads its row variables, it reads a tagpair that is at 
least as large as tagpair(zr). Therefore, tagpair(r is chosen to be at least as 
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large as tagpair(Tr). Moreover, if r is a WRITE operation, then tagpair(r 
is chosen to be strictly greater than tagpair(7c). 

Since tagpair(Tr) <_ tagpair(r the only way we could have r -< :r is if 
tagpair(Tr) = tagpair(r 7r is a READ operation and r is a WRITE oper- 
ation. But this is not possible, because if r is a WRITE, then, as noted 
above, we have tagpair(r > tagpair(Tr). So it is not the case that r -< 7r. 

3. If 7r is a WRITE operation in II and r is any operation in II, then either 
7r -< r  r  7r. 

By Claim 13.19, all WRITE operations obtain distinct tagpairs. This 
implies that all of the WRITEs are totally ordered and also that each 

READ is ordered with respect to all the WRITEs. 

4. The value returned by each READ operation is the value writ ten by the 
last preceding WRITE operation according to -< (or v0, if there is no such 
WRITE). 

Let 7r be a READ operation. The value v returned by 7r is just the value 
that 7r finds associated with the largest tagpair, t, among the variables in 
its row; this t also becomes the tagpair of 7r. There are two cases: 

(a) Value v has been written by some WRITE operation r with tagpair 
t. 
In this case, the ordering definition ensures that r is the last WRITE 
preceding 7r in the -< order, as needed. 

(b) v = v 0 a n d t = 0 .  
In this case, the ordering definition ensures that there are no WRITEs 
preceding 7r in the -< order, as needed. 

C o m p l e x i t y  a n a l y s i s .  The VitanyiAwerbuch algorithm uses n 2 shared vari- 
ables, each of unbounded size, even if the underlying domain V is finite. Each 
READ and each WRITE that completes involves 4n shared memory accesses, 
for a total time complexity that is O (ng). 

1 3 . 4 . 4  A B o u n d e d  A l g o r i t h m  fo r  T w o  W r i t e r s  

Like the UnboundedSnapshot algorithm, the VitanyiAwerbuch algorithm has the 
disadvantage that it uses unbounded-size shared variables to store unbounded 
tags. Many alternative algorithms have been designed that use only bounded 
data, but unfortunately, most are rather complicated (as well as too inefficient 
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WRITE, 
~ - ~  write 

WRITE, ..- 

READ2 

F i g u r e  13.10" Architecture for the Bloom algorithm with two readers. 

to be practical). In this section, we present only one very simple algorithm, for 
a special case. 

Namely, we describe the Bloom algorithm for implementing a 2-writer/p-  
reader read /wr i te  atomic object using two 1-wri ter /p + 1-reader registers, x(1) 
and x(2). (Now n = 2 + p.) Each x ( i ) i s  writable by WRITE process i and 
readable by all the other processes. Figure 13.10 depicts the architecture for 
the special case of two readers. The algori thm is simple but  does not have an 
apparent  generalization to more writers. 

B l o o m  a l g o r i t h m :  

The algori thm uses two shared variables, / (1 )  and x(2), where x(i) is 
writable by process i and readable by all other processes. Here let i denote 
2 if i - 1, and 1 if i - 2. Register x(i) has the following fields: 

valc V, initially v0 
tag C {0, 1}, initially 0 

When a WRITE(v)i  occurs on port  i, i C {1,2}, process i behaves as 
follows. First ,  it reads x(i); let b be the tag it finds there. Then it writes 
x(i),  setting the fields as follows" 

1. x ( i ) . v a l  " -  v 

2. x(i).tag "- b + i rood 2 
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Finally, it outputs  A CKi. 

Thus, when a WRITE  process i performs a WRITE, it not only writes the 
new value into its variable, but it also at tempts  to make the sum of the tags 
in the two variables equal to its own index, modulo 2. That  is, process 1 
always tries to make the tags in the two variables unequal, while process 

2 tries to make them equal. 

When a READi occurs on port i, 3 _< i _< n, process i behaves as follows. 

First,  it reads both registers; let b be the sum modulo 2 of the two tags 
that it finds there. Then it rereads register x(1) if b - 1 and register x(2) 

if b -  0, and returns the val that it finds there. 

Thus, all READ processes behave in exactly the same way. Each READ 
process reads both registers to determine whether they contain equal or 

unequal tags. If the tags are equal, the process obtains its return value 
from x(2), and otherwise from x(1). 

T h e o r e m  13.20 The Bloom algorithm is a read/write atomic object guarantee- 
ing wait-free termination. 

Once again, in order to prove correctness, we could proceed by explicitly 

inserting serialization points and then showing that the atomicity property is 

satisfied. However, this time we use an interesting strategy based on a combina- 
tion of Lemma 13.16 and a simulation proof, as defined in Section 8.5.5. We first 

define a variant of the Bloom algorithm, IntegerBloom, which uses integer-valued 
tags instead of bits. We show that IntegerBloom is correct, using Lemma 13.16. 
Then we show that Bloom is correct by using a simulation relation from Bloom 
to IntegerBloom. 

I n t e g e r B l o o m  algorithm: 

The algorithm uses two shared variables, x(1) and x(2), where x(i) is 

writable by process i and readable by all other processes. Register x(i) 
has the following fields: 

val E V, initially vo 
tag E N, initially 0 for i - 1 and 1 for i - 2 

When a WRITE(v)i  occurs on port  i, i e {1,2}, process i behaves as 
follows. First,  it reads x(i); let t be the tag it finds there. Then it writes 

x(i), setting the fields as follows" 

1. x(i). val "-- v 

2. x(i).tag "-- t + 1 
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Finally, it outputs  A CKi. 

When a READi occurs on port  i, 3 _< i _< n, process i behaves as follows. 
First ,  it reads both registers; let t l and t2 be the respective tags it finds 
there. Then  there are two cases" If I t l -  t2[ _< 1, then process i rereads 
the register holding the greater  tag and returns  the val that  it finds there. 
(This register must  be uniquely defined, because, as we state in Lemma 
13.21 below, the tags in x(1) are always even and the tags in x(2) are always 
odd.) O the rwi se - - tha t  is, if [tl - t2l > 1- -process  i nondeterminist ical ly  
chooses either register to reread and re turns  the val that  it finds there. 

The following lemma gives some basic propert ies of IntegerBloom. It is easy 

to prove. 

L e m m a  13.21  In any reachable state of IntegerBloom, the following are true: 

1. x(1).tag is even. 

2. x (2). tag is odd. 

3. Ix (1) . tag-  x(2).tag I <_ 1. 

T h e o r e m  13 .22  The IntegerBloom algorithm is a read/write atomic object guar- 
anteeing wait-free termination. 

P r o o f .  Similar to the proof of Theorem 13.17. Well-formedness and wait-free 
terminat ion are easy to see. For atomicity, we use Lemma 13.16. Let a be any 
execution of the IntegerBloom algorithm. As before, we assume without loss of 

generality that  a contains no incomplete operations. 

C l a i m  13 .23  For each variable x(i), the tag values are monotone nondecreasing 
in a. 

Let II denote the set of operations occurring in a.  For every WRITE  op- 
eration 7r in II, we define tag(Tr) to be the tag value wri t ten by 7r in its write 
step. 

Now we define a part ial  ordering on operations in II. First ,  we order the 
WRI TE  operations by their tag values. If two WRITE  operations have the 
same tag, then they must  belong to the same writer,  and we order them in the 
order in which they occur. Next,  we order each READ operat ion in II just  after 
the WRI TE  whose value it obtains (or before all the WRITEs,  if there is no 

such WRITE).  
It is enough to verify that  this satisfies the four conditions needed for Lemma 

13.16 ( w h e r e / 3 -  trace(a) - alext(A x g ) ) .  Conditions 3 and 4 are immediate,  
so all we must  show are Conditions 1 and 2. For these, the following is useful: 
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C l a i m  13.24  If the write step of WRITE  operation ~ precedes the invocation 
of WRITE  operation d?, then ~ -~ r 

P r o o f .  If 7~ and r occur on the same port, then Claim 13.23 implies tha t  

tag(Tr) < tag(d?), and the definition of -~ implies that  7r -~ r On the other hand, 
if ~ and r occur on different ports, then r reads the result of either ~ or a later 

WRITE on ~'s port. By Claim 13.23, the tag read by r is greater than  or equal 

to tag(Tr). Therefore, tag(Tr) < tag(C), so again 7r -< r ff] 

C l a i m  13.25 If the write step of WRITE  operation 7~ precedes the invocation 
of READ operation r then 7~ -~ r 

P r o o f .  We must show tha t  r returns the result of ~ or of some other WRITE 
~p with 7~ -~ ~p. Let t -  tag(~) and suppose that  7~ occurs on port  i. 

When r is invoked, Claim 13.23 implies that  x(i).tag > t, and Lemma 13.21 
implies that  ]x(1).tag - x(2).tag] ! 1. Therefore, when r is invoked, x(i).tag > 
t -  1. By the definition of -~ and Claim 13.23, the only problem is if r returns 
the value of some WRITE with t a g -  t -  1. So suppose this is the case. 

Then r must see x(i).tag - t -  1 on either its first or its second read, and 

again on its third read. If r sees x(i).tag - t on either its first or second read, 
then the combination of tags t -  1 and t causes 4) to choose to reread register x(i) 
ra ther  than  register x(i), a contradiction. So it must be that  r sees x(i).tag > t. 
But Lemma 13.21 implies that  by the time 4) sees x(i).tag > t, it must also be 
the case that  x(i) > t -  1. This means tha t  4) cannot see x(i) - t -  1 on its third 
read, again a contradiction. D 

Using Claims 13.24 and 13.25, Condition 1 is easy to show; we leave this for 
an exercise. 

For Condition 2, suppose tha t  the response event for 7~ precedes the invoca- 
tion for r in/3. If ~ is a WRITE, then Claims 13.24 and 13.25 imply that  7~ -~ r 
So suppose tha t  7~ is a READ. Suppose for the sake of contradiction tha t  ~b -~ 7~. 

If r is a WRITE, then clearly ~ cannot re turn the result of r since r does 
not perform its write step until after r has completed. So the only problem is 
if 7~ returns the result of some WRITE ~, where r -~ W. But in this case, the 
write step within ~ precedes the end of 7~ and so precedes the invocation of r 
But then Claim 13.24 implies tha t  ~ -< r a contradiction. 

On the other hand, if r is a READ, then the assumption that  r -~ ~ implies 
that  there must be some WRITE operat ion ~ such that  r -< ~ and 7~ obtains 
the result of ~. Since w obtains the result of ~, it must be tha t  the write step 
within ~ precedes the end of 7~ and so precedes the invocation of r But then 

Claim 13.25 implies tha t  ~p -~ r again a contradiction. E] 
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Now we show the correspondence between the Bloom and IntegerBloom al- 
gorithms, using a simulation relation. The general strategy is described in Sec- 
tion 8.5.5 and is used in other proofs in Example 8.5.6 and in Section 10.9.4. 

The correspondence between the two algorithms turns out (strangely enough) 
to be that the {0, 1}-valued tags used in the Bloom algorithm are the second- 
lowest-order bits of the integer-valued tags in the IntegerBloom algorithm. 

Example 13.4.1 Bits versus integers in the B l o o m  algorithm 

Consider an execution of IntegerBloom in which WRITE operations 
alternate on ports 1 and 2, beginning with port 1; each WRITE 
begins only after the previous one has completed. Then each WRITE 
produces a successively larger tag. The tag values in the two registers, 
written in binary notation, are shown in Figure 13.11. Initially, x(1) 
and x(2) start  with tags 0 and 1, respectively. The first WRITE1 
sets x(1).tag := 2, and then a WRITE2 sets x(2).tag := 3, and so on. 

In the corresponding execution of Bloom, the tag values in the 
two registers are as shown in Figure 13.12. Initially, both registers 
start with tag = 0. Each WRITE1 sets x(1).tag to be unequal to 
x(2).tag, while each WRITE2 sets x(2).tag to be equal to x(1).tag. 

Notice that in each case, the tag in the Bloom execution is just the 
second-lowest-order bit of the corresponding tag in the IntegerBloom 
execution. 

It turns out that the correspondence illustrated in Example 13.4.1 holds in all 
executions of the two algorithms. If s and u are states of the Bloom and Integer- 
Bloom systems (algorithms plus users), respectively, then we define (s, u) C f 
(or u C f(s)),  provided that all state components are identical, except that wher- 
ever u has an integer-valued tag, t, s has a bit-valued tag whose value is the 
second-lowest-order bit of t. 

X (1): 000 010 100 110 

// // // ,,X i... 
x (2): 001 O11 101 111 

Figure 13.11: Successive tag values in the two registers, in the IntegerBloom algo- 
rithm. 
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x (1): 0 1 0 

/ /  / /  
x (2): 0 1 

1 

/ /  i 
0 1 

OD O 

F i g u r e  13.12" Successive tag values in the two registers, in the Bloom algorithm. 

L e m m a  13 .26  f is a simulation relation from Bloom to IntegerBloom. 

P r o o f  S k e t c h .  Since the unique initial states of the two algori thms are related 
by f ,  the s tar t  condition of the simulation definition is s t raightforward.  The 
interesting thing to show is the step condition. It is enough to show that  for any 
step (s, rr, s') of Bloom and any u E f(s) ,  where s and u are reachable states, 
there is a corresponding step (u, r u/) of IntegerBloorn, where u' C f(s ')  and r is 
"almost" the same as 7r. Specifically, r is the same as 7r except that  it can involve 
an integer value, whereas 7r involves the second-lowest-order bit. We consider 
cases, based on 7r. If rr is an invocation or response event, then the arguments  
are s t raightforward.  The interesting steps are the write steps within the WRITE 
operations and the third read steps within the READ operations. 

So suppose that  (s, rr, s') is a step of Bloom in which process 1 writes x(1) 

as par t  of a WRITE1 operation. Then process 1 sets x(1).tag to be unequal  to 
the value b that  it remembers  reading from x(2).tag. That  is, s'.x(1).tag r b. 
In the corresponding state u of IntegerBloom, process i remembers  reading an 
integer-valued tag t from x(2).tag; since u E f(s) ,  it must  be that  b is the second- 
lowest-order bit of t. Let u t be the unique state that  results in IntegerBloom. 
Then u'.x(1).tag = t +  1. To see that  u' C f(s ') ,  we need to show that  the 
second-lowest-order bit of u'.x(1).tag is equal to s'.x(1).tag, that  is, that  the 
second-lowest-order bit of t + 1 is unequal  to b. But this follows from the fact 
that  t is odd (by Lemma 13.21) and the fact that  b is the second-lowest-order bit 
of t. 

The argument  for the case where (s, rr, s ~) is a step in which process 2 writes 

x (2) is similar. 
Now suppose that  (s, 7r, s ~) is a step of Bloom at which process i performs 

the third read step within a READ. The key claim is that  IntegerBloom permits  

process i to read the same register, x(1) or x(2). Suppose that,  in state s, the 
tags that  process i of Bloom remembers  reading in x(1) and x(2) are  bl and 
b2, respectively; likewise, suppose that  in state u, the tags that  process i of 
IntegerBloom remembers  reading in x(1) and x(2) are tl and t2, respectively. 
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Since u E f (s ) ,  we know that bl is the second-lowest-order bit of tl and b2 is the 
second-lowest-order bit of t2. There are three cases. 

1. tl = t 2 +  1. 
Then Lemma 13.21 implies that the second-lowest-order bits of t l and t2 
are unequal. In this case, both Bloom and IntegerBloom read from register 
x(1). 

2. t2 = t 1 + 1 .  
Then Lemma 13.21 implies that the second-lowest-order bits of t l and t2 
are equal. In this case, both Bloom and IntegerBloorn read from register 

3. tl 7 ~ t2 + 1 and t2 :/: tl + 1. 
Then Lemma 13.21 implies that It1 - t21  > 1. In this case, IntegerBloom 
permits either register to be read. 

El 

Now we can prove Theorem 13.20, which asserts the correctness of the Bloom 
algorithm. 

P r o o f  (of  T h e o r e m  13.20) .  Lemma 13.26 and Theorem 8.12 imply that ev- 
ery trace of the Bloom system is a trace of the IntegerBloom system. (Recall 
that traces here include invocation and response events on ports, plus the stop 
events.) Theorem 13.22 implies that the well-formedness and atomicity condi- 
tions hold for IntegerBloom. Since the well-formedness and atomicity conditions 
are expressible as properties of traces, they carry over to the Bloom algorithm. 
Wait-free termination is easy to see. 77 

C o m p l e x i t y  a n a l y s i s .  The Bloom algorithm uses two shared variables, each 
of which can take on 2IV I values. Each operation requires only a constant number 
of shared memory accesses, or time O (g). 

13.4.5 An  Algor i thm Us ing  Snapshots  

In this final subsection, we give an implementation, SnapshotRegister, of a wait- 
free m-writer~p-reader read/wr i te  atomic object using a snapshot shared vari- 
able. (Again, let n = rn + p.) Combining SnapshotRegister with the implemen- 
tations of snapshot atomic objects in Section 13.3, using Corollary 13.9, yields 
implementations of wait-free m-writer~p-reader atomic objects using l -wr i te r /n -  
reader shared registers. 
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The snapshot shared variable used by SnapshotRegister has unbounded size, 
even if the underlying domain V for the read/wri te  atomic object being imple- 
mented is bounded. It is possible, though quite difficult, to modify the Snapshot- 
Register algorithm to use a bounded snapshot shared variable. 

SnapshotRegister algorithm: 
The algorithm uses a single shared variable x, which is a snapshot object 
based on a length m vector. The domain W for each component of x 
consists of pairs (val, tag), where val E V and tag C N; the initial value w0 
is (v0, 0). 

Each WRITE process i, 1 <_ i _< m, performs update(i, w) and snap op- 
erations on x, while each READ process i, m + 1 _< i _< n, performs only 
snap operations on x. 

When a READi input occurs on port i, m + 1 _< i <__ n, process i behaves 
as follows. First, it performs a snap operation on x, thereby determining a 
vector u. Let j be the index, 1 _< j _< m, such that the pair (u(j).tag, j) is 
largest, in the lexicographic ordering of pairs. Then process i returns the 
associated value u(j).val. 

When a WRITE(v)i input occurs on port i, 1 <_ i <_ m, process i behaves 
as follows. First, it performs a snap operation on x, thereby determining 
a vector u. As above, let j be the index, 1 _< j _< m, such that the pair 
(u(j).tag, j) is largest, in the lexicographic ordering of pairs. Then process 
i performs an update(i, (v, u(j).tag + 1)). Finally, process i outputs ACKi. 

The SnapshotRegister algorithm is somewhat similar to the VitanyiAwerbuch 
algorithm, but it is simpler because of the extra power provided by the snapshot 
shared memory. 

T h e o r e m  13.27 The SnapshotRegister algorithm is a read/write atomic object 
guaranteeing wait-free termination. 

P r o o f  Ske tch .  This is similar to the proofs for VitanyiAwerbuch and Integer- 
Bloom, using Lemma 13.16, but simpler. We leave it as an exercise. [-1 

C o m p l e x i t y  ana lys i s .  The SnapshotRegister algorithm uses one snapshot 
shared variable, which is of unbounded size, even if the underlying domain V 
is finite. Each operation requires only a constant number of shared memory 
accesses, for a total time that is 0 (t~). 
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Hie ra rch ica l  cons t ruc t ion .  Theorem 13.27 and any wait-free implementa- 
tion of the snapshot atomic object together yield a wait-free implementation 
of an m-writer/p-reader read/write atomic object using 1-writer/m + p-reader 
shared registers. The proof is based on Corollary 13.9. (Technically, in order to 
apply Corollary 13.9, we need a snapshot atomic object with only n - m + p 
ports, one per process--for example, WRITE process i should perform both its 
update and snap operations on the same port. There is no problem modifying 
the snapshot atomic object external interface and implementations to permit 
this.) 

Genera l i za t ions .  There are several interesting generalizations of the Snapshot- 
Register algorithm that also work correctly. First, during a WRITEi, if i = j - -  
that is, if process i itself has the largest tag pair-- then i may optionally use the 
same tag that it previously had. Second, it is possible to use nonnegative real- 
valued tags rather than integer-valued tags. Then the tag chosen by a writer 
i can be any real number that is strictly greater than the largest tag it sees. 
Once again, if i itself has the greatest tag pair, then it can reuse its previous 
tag. Both of these generalizations are useful for proving the correctness of other 
implementations of read/write atomic objects using a snapshot shared variable. 

13.5 Bibliographic Notes  

The idea of an "atomic object" appears to have originated with the work of Lam- 
port [181, 182] on read/write atomic objects. Herlihy and Wing [153] extended 
the notion of atomicity to arbitrary variable types and renamed it linearizability. 
Khnig's Lemma was originally proved by Khnig [170]; a proof appears in Knuth's 
book [169]. The canonical wait-free atomic object automaton is derived from the 
work of Merritt, described in [3]. The connection between atomic objects and 
shared variables is derived from work by Lamport and Schneider [186] and by 
Goldman and Yelick [139]. The impossibility of implementing read-modify-write 
atomic objects using read/write objects is due to Herlihy [150]. 

The idea of a snapshot atomic object is due to Afek, Attiya, Dolev, Gafni, 
Merritt, and Shavit [3] and to Anderson [11, 12], inspired by the work of 
Chandy and Lamport on consistent global snapshots in distributed networks [68]. 
The snapshot atomic object implementations presented here, both Unbounded- 
Snapshot and BoundedSnapshot, are due to Afek, et al. The handshake strategy 
used in the BoundedSnapshot protocol is due to Peterson [240]. A more re- 
cent atomic snapshot algorithm, requiring only O (nt~logn) time rather than 
quadratic time, has been developed by Attiya and Rachman [26]. 
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Many algorithms have been designed for implementing read/write atomic 
objects in terms of simpler kinds of read/write registers. The VitanyiAwerbuch 
algorithm appears in a paper by Vitanyi and Awerbuch [283]; that paper also 
contains an algorithm using bounded shared variables, but that algorithm is in- 
correct. The Bloom algorithm is due to Bloom [53], and the SnapshotRegister 
algorithm is derived from work by Gawlick, Lynch, and Shavit [135]. Bounded al- 
gorithms for implementing single-writer/multi-reader atomic objects using single- 
writer/single-reader registers have been designed by Singh, Anderson, and Gouda 
[263] and Haldar and Vidyasankar [144]. Bounded algorithms for implementing 
multi-writer/multi-reader atomic objects using single-writer/multi-reader regis- 
ters have been designed by Peterson and Burns [241]; Schaffer [254]; Israeli and 
Li [162]; Li, Tromp, and Vitanyi [196]; and Dolev and Shavit [100]. In particular, 
Schaffer's algorithm corrects errors in Peterson and Burns's algorithm. Gawlick, 
Lynch, and Shavit [135] describe an implementation of multi-writer/multi-reader 
atomic objects using a bounded snapshot variable and prove the correctness of 
this algorithm by a simulation proof, relating it to the generalized version of 
the SnapshotRegister algorithm. Several of these constructions use a notion of 
"bounded timestamping." Bounded timestamping algorithms have been given 
by Israeli and Li [162]; Dolev and Shavit [100]; Gawlick, Lynch, and Shavit 
[135]; Israeli and Pinchasov [163]; Dwork and Waarts [107]; and Dwork, Herlihy, 
Plotkin, and Waarts [102]. 

Attiya and Welch have compared the costs of implementing read/write atomic 
objects with those of implementing read/write objects with slightly weaker con- 
sistency requirements [28]. Their work is carried out in the asynchronous network 
model. 

13.6  E x e r c i s e s  

13.1. Define the external interface for a 2-writer/i-reader atomic object and give 
several interesting examples of sequences for this external interface that 
satisfy the atomicity property, as well as sequences that do not satisfy the 
atomicity property. Be sure to include both finite and infinite sequences, 
as well as sequences that contain incomplete operations. 

13.2. Consider a read-modify-write atomic object whose domain V is the set of 
integers and whose initial value is 0. (See Section 9.4 for the definition 
of a read-modify-write variable type--recall that the return value for a 
read-modify-write shared variable is the value of the variable prior to the 
operation.) 

The object has two ports: port 1 supports increment operations (which 
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add 1 to the value in the object) only and port  2 supports decrement 
operations (which subtract  1) only. Which of the following sequences satisfy 
the atomicity property? 

(a) increment1, decrement2, 01,02 

(b) increment1, decrement2,--11,02 

(c) incrementl, decrement2, 01, 12 

(d) decrement2, incrementl, 01, incrementl, 11, incrementl, 21, increment1, 
31, . . .  

(e) decrement2, incrementl, 01, incrementl, 01, increment1, 11, increment1, 
21, . . .  

13.3. Fill in some more details in the proof of Theorem 13.1. In particular,  show 
in more detail than we have in the text that there are arbitrari ly long paths 
from the root and that an infinite path yields a correct selection for the 
entire sequence/3. 

13.4. Generalize the definition of a variable type to allow finitely many initial 
values rather than just  one and to allow finite nondeterministic choice rather 
than just  a function. Generalize Theorem 13.1 and its proof to this new 
setting. What  happens if we allow infinite nondeterminism? 

13.5. Suppose that we modify Example 13.1.4 so that the system supports decre- 
ment operations as well as read and increment operations. The algori thm 
is the same as before, with the following addition: when a decrementi input 
occurs on port  i, process i decrements x(i). 

Is the resulting system a read / increment /decrement  atomic object? Either 
prove that it is or give a counterexample execution. 

13.6. Prove Theorem 13.4. 

13.7. Prove Theorem 13.5. 

13.8. Prove Theorem 13.6. 

13.9. Show that Theorem 13.7 is false if we do not include the special assumption 
about A's turn function. 

13.10. Give a formal description, using precondition-effect notation, of the RMW- 
fromRW algorithm. Your description should be modular  in that it should 
represent the mutual  exclusion component as a separate automaton,  com- 
bined with the main portion of the RMWfromRW algorithm using I /O 
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automaton composition. Prove that your algorithm works correctly (as- 
suming the correctness properties of the mutual exclusion component). 

13.11. Consider a modification of the UnboundedSnapshot algorithm in which each 
snap and embedded-snap looks for three different tags for some x(i) rather 
than four as described. Is the modified algorithm still correct? Either 
prove that it is or give a counterexample execution. 

13.12. Consider a modification of the UnboundedSnapshot algorithm in which pro- 
cess i increments x(i).tag when it performs a snap operation, as well as 
when it performs an update operation. (The x(i).val and x(i).view com- 
ponents are not changed, and the embedded-snap operation is not modified 
in any way.) 

Is the modified algorithm still correct? 
counterexample execution. 

Either prove that it is or give a 

13.13. Research Question: Can you give an alternative proof of correctness for 
the UnboundedSnapshot algorithm, based on a formal relationship with the 
appropriate canonical wait-free atomic object automaton? 

13.14. Design a modification of the BoundedSnapshot algorithm that eliminates 
the toggle bits. In your algorithm, a snap process should determine the 
consistency of two sets of reads, based not only on the handshake bits but 
also on the val fields. Prove that your algorithm is correct. 

13.15. Research Question: Design a more efficient implementation of a wait-free 
snapshot atomic object than the BoundedSnapshot algorithm, also using 
bounded-size single-writer/multi-reader read/wri te  shared variables. Can 
you design one that terminates in linear rather than quadratic time in the 
number of processes? 

13.16. Research Question: Design a good implementation of a snapshot atomic 
object that allows updates to the same vector component to occur on several 
ports (and hence, concurrently). 

13.17. Give a simplified version of the Bakery algorithm of Section 10.7 that uses 
snapshot shared variables. Prove its correctness. 

13.18. State carefully and prove a result asserting the impossibility of solving 
the agreement problem with l-failure termination using snapshot atomic 
objects. 
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13.19. Give an efficient implementation of a read/update/snap atomic object, us- 
ing single-writer/multi-reader read/write shared variables. Prove its cor- 
rectness and analyze its complexity. 

13.20. Give a simplified version of the Bakery algorithm of Section 10.7 that uses 
read/update/snap shared variables. Try to make your algorithm as sim- 
ple and efficient as you can. Prove its correctness and analyze its com- 
plexity. In your complexity analysis, consider the cost of implementing 
the read/update/snap variables in terms of an underlying model based 
on single-writer/multi-reader read/write shared variables, as described in 
Exercise 13.19. 

13.21. Generalize Lemma 13.16 to handle arbitrary variable types rather than just 
read/write types. 

13.22. Is the "propagation phase" of the READ protocol in the VitanyiAwerbuch 
algorithm needed? Either prove that the algorithm works without it or 
exhibit a counterexample. 

13.23. Give an alternative correctness proof for the VitanyiAwerbuch algorithm, 
based on explicitly inserting serialization points into an arbitrary execu- 
tion in which all operations complete, and then showing that the atomicity 
property is satisfied. 

13.24. Design a simplified version of the VitanyiAwerbuch algorithm for the set- 
ting where the read/write shared variables are single-writer/multi-reader 
variables. Is the propagation phase of the READ protocol needed? Prove 
correctness and analyze complexity. 

13.25. Prove that the third read within the READ protocol in the Bloom algorithm 
is necessary. That is, give an incorrect execution of the modified algorithm 
in which each READ simply returns the value already read (in the first or 
second read) from the appropriate register. 

13.26. Near the end of the description of the IntegerBloom algorithm, it is specified 
that if Itl - t21  > 1, then process i nondeterministically chooses either 
register to reread. Give a particular execution in which this case arises. 

13.27. Prove that Condition 1 of Lemma 13.16 holds, in the proof of Theo- 
rem 13.22. 

13.28. Fill in the details in the proof of Lemma 13.26. This requires writing 
precondition-effect code for the Bloom and IntegerBloom algorithms. 
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13.29. Research Question: Try to extend the Bloom algorithm to more than two 
writers. 

13.30. Prove Theorem 13.27. 

13.31. Give example executions to show that the SnapshotRegister algorithm is not 
correctly serialized by serialization points placed in either of the following 
two ways: 

(a) For a READ: at the point of its snap operation; for a WRITE: at the 
point of its update operation. 

(b) For every operation: at the point of its snap operation. 

13.32. Describe a single algorithm that generalizes the SnapshotRegister algorithm 
in both of the two ways described at the end of Section 13.4.5. That is, 
a WRITE process whose own tag is the largest is allowed (though not 
forced) to reuse its tag, and real-value tags are permitted. Try to make 
your algorithm as nondeterministic as possible. 

13.33. Design an algorithm to implement an m-writer/p-reader read/write atomic 
object with domain V and initial value v0, using a snapshot shared variable. 
Unlike the SnapshotRegister algorithm, your snapshot variable should be of 
bounded size, in the case where V is finite. (Warning: This is very hard.) 

13.34. Research Question: Use Lemma 13.16 to prove the correctness of some of 
the other atomic register implementations in the research literature. 

13.35. Research Question: Design efficient and simple implementations of multi- 
writer/multi-reader read/write atomic objects using bounded-size single- 
writer/single-reader registers. 

13.36. Research Question: Design a hierarchy of atomic objects that are efficient 
and simple enough to be used as the basis for the development of a practical 
multiprocessor system. 



Part  IIB 

Asynchronous Network 
Algorithms 

Chapters 14-22 deal with algorithms for the asynchronous network model, 
in which processes take steps asynchronously and communicate by exchanging 
messages. The ideas in these chapters build in many interesting ways on ideas 
presented in Parts I and IIA. 

As usual, we begin with a chapter containing our formal model, Chapter 14. 
We follow this with Chapter 15, which contains a survey of basic algorithms for 
asynchronous networks, all programmed directly in terms of the model. Since 
some of these algorithms turn out to be quite complicated, we proceed, in Chap- 
ters 16-19, to introduce four techniques for simplifying the programming of asyn- 
chronous networks. The first technique, described in Chapter 16, is the intro- 
duction of a synchronizer. The second technique, described in Chapter 17, is 
the simulation of the asynchronous shared memory model by the asynchronous 
network model. The third technique, described in Chapter 18, is the assignment 
of consistent logical times to events in an asynchronous distributed network. 
Chapter 19 contains our fourth technique, the monitoring of asynchronous net- 
work algorithms while they run. 

We then return to the study of specific problems in the asynchronous network 
setting. Chapter 20 studies the problem of resource allocation in asynchronous 
networks. Chapter 21 considers the problem of computing in an asynchronous 
network in the presence of failures. Finally, Chapter 22 considers the data link 
problem, a problem of implementing reliable communication in an unreliable 
network. 
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Chapter 14 

Modelling IV: Asynchronous 
Network Model 

In this chapter, we change the computing paradigm once again, this time switch- 
ing from asynchronous shared memory systems to asynchronous networks. An 
asynchronous network consists of a collection of processes communicating by 
means of a communication subsystem. In the version of this model that is most 
frequently encountered, this communication is point-to-point, using send and re- 
ceive actions. Other versions of the model allow broadcast actions, by which a 
process can send a message to all processes in the network (including itself), 
or multicast actions, by which a process can send a message to a subset of the 
processes. Special cases of the multicast model are also possible, for example, 
one that allows a combination of broadcast and point-to-point communication. 
In each case, various types of faulty behavior of the network, including message 
loss and duplication, can be considered. 

The chapter contains three main sections, treating send/receive systems, 
broadcast systems, and multicast systems, respectively. 

14.1 Send/Receive Systems 

As in the synchronous network model defined in Chapter 2, we start with an 
n-node directed graph G = (V, E). As before, we use the notation out-nbrsi and 
in-nbrsi to denote the outgoing and incoming neighbors of node i in the digraph, 
distance(i, j)  for the length of the shortest directed path from i to j in G, and 
diam for the maximum distance from any node to any other. 

As in the synchronous network model, we associate processes with the nodes 
of G and allow them to communicate over channels associated with directed 
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edges. However, unlike in the synchronous model, there are no synchronous 
rounds of communication: now we allow asynchrony in both the process steps 
and the communication. To describe this asynchrony, we model the processes 
and the channels as I /O automata. Let M be a fixed message alphabet. 

14 .1 .1  P r o c e s s e s  

The process associated with each node i is modelled as an I /O automaton, Pi. 
Pi usually has some input and output actions by which it communicates with an 
external user; this allows us to express problems to be solved by asynchronous 
networks in terms of traces at the "user interface." In addition, Pi has outputs 
of the form send(m)i,j, where j is an outgoing neighbor of i and m is a message 
(that is, an element of M), and inputs of the form receive(m)j,i, where j is an 
incoming neighbor of i. Except for these external interface restrictions, Pi can 
be an arbitrary I /O automaton. (For specific results, we might sometimes want 
to impose additional restrictions on Pi, such as limiting the number of tasks 
or the number of states.) See Example 8.1.2 for an example of a process I /O 
automaton. 

We consider two kinds of faulty behavior on the part of node processes: 
stopping failure and Byzantine failure. The stopping failure of Pi is modelled by 
including in the external interface of Pi a stopi input action, the effect of which 
is to permanently disable all tasks of Pi. (We do not constrain the state changes 
caused by a stopi, nor the state changes caused by subsequent input actions. 
It is not important to constrain these state changes, because their effects could 
never be seen outside Pi, anyway.) The Byzantine failure of Pi is modelled 
by allowing Pi to be replaced by an arbitrary I /O automaton having the same 
external interface. 

14 .1 .2  S e n d / R e c e i v e  C h a n n e l s  

The channel associated with each directed edge (i, j) of G is modelled as an I /O 
automaton Ci,j. Its external interface consists of inputs of the form send(m)i,j 
and outputs of the form receive(m)i,j, where m E M. In general, except for this 
external interface specification, the channel could be an arbitrary I /O automaton. 
However, interesting communication channels have restrictions on their external 
behavior, for example, that any message that is received must in fact have been 
sent at some earlier time. The needed restrictions on the external behavior of 
a channel can generally be expressed in terms of a trace property P, as defined 
in Section 8.5.2. The allowable channels are those I /O automata whose external 
signature is sig(P) and whose fair traces are in traces(P). 
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There are two ways in which such a trace property P is commonly specified: 
by listing a collection of axioms or by giving a particular I /O  automaton whose 
external interface is sig(P) and whose fair traces are exactly traces(P). An 
advantage of listing axioms is that this makes it easier to define a variety of 
channels, each of which satisfies a different subset of the axioms. On the other 
hand, an advantage of giving an explicit I /O  automaton is that in this case, 
the entire system consisting of the processes and the most general allowable 
channels is described as a composition of I /O  automata,  which is itself another 

I /O  automaton. This allows us to use the proof methods that have been developed 
for automata. For example, this provides us with a notion of "state" for the entire 
system, both processes and channels, which we can use in invariant assertion and 
simulation proofs. 

Sometimes it may be necessary to do some rather annoying programming 
to specify the desired trace property as an I /O  automaton; this is especially so 
when the trace property involves complicated liveness constraints. This often 
leads to a mixed strategy wherein the safety properties are described in terms of 
a basic automaton (which provides the machinery needed to support  invariant 
and simulation proofs), while the liveness properties are described using special 
liveness axioms. The complete trace property P then has its traces defined to 

be exactly those traces of the basic automaton that satisfy the liveness axioms. 
In the rest of this subsection, we describe some particular send/receive chan- 

nels that we will use in Chapters 15-22. 

R e l i a b l e  F I F O  c h a n n e l .  The communication channel that is most frequently 
assumed in the research literature and that we will use most frequently here is 
a reliable FIFO channel. The behaviors allowed for such a channel are easily 
specified as the fair traces of an I /O  automaton with the appropriate external 

interface, whose state is a queue of messages. The send(m)i,j action adds m to 
the end of the queue. The receive(m)i,j action is enabled if m is first on the queue, 
and its effect is to remove the first message from the queue. The task parti t ion 
puts all the locally controlled actions in a single class. A formal definition of this 
automaton has already been given, in Example 8.1.1. 

This automaton is not only a specification of the allowable behavior for reli- 
able FIFO channels, it is itself an example of a reliable FIFO channel. We call 
it the universal reliable FIFO channel with the given external interface. 

Now we give an alternative specification, using axioms, of the allowed be- 
havior for a reliable FIFO channel. Namely, we define a trace property P with 
sig(P) equal to the given signature and traces(P) equal to the set of sequences 
/3 of actions in sig(P) that satisfy the following condition. 
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There exists a function cause mapping each receive event in/3 to a 
preceding send event in/3 such that 

1. For every receive event 7r, 7r and cause(Tr) contain the same 
message argument.  

2. cause is surjective (onto). 

3. cause is injective (one-to-one). 

4. cause preserves order, that is, there do not exist receive events 
71-1 and 7r2 with 7t- 1 preceding 7r2 in/3 and cause(Tr2) preceding 
cause(Trx) in/3. 

The cause function is a device for identifying which send event "causes" each re- 

ceive event. Condition 1 says that only correct messages are delivered; Condition 
2 says that messages are not lost; Condition 3 says that they are not duplicated; 
and Condition 4 says that they are not reordered. 

Notice that (for this part icular trace property P)  the cause function for each 
sequence in t races (P)  is unique. 

R e l i a b l e  r e o r d e r i n g  c h a n n e l .  Another type of channel that is often con- 
sidered guarantees delivery of all messages, each exactly once, but does not 
necessarily preserve their order. The behaviors allowed for this type of channel 
are not so easily specified using an I /O  automaton,  so we instead use axioms. 
Namely, the specification is exactly the same as the axiomatic specification P for 
the reliable FIFO channel, given above, except that Condition 4 for the cause 

function is dropped. 
An alternative, equivalent specification can be given using the mixed strategy 

mentioned above--us ing a basic I /O automaton A to describe the safety prop- 
erties and additional axioms to describe liveness. This basic automaton A is as 
follows. (Here, U and E are multiset operations.) 

A a u t o m a t o n :  

Signature:  

Input: 
send(m) id ,  m C M 

Output: 
receive(m)i,j ,  m C M 

States :  
in-transit, a multiset of elements of M, initially empty 
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Trans i t i ons :  

send(m)i , j  
Effect" 

in-transit  : -  in-transit  U { m }  

461 

receive(m)i,j 
Precondi t ion :  

m 6 in-transit  
Effect: 

remove one copy of m f rom in-transit  

Tasks:  
Arbi t ra ry .  

The task part i t ion does not matter ,  because we are not using it here. Using 
au tomaton  A, we define a t race proper ty  P.  The signature is the same as sig(A), 
and traces(P) is the set of t races of (not necessarily fair) executions c~ of A that  
satisfy the following condition. 

If at any point in c~ and for any m E M we have m C in-transit, then 
at some later point in c~, a receive(m) event occurs. 

C h a n n e l s  w i t h  f a i l u r e s .  We can also consider send/receive channels in which 
some failures occur. In this book, the only kinds of channel failures we discuss 
are message loss and duplication. 

A channel permit t ing a rb i t ra ry  loss but  no duplication, or a rb i t ra ry  duplica- 
tion but  no loss, or a rb i t ra ry  duplication and loss, can be specified in the same 
way as reliable reordering channels, using the cause function. All we need to do 
is to omit Condit ion 2 and /o r  Condit ion 3, as appropriate.  

However, often we want to assume a limited amount of message loss and /o r  
duplication. For example, when we consider message loss, we generally do not 
want  to consider the case where all messages are lost, because in this case nothing 
can be guaranteed  ever to happen. A typical condition restr ict ing message loss is 
one that  says that  a message that  is sent infinitely many times must  be received 
infinitely many times. To say this formally, we use the following condition on 
the cause function. 

S t r o n g  loss  l i m i t a t i o n  (SLL)"  If there are infinitely many send(m) events in 
/3 (for any par t icular  m),  then there are infinitely many send(m) events in 
the range of the cause function. 

Notice that  this says that  infinitely many different send events succeed in having 
their messages delivered. This condition is not satisfied, for example, by a 
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sequence in which there are infinitely many receive events, all caused by the 
same send event. 

Another typical condition restricting message loss is one that does not men- 
tion any particular m, but just  says that infinitely many sends  cause receives of 
infinitely many messages. 

W e a k  l o s s  l i m i t a t i o n  ( W L L ) :  If there are infinitely many send events in/3, 

then the range of the cause function is infinite. 

For duplication, we might want to limit the number of copies of each message 
to be finite or to be bounded by some particular number k. For example, 

F i n i t e  d u p l i c a t i o n :  The cause function maps only finitely many receive events 
to any part icular send event. 

So far, we have described all the channels with failures using axioms. We 
now use the mixed strategy to specify two such channels. 

E x a m p l e  14.1 .1  A lossy  F I F O  c h a n n e l  

We define a channel that allows limited loss, finite duplication, and no 

reordering. (This channel will be used in Section 22.3, in the descrip- 
tion of the Alternating Bit communication protocol.) The automaton 
is as follows. 

A a u t o m a t o n :  

Signature: 

As usual. 

States: 
queue, a FIFO queue of elements of M, initially empty 

Transitions: 

send(m)i,j 
Effect- 

add any finite number of copies 
of m to queue 

Tasks: 
Arbitrary. 

receive(m)i,j 
Precondition" 

rn is first on queue 
Effect: 

remove first element of queue 

The definition of automaton A guarantees that the channel does not 
reorder messages and only delivers finitely many copies of any mes- 

sage. However, we need to impose two extra liveness conditions. 
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1. If, at any point, queue is nonempty, then at some later point, a 
receive event occurs. 

2. If there are infinitely many send events, then infinitely many of 
them succeed in putting (at least one copy of) their messages 
on the queue. 

The combination of A and the liveness conditions are used to define a 
trace property as before. This trace property implies that if there are 
infinitely many send events, then infinitely many of those have cor- 
responding receive events, that is, it implies the weak loss limitation 
(WLL) condition. 

E x a m p l e  14.1.2 A lossy  r e o r d e r i n g  c h a n n e l  

We define a channel that allows limited loss, finite duplication, and 
reordering. (This channel will be used in Section 22.2, in the de- 
scription of Stenning's communication protocol.) The automaton is 
as follows. 

A a u t o m a t o n :  

S i g n a t u r e :  

As usual. 

States :  
in-transit, a mult iset  of elements of M,  initially empty  

Trans i t i ons :  

send(m)i, j  
Effect: 

add any finite number  of copies 
of m to in-transit 

Tasks:  
Arbi t rary.  

receive(m)i,j 
Precondit ion:  

m E in-transit 
Effect" 

remove one copy of m from in-transit 

We add two liveness conditions. 

1. If, at any point, in-transit is nonempty, then at some later point, 
a receive event occurs. 

2. If there are infinitely many send events, then infinitely many of 
them succeed in putting (at least one copy of) their messages in 
in-transit. 



464 14. MODELLING IV: ASYNCHRONOUS N E T W O R K  MODEL 

As in Example 14.1.1, the resulting trace property implies that if there 
are infinitely many send events, then infinitely many of them have 
corresponding receive events, that is, it implies the WLL condition. 

Note that every trace allowed by the specification in Example 14.1.1 
is also allowed by this specification. However, there are some traces 
allowed by this specification that are not allowed by the previous one. 

14.1.3 Asynchronous Send/Receive Systems 

An asynchronous send/receive network system for directed graph G is obtained 
by composing the process and channel I /O automata, using ordinary I /O au- 
tomaton composition. An example of the architecture for such a system appears 
in Figure 8.3. The composition definition allows for the right interactions among 
the components; for example, when process Pi performs a send(m)i,j output 
action, a simultaneous send(m)i,j input action is performed by channel Ci,j. 
Appropriate state changes occur in both components. 

Sometimes it is convenient to model the users of a send/receive system as 
another I /O automaton, U. U's external actions are just the actions of the 
processes at their user interface. The user automaton U is often described as 
the composition of a collection of user automata Ui, one for each node i of the 
underlying graph. In this case, Ui's external actions are the same as the actions 
of Pi at the user interface. (If stopping failures are considered, the stop actions 
are not included among the actions of the users.) 

1 4 . 1 . 4  Properties of Send/Receive Systems with Reliable FIFO 
Channels 

We give a basic theorem about asynchronous send/receive network systems with 
universal reliable FIFO channels, for use in Chapters 18 and 19. It identifies 
circumstances under which the events of a fair trace can be reordered to yield 
another fair trace. (Note that, according to the formal definition of I /O automa- 
ton composition, the traces include the send and receive events, as well as the 
events at the user interface.) What is required is that the reordering should 
respect certain basic dependencies: the dependency of a receive event on the cor- 
responding send event (with respect to the uniquely determined cause function) 
and the (possible) dependency of any event on all preceding events at the same 
node process. 

Fix any asynchronous send/receive system A with universal reliable FIFO 
channels. Let ~ be any trace of A. We define an irreflexive partial order --+~ on 
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the events in/~ as follows. If 7r and r are two events in fl, with 7r preceding r 

then we say that 7r -+Z r or r depends on 7r, provided that one of the following 
holds" 

1. 7r and r are events of the same process Pi. 

2. 7r is of the form send(m)i,j,  and 4) is the corresponding receive(m)i,j event. 

3. 7r and r are related by a chain of relationships of types 1 and 2. 

T h e o r e m  14.1 Let A be an asynchronous send/receive system with universal 
reliable FIFO channels, and let /3 be a fair trace of A. Let y be a sequence 
obtained by reordering the events in ~ while preserving the - -~ ordering. Then 
"7 is also a fair trace of A. 

P r o o f .  Theorem 8.4 implies that fllPi E fairtraces(Pi) for every i. Since 7lPi = 

~lPi for every i, it follows that ~/IP~ E fairtraces(Pi) for every i. 
Theorem 8.4 also implies that ~lCi,j E fairtraces(G,j)  for every i and j .  

Since "~lCi,j has the same set of events as ~]Ci,j, and the reordering preserves the 
order of events at Pi, the order of events at Pj, and the ordering of receive events 

after their corresponding send events, it follows that  lc ,j ~ fairtraces(C~,j). 
Theorem 8.6 then implies that ~/E fairtraces(A). [-1 

Theorem 14.1 has a corollary that says that certain reorderings of fair exe- 

cutions are also fair executions. 

C o r o l l a r y  14.2 Let A be an asynchronous send/receive system with universal 
reliable FIFO channels, and let c~ be a fair execution of A. Let ~/ be a sequence 
that is obtained by reordering the events in /3  = trace(a) while preserving the 
---~ ordering. Then there is a fair execution c~' of A such that trace(c~') = "7 and 
such that c~ and c~ ~ are indistinguishable 1 to every process Pi. 

P r o o f  S k e t c h .  Theorem 14.1 implies that ~ E fairtraces(A). 
and 8.5 can then be used to show the existence of the needed c~ ~. 

Theorems 8.4 

The execution c~ ~ whose existence is guaranteed by Corollary 14.2 cannot be 
distinguished from the original execution c~ by the processes in system A (even 

if they combine their information). This means that the processes do not know 

the total ordering of events in an execution; they cannot determine the order of 
events at different processes if those events are not related by the message and 
process dependencies described by the partial  order --+Z. 

1This uses the formal definition of indistinguishable from Section 8.7. 
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1 4 . 1 . 5  C o m p l e x i t y  M e a s u r e s  

We measure communication complexity in terms of the number of messages that 
are sent and /or  the number that are received. We can also take into account the 
number of bits in the messages. 

For measuring time complexity, we use a special case of the general time 

complexity measure defined for I /O  automata in Section 8.6. That  is, we asso- 
ciate an upper bound of t~ with each task of each process; this imposes an upper 
bound of t~ on the time between successive chances for that task to perform a 
step. We also need assumptions about the time for delivery of messages. For the 
special case of universal reliable FIFO channels, we usually associate an upper 
bound of d with the single task consisting of the receive actions of each channel; 
this imposes an upper bound of d on the delivery time for the oldest message 
in the channel. Thus, our usual time complexity measure takes into account the 
costs of pileups of messages in channels-- the kth message on a channel's queue 
is guaranteed to be delivered within time kd. 

We sometimes also make a less realistic but simpler assumption about mes- 
sage delivery time: an upper bound of d on the delivery time for each message 
in a channel, regardless of pileups. This assumption is not expressible just by 
associating time bounds with tasks (but it makes sense nonetheless). Also, we 
can extend the channel time bound assumptions to non-universal FIFO channels, 
in the obvious way. 

14.2 Broadcast Systems 

A broadcast  system consists of a set of processes numbered 1 , . . .  , n, plus a single 
broadcast channel to model the broadcast  communication subsystem. Again, let 
M be a fixed message alphabet.  

14 .2 .1  P r o c e s s e s  

Process i in a broadcast  system is modelled as an I /O  automaton Pi. As for 
processes in send/receive network systems, Pi usually has some input and output  
actions by which it communicates with an external user. In addition, Pi has 
outputs of the form bcast(m)~, where m E M, and inputs (as before) of the form 
receive(m)j,i, where rn C M. Except for these external interface restrictions, Pi 
can be an arbi t rary I /O  automaton. See Figure 14.1. 
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er interface 

bcast(m), ~ I receive(m;, i 

F i g u r e  14.1" A process I/O automaton for an asynchronous broadcast system. 

14 .2 .2  B r o a d c a s t  C h a n n e l  

A broadcast channel is modelled as a single I /O automaton. Its external interface 
consists of inputs of the form bcast(m)~ and outputs of the form receive(m)~,j, 
where m C M. In this book, we consider only reliable broadcast channels, but it 
is possible also to define other types of broadcast channels that exhibit various 
forms of failure. 

R e l i a b l e  b r o a d c a s t  channe l s .  A reliable broadcast channel delivers every 
message that is broadcast, to every process, including the sender. We make one 
assumption about the ordering of the message deliveries: that the delivery order 
is FIFO between each particular pair of processes. The allowed behaviors for 
such a channel are easily specified as the fair traces of a single I /O automaton 
B that maintains a separate queue for each ordered pair of processes. 

B a u t o m a t o n "  

Signa tu re :  

Input: 
bcast(m)i ,  m E M ,  1 <_ i ~_ n 

Output: 
receive(m)i , j ,  m C M ,  1 <_ i , j  <_ n 

States:  
for every i , j ,  1 < i , j  _~ n" 

queue( i , j ) ,  a FIFO queue of elements of M, initially empty 
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Transitions: 
bcast(m)i 

Effect: 
for all j do 

add m to queue(i, j) 

Tasks: 
for every i, j: 

receive(m)i,j 
Precondition: 

rn is first on queue(i, j) 
Effect: 

remove first element of queue(i, j) 

We call B the universal reliable broadcast channel with the given external  

interface. 

14.2 .3  A s y n c h r o n o u s  B r o a d c a s t  S y s t e m s  

An asynchronous  broadcas t  system is obta ined by composing the process and 

broadcas t  channel I / O  automata .  

1 4 . 2 . 4  Properties of Broadcast Systems with Reliable 
Broadcast Channels 

The definitions and results in Section 14.1.4 can be modified for broadcas t  sys- 

tems with universal reliable broadcas t  channels. The relevant dependencies now 

are the dependency of a receive event on the corresponding bcast event and the 

(possible) dependency of any event on all preceding events at the same node 

process. 

Fix  any asynchronous  broadcas t  sys tem A with a universal reliable broadcas t  

channel. Let ~ be any t race of A. We define an irreflexive par t ia l  order on the 

events in/3 as follows. If 7r and r are two events in ~, with 7r preceding r then 

we say that  7r --+Z r or r depends on 7r, provided that  one of the following holds: 

1. 7r and r are events of the same process Pi. 

2. 7r is of the form bcast(m)i, and r is a corresponding receive(m)i,j event. 

3. 7r and r are related by a chain of relat ionships of types  1 and 2. 

Theorem 14.3  Let A be an asynchronous broadcast system with a universal 
reliable broadcast channel and let/3 be a fair trace of A. Let ~/ be a sequence 
obtained by reordering the events in/3 while preserving the --+~ ordering. Then 

is also a fair trace of A. 
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P r o o f .  The proof is left as an exercise. D 

C o r o l l a r y  14.4 Let A be an asynchronous broadcast system with a universal 
reliable broadcast channel and let c~ be a fair execution of A. Let "7 be a sequence 
obtained by reordering the events in /3 = trace(a), while preserving the --+~ 
ordering. Then there is a fair  execution c~' of A such that trace(c~') = ~/ and 
such that c~ and c~' are indistinguishable to every process Pi. 

P r o o f .  The proof is left as an exercise. D 

1 4 . 2 . 5  C o m p l e x i t y  M e a s u r e s  

We can measure communication complexity either in terms of the number of 
bcast events or the number of receive events. 

For measuring time complexity, we use a special case of the time complexity 
measure for I /O  automata.  Namely, we associate an upper bound of t~ with each 

task of each process. And for the special case of a universal reliable broadcast  

channel, we usually associate an upper bound of d with each task; this imposes 

an upper bound of d on the delivery time for the oldest message in t ransi t  from 
each Pi to each Pj. Thus, we again take into account the costs of pileups of 
messages. 

Again, we occasionally make the stronger assumption of an upper bound 

of d on the delivery time for each message and extend the channel time bound 
assumptions to non-universal reliable broadcast  channels. 

14.3 Multicast Systems 

Send/receive and broadcast  systems are both generalized by multicast systems, 
which allow each process to send a message to a subset of the processes in the 
network. A multicast system contains a set of processes numbered 1 , . . .  , n, plus 
a single multicast channel to model the multicast communication subsystem. 

The system is parameterized by a se t /7  of pairs of the form (i, I) ,  where i is a 

process index and I is a set of process indices. Each such pair (i, I) indicates 
that process i can use set I as a destination set for multicasts. Again, M is a 
fixed message alphabet.  

1 4 . 3 . 1  P r o c e s s e s  

We again use an I / 0  automaton Pi. In addition to some actions at the user 

interface, Pi has outputs of the form mcast(m)i, i ,  where rn is a message and 
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(i, I) E 27, and inputs of the form receive(m)j,i. Except for these external interface 
restrictions, Pi can be an arbitrary I /O automaton. 

14 .3 .2  M u l t i c a s t  C h a n n e l  

A multicast channel is modelled as a single I /O automaton. Its external interface 
consists of inputs of the form mcast(m)~,i, (i, I) E 17, and outputs of the form 
receive(m)i,j. We consider only reliable multicast channels. 

Rel iable  mult icast  channels .  The allowed behaviors for a reliable multicast 
channel with set I of pairs are easily specified as the set of fair traces of the 
following I /O automaton B. 

B automaton:  

Signature:  

Input:  
mcast(m)i,i, m E M,  (i, I)  E 5[ 

Output :  
receive(m)i,j, m E M, 1 < i , j  < n 

States:  
for every i , j ,  1 < i , j  < n" 

queue(i, j),  a F IFO queue of elements of M, initially empty  

Trans i t ions:  
mcast(m)i,~ 

Effect: 
for all j E I do 

add m to queue(i, j) 

receive(m)i,j 
Precondit ion:  

rn, is first on queue(i,j) 
Effect" 

remove first e lement  of queue(i, j)  

Tasks: 
for every i, j" 

{ ~ c ~ i w ( . ~ ) ~ , ,  " m e M }  

We call B the universal reliable multicast channel with the given external 
interface. 

An interesting special case of a reliable multicast channel is one in which the 
allowable destination sets are exactly the singleton sets and the set { 1 , . . . ,  n} 
of all processes. This channel supports a combination of point-to-point and 
broadcast communication. Note that the FIFO order is guaranteed even between 
broadcast and point-to-point messages. 
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14 .3 .3  Asynchronous Multicast Systems 

An asynchronous multicast system is obtained by composing the process and 
multicast channel I /O automata. It is straightforward to extend the definitions 
and results in Section 14.1.4 to multicast systems based on universal reliable 
multicast channels. Likewise, the complexity measures for broadcast systems 
can be extended to multicast systems. 

14.4 Bibl iographic  Notes  

In general, we use no special source for the modelling of asynchronous send/receive, 
broadcast, and multicast networks; similar material appears in many papers on 
distributed algorithms and on formal verification of network protocols. The use 
of a cause function to describe the explicit connection between message sending 
and receiving events is derived from the work of Fekete, Lynch, Mansour, and 
Spinelli [112] and Afek, Attiya, Fekete, Fischer, Lynch, Mansour, Wang, and 
Zuck [4]. 

Our modelling of broadcast and multicast channels only includes basic cot- 
rectness and complexity properties. There has been much work on the imple- 
mentation and use of broadcast and multicast channels with stronger properties, 
including stronger ordering requirements and fault-tolerance properties. Hadzi- 
lacos and Toueg's paper [143] gives a good overview. 

14.5 Exercises  

14.1. Let P be the trace property defined in Section 14.1.2 to describe the al- 
lowable behaviors for a reliable FIFO send/receive channel. Prove that 
traces(P) is exactly equal to the set of fair traces of the universal reliable 
FIFO channel automaton with the same external interface. 

14.2. Let A be any I /O automaton that implements a universal reliable FIFO 
send/receive channel B - - t h a t  is, A has the same external signature as 
B and fairtraces(A) C_ fairtraces(B). Prove that in fact fairtraces(A) - 
fairtraces(B). (In this sense, any reliable FIFO channel must be universal.) 

14.3. Consider an alternative trace property Q as a specification for the allowable 
behavior of a reliable FIFO send/receive channel. Q is the same as P,  
only it does not require that cause(77) precede 77. Prove that for every 
I /O automaton A with the appropriate external interface, fairtraces(A) C_ 
traces(Q) if and only if fairtraces(A) C_ traces(P). 
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14.4. Give a careful description of a send/receive channel C that can lose mes- 
sages, but not duplicate or reorder them, as an explicit I /O automaton. 
Suppose that C is even permitted to lose all of its messages. However, C 
should exhibit all the possible traces that satisfy this condition~for exam- 
ple, it should not be required to lose messages. Define a simulation relation 
(as defined in Section 8.5.5) from the universal reliable FIFO send/receive 
channel of Section 14.1.2 to C, and prove that it actually is a simulation 
relation. 

14.5. (a) Prove that the two given specifications for the allowable behaviors of 
a reliable reordering send/receive channel are equivalent. 

(b) Can the allowable behaviors for a reliable reordering send/receive 
channel be equivalently defined by an I /O automaton? That is, does 
there exist an I /O automaton with the appropriate external signature 
whose fair traces are exactly the specified sequences of actions? 

14.6. (Channel multiplexing) It is possible to use a single "real" send/receive 
channel to implement two or more "logical" send/receive channels, each 
needed for a separate algorithm or a separate piece of one algorithm. For- 
mally, suppose that P1 and P2 are trace properties describing the correct- 
ness requirements for two separate channels, with disjoint message alpha- 
bets Mx and M2. Then the product trace property P1 x P2 (see Section 8.5.2 
for the definition of the product of trace properties) can be regarded as the 
specification for another channel, guaranteeing both sets of requirements. 

As an example, let P1 and P2 describe the allowed behaviors for reliable 
FIFO channels, for message alphabets M1 and 3/2, respectively. Let P 
descibe the allowed behaviors for a reliable FIFO channel for message al- 
phabet M - M1 U 21//2. 

(a) Prove that traces(P) C traces(P1 x P2). 
This implies that any I /O automaton A that implements P (in the 
sense that extsig(A) - sig(P) and fairtraces(A) C traces(P)) in fact 
implements both channels P1 and P2 (in the sense that eztsig(A) - 
sig(P1 x P2) and fairtraces (A) C_ traces (P1 x P2)). 

(b) Show that t races(P)#  traces(P1 x P2). 
This says that P ' s  behavior is more constrained than is needed in 
order to implement the two channels P1 and P2. 

14.7. Repeat Exercise 14.6, but in place of reliable FIFO send/receive channels, 
consider channels that allow arbitrary reordering, strong loss limitation 
(SLL), and 
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14.8. 

(a) no duplication 

(b) finite duplication 

(c) arbi t rary duplication 

Prove that the FIFO assumption for reliable send/receive channels is not 
necessary. Specifically, show how to t ransform any send/receive system A 
based on reliable FIFO channels into a send/receive system T(A) based 
on reliable reordering channels that looks the same to the environment, 
in the following sense. For every fair execution c~ of T(A) there is a fair 
execution a ~ of A that projects to give the same sequence of actions at the 
user interface. Be sure to state your result precisely. 

14.9. Prove that the FIFO assumption for reliable broadcast  channels is not 
necessary. That  is, show that a system A with this assumption can be 

t ransformed into a system T(A I without this assumption that looks the 
same to the environment. Be sure to state your result precisely. 

14.10. Strengthen Theorem 14.1 so that it includes a claim about what is preserved 
at the user interface. 

14.11. Prove Theorem 14.3. 

14.12. Prove Corollary 14.4. 
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Chapter 15 

Basic Asynchronous Network 
Algorithms 

In this chapter, we describe a collection of algorithms for solving some basic 
problems--leader election, constructing an arbitrary spanning tree, broadcast 
and convergecast, breadth-first search, finding shortest paths, and constructing 
a minimum spanning t ree-- in  the asynchronous network model with reliable 
FIFO send/receive channels. The problems are, for the most part, the same 
ones considered in the synchronous network model in Chapter 4. As before, 
these problems are motivated by the need to select a process to take charge of a 
network computation and by the need to build structures suitable for supporting 
efficient communication. We do not consider faults in this chapter. 

All the algorithms in this chapter are constructed by direct programming 
of the "bare" asynchronous network model. It will not take long for us to see 
that this model is much more difficult to program than the synchronous network 
model. This will lead us to seek ways of simplifying and systematizing the 
programming task. In the four chapters following this one, Chapters 16-19, we 
introduce four such simplification techniques: synchronizers, simulating shared 
memory, logical time, and runtime monitoring. 

15.1 Leader  E l e c t i o n  in a R i n g  

We considered the problem of leader election in a synchronous ring in Chapter 3. 
For the asynchronous version of the problem, the underlying digraph is again a 
ring of n processes, numbered 1 to n in the clockwise direction. As before, 
we often count mod n, allowing 0 to be another name for process n, and so 
on. The ring can be either unidirectional or bidirectional. Figure 15.1 shows 
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I 

F i g u r e  15.1- Architecture for unidirectional ring network. 

the architecture for an asynchronous unidirectional ring network, including both 
processes and channels. 

Now processes and channels are modelled as I /O  au tomata .  As in the syn- 
chronous setting, processes do not know their indices, nor those of their neigh- 
bors, but  use local, relative names. This allows arbi t rary  processes to be ar- 
ranged into a ring in an arbi t rary  order. Besides the send and receive actions 
by which process au tomaton  Pi interacts with its channels, Pi has a leaderi out- 
put  action by which it can announce its election as leader. We assume, here 
and throughout  the rest of the chapter,  tha t  the channels are reliable FIFO 
send/receive channels. We also assume here tha t  the processes have UIDs. The 
problem is for exactly one process eventually to produce a leader output .  

1 5 . 1 . 1  T h e  L C R  A l g o r i t h m  

The LCR algori thm described in Section 3.3 can easily be adapted  to run in an 
asynchronous network. Recall tha t  in the LCR algorithm, each process sends 
its identifier around the ring. When a process receives an incoming identifier, 
it compares tha t  identifier to its own. If the incoming identifier is greater than  
its own, it keeps passing the identifier; if it is less than  its own, it discards the 
incoming identifier; if it is equal to its own, the process outputs  leader. 
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T h e  same  idea  still works  in an  a s y n c h r o n o u s  ne twork;  the m a i n  difference is 

t ha t  now each  p roces s ' s  send buffer  m u s t  be able to hold any  n u m b e r  (up to n) 

of m e s s a g e s  i n s t ead  of j u s t  a single one. T h e  reason  for the dif ference is tha t  the 

a s y n c h r o n y  can  cause  p i leups  of UIDs  at  nodes .  We call the mod i f i ed  a l g o r i t h m  

A s y n c h L C R .  

In the following code, we use A synchLCRi  as an  a l t e rna t ive  n a m e  for p rocess  

Pi in the A s y n c h L C R  a lgo r i thm.  W h e n  we discuss  the a lgo r i t hm,  we use the 

two names ,  A s y n c h L C R i  and  Pi, as convenient ;  we also s o m e t i m e s  deno te  this  

p rocess  s imp ly  as "process  i." We use s imi la r  convent ions  e lsewhere .  

A s y n c h L  C R i  a u t o m a t o n :  

Signature: 

Input" Output: 
receive(v)i_l,i, v a UID send(v)i,i+l, v a UID 

leader~ 

States: 
u, a UID, initially i's UID 
send, a FIFO queue of UIDs, initially containing only i's UID 
status, with values in {unknown, chosen, reported}, initially unknown 

Transitions: 
send(v)i,i+ l leaderi 

Precondition: Precondition: 
v is first on send status = chosen 

Effect: Effect: 
remove first element of send status := reported 

receive(v)i_l,i 
Effect: 

case 

v ~ u: add v to send 
v -- u: status := chosen 
v < u: do nothing 

endcase 

Tasks: 
{send(v)~,i+l"v a UID} 
{leaderi} 
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The transitions should be self-explanatory. Process i is responsible for per- 

forming two tasks: sending messages to process i + 1 and announcing itself as 

the leader. Thus, it has two tasks, one for all its send actions and one for its 

leader action. The behavior of the A synchLCR is essentially the same as that of 
LCR, but possibly "skewed" in time. 

In order to prove that AsynchLCR solves the leader-election problem, we use 

invariant assertions as we did for the synchronous LCR algorithm. Invariant 

assertion proofs work for asynchronous networks just as well as for synchronous 

networks; the main difference is that now the method must be applied at a finer 
granularity, to reason about individual events rather than about rounds. 

Technically, in order to use invariant assertion proofs, we must know the 

structure of the state of each channel automaton. Thus, for convenience, we 

assume that the channels Ci,i+l are all universal FIFO reliable channels as defined 
in Section 14.1.2. Then we know that the state of each Ci,i+l consists of a single 

queue component, which we refer to as queuei,i+l. This assumption does not 
restrict the generality of the results, because an algorithm that works correctly 

with universal reliable FIFO channels must also work with arbitrary reliable 

FIFO channels. We will make the same assumption in all of our correctness 
proofs for send/receive systems with reliable FIFO channels. 

Let /max denote the index of the process with the maximum UID, and let 
Umax denote its UID. Here, as in the synchronous case, we must show two things: 

1. No process other than imax ever performs a leader output. 

2. Process imax eventually performs a leader output. 

The first of these two conditions is a safety property while the second is a liveness 
property. 

L e m m a  15.1 No process other than imax ever performs a leader output. 

P r o o f .  We use an invariant similar to Assertion 3.3.3 for the synchronous 
case. Recall that Assertion 3.3.3 said that no UID v could reach any send queue 

between/max and v's original home i. Now, because the AsynchLCR algorithm 
includes channel automata, we need a slightly stronger assertion that involves 
the UIDs in the channel states as well as the UIDs in the process states. As 

usual, we subscript process state components by the index of the process; we 
also subscript channel state components by the two indices of the channel. 

A s s e r t i o n  15.1.1 The following are true in any reachable state: 

1. I f  i 7~ imax and j E [imaz, i), then ui does not appear in sendj. 
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2. If i ~ imax and j c [imax, i), then ui does not appear in queuej,j+l. 

Assertion 15.1.1 is proved by induction on the number of steps in a finite 

execution leading to the given state. The proof is generally similar to that of 
Assertion 3.3.3. This time, we proceed by case analysis based on the individual 

send, receive, and leader events. The key case is that of a receive(v)j_l,j event 

where j =/max; for this case, we must argue that if v = ui where i J=/max, then 
v gets discarded. 

Assertion 15.1.1 can be used to prove Assertion 15.1.2. 

A s s e r t i o n  15.1.2 The following is true in any reachable state: If  
i ~ imax then statusi = unknown. 

Then it is easy to see that no process other than im~x ever performs a leaderi 
output, since the precondition of this action is never satisfied. E] 

Now we turn to the liveness property. Notice that this needs the hypothesis 
that the execution of A synchLCR is fair. This formal notion means that the 
processes and channels continue to perform their work. 

L e m m a  15.2 In any fair execution, process imax eventually performs a leader 
output. 

P r o o f .  The proof of this property for A synchLCR is quite different from the 
proof of the corresponding result, Lemma 3.2, for the synchronous LCR algo- 
rithm. Recall that in the synchronous case, we used a very strong invariant 

assertion, Assertion 3.3.2, which described exactly where the maximum UID 

had travelled after any number r of rounds. Now we have no notion of round. 

Also, it is impossible to characterize precisely what happens in the computation, 
since the asynchrony introduces so much uncertainty. So we must use a different 
method. 

Our proof is based on establishing intermediate milestones toward the main 
goal of electing a leader. In particular, we show inductively on r, for 0 _< r _< 

n -  1, that eventually Umax appears in the buffer 8endimax+r. Using this claim 

for r - n -  1, we show that eventually Umax is placed in channel Cim~x-l,im~x, 
that thereafter eventually Um~x is received by process im~x, and that thereafter 
eventually process/max performs a leader output. The fairness properties of the 

process and channel I /O automata are used to prove all these eventuality claims. 

For example, consider a state s in a fair execution c~ in which any UID 
v appears at the head of the sendi buffer. We argue that eventually send(v)i 
occurs. If not, then examination of the transitions of process AsynchLCRi shows 

that v remains at the head of the sendi buffer forever. This implies that the sendi 
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task stays enabled forever, so by fairness, some sencli event must subsequently 
occur. But since v is the message at the head of the send4 buffer, this means that 
send(v)i must eventually occur. 

Also, if v appears in the kth position on the sendi buffer, for any value of 
k _> 1, we can show that eventually send(v)i occurs. This follows by induction 
on k, with the basis case, k - 1, given just above. For the inductive step, we 
note that a UID v in position k > 1 eventually reaches position k -  1, when the 
head of the buffer gets removed, and then the inductive hypothesis implies that 
send(v)i eventually occurs. 

Similar arguments can be made for the UIDs in the channels. 77 

Putt ing these arguments together, we obtain 

T h e o r e m  15.3 AsynchLCR solves the leader-election problem. 

We next consider the complexity of the AsynchLCR algorithm. The number 
of messages is O (n2), just as for the synchronous LCR algorithm. Recall that 
the time bound for L CR is n rounds. For the time analysis of A synchLCR, we 
assume an upper bound of t~ for each task of each process, and an upper bound 
of d on the time to deliver the oldest message in each channel queue. 

A naive analysis gives an O (n2(g + d)) time bound, by integrating time 
bounds into the eventuality argument in the proof of Lemma 15.2. Namely, 
note that the maximum length of any process send buffer or any channel queue 
is n. Therefore, it takes at most ng time for a UID in a process send buffer to 
get placed in the adjacent channel, and at most nd time for a UID in a chan- 
nel queue to get received by the next process. The overall time complexity is 
therefore O (n 2 (g + d)). 

However, it is possible to carry out a more refined analysis, yielding an upper 
bound that is only O (n(t~ + d)). The point is that although some send buffers 
and queues can reach size n, this cannot happen everywhere. In order for a 
pileup to form, some UIDs must travel faster than the worst-case upper bound 
in order to overtake others. The overall time turns out to be no worse than if 
the UIDs had all travelled at the same speed. We show: 

L e m m a  15.4 In any fair execution, for any r, 0 < r < n -  1, and for any i, 
the following are true: 

1. By time r(g + d), UID u~ either reaches the send4+~ buffer or is deleted. 

2. By time r(g + d) + ~, UID ui either reaches queuei+r,i+r+l or is deleted. 

P r o o f .  By induction on r. 
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Basis: r = 0. UID ui starts  out in sendi, and within time t~ is placed in 
queuei,i+l, as needed. 

Inductive step: Suppose that  the claim holds for r -  1 and prove it for r. Fix 
any i. For Part  1, suppose that  ui is not deleted by time r(t~ + d). Then the 
inductive hypothesis implies that  by time t = (r - 1)(t~ + d) + t~, UID u~ reaches 

queltei+r-l,i+r. 

C l a i m  15.5 I f  ui is not delivered to process i + r by time t, then ui reaches the 
head of queuei+~-l,i+~ by time t. 

P r o o f .  Suppose for the sake of contradiction that  ui is not delivered to process 
i + r by time t and also does not reach the head of queue4+~-l,i+~ by time t. 
Then it must be that  some other UID, uj, is ahead of ui on queuei+~-l,i+~ at 
time t. This is a pileup, where ui has overtaken uj; since ui has not yet travelled 
distance r around the ring, it follows that  uj has not yet travelled distance r -  1 
around the ring. 

However, the inductive hypothesis implies that  uj either reaches sendj+~_l 
(i.e., travels at least distance r -  1) or is deleted, by time ( r -  1)(t~ + d) 
t. This implies that  uj cannot still be in queuei+~-l,i+~ at time t, which is a 
contradiction. K] 

Thus, either ui is delivered to process i + r by time t, or else ui reaches the head 
of queue~+~_l,i+~ by time t. In this latter case, within an additional t ime d, ui 
is delivered to process i + r. In either case, ui is delivered to process i + r by 
time t + d = r(t~ + d) and placed in the send~+~ buffer, as needed. 

The proof for Part  2 is similar. 

T h e o r e m  15.6 The time until a leader event occurs in any fair execution of 
AsynchLCR is at most n(~ + d) + ~, or 0 (n(g + d)). 

P r o o f .  Lemma 15.4 for r = n - 1  implies that  UID Umax reaches qucUeimax-l,imax 
by time (n-1)(t~+d)+t~, and the same argument used in the proof of Lemma 15.4 
implies that  it reaches the first position on that  queue by that  time. Then within 
an additional t ime d, Uma• is delivered to process /max, which then performs a 
leader output  within an additional time t~. The total is n(t~ + d) + t~, as claimed. 

�89 

W a k e u p s .  We can modify the i npu t /ou tpu t  conventions for the leader-election 
problem so that  the inputs (here, the UIDs) arrive at the processes in special 
wakeup(v)i messages from an external user U, instead of originating in the start  
states. The correctness conditions would then be modified to assume that  exactly 
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one wakeup(v)i occurs for each i. Then the AsynchLCR algorithm can easily be 
modified to satisfy the new correctness conditions: each process Pi simply delays 
performing any locally controlled actions until after it receives its wakeup. If Pi 
receives any messages before receiving its wakeup, then it buffers those messages 
in a new receive buffer and processes them after receiving the wakeup. 

A similar modification can be made to the other leader-election algorithms 
later in this section. More generally, any distributed problem that is formulated 
with inputs in the start states can be reformulated to allow the inputs to arrive in 
wakeup messages. Using the same strategy described above, we can modify any 
algorithm that solves the original problem so that it satisfies the new correctness 
conditions. 

15 .1 .2  T h e  H S  A l g o r i t h m  

Recall the synchronous HS algorithm of Section 3.4, in which each process sends 
exploratory messages in both directions, for successively doubled distances. It is 
straightforward to see that this algorithm, suitably rewritten in terms of process 
I /O automata, still works correctly in the asynchronous network model. Its 
communication complexity is O (n log n), as before. We leave the determination 
of an upper bound on the time complexity for an exercise. 

15 .1 .3  T h e  Peterson Leader-Election Algorithm 

The HS algorithm (in both its synchronous and asynchronous versions) requires 
only O (n logn)  messages and uses bidirectional communication. In this sub- 
section, we present the PetersonLeader algorithm, which achieves O (n logn)  
communication complexity using only unidirectional communication. This al- 
gorithm does not rely on knowledge of n, the number of nodes in the ring. It 
uses comparisons of UIDs only. It elects an arbitrary process as the leader, not 
necessarily the process with the maximum or minimum UID. The O (n logn)  
communication complexity has only a small constant factor (approximately 2). 

P e t e r s o n L e a d e r  algorithm (informal): 

While the algorithm is executing, each process is designated as being either 
in active mode or relay mode; all processes are initially active. The active 
processes carry out the "real work" of the algorithm; the relay processes 
just pass messages along. An execution of the PetersonLeader algorithm 
is divided into (asynchronously determined) phases. In each phase, the 
number of active processes is reduced by a factor of at least 2, so there are 
at most log n phases. 
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In the first phase of the algorithm, each process i sends its UID two steps 
clockwise. Then process i compares its own UID to those of its two pre- 
decessors in the counterclockwise direction. If the counterclockwise neigh- 
bor's UID is the highest of the three, that  is, if ui-1 > ui-2 and ui-1 > ui, 

then process i remains active, adopting the UID ui-1 of its counterclock- 
wise neighbor as a new "temporary UID." On the other hand, if one of the 
other two UIDs is the highest of the three, then process i simply becomes 
a relay for the remainder of the execution. 

Each subsequent phase proceeds in much the same way. Each active pro- 
cess i now sends its temporary UID to the next and second-next active 
processes in the clockwise direction, and waits to learn the temporary  
UIDs from its two active predecessors in the counterclockwise direction. 
Now if the first active predecessor's UID is the largest of the three UIDs, 
process i remains active, adopting that  predecessor's UID as its new tem- 
porary UID. On the other hand, if one of the two other UIDs is the largest 
of the three, then process i becomes a relay. 

Also, if at any phase, a process i sees that  the temporary UID it receives 
from its immediate active predecessor is the same as its own temporary  
UID, then i knows that  it is the only active process left. In this case, 

process i elects itself as the leader. 

It should be clear that  in any phase in which there is more than one active 
process, at least one process will discover a combination of UIDs that  allows it to 
remain active at the next phase. Moreover, at most half of the active processes 
can survive a given phase, since every process that  remains active must have an 
immediate active predecessor that  becomes a relay. 

PetersonLeaderi automaton (formal): 

Signature- 

Input: Internal :  
receive(v)i_l,i, v a UID get-second-uidi 

O u t p u t :  g et- third- uidi 
send(v)i,~+l, v a UID advance-phasei 
leaderi become- rela y~ 

relayi 

States- 
mode E (active, relay}, init ially active 
status C (unknown, chosen, reported}, init ial ly unknown 
uid(j), j C {1 ,2 ,3} ,  each a UID or null; ini t ial ly uid(1) - i's UID, uid(2) - uid(3) - null 



4 8 4  15. B A S I C  A S Y N C H R O N O U S  N E T W O R K  A L G O R I T H M S  

send, a F I F O  queue  of UIDs,  init ial ly conta in ing i 's UID 
receive, a F I F O  queue  of UIDs,  init ial ly e m p t y  

T r a n s i t i o n s :  

get-second-ui& 
Precondi t ion :  

mode = active 
receive is n o n e m p t y  
uid(2) = null 

Effect: 

uid(2) := first e lement  of receive 
remove first e lement  of receive 
add uid(2) to send 
if uid(2) = uid(1) then status := chosen 

get-third-ui& 
Precondi t ion :  

mode = active 
receive is n o n e m p t y  
uid(2) # null 
uid(3) = null 

Effect: 
uid(3) := first e lement  of receive 
remove first e lement  of receive 

advance-phasei 
Precondi t ion :  

mode = active 
uid(3) # null 
uid( 2 ) > max { uid (1), uid (3) } 

Effect: 
uid(1) := uid (2) 
uid(2) := null 
uid(3) := null 
add  uid(1) to send 

become-relayi 
Precondi t ion :  

mode = active 
uid(3) # null 
uid(2 ) <_ max { uid ( 1 ), uid (3) } 

Effect: 
mode := relay 

relayi 
Precondi t ion :  

mode = relay 
receive is n o n e m p t y  

Effect: 
move first e lement  of receive 

to send 

leaderi 
Precondi t ion :  

status = chosen 
Effect: 

status := reported 

send(v)i 
Precondi t ion :  

v is first oft send 
Effect: 

remove first e lement  of send 

receivei(v) 
Effect: 

add  v to receive 

Tas  ks: 
{send(v)i,i+l :v  is a UID} 

{get-second-uidi, get-third-uidi, advance-phasei, become-relayi, relayi} 
{leaderi} 
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T h e o r e m  15.7 PetersonLeader solves the leader-election problem. 

Now we analyze the complexity. As stated above, the number of active pro- 
cesses is at least halved in each phase, until only one active process remains. 
This means that the total number of phases until a leader is elected is at most 
[log nJ + 1. During each phase, each process (either active or relay) sends at 
most two messages. Thus, at most 2n( [log nJ + 1) messages are sent in any ex- 
ecution of the algorithm. This is O (n log n), with a much better constant factor 
than in the HS algorithm. 

For the time complexity, it is not hard to prove a naive upper bound of 
O (n log n(t~ + d)). This is because there are O (log n) phases, and we can show 
that, for any p, the first p phases are completed within time O (pn(g + d)). (In 
each phase, each UID travels distance O (n) around the ring. It takes time at 
most t~ + d for a message to travel from one node to the next, provided that it is 
not blocked by a pileup. The same method we used in the proof of Lemma 15.4 
can be used to argue that pileups cannot hurt the worst-case bound.) 

A more refined analysis yields an upper bound of 0 (n(t~ + d)): 

T h e o r e m  15.8 The time until a leader event occurs in any fair execution of 
PetersonLeader is 0 (n(~ + d) ). 

We only sketch the main ideas here, leaving the proof for a somewhat intricate 
exercise. 

P r o o f  Ske t ch .  First, we can ignore pileups, since arguments such as those for 
Lemma 15.4 can be used to show that they do not affect the worst-case bound. 
The following claim is useful for the analysis. 

C l a i m  15.9 I f  processes i and j are distinct processes that are both active at 
phase p, then there must be some process k that is strictly after i and strictly 
before j in the clockwise direction, and such that process k is active at phase 
p - 1 .  

The time complexity is proportional to the length of a certain chain of mes- 
sages, ending with the message at the final phase p that causes the leader, ip, to 
become chosen. The UID in that message originates at ip itself at phase p and 
so travels a total distance of n at phase p. Process ip starts this UID on its way 
when it enters phase p, which is just  after ip receives its uid(3) at phase p -  1. 
This uid(3) in turn originates at ip'S second predecessor that is active at phase 
p -  1, ip-1, when ip-1 enters phase p -  1. By Claim 15.9, there is some process 
other than ip that reaches phase p -  1, which implies that the greatest possible 
distance this UID can travel at phase p -  1 is n .  
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We continue tracing the chain backward. Process ip-1 en te r s  phase p -  1 
when it receives its uid(3) at phase p -  2. This uid(3) originates at ip_l'S second 
predecessor that is active at phase p -  2, ip-2, when ip-2 en te r s  phase p -  2. 
Claim 15.9 can be used to show that ip-2 is no further back from ip-1 than 
ip_l'S first predecessor that is active at phase p -  1. Continuing backward, we 
define ip-3,... ,il, where each iq-1 is no further back from iq than iq'S first 
predecessor that is active at phase q. 

Now, using Claim 15.9 repeatedly, it is possible to show that the total length 
of the chain from ip-1 backward to i l is at most n. This implies that the total 
length of the chain is 3n, which translates into a time bound of O (n(g + d)). D 

15.1.4 A Lower B o u n d  on C o m m u n i c a t i o n  C o m p l e x i t y  

We have just described two asynchronous network leader-election algorithms, 
PetersonLeader and the asynchronous version of HS, that have communication 
complexity O (n log n). In this section, we argue that the problem also has a 
lower bound of f~(n log n). Throughout this section we assume, without loss of 
generality, that the channels are universal reliable FIFO channels. 

Recall that we have already given two f~(nlogn) lower bound results for 
leader election in the synchronous setting, Theorems 3.9 and 3.11. Theorem 3.9 
gives a lower bound for algorithms that are comparison based; it allows bidirec- 
tional communication and allows processes to know the number of nodes in the 
network. This result can be carried over directly to the asynchronous setting, 
since the synchronous model can be formulated as a restriction of the asynchro- 
nous model. 

T h e o r e m  15.10 Let A be a comparison-based algorithm that elects a leader 
in asynchronous ring networks of size n, where communication is bidirectional 
and n is known to the processes. Then there is a fair execution of A in which 
~(n  log n) messages are sent by the time the leader is elected. 

Theorem 3.11 gives a lower bound for algorithms that can use UIDs in ar- 
bitrary ways but that have a fixed time bound and a large space of identifiers. 
Again, it allows bidirectional communication and allows processes to know the 
number of nodes. We also carry over a version of this result to the asynchronous 
setting: 

T h e o r e m  15.11 Let A be any (not necessarily comparison-based) algorithm 
that elects a leader in asynchronous rings of size n, where the space of UIDs 
is infinite, communication is bidirectional, and n is known to the processes. 
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F i g u r e  15.2" A line of automata. 

Then there is a fair execution of A in which f~(n log n) messages are sent by the 
time the leader is elected. 

P r o o f  Ske t ch .  If there is any fair execution of A in which more than n log n 
messages are sent by the time the leader is elected, then we are done, so assume 
that this is not the case. We "restrict" A to yield a synchronous algorithm S in 
which some message is sent at every round. Since at most n log n messages are 
sent in any fair execution of A by the time the leader is elected, this means that 
the number of rounds required for S to elect a leader is at most n log n. Since the 
UID space is infinite, Theorem 3.11 applies to show that there is an execution of 
S in which ft(n log n) messages are sent by the time the leader is elected. This 
can be converted into a fair execution of A in which f~(n log n) messages are sent 
by the time the leader is elected. [~ 

Since Theorem 3.11 appears in a starred section of this book, we present 
an alternative, more elementary, lower bound proof for non-comparison-based 
algorithms. This proof is quite different from those of Theorems 3.9 and 3.11 in 
that it is based on asynchrony and on the assumption that the processes do not 
know the size of the ring. 

T h e o r e m  15.12 Let A be any (not necessarily comparison-based) algorithm 
that elects a leader in rings of arbitrary size, where the space of UIDs is infinite, 
communication is bidirectional, and the ring size is unknown to the processes. 
Then there is a fair execution of A in which f t(n log n) messages are sent. 

The proof requires a few preliminary definitions. Assume that we have a 
universal infinite set P of process automata.  All processes in P are assumed 
to be identical except for UIDs; also, they are assumed to know their neighbors 
only by local names, say "right" and "left." 

Our main interest is in seeing how a collection of process automata from T ) 
behave when they are arranged in a ring; however, it is also useful to see how 
they behave when arranged in a straight line, as depicted in Figure 15.2. We 
define a line to be a linear composition (using I /O  automaton composition) of 
distinct process automata from P,  with intervening reliable FIFO send/receive 
channels in both directions. 
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We say that two lines are disjoint if they contain no common process automa- 

ton, that is, no common UID. If L and M are two disjoint lines of automata,  

we define join(L, M) to be the line consisting of L concatenated with M,  with 

new reliable FIFO send/receive channels inserted between the r ightmost process 
of L and the leftmost process of M. The join operator is associative, so we 

can extend it to apply to any number of lines. If L is any line of automata,  we 
define ring(L) to be the ring consisting of L wrapped around, with new reliable 

FIFO send/receive channels inserted in both directions between the r ightmost  
and leftmost processes of L. Each process's right neighbor in the line becomes 

its clockwise neighbor in the ring. The ring and join operations are depicted in 

Figure 15.3. (We now represent the channels as just  arrows rather than ovals.) 

L 

join(L,M) 

M 

L 

#--- 

ring(L) 

F i g u r e  15.3: The join and ring operations. 

If c~ is an execution of a line or ring, we define C(c~) to be the number of 
messages sent in c~. If R is a ring, we define C(R) to be sup{C(c~) : c~ is an 
execution of R}, that is, the supremum of the number of messages that are sent 

in any execution of R. For a line, we consider the number of messages that can 
be sent when the line operates "in isolation," with no messages arriving at the 
end processes from the line's environment. Thus, if L is a line, we define C(L)  to 
be sup{C(c~) : c~ is an input-free execution of L}, that is, the supremum of the 
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number of messages that are sent in any execution of L without any messages 

arriving at its endpoints from outside the line. 
We say that a state s of a ring is silent if there is no execution fragment 

starting from s in which any new message is sent. We say that a state s of a line 
is silent if there is no input-free execution fragment starting from s in which any 
new message is sent. Note that if a ring or line is in a silent state, it does not 

mean that no further activity is possible--i t  just means that no further message- 

sending events can occur. It is still possible for processes to receive messages 

and perform internal steps and leader outputs. 
We begin with a preliminary lemma. 

L e m m a  15.13 There is an infinite set of process automata in P,  each of which 

can send at least one message without first receiving any message. 

P r o o f .  We show something stronger: that all except possibly one process au- 
tomaton in P can send at least one message without first receiving any message. 

Suppose, to obtain a contradiction, that there are two processes in P,  say 
processes i and j ,  such that neither can send a message without first receiving 

one. Then consider the three rings R1, R2, and Ra shown in Figure 15.4. (Now, 

for simplicity, we do not depict the channel automata at all.) 

F i g u r e  15.4" Rings R1, R2, and R3 in the proof of Lemma 15.13. 

Since neither i nor j can send a message unless it first receives one, no 
messages are ever sent in any execution of any of the three rings. Thus, the 
processes i and j proceed independently, performing local computation and leader 

actions, but never any communication actions. Since R1 solves the leader-election 
problem, i must eventually perform a leader output in any fair execution of R1. 
Likewise, since R2 solves the leader-election problem, j must eventually perform 
a leader output in any fair execution of R2. Now consider any fair execution c~ 
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of R3. Because there is no communication, a is indistinguishable by process i 

from some fair execution of R1 (using the formal notion of "indistinguishability" 

defined in Section 8.7), so i eventually performs a leader output  in c~. Likewise, 

c~ is indistinguishable by process j from some fair execution of R2, so j eventually 
performs a leader output  in c~. But this causes two leaders to be elected in R3, 
a contradiction. 

We have shown that there cannot be two processes, i and j ,  in P,  neither of 
which can send a message without first receiving one. That  is, there is at most 

one process in P that cannot send a message before receiving one. Since P is 
an infinite set, removing one process leaves an infinite set of processes, each of 

which can send a message without first receiving one. D 

The proof of Theorem 15.12 uses the following key lemma. 

L e m m a  15.14 For every r >_ O, there is an infinite collection of pairwise- 
disjoint lines, s such that for every L E s it is the case that ILl - 2 r 
and C(L)  >_ r2 r-2. 

P r o o f .  By induction on r. 

Basis: r - O. Let L:0 be the set of all single-node lines corresponding to all 
the processes in P.  The claim is trivial. 

Basis" r - 1. Let s be any infinite collection of disjoint two-node lines 
composed of processes each of which can send a message without first receiving 
one. The existence of this collection is implied by Lemma 15.13. Then if L is 

any line from s there must be an input-free execution of L in which at least 

one message is sent: simply let one of the two processes send a message without 
first receiving one. This suffices. 

Inductive step" Assume that r _> 2 and the lemma is true for r -  1, that is, 

that there is an infinite collection of pairwise-disjoint lines, s  such that for 
every L C L:~-I, it is the case that I L l -  2 ~-1 and C(L) >_ ( r -  1)2 ~-3. Let 
n -  2 r, 

Let L, M,  and N be any three lines from s We consider the six possible 
joins of two of these three lines: join(L, M),  join(M, L), join(L, N),  join(N,  L), 

jo in(M, N),  and join(N,  M) .  We show the following claim. 

C l a i m  15.15 At least one of these six lines has an input-flee execution in which 
n log n - -  r 2  r - 2  messages are sent. at least -~ 

The lemma then follows from Claim 15.15, because infinitely many sets of 

three lines can be chosen from s without reusing any processes. 
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P r o o f  (of  C l a i m  15.15) .  Assume the contrary, that  none of these six lines 
n log n messages. By the inductive hypothesis, can be made to send as many as 

there is a finite input-free execution C~L of L for which C(C~L) > ( r -  1)2 ~-3 = 
n log ~ ~. We can assume without loss of generality that  the final state of OLL is 

silent, since otherwise aL could be extended to a longer finite execution in which 

more messages are generated. (This extension cannot go on indefinitely, since 
log n messages.) Similarly, we know that  L alone cannot send as many as 

we obtain finite input-free executions C~M of M and C~N of N with the same 
properties. 

Now we construct a finite execution C~L,M of the line join(L, M). Execution 

OZL, M starts by running a L on L and C~M on M, delaying all messages sent on 

the channels connecting the lines L and M. In this prefix of OLL,M, at least 
2( r ig )  log gn _ ~n (log n - 1) messages are sent. 

Next, O~L, M continues to a silent state. Note that ,  however this happens, the 
number of additional messages that  are sent in the extension must be strictly 

n because otherwise the total number of messages in CtL, M would be less than g, 
n log n, contradicting our assumption. at least 

n _  1 The particular way in which we make this extension is to allow only the~  
processes of L and the n ~ _ 1 processes of M that  are closest to the junction of 

L and M to take steps after O~ L and C~M, until the system reaches a state from 

which none of these processes can send any more messages. We claim that  the 

resulting state of join(L, M) must be silent. For if not, then a series of at least 
n 1 messages must have been sent after the initial O~ L and aM conveying 4 

information about the junction to a process at distance ~ from the junction and 

enabling that  process to send yet another message. (Convince yourself of this.) 
But this is a total of at least ~ additional messages in the extension of aL and 

C~M, which is impossible. So the indicated state of join(L, M) must be silent. 
Informally speaking, after aL,M, information about the junction of lines L 

and M has not reached either the midpoint of L or the midpoint of M. Only 
the ~ processes on either side of the junction can know about the junction, and 

n from the junction cannot send any new the two processes at distance exactly 
messages as a result of this knowledge. Figure 15.5 depicts the junction of L 

and M, for the case where n - 16. 

In a similar way, we define finite executions O~M,L, O~L,N, and so on. 
Now we combine the lines L, M, and N into several different rings to ob- 

tain a contradiction. First define R~ to be ring(join(L, M, N)), as depicted in 

Figure 15.6. Define a fair execution O~ 1 o f  R1, as follows. Execution OL1 begins 
with C~L, C~M, and aN, thus making the three separate lines L, M, and N silent. 

Then O~ 1 continues as in C~L,M, O~M,N, and C~N,L. Since the processes that  learn 
about each junction extend at most halfway into each of the adjacent lines, there 
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Only these processes can know about join 
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Figure 15.6: R~ = ring(join(L, M, N)). 

is no interference among these three extensions. Furthermore, after these three 
extensions, the entire ring is silent. Then Ct I continues in any fair manner. The 
correctness conditions imply that some leader, say il, is elected in C~l. We may 
assume without loss of generality that process il is between the midpoint of L 
and the midpoint of M, as depicted in Figure 15.6. 

Next we define R2 = ring(join(L, N, M)), and define a fair execution c~2 of 
R2 analogous to C~l ( t h i s  time using C~L, C~M, C~N, aL,N, aN, M, and C~M,L). Then 
some leader, say i2, is elected in c~2 (see Figure 15.7). 

Next define R3 = ring(join(M,N)),  and define a fair execution c~3 of R3 
(using aM, aN, CtM, N, and C~N,M). Again, some leader, say i3, must be elected 
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N " ' " ' " . . .  

I 

-4. 

F i g u r e  1 5 . 7 : R 2  = ring(join(L, N, M)). 

in c~3 (see Figure 15.8). We claim that i3 must be in the lower half of R3 as 
it is drawn in Figure 15.8, that is, somewhere between the midpoint  of N and 
the midpoint  of M, moving clockwise. For if i3 were in the upper half of R3, 
then O~ 1 and c~3 would be indistinguishable to process i3, so i3 would also be 
elected in c~1. But then two distinct processes, il and i3, would be elected in 
c~1, a contradiction. (Processes il and i3 are distinct because il is between the 
midpoints of L and M, while i3 is between the midpoints of M and N.) 

Since i3 is in the lower half of R3, c~2 and c~3 are indistinguishable to i3; 
hence, i3 is also elected in R2. Note that i3 is between the midpoint  of N and 
the midpoint  of M in R2. Since only one leader can be elected in c~2, we have 
i2 = i3. See Figure 15.7. 

Finally, we define R 4  = ring(join(L, N)) and define a fair execution O~4 of/~4 
(using C~L, C~N, OiL,N, and O~N,L). See Figure 15.9. We claim that no leader can 
be elected in c~4. For if a leader were elected from the top half of R4, then that 
leader would also be elected in c~2, yielding two leaders in c~2. And if a leader 
were elected from the bot tom half of R4, then that leader would also be elected 
in c~1, yielding two leaders in (~1. Either way is a contradiction. 

But the fact that no leader is elected in O~4 violates the problem requirements, 
which yields the contradiction needed to prove the claim. KI 

The lemma now follows immediately from Claim 15.15, as described just  
before the proof of the claim. 
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F i g u r e  15.8 :  Ra = ring(join(M, N)). 

N 

F i g u r e  1 5 . 9 : R 4  = ring(join(L, N)). 

Now using L e m m a  15.14, it is easy to complete  the proof  of Theorem 15.12. 

P r o o f  (o f  T h e o r e m  1 5 . 1 2 ) .  Firs t  suppose  that  n is a power of 2, say n = 

2 ~. Let L be any line in s L e m m a  15.14 implies that  ILl = n and C(L) >_ 
- ~ log n. Define n4 log n. Let c~ be an input-free execut ion of L such that  C(c~) _> 

R = ring(L), tha t  is, paste  L into a ring. Define an execut ion c~ ~ of R that  
behaves exactly like c~ on L, delaying all messages  across the junc t ion  between 

the endpoin ts  of L until  after at least ~ log n messages  have been sent. Then  

log n. C(c~') _> ~n log n, which proves that  C(R) _> -~ 
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We leave the argument for values of n that  are non-powers of 2 for an exercise. 
D 

Note the crucial parts played in the proof of Theorem 15.12 by the asyn- 
chrony and the unknown ring size. 

15.2 L e a d e r  E l e c t i o n  in an A r b i t r a r y  N e t w o r k  

So far in this chapter, we have considered algorithms for electing a leader in an 
asynchronous ring network. Now we will consider the leader-election problem 
in networks based on more general graphs. We assume in this section tha t  the 
underlying graph is undirected, that  is, that  there is bidirectional communication 
on all the edges, and that  it is connected. Processes are assumed to be identical 
except for UIDs. 

Recall the FloodMax algorithm for synchronous networks from Section 4.1.2. 
It requires that  processes know diarn, the diameter of the network. In that  
algorithm, every process maintains a record of the maximum UID it has seen 
so far, initially its own. At each synchronous round, the process sends this 
maximum on all its channels. The algorithm terminates after diam rounds; the 
unique process that  has its own UID as its known maximum then announces 
itself as the leader. 

The FloodMax algorithm does not extend directly to the asynchronous set- 
ting, because there are no rounds in the asynchronous model. However, it is 
possible to simulate the rounds asynchronously. We simply require each process 
that  sends a round r message to tag that  message with its round number r. 
The recipient waits to receive round r messages from all its neighbors before 
performing its round r transition. By simulating diam rounds, the algorithm 
can terminate  correctly. 

In the synchronous setting, we described an optimization of FloodMax called 
OptFloodMax, in which each process only sends messages when it has new infor- 
mation, that  is, when its maximum UID has just changed. It is not clear how 
to simulate this optimized version in an asynchronous network. If we simply tag 
messages with round numbers as for FloodMax, then a process that  does not hear 
from all its neighbors at a round r cannot determine when it has received all its 
incoming messages for round r, so it cannot tell when it can perform its round r 
transition. We can, of course, add dummy messages between pairs of neighbors 
that  do not otherwise communicate,  but that  destroys the optimization. 

Alternatively, we can simulate OptFloodMax purely asynchronously--whenever  
a process obtains a new maximum UID, it sends that  UID to its neighbors at 
some later time. This strategy will indeed eventually propagate the maximum to 
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all processes. But there is a problem: now the processes have no way of knowing 
when to stop. 

Many different solutions can be developed for the leader-election problem 
in general asynchronous networks, using many of the techniques that we will 
develop in the following sections and chapters. Some such techniques include 

1. Asynchronous broadcast and convergecast, based on a searching algorithm 
(Section 15.3). 

2. Convergecast using a spanning tree (Section 15.5). 

3. Using a synchronizer to simulate a synchronous algorithm (Section 16.5.1). 

4. Using a consistent global snapshot to detect termination of an asynchro- 
nous algorithm (Section 19.2.3). 

15.3 Spanning Tree Construction, Broadcast and 
Convergecast 

Among the most fundamental tasks to be performed in an asynchronous network 
are the construction of a spanning tree for the network rooted at a given source 
node i0 and the use of such a tree for performing broadcast and convergecast 
communication. In this section, we describe protocols for these tasks. We again 
assume that the underlying graph G = (V, E) is undirected and connected. The 
processes do not need to know the size or diameter of the network. No UIDs are 
needed. 

For the spanning tree problem, the requirement is that each process in the 
network should eventually report, via a parent output action, the name of its 
parent in a spanning tree of the graph G. Recall that in Section 4.2, we described 
a synchronous algorithm, SynchBFS, that constructs a breadth-first spanning 
tree rooted at i0. The SynchBFS algorithm searches the graph synchronously 
starting from i0, allowing each non-source process i to report as its parent the 
first neighbor from which it hears. This algorithm can be run in the asynchronous 
setting and is still guaranteed to produce a spanning tree, though not necessarily 
a breadth-first spanning tree. The code for the asynchronous algorithm follows. 

A synchSpanning Treei a u t o m a t o n :  

Signature: 
Input: Output: 

j c j 
parent(j)i, j E nbrs 
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States :  
parent E nbrs U {null}, initially null 
reported, a Boolean, initially false 
for every j E nbrs: 

send(j) E {search, null}, initially search if i =  i0, else null 

Trans i t i ons :  

send( "s earch ") i,j parent(j ) i 
Precondition: Precondition: 

send(j) = search parent = j 
Effect: reported = false 

send(j) := null Effect: 
reported := true 

receive("search") j,i 
Effect: 

if i # i0 and parent = null then 
parent := j 
for all k E nbrs - {j} do 

send(k) := search 

Tasks:  
{parent(j)i : j E nbrs} 
for every j E nbrs: 

{ send( "search")i,j } 

T h e o r e m  1 5 . 1 6  The A synchSpanning  Tree algorithm constructs  a spanning tree. 

P r o o f  S k e t c h .  A key a s se r t ion  for the p roof  is 

A s s e r t i o n  1 5 . 3 . 1  In any reachable state, the edges defined by all the 

parent  variables f o r m  a spanning tree of a subgraph of G, containing 

io; moreover,  i f  there is a message in any channel  Ci,j then i is in 
this spanning tree. 

Thi s  is p roved  by induct ion ,  as usual .  To show the l iveness c o n d i t i o n - - t h a t  each 

node  even tua l ly  gets  inc luded  in the s p a n n i n g  t r e e - - w e  use a n o t h e r  invar ian t :  

A s s e r t i o n  1 5 . 3 . 2  In any reachable state, i f  i = io or parenti ~ null,  

and if  j E n b r s i -  {i0}, then either parentj  ~ null or Ci,j contains a 

search message or scnd( j ) i  contains a search message. 

We can  then  a rgue  tha t  for any  i # i0, we have parent~ ~ null wi th in  t ime  

distance(io, i ) .  (~ + d), which  impl ies  the l iveness condi t ion .  [:] 
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C o m p l e x i t y  ana lys i s .  In any fair execution of A synchSpanningTree, the total 
number of messages is O (IEI), and all the processes except i0 produce parent 
outputs within time diam(~ + d)+ g. (Pileups are not an issue here, because only 
one message is ever sent on each channel.) 

Note that the paths that are produced by the A synchSpanningTree algorithm 
might be longer than the diameter of the network. This is because, in an asyn- 
chronous network, messages can sometimes travel faster on longer paths than 
on shorter ones. Nevertheless, the time to produce the tree is still bounded in 
terms of the diameter, because the time for each process to receive its first search 
message is no greater than the time for a message to travel to it from i0 along a 
shortest path. 

M e s s a g e  b r o a d c a s t .  As for SynchBFS, it is easy to augment the A synch- 
Spanning Tree algorithm to implement message broadcast from the source i0. 
The message need only be piggybacked on all search messages during the for- 
mation of the spanning tree. The communication complexity of this broadcast is 
thus O (IEI) and the time for it is O (diam(f + d)). 

C h i l d  p o i n t e r s .  It is also easy to augment the AsynchSpanningTree algorithm 
so that parents learn who their children are. Since communication is here as- 
sumed to be bidirectional, all that is needed is for each recipient of a search 
message to respond directly with either a parent or non-parent message, as ap- 
propriate. 

A precomputed spanning tree with child pointers can be used for broadcasting 
messages from process i0 to all the other processes in the network. Each message 
is sent by i0 to all its children, then forwarded from parents to children until 
it reaches the leaves of the tree. The total number of messages is only O (n) 
per broadcast, and the time complexity is O (h(t~ + d)), where h is the height 
of the spanning tree. There is an interesting timing anomaly: if the tree is 
produced using the AsynchSpanningTree algorithm, then the time complexity of 
the broadcast is O (n(e + d)); it is not necessarily O (dia,~(e + d)), even though 
the A synchSpanningTree algorithm itself takes time bounded by the diameter. 
This is because the height of the tree that is produced by AsynchSpanningTree 
may be bigger than the diameter. 

A precomputed spanning tree with child pointers can also be used for con- 
vergecasting information from all the processes in the tree to i0. This works 
in the same way as it does in the synchronous setting: Each leaf process sends 
its information to its parent. Each internal process other than i0 waits until it 
receives information from all its children, then combines this information with its 
own and sends the result to its parent. Finally, i0 waits until it receives informa- 
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tion from all its children, then combines this information with its own to produce 

the final result. The number of messages is O (n), and the time is O (h(e + d)). 
As in the synchronous setting, this scheme can be used for the computation of a 

function based on distributed inputs. 
A combination of a broadcast and a convergecast can be used to allow i0 to 

send a message to all the other processes and to receive an acknowledgment that 

all processes have received it. Each leaf simply initiates a convergecast when it 
receives the broadcast message. The total number of messages is again O (n), 
and the time is again O(h(e + d)). 

We can also allow i0 to broadcast a message and receive acknowledgments 
from all processes while a spanning tree is being constructed. Let W be the set 

of values that can be broadcast. The set M of messages is {( "bcast", w) : w E 
W}  U { "ack"}. 

A synchBcastAck4 a u t o m a t o n :  

Signature: 

Input:  
receive(m)j,i, rn E M, j E nbrs 

Output :  
send(m)i,j, m E M, j E nbrs 

Internal:  
report~ 

States: 
val E W tJ {null}, initially the value to be broadcas t  if i = i0, else null 
parent E nbrs U {null}, initially null 
reported, a Boolean,  initially false 
acked, a subset  of nbrs, initially 0 
for every j E nbrs: 

send(j), a F IFO queue of messages in M; if i = i0 then this initially contains the 
single element ( "bcast", w), where w E W is the value to be broadcast ;  otherwise 
this is empty  

Transitions: 
send(m)i,j 

Precondit ion:  
m is first on send(j) 

Effect: 
remove first element of send(j) 

receive( "bcast", W)j,i 
Effect: 

if v a l -  null then 
val : -  w 
parent : -  j 
for all k E nbrs - {j} do 

add ("bcast", w ) t o  send(k) 
else add "ack" to send(j) 
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receive( "ack")j,~ 
Effect" 

acked "-  acked U { j}  

reporti (for i :/: i0) 
P r e c o n d i t i o n :  

parent ~: null 
acked = nbrs - {parent } 
reported = false 

Effect :  

a d d  "ack" to  send(parent) 
reported :=  true 

report~ (for i -- io) 
P r e c o n d i t i o n :  

a c k e d -  nbrs 
repor ted-  false 

Effect :  
reported :-- true 

Tasks:  
{ reporti } 
for e v e r y  j C nbrs" 

{~d(.~)~,j  . ,~ ~ M} 

C o m p l e x i t y  ana lys i s .  The total communication is O (IEI), and the time is 
O (n(~ + d)). The upper bound on time depends on n instead of diam because 
of the timing anomaly described above--the broadcast might travel fast along a 
long path, and the subsequent acknowledgments might travel slowly when they 
return along the same path. In Chapter 16, we will see how to obtain an algorithm 
whose time complexity depends only on diam. 

G a r b a g e  co l lec t ion .  If the tree in AsynchBcastAck is only needed for sending 
and acknowledging one message, each process can delete all of the information 
about the algorithm after it performs its report action and sends out its acks. 
We leave this modification and its correctness proof as an exercise. 

A p p l i c a t i o n  to  l e a d e r  e lec t ion .  Asynchronous broadcast and convergecast 
can be used to solve the leader-election problem in arbitrary graphs without any 
distinguished source node and without the processes having any knowledge of 
the number of nodes or the diameter of the network. Now the processes need 
UIDs. We simply allow every node to initiate a broadcast-convergecast in order 
to discover the maximum UID in the network. The node that finds that the 
maximum is equal to its own UID elects itself as leader. This algorithm uses 
0 (nlEI) messages. We leave the time complexity for an exercise. 

We finish this section by noting a close connection between two fundamental 
problems, in a connected, undirected graph network with only local knowledge, 
without any distinguished nodes, but with UIDs: 
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1. Finding an (unrooted) spanning tree for the graph 

2. Electing a leader node 

First, if we are given an unrooted spanning tree, then it is possible to elect 
a leader as follows. The idea is the same as we discussed for the synchronous 
case, at the end of Section 4.4. 

S T t o L e a d e r  algorithm- 

The algorithm uses a convergecast of elect messages starting from the 
leaves of the tree. Each leaf node is initially enabled to send an elect 
message to its unique neighbor. Any node that receives elect messages 
from all but one of its neighbors is enabled to send an elect message to its 
remaining neighbor. 

In the end, there are two possibilities: either some particular process re- 
ceives elect messages along all of its channels before it has sent out an elect 
message, or elect messages are sent on some particular edge in both direc- 
tions. In the first case, the process at which the elect messages converge 
elects itself as the leader. In the second case, one of the two processes 
adjacent to this edge, say the one with the larger UID, ele'cts itself as the 
leader. 

Theorem 15.17 The S TtoLeader algorithm elects a leader in a connected undi- 
rected graph network with a spanning tree in which the processes have only local 
knowledge and have UIDs. 

Complexity analysis. The STtoLeader algorithm uses only at most n mes- 
sages and takes time only O (n(~ + d)). 

Conversely, if a leader is given, then we have already shown how to construct 
a spanning tree, using AsynchSpanningTree. This requires O (IEI) messages and 
0 (diam(g + d)) time. So, modulo the (reasonably small) costs of these two basic 
algorithms, the problems of leader election and finding an arbi t rary spanning tree 
are equivalent. 

15.4 B r e a d t h - F i r s t  Search  and Shortes t  Paths  

Now we reconsider the problem of breadth-first search (BFS / that we considered 
in Section 4.2 and the problem of finding shortest paths that we considered 
in Section 4.3, this time in asynchronous networks. Now we assume that the 
underlying graph G = (V, E) is a connected undirected graph and that there is a 
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dis t inguished  source node i0. For the shor tes t  pa ths  problem,  we also assume tha t  

each undi rec ted  edge (i, j )  E E has a nonnegat ive  rea l -valued weight, weight(i,  j ) ,  

known at bo th  endpoin t  processes.  We assume tha t  the processes  do not  know 

the size or d iamete r  of the network and tha t  there are no UIDs.  

For breadth- f i r s t  search,  the p rob lem is for each process  in the ne twork  even- 

tua l ly  to repor t ,  via a parent  ou tpu t  action, the name of its pa ren t  in a b read th-  

first spann ing  tree. Recall  that  in the synchronous  case, this can be accompl i shed  

by the simple S y n c h B F S  algor i thm.  The  asynchronous  version of S y n c h B F S  is 

the AsynchSpann ingTree  a lgor i thm of Section 15.3; this is gua ran t eed  to produce  

a spanning  t ree  but  not  necessar i ly  a breadth- f i r s t  spann ing  tree. 

It is possible to modify  A synchSpanningTree  so that  processes  correct  er- 

roneous parent  designat ions.  T h a t  is, if process  i init ial ly identifies one of its 

neighbors ,  say j ,  as its parent ,  and later  obta ins  informat ion from another  neigh- 

bor,  say k, along a shor ter  path,  then process  i can change its parent  designat ion 

to k. In this case, process  i must  inform its other  neighbors  about  its correc- 

tion, so that  they  might  also correct  their  parent  designat ions.  The  code appears  

below. 

A s y n c h B F S i  a u t o m a t o n :  

Signature: 

Input: 
receive(rn)j,i, m E IN, j E nbrs 

Output: 
send(m)i,j, m E IN, j E nbrs 

States: 
dist E N U {ec}, initially 0 if i = i0, ec otherwise 
parent E nbrs U {null}, initially null 
for every j E nbrs: 

send(j), a FIFO queue of elements of N, initially containing the single element 0 if i = i0, 
else empty 

Transitions: 
send(m)i,j 

Precondition: 
m is first on send(j) 

Effect: 
remove first element of send(j) 

receive(m)j,i 
Effect: 

if rn § 1 < dist then 
dist :-  m § 1 
parent :-- j 
for all k E nbrs -  {j} do 

add dist to send(k) 

Tasks: 
for every j E nbrs: 

{send(m)i,j : m E IN} 
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T h e o r e m  15.18 In any fair execution of the A synchBFS algorithm, the system 
eventually stabilizes to a state in which the parent variables represent a breadth- 
first spanning tree. 

P r o o f  S k e t c h .  We first prove 

A s s e r t i o n  15.4.1 The following are true in any reachable state. 

1. For every process i ~ io, if disti ~ oc then dist~ is the length of 
some path p from io to i in G in which the predecessor of i is 
parenti . 

2. For every message m in channel Ci,j, m is the length of some 
path p from io to i. 

This implies that  each process i always has correct information about some 
path from i0 to i. But in order to show the liveness p rope r ty - - tha t  each process 
eventually obtains information about a shortest pa th - -we  need another invariant 
that  implies that  information about shortest paths is "conserved." 

A s s e r t i o n  15.4.2 The following is true in any reachable state. For 
every pair of neighbors i and j ,  either distj < disti + 1, or else either 
send(j)i or Ci,j  contains the value disti. 

We can then argue that  for any i, we have disti = distance(io, i) within time 
distance(io, i).n(g+d); this argument can be made by induction on distance(io, i). 
(We are taking pileups into account here.) This is enough to prove the liveness 
requirement. [-q 

C o m p l e x i t y  ana lys i s .  The number of messages sent in an execution of Asynch- 
BFS is O (nlEI); this is because each node can acquire at most n different esti- 
mates of its distance from i0, each of which causes a constant number of messages 
to traverse its incident edges. The time until the system reaches a stable state is 
0 (diam. n(g + d)); this is because the length of a shortest path  from i0 to any 
node is at most diam, and at most n messages are ever in any channel. (Again, 
we are taking pileups into account.) 

T e r m i n a t i o n .  A problem with AsynchBFS is that  there is no way for a process 
to know when there are no further corrections for it to make. (This would be true 
even if the size of the network were known.) Thus, the algorithm is technically 
not a solution to the BFS problem, because it never produces the required parent 
outputs.  It is possible to augment A synchBFS to produce the outputs  by adding 
acknowledgments for all messages, convergecasting the acknowledgments back to 
i0 as in AsynchBcastAck. This enables i0 to learn when the system has reached 
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a stable state and then to broadcast a signal to all the processes to perform their 
parent outputs. 

This convergecast is a bit complicated, because, unlike for AsynchBcastAck, 
a process i may need to participate many times. Each time process i obtains a 
new dist estimate from a neighbor j and sends out corrections to all of its other 
neighbors, it waits for corresponding acknowledgments from all those neighbors 
before sending an acknowledgment to j.  Bookkeeping is needed to keep the 
different sets of acknowledgments separate. We leave this for an exercise. 

K n o w n  d i a m e t e r .  If diam is known, then A synchBFS can be improved some- 
what by only allowing distance estimates that are less than or equal to diam. 
With this modification, each node can only acquire at most diam different esti- 
mates of its distance from i0, leading to communication complexity O (diamlEI) 
and time complexity O (diam2(g + d)). Adding termination as above keeps the 

f 

same complexity bounds. 
We now give another solution; this one does produce the needed parent out- 

puts. It does not require any knowledge of the size or diameter of the net- 
work graph. This solution has smaller communication complexity than any of 
the versions of A synchBFS but has higher time complexity than the version of 
A synchBFS with known diam. 

LayeredBFS a l g o r i t h m :  

The BFS tree is constructed in layers, where each layer k consists of the 
nodes at depth k in the tree. The layers are constructed in a series of 
phases, one per layer, all coordinated by process i0. 

In the first phase, process i0 sends search messages to all of its neighbors 
and waits to receive acknowledgments. A process that receives a search 
message at phase 1 sends a positive acknowledgment. This enables all the 
processes at depth 1 in the tree to determine their parent, namely i0, and, 
of course, i0 knows its children. This constructs layer 1. 

Inductively, we assume that k phases have been completed and that the 
first k layers have been constructed: each process at depth at most k 
knows its parent in the BFS tree, and each process at depth at most k -  1 
knows its children. Moreover, the source i0 knows that all of this has been 
accomplished. To construct the k + 1st layer in phase k + 1, process i0 
broadcasts a newphase message along all the edges of the spanning tree 
constructed so far, intended for the depth k processes. 

Upon receiving a newphase message, each depth k process sends out search 
messages to all its neighbors except its parent and waits to receive acknowl- 
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edgments. When a non-i0 process receives its first search message in an 
execution, it designates the sender as its parent and returns a positive ac- 
knowledgment.  When a non-i0 process receives a subsequent search mes- 
sage, it returns a negative acknowledgment. When i0 receives any search 
message, it returns a negative acknowledgment. When a depth k process 
has received acknowledgments for all its search messages, it designates the 
processes that have sent positive acknowledgments as its children. 

Then the depth k processes convergecast the information that they have 
completed the determination of their children back to i0, along the edges 
of the depth k spanning tree. They also convergecast a bit, saying whether 
any depth k + 1 nodes have been found. Process i0 terminates the algorithm 

after a phase at which no new nodes are discovered. 

T h e o r e m  1 5 . 1 9  

tree. 
The LayeredBFS algorithm produces a breadth-first spanning 

C o m p l e x i t y  a n a l y s i s .  The LayeredBFS algorithm uses 0 (IEI + n.  diam) 
messages. There are a total of O (IEI) search and acknowledgment messages 
because each edge is explored at most once in each direction. Also, at every 
phase, each tree edge is t raversed at most once by newphase and convergecast 
messages; since there at most diam + 1 phases, this yields a total of at most 
0 (n. diam) such messages. Each phase takes time O (diam(~ + d)), so the time 

complexity is O (diam2(e + d)). 
The A synchBFS algorithm with known diam and the LayeredBFS algorithm 

illustrate a trade-off between communication and time complexity. This trade-off 
is further illustrated by the following hybrid of the A synchBFS and LayeredBFS 
algorithms. The HybridBFS algorithm uses a parameter  m, 1 <_ m <_ diam. 
If m - 1, then HybridBFS is the same as LayeredBFS, while if m - diam, 
HybridBFS is similar to A synchBFS with known diam. For intermediate values 
of m, the communication and time complexity measures are between those of 
LayeredBFS and A synchBFS with known diam. 

H y br idBFS  a l g o r i t h m :  

The algorithm works in phases. In each phase, m layers in the BFS tree 
are determined (rather than just one as in LayeredBFS). In each phase, the 
next m layers are explored asynchronously, with corrections as in A synch- 
BFS. Acknowledgments are convergecast back to process i0. By the time 
a convergecast is completed, process i0 knows that all the processes in the 
layers being explored in the current phase have stabilized to their correct 

distance estimates. 
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C o m p l e x i t y  analys is .  The HybridBFS algorithm has communication com- 
plexity O (rolE I + n.diam).m There are a total of 0 (m El) search and acknowl- 
edgment messages because each edge only carries information about at most m 
different distance estimates. Also, at every phase, each tree edge is traversed at 
most once by newphase and convergecast messages; since there at most O (A_~) 
phases, this yields at most O (n.diam) such messages. Each phase takes time 

m 

0 (diam(g + d) + m2(g + d)). (The m 2 term results from the possibility of a 
pileup of m messages in a single channel.) Thus, the total time complexity is 

0 ( diam2 (e + d)-4- diam. m(e + d)) 
m 

We have given three algorithms to solve the BFS problem: the AsynchBFS 
algorithm (with termination), the LayeredBFS algorithm, and the HybridBFS 
algorithm. For a simple comparison among the three, we consider the version of 
AsynchBFS with termination and in which diam is known. We neglect the local 
processing time g and also neglect the effects of pileups in the links, using d as 
an upper bound for the delivery of each message in a channel. We obtain 

Messages Time 

AsynchBFS: O (diamlEI) O (diam . d) 

LayeredBFS: 0 (IEI + n. diam) 0 (diam2d) 

gybI'idBFS: 0 (Tt%IE 1 + n.diam]m , 0 (diam2d)m 

Now we turn to the problem of finding shortest paths in an asynchronous 
network based on a weighted undirected graph. The problem is for each process 
in the network to determine and output its parent in a shortest paths tree from 
the source node i0, as well as its distance from i0. The problem of breadth-first 
search is just the special case of the shortest paths problem when all the weights 
are 1. 

Recall that in the synchronous setting, the BellmanFord algorithm solves the 
problem of finding shortest paths. Even though this algorithm is synchronous, 
it must correct erroneous estimates of its distance. The BellmanFord algorithm 
can be run asynchronously, using the following code, which is the natural gen- 
eralization of the code for AsynchBFS. The AsynchBellmanFord algorithm was 
the algorithm used to establish routes in the ARPANET between 1969 and 1980. 
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A s y n c h B e l l m a n F o r d i  a u t o m a t o n :  

Signature:  

Input: 
receive(w)j,i, w E R >-~ j E nbrs 

Output: 
send(w)i,j, w E R >-~ j E nbrs 

States:  
dist E R ->~ U {oc}, initially 0 if i = i0, oc otherwise 
parent E nbrs U {null}, initially null 
for every j E nbrs: 

send(j), a FIFO queue of elements of R ->~ initially containing the single element 0 if i = i0, 
else empty 

Transit ions:  
send(w)i,j 

Precondition: 
w is first on send(j) 

Effect: 
remove first element of send(j) 

receive(w)j,~ 
Effect: 

if w + weight(j, i) < dist then 
dist := w + weight(j, i) 
parent := j 
for all k E nbrs-  {j} do 

add dist to send(k) 

Tasks: 
for every j E nbrs: 

{send(w)i,j:w E R >~ 

T h e o r e m  1 5 . 2 0  In any fair  execution of the AsynchBel lmanFord algorithm, 
the system eventually stabilizes to a state in which the parent variables represent 

a shortest paths tree rooted at io, and in which the dist variables contain the 

correct distances of the nodes from io. 

A prob lem for AsynchBellmanFord,  as for AsynchBFS,  is t ha t  there  is no 

way for a process to know when  it has no fur ther  correct ions  to make.  Thus,  the 

a lgor i thm is not  s t r ic t ly  correct ,  because  it never produces  the  required ou tpu t s .  

We can a u g m e n t  AsynchBel lmanFord with  a convergecast  of acknowledgments ,  

in the  same way t h a t  we did for A synchBFS, and thus  ob ta in  the  needed ou tpu t s .  

The  complex i ty  analysis  of AsynchBel lmanFord is interest ing,  main ly  be- 

cause the worst -case  message and  t ime complexi t ies  are ex t remely  b a d - - t h e y  

are b o t h  exponential in n. For compar ison ,  recall t ha t  the synchronous  Bell- 
manFord a lgor i thm requires  only ( n -  1)]E I messages  and  n -  1 rounds,  while 
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the AsynchBFS  algorithm (without known diameter and without termination) 

requires only O (n[Ef) messages and O (d iam.  n(~ + d)) time. 

T h e o r e m  15.21 Let n be any even number, n 2 4. Then there is a weighted 
graph G with n nodes, in which the A synchBellmanFord algorithm sends at least 
f~(c n) messages and takes at least f~(cnd) time to stabilize in the worst case, for 

1 
some constant c > 1. (We may take c -  23.) 

P r o o f .  We assume that the channels are universal FIFO reliable channels. Let 
k - ~-2 Let G be the weighted graph depicted in Figure 15 10 Most of the 

2 " " " 

edges in graph G have weight 0; the only edges with non-zero weights are the 
right-facing sloped edges, and they have weights that are successively decreasing 
powers of 2. 

1 0 

ooo  

o "z'/ o "71. 
io l ,  12 l k_ l 1 k 

0 �9 
lk+ 1 

F i g u r e  15.10:  Bad weighted graph for the AsynchBellmanFord algorithm. 

We claim that the possible finite dist estimates that process ik can take on 
during an execution of AsynchBel lmanFord on graph G are exactly the numbers 
in the set {2 k - 1, 2 k - 2 , . . .  , 3, 2, 1, 0}. Each of these can be generated by the 

flow of messages along a particular path from i0 to ik. In fact, we claim that it 
is possible to force ik to take on all of these estimates in order, from the largest 
to the smallest, in the same execution, as follows. 

Suppose that the messages on the upper paths propagate very fast, thus giving 
ik the estimate 2 k - 1. Next, the message from ik-1 to ik along the lower path 
arrives at ik, giving ik the new estimate 2 k - 2. Next, the message from ik-2 to 

ik-1 along the lower path arrives at ik-1, causing ik-1 to reduce its estimate by 
2, from 2 k -  2 to 2 k - 4 .  Process ik-1 then sends this reduced estimate on both 
paths to ik. Once again, suppose that the messages on the upper path travel 
faster, so process ik next obtains an estimate of 2 k - 3, and afterward 2 k - 4 .  

Next, the message from ik-3 to ik-2 along the lower path arrives at ik-2, 
causing ik-2 to reduce its estimate. Continuing in this way, we can cause process 
ik to obtain all of the estimates, 2 k - 1 , . . .  , 0, in order. 

It is possible to run the system in such a way that all the processes, and all 
the channels except for Cik,ik+l, operate very quickly. This results in a queue of 

2 k messages in Cik,ik+l, which is f~(22)messages,  or ft(c ~) messages. Moreover, 
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if all these messages take the maximum time to get delivered, then the time 
complexity is ft(cnd), as needed. N 

We next consider upper bounds on complexity for A synchBellmanFord. The 
number of messages sent on any channel Ci,j is proportional to the number of 
different estimates that the sending process, i, obtains. The number of such 
estimates is certainly no greater than the number of distinct simple paths from 
i0 to i in the graph, which is O (n~). (Actually, it is smaller, but we leave 
the improvement for an exercise.) Thus, the total communication complexity is 
0 (nnlEI). An upper bound on the time complexity is O (nn+l(g + d)), using the 
bound of n n on the number of messages in one channel. 

Notice how heavily the time bounds depend on the pileups in the message 
channels. If we adopt the simpler assumption, sometimes made in the theoretical 
research literature, that any message takes at most time d from sending until 
receipt (and if we ignore local processing time), then the time bound for Asynch- 
BellmanFord can be calculated as only O (nd). This is certainly not a realistic 
analysis for this algorithm. 

15.5 Min imum Spanning Tree 

For the last section in the chapter, we return to the problem of constructing a 
minimum-weight spanning tree of a network based on an arbitrary connected 
undirected graph. In Section 4.4, we gave an algorithm, SynchGHS, to solve this 
problem in the synchronous setting; now we show how to modify this algorithm 
so that it can be used in the asynchronous setting. The resulting algorithm, 
which we call GHS after its discoverers, Gallager, Humblet, and Spira, is one 
of the best-known algorithms in distributed computing theory. It is a carefully 
engineered, complex algorithm that has been considered interesting enough to 
serve as a case study for algorithm verification methods. 

We suggest that you reread Section 4.4 at this point; it contains the underly- 
ing theory on which the GHS algorithm is based, plus the SynchGHS algorithm, 
which contains many of the ideas needed for GHS. 

15 .5 .1  P r o b l e m  S t a t e m e n t  

As before, we assume that the underlying graph G = (V, E) is connected and 
undirected, and we assume that the edges have associated weights. We want the 
processes to cooperate to construct a minimum-weight spanning tree (MST) for 
the graph G, that is, a tree spanning the vertices of G whose total edge weight 
is less than or equal to that of every other spanning tree for G. 
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We assume that processes have UIDs and that the weight Of each edge is 
known to the processes associated with the incident vertices. We make one 
technical assumption: we assume that all the edge weights are unique. The 
same argument that we gave at the end of Section 4.4 shows that this uniqueness 
assumption is not significant--ties among edges with the same weights can be 
broken using the adjacent process UIDs. We assume that the processes have 
only local knowledge of the graph; in particular, they do not know the number 
of nodes or the diameter. 

We assume that the processes are initially quiescent, that is, that no locally 
controlled actions are enabled in their start states. We assume that each process 
has a wakeup input action by which the environment signals it to begin executing 
an MST algorithm. We allow any number of processes to receive wakeup inputs 
during the course of an execution; thus, the algorithm must work regardless of 
the number of processes that initiate computation and regardless of when they 
do so. Note that we assume only that processes' start states are quiescent; we 
permit a process to awaken when it receives any sort of inpu t - -a  wakeup or a 
message from another process. 1 The output of the algorithm is the set of edges 
comprising an MST, in particular, every process is required to output the set of 
edges adjacent to it that are in the MST. 

15.5.2 The Synchronous Algorithm" Review 

Recall that the SynchGHS algorithm is based on two fundamental properties of 
MSTs, given by Lemmas 4.3 and 4.4. These properties are used to justify a 
strategy in which, at any intermediate state, the algorithm has constructed a 
spanning forest all of whose edges are in the MST. Then each of an arbitrary 
subset of the components of the spanning forest may independently determine 
its own minimum-weight outgoing edge (MWOE), knowing that all such edges 
found must be included in the unique MST. 

The SynchGHS algorithm works in "levels." The level 0 spanning forest 
consists of individual nodes and no edges. Given the level k spanning forest, the 
algorithm constructs the level k + 1 spanning forest by allowing all components 
in the level k spanning forest to determine their MWOEs and then combining 
all the components along these edges. It follows that each level k component 
contains at least 2 k nodes. 

The determination of the MWOE for a component is managed by a dis- 
tinguished leader node of the component, whose UID is used as a component 

1The assumpt ions  we are making here about  wakeup messages are different from those we 

made at the end of Section 15.1.1. There,  we assumed that  wakeup messages  arrived at all 
processes.  
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identifier. The leader broadcasts a request to determine the MWOE along the 
component edges, then the processes engage in a query protocol to learn which 
of their neighbors are in the same or different components, and then the pro- 
cesses convergecast their information back to the leader. The combination of 
components involves communication from the leader to the process adjacent to 
the MWOE. Using careful bookkeeping, the processes can ensure that  the com- 
munication complexity is kept to O (n log n + IEI) and the number of rounds to 
O(nlogn). 

If we try to run SynchGHS in an asynchronous network, some dimculties 
arise. For instance, 

Difficulty 1: In Synch GHS, when a process i queries a neighbor j to see if j is 
in the same component of the current spanning forest, it knows that  j is up to the 
same level of the construction. Therefore, if process j has a distinct component 
identifier, then it must be the case that  j is not in the same component. But in 
the asynchronous setting, a situation could arise whereby process j is actually 
in the same component as i but has not yet learned this (because a message 
containing the latest component identifier has not yet reached it). 

Difficulty 2: The SynchGHS algorithm achieves a message cost of O(n log n + 
IEI), based on the fact that  the levels are kept synchronized. Each level k 
component has at least 2 k nodes, which implies that  the total number of levels 
is at most log n. In the asynchronous setting, there is a danger of constructing 
the components in an unbalanced way, leading to many more messages. The 
number of messages sent by a component to find its MWOE will be at least 
proportional to the number of nodes in the component. We must avoid the 
situation where a large component repeatedly discovers that  its MWOE leads to 
a single-node component and combines with that  single node (as in Figure 15.11), 
for this could require ft(n 2) messages. 

Difficulty 3: In SynchGHS, the levels remain synchronized, whereas in the 
asynchronous setting, some components could advance to higher levels than 
others. It is not clear what type of interference might occur as a result of 
concurrent searches for MWOEs by adjacent components at different levels. 

These difficulties require careful consideration in adapting the SynchGHS 
algorithm to the asynchronous setting. 

15.5.3 The G H S  Algorithm: Outline 

The GHS algorithm follows the SynchGHS algorithm quite closely. In partic- 
ular, it achieves the same communication complexity, O ( n l o g n  + IEI), and a 
corresponding time bound, O (n log n(g + d)). 

In the GHS algorithm, processes form themselves into components, which 
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F i g u r e  15.11- A large component might grow by one node at a time. 

combine to form larger components. The initial components are just the indi- 
vidual nodes. Each component has a distinguished leader node, as well as a 
spanning tree that is a subgraph of the MST. 

Within any component,  the processes cooperate in an algorithm to find the 
M W O E  for the entire component.  This involves a broadcast  originating at the 
leader, asking each process in the component to determine its own minimum- 
weight edge that leads outside the component.  Information about all these edges 
is convergecast back to the leader, who can determine the MWOE for the entire 
component.  This MWOE will be included in the MST. 

Once the MWOE is found, a message is sent out over that edge to the com- 
ponent on the other side. The two components may then combine into a new, 
larger component.  In this case, the entire procedure is repeated for the new com- 
ponent. Enough combinations are carried out so that, eventually, all the nodes in 
the graph are included in a single component,  whose spanning tree is the needed 
MST. 

There are several problems that need to be addressed in making this algo- 
r i thm work correctly. First, how does a process i know which of its edges lead 

outside its current component? Certainly, we need some way of naming compo- 
nents so that two processes can use the names to determine whether they are in 
the same component.  But this issue is more complicated than this: it may be, 
as described in Difficulty 1 above, that an adjacent process j with a different 
component name is in fact in the same component as the querying process i, 
but has not yet learned this fact because of communication delays. Some sort of 
synchronization is needed, to ensure that process j does not respond that it is 
in a different component unless it has current information about its component 
name. 

The second problem, described in Difficulty 2 above, involves an excessive 
number of messages that might be produced by an unbalanced combination of 
components. In order to cope with this difficulty, we will try to keep the sizes of 
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components that are combined roughly equal. More precisely, we will associate 
a level with each component, as we do in SynchGHS. As in SynchGHS, all the 
initial single-node components will have l eve l -  0, and the number of nodes in 
a level k component will be at least 2 k. A level k + 1 component will only be 
formed by combining exactly two level k components, thereby preserving the 
size requirement. This strategy departs slightly from that used in SynchGHS: 
in SynchGHS, an arbitrary number of level k components can be combined to 
yield a level k + 1 component. 

As it turns out, these levels will not only be useful in keeping the combi- 
nations balanced-- they also provide some identifying information that can help 
processes determine if they are in the same component. 

The third problem, described in Difficulty 3, is that  some components can 
advance to higher levels than others, leading to possible interference between 
concurrent searches for MWOEs by adjacent components at different levels. 
Some synchronization will be required to prevent such interference. 

15.5 .4  In M o r e  D e t a i l  

The GHS algorithm combines components in two different ways, which we call 
merging and absorbing. 

merge: This combining operation is applied to two components, C and C ~, 
where level(C), the level of C, is the same as level(C) and where C and 
C ~ have a common MWOE. The result of the merge is a new component 
containing all the nodes and edges of C and C ~ plus the common MWOE. 
The new component is assigned level = level(C) + 1. 

absorb: This combining operation is applied to two components, C and C t, 
where level(C) < level(C') and the MWOE of C leads to a node in C'. 
The result of the absorb is a new component containing all the nodes and 
edges of C and C ~, plus the MWOE of C. The new component is assigned 
the same level as C ~. In fact, we prefer not to think of the absorb as 
actually producing a "new component," but rather as just adding C to 
the already existing C ~. 

The absorb operation is useful for the case where some processes lag behind 
others. Suppose that a large group of nodes are formed into a large component, 
C ~, with a high level by a series of merge operations, while some other small 
components lag behind with lower levels. If one of the small components, C, 
discovers that its MWOE leads to C ~, then C can be absorbed into C ~ without 
obtaining any information about the MWOE of C ~. This will be an inexpensive 
operation. 
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F i g u r e  15.12" Merging and absorbing. 

These two combining strategies are illustrated roughly by Figure 15.12. Note 
that the fact that level(C) < level(C') in an absorb operation does not imply that 
C has fewer nodes than C~; the illustration is meant only to suggest the "typical" 
case. 

The merge and absorb operations manipulate the levels in a way that handles 
Difficulty 2; in particular, they guarantee that any level k component has at least 
2 k nodes. We now argue that the merge and absorb operations are sumcient to 
combine all components into an MST for the entire graph. 

L e m m a  15.22 Suppose that we start from an initial situation in which each 
component consists of a single node with level = O, and apply any allowable 

finite sequence of merge and absorb operations. Then after this sequence of 
operations, either there is only one component, or else some merge or absorb 
operation is enabled. 

P r o o f .  Suppose that there is more than one component after a sequence of 
mewe and absorb operations. We show that there is some applicable operation. 

We consider the "component digraph" G ~, whose nodes are the current com- 
ponents and whose directed edges correspond to the MWOEs; each edge is di- 
rected away from the component for which it is the MWOE. Lemma 4.5 implies 
that in any weakly connected portion of G ~, there is a unique cycle of length 2. 
This says that there are two components, C and C ,  whose MWOEs point to 
each other. But it is easy to see that in this case, the two MWOEs must be the 
same edge of the original graph G. 

Now we claim that 6' and C ~ can be combined, using either a merge or an 
absorb operation. For if level(C) = level(C'), then a merge operation is enabled, 
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whereas if C and C' have different levels, then the one with the smaller level can 

be absorbed into the one with the larger level. K] 

Now we consider in more detail how the MWOE is found for a given com- 
ponent. This involves each process i in the component determining its own 
minimum-weight edge (if any) that is outgoing from the component,  mwoe( i ) ,  

and then all the processes sending their information to a leader node, who se- 
lects the one with the minimum weight overall. This requires some additional 
machinery. First, we need a mechanism for selecting the leader process for each 
component.  And second, we need a way for a process to determine whether a 
given edge is outgoing from the component.  

To help in these tasks, for every component of level 1 or greater, we identify 
a specific edge that we call its core edge. This edge is defined in terms of the 
series of merge  and absorb operations that are used to construct the component.  

�9 After a merge  operation, the core is the common MWOE of the two original 
components. 

�9 After an absorb operation, the core is the core of the original component 
with the larger level number. 

Thus, the core of a component is the edge along which the last merge  that was 

used in the formation of the component took place. 
For a component of level 1 or greater, we use the pair consisting of the core 

(technically, the weight of the core) and the level as a component identifier. This 
makes sense because the weights of edges are assumed to be unique. We also 
designate one of the endpoints of the core edge--for  instance, the one with the 
higher UID- -a s  the leader. For a level 0 component,  the unique node is, of 
course, the leader. 

Now suppose that process i wishes to determine whether its edge to neigh- 
boring process j is outgoing from i's current component.  If process j ' s  current 
component identifier is the same as that of i, then process i is certain that j is 
in the same component as itself. However, if j ' s  component identifier is different 
from that of i, then it is still possible that i and j are in the same component but 
that j has not yet received notification of the current component identifier. There 
is one special case that can be resolved: if j ' s  component identifier is different 
from that of i, and j ' s  latest known level is at least as high as that of i, then it is 

certain that j cannot be in the same component as i. This is so because, in the 
course of an execution, a node can only have at most one component identifier 
for each level, and because, when i is actively searching for its outgoing edges, 
it is certain that i 's component identifier is up-to-date. 
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Thus, if i and j have the same component identifiers, j responds that  it is in 
the same component.  Also, if i and j have different component identifiers and 
the level of j is at least as great as that  of i, then j responds that  it is in a 
different component.  The only remaining case is where the level of j is strictly 
smaller than that  of i; in this case, process j simply delays answering i until its 
own level rises to become at least as great as that  of i. This handles Difficulty 
1. 

However, notice that  we now have to reconsider the progress argument,  since 
this new delay could conceivably cause progress to be blocked. The fact that  
some processes in a component can be delayed in finding their minimum-weight 
outgoing edges means that  the component as a whole can be delayed in finding 
its MWOE; we must consider whether this can cause the system to reach a state 
in which no further merge or absorb operations can be performed. 

To see that  this cannot happen, we use essentially the same progress ar- 
gument as before, but this time we consider only those components with the 
current lowest level, say k. All the processes in these components must suc- 
ceed in their individual minimum-weight  outgoing edge determinations,  so these 
components must succeed in determining their MWOEs. If any of the level k 
components finds that  its MWOE leads to a higher-level component,  then an 
absorb operation is possible. On the other hand, if every level k component finds 
that  its MWOE leads to another level k component,  then Lemma 4.5 implies 
that  we must have a length 2 cycle involving level k components, and a merge 
operation is possible. Thus, even with the new type of delay, the algorithm must 
make progress until the complete MST is found. 

Thus, we have seen how each process determines its own minimum-weight 
outgoing edge (if any). Then, as described above, the leader of the component 
determines the MWOE for the component via a broadcast and convergecast, 
selecting the edge with the overall minimum weight. 

We must still consider Difficulty 3: the possible interference between con- 
current searches for MWOEs by adjacent components at different levels. In 
particular, we consider what  happens if a lower-level component C gets ab- 
sorbed into a higher-level component C ~ while C '~ is involved in determining its 
own MWOE. Suppose that  the MWOE of C connects node i of C and node j 
of C'. See Figure 15.13. 

There are two cases to consider. First, suppose that  process j has not yet de- 
termined its minimum-weight edge outgoing from the component at the time the 
absorb occurs. In this case, the algorithm searches for the MWOE of the com- 
bined component in C as well as in C .  The fact that  j has not yet determined 
mwoe(j) means that  it is not too late to include C in the search. 
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F i g u r e  15.13: Component C is absorbed into C t, while C ~ is searching for its MWOE. 

On the other hand, suppose that process j has already determined mwoe(j) at 
the time the absorb occurs. In this case, we claim that mwoe(j) r (i, j), that is, 
the minimum-weight edge for j cannot possibly be the same as the MWOE for C. 
This is because the fact that mwoe(j) has already been determined implies that 
it leads to a component with a level at least as great as that of C ~. (A technical 
point: The fact that the level told to j by the other endpoint of mwoe(j) was at 
least as great as the level of C ~ implies that it is still at least as great, because the 
level known by a process cannot decrease.) However, since C is absorbed into 
C', we know that level(C) is strictly smaller than level(C'). So mwoe(j) r (i, j), 
as claimed. This implies that the weight of mwoe(j) is strictly less than the 
weight of (i, j). 

Then we claim that the MWOE for the combined component cannot possibly 
be adjacent to a node in C. This is true because (i, j )  is the MWOE for fragment 
C, so there can be no edges leading out of C with smaller cost than (i, j) ,  and so 
no edges leading out of C with smaller cost than the already discovered mwoe(j). 
Thus, if mwoe(j) has already been determined at the time of the absorb, the 
algorithm need not search for the MWOE of the combined component in C. 
This is fortunate, since it might already be too late to search there--process j 
might have already reported its minimum-weight edge, and component C ~ might 
be in the process of deciding on an overall MWOE without knowing about the 
newly absorbed nodes. 

15 .5 .5  S p e c i f i c  M e s s a g e s  

We now give a little more detail about the specific messages that are sent in the 
GHS algorithm. The messages are of the following types: 

�9 initiate. An initiate message is broadcast throughout a component, start- 
ing at the leader, along the edges of the component 's  spanning tree. Nor- 
mally, 2 it triggers processes to start trying to find their mwoes. It also 
carries the component identifier (core and level). 

2There is an exceptional case, which we will mention below. 
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�9 report. A report message convergecasts information about minimum-weight 
edges back toward the leader. 

�9 test. A process i sends a test message to a neighbor j to try to ascertain 
whether or not j is in the same component as i. This is part of the procedure 
by which process i searches for its own mwoe. 

�9 accept and reject. These are sent in response to test messages. They tell 
the testing node whether the responding node is in a different component 
(accept) or the same component (reject). 

�9 changeroot. A changeroot message is sent from the leader of a component 
toward the component process that is adjacent to the component 's  MWOE, 
after the MWOE has been determined. It is used to tell that process to 
at tempt to combine with the component at the other end of the MWOE. 

�9 connect. A connect message is sent across the MWOE of a component C 
when that component at tempts to combine with another component. A 
merge operation occurs when connect messages have been sent both ways 
along the same edge. An absorb operation occurs when a connect message 
has been sent one way along an edge that leads to a process at a higher 
level than the sender. 

In the test-accept-reject protocol, there is some bookkeeping that the testing 
process i must do in order to keep the communication complexity low; this is 
similar to the bookkeeping described earlier for SynchGHS.  Namely, process i 
maintains a list of its incident edges in increasing order of weight. It classifies 
these incident edges into three categories: 

�9 branch edges are those that have already been determined to be part of 
the MST. 

�9 rejected edges are those that have already been determined not to be part 
of the MST, because they lead to other nodes within the same component. 

�9 basic edges are all the others. These are the edges that process i cannot 
yet classify as being in or out of the MST. 

Initially, all the edges are classified as basic. 

When process i searches for its minimum-weight outgoing edge, it only needs 
to send test messages along basic edges. It tests the basic edges sequentially, 
lowest weight to highest. For each basic edge, process i sends a test message 
containing the component identifier (core and level) of its component C. The 



15.5. M I N I M U M  SPANNING T R E E  519 

recipient j of a test message checks to see if its own latest known component  
identifier is the same as that  of the sender i. If so, it responds with a reject 
message. When  i receives the reject message, it reclassifies the edge as a rejected 
edge. Also, if the recipient j ' s  core is different from that  of i and its level is at 
least as great as that  of i, then j responds with an accept message. (This does 
not cause i to reclassify the edge.) Finally, if j ' s  core is different from that  of i 
and its level is strictly smaller than that  of i, process j simply delays responding 
until such time as it is able to send back a reject or accept, according to the rules 
above .  

Note that  it is possible for i to receive an accept message for edge (i, j ) ,  
but  for edge (i, j )  not to be the one eventually identified as the M W O E  for the 
entire component  C. In this case, the same edge (i, j )  may be re tes ted by i in 
subsequent  searches. Process i only reclassifies an edge as a branch edge when 
it actually discovers that  the edge is par t  of the MST, for example, when process 
i receives a changeroot message referring to that  edge or receives a connect 
message over the edge. 

When  two connect messages cross on a single edge, a merge operation occurs. 
Then  the common edge is identified as the new core, the level is increased by 
one, and the endpoint  with the larger UID is chosen as the new leader. The 
new leader then broadcasts  initiate messages to begin looking for the M W O E  of 
the new component  formed by the merge. When a connect message is received 
by a process from a lower level component ,  an absorb operation occurs. The 
recipient process knows whether or not it has already found its mwoe and thus 
knows whether it needs to tr igger a search in the newly absorbed component .  In 
either case, it will broadcas t  an initiate message to that  component  to tell the 
processes in that  component  the latest component  identifier. 3 

Note that  each process is able to perform its output  as soon as it no longer 
classifies any of its incident edges as basic; the output  is simply the set of branch 
edges. 

T h e o r e m  15 .23  The GHS algorithm solves the M S T  problem in an arbitrary 
connected undirected weighted graph network. 

15.5.6 Complexity Analysis 

The communicat ion complexity analysis is similar to that  for SynchGHS, giving 

the same bound of 0 ( n l o g n  + tel) .  We divide the messages into two sets, 
resulting separately in the O (n log n) term and the 0 (IE[) term. The 0 (IEI) 
counts the test messages that  lead to rejection, plus the reject messages, on all 

3This is the exceptional case mentioned earlier. 
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edges. This is a total of O (IEI), because each edge is rejected at most once: 
after a reject message is received on an edge by a process i, i never again tests 
that edge. 

All the other messages-- the test-accept pairs that enable a process to accept 
an edge as its mwoe, the initiate and report messages that are used for broadcast 
and convergecast, and the changeroot and connect messages that are used after 
a component has determined its M W O E ~ a r e  charged to the task of finding the 
MWOE for a specific component (i.e., for a specific core and level). In this task 
for one component, these messages can be associated with nodes in such a way 
that there is at most one of each of these types of messages associated with each 
node. (In particular, each process sends at most one successful test message.) 
Thus, the number of messages charged to one component C is O (ICt), where we 
are using ]C I to denote the number of nodes in component C. The total number 
of messages is, therefore, proportional to 

Zlcl. 
C 

Organizing the components according to their levels, we rewrite this expression 
a s  

k:O<k<logn C:level(C)=k 

For each level k, the inner sum is at most n, because no node ever appears in 
more than one component with level = k. Therefore, this expression is at most 
equal to 

log n 

n - 0 (n log n) .  
0 

It follows that the overall communication complexity of the algorithm is O(n log n-t- 

IEI), claimed. 
For the time complexity, it is convenient to include a preliminary protocol 

to awaken all the processes as quickly as possible. Then it can be shown by 
induction on k that the time for all the processes to reach level at least k is 
0 (kn( f  + d)). Thus, the total time is O (n log n(t~ + d)). 

L o w e r  b o u n d .  Note that the communication complexity must be f~(n log n), at 
least for some graphs. For example, if the communication complexity of MST in 
rings were less than this, then it would be possible to combine a communication- 
efficient MST algorithm with the STtoLeader algorithm to obtain a leader- 
election algorithm whose communication complexity is also less than this. But 
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would contradict Theorem 15.12, which says that f~(nlogn) messages are nec- 
essary for leader election in rings of size n. 

15 .5 .7  P r o v i n g  C o r r e c t n e s s  for t h e  G H S  A l g o r i t h m  

The GHS algorithm is the first one in this book for which we have not at least 
outlined a correctness proof. There is a good reason for this: at the present 
time, no simple proof is known. The algorithm has been proved correct, at least 
four times, by a variety of methods, but none of the proofs is sufficiently nicely 
organized to be outlined in a few pages. 

One approach that works is the usual invariant assertion approach. Here, 
this involves collecting a rather large number of invariants, describing all the 
different tasks performed by the algorithm. For instance, there are invariants 
describing the correct operation of the broadcast and convergecast tasks, in- 
variants describing the test-accept-reject protocol, and invariants describing the 
changeroot-connect protocol. All of these invariants can be proved together by 
a huge inductive argument. Such a proof involves a large number of cases and 
a large amount of tedious detail, but is, in principle, quite straightforward. 

But such a brute-force proof does not seem to take full advantage of the mod- 
ularity that is present in the algorithm. For instance, the algorithm appears to 
be decomposable into separate tasks such as broadcast-convergecast and testing, 
yet this decomposition is not expressed formally (e.g., using the I/O automaton 
composition operation). So it is not clear how we could carry out the correctness 
proofs for the various tasks separately and then combine the results. 

Also, the brute-force invariant assertion proof does not take much advantage 
of high-level intuition about the algorithm. Note that much of our discussion of 
the algorithm has involved high-level notions such as graphs, components, levels, 
and MWOEs, rather than low-level concepts such as messages and local vari- 
ables. It seems that a good proof ought to proceed, as far as possible, in terms of 
the high-level notions. In fact, a second approach that works is to give a high- 
level description of the algorithm, as an automaton that manipulates graphs, 
components, and so on, and to prove this correct using invariants. Then it is 
possible to prove that the detailed algorithm correctly simulates the high-level 
description. The formal correspondence between the low-level and high-level 
algorithms is a simulation relation, as defined in Section 8.5.5. For examples 
of simulation proofs, see the proof of the Infinite TicketME mutual exclusion 
algorithm in Section 10.9.4 and the proofs of the SimpleSynch and SafeSynch 
synchronizer algorithms in Chapter 16. The proofs for synchronizer algorithms 
demonstrate especially nicely how some complex asynchronous network algo- 
rithms can be decomposed in two ways: using I/O automaton composition for 
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separating the reasoning about separate tasks and using simulation relations to 
allow reasoning at the highest possible level of abstraction. 

Another approach to proving the correctness of GHS is to try to relate its 
behavior formally to that of the synchronous version of the algorithm, Synch- 
GHS. Informally speaking, the correspondence seems very close. Note that this 
relationship cannot be a simple simulation relation, because in the asynchronous 
algorithm, different portions of the network can be far out of synchronization, as 
determined by the current levels. Whatever correspondence is used must allow 
some reordering of activities that happen in different places in the network. 

We regard it as an interesting open problem to find a nicely decomposed 
proof of correctness for the GHS algorithm. It would be acceptable to modify 
the algorithm slightly to obtain the modularity, as long as the modifications do 
not affect the important algorithmic ideas or the complexity. 

In Chapters 16-22, you will see a variety of asynchronous network algorithms, 
decomposed using a variety of methods. We hope that the complications of 
algorithms such as GHS have convinced you that it is important  to find such 
decompositions. 

15 .5 .8  A S i m p l e r  " S y n c h r o n o u s "  S t r a t e g y  

Note that the GHS algorithm has many complications that do not arise in the 
SynchGHS algorithm; most of these are the result of the fact that different pot- 
tions of the network can be far out of synchronization, as determined by the 
current levels. One way of avoiding these complications is to try to simulate 
SynchGHS as closely as possible, keeping the levels of nearby processes close to 
each other. 

SimpleMS T algorithm" 
The algorithm is again based on combining components, where each com- 
ponent has an associated level. The initial components are just the indi- 
vidual nodes, each with level = 0. Now level k components can only be 
combined into level k + 1 components, using the same general strategy as 
in SynchGHS. 

Each process i maintains a local-level variable, which keeps track of the 
latest level process i knows for its component. Initially, the local-level is 0, 
and when process i learns about its membership in a new component with 
level = k, i raises its local-level to k. 

The key idea is that a process i with local-level = k tries not to participate 
in the algorithm for finding its level k component 's MWOE until all the 
processes in the network have local-levels at least equal to k. Actually 
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achieving this would require expensive global synchronization. But in fact, 
a weaker local synchronization is enough: each process only waits to learn 
that all of its neighbors in the underlying graph have local-levels at least 
k. So that all processes can discover this, each process sends a message on 
each of its incident edges each time its local-level increases. 

The SimpleMST algorithm has the same time complexity upper bound as 
GHS, namely, O (n log n(t~ + d)), and, of course, it is much simpler than GHS. 
The communication complexity is worse, however, because of the synchronization 
messages used at every level: now it is O (IZl log n). 

15.5.9 Applicat ion to Leader Elect ion 

An MST algorithm can be used to solve the leader-election problem in an arbi- 
trary connected undirected weighted graph with UIDs. Namely, after establish- 
ing an MST, the processes participate in the STtoLeader protocol to select the 
leader. 

Note that the processes do not need to know when the MST algorithm has 
completed its execution throughout the network; it is enough for each process i 
to wait until it is finished locally, that is, has output its set of incident edges in 
the MST. If process i receives a message that is part of the STtoLeader algorithm 
before it has performed its output for the MST protocol, it simply delays the 
message until it is done with MST. The idea is the same as in the general strategy 
for handling input arrivals in wakeup messages, described at the end of Section 
15.1.1. 

If the GHS algorithm is used for establishing the MST, the total number of 
messages to elect a leader is O (n log n + IEI) and the total time is O (n log n(t~ + d)). 

15.6 Bibliographic Notes  

The A synchLCR and the asynchronous version of the HS algorithm, like the syn- 
chronous versions of these algorithms, are derived from the papers by LeLann 
[191], Chang and Roberts [71], and Hirschberg and Sinclair [156]. The Peterson- 
Leader algorithm was developed by Peterson and appears in [239]. Another 
unidirectional algorithm that achieves O (n log n) communication complexity was 
developed by Dolev, Klawe, and Rodeh [97]. The smallest upper bound currently 
known for the communication complexity for leader election in an asynchronous 
ring is 1.271n log n + O (n), by Higham and Przytycka [155]. 
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The observations at the beginning of Section 15.1.4, indicating how the syn- 
chronous lower bound results for the communication complexity of leader election 
carry over to the asynchronous setting, are due to Gafni [129]. The direct proof 
of the lower bound for the asynchronous setting is due to Burns [61]. 

Afek and Gafni [6] have developed complexity bounds for leader election in 
complete asynchronous networks. 

The key ideas for the simple spanning tree, broadcast, and convergecast 
algorithms appear to have originated in papers by Segall [258] and by Chang [72]. 
The AsynchBFS and AsynchBellmanFord algorithms are based on the sequential 
shortest paths algorithm of Bellman and Ford [43, 125]. The AsynchBellmanFord 
algorithm is essentially the algorithm used to establish routes in the ARPANET 
between 1969 and 1980 [223]. The termination protocol described for AsynchBFS 
and AsynchBellmanFord in this chapter is based on the work of Dijkstra and 
Scholten on termination detection for "diffusing computations" [92]; we present 
this work in Section 19.1. The LayeredBFS and its m-layer version are inspired 
by the work of Gallager [131]; these results were later improved by Awerbuch 
and Gallager [33]. Another interesting shortest paths algorithm was designed by 
Gabow [128]. 

The GHS protocol was developed by Gallager, Humblet, and Spira [130]. The 
code in their paper is of a slightly different style from the precondition-effect code 
of this book; a version more in the style of this book appears in Welch's Ph.D. 
thesis [287]. There have been several papers published with correctness proofs for 
the GHS algorithm or variants of it. Welch, Lamport, and Lynch [288] proved 
correctness using simulation methods. Chou and Gafni [79] verified a slightly 
modified version of the algorithm, using a correspondence with the synchronous 
algorithm. Stomp and de Roever [87] and Janssen and Zwiers [164] also carried 
out proofs. Awerbuch [31] developed an O (rid) time, O (n log n) message MST 
algorithm. Garay, Kutten, and Peleg [132] developed an O ((diam + v/-~)d) time 
algorithm. Awerbuch, Goldreich, Peleg, and Vainish [34] proved a lower bound 
result that says that the number of messages needed to establish a minimum 
spanning tree is ~([E[); this result assumes that the messages are of bounded 
length. The SimpleMST algorithm is due to Awerbuch. 

Humblet [160] designed an asynchronous distributed algorithm for finding a 
minimum spanning tree in a directed graph network. 

15.7 Exerc i ses  

15.1. Give an alternative proof of correctness for the AsynchLCR algorithm, 
based on relating it formally to the synchronous L CR algorithm. 
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15.2. Give precondition-effect code for the modification of AsynchLCR, described 
at the end of Section 15.1.1, which includes wakeup inputs and receive 
buffers. 

15.3. For the asynchronous version of the HS algorithm: 

(a) Give precondition-effect code. 

(b) Prove the correctness of the algorithm, based on the code. 

(c) Analyze its time complexity, assuming the usual upper bounds of t~ 
for each task of each process and d on delivery time for the oldest 
message in any channel. 

(d) Analyze its time complexity, assuming an upper bound of d on the 
delivery time for an arbitrary message and neglecting local processing 
time. 

15.4. Consider the PetersonLeader algorithm in a ring with n = 15 nodes, in 
which the UIDs for processes P I , . . .  , P16 are, respectively, 25, 3, 6, 15, 19, 
8, 7, 14, 4, 22, 21, 18, 24, 1, 10, 23. Which process is elected as leader? 

15.5. Design a version of the PetersonLeader algorithm for the synchronous net- 
work model described in Chapters 2 and 3. The processes in your algo- 
rithm may know n. Strive to make your algorithm as simple (to write 
and to understand) as possible, while keeping the unidirectionality and 
the O (n log n) communication complexity. Analyze the time (number of 
rounds) complexity of your algorithm. 

15.6. Give a careful proof of the O (n(t~ + d)) upper bound for the time complexity 
of the PetersonLeader algorithm. 

15.7. Design a version of the PetersonLeader leader-election algorithm for rings 
with bidirectional communication. In the new version of the algorithm, the 
UIDs remaining in contention do not need to precess around the ring, but 
can stay where they originate; each process simply collects the UIDs from 
its two active neighbors at each phase. Give precondition-effect code for 
your algorithm. Analyze its message and time complexity. 

15.8. Extend the AsynchLCR algorithm, the asynchronous HS algorithm, and 
the PetersonLeader algorithm so that the non-leaders also announce that 
they are not the leader, via non-leaderi output actions. Analyze the com- 
munication and time complexities of the resulting algorithms. 

15.9. Fill in the details of the proof sketch for Theorem 15.11. 
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15.10. Give a careful argument to justify the statement made in the inductive step 
of the proof of Claim 15.15, that the state after C~L,M is silent. 

15.11. Extend the proof of Theorem 15.12 so that it applies to rings whose sizes 
are not powers of 2. What is the best lower bound you can obtain in this 
way? 

15.12. Consider the problem of leader election in networks based on bidirectional 
line graphs; such a graph consists of n processes numbered 1 , . . . ,  n, ar- 
ranged in a line, with bidirectional edges between each pair of neighbors. 
Assume that each process knows its neighbors by the local names "right" 
and "left," with the orientation consistent along the line. Assume that each 
process knows whether or not it is an endpoint. Assume that the processes 
have no knowledge of n. 

(a) Give a leader-election algorithm for such networks that uses a small 
number of messages. 

(b) Why does this result not contradict the lower bound in Lemma 15.147 

15.13. Consider the asynchronous simulation of OptFloodMax described in Sec- 
tion 15.2, in which the processes do not know when to terminate. 

(a) Write precondition-effect code for the asynchronous simulation. 

(b) For an arbitrary graph G and UID assignment, compare the maximum 
number of messages sent in your simulation to the maximum number 
sent in the synchronous OptFloodMax algorithm. 

15.14. Fill in the details of the proof of Theorem 15.16. 

15.15. Give a careful proof of correctness for AsynchBcastAck. 

15.16. Write precondition-effect code for a modification of AsynchBcastAck in 
which each process garbage-collects all information about the algorithm 
after perfoming a report action and sending out its acks. Prove its correct- 
ness and analyze its complexity. 

15.17. Design an algorithm for broadcast and acknowledgment in asynchronous 
networks, in which the time complexity depends on the diameter of the 
network rather than the total number of nodes. 

15.18. Extend the spanning tree, broadcast, and convergecast algorithms in Sec- 
tion 15.3 to the case where the network is based on a strongly connected 
directed graph. Analyze the complexity of your algorithms. 
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15.19. Give a careful description and complexity analysis for the leader-election 
strategy given just after the description of AsynchBcastAck. Analyze the 
time complexity under two different assumptions: the usual upper bound 
of d on delivery of the oldest message in each channel and an upper bound 
of d on the delivery of an arbitrary message in each channel. In the latter 
case, you may ignore local processing time. 

15.20. Describe in detail an algorithm that allows a distinguished process i0 in an 
asynchronous network based on an arbitrary connected undirected graph 
G to calculate the number of nodes in G. Sketch a correctness proof. 

15.21. Fill in the details of the proof of Theorem 15.18. 

15.22. For the AsynchBFS algorithm, 

(a) Produce an execution that uses as many messages as you can manage; 
try to achieve the given upper bound of O (~IEI). 

(b) Produce an execution that takes the longest time that you can manage 
until a stable state is reached; try to achieve the given upper bound 
of O ( diam . n(e + d) ). 

15.23. Write precondition-effect code for the modification of A synchBFS in which 
processes produce parent outputs, by means of an acknowledgment proto- 
col. Do not assume any knowledge of the size or diameter of the network 
graph. 

Prove the correctness of your protocol and analyze its complexity. (Hint: 
The communication complexity should be the same as for the basic Asynch- 
BFS algorithm. The time complexity becomes bigger because of the timing 
anomaly discussed for AsynchSpanningTree and AsynchBcastAck.) 

15.24. Repeat Exercise 15.23 for the modification of A synchBFS in which diarn 
is known and in which processes produce parent outputs. 

15.25. Write precondition-effect code for LayeredBFS and prove its correctness. 

15.26. Give a detailed description of the HybridBFS algorithm, either using pre- 
condition-effect code or using very precise English. Prove correctness. 

15.27. Design an efficient algorithm that allows a distinguished process i0 in an 
asynchronous network based on an arbitrary connected undirected graph 
G to determine the maximum distance k from i0 to the furthest node in 
the network. Analyze its message and time complexity. 
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15.28. Give an upper bound for the time complexity of the AsynchBellmanFord 
shortest paths algorithm. It should be as tight as you can make it. 

15.29. Write precondition-effect code for a modification of A synchBellmanFord in 
which processes produce parent and distance outputs, by means of an ac- 
knowledgment protocol. Prove the correctness of your protocol and analyze 
its complexity. 

15.30. Design an algorithm to find the shortest paths from a fixed source node i0 
to all other nodes in the network. Your algorithm should have a much better 
time bound than the AsynchBellmanFord algorithm, say, O (n(g + d)). 

15.31. Extend the breadth-first search and shortest paths algorithms in Section 15.4 
to the case where the network is based on a strongly connected directed 
graph. Analyze the complexity of your algorithms. 

15.32. Give complete precondition-effect code for the GHS minimum spanning 
tree algorithm. 

15.33. Consider the GHS minimum spanning tree algorithm. 

(a) State and prove carefully an upper bound on the time from when the 
first process awakens until the last process announces its results. You 
may assume that a preliminary protocol is used to awaken all the 
nodes as quickly as possible. 

(b) How tight is the upper bound you proved in (a)? That is, describe a 
particular execution of the algorithm that takes time that is as close 
as you can get to your upper bound. 

15.34. Describe an execution of GHS in which a reject message arrives at process 
i along channel Cj,i, in response to a previous test message by i, at a time 
when i classifies edge (i, j)  as a branch edge. Argue that the algorithm 
handles this case correctly. 

15.35. Suppose that, at some point in an execution of the GHS algorithm, a pro- 
cess i in a component C sends a connect message over some edge (i, j) ,  
directed toward a component C' having the same level as C. Argue that 
component C eventually either gets merged with C' or else absorbed into 
some component that includes C'. 

15.36. Research Question: Compare the operation of the GHS minimum spanning 
tree algorithm to that of SynchGHS. For example, what is the relationship 
between the components produced in the two cases? (It may be possible 
to exploit such a connection in a formal proof of correctness for GHS.) 
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15.37. Research Question: Find a nice, simple proof of correctness for the GHS 
algorithm as described in this chapter and in [130]. If it helps, you may 
modify the algorithm slightly, as long as you retain the same basic algo- 
rithmic ideas and the same message and time complexity. 

15.38. For the S imp leMST  algorithm, 

(a) Write precondition-effect code. 

(b) Prove correctness. 

15.39. Research Question: Find an MST algorithm with approximately O (diam �9 d) 
time complexity and with all messages of size O (log n). 

15.40. Give a formal description of the leader-election strategy described in Sec- 
tion 15.5.9, as a composition of I /O  automata  that produce an MST and 
I /O  automata that use an MST to elect a leader. Describe the interactions 
between these two sets of automata carefully, identifying what actions are 
used for communication between the two sets of automata and identifying 
exactly what behavior each set of automata  requires of the other set. 

15.41. Consider a network based on a line graph, as described in Exercise 15.12. 
That  is, the graph consists of n processes numbered 1 , . . . ,  n, arranged 
in a line, with bidirectional edges between each pair of neighbors. Each 
process knows its neighbors by the local names "right" and "left," with the 
orientation consistent along the line. Each process knows whether or not 

it is an endpoint. Processes do not know n. 

Assume that each process i initially has a very large integer value vi, and 
that it can hold in memory only a constant number of such values at any 
time. Design an algorithm to sort the values among the processes, that is, 
to cause each process i to return one output  value oi, where the multiset of 
outputs is equal to the multiset of inputs and Ol _< 02 <_ . . .  <_ On. Try to 
design the most efficient algorithm you can, both in terms of the number 
of messages and in terms of the time. Prove your claims. 

15.42. Consider an asynchronous connected undirected network of arbi t rary topol- 
ogy in which each process has a UID. Assume that each process i initially 

receives as input some integer value vi. Design an algorithm that will 
cause each process to return the sum of all the inputs in the network. Try 
to keep the communication complexity, as measured in terms of the number 
of messages, low. Prove your claims. 
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15.43. Consider a "banking system" in which each process in a network keeps a 
number indicating an amount of money. We assume, for simplicity, that 
there are no external deposits or withdrawals, but messages travel between 
processes at arbitrary times, containing money that is being "transferred" 
from one location to another. The channels preserve FIFO order. 

Design a distributed network algorithm that allows each process to decide 
on (that is, to output) its own balance, so that the total of all the balances 
is the correct amount of money in the system. Assume that the execution 
of this algorithm is triggered by signals arriving from the outside, at one 
or more of the system locations. (These signals could happen at any time 
and could happen at different times at different locations.) 

Your algorithm should not halt or delay transfers "unnecessarily." Give a 
convincing argument that your algorithm works correctly. 

15.44. Design a version of the LubyMIS algorithm of Section 4.5 that works in 
asynchronous networks. Give a careful statement of what your algorithm 
guarantees and prove it. 



Chapter 16 

Synch r o n l z e r s  

In Chapter 15, we gave several examples of distributed algorithms programmed 
directly on the "bare" asynchronous network model. As should be apparent by 
now, this model has so much uncertainty that it is very difficult to program di- 
rectly. It is, therefore, desirable to have simpler models that can be programmed 
more easily and whose programs can be translated into programs for the general 
asynchronous network model. 

We have already presented two models that are simpler than the asynchro- 
nous network model--the synchronous network model and the asynchronous 
shared memory model--and have given many examples of algorithms for these 
two models. In this chapter, we show how algorithms for the synchronous network 
model can be transformed into algorithms for the asynchronous network model, 
while in Chapter 17, we show how asynchronous shared memory algorithms can 
be transformed into asynchronous network algorithms. These transformations 
enable algorithms for the two simpler models to be run in asynchronous networks. 

The idea of transforming synchronous network algorithms into asynchronous 
algorithms has already been suggested by some of the algorithms that appear 
in Chapter 15, namely, the simulation of FloodMaz using round numbers on all 
messages in Section 15.2 and the SimpleMST algorithm in Section 15.5.8. 

The strategy of transforming synchronous to asynchronous network algo- 
rithms works only for non-fault-tolerant algorithms. In fact, such a transfor- 
mation cannot work for fault-tolerant algorithms because, as we will show in 
Chapter 21, the capabilities for fault-tolerance are fundamentally different in 
synchronous and asynchronous networks. 

We formulate the transformation from the synchronous network model to 
the asynchronous network model in terms of a system module called a (local) 
synchronizer. We then describe several distributed implementations of the syn- 
chronizer. All of these implementations involve synchronizing the system at every 
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synchronous round; this is necessary because the transformations are designed 
to work for arbitrary synchronous algorithms. The ability to synchronize less 
frequently (as, for example, in the SimpleMST algorithm) depends on special 
properties of the algorithm that  ensure that  it still works correctly if it is al- 
lowed to exhibit arbitrary interleavings of process steps between synchronization 
points. 

Our presentation of the synchronizer implementations turns out to be a very 
good example of modular decomposition of distributed algorithms. We use sev- 
eral algorithm decomposition techniques, most of which are described in Chap- 
ter 8. We begin with a "global" specification of correctness in terms of I /O 
automata.  Then we define a local synchronizer abstractly and show that  it 
implements the global specification; this requires techniques based on partial 
orders of events. Next we describe several alternative ways of implementing the 
local synchronizer; each could be shown to do so using the simulation method 
of Section 8.5.5. However, most of these implementations can take advantage of 
additional decomposition steps. Thus, we define another system module known 
as a safe synchronizer, show how it can be used to implement the local syn- 
chronizer, and then develop several distributed algorithms as implementations 
of the safe synchronizer. The entire development is a good illustration of the 
power of decomposition methods in enabling simple description (and proofs) of 
complicated distributed algorithms. 

We close the chapter with a contrasting lower bound on the time overhead 
required to run a synchronous network algorithm in an asynchronous network, 
if the synchronization requirements are very strong. 

16.1 T h e  P r o b l e m  

In this section, we describe the problem to be solved by a synchronizer. The 
starting point is the synchronous network model, with a collection of n syn- 
chronous processes running at the nodes of an undirected graph G - (V, E), 
communicating by messages sent over the edges. In the formulation of that  
model in Chapter 2, each process i is presented as a kind of state machine, 
with message-generation and transition functions. Here, we deviate from the 
earlier development by instead representing each process i as a "user process" 
I /O automaton Ui. 1 

Let M be the fixed message alphabet used in the synchronous system. We 
define a tagged message to be a pair (m, i), where m E M and 1 < i _< n. 

The user automaton Ui has output  actions of the form user-send(T, r)i, where 

1We are referring to these processes here as "user processes" because they are users of the 
synchronizer system, which is the main system component we are now studying. 
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T is a set of tagged messages and r E N +, by which it sends messages to its 

neighbors. The tag in a tagged message indicates the message destination, and 
the r argument represents the round number. If Ui does not have any messages 
to send at round r, then it performs user-send(O, r)i. Ui also has input actions of 
the form user-receive(T, r)i, where T is a set of tagged messages and r C N +, by 
which it receives messages from its neighbors. Here, a tag indicates the message 
source and r is again the round number. Ui may also have other external actions 
by which it interacts with the outside world. We now model inputs and outputs 
of the user automata using input actions and output  actions rather than encoding 
them in the states (as we did in Chapter  2). 

Example 16.1.1 user-send a n d  user-receive a c t i o n s  

Suppose that n = 4. Then user-send({(ml, 1), (m2, 2)}, 3)4 indi- 
cates that at round 3, user U4 sends message ml  to user U1 and 
message m2 to user U2, a n d  sends no other messages. Also, user- 
receive({(ml, 1), (m2,2)},3)4 indicates that at round 3, U4 receives 
message ml  from U1 and message m2 from U2, and receives no other 
messages. 

Ui is expected to preserve the well-formedness condition that the user-sendi 
and user-receivei actions alternate, starting with a user-sendi action, and that 
successive pairs of actions occur in order of rounds. That  is, the sequence of such 
actions is a prefix of an infinite sequence of the form 

user-send(T1, 1)i, user-receive(T~, 1)i, user-send(T2, 2)i, user-receive(T~, 2)i, 
user-send(T3, 3), . . . .  

There is one other condi t ion--a  liveness condi t ion-- that  Ui is required to 
satisfy: in any well-formed fair execution, Ui must eventually perform a user- 
sendi for each round r such that user-receivei events for all previous rounds have 
already occurred. That  is, the users continue sending messages for infinitely 
many rounds, as long as the system keeps responding. 

We describe the rest of the system as a global synchronizer, GlobSynch. Its 
job is, at each round, to collect all the messages that are sent by user automata  
at that round in user-send actions and to deliver them to all the user automata in 
user-receive actions. It synchronizes globally, after all the user-send events and 
before all the user-receive events of each round. See Figure 16.1 for a picture of 
the combination of user and GlobSynch automata,  that is, the GlobSynch system. 
Notice that user-send actions are input actions of GlobSynch, while user-receive 
actions are output  actions of GlobSynch. 
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GlobSynch 

us -receive j 

I 
us ive i 

F i g u r e  16 .1"  Archi tecture  for the GlobSynch system. 

GlobSynch  c a n  eas i ly  be  d e s c r i b e d  as an  I / O  a u t o m a t o n .  

G l o b S y n c h  a u t o m a t o n "  

Signature: 

Input: 
user-send(T, r)i, T a set of tagged messages, r E 1N +, 1 < i < n 

Output" 
user-receive(T, r)i, T a set of tagged messages, r E 1N +, 1 < i < n 

States: 
tray, an array indexed by {1, . . .  , n} x N + of sets of tagged messages, initially all 0 
user-sent, user-rcvd, each an array indexed by {1, . . .  , n} x N + of Booleans, initially all false 

Transit ions:  
user-send(T,r)i 

Effect: 
user-sent(i, r):= true 
for all j ~ i do 

tray(j,r) := tray(j,r) U {(m,i)l(rn, j ) E T} 

user-receive(T, r)i 
Precondition: 

for all j 
user-sent(j, r) = true 

user-rcvd(i, r) = false 
T = tray(i, r) 

Effect: 
user-rcvd(i, r ):= true 

Tasks: 
for every i, r: 

{user-receive(T, r) i"  T a set of tagged messages} 

In  th i s  code ,  tray(i,  r) is d e s i g n e d  to  hold  the  m e s s a g e s  to  Ui t h a t  a re  s u b m i t -  

t e d  by  all i ts  n e i g h b o r s ;  t h e s e  m e s s a g e s  a re  t a g g e d  w i t h  the i r  s e n d e r s '  indices .  
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The user-sent and user-rcvd components just keep track of whether user-send 
and user-receive events have occurred. 

It should not be hard to see that any algorithm in the synchronous network 
model of Chapter  2 can be described in this new s ty le- -as  a composition of user 
automata  Ui and the GlobSynch automaton. We leave this for an exercise. 

The synchronizer problem is to "implement" the GlobSynch automaton with 
an asynchronous network algorithm, with one process Pi at each node i of the 
underlying graph G and a reliable FIFO send/receive channel Ci,j in each di- 
rection on each edge (i, j )  of G. This implementation should ensure that the 
individual user automata Ui cannot tell the difference between running in the 
implementation system (i.e., user automata plus the distr ibuted algorithm) and 
running in the GlobSynch system. That  is, we want to ensure that if a is any fair 
execution of the implementation system, then there is a fair execution a ~ of the 
specification system such that for each i, a is indistinguishable from a ~ to Ui. 2 

Note that we do not require that the relative order of events at different users 
be preserved, but only the view of each individual user. We will return to this 
issue in Section 16.6. 

16.2 The Local Synchronizer 

All of the synchronizer implementations we describe are "local," in the sense that 
they only involve synchronization among neighbors in the network rather than 
among arbi t rary nodes. The advantage of using only local synchronization is the 
potential for savings in communication and time complexity. In this section, we 
define a local variant of GlobSynch that we call LocSynch; the algorithms will be 
presented as implementations of LocSynch. 

LocSynch is nearly identical to GlobSynch. The only difference is in the 
user-receive transitions, which are now described by 

LocSynch a u t o m a t o n "  

T r a n s i t i o n s :  
user-receive(T, r)i 

Precondition: 
for all j E nbrs U { i } 

user-sent(j ,  r) = true 
user-rcvd(i, r) = false 
T = tray(i, r) 

Effect: 
user-rcvd(i, r ) : =  true 

2This uses the definition of "indistinguishable" from Section 8.7, which says that the two 
executions project to give identical executions of Ui. 
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Thus, in LocSynch, round r messages can be sent to Ui as soon as round r 

messages have been received from all its neighbors and from Ui itself; it is not 

necessary to wait for messages from all users in the entire network. 

L e m m a  16.1 If  c~ is any fair execution of the LocSynch system (i.e., users 
plus LocSynch), then there is a fair execution c~ ~ of the GlobSynch system that 
is indistinguishable from c~ to each Ui. 

We cannot use simulation techniques to prove this correspondence as we 
did, for example, in the proof of TicketME in Section 10.9. This is because the 
relative order of external actions that  happen at different nodes is sometimes 
different in the two systems. Rather ,  we use a method based on partial orders 
of events. 

P r o o f  S k e t c h .  Let L and G denote the LocSynch and GlobSynch systems, 
respectively, modified slightly by reclassifying all the internal actions of the user 
au toma ta  as outputs.  (Thus, the external actions of each system are exactly 
all the actions of the user au tomata . )  Certain events of L "depend on" other 
events: a user-receive event depends on user-send events for the same round at 
the same or neighboring nodes, and any event at a user au tomaton  may depend 
on any preceding event at the same automaton.  If /3 is any trace of L, then 
we define an irreflexive part ial  order ~ on the events of/3 as follows. (This is 

similar to the dependency relations defined in Sections 14.1.4 and 14.2.4.) If 7r 

and r are two events in fl, with 7c preceding r then we say that  7r --+~ r or r 
depends on 7r, provided tha t  one of the following holds: 

1. 7r and r are events of the same user Ui. 

2. 7r = user-send(T, r)i and r = user-receive(T', r)j, where j e nbrsi. 

3. 7r and r are related by a chain of relationships of types 1 and 2. 

The key proper ty  of these relations is the following claim. It says tha t  the --+Z 
relations capture enough about  the dependencies in the fair t race /3  to ensure 
tha t  any reordering tha t  preserves these dependencies is still a fair trace. (This 
claim is similar to Theorems 14.1 and 14.3.) 

C l a i m  16.2 If/3 is a fair trace of L and ~/ is a sequence obtained by reordering 
the events in/3 while preserving the ~ ordering, then 7 is also a fair trace of L. 

Given Claim 16.2, to prove the lemma, we start  with any fair execution c~ 

of L and let /3 = trace(a). We reorder the events of/3 to get a new trace 7 
in which the rounds "line up" globally: we do this by explicitly put t ing all the 
user-send events for a part icular  round r before all the user-receive events for the 
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same round r. This new ordering requirement is consistent with the dependency 
requirements in --4Z, since they never require the reverse order, even when they 
are applied transitively. By Claim 16.2, y is also a fair trace of L. But, in 
addition, since all the user-send events for each round r precede all the user- 
receive events for the same round r, it is not hard to show that 7 is a trace 
of G. To complete the proof, we fill in the states in ~ to get an execution of 
G, filling in the user states as in (~. Formally, this filling in can be done using 
general theorems about I /O  automaton composition, in particular,  Theorems 8.4 
and 8.5. [-1 

A simple example of a distr ibuted algorithm that implements LocSynch is as 
follows. 

SimpleSynch algorithm (informal): 
For any round r, after receiving an input of the form user-send(T,r)i, 
process SimpleSynchi first sends a message to each neighbor SimpleSynchj, 
containing the round number r and any messages from Ui to Uj that appear  
in T. When SimpleSynchi has received a round r message from each of its 
neighbors, it outputs user-receive(T', r)i, where T' is the set of messages 

received, each tagged with its sender. 

More formally, SimpleSynch~ is the following automaton. 

SimpleSynch~ automaton (formal): 

Signature: 

Input :  
user-send(T, r ) i ,  T a set of tagged messages,  r C N + 
receive(N,r)j,i, N a set of messages,  r C N +, j E nbrs 

Output :  
user-receive(T, r) i ,  T a set of tagged messages,  r E N + 
send(N,r)i,j, N a set of messages,  r C N +, j C nbrs 

States: 
user-sent, user-rcvd, each a vector indexed by N + of Booleans,  initially all false 
pkt-sent, pkt-rcvd, each an ar ray  indexed by nbrs• + of Booleans,  initially all false 
outbox, an ar ray  indexed by nbrsxN + of sets of messages,  initially all 0 
inbox, a vector indexed by N + of sets of tagged messages,  initially all 0 
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Figure 16.2" Architecture for the SimpleSynch system. 

T r a n s i t i o n s :  

user-send(T, r)i 
Effect: 

user-sent(r) := true 
for all j E nbrs do 

outbox(j, r):= {ml(m , j) C T} 

send(N, r)~,y 
Precondition: 

user-sent(r) = true 
pkt-sent(j, r) = false 
N = outbox (j, r) 

Effect: 
pkt-sent(j, r):= true 

receive(N, r)j,i 
Effect: 

inbox(r) := inbox(r)U {(m, j ) lm E N} 
pkt-rcvd(j, r):= true 

user-receive(T, r)i 
Precondition: 

user-sent(r) = true 
for all j E nbrs 

pkt-rcvd(j, r) = true 
T = inbox (r) 
user-rcvd(r) = false 

Effect: 
user-rcvd(r) : -  true 

Tasks:  
for every r: 

{user-receive(T, r ) i :  T a set of tagged messages} 
for every j C nbrs and every r: 

{send(N, r)i,j: N a set of messages} 

T h e  S i m p l e S y n c h  s y s t e m  is o b t a i n e d  by c o m p o s i n g  the  S impleSynch i  pro- 

cesses, rel iable F I F O  send / r ece ive  channe ls  Ci,j for all the  edges,  and  the  users.  

See F igure  16.2. 
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L e m m a  16.3 I f  c~ is any fair execution of the SimpleSynch system, then there 
is a fair execution c~ ~ of the LocSynch system that is indistinguishable from c~ to 
each Ui. 

P r o o f  Ske t ch .  This time, unlike in the proof of Lemma 16.1, there is no 
reordering of events at different users, and the correspondence can be proved 
using simulation methods. Let S and L denote the SimpleSynch and LocSynch 
systems, respectively, each modified slightly so that the actions that are classified 
as external are exactly all the actions of the user automata.  (That  is, the internal 
actions of the users are reclassified as outputs and the send and receive actions are 
"hidden"--reclassified as internal.) If s and u are states of S and L, respectively, 

then we define (s, u) C f exactly if all of the following hold: 

1. All user states are identical in s and u. 

2. u.user-sent(i ,  r) = s.user-sent(r)i  

3. u.user-rcvd(i, r) = s.user-rcvd(r)i 

4. u.tray(i, r) - [.Jj~i{(m,j) " m E s.outbox(i, r) j}  

To prove that f is a simulation relation, we need the following invariant assertion 
for S. 

A s s e r t i o n  16.2.1 In any reachable state of the SimpleSynch sys- 
tem, if pkt-rcvd(j, r)i = true, then 

1. user-sent(r)j -- true 

2. { m :  (m, j)  e inbox(r)i} = outbox(i ,r)j  

The proof of this invariant uses other intermediate invariants, involving the cor- 
rectness of the messages in transit .  (As before, we assume that the channels are 
universal reliable FIFO channels in the statement and proof of such invariants.) 
Given Assertion 16.2.1, the proof that f is a simulation relation is straightfor- 
ward; the only interesting case is user-receive, which uses Assertion 16.2.1 in its 
proof. We leave the details of the invariant and simulation proofs as an exercise. 

The existence of a simulation relation implies that every trace of S is a trace of 
L. (Recall that the actions that are included in these traces are exactly the actions 
of the user automata.)  But we need more - - in  particular,  we need to know that 
the fairness conditions of S imply the fairness conditions of L. We prove that 
fairtraces (S) C fairtraces (n), then apply general composition theorems about 
I /O  automata  (Theorems 8.4 and 8.5) to fill in the user states and obtain the 
needed relationship between executions. 
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To prove fair trace inclusion, we use the fact tha t  a simulation relation guar- 
antees more than  just trace inclusion-- i t  also guarantees a close correspondence 

between executions, as defined in Section 8.5.5. Let t3 C fairtraces(S) and let 
be any fair execution of S wi th /3  = trace(a). Then Theorem 8.13 implies that  

there is an execution c~ ~ of L tha t  corresponds to c~, with respect to f .  We claim 
tha t  c~ ~ is a fair execution of L. 

There are two ways in which it might fail to be fair. First, there might be 

some user task that  is enabled from some point on in c~ ~, yet no step of tha t  task 
occurs after tha t  point in a~. Then the correspondence implies that  the same 

user task is enabled from some point on in (~, but  no step of that  task occurs; 

this is a contradiction to the fairness of a with respect to tha t  user task. 
Second, there might be some i and r such tha t  the user-receivei task for 

round r is enabled from some point on in c~ ~, yet no step of that  task occurs. 
This implies that ,  from the given point on in c~ ~, user-sent(j, r) = true for all 
j E nbrsiU{i},  and user-rcvd(i, r) = false. The correspondence then implies that  
from the corresponding point in c~, user-sent(r)j - true for all j E nbrs~ U {i}, 

and user-rcvd(r)i = false. 
We use the following assertion. 

A s s e r t i o n  16.2 .2  In any reachable state of the SimpleSynch sys- 
tem, the following holds. I f  pkt-sent(i, r)j = true, then either channel 
Cj,i contains a message or pkt-rcvd(j, r)i = true. 

Then for each j E nbrsi, fairness for the send task at round r implies tha t  
eventually in a,  pkt-sent(j,  r)i becomes true. Then Assertion 16.2.2 and channel 
fairness imply tha t  eventually pkt-rcvd(j, r)i becomes true. Then fairness for 
the user-receivei task at round r in S implies tha t  a step of this task eventually 

occurs in a,  and so, by the correspondence, in a ~, a contradiction. Q 

Note tha t  the proof of Lemma 16.3 actually shows that  fairtraces(S) c 
fairtraces(L), in addit ion to showing indistinguishabili ty to the individual users. 
Lemmas 16.1 and 16.3 imply 

T h e o r e m  16.4 I f  a is any fair execution of the SimpleSynch system, then there 
is a fair execution a ~ of the GlobSynch system that is indistinguishable from a 
to each Ui. 

C o m p l e x i t y  a n a l y s i s .  Each round requires 2]E[ messages, one in each direc- 

tion on each edge of the graph. Suppose that  c is an upper  bound on the time for 
any user-sendi event to occur, once all user-receive4 events for any smaller rounds 
have occurred; tha t  t~ is an upper  bound on the time for any task of any process; 
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and that d is an upper bound on the time for delivering the oldest message in 
any channel. Then the total amount  of time required to simulate r rounds is at 
most r(c + d + 0 (e) ). 

16.3 The Safe Synchronizer  

It is impossible to reduce the time complexity of the SimpleSynch algorithm 
significantly, but it is possible to reduce the communication complexity. Namely, 
if there is no message from Ui to neighbor Uj at round r in the underlying 
synchronous algorithm, then we may be able to avoid a round r message from 
process i to process j in the asynchronous algorithm. But we cannot simply omit 
these messages. Each process needs to determine that it has already received all 
the messages that its neighbors will ever send it for round r, before it can perform 
a user-receive output  for round r. The messages of the SimpleSynch algorithm 
are used to help determine this, as well as to deliver the user's messages. The 
basic strategy for reducing communication is to separate these two functions. 

Thus, we decompose the implementation of LocSynch into several pieces: 
a "front end," FrontEnd for each node, communicating with the FrontEnds of 
neighboring nodes over special channels Di,j, and a "safe synchronizer," Safe- 
Synch. See Figure 16.3 for this new architecture. The job of each FrontEndi 
is to deliver the messages received from the local user Ui in user-sendi events. 
At each particular round r, after receiving a user-send4, FrontEndi sorts all the 
outgoing messages for round r into "outboxes." Then it sends the contents of 
each nonempty outbox to the appropriate neighbor j using channel Di,j and waits 
to receive an acknowledgment on Dj,i. When FrontEndi has received acknowl- 
edgments for all of its messages, it is said to be safe; this implies that all of i 's 
messages have been received by the appropriate neighboring FrontEnds. Mean- 
while, FrontEndi collects and acknowledges messages sent to it by its neighboring 
FrontEnds. 

When is it permissible for FrontEndi to perform a user-receivei for round 
r, that is, to deliver to Ui all the round r messages it has collected from its 
neighbors? It can only do this when it knows that it already has received all the 
messages it will ever receive for round r. It is therefore sufficient for FrontEndi 
to determine that all its neighboring FrontEnds are safe for round r, that is, that 
those neighbors know that all their messages for round r have been received by 

the appropriate FrontEnd automata.  
Thus, the job of the safe synchronizer automaton SafeSynch is to tell each 

FrontEnd automaton when all its neighbors are safe. To do this, SafeSynch has 
ok input actions, outputs of the FrontEnd automata,  by which the FrontEnd 
automata tell SafeSynch that they are safe. SafeSynch sends goi to FrontEndi 
when it has received an ok from each of i 's neighbors, as well as from i itself. 
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ser -send  i user-send j 
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SafeSynch 

F i g u r e  16.3" Decomposition of LocSynch using SafeSynch. 

After  Fron tEnd i  receives  goi, it can  p e r f o r m  a user-receivei .  In the res t  of this  

sect ion,  we desc r ibe  this  d e c o m p o s i t i o n  in more  detai l .  

1 6 . 3 . 1  F r o n t - E n d  A u t o m a t a  

F r o n t E n d i  a u t o m a t o n "  

Signature" 
Input: 

user-send(T, r)i, T a set of tagged messages, r C N + 
receive( "msgs", N, r)j,i, _IV a set of messages, r E l~ + , j E nbrs 
receive( "ack", r ) j , i ,  r E M -b , j ~ nbrs 
go(r)~, r 6 I~ + 
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Output :  

user-receive(T, r) i ,  T a set of tagged messages,  r E IN+ 
send( "msgs",N,r)~,j,  N a set of messages,  r E l~ + , j E nbrs 
send( "ack", r) i , j ,  r E 1N + , j E nbrs 
ok(r)i, r E 1N + 

States :  
user-sent, user-rcvd, each a vector indexed by N + of Booleans,  initially all false 
pkt-for, pkt-sent, pkt-rcvd, ack-rcvd, each an ar ray  indexed by nbrsxN + of Booleans,  

initially all false 
ack-sent, an ar ray  indexed by nbrsxN + of Booleans,  initially all false 
outbox, an ar ray  indexed by nbrsxN + of sets of messages,  initially all 0 
inbox, a vector indexed by N + of sets of tagged messages,  initially all 0 
ok-given, go-seen, each a vector indexed by N + of Booleans,  initially all false 

Trans i t i ons :  

user-send(T,r)i  
Effect: 

user-sent(r) := true 
for all j E nbrs such that  3m, (m, j )  E T do 

outbox(j, r ) :=  { m l ( m , j  ) E T} 
pkt-for(j, r ) :=  true 

send( "msgs", N, r)i,j 
Precondit ion:  

pkt-sent(j, r) = false 
pkt-for(j, r) = true 
N = outbox (j, r) 

Effect: 
pkt-sent(j, r ) :=  true 

receive( "ack", r)j,i 
Effect: 

ack-rcvd(j, r ) :=  true 

receive( "msgs", N, r)j,i 
Effect: 

inbox(r) : -  inbox(r) U { ( m , j ) i m  E N}  
pkt-rcvd(j, r) := true 

send( "ack", r)i,y 
Precondit ion:  

pkt-rcvd(j, r) = true 
ack-sent(j, r) = false 

Effect: 
ack-sent(j, r ) :=  true 

ok(~)~ 
Precondit ion:  

user-sent(r) = true 
for all j E nbrs 

if pkt-for(j, r) = true then 
ack-rcvd(j, r) = true 

ok-given(r) = false 
Effect: 

ok-given(r) := true 

Effect: 
go-seen(r) := true 

user-receive(T, r)i 
Precondit ion:  

go-seen(r) = true 
T = inbox(r) 
user-rcvd(r) = false 

Effect: 
user-rcvd(r) := true 
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Tasks: 
for every r: 

{user-receive(T, r ) i :  T a set of tagged messages} 
{ok(~)~} 

for every j and every r: 
{send( "msgs", N, r)i,j : N a set of messages} 
{send( "aek",r)i,j} 

16.3.2 Channe l  A u t o m a t a  

Each pair of front end automata, FrontEndi and FrontEndj, communicate by 
means of two channel automata, Did and Dj,i. These are reliable send/receive 
channels from i to j and from j to i respectively, as defined in Section 14.1.2. 

16.3.3 The  Safe Synchron izer  

The entire job of the safe synchronizer, SafeSynch, is to wait until it has received 
oks from all of the neighbors of FrontEndi and from FrontEncli itself before 
performing goi. 

SafeSynch automaton: 

Signature: 

Input:  
ok(r)i, r C N +, l < _ i _ < n  

Output:  
go(r)i, r C N  +, 1 <_ i<_n  

States: 
ok-seen, go-given, each an array indexed by {1 , . . .  , n} x N + of Booleans, initially all false 

Transitions: 
ok(r)~ 

Effect: 
ok-seen(i, r) "- true 

Tasks: 
for every i, r: 

Precondition: 
for a l l j  C nbrsi U {i} 

ok-seen(j, r) = true 
go-given(i, r) = false 

Effect: 
go-given(i, r ) :=  true 
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1 6 . 3 . 4  C o r r e c t n e s s  

L e m m a  16.5 If  c~ is any fair execution Of the SafeSynch system (i.e., Front- 
End, channel, SafeSynch, and user automata, as depicted in Figure 16.3), then 
there is a fair execution c~ I of the LocSynch system that is indistinguishable from 
c~ to each Ui. 

P r o o f  Ske tch .  This is proved using a simulation relation from the SafeSynch 
system to the LocSynch system. The strategy is the same as the one used in the 
proof of Lemma 16.3 for the SimpleSynch algorithm, using exactly the same sim- 
ulation relation f ,  but the details are a little more complicated here because the 
algorithm is more complicated. Again, the only interesting case in the simulation 
proof is the user-receive action, which here requires this invariant assertion. 

A s s e r t i o n  16.3.1 In all reachable states of the SafeSynch system, 
the following holds. If  go-seen(r)i = true, then for all j E nbrsi, 

1. user-sent(r)j = true 

2. { m :  (m, j)  e inbox(r)i} = outbox(i, r)j 

This assertion in turn needs some auxiliary invariants for its proof, for example, 

A s s e r t i o n  16.3.2 In all reachable states of the SafeSynch system, 
the following holds. If  ok-seen(j, r) - true, then 3 

1. user-sent(r)j = true 

2. { m :  (m, j)  e inbox(r)i} = outbox(i, r)j for all i e nbrsj 

Further details are left to the reader. ff] 

Now Lemmas 16.1 and 16.5 imply 

L e m m a  16.6 If  c~ is any fair execution of the SafeSynch system, then there is 
a fair execution c~ I of the GlobSynch system that is indistinguishable from ct to 
each Ui. 

It still remains to implement the SafeSynch automaton with a distributed 
algorithm. We describe several ways of doing this in the following section. It 
is also necessary to implement the Di,j channels using the actual send/receive 
channels Ci,j. This is done by "multiplexing" the C~,j so that they implement not 
only the channels of the distributed implementation of SafeSynch but the Di,j's 
as well. The multiplexing strategy is described in Exercise 14.6. 

3Recall that ok-seen is part of the state of the SafeSynch component. 
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16.4 Safe Synchronizer Implementations 

In this section, we describe several implementations of SafeSynch by distributed 
algorithms. There are two main implementations, Alpha and Beta, plus a way 
of combining them to obtain a hybrid implementation Gamma. 

Recall that  the job of SafeSynch is, for each round and each i, to wait until 
it has received oks from all of the neighbors of FrontEnd4 and from FrontEndi 
itself, and then to perform goi. 

16.4.1 Synchronizer Alpha 

The most straightforward implementation of SafeSynch is the Alpha synchro- 
nizer, which works as follows. 

Alpha synchronizer: 

When any process Alphai receives an oki for any round r, it sends this 
information to all of its neighbors. When Alpha~ has heard that  all its 
neighbors have received oks for round r and Alph~ itself has also received 
an ok for round r, then Alphai outputs  goi. 

We leave to the reader the task of writing the precondition-effect code for 
each Alpho4; the structure of the code is somewhat similar to that  of SimpleSynchi. 
Correctness--both  safety and liveness--is easy to show, using simulation tech- 
niques to relate the Alpha system (Alpho4, FrontEnd, Di,j, and user automata)  
to the SafeSynch system. 4 We obtain 

Theorem 16.7 If (~ is any fair execution of the Alpha system, then there is 
a fair execution (~ of the GlobSynch system that is indistinguishable from (~ to 
each Ui. 

C o m p l e x i t y  ana lys i s .  We analyze the complexity of the entire Alpha system. 
The communication complexity depends on the number of messages sent by the 
underlying synchronous algorithm: if the synchronous algorithm sends a total 
of m non-null messages in r rounds, then the Alpha system sends a total of at 
most 2m + 2rlE I messages to simulate r rounds. The 2m is for the msgs and ack 
messages sent by the FrontEnds, while the 2tiE t term is for the messages sent 

4This s t ra tegy  may not seem very modular ,  since the  same user, FrontEnd and Di,j au- 
t o m a t a  appear  in bo th  systems.  However,  they  can be handled  in a tr ivial  way, let t ing the  
s imulat ion relat ion leave t h e m  unchanged.  An a l te rna t ive  approach  would involve formula t ing  
a more  abs t rac t  (and more general)  envi ronment  for the SafeSynch au toma ton .  
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within Alpha itself. This term accounts for a message in each direction on each 
edge at each round. 

If c, t~, and d are defined as for the SimpleSynch algorithm, then the total 
amount of time required to simulate r rounds is at most r(c + 3d + O (t~)). (This 
does take pileups in the underlying channels into account.) Thus, both the 
communication complexity and the time complexity of Alpha are worse than 
the corresponding costs for SimpleSynch. 

Like SimpleSynch, Alpha has a reasonable time complexity but high commu- 
nication complexity. In the following subsection, we give an alternative imple- 
mentat ion of SafeSynch that  has better  communication complexity but at the 
cost of additional time complexity. 

1 6 . 4 . 2  S y n c h r o n i z e r  B e t a  

Synchronizer Beta assumes the existence of a rooted spanning tree of the entire 
graph G, preferably one of small height. 

B e t a  synchronizer: 
At round r, all processes convergccast all their ok information to the root, 
along the edges of the spanning tree. After the root has collected this 
information from all the processes, it broadcasts permission to perform go 
outputs,  also along the edges of the spanning tree. 

Again, we leave to the reader the task of writing the precondition-effect code 
for each process Betai of Beta. The ideas are similar to those used for broadcast 
and convergecast in Section 15.3. Again, correctness is easy to show, using 
simulation techniques to relate the Beta system to the SafeSynch system. 

T h e o r e m  16.8 If c~ is any fair execution of the Beta system (Betai, FrontEnd, 
Di,j, and user automata), then there is a fair execution c~ ~ of the GlobSynch 
system that is indistinguishable from c~ to each Ui. 

C o m p l e x i t y  ana lys i s .  If the underlying synchronous algorithm sends a total 
of rn non-null messages in r rounds, then the Beta system sends a total of at 
most 2m + 2rn messages to simulate r rounds. The 2m is as for Alpha, while 
the 2rn is for the broadcast and convergecast messages. If h is an upper bound 
on the height of the spanning tree, then the total amount of time to simulate r 
rounds is at most r(c + 2d + 0 (e) + 2h(d + 0 (t~))), or r(c + 0 (hd) + 0 (he)). 
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F i g u r e  16.4: Network graph G. 

1 6 . 4 . 3  S y n c h r o n i z e r  G a m m a  

By combining the ideas of synchronizers Alpha and Beta, we can get a hybrid 
algorithm, Gamma, that  (depending on the structure of the graph G) can si- 
multaneously do as well as Alpha in terms of time and as well as Beta in terms 
of communication. 

Algorithm Gamma assumes a spanning forest of G, where each tree in the 
forest is rooted. We call each tree a cluster;, for each cluster C, we write nodes(C) 
for its set of nodes. (Constructing a suitable spanning forest is itself an inter- 
esting problem, but we do not describe how to do this here.) Gamma uses a 
version of Beta to synchronize the nodes within each cluster and a version of 
Alpha to synchronize among clusters. 

In the extreme case where each cluster consists of a single node, Gamma is 
the same as Alpha, whereas in the case where there is only a single cluster con- 
taining all the nodes, Gamma is the same as Beta. For intermediate cases, both 
the communication and time complexity measures of Gamma are intermediate 
between those of Alpha and Beta. 

Example 16.4.1 Cluster decomposition 

Consider a network graph G consisting of p complete graphs, each 
with k nodes. The complete graphs are arranged in a line, with all 
the nodes of adjacent pairs of complete graphs connected to each 
other. See Figure 16.4 for the case where p = 5 and k = 4. (In the 
diagram, some edges arc not visible because they are "under" other 
edges.) Now consider the cluster decomposition for G depicted in 
Figure 16.5. 

F i g u r e  16.5: Cluster decomposition for G. 

Each cluster C of this decomposition is a tree for one of the k- 
node complete graphs in G. The root for each cluster tree is the node 
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at the top. Algorithm Gamma uses a version of Beta to synchronize 

within each of the k-node trees, and a version of Alpha to synchronize 
among the p trees. 

Since Gamma is a combination of two algorithms, we begin with a high- 
level decomposition of SafeSynch into two kinds of automata,  which we call 
ClusterSynch and ForestSynch automata. There is a ClusterSynchk automaton 
for each cluster Ck, and a single ForestSynch automaton. See Figure 16.6 for the 
architecture. 

~ . . .  

/ '  

Cluster �9 �9 . 

ForestSynch 

F i g u r e  16.6" Decomposition of SafeSynch into ClusterSynch and ForestSynch au- 
tomata. 

For each cluster Ck and any round r, the automaton ClusterSynchk has two 
jobs. First, after it receives oki inputs for all nodes i in Ck, it outputs a single 
cluster-okk to ForestSynch. And second (in a completely independent task), after 
a cluster-gok input arrives from ForestSynch, ClusterSynchk produces a go~ for 
each node i in Ck. This combination of jobs is a lot like the activities of Beta. 
Written as an abstract  automaton: 
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C l u s t e r S y n c h k  a u t o m a t o n :  

Signature: 

Input: 
ok(r)i, r e N + , i e nodes (Ck) 
cluster-go(r)k, r C N + 

Output: 
go(~)~, ~ ~ N + , i c n o d ~  (c~)  
cluster-ok(r)k, r E N + 

States: 
ok-seen, go-given, each an array indexed by nodes(Ck) • N + of Booleans, initially all false 
cluster-ok-given, cluster-go-seen, each a vector indexed by N + of Booleans, initially all false 

Transitions: 
ok( ~ ) ~ c lu~t~-go(  ~ ) 

Effect: Effect: 
o k - ~ ( i ,  ~) := t ~  c l ~ t ~ - g o - ~ ( ~ )  : =  t ~  

cluster-ok(r)k 
Precondition: 

for all i E nodes(Ck ) 
ok-seen(i, r) = true 

cluster-ok-given(r) = false 
Effect: 

cluster-ok-given(r) := true 

Precondition: 
cluster-go-seen(r) = true 
go-given(i, r) -- false 

Effect: 
go-given(i,r) := true 

Tasks: 
for every r: 

for every i, r: 

The Fores tSynch  a u t o m a t o n  is (up to renaming  of external  actions) a safe 

synchronizer  for the cluster  graph G' of G, where the nodes of G' cor respond  to 

the clusters of G, and there is an edge in G' f rom Ck to C~ exact ly  if there is an 

edge in G from some node in Ck to some  node in C~. Define the ClusterForest  

sys tem to consist  of the Clus terSynch,  Fores tSynch,  FrontEnd,  Di, j ,  and user 

au tomata .  

L e m m a  16 .9  I f  c~ is any fa i r  execut ion of  the ClusterForest  sys tem,  then there 

is a fa i r  execut ion c~' of  the S a f eS yn ch  sy s t em  that  is indis t inguishable  f r o m  c~ 

to each Ui. 
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P r o o f  Ske tch .  A simulation proof can be used, but, for variety, we sketch an 
operational argument, based on executions. The main thing that needs to be 
shown is that if go(r)~ occurs, then previously ok(r)j must have occurred, for 
each j E nbrsi U {i}. There are two cases. 

1. i and j are in the same cluster Ck (possibly with i = j) .  
Then the code for ClusterSynchk implies that prior to the go(r)i, there 
must be a cluster-go(r)k. Then the definition of ForestSynch implies that 
prior to the cluster-go(r)k, there must be a cluster-ok(r)k. But this in turn 
implies that there is a previous ok(r)j, which suffices. 

2. i is in cluster Ck, and j is in cluster Ce, k r ~. 
Since j E nbrsi, it must be that the two clusters Ck and Ce are neighbors 
in the cluster graph G ~ (by definition of neighboring clusters in the cluster 
graph). As before, prior to the go(r)~, there must be a cluster-go(r)k. Then 
the definition of ForestSynch implies that, prior to this, there must be a 
cluster-oke. This implies as before that there is a previous ok(r)j. 

KI 

To finish the description of synchronizer Gamma, we describe how to imple- 
ment the ForestSynch and ClusterSynch automata with distributed algorithms. 
ClusterSynchk can be implemented using a variant of synchronizer Beta on the 
rooted tree Ck. That is, a convergecast is first carried out, collecting the oks 
at the root, which then performs a cluster-ok output. The root also receives 
cluster-go, then broadcasts to all the nodes in nodes(Ck) to tell them to per- 
form go. (These two activities could actually be formalized using two separate 
automata.) 

Any implementation of SafeSynch may, with suitable renaming, be used to 
implement ForestSynch; we choose synchronizer Alpha. A technical complication 
is that we cannot run Alpha directly on the given distributed network, because 
Alpha is supposed to run on processes that correspond to the entities being syn- 
chronized (which in this case are whole clusters), using channels that correspond 
to edges between neighboring entities (here, clusters). The given model only 
allows processes and channels corresponding to the nodes and edges of G. How- 
ever, it is not hard to implement the needed processes and channels: we run 
the process for any cluster at the cluster's root node and simulate direct com- 
munication between processes for neighboring clusters using a designated path 
between the root nodes in the two clusters. Such a path must exist, because the 
clusters are connected and there exist nodes in the two clusters that are neigh- 
bors in G. Again, some preprocessing is needed to determine these paths, but 
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we ignore this issue here. The cluster-ok and cluster-go actions are implemented 
as internal actions of the processes at the root nodes of the clusters. 

Example 16.4.2 Implementing Alpha 
Consider the network graph G and cluster decomposition of Exam- 
ple 16.4.1. For that graph and decomposition, we run the Alpha 
process for each cluster at the root (the top node, in Figure 16.5) of 
that cluster's tree. Communication between the Alpha processes for 
neighboring clusters could be simulated using the direct edge in the 
underlying graph G (in Figure 16.4) between the roots of the clusters. 

In the complete implementation Gamma, the process associated with each 
node i of G is, formally, a composition of three processes: FrontEndi, process 
i in the ClusterSynch implementation, and process i in the ForestSynch imple- 
mentation. Each channel Ci,j is used to implement three channels: Di,j and 
the channels from i to j in the ClusterSynch and ForestSynch implementations. 
Defining the Gamma system to be the entire implementation, we can use simu- 
lation techniques to prove the following. 

Theorem 16.10 If (~ is any fair execution of the Gamma system, then there is 
a fair execution c~ ~ of the GlobSynch system that is indistinguishable from c~ to 
each Ui. 

O r t h o g o n a l  d e c o m p o s i t i o n s .  You may find it interesting to observe that 
the complete Gamma system has two natural decompositions. One is logical, in 
terms of the functions (data communication, cluster synchronization, and forest 
synchronization) being performed. The other is spatial, in terms of processes and 
channels in the complete implementation. These two decompositions correspond 
to different orders of composing the primitive I /O automata that constitute the 
algorithm. Since the composition operation is associative, we end up with the 
same algorithm either way we look at it. 

Complexity ana lys i s .  Let h be the maximum height of any cluster tree and 
let e ~ be the total number of edges on all the paths used for communication 
among the roots. If the underlying synchronous algorithm sends a total of m 
non-null messages in r rounds, then the Gamma system sends a total of at most 
2m + 0 (r(n + e')) messages. The 0 (rn) is for the messages sent within all the 
cluster trees in the ClusterSynch implementation. The 0 (re ~) is for the messages 
sent between roots in the ForestSynch implementation. The time required to 
simulate r rounds is 0 (r(c + 0 (hd) + 0 (h())). If n + e' << IEI, then Gamma 
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uses fewer messages than Alpha, and if the maximum height of a cluster spanning 
tree is much less than the height of a spanning tree of the entire network, then 
Gamma takes less time than Beta. 

E x a m p l e  16.4.3 C o m p a r a t i v e  complex i ty  of Alpha, Beta, and  Gamma 

Again consider the network graph G and cluster decomposition of 
Example 16.4.1. For that graph and decomposition, we compare the 
costs of the three safe synchronizer implementations we have given. 
Costs are per round, and we neglect the costs incurred by the users, 
FrontEnds, and Di,j's, which are the same for all three algorithms; 
we also neglect local processing time. For Beta, we assume that the 
tree used has the minimum possible height, approximately p. 

Messages Time 

Alpha: 0 (pk 2) 0 (d) 

Beta: 0 (pk) 0 (pd) 

Gamma: O(pk) O(d) 

If p and k are approximately equal, then Gamma represents an 
order-of-magnitude improvement over each of Alpha and Beta. 

16.5 Applications 

The synchronizer algorithms given in the previous sections allow a fault-free 
asynchronous network to implement any non-fault-tolerant synchronous network 
algorithm. (The synchronizers do not work for fault-tolerant algorithms such as 
those in Chapter 6.) In this section, we give a few examples of asynchronous 
algorithms constructed using synchronizers. 

Recall that we are considering only undirected networks in this chapter. In 
all the analyses in this section, we neglect local process step times. 

16.5.1 L e a d e r  E l e c t i o n  

Using synchronizers, synchronous ring leader-election algorithms such as LCR 
and HS can be run in an asynchronous ring. But this is not interesting, because 
these algorithms already work in an asynchronous network, without the overhead 
introduced by synchronizers. 



554 16. SYNCHRONIZERS 

In an asynchronous network based on an arbitrary undirected graph with a 
known diameter, diarn, a synchronizer can be used to run the FloodMax syn- 
chronous leader-election algorithm. Using synchronizer Alpha, the resulting al- 
gorithm sends 0 (IE]. diam) messages and takes 0 (diam. d) time to simulate 
the necessary diarn synchronous rounds. 

A synchronizer can also be used to run the OptFloodMax synchronous leader- 
election algorithm, which is like FloodMax except that nodes only send messages 
when they have new information to send. If synchronizer Alpha is used, the ad- 
vantage of the optimization is lost, since the synchronizer itself sends messages 
on all channels at all rounds. However, if synchronizer Beta is used, then com- 
munication complexity is kept reasonably low (at the cost of additional time). 

16 .5 .2  B r e a d t h - F i r s t  S e a r c h  

Recall that the SynchBFS algorithm in Section 4.2 requires O (IE[) messages 
and O (diam) rounds in a network with diameter diam; the processes are not 
required to know diam. Using synchronizers, the SynchBFS algorithm can be run 
in an asynchronous network. With synchronizer Alpha, the resulting algorithm 
sends O ([El. diam) messages and requires O (diam. d) time to simulate the diam 
rounds needed for all processes to output their parent information. With Beta 
(using a tree of height at most diam), the algorithm sends only 0 (tEI+ n. diam) 

and takes O (diam 2. d) time, which is the same as the 
/ \ 

messages LayeredBFS 
\ / 

algorithm given in Section 15.4. Some improvement in the time complexity is 
possible using Gamma, at the expense of extra communication complexity. 

There is a technicality: it is not obvious how the BFS algorithms obtained 
using the synchronizers are supposed to terminate. As described, the implemen- 
tation continues to simulate rounds forever, thus generating an infinite number 
of messages. (If the processes knew diam, then they could simply stop after sim- 
ulating diam rounds, but we have assumed here that the processes do not know 
diam.) An ad hoc solution to this problem is to have each user automaton that 
determines its parent perform only one additional round to notify its neighbors 
and then halt. 

16 .5 .3  S h o r t e s t  P a t h s  

For the problem of finding shortest paths from a designated source, the use 
of a synchronizer is a big win. Recall that the AsynchBellmanFord algorithm 
has both message and time complexities that are exponential in the number 
of nodes. However, the synchronous BellmanFord algorithm has communication 
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complexity "only" O (nlEI) and round complexity only O (n), for a network with 
known size n. We can run the synchronous BellrnanFord algorithm using, say, 
synchronizer Alpha, obtaining an algorithm that sends O ( IEI) messages and 
uses O (nd) time to simulate the required n rounds. Synchronizer SimpleSynch 
would work just as well. 

16.5.4 Broadcast  and Acknowledgment  

It is possible to design a synchronous algorithm that allows a process to broadcast 
a message to all other processes and receive an acknowledgment in return and 
that uses O (IE]) messages and O (diam) rounds (see Exercise 4.8). We can 
run this algorithm using synchronizer Alpha, thus obtaining an asynchronous 
algorithm for broadcast and acknowledgment that uses O (IEI" diam) messages 
and O (diam. d) time. Compare this with the complexity of AsynchBcastAck in 
Section 15.3. 

16.5.5 Maximal  Independent Set 

Synchronizers can also be used with randomized synchronous algorithms such 
as LubyMIS. We leave the details for you to work out. 

1 6 . 6  L o w e r  B o u n d  o n  T i m e  

An informal paraphrase of the results about synchronizers is as follows: 

Any (non-fault-tolerant) synchronous algorithm can be transformed 
into a corresponding asynchronous algorithm without too great an 
increase in costs. 

In particular, by using synchronizer Alpha or SimpleSynch, it is possible not to 
increase the time cost at all. In this section, we show a limitation on the synchro- 
nizer approach, by giving a lower bound on the time required for an asynchronous 
network algorithm to solve a particular problem. Since there is a very fast syn- 
chronous algorithm to solve the same problem, this means (informally speaking) 
that 

Not every synchronous algorithm can be transformed to a corre- 
sponding asynchronous algorithm with a similar time complexity. 

These two informal paraphrases appear to be contradictory. It turns out that the 
reason for the difference is the locality of the correctness condition guaranteed 
by the synchronizers. We return to this point after the lower bound proof. 
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The result of this section is the only lower bound in this book for the time 
complexity of a problem in an asynchronous distributed system. 

The problem we consider is called the "session problem." Let G - (If, E) 
be a graph, with diam its diameter as usual. The system's interface with its 
environment includes flashi output actions, one for each node i of G; flash4 is an 
output of the process automaton at node i. We treat the flash actions as abstract 
actions, but you might want to think of them as signals that the corresponding 
processes have completed some computation task. 

Define a session to be any sequence of flash events containing at least one 
flashi for every i. For any nonnegative integer k, the k-session problem requires 
simply that the algorithm should perform at least k disjoint sessions, in any fair 
execution. 

E x a m p l e  16.6.1 M o t i v a t i o n  for the  k - s e s s i o n  p r o b l e m  

The k-session problem was originally inspired by a matrix computa- 
tion problem for the asynchronous shared memory model. Consider 
a collection of asynchronous parallel processes performing a coor- 
dinated calculation of the transitive closure of an rn x rn Boolean 
matrix. The matrix starts out in shared memory, and all the partial 
results and final outputs are written to shared memory. 

There is a proces s  Pi,j,k for every i, j, k, 1 <_ i, j, k <_ m. Each 
process Pi,j,k is responsible simply for writing 1 in location (i, j) 
of the output matrix in case it ever sees ls in both locations (i, k) 
and (k, j) .  Thus, each goes through a simple loop, reading locations 
(i, k ) a n d  (k, j),  then (possibly)wri t ing (i, j). Each individual read 
or write operation on shared memory is represented abstractly as a 

flash output. 
Basic properties of matrices then imply that the calculation is 

performed correctly if there is "enough" interleaving among the pro- 
cess steps. Specifically, O (log n) sessions suffice. It does not matter 
if the processes do excess reading and wri t ing--as  long as enough 
interleaving occurs, the correct output  will be produced. 

A simpler version of the problem for which a similar lower bound could be 
proved is one in which each process is required to perform ezactly one flash in 
each session. The version of the problem that we use is less constrained, so it 
leads to a stronger lower bound result. 

It is trivial to solve the k-session problem in the synchronous network setting. 
All we need is for each process i to perform a single flash4 output at each of k 
rounds. No communication between processes is required. The number of rounds 
needed is exactly k. 
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In the asynchronous network setting, we model the processes as I / O  au tomata  

as usual, connected by reliable F IFO send/receive channels. Wi thout  loss of 

generality, we assume that  the channels are universal. We associate times with 

events as usual, with t~ as an upper bound for the time of each process task and d 

as an upper bound for the delivery time of the oldest message in each channel. We 

assume that  g << d and in fact will ignore t~ in our result and proof. Recall from 

Section 8.6 that  a fair execution with times associated with all events, subject to 

the given restrictions,  is called a timed execution. 
Next, we define the time measure T(A) for a lgor i thm A. For each t imed 

execution c~ of A, define T(c~) to be the supremum of the times at which a flash 
event occurs in c~. (We use a supremum instead of a max imum here because 

there could be infinitely many such events.) Then define 

T(A) = sup{T(c~) : c~ is a t imed execution of A}. 

That  is, T(A) is the supremum of the times at which a flash occurs in any t imed 

execution of A. 

We can now state and prove the lower bound. 

T h e o r e m  16 .11  Suppose A is an asynchronous network algorithm that solves 
the k-session problem on graph G. Then T(A) > ( k -  1)diam. d. 

In order to compare this result with the simple upper  bound of k rounds for 

the synchronous setting, it is probably reasonable to charge time d, the maxi- 

mum message-delivery time, for each round. Then the discrepancy between the 

inherent lower bound of Theorem 16.11 and the small upper bound of kd is ap- 

proximately a factor of diam. This proves that  the inherent overhead due to 

asynchrony, for the session problem, is a factor of diam. 

P r o o f .  We assume without  loss of generality that  all actions of A are external.  

We proceed by contradiction.  

Suppose that  there exists an a lgori thm A with T(A) < ( k -  1) .  diam. d. 
Define a t imed execution of A to be slow if all the message deliveries take the 

max imum time d. Let c~ be any slow t imed execution of A; note that  c~ with its 

t ime information suppressed must  be a fair execution of A. Since A is correct, c~ 

must  contain k sessions. By assumption,  no flash event occurs in c~ at or after 
t ime ( k -  1 ) - d i a m .  d. So we can write c~ as a concatenation c~ ~. c~", where the 

time of the last event in c~ ~ is strictly less than ( k -  1). diam. d and where there 

are no flash events in c~". Moreover, we can decompose c~ ~ into k -  1 smaller 

pieces, as a concatenat ion ct  1 . C t  2 . . . . -  Ctk_l, where in each of the fragments c~, 

1 _< r _< k -  1, the difference between the times associated with the first and last 

events is strictly less than diam.d. 
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We now construct  a fair t race fl of A; fl will be an ordinary unt imed fair 
t r ace - -w i thou t  times associated with its events. It is constructed as a concate- 

nation of the form fl - fll'fl2" . . ' i lk 1 where each fl~ is obtained by reordering 
the actions in c~ (and removing the times) and fl" is just  the sequence of actions 
in c~" (with the times removed).  We will show that fl contains fewer than k 
sessions, which will contradict  the correctness of A. 

All the reordering that  we do in construct ing fl will preserve the impor tan t  
dependencies among actions in c~, in part icular,  the dependency of a receive 
event on the corresponding send event and the (possible) dependency of any 
event of any process i on any prior event of the same process. We use the 

notat ion --~t~a~e(~), as defined in Section 14.1.4, for the irreflexive part ial  order 
that  describes these dependencies.  Theorem 14.1 will be used to show that  fl is 
in fact a fair t race of A. 

The following claim describes the propert ies we require of our reordered se- 

quences fir. Fix j0 and j l  to be any two nodes of G whose distance is equal to 
diam, and define 

j0, i f r i s e v e n  
i r -  j l ,  i f r i s o d d  

C l a i m  16 .12  For every r, 1 < r < k -  1, there exists a sequence fir of actions 
of A such that the following properties hold: 

1. fir is obtained f rom the sequence of actions in C~r by reordering, preserving 

the -+ trace(c~) order. 

2. fl~ can be writ ten as a concatenation ~5~,  where "y~ contains no event of 
process it-1 and 5~ contains no event of process i~. 

We first show how to complete the proof of the theorem using Claim 16.12. 
Since the only reordering of events is for individual fl~ sequences and since that  

reordering respects the -+t~acr dependencies,  Theorem 14.1 implies that  fl is 
a fair t race of A. But we can show that  fl contains at most  k -  1 sessions" No 
session can be entirely contained within 71, since "yl contains no event of i0. 
Likewise, no session can be entirely contained within any segment of the form 
5~-17~, since this sequence contains no event of process ir-1. This implies that  
each session must  contain events on both sides of some 7~-5~ boundary. But 
there are only k -  1 such boundaries,  hence at most  k -  1 sessions. Thus,  fl 
violates the correctness guarantees  of A, which yields a contradiction.  

It remains to construct  the sequences fl~ required for Claim 16.12. So fix any 
a rb i t ra ry  r, 1 _< r _< k -  1. We consider the following cases: 

1. C~r contains no event of ir-1. 
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Then let/3~ be the sequence of actions in a~, without any reordering. Tak- 

ing % =/3~ and 5~ = A (the empty sequence) gives the needed properties. 

2. c~ contains no event of i~. 

Then let /3~ be the sequence of actions in c~, without any reordering. 
Taking ~/~ = ~ and 5~ = ~ suffices. 

3. c~r contains at least one event of ir-1 and at least one event of it. 

Then let 7r be the first event of i,_1 in c~ and let r be the last event of i~ in 

c~. We claim that we cannot have 7r --~t,'ac~(~) r that is, r cannot depend 
on 7r. This is so because c~ is a slow execution, so the time for a message to 

propagate from process it-1 to process i~ in c~ is at least diam.d; however, 
the time between the first and last events in c~ is strictly less than diam.d. 

Then we claim (and leave as an exercise to show) that it is possible to 
reorder the events of c~ so that r precedes 7r, while still preserving the 
--+t~ac~(c~) partial order. Let ~ be the resulting sequence of events, ~ the 
prefix of ~ ending with r and 5~ the rest o f /~ .  These sequences have all 
the needed properties. 

D 

We emphasize again that the t race/3  that we construct in the proof of The- 
orem 16.11 does not have times associated with its events. The contradiction 
arises because/3 does not contain enough sessions, not because of any timing 
properties of ~. Timing information is used in the proof to deduce that certain 

events cannot depend on others, in the slow timed execution c~. 

Loca l  n o t i o n  of  c o r r e c t n e s s .  Theorem 16.11 looks almost like a contradic- 
tion to some of the synchronizer resul ts- - those that give transformations from 
synchronous to asynchronous algorithms with only constant time overhead. The 
difference is that the synchronizers only guarantee a "local" notion of correctness. 
Rather than preserving the behavior of the collection of users (i.e., synchronous 
processes) as a whole, they only preserve the behavior of each user separately, 
permitt ing reordering of the events at different users. 

For many distr ibuted applications, the order of events at different users does 
not matter; for instance, typical data processing and financial applications can 

generally withstand out-of-order processing of the transactions of different users. 
However, for applications in which there is significant communication among the 
users outside of the distr ibuted system, the order of events at different users may 
be important .  
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16.7 Bibl iographic  N o t e s  

Awerbuch [29] introduced the general notion of a synchronizer, as well as the 
decomposition of the synchronizer problem into a data communication part and 
a safe synchronizer. Awerbuch's paper also defines the Alpha, Beta and Gamma 
synchronizers and contains algorithms for obtaining good cluster decompositions 
for Gamma. Applications of synchronizers to obtain efficient asynchronous al- 
gorithms for breadth-first search and maximum flow are presented in [29, 30]. 
Further work on efficient cluster decompositions appears in [35, 36, 32]. The 
formal presentation of synchronizers using I /O automata is due to Devarajan 
[89], following an earlier development by Fekete, Lynch, and Shrira [109]. 

The lower bound proof is due to Arjomandi, Fischer, and Lynch [14], who 
presented the result for a shared memory model. The presentation in this chapter 
uses some simplifications by Attiya and Mavronicolas [17]. Attiya and Mavron- 
icolas [17] also extended the lower bound result to the setting of partially syn- 
chronous systems. Raynal has written a book entirely about synchronizers [250]. 

16.8 Exerc i ses  

16.1. State and prove a close correspondence between the synchronous model of 
Chapter 2 and the asynchronous model consisting of user automata Ui and 
GlobSynch that is given in Section 16.1. 

16.2. Fill in the details of the proof of Lemma 16.1. Specifically, Claim 16.2 
needs a proof, as does the claim that it is possible to reorder the events of 

to obtain 7 without violating the --+Z ordering. 

16.3. Let L and G denote the LocSynch and GlobSynch systems, respectively, 
modified slightly so that the external actions are exactly all the actions of 
the user automata. (That is, the internal actions of the users are reclassified 
as outputs.) Prove, by exhibiting a counterexample execution, that it is 
not the case that fairtraces(L) C_ fairtraces(G). 

16.4. Fill in all the details of the proof and complexity analysis for the Simple- 
Synch system. In particular, 

(a) State and prove all needed invariants. 

(b) Prove that f is a simulation relation. 

(c) Carry out the fairness argument carefully in terms of Theorem 8.13. 
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(d) Give a careful proof of the time complexity claim. (Don't  forget that 
the assumed bound of d only refers to the delivery of the oldest mes- 
sage currently in any channel.) 

16.5. Let S and G denote the SimpleSynch and GlobSynch systems, respectively, 
modified so that the external actions are exactly all the actions of the 
user automata. (That is, the internal actions of the users are reclassified as 
outputs, and the send and receive actions are "hidden"-- tha t  is, reclassified 
as internal.) 

(a) Prove, by exhibiting a counterexample execution, that it is not the 
case that fairtraces (S) C_ fairtraces (G). 

(b) Modify S to obtain a new system S ~, also composed of user automata 
plus a distributed algorithm, such that fairtraces(S') C_ fairtraces(G). 
Analyze its complexity. 

16.6. Fill in the details in the proof of Lemma 16.5. 

16.7. Write precondition-effect code for the Alphai automaton and prove its cor- 
rectness theorem, Theorem 16.7. Use a simulation relation from the Alpha 
system to the SafeSynch system. 

16.8. Write precondition-effect code for the Betai automaton and prove its cor- 
rectness theorem, Theorem 16.8. Use a simulation relation from the Beta 
system to the SafeSynch system. 

16.9. True or false? 
Let B and G denote the Beta and GlobSynch systems, respectively, again 
modified so that the actions that are classified as external are exactly all 
the actions of the user automata. Then fairtraces (B) C fairtraces (G). 

Prove your answer. 

16.10. Give precondition-effect code for the node processes in the implementations 
of the ClusterSynch and ForestSynch automata, in the Gamma synchro- 
nizer. Prove Theorem 16.10. 

16.11. Give a distributed algorithm that operates in an arbitrary network graph 
G and produces a minimum-height rooted spanning tree for the use of the 
Beta synchronizer. You may assume the nodes have UIDs, but there is no 
distinguished node. How efficient an algorithm can you design? 
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16.12. Give a distributed algorithm that operates in an arbitrary network graph 
G and obtains a "good" spanning forest for the use of the Gamma synchro- 
nizer. Also, produce the distinguished paths for communication between 
the roots of neighboring clusters. You may assume the nodes have UIDs, 
but there is no distinguished node. Your algorithm should yield trees of 
small height, as well as short communication paths. 

16.13. Consider a square grid graph G, consisting of x/~ x ~ nodes. Consider 
a partition Pk into k 2 equal-sized clusters, obtained by dividing each side 
into k equal intervals. In terms of n and k, what are the communication 
and time complexity bounds for synchronizer Gamma based on partition 
Pk? (You may assume the best possible spanning trees and communication 
paths for the given decomposition.) 

16.14. 

16.15. 

A programmer at the Flaky Computer Corporation who has substantial 
experience with fault-tolerant algorithms has just had a brilliant idea for a 
synchronizer to be used in fault-tolerant asynchronous network program- 
ming. He admits that his idea only works for a completely connected 
network G but still thinks it is a big win. 

His synchronizer is like GlobSynch, except that at each round r, it waits to 
obtain user-sends for round r from at least n - f  of the processes (including 
i), rather than from all n processes, before performing a user-receivei event 
for round r. 

Show his superiors that his algorithm is incorrect before they install it in 
a fault-tolerant aircraft-control system. (Hint: You can consider a correct 
synchronous consensus algorithm such as FloodSet in conjunction with the 
proposed synchronizer. Produce an incorrect execution of the combined 
algorithm.) 

Prove that the termination strategy described for SynchBFS with a syn- 
chronizer works correctly. 

16.16. State and prove a result giving the important properties guaranteed by the 
asynchronous algorithm obtained by running LubyMIS with your favorite 
synchronizer. 

16.17. Prove that O (log n) sessions suffice to solve the Boolean matrix, transitive 
closure problem described in Example 16.6.1. What is the best constant 
you can prove? 

16.18. Prove the missing claim in the proof of Theorem 16.11, that is, that it 
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is possible to reorder the events of c~r so that r precedes 7r while still 

preserving ~t~a~(~). 

16.19. Obtain the best upper bound you can for the time complexity of an asyn- 
chronous solution to the k-session problem. Generalize your algorithm 
to the asynchronous implementation of arbitrary synchronous algorithms. 
What correctness conditions are guaranteed? 

16.20. Redo Exercise 15.40, this time using some of the algorithm decomposition 
ideas presented in this chapter. Try to use all the modularity you can. 
For example, you should give abstract automata to represent the behavior 
required of the MST algorithm and of the algorithm that uses the MST to 
elect a leader. 
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Chapter 17 

S h a r e d  M e m o r y  
N e t w o r k s  

versus  

In the previous chapter, we described synchronizers, which comprise one method 
for simplifying the programming of asynchronous networks. This method enables 
(non-fault-tolerant) synchronous network algorithms such as those described in 
Chapter 4 to be used in asynchronous networks. In this chapter, we describe 
a second strategy for simplifying the programming of asynchronous networks: 
using them to simulate asynchronous shared memory systems. This enables 
asynchronous shared memory algorithms such as those described in Chapters 
10, 11, and 13 to be used in asynchronous networks. Many other asynchronous 
shared memory algorithms can also be adapted to run in asynchronous networks, 
including practical algorithms for scientific programming and financial databases. 
The premise underlying this strategy is that the asynchronous shared memory 
model is easier to program than the asynchronous network model. 

More generally, this chapter deals with relationships between the asynchro- 
nous shared memory model and the asynchronous network model. It turns out 
that there are strong transformation results in both directions, some of which 
preserve even some fault-tolerance properties. This leads to the conclusion that 
(except for differences in efficiency) the two models are pretty much the same. 

There are other consequences of these transformation results besides just 
the provision of a simpler programming model for asynchronous networks. For 
example, a fault-tolerant transformation from the network model to the shared 
memory model implies that certain impossibility results for the asynchronous 
shared memory model yield corresponding impossibility results for the asyn- 
chronous network model. 

A different kind of transformation from the asynchronous shared memory 
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model to the asynchronous network model appears  in Section 18.3.3. That  trans- 

formation rests on the establ ishment  of a notion of logical t ime in an asynchro- 

nous network. 

17.1 Transformations  from the Shared M e m o r y  
Mode l  to the Network  Mode l  

In this section, we describe several ways of t ransforming asynchronous shared 

memory  systems into asynchronous send/receive network systems. Subsection 

17.1.1 gives the correctness conditions to be satisfied by the t ransformations.  

Subsection 17.1.2 contains non-faul t- tolerant  strategies, while Subsection 17.1.3 

contains fault- tolerant  strategies. The only types of failures we consider here are 

process stopping failures. 

1 7 . 1 . 1  The  P r o b l e m  

We star t  with a shared memory  system A in the model of Chapter  9. As usual, 

we assume that  A interacts with its environment  using a set of n ports,  numbered 

1 , . . .  , n; on port  i, A interacts with user au tomaton  Ui. As for the user au tomata  

in Chapters  10-13, we assume that  the external actions of each Ui are exactly 

those actions by which it interacts with A. In this chapter,  we permit  each process 

i of A to have any number of tasks. Because some of our t ransformat ions  preserve 

fault-tolerance properties,  we also include stopi input actions, as discussed in 

Section 9.6, and assume that  each stopi event permanent ly  disables all the tasks 

of process i. 

It turns  out that we need a technical restr ict ion on A in order for our trans- 

formations to work correctly. This technical restr ict ion is the same one we used 

in Section 13.1.4. That  is, consider A in combination with any collection of user 

automata.  We assume that  for each port  i, there is a function turv4 that,  for any 

finite execution c~ of the combined system, yields either the value sys tem or user. 
This is supposed to indicate whose turn  it is to take the next step, after c~. We 

require that  if turni(c~) - sys tem,  then Ui has no output  step enabled in its state 

after c~, while if turni(c~) - user, then process i of A has no output  or internal 

s t e p - - t h a t  is, no locally controlled s t ep - -enab led  in its state after c~. Thus, we 

assume the same shared memory  model as we did in Section 13.1.4. 

The general problem (including a fault-tolerance requirement for an a rb i t ra ry  

set I of ports)  is to design an asynchronous send/receive network system B with 

processes Pi, 1 <_ i <_ n, that  is an I - s imu la t ion  of A, defined as follows. For any 

execution c~ of B with any collection of users Ui, there should be an execution 

c~ ~ of A with the same users such that  the following conditions hold" 
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1. a and a '  are indistinguishable I to U (the composition of the users Ui). 

2. For each i, a stopi occurs in c~ exactly if a stopi occurs in c~'. 

Moreover, if a is a fair execution and if every i for which stopi appears in c~ is in 
I, then a '  is also a fair execution. If B is a n / - s i m u l a t i o n  of A for every I with 

III _< f ,  then we say that B is an f-simulation of A. 
You might recognize these conditions as being similar to the ones that are 

asserted in Theorem 13.7. This connection will be exploited in this chapter, in 
proving that certain network systems simulate shared memory systems. 

As described in Section 14.1.1, in system B, each stopi event permanently 
disables all the tasks of process Pi. However, a stop event has no effect on the 
channels. 

17.1.2 Strategies Assuming No Failures 

In the absence of failures, there are simple strategies that work. Most of these 

can be classified as single-copy or multi-copy schemes, based on the number of 

copies of each shared variable that are maintained in the network. 

S i n g l e - c o p y  s c h e m e s .  The simplest simulation strategy involves just  dis- 
t r ibuting the shared variables of A arbi trar i ly among the processes of B, with 
each shared variable located at a single process. This strategy works for shared 
variables of arbi t rary  types. 

SimpleSh VarSim algorithm: 

Each shared variable x of A is assumed to be "owned" by a single process 

Pi of B. The job of process Pi is twofold: to simulate the corresponding 
process i of A and to manage the shared variables that it owns. 

For each i, process Pi has the same actions at the user interface as does 
process i of A. Pi's steps simulate those of process i directly, with the 
following exceptions: When process i of A performs an access to a shared 
variable x, Pi instead sends a message containing the invocation to the 
process Pj that owns variable x. (If Pi itself is the owner, it just  passes 
the invocation request to a "subroutine.") Then Pi suspends all locally 
controlled steps of its simulation of process i, pending a response to the 

invocation. When a response arrives, Pi resumes simulating process i of A 
as  u s u a l .  

When the owner of a shared variable x receives a message (or a local 

invocation request) containing an invocation of x, it simply applies it to x, 

1This uses the formal notion of "indistinguishable" from Section 8.7. 
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in one indivisible step. The response is sent in a response message to the 

sender of the invocation (or passed back to the main simulation task, if the 
request is local). 

The SimpleShVarSim algorithm has some interesting modularity. We can 
express each process Pi as the composition of an I /O  automaton Qi, which is 
responsible for simulating process i of A, and an I /O  automaton Rx,i for each 
shared variable x. 2 

For Qi, we simply use automaton Pi of the Trans(A) algorithm of Section 
13.1.4. More precisely, we assume that the outputs of automaton Qi include 
actions of the form ax,i, where a is an invocation that process i of A uses on 
shared variable x, and that the inputs include actions of the form bx,i, where b is 
a response to process i from shared variable x. 

Each Rx,i has inputs ax,i and outputs bx,i. For convenience, we assume 
that for any particular shared variable x, all the automata Rx,i have reliable 
FIFO send/receive channels by which they communicate with each other. As 
in Exercise 14.6, the channels for the individual x can all be simulated by the 
given FIFO reliable channels. It will turn out that, for each x, the composition 

of all the automata Rx,i, together with the channels between them, constitute an 
atomic object of x's variable type. 

Figure 17.1 shows the architecture for SimpleSh VarSim, for the special case 
of two processes and two shared variables. We have not explicitly represented 

the stop act ions--we assume that each stopi is an input to Qi and to all the Rx,i. 
The code for R~,i is as follows. It is presented in two parts, based on whether 

or not Pi is the owner of x. Because the stopi action is included in the signature 
of Rx,i, we include an explicit description of the handling of the stopi action" 
it simply sets a stopped flag, which disables all locally controlled actions and 
prevents any changes associated with input actions. (This handling is not par- 
ticularly interesting here, because we do not make any claims about the behavior 
of this algorithm in the presence of faults.) For the purpose of disambiguation, 
we subscript channel actions by the name of the variable as well as the nodes at 
both ends. 

R~,i, Pi t he  o w n e r  of  x: 

S i g n a t u r e :  

Input:  

ax,i, a an invocation of x by process i 
receive( "invoke", a)x,j,i, a an invocation of x by j ,  j -r i 
stop~ 

2We also hide the communicat ion actions between them. 
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F i g u r e  1 7 . 1 "  A r c h i t e c t u r e  for SimpleShVarSim-- two p r o c e s s e s  and  two  s h a r e d  var i -  

ables .  

Outpu t :  
bx,i, b a response of x to process i 
send( "respond", b)x,~,j, b a response of x to j ,  j # i 

Internal:  
perform(a, j)x,i, a an invocation of x, 1 < j _~ n 

States :  
val, a value in the domain  of x, initially the initial value of x 
inv-buffer, a set of pairs (a, j ) ,  a an invocation, 1 ~ j < n, initially empty  
resp-buffer, a set of responses  b, initially empty  
stopped, a Boolean,  initially false 
for every j ~ i: 

send-buffer(j), a F I F O  queue of responses,  initially emp ty  

Trans i t i ons :  

ax,i 
Effect: 

if stopped- false then 
inv-buffer := inv-buffer U { (a, i)} 

receive( "invoke", a)x,j,i 
Effect: 

if stopped = false then 
i nv -bu j~  : -  in~-b~ff~ U { (a, j)} 
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perform(a, j)~,i 
Precond i t ion :  

stopped = false 
(a, j) E inv-buffer 

Effect: 

inv-buffer :=  inv-buffer - { (a, j) } 
(b, val) := f(a, val) 
if j = i t hen  

~ p - b ~ # ~  := ~ p - b ~ f f ~  u {b} 
els~ 

add  b to send-buffer(j) 

bx,i 
Precond i t ion :  

stopped = false 
b E resp-buffer 

Effect: 

~ p - b ~ # ~  : =  ~ p - b ~ f f ~  - {b} 

send( "respond ", b) ~,i,j 
P recond i t ion :  

stopped = false 
b is first on send-buffer(j) 

Effect: 
remove first e lement  of send-buffer(j) 

stopi 
Effect: 

stopped :=  true 

Tasks: 
{b~,i :b  is a response} 
for every j :  

{send( "respond", b)~,i,j : b is a response} 
{perform(a, j )x , i :a  is an invoca t ion}  

R ~ , i ,  P i  n o t  t h e  o w n e r  o f  x:  

Signature: 

Inpu t :  

ix , i ,  a an invoca t ion  of x by process  i 
receive( "respond", b)x,j,i, b a response  of x to i, j the  owner  of x 
stop~ 

O u t p u t :  

b~,i, b a response  of x to process  i 

send( "invoke", a)~,i,j,  a an invoca t ion  of x by i, j the  owner  of x 

States: 
resp-buffer, a set of responses  b, ini t ia l ly  e m p t y  
send-buffer, a F I F O  queue of invocat ions ,  ini t ia l ly  e m p t y  
stopped, a Boolean,  ini t ia l ly  false 
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Trans i t ions :  

ax,i 
Effect" 

if stopped- false then 

add  a to send-buffer 

send( "invoke", a)x,i,j 
Precondi t ion :  

stopped = false 
a is first ,on send-buffer 

Effect: 

remove first e lement  of send-buffer 

receive( "respond", b) x, j , i  

Effect: 
if stopped- false then 

~p-b~Z~ := ~ p - b ~  u {b} 

bz,i 
Precondi t ion :  

stopped- false 
b E resp-buffer 

Effect: 
~p-b~/]~ . -  ~ p - b ~ -  {b} 

stop~ 
Effect: 

stopped : -  true 

Tasks: 
{b~,~- b is a response} 

{send( "invoke",a)x,i,j'a is an invocat ion} 

T h e o r e m  17.1 The SimpleShVarSim algorithm based on A is a O-simulation 
of A. (We do not claim any fault-tolerance properties.) 

P r o o f  Ske tch .  We first claim that for each x, the composition of all the au- 
tomata Rx,i, 1 <__ i ~_ n, plus the channels between them (with hiding of send and 
receive actions), constitute an atomic object Bx of x's variable type and of the 
interface specified for the definition of Trans in Section 13.1.4. (We do not claim 
any fault-tolerance properties for B~, however.) With these atomic objects Bx, 
system B is exactly the system Trans(A). This allows us to apply Theorem 13.7, 
with I -  0" if c~ is any execution of B with users Ui, then Theorem 13.7 yields 
an execution c~ ~ of A with the same users, satisfying all the conditions in the 
definition of a 0-simulation. 

L o c a t i o n  of  s h a r e d  va r i ab l e s .  The SimpleSh VarSim algorithm permits the 
variables to be owned by arbitrary processes. As a general guideline, however, 
the best performance is obtained by locating variables at the processes that access 
them most frequently. 

For example, if a single-writer/multi-reader read/wri te  shared variable x is 
written more frequently than it is read, then it is natural to locate it at the 
process corresponding to the writer. If we do this, then write accesses are fast, 
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since they are performed locally. Of course, in this case all read accesses by 
processes other than the writer are slow, since they involve message exchanges 
over the network. If write accesses are frequent relative to read accesses, this 
arrangement works well, but it may not be the best if writes are relatively rare. 

F a u l t - t o l e r a n c e .  The SimpleSh VarSim algorithm does not have any interest- 
ing fault-tolerance properties. For example, if a stopi occurs, then all processes 
are thereafter prevented from accessing any of the variables owned by process 
P~. 

B u s y - w a i t i n g .  Some shared memory algorithms, such as the Bakery mutual 
exclusion algorithm of Section 10.7 and the RightLeftDP Dining Philosophers al- 
gorithm of Section 11.3, include busy-waiting loops in which a process repeatedly 
checks a shared variable, waiting for a particular condition to become satisfied. 
The SimpleSh VarSim algorithm could be modified to remove such loops, by in- 
stead having the owner of the variable notify the busy-waiting process when the 
value of the variable changes (or when the awaited condition becomes true). This 
serves to reduce the communication complexity. 

M u l t i - c o p y  s chemes .  It is sometimes useful to allow several processes to 
maintain copies of the same shared variable x. Consider, for example, the case 
where x is a read/wri te  shared variable for which read operations are frequent 
but write operations are rare. (This is the situation in many databases.) Then, 
if many processes maintain "cached" copies of x, many reads can be performed 
locally and therefore at low cost. The problem, however, is that write operations 
become more expensive than before, since they must be performed on all copies 
of x. This means that messages have to be sent from a writer process to all the 
processes that maintain copies of x. 

The problem is even worse than this, though. Suppose, for example, that x is 
a multi-writer register. Then two processes, say P1 and P2, could simultaneously 
at tempt to write to x, and two processes maintaining copies of x, say P3 and P4, 
could receive the messages from P: and P2 in opposite orders. This could lead 
them to apply the writes to their copies in different orders, yielding inconsistent 
results for subsequent reads. 

Even in the case where x is a single-writer register, anomalies can occur. If 
the writer sends out messages for a write, its message might arrive much earlier 
at one process, say P1, than at another, say P2. A local read could occur at P1 
after it receives the message, obtaining the new value, then another local read 
could later occur at P2 before it receives the message, obtaining the old value. If 
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the first read finishes before the second read begins, this behavior is not allowable 
for a read/wri te  atomic object. 

Thus, a more clever protocol is required to manage the writes. For instance, 
a writer could work in two phases: "locking" and modifying all the copies of x 
in the first phase, then releasing the locks in the second. A read operation would 
be delayed while the local copy is locked. In this case, some care must be taken 
that all invoked operations eventually get performed. 

This type of algorithm is an example of a concurrency control algorithm. 
Specifically, the algorithm we just sketched is a read/write locking algorithm 
implementing an atomic transaction that writes to all the copies of x. This 
means that it appears to the processes performing operations on x that writes 
to all copies are performed instantaneously, at some "serialization point" within 
the interval of the containing write operation. There are many other kinds of 
concurrency control protocols, including locking algorithms for other types of 
shared variables besides read/wri te  variables, timestamp-based algorithms, hy- 
brid algorithms that combine the use of locking and timestamps, and optimistic 
algorithms. We do not present these here, but instead refer you to the book 
Atomic Transactions, by Lynch, Merritt, Weihl, and Fekete for a complete pre- 
sentation (in the same style as this book). 

A popular multi-copy algorithm for read/wri te  shared variables is the Major- 
ity Voting algorithm. The heart of this algorithm is the implementation, for each 
read/wri te  shared variable x, of a read/wri te  atomic object for x. This implemen- 
tation is in turn based on an underlying implementation of atomic transactions. 

Majority VotingObject algorithm (informal): 
Each of the n processes maintains a copy of x, initially the initial value of 
x, together with a nonnegative integer tag, initially 0. 

A process that wants either to read or to write x performs an atomic trans- 
action involving some of the copies of x. The atomic transaction consists 
of a series of operations that appear to be performed instantaneously at 
some "serialization point" during the execution of the transaction. (An 
incomplete operation might or might not have a serialization point.) The 
transactions can be implemented using two-phase locking, or t imestamp- 
based, hybrid, or optimistic concurrency control methods, augmented by 
some priority mechanism to ensure that (if no process fails) each transac- 
tion eventually completes. 

In order for process Pi to perform a read of x, it reads at least a majority 
of the copies of x. Among these, it chooses one with the largest tag and 
returns the associated value of x. All these steps are part of the same 
atomic transaction and so are executed "as if" instantaneously. 
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In order for process Pi to perform a write(v) to x, it first performs an 
embedded-read, which is exactly like a read as described just above. From 
the result of this embedded-read, Pi determines the largest tag, t. Then it 
writes (v, t + 1) to at least a majority of the copies of x. All these steps 
those of the embedded-read and those that write the copies--are part of the 
same atomic transaction and so are executed "as if" instantaneously. 

L e m m a  17.2 The Majority VotingObject algorithm is a read/write atomic ob- 
ject. 

P r o o f  Ske tch .  We verify the conditions in the definition of an atomic object, 
as given in Section 13.1.1. Well-formedness and failure-free termination should 
be easy to see. For the atomicity condition, fix any execution a of the Majority- 
VotingObject algorithm (with any set of user automata). We choose the subset 
(I) of incomplete operations to be exactly those that are assigned serialization 
points in the underlying transaction implementation and adopt the responses for 
the operations in (I) and the serialization points from the transaction implemen- 
tation. To see that the shrinking property holds, we need to know that each read 
obtains the value written by the write serialized just before it, if there is one; if 
not, it obtains the initial value v0. 

The keys to seeing this are the following facts: 

1. The write operations obtain tags 1, 2 , . . . ,  in the order of their serialization 
points. 

2. Each read or embedded-read obtains the largest tag that has been written 
by a write operation serialized before it (or 0 if there are none), together 
with the accompanying value. 

These facts are true because each read or embedded-read reads a majority of 
the copies, the largest tag has been written to a majority of the copies, and all 
majorities intersect. D 

Now, if the shared memory system A uses read/wri te  shared variables, we 
define the Majority Voting algorithm based on A to consist of the same Qi com- 
ponents that are used in SimpleSh VarSim, together with Majority VotingObjects 
for all the read/wri te  shared variables. Then Lemma 17.2 implies 

T h e o r e m  17.3 Suppose that A uses read/write shared variables. 
Majority Voting algorithm based on A is a O-simulation of A. 

Then the 
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Fault-tolerance. Although the Majority VotingObject algorithm allows flexi- 
bility in the choice of which major i ty  is read or written, it does not, in general, 
provide a fault-tolerant implementat ion of an atomic object for x. This is because 
the s tandard t ransact ion implementations are not fault-tolerant. For example, in 
a read/wr i te  locking algorithm, a process performing a read t ransact ion might 
send out messages to read a majori ty  of the copies, causing a majori ty  of the 
copies to become locked. Then the process might fail without releasing its locks. 
This would prevent any later write t ransact ion from ever obtaining the locks it 
requires. In practice, this problem can be handled by using timeouts to detect 
process failures (which we cannot do in the asynchronous network model) and /or  
weakening the resiliency requirements. 

17.1.3 An Algorithm Tolerating Process Failures 

As we noted, the strategies described in Section 17.1.2 do not have any interesting 
fault-tolerance properties. In this section, we present the ABD algorithm of 
Attiya, Bar-Noy, and Dolev, which works in the presence of a limited number f 
of process stopping failures; the network is assumed to be reliable. We assume 
that n, the total number of processes, is strictly greater than 2f,  that is, that 
a majority of the processes do not fail. We only consider the case of single- 
wri ter /mul t i - reader  read/wr i te  shared memory. 

The heart of the ABD algorithm is the implementation, for each read/wr i te  
shared variable x, of a read/wr i te  atomic object guaranteeing f-failure termina- 
tion. For simplicity, we describe this implementat ion assuming that only write 
operations occur on port  1 and only read operations on ports 2 , . . . ,  n; we will 
later have to modify this implementation slightly in order to use it in the general 
simulation. The algorithm uses ideas from the Majority Voting algorithm and 
from the VitanyiAwerbuch algorithm of Section 13.4.3. The main idea is that 
the result of each write is stored at a major i ty  of the nodes in the network, before 
the write completes. 

A B D O b j e c t  algorithm (informal): 

Each of the n processes maintains a copy of x, initially the initial value of 
x, together with a nonnegative integer tag, initially O. 

When the unique writer process wants to perform a write(v) on x, it first 
lets t be the smallest tag that it has not yet assigned to any write. Then 
it sets its local copy of x and local tag to v and t, respectively, and sends 
( "write", v, t) messages to all the other processes. A process receiving such 
a message updates its copy of x and its tag in the same way, provided that 
t is greater than its current tag; in any case, it sends an acknowledgment 
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to the writer. When  the writer  knows (via the acknowledgments  and its 

knowledge of its own local behavior) that  a major i ty  of the processes have 
their tag values equal to t, it re turns  ack. 

When any process Pi wants to perform a read of x, it sends read messages 
to all the other processes and also reads its own value of x and its own 
tag. A process receiving such a message responds with its latest value of 
x and tag. When Pi has learned the x and tag values of a major i ty  of 
the processes, it prepares  to re turn  the value v of x associated with the 

largest tag t it has seen. But before doing this, Pi propagates  (v, t) to a 
major i ty  of the processes: it updates  its own value of x and tag and also 
sends a second round of messages to all the other processes (except for the 
writer).  A process receiving such a message updates  its copy of x and its tag 
accordingly, provided that  t is greater  than its current  tag; in any case, it 
sends an acknowledgment  to Pi. When Pi knows (via the acknowledgments  
and its knowledge of its own local behavior) that  a major i ty  of the processes 
have their tag values at least equal to t, it re turns  v. 

The code is as follows. ABD1 is the writer  process and ABD2, . . . ,  ABDu 
are reader processes. For simplicity, we do not include explicit mention of stop 
actions, which we assume are handled as for SimpleSh VarSim. Also, we omit 
the explicit subscript  x on the various actions. (The code is a lready long enough 
without  these details.) We assume that  V is the domain of values and v0 the 
initial value for x. 

ABDObject l  a u t o m a t o n  ( f o r m a l ) :  

S i g n a t u r e :  

Input :  
write(v) 1, v E V 
receive( "write-ack", t)j,1, t C N + , j r 1 
receive( "read", u)j,1, u E N + , j =fi 1 

Ou tpu t :  

ackl 
send( "write", v, t ) l , j ,  v E V, t E N + , j # 1 
send( "read-ack", v, t, U)l,j ,  v E V, t E N, u E N + , j # 1 

States:  
val E V, init ially v0 
tag E N, init ially 0 
status E {idle, active}, init ially idle 
count E N, init ially 0 
for every j # 1: 

send-buffer(j), a F I F O  queue of messages ,  initially e m p t y  
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Transitions: 
write(v)1 

Effect: 
val := v 
tag :=  tag + l 
status :=  active 
count :=  1 
for all j =fi 1 do 

add  ("write",  v, tag) to send-buffer(j)  

send(m)l , j  
Precondi t ion"  

m is first on send-buffer(j)  
Effect: 

r emove  first e lement  of send-buffer(j)  

receive( "write-ack ", t) j,1 

Effect: 
if s t a t u s -  active and t -  tag then  

count " -  count + 1 

ackl 
Precondi t ion :  

status = active 
n count > 

Effect: 
count :=  0 
status :=  idle 

receive( "read", u)j,1 
Effect" 

add  ( "read-ack", val, tag, u) 
to send-buffer(j)  

Tasks: 
{ack l}  
for every j" 

{ s e n d ( m ) l , j ' m  a message}  

Note that, in contrast to the Majority Voting and VitanyiAwerbuch algo- 
rithms, the choice of a new tag is simple in the ABDObject algorithm, because 
there is only one writer. The following is the code for the reader processes. 

ABDObjecti a u t o m a t o n ,  2 _< i <_ n (formal)" 

Signature: 

Inpu t :  
re a di 
receive( "write", v, t ) l , i ,  v E V, t E N + 
receive( "read-ack", v, t, u)j,~, v E V, t E N,�9 u E N + , j # i 
receive( "prop-ack", u)j , i ,  u C N + , j ~ { 1, i} 
receive( "read", u)j,i, u e N + , j ~ {1, i} 
receive( "propagate", v, t, u)j,i, v C V, t C N, u C N + , j ~ {1, i} 

O u t p u t :  
vi, v C V  
send( "write-ack", t)i,1, t E N + 
send( "read", u)~,j, u C N + , j :/= i 
send("propagate" ,v , t ,u ) i , j ,  v E V, t C N, u E N +,  j ~ {1, i} 
send( "read-ack", v, t, u)i , j ,  v E V, t E N, u C N + , j ~ { 1, i} 
send( "prop-ack", u)i,j ,  u C N + , j ~ {1, i} 
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States:  
val E V, ini t ial ly v0 
tag E N, ini t ial ly 0 
response-val E V, ini t ia l ly v0 
read-tag E N, ini t ia l ly 0 

status E {idle, active1, active2}, ini t ia l ly idle 
count E N, ini t ia l ly 0 
for every j 7(= i: 

send-buffer(j), a F I F O  queue of messages,  ini t ia l ly e m p t y  

Trans i t ions :  

r e a d i  

Effect: 

read-tag : -  read-tag + 1 
status :=  active1 
count : -  1 
for all j ~ i do 

add  ( "read", read-tag) 
to send-buffer(j) 

send(m)i,j  
Precondi t ion :  

m is first on send-buffer(j) 
Effect: 

remove first e lement  of send-buffer(j) 

receive( "read-ack", v, t, u)j,i 
Effect: 

if status = active1 and u = read-tag then 
count :=  count + 1 
if t > tag then 

vat := v 
tag :=  t 

r t  if count > y then 
response-val :=  val 
status :=  active2 
count :=  1 
for a l l j ~  { 1 , i } d o  

add  ( "propagate", val, tag, read-tag) 
to send-buffer(j) 

receive( "prop-ack ", u) j , i  

Effect: 
if status = active2 and u -- read-tag 

then count : -  count + 1 

Vi 

Precondi t ion :  
status = active2 

n count > -i 
v = response-val 

Effect: 
count := 0 
status := idle 

receive( "write ", v, t) 1,i 

Effect: 
if t > tag then 

vat := v 
tag := t 

add ( "write-ack", t) to send-buffer(I) 

receive( "read", u ) j,i 
Effect: 

add  ( "read-ack", val, tag, u) 
to send-buffer(j) 

receive( "propagate", v, t, u)j,i 
Effect: 

if t > tag then 
val :-- v 
tag :=  t 

add  ("prop-ack", u) to send-buffer(j) 
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Tasks :  

for every j: 
{~d ( .~ )~ , j  : .~ ~ message} 

In this code, the read-tag is used to keep track of which acknowledgments 
belong to the current operation. The response-val is used to remember the value 
to be returned while it is being propagated. Note that it is not necessary to 
propagate the response value to the writer, since the writer must already have 
the latest information. 

T h e o r e m  17.4 The ABDObject algorithm, for n > 2f ,  is a read/write atomic 
object guaranteeing f-failure termination. 

P r o o f  Ske tch .  This is similar to the proofs of the VitanyiAwerbuch and Integer- 
Bloom algorithms in Chapter 13. Well-formedness is easy to see. It is also easy 
to prove f-failure termination, because each operation requires the participation 
of only a majority of the processes and n > 2f. So, as usual, atomicity is the 
key property to show. We use Lemma 13.16. 

Let c~ be any execution of the ABDObject algorithm. Using a restatement of 
Lemma 13.10 for the asynchronous network setting, we may assume without loss 
of generality that c~ contains no incomplete operations. 

Define II to be the set of operations occurring in c~. We define a partial 
ordering on II as follows. First, order the write operations in the order in which 
they are performed, that is, in the order of their tags. Then order each read 
right after the write whose tag it obtains, if any, otherwise prior to all the write 
operations. 

The key properties that need to be shown are 

1. If a write 7r with tag = t completes before a read r is invoked, then r 
obtains a tag that is at least as large as t. 

This is because 7o's tag is received by a majority of the copies, r reads a 
majority of the copies, and all majorities intersect. 

2. If read 7r completes before read r is invoked, then the tag obtained by r is 
at least as great as that obtained by 7r. 

This is by a similar argument, because 7r propagates its information to a 
majority of the copies. 
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Using these two properties, it is not hard to show that the four conditions 
required for Lemma 13.16 hold, which implies the atomicity condition. [3 

Obviously, we can modify the ABDObject algorithm so that any other port 
i is the write port, rather than port 1. It is also easy to modify the algorithm 
so that read operations are also permitted on the single write port. The results 
of such modifications still guarantee f-failure termination. The complete ABD 
algorithm based on A is then constructed by using the processes of Trans(A), as 
we did for SimpleSh VarSim and Majority Voting, plus an atomic object for each 
shared variable x. Each atomic object is the appropriately modified version of 
the ABDObject. 

T h e o r e m  17.5 Suppose that A uses single-writer/multi-reader shared memory 
and that n > 2 f .  Then the ABD algorithm based on A is an f-simulation of A. 

Proo f .  By Theorems 17.4 and 13.7. D 

B o u n d e d  tags. The ABD algorithm uses unbounded tag values. It is possible 
to modify the algorithm so that it uses bounded tags instead. We leave this for 
an exercise. 

Applications. The ABD algorithm can be used to obtain distributed imple- 
mentations for many interesting fault-tolerant shared memory algorithms based 
on single-writer/multi-reader registers. For example, the atomic snapshot and 
atomic multi-writer register algorithms in Chapter 13 can be transformed using 
ABD into algorithms implementing the same objects in the asynchronous send/ 
receive network model. But note that although the original algorithms in these 
cases guarantee wait-free termination, the transformed versions only tolerate f 
failures, where n > 2f. 

17.1.4 An Impossibility Result for ~ Failures 

It is not hard to see that the ABD algorithm does not tolerate f failures if 
n < 2f. This is because the failure of this many processes makes the other 
processes permanently unable to secure the majorities that they need to complete 
their work. It turns out that this limitation is inherent. The key result is the 
following, giving a limitation on the fault-tolerance of read/wri te  atomic object 
implementations in asynchronous networks. To get a stronger statement, we 
state the result in terms of broadcast systems rather than send/receive systems., 
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T h e o r e m  17.6 Let n -  m + p, where m , p  > 1, and suppose that n < 2f .  
Then there is no algorithm in the asynchronous broadcast model (with a reliable 
broadcast channel) that implements a read/write atomic object with m writers 
and p readers, guaranteeing f-failure termination. 

P r o o f .  Suppose for the sake of contradiction that there is such an algorithm, 
say A. As usual for such impossibility proofs, we assume that the users are the 
most nondeterministic possible. 

Let G1 be the set 1 , . . .  , n - f  and G2 the set n - f  + 1 , . . .  , n. By assumption, 

IGl[ __ f and IG2[_ f .  
Consider a fair execution Ctl of the system (A plus users) that contains an 

invocation write(v)l on port 1, where v =/= vo, and no other invocations. Fur- 
thermore, suppose that stop inputs occur on exactly the ports in G2 and that 
these events occur right at the start of the execution; this implies that processes 
with indices in G2 never perform any locally controlled actions. By f-failure 
termination, the write must eventually terminate with a matching ackl. Let a~ 
be the prefix of Ct I ending with the ackl. 

Now consider a second fair execution a2 containing an invocation readn on 
port n and no other invocations. Furthermore, suppose that stop events occur 
on exactly the ports in G1, at the start  of the execution. Again by f-failure 
termination, the read must eventually terminate, and the response value must be 
v0. Let a~ be the prefix of a2 ending with this response. 

Now we construct a finite execution a that does not satisfy the atomicity 
property, thus yielding a contradiction. Execution a satisfies the following con- 
ditions: 

1. a is indistinguishable from a~ to the processes with indices in G1. 

2. a is indistinguishable from a~ to the processes with indices in G2. 

3. In a, the ackl response event precedes the rea~ invocation event. 

This violates the atomicity condition, which says that the read is supposed to 
return v, the value written by the write, rather than the initial value v0. 

Execution a is constructed as follows. It contains no stop events. It begins 
with all the activity of a~ except for the stop events and the receive events at 
processes with indices in G2. Since the processes in G2 fail right at the start  in 
a~, anyhow, the result of eliminating all of these events is still an execution and 
is indistinguishable from a~ to the processes in G1. Execution a then finishes 
with all the activity of a~, except for the stop events and the receive events at 
processes with indices in G1. 
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Thus, in c~, the processes in each group, G1 or G2, behave independently of 
the processes in the other group. None of the messages broadcast by processes 
in G1 are delivered to processes in G2, and vice versa. It is easy to see that c~ 
satisfies all the required properties. D 

n Theorem 17.6 implies that, for any fixed n and f ,  where n > 2 and f > ~, 
there can be no general method for producing f-simulations of n-process shared 
memory algorithms, even if the underlying shared variables are restricted to be 
single-writer/single-reader registers. To see this, note that for any such n, there is 
a trivial wait-free shared memory algorithm A that implements a 1 - w r i t e r / n -  1- 
reader read/wri te  atomic object using a single 1 - w r i t e r / n -  1-reader read/wri te  
register. An f-simulation of A, if it existed, would yield a send/receive network 
algorithm that implemented a 1 - w r i t e r / n -  1-reader read/wri te  atomic object 
with f-failure termination. (The argument for this is similar to the proof of 
Corollary 13.9.) But this contradicts Theorem 17.6. 

17.2 Transformat ions  from the N e t w o r k  Mode l  to 
the Shared M e m o r y  Mode l  

Now we describe transformations in the opposite direction, from the asynchro- 
nous network model to the shared memory model. These transformations tolerate 
process stopping failures: a shared memory system with at most f process fail- 
ures can simulate a network with at most f process failures (and reliable commu- 
nication). Now there is no special requirement on the number of failures--unlike 
the transformations in the opposite direction, these constructions work even if 
n _< 2f.  Moreover, the constructions are much simpler than the transformations 
in the opposite direction. 

The reason why these constructions are simpler and yield stronger results is 
that the asynchronous shared memory model is, in a sense, more powerful than 
the asynchronous network model. The extra power comes from the availability 
of reliable shared memory. 

It is possible to use these transformations to run asynchronous network al- 
gorithms in asynchronous shared memory systems. But this is probably not 
a very interesting thing to do, because the shared memory model is easier to 
program. A more important  use is to allow impossibility results for the asyn- 
chronous shared memory model to be carried over to the asynchronous network 
model. For example, the impossibility of consensus in the presence of failures, 
proved in Theorem 12.8 for the shared memory model, can be extended to the 
network model using these transformations. 
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We present  two transformations" one for send/receive systems and one for 
broadcas t  systems. 

1 7 . 2 . 1  S e n d / R e c e i v e  S y s t e m s  

Suppose that  we are given an asynchronous send/receive system A in the model 
of Chapter  14, based on a directed graph G, with processes Pi, 1 ~_ i ~_ n, and 
reliable F IFO channels Ci,i. As before, each stopi event immediately  disables all 
tasks of Pi but has no effect on the channels. 

The general problem (including fault- tolerance requirements)  is to produce 
a shared memory  system B with n processes, using s ingle-wri ter /s ingle-reader  
shared registers, that  "simulates" A. The sense in which it should simulate A 
is exactly the same as for the t ransformat ion in the reverse direction. For any 
execution a of B with any set of users Ui, there should be an execution ~ of A 
with the same users such that  the following conditions hold: 

1. a and ~ are indistinguishable to U. 

2. For each i, a stopi occurs in ~ exactly if a stopi occurs in ~ .  

Moreover, if ~ is a fair execution and if every i for which stopi appears  in a is in 
I, then ~ is also a fair execution. I f /3  simulates A in this way, for a par t icular  
I,  then we say that  B is an I-simulation of A. If B is a n / - s i m u l a t i o n  of A for 

every I with [I I ~_ f ,  then we say that  B is an f-simulation of A. 
We give an algori thm, SirapleSRSira, that  works for a rb i t ra ry  failures, that  

is, an n-simulation. 

S i m p l e S R S i m  a l g o r i t h m  ( i n f o r m a l ) "  

For each directed edge (i, j )  in the underlying directed graph G , / 3  includes 
a s ingle-wri ter /s ingle-reader  r ead /wr i t e  shared variable x(i, j), writable by 
process i and readable by process j.  It contains a queue of messages, 

initially empty. Process i only adds messages to the queue; no messages 
are ever removed. 

Process i of B simulates process Pi of A. Simulations of user interface 
steps and internal steps of Pi are direct. In order to simulate a send(m)i,j 
action of Pi, process i of A adds the message m to the end of the queue in 
the variable x(i, j). (It can do this using only a write operat ion by keeping 
a duplicate local copy of the queue.) Also, from time to time, process i 
checks all its "incoming" variables x(j, i) in order to determine if there 
are any new messages that  have been placed there since the last time it 
checked. If so, process i handles those messages in the same way that  Pi 
handles them. 
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T h e  c o d e  is as fol lows.  N o t e  t h a t  e a c h  p r o c e s s  ha s  s e v e r a l  t a sks .  In  t he  c o d e  

for  check(j)i ,  we u s e  t h e  n o t a t i o n  receive(M)j, i  as s h o r t h a n d  for  t h e  s e q u e n c e  of  

a c t i o n s  receive(ml)j , i ,  r e c e i v e ( m 2 ) j , i , . . . ,  w h e r e  M is t he  s e q u e n c e  of  m e s s a g e s  

m l,  m2 ,  . . . .  I n  t h a t  c o d e  f r a g m e n t ,  t h e  s e q u e n c e  M c o n t a i n s  t h e  n e w  m e s s a g e s  

t h a t  h a v e  b e e n  p l a c e d  in x( j ,  i) s ince  t h e  l a s t  t i m e  p r o c e s s  i c h e c k e d .  

S i m p l e S R S i m  a l g o r i t h m  ( f o r m a l ) :  

S h a r e d  va r i ab les :  
for every edge (i, j)  of G: 

x(i, j) ,  a FIFO queue of messages, initially empty 

A c t i o n s  of  i: 
As for P~, except: 
Input: 

Omit all receive actions. 
Output:  

Omit all send actions. 

Internal: 
send(m,j)i for every send(m)~,j E out(P~) 
check(j)~ for every j E in-nbrs 

S t a t e s  o f  i: 
pstate E states(Pi), initially a start state 
for every j E out-nbrs: 

out-rnsgs(j), a FIFO queue of messages, initially empty 
for every j E in-nbrs: 

in-rnsgs(j), a FIFO queue of messages, initially empty 
processed-rnsgs(j), a FIFO queue of messages, initially empty 

T r a n s i t i o n s  of  i: 
7r, an input of Pi ~ receive 

Effect: 
pstate :-- any s such that 

(pstate, ~v, s) E trans(Pi) 

7r, a locally controlled action of Pi # send 
Precondition: 

7r is enabled in pstate 
Effect: 

pstate :-- any s such that 
(pstate, 7r, s) E trans(P~) 

send(m,j)i 
Precondition: 

send(rn)i,j is enabled in pstate 
Effect: 

add rn to out-msgs(j) 
x(i , j)  := out-msgs(j) 
pstate := any s such that 

(pstate, send(m)i,j, s) E trans(Pi) 

check(j)i 
Precondition: 

true 
Effect: 

processed-msgs(j) := in-msgs(j) 
in-msgs(j) := x(j, i) 
pstate :-- last state of any execution 

fragment starting with pstate and 
with action sequence receive(M)j,i, 
where processed-msgs(j) . M = in-msgs(j) 
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Tasks of i: 
As for gi, except: 

replace each send(m)~,j by send(m,j)~ 
add, for every j: 

{check(j)~} 

Then it should not be hard to see that the simulation is correct. 

T h e o r e m  17.7 If A is an asynchronous send/receive system with reliable FIFO 
send/receive channels, then the SimpleSRSim algorithm is an n-simulation of 
A. 

P r o o f .  We leave the proof for an exercise. ff] 

1 7 . 2 . 2  B r o a d c a s t  S y s t e m s  

A similar construction to SimpleSRSim can be used to simulate an asynchronous 
broadcast  system having a reliable broadcast  channel. The correctness conditions 

for the simulation are the same as for send/receive systems. The main difference 
is that the new simulation uses single-writer/multi-reader registers instead of 

single-writer/single-reader registers. 

S i m p l e B c a s t S i m  a l g o r i t h m :  

For each i, 1 < i <_ n, B includes a single-writer/mult i-reader shared 
variable x(i),  writable by i and readable by all processes (including i). It 

contains a queue of messages, initially empty. 

As before, process i of B simulates process Pi of A, with direct simulations 
of user interface steps and internal steps of Pi. In order to simulate a 
bcast(m)i action of P/, process i of A adds the message m to the end of 

the queue in the variable x(i). Also, from time to time, process i checks all 
variables x(j)  (including x(i)) in order to determine if there are any new 

messages. If so, process i handles those messages in the same way that P/ 
handles them. 

T h e o r e m  17.8 If A is an asynchronous broadcast system with a reliable broad- 
cast channel, then the SimpleBcastSim algorithm is an n-simulation of A. 
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17.2 .3  I m p o s s i b i l i t y  o f  A g r e e m e n t  in A s y n c h r o n o u s  N e t w o r k s  

Theorem 17.8 can be used to prove the impossibility of solving the fundamen- 
tal agreement problem of Chapter 12 in an asynchronous network, even if the 
network guarantees reliable broadcast, there is guaranteed to be no more than 
one process failure, and the only type of failure is stopping! This impossibil- 
ity result represents a fundamental limitation on the computing capabilities of 
asynchronous networks. 

This result should be contrasted with the results in Chapter 6 for the stop- 
ping agreement problem in the synchronous network model. In that setting, the 
problem is solvable, although it has a nontrivial inherent time cost that depends 
on the number of tolerated failures. The proof of Theorem 6.33, the lower bound 
on the time, rests on the possibility that a process might stop in the middle of a 
broadcast. In contrast, in the asynchronous model, the impossibility result still 
holds even without the possibility of partial broadcasts. 

We use the problem statement given in Section 12.1 for the agreement problem 
with l-failure termination. (Note that that statement can be formulated in terms 
of trace properties and so makes sense for asynchronous network systems as well 
as for shared memory systems.) 

T h e o r e m  17.9 There is no algorithm in the asynchronous broadcast model with 
a reliable broadcast channel that solves the agreement problem and guarantees 1- 
failure termination. 

Proof .  Suppose for the purpose of obtaining a contradiction that there is such 
an algorithm A. Then Theorem 17.8 yields an algorithm B in the single-writer/ 
multi-reader shared memory model that is an n-simulation of A. The definition 
of an n-simulation implies that B is a solution to the agreement problem and 
that it guarantees 1-failure termination. But this contradicts Theorem 12.8, the 
impossibility of solving the agreement problem in the read/write shared memory 
model. [--1 

17.3 Bibliographic Notes 

Good references for concurrency control algorithms for implementing atomic 
transactions are the books by Lynch, Merritt, Weihl, and Fekete [207] and by 
Bernstein, Hadzilacos, and Goodman [50]. 

The Majority Voting algorithm is due to Gifford [137]. It has been generalized 
by Herlihy [154, 149] and by Goldman and Lynch [140]; this latter extension also 
appears in [207]. 
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The ABD algorithm is due to Attiya, Bar-Noy, and Dolev [18]. Their paper 
also includes an algorithm that uses bounded tags, based on the ideas of Israeli 
and Li [162], plus additional applications for the ABD simulation. The impossi- 
bility result for n _< 2f is adapted from similar proofs by Bracha and Toueg [56] 
and by Attiya, Bar-Noy, Dolev, Peleg, and Reischuk [20]. 

Theorem 17.9, the impossibility of agreement in fault-prone asynchronous 
networks, is due to Fischer, Lynch, and Paterson [123]. They proved the result 
directly, in terms of the network model, rather than via a transformation as we 
have presented. 

17.4 E x e r c i s e s  

17.1. Prove the claim within the proof sketch for Theorem 17.1--that for each x, 
the composition of all the automata Rx,i plus the channels between them 
(with hiding of send and receive actions) constitute an atomic object Bx 
of the appropriate type and interface. 

17.2. State and prove a result relating the time complexity of the system B 
obtained by applying the SimpleSh VarSim algorithm to a shared memory 
system A, to the time complexity of the original system A. Be sure to state 
carefully any assumptions you make. 

17.3. Let B be an asynchronous network algorithm obtained by applying Simple- 
Sh VarSim to the PetersonNP algorithm of Section 10.5.2. Obtain the best 
upper bound you can on the time complexity of B, more specifically, on 
the time from any tryi event to the corresponding criti event. How does 
this compare to the general upper bound obtained for Exercise 17.2? 

17.4. Research Question: State and prove a result describing what is guaran- 
teed when the SimpleSh VarSim transformation is applied to a random- 
ized shared memory system such as the LehmannRabin algorithm in Sec- 
tion 11.4. 

17.5. Give precondition-effect code for the read/write locking algorithm outlined 
in Section 17.1.2, for simulating single-writer/multi-reader shared memory 
algorithms in an asynchronous network. (This outline appears a couple of 
paragraphs before the description of the Majority VotingObject algorithm.) 
Each reader of a shared variable x should keep a local copy of x and read it 
(if it is available). The writer should perform its writes to individual copies 
using a two-phase locking protocol. All operations should be guaranteed 
to terminate. State and prove a correctness result. 
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17.6. Generalize your answer to Exercise 17.5 to multi-writer/multi-reader shared 
memory algorithms. 

17.7. Consider the Bakery mutual exclusion algorithm of Section 10.7, trans- 
formed to run in asynchronous networks in two different ways: 

(a) Using SimpleSh VarSim. 

(b) Using the two-phase locking strategy developed in Exercise 17.5. 

Compare the time and communication complexity of the two resulting al- 
gorithms. 

17.8. Generalize the Majority VotingObject algorithm to allow each read opera- 
tion to access a read quorum of copies instead of a majority of copies, and 
each write operation to access a write quorum of copies. Read and write 
quorums do not have to be strict majorities; what conditions do they need 
to satisfy? Describe the algorithm using precondition-effect notation and 
prove its correctness. 

17.9. Is the "propagation phase" of the reader code in the ABDObject imple- 
mentation necessary? Either argue that the algorithm works without it or 
exhibit a counterexample. 

17.10. Extend the ABDObject algorithm so that it implements a multi-writer/  
multi-reader read/wri te  atomic object, guaranteeing f-failure termination, 
if n > 2f. Show how to incorporate this extension into a fault-tolerant 
asynchronous network simulation of the shared memory model with multi- 
writer/multi-reader shared registers. 

17.11. Modify the ABDObject algorithm so that it uses bounded instead of un- 
bounded tags. (Hint: It is not enough just to use the integers mod k 
for some fixed k; a finite data type D with more interesting structure is 
needed. See [162] for one data type that works. The writer needs to choose 
successively "larger" tags, according to data type D, knowing that any old 
tags that are held by slow processes can be detected by those processes 
to be "smaller" than the newer tags. So when the writer chooses a new 
tag, it needs to take account of all the tags that could possibly be held by 
any process. In order for the writer to keep track of this set, whenever 
any process modifies its local tag, it first ensures that a majority of the 
processes know that it is adopting the new tag. Then the writer can always 
determine the possible tags at all processes, simply by querying a majority 
of the processes for this information. See [18] for more hints.) 
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17.12. State and prove a result similar to Theorem 17.6 for the problem of imple- 
menting a snapshot atomic object in an asynchronous network with n < 2f. 

17.13. Prove Theorem 17.7. 

17.14. Give precondition-effect code for the SimpleBcastSim algorithm, in the 
same style as we gave for the SimpleSRSim algorithm. Prove its correctness 
(Theorem 17.8). 
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Chapter 18 

Logical Time 

In this chapter we present the third of our major methods for simplifying the 
job of programming an asynchronous network: the introduction of a notion of 
logical time. In our asynchronous network model, there is no built-in notion of 
real time. It is, however, possible to impose a notion of logical time by means of 
special protocols. Logical time can sometimes be used in place of real time, in 
cases where the users of the system do not care about the relative order of events 
that occur at different network locations. 

18.1 Logical Time for Asynchronous Networks 

The basic idea is for every event of an execution of an asynchronous network 
system A to be assigned a "logical time," which is an element of some fixed 
totally ordered set T.  1 Typically, this set T is either the nonnegative integers or 
the nonnegative reals (perhaps with other types of values such as process indices 
as tiebreakers). These logical times need not have any particular relationship to 
real time. However, the logical times of different events are required to respect 
all the possible dependencies among the events within system A, as described 
in Section 14.1.4. Under these assumptions, we will be able to prove that the 
logical-time assignment "looks like" a real-time assignment to the processes. 

We consider logical time for send/receive systems and broadcast  systems 
separately. We assume throughout the chapter that the channels are the particular 

universal channels defined in Chapter  14. We do not consider faults. 

1T must satisfy one technical assumption: there must be a sequence tl, t2 , . . ,  of increasing 
elements of T such that every t E T is bounded above by some ti. 
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1 8 . 1 . 1  S e n d / R e c e i v e  S y s t e m s  

We consider an asynchronous send/receive network system with universal reliable 
FIFO send/receive channels. We assume that the underlying network graph G 
is an arbi t rary strongly connected directed graph. Recall that the events of 
such a system are of the following types: user interface events by which process 
automata  communicate with the system's users, send and receive events by which 
process automata interact with channel automata,  and internal events of process 
automata.  (We do not need to consider internal events for channels, because the 
particular universal channels we are using do not have any internal events.) 

Let c~ be an execution of an asynchronous send/receive network system A. 
Then a logical-time ass ignment  for c~ is defined to be an assignment of a value in 
T to every event in c~, in a way that is "consistent" with all possible dependencies 
among events in c~. Specifically, we require the following four properties: 

1. No two events get assigned the same logical time. 

2. The logical times of events at each process are strictly increasing, according 
to their order of occurrence in c~. 

3. The logical time of any send event is strictly smaller than that of the 
corresponding receive event. 

4. For any particular value t E T, there are only finitely many events that get 
assigned logical times smaller than t. 

Properties 2 and 3 imply that the order of logical times must be consistent with 
the ordering --+t~a~(~), as defined in Section 14.1.4. However, we allow some 
events at different processes to have their logical times ordered in the opposite 
order from their order in c~. 

We claim that any logical-time assignment "looks like" a real-time assignment 
to every process in the network. Specifically, any fair execution c~ with a logical- 
time assignment l t ime looks to every process like another fair execution c~ ~ in 
which the l t imes behave like real t imes- - tha t  is, in which events occur in the 
order of their l t imes. 

T h e o r e m  18.1 Let c~ be a fa ir  execution of a sendfreceive network sys tem A 

with universal  reliable F IFO channels and let ltirne be a logical-time ass ignment  

for  c~. Then there is another  fa i r  execution a ~ of  A such that 

1. c~ ~ contains the same events as c~. 

2. The events in c~ t occur in the order of their l t imes  in c~. 
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3. a ~ is indistinguishable f rom a to every process automaton.  2 

Theorem 18.1 specifies that the order of the events of each particular process 
must be the same in a and a ~. However, it permits events at different processes 
to be reordered. 

P r o o f .  Let 7 be the sequence obtained by reordering the events of a in the 

order of their ltimes. Properties 1 and 4 of the definition of logical time imply 
that a unique such sequence exists. Then we can use Corollary 14.2 to infer 

the existence of the needed fair execution a ~. In applying Corollary 14.2, we 
regard (i.e., reclassify) all process actions as external. Properties 2 and 3 of the 

logical-time definition then imply that the reordering preserves -+trace(a)" This 
is as needed for Corollary 14.2. K] 

Example 18.1.1 Send/receive diagram 

Consider a send/receive system A based on a three-node complete 
undirected graph. Consider an execution a of A in which messages 

are sent and received according to the pattern in Figure 18.1. 

In this send/receive diagram, each process's execution is repre- 

sented by a vertical line, with time proceeding downward. The dots 
indicate send and receive events, and each slanted line joins the send 

event to the receive event for a single message. Here we do not de- 

pict other events, that is, internal events of processes and events by 

which the processes communicate with the users. These could be 
represented by other dots on the vertical lines. 

Figure 18.2 shows a logical-time assignment ltime for a (assuming 
that a contains only send and receive events). Since time proceeds 

downward, the ltime order does not coincide with the order of events 

in a. However, it is consistent with all possible dependencies among 
events in a. 

Figure 18.3 depicts the reordering of the events of a in the order 
of their ltimes, yielding a ~ as described in Theorem 18.1. Note that 
the order of events at each process is the same in a and a ~. 

Notice the close parallel between the ideas of this section and those used in 
Section 16.2 to relate local and global synchronizers. In each case, a dependency 
order is defined on events in an execution, capturing all possible dependencies 
among events. Then, in each case, the events of the execution are reordered, pre- 
serving all dependencies but realigning them according to a global notion of time 

eWe use the formal definition of "indistinguishable" from Section 8.7. 
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1 2 3 

I 

F i g u r e  18.1: Send/receive diagram for execution a. 

(synchronous rounds or logical time). (The definitions of a local synchronizer 
and of logical time are used to show that this can be done.) In each case, the 
conclusion is that the reordered execution is locally indistinguishable from the 
original execution. Thus, it looks to all the participants in the original execution 
as if they are operating in global synchrony. 

18 .1 .2  B r o a d c a s t  S y s t e m s  

We can also define logical time for reliable asynchronous broadcast systems with 
universal reliable broadcast channels. In this case, the events are user-interface 
events, bcast and receive events, and internal events of processes. 

Let a be an execution of an asynchronous broadcast system. A logical-time 
assignment for a is defined to be an assignment of a value in T to every event 
in a, in such a way as to satisfy the same properties as for send/receive systems, 
except that Property 3 now says: 

3 ~. The logical time of any bcast event is strictly smaller than that of 
each corresponding receive event. 
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F i g u r e  18.2" A logical-time assignment for c~. 

As for send/receive systems, we have 

T h e o r e m  18.2 Let  c~ be a fa i r  execut ion of  a broadcast s y s t em A with a uni-  

versal reliable broadcast channel,  and let l t ime be a logical-t ime as s ignmen t  f o r  

c~. Then  there is ano ther  fa i r  execut ion c~ I of  A such that  

1. c~ ~ contains  the same events  as c~. 

2. The events  in c~ ~ occur in the order of  their  l t imes in c~. 

3. c~ I is indis t inguishable  f r o m  c~ to every process au tomaton .  

P r o o f  S k e t c h .  Similar to the proof of Theorem 18.1, but  this time based on 
Corollary 14.4. It is left as an exercise. M 
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Figure 18.3" Send/receive diagram for reordered execution c~'. 

18.2 Adding Logical Time to Asynchronous 
Algorithms 

In the previous section, we defined the notion of logical time for asynchronous 
send/receive and broadcast systems. Now we give two algorithms for generat- 
ing logical times for the events of a given asynchronous send/receive network 
algorithm A. Each of these algorithms is really an algorithm transformation 
that "transforms" the given algorithm A into a new asynchronous send/receive 
algorithm L(A) with the same underlying network digraph. The transformation 
works process by process, defining L(A)i (process i of the L(A) system) in terms 
of A~ (process i of the A system). The processes in L(A) cooperate to somehow 
"simulate" a fair execution of A, where each L(A)i simulates the corresponding 
Ai. Whenever a process of L(A) simulates a step of A, it also "generates" a 
logical-time value. The fact that we have included quotes around some terms 
(i.e., "transform," "simulate," "generate") indicates that we do not have a sin- 
gle clear meaning for these terms but will interpret them slightly differently in 
different situations. 
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Both the transformations we describe can be modified for use in broadcast 
systems. 

18 .2 .1  A d v a n c i n g  t h e  C l o c k  

The following is a simple algorithm transformation for producing logical times for 
an execution of a given asynchronous send/receive network algorithm A. We call 
it the LamportTime transformation after Lamport ,  its discoverer. It is based on 
maintaining local clocks, advancing them when messages are received in order 
to keep them adequately synchronized. The logical-time domain T is the set of 
pairs (c, i), where c is a nonnegative integer and i is a process index; the ordering 
of pairs is lexicographic. 

Lamport Time transformation:  

Process LamportTime(A)i maintains the state of process Ai, plus a local 
variable clock that takes on nonnegative integer values, initially O. The 
clock variable gets increased by at least 1 at every event (including user 
interface events, send and receive events, and internal events) that occurs 
at process i. The logical time of any event is defined to be the value of the 
clock variable immediately after the event, paired with the process index i 
as a tiebreaker. 

Whenever process i performs a send event, it first increments its clock 
variable to get the clock value v for the send event, then it attaches value 
v to the message being sent, as a timestamp. When process i performs a 
receive event, it increases its clock variable to be not only strictly larger 
than its previous value, but also strictly larger than the t imestamp of the 
message. The new clock value gets  assigned to the receive event. 

More precisely, the code for process i in the LamportTime(A) algorithm is 
as follows. 

LamportTime(A)i" 

Signature: 

As for Ai, except that  send(m)i and receive(m)i actions are replaced, 
respectively, with send(m, c)i and receive(m, c)i actions, where c C IN. 

States: 
As for Ai, plus: 
clock E IN, initially 0 
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Trans i t i ons :  
As for Ai, with the following modifications: 
Input action ~ receive 

Effect" 
As for Ai, plus: 
clock " -  clock + 1 

Locally controlled action ~ send 
Precondition: 

As for Ai. 
Effect: 

As for Ai, plus: 
clock := clock + 1 

Tasks:  
As for Ai (modulo the replacements). 

send(m,  c)i 
Precondition: 

As for send(m) i  in Ai, plus" 
c = clock + 1 

Effect: 
As for send(m) i  in Ai ,  plus" 
clock := c 

~eceive(~, ~)i 
Effect: 

As for receive(m)i  in Ai, plus" 
clock " -  max (clock, c) + 1 

Because each process increments its clock at every step and because of the 
tiebreaker, it is easy to see that LamportTime(A) satisfies Properties 1 and 2 of 
the definition of logical time. Property 3 follows from the handling of the receive 
events. Property 4 follows from the fact that each event causes its associated 
clock variable to be increased by at least 1. 

In terms of the informal conditions mentioned at the beginning of this section, 
the "transformation" of each Ai that produces LamportTime(A)i simply adds the 
new clock component, plus statements to maintain it. It does not, for example, 
add entirely new types of actions or delay events. The "simulation" is step by 
step, directly producing a fair execution of A. When process LarnportTime(A)i 
simulates a step of Ai, the logical-time value that is "generated" is just the pair 
(c, i), where c is the value of clock after the step. 

B r o a d c a s t .  It is easy to modify the LamportTime transformation to work in 
asynchronous broadcast systems. 

18.2.2 Delaying Future Events 

Now we give an alternative algorithm transformation for producing logical times 
in an execution of a send/receive network algorithm A. We call this one Welch- 
Time, after Welch, its discoverer. Like LamportTime, Welch Time is based on 
maintaining local clocks, only this time the clocks are not advanced in response 
to message receipts; rather, messages that arrive "too soon" are delayed. In a 
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sense, this t ransformation is more "intrusive" than the LamportTime transfor- 
mation, because it introduces delays in the events of the underlying execution. 
The logical time domain T is the set of triples (c, i, k), where c is a nonnegative 
real, i is a process index, and k C N+; the ordering of triples is lexicographic. 

Welch Time t r a n s f o r m a t i o n :  

Each process Welch Time(A)i maintains a local variable clock, with non- 
negative real values. We assume that  the clock values of process i are 
maintained by a separate task, which ensures that  the values of the clock 
are monotonically nondecreasing and unbounded. 

The logical time of any event is defined to be the value of clock when the 
event occurs, with the process index as a first-order tiebreaker and (for 
events at the same process when the clock has the same value) a sequence 
number giving the order of execution as a second-order tiebreaker. Note 
that  the clock value does not change during the performance of any event 
of the underlying algorithm A. The clock value of a send event is at tached 
as a timestamp to the message being sent. 

Each process i maintains a FIFO queue receive-buffer, in order to hold 
messages whose t imestamps are greater than or equal to the local clock 
value. When a message arrives at process i, its t imestamp is examined. If 
the t imestamp is less than the current clock value, the message is processed 
immediately; otherwise, it is placed in the receive-buffer. At each locally 
controlled non-clock step, process i first removes from the receive-buffer 
and processes all messages whose t imestamps are less than its current clock 
value; these messages are processed in the order in which they appear in 
the receive-buffer. 

This algorithm is said to simulate a receive(m)i event of A when the corre- 
sponding message is processed (rather than when it first arrives at process 
i). The clock value that  gets associated with the receive event is the clock 
value at the time the message is processed. 

Property 4 of Welch Time(A) follows from the unboundedness of the local 
clock variables. The unboundedness of the local clock variables also implies 
that  every message in a receive-buffer is eventually processed, so every receive 
event is eventually simulated and assigned a logical time. Thus, every event 
does indeed obtain a logical time. Then Properties 1 and 2 follow from the 
tiebreakers and the monotonicity of the local clocks. Property 3 is guaranteed 
by the receive-buffer discipline. 

In terms of the informal conditions mentioned earlier, the "transformation" 
of each Ai that  produces Welch Time(A)i adds and manages the clock, receive- 
buffer, and sequence-number tiebreaker components. In this transformation, 
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receive actions of Ai can be delayed. The "simulation" now produces a fair 
execution of A that reorders some receive events of A with respect to other 
events. Each time process i simulates a step of A, the logical-time value that is 
"generated" is just the triple (clock, i, k), where k is a sequence number used as 
a second-order tiebreaker. 

Note that the amount of delay introduced by the Welch Time transformation 
is especially great when the local clocks are far out of synchronization. This 
algorithm works best when the clocks happen to stay closely synchronized. 

B r o a d c a s t .  It is easy to modify the Welch Time algorithm transformation to 
work in asynchronous broadcast systems. 

18.3 Applications 

In this section, we present some simple applications of the addition of logical 
time to asynchronous network algorithms. 

18 .3 .1  B a n k i n g  S y s t e m  

We consider the problem, given in Exercise 15.43, of counting the total amount of 
money in a banking system in which there are no external deposits or withdrawals 
but in which money is transferred between processes via messages. 

The banking system is modelled as an asynchronous send/receive network 
algorithm A with no actions at its user interface. Each process has a local variable 
money that contains the amount of money currently residing at that location. 
The send and receive actions have arguments that represent amounts of money. 
The processes in A decide when and where to send money and how much to 
send. We make one technical assumption: that each  process sends infinitely 
many messages to each of its neighbors. This is not a serious restr ic t ion-- i t  is 
always possible to add dummy messages containing $0. 

We would like an asynchronous send/receive network algorithm in which each 
process decides on a local balance, in such a way that the total of all the balances 
is the correct amount of money in the system. The execution of this algorithm 
should be triggered by signals arriving from the outside, at one or more of the 
system locations. (These signals could happen at any time and could happen at 
different times at different locations.) 

So, we suppose that algorithm A is transformed somehow (e.g., using Lamport- 
Time or WelchTime) to a new system L(A), which simulates A and generates 
logical times for its events. Then the required algorithm, CountMoney, is oh- 
tained as a further transformation of L(A), where each process CountMoneyi 
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of CountMoney is responsible for "monitoring" the work of the corresponding 
process L(A)i of L(A). 3 

CountMoney algorithm- 
The heart of the algorithm is a "subroutine" that uses a predetermined 

logical time t E T, assumed to be known to all processes. Assuming that 

t is known, the general strategy is 

1. For each process of A, determine the value of the money variable 

after all events with logical times less than or equal to t and before 

all events with logical times greater than t. 

2. For each channel, determine the amount of money in all the messages 
sent at logical times less than or equal to t but received at logical 

times strictly greater than t. 

Specifically, each process CountMoneyi is responsible for determining the 
value of the money variable of process Ai, as well as the amounts of money 

in all the channels incoming to Ai. 

To determine these amounts, process CountMoneyi attaches the logical 
time of each send event to the message being sent, as a timestamp. In 

order to determine the value of the money variable of process Ai, process 

CountMoneyi keeps track of the money values before and after the event of 

Ai most recently simulated. When it simulates the first event of Ai having a 

logical time strictly greater than t, CountMoneyi returns the recorded value 
of the money variable before this event. (There must be such an event, 

because Ai performs infinitely many events and there are only finitely many 

events with logical time less than or equal to t.) 

In order to determine the amount of money in the channel from j to i, 

process CountMoneyi needs to determine the messages whose sendj events 
have logical time less than or equal to t and whose receivei events have 
logical time strictly greater than t. Thus, starting with the first event of 

Ai with logical time exceeding t (i.e., the one at which CountMoneyi deter- 
mines the value of money at Ai), process CountMoneyi records messages 
coming in on the channel. It continues recording them as long as the at- 
tached t imestamp is less than or equal to t. When a message arrives on the 

channel with t imestamp strictly greater than t, CountMoneyi returns the 

aThis construction makes some technical assumptions about the transformed algorithm 
L(A): that the simulation is step by step, and that it produces steps of A and logical times in 
a form that is identifiable by the CountMoney processes. 
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sum of the amounts of money in the recorded messages. (Such a message 
must arrive, because Aj sends infinitely many messages to Ai.) 

The balance computed by each process CountMoneyi (in the subroutine) is 
the sum of the values it determines for process Ai and for all the incoming 
channels. 

Recall that all of this assumed a predetermined logical time t. Since there 
is really no such predetermined t, the processes need some mechanism to 
determine one. (Just choosing an arbitrary t does not work, because that 
logical time might have already passed at some process before it begins 
executing the subroutine.) For example, the processes might use a pre- 
determined sequence tl,  t2 , . . ,  of increasing logical times such that every 
t C T is _~ ti for some i, and at tempt to complete the subroutines for all of 
them (in parallel). By broadcasting their results, the processes can deter- 
mine the first ti whose subroutine succeeds everywhere and use the results 
of that subroutine. 

We argue correctness for the subroutine, for any particular t. First, to see 
that the general strategy yields the correct total amount of money, consider any 
fixed fair execution of CountMoney. This execution simulates a fair execution c~ 
of A, together with a logical-time assignment ltime for a. Then Theorem 18.1 
implies that there is another fair execution (~ of A that contains the same events, 
that is indistinguishable from a to all processes Ai, and in which all events occur 
in the order of their ltimes. What the general strategy does is to "cut" execution 
a~ immediately after any events that have ltime -- t and to record the money that 
is at all the processes and in all the channels, at this instant. Thus, the general 
strategy gives an instantaneous global snapshot of the system during execution 
(~, which must certainly yield the correct total amount of money in the banking 
system. 

It should be straightforward to see that the distributed algorithm in fact 
correctly implements the general strategy. 

E x a m p l e  18.3.1 E x e c u t i o n  of  the  Coun tMoney  a l g o r i t h m  

Figure 18.4 shows a send/receive diagram for a fair execution c~ of 
banking algorithm A, with associated logical times as assigned by 
L(A), with the initial amounts of money at each process at the tops 
of the respective time lines, and with the amounts of transferred 
money labelling the message edges. 

Now consider a fair execution of the CountMoney algorithm that 
simulates execution ~. Suppose the value of t - 7.5 is used in this 
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F i g u r e  18.4: Execution c~ of banking algorithm A. 

execution. Figure 18.5 adds a dotted line to the previous diagram, in- 
dicating (and connecting) the places where logical time 7.5 intersects 
the process time lines. 

In the execution of CountMoney, process 1 determines the value of 
money for process A1 to be $ 1 0 - $ 1 +  $5 = $14; process 2 determines 
the value for A2 to be $20 + $ 1 -  $3 = $18; and process 3 determines 
the value for A3 to be $ 3 0 -  $2 + $ 3 -  $5 = $26. All the channels 
are determined to be empty except for the channel from process 3 
to process 2, which process 2 determines to contain $2. The total 
amount determined is thus $14 + $18 + $26 + $2 = $60, which is the 
correct total. 

Figure 18.6 contains the send/receive diagram for the reordered 
execution c~/, in which the events appear in logical-time order. Here, 
the dotted line corresponding to t = 7.5 is horizontal and cuts exactly 
one edge, the unique edge from process 3 to process 2. It is easy to 



604 18. LOGICAL TIME 

1 2 3 

M 

m 

m 

m 

F i g u r e  18.5- Dotted line for t - 7.5. 

see that the calculated amounts describe exactly the situation at the 
processes and in the channels at time 7.5 in (~. 

We remark that the CountMoney algorithm does not introduce any new de- 
lays in the operation of A, in addition to those already imposed by L(A). 

18.3 .2  G l o b a l  S n a p s h o t s  

The idea of the CountMoney algorithm can be generalized beyond just a bank- 
ing system, to an arbitrary asynchronous send/receive system A. (As before, we 
assume that each process Ai sends infinitely many messages to each of its neigh- 
bors.) Suppose we want an instantaneous global snapshot of the system state 
at some point during an execution of A. This might be useful, for instance, for 
debugging, for establishing a backup version of the system state in case of fail- 
ure, or for detecting certain global properties such as whether the algorithm has 
terminated everywhere. It is possible to obtain an instantaneous global snapshot 
by delaying all the processes and messages for as long as it takes to record all the 
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needed information; however, this strategy is not practical in most distributed 
systems of any realistic size. 

But for some applications, a true instantaneous global snapshot may not be 
needed; a system state that "looks like" an instantaneous global snapshot to all 
processes may be good enough. We listed some examples of such applications in 
the previous paragraph; others will be given later, in Chapter 19. In such a case, 
the strategy used for determining the total amount of money in a banking system 
can be adapted to provide an acceptable global snapshot of asynchronous send/  
receive network system A. As before, A is first augmented with logical times. 

Logica l  T i m e S n a p s h o t  algorithm- 
As for CountMoney, the heart of the algorithm is a subroutine that uses a 
predetermined logical time t E T, assumed to be known to all processes. 
Assuming that t is known, the strategy is 

1. Determine the state of each process of A after all events with logical 
times less than or equal to t and before all events with logical times 
greater than t. 
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2. For each channel, determine the sequence of messages sent at logical 

t imes less than or equal to t but  received at logical t imes strictly 

greater than t. 

This information is determined using the same dis t r ibuted  algori thm that  

is used in CountMoney. 

Any fair execution of Logical TimeSnapshot simulates a fair execution c~ of A, 

together with a logical-time assignment ltime for c~. Then Theorem 18.1 implies 

that  the global state re turned is an instantaneous global snapshot  of another  

fair execution c~ ~ of A that  contains the same events in ltime order and that  is 

indistinguishable from c~ to all processes. This should be sufficient, for example, 

for establishing an acceptable backup version of the system state. 

18.3.3 Simulat ing a Single State Machine  

Logical time can also be used to allow a d is t r ibuted  system to simulate a cen- 

tral ized state machine, or, in other words, a single shared variable. Recall the 

formal notion of a variable type from Section 9.4; it consists of a set V of 

values, an initial value v0, sets of invocations and responses, and a function 

f : invocations x V --+ responses x V. We show how to "implement" a shared 

variable x of a given variable type in the asynchronous broadcast  network model. 

We consider a setting in which there are n user processes submit t ing invo- 

cations to x and receiving responses from x, one user process Ui at each node 

i of the network. We assume that each user process issues invocations sequen- 

tially, that  is, it waits until it has received a response for any previous invocation 

before issuing a new invocation. We would like the users to obtain a view that 

is consistent with there being a single copy of x to which all the operations are 

applied. More precisely, the network as a whole (with send and receive actions 

hidden) should be an atomic object of the given type, as defined in Section 13.1. 

We impose no resiliency requirements here; we only require well-formedness, 
a tomici ty  and failure-free termination.  

There are many possible solutions to this problem, some of which are dis- 

cussed in Section 17.1. For instance, one process could mainta in  a single copy of 

x, performing all the operations on this one copy--see  the SimpleSh VarSim algo- 

r i thm. Here we consider a solution in which every process keeps a private copy 

of x; all invocations are broadcast  to all processes, who perform them on their 

copies. The process originating an operat ion can determine the needed response 

when it performs the operat ion on its local copy. In order for this s t rategy to 

work cor rec t ly - - tha t  is, to guarantee that  all processes perform the operations 

on their copies in the same order and that  the points at which the operations 
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appear  to occur are within their respective invocation-response in tervals- -some 
synchronizat ion is needed. We use the notion of logical time to obtain the needed 
synchronization. 

ReplicatedStateMachine algorithm: 

The algori thm starts  with a trivial asynchronous algori thm A. Each pro- 
cess Ai simply receives invocations from user Ui and broadcasts  them. (It 
does not mat ter  what  processes do with these messages when they are 
received.) In addition, Ai broadcasts  dummy messages, if necessary, to 
ensure that  it broadcasts  infinitely often. Then  logical time is added to A 
by a t ransformation,  yielding L(A), as before. 

The main algori thm uses L(A). Besides a local copy of x, each process i 

has a local variable invocation-buffer in which it stores all the invocations 
it has ever heard about,  together with the logical times of their bcast events. 
Process i places a local invocation in its invocation-buffer when it performs 
the bcast for that  invocation, and places a remote invocation (that is, one 
occurring at another  process) in its invocation-buffer when it performs the 
receive for that  invocation. 

Process i also maintains  a vector known-time, which keeps t rack of the 
largest logical time it has heard about  for each process, initially 0. Thus,  

known-time(i)i is just  the logical time of the most  recent event at process 
i, and known-time(j)i for any j ~ i is the logical time of the bcast event 
for the last message received by i from j. 

Process i is permi t ted  to apply an invocation 7r in its invocation-buffer to 
its copy of x when the following conditions are both true. 

1. Invocation 7r has the smallest logical time of any invocation in invocation- 
bufferi that  has not yet been applied by process i to x. 

2. For every j ,  known-time(j)i is at least as great as the logical t ime 
o f  71-. 

When process i applies an operation that  was invoked locally to its copy 
of x, it conveys the response from x to the user. 

Lemma 18.3 
ject. 

The ReplicatedStateMachine algorithm implements an atomic ob- 

P r o o f .  Well-formedness is easy to see. We argue termination.  Consider any 
fair execution c~. Proper ty  1 of logical time implies that  each invocation in c~ is 
assigned a unique logical time. Proper ty  4 implies that  there are only finitely 
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many invocations in c~ with logical times smaller than any particular t. Thus, 
there is a uniquely defined sequence II of invocations in c~, arranged in the order 
of the logical times of their bcast events. 

The reliable broadcast  ensures that each process eventually places each in- 
vocation in its invocation-buffer. Since infinitely many events occur at each pro- 
cess of A, Property  4 implies that the logical time at each process grows without 
bound. The fact that each process broadcasts  infinitely many times implies that 
each component in each process's known-time vector also grows without bound. 
Then we can argue, by induction on the positions of invocations in sequence II, 
that every invocation eventually is applied to every copy of x. This implies that 
a response is produced for every invocation, showing termination. 

Now we argue atomicity. Consider any (finite or infinite) execution c~. As 
before (see, e.g., the proof of Theorem 17.4), we may assume that there are no 
incomplete operations in c~. 

We first claim that each process applies operations to its local copy of x in 
the order of their logical times, with no gaps. This is because when process i 
applies an operation 7r with logical time t to x, it checks explicitly that it does 
not know of any pending invocations with logical times smaller than t and that 
its known-times for all processes are at least equal to t. Then the FIFO property 
of the broadcast  channel between each pair of processes implies that process i 
will never hear of any other invocations with logical times smaller than t. 

Now we define a serialization point for each operation of c~. Namely, for each 
operation 7r originating at process i whose bcast event has logical time t, choose 
the serialization point to be the earliest point at which all processes in the system 
have reached logical time _> t. (Break ties by arranging the serialization points 
in the order of logical times.) We know that such a point must be reached in 
c~, because we have already argued that process i must apply operation 7r to its 
local copy of x; however, it cannot do this until all its known-times are at least 
t, which implies that all processes have reached logical time at least t. 

Note that the serialization point of any operation 7r cannot be before 7r's 
invocation, because of Proper ty  2 of logical time and the fact that t is the logical 
time of 7r's bcast. On the other hand, the serialization point of 7r cannot be after 
7r's response, because 7r's originating process does not respond to the user until 
after all its known-times are at least t. Thus, the serialization points occur within 
the operation intervals. 

Since the serialization points occur in logical time order, which is the same 
order as that in which the operations are performed on the local copies, the 
"shrinking" property required for the atomicity condition holds. K] 

It is not obvious that the ReplicatedStateMachine algorithm has any advan- 



18.3. APPLICATIONS 609 

tages over the simple centralized SimpleSh VarSim algorithm; after all, Replicated- 
StateMachine essentially requires every process to perform the work done by one 
process in the centralized algorithm. One advantage can be seen in the case where 
the logical times at the different processes happen to remain closely synchronized. 
In this case, the time to perform an operation in the SimpleSh VarSim algorithm 
is approximately a two-way message delay. In ReplicatedStateMachine, on the 
other hand, an operation 7r can be performed by the originating process i as soon 
as it learns that all the other processes have reached the logical time assigned 
to the bcast event of 7r. If the clocks are closely synchronized, this requires only 
approximately a one-way message delay. 

ReplicatedStateMachine can be used to implement all the shared variables in 
a distributed implementation of a shared memory system. This approach is an 
alternative to the implementation techniques suggested in Section 17.1. 

Spec ia l  h a n d l i n g  of  r e a d  o p e r a t i o n s .  Suppose that some of the operations 
on the shared variable x being implemented are read operations (or, more gener- 
ally, any operations that do not modify the value of the variable but only return 
a response). Then ReplicatedStateMachine could be modified to perform these 
operations locally, without using the invocation-buffer mechanism at all. This 
modification yields weaker correctness guarantees than those of an atomic object, 
but it may still be reasonable for many applications. 

B a n k i n g  d i s t r i b u t e d  d a t a b a s e .  The ReplicatedStateMachine algorithm can 
be used in a setting where the shared variable x represents an entire banking 
database. Typical operations for this case would be deposit, withdraw, add- 
interest, and so on. The database might be replicated, say, at each branch of the 
bank. For many operations in such a database, the order of the updates is im- 
portant.  For example, different results can be obtained if a withdraw operation 
is invoked before a deposit rather than after, if the balance is low. Thus, consis- 
tent order of application of operations, as ensured by the ReplicatedStateMachine 
algorithm, is important.  

It is often useful for the individual branches to be able to read information 
from the local copy of the database, even when the information is not completely 
up-to-date. In this case, the special handling of read operations described above 
can be useful. 

M u t u a l  exc lu s ion .  The mutual exclusion problem is defined in Chapter 10 for 
the asynchronous shared memory model and in Chapter 20 for the asynchronous 
network model. Briefly, users request exclusive use of a resource via try actions, 
and the system grants it via crit actions. Users return the resource via exit 
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actions, and the system responds with rein. The system is supposed to guarantee 
that at most one user has the resource at a time and that the resource continues 
to be granted if there are requests. Here, we will also require lockout-freedom, 
that is, that every request is eventually granted. 

The ReplicatedStateMachine algorithm can be used to help solve the mutual 
exclusion problem in a broadcast  network. In this case, the shared variable x 

is a FIFO queue of process indices, supporting operations add(i), first(i), and 
remove(i). The add(i) operation adds the indicated index to the end of the 

queue. The first(i) operation is a query that returns true if i is the first element 
on the queue, but otherwise returns false. The remove(i) operation removes all 
occurrences of index i from the queue. Let Bx be an atomic object for x, where 

port i supports all the operations with argument i. 
When user i requests access to the critical region via a tryi event, process i 

invokes an add(i) operation on atomic object B~, which has the effect of adding i 
to the end of the queue. Then process i repeatedly invokes the first(i) operation, 
waiting for the answer true, which indicates that i has reached the first position 
on the queue. When i receives the answer true, it allows user i to go to the 

critical region with a criti event. When user i exits the critical region with an 
exit4 event, process i invokes a remove(i) operation on atomic object B~. When 
this operation returns, process i allows user i to go to the remainder region with a 
rera operation. (This is essentially the QueueME algorithm from Section 10.9.2.) 
This solves the mutual exclusion problem (with lockout-freedom), using any 
implementation of atomic object B~, in particular, using ReplicatedStateMachine. 

However, if ReplicatedStateMachine is used, a simple optimization is possible. 
Namely, modify the add(i) operation so that it has a return value: either the index 
of i's predecessor j on the queue, if there is one, or else null. If the return value 
is null, then there is no predecessor and process i can immediately perform criti. 
Otherwise, process i simply waits until it performs remove(j) for i's predecessor 

j on its local copy of the queue (at which point it knows that user j has returned 
the resource). Then it performs crit4. The exit4 is handled as before. 

18.4 Transforming Real-Time Algorithms to 
Logical-Time Algorithms* 

Each of the algorithms we have described so far has been built upon an asynchro- 
nous algorithm A, augmented with logical time. Another design strategy is to 
start  with an algorithm that uses a notion of "real time," and then to t ransform 
it into one that uses logical time instead of real time. 

Suppose that we begin with an asynchronous send/receive network system 
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A in which each process Ai has a local variable real-time with values in R >-~ 

initially 0. Suppose that all the processes'  real-time variables are maintained by 

a global RealTime I /O  automaton, via tick(t) outputs that simultaneously set 

all the processes'  real-time variables to t. (The I /O  automaton model permits  

a single output  action to synchronize with more than one input action.) The 
only requirement on the Real Time automaton is that the times occurring as 

arguments in its output  events should be nondecreasing and unbounded in any 
fair execution. 4 The processes Ai are not permit ted to modify the real-time 
variables. 

Then it is possible to t ransform each process Ai into a process Bi that works 
without Real Time, using logical time instead. Bi does not have a real-time 
variable but instead has a clock variable that it uses in the same way as Ai uses 

real-time. The clock variables are maintained by the Bi using an implementation 

of logical time for which the logical-time domain is R ->~ (or a subset of R->~ 
In order to describe what this t ransformation guarantees, we consider both 

system A and its t ransformed version B, each composed with user automata  Ui, 
one per node i. Then we obtain 

T h e o r e m  18.4 For every fair execution a of the B system (i.e., B plus user 
automata), there is a fair execution a' of the A system (A plus Real Time au- 
tomaton plus users) that is indistinguishable from a to each Ui. 

That  is, each fair execution of B looks like an execution of A to each indi- 
vidual user. 

Example 18.4.1 Banking system 

It is possible to design an algorithm similar to CountMoney but using 

real time, to count the total amount  of money in a bank. Namely, each 
process i records the value of its money variable just  before the step 
where it finds that its real-time variable exceeds t. Then it records all 
incoming messages sent when the sender's real-time variable is less 
than or equal to t, but received when process i's real-time variable 

is greater than t. 

The resulting algorithm can be t ransformed as above into an al- 

gorithm that uses logical time. 

4Since RealTime is just an ordinary I//O automaton, we cannot assume anything about the 
"rate" at which its outputs occur. In Chapters 23-25, we consider a model in which such rate 
assumptions can be expressed. 
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18.5 Bibl iographic  Notes  

The notion of logical time is due to Lamport, in his famous paper "Time, Clocks 
and the Ordering of Events in a Distributed System" [176]. That paper also 
contains the LamportTime algorithm transformation, as well as a short descrip- 
tion of the key ideas of the ReplicatedStateMachine algorithm. Lamport later 
extended the replicated state machine approach to tolerate a limited number of 
failures [179]. Schneider [255] has written a survey of the uses of replicated state 
machines to implement fault-tolerant services. 

The Welch Time algorithm transformation is due to Welch [286]; the same 
transformation is also studied by Neiger and Toueg [232] and is extended to a 
partially synchronous model by Chaudhuri, Gawlick, and Lynch [74]. 

The CountMoney and LogicaI TimeSnapshot algorithms are closely related to 
the consistent global snapshot algorithm of Chandy and Lamport [68]. 

Banking database examples such as those in this chapter are discussed ex- 
tensively by Lynch, Merritt, Fekete, and Weihl in [207]; the focus there is on 
atomic transactions for banking and other databases. 

The "vector clocks" algorithm outlined in Exercise 18.17 is due to Mattern 
[222], Liskov and Ladin [197], and Fidge [115]. It is used in the Isis system [52]. 
A survey of applications of vector clocks appears in [256]. 

18.6 Exercises  

18.1. Prove Theorem 18.2. 

18.2. Write "code" for the Welch Time algorithm transformation in the same 
general style as the LamportTime code. 

18.3. Describe an implementation of logical time for a send/receive network sys- 
tem in which the logical time domain is R >~ 

18.4. During a Friday late-night work session, over pizza, several of the pro- 
grammers at the Flaky Computer Corporation have invented four notions 
of "illogical time" for asynchronous send/receive network systems. Each 
of the four notions of illogical time results from dropping exactly one of 
the four properties required for logical time. They think that these notions 
might be useful for some applications. For each of their four notions, 

(a) Describe an algorithm transformation that imposes that kind of illog- 
ical time on executions of a given asynchronous network algorithm 
A. 



18.6. EXERCISES 613 

(b) Discuss possible applications. 

18.5. The CountMoney algorithm is formulated as a double algorithm transfor- 
mation applied to the underlying banking system A, which may make it 
difficult to see what is going on. For this exercise, you will combine the 
various pieces into a single algorithm. 

(a) 

(b) 

(c) 

Write precondition-effect code for any specific banking system A of the 
type allowed in Section 18.3.1. That  is, you need to specify the initial 
amounts of money at all the processes, plus some rules determining 
when and to whom money is transferred, and how much is sent. 

Write precondition-effect code for a modified version of your algorithm 
A from part (a) that includes logical times. You may choose your 
favorite algorithm for generating logical times. 

Write precondition-effect code for a modification of your algorithm 
from part (b) that uses the strategy of CountMoney to produce the 
required balances. Be sure to include a mechanism for determining 
an appropriate logical time t. 

18.6. Reconsider the banking system example in Section 18.3.1. Now suppose 
that the underlying banking system A allows deposits and withdrawals 
(modelled as input actions at the user interface of the system) in addition 
to transfers. If we apply the same CountMoney transformation as before, 
what can be claimed about the output of the resulting system? 

18.7. Adapt the Logical TimeSnapshot algorithm to broadcast systems rather 
than send/receive systems. State carefully what your algorithm guaran- 
tees. 

18.8. In the CountMoney and Logical TimeSnapshot algorithms, the logical time 
is piggybacked on each message. Develop an alternative algorithm that 
does not piggyback logical time but instead sends a single extra marker 
message on each channel to indicate the dividing point between the mes- 
sages sent at logical times less than or equal to t and those sent at logical 
times greater than t. Prove its correctness. 

18.9. Give an alternative proof of Lemma 18.3 based on Exercise 13.21. 

18.10. Suppose that "illogical time," in particular, the kind of logical time that 
satisfies Properties 1, 2, and 4 but not Property 3 ~, is used in the Replicated- 
StateMachine algorithm. What properties are guaranteed? 
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18.11. Develop the modified implementation of a shared variable described in Sec- 
tion 18.3.3, which handles read operations locally. Show that it does not, 
in general, implement an atomic object. State carefully what correctness 
conditions it does satisfy. 

18.12. The optimized mutual exclusion algorithm at the end of Section 18.3.3 
is described in several pieces: a simple asynchronous algorithm A with 
logical time imposed upon it, the ReplicatedStateMachine algorithm, and 
a main algorithm that uses the replicated queue. Combine all these pieces 
into a single algorithm. Write precondition-effect code for your algorithm 
and sketch a correctness proof. 

18.13. The ReplicatedStateMachine algorithm uses logical time to implement an 
atomic object in the broadcast network model. How can it be modified to 
work in the send/receive network model? 

18.14. Give a careful proof of Theorem 18.4; this will require describing the trans- 
formation precisely. 

18.15. Design an algorithm based on logical time for simulating single-writer/ 
multi-reader shared memory algorithms in an asynchronous send/receive 
network. This method should be an alternative to the two-phase locking 
strategy described in Section 17.1.2. Each reader of a shared variable x 
should keep a local copy of x. Each read and write operation on x should 
be assigned a logical time, and the operations should be performed on 
each local copy in the order of their logical times. All operations must be 
guaranteed to terminate. 

Give precondition-effect code, state and prove a correctness result, and 
analyze the complexity. 

18.16. Generalize your answer to Exercise 18.15 to multi-writer/multi-reader shared 
memory algorithms. 

18.17. Consider weakening the definition of logical time to weak logical time, by 
allowing T to be a partially ordered set rather than a totally ordered set. 
However, Properties 1-4 in the definition of logical time must still hold. 
Thus, not all events are required to be related in the logical time order, 
but events that  depend on each other (events at the same node, or sends 
and corresponding receives) must still be related. 

(a) Give a version of Theorem 18.1 that holds for a weak logical-time 
assignment. It should be stated in terms of an arbitrary total order 
consistent with the given partial order. Prove your result. 
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(b) Develop an algorithm transformation for producing a weak logical- 
time assignment for an execution of a given asynchronous network 

algorithm A. The times associated with events should only be related 

in the underlying partial order T if there is a dependency between the 
events. (Hint: An algorithm can be based on the set T of length n 

vectors of nonnegative integers. We say that C <T C ~ provided that 
C(i) <_ C'(i) for all i and C(i) < C'(i) for some i; that is, the vector 

C ~ is at least as large as C in all components and strictly larger in 

some component.  

Each process i maintains a local clock that is a vector in T, initialized 
at all 0s. When any event occurs at process i, clocki(i) is increased 

by at least 1. When process i sends a message, it first increments 

clocki(i), then attaches the resulting vector to the message as a times- 

tamp. When process i receives a message, it first increments clocki(i), 
then sets its clock vector to be the component-wise maximum of the 

newly incremented clock vector and the vector t imestamp of the mes- 
sage.) 

Show that your t ransformation in fact produces a weak logical-time 

assignment and that the times of events are only related by T if there 

is a dependency between the events. 
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Chapter 19 

Consis tent Global Snapshots  
and Stable Property  Detect ion  

In this chapter, we present the last of our four methods for simplifying the pro- 
gramming of asynchronous networks, namely, monitoring an asynchronous net- 
work algorithm A while it runs. For instance, a monitoring algorithm might 

�9 assist in debugging A, say by checking for violation of desired invariants 

�9 produce backup versions of A's global state 

�9 detect when A has terminated execution 

�9 detect whether some of the processes of A are involved in a "deadlock," 
that is, a situation in which several processes are all waiting for each other 
to do something 

�9 compute some global quantity (e.g., the total amount of money) being 
managed by A 

We focus on two notions in this chapter: consistent global snapshots and 
stable property detection. A global snapshot returns a global state of A, that is, 
a collection of states for all processes and channels of A. The snapshot is said to 
be "consistent" if it looks to the processes as if it were taken at the same instant 
everywhere in the system. Such a snapshot is useful for all the tasks listed above. 
A stable property of A is any property of the global state of A that, if it ever 
becomes true, will remain true forever. Examples of stable properties are system 
termination and deadlock. 

Each monitoring algorithm is described as a transformed version B(A) of the 
original algorithm A; more specifically, B(A) is based on the same underlying 
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graph as A, and each process B(A)i is defined only in terms of the corresponding 

process Ai. B(A)i is not expressed as a simple composition of some new I /O 
automaton with Ai, because the new process B(A)i needs access to the state of 

Ai. Rather, B(A)i is described as adding some new state components and actions 
and making some modifications to old actions. We constrain these changes so 

that they do not interfere much with the operation of A. 

19.1 Termination-Detection for Diffusing 
Algorithms 

We begin by considering just the termination-detection problem, for an asynchro- 

nous send/receive algorithm A of a particularly simple type known as a diffusing 
algorithm. 

19 .1 .1  The P r o b l e m  

We assume that the underlying graph G is an arbitrary connected undirected 

graph. We assume that in algorithm A, all processes' initial states are quiescent 
(as defined in Section 8.1). That is, only input actions are enabled. We consider 

A in an environment that only supplies a single input event to a single (arbitrary) 
process. According to the I /O automaton definitions, the arrival of such an 

input at a process can enable the process to perform locally controlled actions, 

including sending messages to other processes. These messages may then awaken 
the recipient processes, who may then send additional messages, and so on. The 

algorithm A is said to be diffusing because all activity begins at the location 

where the input occurs and "diffuses" through some portion of the network via 
messages. 

A global state of A is said to be quiescent provided that no process is en- 

abled to perform any locally controlled action and there are no messages in the 
channels. (This again coincides with the definition of quiescent in Section 8.1, 
this time applied to the single I /O automaton representing the entire algorithm 
A.) The termination-detection problem 1 for A is as follows: if, sometime after 
an input occurs at some process Ai, algorithm A ever reaches a quiescent global 

state, then eventually a special donei output should be performed at node i. 
The actual termination detection, including the done output, is to be per- 

formed by a monitoring algorithm B(A). B(A) should also be a send/receive 
network algorithm, based on the same graph G as A. Each process automaton 

lin this chapter, we use "termination" to mean quiescence; in most other places in the book, 
we use it to mean that the system produces an answer. 
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B(A)i of the monitoring algorithm B(A) should be defined in terms of the cor- 

responding process automaton Ai. The changes we permit to Ai in order to get 

B(A)i are as follows. 

�9 B(A)i may contain new state components in addition to all the state com- 

ponents of Ai. 

The projection of the start states of B(A)i on the state components of Ai 
must be exactly the start states of Ai. 

�9 B(A)i may contain new input, output, and internal actions, in addition to 

the actions of Ai. 

The actions of Ai may have new information piggybacked on them in B(A)i, 
for example, a send(m)i action may be transformed into a send(m,c)i 
action. The actions of Ai retain their preconditions and remain in the 
same classes of the task partition in B(A)i. They have the same effects 

as before on the state components of Ai, but they may also affect the new 

state components. 

�9 The new input actions of B(A)i can change the values of the new state 

components of B(A)i only. 

The preconditions of the new locally controlled actions of B(A)i may in- 

volve the entire state of B(A)i, including both old and new state compo- 
nents. However, the new locally controlled actions may affect only the new 

state components of B(A)i. They are grouped into new classes in the task 

partition of B(A)i. 

19.1.2 The DijkstraScholten Algorithm 

We present the DijkstraScholten algorithm for termination detection for diffusing 
algorithms. The idea of the algorithm is to augment the underlying algorithm 
A with the construction and maintenance of a spanning tree of the graph nodes 

currently involved in A. This tree is rooted at the source node, that is, the node 
at which the input occurs. The construction of the spanning tree is similar to 

the AsynchSpanningTree algorithm in Section 15.3, but it is more complicated 

because it allows the tree to shrink and grow repeatedly, incorporating the same 
node many times. (The same sorts of complications appeared in the termination 

protocol for AsynchBFS in Section 15.4.) 
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DijkstraScholten algorithm (informal): 

The messages used by the algorithm are the messages of A plus an ack 
message. The messages of A are treated like the search messages in the 
AsynchSpanningTrce algorithm. Each process other than the source desig- 
nates the neighbor from which it first receives an A message as its parent 
in the spanning tree. Any subsequent A message is immediately acknowl- 
edged; only the first remains unacknowledged (for now). Also, the source 
process immediately acknowledges any A message it receives. Thus, as 
A messages get sent around the network, a spanning tree of the nodes 
involved in the protocol is constructed. 

Now, we allow the spanning tree to "shrink," using a convergecast proce- 
dure, in order to report termination back to the source process. Specifi- 
cally, each process DijkstraScholten(A)i looks for a situation when both of 
the following local conditions hold simultaneously: 

1. The state of Ai is quiescent. 

2. All its outgoing A messages have been acknowledged. 

When it finds this, it "cleans up": a non-source process sends an acknowl- 
edgment to its parent and deletes all information about this protocol, while 
a source process reports that it is done. 

A similar cleanup procedure to the one used here was described for the Asynch- 
BcastAck algorithm in Section 15.4. But in the present case, after a process 
cleans up, it may receive another A message, causing it to participate once 
again in the spanning tree construction. In fact, this may happen any number 
of times, depending on the message transmission pattern of the underlying al- 
gorithm A. That  is, the spanning tree in the DijkstraScholten(A) algorithm can 
grow and shrink repeatedly and can grow in different ways at different times. 

Example 19.1.1 Growing and shrinking spanning tree 

Suppose the underlying graph G consists of nodes 1, 2, 3, and 4, 
connected as in Figure 19.1, and consider the following scenario, de- 
picted in that figure. Here we use the notation DS(A)i as shorthand 
for the process DijkstraScholten(A)i. 

(a) Process A1 receives an input, awakens, and sends messages 
to its neighbors, A2 and A3. 

(b) Processes DS(A)2 and DS(A)3 receive the messages from Ai 
and set their parent pointers to point to node 1. Then A2 and A3 
awaken and send messages to each other. Since each of DS(A)2 and 
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(b) (a) 

(c) (d) 

(e) 

Figure 19.1: An execution of DijkstraScholten(A). An arrow on an edge indicates 
a message in transit; an arrow parallel to an edge indicates a parent 
pointer. 

DS(A)3 already has a parent,  it responds with an acknowledgment.  

Next, each of A2 and Aa sends a message to A4. 

(c) A2's message reaches process DS(A)4 first, so DS(A)4 sets 
its parent pointer to 2 and immediately acknowledges the message 

from A3. Now processes A1, A2, A3, and A4 continue their work 
for a while, sending messages to each other as needed; each message 
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is immediately acknowledged. Next, A2 reaches a quiescent state. 
DS(A)2 cannot yet clean up, because it still has not received an 
acknowledgment for its initial message to A4. 

(d) Now An reaches a quiescent state. Since DS(A)4 has no unac- 
knowledged A messages, it sends an acknowledgment to its parent, 
DS(A)2, and then cleans up, forgetting everything about its partici- 
pation in the protocol. When DS(A)2 receives this acknowledgment, 
A2 is still in a quiescent state and DS(A)2 has now received acknowl- 
edgments for all its outgoing A messages; therefore, DS(A)2 sends 
an acknowledgment to its parent, DS(A)I, and then cleans up. Next, 
A3 sends messages to A2 and A4. 

(e) When A2 and A4 receive these messages, they awaken just as 
they did earlier, reset their parent pointers to point to 3, and continue 
carrying out the work of algorithm A. 

This execution can continue in this fashion indefinitely, with por- 
tions of the spanning tree growing and shrinking as corresponding 
portions of algorithm A quiesce. But if all of algorithm A ever be- 
comes quiescent, then the tree eventually shrinks down to the source 
node 1. If A1 reaches a quiescent state and DS(A)I has acknowl- 
edgments for all its outgoing messages, then DS(A)I can announce 
termination. 

The code for process i in the DijkstraScholten(A) algorithm is as follows. 
The deficit variable is used to keep track of the number of outstanding acknowl- 
edgments. 

DijkstraScholten(A)i a u t o m a t o n  ( fo rmal ) :  

Signa tu re :  

As for Ai, plus: 
Input: Internal: 

receive( "ack")j,i, j C nbrs cleanup~ 
Output: 

send( "ack")i,j, j C nbrs 
donei 

States:  
As for Ai, plus: 
status E {idle, source, non-source}, initially idle 
parent C nbrs U {null}, initially null 
for every j E nbrs: 

send-buffer(j), a FIFO queue of ack messages, initially empty 
deficit(j) C N, initially 0 
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Transi t ions:  

Input of Ai ~ receive 
Effect: 

As for Ai, plus: 
status := source 

receive(m)j,i, m an A message 
Effect: 

As for Ai, plus: 
if s t a t u s -  idle then 

status :-- non-source 
parent := j 

else add "ack" to send-buffer(j) 

Locally controlled action of Ai ~ send 
Precondition: 

As for Ai. 
Effect: 

As for Ai. 

send(m)i,j ,  m an A message 
Precondition: 

As for Ai. 
Effect: 

As for Ai, plus: 
deficit(j) := deficit (j) + 1 

send( "ack")~,j 
Precondition: 

"ack" is first on send-buffer(j) 
Effect: 

remove first element of send-buffer(j) 

receive( "ack")j,i 
Effect: 

deficit(j) := deficit (j) - 1 

cleanupi 
Precondition: 

status = non-source 
state of Ai is quiescent 
for all k E nbrs 

deficit(k) = 0 
Effect: 

add "ack" to send-buffer(parent) 
status := idle 
parent := null 

donei 
Precondition: 

status = source 
state of A~ is quiescent 
for all k E nbrs 

deficit(k) = 0 
Effect: 

status := idle 

Tasks: 
As for Ai, plus: 
{donei} 
{ cleanupi } 
for every j C nbrs: 

{send( "ack")i,j} 

It  shou ld  be c lear  t ha t  any  g lobal  s t a t e  of D i j k s t r a S c h o l t e n ( A )  p r o j e c t s  to  give 

a g loba l  s t a te  of A, and  tha t  any  fair  e x e c u t i o n  of D i j k s t r a S c h o l t e n ( A )  p r o j e c t s  

to  give a fair  e x e c u t i o n  of A. To see tha t  D i j k s t r a S c h o l t e n ( A )  cor rec t ly  de t ec t s  

t e r m i n a t i o n  of A, we first p rove  a m u l t i p a r t  i nva r i an t  a s s e r t i o n  l e m m a .  T h e  key 

inva r i an t s  are  the  las t  two: the  nex t  to  last  says  t ha t  the  p a r e n t  p o in t e r s  f o rm  

a s p a n n i n g  t r ee  for the  n o n - i d l e  proces ses ,  whi le  the  last  impl ies  t ha t  a d o n e  

r e p o r t  m e a n s  t ha t  A has b e c o m e  qu iescen t .  
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L e m m a  19.1 In any state of DijkstraScholten(A) after an execution containing 
an input at node i, the following are true: 

1. statusi E {source, idle} and parenti = null. 

2. For every j 7~ i, statusj 6 {idle, non-source}, and if statusj = non-source, 
then parentj 7~ null. 

3. For every j ,  if statusj = idle, then the projected state of Aj is quiescent, 
parentj = null, and deficit(k)j = 0 for every k. 

~. For every j and k, deficit(k)j is the sum of the following four quantities" 
the number of A messages in the channel from j to k, the number of acks 
in send-buffer(j)k, the number of acks in the channel from k to j ,  plus 1 
if parentk = j .  

5. I f  statusi = source, then the parent pointers form a directed tree rooted at 
i and spanning exactly the set of nodes with status 7~ idle. 

6. I f  statusi = idle, then statusj = idle for all j and all channels are empty. 

P r o o f .  The proof is left as an exercise. O 

T h e o r e m  19.2 The DijkstraScholten(A) algorithm detects termination for a 
diffusing algorithm A. 

P r o o f .  Par ts  6 and 3 of Lemma 19.1 imply that if DijkstraScholten(A) an- 

nounces terminat ion then in fact A has become quiescent. We must  also show 

the required liveness property:  if A becomes quiescent, then eventually Dijkstra- 
Scholten(A) announces terminat ion.  

So consider, for the sake of contradict ion,  a fair execution c~ of Dijkstra- 
Scholten(A) in which algori thm A becomes quiescent and in which no done event 

occurs. Then, after the point  of quiescence, no further A messages are sent or 

received; it follows that the tree formed by the parent pointers (as described in 

Par t  5 of Lemma 19.1) cannot  grow any further. Eventually, this tree must  stop 

shrinking, stabilizing to a fixed tree T. (This tree T must  contain at least the 

source node, because we are assuming that  no done event is ever performed.)  

Since there are no further A messages or changes to the tree, eventually there 

are no further ack messages anywhere in the global state. Thereafter,  the first 

three terms in the sum for any deficit(k)j as described in Par t  4 of Lemma 19.1 

must  be 0, and the only way any deficit(k)j might be non-zero is if parentk = j.  
But then any leaf node i of T is enabled to perform a cleanup, so it eventually 

does so. But  this means that  T shrinks further, a contradiction.  It follows that  
eventually in c~, a done event must  occur. E] 
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C o m p l e x i t y  ana ly s i s .  Consider an execution of the DijkstraScholten(A) al- 
gorithm containing a done event. The total number of messages sent in c~ is 
2m, where m is the number of messages sent in the contained execution of A. 
An upper bound on the time from when A quiesces until the done event is 
O (m(t~ § d)), where t~ and d are defined as usual. Note that the communica- 
tion and time complexity do not depend directly on the size of the network, but 
rather on the number of A messages sent. If A only operates for a short time in 
a small portion of the network, then it will normally send only a small number 
of messages, so DijkstraScholten(A) only incurs correspondingly small costs. On 
the other hand, if A sends a large number of messages then DijkstraScholten(A) 
can be quite expensive. 

Example  19.1.2 Breadth-first  search 

Recall the AsynchBFS algorithm from Section 15.4, in which pro- 
cesses correct erroneous parent information until this information 
stabilizes. As presented, the algorithm does not terminate, since the 
processes have no way of knowing when the algorithm has become 
quiescent. 

To express A synchBFS as a diffusing algorithm, we make a tiny 
change, letting process i0 be initially quiescent and awakening it with 
a wakeup input action. Then we apply the DijkstraScholten algorithm 
to obtain a terminating BFS algorithm. This is a systematic version 
of the ad hoc termination strategy presented for A synchBFS. 

19.2 Consis tent  Global Snapshots 

Now we turn to the problem of taking a consistent global snapshot of a running 
asynchronous send/receive network algorithm A. Informally speaking, we say 
that a snapshot is "consistent" if it looks to the processes as if it were taken at 
the same instant everywhere in the system. 

19 .2 .1  T h e  P r o b l e m  

Once again, we assume that the underlying graph G is an arbitrary connected 
undirected graph. Now the underlying algorithm A is an arbitrary send/receive 
network algorithm. The snapshot is to be taken by a monitoring algorithm B(A), 
also a send/receive network algorithm based on graph G. Again, each process 
automaton B(A)~ of the monitoring algorithm B(A) should be defined in terms 
of the corresponding Ai. 
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The types of changes we allow this time are a little more general than those 
we allowed in Section 19.1.1, but they still are enough to ensure that any fair 
execution of B(A) "contains" a fair execution of A. The difference is that now 
we also allow B(A)i to "delay" a send(m)i,j action of Ai until after B(A)i places 
another message ahead of rn in the channel from i to j.  

We assume that each B(A)i has an input action snapi that signals it to begin 
taking a snapshot of A. We require that in any fair execution of B(A) containing 
at least one snap input event, eventually every B(A)i will perform a report4 
output containing a state of Ai and states for all the channels of A incoming to 

Ai. 
The various states reported by all the B(A)i constitute a global state of A. 

We require that this state satisfy a consistency property. Namely, let c~ be the 
fair execution of A that is contained in the given fair execution of B(A). There 
should be another fair execution c~ ~ of A such that all of the following conditions 
hold: 

1. c~' is indistinguishable from c~ to each process Ai. 

2. c~' begins with the prefix Ctl of c~ occurring before the first snap event in 
the given execution of B (A). 

3. c~ ~ ends with the suffix c~2 of c~ occurring after the last report event in the 
given execution of B (A). 

4. The returned state is exactly the global state after a prefix of c~ ~ that in- 
cludes all of c~1 and none of c~2. 

Thus, as far as the processes can tell, the returned global state is extracted 
instantaneously at some point in the execution of A. Moreover, this point is 
somewhere between the beginning and the end of the execution of the snapshot 
algorithm. 

Example 19.2.1 Banking system 

Let A be the banking system of Example 18.3.1. Figure 18.4 de- 
picts an execution of A containing five transfers of money among the 
three processes in the system. (Ignore the logical time labels in the 
diagrams.) Suppose that some process of the monitoring algorithm 
B(A) receives a snap input at the beginning of the execution. Then 
one example of a global state that might be returned by a consistent 
global snapshot algorithm is the one given in Figure 18.5. That is, 
B(A)I ,  B(A)2, and B(A)3 return $14, $18, and $26 as the respec- 
tive states of A1, A2, and A3. All channels are determined to be 
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empty except for the channel from A3 to A2, which B(A)2 reports as 
containing a single message with value $2. The needed alternative 
execution c~' is depicted in Figure 18.6. 

19.2.2 The ChandyLamport Algorithm 

We have already described one solution to the consistent global snapshot problem- 
the LogicalTimeSnapshot algorithm of Section 18.3.2. Now we present an alter- 
native algorithm, the ChandyLamport global snapshot algorithm, which is very 
much like LogicaITimeSnapshot but does not use an explicit logical time t. In- 
stead (as suggested in Exercise 18.8) it uses new marker messages to indicate 
the dividing points between the messages sent at times _< t and those sent at 
times > t. 

ChandyLamport algorithm (informal): 

When a process ChandyLamport(A)i that  has not previously been involved 
in the snapshot algorithm receives a snapi input, it records the current 
state of Ai. Then it immediately sends a marker message on each of 
its outgoing channels; this marker indicates the boundary between the 
messages that  are sent out before the local state was recorded and the 
messages sent out afterward. 2 

Then ChandyLamport(A)i begins recording the messages arriving on each 
incoming channel in order to obtain a state for that  channel; it records 
messages on the channel just until it encounters a marker. At this point, 
ChandyLamport(A)i has recorded all the messages sent on that  channel 
before the neighbor at the other end recorded its local state. 3 

There is one remaining situation to consider: suppose that  process Chandy- 
Lamport(A)i receives a marker message before it has recorded the state 
of Ai. In this case, immediately upon receiving the first marker message, 
ChandyLamport(A)i records the current state of Ai, sends out marker mes- 
sages, and begins recording incoming messages. The channel upon which 
it has just received the marker is recorded as empty. 

The code appears below. 

2For example, if A is a banking system as described in Example 19.2.1, then money sent 
before the marker  is not included in the recorded local s tate  of the sender, but  money sent 
after the marker is included. 

3In the banking example, this means tha t  ChandyLamport(A)i has counted all the money 
tha t  was sent out by the neighbor before recording its local s tate  and hence was not counted 
by the neighbor. 
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ChandyLamport(A)i automaton (formal)" 

Signature: 

As for Ai, plus: 

Input :  
snapi 
receive( "marker")j,i, j C nbrs 

Output :  
report(s, C)i, s E states(A~), C a mapping from nbrs to finite sequences of A messages 
send( "marker")i,j, j E nbrs 

Internal:  
internal-send(m)id, j C nbrs, m a message of A 

States: 
As for Ai, plus: 
status C {start, snapping, reported}, initially start 
snap-state, a state of Ai or null, initially null 
for every j E nbrs: 

channel-snapped(j), a Boolean,  initially false 
send-buffer(j), a F I F O  queue of A messages and markers, initially empty  
snap-channel(j), a F I F O  queue of A messages,  initially empty  

Transitions: 
snapi 

Effect: 
if status = start then 

snap-state : -  s tate of Ai 
status := snapping 
for all j E nbrs do 

add "marker" to send-buffer(j) 

Input  of A i r  receive 
Effect: 

As for Ai. 

receive(m)j,i, m an A message 
Effect: 

As for Ai, plus: 
if status = snapping 

and channel-snapped(j) = false then 
add m to snap-channel(j) 

receive("marker") j, i 
Effect: 

if status = start then 
snap-state := state of Ai 
status := snapping 
for all j E nbrs do 

add "marker" to send-buffer(j) 
channel-snapped(j) := true 

Locally controlled action of Ai ~ send 
Precondit ion:  

As for Ai. 
Effect: 

As for Ai. 

internal-send( m ) i,j 
Precondit ion:  

As for send(m)i,j in Ai. 

Effect: 
add m to send-buffer(j) 
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send(m)i,j 
Precondition: 

m is first on send-buffer(j) 
Effect" 

remove first element of send-buffer(j) 

report(s, C) i 
Precondition: 

status = snapping 
for all j C nbrs 

channel-snapped(j) = true 
s = snap-state 
for all j C nbrs 

C (j ) = snap-channel(j) 
Effect: 

status :-- reported 

Tasks: 
As for Ai, except: 
internal-sends are in tasks corresponding to sends in Ai, 
plus there are new tasks: 

{report(s, C)i : s E states(Ai), C a mapping} 
for every j C nbrs: 

{send(m)i, j:m a message} 

T h e o r e m  1 9 . 3  

snapshot for  A.  

The ChandyLamport (A)  algorithm determines  a consistent global 

P r o o f .  F ix  any fair execut ion of ChandyLamport (A)  in which some process  

receives a snap input .  We first argue tha t  every process  eventua l ly  per forms  a re- 

port outpu t .  As soon as any snap input  occurs  at some process  ChandyLamport (A) i ,  

tha t  process  records the s ta te  of Ai and sends out markers  on all its channels.  As 

soon as any  other  process  ChandyLampor t (A) j  receives a marker  on any channel,  

it records the s ta te  of Aj  and sends out markers  on all its channels,  if it has not  

previous ly  done so. Because  of the connec t iv i ty  of the graph,  markers  thus even- 

tua l ly  p ropaga te  to all processes ,  and all processes  record their  local s tates .  Also, 

every process  ChandyLamport (A) i  eventua l ly  finishes collecting the messages  on 

all its incoming channels  (when it has received a marker  on each channel) .  Then  

each ChandyLamport (A) i  eventua l ly  per forms  a report, as claimed.  

Now we argue tha t  the r e tu rned  global s ta te  is consis tent .  T h a t  is, we let (~ 

denote  the conta ined  fair execut ion  of A (where the send events in c~ cor respond  

to the internal-send events in the execut ion of ChandyLampor t (A) ) ,  and we pro- 

duce the requi red  a l te rna t ive  execut ion c~ ~ and its requi red  prefix. Namely,  let 

c~1 be the por t ion  of (~ before the first snap and c~2 the por t ion  of c~ after  the 

last  report. Execu t ion  c~ ~ begins wi th  c~1 and ends wi th  c~2; the only reorder ing  

involves the events of c~ be tween  the first snap and the last  report. 
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Each event of (~ between the first snap and the last report occurs at some 

process ChandyLamport(A)i. These events can be divided into two sets: S1- -  
those that precede the event (snapi or receive(marker)j,i)of ChandyLamport(A)i 
at which the state of Ai is recorded, and S2-- those that follow this event. The 
reordering places all $1 events before all $2 events while preserving the order 
of events of each Ai and the order of each send (derived from an internal- 
send) with respect to the corresponding receive. The fact that such a reordering 
is possible depends on the fact that there is no internal-send(m)i,j event that 
follows the recording of the state at Ai and whose corresponding receive(m)i,j 
event precedes the recording of the state of Aj. (If an internal-send(m)i,j follows 
the recording of the state of A~, then m is placed in send-buffer(j)~ after the 
marker. But this implies that the marker arrives at ChandyLamport(A)j before 
m does, which means that the state of Aj is already recorded by the time m 
arrives.) Reordering the events of c~ in this way and filling in states of each Ai 
as in a yields the sequence a~. 

Now consider the prefix a3 of a~ ending just after all the events in $1. We 
claim that c~ ~ and its prefix c~3 satisfy all the needed properties; the key fact is 
that the results returned by all the processes constitute exactly the global state 
of A after a3. It should be obvious that the returned state of each Ai is exactly 
the state of Ai after a3, because a3 is defined to include exactly the events of 
Ai preceding the recording of the state of Ai. We must also check that the 
channel recordings give exactly the messages that are in transi t  in the channels 
of A after c~3. But the messages in transi t  from i to j after a3 are exactly 
the messages whose internal-send(m)i,j events occur before the recording of the 
state of Ai and whose receive(m)i,j events occur after the recording of the state 
of Aj. These are exactly the messages that arrive at ChandyLamport(A)j from 
ChandyLamport(A)i ahead of the marker and after ChandyLamport(A)j records 
the state of Aj, which are exactly the messages recorded by ChandyLamport(A)j 
for this channel. D 

D i r e c t e d  g r a p h s .  It is easy to see that the ChandyLamport algorithm works 
in strongly connected directed graphs as well as in connected undirected graphs. 

E x a m p l e  19.2.2 Two-dol lar  bank 

Let A be a simple special case of the banking system of Example 

18.3.1 in which the underlying graph G has only two nodes, 1 and 2, 
and in which the total amount of money in the system is $2. Suppose 
that each process begins with $1. We use the notation CL(A)i as 
shorthand for the process ChandyLamport(A)i. 
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# 1# 1# 

1 2 1 2 1 1 2 

(a) (b) (c) 

1# 1 1 

# 
1 2 1 2 1 2 

(d) (e) (f) 

1 2 1 1 2 

(g) (h) 

F i g u r e  19.2: Execution of ChandyLamport(A), for the two-dollar bank. 

Consider the fair execution of ChandyLamport(A) depicted in Fig- 
ure 19.2. In this diagram, the ~ symbols denote markers. 

(g) 8~apl occurs, causing CL(A)I to record the state of nx as 
$1. Then CL(A)I sends a marker to CL(A)2 and starts recording 
incoming messages. 

(b) A 1 sends $1 to A2; the dollar enters the channel from CL(A)I 
to CL(A)2, behind the marker. 

(c) A2 sends $1 to A1. 
(d) A1 receives the dollar and CL(A)I records it in snap-channel(2)l. 
(e) CL(A)2 receives the marker from CL(A)I, records the state of 

A2 as $0, sends a marker to CL(A)I, records the state of the incoming 
channel as empty, and reports its results. 

(f) CL(A)I receives the marker from CL(A)2, records the state of 
the incoming channel as the sequence consisting of one message (the 
$1 it received before the marker), and reports its results. 

(g) A2 receives the dollar. 
The global state returned by the algorithm is shown in (h). It 

consists of $1 at A1, $1 in the channel from A2 to A1, and no money 
at A2 or in the channel from A1 to A2. This yields the correct total, 
$2. 

Note that the global state returned by the snapshot algorithm does 
not actually appear in the contained fair execution a of A. It does, 
however, appear in an alternative fair execution a ~ of A in which 
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1 2 1 2 

record A 

record A~ 
_ 

record A record A 2 

0~ 0~ I 

F i g u r e  19.3" Send/receive diagrams for a and a ~. 

events occur in the following order: (a) A2 sends $1 to A1. (b) A1 
sends $1 to A2. (c) A 1 receives $1. (d) A2 receives $1. Figure 19.3 
shows send/receive diagrams for a and a ~. The diagram for a in- 
cludes indications of where the states of A1 and A2 are recorded in 
the execution of ChandyLamport(A). The diagram for a ~ shows how 
these two recording points are aligned in the construction of a ~. The 
state returned by the snapshot algorithm is the state represented by 
the horizontal line in the second diagram. 

C o m p l e x i t y  ana lys i s .  The ChandyLamport(A) algorithm uses O ([E[) mes- 
sages, in addition to the messages of A. The time from the first snap event until 
the last report event depends on the number of A messages that pile up in the 
channels and send-buffers. If we ignore these pileups, we obtain a time bound 
of only O (diam(g + d)), but it is probably not reasonable to ignore them. More 
realistic time bounds can be obtained in terms of the number of A messages that 
appear anywhere in the global state during the time of the snapshot. 

19 .2 .3  A p p l i c a t i o n s  

In this subsection, we give some applications for consistent global snapshots. 

B a n k i n g  s y s t e m .  The ChandyLamport algori thm--or  any other algorithm 
that produces a consistent global snapshot- -can be used to count the total 
amount of money in the banking system described in this chapter. This strategy 
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can be generalized to allow the computation of other quantities 
by the underlying algorithm A. 

being managed 

D i s t r i b u t e d  d e b u g g i n g .  A consistent global snapshot algorithm can be used 
to help debug distributed algorithms. The designer of a distributed algorithm 
A can (and should) describe key properties of A by invariant assertions about 
the global state of A. A debugger can allow A to run, obtaining consistent 
global snapshots from time to time and checking that the invariants are true for 
each snapshot. Since each global state returned by the snapshot algorithm is 
a reachable global state of A, the invariants ought to be true for those states. 
The designer can carry out such checking before attempting detailed inductive 
proofs for the invariants. For example, the AsynchSpanningTree algorithm of 
Section 15.3 has two invariants, Assertions 15.3.1 and 15.3.2, which could be 
checked in this way. 

Some work is required to verify that the invariants are true of the returned 
global state. For example, the global state information can be transmitted to a 
single process, which can check the invariants locally. Or, a distributed algorithm 
can be used, using the information returned by the snapshot algorithm as input 
data. For example, Assertion 15.3.1 can be checked using a distributed algorithm 
to verify that a set of given parent pointers comprise a directed spanning tree 
rooted at a given node i0; we leave the development of such an algorithm for 
an exercise. Assertion 15.3.2 can also be checked by a distributed algorithm. In 
this case, the distributed algorithm is particularly simple because the invariant 
is representable as the conjunction of a set of properties, each of which can be 
verified locally. (The results of local verification can be convergecast to i0.) 

An alternative debugging strategy is to use a centralized simulation of A 
on a single processor. In this case, the invariants can be verified after every 
simulated step of A (or from time to time), using the simulated state of A. No 
global snapshot algorithm is needed in this case; the disadvantage is that the 
simulation takes longer, since it is all carried out on a single processor. 

S t ab l e  p r o p e r t y  d e t e c t i o n .  A stable property P of an asynchronous send/ 
receive algorithm A is a property of global states of A that satisfies the following 
condition: if P is true of any reachable state s of A, then P is true of all states 
reachable from s. Informally speaking, this says that if P ever becomes true in 
an execution of A, then P remains true from that point onward. 

A simple strategy to determine whether or not a stable property P is true 
of the global state of an algorithm A is to obtain a consistent global state using 
a global snapshot algorithm and then to determine whether P is true or false 
of the returned global state. Again, this determination can be made either by 
collecting the information at a single process, which can determine P locally, or 
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by a distributed algorithm using the information returned by the snapshot algo- 
ri thm as input data. The correctness conditions for a consistent global snapshot 
algorithm imply the following: 

1. If P is true of the snapshot state, then P is also true of the global state of 
A just after the last report of the snapshot algorithm. 

2. If P is false for the snapshot state, then P is also false for the global state 
of A just before the first snap of the snapshot algorithm. 

The first of these facts is true because the state of A after the last report is 
reachable from the snapshot state, while the second is true because the snapshot 
state is reachable from the state of A before the first snap. The algorithm provides 
no information about whether P is true of the global states of A that arise while 
the snapshot algorithm is in progress. 

Terminat ion  detect ion.  Now we return to the termination-detection problem. 
This time, consider a send/receive algorithm A with no external inputs but 
in which the start states are not necessarily quiescent. If A ever reaches a 
quiescent global state (in which no process is enabled to perform any locally 
controlled action and there are no messages in the channels), a termination- 
detection algorithm should eventually output done. 

Since A has no external inputs, quiescence is a stable property. So termination 
can be detected using the general strategy for detecting stable properties: take 
a global snapshot, then determine if the returned global state is quiescent. In 
this case, once the snapshot has been performed, each process i can determine 
whether its recorded state of Ai is quiescent and whether its recorded incoming 
channel states are empty. The results (a bit for each process saying whether 
or not its information indicates quiescence) can then be convergecast to some 
distinguished process along a spanning tree. In fact, each process only needs to 
convergecast a single bit, saying whether or not all the processes in its subtree 
have reported quiescence. 

If this strategy concludes that A has terminated, then this is guaranteed to 
be the case. Moreover, if the snapshot is executed repeatedly, this strategy is 
guaranteed eventually to detect termination. 

E x a m p l e  19.2.3 Breadth-f irst  search and shortest  paths 

The strategy just described can be used to detect termination for 
the AsynchBFS and AsynchBellmanFord algorithms. The snapshot 
can be initiated by the source node i0. If the answer is positive, that 
is, that the underlying algorithm has terminated, then process i0 can 



19.2. CONSISTENT GLOBAL SNAPSHOTS 635 

broadcast a message to all the processes, telling them to output their 
results. On the other hand, if the answer is negative, that is, that the 
underlying algorithm still has not terminated, then process i0 must 
continue to perform snapshots until one returns a positive answer. 

E x a m p l e  19.2 .4  Leader  e lec t ion  

The asynchronous OptFloodMax leader-election algorithm of Sec- 
tion 15.2 can be augmented with termination detection based on the 
ChandyLamport snapshot algorithm to produce a terminating algo- 
ri thm for leader election in an arbitrary connected undirected graph. 
A snapshot can be initiated, for example, by any process whose 
maximum known UID changes. Several snapshots may have to be 
performed before termination is detected. Messages of the various 
snapshots can be tagged with identifying numbers for the snapshots 
in order to keep the snapshots separate. 

It is interesting to compare the costs of this termination-detection strategy 
with those of the DijkstraScholten algorithm, even though they work for some- 
what different types of algorithms. Recall that the communication and time 
complexity for DijkstraScholten(A) depend on the total number of A messages 
sent, not on the size of the network. Thus, if A only operates for a short time in 
a small portion of the network, then DijkstraScholten(A) incurs correspondingly 
small costs. On the other hand, the snapshot strategy always involves all the pro- 
cesses in the network, so its costs must depend on the network size. But in the 
case where the snapshot only needs to be executed once (and there is no pileup 
of A messages), the costs of the snapshot strategy do not depend on the total 
number of A messages sent. Thus, if A operates for a long time, sending many 
messages, the snapshot strategy should perform better than DijkstraScholten(A). 

D e a d l o c k  detect ion .  We give only one version of the deadlock-detection prob- 
lem; there are many variants. Consider a send/receive network algorithm A in 
which each process Ai has local states that indicate that it is "waiting for" some 
subset of its neighboring processes (say, to release resources). We assume that 
when Ai is waiting for a nonempty set of neighbors, it is in a quiescent state; 
in fact, it cannot perform any locally controlled steps until it has received a 
message from each of the neighbors for which it is waiting (say, informing it 
that a resource has been released). After Ai receives a message from any of the 
processes for which it is waiting, it continues to wait for the remaining processes. 
We assume further that A has no external inputs. 
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A deadlock in a global state of A consists of a cycle of two or more processes, 
each waiting for the next in the cycle, with no messages en route from any pro- 
cess to its predecessor in the cycle. Deadlock is a stable property, because once 
such a cyclic pattern is established, none of the processes in the cycle can ever 
perform any more locally controlled steps. Thus, we can detect deadlock using 
the general strategy for detecting stable properties: take a global snapshot, then 
determine if there is a deadlock in the returned global state. This determination 
can be made by collecting the information at a single process and carrying out 
a sequential cycle-detection algorithm (say, using depth-first search). Alterna- 
tively, this determination can be made by a distributed cycle-detection algorithm 
operating on the snapshot results. 

This strategy is guaranteed to only detect true deadlocks. Moreover, if the 
snapshot is executed repeatedly, it is guaranteed eventually to detect any dead- 
lock that occurs. 

19.3 Bibliographic Notes  

The DijkstraScholten algorithm was invented by Dijkstra and Scholten [92]. The 
presentation in their paper is quite different from ours; it provides a "derivation" 
of the algorithm along with a proof. A generalization of DijkstraScholten in 
which activity is allowed to begin at multiple locations was studied by Francez 
and Shavit. Other work on termination detection appears in a paper by Francez 
[126]. The ChandyLamport consistent global snapshot algorithm and its use for 
detecting stable properties are due to Chandy and Lamport [68]. The algorithm 
is derived from Lamport 's  earlier work on logical time [176]. Fischer, Griffeth, 
and Lynch [118] designed another algorithm for consistent global snapshots, this 
one tailored for transaction-based systems (as discussed in Exercise 19.8). 

The restrictions we listed on the modifications to the underlying algorithm 
A are derived from the definition of the superposition operation in the Unity 
programming language, as designed by Chandy and Misra [69]. Some represen- 
tative papers on distributed deadlock detection are those by Isloor and Marsland 
[161], Menasce and Muntz [224], Gligor and Shattuck [138], Obermarck [234], Ho 
and Ramamoorthy [157], Chandy, Misra, and Haas [70], and Bracha and Toueg 
[57]. The approach of this chapter to deadlock detection is closest to that of 
Bracha and Toueg [57]. Tay and Loke have designed a model that can be used 
to understand some deadlock-detection algorithms [274]. 
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19.4 E x e r c i s e s  

19.1. In the DijkstraScholten algorithm, the spanning tree of processes involved 
in the algorithm can grow and shrink repeatedly, incorporating the same 
process many times. This behavior does not arise in the version of A synch- 
BcastAck with garbage collection--there, once a process has cleaned up its 
state, it will never again need to participate in the algorithm. What  causes 
this difference in behavior? 

19.2. Prove Lemma 19.1. 

19.3. Give the best upper bounds you can for the communication and time com- 
plexity of the terminating breadth-first search algorithm described in Sec- 
tion 19.1, obtained by applying DijkstraScholten to A synchBFS. 

19.4. Describe how to obtain a terminating shortest paths algorithm by using 
DijkstraScholten together with the A synchBellmanFord algorithm of Sec- 
tion 15.4. Give the best upper bounds you can for its communication and 
time complexity. 

19.5. Consider an algorithm A that begins in a quiescent global state (as does a 
diffusing algorithm) but that is used with an environment that can submit 
inputs at any number of locations (one per location). Design an algorithm 
to detect when A reaches a quiescent global state. Now we say that termi- 
nation is detected when done outputs are performed by all processes that 
have received inputs from the environment. 

19.6. Give more details for the proof of Theorem 19.3. 

19.7. Example 19.2.1 describes an execution c~ of a banking system A, together 
with a global state that is a correct result for a consistent global snapshot 
algorithm. 

(a) Describe a specific execution of ChandyLamport(A) that returns this 
global snapshot. You may allow snap inputs to occur at any subset 
of the processes, at any time. 

(b) Generalize your result for part (a). 

19.8. We consider a generalization of the banking system discussed in this chap- 
ter. Suppose we are given a send/receive system A in which the processes 
maintain a distributed database, with each process managing some of the 
data items. The only activity performed by A involves transactions. Here, 
we define a transaction to be simply a sequential program consisting of a 
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series of operations on data items; atomicity for the entire transaction is 
not required. 

The problem is to design a new system B(A), as a transformation of 
A, to determine a "reasonable" transaction-consistent snapshot of A. A 
transaction-consistent snapshot consists of a state for each Ai that can 
result after some set of transactions has run to completion. A snapshot 
is considered reasonable if it includes all transactions that finish before 
the snapshot algorithm begins, along with an arbitrary subset of the other 
transactions that start before the snapshot ends. 

The transformation B should not interfere unnecessarily with the operation 
of A; for example, it is not allowed to stop all transactions while it is 
obtaining the snapshot. 

19.9. Prove an upper bound on the time complexity for ChandyLamport(A), in 
terms of the number of A messages that appear in the global state during 
the time of the snapshot. 

19.10. Consider a connected undirected graph G with a distinguished node i0. 
Design an asynchronous send/receive algorithm A with underlying graph 
G to verify that a given, fixed set of parent pointers constitute a directed 
spanning tree of a subgraph of G rooted at i0. More precisely, assume 
that each process of A has a parent pointer whose value is either the index 
of a neighboring process or else null. The output should be produced by 
process i0. Give precondition-effect code for your algorithm, prove that it 
is correct, and analyze its complexity. 

19.11. Consider the AsynchBFS algorithm augmented with the ChandyLamport 
snapshot algorithm to detect termination, as described in Example 19.2.3. 

(a) Describe an explicit execution (for a graph G of your choice) in which 
process i0 first initiates AsynchBFS and then initiates a snapshot, and 
in which the state returned by the snapshot is not quiescent. 

(b) Suppose that i0 initiates another snapshot each time the previous one 
returns a negative answer. Is there an upper bound on the number of 
snapshots that can be invoked before one must succeed in returning 
a positive answer? 

19.12. Comparison of the DijkstraScholten and snapshot approaches to termina- 
tion is only meaningful for algorithms A to which both types of termination 
strategy are applicable. Describe the largest class of algorithms you can 
find to which both strategies can be applied. 
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19.13. Consider a collection of processes, each of which might be waiting for some 
of its neighbors. That is, each process has a fixed local value wai t ing@r,  

indicating the set of neighbors for which that process is waiting. 

(a) Design (i.e., give precondition-effect code for) a distributed cycle- 
detection algorithm for this collection of processes. Your algorithm 
should determine whether or not there is a cycle of two or more pro- 
cesses, each waiting for the next in the cycle, with no messages en 
route from any process to its predecessor in the cycle. 

(b) Prove that your algorithm is correct and analyze its complexity. 

(c) Show how your algorithm can be used to detect deadlocks in an under- 
lying asynchronous algorithm A, according to the problem description 
in Section 19.2.3. 

19.14. In another version of the deadlock problem, processes wait for sets of neigh- 
bors as in Section 19.2.3, but now each waiting process only needs to hear 
from any one of these neighbors rather than all of them. Define an ap- 
propriate notion of deadlock for this version of the problem and design an 
algorithm based on consistent global snapshots for detecting this new type 
of deadlock. 

19.15. Describe some other applications of consistent global snapshots for moni- 
toring send/receive network algorithms. 
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Chapter 20 

N e t w o r k  R e s o u r c e  A l l o c a t i o n  

Having now finished Chapters 16-19, on general methods for programming asyn- 
chronous networks, we now resume our study of specific problems in asynchro- 
nous networks. In this chapter, we revisit the problem of mutual exclusion and 
the more general problem of resource allocation, which we studied in Chapters 
10 and 11 in the asynchronous shared memory setting. Next, in Chapter  21, 
we consider consensus and other problems in asynchronous networks in which 
some of the processes might fail. The final chapter on asynchronous computing 
is Chapter  22, in which we study the problem of reliable communication over 
unreliable channels. 

20.1 M u t u a l  E x c l u s i o n  

We begin with the mutual exclusion problem. 

20 .1 .1  T h e  P r o b l e m  

The problem statement is much the same as in Section 10.2. We assume that we 
have n users, U1, . . .  , U~, defined to be I /O  automata preserving well-formedness, 
just as in Section 10.2. Now we assume that the system A being used to solve the 
problem is an asynchronous network system, with one process Pi corresponding 

to each user Ui. We assume that the actions tryi, criti, exiti, and rerr~ are used 
for communication between I /O  automata Ui and Pi. In the case of a send/  
receive network, the processes Pi communicate via reliable FIFO channels Ci,j, 
as depicted in Figure 20.1. We will also consider broadcast  systems, as well as 
systems containing a combination of send/receive and broadcast  channels. (Such 
a combination can be regarded as a special case of a multicast channel--see 
Section 14.3.2.) 
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= exit~ 
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F i g u r e  20.1" Interactions between components for the mutual exclusion problem. The 
arrows inside the system oval represent send/receive channels. 

The basic correctness conditions to be guaranteed by the system are the same 

as the ones we defined in Section 10.2. Namely, we require that  the combination 

of system A and the users must  satisfy the following properties: 

W e l l - f o r m e d n e s s :  In any execution, and for any i, the subsequence describing 

the interaction between Ui and A is well-formed for Ui. 

M u t u a l  e x c l u s i o n :  There is no reachable system state (i.e., a combination of 

a global state for A and states for all the Ui) in which more than one user 

is in the critical region C. 

P r o g r e s s :  At any point in a fair  execution, 

1. (Progress for the t rying region) If at least one user is in T and no 

user is in C, then at some later point some user enters C. 
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2. (Progress for the exit region) If at least one user is in E, then at some 
later point some user enters R. 

We say that an asynchronous network system A solves the mutual exclusion 
problem provided that it solves it for every collection of users. 

In this chapter, we drop the restriction, made in Section 10.2, that a process 
can perform locally controlled actions only when its user is in the trying region or 
exit region. That  restriction is workable in the shared memory setting, because 
there the shared variables maintain information so that it is always available to 
all the processes. However, in the network setting, there are no shared vari- 
ables, so the processes need to do the work of maintaining this information and 
communicating it to other processes whenever it is required. 

We also use the same lockout-freedom condition as in Section 10.4, namely, 

L o c k o u t - f r e e d o m :  In any fair execution, the following hold: 

1. (Lockout-freedom for the trying region) If all users always return the 
resource, then any user that reaches T eventually enters C. 

2. (Lockout-freedom for the exit region) Any user that reaches E even- 
tually enters R. 

In this chapter, we will sometimes analyze the communication and time com- 
plexity for requests that operate "in isolation." We say that a request by a user 
is isolated provided that, during the time from its try to its crit, all other users 
remain in their remainder regions. 

In the rest of this section, we present several mutual exclusion algorithms for 
asynchronous networks. 

2 0 . 1 . 2  S i m u l a t i n g  S h a r e d  M e m o r y  

Chapter 10 contains many shared memory algorithms for mutual exclusion. Us- 
ing the techniques of Chapter 17, we can transform these into algorithms for 
the asynchronous network model. For instance, the Bakery algorithm of Sec- 
tion 10.7 can be implemented reasonably efficiently in an asynchronous send/  
receive network. 

20.1.3 Circulating Token Algorithm 

The simplest mutual exclusion algorithm for the asynchronous send/receive net- 
work setting works when the network is a unidirectional ring. 
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Circulating Token algorithm (informal): 

A token representing control of the resource circulates continuously around 

the ring. When process Pi receives the token, it checks whether or not there 

is an outstanding request from user Ui. If there is no such request, Pi passes 

the token to Pi+l. On the other hand, if there is an outstanding request, Pi 
grants the resource to Ui and holds the token until Ui returns the resource. 

When Ui returns the resource, Pi passes the token to Pi+l. 

The formal code appears below. 

CirculatingTokeni automaton (formal)" 

Signature: 

Input" Output :  
tryi criti 
exiti remi 

receive( "token")i_ 1,i send("token") i,i+ l 

States: 
token-status C {not-here,  available, in-use, used}, initially available if i - 1, not-here otherwise 
region E {R, T, C, E},  initially R 

Transit ions:  
tryi 

Effect: 
region "-  T 

criti 
Precondit ion:  

region = T 
token-status - available 

Effect: 
region := C 
token-status := in-use 

exiti 
Effect" 

region "-  E 

r e  m i  

Precondit ion:  
r e g i o n -  E 

Effect" 
region "-  R 
token-status := used 

receive("token") ~_ 1,~ 
Effect" 

token-status := available 

send( "token")i,i+ 1 
Precondit ion:  

token-status = used or 
( t o k e n - s t a t u s -  available and r e g i o n -  R) 

Effect: 
token-status :--- not-here 

Tasks: 
Each locally controlled action comprises  a task by itself. 
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T h e o r e m  20.1 The Circulating Token algorithm solves the mutual exclusion 
problem and guarantees lockout-freedom. 

P r o o f  Ske tch .  Straightforward. Mutual exclusion is guaranteed, because 
there is only one token, and only the user where the token is located can be 

in C. Progress is guaranteed, because the token keeps circulating until it finds 

a request. Lockout-freedom is guaranteed, because no process satisfies two con- 
secutive requests without allowing the token to circulate around the ring in the 

interim, thus giving every other process a chance. [:] 

C o m p l e x i t y  ana lys i s .  First we consider the communication complexity of the 

Circulating Token algorithm. It is not clear what we should measure, because 
the messages are not naturally apportioned to particular requests. For example, 

messages are sent even when there are no active requests. One thing we can say 
is that the total number of messages sent between a tryi and its corresponding 

crit4 is at most n. We can also give an amortized analysis for the "heavy load" 
case, where there is always an active request at each node. (Formally, each remi 
is immediately followed by a tryi). In this case, there are only a constant number 
of messages per request. 

For the time complexity, we assume as usual that t~ is an upper bound on 

time for each process task and d is an upper bound on the delay for the oldest 

message in any channel. We also assume that c is an upper bound on the time 

any user spends in the critical region. Then the time from a tryi event until the 
corresponding crit~ event is at most c(n - 1) + dn + 0 (~n). Note that this time 

bound has a dn term, which can appear even in the case of a very light load, for 
instance, an isolated request. 

V i r t u a l  r ings .  The Circulating Token algorithm can be used in an arbitrary 
send/receive network based on a strongly connected directed graph G, if the 

processes are configured into a virtual ring. The consecutive processes on the 
ring need not be neighbors in G--communicat ion between any pair of processes 
can be simulated by a series of communications along a directed path in the 

underlying network, because of the strong connectivity of G. The performance 
of the resulting algorithm depends strongly on the graph G and the order in 
which the processes are arranged in the r ing-- i t  is important to minimize the 
total length of the paths used in the simulation. 

F a u l t - t o l e r a n c e .  In practice, the Circulating Token algorithm can be made 
resilient to some types of failures. For example, if a process fails cleanly, in 
a way that is detectable to the other processes, then the other processes can 
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reconfigure themselves into a new ring. For another example, if the token is 
lost, again in a way that is detectable, a new token can be generated using a 
leader-election protocol on the ring, for instance, one of those in Section 15.1. 

In the asynchronous model, ordinary process stopping failures and message 
losses cannot be detected, because there is no way processes can distinguish such 
failures from situations in which the processes or messages are simply delayed. 
Thus, in order to achieve fault-tolerance, it is necessary to assume a stronger 
model that includes events that announce such failures. In practice, these events 
are usually implemented by timeouts. 

20.1.4 An Algorithm Based on Logical Time 

In Section 18.3.3, we described another solution to the mutual exclusion problem 
for an asynchronous network system, in particular, for a broadcast network sys- 
tem. That solution used the ReplicatedStateMachine algorithm to implement an 
atomic object representing a queue of requesting process indices. The Replicated- 
StateMachine algorithm in turn used logical time. Thus, the algorithm was de- 
scribed in several pieces. 

In this section we present a similar algorithm, but to compare it more eas- 
ily with the other algorithms in this chapter, we put the pieces together. For 
simplicity, we do not handle local operations in a special way as described in 
Section 18.3.3. We call the resulting algorithm the Logical TimeME algorithm. 

LogicaITimeME algorithm (informal)" 

This algorithm generates logical times for events using the LamportTime 
strategy, based on local nonnegative integer clock values. A logical time is 
a pair (c, i), where c C N and i is a process index; logical time pairs are 
ordered lexicographically. 

The algorithm uses both broadcast and send/receive communication, where 
send/receive communication is allowed for all pairs of distinct processes. 
In place of the separate invocation-buffer and queue, each process Pi main- 
tains a single history data structure. For each j, history(j)i records all the 
messages Pi has ever received from Pj, each with a nonnegative integer 
c, which is the clock value associated with that message's bcast or send 
event. The try and exit requests are broadcast, much as before. Instead of 
broadcasting dummy messages, each process acknowledges each try mes- 
sage with an ack message. 

Pi can perform a criti when its latest try request has reached its history(i), 
provided that every other request that Pi has heard of with a smaller logical 
time has already been granted and provided that Pi has received a mes- 



20.1. M U T U A L  EXCLUSION 647 

sage with greater logical time from every other process. (These latter two 
properties together ensure that  there is no current request with a smaller 
logical time, and moreover, there never will be one.) Pi can perform a 
remi as soon as its latest exit request has reached its history(i). 

We let < denote lexicographic order on logical t ime pairs. 

LogicalTimeMEi automaton (formal)- 

S i g n a t u r e :  

Input:  
tryi 
exit~ 
receive(m)j,i, m E ("try",  "exit", "ack"} 

•  l < j < n ,  

Output :  
criti 
r e  7Yti 

send(m)i,y, m C { "ack"} • N, j ~ i 
beast(re)i, m e { "try", "exit"} • N 

States:  
region E {R, T, C, E},  initially R 
clock E N, initially 0 
beast-buffer, a FIFO queue of { "try", "exit"}, initially empty  
for every j, 1 _~ j _~ n: 

history(j), a subset of { "try", "exit", "ack"} • N, initially 0 
for every j :/: i: 

send-buffer(j), a FIFO queue of { "ack"} • N, initially empty  

Trans i t ions:  

tryi 
Effect: 

clock := clock + 1 
region := T 
add "try" to beast-buffer 

beast(m, c)i 
Precondition: 

m is first on beast-buffer 
c = clock + 1 

Effect: 
clock := c 
remove first element of beast-buffer 

receive(m, c)j,i 
Effect: 

clock := max(clock, c) + 1 
history(j) := his tory( j )U {(re, c)} 
if m = "try" and j =/= i then 

add "ack" to send-buffer(j) 

send(m,c)i , j  
Precondition: 

m is first on send-buffer(j) 
c = clock + 1 

Effect: 
clock := c 
remove first element of send-buffer(j) 

criti 
Precondition: 

region = T 
("try", c) C history(i) 
fl( "exit", c') C history(i) with c' > c 
for all j -~ i 

if ("try", c') C history(j),  (c', j )  < (c, i) 
then 

3( "exit", c") E history(j) with c" > c' 
3(m, c') C h i s to ry ( j )w i th  (c, i) < (c ' , j )  

Effect: 
clock := clock + 1 
region := C 
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exiti 
Effect: 

clock := clock + 1 
region := E 
add "exit" to bcast-buffer 

remi 
Precondition: 

region- E 
("exit", c)E history(i) 
/~( "try", c') E history(i)with c' > c 

Effect" 
clock "- clock + 1 
region "- R 

Tasks:  
{ c~it~ } 

{ beast(rn)i: m E { "try", "exit"} x IN} 
for every j ~ i: 

{send(m)i,j : m e { "aek"} • N} 

T h e o r e m  20.2 The LogicaITimeME algorithm solves the mutual exclusion prob- 
lem and guarantees lockout-freedom. 

P r o o f .  We give an operational argument.  To see that the algorithm guarantees 
mutual  exclusion, we proceed by contradiction. Suppose that, in some reachable 
system state, two processes, Pi and Pj, are in C at the same time. Assume 
(without loss of generality) that the logical time ti of Pi's latest try message 
is smaller than the logical time tj of Pj's latest try message. Then, in order to 
perform critj and enter C, Pj had to see, in its history(i), a message from Pi with 
logical time greater than tj and hence greater than ti. Then the FIFO property 
of the communication channel from Pi to Pj implies that Pj must have seen Pi's 
current try message when it performed critj. But then the precondition of critj 
implies that Pj must have seen a subsequent exit message from Pi. This implies 
that Pi must have already left C at the time Pj performed critj, a contradiction. 

Next, we argue lockout-freedom, which implies progress. Lockout-freedom 
for the trying region follows from the fact that requests are serviced in the order 
of the logical times of their try messages. We argue that a try message with the 
smallest logical time among those for current requests eventually receives a crit 
response. Since there are only finitely many try messages that get assigned logical 
times smaller than that of any particular try message, an inductive argument can 
then be used to show that all requests are granted. 

So suppose that Pi is in T and has the try message with the smallest logical 
time, ti, among those for current requests. We argue that eventually the pre- 
conditions for crit4 must become satisfied and must remain satisfied until criti 
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occurs. The fairness properties for the broadcast channel implies that  eventu- 
ally Pi receives its own try message and places it in history(i)i. Also, since try 
messages receive corresponding acks and the clock variables are managed using 
the LamportTime discipline, eventually Pi obtains a message from each of the 
other processes with a logical time greater than ti. Finally, since Pi's request 
is the current request with the smallest logical time, any request with a smaller 
logical time must have already had a corresponding exit event. Then the fairness 
properties of the broadcast channel imply that  eventually Pi receives these exit 
messages. In this way, all the preconditions for criti must eventually become 
satisfied. 

Lockout-freedom for the exit region is straightforward. [:] 

C o m p l e x i t y  ana ly s i s .  For the communication complexity, we note that  in 
LogicalTimeME, unlike in Circulating Token, all messages are naturally appor- 
tioned to particular requests. So we count the number of messages per request. 
For every request, there is one try broadcast and one exit broadcast, for a total 
of 2n individual messages, plus n -  1 ack messages sent in response to the try 
messages. The total  is therefore exactly 3 n -  1 messages per request. 

For the time complexity, we consider first the case of an isolated request 
by a user U/. In fact, we consider a "strongly isolated" request, for which we 
also require that  no residual messages arising from prior requests remain in the 
system state when the tryi event occurs. In this case, the time from tryi to criti 
is only at most 2d + O (t~), where d is an upper bound on the delivery of the 
oldest (broadcast or point-to-point) message from any process i to any other 
process j .  In contrast, recall that  the time complexity of the Circulating Token 
algorithm has a dn term, even in the case of an isolated request. 

We leave the general worst-case upper bound on the time from a tryi event 
to the corresponding criti event for an exercise. 

2 0 . 1 . 5  I m p r o v e m e n t s  t o  t h e  L o g i c a l T i m e M E  A l g o r i t h m  

Now we describe a simple variation on the LogicalTimeME algorithm that  is 
designed to reduce the communication complexity. The algorithm, called the 
RicartAgrawalaME algorithm after its designers, uses only 2 n -  1 messages per 
request. It improves on Logical TimeME by acknowledging requests in a careful 
manner  that  eliminates the need for exit messages. The algorithm uses both 
broadcast and send/receive communication, where send/receive communicat ion 
is allowed for all pairs of distinct processes. 
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R icar tAgrawalaME a l g o r i t h m :  

Logical times for events are generated as in Logical TimeME. The only mes- 
sage that is broadcast  is try, and the only message that is sent on a send/  
receive channel is ok. Each message carries the clock value of its beast or 
send event. 

After a tryi input, Pi broadcasts try just as in Logical TimeME and can go 
to C after it receives subsequent ok messages from all the other processes. 
The interesting part  of the algorithm is a rule for when a process Pi can 
send an ok message to another process Pj. The idea is to use a priority 
scheme. In response to a try message from Pj, Pi does the following: 

1. If Pi is in E or R, or in T prior to broadcasting the try message for 

its current request, then Pi replies with ok. 

2. If Pi is in C, then Pi defers replying until it reaches E, and then 
immediately sends any deferred oks. 

3. If Pi is in T and its current request has already been broadcast,  then 
Pi compares the logical time ti of (the beast event of) its own request 
to the logical time tj associated with the incoming try message of 
Pj. If ti > tj, then Pi's own request is given lower priority and Pi 
replies with an ok message. Otherwise, Pi's own request has higher 
priority, so it defers replying until such time as it finishes its next 
critical region. At that time, it immediately sends any deferred oks. 
Pi can perform a remi at any time after it receives an exiti. 

In other words, when there is a conflict, the RicartAgrawalaME algorithm 
resolves it in favor of the "earlier" request, as determined by the logical times. 

T h e o r e m  20.3 The RicartAgrawalaME algorithm solves the mutual exclusion 
problem and guarantees lockout-freedom. 

P r o o f .  We give an operational proof. First, we prove mutual exclusion by 
contradiction. Suppose that, in some reachable system state, two processes, Pi 
and Pj, are in C at the same time. Assume (without loss of generality) that the 
logical time ti of Pi's latest try message is smaller than the logical time tj of Pj's 
latest try message. Then there must have been try messages and ok messages 
sent from each of Pi and Pj to the other, prior to their entry into C. Moreover, 
at each process, the receipt of the try from the other precedes its sending of 

the corresponding ok. This still leaves several possible orderings of the various 
events. See Figure 20.2 for some possibilities. 

Now we claim that the receive event for Pj's latest try message occurs after 
Pi broadcasts its own latest try message. If not, then properties of logical time 



20.1. M U T U A L  E X C L U S I O N  651 

ok 

i J i i J 

j t j 

F i g u r e  20.2" Some possible orders of events in the RicartAgrawalaME algorithm. 



652 20. NETWORK RESOURCE ALLOCATION 

imply that the logical time of this receive event is greater than t j  and that the 

logical time ti of the bcast event by Pi is greater than the logical time of this 

receive event. Thus, ti > tj, a contradiction. 

Therefore, at the time Pi receives Pj's try message, Pi is either in T or in 
C. But in either of these cases, Pi's rules say that it should defer sending an 
ok message until it finishes its own critical region. Thus, Pj could not enter C 

before Pi leaves, a contradiction. 
Now we prove progress, also by contradiction. Progress for the exit region is 

immediate. Suppose that in fair execution a a point is reached at which some 

user is in T and no user is in C and after which no user ever enters C. Then 

(arguing as in the proof of Lemma 10.4), in some suffix Ct 1 of a,  all the users are 
either in R or T and no further region changes occur. Then there is some suffix 

a2 of a l  in which all processes in T have assigned logical times to their latest 
requests and in which no messages are ever in transit .  Among all the processes 

in T in a2, let Pi be the process whose latest request has the smallest logical 

time, say ti. 
Since Pi is stuck forever in T, it must be that some other process Pj never 

replies with an ok message to Pi's last try message. There are only two reasons 

why Pj might not send the ok immediately upon receiving the try from Pi: 

1. Pj is in C when it receives the try. In this case, since there are no processes 

in C during a2, Pj must finish its critical region before the start  of a2 and 

must thereafter send the deferred ok message to Pi. 

2. Pj is in T when it receives the try, with a logical time tj < ti assigned to its 

request. In this case, since Pi's request has the smallest logical time among 
the processes stuck in T in a2, it must be that Pj reaches and completes its 

critical region after it receives the try from Pi and before the beginning of 
a2. But once again, this means that Pj must send the deferred ok message 

to Pi. 

In either case, Pi receives all the needed ok messages and proceeds to C, a 
contradiction. 

We leave the lockout-freedom property for an exercise. D 

C o m p l e x i t y  a n a l y s i s .  It is easy to see that exactly 2 n -  1 messages are sent 

per request. The time complexity is left as an exercise. 

A n o t h e r  o p t i m i z a t i o n .  It is possible to improve further on the Ricart- 
AgrawalaME algorithm by giving a different interpretation to the ok messages. 

Now when some process Pi sends an ok to some other process Pj, not only does 
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it approve Pj's current request,  but  it also gives Pj process Pi's permission to 

reenter C any number  of t imes - -un t i l  Pj sends an ok to Pi in response to a try 
message from Pi. The rules for responding to a try message are the same as for 

Rica rtA gra walaME. 
This version of the a lgori thm performs part icular ly well in the si tuat ion where 

a single user requests the resource repeatedly, without  any intervening requests 

by other users. In this case, the requesting user can go to its critical region 

repeatedly, without  any messages being sent after those for the first request.  

20.2 G e n e r a l  R e s o u r c e  A l l o c a t i o n  

We now consider more general resource-allocation problems in asynchronous 

networks. 

2 0 . 2 . 1  T h e  P r o b l e m  

The problem definition is much the same as in Section 11.1, using the notions 

of ezplicit resource specification and ezclusion specification defined there. We 

assume the same kinds of user au tomata  as in Section 20.1. 

The basic correctness conditions to be guaranteed by the system are the same 

as those in Section 11.1. Namely, for a given exclusion specification g, we require 

that  the combination of the system and the users satisfy the following properties: 

Well-formedness: In any execution, and for any i, the subsequence describing 

the interaction between Ui and A is well-formed for Ui. 

E x c l u s i o n :  There is no reachable system state in which the set of users in their 

critical regions is a set in g. 

P r o g r e s s :  At any point in a fair execution, 

1. (Progress for the t rying region) If at least one user is in T and no 

user is in C, then at some later point some user enters C. 

2. (Progress for the exit region) If at least one user is in E,  then at some 

later point some user enters R. 

We say that  an asynchronous network system solves the general resource- 
allocation problem provided that  it solves it for every collection of users. 

For explicit resource specifications, we also consider 

Independent p r o g r e s s :  At any point in a fair execution, 
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1. (Independent  progress for the trying region) If Ui is in T and all 

conflicting users are in R, then at some later point either Ui enters C 
or some conflicting user enters T. 

2. ( Independent  progress for the exit region) If Ui is in E and all con- 
flicting users are in R, then at some later point either Ui enters R or 
some conflicting user enters T. 

We also consider the same lockout-freedom condition as for mutual  exclusion. 
As we did for mutual  exclusion, we drop the restriction that  a process can 
perform locally controlled actions only when its user is in the trying or exit 
region. 

For a given resource specification T4, we say that  a request by a user is 
isolated provided that ,  during the t ime from try to crit, all other users with 
conflicting requests are in their remainder  regions. 

D r i n k i n g  P h i l o s o p h e r s .  A variant of the general resource-allocation prob- 

lem tha t  we will consider in Section 20.2.5 allows for the same user Ui to request 
different resources at different times. This version of the problem is based on a 
given resource specification 7~, and we assume that ,  for every i, the tryi action is 

parameter ized by an arbi t rary  subset of Ri, the set of resources specified for user 
Ui. The exclusion condition is reinterpreted to refer to the actual resources that  
have most recently been requested ra ther  than the potential  resource require- 
ments described by 7~. Tha t  is, we require that  there be no reachable system 

state in which two users whose most recent request sets intersect are simulta- 
neously in their critical regions. The progress condition and lockout-freedom 
condition are the same as before. The independent progress condition and the 
definition of an isolated request arc reinterpreted to refer to the actual requests. 

This version of the resource-allocation problem is sometimes known as the 
Drinking Philosophers problem, and its resources arc sometimes called bottles. 

2 0 . 2 . 2  C o l o r i n g  A l g o r i t h m  

The Coloring algori thm of Section 11.3.3 can be modified to solve the generalized 
resource-allocation problem in an asynchronous send/receive network based on a 
connected undirected graph G, for a given resource specification 7r One way to 
do this is by using one of the simulations of shared memory algorithms described 
in Chapter  17. However, a special-purpose simulation works more efficiently. 

Coloring a l g o r i t h m :  

We include a process to manage each resource, in addition to processes tha t  

simulate the processes of the shared memory Coloring algorithm. Each 
process Pi of the network algori thm simulates exactly one process of the 
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shared memory algori thm plus some subset of the resource processes. 

When user Ui performs tryi, process Pi collects the needed resources one at 
a time, in increasing order according to color as before, this t ime by send- 
ing messages to the appropria te  resource processes. After sending each 
message, Pi waits to receive a response. Each resource process maintains 
a FIFO queue of requesting users, adding each newly received request to 

the end of the queue. When the index i reaches the front of a resource 

process's queue, the resource process sends a message back to Pi, which 

then goes on to request its next resource. When Pi has obtained all its 

needed resources, it performs criti. When exit4 occurs, Pi sends messages 
to all the involved resource processes to tell the resource processes to re- 

move index i from their queues. After sending out all these messages, and 

without  waiting for responses, Pi can perform remi. 

This algori thm requires that  each process Pi be able to communicate  with 
all processes Pj tha t  manage resources assigned to i by the given resource spec- 
ification 7~. As usual, this communicat ion can be performed directly if the 

relevant nodes are all connected directly in the underlying graph G, or else can 

be simulated by a pa th  of edges in G. 
The analysis of this version of the Coloring algori thm for networks is similar 

to the analysis in Section 11.3.3 for shared memory. In this case, the t ime 
bound depends on upper  bounds on process step time, message-delivery time, 
and critical region time, plus the number  of colors used to color the resource 
graph, and the maximum number  of users for a single resource. However, as 
before, the time bound is not directly dependent  on the size of the underlying 

graph G. 

20.2.3 Algorithms Based on Logical Time 

The RicartAgrawalaME algorithm can be generalized to solve the resource- 
allocation problem for an arbi t rary  resource specification TO. Now we assume 
tha t  we have a combination of multicast  and send/receive communication.  (Tech- 
nically, this can be regarded as a special case of multicast  communica t ion- -see  
Section 14.3.2.) Multicast  must be permi t ted  from any process to the set of all 
the others tha t  share resources with it, and send/receive communicat ion must 

be permi t ted  between any two processes tha t  share resources. 

RicartAgrawalaRA algorithm: 

Processes compute  logical times using the LamportTime algorithm. 

After a tryi input, process i multicasts a try message with an associated 
clock value to all the processes with which it shares resources. Process 
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i can go to C after it receives subsequent ok messages from all these 
processes. Processes use the same rule for sending ok messages as in 
RicartAgrawalaME, using the logical times to determine priority. 

Process i can perform a remi at any time after it receives an exiti. 

T h e o r e m  20.4 The RicartAgrawalaRA algorithm solves the general resource- 
allocation problem for a given resource specification and guarantees lockout- 
freedom and independent progress. 

As for the RicartAgrawalaME algorithm, we can modify the 
RicartAgrawalaRA algorithm so that  the ok messages extend permission until it 
is explicitly revoked. 

20.2.4 Acyclic Digraph Algorithm 

In the RicartAgrawalaRA algorithm, logical times are used to assign priorities 
to conflicting requests, thereby breaking ties. Alternative strategies can be used 
to break ties, for example, maintaining an acyclic digraph involving all the pro- 
cesses. 

For simplicity, we consider an explicit resource specification 74 satisfying the 
following two restrictions: 

1. Each resource is in the resource sets of exactly two users. 

2. Each pair of users share at most one resource. 

We leave the extensions to remove these restrictions for an exercise. 
We assume a send/receive network based on a connected undirected graph G. 

We assume that  any two processes that  share a resource are connected directly 
by an edge in G. Also, just to make things simple, we assume that  all the edges 
in G are between processes that  share resources. 

AcyclicDigraphRA algorithm: 
The algorithm is based on maintaining orientations of all the edges of 
G in such a way that ,  at any time, the digraph H consisting of all the 
oriented edges is acyclic. The orientation of each edge is recorded in local 
orientation variables at the two cndpoint processes and is changed by 
means of a change message sent from the process at the head of the directed 
edge to the process at the tail of the edge. We must assume that  the 
digraph determined by the initial edge orientations is acyclic. 

If process i is in the trying region and has all its incident edges oriented 
inward, then it can perform a criti output.  If process i is in the exit region, 



20.2. GENERAL RESOURCE ALLOCATION 657 

then it can perform rerni, set all its orientation variables to point outward, 
and send a change message on each incident edge, all in one step. (The 
change messages are placed simultaneously in local send-buffers directed 
to all the neighbors.) Also, if process i is in the remainder region with all its 
edges oriented inward, then process i can set all its orientation variables 
to point outward and send a change message on each incident edge, again 
in one step. 

T h e o r e m  20.5 The AcyclicDigraphRA algorithm solves the resource-allocation 
problem (with Restrictions 1 and 2 above) and guarantees lockout-freedom. 

P r o o f  Ske tch .  We begin by giving a somewhat more careful definition of the 
orientation of each edge in an arbitrary reachable state. Namely, we say that an 
edge (i, j )  is oriented from i to j provided that Pi's orientation variable for the 
edge indicates "outward" and either Pj's orientation variable indicates "inward," 
or else there is a change message on the way from Pi to Pj (in the send-buffer(j)i 
or in the channel from i to j).  An invariant can be used to show that this rule 
determines a unique orientation for each edge, in each reachable state. 

Then we prove the invariant that when a process Pi is in the critical region, 
then all its incident edges are oriented inward and no change messages are in 
transit  in either direction on any of those edges. This implies the exclusion 
property. 

Next we prove the key invariant that the digraph H is acyclic. We have 
assumed that this is true initially. The only steps that can falsify this assertion 
are those in which some edge orientations change. But every step that changes 
edge orientation simultaneously changes the orientation for all the edges incident 
on some particular node i in such a way that all the edges are directed outward 
after the step. Because no edge is directed inward toward i after this step, there 
can be no cycle after the step involving the newly directed edges. It follows that 
no cycle can be created by the step. 

Next we prove lockout-freedom, which implies progress. We consider only 
lockout-freedom for the trying region; as usual, the condition for the exit region 
is trivial. Since the graph is always acyclic, at any point in an execution, we 
may define the height of a graph node i to be the maximum length of a directed 
path starting at i in the digraph H. We first note that the height of a node never 
increases until the node reaches height 0 (and gives the process at that node a 
chance to enter the critical region). We then show that any node at height 0 
eventually directs all its incoming edges away from itself. Using these facts, we 
show that any node with height h > 0 eventually attains a smaller height, h', 
which implies that any node with height h > 0 eventually attains height 0. This 
gives the process at that node a chance to enter the critical region. E] 
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Iden t i ca l  p r o c e s s e s .  An interesting feature of the AcyclicDigraphRA algo- 
rithm is that the processes are "almost" identical: they do not use UIDs or 
any other distinguishing information other than the initial orientations of all the 
edges. In order to solve this problem in arbitrary graphs, arguments such as the 
one for Theorem 11.2 imply that some method of breaking symmetry is needed. 
Here, symmetry is broken by the condition that the digraph H is initially acyclic. 

20 .2 .5  D r i n k i n g  P h i l o s o p h e r s *  

Now we describe a particular solution to the Drinking Philosophers problem 
for a given resource specification ~ ,  in a send/receive network with reliable 
FIFO channels based on a connected undirected graph G. This solution is 
modular-- i t  uses an arbitrary lockout-free algorithm that solves the general 
resource-allocation problem for 7~. The architecture for this solution, which we 
call ModularDP, is depicted in Figure 20.3. The communication between each 
Ui and the corresponding Di uses try(B)i, criti, exit.i, and remi actions. Here, 
B C_ Bi, where Bi is the set of bottles (resources) specified by ~ for i. 

D. 
! 

f 

General resource-allocation % 

F i g u r e  20.3: Architecture for ModularDP. 
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The communication between each Di and the general resource-allocation algo- 

r i thm uses internal-tryi, internal-criti, internal-exiti, and internal-remi actions; 

we rename these actions to avoid ambiguity. 
A complete solution to the Drinking Philosophers problem in the given model 

must include an implementation of the general resource-allocation module in 
Figure 20.3 by a send/receive network algorithm A, based on the same underlying 
graph G. Each process Pi in the complete solution is the composition of Di 
and a corresponding process of A. Each channel Ci,j in the complete solution 
must implement both the channel from Di to Dj in Figure 20.3 and also the 
corresponding channel of A. 

For simplicity, we again make one of the assumptions about T~ that we made 

for A cyclicDigraphRA: each bottle is in the resource sets of exactly two users. 
We also assume that any two processes that share a bottle are connected by an 

edge in G. 

M o d u l a r D P  algorithm: 
When Di receives try(B)i, it sends request messages for those bottles that 
it needs but currently lacks. The recipient Dj of a request satisfies it if Uj 
is in E or R. If Uj is in T or C, then Dj defers the request so that it can 

satisfy it when Uj finishes its critical region. 

In order to prevent two processes from deferring each other's requests 
and thus blocking progress, a general resource-allocation module is used to 
establish a priority between the processes. Thus, as soon as a process Di 
in its trying region is able to do so, it invokes internal-tryi to try to gain 
priority. When Di receives an internal-crit~ input while it is still in its 
trying region-- tha t  is, when it enters its internal critical region--it sends 
demand messages for needed bottles that are still missing. The recipient 
Dj of a demand always satisfies it if it has the bottle, unless Uj is actually 
in the critical region using the bottle; in this case, Dj defers the demand 
and satisfies it when Uj finishes its critical region. 

Once Di is in its internal critical region, we can show that it eventually 
receives all its needed bottles. When Di is in the trying region and has all 
its bottles, it can enter its critical region. Once Di enters its critical region, 
it can output  internal-exiti, since it no longer needs the priority associated 
with the internal critical region. 
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D i  a u t o m a t o n :  

S i g n a t u r e :  

Input: 
try(B) i, B C_ Bi 
exit~ 
internal-criti 
internal-remi 
receive(m)j,i, m E { "request", "bottle", "demand"} • (Bi N By), j E nbrs 

Output:  
crit~ 
remi 
internal-tryi 
internal-exiti 
send(m)i,j, m E { "request", "bottle", "demand"} • (B~ n Bj) ,  j E nbrs 

S t a t e s :  
region C {R, T, C, E}, initially R 
internal-region E {R, T, C, E}, initially R 
need C Bi, initially 0 
bottles C_ Bi; initially arbitrary, subject to the global restriction that the bottle sets for 

all processes part i t ion the set of all bottles of ~ .  
deferred C_ Bi, initially 0 
current, a Boolean, initially false 
for every j E nbrs" 

send-buffer(j), a FIFO queue of messages in { "request", "bottle", "demand"} • (Bi N Bj),  
initially empty 

Transitions: 
try(B)i 

Effect: 
region := T 
need :-- B 
for all j E nbrs, 

all b C (need N By) - bottles, do 
add ("request", b) to send-buffer(j) 

receive( "request", b)j,i 
Effect: 

if region E {T, C} and b E need then 
deferred := deferred U {b} 

else 
add ("bottle", b) to send-buffer(j) 
bottles := bottles - {b} 

send(m)i,j 
Precondition" 

m is first on send-buffer(j) 
Effect: 

remove first element of send-buffer(j) 

internal-tryi 
Precondition: 

region = T 
internal-region = R 

Effect: 
internal-region := T 

internal-criti 
Effect: 

internal-region := C 
if region-= T then 

current :-- true 
for all j E nbrs, 

all b E (need N B y )  - bottles, do 
add ("demand", b) to send-buffer(j) 



20.2. G E N E R A L  R E S O U R C E  A L L O C A T I O N  661 

receive( "demand", b) j,i 
Effect: 

if b C bottles and (region ~ C or b ~ need) 
then 

add ("bottle", b) to  send-buffer(j) 
bottles := bottles - {b} 
deferred := deferred - {b} 

receive( "bottle", b)j,i 
Effect: 

bottles := bottles U {b} 

criti 
Precondition: 

region = T 
need C bottles 

Effect: 
region := C 
current := false 

internal-exiti 
Precondition: 

internal-region = C 
current = false 

Effect: 
internal-region = E 

internal-remi 
Effect: 

internal-region := R 

exiti 
Effect: 

region := E 
for all j E nbrs, 

all b E deferred N Bj do 
add ("bottle", b) to send-buffer(j) 

bottles := bottles - deferred 
deferred := 0 

re mi 
Precondition: 

region = E 
Effect: 

region := R 

Tasks :  
{ criti } 
{exiti} 
{ internal-tryi } 
{ internal-exiti } 
for every j E nbrs: 

{send(m)i,j  : m  E {"request", "bottle", "demand"} x (Bi N Bj)} 

Two points  abou t  the code need explanat ion .  Fi rs t ,  we can show tha t  when 

Di receives a ("request" ,  b) message,  it ac tua l ly  has the bot t le  b. Thus ,  it is 

not  necessary  for Di to check tha t  b C bottles before sat isfying or deferr ing the 

request .  On the other  hand,  it is possible for Di to receive a ( " d e m a n d " ,  b) 

message  when it does not  have the bot t le  b. So before sat isfying a d e m a n d ,  Di  

checks tha t  b C bottles.  

Second, the flag curren t i  keeps t rack  of whether  there is a cur rent  in ternal  

cri t ical  region tha t  is still be ing used to gran t  p r ior i ty  to the cur ren t  reques t  by 

Ui. The  curren t i  flag is set to t rue  when an in ternal-cr i t4  occurs  while regioni = 
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T. It is set to false when crit~ occurs. When currenti = false, Di can perform 
internal-exit4, thus terminating the internal critical region. 

T h e o r e m  20.6 The ModularDP algorithm, using any lockout-free solution to 
the general resource-allocation problem, solves the Drinking Philosophers prob- 
lem and guarantees lockout-freedom. 

P r o o f  Ske tch .  Well-formedness is easy to see. The exclusion condition fol- 
lows from the fact that the bottles sets and bottle messages explicitly represent 
the bottles, plus the fact that a process must have all needed bottles in order to 
perform a crit output. We argue lockout-freedom, which implies progress. For 
this, we use the properties of the general resource-allocation module. 

First, it is easy to see from the code that the environment of the resource- 
allocation module preserves well-formedness for that module. Then the proper- 
ties of the module imply that every execution of the system satisfies the well- 
formedness and exclusion conditions for the module. Also, every fair execution 
satisfies the lockout-freedom condition for the module. 

C l a i m  20.7 In any fair execution of the ModularDP system, if every crit is 
followed by a corresponding exit, then every internal-crit is followed by a corre- 
sponding internal-exit. 

P r o o f  Ske tch .  Suppose that an internal-criti occurs at some point in a fair 
execution c~ and that internal-exiti never occurs thereafter; let O~1 be the suffix 
of (~ starting immediately after the internal-crit~. Then it must be that current~ 
remains true throughout c~1, since if it ever became false, the precondition of 
internal-exiti would be true and internal-exit~ would eventually occur. Also, by 
the exclusion condition for the module, no neighbor of Di can be in its internal 
critical region during c~1. 

When the internal-criti event occurs, it must be that regioni = T, because 
currenti is set to true. Therefore, as part of the internal-crit4 event, Di sends 
demand messages for all its needed bottles. Consider any recipient Dj of such 
a ("demand", b) message. If Dj has bottle b and is not actually using it (i.e., is 
not in its critical region, with b E needj), then it sends ("bottle", b) to D~. On 
the other hand, if Dj is using b, then, since every critj is followed by an exitj, Dj 
eventually finishes the critical region and satisfies the deferred demand. Thus, 
eventually, Di gets all the needed bottles. We claim that it must keep those 
bottles until it performs crit~. This is because it does not receive a demand for 
any of them during c~1; this can be proved using the fact that no neighbor of Di 
is in its internal critical region during C~l. (Some invariants are needed here.) 
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Since Di gets all the needed bottles, Di eventually performs criti. But this 

event causes current to be set to false, a contradiction. [3 

Claim 20.7 allows us to prove the key claim. 

C l a i m  20.8 In any fair execution of the ModularDP system, if every crit is 
followed by a corresponding exit, then every try is followed by a corresponding 
crit (i. e. , every request is granted). 

P r o o f  Ske tch .  Suppose that tryi occurs at some point in a fair execution c~ 
and that crit4 never occurs thereafter; let c~1 be the suffix of c~ starting immedi- 

ately after tryi. 
If an internal-crit occurs in c~1, then Claim 20.7 implies that there is a sub- 

sequent internal-exit. But because of the handling of the current flag, the only 
way this could happen is if, in the interim, a crit4 occurs. This is a contradiction. 

So we may assume that no internal-crit occurs in c~1. 
If internal-region is ever equal to T during c~1, the lockout-freedom property 

for the module implies that eventually an internal-crit must occur, a contradic- 

tion. So we can assume that internal-region ~ T throughout c~1. If internal- 
region is ever equal to R during c~1, then eventually an internal-tryi occurs, 
leading to internal-region = T, again a contradiction. So we can assume that 

internal-region ~ R throughout c~1. Using lockout-freedom for the module, we 

can show that internal-region ~ E throughout c~1. 

The only remaining possibility is that internal-region = C throughout c~1. 

But since Ctl immediately follows a tryi event, it must be that current = false 
throughout c~1. But then eventually an internal-exiti occurs, leading to internal- 
region = E, a contradiction. [B 

Claim 20.8 yields lockout-freedom for the trying region for the ModularDP 
system; lockout-freedom for the exit region is easy. 

C o m p l e x i t y  ana lys i s .  The complexity bounds for ModularDP depend on the 
costs of the implementation of the general resource-allocation module. The Di 
components of the algorithm send at most 3k messages per request, if k is the 
maximum degree of any node in the underlying graph G. 

For the time complexity, let t~ and d be as usual and let c be an upper bound 

on the length of any critical region, for any Ui. Suppose that T1 and T2 are upper 
bounds on the respective times a single process spends in its internal trying and 
internal exit regions. (T1 will typically be a function of an upper bound on the 
length of an internal critical region. An upper bound on the length of an internal 
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critical region is c + 3d + O (g).) Then the time from a try to the corresponding 
exit can be bounded by T1 + T2 + c + 3d + O (g). 

For a "strongly isolated" request, that is, an isolated request in which any 
residual messages from prior requests have already been delivered, the time 
complexity is at most 2d + O (g). 

20.3 Bibl iographic  Note s  

The Circulating Token algorithm is due to Le Lann [191]. His paper includes a 
discussion of various forms of fault-tolerance for mutual exclusion algorithms, 
including regeneration of a lost token using a leader-election algorithm. The 
Logical TimeME algorithm is due to Lamport [176], and the RicartAgrawalaME 
algorithm to Ricart and Agrawala [252]. The optimization at the end of Sec- 
tion 20.1 is due to Carvalho and Roucairol [64]. Raynal's book [250] contains a 
large collection of mutual exclusion algorithms, for both the asynchronous net- 
work and asynchronous shared memory models. 

The Drinking Philosophers problem was defined by Chandy and Misra [67]. 
Their paper also contains a general resource-allocation algorithm very similar 
to the AcyclicDigraphRA algorithm, as well as a Drinking Philosophers solution 
constructed by modifying their general resource-allocation algorithm. Welch and 
Lynch [285] developed the ModularDP algorithm in the form presented here, 
based on the ideas of Chandy and Misra. In particular, they made explicit the 
modularity that was implicit in the Chandy-Misra algorithm. 

Other recent work on resource-allocation problems in networks includes that 
of Styer and Peterson [272], Choy and Singh [80], and Awerbuch and Saks [37]. 
These papers focus on obtaining improved running time and/or fault-tolerance. 

20.4 Exerc i ses  

20.1. Give precondition-effect code for an implementation of the Bakery mutual 
exclusion algorithm in the asynchronous send/receive network setting. An- 
alyze the complexity of your algorithm. (Note: Your implementation need 
not be, but may be, obtained using a general transformation applied to the 
original Bakery algorithm.) 

20.2. Give precondition-effect code for an implementation of the PetersonNP mu- 
tual exclusion algorithm in the asynchronous send/receive network setting. 
Analyze the complexity of your algorithm. 

20.3. Fill in the details of the proof of Theorem 20.1. 
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20.4. Suppose that G is a connected undirected graph. Design an efficient send/  
receive network algorithm based on G that causes all the processes in 
the network to configure themselves into a virtual ring. More specifically, 
assume that the processes have UIDs. Each process must output  the UID 
of its ring successor, plus the UIDs of all the nodes along a path to that 
successor. Try to minimize the total length of all the paths. 

20.5. Repeat Exercise 20.4, but for the case where G is a strongly connected 
directed graph. 

20.6. Give an invariant assertion proof for the mutual exclusion property of the 
Logical TimeME algorithm. (Hint: The key invariant says that if a process 
i is in C, then the logical time associated with its try message is less 
than that of any other try message that does not have a subsequent ezit 
message.) 

20.7. Prove a general worst-case upper bound on the time between a tryi event 
and the corresponding criti event, in the LogicalTimeME algorithm. Re- 
member not to neglect possible channel pileups. 

20.8. "Optimize" the Logical Time ME algorithm so that the history variables do 
not keep all the messages that have ever been received. That is, condense 
the information that is retained, while permitting each process to exhibit 
the same behavior as before. Prove the correctness of your optimized algo- 
r i thm using a simulation relation relating it to Logical TimeME. 

20.9. Suppose that we modify the LogicalTimeME algorithm so that each process 
increments its local clock when it receives a message but does not increase 
it additionally to guarantee that the new clock value is larger then the 
value in the received message. (This yields one of the notions of "illogical 
time" described in Exercise 18.4.) Which correctness properties does the 
modified algorithm retain? Prove your claims (both positive and negative). 

20.10. Write precondition-effect code for the RicartAgrawalaME algorithm and 
use it as the basis for a formal correctness proof. Use invariant assertions 
in your proof of mutual exclusion. 

20.11. Prove that the RicartAgrawalaME algorithm is lockout-free and prove an 
upper bound on the time from any tryi event until the corresponding criti 
event. 

20.12. Write precondition-effect code for the improved version of the RicartAgra- 
walaME algorithm in which ok messages convey permission to access the 
critical region repeatedly. Prove its correctness. 
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20.13. Analyze the communication and time complexity of the modified Coloring 
algorithm described in Section 20.2.2. 

20.14. Do the following for the RicartAgrawalaRA algorithm: 

(a) Write precondition-effect code. 

(b) Prove its correctness. 

(c) Analyze its complexity. 

(d) Construct an execution in which the time from a tryi event until the 
corresponding criti event is as large as you can make it. 

20.15. Write precondition-effect code for the improved version of the RicartAgra- 
walaRA algorithm in which ok messages convey permission to access the 
critical region repeatedly. Prove its correctness. 

20.16. Do the following for the AcyclicDigraphRA algorithm: 

(a) Write precondition-effect code. 

(b) Give a careful proof of correctness. 

(c) Determine whether it guarantees independent progress. 

(d) Analyze its complexity. 

(e) Construct an execution in which the time from a try event until the 
corresponding crit event is as large as you can make it. 

(f) Prove an upper bound on the time for an isolated request. 

20.17. Explain how the Circulating Token algorithm can be regarded as a special 
case of the AcyclicDigraphRA algorithm. 

20.18. Generalize the AcyclicDigraphRA algorithm to remove the two given re- 
strictions on the resource specification. 

20.19. Give an efficient algorithm for a send/receive network based on a connected 
undirected graph G, to orient all the edges to form an acyclic digraph H. 
You may assume that the processes have UIDs. 

20.20. State and prove an analogue of Theorem 11.2 for the asynchronous network 
setting. 

20.21. Define a notion of waiting chain similar to the one described in Section 
11.3.1, but that makes sense for algorithms such as RicartAgrawalaRA and 
AcyclicDigraphRA, in which processes do not explicitly acquire individual 
resources. Use your definition to analyze the lengths of the waiting chains 
for the resource-allocation algorithms in this chapter. 
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20.22. The programmers at the Flaky Computer  Corporation have decided to try 
to improve the AcyclicDigraphRA algorithm. Namely, a process that is 
in the remainder region with all edges oriented inward does not change 
the orientation of the edges to point outward unless it receives an explicit 
try message from a neighbor. A process Pi sends try messages to all its 

neighbors when it receives a tryi input from user Ui. 

What  is wrong with this strategy? 

20.23. Research Question: Design a send/receive network algorithm for the gen- 
eral resource-allocation problem, based on a given resource specification 
7~. Assume that any two processes that share a resource are connected by 
an edge in the underlying graph G. Design your algorithm to achieve low 
time complexity for a request that has a small number k of "overlapping" 
conflicting requests. Try for a bound that is linear in k. 

20.24. Research Question: Design a send/receive network algorithm for the gen- 
eral resource-allocation problem, based on a given resource specification 
7~. Assume that any two processes that share a resource are connected 
by an edge in the underlying graph G. Design your algorithm so that it 
guarantees lockout-freedom for any particular process i, even in the face 
of stopping failures of processes whose distances from i in G are greater 
than or equal to k. Try to minimize k. 

20.25. Fill in all the details in the proof of Theorem 20.6. In particular, you will 
need to prove some invariant assertions, including 

A s s e r t i o n  20.4 .1  If  b E bottlesi and a ("demand", b) message 
is in transit from Dj to Di, then regionj = T, internal-regionj = 
C, and currentj = true. 

20.26. Prove the T1 + T2 + c + 3d + O (g) upper bound on the time complexity for 
ModularDP. 

20.27. Consider the ModularDP Drinking Philosophers algorithm using the Col- 
oring algorithm (adapted for networks) to implement the general resource- 
allocation module. State and prove an upper bound on the time a user 

must wait for a request to be satisfied. 

20.28. Generalize the ModularDP algorithm to remove the restriction on the re- 
source specification. 
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Chapter 21 

Asynchronous Network 
Computing with Process 
Failures 

In this chapter, we consider what can and what cannot be computed in asyn- 
chronous networks in the presence of process stopping failures. Here, we only 
consider process failures and assume that communication is reliable. 

We begin by showing that, for the purpose of obtaining computability results, 
it does not matter whether we consider send/receive or broadcast systems. 

Then we (re-)state the fundamental impossibility result for the problem of 
distributed agreement in the asynchronous network model. This result says 
that the agreement problem cannot be solved in asynchronous networks, even if 
there is guaranteed to be no more than one process failure. In Chapter 12, we 
discussed this problem and gave an analogous impossibility result for the asyn- 
chronous shared memory setting. As we noted at the beginning of Chapter 12, 
such impossibility results have practical implications for distributed applications 
in which agreement is required. These include database systems requiring agree- 
ment on whether transactions commit or abort, communication systems requiring 
agreement on message delivery, and process control systems requiring agreement 
on fault diagnoses. The impossibility results imply that no purely asynchronous 
algorithm can work correctly. 

In the rest of this chapter, we describe some ways around this fundamental 
dii~culty: using randomization, strengthening the model with mechanisms for 
failure detection, agreeing on a set of values rather than just one, and agreeing 
approximately rather than exactly. 

This chapter rests heavily on previous chapters, especially Chapters Y, 12, 
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and 17. In particular, many results about computability in asynchronous net- 
works follow directly from analogous results about computability in asynchronous 
read/write shared memory systems, by means of general transformations. 

21.1 T h e  N e t w o r k  M o d e l  

The model we assume throughout this chapter is an asynchronous broadcast 
system with reliable broadcast channels and process stopping failures (modelled 
with stop events). We could equally well have considered send/receive systems 
with reliable FIFO send/receive channels between all pairs of distinct processes: 
it turns out that the two models are the same from the point of view of com- 
putability. It is not hard to see that the broadcast model is at least as powerful 
as the send/receive model. The following theorem shows that it is not more 
powerful. 

T h e o r e m  21.1 I rA  is any asynchronous broadcast system with a reliable broad- 
cast channel, then there is an asynchronous send/receive system B with reliable 
FIFO send/receive channels that has the same user interface as A and that "sire- 
ulates" A, as follows. For every execution c~ of B,  there is an execution c~ ~ of A 
such that the following conditions hold: 

1. c~ and c~ ~ are indistinguishable to U (the composition of the users Ui). 

2. For each i, a stopi occurs in ~ exactly if it does in ~ .  

Moreover, if c~ is fair, then c~ ~ is also fair. 

P r o o f  Sketch.  System B has one process Qi for each process Pi of A. Each 
Qi is responsible for simulating Pi, plus participating in the simulation of the 
broadcast channel. 

Qi simulates a bcast(m)i output of Pi by performing send(m, t)i,j outputs for 
all j ~ i, where t is a local integer-valued tag, and then performing an internal 
step simulating receive(m)i,i. The tag values used by Qi start with 1 and are 
incremented with each successive bcast. If Qi receives a message (re, t) sent 
by Qj, it helps in the simulation of Pj's broadcast by relaying the message--  
specifically, it sends (m, t, j )  to all processes other than i and j. If Qi receives 
(m, t, j )  from k, it continues helping by sending (m, t, j )  to all processes other 
than i, j ,  and k to which Qi has not already sent (m, t, j) .  

Meanwhile, Qi collects tagged messages (m, t) originally broadcast by each 
Pj, j ~ i; these are either received directly from Qj or via relays. At certain 
times, Qi is allowed to perform an internal step simulating a receive(m)j,i event 
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of the A system. Specifically, Qi can do this when Qi has a message (re, t) 
originally broadcast by Pj, Q~ has already relayed (m, t, j)  to all processes other 
than i and j,  and Qi has already simulated receivej,i events for messages from 
Pj with all tag values strictly less than t. 

Some key facts for the proof are as follows. First, note that no process Qi 
simulates a receive(m)j,i event for any j until after it has succeeded in sending 
the corresponding (m, t) to all the other processes, and thus after it has been 
guaranteed that all processes will eventually receive (m, t) from j.  Second, note 
that although a process Qi can receive messages originally broadcast by Pj out 
of the order in which they were broadcast by Pj, the tags allow Qi to sort these 
messages into the proper order. Third, note that if a message with tag t is sent by 
any process Qi, then it must be that messages originating at Pi with all smaller 
tag values have previously been sent to all processes. K] 

Theorem 21.1 implies that it does not matter, from the point of view of 
computability, whether we consider broadcast systems or send/receive systems. 
Of course, the complexity is different--the total number of receive events might 
be multiplied by approximately n in the simulation described above--but  we 
will not worry much about complexity in this chapter. We choose to consider 
broadcast systems because they make the impossibility results appear slightly 
stronger and because they make the algorithms easier to write. 

21.2 Impossibi l i ty of Agreement  in the Presence  of 
Faults 

We use the definition of the agreement problem in Section 12.1. Although it was 
formulated there for shared memory systems, it also makes sense for asynchro- 
nous (broadcast or send/receive) network systems. We review it here. 

The user interface of the system A consists of init(v)i input actions and 
decide(v)i output actions, where v C V and 1 _< i _< n; A also has stopi input 
actions. All the actions with subscript i are said to occur on port i. Each user 
U~ has outputs init(v)~ and inputs decide(v)~, v E V. U~ is assumed to perform 
at most one initi action in any execution. 

A sequence of initi and decidei actions is well-formed for i provided that it 
is some prefix of a sequence of the form initi(v), decidei(w). We consider the 
following conditions on the combined system consisting of A and the users Ui" 

Well-formedness: In any execution, and for any i, the interactions between Ui 
and A are well-formed for i. 

Agreement: In any execution, all decision values are identical. 
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Validity: In any execution, if all init actions that occur contain the same value 

v, then v is the only possible decision value. 

Failure-free termination: In any fair failure-free execution in which init events 

occur on all ports, a decide event occurs on each port. 

We say that an asynchronous network system solves the agreement problem if 
it guarantees well-formedness, agreement, validity, and failure-free termination 
(for all collections of users). We also consider 

f-failure termination, 0 < f <_ n:  In any fair execution in which init events 
occur on all ports, if there are stop events on at most f ports, then a decide 
event occurs on every non-failing port. 

Wait-free termination is defined to be the special case of f-failure termination 

where f = n. 
Of course, it is easy to solve the agreement problem in the asynchronous 

broadcast  model if there are no fault-tolerance requirements. For example, each 
process could simply broadcast  its initial value and apply some appropriate 
agreed-upon function to the vector of initial values it receives. Since all pro- 
cesses are guaranteed to receive the same vector of values, all will obtain the 
same result. 

The main impossibility result for broadcast  systems (repeated from Sec- 
tion 17.2.3) is 

Theorem 21.2 There is no algorithm in the asynchronous broadcast model with 
a reliable broadcast channel that solves the agreement problem and guarantees 1- 

failure termination. 

The proof given in Section 17.2.3 is based on a t ransformation from asynchro- 
nous broadcast  systems to asynchronous shared memory systems (Theorem 17.8) 
and an impossibility result for the agreement problem in the asynchronous shared 
memory model (Theorem 12.8). It is also possible to prove the impossibility 
result directly, using a proof similar to that of Theorem 12.8. We leave this 
alternative proof for an exercise. 

21.3 A Randomized  Algori thm 

Theorem 21.2 says that the agreement problem cannot be solved in an asyn- 
chronous network system, even for only a single stopping failure. However, the 
problem is so fundamental to distr ibuted computing that it is important  to find 
ways around this inherent limitation. In order to obtain an algorithm, we must 
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be willing either to weaken the correctness requirements, strengthen the model, 
or both. 

In this section, we do both. We show that the agreement problem can be 
solved in a randomized asynchronous network. This model is stronger than the 
ordinary asynchronous network model, because it allows the processes to make 
random choices during the computation. On the other hand, the correctness con- 
ditions are slightly weaker than before: although well-formedness, agreement, 
and validity are still guaranteed, the termination condition is now probabilistic. 
Namely, all the nonfaulty processes will decide by time t after the arrival of all 
inputs, with probability at least p(t), where p is a particular monotone nonde- 
creasing, unbounded function. This implies eventual termination with probabil- 
ity 1. 

In the subsequent sections, we consider other ways around the inherent limi- 
tation expressed by Theorem 21.2, including the use of failure detectors, allowing 
more than one decision value, and allowing approximate instead of exact agree- 
ment. 

The algorithm, by Ben-Or, works for n > 3 f  and V = {0, 1}. Formally, it is 
an instance of the probabilistic model described in Section 8.8. 

B e n O r  algorithm: 
Each process Pi has local variables x and y, initially null. An init(v)i input 
causes process Pi to set x := v. Pi executes a series of stages numbered 
1, 2 , . . . ,  each stage consisting of two rounds. Pi begins stage 1 after it 
receives its initial value in an init4 input. It continues performing the 
algorithm forever, even after it decides. 

At each stage s > 1, Pi does the following: 

Round 1: Pi broadcasts ( "first", s, v), where v is its current value of x, then 
waits to obtain n -  f messages of the form ("first", s, ,).  If all of these 
have the same value v, then Pi sets y := v; otherwise it sets y := null. 

Round 2: Pi broadcasts ("second", s, v), where v is its current value of y, 
then waits to obtain n -  f messages of the form ( "second", s, .) .  There are 
three cases: First, if all of these have the same value v r null, then Pi sets 
x := v and performs a decide(v)i if it has not already done so. Second, 
if at least n -  2f  of these messages, but not all of the messages, have the 
same value v ~ null, then Pi sets x := v (but does not decide). (The 
assumption that n > 3f  implies that there cannot be two different such 
values v.) Otherwise, Pi sets x to either 0 or 1, choosing randomly with 
equal probability. 
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Notice the similari ty between the organization of the BenOr algori thm and 

that  of the TurpinCoan algor i thm in Section 6.3.3. 

L e m m a  21.3  The BenOr algorithm guarantees well-formedness, agreement, 
and validity. 

P r o o f .  Well-formedness is s t raightforward.  For validity, suppose that  all init 
events that  occur in an execution contain the same value v. Then it is easy to see 

that  any process that  completes stage 1 must  decide on v in that  stage. This is 

because the only value sent or received by any process in a ( "first", 1, , )  message 

is v, so the only value sent in a ( "second", 1, , )  message is v. 

For agreement,  suppose that  process Pi decides v at stage s and no process 

decides at any smal ler-numbered stage. Then it must  be that  Pi receives n -  f 

( "second", s, v) messages. This implies that  any other process Pj that  completes 

stage s receives at least n -  2 f  ( "second", s, v) messages, since it hears from all 

but  at most  f of the processes that  Pi hears from. This means that  Pj cannot  

decide on a value different from v at stage s; moreover, Pj sets x := v at stage s. 

Since this is t rue for all Pj that  complete stage s, it follows (as in the argument  

for validity) that  any process that  completes stage s + 1 must  decide v at stage 

s + l .  [:] 

Now we consider terminat ion.  First ,  it is not hard to see that  the a lgor i thm 

continues to progress through successive stages; this fact does not depend on the 

probabilit ies.  

L e m m a  21.4  In every fair execution of the BenOr algorithm in which init 
events occur on all ports, each nonfaulty process completes infinitely many stages. 
Moreover, if ~ is an upper bound on the time for each process task, and d is an 
upper bound on the delivery time for the oldest message in transit from each Pi 
to  ach pj,  ach no fa lty co, pl t    ach by O( (d + 
time after the last init event. 

However, Lemma 21.4 does not imply that  each nonfaulty process eventu- 

ally decides. It turns  out that  this proper ty  is not guaranteed by the BenOr 
algori thm, but  only holds probabilistically. 

E x a m p l e  2 1 .3 .1  A n  e x e c u t i o n  w i t h  no  d e c i s i o n s  

We describe a fair execution of the BenOr algori thm for n - 3 f  + 1 

in which no process ever decides. Every stage s proceeds in the same 

way, as follows. 

Some number m of the processes, f + 1 < m < 2f ,  star t  with 

x - 0, and the rest s tar t  with x - 1. After round 1, all processes 
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have y -  null, and at round 2, all processes choose their new values 

of x randomly. Then some number m'  of the random choices, f + 1 _< 

m'  _< 2f ,  tu rn  out to be 0 and the rest 1, leading to a s i tuat ion where 

m'  of the processes begin stage s + 1 with x - 0 and the rest with 
x - - 1 .  

As in Section 11.4, we imagine that  all the nondeterminis t ic  choices in the 

a lgor i thm--here ,  which action occurs next and when, and what  is the resulting 

s t a t e - - a r e  under the control of an adversary. We constrain the adversary to 

enforce the fairness conditions of all the process I / O  au tomata  and the broadcast  

channel automaton.  We also constrain it to observe the usual t ime restrictions: 

an upper  bound of g on time for tasks within processes and an upper  bound of 

d on the delivery time for the oldest message in t rans i t  from each Pi to each 

PN. Finally, we require that  the adversary allow init events on all ports.  We 

assume that  the adversary has complete knowledge of the past  execution. Any 

such adversary determines a probabil i ty  d is t r ibut ion on the executions of the 

algorithm. 

L e m m a  21.5  For any adversary and any s >_ O, with probability at least 1 - 
1 (1 - ~ ) s  all nonfaulty processes decide within s + 1 stages. 

P r o o f  S k e t c h .  The case s - 0 is trivial. Consider any stage s > 1. We argue 

1 all nonfaulty processes choose the same value of that  with probabil i ty  at least ~ ,  

x at the end of stage s (no mat ter  how the random choices are resolved for other 

stages). In this case, by the argument  for agreement,  all nonfaulty processes 

decide by the end of stage s + 1. 

For this stage s, consider any shortest  finite execution c~ in which some non- 

faulty process, say Pi, has received n -  f ("first", s, , )  messages. (Thus, c~ ends 

with the delivery of one of these messages.) If at least f + 1 of these messages 

contain a part icular  value v, then define v to be a good value after c~; there can 

be either one or two good values. We claim that  if there is only one good value 

v after c~, then every ("second", s, , )  message that  is sent in any extension of c~ 

must  contain either value v or value null. This is because if Pi receives f + 1 

copies of v, then every other process receives at least one copy of v and so cannot  

send a ("second", s, ~) message. (Here we use the notat ion ~ to denote the value 

1 - v.) Similarly, if there are two good values after c~, then every ( "second", s, ,)  
message that  is sent in any extension of c~ must  contain null. 

It follows that  if there is only one good value v, then v is the only value 

that  can be "forced" to be any process 's  value of x at the end of stage s by a 

nonrandom assignment,  in any extension of c~. Similarly, if there are two good 

values, then no value can be forced in this way. Since no process makes a random 
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choice for stage s in c~, the determination of values that can be forced at stage s 
is made before any random choices for stage s. 

Thus, if there is exactly one good value, then with probability at least 1 ,  all 
processes that choose their values of x randomly will choose the good value, thus 
agreeing with those that choose nonrandomly. Similarly, if there are two good 

1 all processes will (randomly) choose values, then with probability at least W, 
the same value of x. In either case, with probability at least 1 all nonfaulty 
processes end up with the same value of x at the end of stage s. 

Now, the argument for each stage s only depends on the random choices 
at stage s, and these are independent of the choices at other stages. So we can 
combine the probabilities for different stages, to see that with probability at least 

1 1 - (1 - W)~, all nonfaulty processes obtain the same value of x at the end of 
, 1 )~ all some stage s' 1 _< s' _< s. Therefore, with probability at least 1 - (1 - ~ , 

nonfaulty processes decide within s + 1 stages. D 

Now define a function T from N + to R >-~ such that each nonfaulty process 
completes each stage s by T(s) time after the last init event. By Lemma 21.4, 
we can choose T(s) to be O(s(d + g)). Also, define p(t) to be 0 if t < T(1) and 
1 - ( l - w 1  )s-1 if s _> 1 and T(s) _< t < T(s + 1). Lemmas 21.5 and 21.4 then 
imply 

L e m m a  21.6 For any adversary and any t > O, with probability p(t), all non- 
faulty processes decide within time t after the last init event. 

The main correctness result is 

T h e o r e m  21.7 The BenOr algorithm guarantees well-formedness, agreement, 
and validity. It also guarantees that, with probability 1, all nonfaulty processes 
eventually decide. 

P r o o f .  By Lemmas 21.3, 21.6, and 21.4. 
p(t) is unbounded.) 

(Lemma 21.4 is needed to show that 
K] 

R a n d o m i z e d  v e r s u s  n o n r a n d o m i z e d  p r o t o c o l s .  One reason the BenOr 
algorithm is significant is that it demonstrates an inherent difference between 
the randomized and nonrandomized asynchronous network models. Namely, the 
agreement problem cannot be solved at all in the presence of process failures in 
the nonrandomized model, but can be solved easily (with probability 1) in the 
randomized model. A similar contrast is shown by the LehmannRabin algorithm 
in Section 11.4. 
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Reducing the complexity. The BenOr algorithm is not practical, because 
its probabilistic time bound is high. It is possible to improve the time complexity 
by increasing the probability that different processes' random values at the same 
stage are the same. However, this requires the use of cryptographic techniques, 
which are outside the model given here. 

21.4  Fai lure  D e t e c t o r s  

Another way to solve the agreement problem in fault-prone asynchronous net- 
works is to strengthen the model by adding a new type of system component 
known as a failure detector. A failure detector is a module that provides in- 
formation to the processes in an asynchronous network about previous process 
failures. There are different sorts of failure detectors, based on whether the in- 
formation about stopping is always correct and on whether it is complete. The 
simplest one is a perfect failure detector, which is guaranteed to report only fail- 
ures that have actually happened and to eventually report all such failures to all 
other non-failed processes. 

Formally, we consider a system A that has the same structure as an asyn- 
chronous network system, except that it has additional input actions inform- 
stopped(j)i for each pair i and j of ports, i =/= j.  A perfect failure detector for 
system A is a single I /O automaton that has the actions stopi, 1 < i <_ n, as in- 
puts, and the actions inform-stopped(j)i, 1 <_ i, j <_ n, i ~ j, as outputs. The idea 
is that the failure detector learns about stopping failures that occur anywhere in 
the network and informs the other processes about them. An inform-stopped(j)~ 
action is intended as an announcement at port i that process j has stopped. 
Figure 21.1 shows the architecture for a simple three-process system. The fol- 
lowing algorithm solves the agreement problem when used with a perfect failure 
detector: 

PevfectFDAgreement algorithm (informal)" 

Each process Pi attempts to stabilize two pieces of data: 

1. A vector val, indexed by { 1 , . . . , n } ,  with values in V U {null}. If 
val(j) - v E V, it means that Pi has learned that Pj's initial value 
is v. 

2. A set stopped of process indices. If j E stopped, it means that Pi has 
learned that Pj has stopped. 

Process Pi continually broadcasts its current val and stopped data and 
updates it upon receipt of new data from processes not in stopped. It 
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F i g u r e  21.1- Architecture for asynchronous broadcast system with a perfect failure 
detector. 

ignores messages from processes it has already placed in stopped. Pi also 
keeps track of processes that "ratify" its data, that is, from which it re- 
ceives the same (val, stopped) data that it already has. When Pi reaches a 
point where its data has "stabilized," that is, when it has received ratifica- 
tions for its current data from all non-stopped processes, then Pi decides 
on the non-null value corresponding to the smallest index in its val vector. 

The code follows. Let W denote the set of vectors indexed by { 1 , . . . ,  n}, 
of elements of V U {null}. We define a partial ordering on pairs (w, I), where 
w C W and I C_ { 1 , . . . , n } .  Namely, we write (w,I)  _<d (w' , I ' )  and say that 
(w', I') dominates (w, I), provided that both of the following hold: 

1. For all k, if w(k) E V, then w ( k ) -  w'(k). 
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2. I C F .  

This captures the idea that  (w ~, I ~) contains at least all the information that  
(w, I) does. 

To avoid confusion, we do not explicitly describe the behavior of Pi after a 
stopi event occurs. It is just as usua l - - the  process stops. 

PerfectFDAgreementi a u t o m a t o n  (formal)" 

Signature: 

Input" 
init(v)i ,  v E V 
receive(w,I)j,~, w C W,  I C { 1 , . . . , n } ,  

l < _ j < _ n  
inform-stopped(j) i ,  j r i 

Output" 
bcast(w,I) i ,  w E W, I _C { 1 , . . . , n }  
decide( v ) i , v E V 

States: 
val E W ,  initially identically null 
stopped C {1 , . . .  , n}, initially 
ratified C {1 , . . .  , n}, initially 
decided, a Boolean, initially false 

Transitions: 
init(v)i  

Effect" 
val(i) := v 
ratified "-  {i } 

in form- stopped(j ) i 
Effect" 

stopped "-  stopped U {j  } 
ratified " -  {i} 

bcast(w, I) i  
Precondition: 

w -  vat 
I -  stopped 
val (i) ~ null 

Effect: 
none 

receive(w, I)j,i  
Effect: 

if j ~ stopped then 
if (w, I) - (val, stopped) then 

ratified "-  ratified U {j} 
else if (w, I )  ~d (val, stopped) then 

stopped := stopped U I 
for a l lk ,  l _ < k < n ,  do 

if val(k) - null then val(k) := w(k)  
ratified := {i} 

decide(v)i 
Precondition: 

ratified U stopped = {1 , . . .  , n} 
v = val( j) ,  where j is the smallest index 

with ~(j) r ~uU 
decided = false 

Effect: 
decided := true 

Tasks: 
{bcast(w,I)~ " w E W , I  C_ {1 , . . .  ,n}} 
( decide(v)i " v C V}  
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T h e o r e m  21.8 PerfectFDAgreement, when used with any perfect failure detec- 
tor, solves the agreement problem and guarantees wait-free termination. 

P r o o f .  Well-formedness and validity are easy to see. For wait-free te rminat ion ,  
consider a fair execution a in which init events occur on all ports and let i be any 

non-failing port; we show that Pi eventually decides in a. Note that every time 

Pi's data (vali, stoppedi) changes in a,  it must be that the new pair dominates 
the old pair. Since there are only finitely many possible pairs, eventually this 

data reaches final values (wfi~al, Ifi~at). If P~ decides before this point, then we 
are done, so suppose that it does not. Then we claim that eventually thereafter, 

ratified~ CJ stopped~ = { 1 , . . . ,  n}, which is enough to imply that a decide~ event 
occurs. To prove this claim, it is enough to show that every process j r i that 

never fails eventually ratifies this pair (Wfinal , Ifinal ). 
So consider any j r i that never fails. Eventually, a message containing 

(W]~nat, Ifi~al) is broadcast  by Pi and received by Pj, after which Pj's pair always 

dominates (wfi~al, Ifi~al). But Pj's pair can never strictly dominate (wfi~at, I]~nal), 
since if it did, Pj would eventually succeed in communicating this new informa- 

tion to Pi. So, eventually, Pj's pair becomes and remains equal to (wfi~al, I~al). 
Then, eventually, a message containing (wfi~al, I~al) is broadcast  by Pj and 

received by Pi. This places j in ratifiedi, as needed. 
Finally we argue agreement. Suppose that Pi is the first process that decides 

and let w and I be the values of vali and stoppedi, respectively, when the decidei 
event, 7r, occurs. Then all processes in I fail in a prior to 7r and so can never 

decide. Let J = { 1 , . . .  , n } -  I; we argue that all processes in J that decide must 
decide on the same value as Pi. 

Each process j in J must be in ratifiedi when 7r occurs, so must have (w, I) 
as its local data at some point tj before 7r. We claim that each process j in J 

must keep val = w forever after point tj in a,  which implies that if it decides, it 

agrees with Pi. 
So suppose that this is not the case and let j be the first process in J to 

acquire a val vector containing information that is not in w (i.e., some element 

of the vector is in V, whereas the corresponding element of w is null). Then this 
acquisition must occur as a result of a receivek,j event occurring after point tj, 
where the broadcasting process Pk has, at the time of the broadcast ,  a val vector 
containing information not in w. Since Pj ignores all processes in I after point 

tj, it must be that the broadcasting process Pk is in J .  But this contradicts the 
choice of j as the first process in J to acquire information not in w. D 

C o m p l e x i t y .  The communication complexity and time complexity of the Perfect- 
FDAgreement algorithm are unbounded. This is not so terrible, because we are 
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only addressing computability issues in this chapter. However, it is possible to 
devise similar protocols with bounded complexity. We leave this for an exercise. 

21.5 k-Agreement 

Now we consider weakening the problem statement. The k-agreement problem, 
as described in Sections 7.1 and 12.5 for the synchronous network setting and 
asynchronous shared memory setting, respectively, is a variation on the agree- 
ment problem that can be solved in asynchronous networks with a limited num- 
her ( f  < k) of faults. We use the same problem definition as in Section 12.5: 
that is, this problem has the same well-formedness and termination conditions as 
the ordinary agreement problem, and the agreement and validity conditions are 
replaced by the following, where k is any integer, k _> 1. 

Agreement" In any execution, there is a subset W of V, IWI - k, such that all 
decision values are in W. 

Va l id i ty :  In any execution, any decision value for any process is the initial value 
of some process. 

The agreement condition is weaker than that for ordinary agreement in that it 
permits k decision values rather than just 1. The validity condition is a slight 
strengthening of the validity condition for ordinary agreement. There is a trivial 
algorithm to solve the k-set agreement problem in an asynchronous broadcast 
network, where f < k: 

TrivialKAgreement a l g o r i t h m :  

Processes P1, P2 , . . .  Pk (only) broadcast their initial values. Every process 
Pi decides on the first value it receives. 

Theorem 21.9 TrivialKAgreement solves the k-agreement problem and guar- 
antees f-failure termination, if f < k. 

It is also not hard to devise a k-agreement algorithm that is similar to Perfect- 
FDAgreement, based on stable vectors. We leave this for an exercise. Alterna- 
tively, we can obtain k-agreement algorithms for the asynchronous network model 
from algorithms for the asynchronous shared memory model, using Theorem 17.5 
to translate from the shared memory model to the network model; however, this 
approach has the disadvantage that it only works if n > 2f,  whereas Trivial- 
KAgreement and the algorithm based on stable vectors also work if n _< 2f. 

It turns out that the k-agreement problem cannot be solved if the number of 
failures is > k. 
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Theorem 21.10  The k-agreement problem is not solvable with k-failure termi- 
nation in the asynchronous broadcast model. 

P r o o f .  By Theorems 12.13 and 17.8. K] 

21.6 Approximate Agreement 

Again we weaken the problem statement.  Another variation on the agreement 
problem is the approximate agreement problem, as described in Sections 7.2 and 
12.5 for the synchronous network setting and the asynchronous shared memory 
setting, respectively. We use the same problem definition as in Section 12.5. That  
is, the set V of values is the set of real numbers, and processes are permit ted 

to send real-valued data in messages. Instead of having to agree exactly, as 
in the agreement problem, the requirement is that they agree to within a small 
positive tolerance e. The problem has the same well-formedness and termination 
conditions as the ordinary agreement problem, and the agreement and validity 
conditions are replaced by the following. 

Agreement: In any execution, any two decision values are within c of each 
other. 

Va l id i t y :  In any execution, any decision value is within the range of the initial 
values. 

An algorithm similar to the ConvergeApproxAgreement algorithm of Section 
7.2 works for the asynchronous setting with stopping failures, provided that n > 
3f .  Each process Pi executes a series of stages, at each of which it waits to 
hear from any n -  f processes rather than from all n processes. (It cannot wait 
to hear from all processes, because up to f processes might stop.) Because we 
are now considering stopping failures only, it is not necessary for Pi to "reduce" 
its multiset of values by discarding the extreme values. The mean and select 
functions used in the following description, as well as some notions like the width 
of a multiset of reals, are defined in Section 7.2. 

A synchApproxAgreemen t  algorithm: 

We assume that n > 3f .  Each Pi maintains a variable val containing 
its latest estimate. This gets initialized to the value v that arrives in an 

init(v)i input. At each stage, Pi does the following: First, it broadcasts 
its val value, tagged with the stage number s. Then it collects the first 
n -  f values it receives for stage s into a multiset W. Finally, it sets val 
to mean(select(W)). 
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It should be obvious that the val chosen by any process at any stage s is in 

the range of the vals chosen by all the processes at stage s -  1 (or the initial 
val values, if s = 1). We claim that, at each stage, the width of the multiset of 

vals is reduced by a factor of at least I n - / - 1 ]  f zr- 1. Since n > 3f ,  this yields 
L . . . . . . J  

convergence. 

L e m m a  21.11 Let v and v ~ be the values of vali and vali, chosen by two pro- 
cesses Pi and Pi' at stage s of an execution of A synchApproxAgreement. Then 

d 
iv-v'l _ Lo ,II§ 

where d is the width of the range of the val values chosen at stage s -  1, if s >_ 2, 
and d is the width of the initial values, if s = 1. 

P r o o f .  Analogous to that of Lemma 7.17. [-1 

T e r m i n a t i o n .  So far everything we have said about AsynchApproxAgreement 
works if we just  assume that n > 2f  (rather than n > 3f) .  But we do not yet 
have a complete algorithm, because we have not said when processes actually 

decide. We use the extra processes to help in achieving termination. 

We cannot use the simple termination strategy that we used for Converge- 
ApproxAgreement, because a process cannot wait to hear from all processes at 
stage 1 and thus cannot always determine an upper bound on the range of the 

multiset of initial values. However, we can modify this s trategy slightly by adding 

a special initialization stage, stage 0, to the beginning of the algorithm. In stage 

0, each process Pi broadcasts  its val, collects a multiset of n - f  vals, and chooses 

the median of the multiset as its new val for use in stage 1. Since n > 3f ,  it is 
easy to check that any val chosen by any process Pi at stage 0 is in the range of 

the multiset collected by any process Pj at stage 0. Thus, each Pi can use the 
range of the multiset it collects at stage 0 to compute a stage number by which 
it is sure that the val values of any two processes at stage s are at most c apart .  

The rest of this s trategy is as for ConvergeApproxAgreement. 
The AsynchApproxAgreement algorithm is not optimal, in the sense that the 

problem can actually be solved for any n > 2f.  However, a more complicated 

algorithm is needed. For example, an algorithm that works for n > 2 f  can 
be obtained from a shared memory approximate agreement algorithm A, based 
on single-writer/mult i-reader shared registers, that guarantees wait-free termi- 
nation. Theorem 12.14 asserts that such an algorithm A exists (and you can 
find one in [24]). Then Theorem 17.5 can be used to infer the existence of an 



684 21. ASYNCHRONOUS N E T W O R K S  WITH PROCESS FAILURES 

asynchronous network algorithm that solves the approximate agreement problem 
and guarantees f-failure termination, for n > 2f.  1 On the other hand, it is not 
hard to see that the approximate agreement problem cannot be solved if n < 2f.  

T h e o r e m  21.12 The approximate agreement problem is not solvable with f -  
failure termination in the asynchronous broadcast model if n < 2 f .  

P r o o f  Sketch.  The proof is similar to that of Theorem 17.6. Briefly, we 
suppose that such an algorithm exists and let G1 be the set 1 , . . . ,  n -  f and 
G2 be the set n -  f + 1 , . . . ,  n. We consider a fair execution OZl in which all 
processes begin with value Vl and all processes with indices in G2 fail right at 
the start.  By f-failure termination, all processes in G1 must eventually decide, 
and the validity condition implies that they must decide Vl. Symmetrically, we 
consider a second fair execution a2 in which all processes begin with v2, where 

IVl --v2] > e, and all processes with indices in G 1 fail at the start.  In a2, all 
processes in G2 must eventually decide v2. 

We then construct a finite execution a as in the proof of Theorem 17.6, by 
combining Ctl and a2. In a,  the processes in G1 decide Vl and those in G2 decide 
v2, which contradicts the agreement condition. [2] 

21.7 Computability in Asynchronous Networks* 

The same construction that is used in the proofs of Theorems 17.6 and 21.12 
can be used to show that many other problems of global coordination cannot be 
solved in asynchronous networks if half of the processes might fail. 

As we did in Section 12.5, we can consider the solvability of arbi t rary deci- 
sion problems in asynchronous networks. Ordinary agreement, k-agreement, and 
approximate agreement problems are all examples of decision problems, and we 
have already given the main results about the computabili ty of these problems in 
asynchronous networks. As for the read/wr i te  shared memory model, we state a 
theorem that gives some conditions that imply that a problem cannot be solved 

with l-failure termination in the asynchronous network model. 

T h e o r e m  21.13 Let D be a decision mapping whose decision problem is solv- 
able with 1-failure termination in the asynchronous broadcast model. Then there 
must be a decision mapping D' with D'(w) C D(w) for all w, such that both of 
the following hold: 

l In order to apply Theorem 17.5, we need for A to satisfy the "turn" restriction given in 
Section 17.1.1. The shared memory approximate agreement algorithm can be constructed so as 
to satisfy this condition. 
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1. I f  input vectors w and w ~ differ in exactly one position, then there exist 
y C D'(w) and y' C D'(w')  such that y and y' differ in at most one position. 

2. For each w, the graph defined by D'(w) is connected. 

Proof .  By Theorems 12.15 and 17.8. K] 

In general, impossibility results for computabiliy in the read/write shared 
memory setting carry over to the network setting using Theorem 17.8. Al- 
gorithms carry over also, using Theorem 17.5, but only under the restrictions 
needed for Theorem 17.5, including the requirement that n > 2f. 

21.8 Bibliographic Notes 

Theorem 21.2, the impossibility of agreement in the presence of stopping failures, 
was first proved by Fischer, Lynch, and Paterson [123]. Their original proof 
was given directly in terms of the asynchronous broadcast model rather than 
via a transformation. Loui and Abu-Amara [199] observed that Theorem 21.2 
could be extended to the read/write shared memory model, using essentially the 
same proof. Our proof of Theorem 12.8 follows the presentation of Loui and 
Abu-Amara. The original proof by Fischer, Lynch, and Paterson, reorganized 
somewhat according to suggestions by Bridgland and Watro [58] is outlined in 
Exercises 21.2, 21.3, and 21.4. 

The BenOr algorithm was invented by Ben-Or [46]. Later work by Rabin 
[248] and by Feldman [114] produced other randomized algorithms with much 
better (in fact, constant) time complexity. These use "secret sharing" techniques 
to increase the probability that the random values chosen by different processes 
at the same stage are the same. 

The notion of a failure detector was defined and developed by Chandra and 
Toueg [66] and by Chandra, Hadzilacos, and Toueg [65]. Those papers describe 
not only the perfect failure detector discussed here but also many less perfect 
variations, including failure detectors that falsely identify processes as faulty 
and failure detectors that fail to notify all processes about failures. Such weaker 
failure detectors can also be used to solve the agreement problem, and some 
can be implemented in practical distributed systems using timeouts. Failure 
detectors are also discussed by Hadzilacos and Toueg [143]. 

We have already discussed the origins of the k-agreement problem and the 
approximate agreement problem in the Bibliographic Notes for Chapters 7 and 
12. Attiya, Bar-Noy, Dolev, Koller, Peleg, and Reischuk [19, 20, 40] describe 
some other interesting problems that are solvable in asynchronous networks with 
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failures, including a problem of process renaming and a problem of slotted ex- 
clusion. Bridgland and Watro [58] describe a resource-allocation problem that 
is solvable in asynchronous networks with failures. The idea of a stable vector 
algorithm is due to Attiya et al. [20]. 

The proof of Theorem 21.12 is adapted from proofs by Bracha and Toueg [56] 
and Attiya, Bar-Noy, Dolev, Peleg, and Reischuk [20]. Biran, Moran, and Zaks 
[51] characterized the decision problems that can be solved in an asynchronous 
network with l-failure termination, based on an earlier impossibility result by 
Moran and Wolfstahl [230]. Theorem 21.13 is adapted from these two papers. 

21.9  E x e r c i s e s  

21.1. Prove Theorem 21.1. 

21.2. Suppose V = {0, 1}. If A is an asynchronous broadcast system that solves 
the agreement problem, then define O-valence, 1-valence, univalence and 
bivalence for finite executions of A, and also define initializations of A, in 
the same way as in Section 12.2.2. 

(a) Give an example of such a system A in which there is a bivalent 
initialization. 

(b) Given an example of such a system A in which all initializations are 
univalent. 

(c) Prove that if A guarantees 1-failure termination, then there is a biva- 
lent initialization. 

21.3. Let V, A be as in Exercise 21.2. Define a decider execution c~ to be a 
finite failure-free input-first execution satisfying the following conditions, 
for some i: 

(a) c~ is bivalent. 

(b) There exists a 0-valent failure-free extension c~0 of c~ such that the 
portion of c~0 after c~ consists of steps of process i only. 

(c) There exists a 1-valent failure-free extension Ct 1 of Ct such that the 
portion of c~i after c~ consists of steps of process i only. 

That is, a single process i can operate on its own in two different ways (e.g., 
interleaving locally controlled and message-receiving steps in two different 
ways, or else receiving two different sequences of messages), in such a way 
as to resolve the final decision in two different ways. 
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Prove that if A has a bivalent initialization, then A has a decider. Note that 
we have assumed only that A solves the agreement problem; we have made 
no fault-tolerance assumptions. (Hint: Consider the proof of Lemma 12.7.) 

21.4. Use the results of Exercises 21.2 and 21.3 to prove Theorem 21.2. 

21.5. Reconsider the agreement problem of this chapter, using the broadcast 
model. This time consider a more constrained fault model than general 
stopping failures, in which processes can only fail at the beginning of com- 
putation. (That is, all stop events precede all other events.) Can the 
agreement problem be solved in this model, guaranteeing 

(a) 1-failure termination? 

(b) f-failure termination, where n > 2f? 

(c) wait-free termination? 

In each case, give either an algorithm or an impossibility proof. 

21.6. Design a variant of the BenOr algorithm in which all nonfaulty processes 
eventually halt. 

21.7. Design variants of the BenOr randomized agreement algorithm that work 
for the following cases: 

(a) The synchronous network model with stopping failures. 

(b) The synchronous network model with Byzantine failures. 

(c) The asynchronous network model with Byzantine failures. (As men- 
tioned in Section 14.1.1, a Byzantine failure of a process Pi is modelled 
by allowing Pi to be replaced by an arbitrary I /O automaton with the 
same external interface.) 

In each case, try to design the algorithm to work for as few processes as 
possible, relative to the number f of tolerated failures. 

21.8. Design a randomized asynchronous algorithm for agreement with stopping 
failures, using an arbitrary value set V rather than just {0, 1}. Try to mini- 
mize the number of processes. (Hint: Combine the ideas of the TurpinCoan 
algorithm with those of the BenOr algorithm.) 

21.9. Repeat Exercise 21.8 for the case of Byzantine failures. 
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21.10. Devise an alternative protocol to PerfectFDAgreement that also uses a per- 
fect failure detector to achieve wait-free agreement but that has "small" 
communication and time complexity. Try to obtain the smallest communi- 
cation and time complexity that you can. 

21.11. Define an imperfect failure detector as follows. It has the same external 
interface as a perfect failure detector, with the addition of an inform-not- 
stopped(j)i action for each j and i, j ~- i. This is used to correct a previous 
inform-stopped(j)i action, that is, to notify process Pi that Pj has in fact 
not stopped, in spite of a previous erroneous notification. An imperfect fail- 

ure detector can alternate inform-stopped(j)i and inform-not-stopped(j)i 
events any number of times. However, in any fair execution a of the failure 
detector, there can be only finitely many such events for any i and j ,  and 
the final such event must contain the correct information--saying whether 
or not stopj occurs in a. 

Suppose that n > 2f.  Devise an algorithm that solves the agreement 
problem guaranteeing f-failure termination, using any imperfect failure 
detector. 

21.12. Prove that there is no algorithm to solve the agreement problem guaran- 
teeing f-failure termination, using an arbi t rary  imperfect failure detector 

as defined in Exercise 21.11, in case n _< 2f.  

21.13. Give precondition-effect code for a "stable vector" algorithm similar to 
PerfectFDAgreement, to solve the k-agreement problem. Prove that it 
works correctly, if f < k. (Hint: The state only contains the compo- 
nents val, ratified, and decided but not the stopped component.  A decision 

can be made when I ratifiedl >_ n -  f.) 

21.14. Define a finite execution c~ of a k-agreement algorithm to be m-valent 
if there are exactly m distinct decision values that appear in extensions 
of a,  and define an initialization as in Section 12.2.2. Prove (without 
using Theorem 21.10) that any k-agreement algorithm in the asynchronous 
broadcast  model that guarantees k-failure termination must have a k + 
1-valent initial execution. (Hint: Use ideas from Section 7.1, including 
Sperner's Lemma.) 

21.15. Give complete precondition-effect code for the AsynchApproxAgreement 
algorithm, including the termination protocol. Prove correctness. 

21.16. Modify the AsynchApproxAgreement algorithm and its proof to work for the 
case of Byzantine failures. How many processes are needed? (Hint: Use 
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ideas from the ConvergeApproxAgreement algorithm for the synchronous 
Byzantine setting.) 

21.17. Prove the most general impossibility result you can, using the construction 
in the proof of Theorem 21.12. 

21.18. Give a general characterization of the decision problems (as defined in 
Section 12.5) that can be solved in asynchronous networks with l-failure 
termination. (Warning: This is very hard.) 
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Chapter 22 

D a t a  Link P r o t o c o l s  

In this chapter, we consider the problem of implementing reliable FIFO com- 
munication using less reliable channels. This is one of the most fundamental 
problems solved by communication networks. The "less reliable channels" we 
consider include channels that exhibit failures such as the loss and duplication of 
messages, as well as channels that reorder messages. We also consider process 
crashes that lose process state information. We only consider the problem in the 
very special case of a two-node network. 

We begin by presenting two simple, well-known algorithms: Stenning's pro- 
tocol and the Alternating Bit protocol. In Stenning's protocol, the process at 
the sending end attaches (unbounded) integer tags to messages submitted by the 
user; this protocol tolerates loss, duplication, and reordering of messages on the 
channels. The Alternating Bit protocol, on the other hand, uses only bounded 
tags and tolerates loss and duplication, but not reordering. We then consider 
whether it is possible to tolerate reordering using bounded tags. Finally, we 
consider the case of crashes that lose process state information (the contents of 
volatile memory). 

Throughout this chapter, we discuss messages at two levels: the level of the 
users of the communication system and the level of the underlying channels. In 
order to distinguish between these two types of messages, we call them high- 
level and low-level messages, respectively. We generally let M and M ~ denote 
the high-level and low-level message alphabets, respectively. Also, we usually 
capitalize the actions at the user interface, for example, SEND and RECEIVE, 
while we continue to use lowercase for the actions at the channel interface, for 
example, send and receive. 

The techniques that we use for modelling the algorithms in this chapter (using 
I /O automata, composition, and simulation relations) are suitable for modelling 
layered communication architectures such as the ISO hierarchy. 
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22.1 T h e  P r o b l e m  

We consider the problem in an asynchronous send/receive network with an under- 
lying graph G consisting of two nodes, 1 and 2, connected by a single undirected 
edge. The problem is to implement reliable FIFO communication between users 
U1 and U2 located at the two nodes. High-level messages submitted by U1 to the 
process P1 located at node 1 are supposed to be delivered subsequently to U2. 
Each message should be delivered exactly once, and the deliveries should occur 
in the order in which the messages are submitted. 

Formally, we let F denote the universal reliable FIFO send/receive channel 
from i to 2 with alphabet M, as defined in Section 14.1.2 and Example 8.1.1; here, 
we rename the external actions as SEND(m)~,2 and RECEIVE(m)1,2, rn E M. 
Then the correctness requirement for a protocol is that it should "implement" 
F,  in the sense that each of its fair executions a, when projected on the external 
actions of F,  should yield a fair trace of F.  More precisely, in terms of the 
formal notation for I /O automata introduced in Chapter 8, the requirement is 
that c~lext(F ) c fairtraces(F). 

Note that the universal reliable FIFO channel F is essentially an unbounded 
queue, so any implementation of F will also need unbounded storage. An al- 
ternative way of modelling the problem would be to use an explicit handshake 
between U1 and the channel, by which the channel tells U1 when it may submit 
the next high-level message. This would avoid the need for unbounded stor- 
age. However, it would introduce the additional complication of modelling the 
handshake protocol. 

The two processes executing the code to implement F are modelled as I /O 
automata. The channels connecting them in both directions are also I /O at-  
tomata, but they are generally not reliable FIFO channels. In particular, they 
may lose, duplicate, or reorder low-level messages. 

We do not consider certain other types of unreliability, however, such as the 
manufacture of spurious messages. Also, we impose some limitations on message 
loss--we usually assume some liveness property that says, roughly speaking: 

If infinitely many messages are sent, then infinitely many of them are 
delivered. 

There are basically two ways to formalize this proper ty--us ing the strong loss 
limitation (SLL) and weak loss limitation ( WLL) conditions defined in Sec- 
tion 14.1.2. The difference is that the SLL condition specifies that the channel is 
fair to each particular type of message. In this chapter, we use both conditions, 
as needed. We also usually impose a finite limit on message duplication. 

Formal descriptions of the allowed behavior for most of the channels we need 
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in this chapter appear in Section 14.1.2. Some of these descriptions are them- 
selves I /O automata (and use I /O automaton fairness to express the needed 
liveness conditions). Others are axiomatic, in terms of a cause function from 
receive events to send events. Still others consist of a combination of an au- 
tomaton and some extra liveness constraints. In this chapter, we use all three 
types of descriptions, as convenient. 

The architecture we consider throughout this chapter is depicted in Fig- 
ure 22.1. It consists of two process automata, P1 and P2, and two channel 
automata, C1,2 and C2,1, one in each direction. The processes interact with 
the users by means of SEND and RECEIVE actions and with the channels by 
means of send and receive actions. In Section 22.5, we also introduce additional 
actions to model process crashes. 

q2 
SEND 1, 2 

C2,~ 
2,1 

~ r e c e i P e  

R E C E I V E  1, 2 
,,,..- 

F i g u r e  22.1. Architecture for data link protocols. 

22.2 Stenning's Protocol  

The simplest protocol for ensuring reliable FIFO message delivery in terms of 
less reliable channels is due to Stenning. It tolerates all three types of channel 
unreliability: (limited) loss, (finite) duplication, and reordering. 

Stenning protocol ( in formal ) :  

Process P1 places high-level messages submitted by user U1 in a buffer, 
bufferl, tagging them with successive integers starting with 1. P1 repeat- 
edly sends the first message in bufferl to P2 with its tag attached. Process 
P2 accepts the first message tagged with 1 that it receives. Then P2 ac- 
cepts each subsequent message exactly if its tag is one greater than the 
tag of the message previously accepted. /)2 places the accepted messages 
in buffer2 and delivers the messages in buffer2, in order, to U2. 

P2 acknowledges a high-level message repeatedly by sending its tag back 
to P1. When P1 receives an acknowledgment for its current tag, it moves 
on to begin processing the next high-level message. 

The following is the code for process P1 of the Stenning protocol. 
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Stenningl automaton (formal): 

Signature: 

Input:  Output :  

SEND(re)l,2, m e M send(m, k)1,2, m e M, k e N 
receive(k)2,1, k C N 

States: 
buffer, a F IFO queue of elements of M,  initially empty  
tag C H, initially 1 

Transitions: 
SEND(m)1,2 

Effect: 

add m to buffer 

send(m, k)1,2 
Precondit ion:  

m is first on buffer 
k = tag 

Effect: 
none 

receive(k)2,1 
Effect: 

if k - tag then 
remove first element (if any) of buffer 
tag := t a g + l  

Tasks: 
{8e/td(Trt, ]~)1,2 : ?Tt E M ,  ]g E 1~} 

The following is the code for process P2. 

Stenning2 automaton (formal): 

Signature: 

Input:  Output :  

receive(m,k)l,2, m C M, k E N RECEIVE(re)l ,2,  m C M 
send(k)2,i, k E N 

States: 
buffer, a F IFO queue of elements of M,  initially empty  
tag E H, initially 0 
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Trans i t ions :  

R E CEI VE( rn ) I ,2 
Precondition: 

rn is first on buffer 
Effect" 

remove first element of buffer 

receive(m, k) 1,2 
Effect- 

if k -  tag+l then  
add m to buffer 
tag "- tag + l 

send(k)2,1 
Precondition" 

k -  tag 
Effect: 

none 

Tasks: 
{RECEIVE(m)I,2 " m E M} 

The channels C1,2 and C2,1 in the Stenning protocol are any I /O  automata 
that satisfy the specification of a lossy reordering channel given in Example 14.1.2 
(with suitable renaming of actions). That  is, they allow limited loss, finite du- 
plication, and reordering. The allowed channel behavior is specified in Exam- 
ple 14.1.2 using a combination of a basic automaton and some additional liveness 
properties. We want this form of specification here because it yields an explicit 
state that we can use in invariant assertions and simulation relations. The com- 

plete Stenning protocol is obtained by composing P1, P2, C1,2, and C2,1. 
In order to prove the correctness of the Stenning protocol, we begin with some 

invariants. But note the following technicality: since we need invariants that 
mention the channel states, we must give them in terms of particular automata 
for the channels. Thus, we state the invariants in terms of the basic I /O  automata 

A1,2 and A2,1 defined in Example 14.1.2. The in-transit variables are state 
components of the A1,2 and A2,1 automata. 

L e m m a  22.1 In every reachable state of the Stenning protocol using channels 

A1,2 and A2,1, the following are true. 

1. tag2 <_ tag I < tag 2 + 1. 

2. I f  (m, k) is in in-transitl,2, then k <_ tag 1. 

3. I f  (m, tag l) is in in-transit1,2, then rn is the first element of buffer1. 

~. I f  k is in in-transit2,1, then k < tag 2. 
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5. If  tag2 -- tag 1, or if any message in in-transit1,2 or in-transit2,1 has its tag 
value equal to tag1, then buffer1 is nonempty. 

P r o o f .  By a straightforward induction. Left as an exercise. D 

Our goal is to show that the Stenning protocol, using any allowable channels, 
guarantees reliable FIFO message delivery. We first give a technical lemma that 
asserts correctness in terms of the channel specifications rather than in terms 
of arbitrary allowable channels. This lemma implies the result for arbi t rary  
allowable channels. 

The statement of Lemma 22.2 is slightly heavy on notation, but it is not 
really that complicated. The assumptions just  say that c~ projects to give fair 
executions of the node processes P1 and P2, as well as executions allowed by the 
lossy reordering channel specifications. The conclusion says that c~ yields a fair 
trace of F,  that is, it exhibits reliable FIFO message delivery. 

L e m m a  22.2 Let c~ be any execution of the Stenning protocol with A1,2 and 
A2,1. Suppose that 

1. c~[P1 and c~]P2 are fair. 

2. c~]A1,2 and c~]A2,1 satisfy the liveness properties in Example 1~.1.2. 

Then c~]ext(F) C fairtraces(F). 

P r o o f  Ske t ch .  Let /3 - trace(a). It is not hard to see that /3 E traces(F), 
which is another way of saying that the sequence of high-level messages in RE- 
CEIVE events in/3 is a prefix of the sequence of high-level messages in SEND 
events in/3. This can be proved using a (single-valued) simulation relation from 
the Stenning protocol with A1,2 and A2,1 to F,  and then invoking Theorem 8.13. 
The proof of the simulation relation uses Lemma 22.1. Assumptions 1 and 2 
in the statement of the theorem are not even needed in this part  of the proof, 
because they deal only with liveness. We leave this proof as an exercise. 

It remains to show the fairness condition of F,  that is, that any high-level 
message that is submit ted to P1 eventually gets delivered by P2. (The corre- 
spondence between sending and delivery events is uniquely determined by the 
definition of F.)  So suppose not; consider the first high-level message m that is 
submit ted but not delivered and let k denote its associated tag. This message 
can never be accepted by P2 for addition to its buffer, since, if it were, the fair- 
ness properties of P2 would imply that the message would be delivered to/]2.  So 
it follows that tag2 remains < k -  1 forever. 
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We claim that this message m eventually reaches the front of bufferl. This 
is obvious if it is the first message ever sent, that is, if k - 1. If k _> 1, then 
the previous message must eventually get accepted by P2, since it is delivered 
to U2. Thus, tag2 eventually reaches, and stays equal to, k -  1. But then the 
fairness properties of P2 imply that P2 keeps sending k -  1 messages forever, and 
the weak loss limitation (WLL) condition for A2,1 implies that eventually a copy 
of k -  1 is received by P1. This means that the message with t a g -  k -  1 gets 
removed from bufferl, so m reaches the front. 

Once this message m reaches the front of bufferl, it must stay there forever 
(since it is never accepted by P2). Then the fairness of P1 implies that P1 keeps 
sending (re, k) messages forever, and the WLL condition for A1,2 implies that 
eventually a copy of (m, k) is received, and hence accepted, by P2. This is a 
contradiction. K1 

It is also possible to prove the fairness condition by means of an execution 
correspondence, using Theorem 8.13 and a simulation from Stenning to F. We 
leave this for an exercise. 

Lemma 22.2 implies the main correctness result for the Stenning protocol, 
given in the following theorem. It says that the Stenning protocol with lossy 
reordering channels guarantees reliable FIFO message delivery. 

T h e o r e m  22.3 The Stenning protocol, using any lossy reordering channels (ac- 
cording to the specification in Example 1~. 1.2), implements F, in the following 
sense: For every fair execution ~ (of the protocol plus the channels), (~]ext(F) e 
fairtraces(F). 

P r o o f  Sketch.  This follows from Lemma 22.2 and basic properties of I /O 
automaton composition, in particular, Theorems 8.4 and 8.2. The proof is left 
as an exercise. D 

22.3 Alternating Bit Protocol  

An interesting variation on the Stenning protocol is the Alternating Bit protocol, 
which we abbreviate as ABP. The behavior of the ABP is very similar to that 
of the Stenning protocol, but the ABP only uses {0, 1}-valued tags instead of 
integer-valued tags. In fact, the ABP can be viewed as an optimized version of 
Stenning, in which the integer-valued tags are simply replaced by their low-order 
bits. Of course, this means that the ABP makes stronger requirements on its 
underlying channels in order to work correctly. 
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In addition to being interesting on its own, the ABP has for many years 
served as a standard example for demonstrating the use of various protocol 
verification techniques. 

ABP (informal): 

Process P1 places high-level messages submitted by U1 in buffer1, tagging 
each with a binary value, 0 or 1, in an alternating fashion. P1 repeatedly 
sends the first message in its buffer to P2, with its tag attached. P2 
accepts the first message tagged with 1 that it receives. Then P2 accepts 
each subsequent message exactly if its tag is different from the tag of the 
message previously accepted. P2 places accepted messages in buffer2 and 
delivers the messages in buffer2, in order, to U2. 

P2 acknowledges a high-level message repeatedly by sending its tag back 
to P1. When P1 receives an acknowledgment for its current tag, it moves 
on to begin processing the next high-level message. 

The code for process P1 follows. 

ABPI automaton (formal): 

S i g n a t u r e :  

Input:  Output :  
SEND(re)l,2, m C M send(m, b)1,2, m C M, b E {0, 1} 
receive(b)2,1, b E {0, 1} 

S t a t e s :  
buffer, a FIFO queue of elements of M,  initially empty  
tag C {0, 1}, initially 1. 

T r a n s i t i o n s :  

SEND(m)1,2 
Effect: 

add m to buffer 

send(m, b)l,e 
Precondition: 

m is first on buffer 
b = tag 

Effect: 
none 

receive(b)2,1 
Effect: 

if b = tag then 
remove first element (if any) of buffer 
tag := tag + 1 mod 2 
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Tasks: 
{send(re, b)1,2: m E M,b C {0, 1}} 

And now we give the code for process P2. 

A B P 2  a u t o m a t o n  ( f o r m a l ) :  

Signature: 

Input: 
receive(m, b)1,2, m E M, b e {0, 1} 

Output: 
RECEIVE(m)1,2, m E M 
send(b)2,1, b E {0, 1} 

States: 
buffer, a FIFO queue of elements of M, initially empty 
tag E {0, 1}, initially 0. 

Transit ions:  
RECEIVE(m)1,2 

Precondition: 
m is first on buffer 

Effect: 
remove first element of buffer 

receive(m, b)1,2 
Effect: 

if b # tag then 
add m to buffer 
tag := tag § 1 mod 2 

send(b)2,1 
Precondition: 

b = tag 
Effect: 

none 

Tasks: 
{RECEIVE(m)~,: : m E M} 
{send(b)2,1 : b C {0, 1} } 

The A B P  requires channels with s t ronger  reliabil i ty condit ions than  those we 

assumed for the S tenn ing  protocol:  now we must  assume that  the channels do not  

reorder  low-level messages,  though  they can still lose and duplicate them. Thus,  

the channels C1,2 and C2,1 are any I / O  au to m a ta  that  satisfy the specification 
of a lossy F I F O  channel  given in Example  14.1.1 (with suitable renaming  of 

actions).  Tha t  is, they allow l imited loss, finite duplicat ion,  and no reordering.  

As before, the allowed channel behavior  is specified using a combinat ion  of a 
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basic automaton and some additional liveness properties. The complete ABP is 

obtained by composing P1, P2, C1,2, and C2,1. 
Our strategy for proving the correctness of ABP is to relate it to the Stenning 

protocol using a simulation relation. In this simulation, we consider the Stenning 
processes in combination with lossy FIFO channels rather than the more general 
lossy reordering channels we considered in Section 22.2. 

In the rest of this section, we let A1,2 and A2,1 denote the basic automata from 
Example 14.1.1 with external interfaces appropriate to the ABP. We let A~, 2 and 
A ~ denote the same automata but with external interfaces appropriate to the 2,1  

Stenning protocol. Finally, we let P~ and P~ denote the processes Stenningl 
and Stenning2, in order to distinguish them from the processes P1 and P2 of the 
ABP. 

A key to the simulation proof is a new invariant about the Stenning protocol 
with channels A~, 2 and A ~ 2 ,1"  

L e m m a  22.4 In every reachable state of the Stenning protocol using channels 
A ~ and A ~ the following is true 1,2 2 ,1~ 

Let T be the sequence of integers consisting of the tags in queue2,1 (in order 
from first to last on the queue), followed by tag2, followed by the tag cornpo- 
nents of the elements of queue1,2, followed by tag1. Then the integers in T are 
nondecreasing, and the difference between the first and last integer in T is at 
most 1. 

P r o o f .  The proof is left as an exercise. D 

Now we can relate the ABP and the Stenning protocol. Lemma 22.5 says that 
for any execution c~ of the ABP with lossy FIFO channels, there is an execution 
c~ ~ of the Stenning protocol with lossy FIFO channels, such that c~ and c~ ~ look 
the same at the external interface. 

L e m m a  22.5 Let c~ be any execution of ABP with A1,2 and A2,1. Suppose that 

1. alP1 and c~]P2 are fair. 

2. a[A~,2 and c~[A2,1 satisfy the liveness properties in Example 1~.1.1. 

Then there exists c~ ~, an execution of the Stenning protocol with A~1,2 and A~,I, 
such that 

1. a[P~ and c~[P~ are fair. 

2. ct[A~, 2 and c~lA' satisfy the liveness properties in Example 1~ 1 1 2,1 �9 �9 �9 
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3. ~ lex t (F)  = ~ ' l e x t ( r ) .  

P r o o f  Ske t ch .  We first produce a simulation relation f from A B P  with chan- 
nels A1,2 and A2,1 to the Stenning protocol with the corresponding channels A ~ 1,2 
and A ~ This relation expresses the fact that  the binary tags in A B P  are sim- 2,1" 
ply the low-order bits of the integer tags in the Stenning protocol. Specifically~ 
if s and u are states of A B P  and Stenning, respectively, then we define (s, u) c f 
exactly if 

1. s.buffer I = u.buffer I and s.buffer 2 = u.buffcr 2 

2. s. tag1 - -  u.tagl mod 2 and s.tag2 = u. tag2 mod 2 

3. s. queue1,2 and u. queue1,2 contain the same number of elements. Moreover, 

for any j ,  if (re, k) is the jth element of u.queuel,2, then ( m , k  mod 2) is 

the jth element of s.queuel, 2. 

4. s.queue2,1 and u.queue2,1 contain the same number of elements. Moreover, 

for any j ,  if k is the jth element of u.queue2,1, then k rood 2 is the jth 

element of s.queuc2,1. 

It is straightforward to show that  f is a simulation relation. Most of what 
we must show follows immediately from the definition of f and the transitions 
of A B P  and Stenning. Lemma 22.4 is used in the proof of Condition 2 (the step 
condition) of the definition of a simulation relation, for receive actions. In par- 
ticular, for each receive step of A B P  in which the message is accepted, we must 
argue that  the corresponding receive step of the Stenning protocol also causes 
the message to be accepted. For example, consider an (s, receive(m,b)l,2, s') 
step of A B P  in which m is accepted by P2. The condition that  causes m to be 
accepted is that  b ~ s.ta92. In the corresponding state u of the Stenning pro- 
tocol, the simulation relation implies that  the incoming low-level message has a 
tag k that  is different from u.tag2, modulo 2. But in order to show that  m is 
accepted in state u, we must show that  k = tag 2 + 1. Lemma 22.4 can be used 
to show that  this must be the case. 

Just producing a simulation relation is not enough to show the liveness prop- 
erties, however. But, actually, it turns out that  f is stronger than an ordinary 
simulation relation: it maps each step of A B P  to a step of the Stenning protocol 
with the same type of action. In fact, the actions are identical, except where 
the Stenning action contains an integer k and the corresponding A B P  action 
contains the low-order bit b. 

Now fix a as in the hypothesis of the theorem. Then simulation f yields 
a "corresponding" execution c~ ~ of the Storming system. This correspondence 
guarantees that  both of the following hold: 
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1. c~ and a '  have the same sequences of actions, with the one exception men- 
tioned just  above. 

2. States in the same positions in a and c~' are related by f.  

These conditions are sufficiently strong that they allow us to infer the needed 
conditions for c~' from the conditions for c~. N 

See Section 8.5.5 for another version of this execution correspondence idea, 
and Section 10.9.4 and Chapter  16 for similar arguments involving execution 
correspondence. 

Lemma 22.5 implies the following technical lemma for the ABP. It says that 
any fair execution of the A B P  protocol whose channel behavior is allowed by the 
specification of a lossy FIFO channel exhibits reliable FIFO message delivery. 

L e m m a  22.6 Let c~ be any execution of the A B P  protocol with A1,2 and A2,1. 
Suppose that 

1. c~]P1 and c~[P2 are fair. 

2. c~[A1,2 and c~1A2,1 satisfy the liveness properties in Example 1~.1.1. 

Then c~lext(F) E fairtraces(F). 

P r o o f  Ske t ch .  By Lemmas 22.5 and 22.2. D 

Lemma 22.6 in turn implies the main correctness result for the ABP, given in 
the following theorem. It says that the A B P  with lossy FIFO channels guarantees 
reliable FIFO message delivery. 

T h e o r e m  22.7  The ABP, using any lossy FIFO channels (according to the 
specification in Example 1~.1.1), implements F, in the following sense: For ev- 
ery fair execution c~ (of the protocol plus the channels), c~ I ext(F) 6 fairtraces(F). 

P r o o f  Ske t ch .  By Lemma 22.6 and basic properties of composition, in par- 
ticular, Theorems 8.4 and 8.2. The proof is left as an exercise. [:] 

I n f in i t e  d u p l i c a t i o n .  Note that the A B P  still works with slightly more gen- 
eral channels that allow infinite duplication. These channels still do not reorder 
messages, and losses are limited by the WLL condition. The only real difference 
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between such channels and the lossy FIFO channels described above is that the 
new channels can make infinitely many duplicates of the last message sent, in 
the case where only finitely many messages are sent. The reason we did not 
present Lemmas 22.5 and 22.6 and Theorem 22.7 in terms of these slightly more 
general channels is that we wanted to use invariant assertions and simulations 
in the proof, and these more general channels are easier to describe in terms of 
axioms than in terms of automata. 

22.4 Bounded Tag Protocols Tolerating Reordering 

So far, we have seen that it is possible to achieve reliable FIFO communication 
in the presence of limited loss, finite duplication, and arbitrary reordering of low- 
level messages, using the Stenning protocol with unbounded tags. With bounded 
tags, using the ABP, it is possible to tolerate limited loss and finite duplication, 
but not reordering. In this section, we consider the question of whether it is 
possible to design bounded tag protocols that tolerate reordering of low-level 
messages. 

Consider first what goes wrong when the ABP is used with channels that 
can reorder low-level messages: process P2 can get fooled into accepting an old 
high-level message m that happens to arrive tagged with the same bit as the one 
currently expected. This behavior can cause duplicate delivery to U2 of the same 
high-level message, violating the requirements for reliable communication. 

For example, the send/receive diagram in Figure 22.2 depicts an execution 
in which process P2 accepts a duplicate copy of m after it has already accepted 
a later message m ~. 

Thus, we see that the ABP does not work with channels that can reorder 
low-level messages, but of course this does not imply that there cannot be other 
bounded tag protocols that do tolerate reordering. 

We give three results. First, in Section 22.4.1, we show the nonexistence of 
bounded tag protocols that tolerate both reordering and duplication. Next, in 
Section 22.4.2, we present a bounded tag protocol that tolerates loss and reorder- 
ing, but not duplication. Unfortunately, this protocol has very high complexity. 
Finally, in Section 22.4.3, we prove the nonexistence of "efficient" protocols that 
tolerate loss and reordering. This implies that the high complexity of the protocol 
in Section 22.4.2 is unavoidable. 

Throughout this section, we formalize the notion of a "bounded tag" protocol 
by simply assuming that the high-level message alphabet M and the low-level 
message alphabet M ~ are both finite. 
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send (m", O) 

P 

accept m 

accept m' 

accept m 

F i g u r e  22.2" P2 is fooled into accepting m. 

22 .4 .1  I m p o s s i b i l i t y  R e s u l t  for  R e o r d e r i n g  a n d  D u p l i c a t i o n  

We show that there is no protocol that solves the reliable FIFO communication 
problem using channels that can both reorder and duplicate low-level messages. 
For convenience, we now base our formal statement on axiomatic specifications 
of the allowed channel behavior. 

We need some general terminology to describe the interaction between process 
automata and channel trace properties. Namely, if P1 and P2 comprise a protocol, 
and Q1,2 and Q2,1 are trace properties for the two channels between 81 and P2, 
then we say that an execution a of P1 x P2 is consistent with Q1,2 provided that 
(~[ext(Q1,2) E traces(Q1,2). We define consistency with Q2,1 analogously. Also, 
we say that a finite execution a of P1 x P2 is finitely consistent with Q1,2 provided 
that c~lext(Q1,2) is a finite prefix of a sequence in traces (Q1,2), and analogously 
for Q2,1. 

E x a m p l e  22.4.1 C o n s i s t e n c y  a n d  I / O  a u t o m a t a  

Consider the special case where A1,2 and A2,1 are any I /O automata 
with the appropriate channel external interfaces, and traces(Q1,2) and 
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traces(Q2,1) are defined to be exactly the fair traces of A1,2 and A2,1, 
respectively. 

Then the traces of the fair executions of P1 x P2 that are consistent 
with Q1,2 and with Q2,1 are exactly the fair traces of the composition 
P1 x P2 x A1,2 • A2,1. Similarly, the traces of the finite executions 
of P1 x P2 that are finitely consistent with Q1,2 and with Q2,1 are 
exactly the finite traces of the composition P1 x P2 x A1,2 • A2,1. 

These facts can be shown using the compositionality results in 
Chapter 8, in particular, Theorems 8.1, 8.3, 8.4, and 8.6. 

For the result of this subsection, we fix Q1,2 to be the trace property with 
inputs send(re)l,2, m E M',  and outputs receive(re)l,2, rn E M',  and whose traces 
are exactly those containing no losses and only finite duplication. Arbitrary 
reordering is allowed. (Formally, there is a cause function as in Section 14.1.2 
that is onto, and finitely many to one.) Let Q2,1 be the analogous trace property, 
for the opposite channel direction. Then we just say that executions are consistent 
and finitely consistent, as a short way of saying that they are consistent or finitely 
consistent with both Q1,2 and Q2,1. 

The following theorem says that there is no bounded tag protocol that guaran- 
tees reliable FIFO message delivery using channels that can reorder and duplicate 
messages. 

T h e o r e m  22.8 There is no bounded tag protocol (P1,P2) that implements F 
using the reordering, duplicating channels Q1,2 and Q2,1 (in the sense that if c~ 
is a consistent fair execution of P1 x P2, then c~lext(F ) c fairtraces(F)). 

P r o o f .  Suppose for the sake of contradiction that there is such an implemen- 
tation, (P1, P2). We construct an execution with incorrect behavior. 

First, we run the system as far as we can, until it is no longer possible for 
process P1 to send any additional low-level messages with new values. For- 
mally, we construct a finitely consistent execution C~l of/:'1 x/:'2, such that if an 
event send(re)l,2 occurs in any finitely consistent extension of C~l, then an event 
send(re)l,2 also occurs in C~l. This construction can be carried out by successive 
extension, where we at tempt to send a new low-level message in each extension 
until we can no longer do this; the finiteness of the low-level message alphabet 
M ~ implies that this construction must eventually terminate. Suppose there are 
n (user-interface) SEND events in Ct I . 

Now let a2 be a fair, consistent extension of C t l  that contains exactly one 
additional SEND event, for a total of n +  1 SEND events in all. By the correctness 
condition, all messages submitted by U1 in c~2 must eventually get delivered to 
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U2, so that there are exactly n + 1 R E C E I V E  events in a2. Let c~3 be the finite 
prefix of c~2 up to and including the last RECEIVE event. 

Now we construct a finitely consistent execution c~4 with the following prop- 
erties: 

1. Ct 4 is an extension of Ct 1. 

2. Ct4 is indistinguishable from c~1 to P1. 

3. Ct4 is indistinguishable from aa to P2. 

We construct Ct 4 by preventing all events involving P1 immediately after Ct 1 while 
allowing all events of P2 to proceed exactly as in c~3. The additional events of 
P2 might include receive events, send events, and internal events, as well as the 
required R E C E I V E  events. In showing that c~4 is a finitely consistent execution, 
the only difficulty is the receive events: we must show that P2 can be permit ted 
to receive the same low-level messages after Ct 1 aS it does in c~a, even though P1 
does not send any additional low-level messages after C~l. But this is possible 

because all low-level messages sent by P1 in c~3 after Ct 1 contain values that P1 
has already sent in C~l. Thus, any low-level message that is received by P2 after 
O~ 1 could just as well be considered to be a duplication of some low-level message 
sent in C~l. 

In c~4, there are exactly n SEND events and n + 1 RECEIVE events. To 
complete the contradiction, we extend a4 to a fair, consistent execution without 
introducing any new SEND events. The resulting execution has more RECEIVE 
events than SEND events, contradicting the correctness conditions. [-1 

Thus, if the channels permit  finite duplication and arbi t rary reordering of 

low-level messages, then even though no low-level messages can be lost, reliable 
FIFO delivery of high-level messages is impossible. 

2 2 . 4 . 2  A Bounded Tag Protocol Tolerating Loss and 
Reordering 

Although it is far from obvious, it turns out that it is possible to tolerate loss 
and reordering of messages (though, of course, not duplication), using bounded 
tags. We present an algorithm, the Probe algorithm, that accomplishes this. The 
Probe algorithm is not a practical communication protocol; it is a counterexample 
algorithm whose main purpose is to show that there can be no impossibility proof 
for the task in question. 
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Layer 1 ( ~ } I,, 2 

Layer 2 

Layer 1 
/2,1 

Figure  22.3: Layered structure of the Probe protocol. 

P r o b e  a lgo r i t hm (informal):  

This algorithm is most easily presented in two layers, combined using I/O 
automaton composition. Layer 1 uses the given channels to implement in- 
termediate channels, I1,2 and /2,1, that do not reorder messages, but can 
lose or duplicate them. More precisely, each intermediate channel satisfies 
an axiomatic specification in terms of a cause function as in Section 14.1.2. 
In this case, the cause function is required not to reorder messages, but to 
satisfy the WLL loss limitation condition. Infinite duplication is allowed. 
Layer 2 uses the resulting FIFO channels to implement reliable FIFO com- 
munication. 

Layers 1 and 2 are combined as in Figure 22.3, with one instance of the 
Layer 1 protocol used to implement each channel needed for the Layer 2 
protocol. Process P1 of the complete algorithm is obtained by composing 
process P1 of the Layer 2 protocol with the sending process in the Layer 
1 implementation of I1,2 and the receiving process in the Layer 1 imple- 
mentation of/2,1. Symmetrically, P2 of the complete algorithm is obtained 
by composing process P2 of the Layer 2 protocol with the receiving pro- 
cess in the Layer 1 implementation of I1,2 and the sending process in the 
Layer 1 implementation of/2,1. Also, each channel in the complete algo- 
rithm must be "multiplexed" to implement one channel of each Layer 1 
implementation. 
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Layer 2 is straightforward--for example, ABP can be used. (Note that the 
channels I1,2 and/2,1 are slightly more general than the lossy FIFO channels 
that we considered in Section 22.3 in that they allow infinite duplication; 
however, a remark at the end of that section indicates that the ABP still 
works with these more general channels.) Layer 1, which involves imple- 
menting the intermediate channels in terms of the given channels (which 
can lose and reorder messages but not duplicate them) is more dimcult. 

Each Layer 1 implementation works as follows. Process P1 sends a low- 
level message to P2 only in response to an explicit probe message from P2. 
The low-level message that P1 sends always contains the value of the most 
recent high-level message that it has received from U1, which it keeps track 
of in latest. Thus, in this protocol, P1 does not remember all the messages 
that are submitted by U1, but only the most recent one. (The justification 
for this is that the intermediate channel being implemented is permitted 
to lose some high-level messages, anyway.) To ensure that P1 only sends 
messages in response to probes, P1 keeps a variable unanswered, which it 
increments whenever it receives a probe and decrements whenever it sends 
a low-level message. 

Process /:)2 continually sends probes to P1, keeping track, in pending, of 
the number of probes that it has ever sent. Meanwhile, /:'2 counts, in 
count(m), the number of copies of each high-level message m received 
since the last time it delivered a high-level message to U2 (or since the 
beginning of the execution if no message has yet been delivered to /-?2). 
Initially, and whenever it delivers a message to U2,/:)2 sets old to pending. 
When count(m) exceeds old, P2 can output m. 

The code for the Layer 1 protocol to implement I1,2 follows. Of course, the 
code for /2,1 is symmetric. In this description, we use M for the high-level 
message alphabet of the Layer 1 protocol. 

Probe  Layer 1, process PI: 

Signature: 
Input: Output: 

SEND(m)1,2,  m E M send(m)1,2, m e M 
receive( "pro be") 2,1 

States :  
latest C M (3 {null} ,  initially null 
unanswered E N, initially 0 
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Transit ions:  
SEND(m)1,2 

Effect: 
latest : -  m 

receive( "probe ") 2,1 
Effect: 

unanswered := unanswered + 1 

send(m)1,2 
Precondition: 

unanswered > 0 
m : latest 

Effect: 
unanswered := unanswered-  1 

Tasks: 
{send(m)l,2 : m e M }  

P r o b e  L a y e r  1,  p r o c e s s  P 2 :  

Signature: 

Input: Output:  
receive(m)1,2, m E M RECEIVE(m)~,2,  m E M 

send( "probe ")2,1 

States: 
pending E N, initially 0 
old C N, initially 0 
for every m C M: 

count(m) E N, initially 0 

Transit ions:  
RECEIVE(m)1,2 

Precondition: 
count(m) > old 

Effect: 
for all m' C M do 

count(re') := 0 
old : -  pending 

send( "probe ")2,1 
Precondition: 

true 
Effect: 

pending := pending § 1 

receive(re)i,2 
Effect: 

count(m) := coun t (m)+ 1 

Tasks: 
{RECEIVE(m)I ,2  : m E M}  
{ send( "probe")2,1 } 
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The channels C1,2 and C2,1 used by the Layer 1 protocol do not duplicate 
messages, but can reorder and lose messages. Formally, their specifications are 
given in terms of a cause function, as in Section 14.1.2. In this case, the cause 
function is required to be one-to-one but need not be onto or monotonic. How- 
ever, message loss is limited by the WLL condition. Channels C1,2 and (72,1 are 
any I /O automata (with the appropriate external interfaces) whose fair traces 
satisfy this specification. The full Layer 1 protocol is obtained by composing P1, 
P2, and the two channels. 

The following lemma says that Layer 1 of the Probe protocol, with the given 
nonduplicating channels, implements the intermediate channel I1,2. 

L e m m a  22.9 Layer 1 of the Probe protocol, using any nonduplicating channels 
(as defined by C1,2 and C2,1 above), implements the intermediate channel I1,2, 
in the following sense: For every fair execution ct, ct[ext(I1,2) C traces(I1,2). 

P r o o f  Ske tch .  We first show that I1,2 does not reorder messages. To see that 
this is the case, note that when P2 performs any RECEIVE after the first one, it 
checks that count(m) > old, where rn is the high-level message being delivered. 
The management of the old variable, plus the facts that P1 only sends messages 
in response to probes and that the channels do not duplicate messages, imply 
that there were at most old low-level messages in transit from P1 to P2 at the 
point of the preceding RECEIVE event. Therefore, at least one of the messages 
containing m must have been sent by P1 since the preceding RECEIVE event. 
This implies that rn must have been the value of latest1 at some point after the 
preceding RECEIVE event. This implies that no reordering occurs. 

It remains to show that I1,2 guarantees the WLL condit ion-- that  if there 
are infinitely many SEND events, then infinitely many of them must have cor- 
responding RECEIVE events. So suppose that there are infinitely many SEND 
events. The fact that P2 keeps sending probes, the fact that P1 keeps responding 
to received probe messages, the liveness assumptions for the channels, and the 
finiteness of the high-level message alphabet M all combine to imply that P2 
performs infinitely many RECEIVE events. But as we argued in the previous 
paragraph, any message that is delivered to U2 after the first one must in fact 
have been the value of latest1 at some point after the previous RECEIVE event. 
This is enough to imply that the RECEIVE events must correspond to infinitely 
many different SEND events. D 

Now we consider the complete Probe protocol. As described earlier, each 
process is the composition of a Layer 2 process and two Layer 1 processes, as 
depicted in Figure 22.3. Each channel is "multiplexed" to implement one channel 
of each of the two Layer 1 protocols. 
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The channels needed for the complete Probe protocol are similar to the chan- 
nels C1,2 and 6'2,1 used for the Layer 1 implementations in that they cannot 
duplicate messages but can reorder and lose messages. Formally, the channel 
specifications are given in terms of a cause function, as in Section 14.1.2. As for 
C1,2 and 6'2,1, the cause function is required to be one-to-one but need not be 
onto or monotonic. 

However, it turns out that we need a slightly stronger loss limitation condition 
than the WLL condition used in channels C1,2 and C2,1. Namely, each channel 
of the complete Probe protocol must satisfy the WLL condition for each of the 
two channels it implements. We do something simpler and more conservat ive-  
we require the SLL condition. (This actually guarantees SLL for each of the 
two implemented channels.) See Exercise 14.7 for a description of the channel 
multiplexing strategy. 

Now the channels are any I /O automata (with the appropriate external inter- 
faces) whose fair traces satisfy these new channel specifications. The full Probe 
protocol is obtained by composing P1, P2, and the two channels. 

The following theorem says that the full Probe protocol, with the given nondu- 
plicating SLL channels, guarantees reliable FIFO delivery. 

T h e o r e m  22.10 The Probe protocol, using any nonduplicating SLL channels 
(as described above), implements the reliable FIFO channel F, in the following 
S e T t S e :  

fai   l xt(F) c 

Proof .  This follows from the correctness of the implementations of Layer 1 (as 
proved in Lemma 22.9) and Layer 2. Note that the SLL condition for each of 
the given channels implies the weaker WLL conditions for each of the two Layer 
1 channels it implements. 

C o m p l e x i t y  analys is .  We do not attempt a formal complexity analysis of 
the Probe protocol (nor for the other protocols in this chapter). However, notice 
that the Probe protocol has a serious complexity problem: it can require more 
and more low-level messages to deliver later and later high-level messages. More 
specifically, in the Layer 1 protocol, once k low-level messages have been lost, it 
requires at least k + 1 low-level messages to deliver each subsequent high-level 
message, even if no further losses occur. In the following subsection, we consider 
whether it is possible to avoid this cost. 
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2 2 . 4 . 3  N o n e x i s t e n c e  o f  E f f i c i e n t  P r o t o c o l s  T o l e r a t i n g  L o s s  and 
Reordering 

We have just described the Probe protocol, which implements reliable FIFO com- 
munication using channels that can lose and reorder, but not duplicate, messages. 
In this section, we show that any protocol that accomplishes this must incur the 
sort of cost that the Probe protocol exhibits, requiring more and more low-level 
messages to deliver later and later high-level messages. 

As for our previous impossibility result, Theorem 22.8, we base our formal 
statement on an axiomatic characterization of the trace properties defining the 
allowed channel behavior. We use the general terminology introduced in Sec- 
tion 22.4.1 to describe the interaction between process automata  and channel 
trace properties, in particular,  the definition of an execution of P1 x P2 being 
consistent with a trace property for either channel interface and the definition of 
a finite execution c~ of P1 x P2 being finitely consistent with a trace property. 

For this subsection, we fix Q1,2 to be the trace property with inputs send(m)1,2, 
rn E M ~, and outputs receive(m)12, rn E M ~, and whose traces are exactly those 
containing no duplication and whose losses are limited by the SLL condition. At- 
bi t rary reordering is allowed. Let Q2,1 be the analogous trace property, for the 
opposite channel direction. Then we just say that executions are consistent and 
finitely consistent, without explicitly mentioning the channel trace properties. 

The Probe protocol works (i.e., implements reliable FIFO communication) 
using any channels satisfying these specifications. We show that any protocol that 
does this must be costly, in terms of the number of low-level messages needed 
to deliver later high-level messages. To do this, we need a precise definition of 
cost. 

First,  we say that a finitely consistent execution c~ of P1 x P2 is complete if 
the number of SEND events is equal to the number of R E C E I V E  events in c~. 
This means that the protocol has succeeded in delivering to U2 all the high-level 
messages that have been submitted by U1. 

The following definition expresses the idea that, in order to successfully de- 
liver any high-level message, the protocol only needs in the best case to send a 
bounded number of low-level messages. If c~ is a complete execution, k C N +, and 
rn E M, then we say that an extension c~ ~ is a k-extension of c~ for rn provided 
that the following conditions hold: 

1. In the portion of c~ ~ after c~, the user-interface events are exactly the two 

events SEND(m)1,2 and RECEIVE(m)1,2. (This means that exactly one 
high-level message, m, is sent by user U1 and delivered successfully to 
U2, in the portion of c~ ~ after c~. This condition implies that c~ ~ is also a 
complete execution.) 
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2. All low-level messages received by P2 in c~' after c~ are sent after c~. (That  

is, no old low-level messages are received.) 

3. The number  of receive1,2 events in c~ t after c~ is less than or equal to k. 

A protocol is k-message-bounded if for every complete execution c~ and every 

m C M,  there is a k-extension of c~ for m. A protocol is message-bounded if it 
is k-message-bounded for some k C H +. 

Thus, a message-bounded protocol satisfies only a very minimal  requirement  

on its cost: that  in the best  case, presumably where no further low-level messages 

are lost, the number  of low-level messages needed to deliver a high-level message 

should not grow without  bound. But  even though this requirement  is so weak, 

we can still show that  there is no message-bounded protocol that  implements  

reliable F IFO communicat ion using channels that  can lose and reorder messages. 

T h e o r e m  22 .11  There is no message-bounded, bounded tag protocol (P1,P2) 

that implements F using the lossy, reordering channels Q1,2 and Q2,1 (in the 
sense that if c~ is a consistent fair execution of P1 x P2, then c~lext(F ) E 
fairtraces(F)). 

P r o o f .  Assume for the sake of contradict ion that  there is such a protocol,  

(P~, P2), and fix k such that  (P1, P2) is k-message-bounded.  

Suppose that  we could produce a mult iset  T of elements of M' ,  a complete 

execution c~ of P1 x P2, and a k-extension c~' of c~ (for any m) satisfying both  of 
the following conditions: 

1. All the messages in T are "in t ransi t"  (i.e., they have been sent but  not 

received) from P1 to P2 after the execution c~. 1 

2. The multiset  of low-level messages received by P2 in the port ion of c~' after 
c~ is a submult iset  of T. 

In this case, we could derive a contradict ion as follows. Using a construct ion 

similar to the one in the proof of Theorem 22.8, we produce an alternative finitely 

consistent execution Ctl such that  all of the following hold: 

1. OZl is an extension of c~. 

2. o~1 is indistinguishable from c~ to P1. 

3. Ct 1 is indistinguishable from c~ ~ to P2. 

1The multiset of messages that are sent but not received is uniquely determined by the 
execution c~. 
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We do this by preventing all events involving P1 immediately  after c~ while al- 

lowing all events of P2 to proceed exactly as in c~'. We can do this, because the 

addit ional  receive events of P2 can be generated by the low-level messages that  

are already in t ransi t  from P1 to P2 after c~. Then a contradict ion is reached 

as in the proof of Theorem 22.8, by generating a fair, consistent execution with 

more R E C E I V E  events than SEND events. 

Thus,  it would be enough to manufacture  this bad situation. The following 

key claim says that  if a mult iset  T of low-level messages is in t ransi t  from P1 to 

P2, then either the bad si tuat ion already exists, or else we can increase T to a 

larger multiset  T'. 

C l a i m  22 .12  Suppose c~ is a complete execution and T is a multiset of low-level 

messages in transit from P1 to P2 after c~, where T contains at most k copies of 
any element. Then at least one of the following conditions holds: 

o There is a k-extension c~' of c~ (for some m)  such that the multiset of 
low-level messages received by P2 in c~' after c~ is a submultiset of T.  

. There is a complete extension c~ I of c~ and a new multiset T ~ of low-level 

messages in transit from P1 to P2 after c~ ~, where T ~ contains at most k 
copies of any element and T C T~. 2 

First  suppose that  Claim 22.12 is true. We show that,  in this case, it is 

possible to manufacture  the bad si tuat ion described earlier, which we already said 

was enough to prove the theorem. For this, we define two sequences, a sequence 

c~0, c~1,.., of complete executions, and a sequence To, T I , . .  �9 of mult isets  of low- 

level messages, each with at most  k copies of any element. Each c~i is an extension 

of the previous one, and for each i, we have Ti C Ti+l. Moreover, for each i, the 

multiset  Ti is in t ransi t  from P1 to P2 after c~i. 

We begin with c~0 consisting simply of initial states for P1 and P2, and To 

equal to the empty  multiset.  If Case 1 in Claim 22.12 holds, then we have 

produced the bad si tuat ion and we are done. Otherwise, Case 2 of Claim 22.12 

must  hold. In this case, let c~1 = c~' and let T1 = T'. In general, if Case 1 holds 

for c~i and Ti, then we are done; otherwise we can use Case 2 to define c~i+l and 

~+1. 
Now we claim that Case 1 must  eventually hold. For, if not, Case 2 holds 

for every i, and we produce two infinite sequences. In particular,  we obtain an 

infinite chain To C T1 C T2 C - . . .  But  since each Ti is defined to have at 
most  k copies of each element of M' ,  this chain cannot  have more than k lM'  I + 1 

2This says that T is a proper submultiset of T', that is, that there is at least one more copy 
of at least one element of M' in T' than there is in T. 
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terms. This is finite, because we have assumed that  ]M'] is finite. 

must  eventually hold, as claimed. 

So it remains only to prove Claim 22.12. 

So Case 1 

P r o o f  (o f  C l a i m  22 .12 ) .  Fix an a rb i t ra ry  m E M and obtain a k-extension 

c~ ~ of c~ for message m; this is possible because the protocol is assumed to be 

k-message-bounded.  If the multiset  of low-level messages received by P2 in c~ ~ 

after c~ is a submult iset  of T, then Case 1 is satisfied and we are done. So assume 

that  this is not the case. Then there is some p E M ~ for which the number of new 

receive(p)1,2 events in c / a f t e r  c~ is strictly greater than the number of copies of 

p in T. Let T ' =  T U {p} (using union of multisets).  Since c~' is a k-extension, 

the number  of these new receive(p)1,2 events is at most  k, which implies that  the 

number  of copies of each element in T ~ is still at most  k. We obtain a complete 

extension of c~ that  leaves T ~ in t ransi t .  

We know that  there is at least one send(p)1,2 event in ~' after c~, since all 

low-level messages received by P2 after c~' are assumed to be sent after (~'. Let OL1 

be the prefix of a '  ending with the first such send(p)1,2 event; then O~1 is a finitely 

consistent extension of c~. Then the multiset  T' of low-level messages is in t rans i t  

after a l .  If O~ 1 contains either both  or neither of the new SEND(re)l,2 event and 

the RECEIVE(re)l,2 event, then O~1 is complete and thus satisfies Case 2. 

The remaining case is where O~1 contains only the SEND(m)1,2 event but  not 

the RECEIVE(m)1,2 event. In this case, we extend C~l to a finitely consistent 

c~2 containing one addit ional  RECEIVE(m)1,2 event, but  in which no low-level 

message from T' is received by P2. We can achieve this because of the following 

basic fact: Any finitely consistent execution of P1 • P2 can be extended to a 

fair, consistent execution in such a way that  no new SEND1,2 events occur and 

all new receive1,2 events are caused by new sendl,2 events. Applying this fact 

to c~1, we obtain a fair, consistent extension c~3 of c~1, which, because of the 

correctness conditions, must  contain a RECEIVE(re)l,2 event corresponding to 

the last SEND(re)l,2. The needed complete execution c~2 is the prefix of c~3 

ending with this RECEIVE event. [5 

The proof of Theorem 22.11 is now complete. D 

22.5 Tolerating Crashes 

The results presented so far in this chapter  settle pre t ty  much every quest ion 

regarding the implementabi l i ty  of reliable F IFO communicat ion using unreliable 

channels, at least if the processes are assumed to be reliable. Wi th  only two 
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nodes, there is not much point  in considering stopping failures or Byzantine 

failures of processes. It is useful, however, to consider what happens when 

processes can crash and later recover. If a process crash amounts  simply to 

stopping and a subsequent  recovery involves simply resuming where the process 

left off, then a process that  crashes and recovers is formally no different from a 

correct process that  pauses for a while. However, if a process crash involves loss 

of some or all of the information in the state, then new considerations arise. 

In this section, we consider the reliable F IFO communicat ion problem in the 

presence of processes that  can crash, losing information, and later recover. The 

processes in this setting model physical processors that  have volatile memory,  

or a combinat ion of stable and volatile memory. In a crash of such a processor, 

all contents of volatile memory  are lost. Recovery involves resuming from the 

previous state of stable memory, together with some default state of volatile 

memory. The first thing that  is normally done when a processor recovers is that 

a recovery protocol is run, using the information in stable memory  to restore the 

volatile memory  to some sensible state. In the formal model, we t reat  the whole 

recovery protocol as a single recover step. 

In Section 22.5.1, we show the impossibi l i ty  of implementing,  in the presence 

of crashes, the same type of reliable F IFO communicat ion that  we considered for 

reliable processes. This motivates weakening the problem requirements for the 

new setting. In Section 22.5.2, we give a second impossibi l i ty  result, this t ime 

for a much weaker problem statement .  Finally, in Section 22.5.3, we present  a 

practical a lgor i thm that  tolerates crashes as well as unreliable channels. 

Throughou t  this section, we assume that  each process Pi has an addit ional  

input  action CRASHi and an addit ional  ou tput  action RECOVERi, this latter 

considered to comprise a new task. The occurrence of a CRASHi is assumed to 

enable a corresponding RECOVERi and to disable all other locally controlled 

actions until a RECOVERi occurs. It follows that  such a RECOVERi must  

eventually occur, in any fair execution of Pi. We assume that,  in the interval 

between a CRASHi and the next RECOVERi, any inputs that  occur (including 

addit ional  CRASHi events) have no effect on the state. 

The new interfaces are depicted in Figure 22.4. 

22.5.1 A Simple Impossibility Result 

We consider the case where the RECO VERi action sets the entire state of process 

Pi back to an a rb i t ra ry  s tar t  state. Thus, in this case, a CRASHi and subsequent  
RECO VERi cause all state information to be lost. In such a model, it is not hard 

to see that it is impossible to solve the reliable F IFO communicat ion problem, 

even if the underlying channels themselves are reliable F IFO channels! 
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SEND 1,2 

2,1 

1,2 

C2,1 

~ "  ceipe ~ ~v 

CEIVE1, 2 

F i g u r e  22.4" External interfaces of processes that crash. 

T h e o r e m  22 .13  There is no protocol in the given crash failure model that irn- 
plements F using reliable FIFO channels (in the sense that for every fair exe- 
cution c~, a lex t (F ) C fairtraces(F)). 

P r o o f .  Assume for the purpose of obtaining a contradict ion that  there is such 

a protocol. The basic idea of the proof is that  after a crash of P2, the protocol is 

unable to tell whether or not a high-level message has just  been delivered to U2. 

Let c~1 be any fair execution of the protocol in which a single SEND event 

occurs but  no CRASH event occurs. Then correctness implies that  the SEND 
event is followed by a later corresponding R E C E I V E  event. Let c~2 be the prefix 

of C~l ending just  before this R E C E I V E  event and let c~ be the prefix ending 

just  after the R E C E I V E  event. 

Now let c~3 be an extension of c~2 with a single CRASH2 event followed 

immediate ly  by a corresponding RECOVER2 event. Then c~3 can be extended 

to a fair execution c~4 containing no further SEND events or crashes. Since 

a4 must  also satisfy the correctness conditions, Ct 4 must  contain a R E C E I V E  
event corresponding to the SEND event in a4, and this R E C E I V E  must  occur 

sometime after the CRASH and R E C O V E R  events. 

Now we construct  an alternative fair execution c~5. Execution c~5 star ts  with 

c~, then continues with CRASH2 and RECOVER2, and then finishes with the 

port ion of Ct 4 that  comes after the RECOVER.  Then c~5 is also a fair execu- 

tion. But  a5 contains two R E C E I V E  events and only one SEND event, which 

contradicts  the correctness conditions. Q 

Notice that  the proof of Theorem 22.13 still works in a s tronger model in 

which the CRASH and R E C O V E R  events always occur consecutively and in 

which only finitely many crashes ever occur. 
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22.5.2 A Harder Impossibi l i ty  Result  

Theorem 22.13 suggests that the problem statement that we have been using 
is too strong for the setting with crashes. The logical thing to do is to try to 
weaken the problem statement in order to obtain a version that can be solved in 
this setting. Unfortunately, it turns out that even when the problem statement 
is weakened quite a lot, the problem still cannot be solved. In this section, we 
present an impossibility result for a much weaker version of the problem. (Of 
course, now the proof is harder.) 

The crash model we use is the same as in Section 22.5.1--in particular, all 
state information is lost when a process crashes. 

We weaken the problem statement by requiring less at the external interface. 
Namely, the channel to be implemented permits no duplication but does allow 
reordering. For losses, we now only require that a message be delivered if its 
SEND event has no following R E C O V E R  event. That  is, we allow loss of any 
message whose SEND event precedes any R E C O V E R  event. So if there are 
infinitely many C R A S H  and R E C O V E R  events, no messages are required to be 
delivered at all. But if there are only finitely many such events, any message 
sent after the last R E C O V E R  must be delivered. We use B to denote this 
specification (formally, a trace property).  

We also weaken the problem statement by assuming more about the channels 
to be used in the implementation. Namely, we do not permit  duplication or 
reordering. All the channels can do is lose messages, with losses limited by the 
SLL condition. We use Q1,2 and Q2,1 to denote the specifications for the two 
channels. Now we say that an execution of a protocol is consistent or finitely 

consistent to mean that it has these properties for both of the specific channels 

Q1,2 and Q2,1. 
For either of these channel specifications, Q1,2 or Q2,1, it makes sense to talk 

about a sequence T of messages being "in transit" at some point in a finitely 
consistent execution. This means that T is any subsequence of the sequence 
of messages that have been sent since the sending of the last message that has 
already been delivered (for some cause function). A consequence of this definition 
is that any sequence T of messages in transi t  is a possible sequence of messages 
that might next be delivered by the channel, even if there are no further send 
events. 

The impossibility result is as follows. It says that there is no protocol using 

lossy low-level channels that guarantees communication with no duplication and 
with no losses after all crashes and recoveries have ceased. 

T h e o r e m  22 .14  There is no protocol (P1, P2) in the given crash failure model 
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that implements  B using the lossy channels Q1,2 and Q2,1 (in the sense that if 
c~ is a fair, consistent execution of P1 x P2, then c~lext(B) E traces(B)) .  

In the proof, we use the notat ion i to denote the opposite process to i, that  

is, 1 - 2 and 2 - 1. Also, if c~ is any finitely consistent execution of P1 x P2 and 

i C {1, 2}, then we define 

�9 in(a, i) to be the sequence of low-level messages received by Pi during c~ 

�9 out(a, i) to be the sequence of low-level messages sent by Pi during c~ 

�9 state(a, i) to be the state of Pi after c~ 

P r o o f .  Assume for the purpose of obtaining a contradict ion that  there is such 

a protocol. The key to the proof is the following claim. It says that  for any 

crash-free finitely consistent execution c~, it is possible, using crashes, to create 

a s i tuat ion in which both processes have the same states that  they have at the 

end of c~, but  in which one of the channels has in t rans i t  the entire sequence of 

low-level messages sent along that  channel in a. 

C l a i m  22 .15  Let c~ be any crash-flee finitely consistent execution. Let i C 
{1, 2}. Suppose that either c~ contains no steps or the last step in c~ is a step 
of Pi. Then there is a finitely consistent execution c~ ~ of P1 • P2 at the end of 
which all of the following hold: 

1. The state of Pi is state( c~, i ) . 

2. The state of Pi is state( c~, i ) . 

3. The sequence out(a, i) is in transit f rom Pi to ~ .  

Execution c~ ~ may contain C R A S H  and R E C O V E R  events, but there are no 
unmatched C R A S H  events- - that  is, each C R A S H  has a following corresponding 
R E C O V E R .  

P r o o f  (of  C l a i m  22 .15 ) .  The proof is by induction on the number  of steps 

in ~. 

Basis" 0 steps. Then c~ ~ -  a suffices. 

Inductive step: k steps, k > 0. 

If (~ contains no steps of ~ then a~ - (~ suffices, so assume that  c~ contains at 

least one step of ~ .  Then let a l be the longest prefix of a that  ends with a step 
of P~. Note that  a l  is a proper prefix of a,  because we have assumed that  the 

last step of c~ is a step of Pi. Note that  state(c~, ~) - state(c~l,-~). Also, in(a, i) 
is a subsequence of out(c~l, i). 
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Then by inductive hypothesis, there is a finitely consistent execution c~ at 
the end of which the following hold: 

1. The state of P / i s  state(c~l, i). 
m 

2. The state of ~ is state(c~l, i). 

3. The sequence out(cA1, i) is in transit  from P / t o  Pi. 

Moreover, ct~ does not contain any unmatched CRASH events. Since in(a, i) 
is a subsequence of out(c~, i), it is also the case that  the sequence in(a, i) is in 
transit  from ~ to Pi after c~. 

Now we construct the needed execution c~ ~. Execution c~ ~ begins with c~. 
The rest of c~ ~ involves Pi only (which is fine because ~ is already in the needed 
final state). First, a CRASHi and a RECO VERi occur, returning Pi to its initial 
state in c~. Then Pi runs on its own exactly as it does in c~, extracting low-level 
messages from the incoming channel as needed. This is possible because the 
sequence in(a, i) is in transit  from P~/to Pi after c~. This brings the state of Pi 
to state(a, i) and puts the needed low-level messages, those in out(a, i), in the 
outgoing channel. Also, c~ ~ contains no unmatched CRASH events. 

Figure 22.5 illustrates the change in system state that  occurs when Pi is run 
after c~. [~ 

Now we use Claim 22.15 to complete the proof of Theorem 22.14. Let c~ be 
any crash-free finitely consistent execution containing exactly one SEND event 
and its corresponding RECEIVE event and assume without loss of generality 
that  c~ ends with the RECEIVE event. 

We construct an execution c~1 whose final process states are the same as those 
in c~ but that  has a SEND as its last external interface event. More precisely, 
there are no following SEND, RECEIVE, CRASH, or RECOVER events, and 
there are no unmatched CRASH events. First, Claim 22.15 yields a finitely 
consistent execution c~ ~ that  ends with the process states equal to state(a, 1) 
and state(c~, 2), respectively, and with out(~, 2) in transit  from P2 to P1, and 
tha t  has no unmatched CRASH events. Then we construct CA1 by extending 
c~ ~ as in the inductive step of Claim 22.15, by crashing and recovering P1, then 
running it on its own just as in c~. (Again, the needed input sequence in(a, 1) 
is in transit  in the incoming channel.) This allows P1 to reach state(a, 1) again. 
Note that  there is a SEND step, but no other user interface step, in the portion 
of CA1 after c~ ~. This yields the claimed properties for c~1. 

Now we can get a contradiction. Let c~2 be an extension of CA1 to & fair, 
consistent execution that  contains no further SEND, CRASH, or RECOVER 
events, and in which every low-level message received after Ctl is sent after C~l. 
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s t a t e  (o~ z , i ) 

u t ( c ~ ,  i 

o u t  ( ~ , i  ) 

s t a t e  ( ~ ~ , i ) 

II 

s t a t e  ( ~ ,  i ) 

s t a t e  ( r , i ) s t a t e  ( r , i ) 

F i g u r e  22.5:  Change in system state from c~ to c~ t. 

(That  is, all old low-level messages are lost.) By the correctness requirements, 
there is at least one R E C E I V E  event in the suffix, to correspond to the last S E N D  

event in c~1. But note that the portion of c~2 after c~1 could also be attached after 

c~, again yielding a fair consistent execution; this is because the two processes 

are in the same states after c~ and c~1 and because all old low-level messages are 
lost. But this violates correctness, since c~ already has an equal number of S E N D  

and R E C E I V E  events (one of each) and the suffix contains at least one more 
R E C E I V E  but no more S E N D s .  

Theorem 22.14 says that it is impossible to solve even a very weak version of 
the reliable FIFO message-delivery problem, if we have to contend with crashes 

that lose all state information. 

22 .5 .3  A P r a c t i c a l  P r o t o c o l  

In spite of the impossibility results given in the last two subsections, it is im- 
portant  in practice to have message-delivery protocols that guarantee some sort 
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of reliable FIFO message delivery in spite of process crashes. In this section, we 
describe one important  protocol, the FivePacketHandshake protocol. This pro- 
tocol is the standard method for setting up network connections, used in TCP,  
ISO TP-4, and many other t ransport  protocols. We use the word "packet" in 
this subsection synonymously with "low-level message." 

The FivePacketHandshake protocol satisfies the correctness specification B of 
Section 22.5.2, which allows no duplication and requires that messages submitted 
after the last RECOVER not be lost. In fact, it guarantees more, in that it does 
not reorder messages. It tolerates not only process crashes, but also a wide range 
of channel failures. The reason that this does not contradict the impossibility 
result of Theorem 22.14 is that FivePacketHandshake depends on the ability 
of the system to provide unique identifiers (UIDs) for messages, which can be 
thought of (and modelled formally) as a kind of stable memory. 

Why is it reasonable to model UIDs in terms of stable memory? The key 
property of UIDs is that no UID is ever generated twice, even if there is an 
intervening crash. In the formal model, we can express this abstractly by allowing 
the protocol to remember, even after a crash, which UIDs have previously been 
generated, and to check that it never generates any of them a second time. More 
specifically, we can keep a component used in the protocol state, containing all 
the UIDs that have ever been generated. When the protocol chooses a new UID, 
it picks one that is not already in the used set. The used set is assumed to 
survive crashes, that is, to reside in stable memory. 

In reality, there are many different ways to generate UIDs--for  example, 
using a random number generator or a real-time clock. However, it turns out to 
be simple and informative to model all these techniques formally by keeping the 
used UIDs in stable memory. 

We permit the underlying channels to lose, duplicate, and reorder messages. 
However, we permit only finite duplication, and the losses are limited by the SLL 
condition. 

F i v e P a c k e t H a n d s h a k e  p r o t o c o l  ( in formal )"  

P1 maintains a buffer of high-level messages submitted by U1, as in Sten- 
ning and A BP, and works on getting the messages to P2 one at a time. 

This time, for each high-level message that P1 tries to send, there is an 
initial two-way exchange of packets (low-level messages) between P1 and 
P2 to establish a commonly accepted message identifier. In this exchange, 
P1 first sends a new UID v to P2 in a ("needuid", v) packet. P2 pairs 
this UID v with another new UID u and sends the pair (u, v) back to P1 
in an ("accept", u, v) packet. P1 can recognize that this packet is recent 
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P1 

Figure 22.6: The five packets of the FivePacketHandshake protocol. 

because it contains Pl ' s  latest UID v. /:'1 then chooses u as the UID for 
the high-level message it is trying to send. 

Now P1 sends the latest high-level message m to P2, paired with the new 
UID u, in a ("send", m, u) packet. P2 can recognize that the packet is 
recent because it contains P2's latest UID u. After accepting a message, 
/:'2 sends an acknowledgment packet of the form ("ack", u). 

The fifth packet, of the form ("cleanup", u), is used by P1 to tell/:'2 when 
it should discard a current UID. 

The five packets of the FivePacketHandshake protocol are illustrated in Fig- 
ure 22.6. 

The code follows. For convenience, we include a component used in each 
process state containing all the UIDs that have ever been generated by that 
process. The used components are the only components to survive crashes. 
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F i v e P a c k e t H a n d s h a k e ~  p r o c e s s  P I "  

Signature: 

Input :  
SEND(m)1,2, m C M 
receive(p):,~, p E {( "accept", u, v ) :  u, v UIDs}  U {( "ack", u ) :  u a UID}  

CRASH1 
Outpu t :  

send(p)~,2, p C {("needuid",v)  : v a UID}  U { ( " s e n d " , m , u )  : m E M , u  a UID} 
U { ("cleanup", u ) :  u a UID} 

RECOVER1 
Internal :  

choose(v)i, v a UID 

States: 
status E {idle, needuid, send, crashed}, ini t ial ly idle 
buffer, a F I F O  queue  of M ,  init ial ly e m p t y  
uid-v, a UID or null, init ial ly null 
uid-u, a UID or null, init ial ly null 
used, a set  of UIDs,  init ially e m p t y  
send-buffer, a F I F O  queue of packets ,  ini t ial ly e m p t y  

Transit ions:  
SEND(m)1,2 

Effect: 
if status ~ crashed then 

add m to buffer 

choose(v)1 
Precondi t ion :  

status = idle 
buffer is n o n e m p t y  
v ~ used 

Effect: 
uid-v := v 
used := used U { v } 
status := needuid 

send( "needuid", v)1,2 
Precondi t ion :  

status = needuid 
v = uid-v 

Effect: 
none 

receive( "accept", u, v)2,1 
Effect: 

if status ~ crashed then 
if status = needuid 

and uid-v = v then 

uid-u := u 
status := send 

else if uid-u ~ u then 
add ("cleanup", u) to send-buffer 

send( "send", m ,  u)1,2 
Precondi t ion :  

status = send 
m is first on buffer 
u = uid-u 

Effect: 
none 
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receive( "ack", U)2,1 
Effect: 

if status ~ crashed then 
if status = send 

and u = uid-u then 

remove first e lement  of buffer 
uid-v :=  null 
uid-u :=  null 
status :=  idle 

add  ("cleanup", u) to send-buffer 

send( "cleanup", U)1,2 
Precondi t ion :  

status ~ crashed 
("cleanup", u) is first on send-buffer 

Effect: 

remove first e lement  of send-buffer 

Tasks: 
{send( "needuid", v)l,2 : v a UID} 

{send( " send" ,m ,u ) l , 2 :m  e M, u a UID} 
{send( "cleanup", u)1,2 : u a UID} 
{RECOVER1 } 
{choose(v)1 : v a UID} 

CRASH1 
Effect: 

status :=  crashed 

RECOVER1 
Precondi t ion :  

status = crashed 
Effect: 

buffer :=  e m p t y  sequence 
uid-v :=  null 
uid-u :=  null 
send-buffer := e m p t y  sequence 
status :=  idle 

F i v e P a c k e t H a n d s h a k e ,  p r o c e s s  P 2 "  

Signature: 

Input :  

receive(p)1,2, p e {("needuid",v) : v a UID} U {("send" ,m,u)  : m C M , u  a UID} 
U { ("cleanup", u ) :  u a UID} 

CRASH2 
Outpu t :  

RECEIVE(m)1,2, m E M 
send(p)2,1, p E {( "accept", u, v ) :  u, v UIDs} U {( "ack", u ) : u  a UID} 
RECOVER1 

States: 
status C {idle, accept, rcvd, ack, crashed}, ini t ia l ly idle 
buffer, a F I F O  queue of M ,  ini t ia l ly e m p t y  
uid-v, a UID or null, ini t ia l ly null 
uid-u, a UID or null, ini t ial ly null 
last, a UID or null, ini t ia l ly null 
used, a set of UIDs,  ini t ial ly e m p t y  

send-buffer, a F I F O  queue of packets ,  ini t ial ly e m p t y  
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T r a n s i t i o n s :  

receive( "needuid", v) 1,2 
Effect :  

if status = idle then  

u :=  any  U I D  ~ used 
used :=  used U {u} 
uid-v :=  v 

uid-u :=  u 

status :=  accept 

send( "accept", u, v)2,1 
P r e c o n d i t i o n :  

status = accept 
u = uid-u 
v = uid-v 

Effect :  

none  

receive( "send", m ,  u)1,2 
Effect :  

if status 7s crashed t hen  

if s t a t u s -  accept 
and  u = uid-u t hen  

a d d  rn to  buffer 
last :=  u 

status :=  rcvd 
else if u # last t hen  

a d d  ("ack", u) to  send-buffer 

RECEIVE(m)1 ,2  
P r e c o n d i t i o n :  

status = rcvd 
rn is first  on buffer 

Effect :  

r emove  first e l emen t  of  buffer 
status :=  ack 

send( "ack", ~t)2,1 
P r e c o n d i t i o n :  

status # crashed 
(status = ack and  last = u) 

or ("ack", u) is first on send-buffer 
Effect:  

if ("ack", u) is first on send-buffer t hen  

r emove  first e l emen t  of  send-buffer 

receive( "cleanup ", u) 1,2 

Effect:  

if status = accept and  u = uid-u 
or if status = ack and  u = last t hen  

uid-v :=  null 
uid-u :=  null 
last :=  null 
status :=  idle 

CRASH2 
Effect:  

status "-  crashed 

R E C O V E R 2  
P r e c o n d i t i o n :  

status = crashed 
Effect:  

buffer :=  e m p t y  sequence  

uid-v :=  null 
uid-u :=  null 
last :=  null 
send-buffer :=  e m p t y  sequence  

status :=  idle 

Tasks:  
{ R E C E I V E ( m ) I , 2  : m C M }  
{~nd( "accept", ~, v),.~ : ~, v UIDs}  
{ ~ n d (  "ack", ~):.1 : ~  ~ UID}  
{ R E C O V E R 2 }  

T h i s  c o d e  is  s o m e w h a t  t r i c k y .  F o r  e x a m p l e ,  t h e r e  a r e  t w o  s i t u a t i o n s  i n  w h i c h  

P1  a d d s  a c l e a n u p  p a c k e t  t o  i t s  s e n d - b u f f e r .  O n e  is  t h e  " n o r m a l "  s i t u a t i o n  



22.5. T O L E R A T I N G  C R A S H E S  727 

described above, in which P1 has just received an ack packet from P2. The 
other is when P1 has just  received an ("accept", u, v) packet for a UID u that is 
not P l ' s  current u/d-u; it is possible in this case that P2 still has u as its current 
uid-u and that a cleanup packet may be needed to dislodge it. 

Likewise, there are two situations in which P2 generates an ack packet. One 
is the "normal" situation in which P2 is in ack mode, while the other is when 
P2 has just  received a ("send", m, u) packet for some "old" u. In this latter 
situation, it is possible that P1 still has status = send and uid-u = u and that an 
ack packet may be needed to dislodge u. 

The following theorem says that the FivePacketHandshake protocol guar- 
antees the specification B, using very weak channel assumptions. Namely, the 
channels are allowed to lose, reorder, and duplicate messages, subject only to the 
SLL condition and the finiteness restriction on duplication. 

T h e o r e m  22.16  The FivePacketHandshake protocol, using any finitely dupli- 
cating SLL channels, implements the specification B,  in the following sense: For 
every fair execution c~, c~ l ext ( B ) C traces(B).  

P r o o f  Ske t ch .  The safety proper t ies - - tha t  the protocol does not reorder or 
duplicate messages- -are  fairly easy to see. The tricky part  of the proof is the 
liveness argument.  It is not at all obvious that this algorithm continues to make 
progress, delivering successive messages to/-72. 

A key piece of the liveness argument deals with the situation where P1 has 
status = needuid, while P2 has status = accept but uid-v equal to a value v 
that is different from Pl ' s  current value of uid-v. This situation implies that any 
current needuid packet from P1 is ignored by P2. We must show that the value 
v is eventually dislodged from P2, thereby allowing the current needuid packets 
an opportuni ty to reach P2. So suppose that v is never dislodged. Then fairness 
for P2 implies that /:'2 sends infinitely many ("accept", u, v) packets. Then the 
channel liveness condition implies that infinitely many of these arrive at P1, and 
the code of P1 implies that each of these causes a ("cleanup", u) packet to be 
sent. Again by channel liveness, eventually one of these ("cleanup", u) packets 
must arrive at P2. This causes v to become dislodged. 

But things can get more complicated than this. Note that after v is dislodged, 
it is possible for P2 to acquire another value of uid-v that is also not the current 
value at P1. This can happen if/:'1 receives an old needuid packet. But then the 
same argument as above shows that this value of uid-v is also dislodged. This 
can happen any number of times, but since we have assumed that the channels 
permit  only finite duplication, it can happen only finitely many times before a 
current needuid packet finally arrives at P2. [-7 
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E v e n t u a l  qu iescence .  An important property of the FivePacketHandshake 
protocol in practice is that in case there are only finitely many SEND, CRASH, 
and RECO VER events, eventually both processes reach and remain in states that 
are the same as their initial states, except for the used sets. Informally speaking, 
the protocol eventually "forgets" everything that has happened so far. This 
means that no memory needs to be reserved for the use of this protocol when 
it is not actively processing messages from U1 to U2. In practice, this allows 
the same pair of processes in a network to simulate the FivePacketHandshake 
protocol in parallel for a very large number of distinct pairs (U1, U2) of users. 
(The instances of the protocol are combined using I /O automaton composition 
at each process.) If at any time only a small number of pairs (U1,/-/2) are actively 
engaged in communication, then the total amount of required memory for all the 
parallel executions of FivePacketHandshake is reasonably small. 

F in i t e  U I D  sets .  In practice, the number of available UIDs is very large, but 
it is not infinite as we have been assuming. For example, UIDs can be chosen to 
be successively increasing integers modulo n, for some very large number n. This 
"finite version" of the protocol works correctly (and in fact, its correctness can be 
proved via a simulation relation relating it to the ordinary FivePacketHandshake 
protocol), provided that by the time the UIDs "wrap around" to reuse a value 
u, any old packets carrying the same UID u have already been eliminated from 
the system. It may be possible to assert this in a practical setting, because of 
known limits on the message-delivery time, local processing time, and rate of 
submission of high-level messages, or because of an explicit policy of discarding 
old packets. 

22.6 Bibliographic Notes  

The ISO layered communication architecture is described in [54, 290, 273]. The 
Stenning protocol is due to Stenning [270]. The ABP was first presented by 
Bartlett, Scantlebury, and Wilkenson [42]. Besides being an interesting and 
useful protocol on its own, the ABP has served as a test case for protocol ver- 
ification techniques. Correctness proofs for the ABP appear, for example, in 
[177, 59, 229, 38, 146, 260, 280]. 

The simple impossibility result for reordering and duplication is derived from 
the work of Wang and Zuck [284]. The Probe protocol was developed by Afek, 
Attiya, Fekete, Fischer, Lynch, Mansour, Wang, and Zuck [4], using ideas from 
an earlier Probe protocol by Afek and Gafni [5]. An earlier protocol to solve 
the same problem, but without the modularity presented here, was developed by 
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Attiya, Fischer, Wang, and Zuck [23]. Afek et al. [4] also proved the impossibility 
result of Theorem 22.11. Mansour and Schieber [220], Wang and Zuck [284], and 
Tempero and Ladner [278, 277] proved related impossibility results. 

The nontrivial impossibility result for the setting with crashes, Theorem 22.14, 
is due to Lynch, Mansour, and Fekete [206] and, independently, to Spinelli [268]. 
The two results are combined into a single paper [112]. Spinelli [268] also proved 
a number of other results about the implementability of reliable communication. 
Baratz and Segall [41] showed how to tolerate crashes using a very small amount 
of stable data and also conjectured the impossibility result for the case without 
stable data. Attiya, Dolev, and Welch [21] proved related impossibility results. 

The FivePacke tHandshake  protocol is one of a series designed by Belsnes 
[44]; the protocols in the series guarantee stronger correctness conditions and 
tolerate successively stronger types of faulty behavior on the part of the channels 
as additional packets are added to the exchange. The FivePacke tHandshake  pro- 
tocol is the standard protocol for setting up network connections, used in TCP, 
ISO TP-4, and many other transport protocols. A complete correctness proof 
for a generalized version of this protocol, plus a proof of another protocol that 
uses timing, has been carried out by Lampson, Lynch, and S0gaard-Andersen 
[188, 190, 264]. 

22.7  E x e r c i s e s  

22.1. Prove Lemma 22.1. 

22.2. Show the existence of a simulation relation from the Stenn ing  protocol 
using channels A1,2 and A2,1 from Example 14.1.2 to F, the corresponding 
universal reliable FIFO channel. Specifically, if s and u are states of the 
Stenn ing  protocol and F, respectively, then we define (s, u) E f exactly if 
the following are true: 

(a) If s . tagl  = s. tag 2 then u.queue is obtained by first removing the first 
element a of s .buf fer l ,  then appending the "reduced" buffer1 at the end 
of s. buffer 2. 

(b) Otherwise, u.queue is obtained by appending s .buf fer  I at the end of 

s. buffer 2. 

Prove that f is a simulation relation. 

22.3. Use the results of Exercise 22.2 to prove Lemma 22.2. In particular, use the 
simulation and an execution correspondence to prove the fairness property. 

3Lemma 22.1 implies that s.buffer 1 is nonempty in this case. 
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22.4. Prove Theorem 22.3. 

22.5. Consider the Stenning protocol with the channels that are like the ones 
considered in Section 22.2 but that allow infinite duplication. That  is, 
the code for automaton A in Example 14.1.2 is modified by removing the 
finiteness restriction on the effect of the send action. 

(a) Show that the protocol no longer works correctly, in particular, that 
it violates the fairness of the reliable FIFO channel it is supposed to 
be implementing. 

(b) Show how to strengthen the liveness conditions on the channels slightly 
to restore the correctness of the Stenning protocol. 

22.6. Prove Lemma 22.4. 

22.7. Prove that f in the proof of Lemma 22.5 is a simulation relation. 

22.8. Prove Theorem 22.7. 

22.9. Design a generalized version of the ABP that uses tags that are integers 
rood k, k >_ 2, instead of integers mod 2. Your new protocol should still use 
the same (FIFO) channels as ABP and should still implement F.  However, 
in your new protocol, P1 should be able to send the first p messages at 
the front of its buffer while waiting for an acknowledgment for the first 
message. In terms of k, what is the largest value of p that you can achieve? 

22.10. Show that the ABP still works if the channels are permit ted unlimited 
duplication of messages. The channels still cannot reorder messages, and 
the losses are limited by the WLL condition. 

22.11. Is Theorem 22.8 still true if the channels are constrained to make at most 
k duplicates of any low-level message, for some known bound k? We still 
assume that the channels do not lose messages, but are allowed to reorder 
them arbitrarily. Give either an impossibility proof or an algorithm. 

22.12. Fill in the details of the proof of Lemma 22.9. In particular,  give a care- 
ful definition of the cause function and show that it satisfies the required 
properties for the I1,2 specification. 

22.13. Suppose that Layer 1 of the Probe protocol is modified by adding the line 

"pending := pending-  1" to the effect of the receive(re)l,2 action. Is the 
resulting protocol still correct? Prove that it is or give a counterexample. 
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22.14. Prove the fact used in the proof of Claim 22.12, namely that any finitely 

consistent execution of P1 x P2 can be extended to a fair, consistent execu- 

tion in such a way that no new SEND1,2 events occur and all new receive1,2 
events are caused by new send1,2 events. 

22.15. Strengthen the result of Theorem 22.11 to include a lower bound on the 

rate of growth of the best-case number of low-level messages needed to 

deliver successive high-level messages. 

22.16. Suppose that specification B of Section 22.5.2 is weakened so that some 

messages sent after the last RECO VER are allowed to be lost. However, if 
there are only finitely many CRASH and RECOVER events, then all mes- 

sages after the first k that are sent after the RECOVER must be delivered. 
As before, no duplication is permitted, but reordering is allowed. 

Using the same channel specifications Q1,2 and Q2,1 that are used in Sec- 
tion 22.5.2, either extend the impossibility result in Theorem 22.14 to this 

weaker specification or devise an algorithm that solves the problem. 

22.17. Research Question: Answer the same question as in Exercise 22.16, but this 
time weaken the specification B some more, as follows. This time, if there 

are only finitely many CRASH and RECOVER events, then, eventually, 
all messages that are sent must be delivered. 

22.18. Prove that the FivePacketHandshake protocol does not reorder or duplicate 

messages. 

22.19. Construct an execution of the FivePacketHandshake protocol in which the 
second type of ack packet, produced when P2 receives an old send message, 

is needed to dislodge a UID from P1. 

22.20. Give a careful proof of the required liveness property of the FivePacket- 
Handshake protocol. That is, prove that any message sent after the last 

RECOVER event must eventually be delivered to U2. 

22.21. Consider the FivePacketHandshake protocol in case there are only finitely 
many SEND, CRASH, and RECOVER events. Prove that, in this case, 

eventually both processes reach and remain in states that are the same as 

their initial states, except for the used sets. 

22.22. Design an efficient algorithm to implement reliable FIFO communication 

between two users, in terms of a network based on an arbitrary undirected 
graph. Assume that there is a process at each node of the graph, as usual, 
and a reliable FIFO send/receive channel on each edge. 
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Part  III 

Partially Synchronous 
Algorithms 

The final part of this book consists of Chapters 23-25. These chapters con- 
tain algorithms and lower bound results for the partially synchronous model, in 
which system components have some information about timing, although not 
complete information as they do in the synchronous model. Such partial infor- 
mation can provide a realistic model of the timing knowledge that is available in 
real distributed systems. 

As usual, the first chapter, Chapter 23, contains our formal model. Then there 
are only two algorithm chapters: Chapter 24 on mutual exclusion in partially 
synchronous shared memory systems and Chapter 25 on consensus in partially 
synchronous network systems. These chapters represent the beginnings of what 
is likely to become an interesting new part of the theory of distributed algorithms. 
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Chapter 23 

Modelling V: Partially 
Synchronous System Models 

The final three chapters of this book comprise a short introduction to the study of 
partially synchronous, or timing-based, distributed algorithms. Recall that Part  I 
(Chapters 2-7) examined synchronous distributed algorithms, while Part  II 
(Chapters 8-22) dealt with asynchronous distributed algorithms. It turns out 
that there is an interesting class of models and algorithms between these two 
extremes, which we call partially synchronous. In a partially synchronous sys- 
tern, the components have some information about time, although the information 
might not be exact. For example, processes in a partially synchronous network 
might have access to almost-synchronized clocks, or might know approximate 
bounds on process step time or message-delivery time. 

Partially synchronous models are probably more realistic than either com- 
pletely synchronous or completely asynchronous models, since real systems 
typically do use some timing information. However, the theory of partially syn- 
chronous systems is not nearly so well developed as the theories of synchronous 
and asynchronous systems. The ideas that we present here are only the beginning 
of what we think will be a large amount of interesting research on the foundations 
of timing-based computing. 

In this chapter, we give an introduction to models and proof methods for 
timing-based distributed algorithms. We begin in Section 23.1 by presenting 
a timed automaton model that we call the MMT model after its discoverers, 
Merritt, Modugno, and Tuttle. The MMT model is a simple variant of the I /O 
automaton model that is adequate for modelling most timing-based algorithms. 
In order to use certain basic proof methods-- in  particular, the invariant and 
simulation methods--wi th  this model, we find it useful to be able to transform 
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each MMT automaton  into another type of au tomaton that  we call a general 
timed automaton (GTA). We present the GTA model in Section 23.2, along with 
the transformation from MMT au tomata  to GTAs. In Section 23.3, we discuss 
verification techniques that  can be used with these models. 

In Chapters 24 and 25, we give preliminary results about mutual  exclusion 
and consensus in the partially synchronous setting. 

23.1 M M T  T i m e d  A u t o m a t a  

An MMT timed automaton  model is obtained by simply replacing the fairness 
conditions of the I /O au tomaton  model with lower and upper bounds on time. 
Notice that  replacing the fairness conditions with just  upper bounds would not 
add any interesting power to the model, because upper bounds alone do not 
restrict the set of executions that  are produced by an I /O automaton.  (In fact, 
throughout  the "asynchronous" chapters of the book, we have already been 
associating upper bounds with tasks of an algorithm, in order to analyze time 
complexity. The usefulness of this analysis depends on the fact that  these bounds 
do not restrict the algorithm's behavior.) However, introducing both lower and 
upper bounds does give extra power, because this allows us to restrict the set 
of executions. Indeed, for many timing-based algorithms, correctness depends 
crucially on the restrictions on executions that  are imposed by the time bounds. 

23 .1 .1  B a s i c  D e f i n i t i o n s  

We start  with an I /O au tomaton  A having only finitely many tasks. A boundmap 
b for A is a pair of mappings, lower and upper, that  give lower and upper bounds 
for all the tasks. For each task C, we require that  lower(C) and upper(C) must 
satisfy the conditions 0 < lower < co, 0 < upper(C) < oc, and lower(C) < 
upper(C). That  is, the lower bounds are not allowed to be oc, the upper bounds 
are not allowed to be 0, and the lower bounds cannot be greater than the upper 
bounds. An MMT automaton is an I /O automaton  A together with a boundmap 
for A. 

Now we define how an MMT automaton  executes. A timed execution of an 
MMT automaton  B - (A, b) is defined to be a finite sequence c~ - so, (7c1, t l) ,  

Sl, (7c2, t2), . . .  , (Tcr,tr), Sr or an infinite sequence ct -- So, (7cl,tl), Sl, (7c2, t2), 
. . . ,  (Tr~,t~), s ~ , . . .  , where the s's are states of the I /O au tomaton  A, the 7o's 
are actions of A, and the t 's are times in R >~ We require that  the sequence 
so, 7Cl, S l , . . . - - t h a t  is, the sequence a with the times ignored--be an ordinary 
execution of I /O  au tomaton  A. We also require that  the successive times t~ in c~ 
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be nondecreasing and that they satisfy the lower and upper  bound requirements 

expressed by the boundmap  b. 

Wha t  does it mean to satisfy the lower and upper  bound requirements? To 

say this formally, we define r to be an initial index for a task C provided that  

C is enabled in s~ and one of the following is true: 

1 .  r --- 0 .  

2. C is not enabled in 'dr_ 1. 

3. 7 c r E C .  

The initial indices represent  the points at which we begin to measure the time 

bounds.  Then, for every initial index r for a task C, we require that  the following 

conditions hold. (We let to = 0.) 

U p p e r  b o u n d :  If there exists k > r with tk > t~ + upper(C), then there exists 

k ~ > r with tk, <_ t~ + upper(C) such that either 7rk, C C or C is not enabled 
in sk,. 

L o w e r  b o u n d :  There does not exist k > r with tk < t~ + lower(C) and 7rk C C. 

The upper  bound condition says that,  from any initial index for a task C, if t ime 

ever passes beyond the specified upper  bound for C, then in the interim, either 

an action in C must  occur, or else C must  become disabled. The lower bound 

condition says that,  from any initial index for C, no action in C can occur before 

the specified lower bound. 

We denote the set of t imed executions of B by texecs(B). A state is said to 

be reachable in B if it is the final state of some finite t imed execution of B. 

The upper and lower bound properties are safety properties.  We are also 

interested in one basic liveness property:  we say that a t imed execution is ad- 
missible provided that  the following condition is satisfied: 

A d m i s s i b i l i t y -  If t imed execution a is an infinite sequence, then the t imes of 

the actions approach oc. If a is a finite sequence, then in the final state of 

a,  if task C is enabled, then upper(C) = oc. 

The admissibi l i ty  condition says that t ime advances normally and that  processing 

does not stop if the au tomaton  is scheduled to perform some more work. We 

denote the set of admissible t imed executions of B by atexecs(B). In this book, 

we will focus mainly on the admissible t imed executions. 

Note that  in an admissible t imed execution, an upper bound of oc for a 

task C does not  impose any requirement that  actions in task C ever occur. 
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This is somewhat different from what we did in the asynchronous chapters: 
In Section 8.6, we defined another notion of t imed execution which specified 
that  all tasks satisfied the fairness condition and, in addition, that  some of 
them satisfied upper time bounds. We used this combined notion in analyzing 
time complexity. Now we are dropping the fairness conditions entirely and just 
considering time bounds. It is possible to define a version of the MMT model 
in which some tasks have time bounds and some have fairness conditions, but 
we will not do this formally in this book. Instead, we will discuss the issue 
of combining time bounds and fairness conditions informally, when it arises in 
particular algorithms. 

Some sort of admissibility condition is needed in any useful model for timing- 
based computing, in order to rule out some rather strange behavior, such as an 
automaton performing infinitely many outputs in a finite amount of time. 1 Al- 
though such executions make some formal sense, they are meaningless in reality 
and hard to think about. A good model for t imed systems should make it 
possible to avoid thinking about this issue. 

In order to describe the external behavior of MMT automata,  we define timed 
traces. The timed trace of a t imed execution c~ of B, denoted by ttrace(c~), is 
the subsequence of a consisting of all the external actions, each paired with 
its associated time. The admissible timed traces of B, which we denote by 
attracts(B), are the timed traces of admissible t imed executions of B. 

MMT au tomata  can be used for describing many types of components in 
timing-based systems. They are especially good for modelling computer sys- 
tems at a low level, since the task structure and associated time bounds provide 
natural  ways of modelling physical system components and their speeds. How- 
ever, they are somewhat less well suited for describing systems at a high level 
or for providing correctness specifications. This is because their rather stylized 
conventions about tasks and bounds do not always provide the best "language" 
for expressing the desired behavior. 

E x a m p l e  23.1.1 C h a n n e l  M M T  a u t o m a t o n  

We define an MMT a u t o m a t o n  Di,j -- (Ci,j ,  b) based on the universal 
reliable FIFO send/receive channel automaton Ci,j of Example 8.1.1. 
The boundmap b of Di,j imposes an upper bound of d, where d is 
some fixed positive real, on the delivery time for the oldest message 
in the channel. It does not impose any lower bound. Di,j  is a formal 
description of a channel we have used frequently in the chapters 

1This behavior is sometimes called Zeno behavior, in reference to Zeno's paradox. In Zeno's 
paradox, the runner Achilles takes infinitely many steps, each successively shorter, approaching 
closer and closer to his goal (a tortoise) but never quite reaching it. 
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on asynchronous algorithms in order to carry out time performance 
analysis. 

Thus, if rec denotes the single task of Ci,j, then we define b to be 
the pair (lower, upper), where lower(rec) = 0 and upper(rec) = d, for 
some fixed d C R +. All of the following are admissible t imed traces 

of Di,j : 

(send(1)i,j, 0), (send(2)i,j, 0), (receive(1)i,j, d), (receive(2)i,j, 2d) 

(send(1)i,j, 0), (send(2)i,j, 0), (receive(1)i,j, 0), (receive(2)i,j, O) 

(send(1)i,j, 0), (receive(1)i,j, d), (send(2)i,j, d), (receive(2)i,j, 2d), 
(send(3)i,j, 2d), (receive(3)i,j, 3d) , . . .  

On the other hand, the following are not admissible t imed traces of 

Di,j " 

(send(1)i,j, 0), (send(2)i,j, 0), (receive(1)i,j, d) 

(send(1)i,j, 0), (receive(1)i,j, 2d) 

(send(1)i,j, 0), (receive(1)i,j, d), (send(2)i,j, d), (receive(2)i,j, d), 
(send(3)i,j, d), (receive(3)i,j, d), . . . 

The first of these three sequences fails to be an admissible t imed 
trace because it is finite, yet the rec task is enabled at the end. In 
general, any admissible timed execution that contains at least k send 
inputs must also contain at least k corresponding receive outputs, 
because the upper bound condition and the admissibility condition 
together imply the usual fairness condition for the rec task. The sec- 
ond sequence fails to be an admissible t imed trace because it violates 
the upper bound condition. The third sequence fails because it vio- 
lates the admissibility condi t ion-- i t  does not allow time to increase 
beyond d, even though an infinite amount  of activity occurs. 

E x a m p l e  23 .1 .2  T i m e o u t  M M T  a u t o m a t o n  

We define an MMT automaton P2 that awaits the receipt of a message 
from another process P1 and, if no such message arrives within a 
certain amount  of time, performs a timeout action. P2 measures the 
elapsed time by counting a fixed number k _> 1 of its own steps, 
which are assumed to observe known lower and upper bounds t~l and 

~2, 0 ~ ~1 _~ ~2 ~ CX:). Its timeout is performed at most time t~ after 
count reaches 0. Notice that we write the lower and upper bounds for 
each task in the form of a closed interval--we will use this convention 
frequently. 



740 23. M O D E L L I N G  V: P A R T I A L L Y  S Y N C H R O N O U S  M O D E L S  

P2 a u t o m a t o n :  

Signature: 

Input: 
receive(m) 1,2, m E M 

Output: 
timeout 

Internal: 
decrement 

States: 
count E N, initially k 
status C {active, done, disabled}, initially active 

Transitions: 

decrement 
Precondition: 

status = active 
count > 0 

Effect: 
count := c o u n t -  1 

receive(m)1,2 
Effect: 

if status = active then 
status := disabled 

Tasks and bounds: 
{ decrement }, bounds [el, g2] 
{timeout}, bounds [0, g] 

timeout 
Precondition: 

status -- active 
count = 0 

Effect: 
status := done 

In an admiss ible  t imed  execut ion,  P2 s imply  decreases  its count  

unti l  coun t  = 0 or unt i l  a rece ive (m)  occurs  to disable the  t imeout .  

After  count  reaches 0, P2 per forms  a t i m e o u t  (provided t h a t  no re- 

ceive occurs  previously) .  It is not  ha rd  to see tha t ,  in any t imed  

execut ion  of / )2 ,  if a t i m e o u t  occurs,  t hen  it occurs  at  some t ime  in 

the  interval  [kgl, kg2 + g]. Moreover ,  if a t i m e o u t  occurs,  t hen  there  

is no previous  receive. Finally,  in an admiss ib le  t imed  execut ion  of 

P2, if no receive occurs,  t hen  a t i m e o u t  does in fact occur.  

E x a m p l e  2 3 . 1 . 3  T w o - t a s k  r a c e  

We define a s imple M M T  a u t o m a t o n  Race  with  two tasks,  m a i n  and  

in t  ( in te r rup t ) .  The  m a i n  t ask  inc rements  a counter  coun t  as long as 

a Boolean  f lag is false.  T h e  in t  t a sk  s imply  sets f lag := t rue.  W h e n  

f lag  = true,  the  m a i n  t a sk  dec remen t s  count  unti l  it reaches 0, t h e n  
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repor ts  complet ion.  The m a i n  task has associated bounds  of ~1 and 

~2, 0 % ~1 _~ ~2 % 00, while the i n t  task jus t  has an upper  bound  of t~. 

R a c e  a u t o m a t o n :  

Signature: 

Input: Internal: 
none increment 

Output: decrement 
report set 

States: 
count E N, initially 0 
flag, a Boolean, initially false 
reported, a Boolean, initially false 

Transitions: 

increment set 
Precondition: Precondition: 

flag = false ]tag = false 
Effect: Effect: 

count := count + 1 flag := true 

decrement report 
Precondition: Precondition: 

flag = true flag = true 
count > 0 count = 0 

Effect: reported = false 
count := c o u n t -  1 Effect: 

reported := true 

Tasks and bounds: 
main = {increment ,  decrement, report}, bounds [t~l, t~2] 
int = {set},  bounds [0, 6] 

In every admiss ible  t imed execut ion of Race ,  a r e p o r t  eventual ly  oc- 

curs. In Section 23.3.3, we will sketch a proof  that  this r e p o r t  must  

occur by t ime t~ + t~2 + Lg, where L - t~2/t~l. (L can be regarded  as a 

measure  of the t i m i n g  u n c e r t a i n t y  in the system.)  

2 3 . 1 . 2  O p e r a t i o n s  

We define compos i t ion  and hiding operat ions  for M M T  automata ,  analogous to 
those for I / O  au tomata .  
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Composit ion.  MMT automata  can be composed in much the same way as 
ordinary I /O automata,  by identifying actions having the same name in differ- 
ent automata.  However, unlike what we did for I /O automata,  we only define 
composition for a finite collection of MMT automata.  This is because an MMT 
automaton is only allowed to have a finite number of tasks. 

We define a finite collection of MMT au tomata  to be compatible if their 
underlying I /O au tomata  are compatible, according to the definition of compat- 
ibility in Section 8.2.1. Then the composition (A, b) - 1-I~EI(A~, b~) of a finite 
compatible collection of MMT au tomata  {(A~, b~)}~E~ is the MMT automaton 
defined as follows: 

�9 A - I I i E I  Ai, that  is, A is the composition of the underlying I / 0  au tomata  
Ai for all the components. 

�9 For each task C of A, b's lower and upper bounds for C are the same 
as those of bi, where Ai is the unique component I /O automaton having 
task C. 

As for I /O  automata ,  we sometimes use the infix operation symbol x to denote 
composition. For instance, if I - {1 , . . .  , n}, then we sometimes write I-IiEI Ai 
a s A 1  x . - .  x A n .  

E x a m p l e  23.1 .4  C o m p o s i t i o n  of  M M T  automata 

We consider the composition of three MMT automata.  The first is 
a process P1 that  might be alive or dead (which one is determined 
nondeterministically by the initial state). If it is alive, it sends mes- 
sages from a fixed message alphabet M periodically, with intervening 
times at most t~ :> 0, on an outgoing channel. 

P1 automaton: 

Signature: 

Input: 
none 

Output" 
send(m) 1,2, m E M 

States: 
status E {alive, dead}, initially arbitrary 

Transitions: 

send(re)l,2 
Precondition: 

status = alive 
Effect: 

none 
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Tasks  and b o u n d s :  
{send(m)l,2 :m  E M}, bounds [0,6] 

The other two automata are channel D1,2, as defined in Example 
23.1.1, and timeout process P2, as defined in Example 23.1.2. If 
k~l ~ ~-~-d, then in any admissible timed execution, the composition 
performs a timeout exactly if P1 is dead. Moreover, this timeout is 
performed no later than time kt~2 + t~. 

We close this subsection with three basic results analogous to Theorems 8.1- 
8.3. These relate the admissible timed executions and admissible timed traces of 
a composition to those of the component MMT automata. The first says that an 
admissible timed execution or admissible timed trace of a composition projects 
to yield admissible timed executions or admissible timed traces of the component 
automata. 

Let {(Ai, bi)}i~I be a compatible collection of MMT automata and let (A, b) - 
l-Iici(Ai, bi). Let Bi denote the MMT automaton (Ai, bi) for each i and let B 
denote (A, b). For any timed execution c~ = so, (Trl,tl), S l , . . .  of B, let c~[Bi 
be the sequence obtained by deleting each pair (Try, t~), s~ for which 7r~ is not 
an action of Ai, and replacing each remaining s~ by (s~)i, that is, automaton 
Ai's piece of the state s~. Also, for any timed trace/3 of B (or, more generally, 
any sequence of actions paired with times), let /3[Bi be the subsequence of/3 
consisting of all the pairs containing actions of Ai. 

T h e o r e m  23.1 Let {Bi}icI  be a compatible collection of M M T  automata and 
let B = l-IicI Bi. 

1. I f  a e atexecs ( B ) , then a l Bi e atexecs ( Bi ) for every i C I. 

2. I f  ~ e attraces (B), then/3[Bi e attraces (Bi) for every i e I. 

P r o o f .  The proof is left as an exercise. [-7 

The other two are converses of Theorem 23.1. The next theorem says that, 
under certain conditions, admissible timed executions of component MMT at-  
tomata can be pasted together to form an admissible timed execution of the 
composition. 

T h e o r e m  23.2 Let {Bi}iCI be a compatible collection of M M T  automata and 
let B = l-IicI Bi. Suppose c~i is an admissible timed execution of Bi for every 
i C I and suppose/3 is a sequence of (action, time) pairs, where all the actions 
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in/3  are in ext ( A ) , such that /3  Bi - ttrace ( c~i ) for  every i C I.  Then there is 
an admissible t imed execution c~ of B such that/3 - ttrace(c~) and c~i - c~]Bi for  
every i C I.  

Proof .  The proof is left as an exercise. D 

The final theorem says that  admissible timed traces of component MMT 
automata  can also be pasted together to form an admissible timed trace of the 
composition. 

T h e o r e m  23.3 Let {B i} ic I  be a compatible collection of M M T  automata and 
let B - l-Ii~I Bi.  Suppose /3 is a sequence of (action, t ime) pairs, where all 
the actions in /3 are in ext(A) .  I f /3]Bi C attraces(Bi) for  every i E I,  then 
/3 E attraces ( B ) . 

Proof .  The proof is left as an exercise. K] 

Hid ing .  The hiding operation for MMT automata  is defined in terms of the 
hiding operation for ordinary I /O automata,  as given in Section 8.2.2. Namely, 
if B -  ( A , b ) i s  an MMT automaton and �9 c out(A) ,  then h i d e ~ ( B ) i s  the 
MMT automaton (h ide~(A) ,b) .  As for I /O automata,  this operation simply 
reclassifies output actions as internal. 

23.2 Genera l  T i m e d  A u t o m a t a  

The timing restrictions in MMT automata  are specified by means of upper and 
lower bound conditions imposed on executions. An alternative approach is to 
encode timing restrictions directly into the states and transitions of the automa- 
ton. This approach has the advantage that  it allows some important state-based 
proof methods, such as the methods of invariant assertions and of simulation 
relations, to be used to reason about correctness and timing properties of timed 
systems. 

In this section, we describe a second timed automaton model, which we call 
the general t imed automaton (GTA)  model. General timed automata  have no 
"external" timing restrictions--all their time constraints are explicitly encoded 
into their states and transitions. As we will show, MMT automata  can be viewed 
as a special case of general timed automata,  by encoding the timing restrictions. 
There are GTAs that  are not MMT automata,  however; in fact, there are some 
GTAs that  exhibit behavior that  cannot be exhibited by any MMT automaton. 
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23.2.1 Bas ic  Def in i t ions  

We assume a universal set of actions, including special time-passage actions v(t), 
t C R +. The t ime-passage action u(t) denotes the passage of time by the amount  
t. A timed signature S is a quadruple consisting of four disjoint sets of actions: 
the input actions in(S), the output actions out(S), the internal actions int(S), 
and the t ime-passage actions. We define 

�9 the visible actions, vis(S), to be the input and output  actions, i n (S )U 
o t(s) 

�9 the external actions, ext(S), to be the visible and time-passage actions, 
vis(S) U {L, ( t ) ' t  E R +} 

�9 the discrete actions, disc(S), to be the visible and internal actions, vis(S)U 
int(S) 

�9 the locally controlled actions, local(S), to be the output  and internal ac- 
tions, out(S) U int(S) 

�9 acts(S) to be all the actions of S 

A GTA A consists of the following four components:  

�9 sig(A), a t imed signature 

�9 states (A), a set of states 

�9 start(A), a nonempty  subset of states(A) known as the start states or 
initial states 

�9 trans(A), a state transition relation, 
acts ( sig ( A ) ) x states ( A ) 

where trans(A) C states ( A ) x 

Unlike I /O  automata  and MMT automata,  GTAs do not have tasks(A) compo- 
nents. As before, we use acts(A) as shorthand for acts(sig(A)), and similarly 
in(A), and so on. There are two simple axioms that A is required to satisfy: 

AI"  If (s,L,(t), s') and (s', u(t ') ,  s") are in trans(A), then (s, u(t + t'), s") is in 
trans(A). 

A2" If (s, L,(t), s') E trans(A) and 0 < t' < t, then there is a state s" such that 
(s, u(t ') ,  s") and (s", L,(t - t '), s') are in trans(A). 
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Axiom A1 allows repeated time-passage steps to be combined into one step, 

while Axiom A2 is a kind of converse to A1 that  allows a time-passage step to 
be split in two. 

A timed execution fragment of a GTA, A, is defined to be either a finite 

sequence ct - so, 711, 81, 7r2, . . .  , 7 r r ,  8 r  or an infinite sequence a - so, 7i1, 81~ 7r2, 

. . .  , 7r~, s~, . . .  , where the s's are states of A, the 7r's are actions (either input, 

output,  internal, or time-passage) of A, and (sk, 7rk+l, Sk+l) is a transition of A 

for every k. Note that  if the sequence is finite, it must end with a state. A timed 

execution fragment beginning with a start  state is called a timed execution. 
If a is any timed execution fragment and 7r~ is any discrete action in a, 

then we say that  the time of occurrence of 7r~ is the sum of all the reals in the 
time-passage actions preceding 7r~ in a. We define a timed execution fragment 

to be admissible provided that  the sum of all the reals in the time-passage 

actions in a is oc. We denote the set of admissible timed executions of A by 

atexecs(A). We will mainly consider the admissible timed executions, though 

we will also sometimes consider the finite timed executions, that  is, those that  
are finite sequences. A state is said to be reachable in A if it is the final state of 
a finite timed execution of A. 

The timed trace of a timed execution fragment a is the sequence of visible 

events in a, each paired with its time of occurrence. The admissible timed traces 
of A, which we denote by attraces(A), are the timed traces of admissible timed 

executions of A. Note that  an admissible timed trace of A can be finite, even 

though it is derived from an (infinite) admissible timed execution. 

Because of Axioms A1 and A2, there is not much difference between timed 
execution fragments that  differ only by splitting and combining time-passage 

steps. So we define an equivalence relation on timed execution fragments that  

says that  they are the same except for time-passage. Namely, we say that  

one timed execution fragment a is a time-passage refinement of another timed 
execution fragment a~ provided that  a and c~ ~ are identical except for the fact 

that ,  in a,  some of the time-passage steps of c~ ~ are replaced with finite sequences 

of time-passage steps, with the same initial and final states and the same total 
amount of time-passage. We say that  timed execution fragments a and a ~ are 

time-passage equivalent if they have a common time-passage refinement. 

Example  23.2.1 A general  t imed a u t o m a t o n  

We describe a general timed a u t o m a t o n  D~,j that  corresponds closely 

to the MMT a u t o m a t o n  Di,j of Example 23.1.1. In particular, it has 

the same set of admissible timed t races.  D~,j simply encodes the tim- 

ing restriction of Did--the upper bound of d on the time to deliver 
the oldest message in the channel-- into  its states and transitions. It 
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does this by keeping explicit track of the current time, in a variable 

now, and by keeping track of the latest time at which the next message 

delivery can occur, in a variable last. Note that the values of last 

represent absolute times, not incremental times. 

We describe D~,j using the same sort of precondition-effect nota- 

tion that we have been using for other automata,  only now we include 

code for the time-passage actions as well as for the discrete actions. 

When a send  event occurs, the queue is modified as before, but 

now, in addition, if there was no previously scheduled message de- 

livery, the last variable is set to now + d to reflect the requirement 

that the next message delivery must occur within time d. When a 

receive occurs, the last bound is reset to now + d if the queue is still 

nonempty after the event, to reflect the time requirement for the next 
message delivery; on the other hand, if the queue is emptied, then 

last is set to oc to reflect the fact that there is no scheduled message 
delivery. 

The code for the time-passage actions u(t) is writ ten in much the 

same way as that for other actions. The effect of u(t) is simply to 
increase the current time now by t. Note that r,(t) also includes a 

nontrivial precondition" now + t < last. This says that time is not 

allowed to pass beyond the scheduled deadline for the next message 
delivery. This may at first seem somewhat s t range- -a f te r  all, how 

can a program or machine block the passage of time? But this style of 
specification for time-passage actions is just a formal way of saying 

that the automaton is guaranteed to perform some action before a 

designated amount  of time has elapsed. 

! 
Di,  j a u t o m a t o n :  

Timed Signature: 

Input: Internal: 
send(m)i,j, m E M none 

Output: Time-passage: 
~ i v ~ ( ~ n ) ~ , j ,  m e M ~(t) ,  t �9 R + 

States: 
queue, a FIFO queue of elements of M, initially empty 
now C R ->~ initially 0 
last E R + t2 {~}, initially oc 
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Trans i t ions :  

send(m)i,y 
Effect: 

add m to queue 
if ]queue I = 1 then 

last := now + d 

receive(m)~,j 
Precondition: 

m is first on queue 
Effect: 

remove first element of queue 
if queue is nonempty then 

last := now + d 
else last := cx~ 

.(t) 
Precondition: 

now + t ~ last 
Effect: 

now : = n o w + t  

It should not be hard  to see tha t  D~,j has the same set of ad- 

missible t imed traces as Di, j .  We leave it as an exercise to show 

this. 

Example  23.2.1 should give you an idea of how M M T  a u t o m a t a  can be 

regarded as a special case of general t imed au tomata :  the t ime requirements  

specified by the b o u n d m a p  b of an M M T  a u t o m a t o n  (A, b) can be encoded into 

the s tates  and t ransi t ions  of a corresponding GTA. This can be done using last  

s ta te  components  to keep t rack of the upper  bound  requirements ,  plus addi t ional  

f i r s t  s ta te  components  to keep t rack of the lower bound  requirements .  We give 

the detai led const ruct ion  in Section 23.2.2. 

The GTA model  is more general t han  the M M T  a u t o m a t o n  model,  however. 

The next example contains another  channel expressed as a GTA; it tu rns  out 

tha t  this one cannot  be expressed as an M M T  au tomaton .  

E x a m p l e  23 .2 .2  A n o n - M M T  g e n e r a l  t i m e d  a u t o m a t o n  

We describe another  GTA, D~t,j, t ha t  represents a reliable F IFO chan- 

nel, but  this t ime the t ime bound  of d is required for every  message 

in the channel,  not only the oldest. This time, the message-delivery 

deadlines are stored along with  the messages on the queue instead 

of in separate  last  components .  The handl ing of the deadlines is 

similar, however. 
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p! Dis a u t o m a t o n :  

Timed Signature: 

Input:  
s e n d ( r n ) i , j ,  m C M 

Output :  
rece ive (m)~ , j ,  m E M 

Internal:  
none 

Time-passage:  
. ( t ) ,  t c R + 

States: 
queue,  a F I F O  queue of elements of M x R +, initially empty  
n o w  E R ->~ initially 0 

Transitions: 

send( rn ) i , j  

Effect: 
add (rn, n o w  + d) to queue  

r e c e i v e ( m ) i , j  

Precondit ion:  
(rn, t) is first on queue,  for some t 

Effect: 
remove first element of queue  

. ( t )  
Precondit ion:  

if queue  is nonempty  then 
n o w  + t <_ t ' ,  where t' is the t ime 

in the first pair of queue  

Effect" 
n o w  " -  n o w  + t 

We claim (and leave it as an exercise to show) that there is no 

MMT automaton with the same set of admissible timed traces as 

D:~j. This could be interpreted to mean that D:~j is not physically 

implementable. However, as we have seen in earlier chapters, D~j can 
be a convenient abstraction for use in analyzing the time complexity 
of algorithms when we do not want to bother considering the pileups 

of messages in the channels. 

The next example shows an anomaly: a GTA that has no admissible timed 

executions. Although this is a strange situation, there is nothing in the gen- 
eral model that prevents this. For the special case of MMT automata (and 
consequently for the GTAs that correspond to MMT automata as described in 

Section 23.2.2), this anomaly does not occur. (See Exercise 23.1.) Additional 

restrictions can be added to the GTA model to rule out this situation, but since 
we will mainly focus in this book on algorithms that can be expressed by MMT 
automata, we do not describe these restrictions here. 
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E x a m p l e  23 .2 .3  A g e n e r a l  t i m e d  a u t o m a t o n  w i t h  no a d m i s s i b l e  t i m e d  
e x e c u t i o n s  

Consider a "process automaton" A that sends the same message m 
infinitely many times. However, successive sending times are closer 
and closer together, approaching a time limit of 1. 

A a u t o m a t o n :  

Timed Signature: 

Input: Internal: 
none none 

Output :  Time-passage: 
s e n d ( m )  v ( t ) ,  t E R + 

States: 
n o w  E R ->~ initially 0 
las t  E R ->~ U {cx~}, initially 0 

Transitions: 

s e n d ( m )  ~ ( t )  

Precondition: Precondition: 
n o w  = las t  n o w  + t < las t  

Effect: Effect: 
las t  " -  n o w  + 1-now n o w  "-- n o w  + t 

2 

In fact, things can be even worse--the definition of a GTA even allows timed 
automata that  have no time-passage steps at all! 

The GTA model is not the most general model possible for timing-based 
computing. For example, it has no features for expressing liveness properties 
(except for admissibility). Liveness considerations are somewhat less important 
in the timed setting than they are in the untimed setting, since many liveness 
conditions (e.g., a condition saying that something eventually happens) can be 
replaced by corresponding upper time bound conditions (e.g., a condition saying 
that the event happens within time t). However, sometimes it is useful to be 
able to express both time bounds and livencss conditions for the same system. 

The GTA model is also not general enough to provide detailed descriptions 
of hybrid systems--systems composed of analog physical components as well as 
discrete computer components. However, the model is sufficient for our purposes 
in this book. 
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23.2.2 Transforming M M T  Automata  into General  T imed  
Automata  

We have spoken of the general timed automaton model as a generalization of the 

MMT timed automaton model. However, this is not formally true, because of 
the different ways in which they specify timing restrictions: the MMT automaton 

model uses boundmaps, while the GTA model encodes the restrictions into the 
states and transitions. In order to view the MMT model as a special case of 

the GTA model, we need to do some work. In this section, we show how to 
transform any MMT automaton (A, b) into a naturally corresponding general 
timed automaton A~= gen(A,  b). 

The construction is similar to the one used in Example 23.2.1 to obtain D~,j 
from Di,j. That is, it involves building time deadlines into the state and not 
allowing time to pass beyond those deadlines while they are still in force. We 

also add new constraints on non-time-passage actions to express the lower bound 
conditions. 

Specifically, the state of the underlying I /O automaton A is augmented with 

a now component, plus f irst(C) and last(C) components for each task C. The 

f irst(C) and last(C) components represent, respectively, the earliest and latest 
times at which the next action in task C is allowed to occur. The now, first, and 
last components all take on values that represent absolute times, not incremental 

times. The time-passage actions u(t) are also added. 

The first and last components get updated in the natural way by the various 
steps, according to the lower and upper bounds specified by the boundmap b. 
The time-passage actions u(t) have an explicit precondition saying that time 

cannot pass beyond any of the last(C) values; this is because these represent 
deadlines for the various tasks. Restrictions are also added on actions in any 

task C, saying that the current time now must be at least as great as the lower 

bound f irst(C).  
In more detail, the timed signature of A' = gen(A,b)  is the same as the 

signature of A, with the addition of the time-passage actions u(t), t C R +. Each 

state of A ~ consists of the following components: 

basic C states (A), initially a start state of A 
now C R >~ initially 0 
for each task C of A: 

first(C) C R >~ initially lower(C) if C is enabled in state basic, otherwise 0 
last(C) E R + U {o c}, initially upper(C) if C is enabled in basic, otherwise cx~ 

The transitions are defined as follows. 

If 7r E acts(A), then (s, 7r, s') E trans(A') exactly if all the following conditions hold: 
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1. (s.basic, 7r, s'.basic) E trans(A). 

2. s'. now - s. now. 

3. For each C C tasks ( A ) , 

(a) If 7r C C, then s.first(C) <_ s.now. 
(b) If C is enabled in both s.basic and s'.basic and 7r ~ C, then s.first(C) - 

s'.first(C) and s.last(C) - s'.last(C). 
(c) If C is enabled in s'.basic and either C is not enabled in s.basic or 7r C C, 

then s'.first(C) - s.now + lower(C) and s'.Iast(C) - s.now + upper(C). 

(d) If C is not enabled in s'.basic, then s'.first(C) - 0 and s'.last(C) - oc. 

If 7r - ~,(t), then (s, 7r, s') C trans(A') exactly if all the following conditions hold: 

1. s' . basic - s. basic. 

2. s'. now - s. now + t. 

3. For each C E tasks (A), 

(a) s'.now <_ s.last(C). 

(b) s'.first(C) - s.first(C) and s'.last(C) - s.last(C). 

T h e o r e m  2 3 . 4  I f  ( A , b )  is a n y  M M T  t i m e d  a u t o m a t o n ,  t h e n  g e n ( A , b )  is a 

g e n e r a l  t i m e d  a u t o m a t o n .  M o r e o v e r ,  a t t r a c e s ( A ,  b) - a t t r a c e s ( g e n ( A ,  b)).  

L e m m a  23 .5  T h e  f o l l o w i n g  ho ld  in  a n y  reachable  s ta te  o f  g e n ( A ,  b) a n d  f o r  a n y  

task  C o f  A .  

1. n o w  <_ l a s t ( C ) .  

2. I f  C is enabled,  t h e n  l a s t ( C )  < n o w  + u p p e r ( C ) .  

J. <_ + 

4. f i r s t ( C )  <_ l a s t ( C ) .  

Omit t ing  trivial components .  If some of the  t iming  requ i rements  specified 

by b are t r i v i a l - - t h a t  is, if some lower bounds  are 0 or some upper  bounds  are 

o o ~ t h e n  it is possible to simplify the a u t o m a t o n  g e n ( A ,  b) jus t  by omi t t i ng  

men t ion  of these componen t s .  We will do this  in our  examples .  

Example  23.2.4 Transformed M M T  a u t o m a t o n  

Let (A, b) be the  compos i t ion  M M T  a u t o m a t o n  descr ibed in Ex am p le  

23.1.4, composed  of P1, P2, and the  channel  D1,2. We give explicit  
code for the  t r ans fo rmed  M M T  a u t o m a t o n  A ' -  g e n ( A ,  b). As jus t  

discussed, we omit  t r ivial  bounds .  Thus,  the  only bounds  we need to 

incorpora te  are the uppe r  bounds  for all tasks,  plus the  lower b o u n d  
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for the decrementing task of P2. We use the following names for the 
tasks: send for the unique task of P1, rec for the unique task of the 
channel D1,2, and dec and t imeout  for the two tasks of P2. 

A ~ a u t o m a t o n :  

T i m e d  Signature: 

Input :  
none 

Ou tpu t :  

send(re)l,2, m E M 
receive(m) 1,2, m E M 
t imeout 

Internal :  
decrement 

Time-passage :  

~(t), t c R + 

States: 
status1 E {alive, dead}, ini t ial ly a r b i t r a r y  
queue, a F I F O  queue of e lements  of M,  ini t ial ly e m p t y  
count2 C H, ini t ia l ly k 
status2 E {active, done, disabled}, ini t ial ly active 

now C R >~ ini t ia l ly 0 
last(send) E R + U {cx~}, initially/~ if status = alive, otherwise  o~ 
last(rec) e R + U {oc}, ini t ial ly oc 
first(dec) E R ->~ ini t ia l ly t~l 
last(dec) e R + U { ~ } ,  ini t ia l ly t~2 
last( t imeout)  C R + t2 {oc}, ini t ial ly o~ 

Transitions: 

send(m)1,2 
Precondi t ion :  

status1 = alive 
Effect: 

add  m to queue 
last(send) :=  now + 
if ]queue] - 1 then 

last( rec) := now -}- d 

receive(m)1,2 
Precondi t ion :  

rn is first on queuc 
Effect: 

remove first e lement  of queue 
if status2 -- active then 

status2 :=  disabled 
if queue is n o n e m p t y  then 

last(rec) :=  now + d 
else last(rec):= ec 

first(dec) := 0 
last(dec) :=  ec 
last( t imeout)  :=  oc 
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dec remen t  t imeou t  
Precondition: Precondition: 

s t a t u s 2 -  act ive status2 - act ive  
count2 > 0 count2 - 0 
now > f i rs t  (dec) Effect" 

Effect: status2 " -  done 
count2 " -  count2 - 1 l a s t ( t imeou t )  := oc 
if count2 ~ 0 then 

f i r s t (dec)  " -  now  + ~1 v ( t )  
last(dec)  " -  now + ~2 Precondit ion: 

else now + t ~_ l a s t ( s end )  

f i r s t ( d e c ) ' -  0 now + t ~_ last ( rec ) 
l a s t ( d e c ) ' -  oc now + t ~_ las t (dec)  

last( t imeou t  ) " -  now  + ~ now + t ~_ last ( t imeou t  ) 
Effect" 

now : = n o w + t  

23.2.3 Operations 

C o m p o s i t i o n .  We define a composition operation for general t imed automata ,  
generalizing the composition operation we have already defined for MMT au- 
tomata.  First, we define a finite collection {Si}icI  of timed signatures to be 
compatible if for all i, j C I, i % j,  we have 

1. int(Si) A acts(Sj) = 0 

2. ( ) n out ( Sj ) = 0 

We say that  a collection of GTAs is compatible if their t imed signatures are 
compatible. 

The composition S - l-lie1 Si of a finite compatible collection of t imed sig- 
natures {Si}ieI  is defined to be the t imed signature with 

�9 o u t ( S )  - -  U i ~ I o u t ( S i )  

�9 i n t ( S )  = U i c i i n t ( S i )  

�9 i n ( S )  - U i ~ i i n ( S i )  - U i ~ i o u t ( S i )  

The composition A - I-[icI Ai of a finite compatible collection of GTAs 
( A i } i E I  is defined as follows: 2 

2The M notat ion in the definition of s t a r t ( A )  and s t a t e s ( A )  refers to the ordinary Cartesian 
product ,  while the 1-[ notat ion in the definition of s ig (A)  refers to the composit ion of t imed 
signatures just  defined. Also, we are here using the notat ion si to denote the i th component  
of the s tate  vector s. 
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�9 sig(A) = HicI  sig(Ai) 

�9 s tates(A)  = YIi~I s tates(Ai)  

�9 s tar t (A)  = I-Ii~I s tart (Ai)  

�9 trans(A)  is the set of triples (s, 7~, s') such that, for all i C I, if 7r C acts(Ai) ,  
! ! 

then (si, 7r, si) e trans(Ai);  otherwise s i -  s i 

The transit ions of the composit ion are obtained by allowing all the components 
that have a part icular action ~ in their signature to participate, simultaneously, 
in steps involving ~, while all the other components do nothing. Note that this 
implies that all the components participate in t ime-passage steps, with the same 
amount  of time passing for all of them. Again, we sometimes use the infix 
operation symbol • to denote composition. 

T h e o r e m  23.6 The composition of a compatible collection of general t imed au- 
tomata is a general t imed automaton.  

C o m p o s i t i o n  v e r s u s  gen.  For a given compatible collection of MMT au- 
tomata,  it turns out that it does not mat ter  whether we compose first and then 
apply the gen t ransformation to the composition, or first apply the gen transfor- 
mation to the components and then compose. The resulting GTAs are the same, 
up to isomorphism (of the reachable portions of the machines). 

Once again, we obtain projection and pasting theorems analogous to The- 
orems 8.1-8.3. Let {Bi}i~x be a compatible collection of GTAs and let B = 
1-[i~I Bi. For any t imed execution (~ = so, ~1 , s1 , . . .  of B, let (~]Bi be the se- 
quence obtained by deleting each pair ~ ,  s~ for which ~ is not an action of Bi, 
and replacing each remaining s~ by (s~)i, that is, automaton Ai's piece of the 
state s~. Also, for any t imed t race/3  of B (or, more generally, any sequence of 
actions paired with times), let/31Bi be the subsequence of/3 consisting of all the 
pairs containing actions of Bi. 

T h e o r e m  23.7  Let {B i} ic I  
tomata and let B = 1-[icI Bi. 

be a compatible collection of general t imed au- 

1. I f  ~ C atexecs ( B ) , then a ] Bi E atexecs ( Bi ) for every i E I. 

2. I f /3 c at traces(B),  then/31Bi E attraces (Bi) for  every i E I.  

P r o o f .  The proof is left as an exercise. D 
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The first pasting theorem, Theorem 23.8, has a small technicality that is a 
consequence of the fact that the GTA model allows consecutive time-passage 
steps to appear in an execution. Namely, the admissible timed execution a that 
is produced by "pasting together" individual admissible timed executions ai 
might not project to give exactly the original ai's, but rather admissible timed 
executions that are time-passage equivalent to the original ai's. 

T h e o r e m  23.8 Let {Bi}iEI be a compatible collection of general timed au- 
tomata and let B - l-IiEI Bi. Suppose ai is an admissible timed execution of 
Bi for every i E I, and suppose /3 is a sequence of (action, time) pairs, with 
all the actions in vis(B),  such that ~lBi = ttrace(c~i) for every i E I. Then 
there is an admissible timed execution a of B such that/3 = ttrace(a) and ai is 
time-passage equivalent to alBi for every i E I. 

Proof .  The proof is left as an exercise. D 

T h e o r e m  23.9 Let {Bi}iEI be a compatible collection of general timed au- 
tomata and let B - l l iEI Bi. Suppose /3 is a sequence of (action, time) pairs, 
where all the actions in/3 are in vis(A).  I f /3lBi E attraces(Bi) for every i E I, 
then/3 E attraces ( B ) . 

Proof .  The proof is left as an exercise. D 

Hid ing .  If A is a GTA and (I) c_ out(A),  then hider is the GTA that is 
identical to A, except that the actions in (I) are reclassified as internal. 

23.3 Propert ies  and Proof  Methods  

The correctness of timing-based algorithms and systems, as well as their 
performance, often depends critically on timing assumptions. Unlike in the 
asynchronous setting, drastic changes of behavior of timing-based algorithms 
can result from small changes in timing assumptions. However, reasoning about 
this timing-dependence can be extraordinarily difficult, even for extremely sim- 
ple "algorithms" such as those in the examples in this chapter. Systematic proof 
methods can be a great help in this setting. 

In this section, we describe two important proof techniques for timing-based 
algorithms: the method of invariant assertions and the method of simulation 
relations. Since these methods have been used so successfully in the synchronous 
and asynchronous settings, it is natural to try to adapt them for use in the 
timing-based setting. We also define a notion of timed trace property, analogous 
to the notion of trace property introduced in Section 8.5.2. 
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23.3 .1  Invar iant  A s s e r t i o n s  

We define an invariant assertion for a general timed automaton A to be any 

property that is true of all reachable states of A. 
This definition is formally the same as the one we used in the asynchronous 

setting. But there is a difference: In an asynchronous system, the state typically 
consists of ordinary data such as the values of local and shared variables and 

sequences of messages in transit  in channels. But in a timing-based system, the 

state typically also contains t iming information such as the current time and 
scheduled deadlines for future events. For example, if a message is in transit  

in a channel, the state may contain information giving the range of future times 

at which it might be delivered. This means that in the timed setting, invariant 

assertions may involve timing information in addition to ordinary data. 
Although the type of information included in the state is richer in the timed 

setting, the proof method for invariants is the same as before--induction. This 
time, the induction is on the number of steps in a timed execution leading to the 

state in question. 
Note that we present the method of invariant assertions in the context of 

general timed automata. If we want to use this method for an MMT automaton, 

we must first transform it into a GTA. 

E x a m p l e  23.3.1 I n v a r i a n t  for the t imeout  sys tem 

Consider the timeout system A ~ of Example 23.2.4, with the assump- 
tion that k~l > ~ + d. It would be nice to prove that the system only 

performs a t imeout in case the contained process P1 is actually dead. 
The following invariant assertion can be used to prove this. 

Assert ion 23.3.1 In any reachable state of A ~, if  status1 = 

alive, then count2 > O. 

Unfortunately, as usual, Assertion 23.3.1 cannot be proved alone by 
induction--auxiliary assertions are needed. In this case, we first 

prove the following (by a trivial induction). 

Assert ion 23.3.2  In any reachable state of A ~, if  status2 - 
done, then count2 = O. 

Then we prove the following strengthened version of Assertion 23.3.1, 
by a not-so-trivial induction. Notice that this assertion involves state- 

ments about the first and last time components of the state. 

Assert ion 23.3.3  In any reachable state of A ~, if statusl - 
alive, then the following are true: 

1. count2 > 0 
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2. Ei ther  last(send) + d < f irst(dec)  + (count2 - 1)~1, 
queue is nonempty ,  or status2 = disabled. 

3. I f  queue is nonempty ,  then either last(rec) < f i rs t (dec)+ 
( c o u n t 2 -  1)gl or status2 = disabled. 

Condition 1 is just  a res ta tement  of Assertion 23.3.1. Each of Con- 
ditions 2 and 3 uses the expression f i r s t ( d e c ) +  ( c o u n t 2 -  1)gl in 
an inequality. This expression describes the earliest t ime at which 
count2 might reach 0, assuming tha t  it is currently positive. Tha t  is, 
f irst(dec) is the earliest t ime for the next decrement, and there are 
c o u n t 2 -  1 addit ional  decrements required to get count2 down to 0, 
with ~1 &S the min imum time for each. Condit ion 2 says tha t  either 
a message is scheduled to be sent, in sufficient t ime to arrive before 
count2 reaches 0, or else a message is already in transit ,  or else one 
has already arrived (thus disabling the t imeout) .  Condit ion 3 says 
tha t  if a message is in transit ,  then either some message will arrive 
before the count2 reaches 0 or else one has already arrived. Thus, 
some claims about  the t iming of events are concisely formulated as 
invariants, using the f irst  and last deadline components  of the states. 

Assertion 23.3.3 can be proved by induction on the number  of 
actions in a t imed execution. The argument  is s traightforward (in 
fact, boring), but  we include it here because it provides a good model 
for other such proofs. 

Basis: Initially, count2 = k > 0, queue is empty, and f irst(dec) 
gl. These imply Conditions 1 and 3. Moreover, if status1 = alive, 
then last(send) = g. So 

last(send)  + d = g + d < k ~ l  - -  count2~l = f irst(dec)  + (count2 - 1)~1 

This shows Condition 2. 
Inductive step: As usual, we carry out a case analysis based on 

the different types of actions, only this time, the t ime-passage actions 
u(t) must  also be included in the analysis. Suppose tha t  (s, 7c, s') C 
t r a n s ( X )  and tha t  s satisfies the invariant. Assume tha t  s~.statusl 
alive; then also s .s ta tus l  = alive. 

1. 77 = send(re)l ,2 
�9 ,S t Then s. f irst(dec) - s ' . f irst(dec),  s count2 - .count2 and 

s.status2 - s~.status2. This step does not affect Condition 1 
and it makes Condit ion 2 true. We consider Condit ion 3. If 
s.queue is nonempty,  then s.last(rec) = s' . last(rec),  so Condi- 
tion 3 for s implies Condit ion 3 for s'. 
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So suppose that s .queue  is empty. Then by inductive hypothesis 
(Condition 2), either s . l a s t ( s e n d ) + d  < s . f i r s t ( d e c ) + ( s . c o u n t 2 -  

1)t~l or s .s ta tus2  - disabled. In the latter case we are done, so as- 
sume the former. Then s ' . las t (rec)  - s . n o w + d  < s . l a s t ( s e n d ) +  

d b y  Lemma 23.5, < s . f i r s t ( d e c ) + ( s . c o u n t 2 - 1 ) f l  - s ' . f i r s t (dec )+  

(s~.count2 - 1)t~l, which suffices. 

2. 7 r -  receive(m)1,2 

By inductive hypothesis, s .count2  > 0. This s tatement is unaf- 
fected by the step, so Condition 1 holds. Also, Assertion 23.3.2 
implies that s . s ta tus2  5r done.  Therefore, s~.status2 - disabled, 

which implies Conditions 2 and 3. 

3. 7 c -  t imeou t  

By inductive hypothesis, s .count2  > 0. So t imeou t  is not en- 
abled in s, which says that this case cannot arise. 

4. 7 ~ -  decremen t  

For Condition 1, we argue by contradiction. If s~.count2 - 

0, then s .count2  - 1, so by inductive hypothesis (Conditions 
2 and 3), either s . l a s t ( s e n d ) +  d < s . f i rs t (dec) ,  s . las t (rec)  < 

s . f i rs t (dec) ,  or s .s ta tus2  - disabled. By the precondition of 
decrement ,  the last of these is impossible. So we have that 

m i n ( s . l a s t ( s e n d ) , s . l a s t ( r e c ) )  < s . f i r s t (dec)  <_ s .now.  

But s . n o w  <_ s . l a s t ( s end )  and s . n o w  <_ s . las t (rec) ,  by Lemma 
23.5; thus, s . n o w  <_ rain ( s . l a s t ( s end ) ,  s . las t (rec) ) .  This is a 
contradiction. 

For Conditions 2 and 3, it is enough to show that the value 
of f i rs t (dec)  + (count2 - 1)~1 is not decreased by this step. 
This follows because the second term is decreased by exactly 
gl, while the first term is increased by at least gl. (This is 
because s . f i r s t (dec)  ~ s . now  and s ' . f i rs t (dec)  - s. now + ~1.) 

5. . ( t )  
This step does not affect any of the three conditions, because 
only now is changed, and now is not mentioned anywhere. 

23.3.2 T imed  Trace Propert ies  

Recall that many of the properties to be proved for asynchronous systems can be 
naturally formulated as properties of their traces or fair traces. It turns out that, 



760 23. M O D E L L I N G  V: P A R T I A L L Y  S Y N C H R O N O U S  M O D E L S  

analogously, many interesting properties of t imed systems can be formulated as 
properties of their admissible t imed traces. Propert ies  tha t  can be specified in 
this way include performance properties as well as ordinary correctness proper- 
ties. 

A timed trace property P is defined to consist of the following: 

�9 sig(P), a t imed signature containing no internal actions 

�9 ttraces(P), a set of sequences of (action,time) pairs; the t ime components  
in each sequence must  be monotone nondecreasing, and, if the sequence is 
infinite, they must  be unbounded 

We will usually interpret  the s ta tement  tha t  a GTA A satisfies a trace property 
P to mean tha t  i n ( A ) -  in(P) ,  o u t ( A ) -  out(P) and attraces(A) c_ ttraces(P). 

E x a m p l e  23 .3 .2  T i m e d  t r a c e  p r o p e r t y  

Let P be the t imed trace proper ty  defined as follows. The signature 
sig(P) is 

Input: Internal: 
receive(m)1,2, rn c M none 

Output: Time-passage: 
timeout ~,( t ) , t C R + 

The set ttraces(P) of t imed traces is exactly the set of sequences ,~ 
of (action,time) pairs tha t  satisfy the monotonici ty and boundedness 
conditions and are such that ,  

1. If there is a (timeout, t) pair in 3, then ]g~l __< t < ]g~2 -n t- g. 

2. If there is a tirneout pair in 3, then there is no preceding receive 
pair. 

3. If there is no receive pair in 3, then there is a timeout pair in 

Then gen(P2), where P2 is the MMT au tomaton  of Example  
23.1.2, satisfies the t imed trace property P,  in the sense tha t  
attraces(gen(P2) ) C ttraces(P). 

23.3.3 S imulat ions  

The simulation method can be used for reasoning about  t iming-based systems as 
well as synchronous and asynchronous systems. To do this, we define the notion 
of a "timed simulation relation" between states of two general t imed au tomata .  
The definition is very similar to the definition of a simulation relation for I /O  
au toma ta  in Section 8.5.5. 
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Let A and B be two general t imed au tomata  with the same input  and output  

actions. Suppose that  f is a binary relation over states(A) and states(B); we 
use the notat ion u E f ( s )  as an alternative way of writ ing (s, u) E f .  Then f is 
a timed simulation relation from A to B provided that  both of the following are 
true: 

1. If s E start(A),  then f (s) N start(B) # O. 

2. If s is a reachable state of A, u E f ( s )  is a reachable state of B, and 
(s, :r, s') E trans(A), then there is a t imed execution fragment  c~ star t ing 

with u and ending with some u ~ E f ( s ' ) ,  such that  

(a) ttrace(c~) = ttrace(s, 7c, s'). 

(b) The total  amount  of t ime-passage in c~ is the same as the total  amount  

of t ime-passage in (s, 7r, s'). 

Thus, the s tar t  condition is the same as for a simulation relation for I / O  automata .  
The step condition is a little d i f ferent - -now we require that  the correspondence 
preserve the t imed trace, that  is, the sequence of visible actions, each paired with 
its time of occurrence, plus the total  amount  of t ime-passage. Note that  in the 
step condition, 7r can be a t ime-passage action as well as a discrete action. If 7r 
is a visible action, then c~ must  consist of a 7r step, possibly with some preceding 
and /o r  following internal steps. If 7r is an internal action, then c~ must  consist 
of internal steps only. If 7r = L,(t), then c~ must  consist of t ime-passage steps 
interspersed with internal steps, with the total  amount  of t ime-passage equal 
to t. 

As before, since the states s and u in the step condition are assumed to be 
reachable, invariant assertions about  the states of A and B can be used in a 

proof that  f is a t imed simulation relation. 
The following theorem gives the key proper ty  of t imed simulation relations. 

T h e o r e m  23 .10  If  there is a timed simulation relation from A to B,  then 
attraces ( A ) C_ attraces ( B ) . 

P r o o f .  The proof is left as an exercise. D 

In the rest of this section, we give examples to show how t imed simulations 
can be used to prove propert ies of t imed systems. One interesting use of such 

simulations is to prove time bounds for systems with t iming assumptions.  This 
can be done by formalizing the t iming specification as a GTA, B, with last and 
first deadline components  expressing the required t iming behavior (upper and 
lower bounds,  respectively).  The implementat ion is also formalized as a GTA, 
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A, with last and first components representing the timing assumptions. The 
existence of a t imed simulation from A to B then implies that  A satisfies the 
timing requirements. 

Since simulations can be used in the t imed setting to prove timing properties, 
the simulation method is more powerful in the timed setting than it is in the 
asynchronous setting. In the asynchronous setting, we are often interested in 
liveness properties, whereas in the t imed setting, we are more often interested 
in time bounds. Formal proofs of liveness conditions often use extra machinery 
such as temporal  logic in addition to simulations, but time bounds can be proved 
just using simulations. 

E x a m p l e  23 .3 .3  S i m u l a t i o n  p r o o f  o f  t i m e  b o u n d s  for a t i m e o u t  pro-  
cess  

We show that  P2, the t imeout MMT automaton of Example 23.1.2, 
must perform a timeout within the interval [kgl, kg2 + ~], if no mes- 
sages are received. To simplify matters,  we define a variant A of/='2 
that  does not even have a receive action in its signature. The code 
for A is as follows. 

A automaton"  

Signature:  

Input" 
none 

Output" 
t imeout  

Internal: 
decrement  

States:  
count  E N, initially k 
status  E {act ive ,  done} ,  initially active 

Transit ions:  

decrement  
Precondition: 

status  = active 

count  > 0 
Effect: 

count  := c o u n t -  1 

Tasks and bounds:  
d e c -  ( d e c r e m e n t } ,  bounds [el, g2] 
t i m e o u t -  { t i m e o u t } ,  bounds [0, g] 

t imeout  
Precondition: 

status = active 
count  = 0 

Effect: 
status := done 
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T h e n  the  code for g e n ( A )  is as follows. 

g e n ( A )  a u t o m a t o n :  

T i m e d  Signature:  

Input: Internal: 
none decrement  

Output: Time-passage: 
t imeout  v(t), t E R + 

States:  
count  E N, initially k 
status  E {act ive,  done} ,  initially active 

now E R >-~ initially 0 
f irs t(dec)  E R >-~ initially t~l 
last(dec) E R + U  {c~}, initially t~2 
las t ( t imeout)  E R + U {oc}, initially cx~ 

Transit ions:  

decrement  t imeout  
Precondition: Precondition: 

status = active s tatus = active 
count  ~ 0 count = 0 
now >_ f irst  (dec) Effect" 

Effect: status := done 
count  := c o u n t -  1 last( t imeout )  " -  oc 
if count > 0 then 

f irs t (dec)  " -  now + e~ , ( t )  
last(dec) " -  now + ~2 Precondition: 

else now + t ~ last (dec) 

f i r s t ( d e c ) ' -  0 now + t ~ last( t imeout )  

last(dec) " -  oc Effect: 
last( t imeout  ) " -  now + ~ now " -  now + t 

A u t o m a t o n  A s imply  counts  down from k to 0 and  then  per forms  

a t i m e o u t .  Informally,  it is easy to see t h a t  a single t i m e o u t  occurs  

wi th in  the  c la imed t ime  interval  [kt~l, k~2 + g]. To prove this  formally,  

we express  these  t iming  r equ i r emen t s  using a t r iv ia l  high-level  GTA.  

This  G T A  is of the  form g e n ( B ) ,  where  B is the  following t r ivia l  

M M T  a u t o m a t o n .  
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B a u t o m a t o n :  

Signature:  

Input" Output: 
none timeout 

States:  
status C {active, done}, initially active 

Transit ions:  

timeout 
Precondition: 

status = active 
Effect: 

status := done 

Tasks and bounds:  
t imeout -  {timeout}, bounds [kfl, k~2 -~- 5] 

Now we produce a t imed simulation relation f from gen(A)  to 
g e n ( B ) ,  thereby showing tha t  A satisfies the t iming requirements.  If 
s and u are states of gen(A)  and g e n ( B ) ,  respectively, then we define 
(s, u) C f provided tha t  the following conditions hold: 

1. s. now -- u. now.  

2. s . s ta tus  = u . s ta tus .  

3. u. last ( t imeou t )  >_ 

s . las t (dec)  + ( s . coun t  - 1). t~2 + t~ if s . coun t  > 0, 

s. last ( t imeou t )  otherwise. 

4. u. f irs t  ( t imeou t  ) <_ 

s . f i rs t (dec)  + ( s . coun t  - 1)-~1 if 8.count  > 0, 

s. f i rs t  ( t imeou t  ) otherwise. 

The relationships involving the now and s tatus  values are straight- 
forward. The interesting relationships involve the last and f irst  dead- 
lines. The u . l a s t ( t i m e o u t )  value (in g e n ( B ) )  is constrained to be at 
least as large as a certain quant i ty  tha t  is calculated in terms of the 
state (including deadline components)  of gcn(A) .  This quant i ty  is a 
calculated upper  bound on the last t ime when a t imcou t  action might 
be performed by gen(A) .  There are two cases: If count  > 0, then this 
t ime is bounded by the last t ime at which the first decremen t  can 
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occur, plus the addit ional  time required to do c o u n t -  1 addit ional  
decrement steps followed by a t imeout step; since each of these count 
steps can take at most  time ~2 and the t imeout can take at most  
time g, this addit ional  time is at most  (count - 1) �9 t~2 + g. On the 
other hand, if c o u n t -  0, then this time is bounded by the last time 
at which the tirneout can occur. The inequality expresses the fact 
that  this calculated bound on the actual  time until t imeout is at most  

equal to the upper  bound to be proved. 

The interpretat ion of the f irs t( t imeout)  inequality is s y m m e t r i c ~  
the values of f irs t( t imeout)  should be no larger than a calculated 
lower bound on the earliest time until a t imeout action is performed 
by gen( A ) . 

In order to prove that  f is a t imed simulation, we first prove an 
easy invariant.  

A s s e r t i o n  23 .3 .4  In any reachable state of gen(A),  if  count > 
O, then status = active. 

Then the proof proceeds in the usual way for simulations, verify- 
ing the s tar t  condition and the step condition. The inequalities are 
t rea ted  in just  the same manner  as any other type of relation between 
the states. As in Example  23.3.1, we include some details as a model 
for other such proofs; the rest of the details are left for an exercise. 

For the s tar t  condition, let s and u be the unique s tar t  states 
of gen(A) and gen(B),  respectively. We must show that  u E f ( s ) .  
Conditions 1 and 2 of the definition of f are immediate.  Consider 
Condit ion 3. The definition of gen(B)  implies that  u. las t ( t imeout)  = 
kg2 + g, and the definition of gen(A) implies that  s.count > 0 and 

s.last(dec) + (s.count - 1) .  g2 + g = t~2 + (k - 1)g2 + g = kg2 + ~. 
Therefore, u. las t ( t imeout)  = s.last(dec) + ( s . c o u n t -  1). t~2 + t~, which 

shows Condit ion 3. Condit ion 4 is analogous to Condition 3. 

For the step condition, we suppose that  (s, :r, s') E t rans(gen(A)) ,  
s is reachable, and u is a reachable state in f ( s ) .  We consider cases 
based on types of actions, including t ime-passage actions. 

For example,  consider the case where 7r = decrement. By the 
precondit ion of decrement, s .count > 0. The fact that  u E f ( s )  
means that  s .now = u.now; s.status = u.status; u . las t ( t imeout)  >_ 
s.last ( dec) + ( s . c o u n t -  1).t~2+t~; and u.first( t imeout)  <_ s.first( dec) + 
( s . c o u n t -  1).  t~l. It suffices to show that  u E f ( s ' ) .  

Conditions 1 and 2 carry over immediately. Suppose that  s~.count 
> 0. For Condition 3, note that  the left side of the inequality, 
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last(t imeout),  is not changed by this step, while the right side is not 
increased. This latter property is true because last(dec) is increased 
by at most g2, while the second term decreases by exactly g2 and the 
third term is unchanged. (The reason why last(dec) is increased by at 
most g2 is that  s.now < s.last(dec) and s'.last(dec) - s .now + g2.) 
This means that  the inequality still holds after the step. Similar 
arguments can be made for Condition 4 and for the case where 
s ~. count - O. 

Other arguments in the same style can be made for the other 
types of actions. For the case where 7c - timeout, the interesting 
thing to show is that  the precondition f irst( t imeout)  <_ now is sat- 
isfied in state u. This inequality holds because the precondition of 
7r in gen(A) implies that  s . f irs t( t imeout)  <_ s.now - u.now, and 
Condition 4 implies that  u. f irs t( t imeout)  <_ s . f irst( t imeout) .  

For the case where 7c is a time-passage action, the interesting 
thing to show is the precondition u~.now <_ u. last( t imeout) .  This in- 
equality holds because the precondition of 7r in gen(A) implies that  
u' .now - s ' .now < min (s . las t (dec) ,s . las t ( t imeout) ) ,  and Condition 
3 implies that  min (s.last(dec), s . last( t imeout))  <_ u. last( t imeout) .  
Time-passage steps do not change anything mentioned in the defini- 
tion of f except for now, so it is easy to see that  they preserve all 
the relationships in f.  

Since f is a timed simulation, Theorem 23.10 implies that  
attraces(gen(A))  c_ at traces(gen(B)) ,  and then Theorem 23.4 im- 
plies that  attraces(A) c_ attraces(B).  This says that  A satisfies the 
timing requirements. 

Of course, there are other ways to prove time bounds for timing- 
based systems besides using timed simulations. For example, oper- 
ational arguments based on the invariants in Exercise 23.13 can be 
used to prove the upper bound of kg2 + g on the time until a t imeout 
O c c u r s .  

E x a m p l e  2 3 . 3 . 4  T w o - t a s k  race  

We outline a simulation proof that  g + g2 + Lg is an upper bound 
on the time until the Race automaton of Example 23.1.3 performs 
a report output. Now the specification is gen(B~), where B t is an 
MMT automaton similar to the specification automaton B of Exam- 
ple 23.3.3. 
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B ~ a u t o m a t o n :  

Signature:  

Input:  Output" 
none report 

States:  
reported, a Boolean, initially false 

Trans i t ions :  

report 
Precondition: 

reported = false 
Effect: 

reported := true 

Tasks  and bounds:  
r e p o r t -  {report} ,  bounds [0, g + t~2 + Le] 

Intuitively, the reason that  t~ + t~2 + Lt~ is a correct upper  bound is as 
follows. With in  time g, the int task sets the flag to true. During this 
time, the largest value that  count could reach is ~1" Then  it takes 

time at most  ~t~2 - Lt~ for the main task to decrement  count to 0, 
and then an addit ional  time at most  f2 to perform a report. 

Now we define a t imed simulation relation g from gen(Race) to 
gen(B') .  If s and u are states of gen(Race) and gen(B') ,  respectively, 
then we define (s, u) C g provided that  the following conditions hold: 

1. 8. n o w  --  u .  n o w .  

2. s. reported = u. reported. 

3. u. last (report) > 

s . last( int)  + (s.count + 2)g2 + L(s . las t ( in t )  - s . f i rs t (main))  

if s.flag - false and s . f i rs t (main)  < s. last(int) .  

s . las t (main)  + (s.count)g2 

otherwise. 

The idea of the third condition is as follows. If flag = true, then 
the time remaining until report is just  the time for the main task to 
do the remaining decrement steps, followed by the final report. The 
same reasoning holds if flag is still false, but must  become true before 
there is t ime for another  increment  to occur, that  is, if s . f i rs t (main)  > 
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s.last(int). Otherwise, s.flag = false and s.first(main) < s.last(int), 
which means that  there is time for at least one more increment to 
occur. Then the first case of the inequality for last(report) applies. 

In this case, after the set, it might take as long as time (count + 
1)g2 for the main task to count down from the current count and then 
to report. But the current count could be increased before the set by 
some additional increment events. The largest number of these that  
might occur is 1 § [ las t ( in t ) -  first(main)]/gl. Multiplying this by 
g2 gives the extra time required to decrement this additional count. 

The proof that  g is a t imed simulation relation follows the same 
general outline as the proof in Example 23.3.3. We leave this as an 
exercise. 

23.4 Modelling Shared Memory and Network 
Systems 

We close this chapter by indicating how partially synchronous shared memory 
systems and partially synchronous network systems can be modelled using MMT 
automata  and GTAs. These models will be used in Chapters 24 and 25. 

2 3 . 4 . 1  S h a r e d  Memory Systems 

We model a partially synchrononous shared memory system as an MMT au- 
tomaton (A,b). Here, we assume that  I /O automaton A is an asynchronous 
shared memory system, according to the definitions in Chapter 9; the only new 
constraint is that  A has only finitely many tasks. The boundmap b adds time 
bounds for each task. 

Most of the time, we will assume that  each process has only one task and 
that  the boundmap assigns a lower bound of ~1 and an upper bound of t~2 to 
each task, where 0 < gl ~ ~2 ~ OO. In this case, we will write L = g2/gl; aS 
before, L is a measure of the timing uncertainty in the system. 

2 3 . 4 . 2  Networks 

In the partially synchronous setting, we will only consider send/receive networks, 
not broadcast or multicast networks. We assume an underlying directed graph 
G = (V, E). We model a partially synchronous send/receive network system as 
a collection of process automata,  one for each vertex, plus a collection of channel 
automata ,  one for each edge. 
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The process automaton associated with each vertex i is an MMT automaton 
Pi. Pi has input and output actions by which it communicates with the external 
users, plus outputs of the form send(m)i,j, where m is a message and j is an 
outgoing neighbor, and inputs of the form receive(m)j,i, where j is an incoming 
neighbor. To model process stopping failures, we include a stopi input action. 
The effect of this action is to permanently disable all tasks of Pi. We will usually 
assume that each process Pi has time bounds of ~1 and t~2 for each of its (finitely 
many) tasks, where 0 < ~1 _~ ~2 % OO. 

The channel automaton associated with each directed edge (i, j)  is a GTA 
Ci,j. Its "visible interface" consists of inputs of the form send(m)i,j and outputs 
of the form receive(m)i,j. Restrictions on the external behavior of a channel are 
expressed by a timed trace property P; the channels defined by P are those 
GTAs whose visible actions are the same as those of P and whose admissible 
timed traces are in ttraces(P). There are two common cases: 

1. Each Ci,j is the GTA D~,j with the appropriate timed signature described 
in Example 23.2.1, that is, a reliable FIFO channel with an upper bound 
of d on the delivery of the oldest message. 

2. Each Ci,j is the GTA D~j with the appropriate timed signature described 
in Example 23.2.2, that is, a reliable FIFO channel with an upper bound 
of d on the delivery of every message. 

Again, we will write L = ~2/~1 and use L as a measure of the timing uncertainty 
in the system. 

23.5 Bibliographic Notes 

The MMT timed automaton model was designed by Merritt, Modugno, and 
Tuttle [227]. Their model is somewhat more general than the one we use in 
this book, in that they allow eventual upper bounds as well as real-valued upper 
bounds. The variant of the model we use here is close to the one defined by 
Lynch and Attiya [215]. The two-task race example was suggested by Pnueli 
[243] as a test case for proof methods for timing-based systems. 

The general timed automaton model is based on the timed automaton model 
of Lynch and Vaandrager [210, 212, 211]; it is similar to the timed automaton 
model of Alur and Dill [9]. Issues involving the existence of admissible timed 
executions are studied by Gawlick, Segala, Sogaard-Andersen, and Lynch [136]. 
The transformation from MMT automata to general timed automata was devel- 
oped by Lynch and Attiya [215]. The operations for GTAs are derived from [212]; 
that paper describes many other operations on GTAs besides composition and 
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hiding, including sequential composition and various forms of choice, interrupt, 
and timeout. 

Invariants that  include time deadlines have been used by Tel [275], Lewis 
[194], Shankar [259], Abadi and Lamport [1], Lynch [204], and others. The 
simulation method of proving timing properties was first used by Lynch and 
Attiya [215]. The simulation proofs of time bounds in Examples 23.3.3 and 
23.3.4 are derived from [215], as well as from the survey papers [204, 205]. Other 
types of simulations for GTAs are defined by Lynch and Vaandrager [210, 211]. 

Other timed simulation proofs have been carried out by Sogaard-Andersen, 
Lampson, and Lynch [264, 190], Heitmeyer and Lynch [148], and Luchangco 
[201]. Some preliminary work has been carried out by Luchangco, S6ylemez, 
Garland, and Lynch, in using the assistance of an automatic theorem-prover in 
checking and carrying out timed simulation proofs [202]. This work uses the 
Larch Prover [134]. 

23.6  E x e r c i s e s  

23.1. Let (A, b) be any MMT automaton and let c~ be any finite timed execution 
of (A, b). Prove the following: 

(b) 

(c) 

There is an (admissible) timed execution of (A, b) that  starts with c~. 

Let 3 be any finite sequence of input actions paired with times, in 
which the times are nondecreasing and at least as great as the largest 
time occurring in c~. Then there is an (admissible) timed execution c~' 
of (A, b) such that  c~ ~ starts with c~ and such that 3 is the subsequence 
of inputs and associated times occurring in c~ ~ after a. 

Let /3 be any infinite sequence of input actions paired with times, 
in which the times are nondecreasing and unbounded and at least as 
great as the largest time occurring in c~. Then there is an (admissible) 
timed execution c~' of (A, b) such that c~' starts with a and such that  
/3 is the subsequence of inputs and associated times occurring in c~ ~ 
after c~. 

23.2. Suppose that the definition of an MMT automaton were weakened to allow 
countably many tasks instead of only finitely many. Show that there exists 
an automaton (A, b) satisfying this new definition that  has no (admissible) 
timed executions. 

23.3. Describe carefully the behavior of the composed MMT automaton in Ex- 
ample 23.1.4, in the case where kgl _< ~ + d. 
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23.4. Prove Theorems 23.1, 23.2, and 23.3. 

23.5. Consider a t ime-bounded variant of the A synchBellmanFord algori thm of 
Section 15.4, in which 

�9 Each process automaton is the MMT automaton consisting of the 
given I /O  automaton and bounds [gl,t~2] for each task, where 0 < 

t~x < t~2 < oc. 

�9 Each channel is the appropriate MMT automaton Di,j, from Example 
23.1.1. 

Analyze the communication and time complexity of the resulting algorithm. 

23.6. Prove that the GTA D~,j in Example 23.2.1 and the MMT automaton Di,j 
in Example 23.1.1 have the same sets of admissible t imed traces. 

23.7. Prove that there is no MMT automaton with the same set of admissible 
t imed traces as the GTA D~',j in Example 23.2.2. 

23.8. Give precondition-effect code for a GTA A with the following behavior. In 
any admissible t imed execution, A performs exactly two outputs,  a and b, 
in that order, both by time 1. Moreover, A should, in various admissible 
t imed executions, allow for a and b to occur at any time, subject to the 
given limitations. Prove that there is no MMT automaton with the same 
set of admissible t imed traces as A. 

23.9. Give explicit precondition-effect code for the t ransformed automaton 
gen(Race), where Race is the MMT automaton defined in Example 23.1.3. 
The style of your code should be similar to the code in Example 23.2.4. 

23.10. Prove Theorems 23.7, 23.8, and 23.9. 

23.11. Show that the simpler restatement of Theorem 23.8, asserting that ai = 
alBi rather than just  that they are t ime-passage equivalent, is false. 

23.12. Prove Theorem 23.10. 

23.13. Prove the following mult ipart  invariant of the system A' of Example 23.2.4. 
If status1 = dead, then 

(a) queue is empty. 

(b) status2 r disabled. 

(c) If count2 > 0, then last(dec)+ (count2 - 1)t~2 < kt~2. 
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(d) If count2 = O, then last(timeout) < kg2 + g. 

23.14. Prove Lemma 11.3, the time bound for the RightLeftDP algorithm, using 
the simulation method of Section 23.3.3. 

23.15. Fill in the details of the proof that f is a timed simulation relation, from 
Example 23.3.3. 

23.16. Prove that the relation g defined in Example 23.3.4 is a timed simulation 
relation. 



Chapter  24 

Mutual  Excl 
Synchrony 

USlOn with Partial 

In this chapter, we visit the mutual exclusion problem for the third time, this 
time in the partially synchronous shared memory setting. We present only very 
basic results: simple timing-based algorithms and their analysis, and simple 
impossibility results. 

24.1 T h e  P r o b l e m  

The setting is very much the same as in Chapter 10--a  shared memory system 
with n ports, interacting with users U1, . . .  , U~. The external interface, consist- 
ing of tryi, crit~, exit~, and rem~ actions, is exactly the same as before. This 
time, however, the users and the shared memory system are modelled as MMT 
automata, as defined in Section 23.1, rather than as I /O automata. Figure 10.4 
can still be used to represent the architecture we consider in this chapter. 

As before, each user Ui is required to preserve well-formedness. We allow 
arbitrary timing constraints for the users. Formally, each MMT automaton Ui is 
of the form (Ai, bi), where Ai is any I /O automaton that was allowed in Section 
10.2 and that has only finitely many tasks, and bi is an arbitrary boundmap. 
Included among the allowable boundmaps is the trivial boundmap giving trivial 
lower bounds of 0 and trivial upper bounds of ~ .  

The rest of the system consists of a single MMT automaton B = (A,b) 
representing the shared memory system. The underlying I /O automaton A is of 
the form we considered in Chapter 10 for solving the mutual exclusion problem in 
the asynchronous shared memory model. In particular, it consists of n processes, 
one per port. We assume throughout this chapter that each process has just one 
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task. The boundmap  b assigns a lower bound of t~l and an upper  bound of g~ 

to each task, where 0 < ~1 _~ ~2 < OO. As before, we write L = g2/t~l; L is a 
measure of the timing uncertainty in the system. 

We make three other restr ict ions in this chapter.  First ,  we restr ict  process 
activity in the same way that  we did in Chapter  10: the single task of each 

process i in the shared memory  system can only be enabled when Ui is in the 
t rying or exit region. Second, we assume that  the single task of process i is 
in fact always enabled when Ui is in the t rying or exit region. (However, we 
allow the possibili ty that  the only action enabled might  be a dummy action that  
causes no state changes.) Third,  we only consider shared memory  systems with 
r ead /wr i t e  shared variables. 

The correctness conditions we require are much the same as in Chapter  10. 
Resta t ing them for t imed automata ,  we have 

W e l l - f o r m e d n e s s :  In any t imed execution of the combined system, and for any 
i, the subsequence describing the interaction between Ui and B = (A, b) is 
well-formed for i. 

M u t u a l  e x c l u s i o n :  There  is no reachable system state in which more than one 
user is in the critical region C. 

P r o g r e s s :  At any point in an admissible timed execution, 1 

1. (Progress for the t rying region) If at least one user is in T and no 
user is in C, then at some later point some user enters C. 

2. (Progress for the exit region) If at least one user is in E,  then at some 
later point some user enters R. 

We say that  B solves the mutual exclusion problem provided that  it solves it (i.e., 
guarantees  well-formedness, mutual  exclusion, and progress) for every collection 
of users. These correctness conditions could alternatively be formulated in terms 
of a t imed trace proper ty  P ,  as defined in Section 23.3.2. 

24.2 A Single-Register Algorithm 

In this section, we present  a part ial ly synchronous mutual  exclusion algori thm, 
the FischerME algorithm, that  uses only a single r ead /wr i t e  register. This simple 

algori thm already demonst ra tes  that  the part ial ly synchronous model is very dif- 
ferent from the asynchronous model, because, as we showed in Theorem 10.33, 

XAs in Section 23.1, this is defined to mean that time passes normally and that processing 
does not stop if there is more work to be done. 
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any asynchronous read/wri te  shared memory mutual exclusion algorithm re- 
quires at least n shared registers. 

The starting point for the algorithm is the following incorrect asynchronous 
algorithm. 

Incorrec tF i scherME algorithm (informal): 
The algorithm uses a single read/wri te  shared variable turn, writable and 
readable by all processes. Each process i that wants to obtain the resource 
repeatedly tests turn until it finds the value equal to 0. After it finds 
turn = 0, process i sets turn equal to its own index i. Then it checks 
that turn is still equal to i. If so, process i proceeds to the critical region; 
otherwise, it goes back to the beginning, testing for turn = 0. When a 
process i exits, it resets turn to 0. 

aS 

In the style used for shared memory programs in Chapter 10, this is written 

Incorrec tF i scherME algorithm (formal)" 

S h a r e d  var iables :  
t u r n  C {0, 1 , . . .  , n}, initially 0, wri table and readable by all processes 

P r o c e s s  i: 

L . 

** Remainder  region ** 

t ry  i 

if t u r n  ~ 0 then goto L 
t u r n  "-- i 

if t u r n  ~ i then goto L 
cr i t i  

** Crit ical  region ** 

exi t i  

t u r n  "= 0 

r emi  

The IncorrectFischerME algorithm is incorrect in that it fails to guarantee 
mutual exclusion. (We know that it must be incorrect, because otherwise it 
would violate Theorem 10.33.) 
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1 2 

test  turn = 0 

set  turn : = 1 

check  turn = 1 

crit  

, test  turn = 0 

set  turn : = 2 

check  turn = 2 

crit  

F i g u r e  24.1" Bad execution of the IncorrectFischerME algorithm. 

E x a m p l e  24.2 .1  B a d  e x e c u t i o n  of  I n c o r r e c t F i s c h e r M E  

Consider an execution in which two processes, say 1 and 2, both 
test t u r n  and find t u r n  = 0. Next, process 1 sets t u r n  := 1 and 
immediately checks and finds t u r n  = 1. Then process 2 sets t u r n  := 2 
and immediately checks and finds t u rn  = 2. Then both processes 1 
and 2 proceed to the critical region. This execution is il lustrated in 
Figure 24.1. 

In order to avoid this bad interleaving of events, we can add a simple timing 

restriction. Namely, any process i that sets t u r n  := i can delay its check of 
t u r n  for longer than time g2, the assumed upper bound on process step time. 
All other steps proceed at the normal rate, with some time in the interval [gl, g2] 
between successive steps of the same process. This restriction prevents the bad 
interleaving in Figure 24.1 as follows: Any process i that sets t u r n  := i is made 
to wait long enough before checking to ensure that any other process j that 
tested t u r n  before i set t u r n  (and therefore might subsequently set t u r n  to its 
own index) has already set t u r n  to its index. That  is, there will be no processes 
left at the point of setting turn ,  when i finally checks. 

Here is the precondition-effect code. In this code, we assume that a l and 
a2 are two positive reals with g2 < a l <_ a2. Note that this code has two 
tasks for each process i, the main i  task with bounds [gl, g2] and the checki task 
with bounds [al,a2]. This is technically not permit ted by the model, which 
only allows one task per process, with bounds [gl, g2]. However, we could easily 
modify this algorithm by inserting a number k - 1 of explicit delay steps before 
any check, where kgl > g2, and putting all the actions of each process in one task 
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w i t h  b o u n d s  [~1, ~2]. T h e  r e s u l t i n g  v e r s i o n  of  t he  a l g o r i t h m  " b e h a v e s  l ike" t h e  

F i s c h e r M E  a l g o r i t h m  w i t h  a l  - ks a n d  a2 - kt~2. W e  o m i t  t h e  f o r m a l  de t a i l s .  

F i s c h e r M E  a l g o r i t h m :  

S h a r e d  var iables :  
turn  C {0, 1 , . . .  , n}, initially 0 

A c t i o n s  o f  i: 
Input: Internal: 

try~ testi 

exit~ seti 

Output: checki 
crit~ reseti 

remi 

S t a t e s  o f  i: 
pc C {rein,  test ,  set ,  check, leave-try,  crit ,  reset,  leave-exi t} ,  initially rein 

T r a n s i t i o n s  o f  i: 

tryi crit~ 
Effect: Precondition: 

pc := test  pc = leave-try  

Effect: 
test~ pc := crit  

Precondition: 
pc = test  exit~ 

Effect: Effect: 
if turn  = 0 then pc := set pc := reset  

seti reseti 
Precondition: Precondition: 

pc = set  pc = reset 

Effect: Effect: 
turn  := i turn  := 0 
pc := check pc := leave-exi t  

checki remi 
Precondition: Precondition: 

pc = check pc = leave-exit  
Effect: Effect: 

if turn  = i then pc := leave- try  pc := rem 

else pc := test  



778 24. M U T U A L  E X C L U S I O N  W I T H  P A R T I A L  S Y N C H R O N Y  

Tasks and b o u n d s :  
maini = {testi, seti, criti, reseti, remi}, bounds [gl, g2] 
check~ = {check~}, bounds [al,a2] 

T h e o r e m  24.1 The FischerME algorithm with ~2 < al solves the mutual ex- 
clusion problem. 

Proof .  We consider the FischerME algorithm together with any collection of 
users. Well-formedness is easy to see. For the mutual exclusion property, we 
wish to prove the following invariant of the combined system (algorithm plus 
users). 

A s s e r t i o n  24.2.1 In any reachable state, there do not exist i and 
j ,  i ~ j ,  such that pci - -  p c j  - -  crit. 

As usual, proving this assertion by induction requires auxiliary invariants. Now, 
however, we need auxiliary invariants that involve time information as well as 
ordinary program variables. 

Therefore, we transform the system into a general timed automaton (GTA), 
as described in Section 23.2.2. This transformation encodes all timing con- 
straints into the states and transitions of the system rather than expressing 
them as "external" restrictions on timed executions. In particular, the state 
includes components first(chccki) and last(main~), representing the first time 
that the next checki action might occur and the last time that the next ac- 
tion in main~ might occur, respectively. We consider Assertion 24.2.1 and the 
other assertions below as properties of the state of the GTA obtained by this 
transformation. 

The key claim, which can be proved by induction, is the following. It says 
that the earliest future time a successful checki can happen is after the setj of 
any other process j that has already passed the test testy. This lemma is used 
to rule out the bad interleaving in Example 24.2.1. 

A s s e r t i o n  24.2.2 In any reachable state, if pci - check, t u r n -  i, 
and pcj = set, then first(checki) > las t (mainj) .  

Assertion 24.2.2 can be proved by a simple induction on the number of steps 
in a timed execution leading to the state in question. Here, the steps include 
time-passage steps as well as ordinary input, output, and internal steps. See 
Example 23.3.1 for a model of how such proofs proceed. For Assertion 24.2.2, 
the interesting arguments are those involving steps of the form (s, 7r, s ~) where 
7r is either ase t i  or a successful testy, j ~ i. (Here, the indices i and j are the 
ones that appear in the assertion.) 
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1. 7r = seti .  

In this case, s~. f i rs t (checki)  - s . n o w  + al. Also, if s ~.pcj - set ,  then 
s~ . l a s t (ma in j )  <_ s . n o w  + t~2, by Lemma 23.5. Since t~2 < al,  the inequality 
follows. 

2. 7r = tes t j  and s . t u r n  = 0 (i.e., the test is successful). 
In this case, s~. turn - 0, making the statement true vacuously. 

Assertion 24.2.2 can be used to prove the following assertion. This one says 
that if a process i is in the critical region (or just before it or just after it), then 
t u rn  = i and no other process can be about to set turn.  Note that, unlike Asser- 
tion 24.2.2, Assertion 24.2.3 does not mention any timing information. However, 
timing information is used in its inductive proof. 

A s s e r t i o n  24.2.3 In  any  reachable state,  i f  pci C { leave- t ry ,  crit ,  rese t } ,  

then  turn  = i and, f o r  all j ,  pcj ~ set .  

The proof is again by induction. Now the interesting arguments are those 
involving steps (s, 7r, s'), where 7r is either a successful checki, a setj  or resetj ,  

j r i, or a successful test j ,  j r i. 

1. 7r = checki and s . t u r n  = i (i.e., the check is successful). 
Then s t. t u rn  - i. Suppose that there is some j such that s ~.pcj - set .  Then 
also s .pcj  - set .  Then Assertion 24.2.2 implies that s . f i r s t ( check i )  > 

s . l a s t ( m a i n j ) .  But Lemma 23.5 says that s . n o w  < s . l a s t ( m a i n j ) ,  so 
s . f i r s t ( check i )  > s . n o w .  This contradicts the timing constraints of the 
GTA. It follows that there is no j such that s ~.pcj - set.  

2. 7r = se t j ,  j r i. 

Suppose that s~.pci C { leave- t ry ,  crit ,  rese t} .  Then s .pc i E { leave- t ry ,  crit ,  

rese t} .  Then the inductive hypothesis implies that there is no j such that 
s .pcj  - set .  But then 7r cannot be enabled in s, a contradiction. 

3. 7r = rese t j ,  j r i. 

Suppose that sl.PCi E { leave- t ry ,  crit ,  rese t} .  Then s .pc i C { leave- t ry ,  crit ,  

rese t} ,  and the inductive hypothesis implies that s . t u r n  = i. But also, 
the fact that ~r is enabled in s implies that s .pcj  - reset ,  so the inductive 
hypothesis implies that s . t u r n  = j .  This is a contradiction. 

4. 7r = tes t j ,  j 7/= i, and s . t u r n  = 0 (i.e., the test is successful). 
Then the inductive hypothesis implies that s .pc i ~ { leave- t ry ,  crit ,  rese t} ,  

s o  sl.PCi ~ { leave- t ry ,  cri t ,  rese t} ,  which implies that the condition is true 
vacuously. 
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The mutual exclusion property, Assertion 24.2.1, then follows immediately 
from Assertion 24.2.3. 

Finally, we consider the progress condition. For this, it is useful to have one 
more invariant, this one proved by an easy induction. 

A s s e r t i o n  24.2.4  In any reachable state, if  turn - i, then pci E 
{ check, leave-try, crit, reset}. 

Using Assertion 24.2.4, we can argue progress operationally along the lines 
of the proof of Lemma 10.4, the progress lemma for the DijkstraME algorithm. 
That is, consider an admissible timed execution a that reaches a point where 
there is at least one user in T and no user in C and suppose for the sake of 
contradiction that, after this point, no user ever enters C. Then we can show 
that eventually in a, no further region changes occur, every process is in T or 
R, and some process is in T. Then we can argue (using Assertion 24.2.4) that 
eventually turn acquires the index of a contender (i.e., a process in T). Then, 
subsequently, turn must always be equal to some contender's index, although 
it may change to the index of different contenders. However, eventually turn 
stabilizes to a final (contender's) index, say i. Again using Assertion 24.2.4, we 
argue that, subsequently, process i enters C. 

This completes the proof of Theorem 24.1. D 

Now we consider the time complexity of FischerME. 

T h e o r e m  24.2 In any timed ezecution of the FischerME algorithm, 

1. The time from any point when some process i is in the trying region until 
some process is in the critical region is at most 2a2 + 5~2. 

2. The time from any point when any process i is in the exit region until 
process i is in the remainder region is at most 2~2. 

P r o o f .  The bound for the exit region is straightforward. For the trying region 
bound, we could use an operational argument, but for variety, we give a proof 
using a timed simulation, as described in Section 23.3.3. Notice that the proof of 
progress for FischerME (in the proof of Theorem 24.1) is based on the execution 
reaching certain "milestones"--for example, the "seizing" of the turn variable 
by some contender and the "stabilizing" of the turn variable to some particular 
contender's index. We incorporate these milestones, together with their time 
bounds, into an "abstract mutual exclusion algorithm" B. We then show the 
time bounds for FischerME using a simulation from FischerME to B. The 
strategy is the same as in Section 23.3.3. 

The abstract algorithm B is the following MMT automaton. 
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B a u t o m a t o n :  

Signa tu re :  

Input: 
tryi,  l <_ i <_ n 
exiti, 1 <_ i <_ n 

Output: 
criti ,  1 <_ i <_ n 
re mi ,  l < i ~ n 

Internal: 
seize 
stabilize 

States:  
status,  an element of {s tar t ,  seized,  s tab} ,  initially s tar t  
for every i, 1 < i _< n" 

regioni,  an element of { R , T ,  C , E } ,  initially R 

Trans i t ions :  
tryi 

Effect" 
regioni " -  T 

seize 
Precondition: 

3i, regioni -- T 
Vi, regioni ~ C 

s ta tus  = s tar t  
Effect: 

s ta tus  := seized 

stabilize 
Precondition: 

s ta tus  = seized 
Effect: 

s ta tus  := stab 

Tasks  and bounds:  
s e i z e - -  { se i ze} ,  bounds [0, a2 + 3g~] 
stab - { s tab i l i ze} ,  bounds [0, gz] 
c r i t -  {cr i t i  " 1 <_ i <_ n} ,  bounds [0, as + gz] 
for every i, 1 _< i _< n: 

rem~ = {rem~} ,  1 <_ i <_ n, bounds [0,292] 

criti 
Precondition: 

regioni = T 
s ta tus  = stab 

Effect: 
regioni := C 
s ta tus  := s tar t  

exiti 
Effect" 

regioni := E 

r e m i  

Precondition: 
region i - E 

Effect" 
regioni := R 

A l g o r i t h m  B is v e r y  a b s t r a c t - - i t  j u s t  e x p r e s s e s  the  w e l l - f o r m e d n e s s  a n d  m u -  

t u a l  e x c l u s i o n  c o n d i t i o n s ,  p lus  the  g loba l  m i l e s t o n e s  in the  t r y i n g  r e g i o n  ( w i t h  
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t ime bounds) ,  plus the t ime bounds  for individual  processes  in the exit region. 

Since the bounds  for the miles tones  add up to the t ime bound  of [2a2 + 5t~2] that  

we want  to prove for the t ry ing  region, it is not  hard  to see that  B solves the 

mutua l  exclusion problem and has the required t ime bounds.  We now present  

a t imed s imulat ion f f rom the F i s c h e r M E  sys tem (a lgor i thm plus users) to the 

B sys tem (with the same users).  Since f is a t imed  simulat ion,  this implies (in 

view of Theorem 23.10) tha t  the F i s c h e r M E  a lgor i thm also observes the required  

bounds.  

Define (s, u) C f if the following hold. (We assume that  all unbound  uses of 

process  indices are implici t ly universal ly  quantif ied.)  

1. s. now = u. now . 

2. All user states are identical in s and u. 

3. u. region i 

R if s.pc i - rein, 

_ T if s.pc i E { tes t ,  set ,  check,  leave- try} ,  

C if s.pc i crit ,  

E if s.pc i E {rese t ,  leave-exi t} .  

s tar t  

4. u . s t a t u s -  seized 

stab 

if s . t u r n  = 0 or 3i : s.pc i E {cr i t ,  rese t} ,  

if s . t u r n  7s 0, fli: s.pc i C {cr i t ,  rese t} ,  and 3i: s.pc~ 

if s . t u r n  r 0 and ~ i :  s.pc~ C {cr i t ,  reset ,  se t} .  

5. u . l a s t ( se i ze )  > s . l a s t (ma in~)  + a2 + 262 if s.pc~ 

6. u . l a s t ( s e i z e )  >_ m i n i { g ( i ) }  if s . t u r n  = 0, where 

= reset.  

= set,  

s . l a s t ( check i )  + 2t~2 if s.pci - check,  

g( i)  - s . l a s t ( m a i n i )  + 62 if s.pc i - test ,  

s . l a s t ( m a i n i )  if s.pc i - set ,  

ec otherwise. 

7. u . la s t ( s tab )  >_ s . l a s t (ma in~)  if s.pc i = set.  

8. u. last ( crit  ) >_ { 
s . l a s t ( check i )  + 62 

s . l a s t ( m a i n i )  

9. u . l a s t ( r e m i )  > ~ s . l a s t ( m a i n i )  + 62 
- I. s . l a s t ( m a i n i )  

if s.pc i = check A s . t u r n  = i, 

if s.pc i = leave-try.  

if s.pc i = reset ,  

if s.pc i = leave-exit .  

The n o w ,  user, and region correspondences  are all s t ra ight forward .  The s t a t u s  

correspondence  gives the na tura l  definit ion of the s t a t u s  of the compet i t ion  in the 

F i s c h e r M E  algori thm: If t u r n  = 0 or some process is in (or jus t  after) the critical 

region, then the compet i t ion  has s ta tus  s t a r t .  If t u r n  is equal  to the index of a 

compet ing  process  (i.e., is non-zero and is not  equal  to the index of a process 

tha t  is in or jus t  after the critical region) and if some process is still able to 
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modify turn, then the competition has status seized. If turn is equal to the index 
of a competitor and no process is still able to set turn, then the competition has 
status stab. 

The first inequality for last(seize) says that if some process is about to reset, 

then the time until the turn variable is seized is at most an additional a2 + 2t~2 
after the reset occurs. The second inequality for seize says that if turn = 0 

(which implies that no process is at crit or reset), then the time until the turn 
variable is seized is determined by the minimum of a set of possible times, each 
corresponding to some candidate process that might set turn. For instance, if 
pci = s e t - - t ha t  is, if process i is about to set t u rn - - then  the corresponding time 
is just the latest time at which it can take its next step; however, if pci = t e s t - -  
that is, if process i is about to test the variable-- then the corresponding time 
is an additional t~2 after the test occurs. The interpretations for the remaining 
inequalities are similar. 

Then it is not hard to show that f is a timed simulation relation; the argument 
follows the style of those in Examples 23.3.3 and 23.3.4. Assertions 24.2.3 and 
24.2.4 are used in this proof; Assertion 24.2.3 is used in the set, crit, and reset 

cases, while Assertion 24.2.4 is used in the time-passage case. In this simulation, 
each external step of the FischerME system simulates a corresponding external 
step of the B system. A set step that changes turn from 0 to a process index 
simulates seize, and a set step that leaves no other processes at set simulates 
stabilize. A set step that satisfies both of these conditions simulates both seize 
and stabilize (in that order). Each other step simulates a trivial t imed execution 
fragment with no actions. We leave the details for an exercise. 

It follows from Theorem 23.10 that the admissible timed traces of the Fis- 

cherME system are included among those of the B system. This implies the 
needed time bounds. [--1 

When the FischerME algorithm is modified to fit our model, including k -  1 
explicit delay steps as we discussed just before the code, where ]g~l ) ~2, the time 
bound for the trying region is 2kt~2 + 592. Choosing k to be as small as possible, 
that is, k = [LJ + 1, where L = g2/~l ,  yields a time bound of 2Lg2 + 0 (s 

S t r e t c h i n g .  The time bound of 2Lg2+O (g2) illustrates how timing uncertainty 
can "stretch" the time complexity of an algorithm. If L = 1, that is, if t~l = 
t~2, then there is no timing uncertainty in the system. In this case, the time 
bound is just O (t~2)--it depends only on the upper bound t~2 on the real time 
between each process's steps. But if L is not equal to 1, the time bound increases 
accordingly. In fact, the real time t~2 in the time bound is multiplied by the timing 
uncertainty L. 
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The term of Lg2 arises in the FischerME algorithm as follows. In order to 
be sure that  a certain amount of real time, say t, has elapsed, a process counts 
its own steps. It must count enough steps so that  even if the steps take the 
smallest amount of time possible, gl, real time t must have elapsed; thus, the 
number of steps must be at least t /gl.  But these steps could in fact take the 
largest amount of time possible, t~2, for a total real time of at least (t/gl)g2 = Lt. 

Roughly speaking, it requires real t ime Lt for processes in a system with 
timing uncertainty L to be sure that  real time t has elapsed. In this sense, 
the time complexity is "stretched" by a factor equal to the timing uncertainty. 
This stretching phenomenon has already appeared in the t imeout example in 
Example 23.1.4. There, the inequality k~l ~ ~ + d was required for the t imeout 
to work correct ly-- the t imeout process essentially checks that  real time greater 
than g + d has elapsed. But then a timeout might occur as late as time kg2 + g > 
L(e + d) + e. 

M i x i n g  t i m e  b o u n d s  a n d  fa i rness .  We can consider a variant of the Fis- 
cherME algorithm in which the only time constraints are a lower bound on the 
time from when a check action is enabled until it occurs, and an upper bound 
on the time for a set action. Any enabled, locally controlled action other than a 
check action is just required to occur eventually. It is not hard to see that  this 
variant still solves the mutual  exclusion problem. This variant cannot be rep- 
resented using the MMT model as we have presented it in this book; rather, it 
requires a version of the model allowing time bounds for some tasks and fairness 
conditions for others. Of course, no time bounds can be proved for this version 
of the algorithm. 

24.3 Resi l ience to Timing  Failures 

The correctness of the FischerME algorithm depends critically on timing re- 
strictions. Even its most basic correctness condition, mutual  exclusion, can fail 
to hold in a t imed execution in which the important  timing const ra in ts- - the  
lower bound of al for check steps and the upper bound of g2 for set steps 
are violated. It would be nice to improve this algorithm so that  at least the 
mutual  exclusion condition is always satisfied, no mat ter  what happens to the 
timing. As a general design principle, it is desirable for timing-based algorithms 
to guarantee their most crucial safety properties, regardless of t iming variations. 

One idea for improving the FischerME algorithm in this way is to replace 
its critical region by the trying, critical, and exit regions of a second algorithm 
S. Algorithm S should always guarantee the mutual  exclusion condition for its 
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critical region, regardless of the timing of its steps. However, S should also not 
impede the progress of the FischerME algorithm when the timing constraints 
are satisfied. We could let S be any asynchronous algorithm that solves the 
mutual exclusion problem (satisfying the well-formedness, mutual exclusion, and 
progress conditions), but, unfortunately, Theorem 10.33 implies that such an 
algorithm would require at least n shared registers. Fortunately, we do not need 
such a strong progress condition for S; instead, we can use the following weaker 
progress condition. 

l - c o n c u r r e n t  p r o g r e s s :  In any admissible timed execution in which there is 
never more than one user outside of R at once, 

1. (l-concurrent progress for the trying region) If Ui is in T, then at 
some later point it enters C. 

2. (l-concurrent progress for the exit region) If Ui is in E, then at some 
later point it enters R. 

Here, of course, the users and regions are those of the second algorithm S. 
An example of an asynchronous algorithm S with the needed conditions fol- 

lows. Note that this algorithm uses only two shared registers. 

S: 

S h a r e d  v a r i a b l e s :  
x, a process index, initially arbi t rary,  writable and readable by all processes 
y E {0, 1}, initially 0, wri table and readable by all processes 

P r o c e s s  i: 

** Remainder  region ** 

M: 
try i 
x : = i  
if y # 0 then goto M 
y : - i  
if x =/= i then goto M 
criti 

** Crit ical  region ** 

exiti 
y ' - - O  
remi 
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Theorem 24.3 Asynchronous shared memory algorithm S guarantees the well- 
formedness, mutual exclusion, and l-concurrent-progress conditions. 

P r o o f .  Left for an exercise. It is similar to many of the other proofs of mutual 
exclusion algorithms in this book. D 

The combination of the FischerME algorithm and S can be described by the 
following code. 

FischerS  algorithm: 

S h a r e d  var iables :  
t u r n  C {0, 1 , . . .  , n}, initially 0, writable and readable by all processes 
x, a process index, initially arbitrary, writable and readable by all processes 
y C {0, 1}, initially 0, writable and readable by all processes 

P r o c e s s  i: 

L: 

M: 

** Remainder  region ** 

t r y  i 

if t u r n  ~ 0 then goto L 
t u r n  " -  i 

if t u r n  ~ i then goto L 

x : - i  

if y =/= 0 then goto M 
y : = l  
if x =/- i then goto M 
cr i t i  

** Critical region ** 

ex i t i  

y : = 0  

t u r n  "-- 0 

r e m i  

The FischerS code can be regarded as denoting either an asynchronous algo- 
r i thm or a partially synchronous algorithm. When it denotes an asynchronous 
algorithm, we assume fairness conditions for all processes. We obtain 
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T h e o r e m  24.4 The FischerS algorithm, regarded as an asynchronous algo- 
rithm, guarantees the well-formedness and mutual exclusion conditions. 

P r o o f .  Well-formedness is easy, and mutual exclusion follows from the fact, 
claimed in Theorem 24.3, that S guarantees mutual exclusion. [-1 

We leave the determination of progress properties of FischerS for the exercises. 
On the other hand, when the FischerS code denotes a partially synchronous 

algorithm, we assume as for FischerME that there are two tasks for each process 
i, one with bounds [al, a2] and the other with bounds [t~x, f2], where ~2 < al. The 
first task includes only the step where process i checks the value of turn, and the 
second task includes everything else. 

T h e o r e m  24.5 The FischerS algorithm, regarded as a partially synchronous al- 
gorithm, solves the mutual exclusion problem, that is, it guarantees well-formed- 
hess, mutual exclusion, and progress. 

P r o o f .  The well-formedness and mutual exclusion conditions follow from The- 
orem 24.4. The progress condition for the exit region is easy. We argue the 
progress condition for the trying region. In this argument, R, T, C, and E de- 
note the regions of the FischerS algorithm. We also define the FischerME trying 
region to be the portion of T prior to label M, and define the S trying region 
to be the rest of T. Likewise, we define the S exit region to be the portion of 
E before the assignment y := 0 and the FischerME exit region to be the rest of 
E. We also define the FischerME critical region to be the combination of the S 
trying region, C, and the S exit region. 

Suppose that at some point in an admissible timed execution, at least one 
user is in T and no user is in C. If at any subsequent point, some process is 
in the S trying region, then (using the fact that FischerME guarantees mutual 
exclusion) the 1-concurrent-progress condition for S implies that eventually some 
process enters C, as needed. 

On the other hand, assume that no process ever subsequently reaches the 
S trying region. Then the 1-concurrent-progress condition for S implies that 
eventually the S exit region becomes empty. This means that the FischerME 
critical region is empty, so the progress condition for the FischerME algorithm 
implies that eventually some process enters the FischerME critical region. But 
this means it enters the S trying region, which is a contradiction. W1 
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24.4 Impossibility Results 

We finish this chapter with two impossibility results. The first is a lower bound 
on the time required to solve the mutual exclusion problem in the partially syn- 
chronous model. The second is an impossibility result for the case where time 
bounds are required to hold eventually. 

2 4 . 4 . 1  A L o w e r  B o u n d  o n  t h e  T i m e  

The FischerME algorithm solves the mutual exclusion problem in the partially 
synchronous shared memory model and achieves a worst-case time bound of 
2L~2 + O (t~2) for progress in the trying region. It is possible to improve this to 
obtain a time bound of Lg2 + O (g2). (We leave this improvement for an exercise.) 
But is it possible to do better? That is, does there exist a faster algorithm that 
solves the mutual exclusion problem in this model, still using only a constant 
number of variables? We give a simple result for the special case of one variable; 
the statement is closely related to that of Theorem 10.34. 

T h e o r e m  24.6 There is no algorithm in the partially synchronous read/write 
shared memory model that solves the mutual exclusion problem for two processes 
using only one read/write shared variable, and that has an upper bound of L~2 
on the time for progress in the trying region. 

The proof of Theorem 24.6 uses an interesting argument involving "stretch- 
ing" and "shrinking" timed executions, while still observing the timing con- 
straints. It is based closely on the proof of Theorem 10.34. 

P r o o f .  Suppose for the sake of contradiction that there is such an algorithm, 
A, using a single shared register x. We construct a timed execution of A that 
violates mutual exclusion. 

Consider an admissible timed execution O~ 1 of A in which process 1 runs 
alone, taking steps at the slowest possible ra te - - tha t  is, with time ~2 between 
its successive steps. By the time bound assumption, process 1 must reach C by 
time Lg2 in a l .  As in the arguments in Section 10.8, process 1 must write to the 
shared variable before entering C. Let a2 be the prefix of O~1 ending just before 
process 1 writes to x for the first time. 

Similarly, consider a slow admissible timed execution a3 involving process 
2 alone, starting from the same start state as a l, in which process 2 reaches C 
by time Lg2. Let a4 be the prefix of a3 ending when process 2 enters C. Let 
a5 be an alternative finite timed execution of A that is just like O~4 except that 
everything is sped up ("shrunk") by a factor of L = t~2/~l. Then in a5, process 
2 enters C by time g2. 
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The counterexample t imed execution c~ begins with c~2, thus bringing process 

1 to the point of writing x. At this point, we allow process 1 to pause. Now 

we allow process 2 to take steps, executing as in the fast t imed execution a5. 
(Since process 1 does not write to x in c~2, process 2 cannot tell that process 1 is 
active and so can execute as if it were alone.) Thus, within time g2 after process 

2 begins operating, it reaches C. We allow process 1 to pause for time exactly 

t~2, which is enough time to allow process 2 to reach C. Next, we resume process 
1, allowing it to continue as in a l .  The first thing it does is write x, thereby 

overwriting anything process 2 might have writ ten there on its way to C. This 
eliminates all evidence of process 2's execution, thus allowing process 1 to run 

just  as it does in a l ,  eventually reaching C. But this puts both processes in C 

simultaneously, which contradicts the mutual exclusion requirement. [::] 

It is possible to extend the lower bound in Theorem 24.6 to cases where there 

are more shared variables, but the results that are currently known for these 

cases are not very tight. The methods of Section 10.8 yield some partial  results. 

24.4.2 Imposs ib i l i ty  Resul t  for Eventual  Time Bounds*  

The FischerS algorithm solves the mutual exclusion problem (including the prog- 
ress condition) if it runs partially synchronously, and it guarantees at least the 

mutual exclusion property if it runs asynchronously. Is it possible to guaran- 

tee progress under weaker conditions, for example, if the algorithm runs asyn- 
chronously for a while, but eventually starts to satisfy its timing constraints? It 

is not hard to see that the FischerS algorithm does not make this guarantee; we 

leave this for an exercise. We show that in fact no algorithm does so. 

T h e o r e m  24 .7  There is no asynchronous algorithm A for n > 2 processes that 

does all of the following: 

1. Guarantees well-formedness and mutual exclusion when run asynchronously 

2. Guarantees progress when run in such a way that each process's step bounds 
are eventually in the range [gl, ~2] 2 

3. Uses fewer than n shared read/write registers 

P r o o f  S k e t c h .  The proof follows that of Theorem 10.33 very closely. In par- 
ticular, the main lemma is analogous to Lemma 10.37--i t  asserts the existence 

2Formally, we would define an eventually timed execution of an MMT automaton and state 
this condition in terms of eventually timed executions. We omit the formal treatment. 
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of a k-reachable system state in which k distinct variables are "covered" by k 
processes. No timing restrictions appear in the statement of this lemma. 

The main lemma is proved by induction using the same construction as in 
the proof of Lemma 10.37. The only difference is that wherever the earlier proof 
used the general progress condition, we must now make do with the weaker 
"eventually time-bounded" progress condition. Now, whenever we want to force 
processes to make progress, we simply begin running them in such a way that 
their timing constraints are satisfied from that point on. 

There is one slightly tricky aspect of the construction: When we splice the 
computation of process k § 1 into the main computation involving processes 
1 , . . .  , k, we must "shrink" the computation of k + 1 to fit it in before the other 
processes take their next steps, and then must allow process k § 1 to pause 
sufficiently long to allow the other processes to finish their computation. These 
timing adjustments may cause timing constraints to be violated. But that is not 
a problem--the lemma does not require that the execution constructed satisfy 
any particular timing constraints. K1 

24.5 Bibliographic Notes  

The FischerME algorithm was designed by Fischer [116]. This algorithm has 
been used recently as a test case for demonstrating the power of formal methods 
for reasoning about timing-based systems. The proof that FischerME satisfies 
the mutual exclusion property is derived from proofs by Abadi and Lamport  
[1] and Luchangco [201]. The proof of the time bound for FischerME is due to 
Luchangco and Lynch [201, 204, 205]. Proof of an improved time bound also 
appears in [201]. All the proofs for the FischerME algorithm have been checked 
by computer using the Larch theorem prover [202]. A sketch of a time bound 
proof for the DijkstraME algorithm appears in [204]. 

The FischerS algorithm is due to Lynch and Shavit [209], as are the impos- 
sibility results in Section 24.4. Alur and Taubenfeld [10] have obtained partially 
synchronous mutual exclusion algorithms with good time complexity in the face 
of a limited number of concurrent requests; their model and measure are some- 
what different from the one used here. Attiya and Lynch [25] have some upper 
and lower bound results for the time complexity of mutual exclusion in partially 
synchronous networks. Their problem is different from the one considered here 
in that the system is not given explicit notification of when critical regions are 
completed. 
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24.6 E x e r c i s e s  

24.1. Prove Assertion 24.2.4. 

24.2. Fill in the details of the operational proof of progress for Theorem 24.1. 

24.3. Show that the FischerME algorithm permits a process to be locked out. 

24.4. Does the IncorrectFischerME algorithm satisfy the progress condition? 
Give a proof or a counterexample. 

24.5. Fill in the details of the simulation argument in the proof of Theorem 24.2. 

24.6. Prove an improved time bound of 2a2 + 5s -- a l  for the FischerME algo- 
rithm. 

24.7. Describe a timed execution of the FischerME algorithm that takes as long 
a time as possible from when some process is in T until some process is in 

C. How does the coeffecient of 2 before the a2 arise? 

24.8. Devise an alternative mutual exclusion algorithm for the partially syn- 
chronous shared memory model, using one read/wri te  shared variable. 

This one should have a time bound that is of the form Lg2 + 0 (g2), without 

the coefficient of 2 before the Lg2 term. 

24.9. Let P be an MMT automaton with no input actions and only the single 

output action a. Suppose that P has only a single task, with associated 

bounds [gl,g2], where 0 < gl < g2 < oc, and that this task is always 
enabled. Suppose that, in every admissible timed execution, P performs 

exactly one output of a, at a real time that is greater than or equal to d. 
Prove that there is some admissible timed execution of P in which a is 

output at a real time greater than or equal to Ld, where L = g2/gl. 

24.10. Reconsider the DijkstraME algorithm of Section 10.3. Prove a time bound 
of (3n + 11)g for the time from when some process is in the trying region 
until some process is in the critical region, assuming that g is an upper 
bound on process step time. Do this by regarding this algorithm as an 
MMT automaton and using a timed simulation similar to the one in the 

proof of Theorem 24.2. 

24.11. Prove Theorem 24.3. (Hint: Let I1 be the set of processes i such that x = i 
and i is about to set y. Le t /2  be the set of processes i such that x = i and 
i is about to test x. Let /3 be the set of processes that are either in, just 
before, or just after C. The following invariants may be useful: 
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(a) Ill U/2 U/31 ~ 1. 

(b) If I/2 U/31 > 0, then y = 1. 

(c) If all processes are in R, then y = 0.) 

24.12. Show that algorithm S does not guarantee progress (in the presence of 
concurrent requests). Do this by giving an explicit execution in which the 
progress condition is violated. 

24.13. Does the FischerS algorithm, regarded as an asynchronous algorithm, sat- 
isfy the l-concurrent-progress condition? Prove or give a counterexample. 

24.14. Give an explicit execution of the FischerS algorithm regarded as an asyn- 
chronous algorithm, in which the progress condition is violated. 

24.15. Give another algorithm that has all the correctness properties we claimed 
for the FischerS algorithm (i.e., it guarantees well-formedness and mutual 
exclusion when run asynchronously and progress when run partially syn- 
chronously), but that only uses two read/wri te  shared variables instead of 
three. 

24.16. Prove that there is no algorithm that has all the correctness properties 
we claimed for the FischerS algorithm but that only uses one read/wri te  
shared variable instead of three. 

24.17. Research Question: Consider the k-concurrent-progress condition, defined 
in Exercise 10.32. Design an algorithm that satisfies the well-formedness, 
mutual exclusion, and k-concurrent-progress conditions when run asyn- 
chronously and also satisfies the progress condition when run partially 
synchronously. Try to minimize the number of shared registers. 

24.18. Research Question: Design a timing-based algorithm that solves the mu- 
tual exclusion problem (guaranteeing well-formedness, mutual exclusion, 
and progress). Moreover, it should satisfy all of the following time bound 
requirements: 

(a) The worst-case time from when some user is in T until some user is 
in C is O (Lg2). 

(b) The worst-case time from when some user i is in T and all other users 
are in R until either user i enters C or some other user enters T is 
o 

(c) The worst-case time from when any user is in E until that user reaches 

R is O (g2). 
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Also try to generalize your result by designing another algorithm for the 
same problem, but this time generalizing the second requirement to one 
that asserts a good upper bound for progress in the trying region, in the 
case where there are at most k users concurrently outside of R. (Here, k 
is fixed, 1 _< k _< n.) 

24.19. Obtain a lower bound on the time for progress in the trying region in 
the partially synchronous model, for the case of two shared read/wr i te  
variables. (Hint: Consider the proofs in Section 10.8. The lower bound 
will be of the form cL~2, where c is a small constant.) 

24.20. Research Question: For every k, 1 _< k _< n, obtain tight upper and lower 
bounds on the worst-case time for progress, for mutual  exclusion algo- 
r i thms in the partially synchronous read/wr i te  shared memory model with 
k shared variables. 

24.21. Give a part icular execution that demonstrates  that the FischerS algori thm 
does not satisfy the requirements listed in the statement of Theorem 24.7. 

24.22. Give a more detailed proof of Theorem 24.7. 

24.23. Consider the solvability of the mutual  exclusion problem in the unknown 
time bound model. In this model, we assume lower and upper time bounds 
~1 and t~2 on process step times, but these bounds are "unknown" to the 
processes. (That is, they can be different in different executions, though 
each execution observes fixed bounds throughout.)  

Prove an analogue to Theorem 24.7 for the unknown time bound model. 

24.24. Research Question: Develop a theory of partially synchronous algorithms 
for more general resource-allocation problems. 
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Chapter 25 

Consensus 
Synchrony 

with Partial 

In this, the final chapter, we visit consensus problems for the fourth time, this 
time in the partially synchronous network setting. We consider only stopping 
failures. It turns out that the results for consensus in the partially synchronous 
setting are quite different from those in either the synchronous or asynchronous 
setting. We first present a basic algorithm and a basic lower bound, both derived 
from corresponding results for the synchronous setting; there is a gap in time 
complexity between these two results, based on the timing uncertainty. Then 
we give a more difficult algorithm and a more difficult lower bound result that 
mostly close this gap. We finish with some results for weaker timing models and 
a look ahead to some possible future work. 

25.1 T h e  P r o b l e m  

We define the agreement problem in much the same way as we did in Sections 12.1 
and 21.2. Namely, the external interface of the system A consists of init(v)i input 
actions and decide(v)i output  actions, where 1 <_ i _< n and v E V, plus stopi 
input actions. Each user U~ has init(v)i outputs and decide(v)i inputs, v E V. 
Now Ui is an MMT automaton that performs at most one initi action in any 
timed execution. 

A sequence of initi and decidei actions is well-formed for i provided that it 
is some prefix of a sequence of the form init(v)~, decide(w)i. We consider the 
following conditions on the combined system consisting of A and the users Ui" 

Wel l - formedness :  In any timed execution of the combined system, and for any 
port i, the interactions between Ui and A are well-formed for i. 
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A g r e e m e n t "  In any timed execution, all decision values are identical. 

Va l id i t y :  In any timed execution, if all init actions that occur contain the same 
value v, then v is the only possible decision value. 

Failure-free t e r m i n a t i o n :  In any admissible failure-free t imed execution in 
which init events occur on all ports, a decide event occurs on each port. 

f - f a i l u r e  t e r m i n a t i o n ,  0 _< f _< n" In any admissible t imed execution in 
which init events occur on all ports, if there are stop events on at most f 
ports, then a decide event occurs on every non-failing port. 

Wait-free termination is defined to be the special case of f-fai lure termination 

where f = n. 
We assume that A is a partially synchronous send/receive network system, 

as described in Section 23.4.2. Each process Pi is an MMT automaton with time 

bounds of ~1 and t~2 for each of its (finitely many) tasks, where 0 < ~1 _~ ~2 % CX~; 
let L - t~2/t~l. The processes are subject to stopping failures. Channels are 
assumed to be of the second type defined in Section 23.4.2, that is, reliable FIFO 
channels with an upper bound of d on the delivery time for every message. 

We say that A solves the agreement problem if it guarantees well-formedness, 
agreement, validity, and failure-free termination for every collection of users. We 
consider algorithms that guarantee f-failure termination for various values of 
f .  The question we consider is how much time it takes after the arrival of all 
inputs for all nonfaulty processes to decide. We focus here on the role of L, the 
uncertainty parameter,  in this time complexity. 

Throughout  this chapter, we consider a special case of the problem. Namely, 
we assume that V = {0, 1} and that the network graph is completely connected. 
We assume that ~1 and g2 are much smaller than d, in fact, we assume that even 
rig2 and L/~2 are small relative to d. 

We need one more technical assumption: each process task of a non-failed 
process is always enabled (though the only action of the task that is enabled 
might be a dummy action that causes no state changes). This assumption allows 
us to consider simple patterns of step times in our lower bound proofs. 

25.2  A Fai lure  D e t e c t o r  

A useful building block for the algorithms in this chapter is a "perfect failure 
detector" F.  We defined failure detectors for the asynchronous setting in Sec- 
tion 21.4. Recall that a failure detector has stopi actions as inputs and inform- 
stopped(j)i actions as outputs,  j ~= i. An inform-stopped(j)i action is intended 
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as an announcement,  at location i, that process j has stopped. A perfect fail- 
ure detector is guaranteed to report only failures that have actually happened 
and to eventually report all such failures to all other non-failed processes. The 
only difference here from Section 21.4 is that we no longer assume that a failure 
detector is an I /O automaton but, rather, that it is a general timed automaton 
(GTA). 

We give a partially synchronous network system (in the model assumed in 
this chapter) that implements a perfect failure detector. The idea is similar to 
that used in the timeout MMT automaton of Example 23.1.2. 

P S y n c h F D  a l g o r i t h m :  

Each process Pi continually sends messages to all the other processes Pj, 
using one task per process. If a process P/ performs a sufficiently large 
number m of steps without receiving a message from Pj, it records that Pj 
has stopped and outputs inform-stopped(j)i. 

The number m of steps is taken to be the smallest integer that is strictly 
greater than (d + g2)/gl + 1. 

T h e o r e m  25.1 PSynchFD is a perfect failure detector. 

P r o o f .  It should be obvious that all failures are eventually detected by all other 
non-failed processes. We must argue that only actual failures are detected. So 
suppose that Pi outputs inform-stopped(j)i. Then prior to this, Pi performs more 
than (d + g2)/gl + 1 steps without receiving a message from Pj. This implies 
that time strictly greater than d + g2 passes without Pi receiving any messages 
from Pj. But since the time between Pi's successive sends to Pj is at most g2, 
and each message takes at most time d to arrive, the time between successive 
receive events must be at most d + g2. Thus, it must be that Pj has stopped. [-7 

We will also need two timing properties of PSynchFD. The first says that 
a failure notification can only occur after more than time d has elapsed since a 
failure. The second provides an upper bound on the time until failure notification 
occurs. 

T h e o r e m  25.2  

1. In any timed execution of PSynchFD containing both a stopj event and an 
inform-stopped(j)i event, the time from the stopj event until the inform- 
stopped(j)i event is strictly greater than d. 

2. In any admissible timed execution of PSynchFD in which a stopj event 
occurs, within time Ld+ d+ 0 (Lg2) after the stopj event, either an inform- 
stopped(j)i event or a stopi event occurs. 
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P r o o f .  

o 

. 

As in the proof of Theorem 25.1, at the point when the inform-stopped(j)~ 
occurs, no message has been received by Pi from Pj for some amount  of 
time a > d + g2. Suppose that the inform-stopped(j)i event occurs at time 

t. Then no message from Pj arrives at Pi in the time interval ( t -  a, t). 
Then it must be that no message is sent by Pj to Pi during the time interval 

( t -  a, t -  a + g2], for otherwise it would arrive at Pi in the time interval 

(t - a, t - a § g2 § d], which is included in the interval (t - a, t). But this 
means that Pj must stop by time t - a + g2 < t - d, as needed. 

Consider an admissible timed execution of PSynchFD in which a stopj 
occurs, say at time t. Then no message is sent from Pj to Pi after time t, 

so no message is received by Pi from Pj after time t + d. After receiving 

the last message, the time for Pi to count m steps is at most rag2. Since 

m is just  greater than (d + g2)/gl + 1, rag2 = Ld + 0 (Lg2). So if Pi does 
not fail in the meantime, the total time from stopj to inform-stopped(j)~ is 

Ld + d + 0 (Lg2), as needed. 

[5] 

Par t  1 of Theorem 25.2 has an important  consequence. It implies that when 
any process Pi times out another process Pj, it knows that all messages that 
were sent by Pj prior to its failure have already arrived at their destinations. 

Since we are assuming that Lg2 is small relative to d, we can think of the 

time bound for failure notification as approximately Ld + d. 

25.3  B a s i c  R e s u l t s  

We begin by considering what we know about the agreement problem from re- 

sults in earlier chapters and at tempting to extend the results to the partially 
synchronous setting. The main relevant results turn out to be the matching 

upper and lower bounds of f + 1 rounds, for agreement with f failures, in the 
synchronous model. These appear in Sections 6.2 and 6.7, respectively. 

25.3.1 Upper Bound 

Section 6.2 contains several algorithms that solve the agreement problem in the 

synchronous network model with stopping failures. Most of the algorithms that 
tolerate f stopping failures require exactly f + 1 rounds. It is possible to trans- 
form any of these algorithms to run in the partially synchronous setting. The 

transformation works as follows. 
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Let A be any synchronous network algorithm for a complete graph network. 
Recall that the conventions of the synchronous model imply that inputs appear in 
the initial states and outputs are written to write-once local variables. In terms 
of A, we describe an algorithm A ~ for the partially synchronous network model. 

A ~ a l g o r i t h m :  

Each process Pi is the composition of two MMT automata: Qi, which is 
node i's portion of the PSynchFD algorithm, plus a main automaton Ri. Ri 
has the inform-stoppedi actions as inputs. Ri maintains a variable stopped, 
in which it records the set of processes j for which it has received inform- 
stopped(j)i inputs, that is, those that it has learned have failed. Ri also 
maintains a variable containing the simulated state of process i of A. 

In order to simulate each round r, process Ri first determines and sends out 
all its round r messages from algorithm A (using one task per destination 
process). This determination is made using the msgsi function of A. Next 
Ri waits, for each j ~ i, until it has either received a round r message 
from R i or sees that j C stopped. Then Ri determines the new simulated 
state of A from the old state, using the received messages (and using a 
null message for any process from which Ri has not received a round r 
message). 

Now fix f and suppose that A is any f-fault-tolerant,  f + 1-round algorithm 
that solves the agreement problem in the synchronous network model. We con- 
struct a partially synchronous version A ~ of A as above. This is almost, but not 
quite, what we n e e d ~ t h e  difference is just that A ~ uses different input /ou tpu t  
conventions from the ones that we use in this chapter. So we modify A ~ to ob- 
tain an algorithm B as follows: First, in B, Ri does not begin the simulation 
of A until it receives an init(v)i input. At that time, it places the value v in 
its simulated input variable and begins the simulation of round 1. (However, Qi 
begins its timeout activity right at the start  of the timed execution.) Second, in 
B, when Ri simulates the write of value v to its output variable, it immediately 
thereafter performs a decide(v)i output action. 

T h e o r e m  25.3 B solves the agreement problem in the partially synchronous 
network model, and guarantees f-failure termination. Moreover, in any admis- 
sible timed execution in which inputs arrive on all ports and at most f failures 
occur, the time from the last init event until all nonfaulty processes have decided 
is at most f (Ld + d) + d + 0 ( f L~2). 

P r o o f .  It should be easy to see that B simulates A correctly, which implies 
that B solves the agreement problem. For the time bound, we give an operational 
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argument.  Fix an admissible t imed execution a of/3.  Let S be an upper bound 
for the PSynchFD algorithm, where S = Ld + d + 0 (Lg2). Such an S exists, 
by Theorem 25.2. We define a series of time milestones, T(0) ,T(1) ,  T(2), . . . .  
The milestone T(r)  will be shown to be an upper bound on the time for all 
not-yet-failed processes to complete the simulation of round r. 

First,  define T(0) to be the time at which the last init occurs in a. Second, 
define 

_ f r (o)  + + s,  
T(1) 

T(O) + e2 + d, 
if some process fails by time T(0) + ~2, 
otherwise. 

Finally, for r _> 2, define 

/ T(r  - 1) + ~2 + S, 

T(r  - 1) q-- g2 + d, 

if some process fails in the time interval 
(T(r  - 2 ) +  t~2, T(r  - 1 ) +  e2], 
otherwise. 

Because S is an upper bound for the time to detect failures, it is easy to see that 

C l a i m  25.4 Let r > 0 and let j be any process index. I f  process j fails by 
time T(r)  + ~2, then j is detected as failed by all not-yet-failed processes by time 
T(r  + 1). 

Now we can show the key claim. 

C l a i m  25.5 For all r > O, T(r)  is an upper bound on the time for all not-yet- 
failed processes to complete their simulation of r rounds of A. 

P r o o f  (of  C l a i m  25.5) .  By induction on r. 
Basis: r - O .  This is trivial. 
Inductive step: r >_ 1. I fa  process j fails by time T ( r - 1 ) + g 2 ,  then Claim 25.4 

implies that it is t imed out by all not-yet-failed processes by time T(r) .  On the 
other hand, if process j does not fail by time T(r  - 1) + g2, then it succeeds in 
sending out all its round r messages by time T(r  - 1) + ~2. These all arrive at 
their destinations by time T(r  - 1) + ~2 + d <_ T(r) .  Thus, all processes complete 
round r by time T(r) .  V] 

Now we show the required time bound, thereby completing the proof of Theo- 
rem 25.3. B y  Claim 25.5, T ( f +  1) is an upper bound on the time for all nonfaulty 
processes to complete their simulation of f + 1 rounds, so T ( f  + 1) + O (g2) is 
an upper bound on the time for all nonfaulty processes to perform their decide 
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output  actions. But the definition of the milestones and the fact that  there are 
at most f failures imply that  

T ( f  + 1) _< T(0) + f(g2 + S) + (g2 + d). 

Plugging in the bound for S yields 

T ( f  + 1) _< T(0) + f (Ld  + d) + d + 0 (fLg2). 

This implies the needed bound. D 

25.3 .2  Lower B o u n d  

In Theorem 6.33, we showed a lower bound of f + 1 on the number of rounds 
required to solve the agreement problem in the synchronous network model with 
f faulty processes. With a little work, we can extend this bound to the partially 
synchronous model, giving a lower bound of (f  + 1)d time. Note that  there is 
no mention in this bound of the timing uncertainty L. 

T h e o r e m  25.6 Suppose that n >_ f + 2. Then there is no n-process agreement 
algorithm for the partially synchronous network model that guarantees f-failure 
termination, in which all nonfaulty processes always decide strictly before time 
(f  + 1)d. 

P r o o f  Ske tch .  Suppose for the sake of contradiction that  there is such an 
algorithm A. We transform A into an f - round synchronous algorithm A ~, thus 
contradicting Theorem 6.33. 

Algorithm A must, of course, work correctly when we restrict at tention to a 
special case of the partially synchronous model, in which we only consider t imed 
executions satisfying certain interleaving and timing constraints: 

1. All inputs arrive right at the beginning, at t ime 0. 

2. All tasks proceed as slowly as possible, subject to the g2 upper bound; 
therefore, all locally controlled steps of the processes occur at times that  
are integer multiples of g2.1 Moreover, for each process, the task steps 
occur in a prespecified order. 

3. For every r E N, all messages sent at times in the interval [rd, (r + 1)d) 
are delivered at exactly time (r + 1)d. Moreover, messages delivered to a 
single process i at the same time are delivered in order of sender indices. 

1 Recall that we have assumed that each task always has a step enabled. 
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4. At a t ime tha t  is a multiple of both g2 and d, all the message deliveries 
occur prior to all the locally controlled process steps. 

Call the part ial ly synchronous model with these restrictions the strongly timed 
model. We regard A as an algori thm for the strongly t imed model. Wi thou t  loss 
of generality, we may assume that  A is "deterministic," in the sense tha t  each 
process task has at most one locally controlled action enabled in any state, and 
tha t  for each state and each action, there is at most one possible new state. Also, 
since all messages are delivered at t imes tha t  are multiples of d and processes 
decide strictly before t ime ( f  + 1)d, we may assume without  loss of generality 
tha t  the processes decide at their first step after the t ime fd  message del iver ies .  

It turns out tha t  the behavior of algori thm A in the strongly t imed model 
is very close to the behavior of an f - round  synchronous network algorithm. In 
particular,  for every r ~_ 1, since no messages arrive between times ( r -  1)d and 
rd, the messages sent in the interval [ ( r -  1)d, rd) are all determined by the 
process states just  after the t ime ( r -  1)d message deliveries. So we might t ry to 
regard all these messages as the round r messages of a synchronous algorithm. 

However, there is one significant technical difference. In the synchronous 
model, if a process i fails at round r, then for each j :/: i, process i either 
succeeds in sending all or none of its round r information to process j .  If it 
succeeds in sending all its round r information to j and none to j~, then this 
corresponds to sending all of its messages in the interval [ ( r -  1)d, rd) to j ,  but  
none of messages in the interval [ ( r -  1)d, rd) to j ' ,  in algori thm A. But this is 
not a possible behavior in the strongly t imed model, if i sends several messages 
to each of j and j~ in tha t  interval. 

In order to t ransform A into a synchronous algorithm, it is helpful to gener- 
alize the synchronous model slightly. Namely, instead of allowing each process 
i, at each round r, to send only one message to each other process, we allow it 
to send a finite sequence of messages, each to an arbitrary, specified destination. 
We allow a failure of i to interrupt  this sequence after any prefix. It is not hard 
to see tha t  the proof of Theorem 6.33 extends to this slightly generalized model. 
It is only necessary to include extra steps in the chain constructed in the proof 
of Theorem 6.33 for adding and removing the messages in the sequences one at 
a time. 

Now it is possible to t ransform the given agreement algori thm A into an 
agreement algori thm A ~ in this stronger synchronous model, in such a way tha t  
every execution of A ~ corresponds to a t imed execution of A. The sequence of 
messages process i sends at round r of A ~ consists of all the messages it sends 
in the interval [ ( r -  1)d, rd) of A, in the order of its steps in A. Now the 
behavior caused by a failure in A ~ does correspond to possible behavior of A. 
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The resulting algorithm A' is an f-round agreement algorithm for the stronger 
synchronous model, for n _> f + 2. This is a contradiction to Theorem 6.33. 5 

An alternative way of proving Theorem 25.6 is to carry out a new chain 
argument similar to the one in the proof of Theorem 6.33, but directly in terms 
of the strongly timed model. Again, extra steps must be included in the chain 
for adding and removing messages sent "in the middle" of rounds. 

25.4 An Efficient Algorithm 

The two results described in Section 25.3 leave an interesting gap in time com- 
plexity. The upper bound is approximately f L d +  (f  + 1)d, while the lower bound 
is (f  + 1)d. The most notable difference is the fact that the timing uncertainty 
L appears in the upper bound but not in the lower bound. We would like to 
understand how the inherent complexity of this problem depends on the timing 
uncertainty. 

The practical importance of understanding the impact of L on the time com- 
plexity depends on the size of L. If each process Pi of an algorithm A is run 
on a dedicated processor, so that the speed of Pi's steps is governed by a highly 
accurate processor clock, then L will typically be very small and the dependency 
of A's complexity on L will n o t  matter much. On the other hand, if process 
speeds are determined by other factors such as process swapping, then L could 
be quite large and this dependency could be important.  In any case, the question 
is interesting theoretically. 

Initially, you might guess that it is possible to improve the lower bound result 
of Theorem 25.6 to incorporate a multiplicative factor of L. But this cannot be 
done: it turns out that there is a clever algorithm that runs in time approximately 
Ld + (2f + 2)d. This means, roughly speaking, that only one message delivery 
is "stretched" by the timing uncertainty L. There is also a more difficult lower 
bound proof that yields a lower bound of Ld + ( f -  1)d. We present the algorithm 
in this section and the lower bound in Section 25.5. 

25 .4 .1  T h e  A l g o r i t h m  

We describe a partially synchronous algorithm, PSynchAgreement, which guar- 
antees wait-free termination and which has a time bound of Ld + (2f + 2)d + 
O (ft~2 + Lt~2) when there are at most f failures. PSynchAgreement has a very 
simple description, but its behavior is rather tricky to understand. We suggest 
that before reading about this algorithm, you try to design a solution of your 
o w n .  
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In the PSynchAgreement algorithm, we specify that a process should send 
certain messages to "all processes"; this includes sending to the sender itself. 
The model does not actually permit  this, but as usual, this can be simulated 
using internal steps. 

PSynchAgreement algorithm: 
The algorithm uses the PSynchFD failure detector just as algorithm B 
in Section 25.3.1 does. That  is, each process Pi of PSynchAgreement is 
the composition of two MMT automata: Qi, which is node i's portion of 

the PSynchFD algorithm, plus a main automaton Ri. Ri has the inform- 
stoppedi actions as inputs. Ri maintains a variable stopped, in which it 

records the set of processes j for which it has received inform-stopped(j)i 
inpu t s - - tha t  is, those that it has learned have failed. 

The algorithm proceeds in "rounds," numbered O, 1, . . . .  At each round, 
each Ri tries to reach a decision; however, it is only allowed to decide 0 at 
an even-numbered round and 1 at an odd-numbered round. Ri only begins 
its round 0 after it receives its input. Ri maintains a variable decided, to 
keep track of processes from which it has received a decided message. 

Round O: If Ri's input is 1, then Ri does the following, in order: 
send goto(1) to all processes 
go to round 1 

If Ri's input is O, then Ri does the following, in order: 
send goto(2) to all processes 

output  decide(O)i 
send decided to all processes 

Round r > O: Ri waits until a point where either it has re- 
ceived a goto(r + 1) message or else it has received a goto(r) 
message from every process that is not in stopped U decided. At 
that point, if Ri has received a goto(r + 1) message, then it does 
the following, in order: 

send goto(r + 1) to all processes 
go to round r 4- 1 

Otherwise- - tha t  is, if Ri has not received any goto(r + 1) mes- 
sage but has received a goto(r) message from every process that 
is not in stopped U decided--Ri does the following, in order: 

send goto(r + 2) to all processes 
output  decide(r mod 2)i 
send decided to all processes 
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Thus, Ri starts off by examining its initial value. If the initial value is 1, Ri 
advances to round 1, after telling the other processes to do the same. On 
the other hand, if its initial value is 0, then Ri actually decides on 0, once 
it has told the other processes to advance to round 2. This is to prevent 
the others from deciding (in a conflicting way) at round 1. (Note that the 

algorithm favors a decision of 0 at the beginning.) 

At any later round r, if Ri is told to advance to round r + 1, then it does so, 
after telling the other processes to do the same. On the other hand, if Ri 

has not been told to advance to round r + 1 and it hears that every process 

that has not failed or decided has reached round r, then it can decide on 
r mod 2. 

2 5 . 4 . 2  S a f e t y  P r o p e r t i e s  

We first show the safety properties: well-formedness, agreement, and validity. 
These are based on two lemmas. We say that a process i tries to decide at a 
round r _> 0 provided that it sends at least one goto(r + 2) message in preparat ion 
for a decide event at round r. 

L e m m a  25.7  In any t imed execution of PSynchAgreement  and for  any r >_ O, 

the following are true: 

1. I f  any process sends a goto(r + 2) message, then some process tries to  
decide at round r. 

2. I f  any process reaches round r + 2, then some process tries to decide at 
round r. 

P r o o f .  The first goto(r + 2) message must be generated in this way. A process 
advances to round r + 2 only after receiving a goto(r + 2) message. [~ 

L e m m a  25.8 In any t imed execution of PSynchAgreement  and for  any r >_ 0, 
i f  a process i decides at round r, then the following are true: 

1. Ri sends no goto(r + 1) messages. 

2. Ri sends a goto(r + 2) message to every process. 

3. No process tries to decide at round r + 1. 

P r o o f .  The first two parts should be clear from the algorithm description. For 
the third part,  suppose for the sake of contradiction that Rj  tries to decide at 
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round r + 1. This means that  at some point in round r 4- 1, process /i[j has 

not received a goto(r + 2) message but  has received a goto(r + 1) message from 

every process that  is not in stoppedj U decidedj. Since Ri sends no goto(r + 1) 

messages, it must  be that  at the designated point,  i E stoppedj U decidedj. 
If i C stoppedj at this point,  then Theorem 25.2 implies that  Rj must  have 

already received all messages sent by Ri before Ri failed. But  by Par t  2, this 

includes a goto(r + 2) message, which is a contradiction.  

On the other hand, if i E decidedj at this point,  then Rj must  have received 

a decided message from Ri. But Ri sends such a message only after it has sent 

its goto(r + 2) message to Rj. Then the F IFO proper ty  of the channels implies 

that  Rj must  have already received the goto(r + 2) message at the designated 

point,  which is again a contradiction.  D 

Now we can show the safety properties.  

T h e o r e m  25 .9  The PSynchAgreement algorithm guarantees well-formedness, 
agreement, and validity. 

P r o o f .  Well-formedness is s t raightforward.  For validity, if all processes s tar t  

with 0, then no process can ever leave round 0. Since 1 can only be decided 

at odd-numbered  rounds, no process can decide 1. On the other hand, if all 

processes s tar t  with 1, then no process tries to decide 0 at round 0. Then 

Lemma 25.7 implies that  no process reaches round 2. It follows that  no process 

decides 0. 

For agreement,  suppose that  Ri decides at round r and no process decides 

at any earlier round. Then by Lemma 25.8, no process tries to decide at round 

r + 1. Then by Lemma 25.7, no process can reach round r + 3. So the only 

possible rounds at which processes may decide are r and r + 2. Since these have 

the same parity, all the decisions must  be the same. D 

25.4.3 L i v e n e s s  a n d  Complexity 

Now we prove wait-free terminat ion,  as well as the time bound. We begin with 

a liveness claim for admissible t imed executions. 

L e m m a  25 .10  In any admissible timed execution of PSynchAgreement, each 
process continues to advance from round to round until it either fails or decides. 

P r o o f .  If not, then let r be the first round at which some process gets stuck; 

note that  r must  be at least 1. Let i be the index of any process that  gets stuck at 

round r. For any other process Rj that  ever fails, Ri must  eventually detect the 
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failure and place j in stoppecli. Also, for any other process/i~j that ever decides 

but never fails, Ri must eventually discover that j has decided and place j in 

decided4. Let I be the set of remaining processes- - tha t  is, all processes except 

those that ever fail or decide. 
Then all processes in I must eventually reach round r, because r is the first 

round at which any process gets stuck. Since r > 1, this implies that each process 

Rj,  j C I, must send a goto(r) message to R~, which R~ eventually receives. But 

then Ri's condition for deciding is satisfied, so Ri must either decide or advance 

to round r + 1. This contradicts the assumption that Ri gets stuck at round r. 
C? 

Now we define a notion that is useful for the liveness and complexity proofs 

and prove some of its properties. In a given admissible t imed execution of 

PSynchAgreement, we define a round r to be quiet if there is some process 
that never receives a goto(r + 1) message from any other process. Combining 

this new definition with some of the earlier lemmas, we get 

L e m m a  25.11 In any admissible timed execution of PSynchAgreement and for 

any r > O, the following are true: 

1. I f  no process tries to decide at round r, then round r + 1 is quiet. 

2. I f  some process decides at round r, then round r + 2 is quiet. 

P r o o f .  Par t  1 follows immediately from Lemma 25.7. For Par t  2, if some 

process decides at round r, then Lemma 25.8 implies that no process tries to 
decide at round r § 1, and then Par t  1 implies that r § 2 is quiet. [21 

The reason that the notion of a quiet round is important  is that no process 

can ever advance past a quiet round: 

L e m m a  25 .12  In any admissible timed execution of PSynchAgreement, if round 
r is quiet, then no process ever advances to round r + 1. 

P r o o f .  If a process Ri advances to round r + 1, it first sends a goto(r + 1) 
message to all processes. These are eventually received, which means that round 
r is not quiet. F] 

Now we show that a quiet round must occur. 

L e m m a  25 .13  In any admissible timed execution of PSynchAgreement in 
which there are at most f failures, there is a quiet round numbered at most 

S+2. 
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P r o o f .  If any process decides by round f ,  this follows from Lemma 25.11. So 
suppose that no process decides by round f .  Since there are at most f failures, 
there must be some round r, 0 _< r _< f ,  in which no process fails. 

We claim that no process tries to decide at round r. Suppose for the sake of 
contradiction that some process i does try. Then, since process i does not fail 
at round r, admissibility implies that process i must actually decide at round r. 
But this contradicts the assumption that no process decides by round f .  

Since no process tries to decide at round r, Lemma 25.11 implies that round 
r + 1 is quiet. [:] 

We can now prove wait-free termination. 

T h e o r e m  25.14 The PSynchAgreement algorithm guarantees wait-free termi- 
nation. 

P r o o f .  Consider an admissible timed execution in which init events occur on 
all ports. Let i be any non-failing port. We argue that Ri eventually decides. 

By Lemma 25.10, Ri continues to advance from round to round until it 
decides. But Lemma 25.13 implies that there is some quiet round r, and then 
Lemma 25.12 implies that Ri cannot advance to round r + 1. This implies that 
Ri must decide. IN 

Finally, we prove the complexity bound. 
number of failures, 0 < f < n. 

At this point, we fix f to be any 

T h e o r e m  25.15 In any admissible timed execution of PSynchAgreement in 
which inputs arrive on all ports and there are at most f failures, the time 
from the last init event until all nonfaulty processes have decided is at most 

Ld + (2f + 2)d + 0 (fg2 + Lg2). 

P r o o f  Ske tch .  The proofs of Theorem 25.14 and its supporting lemmas show 
that the execution must consist of a series of non-quiet rounds, numbered up to 
at most f + 1, followed by a single quiet round, say round r. All processes that 
do not fail must decide without advancing past round r. 

Let S be an upper bound for the PSynchFD algorithm, where S -  Ld + d + 
O (Lt~2). Define a series of time milestones, T ' , T ( O ) , T ( 1 ) , . . .  ,T(r) .  T' is the 
time at which the last init occurs. For each k, 0 <<_ k < r, T(k)  is the earliest time 
at which every process has either failed, decided, or advanced to the next round, 
k + 1. Thus, all nonfaulty processes decide by time T(r).  It is not hard to see 
that T ( 0 ) -  T', the time for round 0, is O (t~2). Also, for k _> 1, T ( k ) -  T ( k -  1), 
the time for round k is at most S + O (t~2), that is, slightly more than the time 
required to detect a failure. Thus, T(k)  - T(k  - 1) _< Ld + d + 0 (Le2). 
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Rj sends original goto (k+ 1) 

end of round k - 1 

end of round k 

F i g u r e  25.1" goto(k + 1) messages relayed from Rj to Ri. 

A more interesting fact is that the time T(k) - T ( k -  1) for any non-quiet 
round k, 1 <_ k <_ r -  1, does not depend on the timing uncertainty L. To see this, 
we consider any particular process Ri. Since round k is not quiet, Ri receives a 
goto(k + 1) message; we bound the time by which this happens. 

This message must have originated, possibly via a series of relays, from some 
original goto(k + 1) message sent by a process Rj trying to decide at round k -  1. 
See Figure 25.1. 

C l a i m  25.16 Let fk denote the number of processes that fail in the middle of 
sending goto(k + 1) messages. Then the total time that elapses from the sending 
of the original goto(k + 1) message by Rj until the receipt of the goto(k + 1) 
message by Ri is at most ( f k + 1)d + O (fkg2). 

P r o o f .  Rj sends its goto(k + 1) message as part of an at tempt to send such 
messages to all processes, including Ri. If Rj does not fail in the middle of 
this at tempt,  then Rj succeeds in sending this message to Ri, and Ri receives 
it within time d of when Rj sends it. Even if Rj does fail in the middle of this 
at tempt,  all the messages it succeeds in sending arrive within time d of when 
they are sent. 

Likewise, each process Rj, involved in relaying the message from Rj to Ri 
sends its goto(k + 1) message as part of an at tempt to send such messages to all 
processes, including Ri. Again, if Rj, does not fail in the middle of this at tempt,  
then Rj, succeeds in sending the message to Ri, and Ri receives it within time d 
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of when _Rj, sends it. Even if/i~j, does fail in the middle of this a t tempt ,  all the 
messages it succeeds in sending arrive within time d of when they are sent. 

It follows that  the total time from when the original goto(k + 1) message is 
sent by Rj until i receives some goto(k+ 1) message is at most (fk + 1)d+O (fk~2). 
(The g2 accounts for the time from when a relay process receives a got o(k + 1) 
message until it sends its own goto(k + 1) messages.) [-7 

Since the original goto(k + 1) message is sent by Rj while it is in round k -  1, 
it follows that  it is sent by time T ( k -  1). Since all processes receive goto(k + 1) 
messages within time (fk + 1)d + 0 (fkg2), it follows that  each will either advance 
to round k + 1, fail, or decide by time T(k 1) + (fk + 1)d + O (fkt~2) + O (/~2) - 
T ( k -  1)4-(fk + 1)(d + O (t~2)). This implies that  T ( k ) -  T ( k -  1) _< (fk + 1)(d 4- 
O (t~2)). As we said earlier, this does not depend on the t iming uncertainty L. 

Since T ( 0 ) -  T'  is O (/~2), T ( k ) -  T(k 1) < (fk + 1)(d + O (t~2)) for all k, 
1 < k _< r -  1, and T ( r ) -  T ( r -  1) G Ld + d + 0 (Lt~2), it follows that  

r - 1  T ( r )  - T '  <_ Ek=l(fk + 1)(d + O (f2)) + L d  + d + 0 (L 2) . 

Since E r-1 k=lfk G f and r _< f + 2, we obtain 

T(r) - T' <_ Ld + (2f  + 2)d + 0 (ft~2 + Lt~2). 

This is the needed complexity bound. 

25.5 A Lower Bound Involving the Timing 
Uncertainty* 

In Section 25.4, we presented a partially synchronous agreement algorithm, 
PSynchAgreement, which works in time approximately Ld + (2f  + 2)d. The 
PSynchAgreement algorithm goes a long way toward closing the complexity gap 
between the simple upper bound of approximately fLd  + ( f  + 1)d and the sim- 
ple lower bound of ( f  + 1)d proved in Section 25.3. In particular, the PSynch- 
Agreement algorithm demonstrates that  there is no hope of proving a lower 
bound containing a term of fLd. In this section, we prove a lower bound that  
does depend on L, specifically, Ld + ( f  - 1)d. This still leaves a gap between 
the upper and lower bounds, though at least the form of the dependency of the 
time complexity on the t iming uncertainty L is clear. 

T h e o r e m  25.17 Suppose that n >_ f + 1. Then there is no n-process agree- 
meat algorithm for the partially synchronous model that guarantees f-failure 
termination, in which all nonfaulty processes always decide strictly before time 
Ld + (f  - 1)d. 
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The proof of Theorem 25.17 is quite interesting, because it uses a combina- 
tion of several techniques from earlier chapters, including chain arguments as 
in Chapter  6, arguments based on reachability of various decision values as in 
Chapter  12, and arguments about stretching and shrinking timed executions as 

in Chapter  24. 
Throughout  the rest of this section we suppose for the sake of contradiction 

that A is an n-process agreement algorithm for the partially synchronous network 
model that guarantees f-failure termination, and in which all nonfaulty processes 
always decide strictly before time Ld + ( f  - 1)d. Without  loss of generality, we 
assume that A is "deterministic," as we did in the proof of Theorem 25.6. We 
prove a series of lemmas leading to the conclusion that A cannot exist. 

First,  in Lemma 25.18, we show that a certain "bad combination" of t imed 
executions cannot occur if algorithm A is correct. This bad combination in- 
volves a "0-valent" timed execution c~0 and a "l-valent" timed execution OZl, 
both reaching time at least ( f -  1)d, together having few failures, and distin- 
guishable to at most one non-failed process. Lemma 25.18 is proved using a 
stretching and shrinking argument.  Second, in Lemma 25.19, we show that a re- 
lated combination does in fact exis t - -one with the same conditions, except that 

we only require that 0 be reachable from c~0 and that 1 be reachable from c~1, 
rather than requiring 0-valence and l-valence. Lemma 25.19 is proved using a 
chain argument.  Third, in Lemma 25.20, we produce a single "bivalent" t imed 
execution a reaching time at least ( f -  1)d and having few failures. Lemma 25.20 
follows immediately from Lemmas 25.18 and 25.19. Fourth, in Lemma 25.21, we 
strengthen Lemma 25.20 to include a "maximality" property, which yields two 
immediate extensions of c~, a 0-valent extension c~0 and a l-valent extension C~l. 
But this c~0 and Ct 1 comprise a "bad combination," yielding a contradiction. 

Now we give the details. We begin by distinguishing among all the timed 
executions of A a subset that we call the "synchronous" timed executions. A 
synchronous infinite timed execution is one for which there is an infinite sequence 

of times to - 0 ,  t l , t 2 , . . ,  where ~1 ~ t k + l  - -  tk <_ ~2 for k _> 0, satisfying the 
following constraints" 

1. All inputs arrive right at the beginning, at time to. 

2. All the tasks of non-failed processes take steps exactly at times t l, t 2 , . . .  ; 
we call these the active times. 2 Moreover, for each process, the task steps 

occur in a prespecified order. 

3. Messages delivered to a single process i at the same time are delivered in 

order of sender indices. 

2Recall once again that we have assumed that each task always has a step enabled. 
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4. At each active time, any message deliveries occur prior to all the locally 

controlled process steps. 

These conditions are somewhat  similar to those used in the proof sketch for 

Theorem 25.6. A synchronous infinite t imed execution can be divided up into 

infinitely many "blocks" B0, B1, B 2 , . . . ,  where each Bk includes all the input  

and message delivery steps at t ime tk but  no locally controlled process steps at 

t ime tk. Thus, block B0 includes only the input  events, whereas each block Bk, 
k _> 1, s tar ts  with the locally controlled steps at t ime tk-1 and finishes with the 

message delivery steps at t ime tk. A synchronous finite t imed execution is a 

prefix of a synchronous infinite t imed execution consisting of some finite number  

of complete blocks. 

If c~ and c~ ~ are synchronous t imed executions, where c~ is a finite prefix of 

c~ ~, we say that  c~ is a k-block prefix of c~ ~, k > 0, if it consists of exactly the 

complete blocks B0, B 1 , . . . ,  Bk of c~ ~. (In part icular ,  a 0-block prefix contains 

one block, B0.) If c~ is a k-block prefix of c~ ~ for some k > 0, we say that  c~ is a 

block prefix of c~ ~, and that  c~ ~ is a block extension of c~. 

We will be especially interested in certain part icular  kinds of block extensions. 

Namely, if c~ is a synchronous finite execution, c~ ~ is a synchronous (finite or 

infinite) execution, and c~ is a k-block prefix of c~ ~, k > 0, then we say that  c~ ~ is 

1. A fast extension of c~ if all steps in c~ ~ after c~ take the min imum time ~1, 

that is, ti+l - t i  - ~ 1  for all i > k. 

2. A slow extension of c~ if all steps in c~ ~ after c~ take the max imum time g2, 

that  is, ti+l - ti - ~2 for all i _> k. 

3. A failure-free extension of c~ if there are no stop events in c~ ~ after c~. 

4. An fff-extension of c~ if it is a fast, failure-free extension of c~. 

We emphasize that  all of these types  of extensions are block extensions, by 

complete blocks only. Note that  the designation "fast" or "slow" refers only to 

process step time, not message-delivery time, which can still be any number  in 

[0,d]. 
Now we define some notions that  are similar to notions used in the impossi- 

bility results for agreement in the asynchronous model in Chapter  12. We say 

that  a value v c {0, 1 } is fff-reachable from a synchronous finite t imed execution 

c~ if there is some fff-extension c~ ~ of c~ in which some process decides v. (This 

decision might  occur either in c~ or in the port ion of c~ ~ after c~.) We define a syn- 
chronous finite t imed execution c~ to be 0-valent if only the value 0 is fff-reachable 

from c~, 1-valent if only 1 is fff-reachable, and bivalent if both  are fff-reachable. 

T imed execution c~ is univalent if it is either 0-valent or 1-valent. 
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We need one more no t ion - -a  notion of "indistinguishability" of two syn- 
chronous finite t imed executions to a part icular process i. Similar notions have 

been used in the synchronous and asynchronous chapters of this book. Here, 

the notion we need is a bit more complicated than before, because it takes into 
account messages that are in t ransi t  to i at the end of the executions. Namely, if 

c~ and c~' are two synchronous finite t imed executions with the same active times, 
then we say that c~ and c~' are indistinguishable to i if the following conditions 
hold. 

1. The projections of c~ and c~' on i, that is, c~]Pi and c~']Pi, are time-passage 
equivalent. 3 

2. The same messages are sent to Pi in c~ and c~', by the same processes, in 
the same order, and at the same times. 

The following lemma describes a certain bad combination of t imed executions 
that cannot occur if the algorithm A is correct. 

L e m m a  25 .18  There do not exist two k-block synchronous timed executions, 

c~o and c~i, such that all of the following hold: 

1. c~o and c~i have the same active times, t l , . . .  , tk,  where tk >_ ( f  - 1)d. 

2. c~o is O-valent. 

3. Ctl is 1-valent. 

4. IF[ <_ f -  1, where F is the set of processes that fail in either c~o or c~i. 

5. c~o and 0~1 are distinguishable to at most  one process not in F.  

Figure 25.2 depicts this bad combination. 

P r o o f .  Suppose for the sake of contradiction that such c~0 and Ct 1 exist. We 

will construct slow extensions ~0 and/31, of c~0 and C~l, respectively, both leading 
to the same decision, say 0. Then we will speed up/31 and remove some of the 
failures to obtain an fff-extension/3[, also with decision 0. This will contradict 

the 1-valence of C~l. 
In more detail, let G be F together with the process, if any, to which the two 

timed executions c~0 and c~1 are distinguishable; thus, ]G] _< f .  We produce the 
slow extensions/30 and/31, of c~0 and c~i, respectively, as follows. 

3The projection operation I is defined in Section 23.2.3 and the notion of time-passage equiv- 
alence is defined in Section 23.2.1. 
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time > ( f - 1 ) d  

So distinguishable to at most o~ 
one nonfaulty process 

O-valent 1 -valent 

< f - 1  
failures 

F i g u r e  25.2" Bad combination of timed executions for Lemrna 25.18. 

First ,  at time tk, we provide stop events for all processes in G that  have not 
yet failed. Then we extend c~0 and Ct 1 in the same way, with slow extensions 
having no addit ional  failures. It is possible to extend them in the same way, 

because a0 and Ctl are indistinguishable to all processes except those in G. By 
the assumed upper  bound for A, all nonfaulty processes must  decide in/30 and 
/31 strictly before time Ld + ( f -  1)d <_ tk + Ld. Thus, strictly less than Ld 
time passes in the new parts  of the two t imed executions before decisions occur. 
Moreover, since c~0 and Ctl are extended in the same way, the same decision 
is reached in/30 and /31. Suppose without loss of generali ty that  this common 
decision is 0. See Figure 25.3. 

O~ o 

time < Ld 

F i g u r e  25.3" Extensions fl0 and fll in the proof of Lemma 25.18. 

Now consider extending c~1 to an alternative synchronous t imed execution 

/3~; unlike/31,/3~ will be an fff-extension of Ctl. T imed execution/3~ is the same 
as/31, except that  the port ion after c~1 is "sped up" by a factor of L to become 
fast. Moreover, no processes fail in /3~ after a l ;  however, any messages sent 
by processes in G in/3~ after Ct I take the max imum amount  d of time to arrive. 
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Thus, ~ behaves, prior to time tk + d, exactly like a sped-up version of/~1. (Note 
that once the messages sent by the processes in G arrive, things can look quite 
different in ~ and ~ ,  but this does not matter.) Then, since all processes not 
in G decide 0 in/31 strictly before time tk + Ld, they will decide 0 in/3~ strictly 
before time tk + d. See Figure 25.4. 

O~ 1 

New messages 
take time d 

) time < d 

F i g u r e  25.4: Extension/3~ in the proof of Lemma 25.18. 

But since ~ is an fff-extension of C t l ,  this contradicts the 1-valence of Ct 1. [--] 

We will get a contradiction by showing that a bad combination of timed 
executions of the sort described in Lemma 25.18 must in fact occur. First we 
get a related combination. 

L e m m a  25.19 For some k, there exist two k-block synchronous t imed ezecu- 

tions, ao and a l ,  such that all of the following hold: 

1. ao and Ctl have the same active times, t l , . . .  , tk, where tk >_ ( f  - 1)d. 

2. 0 is fff-reachable f rom ao. 

3. 1 is fff-reachable f rom Ctl. 

~. IF] <_ f -  1, where F is the set of processes that fail in either ao or o~ 1. 

5. ao and Ctl are distinguishable to at most  one process not in F.  

Notice that the only difference between these conditions and those in the bad 
combination is that Conditions 2 and 3 only require that 0 and 1 be fff-reachable 
rather than requiring that a0 be 0-valent and c~1 be 1-valent. See Figure 25.5. 

P r o o f  Ske tch .  This can be proved using a chain argument similar to the one 
in the proof of Theorem 6.33. The proof is left as an exercise. E] 
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O~ o 

time > ( f - 1 )  d 

distinguishable to at most 
one nonfaulty process 

< f - 1  O~ 1 

failures 

F i g u r e  25.5" Timed executions c~0 and Ot I for Lemma 25.19. 

Combining Lemmas 25.18 and 25.19 immediately yields 

L e m m a  25.20 There exists a synchronous finite t imed execution c~ such that 

all of the following hold: 

1. The final active t ime t k of c~ is at least ( f  - 1)d. 

2. c~ is bivalent. 

3. A t  most  f -  1 processes fail in c~. 

See Figure 25.6. 

o~ 

time >_ ( f -  

5 f - 1  
failures 

F i g u r e  25.6: Timed execution c~ for Lemma 25.20. 

P r o o f .  Let c~0 and O~ 1 be the two synchronous timed executions whose existence 

is asserted by Lemma 25.19. By Lemma 25.18, it cannot be the case that c~0 is 

0-valent and also C~l is l-valent. Therefore, at least one of c~0 and O~ 1 must be 
bivalent, which means that it satisfies all the required conditions. [3 

Now we strengthen Lemma 25.20 to include a "maximality" property. 
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L e m m a  25.21 There exists a synchronous finite timed execution c~ such that 
all of the following hold: 

1. The final active time tk of c~ is at least ( f  - 1)d. 

2. c~ is bivalent. 

3. At  most  f - 1 processes fail in c~. 

~. There are two ff f-extensions of c~, /3o and/~1, each by a single block, such 
that 

(a) ~o is O-valent. 

(b) ]31 is 1-valent. 

(c) /3o and ~1 are distinguishable to at most one process. 

See Figure 25.7. (Note the similarity between the configuration whose existence 

is asserted here and the notion of a decider in the proof of Theorem 12.6.) 

< _ f - 1  
failures 

time >_ ( f - l )  d 

O-valent 1 -valent 

F i g u r e  25.7:  c~, ~o, and /~1 for Lemma 25.21. 

P r o o f  S k e t c h .  Let c~ be the synchronous finite t imed execution whose exis- 
tence is asserted by Lemma 25.20. Then we extend c~ by executing the following 
"program": 

while there exists a proper bivalent fff-extension of c~ do 
c~ : -  any such extension 

We know that this program eventually terminates,  because decisions are required 

in all failure-free extensions of c~ before time Ld + ( f  - 1)d. Consider the final c~ 
that results from this program. 

We claim that this c~ has all the properties we need. It satisfies the needed 
time bound, bivalence, and failure conditions. Moreover, because it is bivalent 
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but cannot be extended to a longer bivalent t imed execution, there must be two 

fff-extensions of a,  7o and 71, each by a single block, such that 

1. 7o is O-valent. 

2. ~1 is 1-valent. 

This is not quite what we need, however, because it might be that 7o and 71 are 
distinguishable to more than one process. 

So we carry out one more chain construction between 70 and 71 to produce the 
needed 30 and/31. Starting from ~0, at each step in the chain we simply modify 
all the message deliveries to one of the processes Pi so that they are the same as 
in 71. Each two consecutive timed executions in the chain are distinguishable to 
only one process. Since all of these timed executions must be univalent, there 

are two consecutive executions in the chain, /3o and/31, such that 30 is 0-valent 
and/~1 is 1-valent. These give all the required properties. V1 

Now we can obtain the contradiction. 

L e m m a  25.22 A does not exist. 

P r o o f .  The two synchronous timed executions /30 and /~1 whose existence is 
asserted by Lemma 25.21 satisfy all the requirements for a bad combination listed 
in the statement of Lemma 25.18. This is a contradiction. K1 

This proves Theorem 25.17. 

25.6 Other  R e s u l t s *  

In this section, we consider what happens to the results about the agreement 
problem if we weaken the timing model in several ways. Our t reatment  here is 
informal. 

25.6.1 Synchronous Processes, Asynchronous Channels* 

Suppose that we weaken the model to use reliable FIFO channels, as defined in 
Chapter  14, with no upper bound on message-delivery time but only a guarantee 
of eventual delivery. However, the processes still observe the [t~l, g2] bounds. In 
this case, it is not hard to see that the agreement problem cannot be solved for 
even one stopping failure. This is so even if gl = t~2, that is, if the process step 
times are completely predictable. 
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Theorem 25.23 There is no algorithm in the model with synchronous processes 
and asynchronous channels that solves the agreement problem and guarantees 1- 
failure termination. 

P r o o f  Ske t ch .  Suppose for the sake of contradiction that A is such an algo- 
rithm. Then A can be "simulated" in the asynchronous model, using an imple- 
mentation of logical time as defined in Chapter  18. In this way, an algorithm for 
agreement in the asynchronous network model, guaranteeing l-failure termina- 
tion, can be produced, contradicting Theorem 21.2. We leave the details for an 
exercise, ff] 

25.6.2 Asynchronous  Processes ,  Synchronous Channels* 

Now suppose we weaken the partially synchronous model, this time keeping the 
upper bound of d on delivery of all messages, but imposing only fairness, and no 
time bounds, on the processes. Again, it is not hard to see that the agreement 
problem cannot be solved for even one stopping failure. 

Theorem 25.24  There is no algorithm in the model with asynchronous pro- 
cesses and d-bounded channels that solves the agreement problem and guarantees 
l-failure termination. 

P r o o f .  Suppose for the sake of contradiction that A is such an algorithm. Run 
the same algorithm A in the asynchronous model. Then any fair execution c~ of 
A in the asynchronous model can be "timed" in such a way that all the messages 
observe the upper bound of d. This means that the execution satisfies all of 
the conditions required for the agreement problem with l-failure termination. 
Since none of these conditions depends on the times, the same conditions hold 
for the given fair execution c~. Since this works for any fair execution c~ of A, 
it follows that A solves the agreement problem with l-failure termination in the 
asynchronous model. Once again, this contradicts Theorem 21.2. F1 

25.6.3 Eventual Time Bounds* 

For the final result of the book, we consider the case of eventual time bounds, as 
we did in Section 24.4.2. That  is, we consider the model where the algorithm runs 
asynchronously for a while, but eventually starts to satisfy its timing constraints. 
It turns out that the agreement problem is solvable in this model. However, 
unlike in the partially synchronous model, where the time bounds always hold, 
a solution requires n > 2f.  Using an argument similar to that in the proof of 
Theorem 17.6, it is not hard to show that the problem is not solvable in this 

model if n < 2f.  We leave this for an exercise. 
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T h e o r e m  25 .25  The agreement problem is solvable, with f-failure termination, 
in the model where process task time bounds of [~1, ~2] and bounds of d for all 
messages hold eventually, provided that n > 2 f .  

Designing a solution to this problem in this model is not easy. Strategies 

like the one used in the PSynchAgreement protocol, based on t iming out failed 

processes, do not work, because before the time bounds hold, processes can 

conclude incorrectly that  other processes have failed. We sketch an algori thm 

based on a different strategy. 

The heart  of the a lgori thm is an a lgori thm A for a variant  of the synchronous 
model of Chapter  2 in which, in addit ion to up to f process failures, there may 

be some loss of messages. We assume that  any messages may be lost, but  that  

messages can only be lost for a finite number  of rounds. After some point,  all 

messages are guaranteed to be delivered. The processes do not know when this 

point  is, however. 

Algori thm A works as follows. We assume again that processes send messages 

to themselves as well as to the other processes. 

A algorithm: 

The rounds are organized into "stages" 1, 2 , . . .  where each stage s con- 

sists of the four consecutive rounds 4 s -  3, 4s - 2, 4s - 1, and 4s. Stage 

s is "owned" by a process, owner(s); this is the process whose index is 

equivalent to s, modulo n. 

At various times, a process may lock a value v C {0, 1}, together with an 

associated stage number  s. If process i locks (v, s), it means that  process 

i thinks that  owner(s) might decide v at stage s. Process i continues to 

hold some lock for v as long as it continues to think that  owner(s) might  

decide v at stage s. A value v is acceptable to i if i does not have a lock 

on ~. Initially, no value is locked. 

The processing during any part icular  stage s with owner i is as follows. 

Round ~s - 3: All processes send all their acceptable values to process i. 

Process i then a t tempts  to choose a value to propose. In order for process i 

to propose v, it must  hear that at least n -  f processes (possibly including 

itself) find value v acceptable at stage s. There might be more than one 

value that  is suitable for i to propose; in this case, i chooses its own initial 

value. 

Round gs - 2: If process i has determined a value v to propose, then it 

sends a ( "lock", v) message to all processes. Any process that  receives such 

a message locks (v, s) and releases any earlier lock on the same value v. 
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Round ~s - 1: Any process that  received a ( "lock", v) message at round 

4s - 2 sends an ack message to process  i. If process  i receives acks f rom 

at least f + 1 processes,  then process  i decides on its p roposed  value v. 

Round ~s: Every  process  sends messages  conta ining all its current  locks 

to every other process.  Any process i that  has a lock on some (v, s ~) and 

receives a message (~, s"), s" > s ~, that  is, a newer lock for the opposi te  

value, releases the earlier lock. 

L e m m a  2 5 . 2 6  Algorithm A, for n > 2f ,  solves the agreement problem and 

guarantees f- failure termination. 

P r o o f .  Fi rs t  note that  

C l a i m  2 5 . 2 7  For each stage s, there is at most one value v that is proposed at 

stage s, and so at most one v for which any process ever holds a lock on (v, s). 

Then  an easy induct ion on the number  of rounds  (using the fact tha t  a process  

favors its own initial value) implies 

C l a i m  2 5 . 2 8  I f  all processes begin with initial value v, then ~ is never proposed 
or locked. 

Since a process only decides on a value it has proposed ,  val idi ty follows. Then  

we show 

C l a i m  2 5 . 2 9  I f  process i decides on value v at stage s, then at the end of every 

stage > s, at least f + 1 processes have locks on v with associated stage numbers 

P r o o f .  The a lgor i thm ensures  tha t  at least f + 1 processes  lock (v, s) at round 

4 s -  2. We claim that  none of these processes  ever releases a lock on v wi thout  

immedia te ly  acquir ing another  lock on the same value v. 

Suppose  for the sake of cont rad ic t ion  that  one of these processes,  say process  

i, does release a lock on v wi thout  immedia te ly  acquir ing another  lock on v. 

Then  process  i mus t  release the lock because it learns about  a lock on (~, s ~) for 

some s ~ > s, which means  that  owner(s ~) proposes  ~ at stage s ~. Fix s ~ to be the 

first stage > s at which ~ is proposed.  
But  then jus t  pr ior  to stage s ~, there mus t  still be at least f + 1 locks on v, 

which would prevent  owner(s ~) from obta in ing  approval  for ~ at round 4s ~ -  3 

f rom the required n -  f processes.  This  is a contradic t ion.  D 
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Now we resume the proof of Lemma 25.26. We show agreement. Suppose 
that process i decides v at stage s. Then no process can decide ~ at the same 
stage. Moreover, by Claim 25.29, there are always at least f + 1 locks on v from 
stage s onward. This prevents any process from obtaining approval for ~ from 
the n -  f processes that would be required for it to propose ~. So ~ never gets 
proposed, and no process ever decides ~. 

To see termination, consider what happens after we reach the assumed point 
after which all messages are delivered reliably. After any subsequent stage s, 
it is not hard to see that there can be at most one locked value among all the 
non-failed processes in the system. This is because of Claim 25.27 and the lock- 
release rule at round 4s. Once this is so, the owner of any stage will succeed in 
obtaining all the necessary approval and acknowledgments to allow it to decide 
(if it does not fail). K] 

P r o o f  S k e t c h  (of  T h e o r e m  25.25) .  We give only the general idea for the 
construction of an algorithm B for the model with eventual time bounds. Each 
process Pi of B maintains a nonnegative integer-valued local variable clock, ini- 
tially 0. Each clock variable is monotonically nondecreasing. Let C - max{ clocki �9 
1 < i _< n}. Then C can be regarded as a sort of "global clock" maintained by 
the system. By a protocol involving repeated sending and updating of clock val- 
ues (which we omit here), the processes can ensure that, starting soon after the 
point p when the time bounds begin to be satisfied: 

1. The rate of growth of C with respect to real time is bounded from 
and from above, by known constant bounds. 

below 

2. Each clock is within a known (additive) constant of C. 

Thus, the processes eventually achieve rather synchronized clocks. 
In addition to maintaining its clock, each process Pi of B also simulates its 

counterpart in algorithm A, using its local clock to determine what round to 
simulate. A fairly large (but predictable) number of clock values are devoted 
to the simulation of each round r - - enough  to ensure that after point p in the 
execution, any message sent by a process Pi at the beginning of Pi's simulated 
round r is in fact delivered to every process Pj before the end of Pj's simulated 
round r. 

Note that prior to point p, some Pi might not finish its simulation of some 
round r before its clock advances too far. In this case, there is no harm if Pi 
simply omits sending the extra messages--af ter  all, in A, they might be lost, 
anyhow. However, Pi must simulate the state transition for round r. It can do 
this at the first step after its simulation of round r is interrupted. 
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In this way, B simulates algorithm A and achieves the same correctness 
conditions. [--] 

25.7 Postscript 

In this chapter and the previous one, we have presented a few basic results 
for two fundamental problems of distributed computing~mutual exclusion and 
consensus--in partially synchronous models. These few results already demon- 
strate that the theory for partially synchronous distributed computing is quite 
different from that for either synchronous or asynchronous distributed comput- 
ing. 

However, much work remains to be done in this area. There are many other 
problems of interest in distributed computing that can be considered in the par- 
tially synchronous setting. These include many problems described in this book, 
for example, problems of network searching, construction of spanning trees, re- 
source allocation, snapshots, and stable property detection. They also include 
many other problems that arise in real communication systems, distributed op- 
erating systems, and real-time process control systems. 

It would also be useful to have general characterization results describing ex- 
actly what can be computed in partially synchronous systems, and with what time 
complexity. Transformation results relating the power of partially synchronous 
models to that of the synchronous and asynchronous models would also be good 
to have. 

25.8 Bibliographic Notes 

Most of the constructions and results in the chapter, including the PSynchFD 
failure detector, the simple upper and lower bound results in Theorems 25.3 and 
25.6, and the more difficult upper and lower bound results in Theorems 25.15 
and 25.17, were proved by Attiya, Dwork, Lynch, and Stockmeyer [22]. Ponzio 
[247, 245] extended the algorithm of Section 25.4.1 to the stronger "sending- 
omission" failure model and gave a less efficient algorithm for the case of Byzan- 
tine failures. Berman and Bharali [48] improved the complexity of Ponzio's 
sending-omission algorithm. Ponzio also obtained good upper and lower bounds 
on the time complexity for failure detection, in a two-node system [246]. The 
impossibility result for synchronous processes and asynchronous channels, The- 
orem 25.23, was proved first by Dolev, Dwork, and Stockmeyer [95]. The proof 
sketched here, based on Welch Time, is due to Welch [287]. 
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Theorem 25.25, for the model with eventual time bounds, was proved by 
Dwork, Lynch, and Stockmeyer [104]. That paper also contains a similar result 
for the unknown time bound model, as well as results for other failure models. 
Lamport 's  Paxos algorithm [183] is very similar to the algorithms in [104]. 

Other results in the partially synchronous model include upper and lower 
bounds by Attiya and Mavronicolas [17] on the time to solve the session problem 
of Section 16.6; bounds by Wang and Zuck [284] on the size of the low-level 
message alphabet needed for reliable high-level message transmission; and trade- 
off upper and lower bounds by Kleinberg, Attiya, and Lynch [167] on the time for 
message delivery and the time for system quiescence, in connection management 
protocols. 

25.9  E x e r c i s e s  

25.1. Give precondition-effect code for process Pi in the PSynchFD algorithm. 

25.2. Suppose that instead of using channels that guarantee delivery of all mes- 
sages in time d, we instead use channels that only guarantee delivery of the 
oldest message within time d. 

(a) Modify the PSynchFD algorithm for use with such a model, trying to 
minimize the resulting time complexity. 

(b) Prove a lower bound on the time complexity of failure detectors for 
this setting. 

25.3. Research Question: Design the most efficient algorithm you can for simulat- 
ing synchronous network algorithms with stopping failures in the partially 
synchronous model. Can you achieve an upper bound of Ld + rd (plus 
low-order terms) on the time required to simulate r rounds? 

25.4. The following alternative strategy can be used to solve the agreement prob- 
lem in a partially synchronous network, in the special case where all inputs 
are assumed to arrive at time 0. 

The processes simulate the EIGStop algorithm of Section 6.2.3 by relaying 
the information they receive as soon as they receive it, recording the values 
in their EIG trees just as before. Each process must determine when it 
has finished recording values in its tree. It does this by ensuring that time 
at least (f + 1)(d + ~) has elapsed. 

Give detailed code for such an algorithm, prove that it works correctly, and 
analyze its time complexity. 
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25.5. Prove the analogue of Theorem 6.33 for the generalized synchronous model 
defined and used in the proof of Theorem 25.6. (Hint: The proof is very 
similar to that of Theorem 6.33.) 

25.6. Fill in the details in the proof of Theorem 25.15. In particular,  prove that 
T(0) - T',  the time for round 0, is O (g2) and for k _> 1, T ( k ) -  T ( k -  1), 
the time for round k, is at most S + O (g2). 

25.7. For an arbi t rary  f ,  0 < f < n, describe a part icular admissible t imed 
execution of PSynchAgreement in which inputs arrive on all ports and 
there are at most f failures, and in which the time until every process fails 
or decides is as long as you can manage. 

25.8. Suppose that instead of using channels that guarantee delivery of all mes- 
sages in time d, we instead use channels that only guarantee delivery of the 
oldest message within time d. Modify the PSynchAgreement algorithm for 
use with such a model, trying to minimize the resulting time complexity. 

25.9. Research Question: Design a more efficient agreement algorithm than 
PSynchAgreement for the partially synchronous model. Can you achieve 
an upper bound of Ld + fd  (plus lower-order terms) on the time? 

25.10. Prove Lemma 25.19. (Hint: Use a chain argument similar to the one 
in the proof of Theorem 6.33. Base it on a subset of the synchronous 
t imed executions that satisfy the t iming constraint  that for every r C H, all 
messages sent at times in the interval [rd, (r + 1)d) are delivered at exactly 
time (r + 1)d. The t imed executions in this subset are similar to executions 
in the synchronous model, and the same sort of chain argument can be 
used.) 

25.11. Research Question: Prove a better lower bound than the one in Theorem 
25.17 for the time to reach agreement in the partially synchronous model. 
Can you achieve a lower bound of Ld + fd? Can you do better? 

25.12. Research Question: Obtain the best upper and lower bounds you can for 
the problem of Byzantine agreement in the partially synchronous model. 

25.13. Research Question: Consider the problem of k-agreement,  as defined in 
Section 21.5, in the partially synchronous network model with f stopping 
failures. Obtain good upper and lower bounds on the time for all nonfaulty 
processes to decide. Can you achieve bounds of approximately Ld + [kd? 
(This bound is suggested by the FloodMin algori thm and Theorem 7.14 for 
the synchronous network setting.) 
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25.14. Prove Theorem 25.23, the impossibility result for the agreement problem 
in a send/receive network with synchronous processes and asynchronous 
channels. (Hint: Show how to simulate an algorithm for this model using 
the asynchronous model, using the Welch Time implementation of logical 
time. The clock values used by the Welch Time algorithm can be main- 
tained by counting steps.) 

25.15. Prove that the agreement problem cannot be solved in the model in which 
time bounds eventually hold, if n _< 2f. 

25.16. Complete the proof of Theorem 25.25. That is, 

(a) Define the clock management strategy precisely. 

(b) State carefully the needed claims about the degree of synchronization 
and the rate of growth. 

(c) Complete the description of algorithm B by describing precisely the 
simulation based on the clock. 

(d) Prove that B guarantees the correctness conditions for the agreement 
problem, with f-failure termination. 

25.17. Analyze the time complexity of the algorithm B you constructed for Exer- 
cise 25.16. 

25.18. Consider the solvability of the agreement problem in the unknown time 
bound model. In this model, we assume lower and upper time bounds gz 
and g2 on process step times, 0 < g l _~ g2 < OO, and an upper bound of d 
on delivery time for each message, but these bounds are "unknown" to the 
processes. (That is, they can be different in different executions, though 
each execution observes fixed bounds throughout.) 

Prove an analogue to Theorem 25.25 for the unknown time bound model. 

25.19. Research Question: Redo the proofs of the time bound results for PSynchFD 
and PSynchAgreement using the simulation methods of Section 23.3.3. 

25.20. Obtain good upper and lower bounds for the time complexity of the session 
problem of Section 16.6, in the partially synchronous network model. 

25.21. Obtain good upper and lower bounds for the time complexity of the problem 
of implementing a snapshot atomic object, as defined in Section 13.3, in the 
partially synchronous shared memory model. (Be sure to describe carefully 
what you are measuring.) 
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25.22. Research Question: Obtain upper and lower bounds for the time complexity 
of other problems of interest in distributed computing, in the partially 
synchronous setting. Look beyond the problems mentioned in this book to 
others that arise in actual communication systems, distributed operating 
systems, and real-time process control systems. You may also want to look 
beyond the specific formulation of the partially synchronous setting used 
in this book. 

25.23. Research Question: Obtain general characterization results describing ex- 
actly what can be computed in partially synchronous systems, and with 
what time complexity, and transformation results relating the power of 
partially synchronous models to that of the synchronous and asynchronous 
models. 
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