

Distributed
Algorithms

The Morgan Kaufmann Series in Data Management Systems
Series Editor, Jim Gray

Distributed Algorithms
Nancy A. Lynch

Object-Relational DBMSs: The Next Great Wave
Michael Stonebraker

Active Database Systems: Triggers and Rules for Advanced Database Processing
Edited by Jennifer Widom and Stefano Ceri

Joe Celko's SQL for Smarties: Advanced SQL Programming
Joe Celko

Migrating Legacy Systems: Gateways, Interfaces, and the Incremental Approach
Michael L. Brodie and Michael Stonebraker

The Object Database Standard: ODMG-93 (Release 1.2)
Edited by R. G. G. Cattell

Database: Principles, Programming, and Performance
Patrick O'Neil

Database Modeling and Design: The Fundamental Principles, Second Edition
Toby J. Teorey

Readings in Database Systems, Second Edition
Edited by Michael Stonebraker

Atomic Transactions
Nancy Lynch, Michael Merritt, William Weihl, and Alan Fekete

Query Processing for Advanced Database Systems
Edited by Johann Christoph Freytag, David Maier, and Gottfried Vossen

Transaction Processing: Concepts and Techniques
Jim Gray and Andreas Reuter

Understanding the New SQL: A Complete Guide
Jim Melton and Alan R. Simon

Building an Object-Oriented Database System: The Story of 02
Edited by Fran(iois Bancilhon, Claude Delobel, and Paris Kanellakis

Database Transaction Models for Advanced Applications
Edited by Ahmed K. Elmagarmid

A Guide to Developing Client/Server SQL Applications
Setrag Khoshafian, Arvola Chan, Anna Wong, and Harry K. T. Wong

The Benchmark Handbook for Database and Transaction Processing Systems, Second Edition
Edited by Jim Gray

Camelot and Avalon: A Distributed Transaction Facility
Edited by Jeffrey L. Eppinger, Lily B. Mummert~ and Alfred Z. Spector

Readings in Object-Oriented Database Systems
Edited by Stanley B. Zdonik and David Maier

Distributed
Algorithms

Nancy A. Lynch

|

Morgan Kaufmann Publishers, Inc.
An Imprint of Elsevier

San Francisco, California

Sponsoring Editors Bruce M. Spatz/Diane D. Cerra
Production Manager Yonie Overton
Production Editor Julie Pabst
Cover Design Ross Carron Design
Cover Photograph Scott Camazine
Copyeditor Sharilyn Hovind
Composition Ed Sznyter, Babel Press
Proofreaders Ken DellaPenta, Jennifer McClain, and Gary Morris
Printer Courier Corporation

Morgan Kaufmann Publishers, Inc.
Editorial and Sales Office
340 Pine Street, Sixth Floor
San Francisco, CA 94104-3205
USA
Telephone 415/392-2665
Facsimile 415/982-2665
Internet mkp@mkp.com
Order toll free 800/745-7323

�9 1996by Morgan Kaufmann Publishers, Inc. An Imprint of Elsevier
All rights reserved
Printed in the United States of America

09 08 07 8 7

No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means--electronic, mechanical, photocopying, recording or other-
wise--without the pior written permission of the publisher.

Permissions may be sought directly from Elsevier's Science and Technology Rights Department in
Oxford, UK. Phone: (44) 1865 843830, Fax: (44) 1865 853333, e-mail: permissions@elsevier.co.uk.
You may also complete your request on-line via the Elsevier homepage: http://www.elsevier.com by
selecting "Customer Support" and then "Obtaining Permissions".

Library of Congress Cataloging-in-Publication Data

Lynch, Nancy A. (Nancy Ann), 1948-
Distributed algorithms / Nancy A. Lynch

p. cm.
Includes bibliographical references and index.
ISBN-13:978-1-55860-348-6 ISBN-10:1-55860-348-4

1. Computer algorithms. 2. Electonic data
processing--Distributed processing I. Title
QA76.9.A43L96 1997
005.2' 76--dc21 97-413 7 5
ISBN- 13: 978-1-55860-348-6
ISBN-10:1-55860-348-4

To Dennis, Patrick, and Mary

This Page Intentionally Left Blank

Content s

P r e f a c e . s i x

1 I n t r o d u c t i o n 1

1.1 T h e S u b j e c t M a t t e r . 1

1.2 O u r V i e w p o i n t . 4

1.3 O v e r v i e w of C h a p t e r s 2 -25 . 6

1.4 B i b l i o g r a p h i c N o t e s . 13

1.5 N o t a t i o n . 14

P a r t I Synchronous Network Algor i thms 1 5

2 Modelling I: Synchronous Network Model 17
2.1 S y n c h r o n o u s N e t w o r k S y s t e m s 17

2.2 Fa i lu res . 19

2.3 I n p u t s and O u t p u t s . 20

2.4 E x e c u t i o n s . 20

2.5 P r o o f M e t h o d s . 21

2.6 C o m p l e x i t y M e a s u r e s . 21

2.7 R a n d o m i z a t i o n . 22

2.8 B i b l i og raph i c N o t e s . 23

3 Leader Election i n a S y n c h r o n o u s R i n g 25

3.1 T h e P r o b l e m . 25

3.2 I m p o s s i b i l i t y R e s u l t for Iden t ica l P r o c e s s e s 27

3.3 A Bas ic A l g o r i t h m . 27

3.4 A n A l g o r i t h m wi th O (n l o g n) C o m m u n i c a t i o n C o m p l e x i t y . . . 31

3.5 N o n - C o m p a r i s o n - B a s e d A l g o r i t h m s 35

3.5.1 T h e TimeSlice A l g o r i t h m 35

3.5.2 T h e VariableSpeeds A l g o r i t h m 36

3.6 Lower B o u n d for C o m p a r i s o n - B a s e d A l g o r i t h m s 38

viii C O N T E N T S

3.7 Lower B o u n d for N o n - C o m p a r i s o n - B a s e d A l g o r i t h m s * 44

3.8 B i b l i o g r a p h i c N o t e s . 46

3.9 E x e r c i s e s . 47

4 A l g o r i t h m s in General Synchronous N e t w o r k s 51

4.1 L e a d e r E lec t ion in a G e n e r a l N e t w o r k 52

4.1.1 T h e P r o b l e m . 52

4.1.2 A S imple F l o o d i n g A l g o r i t h m 52

4.1.3 R e d u c i n g the C o m m u n i c a t i o n C o m p l e x i t y 54

4.2 B r e a d t h - F i r s t Sea rch . 57

4.2.1 T h e P r o b l e m . 57

4.2.2 A Bas ic B r e a d t h - F i r s t Sea rch A l g o r i t h m 58

4.2.3 Appl i ca t ions . 60

4.3 S h o r t e s t P a t h s . 61

4.4 M i n i m u m S p a n n i n g Tree . 63

4.4.1 T h e P r o b l e m . 63

4.4.2 Basic T h e o r y . 64

4.4.3 T h e A l g o r i t h m . 66

4.5 M a x i m a l I n d e p e n d e n t Set . 71

4.5.1 T h e P r o b l e m . 71

4.5.2 A R a n d o m i z e d A l g o r i t h m 71

4.5.3 Ana lys i s* . 74

4.6 B i b l i o g r a p h i c N o t e s . 76

4.7 E x e r c i s e s . 77

5 D i s t r i b u t e d C o n s e n s u s with Link Failures 81
5.1 T h e C o o r d i n a t e d A t t a c k P r o b l e m - - D e t e r m i n i s t i c Vers ion 82

5.2 T h e C o o r d i n a t e d A t t a c k P r o b l e m - - R a n d o m i z e d Vers ion 86

5.2.1 F o r m a l Mode l l i ng . 87

5.2.2 A n A l g o r i t h m . 88

5.2.3 A Lower B o u n d on D i s a g r e e m e n t 93

5.3 B ib l i og raph i c N o t e s . 95

5.4 E x e r c i s e s . 95

6 D i s t r i b u t e d C o n s e n s u s with P r o c e s s Fai lures 9 9

6.1 T h e P r o b l e m . 100

6.2 A l g o r i t h m s for S t o p p i n g Fa i lu res 102

6.2.1 A Bas ic A l g o r i t h m . 103

6.2.2 R e d u c i n g the C o m m u n i c a t i o n 105

6.2.3 E x p o n e n t i a l I n f o r m a t i o n G a t h e r i n g A l g o r i t h m s 108

C O N T E N T S ix

6.2.4 Byzan t ine Agreemen t with Authent ica t ion 115

6.3 Algor i thms for Byzan t ine Fai lures 116

6.3.1 An E x a m p l e . 117

6.3.2 E I G Algor i thm for Byzan t ine Agreemen t 119

6.3.3 Genera l Byzan t ine Agreemen t Using Binary Byzan t ine

Agreemen t . 123

6.3.4 Reduc ing the C o m m u n i c a t i o n Cost 125

6.4 N u m b e r of Processes for Byzan t ine Agreemen t 129

6.5 Byzan t ine Agreemen t in Genera l G r a p h s 135

6.6 Weak Byzan t ine Agreemen t . 139

6.7 N u m b e r of Rounds with Stopping Fai lures 142

6.8 Bibl iographic Notes . 152

6.9 Exerc ises . 153

7 More Consensus Problems 161
7.1 k -Agreemen t . 161

7.1.1 The P r o b l e m . 162

7.1.2 An Algor i thm . 162

7.1.3 Lower Bound* . 164

7.2 Approx imate Agreemen t . 177

7.3 The C o m m i t P r o b l e m . 182

7.3.1 The P r o b l e m . 182

7.3.2 T w o - P h a s e C o m m i t . 184

7.3.3 T h r e e - P h a s e C o m m i t . 185

7.3.4 Lower Bound on the N u m b e r of Messages 189

7.4 Bibl iographic Notes . 192

7.5 Exerc ises . 192

Part II A s y n c h r o n o u s A l g o r i t h m s 1 9 7

8 Modell ing II: Asynchronous System Model 199
8.1 I / O A u t o m a t a . 200

8.2 Opera t ions on A u t o m a t a . 206

8.2.1 Compos i t i on . 207

8.2.2 Hiding . 212

8.3 Fairness . 212

8.4 Inpu ts and O u t p u t s for P rob l ems 215

8.5 Proper t i e s and P roof Methods 216

8.5.1 Invar ian t Asser t ions . 216

x C O N T E N T S

8.5.2 Trace Proper t i es . 216

8.5.3 Safety and Liveness Proper t i es 218

8.5.4 Compos i t iona l Reasoning 221

8.5.5 Hierarchical Proofs . 224

8.6 Complex i ty Measures . 228

8.7 Indis t inguishable Execut ions . 229

8.8 Randomiza t i on . 229

8.9 Bibl iographic Notes . 230

8.10 Exercises . 231

P a r t I I A A s y n c h r o n o u s S h a r e d M e m o r y A l g o r i t h m s 2 3 5

9 M o d e l l i n g I I I" A s y n c h r o n o u s S h a r e d M e m o r y M o d e l 2 3 7

9.1 Shared Memory Systems . 237

9.2 Env i ronm en t Model . 241

9.3 Indis t inguishable States . 244

9.4 Shared Variable Types . 244

9.5 Complex i ty Measures . 250

9.6 Failures . 251

9.7 Randomiza t ion . 251

9.8 Bibl iographic Notes . 251

9.9 Exercises . 252

10 M u t u a l E x c l u s i o n 255

10.1 Asynchronous Shared Memory Model 256

10.2 The P rob lem . 259

10.3 Di jks t ra ' s Mutua l Exclus ion Algor i thm 265

10.3.1 The Algor i thm . 265

10.3.2 A Correc tness Argumen t 269

10.3.3 An Asser t ional P roof of the Mutua l Exclus ion C o n d i t i o n . 272

10.3.4 Running Time . 274

10.4 St ronger Condi t ions for Mutua l Exclus ion Algor i thms 276

10.5 Lockout-Free Mutua l Exclus ion Algor i thms 278

10.5.1 A Two-Process Algor i thm 278

10.5.2 An n-Process Algor i thm 283

10.5.3 T o u r n a m e n t Algor i thm 289

10.6 An Algor i thm Using Single-Writer Shared Registers 294

10.7 The Bakery Algor i thm . 296

10.8 Lower Bound on the Number of Registers 300

C O N T E N T S xi

10.8.1 Basic Facts . 301

10.8.2 Single-Wri ter Shared Variables 302

10.8.3 Mul t i -Wr i te r Shared Variables 302

10.9 Mutua l Exclus ion Using R e a d - M o d i f y - W r i t e Shared Variables . . 309

10.9.1 The Basic P r o b l e m . 310

10.9.2 Bounded Bypass . 311

10.9.3 Lockou t -F reedom . 319

10.9.4 A Simulat ion P roof . 322

10.10 Bibl iographic Notes . 326

10.11 Exerc ises . 327

11 R e s o u r c e A l l o c a t i o n 335

11.1 The P r o b l e m . 336

11.1.1 Explici t Resource Specifications and Exclus ion

Specifications . 336

11.1.2 Resource-Al loca t ion P rob l em 337

11.1.3 Dining Phi losophers P r o b l e m 339

11.1.4 Res t r i c t ed Form of Solutions 341

11.2 Nonexis tence of S y m m e t r i c Dining Phi losophers Algor i thms . . . 341

11.3 Right -Lef t Dining Phi losophers Algor i thm 344

11.3.1 Wai t ing Chains . 344

11.3.2 The Basic Algor i thm . 346

11.3.3 A Genera l iza t ion . 349

11.4 R a n d o m i z e d Dining Phi losophers Algor i thm* 354

11.4.1 The Algor i thm* . 354

11.4.2 Cor rec tness* . 357

11.5 Bibl iographic Notes . 367

11.6 Exerc ises . 367

12 C o n s e n s u s 371

12.1 The P r o b l e m . 372

12.2 Agreemen t Using R e a d / W r i t e Shared M e m o r y 376

12.2.1 Res t r i c t ions . 376

12.2.2 Termino logy . 376

12.2.3 Bivalent Ini t ia l izat ions . 377
12.2.4 Imposs ib i l i ty for Wai t -Free Te rmina t ion 378

12.2.5 Imposs ib i l i ty for Single-Failure Te rmina t ion 383

12.3 Agreemen t Using R e a d - M o d i f y - W r i t e Shared M e m o r y 387

12.4 Other T y p e s of Shared M e m o r y 388

12.5 C o m p u t a b i l i t y in Asynchronous Shared M e m o r y Sys tems* 389

xii C O N T E N T S

12.6 Bibl iographic Notes . 391

12.7 Exercises . 392

13 Atomic Objects 3 9 7

13.1 Definitions and Basic Resul ts . 398

13.1.1 Atomic Objec t Definit ion 398

13.1.2 A Canonical Wai t -Free Atomic Objec t A u t o m a t o n 408

13.1.3 Compos i t i on of Atomic Objec ts 411

13.1.4 Atomic Objec ts versus Shared Variables 411

13.1.5 A Sufficient Condi t ion for Showing Atomic i ty 419

13.2 Implement ing Read-Modi fy -Wr i t e Atomic Objec ts in Terms

of R e a d / W r i t e Variables . 420

13.3 Atomic Snapshots of Shared Memory 421

13.3.1 The P rob lem . 422

13.3.2 An Algor i thm with Unbounded Variables 423

13.3.3 An Algor i thm with Bounded Variables* 428

13.4 R e a d / W r i t e Atomic Objec ts . 434

13.4.1 The P rob lem . 434

13.4.2 Another L e m m a for Showing Atomic i ty 434

13.4.3 An Algor i thm with Unbounded Variables 436

13.4.4 A Bounded Algor i thm for Two Wri ters 440

13.4.5 An Algor i thm Using Snapshots 447

13.5 Bibl iographic Notes . 449

13.6 Exercises . 450

Part IIB Asynchronous Network Algor i thms 4 5 5

14 Modelling IV: Asynchronous Network Model 457
14.1 Send /Rece ive Systems . 457

14.1.1 Processes . 458

14.1.2 Send /Rece ive Channels 458

14.1.3 Asynchronous Send /Rece ive Systems 464

14.1.4 Proper t ies of Send /Rece ive Systems with Reliable F I F O

Channels . 464

14.1.5 Complex i ty Measures . 466

14.2 Broadcas t Systems . 466

14.2.1 Processes . 466

14.2.2 Broadcas t Channel . 467

14.2.3 Asynchronous Broadcas t Systems 468

CONTENTS xiii

14.2.4 P rope r t i e s of Broadcas t Sys tems wi th Reliable Broadcas t

Channe ls . 468

14.2.5 Complex i ty Measures . 469

14.3 Mul t icas t Sys tems . 469

14.3.1 Processes . 469

14.3.2 Mul t icas t Channe l . 470

14.3.3 Asynchronous Mul t icas t Sys tems 471

14.4 Bibl iographic Notes . 471

14.5 Exercises . 471

15 Basic Asynchronous Network Algorithms 475
15.1 Leader Elect ion in a Ring . 475

15.1.1 The LCR Algor i thm . 476

15.1.2 The HS Algor i thm . 482

15.1.3 The Pe te r son Leader -Elec t ion Algor i thm 482

15.1.4 A Lower Bound on C o m m u n i c a t i o n Complex i ty 486

15.2 Leader Elect ion in an A r b i t r a r y Network 495

15.3 Spann ing Tree Cons t ruc t ion , Broadcas t and Convergecas t 496

15.4 B r e a d t h - F i r s t Search and Shor tes t P a t h s 501

15.5 M i n i m u m Spanning Tree . 509

15.5.1 P r o b l e m S t a t e m e n t . 509

15.5.2 The Synchronous Algor i thm: Review 510

15.5.3 The GHS Algor i thm: Out l ine 511

15.5.4 In More Detai l . 513

15.5.5 Specific Messages . 517

15.5.6 Complex i ty Analysis . 519

15.5.7 Prov ing Correc tness for the GHS Algor i thm 521

15.5.8 A Simpler "Synchronous" S t r a t egy 522

15.5.9 Appl ica t ion to Leader Elect ion 523

15.6 Bibl iographic Notes . 523

15.7 Exercises . 524

16 Synchronizers 531
16.1 The P r o b l e m . 532

16.2 The Local Synchronizer . 535

16.3 The Safe Synchronizer . 541

16.3.1 F r o n t - E n d A u t o m a t a . 542

16.3.2 Channe l A u t o m a t a . 544

16.3.3 The Safe Synchronizer . 544

16.3.4 Correc tness . 545

xiv C O N T E N T S

16.4 Safe Synchronizer Implementa t ions 546

16.4.1 Synchronizer A l p h a . 546

16.4.2 Synchronizer B e t a . 547

16.4.3 Synchronizer G a m m a . 548

16.5 Applicat ions . 553

16.5.1 Leader Election . 553

16.5.2 Bread th -F i r s t Search . 554

16.5.3 Shortest Pa ths . 554

16.5.4 Broadcast and Acknowledgment 555

16.5.5 Maximal Independent Set 555

16.6 Lower Bound on Time . 555

16.7 Bibliographic Notes . 560

16.8 Exercises . 560

17 S h a r e d M e m o r y v e r s u s N e t w o r k s 565
17.1 Transformat ions from the Shared Memory Model to the Network

Model . 566

17.1.1 The Problem . 566

17.1.2 Strategies Assuming No Failures 567

17.1.3 An Algor i thm Tolerat ing Process Failures 575

17.1.4 An Impossibi l i ty Result for ~ Failures 580
17.2 Transformat ions from the Network Model to the Shared Memory

Model . 582

17.2.1 Send/Receive Systems . 583

17.2.2 Broadcast Systems . 585

17.2.3 Impossibi l i ty of Agreement in Asynchronous N e t w o r k s . . 586

17.3 Bibliographic Notes . 586

17.4 Exercises . 587

18 Logical T i m e 591
18.1 Logical Time for Asynchronous Networks 591

18.1.1 Send/Receive Systems . 592

18.1.2 Broadcast Systems . 594

18.2 Adding Logical Time to Asynchronous Algor i thms 596

18.2.1 Advancing the Clock . 597

18.2.2 Delaying Future Events 598

18.3 Applicat ions . 600

18.3.1 Banking System . 600

18.3.2 Global Snapshots . 604

18.3.3 Simulat ing a Single State Machine 606

CONTENTS xv

18.4 T rans fo rming R e a l - T i m e Algo r i t hms to Log ica l -T ime Algo r i t hms* 610

18.5 Bib l iographic Notes . 612

18.6 Exercises . 612

19 Global S n a p s h o t s and Stable Proper t i e s 617
19.1 T e r m i n a t i o n - D e t e c t i o n for Diffusing A lgo r i t hms 618

19.1.1 The P r o b l e m . 618

19.1.2 The DijkstraScholten A l g o r i t h m 619

19.2 Cons i s t en t Global Snapsho t s . 625

19.2.1 The P r o b l e m . 625

19.2.2 The ChandyLamport A l g o r i t h m 627

19.2.3 Appl ica t ions . 632

19.3 Bib l iographic Notes . 636

19.4 Exercises . 637

20 N e t w o r k Resource Al locat ion 641
20.1 M u t u a l Exclus ion . 641

20.1.1 The P r o b l e m . 641

20.1.2 S imula t ing Shared M e m o r y 643

20.1.3 C i rcu la t ing Token A l g o r i t h m 643

20.1.4 An A l g o r i t h m Based on Logical T i m e 646

20.1.5 I m p r o v e m e n t s to the LogicaITimeME A l g o r i t h m 649

20.2 Genera l Resource Al loca t ion . 653

20.2.1 The P r o b l e m . 653

20.2.2 Color ing A l g o r i t h m . 654

20.2.3 A lgo r i t hms Based on Logical T i m e 655

20.2.4 Acyclic D ig raph A l g o r i t h m 656

20.2.5 Dr ink ing Ph i losophers* 658

20.3 Bib l iographic Notes . 665

20.4 Exercises . 665

21 A s y n c h r o n o u s N e t w o r k s wi th Process Failures 669
21.1 T h e Ne twork Model . 670

21.2 Imposs ib i l i ty of A g r e e m e n t in the Presence of Fau l t s 671

21.3 A R a n d o m i z e d A l g o r i t h m . 672

21.4 Fai lure De tec to r s . 677

21.5 k - A g r e e m e n t . 681

21.6 A p p r o x i m a t e A g r e e m e n t . 682

21.7 C o m p u t a b i l i t y in Asynch ronous Networks* 684

21.8 Bib l iographic Notes . 685

21.9 Exercises . 686

xvi C O N T E N T S

22 Data Link Protocols 691
22.1 T h e P r o b l e m . 692

22.2 S t e n n i n g ' s P r o t o c o l . 693

22.3 A l t e r n a t i n g Bi t P r o t o c o l . 697

22.4 B o u n d e d Tag P r o t o c o l s To l e r a t i ng R e o r d e r i n g 703

22.4.1 I m p o s s i b i l i t y Resu l t for R e o r d e r i n g and D u p l i c a t i o n . . . 704

22.4.2 A B o u n d e d Tag P r o t o c o l To l e r a t i ng Loss a n d R e o r d e r i n g 706

22.4.3 N o n e x i s t e n c e of Efficient P r o t o c o l s To l e r a t i ng Loss and

R e o r d e r i n g . 712

22.5 To le r a t i ng C r a s h e s . 715

22.5.1 A S imple I m p o s s i b i l i t y R e s u l t 716

22.5.2 A H a r d e r I m p o s s i b i l i t y Re s u l t 718

22.5.3 A P r a c t i c a l P r o t o c o l . 721

22.6 B i b l i og raph i c N o t e s . 728

22.7 Exe rc i s e s . 729

Part III Partial ly Synchronous Algor i thms 733

23 Partially Synchronous System Models 735
23.1 M M T T i m e d A u t o m a t a . 736

23.1.1 Bas ic Def in i t ions . 736

23.1.2 O p e r a t i o n s . 741

23.2 G e n e r a l T i m e d A u t o m a t a . 744

23.2.1 Basic Def in i t ions . 745

23.2.2 T r a n s f o r m i n g M M T A u t o m a t a in to G e n e r a l T i m e d

A u t o m a t a . 751

23.2.3 O p e r a t i o n s . 754

23.3 P r o p e r t i e s and P r o o f M e t h o d s 756

23.3.1 I n v a r i a n t A s s e r t i o n s . 757
23.3.2 T i m e d Trace P r o p e r t i e s 759

23.3.3 S imu la t i ons . 760

23.4 Mode l l i ng S h a r e d M e m o r y an d N e t w o r k S y s t e m s 768

23.4.1 S h a r e d M e m o r y S y s t e m s 768

23.4.2 N e t w o r k s . 768

23.5 B i b l i o g r a p h i c N o t e s . 769

23.6 Exe rc i s e s . 770

CONTENTS xvii

24 M u t u a l E x c l u s i o n w i t h P a r t i a l S y n c h r o n y 773

24.1 The P r o b l e m . 773

24.2 A Single-Regis ter A lgo r i thm . 774
24.3 Resi l ience to T i m i n g Fai lures . 784

24.4 Imposs ib i l i ty Resul t s . 788

24.4.1 A Lower Bound on the T ime 788

24.4.2 Imposs ib i l i ty Resul t for Even tua l T ime Bounds* 789

24.5 Bibl iographic Notes . 790

24.6 Exerc ises . 791

25 C o n s e n s u s w i t h P a r t i a l S y n c h r o n y 795

25.1 The P r o b l e m . 795

25.2 A Fai lure De tec to r . 796

25.3 Basic Resul t s . 798

25.3.1 Upper Bound . 798

25.3.2 Lower Bound . 801

25.4 An Efficient A lgo r i thm . 803

25.4.1 The Algor i thm . 803

25.4.2 Safety Proper t i e s . 805

25.4.3 Liveness and Complex i ty 806

25.5 A Lower Bound Involving the T iming Unce r t a in ty* 810

25.6 Other Resul t s* . 818

25.6.1 Synchronous Processes , Asynchronous Channels* 818

25.6.2 Asynchronous Processes , Synchronous Channels* 819

25.6.3 Even tua l T ime Bounds* 819

25.7 Pos t sc r ip t . 823

25.8 Bibl iographic Notes . 823

25.9 Exerc ises . 824

Bibliography 829

I n d e x 8 5 7

This Page Intentionally Left Blank

Preface

Distributed algorithms are algorithms designed to run on hardware consisting
of many interconnected processors. Pieces of a distributed algorithm run con-
currently and independently, each with only a limited amount of information.
The algorithms are supposed to work correctly, even if the individual processors
and communication channels operate at different speeds and even if some of the
components fail.

Distributed algorithms arise in a wide range of applications, including telecom-
munications, distributed information processing, scientific computing, and real-
time process control. For example, today's telephone systems, airline reservation
systems, banking systems, global information systems, weather prediction sys-
tems, and aircraft and nuclear power plant control systems all depend critically
on distributed algorithms. Obviously, it is important that the algorithms run
correctly and efficiently. However, because the settings in which they run are so
complicated, the design of such algorithms can be an extremely difficult task.

This book contains a comprehensive introduction to the field of distributed
algorithms--a collection of the most significant algorithms and impossibility re-
sults, all presented in a simple automata-theoretic setting. Mathematical proofs
are given (or at least sketched) for virtually all of the results. Algorithms are
analyzed according to precisely defined complexity measures. Altogether, this
material provides an excellent foundation for a deep understanding of distributed
algorithms.

This book has been written with several audiences in mind. First, it is orga-
nized as a textbook for a first-year graduate computer science course, especially
for students interested in computer systems, theory, or both. It can also be used
as a text for a short course for designers of distributed systems. Finally, it is
intended as a reference manual for designers, students, researchers, and anyone
else interested in the field.

The book contains algorithms for many typical problems, including problems
of consensus, communication, resource allocation, and synchronization, in several
different system settings. The algorithms and results are organized according to

xx PREFACE

basic assumptions about the distributed setting. The first level of organization
is according to the timing model--synchronous, asynchronous, or partially syn-
chronous--and the second level is according to the interprocess communication
mechanism--shared memory or message passing. Several chapters are devoted
to each type of system model; the first chapter in each group presents a formal
model for that type of system, while the rest of the chapters contain the algo-
rithms and impossibility results. Throughout, the presentation is rigorous, yet
it is firmly grounded in intuition.

Because this field is so large and active, this book does not attempt to cover
everything. The results that are included have been selected because they are
the most fundamental. These are not always the optimal results, in terms of the
complexity measures; they are generally those that are simple and that illustrate
important general methods of design or reasoning.

This book will make you familiar with many of the most important problems,
algorithms, and impossibility results in the area of distributed computing. You
will be able to recognize the problems when they arise in practical settings,
apply algorithms like the ones contained here to solve them, and invoke the
impossibility results to argue that the problems are not solvable. The book will
also give you a good feeling for the various system models and their capabilities,
so that youcan design new algorithms yourself (or even prove new impossibility
results). Finally, this book should convince you that it is feasible to reason
carefully about distributed algorithms and systems: to model them formally,
give precise specifications for their required behavior, prove rigorously that they
satisfy their specifications, identify appropriate complexity measures, and analyze
them according to these measures.

Using this Book

P r e r e q u i s i t e s . The only prerequisites for reading the book are knowledge
of basic college-level discrete mathematics (including mathematical induction
and asymptotic analysis), some programming skill, and reasonable familiarity
with computer systems. The sections about randomized algorithms also require
knowledge of basic probability. An undergraduate-level course about sequential
algorithms and their analysis is helpful, but not necessary.

C h a p t e r dependenc i e s . This book has been designed so that the material
using the different models can be read fairly independently. An outline of signifi-
cant chapter dependencies is presented in Figure A. For example, if you prefer to
move quickly to the material on asynchronous networks, you can skip Chapters

PREFACE xxi

F i g u r e A" Chapter dependencies.

5-7. You can also read a good part of the algorithm chapters without reading

the modelling chapters on which they are formally dependent.

S t a r r e d s ec t i ons . This book contains several sections whose titles are starred
in the table of contents. These sections contain material that is less fundamental
or more advanced than the other sections. You can omit these sections on a first
reading without much harm.

C o u r s e s . Prel iminary versions of this book have been used for many years in
an introductory graduate-level course at MIT, and for three years in a summer
course for system designers in computer software and applications companies.
This book contains enough material for a one-year course, so you will have to
select material for shorter courses (but watch the chapter dependencies).

xxii PREFACE

For example, in a one-semester course emphasizing asynchronous network
computing, you could cover Chapters 3, 4, 6, 7.2, 12, and 14-21, referring to
material from the modelling chapters (Chapters 2, 8, and 9) and filling in a few
definitions from Chapters 10, 11, and 13 as needed. In a one-semester course
emphasizing a thorough study of distributed consensus, you could cover Chapters
2-9, 12, 13.1, 15, 17, 21, 23, and 25. There are many other possibilities. If you
yourself are a researcher in this area, then you might want to supplement this
book as a course text with more advanced or specialized results from the research
literature in your favorite area.

In a one-week or two-week short course for system designers, you could cover
the highlights of all the chapters, discussing key results and key proof ideas at a
high level instead of presenting a lot of detail.

E r ro r s . I would appreciate hearing about any errors that you find in the book,
as well as receiving any other constructive suggestions you may have. Sugges-
tions for additional problems would be especially welcome. Please email your
comments to distalgs@theory.lcs.mit.edu.

Acknowledgments

It is impossible to acknowledge all the people who contributed to the production
of this book, since it is the product of many years of teaching and research,
involving interactions with many, many students and research colleagues. I will
try, though.

The book is the final version of the lecture notes for MIT's graduate course
6.852. The students in the many passes through this course suffered through my
early attempts to organize the material. The students were especially helpful in
1990 and 1992, when they helped to prepare on-line versions of the lecture notes.
Course teaching assistants Ken Goldman, Isaac Saias, and Boaz Patt-Shamir
helped immensely in developing the notes. Jennifer Welch and Rainer Gawlick
also helped out as teaching assistants during other passes through the course.

Many students and colleagues contributed to my own understanding of the
material by working with me on some of the results that appear here or by
discussing other people's work. These include Yehuda Afek, Eshrat Arjomandi,
Hagit Attiya, Baruch Awerbuch, Bard Bloom, Alan Borodin, James Burns, Soma
Chaudhuri, Brian Coan, Harish Devarajan, Danny Dolev, Cynthia Dwork, Alan
Fekete, Michael Fischer, Greg Frederickson, Eli Gafni, Rainer Gawlick, Ken
Goldman, Art Harvey, Maurice Herlihy, Paul Jackson, Jon Kleinberg, Leslie
Lamport, Butler Lampson, Victor Luchangco, Yishay Mansour, Michael Merritt,

PREFACE xxiii

Michael Paterson, Boaz Patt-Shamir, Gary Peterson, Shlomit Pinter, Stephen
Ponzio, Isaac Saias, Russel Schaffer, Roberto Segala, Nir Shavit, Liuba Shrira,
JOrgen Sogaard-Andersen, Eugene Stark, Larry Stockmeyer, Mark Tuttle, Frits
Vaandrager, George Varghese, Bill Weihl, Jennifer Welch, and Lenore Zuck. Two
of these people deserve special credit: my mentor Michael Fischer, for starting
work with me in 1978 on what was then a small but promising-looking research
area, and my student Mark Turtle, whose M.S. thesis work defined and developed
the I/O automaton model.

I would also like to thank Ajoy Datta, Roberto De Prisco, Alan Fekete, Faith
Fich, Rainer Gawlick, Shai Halevi, Jon Kleinberg, Richard Ladner, John Leo,
Victor Luchangco, Michael Melliar-Smith, Michael Merritt, Daniele Micciancio,
Boaz Patt-Shamir, Anya Pogosyants, Stephen Ponzio, Sergio Rajsbaum, Roberto
Segala, Nir Shavit, Mark Smith, Larry Stockmeyer, Mark Turtle, George Vargh-
ese, Jennifer Welch, and Lenore Zuck for reading portions of drafts of the book
and contributing many useful comments. Ajoy, Faith, and George, especially,
suffered through the effort of teaching their classes from early versions of the
book and provided many suggestions. And I want to thank Joanne Talbot for
her tireless work on formatting, drawing diagrams, preparing the bibliography,
making endless copies, and more. David Jones helped with some of the format-
ting. I also thank John Guttag, Paul Penfield, and others in the MIT EECS
Department for arranging for me to have the free time that I needed to write.
Bruce Spatz at Morgan Kaufmann was, once again, encouraging and helpful to
me in this daunting endeavor. He always seemed to provide exactly the right
suggestions. And Julie Pabst and Diane Cerra at Morgan Kaufmann helped
immensely in the final stages of production. Thanks also to Ed Sznyter of Babel
Press for his I~TEX expertise.

Last and most of all, I want to thank my unboundedly patient family, Dennis,
Patrick, and Mary Lynch, for tolerating all my work on this book and taking
care of absolutely everything else in the meantime. Thanks especially to Dennis
for cooking all those excellent seafood dinners (not to mention renovating both
the bathroom and the laundry room) while I spent all my time at my computer!

Nancy A. Lynch
Cambridge, Massachusetts

This Page Intentionally Left Blank

Chapter 1

In troduc t ion

1.1 The Subject Matter

The term distributed algorithms covers a large variety of concurrent algorithms
used for a wide range of applications. Originally, this term was used to refer
to algorithms that were designed to run on many processors "distributed" over
a large geographical area. But over the years, the usage of this term has been
broadened, so that it now includes algorithms that run on local area networks and
even algorithms for shared memory multiprocessors. This has happened because
it has become recognized that the algorithms used in these various settings have
a great deal in common.

Distributed algorithms arise in many applications, including telecommuni-
cations, distributed information processing, scientific computing, and real-time
process control. An important part of the job of building a system for any of
these applications is the design, implementation, and analysis of distributed al-
gorithms. The algorithms that arise, and the problems that they are designed to
solve, form the subject matter of the field of study covered in this book.

There are many different kinds of distributed algorithms. Some of the at-
tr ibutes by which they differ include

�9 The interprocess communication (IPC) method: Distributed algorithms
run on a collection of processors, which need to communicate somehow.
Some common methods of communication include accessing shared mem-
ory, sending point-to-point or broadcast messages (either over a long dis-
tance or local area network), and executing remote procedure calls.

�9 The timing model: Several different assumptions can be made about the
timing of events in the system, reflecting the different types of timing in-
formation that might be used by algorithms. At one extreme, processors

2 1. INTRODUCTION

can be completely synchronous, performing communication and compu-
tation in perfect lock-step synchrony. At the other extreme, they can be
completely asynchronous, taking steps at arbitrary speeds and in arbitrary
orders. In between, there are a wide range of possible assumptions that
can be grouped together under the designation partially synchronous; in
all of these cases, processors have partial information about the timing of
events. For example, processors might have bounds on their relative speeds
or might have access to approximately synchronized clocks.

The failure model: The hardware upon which an algorithm runs might be
assumed to be completely reliable. Or, the algorithm might need to tolerate
some limited amount of faulty behavior. Such faulty behavior can include
processor failures: processors might just stop, with or without warning;
might fail transiently; or might exhibit more severe Byzantine failures,
where a failed processor can behave arbitrarily. Faulty behavior can also
include failures of the communication mechanisms, including message loss
or duplication.

The problems addressed: Of course, the algorithms also differ in the prob-
lems that they are supposed to solve. The typical problems that are con-
sidered are those that arise in the application areas mentioned above. They
include problems of resource allocation, communication, consensus among
distributed processors, database concurrency control, deadlock detection,
global snapshots, synchronization, and implementation of various types of
objects.

Some kinds of concurrent algorithms, such as Parallel Random Access Ma-
chine (PRAM) algorithms and algorithms for fixed-connection networks (for ex-
ample, arrays, trees, and hypercubes), are not covered in this book. The al-
gorithms presented here are distinguished within the larger class of concurrent
algorithms by having a higher degree of uncertainty and more independence of
activities. Some of the types of uncertainty and independence that the algorithms
in this book must contend with include

�9 unknown number of processors

�9 unknown network topology

�9 independent inputs at different locations

�9 several programs executing at once, starting at different times, and oper-
ating at different speeds

1.1. THE SUBJECT M A T T E R 3

�9 processor nondeterminism

�9 uncertain message delivery times

�9 unknown message ordering

�9 processor and communication failures

Fortunately, not every algorithm has to contend with all of these types of un-
certainty!

Because of all this uncertainty, the behavior of distributed algorithms is often
quite difficult to understand. Even though the code for an algorithm may be
short, the fact that many processors execute the code in parallel, with steps
interleaved in some undetermined way, implies that there are many different
ways in which the algorithm can behave, even for the same inputs. Thus, it
is generally impossible to understand the algorithm by predicting exactly how
it will execute. This can be contrasted with other kinds of parallel algorithms
such as PRAM algorithms, for which we can often predict exactly what the
algorithm will do at every point in time. For a distributed algorithm, instead of
understanding everything about its behavior, the best that we usually can do is
to understand certain selected properties of its behavior.

The study of distributed algorithms has developed over the past 15 years
into a fairly coherent field. The general style of work in this field is more or less
as follows. First, problems of significance in practical distributed computing are
identified, and abstract versions of these problems, suitable for mathematical
study, are defined. Then, algorithms that solve the problems are developed.
These are described precisely and proved to solve the stated problems, and
their complexity, according to various measures, is analyzed. Designers of such
algorithms typically try to minimize their complexity. Also, impossibility results
and lower bounds are proved, demonstrating limitations on what problems can
be solved and with what costs. Underlying all of this work are mathematical
models for distributed systems.

These results comprise a very interesting mathematical theory. But they
are more than a mathematical theory: the problem statements can be used to
formulate specifications for portions of real systems, the algorithms can (in many
cases) be engineered for practical use, and the impossibility results can help to
tell designers when to stop trying to build something. All of these results, as well
as the underlying mathematical models, can provide designers with assistance
in understanding the systems they build.

4 1. I N T R O D U C T I O N

1.2 Our Viewpoint

This book contains a study of the field of distributed algorithms. Because this
field is so large and active, we cannot give an exhaustive study. Since we have
had to select, we have tried to choose the most fundamental results in the area,
both theoretically and practically speaking. These are not always the optimal
results in terms of the complexity measures; instead, we have favored those that
are simple and that illustrate important general methods of design or reasoning.
The results we present involve a small number of problems that are typical of
this area, including leader election, network searching, spanning tree construc-
tion, distributed consensus, mutual exclusion, resource allocation, construction
of objects, synchronization, global snapshots, and reliable communication. These
problems recur in many different applications. We consider the same problems
in several different system models.

One feature of this book is that we present all the algorithms, impossibility
results, and lower bounds in terms of a more or less unified formal framework.
This framework consists of a small number of formal, automata-theoretic models
for various types of distributed systems, together with some standard ways of
reasoning about systems using the models. Our framework is automata-theoretic,
rather than being based on any particular formal language or formal proof logic;
this allows us to present results in terms of basic set-theoretic mathematics with-
out worrying too much about language details. It also allows flexibility, in that
a variety of languages and logics could be used to describe and reason about
algorithms in the same framework. Using a formal framework permits a rigorous
treatment of all the results.

Some more remarks about rigor are in order. A rigorous treatment is espe-
cially important in the area of distributed algorithms because of the many subtle
complications that arise. Without such care, it is difficult to avoid mistakes.
However, it is not clear how we could make a completely rigorous presentation
both reasonably short and intuitively understandable. In this book, we compro-
mise and use a mixture of intuitive and rigorous reasoning. Namely, we give
precise descriptions of appropriate formal models. We sometimes give precise
descriptions of algorithms in terms of the formal models, sometimes English de-
scriptions, and sometimes both. The degree of rigor in correctness arguments for
algorithms varies greatly: sometimes we give rather formal proofs and sometimes
only intuitive sketches. We hope, however, that we have provided enough tools
for you to expand our intuitive sketches into formal proofs when you want to.
We generally present impossibility arguments rather rigorously, in terms of the
formal models.

Because there are so many different settings and problems to consider, it

1.2. 0 UR VIE WP O IN T 5

is not obvious how best to organize the presentation of the material. We have
chosen to organize it primarily according to the formal models-- in particular,
according to those aspects of the models that seem to make the most difference
in the results, and secondarily by abstract problem statements. The deepest
distinctions among the models seem to be based on timing assumptions, but
IPC mechanisms and failure assumptions are also important factors.

The timing models we consider are the following.

The synchronous model: This is the simplest model to describe, to pro-
gram, and to reason about. We assume that components take steps si-
multaneously, that is, that execution proceeds in synchronous rounds. Of
course, this is not what actually happens in most distributed systems, but
the synchronous model can be useful anyway. Understanding how to solve
a problem in the synchronous model is often a useful intermediate step
toward understanding how to solve it in more realistic models. For exam-
ple, it is sometimes possible for a real distributed system to "simulate" a
synchronous system. Also, impossibility results for the synchronous model
carry over directly to less well-behaved models. On the other hand, it is ira-
possible or inefficient to implement the synchronous model in many types
of distributed systems.

The asynchronous model: Here we assume that the separate components
take steps in an arbitrary order, at arbitrary relative speeds. This model
is also reasonably simple to describe, although there are a few subtleties,
mainly involving liveness considerations. It is harder to program than the
synchronous model because of the extra uncertainty in the order of events.
However, the asynchronous model does allow the programmer to ignore
specific timing considerations. Since the asynchronous model assumes less
about time than is guaranteed by typical distributed systems, algorithms
designed for the asynchronous model are general and portable: they are
guaranteed to run correctly in networks with arbitrary timing guarantees.
On the other hand, the asynchronous model sometimes does not provide
enough power to solve problems emciently, or even to solve them at all.

The partially synchronous (timing-based) model: Here we assume some re-
strictions on the relative timing of events, but execution is not completely
lock-step as it is in the synchronous model. These models are the most
realistic, but they are also the most difficult to program. Algorithms de-
signed using knowledge of the timing of events can be efficient, but they can
also be fragile in that they will not run correctly if the timing assumptions
are violated.

6 1. I N T R O D U C T I O N

The next basis we use for classification is the IPC mechanism. In this book,
we consider both shared memory and message passing. We present the shared
memory model first, because it is more powerful and simpler to understand,
and because many of the techniques and results for the shared memory setting
can be adapted for use in the network setting. Next, we organize the material
according to the problem studied. And finally, we study many of the problems
under different failure assumptions. You should see, as we present the same
problems in a variety of different models, that apparently minor differences in
assumptions can make a big difference in the results. We have tried to identify
and highlight such differences.

We have tried to make our presentation as modular as possible by composing
algorithms to obtain other algorithms, by developing algorithms using levels of
abstraction, and by transforming algorithms for one model into algorithms for
other models. This helps greatly to reduce the complexity of the ideas and allows
us to accomplish more with less work. The same kinds of modularity can serve
the same purposes in practical distributed system design.

1.3 Overv iew of Chapters 2 -25

The specific topics that this book covers are as follows.

M o d e l s and p r o o f m e t h o d s . The material on formal models and proof meth-
ods is presented in separate chapters--Chapters 2, 8, 9, 14, and 23--heading the
major subdivisions of the book (synchronous network algorithms, asynchronous
shared memory algorithms, asynchronous network algorithms, and partially syn-
chronous algorithms). This material is isolated into separate chapters for easy
reference. You may prefer to skip some of the modelling material on the first
reading, returning to it as needed for understanding the material in the suc-
ceeding "algorithm chapters." We have tried to construct the book so that the
algorithm chapters can be read, and mostly understood, without too much formal
modelling work.

The models we use are all based on state machines, often having an infinite
number of states and usually having explicit names associated with their transi-
tions. A state machine can be used to model either a component of a distributed
system or an entire distributed system. Each state of the machine represents an
instantaneous snapshot of the component or system, including such information
as the state of the memory of each processor, the program counter for each run-
ning program, and the messages that are in transit in the communication system.
The transitions describe changes that occur in the system, such as the sending

1.3. O V E R V I E W OF CHAPTERS 2-25 7

or receipt of a message, or the changes caused by some local computation. We
present separate state machine models for synchronous networks, asynchronous
systems, and timing-based systems.

One important use of a formal model for distributed systems is as a basis for
specification of the problems to be solved and verification of algorithm correct-
ness. Such specification and verification can be done using many stylized and ad
hoc methods. However, certain methods are used so frequently that we describe
them explicitly in the modelling chapters. These include the method of invariant
assertions and the method of simulations. An invariant assertion is a property
that is true of all reachable states of a system. Assertions are generally proved
by induction on the number of steps in a system execution. A simulation is a
formal relationship between a pair of systems, one representing the problem to
be solved and another representing the solution, or one representing a high-level,
abstract solution and another a detailed solution. Simulation relationships are
also generally proved using induction.

Chapter 2 contains the first model, for synchronous networks. It is a very
simple model that just describes synchronized rounds of message exchange and
computation. Chapter 8 contains a general model for asynchronous systems,
the input/output automaton (I//O automaton) model. The name of the model
refers to its explicit distinction between input and output transitions, that is,
those communicated to the system by its environment and those communicated
to the environment by the system. In an I /O automaton, several transitions may
be possible from any given state; for example, transitions involving different
processors may be performed in any order. Since the model allows so much
flexibility in the order of transitions, a notion of liveness is included, allowing
us to express the notion that certain transitions must eventually happen. A
useful feature of this model is that it has a parallel composition operation, which
allows a combination of system components modelled as I /O automata also to be
modelled as an I /O automaton. Often, the correctness of a composed automaton
can be proved in a modular fashion, based on proofs of the correctness of its
components.

The model in Chapter 8 is general enough to describe both asynchronous
shared memory systems and asynchronous networks (as well as many other types
of asynchronous systems); Chapters 9 and 14 contain the additional structure
needed to tailor the model for shared memory systems and message-passing
systems, respectively.

Finally, in Chapter 23, we present models for timing-based systems. These
models are, once again, state machines, but this time the states include infor-
mation about timing, such as the current time and scheduled times for various

8 1. I N T R O D U C T I O N

events. These models allow us to describe typical constructs for timing-based
systems, such as local clocks and timeouts.

Synchronous network algorithms. The simplest model that we consider
(that is, the one with the least uncertainty) is the synchronous network model, in
which all the processors communicate and compute in synchronous rounds. We
do not consider synchronous shared memory algorithms, since these constitute a
large subject of study in their own right (see the Bibliographic Notes at the end
of this chapter). In the network setting we assume that the processors are located
at the nodes of a graph or digraph, G, and communicate with their neighbors
using messages sent along the edges of G.

In Chapters 3-7, we consider several typical distributed problems in syn-
chronous networks. In Chapter 3, we begin with a simple example involving
computation in ring networks. The problem is to elect a unique leader in a
ring network, assuming that the processors at the nodes are identical except for
unique identifiers (UIDs). The main uncertainty here is that the set of UIDs ac-
tually possessed by the processors is unknown (although it is known that no two
processors have the same UID); in addition, the size of the network is usually
unknown. The main application for this problem is a local area ring network
that operates as a token ring, in which there is always supposed to be a single
token circulating, giving its current owner the sole right to initiate communi-
cation. Sometimes, however, the token gets lost, and it becomes necessary for
the processors to execute an algorithm to regenerate the missing token. This
regeneration procedure amounts to electing a leader. We present some basic
complexity-theoretic results about the leader-election problem. In particular, we
prove bounds for the time and the amount of communication (i.e., the number of
messages) that are required.

Next, in Chapter 4, we give a brief survey of basic algorithms used in more
general networks. Specifically, we describe some algorithms used to solve such
fundamental problems as electing a leader, conducting a breadth-first search, find-
ing shortest paths, finding a minimum spanning tree, and finding a maximal in-
dependent set of nodes. Typical forms of uncertainty here are unknown UIDs
and an unknown network graph.

Then, in Chapters 5 and 6, we consider problems of reaching consensus in
a distributed network. These are problems in which a collection of distributed
processors are required to reach a common decision, even if there are initial
differences of opinion about what that decision ought to be. Many different
consensus problems arise in practice: for example, the processors could be mon-
itoring separate altimeters on board an aircraft and could be attempting to reach
agreement about the altitude. Or the processors could be carrying out separate

1.3. O V E R V I E W OF C H A P T E R S 2-25 9

fault diagnosis procedures for some other system component and could be at-
tempting to combine their individual diagnoses into a common decision about
whether or not to replace the component.

The uncertainty that we consider here stems not only from differences in
initial opinions, but also from failures, either of links or of processors. In Chapter
5, we consider the case where links can fail by losing messages. In Chapter 6,
we consider two different types of processor failures: stopping failures, where
faulty processors can, at some point, just stop executing their local protocols,
and Byzantine failures, where faulty processors can exhibit completely arbitrary
behavior (subject to the limitation that they cannot corrupt portions of the system
to which they have no access). We present bounds on the number of tolerable
faults, on the time, and on the amount of communication.

Finally, in Chapter 7, we consider some extensions and variations on the
basic consensus problems, including agreement on a small set of values rather
than just a single value, approximate agreement on a real value, and distributed
database commit.

A s y n c h r o n o u s s h a r e d m e m o r y a l g o r i t h m s . After warming up with syn-
chronous algorithms (in which there is only a little uncertainty), we begin the
more dimcult study of asynchronous algorithms. Now we no longer assume that
processors operate in lock-step synchrony, but rather that they can interleave
their steps in an arbitrary order, with no bounds on individual processor speeds.
Typically, the interactions with the external world (via input and output events)
are ongoing, rather than just involving an initial input and final output. The
results in this setting have a very different flavor from those for synchronous
networks.

Chapters 10-13 contain asynchronous shared memory algorithms. The first
problem we consider, in Chapter 10, is that of mutual exclusion. This is one
of the most fundamental problems in the area of distributed algorithms, and
historically the first problem to receive serious theoretical study. Essentially,
the problem involves managing access to a single, indivisible resource that can
only support one user at a time. Alternatively, it can be viewed as the problem
of ensuring that certain portions of program code are executed within critical
regions, where no two programs are permitted to be in critical regions at the
same time. This problem arises in both centralized and distributed operating
systems. Besides the basic uncertainty about the order of steps, there is also
uncertainty about which users are going to request access to the resource, and
when.

We present a series of shared memory mutual exclusion algorithms, starting
with a classical algorithm invented by Dijkstra in 1965, and proceeding through

10 1. I N T R O D U C T I O N

a series of algorithms with successively better correctness guarantees. Most of
these results are based on shared memory that can only be accessed using read
and write operations; for this read/wri te shared memory model, we also present
a lower bound on the number of shared variables that must be used. We also
consider the problem using a stronger type of shared memory--read-modify-wri te
memory; for this case, we give upper and lower bounds on the size of the needed
shared memory. In addition to presenting the algorithms and lower bounds, we
also use the mutual exclusion problem as a case study to illustrate many concepts
of general importance for asynchronous distributed algorithms. These concepts
include the general modelling methods; notions of atomicity, fairness, progress,
and fault-tolerance; invariant assertion and simulation proofs; and time analysis
techniques.

In Chapter 11, we discuss generalizations of the mutual exclusion problem
to more complicated resource allocation problems; these involve more resources
and have more elaborate requirements about their usage patterns. For example,
we consider the Dining Philosophers problem, a prototypical resource allocation
problem involving allocation of pairwise shared resources in a ring of processors.

In Chapter 12, we reconsider consensus problems in the asynchronous shared
memory model. The main result of this chapter is the fundamental fact that a
very basic consensus problem cannot be solved in this setting in the presence
of faults, if the shared memory supports only read and write operations. In
contrast, stronger types of shared memory, such as read-modify-write memory,
admit simple solutions to this problem.

Next, in Chapter 13, we present atomic objects. Up to this point in the
book, we assume that all accesses by processors to shared memory are instan-
taneous. Atomic objects admit separate invocation and response actions, but
otherwise behave very similarly to instantaneous-access shared variables. We
define atomic objects and prove basic results showing how they can be used to
construct systems; in particular, they can be used in place of shared variables.
We also consider several algorithms that implement powerful atomic objects us-
ing weaker primitives--ei ther shared variables or atomic objects of weaker types.
An interesting property that these algorithms have is wait-freedom, which means
that any operation on the implemented object must complete regardless of the
failure of other concurrent operations.

We show how to implement a snapshot atomic object using read/wri te shared
memory; a snapshot atomic object admits a snapshot operation that returns
values for all the memory locations at once. We also show how to implement
a multi-writer/multi-reader atomic object using single-writer read/wri te shared
memory.

1.3. OVERVIEW OF CHAPTERS 2-25 11

A s y n c h r o n o u s n e t w o r k a l g o r i t h m s . In Chapters 15-22, we proceed to the
study of algorithms that operate in asynchronous networks. As for synchronous
networks, the system is modelled as a graph or digraph with processors at the
nodes and communication links on the edges, but now the system does not op-
erate in rounds. Now, messages can arrive at arbitrary times and the processors
can take steps at arbitrary speeds. The system components can be said to be
more "loosely coupled" than they are in either the synchronous network setting
or the asynchronous shared memory setting. Thus, the amount of uncertainty in
the model is again increased.

We begin in Chapter 15 by reconsidering the problems and algorithms of
Chapter 4 in the asynchronous network setting. For example, we reconsider the
problems of leader election, breadth-first search and shortest paths, broadcast
and convergecast, and minimum spanning tree. Although some of the algorithms
carry over to the new setting with little change, most of them require significant
modification. In particular, it is rather difficult to extend the simple synchronous
minimum spanning tree algorithm of Chapter 4 to the asynchronous setting.

Chapter 15 should convince you that the task of programming asynchronous
networks is difficult. This difficulty motivates the following four chapters, Chap-
ters 16-19, where we introduce four techniques for simplifying the task. These
techniques are formulated as algorithm transformations that allow an asynchro-
nous network to simulate simpler or more powerful models. These transforma-
tions permit algorithms designed for the simpler or more powerful models to run
in the more complex asynchronous network model.

The first technique, described in Chapter 16, is the introduction of a syn-
chronizer. A synchronizer is a system component that enables asynchronous
networks (without failures) to simulate the synchronous networks of Chapters 2-
4 (those without failures). We give efficient implementations and contrast these
implementations with a lower bound result that seems to say that any such sim-
ulation must be inefficient. The apparent contradiction turns out to depend on
the type of problem being solved.

The second technique, described in Chapter 17, is the simulation of the asyn-
chronous shared memory model by the asynchronous network model. This per-
mits asynchronous shared memory algorithms such as those developed in Chap-
ters 10-13 to be used in asynchronous networks.

The third technique, described in Chapter 18, is the assignment of consistent
logical times to events in an asynchronous distributed network. This technique
can be used to allow an asynchronous network to simulate one in which the
nodes have access to perfectly synchronized real-time clocks. An important use
of this capability is to allow an asynchronous network to simulate a centralized
(nondistributed) state machine.

12 1. INTRODUCTION

Chapter 19 contains our fourth technique, the monitoring of asynchronous
network algorithms while they run. This might be done, for example, for the
purpose of debugging, for producing backup versions, or for detecting stable
properties of the algorithm. A stable property is one that, once it occurs, will
persist forever; examples are system termination or deadlock. It turns out that
a fundamental primitive that helps in the detection of stable properties is the
ability to produce a consistent global snapshot of the state of the distributed
algorithm. We show some ways in which such a snapshot can be produced and
describe how a snapshot can be used to detect stable properties.

Having developed some powerful tools, we return to considering specific prob-
lems in the asynchronous network setting. In Chapter 20, we revisit the problem
of resource allocation. For example, we show some ways of solving the mutual
exclusion and Dining Philosophers problems in asynchronous networks.

In Chapter 21, we consider the problem of computing in an asynchronous
network in the presence of stopping faults. First, using a transformation devel-
oped in Chapter 17, we show that the impossibility result for consensus carries
over from the shared memory setting to the network setting. We then consider
some ways around this inherent limitation; for instance, we give a randomized
algorithm to solve consensus, show how to solve consensus using modules known
as failure detectors, and show how to reach approximate agreement rather than
exact agreement.

In Chapter 22, we consider the data link problem. Data link protocols are
designed to implement a reliable communication link in terms of unreliable un-
derlying channels. We begin by presenting the Alternating Bit protocol, a simple
protocol that, in addition to being interesting in its own right, is also well known
as a standard case study in the field of concurrent algorithm verification. We also
present a variety of other algorithms and impossibility results for this problem,
for settings in which different types of failure behavior are considered for the
underlying channels.

P a r t i a l l y s y n c h r o n o u s a l g o r i t h m s . Partially synchronous models lie prop-
erly between synchronous and asynchronous models. In partially synchronous
models, we assume that processors have some knowledge of time, for example,
access to real time or approximate real time, or some type of timeout facility.
Or, we might assume that processor step times and/or message delivery times
are between known upper and lower bounds. Since partially synchronous sys-
tems have less uncertainty than asynchronous systems, you might think that they
ought to be easier to program. However, there are extra complications that arise
from the t iming~for example, algorithms are often designed so that their cor-
rectness depends crucially on timing assumptions. Thus, algorithms and proofs

1.4. BIBLIOGRAPHIC NOTES 13

for the partially synchronous setting are often more complicated than those for
the asynchronous setting.

In Chapter 24, we present upper and lower bounds for the time requirements
of solving the mutual exclusion problem in the timed setting, while in Chapter 25,
we obtain upper and lower bounds for consensus. Since partially synchronous
distributed algorithms are a subject of current research, the results we present
for this model are necessarily preliminary.

1.4 Bibliographic Notes

The major source for the material in this book is the research literature, espe-
cially the many papers presented in the Association for Computing Machinery's
annual symposium on Principles of Distributed Computing (PODC). Other sym-
posia that contain a substantial number of papers in this area include the annual
symposia on Foundations of Computer Science (FOCS), Theory of Computing
(STOC), and Parallel Algorithms and Architectures (SPAA), and the annual
Workshop on Distributed Algorithms (WDAG). Much of this work has also ap-
peared by now in computer science journals such as the Journal of the A CM,
Distributed Computing, Information and Computation, the SIAM Journal on
Computing, A cta Informatica, and Information Processing Letters. The results
in these papers are presented in terms of a great many different models and at
varying levels of rigor.

There have been a few previous attempts to collect and summarize some of
the material in this area. The chapter by Lamport and Lynch on distributed
computing in the Handbook of Theoretical Computer Science [185] is a sketchy
overview of some of the modelling and algorithmic ideas. Two books by Raynal
[249, 250] present descriptions of the areas of mutual exclusion algorithms and
asynchronous network algorithms, respectively. Another book, by Raynal and
Helary [251], presents results on network synchronizers. Chandy and Misra [69]
present a substantial collection of distributed algorithms, in terms of the UNITY
programming model. Tel [276] presents another view of the field.

Results about the P RAM model for synchronous shared memory systems
are collected in a paper by Karp and Ramachandran [166]. Results about syn-
chronous parallel algorithms for fixed-connection networks are collected in a
book by Leighton [193]. Lynch, Merritt, Weihl, and Fekete [20?] and Bernstein,
Hadzilacos, and Goodman [50] present many algorithms for concurrency con-
trol and recovery in distributed data processing systems. Hadzilacos and Toueg
[143] present results about the implementation of distributed systems based on
communication systems with an atomic broadcast primitive.

14 1. I N T R O D U C T I O N

This book uses many concepts from graph theory. A standard reference for
these is the classical book by Harary [147].

1.5 N o t a t i o n

We collect here some mathematical notation that we use throughout the book.
N denotes the natural numbers, {0, 1, 2 , . . . }.
N + denotes the positive natural numbers, {1, 2 , . . . }.
R >~ denotes the nonnegative real numbers.
R + denotes the positive real numbers.

denotes the empty string.
I f fl is any sequence and S is any set, then fl]S denotes the subsequence of/3

consisting of all the elements of S in ft.

Part I

Synchronous Network
Algorithms

The first part of this book consists of Chapters 2-7. These chapters contain
algorithms and lower bound results for the synchronous network model, in which
processors in a network take steps and exchange messages in synchronous rounds.

The first chapter in this part, Chapter 2, just presents our formal model
for synchronous networks. You can skip this chapter for now and return to it
as you need to while reading the algorithm chapters, Chapters 3-7. Chapter 3
deals with the simple problem of electing a unique leader in a ring network.
Chapter 4 contains a survey of basic algorithms used in synchronous networks
based on arbitrary graphs. Chapters 5 and 6 deal with basic problems of reaching
consensus in synchronous networks, in the presence of link and processor failures,
respectively. Finally, Chapter 7 contains extensions and variations of the basic
consensus problems.

This Page Intentionally Left Blank

Chapter 2

Modelling I: Synchronous
Network Model

This is the shortest chapter in the book. That is because all it has to accomplish
is to present a simple computational model for synchronous network algorithms.
We present the model separately so that you can use this chapter as a convenient
reference while reading Chapters 3-7.

2.1 Synchronous Network Systems

A synchronous network system consists of a collection of computing elements
located at the nodes of a directed network graph. In Chapter 1, we referred to
these computing elements as "processors," which suggests that they are pieces
of hardware. It is often useful to think of them instead as logical software
"processes," running on (but not identical to) the actual hardware processors.
The results that we present here make sense in either case. We will use the
convention of calling the computing elements "processes" from now on in the
book.

In order to define a synchronous network system formally, we start with a
directed graph G = (V,E). We use the letter n to denote IVI, the number
of nodes in the network digraph. For each node i of G, we use the notation
out-nbrsi to denote the "outgoing neighbors" of i, that is, those nodes to which
there are edges from i in the digraph G, and in-nbrsi to denote the "incoming
neighbors" of i, that is, those nodes from which there are edges to i in G. We
let distance(i, j) denote the length of the shortest directed path from i to j in G,
if any exists; otherwise distance(i, j) = oc. We define diam, the diameter, to be
the maximum distance(i, j) , taken over all pairs (i, j) . We also suppose that we

18 2. M O D E L L I N G I: S Y N C H R O N O U S N E T W O R K M O D E L

have some fixed message alphabet M, and we let null be a placeholder indicating

the absence of a message.
Associated with each node i E V, we have a process, which consists formally

of the following components:

�9 statesi, a (not necessarily finite) set of states

�9 starti, a nonempty subset of statesi known as the start states or initial

states

�9 msgsi, a message-generation func t ion mapping statesi x out-nbrsi to ele-
ments of M U {null}

�9 transi, a state-transit ion func t ion mapping statesi and vectors (indexed by
in-nbrsi) of elements of M U {null} to statesi

That is, each process has a set of states, among which is distinguished a subset
of start states. The set of states need not be finite. This generality is important,
since it permits us to model systems that include unbounded data structures
such as counters. The message-generation function specifies, for each state and
outgoing neighbor, the message (if any) that process i sends to the indicated
neighbor, starting from the given state. The state-transition function specifies,
for each state and collection of messages from all the incoming neighbors, the
new state to which process i moves.

Associated with each edge (i, j) in G, there is a channel, also known as a
link, which is just a location that can, at any time, hold at most a single message
in M.

Execution of the entire system begins with all the processes in arbitrary start
states, and all channels empty. Then the processes, in lock-step, repeatedly
perform the following two steps:

1. Apply the message-generation function to the current state to generate the
messages to be sent to all outgoing neighbors. Put these messages in the
appropriate channels.

2. Apply the state-transition function to the current state and the incoming
messages to obtain the new state. Remove all messages from the channels.

The combination of the two steps is called a round. Note that we do not, in
general, place restrictions on the amount of computation a process does in order
to compute the values of its message-generation and state-transition functions.
Also note that the model presented here is deterministic, in the sense that the
message-generation function and the state-transition function are (single-valued)
functions. Thus, given a particular collection of start states, the computation
unfolds in a unique way.

2.2. FAIL URES 19

H a l t i n g . So far, we have not made any provision for process halting. It is easy,
however, to distinguish some of the process states as halting states, and specify
that no further activity can occur from these states. That is, no messages are
generated and the only state transition is a self-loop. Note that these halting
states do not play the same role in these systems as they do in traditional finite-
state automata. There, they generally serve as accepting states, which are used to
determine which strings are in the language computed by the machine. Here, they
just serve to halt the process; what the process computes must be determined
according to some other convention. The notion of accepting state is normally
not used for distributed algorithms.

V a r i a b l e s t a r t t i m e s . Occasionally, we will want to consider synchronous sys-
tems in which the processes might begin executing at different rounds. We model
this situation by augmenting the network graph to include a special environment
node, having edges to all the ordinary nodes. The job of the associated environ-
ment process is to send special wakeup messages to all the other processes. Each
start state of each of the other processes is required to be quiescent, by which
we mean that it does not cause any messages to be generated, and it can only
change to a different state as the result of the receipt of a wakeup message from
the environment or a non-null message from some other process. Thus, a process
can be awakened either directly, by a wakeup message from the environment, or
indirectly, by a non-null message from another, previously awakened, process.

U n d i r e c t e d g r a p h s . Sometimes we will want to consider the case where the
underlying network graph is undirected. We model this situation within the
model we have already defined for directed graphs simply by considering a di-
rected graph network with bidirectional edges between all pairs of neighbors. In
this case, we will use the notation nbrsi to denote the neighbors of i in the graph.

2.2 Fa i lures

We will consider various types of failures for synchronous systems, including
both process failures and link (channel) failures.

A process can exhibit stopping failure simply by stopping somewhere in the
middle of its execution. In terms of the model, the process might fail before or
after performing some instance of Step 1 or Step 2 above; in addition, we allow
it to fail somewhere in the middle of performing Step 1. This means that the
process might succeed in putting only a subset of the messages it is supposed to
produce into the message channels. We will assume that this can be any subse t - -

20 2. MODELLING I: SYNCHRONOUS N E T W O R K MODEL

we do not think of the process as producing its messages sequentially and failing
somewhere in the middle of the sequence.

A process can also exhibit Byzantine failure, by which we mean that it can
generate its next messages and next state in some arbitrary way, without neces-
sarily following the rules specified by its message-generation and state-transition
functions.

A link can fail by losing messages. In terms of a model, a process might
at tempt to place a message in a channel during Step 1, but the faulty link might
not record the message.

2.3 Inputs and Outputs

We still have not provided any facility for modelling inputs and outputs. We
use the simple convention of encoding the inputs and outputs in the states. In
particular, inputs are placed in designated input variables in the start states; the
fact that a process can have multiple start states is important here, so that we
can accommodate different possible inputs. In fact, we normally assume that
the only source of multiplicity of start states is the possibility of different input
values in the input variables. Outputs appear in designated output variables;
each of these records the result of only the first write operation that is performed
(i.e., it is a write-once variable). Output variables can be read any number of
times, however.

2.4 Executions

In order to reason about the behavior of a synchronous network system, we need
a formal notion of a system "execution."

A state assignment of a system is defined to be an assignment of a state to
each process in the system. Also, a message assignment is an assignment of a
(possibly null) message to each channel. An execution of the system is defined
to be an infinite sequence

Co, M1, N I , C1, M2 , N2, C2, . . . ,

where each C~ is a state assignment and each M~ and N~ is a message assignment.
C~ represents the system state after r rounds, while Mr and N~ represent the
messages that are sent and received at round r, respectively. (These may be
different because channels may lose messages.) We often refer to C~ as the state
assignment that occurs at time r; that is, time r refers to the point just after r
rounds have occurred.

2.5. PROOF M E T H O D S 21

If c~ and c~ ~ are two executions of a system, we say that c~ is indistinguishable
i

from c~ ~ with respect to a process i, denoted c~ ~ c~ ~, if i has the same sequence
of states, the same sequence of outgoing messages, and the same sequence of
incoming messages in c~ and c~ ~. We also say that c~ and c~ ~ are indistinguishable
to process i through r rounds if i has the same sequence of states, the same

sequence of outgoing messages, and the same sequence of incoming messages
up to the end of round r, in c~ and c~ ~. We also extend these definitions to the

situation where the executions being compared are executions of two different
synchronous systems.

2.5 Proo f Methods

The most important proof method for reasoning about synchronous systems
involves proving invariant assertions. An invariant assertion is a property of

the system state (in particular, of the states of all the processes) that is true in

every execution, after every round. We allow the number of completed rounds to
be mentioned in assertions, so that we can make claims about the state after each

particular number r of rounds. Invariant assertions for synchronous systems are
generally proved by induction on r, the number of completed rounds, starting
with r - 0.

Another important method is that of simulations. Roughly speaking, the goal

is to show that one synchronous algorithm A "implements" another synchronous
algorithm B, in the sense of producing the same input /output behavior. The
correspondence between A and B is expressed by an assertion relating the states

of A and B, when the two algorithms are started on the same inputs and run

with the same failure pattern for the same number of rounds. Such an assertion

is known as a simulation relation. As for invariant assertions, simulation rela-

tionships are generally proved by induction on the number of completed rounds.

2.6 Complex i ty Measures

Two measures of complexity are usually considered for synchronous distributed
algorithms: time complexity and communication complexity.

The time complexity of a synchronous system is measured in terms of the

number of rounds until all the required outputs are produced, or until the pro-
cesses all halt. If the system allows variable start times, the time complexity is
measured from the first round in which a wakeup occurs, at any process.

The communication complexity is typically measured in terms of the total

22 2. MODELLING I: SYNCHRONOUS N E T W O R K MODEL

number of non-null messages that are sent. Occasionally, we will also take into
account the number of bits in the messages.

The time measure is the more important measure in practice, not only for
synchronous distributed algorithms but for all distributed algorithms. The com-
munication complexity is mainly significant if it causes enough congestion to
slow down processing. This suggests that we might want to ignore it and just
consider time complexity. However, the impact of the communication load on
the time complexity is not just a function of an individual distributed algorithm.
In a typical network, many distributed algorithms run simultaneously, sharing
the same network bandwidth. The message load added to a link by any single al-
gorithm gets added to the total message load on that link, and thus contributes
to the congestion seen by all the algorithms. Since it is difficult to quantify
the impact that any one algorithm's messages have on the time performance of
other algorithms, we settle for simply analyzing (and attempting to minimize)
the number of messages generated by individual algorithms.

2.7 R a n d o m i z a t i o n

Instead of requiring the processes to be deterministic, it is sometimes useful
to allow them to make random choices, based on some given probability dis-
tributions. Since the basic synchronous system model does not permit this,
we augment the model by introducing a new random function in addition to
the message-generation and transition functions, to represent the random choice
steps. Formally, we add a randi component to the automaton description for
each node i; for each state s, randi(s) is a probability distribution over some
subset of statesi. Now in each round of execution, the random function randi is
first used to pick new states, and the msgsi and transi functions are then applied
as u s u a l .

The formal notion of execution used in a randomized algorithm now includes
not only state assignments and message assignments, but also information about
random functions. Specifically, an execution of the system is defined to be an
infinite sequence

Co, D1, M1, N1, C1, D2, 2112, N2, C2, �9 �9 �9 ,

where each C~ and D~ is a state assignment and each M~ and N, is a message
assignment. D~ represents the new process states after the round r random
choices.

Claims about what is computed by a randomized system are usually proba-
bilistic, asserting that certain results are achieved with at least a certain proba-
bility. When such a claim is made, the intention is generally that it is supposed

2.8. BIBLIOGRAPHIC NOTES 23

to hold for all inputs and, in case of systems with failures, for all failure patterns.
To model the inputs and failure patterns, a fictitious entity called an adversary is
usually assumed to control the choices of inputs and occurrences of failures, and
the probabilistic claim asserts that the system behaves well in competition with
any allowable adversary. General treatment of these issues is beyond the scope
of this book; we will just provide special case definitions as they are needed.

2.8 Bibliographic Notes

The general notion of a state machine model has its roots in the traditional
finite-state automaton model. Basic material on finite-state machines appears in
many undergraduate textbooks such as those of Lewis and Papadimitriou [195]
and Martin [221]. The particular kind of state machine model defined here is
extracted from numerous papers in distributed computing theory, for example,
the Byzantine agreement paper by Fischer and Lynch [119].

The idea of invariant assertions seems to have been first proposed by Floyd
[124] for sequential programs and generalized by ashcroft [15] and by Lamport
[175] for concurrent programs. Similar ideas have appeared in many other places.
The idea of simulations also has numerous sources. One of the most important
is the early work on data abstraction in sequential programs embodied, for ex-
ample, in Ciskov's programming language CLU [198] and in work of Milner [228]
and Hoare [158]. Later work that extended the notion to concurrent programs
includes papers by Park [236], Lamport [177], Lynch [203], Lynch and Tuttle
[218], and Jonsson [165].

This Page Intentionally Left Blank

Chapter 3

Leader Elect ion in a
Synchronous Ring

In this chapter, we present the first problem to be solved using the synchronous
model of Chapter 2: the problem of electing a unique leader process from among
the processes in a network. For starters, we consider the simple case where the
network digraph is a ring.

This problem originally arose in the study of local area token ring networks.
In such a network, a single "token" circulates around the network, giving its
current owner the sole right to initiate communication. (If two nodes in the
network were to at tempt simultaneously to communicate, the communications
could interfere with one another.) Sometimes, however, the token may be lost,
and it becomes necessary for the processes to execute an algorithm to regenerate
the lost token. This regeneration procedure amounts to electing a leader.

3.1 The P r o b l e m

We assume that the network digraph G is a ring consisting of n nodes, numbered
1 to n in the clockwise direction (see Figure 3.1). We often count mod n, allowing
0 to be another name for process n, n + 1 another name for process 1, and so
on. The processes associated with the nodes of G do not know their indices, nor
those of their neighbors; we assume that the message-generation and transition
functions are defined in terms of local, relative names for the neighbors. However,
we do assume that each process is able to distinguish its clockwise neighbor from
its counterclockwise neighbor. The requirement is that, eventually, exactly one
process should output the decision that it is the leader, say by changing a special
status component of its state to the value leader. There are several versions of

26 3. LEADER ELECTION IN A SYNCHRONOUS RING

gt

5

n-2

F i g u r e 3.1" A ring of processes.

the problem:

1. It might also be required that all non-leader processes eventually output the

fact that they are not the leader, say by changing their status components

to the value non-leader.

2. The ring can be either unidirectional or bidirectional. If it is unidirectional,

then each edge is directed from a process to its clockwise neighbor, that

is, messages can only be sent in a clockwise direction.

3. The number n of nodes in the ring can be either known or unknown to
the processes. If it is known, it means that the processes only need to
work correctly in rings of size n, and thus they can use the value n in their
programs. If it is unknown, it means that the processes are supposed to

work in rings of different sizes. Therefore, they cannot use information
about the ring size.

4. Processes can be identical or can be distinguished by each start ing with a

unique identifier (UID) chosen from some large totally ordered space of

identifiers such as the positive integers, N + . We assume that each process's
UID is different from each other's in the ring, but that there is no constraint
on which UIDs actually appear in the ring. (For instance, they do not
have to be consecutive integers.) These identifiers can be restr icted to be

3.2. I M P O S S I B I L I T Y R E S U L T FOR I D E N T I C A L P R O C E S S E S 27

manipulated only by certain operations, such as comparisons, or they can
admit unrestr icted operations.

3.2 Impossibi l i ty Result for Identical Processes

A first easy observation is that if all the processes are identical, then this prob-
lem cannot be solved at all in the given model. This is so even if the ring is
bidirectional and the ring size is known to the processes.

T h e o r e m 3.1 Let A be a system of n processes, n > 1, arranged in a bidirec-
tional ring. I f all the processes in A are identical, then A does not solve the
leader-election problem.

P r o o f . Suppose that there is such a system A that solves the leader-election
problem. We obtain a contradiction. We can assume without any loss of gen-
erality that each process of A has exactly one start state. This is so because if
each process has more than one start state, we could simply choose any one of
the start states and obtain a new solution in which each process has only one
start state. With this assumption, A has exactly one execution.

So consider the (unique) execution of A. It is s traightforward to verify,
by induction on the number r of rounds that have been executed, that all the
processes are in identical states immediately after r rounds. Therefore, if any
process ever reaches a state where its status is leader, then all the processes in
A also reach such a state at the same time. But this violates the uniqueness
requirement.

Theorem 3.1 implies that the only way to solve the leader-election problem
is to break the symmetry somehow. A reasonable assumption derived from what

is usually done in practice is that the processes are identical except for a UID.
This is the assumption we make in the rest of this chapter.

3.3 A Basic Algori thm

The first solution we present is a fairly obvious one, which we call the L CR
algorithm in honor of Le Lann, Chang, and Roberts, from whose papers this

algorithm is extracted. The algorithm uses only unidirectional communication
and does not rely on knowledge of the size of the ring. Only the leader performs
an output. The algorithm uses only comparison operations on the UIDs. Below

is an informal description of the L CR algorithm.

28 3. L E A D E R E L E C T I O N I N A S Y N C H R O N O U S R I N G

L C R a l g o r i t h m (i n f o r m a l) :

Each process sends its identifier around the ring. When a process receives

an incoming identifier, it compares that identifier to its own. If the incoming

identifier is greater than its own, it keeps passing the identifier; if it is less

than its own, it discards the incoming identifier; if it is equal to its own,

the process declares itself the leader.

In this algorithm, the process with the largest UID is the only one that outputs

leader. In order to make this intuit ion precise, we give a more careful description

of the a lgori thm in terms of the model of Chapter 2.

L C R a l g o r i t h m (f o r m a l) :

The message alphabet M is exactly the set of UIDs.

For each i, the states in statesi consist of the following components:

u, a UID, initially i's UID
send, a UID or null, initially i's UID
status, with values in {unknown, leader}, initially unknown

The set of s tar t states starti consists of the single state defined by the given
initializations.

For each i, the message-generation function msgsi is defined as follows:

send the current value of send to process i + 1

Actually, process i would use a relative name for process i + 1, for example,

"clockwise neighbor"; we write i + 1 because it is simpler. Recall from

Chapter 2 that we use the null value as a placeholder indicating the absence

of a message. So if the value of the send component is null, this msgi

function does not actually send any message.

For each i, the t rans i t ion function transi is defined by the following pseu-
docode:

send := null
if the incoming message is v, a UID, then

case

v > u: send : - v
v = u: status := leader
v < u: do nothing

endcase

3.3. A B A S I C A L G O R I T H M 29

The first line of the transit ion function definition just cleans up the state from
the effects of the preceding message delivery (if any). The rest of the code
contains the interesting work- - the decision about whether to pass on or discard
the incoming UID, or to accept it as permission to become the leader.

This description is written in what should be a reasonably readable pro-
gramming language, but note that it has a direct translation into a process state
machine in the model in Chapter 2. In this translation, each process state consists
of a value for each of the variables, and the transitions are describable in terms

of changes to the variables. Note that the entire block of code written for the
transi function is supposed to be executed indivisibly, as part of the processing
for a single round.

How do we go about proving formally that the algorithm is correct? Correct-
ness means that exactly one process eventually performs a leader output. Let

/max denote the index of the process with the maximum UID, and let Umax denote
its UID. It is enough to show that (1) process/max outputs leader by the end of
round n, and (2) no other process ever performs such an output. We prove these
two properties, respectively, in Lemmas 3.2 and 3.3.

Here and in many other places in the book, we attach the subscript i to a
state component name to indicate the instance of that state component belonging

to process i. For example, we use the notation ui to denote the value of state
component u of process i. We generally omit the subscripts when writing the
process code, however.

L e m m a 3.2 Process imax outputs leader by the end of round n.

P r o o f . Note that Umax is the initial value of variable U/max , the variable u at
process /max, by the initialization. Also note that the values of the u variables
never change (by the code), that they are all distinct (by assumption), and that
/max has the largest u value (by definition of/max). By the code, it suffices to
show the following invariant assertion:

A s s e r t i o n 3.3.1 Af ter n rounds, s ta tus im .x - leader.

The normal way to try to prove an invariant such as this one is by induction on
the number of rounds. But in order to do this, we need a preliminary invariant
that says something about the situation after smaller numbers of rounds. We add
the following assertion:

A s s e r t i o n 3.3.2 For 0 < r < n - 1, after r rounds, sendima~+r =

' U r e a x .

(Recall that addition is modulo n.) This assertion says that the maximum value
appears in the send component at the position in the ring at distance r from

?,max.

30 3. L E A D E R E L E C T I O N IN A S Y N C H R O N O U S RING

It is straightforward to prove Assertion 3.3.2 by induction on r. For r = 0,
the initialization says that sendim~x = Umax after 0 rounds, which is just what is
needed. The inductive step is based on the fact that every node other than/max
accepts the maximum value and places it into its send component, since Umax is
greater than all the other values.

Having proved Assertion 3.3.2, we use its special case for r = n - 1 and one
more argument about what happens in a single round to show Assertion 3.3.1.
The key fact here is that process /max accepts Umax as a signal to set its status
to leader. D

L e m m a 3.3 No process other than imax ever outputs the value leader.

P r o o f . It is enough to show that all other processes always have status =
unknown. Again, it helps to state a stronger invariant. If i and j are any two
processes in the ring, i ~: j , define [i, j) to be the set of indices {i, i + 1 , . . . , j - 1 },
where addition is modulo n. That is, [i, j) is the set of processes starting with i
and moving clockwise around the ring up to and including j ' s counterclockwise
neighbor. The following invariant asserts that no UID v can reach any send
variable in any position between/max and v's original home i:

A s s e r t i o n 3.3.3 For any r and any i, j , the following holds. After
r rounds, if i 7~ imax and j C [imax, i) then sendj 7~ ui.

Again, it is straightforward to prove the assertion by induction; now the key fact
used in the proof is that a non-maximum value does not get past/max. This is
because /max compares the incoming value with Um~x, and Umax is greater than
all the other UIDs.

Finally, Assertion 3.3.3 can be used to show that only process/max can receive
its own UID in a message, and hence only process/max can output leader, ff]

Lemmas 3.2 and 3.3 together imply the following:

T h e o r e m 3.4 LCR solves the leader-election problem.

Halting and n o n - l e a d e r o u t p u t s . As written, the LCR algorithm never fin-
ishes its work, in the sense of all the processes reaching a halting state. We can
augment each process to include halting states, as described in Section 2.1. Then
we can modify the algorithm by allowing the elected leader to initiate a special
report message to be sent around the ring. Any process that receives the report
message can halt, after passing it on. This strategy not only allows processes
to halt, but could also be used to allow the non-leader processes to output non-
leader. Furthermore, by attaching the leader's index to the report message, this

3.3. 0 (n log n) C O M M U N I C A T I O N C O M P L E X I T Y A L G O R I T H M 31

strategy could also allow all the participating processes to output the identity
of the leader. Note that it is also possible for each non-leader node to output
non-leader immediately after it sees a UID greater than its own; however, this
does not tell the non-leader nodes when to halt.

In general, halting is an important property for a distributed algorithm to
satisfy; however, it cannot always be achieved as easily as in this case.

C o m p l e x i t y ana lys i s . The time complexity of the basic LCR algorithm is n
rounds until a leader is announced, and the communication complexity is O (n 2)
messages in the worst case. In the halting version of the algorithm, the time
complexity is 2n and the communication complexity is still O (n2). The extra
time needed for halting and for the non-leader announcements is only n rounds,
and the extra communication is only n messages.

T r a n s f o r m a t i o n . The preceding two remarks describe and analyze a general
transformation, from any leader-election algorithm in which only the leader pro-
vides output and no process ever halts, to one in which the leader and the non-
leaders all provide output and all processes halt. The extra cost of obtaining the
extra outputs and the halting is only n rounds and n messages. This transfor-
mation works for any combination of our other assumptions.

V a r i a b l e s t a r t t imes . Note that the LCR algorithm works without modifi-
cation in the version of the synchronous model with variable start times. See
Section 2.1 for a description of this version of the model.

B r e a k i n g s y m m e t r y . In the problem of electing a leader in a ring, the key
difficulty is breaking symmetry. Symmetry-breaking is also an important part
of many other problems that need to be solved in distributed systems, includ-
ing resource-allocation problems (see Chapters 10-11 and 20) and consensus
problems (see Chapters 5-7, 12, 21, and 25).

3.4 An Algorithm with O (n log n) Communication
Complexity

Although the time complexity of the LCR algorithm is low, the number of mes-
sages used by the algorithm seems somewhat high, a total of O (n2). This might
not seem significant, because there is never more than one message on any link
at any time. However, in Chapter 2, we discussed why the number of messages is
an interesting measure to try to minimize; this is because of the possible network

32 3. L E A D E R E L E C T I O N I N A S Y N C H R O N O U S R I N G

A A A A A A a A A
v v v v i V W V v

i

(____..___D

q p

F i g u r e 3.2: Trajectories of successive tokens originating at process i in the HS algo-
rithm.

congestion that can result from the total communication load of many concur-
rently running distr ibuted algorithms. In this section, we present an algorithm
that lowers the communication complexity to O (n log n).

The first published algorithm to reduce the worst-case complexity to O (n log n)
was that of Hirschberg and Sinclair, so we call this algorithm the HS algorithm.

Again, we assume that only the leader needs to perform an output, though the
transformation at the end of Section 3.3 implies that this restriction is not im-
portant . Again, we assume that the ring size is unknown, but now we allow
bidirectional communication.

As does the L C R algorithm, the HS algorithm elects the process with the max-
imum UID. Now every process, instead of sending its UID all the way around the
ring as in the L C R algorithm, sends it so that it travels some distance away, then
turns around and comes back to the originating process. It does this repeatedly,
to successively greater distances. The HS algorithm proceeds as follows.

H S algorithm (informal):
Each process i operates in phases 0, 1, 2, In each phase l, process i
sends out "tokens" containing its UID ui in both directions. These are
intended to travel distance 2 l, then return to their origin i (see Figure 3 .2)
If both tokens make it back safely, process i continues with the following
phase. However, the tokens might not make it back safely. While a ui token
is proceeding in the outbound direction, each other process j on ui's path
compares ui with its own UID uj. If ui < uj, then j simply discards the
token, whereas if ui > uj, then j relays ui. If ui = uj, then it means that
process j has received its own UID before the token has turned around, so
process j elects itself as the leader.

All processes always relay all tokens in the inbound direction.

Now we describe the algorithm more formally. This time, the formalization
requires some bookkeeping to ensure that tokens follow the proper trajectories.

3.4. 0 (n log n) COMMUNICATION COMPLEXITY ALGORITHM 33

For instance, flags are carried by the tokens indicating whether they are travel-
ling outbound or inbound. Also, hop counts are carried with the tokens to keep
track of the distances they must travel in the outbound direction; this allows
the processes to figure out when the directions of the tokens should be reversed.
Once the algorithm is formalized in this way, a correctness argument of the sort
given for L CR can be provided.

H S algorithm (formal):
The message alphabet M is the set of triples consisting of a UID, a flag
value in {out, in}, and a positive integer hop-count.

For each i, the states in statesi consist of the following components:

u, of t y p e UID, ini t ia l ly i 's UID
send+, conta in ing e i ther an e lement of M or null,

ini t ia l ly the t r ip le consis t ing of i 's UID, out, and 1

send- , con ta in ing e i ther an e lement of M or null,
in i t ia l ly the t r ip le consis t ing of i 's UID, out, and 1

status, with values in {unknown, leader}, ini t ia l ly unknown
phase, a nonnega t ive integer, ini t ia l ly 0

The set of start states starti consists of the single state defined by the
given initializations.

For each i, the message-generation function msgsi is defined as follows:

send the cur ren t value of send+ to process i + 1
send the cur ren t value of send- to process i - 1

For each i, the transition function transi is defined by the following pseu-
docode:

send+ := null
s end - : - null
if t he message from i - 1 is (v, out, h) t hen

case
v > u and h > 1: send+ := (v, out, h - 1)

v > u and h = 1: send - : - (v, in, 1)
v = u: status := leader

endcase
if the message from i + 1 is (v, out, h) t hen

case

v > u and h > I: send- : - (v, out, h - I)

v > u and h -- 1: send+ := (v, in, 1)
v = u: status :-- leader

endcase
if the message f rom i - 1 is (v, in, 1) and v # u t hen

34 3. L E A D E R E L E C T I O N IN A S Y N C H R O N O U S R I N G

send+ := (v, in, 1)
if the message from i + 1 is (v, in, 1) and v # u then

send- := (v, in, 1)
if the messages from i - 1 and i + 1 are both (u, in, 1) then

phase := phase + 1
send+ := (u, out, 2 phase)
send- := (u, out, 2 phase)

As before, the first two lines just clean up the state. The next two pieces
of code describe the handl ing of ou tbound tokens: tokens with UIDs tha t are

greater t han ui are either relayed or tu rned around, depending on the hop-count,
and the receipt of ui causes i to elect itself the leader. The next two pieces of
code describe the handl ing of inbound tokens: they are simply relayed. (A trivial

hop-count of I is used for inbound tokens.) If process i receives both of its own
tokens back, then it goes on to the next phase.

C o m p l e x i t y a n a l y s i s . We first analyze the communica t ion complexity. Ev-
ery process sends out a token in phase 0; this is a total of 4n messages for the
token to go out and return, in both directions. For 1 > 0, a process sends a
token in phase 1 exactly if it receives bo th its phase 1 - 1 tokens back. This is
exact ly if it has not been "defeated" by another process within dis tance 2/-1 in
ei ther direction along the ring. This implies tha t within any group of 2/-1 + 1

consecutive processes, at most one goes on to init iate tokens at phase 1. This

can be used to show tha t at most

processes a l together ini t iate tokens at phase 1. Then the total number of mes-

sages sent out at phase 1 is bounded by

2/-1 + 1 --

This is because phase 1 tokens travel dis tance 2 I. Again, the factor of 4 is
derived from the fact tha t the token is sent out in bo th direct ions--c lockwise
and counte rc lockwise - -and tha t each ou tbound token must tu rn a round and
return.

The total number of phases tha t are executed before a leader is elected and

all communica t ion stops is at most 1 + Flog n~ (including phase 0), so the total
number of messages is at most 8n(1 + Ilogn~), which is O (n l o g n) , with a
constant factor of approximate ly 8.

The t ime complexi ty for this a lgor i thm is just O (n). This can be seen by
not ing tha t the t ime for each phase 1 is 2.21 - 2 z+l (for the tokens to go out and

3.5. NON-COMPARISON-BASED ALGORITHMS 35

return). The final phase takes time n - - i t is an incomplete phase, with tokens
only travelling outbound. The next-to-last phase is phase l - Ilog n] - 1, and
its time complexity is at least as great as the total time complexity of all the
preceding phases. Thus, the total time complexity of all but the final phase is at
most

2 �9 2 I-log nl.

It follows that the total time complexity is at most 3n if n is a power of 2, and
5n otherwise. The rest of the details are left as an exercise.

V a r i a b l e start times. The HS algorithm works without modification in the
version of the synchronous model with variable start times.

3.5 Non-Comparison-Based Algorithms

We next consider the question of whether it is possible to elect a leader with fewer
than O (n log n) messages. The answer to this problem, as we shall demonstrate
shortly with an impossibility resu l t - -a lower bound of f~(n log n) - - i s negative.
That result, however, is valid only in the case of algorithms that manipulate
the UIDs using comparisons only. (Comparison-based algorithms are defined in
Section 3.6 below.)

In this section, we allow the UIDs to be positive integers and permit them
to be manipulated by general arithmetic operations. For this case, we give two
algorithms, the TimeSlice algorithm and the VariableSpeeds algorithm, each of
which uses only O (n) messages. The existence of these algorithms implies that
the lower bound of f~(n log n) cannot be proved for the general case.

3 .5 .1 T h e T i m e S l i c e Algorithm

The first of these algorithms uses the strong assumption that the ring size n is
known to all the processes, but only assumes unidirectional communication. In
this setting, the following simple algorithm, which we call the TimeSlice algo-
rithm, works. It elects the process with the minimum UID.

Note that this algorithm uses synchrony in a deeper way than do the LCR
and HS algorithms. Namely, it uses the non-arrival of messages (i.e., the arrival
of null messages) at certain rounds to convey information.

TimeSl ice algorithm:

Computation proceeds in phases 1, 2, . . . , where each phase consists of
n consecutive rounds. Each phase is devoted to the possible circulation,
all the way around the ring, of a token carrying a particular UID. More

36 3. LEADER ELECTION IN A SYNCHRONOUS RING

specifically, in phase v, which consists of rounds (v - 1)n + 1 , . . . , vn, only

a token carrying UID v is permit ted to circulate.

If a process i with UID v exists, and round (v - 1)n + 1 is reached without
i having previously received any non-null messages, then process i elects
itself the leader and sends a token carrying its UID around the ring. As
this token travels, all the other processes note that they have received it,
which prevents them from electing themselves as leader or initiating the
sending of a token at any later phase.

With this algorithm, the minimum UID U m i n eventually gets all the way
around, which causes its originating process to become elected. No messages are

sent before round (U m i n - - 1)n + 1, and no messages are sent after round ~ t m i n �9 n.
The total number of messages sent is just n. If we prefer to elect the process with
the maximum UID rather than the process with the minimum, we can simply let
the minimum send a special message around after it is discovered in order to
determine the maximum. The communication complexity is still O (n).

The good property of the TimeSlice algorithm is that the total number of

messages is n. Unfortunately, the time complexity is about n �9 U m i n , which is an
unbounded number, even in a fixed-size ring. This time complexity limits the
practicality of the algorithm; it is only useful in practice for small ring networks
in which UIDs are assigned from among the small positive integers.

3.5.2 The VariableSpeeds Algorithm

The TimeSlice algorithm shows that O (n) messages are sufficient in the case of
rings in which processes know n, the size of the ring. But what if n is unknown?
It turns out that in this case, also, there is an O (n) message algorithm, which
we call the VariableSpeeds algorithm for reasons that will become apparent in a
moment. The VariableSpeeds algorithm uses only unidirectional communication.

Unfortunately, the time complexity of the VariableSpeeds algorithm is even
worse than that of the TimeSlice algorithm: 0 (n. 2 ~min). Clearly, no one would

even think of using this algorithm in practice! The VariableSpeeds algorithm is
what we call a counterexample algorithm. A counterexarnple algorithm is one
whose main purpose is to show that a conjectured impossibility result is false.
Such an algorithm is generally not interesting by i tself--i t is neither practical
nor particularly elegant from a mathematical viewpoint. However, it does serve

to show that an impossibility result cannot be proved.
Here is the algorithm.

VariableSpeeds algorithm:

Each process i initiates a token, which travels around the ring, carrying

3.5. NON-COMPARISON-BASED ALGORITHMS 37

the UID ui of the originating process i. Different tokens travel at different
rates. In particular, a token carrying UID v travels at the rate of 1 message
transmission every 2 ~ rounds, that is, each process along its path waits 2 ~
rounds after receiving the token before sending it out.

Meanwhile, each process keeps track of the smallest UID it has seen and
simply discards any token carrying an identifier that is larger than this
smallest one.

If a token returns to its originator, the originator is elected.

As for the TimeSlice algorithm, the VariableSpeeds algorithm guarantees that
the process with the minimum UID is elected.

C o m p l e x i t y ana lys i s . The VariableSpeeds algorithm guarantees that by the
time the token carrying the smallest identifier Umin gets all the way around
the ring, the second smallest identifier could only get at most halfway around,
the third smallest could only get at most a quarter of the way around, and in
general, the kth smallest could only get at most ~ of the way around. There-
fore, up to the time of election, the token carrying Umin USeS more messages than
all the others combined. Since Umin uses exactly n messages, the total number
of messages sent, up to the time of election, is less than 2n.

But also, note that by the time Umin gets all the way around the ring, all
nodes know about this value, and so will refuse to send out any other tokens. It
follows that 2n is an upper bound on the total number of messages that are ever
sent by the algorithm (including the time after the leader output).

The time complexity, as mentioned above, is n . 2 um~n, since each node delays
the token carrying UID Umin for 2 umin time units.

V a r i a b l e s t a r t t i m e s . Unlike the LCR and HS algorithms, the VariableSpeeds
algorithms cannot be used "as is" in the version of the synchronous model with
variable start times. However, a modification of the algorithm works:

M o d i f i e d VariableSpeeds a l g o r i t h m :

Define a process to be a starter if it receives a wakeup message strictly
before (i.e., at an earlier round than) receiving any ordinary (non-null)
messages.

Each starter i initiates a token to travel around the ring, carrying its UID
ui; non-starters never initiate tokens. Initially, this token travels "fast,"
at the rate of one transmission per round, getting passed along by all the
non-starters that are awakened by the arrival of the token, just until it first
arrives at a starter. (This could be a different starter, or i itself.) After the

38 3. LEADER ELECTION IN A SYNCHRONOUS RING

token arrives at a starter, the token continues its journey, but from now

on at the "slow" rate of one transmission every 2 u~ rounds.

Meanwhile, each process keeps track of the smallest starter 's UID that it
has seen and discards any token carrying an identifier that is larger than
this smallest one. If a token returns to its originator, the originator is
elected.

The modified VariableSpeeds algorithm ensures that the starter process with

the minimum UID is elected. Let imin-start denote this process.

C o m p l e x i t y a n a l y s i s . We count the messages in three classes.

1. The messages involved in the initial fast transmission of tokens. There are
just n of these.

2. The messages involved in the slow transmission of tokens, up to the time

when imin-start'S token first reaches a starter. This takes at most n rounds
from when the first process awakens. During this time, a token carrying

, ~ v = l ~-~ < n UID v could use at most ~ messages for a total of at most n n

messages.

3. The messages involved in the slow transmission of tokens, after the time

when imin-start'S token first reaches a starter. This analysis is similar to
that for the basic VariableSpeeds algorithm. By the time the winning token
gets all the way around the ring, the kth smallest starter 's identifier could
only get at most ~ of the way around. Therefore, the total number of
messages sent, up to the time of election, is less than 2n. But by the time
the winning token gets all the way around the ring, all nodes know about
its value, and so will refuse to send out any other tokens; thus, 2n is an

upper bound on the number of messages in this class.

Thus, the total communication complexity is at most 4n.
The time complexity is n + n . 2 umin-start.

3.6 Lower Bound for Comparison-Based Algorithms

So far, we have presented several algorithms for leader election on a synchronous
ring. The LCR and HS algorithms are comparison based, and the latter achieves
a communication complexity bound of O (n log n) messages and a time bound of
O (n). The TimeSlice and VariableSpeeds algorithms, on the other hand, are not
comparison based, and use O (n) messages, but have a huge running time. In

3.6. L O W E R BOUND FOR C O M P A R I S O N - B A S E D A L G O R I T H M S 39

this section, we show a lower bound of Ft(n log n) messages for comparison-based
algorithms. This lower bound holds even if we assume that communication is
bidirectional and the ring size n is known to the processes. In the next section,
we show a similar lower bound of ft(n log n) messages for non-comparison-based
algorithms with bounded time complexity.

The result of this section is based on the difficulty of breaking symmetry. Re-
call the impossibility result in Theorem 3.1, which says that, because of symme-
try, it is impossible to elect a leader in the absence of distinguishing information
such as UIDs. The main idea in the following argument is that a certain amount
of symmetry can arise even in the presence of UIDs. In this case, the UIDs allow
symmetry to be broken, but it might require a large amount of communication
to do so.

Recall that we are assuming throughout this chapter that the processes in the
ring are all identical except for their UIDs. Thus, the start states of the processes
are identical except for designated components that contain the process UID. In
general, we have not imposed any constraints on how the message-generation
and transit ion functions can use the UID information.

We assume for the rest of this chapter (this section and the next) that there
is only one start state containing each UID. (As in the proof of Theorem 3.1,
this assumption does not cause any loss of generality.) The advantage of this
assumption is that it implies that the system (with a fixed assignment of UIDs)
has exactly one execution.

A comparison-based algorithm obeys certain additional constraints, expressed
by the following slightly informal definition. A UID-based ring algori thm is com-
parison based if the only ways that the processes manipulate the UIDs are by
copying them, by sending and receiving them in messages, and by comparing
them for {<, >, =}.

This definition allows a process, for example, to store any of the various UIDs
that it has encountered and to send them out in messages, possibly combined
with other information. A process can also compare the stored UIDs and use
the results of these comparisons to make choices in the message-generation and
state-transit ion functions. These choices could involve, for example, whether or
not to send a message to each of its neighbors, whether or not to elect itself the
leader, whether or not to keep the stored UIDs, and so on. The impor tant fact
is that all of the activity of a process depends only on the relative ranks of the
UIDs it has encountered, rather than on their part icular values.

The following formal notion is used to describe the kind of symmetry that
can exist, even with VlDs. Let U = (Ul, U 2 , . . . , Uk) and V = (Vl, v 2 , . . . , Vk)
be two sequences of UIDs, both of the same length k. We say that U is order
equivalent to V if, for all i, j, 1 <_ i, j <_ k, we have ui <_ uj if and only if vi <_ vj.

40 3. L E A D E R E L E C T I O N IN A S Y N C H R O N O U S RING

Example 3.6.1 Order equivalence

The sequences (5, 3, 7, 0), (4, 2, 6, 1), and (5, 3, 6, 1) are all order equiv-
alent if the UID set is the natural numbers with the usual ordering.

Notice that two sequences of UIDs are order equivalent if and only if the
corresponding sequences of relative ranks of their UIDs are identical. Two tech-
nical definitions follow. A round of an execution is said to be active if at least
one (non-null) message is sent in it. The k-neighborhood of process i in ring R
of size n, where 0 < k < [n/2J, is defined to consist of the 2k + 1 processes
i - k , . . . , i § k, that is, those that are within distance at most k from process i
(including i itself).

Finally, we need a definition of what it means for process states to be the
same, except for the part icular choices of UIDs they contain. We say that two
process states s and t correspond with respect to sequences U - - (U l , u 2 , . �9 �9 , Uk)
and V - (Vl, v 2 , . . . , vk) of UIDs provided that the following hold: all the UIDs
in s are chosen from U, all the UIDs in t are chosen from V, and t is identical
to s except that each occurrence of ui in s is replaced by an occurrence of vi in
t, for all i, 1 <_ i <_ k. Corresponding messages are defined analogously.

We can now prove the key lemma for our lower bound, Lemma 3.5. It says
that processes that have order-equivalent k-neighborhoods behave in essentially
the same way, until information has had a chance to propagate to the processes
from outside the k-neighborhoods.

Lemma 3.5 Let A be a comparison-based algorithm executing in a ring R of
size n and let k be an integer, 0 ~_ k < [n/2]. Let i and j be two processes in A
that have order-equivalent sequences of UIDs in their k-neighborhoods. Then, at
any point after at most k active rounds, processes i and j are in corresponding
states, with respect to the UID sequences in their k-neighborhoods.

Example 3.6.2 Corresponding states

Suppose that the sequence of UIDs in process i 's 3-neighborhood is
(1, 6, 3, 8, 4, 10, 7) (where process i 's UID is 8), and the sequence in
process j ' s 3-neighborhood is (4, 10, 7, 12, 9, 13, 11) (where process j ' s
UID is 12). Since these two sequences are order equivalent, Lemma
3.5 implies that processes i and j remain in corresponding states
with respect to their 3-neighborhoods, as long as no more than three
active rounds have occurred. Roughly speaking, the reason this is
so is that if there are only three active rounds, there has not been
any opportuni ty for information from outside the order-equivalent
3-neighborhoods to reach i and j.

3.6. L O W E R BOUND FOR C O M P A R I S O N - B A S E D A L G O R I T H M S 41

P r o o f (of L e m m a 3.5) . Without loss of generality, we may assume that i

j . We proceed by induction on the number r of rounds that have been performed
in the execution. For each r, we prove the lemma for all k.

Basis: r = 0. By the definition of a comparison-based algorithm, the initial
states of i and j are identical except for their own UIDs, and hence they are in
corresponding initial states, with respect to their k-neighborhoods (for any k).

Inductive step: Assume that the lemma holds for all r ~ < r. Fix k such that i
and j have order-equivalent k-neighborhoods, and suppose that the first r rounds
include at most k active rounds.

If neither i nor j receives a message at round r, then by induction (for r - 1
and k), i and j are in corresponding states just after r - 1 rounds, with respect to
their k-neighborhoods. Since i and j have no new input, they make corresponding
transitions and end up in corresponding states after round r.

So assume that either i or j receives a message at round r. Then, round r is
active, so the first r - 1 rounds include at most k - 1 active rounds. Note that
i and j have order-equivalent (k - 1)-neighborhoods, and likewise for i - 1 and
j - 1 and for i + 1 and j + 1. Therefore, by induction (for r - 1 and k - 1), we
have that i and j are in corresponding states after r - 1 rounds, with respect to
their (k - 1)-neighborhoods, and similarly for i - 1 and j - 1, and for i + 1 and
j + l .

We proceed by case analysis.

1. At round r, neither i - 1 nor i + 1 sends a message to i.

Then, since i - 1 and j - 1 are in corresponding states after r - 1 rounds,
and likewise for i + 1 and j + 1, we have that neither j - 1 nor j + 1 sends
a message to j at round r. But this contradicts the assumption that either
i or j receives a message at round r.

. At round r, i - 1 sends a message to i but i + 1 does not.

Then, since i - 1 and j - 1 are in corresponding states after r - 1 rounds,
j - 1 also sends a message to j at round r, and that message corresponds
to the message sent by i - 1 to i, with respect to the (k - 1)-neighborhoods
of i - 1 and j - 1, and hence with respect to the k-neighborhoods of i and
j . For similar reasons, j + 1 sends no message to j at round r. Since i and
j are in corresponding states after round r - 1, and receive corresponding
messages, they remain in corresponding states, this time with respect to

their k-neighborhoods.

3. At round r, i § 1 sends a message to i but i - 1 does not.

Analogous to the previous case.

42 3. L E A D E R E L E C T I O N IN A S Y N C H R O N O U S RING

4. At round r, both i - 1 and i + 1 send messages to i.

A similar argument. D

Lemma 3.5 tells us that many active rounds are necessary to break symmetry

if there are large order-equivalent neighborhoods. We now define particular rings

with the special property that they have many order-equivalent neighborhoods

of various sizes. Let c, 0 < c ~ 1, be a constant, and let R be a ring of size

n. Then R is said to be c-symmetric if for every l, x/rn _< 1 _< n, and for every

segment S of R of length l, there are at least [~ J segments in R that are order
equivalent to S (counting S itself). 1

1 If n is a power of 2, then it is easy to construct a ring that is ~-symmetric.

Specifically, we define the bit-reversal ring of size n as follows. Suppose that

n - 2 k. Then we assign to each process i the integer in the range [0, n - 1] whose
k-bit binary representation is the reverse of the k-bit binary representation of i

(we use O k as the k-bit binary representation of n, identifying n with 0).

E x a m p l e 3.6.3 Bi t -reversa l ring

For n - 8, we have k - 3, and the assignment is as in Figure 3.3.

1 L e m m a 3.6 Any bit-reversal ring is ~-symmetric.

P r o o f . Left as an exercise. 2 E]

For values of n that are not powers of 2, there also always exist c-symmetric
rings, though the general case requires a smaller constant c.

T h e o r e m 3.7 There exists a constant c such that, for all n C N +, there is a
c-symmetric ring of size n.

The proof of Theorem 3.7 involves a fairly complicated recursive construc-
tion. 3 It is not possible to produce the needed ring simply, say by starting with

the bit-reversal ring for the next smaller power of 2 and just adding some extra
processes; these extra processes would destroy the symmetry.

So we can assume, for any n, that we have a c-symmetric ring R of size n.
The following lemma states that if such a ring elects a leader, then it must have
many active rounds.

1Try to ignore the square root lower bound condition--it is just a technicality.
2Note that for the bit-reversal ring, there is no need for the square root lower bound condition.
3This is where the square root lower bound condition arises.

3.6. L O W E R BOUND FOR C O M P A R I S O N - B A S E D A L G O R I T H M S 43

000=0 [

8

[11 - 1 1 I loo-4 I

I o ,=3 I 6 2 [010=2 [

,

4

Ioo1-11

F i g u r e 3.3: Bit-reversal ring of size 8.

L e m m a 3.8 Let A be a comparison-based algorithm executing in a c-symmetric
ring of size n, and suppose that A elects a leader. Suppose that k is an integer

such that x/r-n < 2k-+- i and I cn [> 2 Then A has more t h a n k active rounds
- - L 2 k + l j - - "

Proof . We proceed by contradiction. Suppose that A elects a leader, say
process i, in at most k active rounds. Let S be the k-neighborhood of i; S is a
segment of length 2k + 1. Since the ring is c-symmetric, there must be at least

[2-~+lJ > 2 segments in the ring that are order equivalent to S, counting S itself.

Thus, there is at least one other segment that is order equivalent to S; let j be
the midpoint of that segment. Now, by Lemma 3.5, i and j remain in equivalent
states throughout the execution, up to the election point. We conclude that j
also gets elected, a contradiction. D

Now we can prove the lower bound.

T h e o r e m 3.9 Let A be a comparison-based algorithm that elects a leader in
rings of size n. Then there is an execution of A in which ~ (n log n) messages
are sent by the time the leader is elected. 4

4The ~(n log n) expression hides a fixed constant, independent of n.

44 3. L E A D E R E L E C T I O N IN A S Y N C H R O N O U S R I N G

P r o o f . Fix c to be the constant whose existence is asserted by Theorem 3.7,
and use that theorem to obtain a c-symmetric ring R of size n. We consider
executions of the algorithm in ring R.

Define k - [~n-___A2J. Then ~ _< 2k + 1 (provided n is sufficiently large), and

[~ n / > 2 It follows Lemma 3.8 that there than k active rounds,
!

by are more
2 k + 1 - - "

that is, that there are at least k + 1 active rounds.
Consider the r th active round, where ~ + 1 _< r _< k + 1. Since the round

is active, there is some process i that sends a message in round r. Let S be

the (r - 1)-neighborhood of i. Since R is c-symmetric, there are at least [2c~n_l]

segments in R that are equivalent to S. By Lemma 3.5, at the point just before
the r th active round, the midpoints of all these segments are in corresponding
states, so they all send messages.

Now let r 1 - - [V / - ~ l -~- 1 and r 2 - - k + 1 -- I cn4----~2~ + 1. The argument above

implies that the total number of messages is at least
L 4

E cn cn

2 r - 1 -- 2 r - 1
r = r l r = r l

/ ' 2 .

The second term is O (n), so it suffices to show that the first term is ft(n log n).
We have

(~2~ 1)
C n ~ ~ n - -

2 r - 1 r
r = r l r = r l

= ft (n (ln r2 - In r l))

by an integral approximation of the sum,

= ft(n log n).

+1)

This is as needed. D

3.7 Lower Bound for Non-Comparison-Based
Algorithms*

Can we describe any lower bounds on the number of messages for the case of non-
comparison-based algorithms? Although the ft(n log n) barrier can be broken in
this case, it is possible to show that this can only happen at the cost of large time
complexity. For example, suppose that the time until leader election is bounded

3.7. N O N - C O M P A R I S O N - B A S E D A L G O R I T H M S * 45

by t. Then, if the total number of UIDs in the space of identifiers is sufficiently
large--say, greater than some particular fast-growing function f (n, t) ~ t h e n there
is a subset U of the identifiers on which it is possible to show that the algorithm
behaves "like a comparison-based algorithm," at least through t rounds. This
implies that the lower bound for comparison carries over to the time-bounded
algorithm using identifiers in U.

We give somewhat more detail, but our presentation is still just a sketch. We
will define the fast-growing function f (n , t) using Ramsey's Theorem, which is
a kind of generalized Pigeonhole Principle. In the statement of the theorem, an
n-subset is just a subset with n elements, and a coloring just assigns a color to
each set.

T h e o r e m 3.10 (R a m s e y ' s T h e o r e m) For all integers n, m, and c, there ex-
ists an integer g(n, m, c) with the following property. For every set S of size at
least g(n, m, c), and any coloring of the n-subsets of S with at most c colors,
there is some subset C of S of size m that has all of its n-subsets colored the
same color.

We begin by putting each algorithm into a normal form, in which each state
simply records, in LISP S-expression format, the initial UID plus all the messages
ever received, and each non-null message contains the complete state of its sender.
Certain of these S-expressions are then designated as election states, in which the
process is identified as having been elected as the leader. If the original algorithm
is a correct leader-election algorithm, then the new one (with the modified output
convention) is also, and the communication complexity is the same.

Our lower bound theorem is as follows.

T h e o r e m 3.11 For all integers n and t, there exists an integer f (n , t) with the
following property. Let A be any (not necessarily comparison-based) algorithm
that elects a leader in rings of size n within time t and uses a UID space of size
at least f (n , t). Then there is an execution of A in which f~(n log n) messages
are sent by the time the leader is elected.

P r o o f Ske tch . Fix n and t. Without loss of generality, we only consider
algorithms in normal form. Since the algorithms involve only n processes and
proceed for only t rounds, all the S-expressions that arise have at most n distinct
arguments and at most t parenthesis depth.

Now for each algorithm A, we define an equivalence relation ----A on n-sets
(i.e., sets of size n) of UIDs; roughly speaking, two n-sets will be said to be
equivalent if they give rise to the same behavior for algorithm A. More precisely,
if V and V ~ are two n-sets of UIDs, then we say that V --A V ~ if, for every

46 3. LEADER ELECTION IN A SYNCHRONOUS RING

S-expression of depth at most t over V, the corresponding S-expression over V ~
(generated by replacing each element of V with the same rank element within
W) give rise to the same decisions, in algorithm A, about whether to send a
message in each direction and about whether or not the process is elected as
leader.

Because the S-expressions in the definition of the equivalence relation have
at most n arguments and at most t depth, there are only finitely many =A
equivalence classes; in fact, there is an upper bound on the number of classes
that does not depend on the algorithm A, but only on n and t. Let c(n, t) be
such an upper bound.

Now fix algorithm A. We describe a way of coloring n-sets of UIDs, so we
can apply Ramsey's Theorem. Namely, we just associate a color with each =A
equivalence class of n-sets, and color all the n-sets in that class by that color.

Now define f (n , t) - g(n, 2n, c(n,t)), where g is the function in Theo-
rem 3.10, and consider any UID space containing at least f (n , t) identifiers.
Then, Theorem 3.10 implies the existence of a subset C of the UID space, con-
taining at least 2n elements, such that all n-subsets of C are colored the same
color. Take U to be the set consisting of the n smallest elements of C.

Then we claim that the algorithm behaves exactly like a comparison algo-
r i thm through t rounds, when UIDs are chosen from U. That is, every decision
made by any process, about whether to send a message in either direction or
about whether the process is a leader, depends only on the relative order of
the arguments contained in the current state. To see why this is so, fix any
two subsets W and W ~ of U, of the same size--say m. Suppose that S is an
S-expression of depth at most t with UIDs chosen from W, and S ~ is the corre-
sponding S-expression over W ~ (generated by replacing each element of W with
the same rank element within W~). Then W and W ~ can be extended to sets
V and V ~, each of size exactly n, by including the n - rn largest elements of C.
Since V and V ~ are colored the same color, the two S-expressions give rise to
the same decisions about whether to send a message in each direction and about
whether or not the process is elected as leader.

Since the algorithm behaves exactly like a comparison algorithm through t
rounds, when UIDs are chosen from U, Theorem 3.9 yields the lower bound. [2

3.8 Bibliographic Notes

The impossibility result of Section 3.2 seems to be a part of the ancient folklore
of this area; one version of this result, for a different model, appears in a paper
by Angluin [13]. The LCR algorithm is derived from one developed by Le Lann

3.9. EXERCISES 47

[191], with optimizations due to Chang and Roberts [71]. The HS algorithm is
due to Hirschberg and Sinclair [156].

There have been a series of improvements in the constant in the O (n log n)
upper bound, culminating in a bound of approximately 1.271n log n + O (n), by
Higham and Przytycka [155]; this bound works for the unidirectional case. Pe-
terson [239] and Dolev, Klawe, and Rodeh [97] have given O (n log n) algorithms
for the unidirectional case.

The TimeSlice algorithm also seems to be folklore, but is similar to the elec-
tion strategy used in the MIT token ring network. The VariableSpeeds algorithm
was developed by Frederickson and Lynch [127], and simultaneously by Vitanyi
[282].

The lower bound results, both for comparison-based and for non-comparison-
based algorithms, are due to Frederickson and Lynch [127]. Another construction
of c-symmetric rings is carried out by Attiya, Snir, and Warmuth [27]. Ram-
sey's Theorem is a standard result of combinatorial theory, and is presented, for
example, in the graph theory book of Berge [47].

The paper by Attiya, Snir, and Warmuth [27] contains other results about
limitations of computing power in synchronous rings, using proof techniques
similar to those used in Section 3.6.

3.9 E x e r c i s e s

3.1. Fill in more of the details for the inductive proof of correctness of the LCR
algorithm.

3.2. For the LCR algorithm,

(a) Give a UID assignment for which Ft(n 2) messages are sent.

(b) Give a UID assignment for which only O (n) messages are sent.

(c) Show that the average number of messages sent is O (n log n), where
this average is taken over all the possible orderings of the processes
on the ring, each assumed to be equally likely.

3.3. Modify the LCR algorithm so that it also allows all the non-leader pro-
cesses to output non-leader, and so that all the processes eventually halt.
Present the modified algorithm using the same style of "code" that we
used for the LCR algorithm.

3.4. Show that the LCR algorithm still works correctly in the version of the syn-
chronous model allowing variable start times. (You might have to modify
the code slightly.)

48 3. LEADER ELECTION IN A SYNCHRONOUS RING

3.5. Carry out a careful proof of correctness for the HS leader-election algo-
rithm, using the invariant assertion style used for LCR.

3.6. Show that the HS algorithm still works correctly in the version of the syn-
chronous model allowing variable start times. (You might have to modify
the code slightly.)

3.7. Suppose that the HS leader-election algorithm is modified so that succes-
sive powers of k are used for path lengths, k > 2, instead of successive
powers of 2. Analyze the time and communication complexity of the mod-
ified algorithm, similarly to the way the original HS algorithm is analyzed
in the book. Compare the results to those for the original algorithm.

3.8. Consider modifying the HS algorithm so that the processes only send to-
kens in one direction rather than both.

(a) Show that the most straightforward modification to the algorithm in
the text does not yield O (n log n) communication complexity. What
is an upper bound for the communication complexity?

(b) Add a little more cleverness to the algorithm in order to restore the
O (n log n) complexity bound.

3.9. Design a unidirectional leader-election algorithm that works with unknown
ring size, and only uses O (n log n) messages in the worst case. Your algo-
rithm should manipulate the UIDs using comparisons only.

3.10. Give code for a state machine to express the TimeSlice leader-election
algorithm.

3.11. Describe a variant of the TimeSlice algorithm that saves time at the ex-
pense of additional messages, by allowing some number k of UIDs instead
of just one to circulate in each phase. Prove the correctness of your algo-
rithm and analyze its complexity.

3.12. Give code for a state machine to express the VariableSpeeds leader-election
algorithm.

3.13. Show that the unmodified VariableSpeeds algorithm does not necessarily
have the desired O (n) communication complexity if processes can wake
up at different times.

3.14. Prove the best lower bound you can for the number of rounds required, in
the worst case, to elect a leader in a ring of size n. Be sure to state your
assumptions carefully.

3.9. EXERCISES 49

3.15. Give an explicit description of the bit-reversal ring for n -- 16.

3.16. Prove tha t the bit-reversal ring of size n - 2 k is l - symmetr ic , for any

k E N + .

3.17. Design a c-symmetric ring for non-powers of 2, for some value of c > 0.

3.18. Consider the problem of electing a leader in a synchronous ring of size n,
where n is known to all the processes and the processes have no UIDs.
Devise a randomized leader-election algorithm, that is, one in which the

processes can make random choices in addition to just following their code

deterministically. State carefully the properties tha t your algori thm sat-
isfies. For example, is it absolutely guaranteed to elect a unique leader,
or is there a small probabili ty that it will fail to do this? Wha t are the
expected t ime and message complexities of your algorithm?

3.19. Consider a synchronous bidirectional ring of unknown size n, in which
processes have UIDs. Give upper and lower bounds on the number of mes-
sages required by a comparison-based algorithm in which all the processes

compute n mod 2.

This Page Intentionally Left Blank

Chapter 4

Algorithms in General
Synchronous Networks

In Chapter 3, we presented algorithms and lower bounds for the problem of leader
election in very simple synchronous networks--unidirectional and bidirectional
rings. In this chapter, we consider a larger collection of problems in a larger
class of synchronous networks. In particular, we present algorithms for leader
election, breadth-first search (BFS), finding shortest paths, finding a minimum
spanning tree (MST), and finding a maximal independent set (MIS), in networks
based on arbitrary graphs and digraphs.

The problem of leader election arises when a process must be selected to
"take charge" of a network computation. The problems of breadth-first search,
finding shortest paths, and finding a minimum spanning tree are motivated by
the need to build structures suitable for supporting efficient communication. The
problem of finding a maximal independent set arises from the problem of network
resource allocation. (We will revisit many of these problems and algorithms later,
in Chapter 15, in the context of asynchronous networks.)

In this chapter, we consider an arbitrary, strongly connected network digraph
G = (V, E) having n nodes. (Sometimes we will restrict attention to the case
where all edges are bidirectional, i.e., where the graph is undirected.) We assume,
as usual for synchronous systems, that the processes communicate only over the
directed edges of the digraph. In order to name the nodes, we assign them the
indices 1 , . . . , n, but, unlike the ring's indices, these have no special connection
to the nodes' positions in the graph. The processes do not know their indices,
nor those of their neighbors, but refer to their neighbors by local names. We
do assume that if a process i has the same process j for both an incoming and
outgoing neighbor, then i knows that the two processes are the same.

52 4. A L G O R I T H M S IN G E N E R A L S Y N C H R O N O U S N E T W O R K S

4.1 L e a d e r E l e c t i o n in a G e n e r a l N e t w o r k

We start by reconsidering the problem of leader election, this time in a network
based on an arbitrary strongly connected digraph.

4 .1 .1 T h e Problem

We assume that the processes have unique identifiers (UIDs), chosen from some
totally ordered space of identifiers; each process's UID is different from each
other's in the network, but there is no constraint on which UIDs actually appear.
As in Chapter 3, the requirement is that, eventually, exactly one process should
elect itself the leader, by changing a special status component of its state to the
value leader. As in Chapter 3, there are several versions of the problem:

1. It might also be required that all non-leader processes eventually output
the fact that they are not the leader, by changing their status components
to non-leader.

2. The number n of nodes and the diameter, diam, can be either known or
unknown to the processes. Or, an upper bound on these quantities might
be known.

4.1.2 A Simple Flooding Algorithm

We give a simple algorithm that causes both leaders and non-leaders to identify
themselves. The algorithm requires that the processes know diam. The algorithm
just floods the maximum UID throughout the network, so we call it the FloodMax
algorithm.

F l o o d M a x algorithm (informal):

Every process maintains a record of the maximum UID it has seen so far
(initially its own). At each round, each process propagates this maximum
on all of its outgoing edges. After diam rounds, if the maximum value seen
is the process's own UID, the process elects itself the leader; otherwise, it
is a non-leader.

The code for process i follows.

F l o o d M a x a l g o r i t h m (formal)"

The message alphabet is the set of UIDs.

statesi consists of components:
u, a UID, initially i's UID
max-uid, a UID, initially i's UID

4.1. L E A D E R E L E C T I O N I N A G E N E R A L N E T W O R K 53

status C {unknown, leader, non-leader}, initially unknown
rounds, an integer, initially 0

m s g s ~ :

if rounds < diam then
send max-uid to all j E out-nbrs

t r a n s i :

rounds := rounds + 1
let U be the set of UIDs that arrive from processes in in-nbrs
max-uid := max({ max-uid} U U)
if rounds = diam then

if max-uid = u then status : - leader
else status := non-leader

It is easy to see that FloodMax elects the process with the max imum UID.

More specifically, define/max to be the index of the process with the max imum

UID, and Umax to be that UID. We show the following:

T h e o r e m 4.1 In the FloodMax algorithm, process imax outputs leader and each

other process outputs non-leader, within diam rounds.

P r o o f . It is enough to prove the following assertion"

A s s e r t i o n 4 .1 .1 Af te r diam rounds, statuSima~

non-leader for every j ~ imax.

- leader and statusj =

The key to the proof of Assert ion 4.1.1 is the fact that after r rounds, the maxi-

mum UID has reached every process that is within distance r of/max, as measured

along directed paths in G. This condition is captured by the invariant"

A s s e r t i o n 4 .1 .2 For 0 <_ r ~_ diam and for every j , after r rounds,

i f the distance f rom imax to j is at mos t r, then max-uidj - Umax.

In particular, in view of the definition of the diameter of the graph, Assert ion 4.1.2

implies that every process has the max imum UID by the end of diam rounds.

To prove Assert ion 4.1.2, it is useful to have the following addit ional auxiliary

invariants:

A s s e r t i o n 4 .1 .3 For every r and j , after r rounds, roundsj - r.

A s s e r t i o n 4 .1 .4 For every r and j , after r rounds, max-uidj ~

~t max.

54 4. ALGORITHMS IN GENERAL SYNCHRONOUS NETWORKS

Assertions 4.1.2, 4.1.3, and 4.1.4, specialized to r = d i a m - 1, plus an argument
about what happens at round diam, imply Assertion 4.1.1 and therefore the
result. D

The FloodMax algorithm can be regarded as a kind of generalization of the
LCR algorithm of Section 3.3, because the LCR algorithm also floods the maxi-
mum value throughout the (ring) network. However, note that the LCR algorithm
does not require any special knowledge about the network, such as its diameter.
In LCR, a process is elected simply when it receives its own UID in a message,
rather than after a specified number of rounds as in FloodMax. This strategy is
particular to ring networks and does not work in general digraphs.

C o m p l e x i t y ana lys i s . It is easy to see that the time until the leader is elected
(and all other processes know that they are not the leader) is diam rounds. The
number of messages is diam.iE], where]El is the number of directed edges in the
digraph, because a message is sent on every directed edge for each of the first
diam rounds.

U p p e r b o u n d on the d i a m e t e r . Note that the algorithm also works correctly
if the processes all know an upper bound d on the diameter rather than the
diameter itself. The complexity measures then increase so that they depend on
d rather than diam.

4.1.3 Reducing the Communication Complexity

There is a simple optimization 1 that can be used to decrease the communication
complexity in many cases, although it does not decrease the order of magnitude in
the worst case. Namely, processes can send their max-uid values only when they
first learn about them, not at every round. We call this algorithm OptFloodMax.
The modification to the code for FloodMax is as follows.

OptFloodMax a l g o r i t h m :

states~ has a n a d d i t i o n a l component:

new-info, a Boolean, initially true

msgs~:

if rounds < diam and new-info = true then
send max-uid to all j 6 out-nbrs

1 "Optimization" is not really the appropriate word to use here. "Improvement" would be
better, but "optimization" is s tandard usage.

4.1. L E A D E R E L E C T I O N IN A G E N E R A L N E T W O R K 55

t rans i :

rounds : = rounds + 1
let U be the se t of U I D s t h a t a r r i ve f r o m p r o c e s s e s in in-nbrs
if m a x (U) > max-uid t h e n new-info := true else new-info := false
max-uid := m a x ({max-uid} U U)
if rounds = diam t h e n

if max-uid = u t h e n status := leader else status := non-leader

It is easy to believe that this modification yields a correct algorithm. How
can we prove this formally? One way is to carry out another invariant assertion
proof similar to the one for FloodMax. However, this would involve repeating a
lot of the work we have already done for the earlier proof. Instead of starting from
scratch, we give a proof based on relating the OptFloodMax algorithm formally
to the FloodMax algorithm. This is a simple example of the use of the simulation
method for verifying the correctness of distributed algorithms.

T h e o r e m 4.2 In the OptFloodMax algorithm, process imax o u t p u t s leader and
each other process outputs non-leader, within diam rounds.

P r o o f . It is enough to prove the following assertion, analogous to Assertion
4.1.1 in the proof for FloodMax.

A s s e r t i o n 4.1.5 After diam rounds, statuSimax

non-leader for every j 7s imaz.
- leader and statusj =

We start by proving a preliminary invariant that says that a process's new-info
flag is always set to true whenever there is new information that the process is
supposed to send at the next round. More specifically, it says that if any outgoing
neighbor of i does not know a UID at least as great as the maximum UID known
by i, then i's new-info flag must be true.

A s s e r t i o n 4.1.6 For any r, 0 < r < diam, and any i, j , where
j E out-nbrsi, the following holds: after r rounds, if max-uidj <
max-uidi then n e w - i n f o i - true.

Assertion 4.1.6 is proved by induction on r. The basis case, r = 0, is true
because all the new-info flags are initialized to true. For the inductive step,
consider any particular processes i and j, where j C out-nbrsi. If max-uidi
increases in round r, then new-infoi gets set to true, which suffices. On the
other hand, if max-uidi does not increase, then the inductive hypothesis implies
that either max-uidj was already sufficiently large, or else new-infoi = true just
before round r. In the former case, max-uidj remains sufficiently large because

56 4. A L G O R I T H M S IN G E N E R A L S Y N C H R O N O U S N E T W O R K S

the value never decreases. In the latter case, the new information is sent from i
to j at round r, which causes rnax-uidj to become sufficiently large.

Now, to prove that OptFloodMax is correct, we imagine running it side by
side with FloodMax, starting with the same UID assignment. The heart of the
proof is a simulation relation, which is just an invariant assertion that involves
the states of both algorithms after the same number of rounds.

A s s e r t i o n 4 .1 .7 For any r, 0 <_ r < diam, after r rounds, the
values of the u, max-uid, status, and rounds components are the
same in the states of both algorithms.

The proof of the simulation assertion, Assertion 4.1.7, is carried out by induction
on r, just as for the usual sorts of assertions involving only a single algorithm.
The interesting part of the inductive step is showing that the max-uid values
remain identical.

So consider any i, j , where j C out-nbrsi. If new-infoi = true before round
r, then i sends the same information to j in round r in OptFloodMax as it does
in FloodMax. On the other hand, if new-infoi = false before round r, then
i sends nothing to j in round r in OptFloodMax, but sends max-uidi to j in
round r in FloodMax. However, Assertion 4.1.6 implies that, in this case, max-
uidj >_ max-uidi before round r, so the message has no effect in FloodMax. It
follows that i has the same effect on max-uidj in both algorithms. Since this is
true for all i and j, it follows that the max-uid values remain identical in both
algorithms.

Assertions 4.1.7 and 4.1.1 together imply Assertion 4.1.5, as needed. [-7

The method we just used to prove the correctness of OptFloodMax is often
useful for proving the correctness of "optimized" versions of distributed algo-
rithms. First, an inefficient but simple version of the algorithm is proved cor-
rect. Then a more efficient but more complicated version of the algorithm is
verified by proving a formal relationship between it and the simple algorithm.
For synchronous network algorithms, this relationship generally takes the form
used above--an invariant involving the states of both algorithms after the same
number of rounds.

A n o t h e r i m p r o v e m e n t . It is possible to reduce the number of messages in
the FloodMax algorithm slightly further. Namely, if a process i receives a new
maximum from a process j that is both an incoming neighbor and an outgoing
neighbor, that is, with which it has bidirectional communication, then i need not
send a message in the direction of j at the next round.

4.2. B R E A D T H - F I R S T S E A R C H 57

It is possible to elect a leader in a general digraph network with UIDs, but in
which no information about n or diam is available to the processes. We suggest
that you stop here and try to construct an algorithm to do this. One possibility
is to introduce an auxiliary protocol that allows each process to calculate the
diameter of the network. Ideas presented later in this chapter might also be

useful.

4.2 B r e a d t h - F i r s t S e a r c h

The next problem we consider is that of performing a breadth-first search (BFS)
in a network based on an arbi t rary strongly connected directed graph having
a distinguished source node. More precisely, we consider how to establish a
breadth-first spanning tree for the digraph. The motivation for constructing such
a tree comes from the desire to have a convenient structure to use as a basis
for broadcast communication. The B FS tree minimizes the maximum communi-
cation time from the process at the distinguished node to all other processes in

the network (under the simplifying assumption that it takes the same amount of

time for a message to traverse each communication channel).
The BFS problem and its solutions are somewhat simpler in the case where all

pairs of neighbors have bidirectional communication, that is, where the network
graph is undirected. We will indicate the simplifications for this case.

4 . 2 . 1 T h e P r o b l e m

We define a directed spanning tree of a directed graph G = (V, E) to be a rooted

tree that consists entirely of directed edges in E, all edges directed from parents
to children in the tree, and that contains every vertex of G. A directed spanning
tree of G with root node i is breadth-first provided that each node at distance d
from i in G appears at depth d in the tree (that is, at distance d from i in the
tree). Every strongly connected digraph has a breadth-first directed spanning

tree.
For the BFS problem, we suppose that the network is strongly connected

and that there is a distinguished source node io. The algorithm is supposed
to output the structure of a breadth-first directed sp~nning tree of the network
graph, rooted at i0. The output should appear in a distr ibuted fashion: each
process other than i0 should have a parent component that gets set to indicate

the node that is its parent in the tree.
As usual, processes only communicate over directed edges. Processes are

assumed to have UIDs but to have no knowledge of the size or diameter of the

network.

58 4. ALGORITHMS IN GENERAL SYNCHRONOUS N E T W O R K S

4.2.2 A Basic Breadth-First Search Algorithm

The basic idea for this algorithm is the same as for the s tandard sequential
breadth-first search algorithm. We call this algorithm SynchBFS.

S y n c h B F S algorithm:

At any point during execution, there is some set of processes that is
"marked," initially just i0. Process i0 sends out a search message at round
1, to all of its outgoing neighbors. At any round, if an unmarked process
receives a search message, it marks itself and chooses one of the processes
from which the search has arrived as its parent. At the first round after
a process gets marked, it sends a search message to all of its outgoing
neighbors.

It is not hard to see that the SynchBFS algorithm produces a BFS tree. To
show this formally, we can prove the invariant that after r rounds, every process
at distance d from i0 in the graph, 1 < d < r, has its parent pointer defined;
moreover, each such pointer points to a node at distance d - 1 from i0. This
invariant can, as usual, be proved by induction on the number of rounds.

C o m p l e x i t y a n a l y s i s . The time complexity is at most diam rounds. (Ac-
tually, this analysis can be refined a little, to the maximum distance from the

part icular node i0 to any other node.) The number of messages is just IEI - -a
search message is t ransmit ted exactly once on each directed edge.

R e d u c i n g the c o m m u n i c a t i o n c o m p l e x i t y . As for the FloodMax algorithm,
it is possible to reduce the number of messages slightly: a newly marked process
need not send a search message in the direction of any process from which it has
already received such a message.

M e s s a g e b r o a d c a s t . The SynchBFS algorithm can easily be augmented to
implement message broadcast. If a process has a message m that it wants to
communicate to all of the processes in the network, it can simply initiate an
execution of SynchBFS with itself as the root, piggybacking message m on the
search message it sends in round 1. Other processes continue to piggyback m on
all their search messages as well. Since the tree eventually spans all the nodes,
message m is eventually delivered to all the processes.

C h i l d p o i n t e r s . In an important variant of the BFS problem, it is required
that each process learn not only who its parent in the tree is, but also who all of
its children are. In this case, it is necessary for each process receiving a search

4.2. BREADTH-FIRST SEARCH 59

message to respond to that message with a parent or non-parent message, telling

the sender whether or not it has been chosen by the recipient as the parent.
If bidirectional communication is allowed between all pairs of neighbors, that

is, if the network graph is undirected, then there is no difficulty--and little extra
cos t - - in adding this extra communication. However, since we are allowing pairs
of neighbors with only unidirectional communication, some of the parent and
non-parent messages may need to be sent via indirect routes. For example, a
parent or non-parent message could be sent via a new execution of SynchBFS,
using piggybacking as above. In order for such a message to be recognized by
its intended recipient, the message should also carry the UID of the intended
recipient (plus a local name by which the recipient knows the sender), which

should therefore itself be piggybacked on the original search message. Note that
many executions of these SynchBFS "subroutines" can go on in parallel. In
order to fit our formal model, in which at most one message can be sent on each
link at each round, it may be necessary to combine many messages into one.

For a directed graph with unidirectional communication on some edges, in
addition to outputt ing parent and child pointers, it may also be useful to have
processes output information about the shortest routes from children to their
parents. Such information could be produced, for example, using additional

executions of SynchBFS.

C o m p l e x i t y a n a l y s i s . If the graph is undirected, then the total time to com-
pute a BFS tree, including child pointers, is O (diam), and the communication

complexity is O ([E[).
Even if some of the pairs of neighbors have unidirectional communication,

the time to compute the tree plus child pointers is still only O (diam), because
the extra BFS executions can all go on in parallel. In this case, the total number
of messages is O (diamlE[), because at most [E[messages can be sent at each
of the O (diam) rounds. However, because a message might contain information
from up to [E[concurrent BFS executions, there might be as many as [EIb bits in
a message, where b is the maximum number of bits needed to represent a single
UID. This yields a total of O (diamlE[2b) bits of communication. A smaller
bound on the total number of bits can be obtained by noting that each of the (at
most [El) concurrent BFS executions uses at most [E[messages, each having at
most b bits. So the total number of communication bits is at most O (IEl2b).

T e r m i n a t i o n . How can the source process i0 tell when the construction of the
tree has been completed? If each search message is answered with either a parent
or non-parent message, then after any process has received responses for all of
its search messages, it knows who all its children in the BFS tree are and knows

60 4. ALGORITHMS IN GENERAL SYNCHRONOUS NETWORKS

that they have all been marked. So, starting from the leaves of the BFS tree,
notification of completion can be "fanned in" to the source: each process can
send notification of completion to its parent in the tree as soon as (a) it has
received responses for all its search messages (so that it knows who its children
are and knows that they have been marked), and (b) it has received notification of
completion from all its children. This type of procedure is called a convergecast.

If the graph is undirected, then the total time to compute a BFS tree, includ-
ing child pointers, and to propagate notification of completion back to the source
is O (diam) and the communication complexity is only O (IE[). If unidirectional
communication is allowed, then the total time, including notification of comple-

tion, is O (diam2). The reason the behavior is quadratic is that the notification
/ \

\ /

has to proceed sequentially, one level at a time in the tree. The total number

of messages is O (diam21EI) and the total number of communication bits is at
\ /

most O ([EI2b).

4.2.3 Applications

Breadth-first search is one of the most basic building blocks for distributed al-
gorithms. We give some examples here of how the SynchBFS algorithm can be
used or augmented to help in performing other tasks.

B r o a d c a s t . As we mentioned earlier, a message broadcast can be implemented
along with the establishment of a BFS tree. Another idea is first to produce a
BFS tree with child pointers, as described above, and then to use the tree to
conduct the broadcast. The message need only be propagated along edges from
parents to their children. This allows the work of constructing the BFS tree to
be reused, because many messages can be sent on the same tree. Once the BFS
tree has been constructed, the additional time to broadcast a single message is
only O (diam), and the number of messages is only O (n).

G l o b a l c o m p u t a t i o n . Another application of BFS trees is the collection of
information from throughout the network or, more generally, the computation of
a function based on distributed inputs. For example, consider the problem in
which each process has a nonnegative integer input value and we want to find
the sum of all the inputs in the network. Using a B FS tree, this can be done
easily (and emciently) as follows. Starting from the leaves, "fan in" the results
in a convergecast procedure, as follows. Each leaf sends its value to its parent;
each parent waits until it gets the values from all its children, adds them to its
own input value, and then sends the sum to its own parent. The sum calculated
by the root of the BFS tree is the final answer.

4.3. SHORTEST PATHS 61

Assuming that the BFS tree has already been constructed, and assuming
bidirectional communication on all tree edges, this scheme requires O (diam)
t ime and O (n) messages. The same scheme can be used to compute many other
functions, for example, the maximum or minimum of the integer inputs. (What
is required is that the function be associative and commutative.)

E l e c t i n g a l eade r . Using SynchBFS, an algorithm can be designed to elect a
leader in a network with UIDs, even when the processes have no knowledge of n
or diam. Namely, all the processes can initiate breadth-first searches in parallel.
Each process i uses the tree thereby constructed and the global computat ion
procedure just described to determine the maximum UID of any process in the
network. The process with the maximum UID then declares itself to be the
leader, and all others announce that they are not the leader. If the graph is
undirected, the time is O(diam) and the number of messages is O (diamlEI),
again because at most IEI messages can be sent at each of the diam rounds.
The number of bits is at most O (n[EIb), where b is the maximum number of
bits used to represent a single UID.

C o m p u t i n g t h e d i a m e t e r . The diameter of the network can be computed by
having all processes initiate breadth-first searches in parallel. Each process i uses
the tree thereby constructed to determine max-disti, defined to be the maximum
distance from i to any other process in the network. Each process i then reuses
its breadth-first tree for a global computat ion to discover the maximum of the
max-dist values. If the graph is undirected, the time is O (diam) and the number
of messages is O (diam[EI) , the number of bits is O (hiE[b). The diameter thus
computed could be used, for example, in the leader-election algorithm FloodMax.

4.3 Shortes t P a t h s

Now we examine a generalization of the BFS problem. Again, we consider a
strongly connected directed graph, with the possibility of unidirectional commu-
nication between some pairs of neighbors. This time, however, we assume that
each directed edge e = (i, j) has an associated nonnegative real-valued weight,
which we denote by weight(e) or weighti,j. The weight of a path is defined to be
the sum of the weights on its edges. The problem is to find a shortest path from
a distinguished source node i0 in the digraph to each other node in the digraph,
where a shortest path is defined to be a path with minimum weight. 2 A collection
of shortest paths from i0 to all the other nodes in the digraph constitutes a
subtree of the digraph, all of whose edges are oriented from parent to child.

2The mixture of measures of weight and distance is unfortunate, but traditional.

62 4. ALGORITHMS IN GENERAL SYNCHRONOUS NETWORKS

As for breadth-first search, the motivation for constructing such a tree comes
from the desire to have a convenient structure to use for broadcast communi-
cation. The weights represent costs that may be associated with the traversal
of edges, for instance, communication delay or a monetary charge. A shortest
paths tree minimizes the maximum worst-case cost of communicating with any
process in the network.

We assume that every process initially knows the weight of all its incident
edges, or, more precisely, that the weight of an edge appears in special weight
variables at both its endpoint processes. We also assume that each process
knows the number n of nodes in the digraph. We require that each process
should determine its parent in a particular shortest paths tree, and also its
distance (i.e., the total weight of its shortest path) from i0.

If all edges are of equal weight, then a BFS tree is also a shortest paths
tree. Thus, in this case, a trivial modification of the simple SynchBFS tree
construction can be made to produce the distance information as well as the
parent pointers.

The case where weights can be unequal is more interesting. One way to
solve the problem is by the following algori thm--a version of the Bellman-Ford
sequential shortest paths algorithm.

Bel lmanFord a l g o r i t h m :

Each process i keeps track of dist, the shortest distance from i0 it knows
so far, together with parent, the incoming neighbor that precedes i in a
path whose weight is dist. Initially, distio = 0, dist4 = ec for i :/: i0, and
the parent components are undefined. At each round, each process sends
its dist to all its outgoing neighbors. Then each process i updates its dist
by a "relaxation step," in which it takes the minimum of its previous dist
value and all the values distj + weightj,i, where j is an incoming neighbor.
If dist is changed, the parent component is also updated accordingly. After
n - 1 rounds, dist contains the shortest distance, and parent the parent in
the shortest paths tree.

It is not hard to see that, after n - 1 rounds, the dist values converge to the
correct distances. One way to argue the correctness of BellmanFord is to show
(by induction on r) that the following is true after r rounds: Every process i has
its dist and parent components corresponding to a shortest path among those
paths from i0 to i consisting of at most r edges. (If there are no such paths,
then dist = cc and parent is undefined.) We leave the details for an exercise.

C o m p l e x i t y ana lys is . The time complexity of the BellmanFord algorithm is
n - 1, and the number of messages is (n - 1)[El.

4.4. MINIMUMSPANNING TREE 63

ioe ---

1 1

F i g u r e 4.1" Shortest paths stabilize only after 2 rounds, though diam- 1.

E x a m p l e 4.3.1 T i m e c o m p l e x i t y of B e l l m a n F o r d

You might suspect that by analogy with SynchBFS, the time com-
plexity of BellmanFord is actually diam. An example that indicates
why this is not the case is shown in Figure 4.1. In this example, it
takes 2 rounds for the correct distance, 2, from i0 to i to stabilize,
since the path along which that distance is realized has two edges.
However, the diameter is only 1.

The BellmanFord algorithm also works using an upper bound on n in place
of n itself. If no such bound is known, it is possible to use techniques such as
those described in Section 4.2 to discover one.

4.4 Min imum Spanning Tree

The next problem we consider is that of finding a minimum, or minimum-weight,
spanning tree (MST) in an undirected graph network with weighted edges.
Again, the main use for such a tree is as a basis for broadcast communica-
tion. A minimum-weight spanning tree minimizes the total cost for any source
process to communicate with all the other processes in the network.

4 .4 .1 T h e P r o b l e m

A spanning forest of an undirected graph G - (V, E) is a forest (i.e., a graph that
is acyclic but not necessarily connected) that consists entirely of undirected edges
in E and that contains every vertex of G. A spanning tree of an undirected graph
G is a spanning forest of G that is connected. If there are weights associated
with the undirected edges in E, then the weight of any subgraph of G (such as
a spanning tree or spanning forest of G) is defined to be the sum of the weights
of its edges.

64 4. A L G O R I T H M S IN G E N E R A L S Y N C H R O N O U S N E T W O R K S

Recall that we formalize the underlying undirected graph within our directed
graph model as a directed graph having bidirectional edges between all pairs of
neighbors. As in Section 4.3, we assume that each directed edge e = (i, j) has
an associated nonnegative real-valued weight, weight(e) - weighti,j, only this
time, we assume that for all i and j, weighti,j - weightj, i. We assume that every
process initially knows the weight of all its incident edges, or, more precisely, that
the weight of an edge appears in weight variables at both its endpoint processes.
We assume that the processes have UIDs and know n. The problem is to find a
minimum-weight (undirected) spanning tree for the entire network; specifically,
each process is required to decide which of its incident edges are and which are
not part of the minimum spanning tree.

4 . 4 .2 B a s i c T h e o r y

All known MST algorithms, sequential as well as concurrent, are based on the
same simple theory, which we describe in this subsection. The basic strategy for
constructing a minimum spanning tree involves starting with the trivial spanning
forest consisting of n single nodes and repeatedly merging components along
connecting edges until a spanning tree is produced. In order to end up with
a minimum spanning tree, it is important that the merging occur only along
certain selected edges--namely, those that are minimum-weight outgoing edges
of some component. Justification for this method of selection is provided by the
following lemma.

L e m m a 4.3 Let G - (V, E) be a weighted undirected graph, and let {(V/, Ei) �9
1 <_ i < k} be any spanning forest for G, where k > 1. Fix any i, 1 <_ i <_ k. Let
e be an edge of smallest weight in the set

{e ~" e I has exactly one endpoint in Vi }.

Then there is a spanning tree for G that includes Uj F_~j and e, and this tree is
of min imum weight among all the spanning trees for G that include Uj Ej .

P r o o f . By contradiction. Suppose the claim is fa lse-- that is, that there exists
a spanning tree T that contains Uj Ej, does not contain e, and is of strictly
smaller weight than any other spanning tree that contains Uj Ej and e. Now
consider the graph T ~ obtained by adding e to T. Clearly, T ~ contains a cycle,
which has another edge e ~ =/= e that is outgoing from V/.

By the choice of e, we know that weight(e') > weight(e). Now, consider the
graph T" constructed by deleting e I from T I. Then T" is a spanning tree for G,
it contains Uj Ej and e, and its weight is no greater than that of T. But this
contradicts the claimed property of T. D

4.4. M I N I M U M S P A N N I N G TREE 65

Lemma 4.3 provides the justification for the following general strategy for
constructing an MST.

General strategy for MST:
Start with the trivial spanning forest that consists of n individual
nodes and no edges. Then repeatedly do the following: Select an ar-
bitrary component C in the forest and an arbitrary outgoing edge e
of C having minimum weight among the outgoing edges of C. Com-
bine C with the component at the other end of e, including edge e
in the new combined component. Stop when the forest has a single
component.

Lemma 4.3 can be used in an inductive proof to show that, at any stage in
the construction, the forest is a subgraph of an MST. Several well-known sequen-
tial MST algorithms are special cases of this general strategy. For example, the
Prim-Dijkstra algorithm begins by distinguishing one of the initial single-node
components and repeatedly adds the minimum-weight outgoing edge from the
current component, each time attaching a single new node until a complete span-
ning tree is obtained. For another example, the Kruskal algorithm repeatedly
adds the minimum-weight edge among all the edges that join two separate com-
ponents in the current spanning forest, thus combining components until there
is only one component, which is the final spanning tree.

In order to use this general strategy in a distributed setting, it would be nice
to be able to extend the forest with several edges determined concurrently. That
is, each of several components could determine its minimum-weight outgoing
edge independently, and then all of the determined edges could be added to the
forest, thereby causing several combinations of components to occur all at once.
But Lemma 4.3 does not guarantee the correctness of this parallel strategy. In
fact, the strategy is not correct, in general.

Example 4.4.1 Cycle creation in parallel MST algorithm

Consider the graph in Figure 4.2. The dots represent components
in the spanning forest. The three edges with weight 1 are the only
outgoing edges. If the components choose their minimum-weight
outgoing edges as depicted by the arrows, a cycle would be created.

The cycle problem is avoidable, however, in the special case where all the
edges have distinct weights. This is because of the following lemma.

L e m m a 4.4 If all edges of a graph G have distinct weights, then there is exactly
one MS T for G.

66 4. ALGORITHMS IN GENERAL SYNCHRONOUS NETWORKS

F i g u r e 4.2" A cycle created by concurrent choices of minimum-weight outgoing edges.

P r o o f . The proof is similar to the proof of Lemma 4.3. Suppose that there
are two distinct minimum-weight spanning trees, T and T ~, and let e be the
minimum-weight edge that appears in only one of the two trees. Suppose (with-
out loss of generality) that e C T. Then the graph T" obtained by adding e to T ~
contains a cycle, and at least one other edge in that cycle, e ~, is not in T. Since
the edge weights are all distinct and since e ~ is in only one of the two trees, we
must have weight(e') > weight(e), by our choice of e. Then removing e' from T"
yields a spanning tree with a smaller weight than T ~, which is a contradiction.

D

Now reconsider the general strategy for the case where the graph has dis-
tinct edge weights, and so, by Lemma 4.4, there is a unique MST. In this
case, at any stage of the construction, any component in the forest has exactly
one minimum-weight outgoing edge (which we abbreviate, unpronounceably, as
MWOE). Lemma 4.3 implies that if we begin the stage with a forest, all of whose
edges are in the unique MST, then all of the MWOEs, for all components, are
also in the unique MST. So we can add them all at once, without any danger of
creating a cycle.

4 . 4 . 3 T h e A l g o r i t h m

We present a distributed algorithm for constructing an MST in an arbitrary
weighted undirected graph, following the general strategy described in the pre-
vious subsection. Since components will be allowed to combine concurrently, we
assume that edge weights are all distinct; near the end of this subsection, we will
say how this assumption can be removed. We call the algorithm SynchGHS be-
cause it is based on an asynchronous algorithm developed by Gallager, Humblet,
and Spira. (We will present the asynchronous algorithm, called simply GHS, in
Section 15.5.)

4.4. M I N I M U M S P A N N I N G T R E E 67

SynchGHS algorithm:
The algorithm builds the components in "levels." For each k, the level k
components constitute a spanning forest, where each level k component
consists of a tree that is a subgraph of the MST. Each level k component
has at least 2 k nodes. Every component, at every level, has a distinguished
leader node. The processes allow a fixed number of rounds, which is O (n),
to complete each level.

The algorithm starts with level 0 components consisting of individual nodes
and no edges. Suppose inductively that the level k components have been
determined (along with their leaders). More specifically, suppose that each
process knows the UID of the leader of its component; this UID is used as
an identifier for the entire component. Each process also knows which of
its incident edges are in the component 's tree.

To get the level k + 1 components, each level k component conducts a
search along its spanning tree edges for the MWOE of the component.
The leader broadcasts search requests along tree edges, using the message
broadcast strategy described in Section 4.2. Each process finds, among
its incident edges, the one of minimum weight that is outgoing from the
component (if there is any such edge); it does this by sending test messages
along all non-tree edges, asking whether or not the other end is in the same
component. (This determination is made by comparing the component
identifiers.) Then the processes convergecast this local minimum-weight
edge information toward the leader, taking minima along the way. The
minimum obtained by the leader is the MWOE of the entire component.

When all level k components have found their MWOEs, the components
are combined along all these MWOEs to form the level k + 1 components.
This involves the leader of each level k component communicating with the
component process adjacent to the MWOE, to tell it to mark the edge as
being in the new tree; the process at the other end of the edge is also told
to do the same thing.

Then a new leader is chosen for each level k + 1 component, as follows. It
can be shown that for each group of level k components that get combined
into a single level k + 1 component, there is a unique edge e that is the
common MWOE of two of the level k components in the group. (We argue
this below.) We let the new leader be the endpoint of e having the larger
UID. Note that this new leader can identify itself using only information
available locally.

Finally, the UID of the new leader is propagated throughout the new com-
ponent, using a broadcast.

68 4. A L G O R I T H M S IN G E N E R A L S Y N C H R O N O U S N E T W O R K S

I

Figure 4.3" A graph in which each node has exactly one outgoing edge.
unique cycle.

Note the

Eventually, after some number of levels, the spanning forest consists of only
a single component containing all the nodes in the network. Then a new
at tempt to find a MWOE will fail, because no process will find an outgoing
edge. When the leader learns this, it broadcasts a message saying that the
algorithm is completed.

A key to the algorithm is the fact that, among each group of level k compo-
nents that get combined, there is a unique (undirected) edge that is the common
MWOE of both endpoint components. In order to see why this is so, consider
the component digraph G ~, whose nodes are the level k components that combine
to form one level k + 1 component and whose edges are the MWOEs. G ~ is a
weakly connected digraph in which every node has exactly one outgoing edge.
(A digraph is weakly connected if its undirected version, obtained by ignoring the
directions of all the edges, is connected.) So we can use the following property:

Lemma 4.5 Let G be a weakly connected digraph in which each node has exactly
one outgoing edge. Then G contains exactly one cycle.

P r o o f . The proof is left as an exercise.

Example 4.4.2 Graph with one outgoing edge per node

Figure 4.3 shows an example of a graph in which each node has
exactly one outgoing edge.

We apply Lemma 4.5 to the component digraph G ~ to obtain the unique
cycle of components. Because of the way G ~ was constructed, successive edges

4.4. MINIMUM SPANNING TREE 69

in the cycle must have nonincreasing weights; therefore, the length of this cycle
cannot be greater than 2. So the length of the unique cycle is exactly 2. But this
corresponds to an edge that is the common MWOE of both adjacent components.

In the SynchGHS algorithm, it is crucial that the levels be kept synchronized.
This is needed to ensure that when a process i tries to determine whether or
not the other endpoint j of a candidate edge is in the same component, both
i and j have up-to-date component UIDs. If the UID at j is observed to be
different from that at i, we would like to be certain that i and j really are in
different components, not just that they haven't yet received their component
UIDs from their leaders. In order to execute the levels synchronously, processes
allow a predetermined number of rounds for each level. To be certain that all
the computation for the round has completed, this number will be O (n); note
that O (diam) rounds are not always sufficient. The need to count this number
of rounds is the only reason that the nodes need to know n. (In Section 15.5,
when we revisit this algorithm in the asynchronous network setting, we will use
a different strategy for synchronizing the components.)

C o m p l e x i t y analys is . Note first that the number of nodes in each level k
component is at least 2 k. This can be shown by induction, using the fact that
at each level, each component is combined with at least one other component at
the same level. Therefore, the number of levels is at most log n. Since each level
takes time O (n), it follows that the time complexity of SynchGHS is O (n log n).
The communication complexity is O ((n + IEI). log n), since at each level, O (n)
messages are sent in total along all the tree edges, and O (IEI) additional mes-
sages are required for finding the local minimum-weight edges.

R e d u c i n g the c o m m u n i c a t i o n . It is possible to reduce the number of mes-
sages to O (n log n § IEI) by using a more careful strategy to find local minimum-
weight edges. This improvement causes an increase in the time complexity,
although it does not increase its order of magnitude. The idea is as follows.

Each process marks its incident edges as "rejected" when they are found to
lead to a node in the same component; thereafter, there is no need to test them
again. Also, at each level, the remaining candidate edges are tested one at a
time, in order of increasing weight, just until the first one is found that leads
outside the component (or until the candidate edges are exhausted).

With this improvement, the number of messages sent over tree edges is,
as before, O (n log n). We carry out an amortized analysis of the number of
messages used for finding local minimum-weight edges. Each edge gets tested
and rejected at most once, for a total of O (IEI). An edge that is tested and is
found to be the local minimum-weight edge, but not the MWOE for the entire

70 4. ALGORITHMS IN GENERAL SYNCHRONOUS NETWORKS

component, may be tested again. However, there is at most one such exploration
originating at each node at each level, adding up to a total of O (n log n). The
total communication complexity is thus O (n log n + IEI).

The strategy just described has another advantage. Since each node marks
both its incident edges that are in the MST and those that are not in the tree,
there is no need for the final phase in which the leader notifies everyone that the
algorithm is completed. Each node can simply output the information about its
adjacent edges as it is discovered.

N o n - u n i q u e edge weigh ts . Now consider the MST problem for a graph
whose edge weights are not necessarily distinct. In this case, the SynchGHS
algorithm can be used, with a small modification. Note first that the SynchGHS
algorithm only manipulates the weights using {<, >, =} comparisons.

Given arbitrary edge weights, we can derive a set of distinct edge identifiers
using the UIDs. The identifer of an edge (i, j) is the triple (weight~,j, v, v'), where
v and v' are the UIDs of i and j, with v < v'. (Thus, (i, j) and (j, i) have the
same edge identifier.) A total ordering is defined among the edge identifiers,
based on lexicographic order among the triples.

Since SynchGHS manipulates the weights using comparisons only, we can run
it using the edge identifiers in place of the (real-valued) weights; the resulting
execution will be the same as if SynchGHS were running with a set of unique
weights satisfying the same ordering relationships. A tree is thus produced. We
leave as an exercise the task of showing that this tree is in fact an MST for the
original graph.

L e a d e r e lect ion. Once an MST (or any spanning tree) is known for a network
based on an undirected graph, it is easy to elect a unique leader, provided UIDs
are available. Namely, the leaves of the spanning tree begin a convergecast along
the paths of the tree; each internal node waits to hear from all but one of its
neighbors before sending a message to its remaining neighbor. If a node hears
from all its neighbors without having itself sent out a message, it declares itself
the leader. Also, if two neighboring nodes get messages from each other at the
same round, then one of them, say, the one with the larger UID, declares itself the
leader. The total additional complexity of this leader-election procedure (after
the MST is constructed)is just O (n) time and O (n) messages.

Combining this with the MST complexity analysis, we see that, starting with
a weighted undirected graph in which the nodes know n (but not diam), a leader
can be elected in time O (n log n), with O (n log n § IEI) communication.

4.5. MAXIMAL INDEPENDENT SET 71

4.5 Maximal Independent Set

The final problem we consider in this chapter is that of finding a maximal in-
dependent set (MIS) of the nodes of an undirected graph. A set of nodes is
called an independent set if it contains no pair of neighboring nodes, and an
independent set is said to be maximal if it cannot be increased to form a larger
independent set by the addition of any other nodes. Note that an undirected
graph can have many different maximal independent sets. We do not require the
largest possible maximal independent se t - -any will do.

The MIS problem can be motivated by problems of allocating shared re-
sources to processes in a network. The neighbors in the graph G might represent
processes than cannot simultaneously perform some activity involving shared re-
sources (for example, database access or radio broadcast). We might wish to
select a set of processes that could be allowed to act simultaneously; in order to
avoid conflict, these processes should comprise an independent set in G. Fur-
thermore, for performance reasons, it is undesirable to block a process if none of
its neighbors is active; thus, the chosen set of processes should be maximal.

4 .5 .1 T h e Problem

Let G - (V,E) be an undirected graph. A set I C_ V of nodes is said to be
independent if for all nodes i, j C I, (i, j) ~ E. An independent set I is maximal
if any set I ~ that strictly contains I is not independent. The goal is to compute a
maximal independent set of G. More specifically, each process whose index is in
I should eventually output winner, that is, should set a special status component
of its state to the value winner, and each process whose index is not in I should
output loser.

We assume that n, the number of nodes, is known to all the processes. (We
could, alternatively, use an upper bound on n.) We do not assume the existence
of UIDs.

4.5.2 A Randomized Algori thm

It is not hard to show that in some graphs, the MIS problem cannot be solved
if the processes are required to be deterministic. The argument is similar to the
one in the proof of Theorem 3.1. In this section, we present a simple solution that
uses randomization to overcome this inherent limitation of deterministic systems.
To be precise, we note that the randomized algorithm actually solves a weaker
problem than the one that is stated above, in that it will have a (probability zero)
possibility of never terminating. We call this algorithm LubyMIS, after Luby, its
discoverer.

72 4. ALGORITHMS IN GENERAL SYNCHRONOUS NETWORKS

LubyMIS is based on the following iterative scheme, in which an arbitrary
nonempty independent set is selected from the given graph G, the nodes in this
set and all of their neighbors are removed from the graph, and the process is
repeated. If W is a subset of the nodes of a graph, then we use nbrs(W) to
denote the set of neighbors of nodes in W.

Let graph be a record with fields nodes, edges, and nbrs, initialized
to

the indicated components of the original graph G.
Let I be a set of nodes, initially empty.

while graph.nodes # r do

choose a nonempty set I ' C graph.nodes that is independent in graph

I . - I U I I

graph " - the induced subgraph 3 of graph on graph.nodes - I ' - g r a p h . n b r s (F)

end while

It is not hard to see that this scheme always produces a maximal independent
set. To see why it is independent, note that at each stage, the selected set I ~ is
independent, and we explicitly discard from the remaining graph all neighbors of
vertices that are put into I. To see why it is maximal, note that the only nodes
that are removed from consideration are neighbors of nodes that are put into I.

The key question in implementing this general scheme in a distributed net-
work is how to choose the set I ~ at each iteration. Here is where randomiza-
tion is used. In each stage, each process i chooses an integer vali in the range
{ 1 , . . . , n 4} at random, using the uniform distribution. The reason for the use
of n 4 as a bound is that it is sufficiently large so that, with high probability, all
processes in the graph will choose distinct values. (We do not carry out this
calculation in this book, but instead refer you to Luby's research paper.) Once
the processes have chosen these values, we define I ~ to consist of all the nodes i
that are local winners, that is, those nodes i such that vali > valj for all neigh-
bors j of i. This obviously yields an independent set, since two neighbors cannot
simultaneously defeat each other.

In this implementation it is possible, if the random choices are unlucky, that
the set I ~ might be empty at some stages; those stages will be "useless," accom-
plishing nothing. Provided the algorithm does not reach a point after which it
keeps performing useless stages forever, we can simply ignore the useless stages
and assert that LubyMIS correctly follows the general scheme. We will, how-

3The induced subgraph of a graph G on a subset W of its nodes is defined to be the subgraph
(W, E ') , where E ' is the set of edges of G that connect nodes in W.

4.5. M A X I M A L I N D E P E N D E N T S E T 73

ever, have to take the useless stages into account in the analysis. The algorithm
follows.

LubyMIS algorithm (informal):
The algorithm works in stages, each consisting of three rounds.

Round 1: In the first round of a stage, the processes choose their respective
vals and send them to their neighbors. By the end of round 1, when all
the val messages have been received, the winners-- that is, the processes
in F - -know who they are.

Round 2: In the second round, the winners notify their neighbors. By
the end of round 2, the losers--that is, the processes having neighbors in
F - -know who they are.

Round 3: In the third round, each loser notifies its neighbors. Then all
the involved processes--the winners, the losers, and the losers' neighbors--
remove the appropriate nodes and edges from the graph. More precisely,
this means the winners and losers discontinue participation after this stage,
and the losers' neighbors remove all the edges that are incident on the
newly removed nodes.

We now describe the algorithm more formally in our model. As described in
Section 2.7, each process uses a special random function randi, which it applies at
each round prior to applying the msgsi and transi functions. Here, we use random
to indicate a random choice from {1, . . . , n4} , using the uniform distribution.

LubyMIS algorithm (formal):

s ta tes i :

round E (1 ,2 ,3) , initially 1
val E (1 , . . . , ha}, initially arbi trary
awake, a Boolean, initially true
rem-nbrs, a set of vertices, initially the neighbors in the original graph G
status E (unknown, winner, loser), initially unknown

rand4:
if awake and r o u n d - 1 then val :-- random

msgsi :

if awake then
case

round - 1:
send val to all nodes in rem-nbrs

r o u n d - 2:
if s t a t u s - winner then

74 4. ALGORITHMS IN GENERAL SYNCHRONOUS NETWORKS

send winner to all n o d e s in rem-nbrs

round = 3:

if s t a t u s - - loser t h e n

s e n d loser to all n o d e s in rem-nbrs

e n d c a s e

In the following code, we identify 3 with 0, modulo 3.

t r a n s i :

if awake t h e n

case

round = 1:

if val > v for all i n c o m i n g va lues v t h e n s tatus := winner

round = 2:

if a winner m e s s a g e a r r i ve s t h e n status := loser

round = 3:

if s tatus E { w i n n e r , loser} t h e n awake := false

rem-nbrs := rem-nbrs - { j : a loser m e s s a g e a r r i ve s f r o m j }

e n d c a s e

round : = (round + 1 m o d 3)

Note that LubyMIS still works correctly if, at some stages, some neighboring
processes choose the same random values.

4 .5 .3 A n a l y s i s *

We have already argued that, provided that LubyMIS does not stall, executing
useless stages forever, it will produce an MIS. Now we claim that with probability
one, the algorithm in fact does not stall. More specifically, we claim that at any
stage of the algorithm, the expected number of edges removed from the remaining
graph is at least a constant fraction of the total number of remaining edges; this
implies that there is a constant probability that at least a constant fraction of the
edges is removed. In turn, this implies that the expected number of rounds until
termination is O (log n). It also implies that, with probability one, the algorithm
does in fact terminate.

The complete analysis of LubyMIS can be found in Luby's original paper; it
involves substantial counting arguments about graphs. We just state the main
technical lemma without proof, and indicate how it is used to obtain the needed
results. For the next three lemmas, fix G = (V, E) and, for an arbitrary node
i E V, define

1
sum(i)-- ~ d(j) '

j E nbrs i

where d(j) is the degree of j in G. Here is the technical lemma:

4.5. MAXIMAL INDEPENDENT SET 75

L e m m a 4.6 Let I ~ be defined as in one stage of the LubyMIS algorithm. Then,
for every i in the graph just before the stage,

Pr[i E nbrs(I')] >_ 4-1min (sum(i)2 , 1) .

Using Lemma 4.6, we obtain the bound on the expected number of edges
removed from the graph:

L e m m a 4.7 The expected number of edges removed from G in a single stage of
LubyMIS is at least IEI 8 "

Proof . The algorithm ensures that every edge with at least one endpoint in
nbrs(I') is removed. It follows that the expected number of edges removed is at
least

12 ~ d(i) . Pr[i C nbrs(I')].

This is because each vertex i has the indicated probability of having a neighbor
in I'; if this is the case, then i is removed, which causes the deletion of all of

1 is included to compensate for possible its d(i) incident edges. The factor of
overcounting of removed edges, since each edge has two endpoints that could
cause its deletion.

We next plug in the bound from Lemma 4.6, concluding that the expected
number of removed edges is at least

sum(i)) 1 ~ d (i) . min 1 .
8 . / ~ 2 '

Breaking this up according to which term of the min is less, this is equal to

1(1)
Z

i:sum(i) <2 i:sum(i) >_2

Now we expand the definition of sum(i) and also write d(i) as a trivial sum,
obtaining

1 (1 ~ - ~ 8 ~ d(i___))+ ~ ~ 1).
d(j) -2i'sum(i)<2 jEnbrsi i:sum(i)>2 jEnbrsi

Note that each undirected edge (i, j) contributes two summation terms to the
expression in parentheses, one for each direction; in each case, the sum of these
two terms is greater than 1 So the total is at least IE [--]

�9 8 "

76 4. ALGORITHMS IN GENERAL SYNCHRONOUS N E T W O R K S

Lemma 4.7 can be used to conclude

L e m m a 4.8 With probability at least 1 the number of edges removed from G

in a single stage of L ubyMIS is at least El
1 6 "

Using both Lemmas 4.7 and 4.8, we conclude:

T h e o r e m 4.9 With probability one, LubyMIS eventually terminates.
over, the expected number of rounds until termination is 0 (log n).

More-

R a n d o m i z e d a lgor i thms . The technique of randomization is used frequently
in distributed algorithms. Its main use is to break symmetry. For example,
the leader-election and MIS problems cannot be solved in general graphs by
deterministic processes without UIDs because of the impossibility of breaking
symmetry. In contrast, these problems can be solved using randomization. Even
when there are UIDs, randomization may allow symmetry to be broken faster.

One problem with randomized algorithms, however, is that their guarantees
of correctness and/or performance might only hold with high probability, not
with certainty. In designing such algorithms, it is important to make sure that
the crucial properties of the algorithm are guaranteed with certainty, not prob-
abilistically. For example, any execution of LubyMIS is guaranteed to produce
an independent set, regardless of the outcomes of the random choices. The per-
formance, however, depends on the luckiness of the random choices. There is
even a (probability zero) possibility that all processes will repeatedly choose the
same value, thereby stalling progress forever. Whether or not these are serious
drawbacks to the algorithm depends on the application for which it is used.

4.6 Bibliographic Notes

The FloodMaz and OptFloodMaz algorithms appear to be folklore. Afek and
Gafni [6] have developed complexity bounds for leader election in complete syn-
chronous networks. The SynchBFS algorithm is based on the standard sequential
breadth-first search algorithm appearing, for example, in [83]. The BellmanFord
algorithm is a distributed version of a sequential algorithm developed (sepa-
rately) by Bellman and Ford [43, 125].

The SynchGHS algorithm is a synchronized (and therefore considerably sim-
plified) version of the well-known asynchronous MST algorithm developed by
Gallager, Humblet, and Spira. The LubyMIS algorithm and its analysis appear
in a paper by Luby [200].

4.7. EXERCISES 77

An example of a (probability zero) execution of a randomized algorithm in
which the processes keep making the same choice appears in [271].

4.7 Exerc i s e s

4.1. Fill in more details in the correctness proof for the FloodMax algorithm.

4.2. In terms of n, the number diam[E I of messages used in the FloodMax
algorithm is easily seen to be O (n3). Either produce a class of digraphs
in which the product diam[Et really is f~(n 3) or show that no such class of
digraphs exists.

4.3. For the OptFloodMax algorithm, either prove a smaller upper bound than
O (n 3) on the number of messages or exhibit a class of digraphs and cot-
responding UID assignments in which the number of messages is ft(n3).

4.4. Consider the "further optimized" version of OptFloodMax described at the
end of Section 4.1.3, which prevents processes from resending max-uid
information to processes from which they have previously received the
same information.

(a) Give code for this algorithm, in the same style as the other code in
this chapter.

(b) Prove the correctness of your algorithm by relating it to OptFlood-
Max, using the same sort of simulation strategy used in the proof of
correctness for OptFloodMax itself (i.e., in the proof of Theorem 4.2).

4.5.

(b)
(c)

(d)

Write the code for the SynchBFS algorithm.

Prove the correctness of your algorithm using invariant assertions.

Do the same--parts (a) and (b)--for the SynchBFS algorithm with
child pointers.

Do the same--parts (a) and (b)--for the SynchBFS algorithm with
child pointers and notification of completion.

4.6. Consider the optimized version of SynchBFS described in Section 4.2.2,
which prevents processes from sending search messages to processes from
which they have previously received such messages.

(a) Give code for this algorithm.

78 4. ALGORITHMS IN GENERAL SYNCHRONOUS NETWORKS

(b) Prove the correctness of your algorithm by relating it to SynchBFS,
using the same sort of simulation strategy used in the proof of cor-
rectness for OptFloodMaz (i.e., in the proof of Theorem 4.2).

4.7. Describe in detail an algorithm that extends SynchBFS to produce not only
child pointers, but also information about shortest routes from children in
the BFS tree to their parents. This information should be distributed along
those paths so that each process on a path knows the next process along
the path. Analyze the time and communication complexity.

4.8. Describe in detail an algorithm that extends SynchBFS to allow the source
process i0 to broadcast a message to all other processes and obtain an
acknowledgment that all processes have received it. Your algorithm should
use O (IEI) messages and O(diam) time. You may assume that the network
graph is undirected.

4.9. Analyze the time and communication complexity of the global computation
scheme, the leader-election scheme and the diameter computation scheme
at the end of Section 4.2, assuming that communication is allowed to be
unidirectional between some pairs of neighbors.

4.10. Devise the most efficient leader-election algorithm you can, for a strongly
connected directed network in which the processes have UIDs but do not
have any knowledge of the number of nodes in or diameter of the network.

(a) Do this assuming that communication is bidirectional between every
pair of neighbors, that is, that the network graph is undirected.

(b) Do this without making this assumption.

Analyze.

4.11. Develop the most efficient algorithm you can for finding the total number
of nodes in a strongly connected directed network in which the processes
have UIDs.

(a) Do this assuming that communication is bidirectional between every
pair of neighbors, that is, that the network graph is undirected.

(b) Do this without making this assumption.

Analyze.

4.12. Develop the most efficient algorithm you can for finding the total number
of edges in a strongly connected directed network in which the processes
have UIDs.

4.7. EXERCISES 79

(a) Do this assuming that communication is bidirectional between every
pair of neighbors, that is, that the network graph is undirected.

(b) Do this without making this assumption.

Analyze.

4.13. Develop the most efficient algorithm you can, for an arbitrary undirected
graph network, to determine a minimum-height rooted spanning tree. You
may assume the processes have UIDs, but there is no distinguished leader
node.

4.14. (a) Give code for the BellmanFord shortest paths algorithm.

(b) Prove its correctness using invariant assertions.

4.15. Give code for the SynchGHS algorithm.

4.16. Prove Lemma 4.5.

4.17. In the SynchGHS algorithm, show that it is not the case that O (diam)
rounds are always sufficient to complete each level of the computation.

4.18. Show that the version of SynchGHS that uses edge identifiers in place
of edge weights (described near the end of Section 4.4) in fact produces
an MST.

4.19. Research Question: Come up with a better synchronous minimum spanning
tree algorithm than SynchGHS--better in terms of the time complexity, the
communication complexity, or both.

4.20. Give code for the convergecast algorithm outlined at the end of Section 4.4,
which elects a leader given an arbitrary spanning tree of an undirected
graph network.

4.21. Give the best upper and lower bounds you can for the problem of estab-
lishing an arbitrary spanning tree in an undirected graph network. You
may assume UIDs, but no weights. State carefully what assumptions you
use about the processes' knowledge of the graph.

4.22. Consider a line network, that is, a linear collection of n processes 1 , . . . , n,
where each process is bidirectionally connected to its neighbors. Assume
that each process i can distinguish its left from its right and knows whether
or not it is an endpoint.

80 4. A L G O R I T H M S IN G E N E R A L S Y N C H R O N O U S N E T W O R K S

Assume that each process i initially has a very large integer value vi and
that it can hold in memory only a constant number of such values at any

time. Design an algorithm to sort the values among the processes, that is,
to cause each process i to return one output value oi, where the multiset
of outputs is equal to the multiset of inputs and ol _< . . . _< o~. Try to
design the most efficient algorithm you can both in terms of the number of
messages and the number of rounds. Prove your claims.

4.23. Prove that, under the assumptions given in Section 4.5, but assuming that
the processes are deterministic rather than probabilistic, there are some
graphs in which it is impossible to solve the MIS problem. Find the largest
class of graphs you can for which your impossibility result holds.

4.24. Suppose that LubyMIS is executed in a ring of size n. Estimate the prob-
ability that any particular edge is removed from the graph in one iteration
of the algorithm.

Chapter 5

D i s t r i b u t e d C o n s e n s u s wi th
Link Fai lures

In this and the next two chapters, we study problems of reaching consensus in
a distr ibuted network. In such problems, each of the processes in the network
begins with an initial value of a particular type and is supposed to eventually
output a value of that same type. The outputs are required to be the s a m e -
the processes must agree--even though the inputs can be arbitrary. There is
generally a validity condition describing the output values that are permit ted for

each pat tern of inputs.
When there are no failures of system components, consensus problems are

usually easy to solve, using a simple exchange of messages. To make matters
more interesting, the problems are usually considered in settings that include
failures. In this chapter, we consider basic consensus problems in the presence
of communication failures, while in Chapter 6, we consider process failures.
Chapter 7 contains some variations on the basic problems, also in the presence
of process failures.

Consensus problems arise in many distr ibuted computing applications. For
example, processes may at tempt to reach agreement on whether to commit or
abort the results of a distr ibuted database transaction. Or processes may try
to agree on an estimate of an airplane's altitude based on the readings of mul-
tiple altimeters. Or they may a t tempt to agree on whether to classify a system
component as faulty, given the results of separate diagnostic tests performed by
separate processes.

The part icular consensus problem that we present in this chapter is called
the coordinated attack problem; it is a fundamental problem of reaching consen-
sus in a setting where messages may be lost. We begin by presenting a basic

82 5. D I S T R I B U T E D C O N S E N S U S W I T H L I N K FAIL URES

impossibility result for deterministic systems, and then explore the possibilities
for randomized solution. We show that the problem can be solved by a random-
ized algorithm, with a certain (substantial) probability of error. Moreover, that
probability of error turns out to be unavoidable.

5.1 T h e C o o r d i n a t e d A t t a c k
Problem Deterministic V e r s i o n

We begin with an informal (in fact, ambiguous) problem statement, in terms of
a battlefield scenario.

Several generals are planning a coordinated attack from different di-
rections, against a common objective. They know that the only way
the attack can succeed is if all the generals attack; if only some of the
generals attack, their armies will be destroyed. Each general has an
initial opinion about whether his army is ready to attack.

The generals are located in different places. Nearby generals can
communicate, but only via messengers that travel on foot. However,
messengers can be lost or captured, and their messages may thus be
lost. Using only this unreliable means of communication, the generals
must manage to agree on whether or not to attack. Moreover, they
should attack if possible.

(We suppose that the "communication graph" of generals is undi-
rected and connected, and that all of the generals know the graph.
We also assume that there is a known upper bound on the time it
takes for a successful messenger to deliver a message.)

If all the messengers are reliable, then all the generals can send messengers
to all the other generals (possibly in several hops), saying whether or not they
are willing to attack. After a number of "rounds" equal to the diameter of the
"communication graph," all the generals will have all of this information. Then
they can all apply a commonly agreed-upon rule to make the same decision about
attacking: for example, they can decide to attack exactly if all the generals want
to do so.

In a model in which messengers may be lost, this easy algorithm does not
work. It turns out that this is not just a problem with this algorithm: we show
that there is no algorithm that always solves this problem correctly.

The real computer science problem behind this description is the commit
problem for distributed databases. This problem involves a collection of pro-
cesses that have participated in the processing of a database transaction. After

5.1. COORDINATED A T T A C K - - D E T E R M I N I S T I C VERSION 83

this processing, each process arrives at an initial "opinion" about whether the
transaction ought to be committed (i.e., its results made permanent and released
for the use of other transactions) or aborted (i.e., its results discarded). A pro-
cess will generally favor committing the transaction if all its local computation
on behalf of that transaction has been successfully completed, and will favor
aborting the transaction otherwise. The processes are supposed to communicate
and eventually to agree on one of the outcomes, commit or abort. If possible,
the outcome should be commit.

Before proving the impossibility result, we state the problem more formally
and remove the ambiguities. We consider n processes indexed by 1 , . . . , n, ar-
ranged in an arbitrary undirected graph network, where each process knows the
entire graph, including the process indices. Each process starts with an input in
{0, 1} in a designated state component. We use 1 to denote "attack," or commit,
and 0 to denote "don't attack," or abort. We use the same synchronous model
that we have been working with so far, except that now we allow any number
of messages to be lost during the course of an execution. (See Section 2.2 for
the definition.) The goal is for all the processes to eventually output decisions
in {0, 1}, by setting special decision state components to 0 or 1. There are three
conditions imposed on the decisions made by the processes:

A g r e e m e n t : No two processes decide on different values.

Validity:

1. If all processes start with 0, then 0 is the only possible decision value.

2. If all processes start with 1 and all messages are delivered, then 1 is
the only possible decision value.

T e r m i n a t i o n : All processes eventually decide.

The agreement and termination requirements are the natural ones. The va-
lidity requirement is just one possibil i ty--there are several useful alternatives.
Validity conditions, in general, express the notion that the value decided upon
should be "reasonable"; for instance, in this case, the trivial protocol that al-
ways decides 0 is ruled out by part 2 of the validity requirement. The particular
validity condition we have stated above is quite weak: for example, if even one
process starts with 1, the algorithm is allowed to decide 1, and if all processes
start with 1 and even one message is lost, the algorithm is allowed to decide 0.
The weak formulation is appropriate because our main focus in this chapter is
on impossibility results. It turns out that even this weak version of the problem
is impossible to solve in any graph with two or more nodes.

84 5. D I S T R I B U T E D CONSENSUS W I T H L I N K FAIL URES

We prove the impossibility result for the special case of two nodes connected

by one edge. We leave it as an exercise for you to show that impossibility for this
case implies impossibility for any graph with two or more nodes. In this proof,

we use the formal definitions of executions and indistinguishability (~) given in
Chapter 2.

T h e o r e m 5.1 Let G be the graph consisting of nodes 1 and 2 connected by a
single edge. Then there is no algorithm that solves the coordinated attack problem
on G.

P r o o f . By contradiction. Suppose a solution exists, say algorithm A. Without

loss of generality, we may assume that, for each process, there is only one start

state containing each input value; this implies that the system has exactly one

execution for a fixed assignment of inputs and fixed pattern of successful rues-
sages. Also without loss of generality, we may assume that both processes send

messages at every round in A, since we can always force them to send dummy
messages.

Let c~ be the execution that results when both processes start with value 1

and all messages are delivered. By the termination requirement, both eventually
decide, and by the validity condition, part 2, both decide on the value 1. Suppose

that both decide within r rounds. Now let Ctl be the same as c~, except that all

messages after the first r rounds are lost. In c~1, both processes also decide on
1 within r rounds. The communication pattern in C~l is represented in Figure

5.1. The edges represent messages that are delivered; messages sent but not
delivered are simply not drawn.

Starting from c~1, we now construct a series of executions, each of them
indistinguishable from its predecessor in the series with respect to one of the

processes; it will follow that all of these executions must have the same decision
value.

Let c~2 be the execution that is the same as C~l, except that the last (round
r) message from process 1 to process 2 is not delivered (see Figure 5.2). Then,
although process 2 may go to different states after round r in executions c~1 and

1
c~2, this difference never gets communicated to process 1; therefore O~ 1 r,~ O~2.

Since process 1 decides 1 in C~l, it also decides 1 in c~2. By the termination and

agreement properties, process 2 also (eventually) decides 1 in c~2.
Next, let c~3 be the same as c~2, except that the last message from process 2

2
to process 1 is lost. Since ~2 ~ c~3, process 2 decides 1 in c~3, and by termination
and agreement, so does process 1.

Continuing in this way, by alternately removing the last message from process
i and from process 2, we eventually reach an execution c~' in which both processes

5.1. COORDINATED A T T A C K - - D E T E R M I N I S T I C VERSION 85

1 2

D D

round r

F i g u r e 5.1: Pattern of message exchanges in execution C[1.

start with 1 and no messages are delivered. By the same reasoning as above,
both processes are forced to decide 1 in this case.

But now consider the execution c~" in which process 1 starts with 1 but

process 2 starts with 0, and no messages are delivered. Then c~" 1 c~', and
hence process 1 still decides 1 in cd', and so does process 2, by termination and

agreement. But c~" s c~"', where c~'" is the execution in which both processes
start with 0 and no messages are delivered. So process 2 decides 1 in c~'". But
this yields a contradiction, because the validity condition, part 1, requires that
both processes decide 0 in c~'". E]

Theorem 5.1 describes a fundamental limitation on the capabilities of dis-
t r ibuted networks. It suggests that there is little that can be done to solve basic
consensus problems such as the distr ibuted database commit problem in the face
of unreliable communication. However, some versions of this problem must be
solved in real systems. In order to cope with the limitation of Theorem 5.1, it is
necessary to strengthen the model or relax the problem requirements.

One approach is to make some probabilistic assumptions about the loss of
messages, while keeping the processes deterministic. Then we must allow for
some possibility of violating the agreement and /or validity condition. We leave
the development of an algorithm for this setting for an exercise. A second
approach is to allow the processes to use randomization, again allowing some

86 5. D I S T R I B UTED C O N S E N S U S W I T H L I N K FAIL URES

1 2

m D

round r

F i g u r e 5.2" Pattern of message exchanges in execution c~2.

possibility of violating the agreement and/or validity condition; we discuss this
approach in Section 5.2.

5.2 T h e C o o r d i n a t e d A t t a c k Problem Randomized
Vers ion

In this section, we consider the coordinated attack problem in the setting where

processes can be randomized. As in the previous section, we consider n processes
arranged in an arbitrary, known, undirected graph network. Each process starts
with an input in {0, 1} in a designated state component; we assume that for each
process, there is exactly one start state containing each input value. For this
section, we assume that the protocol terminates within a fixed number r _> 1
of rounds; specifically, that by the end of round r, each process is required to
output a decision in {0, 1} by setting its decision variable to 0 or 1. We assume
that a message is sent along each edge at each round k, 1 _< k _< r, and that any
number of these messages may be lost.

The goal is essentially the same as before, except that now we weaken the
problem statement to allow for some probability of error. Namely, we use the
same validity condition as before, but weaken the agreement condition to allow
a small probability e of disagreement. We obtain upper and lower bound results

5.2. COORDINATED ATTACK--RANDOMIZED VERSION 87

for the achievable values of e, in terms of the number r of rounds. As you will
see, the achievable values of e are not small.

5 .2 .1 F o r m a l M o d e l l i n g

In formalizing this problem, we must be clear about the meaning of the prob-
abilistic s ta tements- - the situation is more complicated than it was for the MIS
problem in Section 4.5. The complication is that the execution that is produced
depends not only on the results of the random choices, but also on which mes-
sages are lost. We do not want to assume that message losses are determined
randomly. Rather, we imagine that they are determined by some "adversary"
that tries to make things as dimcult as possible for the algorithm; we evaluate
the algorithm by considering its worst-case behavior over the class of all possible
adversaries.

Formally, we define a communication pattern to be any subset of the set

{(i, j, k) ' (i , j) is an edge in the graph, and 1 <_ k}.

A communication pattern -y is defined to be good if k <_ r for every (i, j, k) E "y
(for this chapter only--we will use another notion of "goodness" in Chapter 6).
A good communication pattern represents the set of messages that are delivered
in some execution: if (i, j, k) is in the communication pattern, then it means that
a message sent by i to j at round k succeeds in getting delivered.

The notion of adversary that we use here is an arbitrary choice of

1. An assignment of input values to all the processes

2. A good communication pattern

For any particular adversary, any particular set of random choices made by the
processes determines a unique execution. Thus, for any particular adversary,
the random choices made by the processes induce a probability distribution on
the set of executions. Using this probability distribution, we can express the
probability of events such as the processes all agreeing. To emphasize the role of
the adversary, we use the notation Pr B for the probability function induced by a
given adversary B.

We now restate the coordinated attack problem in this probabilistic setting.
The statement uses the parameter e, 0 _< e _< 1.

A g r e e m e n t : For every adversary B,

PrB[some process decides 0 and some process decides 1] _< e.

88 5. DISTRIBUTED CONSENSUS WITH LINK FAILURES

Val id i ty" Same as before.

We do not require a termination condition, because we have already assumed
that all processes decide within r rounds. Our goals are to find an algori thm
with the smallest possible value of c and to prove that no smaller value of e can
be achieved.

5 . 2 . 2 A n A l g o r i t h m

For simplicity, we restrict attention in this and the following subsection to the
special case of an n-node complete graph. We leave the extensions to arbi t rary
graphs as exercises. For this special case, we present a simple algori thm that
achieves e - !.

r

The algorithm is based on what processes know about each other's initial
values and on what they know about each other's knowledge of the initial values,
and so on. We need some definitions to capture such notions of knowledge.

First, for any communication pat tern ~, we define a reflexive partial ordering
_<~ on pairs of the form (i, k), where i is a process index and k is a time, 0 < k.
(Recall from Chapter 2 that "time k" refers to the point in the execution just after
k rounds have occurred.) This ordering represents information flow between the
various processes at various times. We define the relation by

1. (i, k) ___~ (i, k') for all i, 1 _< i _< n, and all k, k', 0 _< k _< k'.

2. If (i, j, k) E ",/, then (i, k - 1) _<~ (j, k).

3. If (i,k) <_~ (i',k') and (i',k') <_~ (i",k"), then (i,k) <_~ (i", k").

The first case describes information flow at the same process. The second case
describes information flow from the sender to the receiver of a message. The
third case just takes the transitive closure. Similar information-flow ideas will
appear later in the book, for example, in Chapters 14, 16, 18, and 19.

Now for any good communication pat tern "7, we define the information level,
level~(i, k) of any process i at any time k, 0 _< k < r, recursively. There are
three cases:

1. k - 0 "
Then define level~(i, k) to be 0.

2. k > 0 and there is some j r such that (j, 0) ~ (i, k)"
Then define level.y(i, k) to be 0.

3. k > 0 and (j, 0) <_~ (i, k) for every j -7/= i"
Then for each j # i, let lj denote max {level.~(j, k')" (j, k') <_~/(i, k)}.

5.2. COORDINATED ATTACK--RANDOMIZED VERSION 89

(This is the largest level that i knows j has reached.) Note that 0 <
lj _< k - 1 for all j . Then define level~(i, k) to be 1 + min {lj "j # i}.

In other words, each process starts out at level 0; when it hears from all the other
processes, it advances to level 1. When it hears that all the other processes have
reached level 1, it advances to level 2, and so on. If B is an adversary with
communication pat tern 7, we sometimes write levelB(i, k) to mean level~(i,k).

Example 5.2.1 Information level

Suppose that n - 2 and r - 6. Let 7 be the good communication
pat tern consisting of exactly the following triples"

(1, 2, 1), (1, 2, 2), (2, 1, 2), (1, 2, 3), (2, 1, 4), (1, 2, 5), (2, 1, 5), (1, 2, 6)

Communication pat tern 7 is depicted in Figure 5.3. The information
levels for processes 1 and 2, at times k, 0 < k < 6, are as indicated
by the labels.

4 �9 '~ 5

F i g u r e 5.3: Good communication pattern 7.

The following lemma says that the information levels of different processes
always remain within 1 of each other.

90 5. D I S T R I B U T E D CONSENSUS W I T H LINK FAIL URES

Lemma 5.2 For any good communication pattern ~/, any k, 0 <_ k <_ r, and
any i and j ,]level~(i, k) - level~(j, k)] <_ 1.

Proof. The proof is left as an exercise. D

The following l emma says that , in the case where all messages are delivered,
the informat ion level is equal to the number of rounds.

Lemma 5.3 If'7 is the "complete" communication pattern containing all triples
(i , j , k), 1 <__ k <_ r, then level~(i, k) - k for all i and k.

Proof. The proof is left as an exercise. [:]

The idea of the a lgor i thm, which we call RandomAttack, is as follows:

R a n d o m A t t a c k algorithm (informal):

Each process i keeps explicit t rack of its level, with respect to the com-
munica t ion pa t t e rn that occurs in the execution, in a variable level. Also,
process 1 chooses a r a n d o m key value, an integer in the range [1, r]; this
value is p iggybacked on all messages. In addi t ion, the initial values of all
processes are p iggybacked on all messages.

After r rounds, each process decides 1 exactly, if its ca lcula ted level is at
least as large as key and it knows that all processes ' initial values are 1.

R a n d o m A t t a c k algorithm (formal):

The message a lphabe t consists of t r iples of the form (L, V, k), where L is
a vector assigning an integer in [0, r] to each process index, V is a vector

assigning a value in {0, 1, undefined} to each process index, and k is ei ther
an integer in [1, r] or undefined.

states~:
rounds E 1% initially 0
decision E {unknown, 0, 1}, initially unknown
key E [1, r] U undefined, initially undefined
for every j, 1 < j <_ n:

val(j) E {0, 1, undefined}; initially val(i) is i's initial value and
val(j) - undefined for all j # i

level(j) E [-1, r]; initially level(i)= 0 and level(j)= -1 for all j # i

The variable level(j) is used to keep t rack of the largest level for process
j that is known (through a chain of messages) to process i. For j ~ i,
before i has heard any th ing from j , level(j) has the default value - 1 . In
the r andom funct ion randi, we use random to indicate a r a ndom choice of
an integer in [1, r], using the uniform dis t r ibut ion.

5.2. C O O R D I N A T E D A T T A C K ~ R A N D O M I Z E D V E R S I O N 91

r a n d i :

if i = 1 and rounds - 0 then key "- random

m s g s i :

send (L, V, key) to all j , where L is the level vector and V is the val vector

t r l l n s i l

rounds := rounds + 1
let (Lj , ~ , k j) be the message from j , for each j from which a message arrives
if, for some j , kj r undefined then key : - kj
for all j r i do

if, for some i', Vi,(j) r undefined then val(j) := V/,(j)
if, for some i', n i , (j) > level(j) then level(j):= maxi, {Li , (j) }

level(i) := 1 + min {level(j): j ~ i}
if rounds = r then

if key r undefined and level(i) >_ key and val(j) -- 1 for all j then
decision := 1

else decision : - 0

In this code, the third line sets the key component; it does not matter if it
is set more than once, since all values of key that get passed around are the
same. The fifth line sets the val components for processes j -~ i, again with no
danger of conflicting assignments. The sixth line updates the level components
for processes j =/: i; these are intended to contain the largest levels that i knows
about, for all the other processes. Next, i updates its own level component,
setting it to be one more than the smallest level it knows about for any of the
other processes. Finally, if this is the last round r, then i decides according to
the rule described earlier.

T h e o r e m 5.4 RandomAttack solves the randomized version of the coordinated
1 attack problem, for e - -i"

Proof . The key to the proof is just the claim that the algorithm correctly
calculates the levels. That is, in any execution of RandomAttack, with any good
communication pattern V, for any k, 0 _< k _< 7", and for any i, after k rounds, the
value of level(i)i is equal to level.r(i , k). Also, after k rounds, if level(i)i > 1, then
keyi is defined and val(j)i is defined for all j; moreover, these values are equal
to the actual key chosen by process 1 and the actual initial values, respectively.

Termination of the RandomAttack algorithm is obvious. For validity, if all
processes have initial value 0, then obviously 0 is the only possible decision value.
Now suppose that all processes start with 1 and all messages are delivered. Then
Lemma 5.3 and the fact that the algorithm correctly calculates the levels imply
that for each i, level(i)i - r at the point in round r where the decision is made.

92 5. DISTRIBUTED CONSENSUS WITH LINK FAIL URES

Since level(i)~ - r >_ 1 at this point, it follows that key~ is defined and val(j)~ is
defined for all j . Since all possible key values are less than or equal to r, 1 is
the only possible decision value.

Finally, we consider agreement. Let B be any adversary; we show that

prB[some process decides 0 and some process decides 1] < c.

For each i, let li denote the value of level(i)i at the time process i makes its
decision (in round r). Then Lemma 5.2 implies that all the values li are within
one of each other. If the chosen value of key is strictly greater than max {li},
or if there is some process with an initial value of 0, then all processes decide
0. On the other hand, if key <_ min {li} and all processes have initial value 1,
then all processes decide 1. So the only case where disagreement is possible is
where k e y - max {/~}. The probabil i ty of this event is 1 _ c since max {/~} is

r

determined by the adversary B and key is uniformly d is t r ibuted in [0, r]. Q

Example 5.2.2 Behavior of R a n d o m A t t a c k

Consider the case where n - 2 and r - 6. Consider the adversary
B that supplies input 1 for both processes, together with the good

1 Theorem 5 4 communicat ion pa t te rn ~ of Example 5.2.1. Let c - ~.
says that the probabil i ty of disagreement for adversary B is at most
c. In fact, this probabil i ty is exactly c" if the value of key chosen by
process 1 is 5, then process 1 decides 0 and process 2 decides 1; if
key ~_ 4, then both decide 1; and if k e y - 6, then both decide 0.

On the other hand, if the adversary supplies any other combination
of inputs together with communicat ion pa t te rn 7, then the probabil i ty
of disagreement is 0, since both processes decide 0.

Using the ideas in the proof of Theorem 5.4, we can see that RandomAttack
satisfies s tronger validity conditions than we have so far claimed. Namely, we
can show:

Validity:

1. If any process s tar ts with 0, then 0 is the only possible decision value.

2. For any adversary B for which all the initial values are 1,

prB[all processes decide 1] > le,

where l is the min imum level of any process at t ime r in B.

5.2. COORDINATED A T T A C K - - R A N D O M I Z E D VERSION 93

The second of these properties might be useful in some applications, such as
warfare or dis tr ibuted database commit, where it is considered desirable to favor
the positive outcome. If, for example, only a single message is lost, then the
probabili ty of coordinated attack is guaranteed to be high, at least r -1. The

r

proof that RandomAttack satisfies the stronger validity conditions is left as a
simple exercise.

5.2 .3 A Lower B o u n d on D i s a g r e e m e n t

Now we show that it is not possible to do much better than the bound described in
Theorem 5.4. (Recall from the previous subsection that we are only considering
n-node complete graphs.)

T h e o r e m 5.5 Any r-round algorithm for the randomized coordinated attack
problem has probability of disagreement at least 1

r + l "

For the remainder of this section, we assume a part icular r-round algorithm
A that solves the coordinated attack problem with disagreement probabili ty e in
an n-node complete graph; we show that c > 1

- - r + l "

In order to prove the theorem, we need one more definition. If B is any
adversary, 7 its communication pattern, and i any process, then we define another
adversary, prune(B, i). Adversary prune(B, i) simply "prunes out" information
that i does not hear about in B. B~= prune(B, i) is defined as follows:

1. If (j, 0) _<~ (i, r), then j ' s input in B' is the same as it is in B, and otherwise
it is 0.

2. A triple (j, j ' , k) is in the communication pat tern of B' exactly if it is in
the communication pat tern of B and (j', k) _<~ (i, r).

That is, adversary B ~ includes all the messages that i knows about in B, but no
others, and B ~ specifies that all the inputs that i does not know about in B are
0. The following lemma says that the pruned version of an adversary is sufficient
to determine the probability distr ibution of outputs.

L e m m a 5.6 If B and B ~ are two adversaries, i is a process, and prune(B, i) =
prune(B', i), then PrB[i decides 1] - prB'[i decides 1].

P r o o f . The proof is left as an exercise. 77

The proof of Theorem 5.5 is based on the following lemma.

94 5. D I S T R I B U T E D C O N S E N S U S W I T H L I N K F A I L U R E S

L e m m a 5.7 Let B be any adversary for which all initial values are 1 and let i
be any process. Then

prB[i decides 1] <_ e(levelB(i, r) + 1).

P r o o f . By induction on levelB(i,r).
Basis: Suppose levelB(i, r) -- O. Define B' - prune(B, i). Then prune(B' , i) -

B ' - prune(B, i), so by Lemma 5.6,

prB[i decides 1] - Pr g' [i decides 1]. (5.1)

Since levelB(i, r) -- O, there must be some process j =fi i such that (j, 0) ~
(i, r), where 7 is the communication pattern of B. Then adversary B ~ specifies
an initial value of 0 for j and includes no messages with destination j in its
communication pattern. It follows that prune(B ~, j) is the trivial adversary for
which all the initial values are 0 and there are no messages in the communication
pattern. Let B" denote this trivial adversary. Then p r u n e (B " , j) - B" =
prune(B ' , j) , so by Lemma 5.6,

prB'[j decides 1] - PrB"[j decides 1].

The validity condition implies that

Pr B'' [j decides 1] - 0,

so therefore
Pr B' [j decides 1] - 0.

But since there is at most probability e of disagreement, we have that

IprB'[i decides 1] - prB'[j decides 1]l < e.

Therefore,
Pr B' [i decides 1] <_ e,

which by Equation 5.1 implies that

prB[i decides 1] < e,

as needed.
Inductive step: Suppose levelB(i,r) -- 1 > 0, and suppose that the lemma

holds for all levels less than 1. Define B ~ - p rune (B , i) . Then Lemma 5.6
implies that

prB[i decides 1] - Pr B'[i decides 1]. (5.2)

5.3. BIBLIOGRAPHIC NOTES 95

Since levelB(i, r) = l, the definition of level implies that there must be some
process j such that leveIB,(j, r) _< l - - 1. By the inductive hypothesis,

prB'[j decides 1] _< e (levelB,(j, r)+ 1)

< el.

But since there is at most probability e of disagreement, we have that

IprB'[i decides 1] - PrB'[j decides 111 < e.

Therefore,
Pr B' [i decides 1] _< e(1 + 1),

which by Equation 5.2 implies that

PrB[i decides 1] _< c(1 + 1),

as needed. [-1

We can now prove the theorem.

Proof (of Theorem 5.5). Let B be the adversary for which all inputs are
1 and no messages are lost. The probability that all processes decide 1 is at
most the probability that any of them decides 1, which is, by Lemma 5.7, at
most e(levelB(i,r)+ 1) <_ e(r + 1). But the validity condition says that all
processes must decide 1 in all executions generated by this adversary B; hence
the probability that all decide 1 must be exactly 1. This implies that e(r + 1) _> 1,
that is, that e > 1 - 7gi, as needed. D

5.3 Bibl iographic Note s

The coordinated attack problem was originated by Gray [142] in order to model
the problem of distributed database commit. The impossibility result for the
deterministic version of the problem is also due to Gray [142]. The results on
randomized coordinated attack are derived from work of Varghese and Lynch
[281].

5.4 Exerc i ses

5.1. Show that a solution to the (deterministic) coordinated attack problem for
any nontrivial connected graph implies a solution for the simple graph con-
sisting of two processes connected by one edge. (Therefore, this problem
is unsolvable in any nontrivial graph.)

96 5. DISTRIBUTED CONSENSUS W I T H LINK FAIL URES

5.2. Consider the following variant of the (deterministic) coordinated attack
problem. Assume that the network is a complete graph of n > 2 partici-
pants. The termination and validity requirements are the same as those in
Section 5.1. However, the agreement requirement is weakened to say: "If
any process decides 1, then there are at least two that decide 1." (That
is, we want to rule out the case where one general attacks alone, but al-
low two or more generals to attack together.) Is this problem solvable or
unsolvable? Prove.

5.3. Consider the coordinated attack problem with link failures for the simple
case of two processes connected by an edge. Suppose that the processes
are deterministic, but the message system is probabilistic, in the sense that
each message has an independent probability p, 0 < p < 1, of getting
delivered successfully. (As usual, we allow each process to send only one
message per round.)

For this setting, devise an algorithm that terminates in a fixed number
r of rounds, has probability at most e of disagreement, and likewise has
probability at most ~ of violating the validity condition. Obtain the smallest

you can.

5.4. For the setting described in the previous exercise, prove a lower bound on
the size of the bound e that can be obtained.

5.5. Prove Lemma 5.2.

5.6. Prove Lemma 5.3.

5.7. Prove carefully the first claims in the proof of Theorem 5.4, that is, that the
RandomAttack algorithm correctly computes the level values, and correctly
conveys the initial values and key.

5.8. For the RandomAttack algorithm, prove the stronger validity properties
given at the end of Section 5.2.2. That is, prove

(a) If any process starts with 0, then 0 is the only possible decision value.

(b) For any adversary B for which all the initial values are 1,

prB[all processes decide 1] > le,

where 1 is the minimum level of any process at time r in B.

5.4. E X E R C I S E S 97

5.9. Generalize the randomized version of the coordinated attack problem to
allow for probability c of violating the validity condition as welt as of vi-
olating the agreement condition. Adjust the RandomAttack algorithm so
that it achieves the smallest possible e for this modified problem statement.
Analyze.

5.10. Extend the RandomAttack algorithm and its analysis to arbitrary (not
necessarily complete) undirected graphs.

5.11. Prove Lemma 5.6.

5.12. Extend the lower bound result in Theorem 5.5 to arbitrary (not necessarily
complete) undirected graphs.

5.13. What happens to the results of this chapter for the randomized setting,
if the communication pattern determined by the adversary is not fixed in
advance as we have assumed, but is determined on-line? More precisely,
suppose that the adversary is an entity that is able to examine the entire
execution up to the beginning of any round k, before deciding which round
k messages will be delivered.

(a) What bound e on disagreement is guaranteed by the RandomAttack
algorithm, when working against arbitrary on-line adversaries?

(b) Can you prove an interesting lower bound on attainable values of e?

This Page Intentionally Left Blank

Chapter 6

D i s t r i b u t e d C o n s e n s u s
P r o c e s s Fai lures

wi th

In this chapter we continue the study of consensus problems in the synchronous
model, which we began in Chapter 5. This time, we consider the case where
processes, but not links, may fail. Of course, it is more sensible to talk about
failure of physical "processors" than of logical "processes," but to stay consistent
with the terminology elsewhere in the book, we use the term process. We investi-
gate two failure models: the stopping failure model, where processes may simply
stop without warning, and the Byzantine failure model, where faulty processes
may exhibit completely unconstrained behavior. Stopping failures are intended
to model unpredictable processor crashes. Byzantine failures are intended to
model any arbitrary type of processor malfunction, including, for example, fail-
ures of individual components within the processors.

The term Byzantine was first used for this type of failure in a landmark paper
by Lamport, Pease, and Shostak, in which a consensus problem is formulated in
terms of Byzantine generals. As in the coordinated attack problem of Chapter 5,
the Byzantine generals attempt to agree on whether or not to carry out an attack.
This time, however, the generals must worry not about lost messengers, but
about the possible traitorous behavior of some generals. The term Byzantine is
intended as a pun-- the battle scenario takes place in ancient Byzantium, and the
behavior of some of the traitorous generals can only be described as "Byzantine."

In the particular consensus problem we consider in this chapter, which we call
simply the agreement problem, the processes start with individual inputs from
a particular value set V. All the nonfaulty processes are required to produce
outputs from the same value set V, subject to simple agreement and validity

100 6. D I S T R I B U T E D CONSENSUS W I T H PROCESS FAIL URES

conditions. (For validity, we assume that if all processes begin with the same
value v, the only allowed decision value is v.)

The agreement problem is a simplified version of a problem that originally
arose in the development of on-board aircraft control systems. In this problem,
a collection of processors, each with access to a separate altimeter, and some
of which may be faulty, at tempt to agree on the airplane's altitude. Byzantine
agreement algorithms have also been incorporated into the hardware of fault-
tolerant multiprocessor systems; there, they are used to help a small collection
of processors to carry out identical computations, agreeing on the results of every
step. This redundancy allows the processors to tolerate the (Byzantine) failure of
one processor. Byzantine agreement algorithms are also useful in processor fault
diagnosis, where they can permit a collection of processors to agree on which of
their number have failed (and should therefore be replaced or ignored).

In both of our failure models, we will need to assume limitations on the
frequency of occurrence of process(or) failures. How should such limitations
be expressed? In other work on analysis of systems with processor failures,
these limitations often take the form of probability distributions governing the
occurrences of failures. Here, instead of using probabilities, we simply assume
that the number of failures is bounded in advance, by a fixed number f . This is
a simple assumption to work with, since it avoids the complexities of reasoning
about probabilistic failure occurrences. In practice, this assumption may be
realistic in the sense that it may be unlikely that more than f failures will occur.
However, we should keep in mind that the assumption is somewhat problematic:
in most practical situations, if the number of failures is already large, then it is
likely that more failures will occur. Assuming a bound on the number of failures
implies that failures are negatively correlated, whereas in practice, failures are
usually independent or positively correlated.

After defining the agreement problem, for both stopping and Byzantine fail-
ures, we present a series of algorithms. We then prove lower bounds on the
number of processes needed to solve the problem for Byzantine failures, and on
the number of rounds needed to solve the problem for either type of failure.

6.1 T h e P r o b l e m

We assume that the network is an n-node connected undirected graph with pro-
cesses 1 , . . . , n, where each process knows the entire graph. Each process starts
with an input from a fixed value set V in a designated state component; we as-
sume that, for each process, there is exactly one start state containing each input
value. The goal is for the processes to eventually output decisions from the set
V, by setting special decision state components to values in V. We use the same

6.1. THE P R O B L E M 101

synchronous model that we have been using in Chapters 3-5, only this time we
allow the possibility that a limited number (at most f) of processes might fail.
In this chapter, we assume that the links are perfectly reliable--all the messages
that are sent are delivered. We consider two kinds of process failures: stopping
failures and Byzantine failures.

In the stopping failure model, at any point during the execution of the al-
gorithm, a process might simply stop taking steps altogether. In particular, a
process might stop in the middle of a message-sending step; that is, at the round
in which the process stops, only a subset of the messages the process is supposed
to send might actually be sent. In this case, we assume that any subset of the
messages might be sent. A process might also stop after sending its messages
for some round but before performing its transition for that round.

For the stopping failure model, the correctness conditions for the agreement
problem are

Agreement: No two processes decide on different values.

Validity: If all processes start with the same initial value v E V, then v is the
only possible decision value.

Termination" All nonfaulty processes eventually decide.

In the Byzantine failure model, a process might fail not just by stopping, but
by exhibiting arbitrary behavior. This means that it might start in an arbitrary
state, not necessarily one of its start states; might send arbitrary messages, not
necessarily those specified by its msgs function; and might perform arbitrary
state transitions, not necessarily those specified by its trans function. (As a
technical but convenient special case, we even allow for the possibility that a
Byzantine process behaves completely correctly.) The only limitation on the
behavior of a failed process is that it can only affect the system components
over which it is supposed to have control, namely, its own outgoing messages
and its own state. It cannot, for example, corrupt the state of another process,
or modify or replace another process's messages.

For the Byzantine failure model, the agreement and validity conditions are
slightly different from those for the stopping failure model:

Agreement: No two nonfaulty processes decide on different values.

Val idi ty- If all nonfaulty processes start with the same initial value v E V, then
v is the only possible decision value for a nonfaulty process.

Termination: The termination condition is the same.

The modified conditions reflect the fact that in the Byzantine model, it is
impossible to impose any limitations on what the faulty processes might start

102 6. DISTRIBUTED CONSENSUS WITH PROCESS FAIL URES

with or what they might decide. We refer to the agreement problem for the
Byzantine failure model as the Byzantine agreement problem.

Relationship between the stopping and B y z a n t i n e a g r e e m e n t p rob-
lems. It is not quite the case that an algorithm that solves the Byzantine
agreement automatically solves the agreement problem for stopping failures; the
difference is that in the stopping case, we require that all the processes that de-
cide, even those that subsequently fail, must agree. If the agreement condition
for the stopping failure case is replaced by the one for the Byzantine failure case,
then the implication does hold. Alternatively, if all the nonfaulty processes in the
Byzantine algorithm always decide at the same round, then the algorithm also
works for stopping failures. The proofs are left as exercises.

Stronger validity condition for stopping failures. An alternative validity
condition that is sometimes used for the stopping failure model is as follows.

Validity: Any decision value for any process is the initial value of some process.

It is easy to see that this condition implies the validity condition we have already
stated. We will use this stronger condition in our definition of the k-agreement
problem, a generalization of the agreement problem, in Chapter 7. In this chap-
ter, we use the weaker condition we gave earlier; this slightly weakens our claims
about algorithms and slightly strengthens our impossibility results. For the al-
gorithms in this chapter, we will indicate explicitly whether or not this stronger
validity condition is satisfied.

C o m p l e x i t y m e a s u r e s . For the time complexity, we count the number of
rounds until all the nonfaulty processes decide. For the communication complex-
ity, we count both the number of messages and number of bits of communication;
in the stopping case, we base these counts on the messages sent by all processes,
but in the Byzantine case, we only base it on the messages sent by nonfaulty
processes. This is because there is no way to provide nontrivial bounds on the
communication sent by faulty processes in the Byzantine model.

6.2 Algorithms for Stopping Failures

In this section, we present algorithms for agreement in the stopping failure model,
for the special case of a complete n-node graph. We begin with a basic algorithm
in which each process just repeatedly broadcasts the set of all values it has ever
seen. We continue with some reduced-complexity versions of the basic algorithm,

6.2. ALGORITHMS FOR STOPPING FAILURES 103

and finally, we present algorithms that use a strategy known as exponential infor-
mation gathering (EIG). Exponential information gathering algorithms, though
costly and somewhat complicated, extend to less well-behaved fault models.

C o n v e n t i o n s . In this and the following section, we use v0 to denote a prespec-
ified default value in the input set V. We also use b to denote an upper bound
on the number of bits needed to represent any single value in V.

6.2.1 A Basic Algorithm

The agreement problem for stopping failures has a very simple algorithm, called
FloodSet. Processes just propagate all the values in V that they have ever seen
and use a simple decision rule at the end.

FloodSet algorithm (informal):

Each process maintains a variable W containing a subset of V. Initially,
process i's variable W contains only i's initial value. For each of f +
1 rounds, each process broadcasts W, then adds all the elements of the
received sets to W.

After f + 1 rounds, process i applies the following decision rule. If W is
a singleton set, then i decides on the unique element of W; otherwise, i
decides on the default value v0.

The code follows.

FloodSet algorithm (formal)"

The message alphabet consists of subsets of V.

s ta t e s~ :

rounds E I~, initially 0
decision C V U {unknown}, initially unknown
W C V, initially the singleton set consisting of i's initial value

msgs~:

if rounds < f then send W to all other processes

t r a n s i :

rounds : - rounds + 1
let Xj be the message from j, for each j from which a message arrives
W "- W U Uj x j
if r o u n d s - f + 1 then

if I W l - 1 then decision : - v , where W - {v}
else decision "- vo

104 6. D I S T R I B U T E D CONSENSUS W I T H PROCESS FAIL URES

In arguing the correctness of FloodSet, we use the notation Wi(r) to denote

the value of variable W at process i after r rounds. As usual, we use the subscript

i to denote the instance of a state component belonging to process i. We say

that a process is active after r rounds if it does not fail by the end of r rounds.
The first easy lemma says that if there is ever a round at which no process

fails, then all the active processes have the same W at the end of that round.

L e m m a 6.1 I f no process fails during a particular round r, 1 <_ r <_ f + 1, then
Wi(r) - Wj(r) for all i and j that are active after r rounds.

P r o o f . Suppose that no process fails at round r and let I be the set of processes

that are active after r rounds (or equivalently, after r - 1 rounds). Then, because
every process in I sends its own W set to all other processes, at the end of round

r, the W set of each process in I is exactly the set of values that are held by
processes in I just before round r. [3

We next claim that if all the active processes have the same W sets after
some particular round r, then the same is true after subsequent rounds.

L a m i n a 6.2 Suppose that Wi(r) - Wj(r) for all i and j that are active after
r rounds. Then for any round r', r <_ r' <_ f + 1, the same holds, that is,
Wi(r') - Wj(r ') for all i and j that are active after r' rounds.

P r o o f . The proof is left as an exercise. [2

The following lemma is crucial for the agreement property.

L e m m a 6.3 If processes i and j are both active after f + 1 rounds, then Wi - Wj
at the end of round f + 1.

P r o o f . Since there are at most f faulty processes, there must be some round r,

1 < r < f + 1, at which no process fails. Lamina 6.1 implies that Wi(r) - Wj(r)
for all i and j that are active after r rounds. Then Lemma 6.2 implies that

W i (f + 1) - W j (f + 1) for all i and j that are active after f + 1 rounds. [3

T h e o r e m 6.4 FloodSet solves the agreement problem for stopping failures.

P r o o f . Termination is obvious, by the decision rule. For validity, suppose that

all the initial values are equal to v. Then v is the only value that ever gets sent
anywhere. Each set W i (f + 1) is nonempty, because it contains i 's initial value.
Therefore, each Wi (f + 1) must be exactly equal to {v}, so the decision rule says
that v is the only possible decision.

6.2. ALGORITHMS FOR STOPPING FAILURES 105

For agreement, let i and j be any two processes that decide. Since decisions
only occur at the end of round f + 1, it means that i and j are active after f + 1
rounds. Lemma 6.3 then implies that Wi(f + 1) - Wj (f + 1). The decision rule
then implies that i and j make the same decision. D

C o m p l e x i t y analys is . FloodSet requires exactly f § 1 rounds until all non-
faulty processes decide. The total number of messages is O ((f + 1)n2). Each
message contains a set of at most n elements (since each element must be the
initial value of some process), so the number of bits per message is O (nb). Thus,
the total number of communication bits is O ((f + 1)n3b).

A l t e r n a t i v e dec i s ion rule . The decision rule given for FloodSet is somewhat
arbitrary. Since FloodSet guarantees that all nonfaulty processes obtain the same
set W after f § 1 rounds, various other decision rules would also work correctly,
as long as all the processes apply the same rule. For instance, if the value set V
has a total ordering, then all processes could simply choose the minimum value
in W. This alternative rule has the advantage that it guarantees the stronger
validity condition mentioned near the end of Section 6.1. The decision rule given
for FloodSet does not guarantee this stronger condition, because the default value
v0 might not be the initial value of any process.

P r o c e s s ve r sus c o m m u n i c a t i o n fa i lures . The FloodSet algorithm shows
that the agreement problem is solvable for process stopping failures. This positive
result should be contrasted with the impossibility results for the coordinated
attack problem in a setting with communication failures. (See Theorem 5.1 and
Exercise 5.1.)

6.2.2 Reducing the Communication

It is possible to reduce the amount of communication somewhat from the
O ((f + 1)n 2) messages and O ((f § 1)n3b) bits used by FloodSet. For exam-
ple, the number of messages can be reduced to 2n 2 and the number of bits of
communication to O (n2b) by using the following simple idea. Notice that at
the end, each process i only needs to know the exact elements of its set Wi if
I W i l - 1; otherwise, i needs to know only the fact that I Wil > 2. So it is plausi-
ble that each process might need to broadcast only the first two values it sees,
rather than all values. This idea is the basis for the following algorithm.

OptFloodSet a l g o r i t h m :

The processes operate as in FloodSet, except that each process i broadcasts
at most two values altogether. The first broadcast is at round 1, when i

106 6. DISTRIB UTED CONSENSUS W I T H PROCESS FAIL URES

broadcasts its initial value. The second broadcast is at the first round r,

2 < r < f + 1, such that at the beginning of round r, i knows about some
value v different from its initial value (if any such round exists). Then i
broadcasts this new value v. (If there are two or more new values at this
round, then any one of these may be selected for broadcast .)

As in FloodSet, process i decides v if its final set W/ is the singleton set

{v} and otherwise decides v0.

C o m p l e x i t y a n a l y s i s . The number of rounds for OptFloodSet is the same as
for FloodSet, f + 1. The number of messages is at most 2n 2, since each process
sends at most two non-null messages to each other process. The number of bits
of communicat ion is O (n2b).

We prove the correctness of OptFloodSet by relating it to FloodSet using a
simulation relation (a similar s t ra tegy was used in Section 4.1.3 to prove correct-
hess of OptFloodMax by relating it to FloodMax). This requires first filling in
the details in the description of OptFloodSet, including explicit rounds, decision,
and W variables as in FloodSet. We use the notat ion Wi(r) and OWl(r), respec-
tively, to denote the values of Wi after r rounds of FloodSet and OptFloodSet,
respectively. The following lemma describes message propagat ion in FloodSet.

L e m m a 6.5 In FloodSet, suppose that i sends a round r + 1 message to j , and
j receives and processes it. Then Wi(r) C_ Wj(r + 1).

P r o o f . The proof is left as an exercise. F-I

The key pruning proper ty of OptFloodSet is cap tured by the following lemma.

L e m m a 6.6 In OptFloodSet, suppose that i sends a round r + 1 message to j ,
and j receives and processes it. Then

1. If IOWi(r)[- 1, then OWl(r) C_ OWj(r + 1).

2. If IOWg()l 2, then [OWj(r + 1)l _> 2.

Moreover, the same two conclusions hold in case i does not fail in the first r
rounds, and does not send a round r + 1 message to j , but just because Opt-
FloodMax does not specify that any such message is supposed to be sent.

P r o o f . The proof is left as an exercise. V1

Now we run OptFloodSet and FloodSet side by side, with the same inputs
and same failure pat tern. Tha t is, the same processes fail at the same rounds in

6.2. A L G O R I T H M S FOR STOPPING FAILURES 107

both executions. Moreover, if process i sends only some of its round r messages

in one algorithm, then it sends its round r messages to the same processes in

the other algorithm; more precisely, there is no j to which i sends a message

at round r in one algorithm but fails to send one that it is supposed to send in
the other algorithm. We give invariant assertions relating the states of the two
algorithms.

L e m m a 6.7 After any number of rounds r, 0 < r < f + 1"

1. OW~(r) C_ W~(r).

2. If [W / (r) [- 1, then OWi(r) - Wi(r).

P r o o f . The proof is left as an exercise. D

L e m m a 6.8 After any number of rounds r, 0 < r < f + 1"

If IWi(r)[> 2, then lOWi(r)[> 2.

P r o o f . By induction. The basis case, r - 0, is true vacuously. Assume now

that the lemma holds for r. We show that it holds for r + 1. Suppose that

IWi(~ + ~)1 ___ 2. If Iw~(~)l > 2, th~n by inductive hypothesis we have that

IOWi(r)l > 2, which implies that]OW~(r + 1)1 > 2, as needed.

So ~ssume that IWi(r)l- 1. Then Lemma 6.7 implies that OWl(r) - Wi(r).
We consider two subcases.

1. IWj(r)l - 1 for ~ll j f rom which i receives a round r + 1 message in
FloodSet.
Then for all such j , we have by Lemma 6.7 that OWj(r) - Wj(r) , so that

I o w j (~) l - 1. Lemma 6.6 implies that for all such j , OWj(r) C_ OWl(r+1).
It follows that OW~(r + 1) - W~(r + 1), which is sufficient to prove the

inductive step.

2. IWj(r)l > 2 for some j from which i receives a round r + 1 message in
FloodSet.
Then by the inductive hypothesis, IOWj(~)l > 2. Then Lemma 6.6 implies

that I OWi (r + 1)] > 2, as needed. [:3

L e m m a 6.9 After any number of rounds r, 0 <_ r < f + 1, the rounds and
decision variables have the same values in FloodSet and OptFloodSet.

P r o o f S k e t c h . The interesting thing to show is that the same decision is made
by any process i at round f + 1 in the two algorithms. This follows from Lem-
mas 6.7 and 6.8 for r - f + 1 and the decision rules of the two algorithms.

if3

108 6. DISTRIBUTED CONSENSUS WITH PROCESS FAILURES

Theorem 6.10 OptFloodSet solves the agreement problem for stopping failures.

Proof. By Lemma 6.9 and Theorem 6.4 (the correctness theorem for FloodSet).
D

Other ways to reduce communication complexity. There are other ways
to reduce the communication complexity of FloodSet. For example, recall that
if V has a total ordering, the decision rule can be modified to simply choose
the minimum value in W. Then it is possible to modify the FloodSet algorithm
so that each node just remembers and relays the minimum value it has seen so
far, rather than all values. This algorithm uses O ((f + 1)n2b) communication
bits. It can be proved correct by a simulation relating it to FloodSet (with the
modified decision rule). This algorithm satisfies the stronger validity condition
of Section 6.1.

6.2.3 Exponent ia l Information Gathering Algor i thms

In this section, we present algorithms for agreement with stopping failures based
on a strategy known as exponential information gathering (EIG). In exponen-
tial information gathering algorithms, processes send and relay initial values for
several rounds, recording the values they receive along various communication
paths in a data structure called an EIG tree. At the end, they use a commonly
agreed-upon decision rule based on the values recorded in their trees.

EIG algorithms are generally costly for solving agreement with stopping fail-
ures, both in terms of the number of bits that are communicated and the amount
of local storage used. The main reason we present this strategy here is that the
same EIG tree data structure can be used for solving Byzantine agreement, as we
show in Section 6.3.2. The stopping failure case provides a simple introduction
to the use of this data structure. A second reason for presenting this strategy
for stopping failures is that simple stopping failure EIG algorithms can easily be
adapted to solve the agreement problem for a restricted form of the Byzantine
failure model known as the authenticated Byzantine failure model.

The basic data structure used by EIG algorithms is a labelled EIG tree
T - Tn,$, whose paths from the root represent chains of processes along which
initial values are propagated; all chains represented consist of distinct processes.
The tree T has f + 2 levels, ranging from level 0 (the root) to level f + 1 (the
leaves). Each node at level k, 0 _< k _< f , has exactly n - k children. Each node in
T is labelled by a string of process indices as follows. The root is labelled by the
empty string A, and each node with label i l . . . ik has exactly n - k children with

6.2. A L G O R I T H M S FOR STOPPING FAILURES 109

labels i1 . . . ikj, where j ranges over all the elements of { 1 , . . . , n } - { i l , . . . , ik}.
See Figure 6.1 for an illustration.

In 2n

123 " ' " 12n 231 234 " " �9 23n

level 0

level 1

n(n-1) level 2

level 3

l eve l f+ l

F i g u r e 6.1" The EIG tree Tn,f.

In the EIG algorithm for stopping failures, which we call EIGStop, the pro-
cesses simply relay values on all possible paths. Each process maintains a copy
of the EIG tree T - Tn,f. The computation proceeds for exactly f + 1 rounds.
In the course of the computation, the processes decorate the nodes of their trees
with values in V or null, decorating all those at level k at the end of round k.
The root of process i's tree gets decorated with i's input value. Also in process
i's tree, if the node labelled by the string i l . . . ik, 1 <_ k <_ f + 1, is decorated by
a value v E V, then it means that ik has told i at round k that ik-1 has told ik at
round k - 1 that . . . that il has told i2 at round 1 that i l ' s initial value is v. On
the other hand, if the node labelled by the string i l . . . ik is decorated by null,
then it means that the chain of communication i l , i 2 , . . . , ik, i has been broken
by a failure. After f + 1 rounds, the processes use their individual decorated
trees to decide on a value in V, based on a commonly agreed-upon decision rule
(described below). A more detailed description of the algorithm follows.

In this algorithm description and in some others later on, it is convenient to
pretend that each process i is able to send messages to itself in addition to the

110 6. D I S T R I B UTED C O N S E N S U S W I T H P R O C E S S FAIL URES

other processes; this can help to make the a lgor i thm descr ip t ions more uniform.

These messages are technical ly not p e r m i t t e d in the model, bu t there is no h a r m

in allowing them because the fictional t r ansmiss ions could jus t be s imula ted by

local computa t ion .

EIGStop algorithm:
For every s t r ing x tha t occurs as a label of a node of T, each process has

a variable val(x). Variable val (x) i s used to hold the value with which the

process decorates the node labelled x. Initially, each process i decorates

the root of its t ree with its own initial value, tha t is, it sets its val(s to its

initial value.

Round 1: Process i b roadcas t s val()~) to all processes, including i itself.

Then process i records the incoming information:

1. If a message with value v E V arr ives at i f rom j , then i sets its val(j)
to v.

2. If no message with a value in V arr ives at i f rom j , then i sets val(j)
to null.

Round k, 2 <_ k _< f + 1" Process i b roadcas t s all pairs (x, v), where x is a

level k - 1 label in T tha t does not conta in index i, v E V, and v - val(x). 1
T h e n process i records the incoming information:

1. If x j is a level k node label in T, where x is a s t r ing of process indices

and j is a single index, and a message saying tha t val(x) - v E V
arr ives at i f rom j , then i sets val(xj) to v.

2. If x j is a level k node label and no message with a value in V for

val(x) arr ives at i f rom j , then i sets val(xj) to null.

At the end of f + 1 rounds, process i applies a decision rule. Namely,

let W be the set of non-null vals tha t decorate nodes of i 's tree. If W is

a s ingleton set, then i decides on the unique element of W; otherwise, i

decides on v0.

It should not be hard to see tha t the t rees get decora ted with the values we

indicated earlier. T h a t is, process i 's root gets decora ted with i 's input value.

Also, if process i 's node labelled by the s t r ing i l . . . ik, 1 <_ k <_ f + 1, is decora ted

by a value v E V, then it mus t be tha t ik has told i at round k that ik-1 has told

l In order to fit our formal model, in which only one message can be sent from i to each
other process at each round, all the messages with the same destination are packaged together
into one large message.

6.2. A L G O R I T H M S FOR STOPPING FAILURES 111

ik at round k - 1 that . . . that il has told i2 at round 1 that il's initial value is

v. Moreover, if process i 's node labelled by the string i l . . . ik, 1 <_ k <_ f + 1, is
decorated by null, then it must be that ik does send a message to i at round k

giving a value for i1 , . . - , ik-1.

E x a m p l e 6 .2 .1 E x e c u t i o n o f EIGStop
As an example of how the EIGStop algorithm executes, consider the

case of three processes (n = 3), one of which may be faulty (f = 1).
Then the protocol executes for 2 rounds, and the tree has 3 levels.

The structure of the EIG tree T3,1 is as in Figure 6.2.

1 2

12 32

F i g u r e 6.2" Structure of EIG tree T3,1.

Suppose that processes 1, 2, and 3 have initial values 0, 0, and
1, respectively. Suppose that process 3 is faulty and that it fails
after sending its round 1 message to 1 but not to 2. Then the three

processes' trees get filled in as in Figure 6.3.

Note that process 2 does not discover that process 3's initial value
is 1 until it hears this from process 1 at round 2.

To see that EIGStop works correctly, we first give two lemmas that relate the
values in the various trees. The first lemma describes the initialization and the
relationships between vals at different processes at adjacent levels in the trees.

L e m m a 6.11 After f + 1 rounds of the EIGStop algorithm, the following hold:

1. val()~)i is i's input value.

2. If x j is a node label and val(xj)i - v E V, then val(x)j - v .

112 6. D I S T R I B U T E D C O N S E N S U S W I T H P R O C E S S F A I L U R E S

process 3

process 1 process 2

0

0 null 1 null 0 null 0 null 0 null

F i g u r e 6.3: Execution of EIGStop; process 3 fails at round 1.

1 null

3. I f x j is a node label and val(xj) i - null, then either val(x)j - null or else

j fails to send a message to i at round Ixl + 1.

P r o o f . The proof is left as an exercise. [3

The second lemma describes the relationship between vals at not-necessarily-

adjacent levels in the trees. The first two conditions trace the origin of values

appear ing anywhere in the trees. The third condition is a technical one, assert ing

that any value v that appears in a tree must appear in that tree at some node

whose label does not contain the index i. Loosely speaking, this means that the

first t ime that process i learns a value, it is not as a result of propagat ing the

value to itself.

L e m m a 6 .12 Af ter f + 1 rounds of the EIGStop algorithm, the following hold.

1. I f y is a node label, val(y)i - v C V, and x j is a prefix of y, then val(x)j =
V .

2. I f v E V appears in the set of vals at any process, then v - val()~)i for

some i.

6.2. A L G O R I T H M S F O R S T O P P I N G FAIL U R E S 113

3. I f v E V appears in the set of vals at process i, then there is some label y
that does not contain i such that v = val(y)i .

P r o o f . Par t 1 follows from repeated use of part 2 of Lemma 6.11.
For part 2, suppose that v = val(y)i . If y = A, we are done. Otherwise, let j

be the first index in y. Par t 1 then implies that v = val()~)j.
For part 3, suppose to the contrary that v only appears as the val for labels

containing i and let y be a shortest label such that v = val(y)i. Then y has a
prefix of the form xi. But then part 1 implies that val(x)i = v, which contradicts
the choice of y. V1

The next lemma provides the key to the agreement property.

L e m m a 6.13 I f processes i and j are both nonfaulty, then Wi = Wj .

P r o o f . We may assume that i ~: j . We show inclusion both ways.

Suppose v E Wi. Then Lemma 6.12 implies that v = val(x)i for some label
x that does not contain i. We consider two cases:

.

(a) Ixl _< f .
Then Ixil < f + 1, so since string x does not contain index i, (non-
faulty) process i relays value v to process j at round Ixil. This implies

that val(xi) j = v, so v E Wj.

(b) Ix l - f + 1.
Then because there are at most f faulty processes and all indices in

x are distinct, there must be some nonfaulty process l whose index

appears in x. Therefore, x has a prefix of the form yl, where y is a

string. Then Lemma 6.12 implies that val(y)l = v. Since process l is

nonfaulty, it relays v to process j at round lyll. Therefore, val(yl)j -
v, so again v E Wj.

Wj c_ Wi.
Symmetric to the previous case.

The two cases together imply the needed equality. D

E x a m p l e 6 .2 .2 C a s e s in t he p r o o f of L e m m a 6.13

Example 6.2.1 illustrates the two cases, (a) and (b), considered in the
proof of Lemma 6.13. Process 1 first decorates its tree with a value

of 1 at round 1, which is not the last round, so as in case (a), process

114 6. DISTRIBUTED CONSENSUS WITH PROCESS FAIL URES

2 decorates its tree with 1 by round 2. In particular, val(3)l = 1, so
val(31)2 = 1.

On the other hand, process 2 first decorates its tree with a value
of 1 at the last round, round 2, setting val(31)2 = 1. This implies
that some nonfaulty process index, in this case 1, must appear in the
node label. Then as in case (b), the value 1 appears at node 31 in
process l ' s tree. That is, val(31)2 = 1, so val(31)l = 1.

T h e o r e m 6.14 EIGStop solves the agreement problem for stopping failures.

P r o o f . Termination is obvious, by the decision rule.
For validity, suppose that all the initial values are equal to v. Then the only

values that ever decorate any process's tree are v and null, by Lemma 6.12. Each
set Wi is nonempty, since it contains i 's initial value. Therefore, each Wi must
be exactly equal to {v}, so the decision rule says that v is the only possible
decision.

For agreement, let i and j be any two processes that decide. Since decisions
only occur at the end, this means that i and j are nonfaulty. Then Lemma 6.13
implies that Wi = Wj. The decision rule then implies that i and j make the same
decision. D

C o m p l e x i t y a n a l y s i s . The number of rounds is f § 1, and the number of
messages sent is O ((f + 1)n2). (This counts each combined message sent by
any process to any other at any round as a single message.) The number of bits
communicated is exponential in the number of failures" O (nf+lb).

\ /

A l t e r n a t i v e d e c i s i o n ru le . Since EIGStop guarantees that the same set W
of values appears in the trees of nonfaulty processes, various other decision rules
would also work correctly. For instance, if the value set V has a total ordering,
then all processes could simply choose the minimum value in W. As before, this
has the advantage that it guarantees the stronger validity condition mentioned
in Section 6.1.

It is possible to reduce the amount of communication in the EIGStop algo-
r i thm in much the same way as we did for FloodSet. As before, each process i

only needs to know the exact elements of its set Wi in case I Wil - 1. So again, it
is plausible that the processes might need to broadcast only the first two values
they learn about.

O p t E I G S t o p a l g o r i t h m :

The processes operate as in EIGStop, except that each process i broadcasts
at most two values altogether. The first broadcast is at round 1, when i

6.2. ALGORITHMS FOR STOPPING FAIL URES 115

broadcasts its initial value. The second broadcast is at the first round r,
2 < r _< f + 1, such that at the beginning of round r, i knows about some
value v different from its initial value (if any such round exists). Then i
broadcasts the new value v, together with the label of any level r - 1 node
x that is decorated with v. (If there are two or more possible choices of
(x, v), then any one of these may be selected for broadcast.)

As in EIGStop, let W be the set of non-null vals that decorate nodes of i's
tree. If W is a singleton set, then i decides on the unique element of W;

otherwise, i decides on v0.

C o m p l e x i t y a n a l y s i s . OptEIGStop uses f + 1 rounds. The number of mes-
sages is at most 2n 2, since each process sends at most two non-null messages to

each other process. The number of bits of communication is O (n2(b + (f + 1)log n))"
the value part of each messages uses O (b) bits, while the label part uses

O ((f + 1) log n) bits.
The correctness of OptEIGStop can be proved by relating it to EIGStop

using a simulation relation. The proof is similar to the proof of correctness
of OptFloodSet. Alternatively, a correctness proof that relates OptEIGStop to

OptFloodSet can be given. Details are left for exercises.

6.2.4 Byzantine Agreement with Authentication

Although the EIG algorithms described in this section are designed to tolerate
stopping failures only, it happens that they can also tolerate some worse types of
failures. They cannot cope with the full difficulty of the Byzantine fault model,
where processes can exhibit arbi t rary behavior. However, they can cope with an
interesting restriction on the Byzantine fault model in which processes have the
extra power to authenticate their communications, based on the use of digital
signatures. A digital signature for process i is a t ransformation that i can apply
to any of its outgoing messages in order to prove that the message really did
originate at i. . No other process is able to generate i's signature without i's
cooperation. Digital signatures are a reasonable capability to assume in modern

communication networks.
We do not provide a formal definition of the Byzantine model with authenti-

ca t ion-- in fact, we do not know of a nice formal defini t ion--but just describe it
informally. In this model, it is assumed that processes can use digital signatures
to authenticate any of their outgoing messages. In the literature, it is usually
assumed that the initial values originate from some common source, which also
signs them; here, we assume that each nonfaulty process starts in an initial state
containing a single input value signed by the source, while each faulty process

116 6. DISTRIBUTED CONSENSUS WITH PROCESS FAILURES

starts in some state containing some set of input values signed by the source.
Faulty processes are permitted to send arbitrary messages and perform arbitrary
state transitions; the only limitation is that they are unable to generate signatures
of nonfaulty processes or of the source.

The correctness conditions to be satisfied in this model are the usual ter-
mination and agreement conditions for Byzantine agreement, plus the following
validity condition:

Va l id i ty : If all processes start with exactly one initial value v E V, signed by
the source, then v is the only possible decision value for a nonfaulty process.

It is not difficult to see that the EIGStop and OptEIGStop algorithms, mod-
ified so that all messages are signed and only correctly signed messages are
accepted, solve the agreement problem for the authenticated Byzantine failure
model. The proofs are similar to those given for the stopping failure model and
are left as exercises.

6.3 Algorithms for Byzantine Failures

In this section, we present algorithms for Byzantine agreement, for the special
case of an n-node complete graph. We begin with one that uses exponential
information gathering. Then we show how an algorithm that solves Byzantine
agreement for a binary value set, V = {0, 1}, can be used as a "subroutine" for
solving Byzantine agreement for a general value set V. Finally, we describe a
Byzantine agreement algorithm with reduced communication complexity.

A common property that all these algorithms have is that the number of
processes they use is more than three times the number of failures, n > 3f.
This situation is different from what we saw for the stopping failure case, where
there were no special requirements on the relationship between n and f . This
process bound reflects the added difficulty of the Byzantine fault model. In
fact, we will see in Section 6.7 that this bound is inherent. This might seem
surprising at first, because you might guess that 2f + 1 processes could tolerate
f Byzantine faults, using some sort of majority voting algorithm. (There is a
standard fault-tolerance technique known as triple-modular redundancy, in which
a task is triplicated and the majority result accepted; you might think that this
method could be used to solve Byzantine agreement for one faulty process, but
you will see that it cannot.)

6.3. A L G O R I T H M S FOR B Y Z A N T I N E F A I L U R E S 117

2 D

1 1

b , . . . _ 1 �9 , , ,_ �9

D -" Fo-1 0

2

J %

---- 3 3 1 �9 ~ �9

@
F i g u r e 6 . 4 : E x e c u t i o n C~l--false message is circled.

6.3.1 An Example

Before presenting the E I G Byzantine agreement algorithm, we give an idea of
why the Byzantine agreement problem is more difficult than the agreement prob-
lem for stopping failures. Specifically, we give an example suggesting (though
not proving) that three processes cannot solve Byzantine agreement, if there is
the possibility that even one of them might be faulty.

Suppose that processes 1, 2, and 3 solve the Byzantine agreement problem,
tolerating one fault. Suppose, for example, that they decide at the end of two
rounds and that they operate in a particular, constrained manner: at the first
round, each process simply broadcasts its initial value, while in the second round,
each process reports to each other process what was told to it in the first round
by the third process. Consider the following execution.

E x e c u t i o n Ct l "

Processes 1 and 2 are nonfaulty and start with initial values of 1,
while process 3 is faulty and starts with an initial value of 0. In the
first round, all processes report their values truthfully. In the second
round, processes 1 and 2 report truthfully what they heard in the
first round, while process 3 tells 1 (falsely) that 2 sent 0 in round
1 and otherwise behaves truthfully. Figure 6.4 shows the interesting
messages that are sent in c~1. In this execution, the validity condition
requires that processes 1 and 2 both decide 1.

Now consider a second execution.

118 6. D I S T R I B U T E D C O N S E N S U S W I T H P R O C E S S FAIL U R E S

2[-6 -7 2

1 0

1 � 9 - v - � 9 1 � 9 r � 9

� 8 9 [-o-I -" 0 2 said 0

F i g u r e 6.5" Execution a2--false message is circled.

Execut ion ct2 :

This is symmetric to Ct 1. This time, processes 2 and 3 are nonfaulty
and start with initial values of 0, while process 1 is faulty and starts
with an initial value of 1. In the first round, all processes report

their values truthfully. In the second round, processes 2 and 3 report

truthfully what they heard in the first round, while process 1 tells 3
(falsely) that 2 sent 1 in round 1 and otherwise behaves truthfully.

Figure 6.5 shows the interesting messages that are sent in a2. In this
execution, the validity condition requires that processes 2 and 3 both

decide 0.

To get a contradiction, consider a third execution.

Execut ion Oz 3 :

Now suppose that processes 1 and 3 are nonfaulty and start with 1

and 0, respectively. Process 2 is faulty, telling 1 that its initial value

is 1 and telling 3 that its initial value is 0. All processes behave
truthfully in the second round. The situation is shown in Figure 6.6.

Notice that process 2 sends the same messages to 1 in a3 as it does in o~1, and
sends the same messages to 3 in aa as it does in c~2, in both rounds. In fact, it

1 and is easy to check that aa and Ct I are indistinguishable to process 1, c~3 ~ a l ,
a

similarly c~a ~ c~2. Since process 1 decides 1 in O~1~ it also does so in c~a, and since

process 3 decides 0 in c~2, it also does so in c~a. But this violates the agreement
condition for c~a, which contradicts the assumption that processes 1, 2, and 3
solve the Byzantine agreement problem. We have shown that no algorithm of

this particularly simple form can solve Byzantine agreement.

6.3. ALGORITHMS FOR BYZANTINE FAIL URES 119

l o

D

2 2
�9 �9

/

1
e 3 l e r - e 3

F0-1 - " 0 2 said 0

@

F i g u r e 6.6: Execution a3--conflicting messages are circled.

Note that process 1, for example, can tell that some process is faulty in Oz3,

since process 2 tells 1 that its value is 1, but process 3 tells 1 that 2 said its value
is 0. The problem is that process 1 is unable to tell which of 2 and 3 is faulty.

This example does not constitute a proof that three processes cannot solve

Byzantine agreement with the possibility of a single fault. This is because the

argument presupposes that the algorithm uses only two rounds and sends partic-
ular types of messages. But it is possible to extend the example to more rounds

and arbi t rary types of messages. In fact, as we will see in Section 6.4, the ideas
can be extended to show that n > 3 f processes are needed to solve Byzantine
agreement in the presence of f faults.

6.3.2 EIG Algorithm for Byzantine Agreement

We now give an EIG algorithm for Byzantine agreement, which we call EIG-
Byz. Unlike the EIGStop algorithm, EIGByz presupposes that the number of

processes is large relative to the number of faults, in particular, that n > 3f .
This is necessary because of the limitations described in Sections 6.3.1 and 6.4.
Before you read about this algorithm, we suggest that you t ry to construct an
algorithm of your own for a special case, say n = 7 and f = 2.

The EIGByz algorithm for n processes with f faults uses the same EIG tree

data structure, Tn,I, that is used in EIGStop. Essentially the same propagation
strategy is used as for EIGStop; the only difference is that a process that receives
an "ill-formed" message corrects the information to make it look sensible. The
decision rule is quite different, however-- i t is no longer the case that a process

120 6. D I S T R I B U T E D CONSENSUS W I T H PROCESS FAIL URES

can t rust all values tha t appear anywhere in its tree. Now processes must take
some action to mask values tha t arrive in false messages.

EIGByz algorithm"

The processes propagate values for f + 1 rounds exactly as in the EIGStop
algorithm, with the following exceptions. If a process i ever receives a
message from another process j tha t is not of the specified form (e.g., it
contains complete garbage or contains duplicate values for the same node
in j ' s tree), then i "throws away" the message, tha t is, acts just as if
process j did not send it anything at tha t round.

At the end of f + 1 rounds, process i adjusts its val assignment so tha t
any null value is replaced by the default value v0.

Then to determine its decision, process i works from the leaves up in its
adjusted, decorated tree, decorating each node with an addit ional newval,
as follows. For each leaf labelled x, newval(x):= val(x). For each non-leaf
node labelled x, newval(x) is defined to be the newval held by a strict
major i ty of the children of node x, tha t is, the element v C V such tha t
newval(xj) = v for a major i ty of the nodes of the form xj , provided tha t
such a major i ty exists. If no major i ty exists, process i sets ncwval(x) := v0.
Process i's final decision is newval()~).

To show the correctness of EIGByz, we start with some prel iminary asser-
tions. The first says tha t all nonfaulty processes agree on the values relayed
directly from nonfaulty processes.

Lemma 6.15 After f + 1 rounds of the EIGByz algorithm, the following holds.
I f i, j , and k are all nonfaulty processes, with i ~ j , then val(x)i = val(x)j for
every label x ending in k.

P r o o f . If k r {i, j} , then the result follows from the fact that , since k is
nonfaulty, it sends the same message to i and j at round Ix]. If k E {i, j} , then
the result follows similarly from the convention by which each process relays
values to itself. D

The next l emma asserts tha t all nonfaulty processes agree on the newvals
computed for nodes whose labels end with nonfaulty process indices.

Lemma 6.16 After f + 1 rounds of the EIGByz algorithm, the following holds.
Suppose that x is a label ending with the index of a nonfaulty process. Then there
is a value v C V such that val(x)i = newval(x)i = v for all nonfaulty processes i.

6.3. A L G O R I T H M S F O R B Y Z A N T I N E F A I L U R E S 121

P r o o f . By induction on the tree labels, working from the leaves u p - - t h a t is,

from those of length f + 1 down to those of length 1.
Basis" Suppose x is a leaf, that is, that]x I - f + 1. Then Lemma 6.15

implies that all nonfaulty processes i have the same val(x)i; call this common
value v. Then also newva l (x) i - v for every nonfaulty process i, by the definition
of newval for leaves. So v is the required value.

Induc t i ve step" Suppose Ix] - r, 1 < r _< f . Then Lemma 6.15 implies that
all nonfaulty processes i have the same val(x)i; call this value v. Therefore, every
nonfaulty process l sends the same value v for x to all processes, at round r + 1,
so val(x l) i - v for all nonfaulty i and 1. Then the inductive hypothesis implies

that also newva l (x l) i - v for all nonfaulty processes i and 1.
We now claim that a major i ty of the labels of children of node x end in

nonfaulty process indices. This is t rue because the number of children of x is
exactly n - r _> n - f . Since we have assumed that n > 3f , this number must
be strictly greater than 2f . Since at most f of the children have labels ending in
indices of faulty processes, we have the needed majority.

It follows that for any nonfaulty i, newva l (x l) i - v for a major i ty of chil-
dren xl of node x. Then the major i ty rule used in the a lgor i thm implies that

newva l (x) i - v for all nonfaulty i. So v is the required value. D

We now argue validity.

L e m m a 6 .17 I f all non fau l t y processes begin with the same ini t ial value v E V ,

then v is the only possible decis ion value f o r a non fau l t y process.

P r o o f . If all nonfaulty processes begin with v, then all nonfaulty processes
broadcas t v at the first round, and therefore val (j) i = v for all nonfaulty processes
i and j . Lemma 6.16 implies that newva l (j) i = v for all nonfaulty i and j .
Then the major i ty rule used in the algori thm implies that newval(,~)i = v for all
nonfaulty i. Therefore, i 's decision is v, as needed. D

To show the agreement property, we need two more definitions. First , we say
that a subset C of the nodes of a rooted tree is a path covering provided that
every path from the root to a leaf contains at least one node in C.

Second, consider any execution c~ of the E I G B g z algorithm. A tree node x
is said to be c o m m o n in c~ provided that at the end of f + 1 rounds in c~, all the

nonfaulty processes i have the same newval (x) i . A set of tree nodes (e.g., a path
covering) is said to be c o m m o n in c~ if all the nodes in the set are common in c~.
Notice that Lemma 6.16 implies that if i is nonfaulty, then for every x, x i is a

common node.

122 6. D I S T R I B U T E D CONSENSUS W I T H PROCESS FAILURES

L e m m a 6.18 After f + 1 rounds of any execution c~ of EIGByz, there exists a
path covering that is common in c~.

P r o o f . Let C be the set of nodes of the form xi, where i is nonfaulty. As
observed just above, all nodes in C are common. To see why C is a path covering,

consider any path from the root to a leaf. It contains exactly f + 1 non-root
nodes, and each such node ends with a distinct process index, by construction

of T. Since there are at most f faulty processes, there is some node on the path

whose label ends in a nonfaulty process index. This node must be in C.

The following lemma shows how common nodes propagate up the tree.

L e m m a 6.19 After f + 1 rounds of EIGByz, the following holds. Let x be any
node label in the EIG tree. If there is a common path covering of the subtree
rooted at x, then x is common.

P r o o f . By induction on tree labels, working from the leaves up.
Basis: Suppose that x is a leaf. Then the only path covering of x's subtree

consists of the single node x itself. So x is common, as needed.
Inductive step" Suppose that Ixl - r, 0 _< r < f . Suppose that there is a

common path covering C of x's subtree. If x itself is in C, then x is common

and we are done, so suppose x ~ C.
Consider any child xl of x. Since x ~ C, C induces a common path covering

for the subtree rooted at xl. So by the inductive hypothesis, xl is common. Since

xl was chosen to be an arbi t rary child of x, all the children of x are common.
Then the definition of newval(x) implies that x is common.

As a simple consequence, we obtain

L e m m a 6.20 After f + 1 rounds of EIGByz, the root node ~ is common.

P r o o f . Immediate by Lemmas 6.18 and 6.19. [2

We now tie the pieces together in the main correctness theorem.

T h e o r e m 6.21 EIGByz solves the Byzantine agreement problem for n processes

with f failures, if n > 3 f .

P r o o f . Termination is obvious. Validity follows from Lemma 6.17. Agreement

follows from Lemma 6.20 and the decision rule. [:]

6.3. A L G O R I T H M S FOR B Y Z A N T I N E F A I L U R E S 123

C o m p l e x i t y a n a l y s i s . The costs are the same as for the EIGStop algorithm:

f + 1 rounds, O ((f + 1)n 2) messages, and O (n f + l b) bits of communication.

In addition, there is the new requirement that the number of processes be large

relative to the number of failures" n > 3f .

6.3.3 General Byzantine Agreement Using Binary Byzantine
Agreement

In this subsection, we show how to use an algorithm that solves Byzantine agree-
ment for inputs in {0, 1} as a subroutine for solving general Byzantine agreement.
The overhead is just 2 extra rounds, 2n 2 extra messages, and O (n2b) bits of com-
munication. This can lead to a substantial savings in the total number of bits
that need to be communicated, since it is not necessary to send values in V, but
only binary values, while executing the subroutine. This improvement, however,
is not sumcient to reduce the number of bits of communication from exponential

to polynomial in f .
We call the algorithm TurpinCoan, after its designers. The algorithm assumes

that n > 3f. As earlier, we pretend that each process can send messages to itself
as well as to the other processes.

T u r p i n C o a n algorithm:
Each process has local variables x, y, z, and vote, where x is initialized to
the process's input value and y, z, and vote are initialized arbitrarily.

Round 1" Process i sends its value of x to all processes, including itself.

If, in the set of messages received at this round, there are > n - f copies
of a particular value v E V, then i sets y " - v; otherwise y " - null.

Round 2" Process i sends its value of y to all processes, including itself. If,
in the set of messages received at this round, there are _> n - f copies of a
particular value in V, then i sets vote " - 1; otherwise vote " - O. Also, i sets
z equal to the non-nul l value that occurs most often among the messages
received by i at this round, with t i esbroken arbitrarily; if all messages are

null, then z remains undefined.

Round r, r >_ 3" The processes run the binary Byzantine agreement sub-
routine using the values of vote as the input values. If process i decides 1
in the subroutine and if z is defined, then the final decision of the algorithm

is z; otherwise it is the default value v0.

A key fact about the TurpinCoan algorithm is

L e m m a 6.22 There is at mos t one value v E V that is sent in round 2 messages

by nonfaul ty processes.

124 6. D I S T R I B U T E D CONSENSUS W I T H PROCESS FAILURES

P r o o f . Suppose for the sake of contradiction that nonfaulty processes i and j
send round 2 messages containing values v and w respectively, where v, w C V,

v ~ w. Then i receives at least n - f round 1 messages containing v. Since there

are at most f faulty processes, and nonfaulty processes send the same round 1
messages to all processes, it must be that j receives at least n - 2f messages

containing v. Since n > 3f, this means j receives at least f + 1 messages
containing v.

But also, since j sends w in round 2, j receives at least n - f round 1 messages

containing w, for a total of at least (f + 1)+ (n - f) > n messages. But the total
number of round 1 messages received by j is only n, so this is a contradiction.

D

T h e o r e m 6.23 The TurpinCoan algorithm solves general Byzantine agreement
when given a binary Byzantine agreement algorithm as a subroutine, if n > 3 f .

P r o o f . Termination is easy to see.

To show validity, we must prove that if all nonfaulty processes start with
the same initial value, v, then all nonfaulty processes decide v. So suppose that

all nonfaulty processes start with v. Then all the _> n - f nonfaulty processes
successfully broadcast round 1 messages containing v to all processes. So at

round 1, all nonfaulty processes set their y variables to v. Then in round 2, each

nonfaulty process receives at least n - f messages containing v, which implies
that it sets its z variable to v and its vote to 1. Since all the nonfaulty processes

use input 1 for the binary Byzantine agreement subroutine, they all decide 1 in
the subroutine, by the validity condition for the binary algorithm. This means

that they all decide v in the main algorithm, which shows validity.

Finally, we show agreement. If the subroutine's decision value is 0, then v0 is
chosen as the final decision value by all nonfaulty processes and agreement holds
by default.

So assume that the subroutine's decision value is 1. Then by the validity
condition for the subroutine, some nonfaulty process i must begin the subroutine

with votei - 1. This means that process i receives at least n - f round 2
messages containing some particular value v E V, so since there are at most f
faulty processes, i receives at least n - 2f round 2 messages containing v from
nonfaulty processes. Then if j is any nonfaulty process, it must be that j also

receives at least n - 2 f round 2 messages containing v from those same nonfaulty
processes. By Lemma 6.22, no value in V other than v is sent by any nonfaulty

process in round 2. So process j receives no more than f round 2 messages
containing values in V other than v (and these must be from faulty processes).

Since n > 3f, we have n - 2f > f , so v is the value that occurs most often in
round 2 messages received by j. It follows that process j sets z "- v in round 2.

6.3. ALGORITHMS FOR BYZANTINE FAILURES 125

Since the subroutine's decision value is 1, this means that j decides v. Since this
argument holds for any nonfaulty process j , agreement holds. [~

In the proof of the TurpinCoan algorithm, the limitation of f on the number
of faulty processes is used to obtain claims about the similarity between the
views of different processes in an execution. This sort of argument also appears
in proofs for other consensus algorithms, for instance the approximate agreement
algorithm in Section 7.2.

C o m p l e x i t y a n a l y s i s . The number of rounds is r + 2, where r is the number
of rounds used by the binary Byzantine agreement subroutine. The extra com-
munication used by TurpinCoan, in addition to that used by the subroutine, is
2n 2 messages, each of at most b bits, for a total of O (n2b) bits.

6.3.4 Reducing the Communicat ion Cost

Although the TurpinCoan algori thm can be used to reduce the bit communication
complexity of Byzantine agreement somewhat, its cost is still exponential in
the number f of failures. Algorithms that are polynomial in the number of
failures are much more difficult to obtain in the Byzantine failure model than
in the stopping failure model. In this section, we present one example; this
algorithm is not optimal in terms of time complexity, but it is fairly simple
and uses some interesting techniques. This algorithm is for the special case of
Byzantine agreement on a value in {0, 1}; the results of Section 6.3.3 show how
this algorithm can be used to obtain a polynomial algorithm for a general value
domain.

The algori thm uses a mechanism known as consistent broadcast for all its
communication. This mechanism is a way of ensuring a certain amount of co-
herence among the messages received by different processes. Using consistent
broadcast , a process i can broadcast a message of the form (re, i, r) at round
r, and the message can be accepted by any of the processes (including i itself)
at any subsequent round. The consistent broadcast mechanism is required to
satisfy the following three conditions:

1. If nonfaulty process i broadcasts message (m , i , r) in round r, then the
message is accepted by all nonfaulty processes by round r + 1 (i.e., it is
either accepted at round r or round r + 1).

2. If nonfaulty process i does not broadcast message (rn, i, r) in round r, then
(rn, i, r) is never accepted by any nonfaulty process.

126 6. D I S T R I B U T E D CONSENSUS W I T H P R O C E S S FAILURES

3. If any message (m, i ,r) is accepted by any nonfaulty process j , say at
round r ~, then it is accepted by all nonfaulty processes by round r ~ + 1.

The first condition says that nonfaulty processes ' broadcasts are accepted
quickly, while the second says that no messages are ever falsely a t t r ibu ted to
nonfaulty processes. The third condition says that any message that is accepted

by a nonfaulty process (whether from a faulty or nonfaulty sender) must also be
accepted by every other nonfaulty process soon thereafter.

The consistent broadcast mechanism can be implemented easily.

C o n s i s t e n t B r o a d c a s t algorithm:

In order to broadcast (m , i , r) at round r, process i sends a message
("init', m, i, r) to all processes at round r. If process j receives an
("init", m, i, r) message from process i at round r, it sends ("echo", m, i, r)
to all processes at round r + 1.

If, before any round r ~ > r + 2, process j has received ("echo", m, i, r)
messages from at least f + 1 processes, then j sends an ("echo", m, i, r)
message at round r ~ (if it has not already done so).

If, by the end of any round r ~ > r + l , process j has received ("echo", m, i, r)
messages from at least n - f processes, then j accepts the communicat ion

at round r ~ (if it has not a lready done so).

Theorem 6.24 The ConsistentBroadcast algorithm solves the consistent broad-
cast problem, if n > 3 f .

P r o o f . We verify the three properties.

1. Suppose that nonfaulty process i broadcas ts message (m, i, r) at round r.
Then i sends ("init", m, i, r) to all processes at round r, and each of the
> n - f nonfaulty processes sends ("echo", rn, i, r) to all processes at round
r + 1. Then, by the end of round r + 1, each nonfaulty process receives
("echo", m, i, r) messages from at least n - f processes and so accepts the
message.

2. If nonfaulty process i does not broadcas t message (m, i, r) in round r, then

it sends no ("init", rn, i, r) messages, so no nonfaulty process ever sends
an ("echo", rn, i, r) message. Then no nonfaulty process ever accepts the
message, because acceptance requires receipt of echo messages from at

least n - f > f processes.

6.3. ALGORITHMS FOR BYZANTINE FAILURES 127

. Suppose message (m, i, r) is accepted by nonfaulty process j at round r ~.
Then j receives ("echo", m, i, r) messages from at least n - f processes by
round r ~. Among these n - f processes, there are at least n - 2 f > f + 1
nonfaulty processes. Since nonfaulty processes send the same messages to
all processes, every nonfaulty process receives at least f + 1 ("echo", m, i, r)
messages by round r ~. This implies that every nonfaulty process sends an
("echo", m, i, r) message by round r ~ + 1, so that every process receives
at least n - f ("echo", m, i, r) messages by round r ~ + 1. Therefore, the
message is accepted by all nonfaulty processes by round r ~ § 1.

[-I

C o m p l e x i t y a n a l y s i s . The consistent broadcast of a single message uses
O (n 2) messages.

Now we describe a simple binary Byzantine agreement algori thm that uses
consistent broadcast for all its communication. Called the PolyByz algorithm,
it only sends around information about initial values of 1. It uses increasing
thresholds for broadcast ing messages.

PolyByz algorithm:

The algori thm operates in f + 1 stages, where each stage consists of two
rounds. The messages that are sent (using consistent broadcast) are all of
the form (1, i, r), where i is a process index and r is an odd round number.
That is, messages are only sent at the first rounds of stages, and the only
information ever sent is just the value 1.

The conditions under which process i broadcasts a message are as follows.
At round 1, i broadcasts a message (1,i, 1) exactly if i 's initial value is
1. At round 2 s - 1, the first round of stage s, where 2 _< s _< f + 1, i
broadcasts a message (1, i, 2 s - 1) exactly if i has accepted messages from
at least f + s - 1 different processes before round 2 s - 1 and i has not yet
broadcast a message.

At the end of 2 (f + 1) rounds, process i decides on 1 exactly if i has
accepted messages from at least 2 f + 1 different processes by the end of
round 2(f + 1). Otherwise, i decides 0.

T h e o r e m 6.25 PolyByz solves the binary Byzantine agreement problem, if
n > 3 f .

Proof. Termination is obvious.
For validity, there are two cases. First, if all nonfaulty processes start with

initial value 1, then at least n - f _> 2 f + 1 processes broadcast at round 1. By

128 6. DISTRIBUTED CONSENSUS WITH PROCESS FAILURES

property 1 of consistent broadcast, all nonfaulty processes accept these messages
by round 2, so that each nonfaulty process accepts messages from at least 2f + 1
different processes by the end of round 2. This is sufficient to imply that each
nonfaulty process decides 1.

On the other hand, if all nonfaulty processes start with initial value 0, then
no nonfaulty process ever broadcasts. This is because the minimum number of
acceptances needed to trigger a broadcast is f + 1, which is impossible to achieve
without a prior broadcast by a nonfaulty process. (We are using property 2 of
consistent broadcast here.) This implies that each nonfaulty process decides 0.

Finally, we argue agreement. Suppose that nonfaulty process i decides 1;
it is enough to show that every other nonfaulty process also decides 1. Since i
decides 1, i must accept messages from at least 2f + 1 different processes by the
end of round 2(f + 1). Let I be the set of nonfaulty processes among these; then

II] _> f + 1.
If all the processes in I have initial values of 1, then they broadcast at round

1, and, by property 1 of consistent broadcast, all nonfaulty processes accept
these messages by round 2. Then before round 3, 2 each nonfaulty process has
accepted messages from at least f + 1 different processes, which is enough to
trigger it to broadcast at round 3; again by property 1 of consistent broadcast,
all nonfaulty processes accept these messages by round 4. Thus, each nonfaulty
process accepts messages from at least n - f _> 2f + 1 different processes by the
end of round 4, and so decides 1, as needed.

On the other hand, suppose that one of the processes in I, say j, does not
have an initial value of 1. Then it must be that j broadcasts at some round
2 s - 1, where 2 _< s _< f + 1, which means that j accepts messages from at
least f + s - 1 different processes before round 2s - 1; moreover, none of these
messages is from j itself. Then by property 3 of consistent broadcast, messages
from all of these f + s - 1 processes get accepted by all nonfaulty processes by
the end of round 2 s - 1, and, by property 1, the message broadcast by j gets
accepted by all nonfaulty processes by the end of round 2s. It follows that each
nonfaulty process accepts messages from at least (f + s - 1) + 1 - f + s different
processes by the end of round 2s.

Now there are two cases. If s - f + 1, then each nonfaulty process accepts
messages from at least 2f + 1 different processes by the end of round 2(f + 1),
which is enough to ensure that they all decide 1. On the other hand, if s _< f ,
then every nonfaulty process accepts sufficiently many messages before round
2s + 1 to broadcast at round 2s + 1, if it has not done so already. Then by
property 1 of consistent broadcast, all nonfaulty processes accept messages from

2We assume that f _~ i, so that there actually is a round 3.

6.4. NUMBER OF PROCESSES FOR BYZANTINE AGREEMENT 129

all the nonfaulty processes by the end of round 2s § 2. Again, this is enough to
ensure that they all decide 1, as needed.

C o m p l e x i t y analys is . PolyByz requires 2f + 2 rounds. There are at most
n broadcasts, each requiring O (n 2) messages; thus, the number of messages
is O (n3). The number of bits in each message is O (log n), because messages
contain process indices. Thus, the total bit complexity is just O (n 3 log n).

R e l a t i o n s h i p wi th the a u t h e n t i c a t e d B y z a n t i n e fa i lure mode l . Adding
a consistent broadcast capability to the ordinary Byzantine model produces a
model that is somewhat like the authenticated Byzantine failure model discussed
informally in Section 6.2.4. However, the two are not exactly the same. For
instance, consistent broadcast is just for broadcasting, not for sending individ-
ualized messages. More significantly, consistent broadcast does not prevent a
process i from broadcasting a message saying (falsely) that a nonfaulty process j
has previously sent a particular message; the nonfaulty processes will all accept
this message, even though its contents represent a false claim. In the authenti-
cated Byzantine failure model, the use of digital signatures allows processes to
reject such messages immediately. However, even though the models are some-
what different, the consistent broadcast capability is strong enough that it can be
used to implement, in the ordinary Byzantine model, some algorithms designed
for the authenticated Byzantine failure model.

6.4 Number of Processes for Byzantine Agreement

We have presented algorithms to solve the agreement problem in a complete
network graph, in the presence of stopping failures, and even in the presence of
Byzantine failures. You have probably noticed that these algorithms are quite
costly. For stopping failures, the best algorithm we gave was the OptFloodSet
algorithm, which requires f + 1 rounds, 2n 2 messages, and O (n2b) bits of com-
munication. For the Byzantine case, the EIGByz algorithm uses f + 1 rounds and
an exponential amount of communication, while PolyByz uses 2(f + 1) rounds and
a polynomial amount of communication. Both Byzantine agreement algorithms
also require n > 3f.

In the rest of this chapter, we show that these high costs are not accidental.
First, in this section, we show that the n > 3f restriction is needed for any
solution to the Byzantine agreement problem. The next two sections contain
related results: Section 6.5 describes exactly the amount of connectivity that
is needed in an incomplete network graph in order for Byzantine agreement to

130 6. D I S T R I B U T E D C O N S E N S U S W I T H P R O C E S S FAIL URES

2

1

2 3
A A

,,. 1 S 1'

D
3, 2,

F i g u r e 6.7" Combining two copies of A to get S.

be solvable, while Section 6.6 shows that the n > 3f bound extends to weaker
problem statements than Byzantine agreement. The final section of the chapter
shows that the lower bound of f + 1 on the number of rounds is also necessary,
even for the simple case of stopping failures.

In order to prove that n <_ 3f processes cannot solve Byzantine agreement in
the presence of f faults, we begin by showing the simplest special case: that three
processes cannot solve Byzantine agreement with the possibility of one fault.
This result is suggested by the example in Section 6.3.1, although that example
does not constitute a proof. We then show the general result, for arbitrary n and
f , n < 3f, by "reducing" the problem to the case of three versus one.

L e m m a 6 .26

of one fault.

Three processes cannot solve Byzantine agreement in the presence

Proof . By contradiction. Assume there is a three-process algorithm A that
solves the Byzantine agreement problem for the three processes 1, 2, and 3, even
if one of these three may be faulty. We construct a new system S using two

copies of A and show that S must exhibit contradictory behavior. It follows that
the assumed algorithm A cannot exist.

Specifically, we take two copies of each process in A and configure them into
a single hexagonal system S. We start one copy each of processes 1, 2, and 3
(the unprimed copy) with input value 0, and the other (the primed copy) with
input value 1. The arrangement is shown in Figure 6.7.

What is system S, formally? It is a synchronous system, based on a hexagonal
network graph, within the general model of Chapter 2. Note that it is not a

6.4. N U M B E R OF P R O C E S S E S F O R B Y Z A N T I N E A G R E E M E N T 131

system that is supposed to solve the Byzantine agreement problem--we don't
care what it does, in fact, only that it is a synchronous system of some kind. We
will not consider any faulty process behavior in S.

Remember that in the systems we consider as solutions for the Byzantine
agreement problem, we assume that the processes all "know" the entire network
graph. For example, in A, process 1 knows the names 2 and 3 and presumes
that there are exactly three nodes, named 1, 2, and 3, arranged in a triangle.
In S, we do not assume that the processes know the entire (hexagonal) network
graph, but rather that each process just has local names for its neighbors. For
example, in S, process 1 knows that it has two neighbors, which it knows by the
names 2 and 3, even though one of them is really 3 ~. It does not know that there
are duplicate copies of the nodes in the network. The situation is similar to the
one considered in Chapter 4, where each process only had local knowledge of its
portion of the network graph. In particular, notice that the network in S appears
to each process just like the network in A.

System S is not required to exhibit any special type of behavior. However,
note that S with any particular input assignment does exhibit some well-defined
behavior. We will obtain a contradiction by showing that, for the particular input
assignment indicated above, no such well-defined behavior is possible.

So suppose that the processes in S are started with the input values indicated
in Figure 6.7, that is, the unprimed processes with 0 and the primed processes
with 1; let c~ be the resulting execution of S.

We first consider execution c~ from the point of view of processes 2 and 3.
To processes 2 and 3, it appears as if they are running in the triangle system
A, in an execution Ct 1 in which process 1 is faulty. That is, c~ and a l are

2 3 according to the indistinguishable to processes 2 and 3, a ~ c t 1 and a ~ a l ,
definition of "indistinguishable" in Section 2.4. See Figure 6.8. In a l , process
1 exhibits a peculiar type of faulty behavior-- i t behaves like the combination of
processes 1 ~, 2 t, 3 ~, and 1 in a. Although it is peculiar, it is an allowable behavior
for a faulty process in A, under the assumptions for Byzantine faults.

Since Ct 1 is an execution of A in which only process 1 is faulty and processes
2 and 3 begin with input 0, and since A is assumed to solve Byzantine agreement,
the correctness conditions for Byzantine agreement imply that eventually in a l ,
processes 2 and 3 must decide 0. Since a is indistinguishable from Ct 1 to processes
2 and 3, both decide 0 in c~ as well.

Next consider execution a from the point of view of processes 1 ~ and 2 ~. To
processes 1 ~ and 2 ~, it appears as if they are running in the triangle system A,

11 2 I
in an execution c~2 in which process 3 is faulty. That is, c~ ~ c~2 and c~ ~ c~2.

132 6. DISTRIBUTED CONSENSUS WITH PROCESS FAIL URES

2 3
A A

D

1 (x

rn
w v

3, 2,

o ~

�9 oo

' , o o o ~

F i g u r e 6.8" Executions c~ and Ct I are indistinguishable to processes 2 and 3.

2

D

1

[n
w

3,

3

1 :i

F i g u r e 6 .9- Executions a and a2 are indistinguishable to processes 1 ~ and 2 ~.

See Figure 6.9. By the same argument as above, processes 1 ~ and 2 ~ eventual ly

decide 1 in c~.

Finally, consider execut ion c~ from the point of view of processes 3 and 1 ~.

To processes 3 and 1 ~, it appears as if they are running in the triangle sys tem A,
3 I t

in an execut ion c~3 in which process 2 is faulty. That is, c~ ~ c~3 and c~ ~ c~3. See

Figure 6.10. By the correctness condit ions for Byzant ine agreement, processes

3 and 1 ~ must eventual ly decide in c~3, and their decisions must be the same.

Because process 3 starts with input 0 and process 1 ~ starts with input 1, there is

6.4. N U M B E R OF P R O C E S S E S FOR B Y Z A N T I N E A G R E E M E N T 133

~176176176176
2 . . - ' " ' " 3 ". r
A ['-07 . ~ �9

o~

D
w w

3, 2,

2

F i g u r e 6.10" Executions c~ and c~3 are indistinguishable to processes 1 and 3.

no requirement about what value they agree upon, but the agreement condition

implies that they agree. Therefore, they decide on the same value in c~ also.
But this is a contradiction, because we have already observed that in c~,

process 3 decides 0 and process 1' decides 1. D

We now use Lemma 6.26 to show that Byzantine agreement is impossible with

n _< 3 f processes. We do this by showing how the existence of an n _< 3 f process
solution that can tolerate f Byzantine failures implies the existence of a three-
process solution that can tolerate a single Byzantine failure, which contradicts

Lemma 6.26.

T h e o r e m 6 .27 There is no solution to the Byzantine agreement problem for n

processes in the presence of f Byzantine failures, if 2 <_ n <_ 3 f .

P r o o f . For the special case where n - 2, it is easy to see that the problem
cannot be solved. Informally speaking, suppose that one process starts with 0
and the other with 1. Then each must allow for the possibility that the other is
faulty and decide on its own value, in order to ensure the validity property. But
if neither is faulty, this violates the agreement property. So we may assume that
n > 3 .

Assume for the sake of contradiction that there is a solution A for Byzantine

agreement with 3 _< n _< 3f . We show how to t ransform A into a solution B to
Byzantine agreement for three processes, numbered 1, 2, and 3, tolerating one
fault. Each of the three processes in B will simulate approximately one-third of
the processes of A.

134 6. D I S T R I B UTED C O N S E N S U S W I T H P R O C E S S FAIL URES

Specifically, we part i t ion the processes of A into three nonempty subsets, I1,
/2, and /3, each of size at most f . We let each process i in B simulate the
processes in Ii, as follows.

B;
Each process i keeps track of the states of all the processes in Ii,
assigns its own initial value to every member of Ii, and simulates

the steps of all the processes in Ii as well as the messages between

pairs of processes in Ii. Messages from processes in Ii to processes
in another subset are sent from process i to the process simulating

that subset. If any simulated process in Ii decides on a value v, then
i decides on the value v. (If there is more than one such value, then
i can choose any such value.)

We show that B correctly solves Byzantine agreement for three processes.

Designate the faulty processes of A to be exactly those that are simulated by
faulty processes of B. 3 Fix any particular execution c~ of B with at most one

faulty process and let c~ ~ be the simulated execution of A. Since each process of

B simulates at most f processes of A, there are at most f faulty processes in c~ ~.

Since A is assumed to solve Byzantine agreement for n processes with at most

f faults, the usual agreement, validity, and termination conditions for Byzantine
agreement hold in c~ ~.

We argue that these conditions carry over to c~. For termination, let i be
a nonfaulty process of B. Then i simulates at least one process, j , of A, and

j must be nonfaulty since i is. The termination condition for c~ ~ implies that j

must eventually decide; as soon as it does so, i decides (if it has not already done
SO).

For validity, if all nonfaulty processes of B begin with a value v then all the

nonfaulty processes of A also begin with v. Validity for c~ ~ implies that v is the
only decision value for a nonfaulty process in c~ ~. Then v is the only decision
value for a nonfaulty process in c~.

For agreement, suppose i and j are nonfaulty processes of B. Then they
simulate only nonfaulty processes of A. Agreement for c~ ~ implies that all of
these simulated processes agree, so i and j also agree.

We conclude that B solves the Byzantine agreement problem for three pro-

cesses, tolerating one fault. But this contradicts Lemma 6.26. [:]

aWe invoke the technicality that Byzantine faulty processes are allowed to behave completely
correctly, in order to justify this classification.

6.5. B Y Z A N T I N E A G R E E M E N T IN G E N E R A L G R A P H S 135

6.5 Byzantine Agreement in General Graphs

So far in this chapter, we have considered agreement problems only in complete
graphs. For complete graphs with n nodes, we showed in Sections 6.3 and 6.4
that Byzantine agreement can be solved if and only if n > 3f. In this section,
we consider the problem of Byzantine agreement in general network graphs. We
characterize exactly the graphs in which the problem is solvable.

First, if the network graph is a tree with at least three nodes, we cannot hope
to solve the Byzantine agreement problem with even one faulty process, for any
faulty process that is not a leaf could essentially "disconnect" the processes in
one part of the tree from the processes in another. The nonfaulty processes in
different components would not even be able to communicate reliably, much less
reach agreement. Similarly, it should be plausible that if f nodes can disconnect
the graph, then Byzantine agreement is impossible with f faulty processes.

To formalize this intuition, we use the following notion from graph theory.
The connectivity of a graph G, corm(G), is defined to be the minimum number
of nodes whose removal results in either a disconnected graph or a trivial 1-node
graph. Graph G is said to be c-connected if conn(G) >_ c.

Example 6.5.1 Connectivity

Any tree with at least two nodes has connectivity 1, and an n-node
complete graph has connectivity n - 1. Figure 6.11 shows a graph
with connectivity 2. If nodes 2 and 4 are removed, then we are left
with two disconnected nodes, 1 and 3.

1

2 4

3

F i g u r e 6.11: A graph G with corm(G) - 2.

We use a classical theorem of graph theory known as Menger's Theorem.

Theorem 6.28 (Menger's Theorem) A graph G is c-connected if and only
if every pair of nodes in G is connected by at least c node-disjoint paths.

136 6. DISTRIBUTED CONSENSUS WITH PROCESS FAILURES

Now we can characterize those graphs in which it is possible to solve Byzan-
tine agreement with a given number of faults. The characterization is in terms
of both the number of nodes in the graph and the connectivity. The proof of the
impossibility part of the characterization uses methods similar to those used in
Section 6.4 to prove the lower bound for the number of faulty processes.

T h e o r e m 6.29 The Byzantine agreement problem can be solved in an n-node
network graph G, tolerating f faults, if and only if both the following hold:

1. n > 3 f

2. conn(G) > 2 f

P r o o f . We have already shown, in Theorem 6.27, that n > 3f processes are
required to solve Byzantine agreement in a complete graph. It should not be
hard to believe that in an arbitrary (not necessarily complete) network graph
we still need n > 3f; this is because an algorithm for an incomplete graph with
n _< 3f could also be run in an n-node complete graph.

We next show the if direction of the proof, namely, that Byzantine agreement
is possible if n > 3f and conn(G) > 2f. Since G is 2f + 1-connected, Menger's
Theorem, Theorem 6.28, implies that there are at least 2f + 1 node-disjoint paths
between any two nodes in G. It is possible to implement reliable communication
between any pair of nonfaulty processes, i and j, by having i send a message
along 2 f + 1 paths between itself and j. Since there are at most f faulty processes,
the messages received by j along a majority of these paths must be correct.

Once we have reliable communication between all pairs of nonfaulty pro-
cesses, we can solve Byzantine agreement just by simulating any algorithm that
solves the problem in an n-node complete graph. The implementation given
above for reliable communication is used in place of the point-to-point commu-
nication in the complete graph. Of course, there is an increase in complexity,
but that is not the issue here-- the algorithm still works correctly.

We now turn to the most interesting part of the proof, showing that Byzantine
agreement can only be solved if conn(G) > 2f. We simplify matters by only
arguing the case where f - 1; we leave the (similar) argument for larger values
of f for an exercise.

So, assume there is a graph G with conn(G) _< 2, in which Byzantine agree-
ment can be solved in the presence of one fault, using algorithm A. Then there
are two nodes in G that either disconnect G or reduce it to one node. But if
they reduce it to one node, it means that G consists of only three nodes, and we
already know that Byzantine agreement cannot be solved in a three-node graph
in the presence of one fault. So we can assume that the two nodes disconnect G.

6.5. BYZANTINE AGREEMENT IN GENERAL GRAPHS 137

Then the picture must be something like Figure 6.11, except that nodes 1
and 3 might be replaced by arbitrary connected subgraphs and there might be
several edges between each of processes 2 and 4 and each of the two connected
subgraphs. (The link between 2 and 4 could also be missing, but this would only
make things harder.) Again for simplicity, we just consider the case where 1 and
3 are single nodes. We construct a system S by combining two copies of A. We
start one copy of each process with input value 0 and the other with input value
1, as shown in Figure 6.12. As in the proof of Lemma 6.26, S with the given
input assignment does exhibit some well-defined behavior. Again, we will obtain
a contradiction by showing that no such behavior is possible.

So suppose that the processes in S are started with the input values indicated
in Figure 6.12, that is, the unprimed processes with 0 and the primed processes
with 1; let c~ be the resulting execution of S.

We consider c~ from the point of view of processes 1, 2, and 3. To these
processes, it appears as if they are running in system A, in an execution Ct I in
which process 4 is faulty. See Figure 6.13. Then the correctness conditions for
Byzantine agreement imply that eventually in c~1, processes 1, 2, and 3 must
decide 0. Since c~ is indistinguishable from C~l to processes 1, 2, and 3, all three
must eventually decide 0 in c~ as well.

Next consider a from the point of view of processes 1', 2', and 3'. To these
three processes, it appears as if they are running in A, in an execution a2 in
which process 4 is faulty. See Figure 6.14. By the same argument, processes 1',
2', and 3' must eventually decide 1 in c~.

Finally, consider execution c~ from the point of view of processes 3, 4, and
1'. To these processes, it appears as if they are running in A, in an execution c~a
in which process 2 is faulty. See Figure 6.15. By the correctness conditions for
Byzantine agreement, these three processes must eventually decide in c~3, and
their decisions must be the same. Then the same is true in c~.

But this is a contradiction, because we have already shown that process 3
must decide 0 and process 1' must decide 1 in c~. It follows that we cannot solve
Byzantine agreement in graphs G with corm(G) _< 2 and f = 1.

In order to generalize the result to f > 1, we can use the same diagrams,
with 2 and 4 replaced by se t s /2 a n d / 4 of at most f nodes each and 1 and 3 by
arbitrary sets I1 and /3 of nodes. Removing all the nodes in /2 and /4 disconnects
I1 and /3 . The edges of Figure 6.11 can now be considered to represent bundles
of edges between the different groups of nodes I1, /2, /3, and /4 . [-1

1 .

2 ~

4 1

A 3 I
A

D
w w w

4

12 : two copies of get F i g u r e 6. Combining A to S.

0 . ,

i ;; 4,

i l . ~ . .3 ,

3 1'

| . ,

1

2

3

F i g u r e 6 . 1 3 " Execut ions c~ and Ol I are indist inguishable to processes 1, 2, and 3.

6.6. W E A K B Y Z A N T I N E A G R E E M E N T 139

! A

4'
i A 3 1

[E E]

2,

IT] 1,
v v , -

4

1'

2,

3,
. I

F i g u r e 6.14" Executions c~ and a2 are indistinguishable to processes 1 ~, 2 ~, and 3 ~.

6.6 Weak Byzantine Agreement

The same general proof method that we used in Sections 6.4 and 6.5 to prove

impossibility for Byzantine agreement with n < 3 f or corm < 2 f can also be
used to prove impossibility for other consensus problems. As an example, in
this section we show how this method can be used to prove impossibility for a
weaker variant of the Byzantine agreement problem known as weak Byzantine
agreement.

The only difference between the problem statement for weak Byzantine agree-
ment and ordinary Byzantine agreement is in the validity condition. The validity
condition for weak Byzantine agreement is

140 6. D I S T R I B U T E D C O N S E N S U S W I T H P R O C E S S F A I L U R E S

1 l . , ~ ~ 3 1

D D D

2, [5]

i _ v -
',

', 4
t .

i i

,,

',

2 4

3
. i

F i g u r e 6.15: Executions a and a3 are indistinguishable to processes 3, 4, and i t.

Va l id i ty : If there are no faulty processes and all processes start with the same
initial value v C V, then v is the only possible decision value.

In the ordinary Byzantine agreement problem, if all the nonfaulty processes start
with the same initial value v, then they must all decide v even i f there are faul ty

processes. In weak Byzantine agreement, they are required to decide v only in
the case where there are no failures.

Since the new problem statement is weaker than the old one, the algorithms we
have described for ordinary Byzantine agreement also work for weak Byzantine
agreement. On the other hand, the impossibility results do not immediately
carry over; it is plausible that more eMcient algorithms might exist for weak
Byzantine agreement. However, it turns out that (except for a tiny technicality)

6.6. W E A K B Y Z A N T I N E A G R E E M E N T 141

the limitations on the number of processes and the graph connectivity still hold.
(The technicality is that now we need to assume that n > 3, because there is a
trivial algorithm for weak Byzantine agreement for the special case where n - 2.)

T h e o r e m 6.30 Assume that n > 3. The weak Byzantine agreement problem
can be solved in an n-node network graph G, tolerating f faults, if and only if
both the following hold:

1. n > 3 f

2. corm(G) > 2 f

P r o o f . The if direction follows from the existence of protocols for ordinary
Byzantine agreement, as claimed in Theorem 6.29. We give the proof that three
processes cannot solve weak Byzantine agreement with one possible fault and
leave the extension to f > 1 and the connectivity argument for exercises. For

simplicity, we assume that V - {0, 1}.
Assume there is a three-process algorithm A that solves the weak Byzantine

agreement problem for the three processes 1, 2, and 3, even if one is faulty.
Let c~0 be the execution of A in which all three processes start with 0 and no
failures occur. The termination and validity conditions then imply that all three
processes eventually decide 0 in c~0; let r0 be the smallest round number by which
all processes decide. Likewise, let Ct 1 be the execution in which all processes start
with 1 and no failures occur, so all processes eventually decide 1 in C~l. Let r l
be the number of rounds required and choose r >_ max{r0, Vl, 1}.

We construct a new system S by pasting 2r copies of A into a ring with 6r

processes, 3r in the "top half" and 3r in the "bottom half." We start all the
processes in the top half with input value 0 and those in the bot tom half with

input value 1. The arrangement is shown in Figure 6.16. (This time, we have
not bothered to include prime symbols or other distinguishing notation for the
multiple copies of the same process of A.) Let c~ be the resulting execution of S.

By arguing as in the proof of Lemma 6.26, we can show that any two adjacent
processes in S must decide on the same value in execution c~; this is because it
looks to the two processes as if they are in the triangle, interacting with a third
process that is faulty. It follows that all processes in S must reach the same
decision in c~. Suppose (without loss of generality) that they all decide 1.

Now to get a contradiction, we argue that some process in the top half of
S must decide 0. Let B be any "block" of 2r + 1 consecutive processes in the
top half of S; these all start with initial value 0 in c~. Now, all the processes
in B begin in the same state in c~ as the same-named processes do in c~0, and
send the same messages at round 1. Thus, at round 1, all the processes in B

142 6. DIS TR IB UTED CONSENSUS W I T H PROCESS FAIL URES

3

2 1

1 2

2 1

3

F i g u r e 6.16" Combining 2r copies of A to get S.

except possibly for the one at each end receive the same messages in c~ as their

namesakes do in c~0 and so remain in the same states and send the same messages
at round 2, in the two executions. At round 2, all processes in B except the two

at each end receive the same messages and remain in the same states, in the

two executions. Continuing in this way, we see that at round k, 1 _< k <_ r, all

processes in B except the k at each end receive the same messages and remain in

the same states, in c~ and c~0. In other words, c~ and c~0 are indistinguishable to
all processes in B except the k at each end, for k rounds. Informally speaking,
this is because information does not have time to propagate to those processes
from outside the block B.

In particular, c~ and c~0 are indistinguishable to the middle process, process
i, of block B for r rounds. But since process i decides 0 by the end of round r in

c~0, it also does so in c~. This contradicts the fact that process i decides 1 in c~.

D

6.7 Number of Rounds with Stopping Failures

We complete this chapter by showing that the agreement problem cannot be

solved in fewer than f + 1 rounds, either for Byzantine or stopping failures. In
other words, there does not exist an agreement protocol, for either type of failure,

in which all the nonfaulty processes decide by the end of f rounds.

We will proceed by assuming that an f-round agreement algorithm exists and

6.7. N U M B E R OF RO UNDS W I T H S T O P P I N G FAIL URES 143

obtaining a contradiction. It is convenient for us to impose some restrictions on
the assumed algorithm, none of which causes any loss of generality. First, we
assume that the network graph is completely connected; a fast algorithm for an
incomplete graph could also be run in a complete graph, so there is certainly
no loss of generality in this restriction. We also assume that all processes that
decide do so exactly at the end of round f , then immediately halt. In this case,
an algorithm for Byzantine agreement is necessarily an algorithm for stopping
agreement (see the remark on the relationship between the two problems in Sec-
tion 6.1). So, for the purpose of obtaining an impossibility result, we can restrict
attention to the stopping agreement problem only. Also, we assume that every

process sends a message to every other process at every round k, 1 < k < f
(unless and until it fails). Finally, we restrict attention to the case where the
value set V - {0, 1}.

As for the coordinated attack problem in Chapter 5, it is convenient to carry
out the proof using the notion of a communication pattern, which is an indica-
tion of which processes send messages to which other processes at each round.
Specializing the previous definition to the case of a complete graph, we define a

communication pattern to be any subset of the set

{ (i , j , k) " 1 < i , j < n , i 7~ j, 1 < k}.

A communication pat tern does not describe the contents of messages, but only

which processes send to which others, at which rounds.
We consider three restrictions on communication patterns. First, because the

algorithm we consider has f rounds, we consider only communication patterns
in which all triples (i , j , k) have k < f . Second, because we are working with
the stopping failure model, all the communication patterns that arise satisfy the
following restriction: if any triple (i, j, k) is missing from the pattern, then so
is every triple of the form (i, j~, k~), where k ~ > k. That is, if process i fails to
send any of its messages at round k, then it sends no messages at subsequent

rounds. Third, because we consider executions with at most f failures, all the
communication patterns that arise contain at most f faulty processes. (We define
a process i to be faulty in a communication pat tern if some triple of the form
(i, j, k), k < f , is missing from the pattern.) We say (in the rest of this chapter
only) that a communication pat tern that satisfies these three restrictions is good.

Example 6.7.1 Good communication pattern

An example of a good communication pat tern (for n - f - 4) is
depicted in Figure 6.17. In this pattern, process 3 sends a message
to process 4 but fails to send messages to processes 1 and 2 at round 1.

Thus, it must be that process 3 stops in round 1 and sends nothing

in later rounds. Also, process 2 stops just at the end of round 2.
Processes 1 and 4 are nonfaulty.

processes

1

2

3

4

144 6. D I S T R I B UTED CONSENSUS W I T H P R O C E S S FAIL URES

round 1 round 2 round 3 round 4

F i g u r e 6.17: A good communication pattern.

Now we define a run to be a combination of

1. An assignment of input values to all the processes

2. A good communication pattern

(This is similar to what we called an adversary in Section 5.2.1.)
For a particular agreement algorithm A, each run p defines a corresponding

execution, ezec(p), in a natural way. Namely, the initial states of the processes are
defined by setting the input state components according to the input assignment

given in p; the messages that are sent are determined from the communication
pattern of p, using the message transition function of A applied to the prior state

of the sender process; and states after the initial states are determined using the

transition function of A. (But after any process fails to send a message, we stop
applying its state-transition function.)

In order to give some intuition for the lower bound, we begin by proving the
theorem for the special case where f = 1.

6.7. N U M B E R OF RO UNDS W I T H S T O P P I N G FAIL URES 145

D

D

@

[-a

F i g u r e 6.18" Run po--all inputs are 0, and there are no failures.

T h e o r e m 6.31 Suppose that n >_ 3. Then there is no n-process stopping agree-
ment algorithm that tolerates one fault, in which all nonfaulty processes always
decide by the end of round 1.

P r o o f . Suppose, to obtain a contradiction, that there is such an algorithm,

A; we assume that A satisfies all the restrictions listed at the beginning of this
section.

The idea is to construct a chain of executions of A, each with at most one

faulty process, such that (a) the first execution in the chain contains 0 as its
unique decision value, (b) the last execution in the chain contains 1 as its unique
decision value, and (c) any two consecutive executions in the chain are indis-

tinguishable to some process that is nonfaulty in both. Then, since any two
consecutive executions look the same to some nonfaulty process, say i, process
i must make the same decision in both executions; therefore, the two execu-

tions must have the same unique decision value. It follows that every execution
in the chain must have the same unique decision value, which contradicts the
combination of properties (a) and (b).

We start the chain with the execution ezec(po) determined from the run p0
in which all processes have input value 0 and no process is faulty. This run is

depicted in Figure 6.18. By validity, the unique decision value in ezec(po) must
be 0. Starting from execution ezec(po), we form the next execution by removing
a single message--the one from process 1 to process 2. The result is depicted in
Figure 6.19. This execution is indistinguishable from ezec(po) to every process

146 6. DISTRIBUTED CONSENSUS WITH PROCESS FAIL URES

D

D

D

N1

F i g u r e 6.19" The result of removing one message from P0.

except for 1 and 2. Since n _> 3, there is at least one such process. This process

is nonfaulty in both executions.

Next we remove the message from 1 to 3; this and the previous execution are

indistinguishable to each process except for 1 and 3, and there is at least one such

process. We continue in this manner, removing one message from process 1 at a

time, in such a way that every two consecutive executions are indistinguishable

to some nonfaul ty process.

Once we have removed all the messages sent by 1, we continue by chang-

ing process l ' s input value from 0 to 1. Of course, the resulting execution is

indistinguishable from the previous one to every process except 1, since 1 sends

no messages in either execution. Next, we replace process l ' s messages one by

one, and again every consecutive pair of executions is indistinguishable to some

nonfaul ty process. In this way, we end up with exec(pl), where Pl is defined to

be the run in which process 1 has input value 1, all the rest have input value 0,

and there are no failures.

Next, we repeat this construct ion for process 2, first removing its messages

one by one, then changing 2's input value from 0 to 1, and then replacing its

messages. The resulting execution is exec(p2), where p2 is the run in which

processes 1 and 2 have input value 1, the others have input value 0, and there

are no failures. Repeat ing this construct ion for processes 3 , . . . , n, we end up

with exec(p~), where Pn is the run in which all processes s tar t with 1 and there

are no failures.

6.7. NUMBER OF ROUNDS WITH STOPPING FAILURES 147

So we have cons t ruc ted a chain from exec(po) to exec(pn) satisfying proper ty

(c). But validity implies tha t the unique decision value in ezec(po) is 0 and the
unique decision value in exec(p~) is 1, which yields (a) and (b). So we have the

needed chain, which gives a contradict ion. E]

Before moving to the general case, we will do one more pre l iminary c a s e - - t h e

case where f - 2.

T h e o r e m 6 .32 Suppose that n > 4. Then there is no n-process stopping agree-
ment algorithm that tolerates two faults, in which all nonfaulty processes always
decide by the end of round 2.

P r o o f . Again suppose tha t there is such an algori thm. We construct a chain
with the same propert ies (a), (b), (c) as in the previous proof, using a similar

construct ion. For each i, 0 _< i <_ n, let pi denote the (two-round) run in which
processes 1 , . . . , i have input 1, processes i + 1 , . . . , n have input 0, and there

are no faults. The chain s tar ts with exec(po), ends with exec(pn), and passes

th rough all the executions exec(pi) along the way.
Star t ing wi th exec(po), we want to work toward killing process 1 at the

beginning. W h e n we were only dealing with one round, we could simply remove
messages from process 1 one by one. Now there is no problem in removing
process l ' s round 2 messages one by one. But if we remove a round 1 message
from 1 to some other process i in one step of the chain, it is no longer the
case tha t the two consecutive executions must look the same to some nonfaul ty
process. This is because in round 2, i is able to tell all other processes whether

or not it received a message from process 1 in round 1.
We solve this problem by using several steps to remove the round 1 message

from 1 to i. In the in te rmedia te executions tha t occur along the way, processes

1 and i are bo th faulty; this is permissible since f - 2. In part icular , we
s tar t with an execution in which 1 sends a message to i at round 1 and i is
nonfaulty. We remove round 2 messages sent by i, one by one, until we obta in
an execution in which 1 sends to i at round 1 and i sends no messages at round
2. Next, we remove the round 1 message from 1 to i; the result ing execut ion
is indist inguishable from the preceding one to all processes other t han 1 and

i. Then we replace round 2 messages sent by i one by one, until we obta in an

execut ion in which 1 does not send to i at round 1 and i is nonfaulty. This
achieves our goal of removing a round 1 message from 1 to i, while ensuring

tha t each consecutive pair of executions are indist inguishable to some nonfaul ty

process.
In this way, we remove round 1 messages from 1 one by one until 1 sends no

messages. Then we change process l ' s input from 0 to 1 as before. We continue

148 6. D I S T R I B U T E D CONSENSUS W I T H P R O C E S S FAIL URES

this procedure "in reverse," replacing process l ' s round 1 messages one by one.

Repeating this for processes 2 , . . . , n gives the needed chain. D

We now prove the general theorem:

T h e o r e m 6.33 Suppose that n > f + 2. Then there is no n-process stopping-
agreement algorithm that tolerates f faults, in which all nonfaulty processes al-
ways decide by the end of round f .

The proofs of Theorems 6.31 and 6.32 contain the main ideas for the proof of

Theorem 6.33. In the general proof, a longer chain is constructed, using f process

failures. We proceed more formally than we did in the proofs of Theorems 6.31

and 6.32. We need some notation.
First, if p and p~ are runs in both of which process i is nonfaulty, then we

i p / ,-,.,
write p ~ to mean that exec(p) i exec(p')-- that is, the executions generated

i p~
by runs p and p~ are indistinguishable to process i. We write p ~ p~ if p ~ for

some process i that is nonfaulty in both p and J . And we write p ~ p~ for the
transitive closure of the ~ relation.

Next, notice that all the communication patterns that occur in the chains
in the proofs of Theorems 6.31 and 6.32 have a particularly simple form. We

capture this form with the following definition. We define a good communication

pat tern to be regular if for every k, 0 _< k _< f , there are at most k processes

that fail (to send at least one message) by the end of k rounds. We say that a

run or execution is regular if its communication pat tern is regular.

Finally, if p is any run and 0 < k < f , we define the run if(p, k) - - t he variant

of p that is failure-flee after time k - - t o be the run that has the same input
assignment as p, and whose communication pat tern is the same as that of p for

the first k rounds and contains no new failures thereafter. Here are some obvious

facts involving ff runs.

L e m m a 6 .34 I f p is a regular run, then

1. For any k, 0 <_ k <_ f , if(p, k) is regular.

2. I f p~ is identical to p except that some process i that fails in p fails at a
later round in p~, then p~ is regular.

3. I f no process fails at round k + 1, then if(p, k) - f f (p, k + 1).

The heart of the proof of Theorem 6.33 is the following strong lemma, which
says that it is possible to construct a chain between any two regular executions
having the same input assignment.

6.7. N U M B E R OF RO UNDS W I T H S T O P P I N G FAIL URES 149

L e m m a 6.35 Suppose that A is an n-process stopping agreement algorithm that
tolerates f faults, in which all nonfaulty processes always decide by the end of
round f . Let p and p~ be two regular runs of A with the same input assignment.
Then p ~ p~.

P r o o f . We show this by proving the following parameter ized claim. The case

where k - 0 immediately implies the lemma.

C l a i m 6.36 Let k be an integer, 0 <_ k <_ f . Let p and p~ be two regular runs
of A with the same input assignment and with identical communication patterns
through k rounds. Then p ~ J .

P r o o f . The proof of Claim 6.36 is by reverse induction on k, start ing with

k - f and ending with k - 0.
Basis: k - f . This case is trivial because the assumption that p and p~ have

the same inputs and same communication patterns through f rounds implies that

p and p~ are identical.
Inductive step: 0 < k < f - 1 and the claim is true for k + 1. In this case, it

is enough to show that any regular run p satisfies p ~ i f (p, k), because we can

apply this result twice to obtain the required claim. So fix some regular run p.

By Lemma 6.34, if(p, k) is regular.
By inductive hypothesis, if(p, k+ 1) ~ p, so it is enough to show that if(p, k)

ff (p, k + 1). If no process fails at round k + 1 in p, then Lemma 6.34 implies that
f f (p,k) - f f (p , k + 1) and we are done. So we assume that at least one process

fails at round k + 1 in p. Let I be the set of processes that do so.

Let P0 be the run that is identical to if(p, k) except that all processes in I fail
at the end of round k + 1. Then Lemma 6.34, part 2 (applied to p), implies that

P0 is regular.
Since p0 and if(p, k) are regular runs that are identical through k + 1 rounds,

we can apply the inductive hypothesis to show that Po ~ if(P, k). Therefore, to

show that if(p, k) ~ i f (p, k + 1), it is enough to show that po ~ if(P, k + 1).
Now we construct a chain of regular runs spanning from P0 to if(p, k + 1).

The only difference between p0 and if(p, k + 1) is that some messages sent by

processes in I at round k + 1 in P0 are missing in if(p, k + 1). So we remove
those messages one at a time, while keeping the runs otherwise unchanged.

For instance, consider the removal of a message from i to j , where i C I. Let

be the run including the message and T be the run without the message; we
must argue that a ~ ~-. If k + 1 - f , then ~ and T are indistinguishable to all

processes except for i and j; since n _> f + 2 and i is faulty, this must include at

least one nonfaulty process. So a ~ ~-, as needed.

150 6. D I S T R I B U T E D CONSENSUS W I T H PROCESS FAIL URES

%

15 151 T. I T.

F i g u r e 6.20- Removal of round k + 1 message from i to j, in proof of Claim 6.36.

On the other hand, if k + 1 _< f - 1, then define or' and 7' to be the same as
a and 7- respectively, but with j failing just at the s tar t of round k + 2 (if it has
not previously failed). See Figure 6.20.

Both or' and T' are regular, since each of cr and 7 involves at most k + 1 < f - 1
failures, and we only introduce one new failure for the new round k + 2. Then
cr ~ or' and ~- ~ 7', by inductive hypothesis. And a ' ~ 7', because they are
indistinguishable to all processes except for i and j. So again, cr ~ 7.

This shows that the needed chain from p0 to if(p, k + 1) can be constructed,

so p0 ~ ff (p, k + 1), so p ~ i f (p , k), as needed.

As we noted earlier, Claim 6.36 immediately implies Lemma 6.35.

Now we extend Lemma 6.35 to apply to different input assignments.

L e m m a 6 .37 Suppose that A is an n-process stopping agreement algorithm that
tolerates f faults, in which all nonfaulty processes always decide by the end of
round f . I f p and p' are two regular runs of A, then p ~ p'.

P r o o f . By Lemma 6.35, each run p is related to its failure-free version, that
is, p ~ i f (p , 0). So we can assume without loss of generality that p and p' in the
s ta tement of the lemma are both failure-free.

If p and p' have the same input assignment, then they are identical and there
is nothing to prove.

Suppose that p and p' differ in the input of exactly one process i; say i has
input 0 in p and input 1 in p'. Then define cr and a ' to be the runs that are
identical to p and p', respectively, except that i fails right at the start . Then

6.7. N U M B E R OF RO UNDS W I T H S T O P P I N G FAIL URES 151

Lemma 6.35 implies that p ~ a and p' ~ a ' . Also, a ~ a ' , because a and a ' are

indistinguishable to all processes except for i. It follows that p ~ p', as needed.
Finally, suppose that p and p' differ in the input of more than one process.

Then we can construct a chain of failure-free runs, spanning from p to p', chang-
ing exactly one process's input at each step in the chain. The previous case

applies to each step in this chain. So again, we obtain p ~ p'. N

Using Lemma 6.37, it is easy to prove Theorem 6.33. We already know
that all regular runs are related by chains; now we consider the decision values

that arise in these runs. Assuming that n > f , the termination and agreement
properties imply that for every run p, there is a unique decision value, dec(p),
that arises in exec(p). The following lemma says that runs that are related by

or ~ necessarily give rise to the same decision values.

L e m m a 6 .38

1. If p ~ p', then d e c (p) - dec(J).

2. If p ,.~ p', then d e c (p) - dec(J) .

P r o o f . For part 1, recall that p ~ p' means that there is a process i that

is nonfaulty in both p and p', such that exec(p) i exec(p'). This implies that

process i decides on the same value in exec(p) and exec(p'). Therefore, dec(p) -
d c(J).

Part 2 follows from part 1. E]

P r o o f (of T h e o r e m 6 .33) . Suppose there is such an algorithm, A; we as-

sume that A satisfies the restrictions listed at the beginning of the section.
Let p0 be the run of A in which all processes start with 0 and there are no

faults, and let pl be the run in which all processes start with 1 and there are

no faults. Lemma 6.37 implies that p0 ~ pl. Then Lemma 6.38, part 2, implies

that dec(p) = dec(J). But the validity condition implies that dec(po) = 0 and
dec(p1) = 1, a contradiction. N

W e a k e r v a l i d i t y c o n d i t i o n . Notice that this impossibility proof still works

if we weaken the validity condition to the one that we used in Section 6.6 for
the weak Byzantine agreement problem. That is, we have shown that the weak

Byzantine agreement problem also requires at least f + 1 rounds, under the

assumption that n > f + 2.

152 6. DISTRIBUTED CONSENSUS WITH PROCESS FAILURES

6.8 Bibliographic Notes

Many of the ideas in this chapter originated in the two seminal papers by Pease,
Shostak, and Lamport [237] and by Lamport, Shostak, and Pease [187]. These
two papers contain upper and lower bounds of 3f + 1 for the number of processes
required for Byzantine agreement, plus an algorithm for agreement with authen-
tication, all for the case of a completely connected graph. The presentation in
the second paper is in terms of attacking generals rather than processes. It is the
second paper that coined the term Byzantine for this fault model.

In more detail, these two papers define the Byzantine agreement problem
and motivate it as an abstraction of a problem arising in the SIFT (Software-
Implemented Fault Tolerance) aircraft control system [289]. The algorithms in
[237] use an exponential data structure similar to an EIG tree; the Byzantine
agreement algorithm is similar to EIGByz, while the algorithm using authentica-
tion is similar to EIGStop. The algorithms in [187] are very much the same but
are formulated recursively. The impossibility proof for n _< 3f processes in [237]
involves the explicit construction of detailed scenarios. The impossibility proof
in [187] introduces the reduction to the case of three versus one that appears in
the proof of Theorem 6.27.

Dolev and Strong [93] developed algorithms similar to FloodSet and OptFlood-
Set for Byzantine agreement in the case where authentication is available. Dolev
[94] considered the Byzantine agreement problem in graphs that are not nec-
essarily completely connected. He proved the connectivity bounds represented
in Theorem 6.29, using explicit construction of scenarios. Dolev, Reischuk, and
Strong [99] developed algorithms with "early stopping" for certain favorable com-
munication patterns. Other early stopping algorithms were developed by Dwork
and Moses [105] and by Halpern, Moses, and Waarts [145].

Bar-Noy, Dolev, Dwork, and Strong defined the EIG tree data structure and
presented the EIGByz algorithm in essentially the form given in this book [39].
The TurpinCoan algorithm is from [279].

The first polynomial communication algorithm for Byzantine agreement was
provided by Dolev and Strong [101]; it was subsequently improved by Dolev, Fis-
cher, Fowler, Lynch, and Strong [96] to yield a time bound of 2f § 3. Coan [82]
developed a tradeoff algorithm, which decreased the number of rounds to (l+c) f ,
for any c > 0; the communication is polynomial, but the degree of the polynomial
depends on c. The consistent broadcast primitive and the ConsistentBroadcast
algorithm are due to Srikanth and Toueg [269]. The PolyByz algorithm is based
on algorithms by Srikanth and Toueg [269] and by Dolev et al. [96]. Subse-
quent research by Moses and Waarts [231], Berman and Garay [49], and Garay
and Moses [133] has produced f + 1 round Byzantine agreement algorithms with

6.9. EXERCISES 153

polynomial communication; the last of these also achieves the n = 3f + 1 min-
imum bound on the number of processes. Unfortunately, these algorithms are
complicated.

As already noted, the n > 3f lower bound on the number of processes re-
quired for Byzantine agreement was originally proved in [237, 187], while the
connectivity lower bound was originally proved in [94]. However, the proofs
presented in this book were developed by Fischer, Lynch, and Merritt [122].
Menger's Theorem was originally proved by Menger [225] and appears in Harary's
book [147].

The weak Byzantine agreement problem was defined by Lamport [178]. The
lower bound result for the number of processes needed for weak Byzantine agree-
ment is due to Lamport [178], but the proof given here is due to Fischer, Lynch,
and Merritt [122].

The first lower bound result for the number of rounds required to reach agree-
ment was proved by Fischer and Lynch [119], for the case of Byzantine failures.
The result was subsequently extended by Dolev and Strong [93] and by DeMillo,
Lynch, and Merritt [88] to the case of Byzantine failures with authentication.
The extension to the case of stopping failures seems to have first been carried
out by Merritt [226], using ideas of Dolev and Strong [101]. Another proof of
this result was presented by Dwork and Moses [105]; their proof provides a finer
analysis of the time requirements for different runs. Feldman and Micali [113]
obtained a constant time randomized solution using "secret-sharing" techniques.

A paper by Fischer [117] surveys much of the early work on the agreement
problem.

There has been a considerable amount of work at Draper Laboratories in-
volving the design of fault-tolerant multiprocessors and processor fault-diagnosis
algorithms, using Byzantine agreement [172, 173]. These designs have been'used
for safety-critical applications such as unmanned undersea vehicles, nuclear at-
tack submarines, and nuclear power plant control.

6.9 E x e r c i s e s

6.1. Prove that any algorithm that solves the Byzantine agreement problem also
solves the stopping agreement problem, if the validity condition for stopping
failures is modified to require only that nonfaulty processes agree.

6.2. Prove that any algorithm that solves the Byzantine agreement problem,
and in which all nonfaulty processes always decide at the same round, also
solves the stopping agreement problem.

154 6. DISTRIB UTED CONSENSUS WITH PROCESS FAIL URES

6.3. Prove Lemma 6.2.

6.4. Trace the execution of the FloodSet algorithm for four processes and two
failures, where the processes have initial values 1, 0, 0, and 0, respectively.
Suppose that processes 1 and 2 are faulty, with process 1 failing in the first
round after sending to 2 only and process 2 failing in the second round
after sending to 1 and 3 but not 4.

6.5. Consider the FloodSet algorithm for f failures. Suppose that instead of
running for f + 1 rounds, the algorithm runs for only f rounds, with the
same decision rule. Describe a particular execution in which the correctness
requirements are violated.

6.6. (a) Describe another alternative decision rule that works correctly for the
FloodSet algorithm, besides the ones discussed in the text.

(b) Give an exact characterization of the set of decision rules that work
correctly.

6.7. Extend the FloodSet algorithm, its correctness proof, and its analysis to
arbitrary (not necessarily complete) connected graphs.

6.8. Give code for OptFloodSet. Complete the proof given in the text by proving
Lemmas 6.5, 6.6, and 6.7.

6.9. Consider the following simple algorithm for agreement with stopping fail-
ures, for a value domain V. Each process maintains a variable min-val,
originally set to its own initial value. For each of f + 1 rounds, the processes
all broadcast their min-vals, then each resets its rnin-val to the minimum
of its old min-val and all the values it receives in messages. At the end, the
decision value is min-val. Give code for this algorithm, and prove (either
directly or via a simulation proof) that it works correctly.

6.10. Trace the execution of the EIGStop algorithm for four processes and two
failures, where the processes have initial values 1, 0, 0, and 0, respectively.
Suppose that processes 1 and 2 are faulty, with process 1 failing in the first
round after sending to 2 only, and process 2 failing in the second round
after sending to 1 and 3 but not to 4.

6.11. Prove Lemma 6.11.

6.12. Prove Lemma 6.12, part 1.

6.9. EXERCISES 155

6.13. Consider the EIGStop algorithm for f failures. Suppose that instead of
running for f + 1 rounds, the algorithm only runs for f rounds, with the
same decision rule. Describe a particular execution in which the correctness
requirements are violated.

6.14. An alternative way to prove the correctness of FloodSet is by relating it to
EIGStop by a simulation relation. In order to do this, it is convenient to
first extend EIGStop by allowing each process i to broadcast all values at all
rounds, not just values associated with nodes whose labels do not contain
i. It must be argued that this extension does not affect correctness. Also,
some details in the description of EIGStop must be filled in, for example,
explicit rounds and decision variables, manipulated in the obvious ways.
Then FloodSet and the modified EIGStop can be run side by side, starting
with the same set of initial values, and with failures occurring at the same
processes at exactly the same times.

Prove the correctness of FloodSet in this way. The heart of the proof
should be the following simulation relation, which involves the states of
both algorithms after the same number of rounds.

A s s e r t i o n 6.9.1 For any r, 0 < r < f + 1, the following are
true after r rounds.

(a) The values of the rounds and decision variables are the same
in the states of both algorithms.

(b) For each i, the set Wi in FloodSet is equal to the set of vals
that decorate nodes of i's tree in EIGStop.

Be sure to include the statement and proof of any additional invariants of
EIGStop that you need to establish the simulation.

6.15. Prove the correctness of OptEIGStop, in either of the following two ways:

(a) By a simulation of EIGStop, using a proof analogous to the simulation
proof relating OptFloodSet to FloodSet.

(b) By relating it to OptFloodSet.

6.16. Prove the correctness of the EIGStop and OptEIGStop algorithms for the
authenticated Byzantine failure model. Some key facts that can be used in
the proof of EIGStop are expressed by the following assertion, analogous
to the statement of Lemma 6.12:

156 6. D I S T R I B U T E D C O N S E N S U S W I T H P R O C E S S FAIL URES

A s s e r t i o n 6.9.2 After f + 1 rounds:

(a) I f i and j are nonfaulty processes, val(y)i = v E V, and x j

is a prefix of y, then val(x)j = v.

(b) I f v is in the set of vals at any nonfaulty process, then v is
an initial value of some process.

(c) I f i is a nonfaulty process, and v C V is in the set of vals at
process i, then there is some label y that does not contain i
such that v = val(y)i.

These facts follow from the properties of digital signatures.

6.17. Research Question: Define the authenticated Byzantine failure model for-
mally and prove results about its power and limitations.

6.18. Give an example of an execution of EIGStop that shows that EIGStop does
not solve the agreement problem for Byzantine faults.

6.19. Consider the EIGByz algorithm with seven processes and three rounds.
Arbitrarily select two of the processes as faulty and provide random choices
for the inputs of all processes and for the message values of the faulty
processes. Calculate all the information produced in the execution and
verify that the correctness conditions are satisfied.

6.20. In the EIGByz algorithm, show that not every node in the EIG tree need
be common.

6.21. Consider the EIGByz algorithm. Construct explicit executions to show
that the algorithm can give wrong results if it is run with

(a) Seven nodes, two faults, and two rounds.

(b) Six nodes, two faults, and three rounds.

6.22. The TurpinCoan algorithm uses the threshold n - f at rounds 1 and 2.
What other pairs of thresholds would also allow the algorithm to work
correctly?

6.23. Suppose we consider the TurpinCoan algorithm with two sets of faulty pro-
cesses, F and G, rather than just one. Each set has at most f processes.
Processes in F behave correctly except that they can send incorrect mes-
sages during rounds 1 and 2. Processes in G are allowed to behave incor-
rectly during execution of the binary Byzantine agreement subroutine (and
only then). What correctness conditions are guaranteed by the combined
algorithm under these failure assumptions? Prove.

6.9. EXERCISES 157

6.24. Now you may assume that n > 4f. Design an algorithm that uses a sub-
routine for binary Byzantine agreement and solves multivalued Byzantine
agreement. The algorithm should improve on the TurpinCoan algorithm
by only requiring one additional round rather than two.

6.25. Show that there is no upper bound on the time until a nonfaulty pro-
cess might accept a message (m, i, r) in the ConsistentBroadcast algorithm.
That is, for any t, produce an execution of ConsistentBroadcast in which
some nonfaulty process accepts the message at a round r ~ > r + t.

6.26. Can you design an algorithm to implement the consistent broadcast mech-
anism in the Byzantine failure model, with f >> 1 faults, having the addi-
tional property that no nonfaulty process ever accepts a message (m, i, r)
strictly after round r + 1?

Either give such an algorithm and prove its correctness, or argue why no
such algorithm exists.

6.27. Describe a worst-case execution of PolyByz, that is, one in which there is
some nonfaulty process i such that the earliest round by which process i
accepts messages from 2f + 1 distinct processes is exactly round 2(f § 1).

6.28. A programmer at the Flaky Computer Corporation has modified his im-
plementation of the PolyByz algorithm so that the acceptance threshold for
each round of the form 2 s - 1 is s - 1 rather than f + s - 1, and the decision
threshold is f + 1 rather than 2f + 1. Is his modification correct? Prove
or give a counterexample.

6.29. Design a polynomial communication algorithm for Byzantine agreement
for a general input value set, without using a subroutine for binary Byzan-
tine agreement. Your algorithm should use the consistent broadcast mech-
anism, but you might have to design a better implementation than the
ConsistentBroadcast algorithm.

6.30. Design an algorithm for stopping agreement that satisfies the following
early stopping property" If in an execution of the algorithm only f~ < f
processes fail, then the time until all the nonfaulty processes decide is at
most k f ~, for some constant k. Do the same for Byzantine agreement.

6.31. Design a protocol for four processes in a completely connected graph that
tolerates either one Byzantine fault or three stopping faults. Try to mini-
mize the number of rounds.

158 6. DISTRIB UTED CONSENSUS WITH PROCESS FAIL URES

6.32. Research Question: Devise a simple f + 1 round protocol solving Byzantine
agreement, requiring only 3f + 1 processes and polynomial communication.

6.33. This exercise is designed to explore the construction in the proof of Lemma
6.26, which pastes together two triangle systems to yield a hexagon system.

(a) Carefully describe an algorithm A for a three-process complete graph
that solves the no-fault agreement problem, that is, the Byzantine
agreement problem in the special case where no processes are faulty.

(b) Now construct system S by pasting together two copies of your al-
gorithm A, as in the proof of Lemma 6.26. Describe carefully the
execution of S in which processes 1, 2, and 3 start with input 0, and
1 ~, 2 ~, and 3 ~ start with input 1.

(c) Does S solve the no-fault agreement problem (for the hexagon net-
work)? Either prove that it does or give an execution that shows that
it does not.

(d) Does there exist a three-process algorithm A such that arbitrarily
many copies of A can be pasted together into a ring, and the resulting
ring will always solve the no-fault agreement problem?

6.34. What is the largest number of faulty processes that can be tolerated by
Byzantine agreement algorithms that run in the following network graphs?

(a) A ring of size n.

(b) A three-dimensional cube, m nodes on a side, in which nodes are
connected only to their neighbors in the three dimensions.

(c) A complete bipartite graph with m nodes in each of its two compo-
nents.

6.35. Give a more careful impossibility proof for Byzantine agreement when
n = 2 and f = 1.

6.36. Analyze the time, number of messages, and number of communication bits
for the Byzantine agreement algorithm for general graphs, described in the
proof of Theorem 6.29. Can you improve on any of these?

6.37. Show carefully that the simplifications assumed in the proof of Theorem 6.29
to prove that Byzantine agreement is impossible with f = 1 and corm(G) <_
2 are in fact justified. That is, show that the existence of an algorithm for
the case where nodes 1 and 3 are replaced by arbitrary connected sub-
graphs implies the existence of an algorithm for the case where they are
just single nodes.

6.9. EXERCISES 159

F i g u r e 6.21" Network graph for Exercise 6.38.

6.38. Reconsider the proof that Byzantine agreement cannot be reached in the
graph in Figure 6.11. Why does this proof fail to extend to the graph in
Figure 6.21?

6.39. Prove that Byzantine agreement for f failures, where f > 1, cannot be
solved in a graph G with corm(G) < 2f. This can be done either using
the process grouping argument sketched at the end of the proof of Theo-
rem 6.29, or else using a reduction similar to the one in Theorem 6.27.

6.40. Give a simple algorithm for weak Byzantine agreement in a network graph
consisting of two nodes connected by a single link.

6.41. Complete the proof of Theorem 6.30, by showing impossibility

(a) When n < 3f and f > 1.

(b) When corm(G) < 2f.

6.42. Consider the Byzantine Firing Squad problem, defined as follows. There
are n processes in a fully connected network with no input values and
with variable start times. That is, each process begins in a quiescent state
containing no information and from which it sends only null messages. It
does not change state until and unless it receives a special wakeup message
from the outside or a non-null message from another process. A process
does not know the current round number when it awakens. The model is
similar to the one in Section 2.1, except that we do not assume here that
all processes must receive wakeup messages--only some arbitrary subset
of the processes. Also, we permit Byzantine faults.

160 6. DISTRIBUTED CONSENSUS WITH PROCESS FAILURES

The problem is for processes to issue fire signals, subject to the following
conditions"

A g r e e m e n t : If any nonfaulty process issues a fire signal at some round,
then all nonfaulty processes issue a fire signal at that same round and
no nonfaulty process issues a fire signal at any other round.

Va l id i ty : If all nonfaulty processes receive wakeup messages, then all non-
faulty processes eventually fire; if no nonfaulty process receives a
wakeup message, then no nonfaulty process ever fires.

(a) Design an algorithm to solve the Byzantine Firing Squad problem for

n > 3 f .

(b) Prove that the problem cannot be solved if n < 3f.

6.43. State and give a direct proof of the special case of Theorem 6.33 for f - 3.

6.44. Does Lemma 6.37 still hold if the runs are not required to be regular? Give
a proof or a counterexample.

6.45. In Section 6.7, it is shown that stopping agreement tolerating f faults can-
not be solved in f rounds. The construction involves the construction of
a long chain connecting the two runs in which all the processes are non-
faulty and have the same inputs. The chain, however, is only constructed
implicitly.

(a) How long is the chain of runs?

(b) By how much can you shorten this chain using Byzantine faults rather
than stopping faults?

6.46. Research Question: Obtain upper and lower bound results about the time
required to solve the stopping agreement problem and/or the Byzantine
agreement problem, in general (not necessarily complete) network graphs.

Chapter 7

M o r e C o n s e n s u s P r o b l e m s

The past two chapters have been devoted to consensus problems--Chapter 5 to
the coordinated attack problem and Chapter 6 to the agreement problem. In this
chapter, we finish our study of synchronous distributed consensus by consider-
ing three other consensus problems: the k-agreement problem, the approximate
agreement problem, and the distributed database commit problem. As in Chap-
ter 6, we consider process failures only.

7.1 k-Agreement

The first problem we consider is the k-agreement problem, where k is some
nonnegative integer. The k-agreement problem is a natural generalization of
the ordinary agreement problem considered in Chapter 6. But now, instead of
requiring that all processes decide on exactly the same value, we insist only that
they limit their decisions to a small number, k, of distinct values.

The original motivation for this problem was purely mathematical-- i t is inter-
esting to try to determine how the results of Chapter 6 change when the problem
requirements are varied in this simple way. But it is possible to imagine practi-
cal situations in which such an algorithm could be useful. For example, consider
the problem of allocating shareable resources, such as broadcast frequencies in a
communication network. It might be desirable for a number of processes to agree
on a small number of frequencies to use for the broadcast of a large amount of
data (say, a videotape). Because the communication is by broadcast, any num-
bet of processes could receive the data using the same frequency. In order to
minimize the total communication load, it is preferable to keep the number k of
frequencies that are used small.

In this section, we prove exactly matching upper and lower bounds o n t h e

162 7. MORE CONSENSUS PROBLEMS

number of rounds required to solve the k-agreement problem, in a complete
network graph and for the case of stopping failures only. These bounds are given
in terms of n, the number of processes; f , the number of failures tolerated; and
k, the allowed number of decision values.

7 .1 .1 T h e P r o b l e m

In the k-agreement problem, just as for the ordinary agreement problem, we
assume that the network is an n-node connected undirected graph with processes
1 , . . . , n, where each process knows the entire graph. Each process starts with
an input from a fixed set V and is supposed to eventually output a decision from
the set V. (Again, we assume that for each process, there is exactly one start
state containing each input value.) We assume that at most f processes might
fail. We consider stopping failures only. The required conditions are as follows.

A g r e e m e n t : There is a subset W of V, IWI = k, such that all decision values
are in W.

Va l id i ty : Any decision value for any process is the initial value of some process.

T e r m i n a t i o n : All nonfaulty processes eventually decide.

The agreement condition is the natural generalization of the agreement condition
for the ordinary agreement problem. Notice that we use the stronger validity
condition for stopping failures given near the end of Section 6.1 rather than the
weaker one we used in most of Chapter 6; we need this stronger condition for
the lower bound proof in Section 7.1.3. The ordinary agreement problem with
the stronger validity condition is exactly the k-agreement problem for k = 1.

For the results we present in this section, we consider the special case of a
complete network graph only. We also assume that V comes equipped with a
total ordering.

As in Section 6.2.1, we define a process to be active after r rounds, 0 _< r, if
it does not fail by the end of r rounds.

7.1.2 An Algorithm

We present a very simple algorithm, called FloodMin; in fact, it is exactly the
algorithm sketched in Exercise 6.9, but it runs for a smaller number of rounds.
As we claimed in Exercise 6.9, when this algorithm runs for f + 1 rounds, it
guarantees ordinary stopping agreement. It turns out that it still guarantees
k-agreement when it runs for only [~J + 1 rounds. Thus, roughly speaking,
allowing k decision values rather than just one divides the running time by k.

7.1. k - A G R E E M E N T 163

F l o o d M i n a l g o r i t h m (in fo rma l) "

Each process maintains a variable rnin-val, originally set to its own initial

value. For each of [~J + 1 rounds, the processes all broadcast their rnin-
vals, then each process resets its rnin-val to the minimum of its old rnin-val
and all the values in its incoming messages. At the end, the decision value

is min-val.

The code follows. (Compare its structure with that of FloodSet in Sec-

tion 6.2.1.)

F l o o d M i n a l g o r i t h m (f o r m a l) :

The message alphabet is V.

s ta t e s~:

rounds E N, initially 0
decis ion E V U { u n k n o w n } , initially u n k n o w n

min-va l E V , initially i 's initial value

msgs~:

if rounds <_ [~J then send rnin-val to all other processes

t r a n s { :

rounds " - rounds + 1
let rnj be the message from j , for each j from which a message arrives
rnin-val := m i n ({ m i n - v a l } U {rnj " j 7s i})
if r o u n d s - [~=/J + 1 then decis ion " - rnin-val

We argue correctness; the proof is similar to that for the FloodSet algorithm

in Section 6.2.1. Let M(r) denote the set of rnin-val values of active processes

after r rounds. We first observe that the set M(r) can only decrease at successive

times.

L e m m a 7.1 M(r) C_ M (r - 1) for all r, 1 <_ r <_ ~f J + 1.

P r o o f . Suppose that rn E M(r) . Then rn is the value of rnin-vali after r rounds,
for some process i that is active after r rounds. Then either rn = rnin-vali just

before round r or else rn arrives at i in some round r message, say from j . But
in this case, rnin-valj = rn after r - 1 rounds, and j must be active after r - 1

rounds because it sends a message at round r. It follows that rn E M (r - 1). K1

L e m m a 7.2 Let d C N +. I f at most d - 1 processes fail during a particular
round r, 1 <_ r <_ [~J + 1, then IM(r)l <_ d, that is, there are at most d different
min-vals for active processes after round r.

164 7. MORE CONSENSUS PROBLEMS

P r o o f . Suppose for the sake of contradiction that at most d - 1 processes fail
during round r, yet IM(r)l > d. Let m be the maximum element of M(r) and
let m' -r m be any other element of M(r). Then m' is an element of M (r - 1),
by Lemma 7.1; let i be any process that is active and has rn' = min-vali after
r - 1 rounds. If i does not fail in round r, then every process receives a message
containing m' from i at round r. But this cannot occur, because some active
process has m > m' as its min-val after r rounds. It follows that i fails during
round r.

But rn' was chosen to be any arbitrary element of M(r) other than the maxi-
mum, m. Thus, for every element m' -r m of M(r) , there is some process that is
active, has its min-val equal to rn' after r - 1 rounds, and fails during round r.
By assumption, there are at most d - 1 processes that fail at round r, so there
can be at most d - 1 elements of M(r) other than m. Therefore, IM(r)l <_ d;
this is a contradiction. D

Now we can prove the main correctness theorem.

T h e o r e m 7.3 The FloodMin algorithm solves the k-agreement problem for the
stopping failure model.

P r o o f . Termination and validity are straightforward. We prove the new agree-
ment condition. Suppose, to obtain a contradiction, that the number of distinct
decision values is greater than k in a particular execution having at most f fail-
ures. Then the number of min-vals for active processes after [k/-J + 1 rounds is

at least k + 1, that is, IM(L~J + 1)l _> k + 1. By Lemma 7.1, IM(r)l > k + 1 for

all r, 0 < r _< [~J + 1. Then Lemma 7.2 implies that at least k processes fail in

each round r, 1 _< r _< [~J + 1. This yields a total number of failures that is at

least ([~J + 1)k. But this is strictly greater than f , which yields a contradiction.
D

C o m p l e x i t y ana lys i s . The number of rounds is [~/J + 1. The number of

messages is at most ([~J + 1)n 2, and the number of message bits is at most

([~J +l)n2b, where b is an upper bound on the number of bits needed to represent
a single element of V.

7 .1 .3 L o w e r B o u n d *

I n this section, we show that the upper bound of [{J + 1 is tight, by proving
that it is also a lower bound, provided that IV I >_ k + 1. This gives an exact
characterization of the speedup that is achievable by allowing k output values

7.1. k -AGREEMENT 165

rather than just 1--essentially, the time is divided by k. As you might expect,
the ideas of the proof are derived from those used for the proof of the lower bound
for ordinary agreement, Theorem 6.33, but they are a good deal more advanced
and more interesting. In fact, they take us into the realm of algebraic topology.

For the remainder of this section, fix A to be an n-process algorithm that
solves the k-agreement problem, tolerating the stopping failure of at most f
processes. Suppose that A halts in r < ~ j + 1 rounds; that is, that r _< ~ J .
In order to obtain a contradiction, we need the additional assumption that n _>
f + k + 1, which means that at least k + 1 processes never fail.

Without loss of generality, we may assume that all processes that decide do so
exactly at the end of round r and immediately halt. We also assume that every
process sends a message to every other process at every round k, 1 _< k <_ r
(until and unless it fails). Finally, we assume that the value domain V consists
of exactly the k + 1 elements, O, 1 , . . . , k, since that is all we need to obtain a
contradiction.

We obtain a contradiction by showing that in one of the executions of A (with
at most f failures), there are k + 1 processes that choose k + 1 distinct values,
thus violating k-agreement.

O v e r v i e w . Recall the proof of Theorem 6.33, the f + 1 round lower bound for
ordinary stopping agreement. It uses a chain argument, producing a chain of
executions that spans from one in which 0 is the only allowable decision to one in
which 1 is the only allowable decision. We would like to extend this proof to other
values of k. Unfortunately, in the k-agreement problem, unlike in the ordinary
agreement problem, the decision values in one execution do not determine the
decision values in closely related executions. For example, if executions a and
a ' of an ordinary agreement algorithm are indistinguishable to nonfaulty process
i, then not only must i's decision be the same in both, but also the decisions
of all the other nonfaulty processes in both c~ and a ' must be the same as i's
decision. In a k-agreement algorithm, if a and a ' are indistinguishable to i, then
i's decision is still guaranteed to be the same in both, but now the decisions of
the other processes are not determined. Even if a and a ' are indistinguishable
to n - 1 processes, the decision value of the remaining process is not determined.

The key idea we use is to construct a k-dimensional collection of executions
rather than a (one-dimensional) chain. Adjacent executions in this collection are
indistinguishable to designated nonfaulty processes. We call the k-dimensional
structure used to organize these executions the Bermuda Triangle (because any
hypothetical k-agreement algorithm vanishes somewhere in its interior).

166 7. MORE CONSENSUS PROBLEMS

all 2

all 0

/
/ /

/ /
/ /
/ /

all 0 and 1 all 1

all 1 and 2

F i g u r e 7.1" Bermuda Triangle for k - 2.

E x a m p l e 7.1.1 B e r m u d a T r i a n g l e

Figure 7.1 is an example of a Bermuda Triangle, for the case where
k = 2. It consists of a large tr iangle " tr iangulated" into a collection
of "tiny triangles."

For k > 2, we need a k-dimensional version of a triangle. Fortunately, such
a generalization already exists in the field of algebraic topology: it is called
a k-dimensional simplex. For example, a one-dimensional simplex is just an
edge, a two-dimensional simplex is a triangle, and a three-dimensional simplex
is a te t rahedron. (Beyond three dimensions, the simplices are much harder to
imagine.)

So, for an a rb i t ra ry k, we star t with a k-dimensional simplex in k-dimensional
Euclidean space. This simplex contains a number of grid points, which are the
points in Euclidean space with integer coordinates. The k-dimensional Bermuda
Triangle, B, is obtained by t r iangulat ing this simplex with respect to these grid
points, obtaining a collection of tiny k-dimensional simplices.

The proof involves first assigning an execution to each vertex (grid point) of
B. The executions in which all processes s tar t with the same input in { 0 , . . . , k}
and there are no failures get assigned to the k + 1 corner vertices of B. For

instance, in the case where k = 2, we assign an execution in which all processes
have input 0 to the lower left-hand corner, an execution in which all processes
have input 1 to the lower r ight-hand corner, and an execution in which all pro-
cesses have input 2 to the upper r ight-hand corner (see Figure 7.1). Moreover,

7.1. k - A G R E E M E N T 167

for every vertex x on any face of B (of any dimension), the only inputs appear ing

in the execution assigned to x are those that appear in the executions assigned

to the corners of the face. For instance, in the case where k = 2, all executions

assigned to vertices on the lower edge have inputs chosen from {0, 1}.

Next, to each vertex in B, we assign the index of some process that is non-

faulty in the execution assigned to that vertex. This process assignment is done

in such a way that, for each tiny simplex T, there is a single execution c~ with at

most f faults that is compatible with the executions and processes assigned to

the corners of T in the following sense:

1. All the processes assigned to the corners of T are nonfaul ty in c~.

2. If execution c~ ~ and process i are assigned to some corner of T, then c~ and

c~ ~ are indistinguishable to i.

This assignment of executions and processes to vertices of B has some nice

properties. Suppose c~ and i are associated with vertex x. If x is a corner of B,

then all processes s tar t with the same input in c~, so, by the validity condition,

i must decide on this value in c~. If x is on an external edge of B, then in c~

each process s tar ts with one of the two input values that are associated with

the corners of B at the two ends of the edge; the validity condition then implies

that i must decide on one of these two values. More generally, if x is on any

face (of any dimension) of B, then in c~ each process s tar ts with one of the input

values that are associated with the corners of the face; the validity condition then

implies that i must decide on one of these values. Finally, if x is in the interior

of B, then i is allowed to decide on any of the k + 1 values.

Our ability to assign executions and indices to the vertices in the manner just

described depends on the fact that the number r of rounds in each execution is at

most [~J, that is, that f >_ r k. This is because the executions are assigned using a

k-dimensional generalization of the chain argument in the proof of Theorem 6.33.

The construct ion uses r process failures for each of the k dimensions.

After having assigned executions and indices to vertices, we "color" each

vertex with a "color" chosen from the set { 0 , . . . , k}. Namely, we color a vertex

x having associated execution c~ and associated process i with the color that

corresponds to i 's decision value in c~. This coloring has the following properties:

1. The colors of the k + 1 corners of B are all different.

2. The color of each point on an external edge of B is the color of one of the

corners at the endpoints of the edge.

3. More generally, the color of each point on any external face (of any dimen-

sion) of B is the color of one of the corners of the face.

168 7. MORE CONSENSUS PROBLEMS

It turns out that colorings of this k-simplex with exactly these properties have
been studied in the field of algebraic topology, under the name Sperner colorings.

At this point, we can apply a remarkable combinatorial result first proved
in 1928: Sperner's Lemma says that any Sperner coloring of a tr iangulated k-
dimensional simplex must include at least one tiny simplex whose k + 1 corners
are colored with all k + 1 distinct colors. In our case, this simplex corresponds
to an execution with at most f faults, in which k + 1 processes choose k + 1
distinct values. But this contradicts the agreement condition for the k-agreement
problem.

It follows that the hypothesized algorithm cannot exist, that is, there is no
algorithm for the k-agreement problem tolerating f faults and halting in r _< L~J
rounds. The rest of this subsection contains more details.

De f in i t i ons . We use the definition of a communication pattern from Section
6.7. Now, we redefine a good communication pattern to be one in which k < r
for all triples (i, j, k) and in which the missing triples are consistent with the
stopping failure model. (That is, we use the first two conditions in the definition
of a good communication pattern in Section 6.7, except that the upper bound for
the number of rounds is now r instead of f . For the moment, we do not limit
the number of failures.) Based on this new definition of a good communication
pattern, we define a run and define exec(p) for a run p in the same way as in
Section 6.7. We also say that process i is silent after t rounds in a run if i sends
no messages in any round numbered t + 1 or higher.

B e r m u d a Tr i ang le . We begin with the k-simplex in k-dimensional Euclidean
space whose corner vertices are the length k vectors (0 , . . . , 0) , (N, 0 , . . . , 0) ,
(N, N, 0 , . . . , 0) , . . . , (N , . . . , N), where N is a huge integer to be defined shortly.
The Bermuda Triangle B is this simplex, together with the following triangu-
lation into tiny simplices. The vertices of B are the grid points contained in
the simplex, that is, the points of the form x - (Xl , . . . ,Xk), where the vector
components are integers between 0 and N satisfying x l > x2 > "." _> xk. The
tiny simplices are defined as follows: pick any grid point and walk one step in the
positive direction along each dimension, in any order. The k + 1 points visited
by this walk define the vertices of a tiny simplex.

E x a m p l e 7.1.2 C o o r d i n a t e s of v e r t i c e s in the B e r m u d a T r i a n g l e

The two-dimensional Bermuda Triangle is illustrated in Figure 7.2.

7.1. k - A G R E E M E N T 169

j/
/ /
/ . /

/

(N , N)

(0, 0) (N, 0)

a tiny simplex

F i g u r e 7.2" Two-dimensional Bermuda Triangle.

L a b e l l i n g B w i t h e x e c u t i o n s a n d r u n s . In this section, we describe how to

assign executions to vertices of B (that is, to "label" the vertices with executions).
We do this by first augmenting runs by attaching tokens to some of the (process,

round number) pairs (i, t) in the runs. Such a token should be thought of as
"giving permission" for process i to fail in round t or later. More than one token

may be attached to the same pair (i, t).

More specifically, for any 1 > 0, we define an 1-run to be a run augmented

with exactly l tokens for each round number t, 1 < t < r, in such a way that
if some process i fails at some round t, then there is a token attached to some

pair (i , t~) , t ~ <_ t. An /-run contains a total of lr tokens. We are really only

interested in the two cases where 1 - 1 and l - k, that is, l - runs and k-runs.
We define a fai lure-f lee l - run to be a n / - r u n in which there are no failures and
in which all tokens are attached to pairs of the form (1, t) (that is, only process

1 has permission to fail).
Since each augmented run is constructed from a run, each augmented run

gives rise to an execution in an obvious way. We extend the notation exec(p),
which was previously defined for runs, to the case where p is an augmented run.

In order to label the vertices of B with executions, we label them with k-runs.
We now define four operations on /-runs, each of which makes only minor

changes. Each operation can only remove or add a single triple, change the

value of a single process's input, or move a single token between processes with

170 7. MORE CONSENSUS PROBLEMS

adjacent indices within the same round. These operations are very similar to the

ones used in the proof of Theorem 6.33. The operations are defined as follows.

1. remove(i, j, t), where i and j are process indices and t is a round number,
l < t < r .

This operation removes the triple (i , j , t) (which represents the round t
message from i to j) if it is there, and has no effect otherwise. It can only
be applied if i and j are both silent after t rounds and there is a token
at tached to some (i, t~), t ~ _< t.

2. add(i, j, t).
This operat ion adds the triple (i, j, t) if it is not already there and has no
effect otherwise. It can only be applied if i and j are both silent after t
rounds and i is active after t - 1 rounds.

3. change(i, v).
This operat ion changes process i 's input value to v and has no effect if this
input value is a lready v. It can only be applied if i is silent after 0 rounds
and (i, 1) has a token.

4. move(i, j, t).
This operat ion moves a token from (i, t) to (j, t), where j is either i + 1
or i - 1. It can only be applied if (i, t) has a token and if all failures have
permission from other tokens.

It should be obvious from the definitions that when any of these operations is
applied to a n / - r u n , the result is also a n / - r u n .

Now, for any v C { 1 , . . . , k}, we can define a sequence seq(v) of remove, add,
change, and move operations that can be applied to any failure-free 1-run p to
t ransform it into the failure-free 1-run in which all processes have input v. In
fact, the same sequence seq(v) can be used for all failure-free 1-runs p. This can
be done using the methods in the proof of Theorem 6.33; the main difference is the
explicit movement of the tokens giving permission to fail. In this construction,
inputs of processes are changed to v one at a time, s tar t ing with process 1. As
before, this construct ion uses r failures in r rounds.

It turns out that the sequences seq(v) can be const ructed so that they are
isomorphic for different v - - t h a t is, they are the same except for the choice of v.
Now we can (finally) define the paramete r N used in defining the size of B: N

is simply the length of the sequence seq(v) (for any v).
We will use several sequences seq(v) to label the vertices of B. Recall that

the elements of the value domain are 0, 1 , . . . ,k. For each v C {0, 1 , . . . ,k},
define ~-~ to be the failure-free 1-run in which all processes ' initial values are

7.1. k - A G R E E M E N T 171

22222

22100

/ / ; / /
/ / / / /

00000 10000 11000 11100 11110

22221

22211

22111

21111

11111

F i g u r e 7.3: Labelling the Bermuda Triangle with k-runs.

equal to v. We will apply each sequence seq(v), 1 <_ v <_ k, to the failure-free
1-run %-1, to generate a sequence of 1-runs to use as preliminary labels for the
vertices along the edge of B in the vth dimension (the "v-axis"). Then the k-run
we assign to each vertex x of B will be obtained by "merging" the k 1-runs that

are preliminary labels of the projections of x on the k axes.

Example 7.1.3 Labelling Bermuda Triangle with k-runs

To give some intuition for how this merging works, we give a simpli-
fied diagram for the case where k = 2 (so V = {0, 1, 2}) and n = 5.
See Figure 7.3.

The diagram does not depict all the ver t ices--only those labelled
by failure-free k-runs. Thus, the only interesting information we need
to provide is the vector of input values for each depicted vertex. The
k-run labelling each corner of B is a failure-free k-run in which all
inputs are equal and where the 0s appear at the lower left, the ls
at the lower right, and the 2s at the upper right. The chain along
the horizontal axis is constructed by using seq(1) to span from all 0s
to all ls, while the chain along the vertical axis is constructed using
seq(2) to span from all ls to all 2s.

Note the pat tern of inputs appearing in B. Along the horizontal
axis, the processes' inputs are changed from 0 to 1 one at a time,
starting from process 1. Along the vertical axis, the processes' in-
puts are changed from 1 to 2 one at a time, starting from process 1.

172 7. M O R E CONSENSUS P R O B L E M S

In the interior of B, changes take place in both directions at the same

time. For example, consider the indicated interior vertex with input

vector 22100. The vectors labelling its projections on the horizon-
tal and vertical axes are 11100 and 22111, respectively. The vector
22100 can be changed into 22111 by changing the inputs of the last
two processes from 0 to 1, moving horizontally in B. Similarly, the
vector 11100 can be changed into 22100 by changing the inputs of the
first two processes from 1 to 2, moving vertically in B. The vector
labelling each node of B consists of values in {0, 1, 2} occurring in
nonincreasing order.

Now we give a formal definition for merging. The merge of the sequence

a l , . . . , crk of 1-runs is the k-run p defined as follows"

1. Process i has the input value v in p, where v is the maximum value in
{1 , . . . , k} such that i has input value v in a~, or 0 if no such v exists.

2. A triple (i , j , t) is included in p exactly if it is included in all the a~,
l < v < k .

3. The number of tokens assigned to a pair (i, t) in p is the sum of the number

of tokens assigned to the pair (i, t) in all the av.

To motivate the first condition, we reconsider the way that the merge oper-
ation is to be used. Each av will be obtained by applying some prefix of seq(v)
to T~_I. At some point in this sequence, the input value for process i is changed
from v - 1 to v. If this has already happened in a~ then let us say that process
i has "converted" in dimension v. The first condition just chooses the largest v

(if any) such that process i has converted in dimension v.
The second condition says that a message is missing in the new run p if and

only if it is missing in any of the runs av being merged. The third condition just
accumulates the tokens. It is not hard to see that the merge of a sequence of
l -runs is in fact a k-run.

Now we put the pieces together and define the labelling of vertices of B with k-
runs. Let x - (Xl , . . . ,Xk) be an arbi t rary vertex of B. For each v E {1 , . . . ,k},
let a~ be the 1-run that results from applying the first x~ operations of seq(v) to
T~-I. Then the k-run labelling x is the merge of a l , . . . , crk. Note that there are
at most rk <_ f tokens in the merged run, and hence at most f failures. For the
rest of this proof, we fix the labelling of B with k-runs (and executions).

We end this subsection by giving some close connections among the k-runs
labelling the vertices of any single tiny simplex T in B. Let Yo, . . . , Yk be the ver-
tices of T, in the order determined by the "walk" that generates T (as described

7.1. k - A G R E E M E N T 173

in the definition of the Bermuda Triangle). Let P 0 , . . . , Pk be the respective
k-runs labelling these vertices.

The first lemma says that any process that is faulty in one of these k-runs
must have a token in all of them.

L e m m a 7.4 If process i is faulty in some pv, 0 < v < k, then i has a token in

every Pv.

P r o o f S k e t c h . This is because the changes in each sequence seq are so grad-
ual, in par t icular because movement of a token and removal of a triple occur in
two separate steps. The detailed proof is left as an exercise. [3

The second lemma limits the number of total failures in all of the runs.

L e m m a 7.5 For any v C { 0 , . . . , k}, let Fv denote the set of processes that fail

in p~. Let F - UvF~. Then lFI <_ rk ~_ f .

P r o o f . Left as an exercise. The proof uses Lemma 7.4. [3

Finally, we consider labelling vertices of T with process indices. A local
process labelling of T is an assignment of distinct process indices i 0 , . . . , ik to

the vertices Y 0 , . . . , Yk of T in such a way that, for every v, i~ has no tokens
in p~. The final impor tan t proper ty of the k-runs labelling the vertices of T is
that if there is a local process labelling of T, then T is consistent with a single
execution.

L e m m a 7.6 Let i 0 , . . . , ik be a local process labelling of T. Then there is a run
p with at most f failures such that for all v, i~ is nonfaulty in p and exec(pv)
and exec(p) are indistinguishable to process iv.

P r o o f S k e t c h . We define p as follows. We define the initial value for each
process i in p to be i 's initial value from any one of the p~. For 1 _< t _< r - 1, we
include the triple (i, j, t) in p exactly if it is in all the p~. Likewise, we include
(i, j, r), where the recipient j is not one of the processes i~, exactly if it is in all
the Pv. Finally, (i, j, r), where j - iv (for a specific v) is included exactly if it is
in p~ (for the same v).

We leave it as an exercise to show that p has all the needed properties: that it
is indeed a run, that it has at most f failures, and that for each v, i~ is nonfaulty
in p and exec(p~) and exec(p) are indistinguishable to process i~. The proof uses

Lemma 7.5 to bound the number of failures. [3

174 7. M O R E C O N S E N S U S P R O B L E M S

L a b e l l i n g B w i t h p r o c e s s i nd i ce s . Recall that we are supposed to assign

process indices to the vertices of B so that for each tiny simplex T, there is

an execution that is compatible with the executions and processes labelling the

vertices of T. Lemma 7.6 suggests a way of doing this: for each vertex of

B, we pick a process that has no tokens in the corresponding k-run, in such a

way that the processes chosen for the vertices of any tiny simplex are all distinct.

Lemma 7.6 then implies the needed compatibi l i ty condition for each tiny simplex.

We define a global process labelling for B to be an assignment of processes

to vertices of B such that for every vertex x, the process assigned to x has no

tokens in the k-run labelling x, and such that for each tiny simplex T, all the

processes assigned to vertices of T are distinct. A global process labelling for B

yields a local process labelling for each tiny simplex of B.

We now construct a global process labelling for B. (Since the construct ion is

technical, you might prefer to skip it on a first reading and proceed directly to

Lemma 7.10.) We begin the construct ion by associating a set live(p) of processes

with each k-run p labelling a vertex of B and then choosing one process from

each set live(p). The sets live(p) will satisfy the following properties:

1. Each set live(p) consists of exactly n - rk processes. (Since we have as-

sumed that n _> f + k + 1 and f >_ rk, this means that each set live(p)
contains at least k + 1 processes.)

2. The processes in live(p) are chosen from among those that do not have
tokens in p.

3. If p and p~ are two k-runs labelling two vertices of the same tiny simplex

in B, and if process i E l ive(p)N live(p'), then i has the same rank in both
sets. 1

So fix some k-run p. It contains exactly rk tokens; let tokens be the multiset

of process indices describing the number of tokens associated with each process.

We "flatten" the multiset tokens to obtain a new multiset newtokens with the

same number of tokens, but in which no more than one token is associated with

any process. Also, any process that has a token in tokens also has a token in

newtokens. The Flatten procedure works as follows:

F l a t t e n p r o c e d u r e :

newtokens "- tokens
while newtokens has a duplicate element do

select such an element, say i

1The rank of an element i within a finite totally ordered set L is the number of elements of
L that are less than or equal to i.

7.1. k - A G R E E M E N T 175

if there exists j < i such that newtokens(j)= 0, then
move a token from i to the largest such j
else move a token from i to the smallest j > i such that newtokens(j) = 0

Then we define live(p) to be all processes i such tha t newtokens(i) = O.
It is easy to see tha t this definition of live satisfies the first two propert ies

required above. To see the th i rd property, fix a t iny simplex T, let y0 , . . . , Yk be

the vertices of T, in the order de te rmined by the walk tha t generates T, and let

P 0 , . . . , Pk be the respective k-runs labelling these vertices. First , we note tha t ,

when we walk the vertices of T in order, if process i ever acquires a token, then

it always has tokens later in the walk.

L e m m a 7.7 Let v < v ~ < v". I f process i has no tokens in p~ but has a token
in pv', then i has a token in pv,,.

P r o o f . Left as an exercise.

Now we can prove the thi rd proper ty for the live sets.

L e m m a 7.8 I f i C l ivc(pv)N live(p~), then i has the same rank in live(p~) and
live(p).

P r o o f . Assume wi thout loss of generali ty tha t v < w. Since i c live(p~) and

i c live(pw), i has no tokens in either pv or pw. Then L e m m a 7.7 implies tha t i

has no tokens in any of the runs Pv , . . . , P~.
Since token placements in adjacent k-runs differ by at most the movement of

one token from one process to an adjacent process, and since i has no tokens in

any of these runs, it follows tha t the tota l number of tokens on processes smaller

t han i is the same, say s, in all of the runs p~ , . . . , p~. Since i c livc(pv), the

way the Flatten procedure works implies tha t s < i. (If s _> i, then the tokens

tha t s tar t on processes smaller than i would "overflow" in the Flatten procedure

so tha t one would end up on i.) Therefore, i is guaranteed to have the same

rank, i - s, in live(pv) and live(pw).

Now we are ready to label the vertices of B with process indices. Let x =

(X l , . . . , xk) be any vertex of B, and let p be its k-run; we choose a par t icular

process index from the set live(p). Namely, let plane(x) - E i = l k xi (mod k + 1)',

we label x with the process having rank plane(x) in live(p). This choice is

mot iva ted by the following fact about B:

L e m m a 7.9 I f x and y are dist inct vertices of the same t iny simplex, then

plan () pla (y).

176 7. M O R E CONSENSUS P R O B L E M S

Now we obtain our goal:

L e m m a 7.10 This labelling of B with process indices is a global process la-
belling.

P r o o f . Because the index for each vertex x is chosen from the set live(p), where
p is the associated k-run, it must be that that index has no tokens in p. For any
fixed tiny simplex T, Lemmas 7.8 and 7.9 together imply that the chosen indices
are all distinct. D

We summarize what we know about the labellings we have produced:

L e m m a 7.11 The given labellings of B with k-runs and processes have the fol-
lowing property. For every tiny simplex T with run labels P0, . . . , Pk and process
labels i 0 , . . . , ik, there is a run p with at most f failures, such that for all v, iv
is nonfaulty in p and exec(pv) and exec(p) are indistinguishable to process iv.

P r o o f . This follows from Lemmas 7.6 and 7.10. D

S p e r n e r ' s L e m m a . We are nearly done! It remains only to state Sperner's
Lemma (for the special case of the Bermuda Triangle) and to apply it to obtain a
contradiction. This will yield the lower bound on the number of rounds required
to solve k-agreement. A Sperner coloring of B assigns one of a set of k + 1 colors
to each vertex of B so that

1. The colors of the k + 1 corners of B are all different.

2. The color of each point on an external edge of B is the color of one of the
corners at the endpoints of the edge.

3. More generally, the color of each interior point on an external face (of any
dimension) of B is the color of one of the adjacent corners of B.

Sperner colorings have a remarkable property: there must be at least one tiny
simplex whose k + 1 vertices are colored with all k + 1 colors.

L e m m a 7.12 (S p e r n e r ' s L e m m a for B) For any Sperner coloring of B, there
is at least one tiny simplex in B whose k + 1 corners are all colored with distinct
Colors.

Now recall that A is the hypothesized k-agreement algorithm, assumed to
tolerate f faults and halt in at most [/~J rounds. We define a coloring CA of B as
follows. Given a vertex x labelled with run p and process i, color x with process

i's decision in the execution exec(p) of A.

7.2. APPROXIMATE AGREEMENT 177

Lemma 7.13 If A is an algorithm for k-agreement tolerating f faults and halt-
ing in L~J rounds, then CA is a Sperner coloring of B.

P r o o f . By the validity condition of k-agreement. [3

Now we can prove the main theorem:

Theorem 7.14 Suppose that n >_ f +k+l . Then there is no n-process algorithm
for k-agreement that tolerates f faults, in which all nonfaulty processes always
decide within L Zk J rounds.

P r o o f . Lemma 7.13 implies that CA is a Sperner coloring, so Sperner's Lemma,
Lemma 7.12, implies that there is a tiny simplex T, all of whose vertices are

colored distinctly by CA.
Suppose that T's k-run labels are P0, �9 �9 �9 , Pk and its process labels are i0, �9 �9 �9 , ik.

By the definition of CA, this means that all k + 1 different decisions are produced
by the k + 1 processes i~ in their respective executions exec(p~). But Lemma 7.11
implies that there is a single run p with at most f failures, such that for all v,
iv is nonfaulty in p and exec(pv) and exec(p) are indistinguishable to process i~.
But this implies that in p, the k + 1 processes i0 , . . . , ik decide on k + 1 distinct
values, violating the agreement condition for the k-agreement problem. F1

7.2 Approximate Agreement

Now we consider the approximate agreement problem in the presence of Byzan-
tine failures. In this problem, the processes start with real-valued inputs and
are supposed to eventually decide on real-valued outputs. They are permit ted to
send real-valued data in messages. Instead of having to agree exactly, as in the
ordinary agreement problem, this time the requirement is just that they agree to
within a small positive real-valued tolerance c. More precisely, the requirements
are

Agreement" The decision values of any pair of nonfaulty processes are within

c of each other.

Va l id i t y : Any decision value for a nonfaulty process is within the range of the
initial values of the nonfaulty processes.

Termination: All nonfaulty processes eventually decide.

178 7. M O R E CONSENSUS P R O B L E M S

This problem arises, for example, in clock synchronization algorithms, where
processes at tempt to maintain clock values that are close but do not necessarily
agree exactly. Many real distributed network algorithms work in the presence of
approximately synchronized clocks, so approximate agreement on clock values is
usually sufficient.

Here, we consider the approximate agreement problem in complete graphs
only. One way of solving the problem is by using an ordinary Byzantine agree-
ment algorithm as a subroutine. This solution assumes that n > 3f.

ByzApproxAgreement algorithm"

The processes run an ordinary Byzantine agreement algorithm to decide
on a value for each process. All these algorithms run in parallel. In the
algorithm for process i, i begins by sending its message to all processes
in round 1, then all processes use the received values as their inputs in
a Byzantine agreement algorithm. When these algorithms terminate, all
nonfaulty processes have the same decision values for all processes. Each
chooses the [~ J th largest value in the multiset of decision values as its own
final decision value.

To see that this works, note that if i is nonfaulty, then the validity condition
for Byzantine agreement guarantees that the value obtained by all nonfaulty
processes for i is i's actual input value. Since n > 3f, it follows that the middle
value in the multiset must be in the range of the initial values of the nonfaulty
processes.

Theorem 7.15 ByzApproxAgreement solves the approximate agreement prob-
lem for an n-node complete graph, if n > 3 f .

Now we present a second solution, not using Byzantine agreement. The
main reason we present this solution is that it has an easy extension to the
asynchronous network model, which we present in Chapter 21. In contrast, the
Byzantine agreement problem cannot be solved in asynchronous networks. The
second solution also has the property that it sometimes terminates in fewer than
the number of rounds required for Byzantine agreement, depending on how far
apart the initial values of nonfaulty processes are. The algorithm is based on
successive approximation. For simplicity, we describe a nonterminating version of
the algorithm, then discuss termination separately. This algorithm again assumes

that n > 3f.
We need a little notation and terminology: First, if U is a finite multiset of

reals with at least 2f elements, and u l , . . . , uk is an ordering of the elements
of U in nondecreasing order, then let reduce(U) denote the result of removing

7.2. A P P R O X I M A T E A G R E E M E N T 179

the f smallest and f largest elements from U, tha t is, the multiset consisting of
U/+l, �9 �9 �9 , uk- I . Also, if U is a nonempty finite multiset of reals, and U l , . . . , Uk is
again an ordering of the elements of U in nondecreasing order, then let select(U)
be the multiset consisting of Ul, U/+l, u2 f+ l , . . �9 tha t is, the smallest element of
U and every f t h element thereafter. Finally, if U is a nonempty finite multiset
of reals, then mean(U) is just the mean of the elements in U.

We also say tha t the range of a nonempty finite multiset of reals is the
smallest interval containing all the elements, and the width of such a multiset is
the size of the range interval.

The second solution is as follows:

ConvergeApproxAgreement algorithm:

Process i maintains a variable val containing its latest estimate. Initially,
vali contains i's initial value. At each round, process i does the following.

First, it broadcasts its val value to all processes, including itself. 2 Then
it collects all the values it has received at tha t round into a multiset W;
if i does not receive a value from some other process, it simply picks
some arbi t rary default value to assign to tha t process in the multiset, thus
ensuring tha t I W I - n.

Then, process / s e t s val to mean(select(reduce(W))). Tha t is, process i
throws out the f smallest and f largest elements of W. From what is
left, i selects only the smallest element and every f t h element thereafter.
Finally, val is set to the average (mean) of the selected elements.

We claim tha t at any round, all the nonfaulty processes' vals are in the range
of the nonfaulty processes' vals just prior to the round. Moreover, at each round,
the width of the multiset of nonfaulty processes' vals is reduced by a factor of
at least ~ ~ / - - ~ J + 1. If n > 3f , this is greater than 1.

Lemma 7.16 Suppose that vali = v just after round r of an execution of
ConvergeApproxAgreement, where i is a nonfaulty process. Then v is in the
range of the nonfaulty processes' vals just before round r.

P r o o f . If Wi is the multiset collected by process i at round r, then there are
at most f elements of W / t h a t are not values sent by nonfaulty processes. Then
all the elements of reduce(Wi) are in the range of nonfaulty processes' vals just
prior to round r. It follows tha t the same is true for mean(select(reduce(Wi))),
which is the new value of vali. D

2As usual, sending to itself is simulated by a local transition.

180 7. M O R E CONSENSUS P R O B L E M S

L e m m a 7.17 Suppose that vali = v and vali, = v t just after round r of an exe-
cution of ConvergeApproxAgreement, where i and i ~ are both nonfaulty processes.
Then

d
,v v'l< [o 1j§

where d is the width of the range of the nonfaulty processes' vals just before
round r.

P r o o f . Let Wi and Wi, be the respective multisets collected by processes i and
i' in round r. Let Si and Si, be the respective multisets select(reduce(Wi)) and
select(reduce(Wi,)). Let c - L~-~f- lJ + 1; note that c is exactly the number of
elements in Si and in Si,. Let the elements of Si be denoted by u 1 , . . . , u~ and

both in nondecreasing order. We begin with a claim those of Si, by u ~ , . . . , u ~ ,
that says that the reduced multisets differ in at most f elements.

C l a i m 7.18 Ireduce(W~)- reduce(Wg,)l <_ f .

P r o o f . Since nonfaulty processes contribute the same value to both Wi and
Wi,, we have that I W i - Wi, I <- f . We can show that removing a smallest element
from both multisets does not increase the number of elements in the difference,
and we can show the same for removing a largest element. Using these two facts
f times apiece yields the result. D

Claim 7.18 can be used to show

I ' < Uj f o r all j 1 < j < c - 1 C l a i m 7.19 Uj ~ Uj+ 1 and Uj _ +1 , _ _ �9

P r o o f . We show the first claim only; the second is symmetric. Note that uj is
the ((j - 1)f + 1)st smallest element of reduce(Wi), and u}+ 1 is the (j r + 1)st
smallest element of reduce(W~,). Since, by Claim 7.18, there are at most f
elements of reduce(Wi,) that are not elements of reduce(Wi), it must be that

/ V1 l t j ~ t t j + 1.

Now we finish the proof of Lemma 7.17 by calculating the required bound.
We have that

Iv - - vlI Imean()- mean(,)l

- - --1 I (y] .~=l(~t j -- U}))J
C

1 I
~_ - (E ~ = l l U j - ujl)

c

_ _ _ _ C I 1 (~ j - - 1 (m a x (uj, u}) -- m i n (uj, u j))) .
c

7.2. A P P R O X I M A T E A G R E E M E N T 181

! !
By Claim 7.19, max (uj, uj) <_ min (ltj+l, ttj+l) for all j , 1 _< j _< c - 1, so

this latter expression is less than or equal to

1 (Ej= l (min(u j+ l ' , 1 , _ c- , Uj+l) - min(uj , uj))) + - (m a x (Uc, tic) - min(uc, Uc)),
C C

which collapses to

_1 (max (Uc, U~c) - min (it1, Ul))
C

! But all of the values Uc, u c, Ul, and u~ are in the range of the nonfaulty processes'
vals just before round r, since all elements of reduce(Wi) and reduce(Wi,) are in

d this range. So this last expression is less than or equal to c, as needed.

T e r m i n a t i o n . We convert ConvergeApproxAgreement to a terminating algo-
rithm, that is, one in which all processes eventually decide. (In fact, all processes
eventually halt.) Namely, each nonfaulty process uses the range of all the values
it receives at round 1 to compute a round number by which it is sure that the
vals of any two nonfaulty processes will be at most e apart . Each process can do
this because it knows the value of ~ and the guaranteed rate of convergence, and
furthermore, it knows that the range of values it receives at round 1 includes the
initial values of all the nonfaulty processes. Different nonfaulty processes might
compute different round numbers, however.

Any process i that reaches its computed round decides on its own current
val. After doing this, process i broadcasts its val with a special halting tag and
then halts. After any process j receives a val with a halting tag from i, it uses
this val as its message from i, not only for the current round, but also for all
future rounds (until j itself decides to halt, on the basis of j ' s own computed
round number).

Although nonfaulty processes might compute different round numbers, it
should be clear that the smallest such estimate is correct. Thus, at the time
the first nonfaulty process halts, the range of vals is already sufficiently small.
At subsequent rounds, the range of vals of nonfaulty processes never increases,
although there is no guarantee that it continues to decrease.

T h e o r e m 7.20 .ConvergeApproxAgreement, with termination added as above,
solves the approximate agreement problem for an n-node complete graph, if
n > 3 f .

C o m p l e x i t y a n a l y s i s . There is no upper bound depending only on n, f , c
and the width of the multiset of nonfaulty processes' initial values, for the time
for all nonfaulty processes to decide in the ConvergeApproxAgreement algorithm.

182 7. M O R E C O N S E N S U S P R O B L E M S

This is because faulty processes can send arbitrary values at round 1, which can
cause the nonfaulty processes to compute arbitrarily large round numbers for
termination.

The exercises discuss bounds on the number of processes and the connectivity
needed to solve the approximate agreement problem. We will revisit this problem
in Chapter 21, in the asynchronous network setting.

7.3 The C o m m i t P r o b l e m

In this, the final section on distributed consensus problems in synchronous sys-
tems, we present some of the key ideas about the distributed database commit
problem. As discussed in Section 5.1, the problem arises when a collection of
processes participate in the processing of a database transaction. After this
processing, each process arrives at an initial "opinion" about whether the trans-
action ought to be committed (i.e., its results made permanent and released for
the use of other transactions) or aborted (i.e., its results discarded). A process
will generally favor committing the transaction if all its local computation on be-
half of that transaction has been successfully completed, and otherwise will favor
aborting the transaction. The processes are supposed to communicate and even-
tually agree on one of the outcomes, commit or abort. If possible, the outcome
should be commit.

Solutions to this problem have been designed for real distributed networks,
in which there can be a combination of process and link failures. However, the
results in Chapter 5 imply that there can be no solution in the case of unlimited
link failures. Some limitation must therefore be assumed on message loss.

7 .3 .1 T h e P r o b l e m

We consider a simplified version of the commit problem, for networks in which
there is no message loss, but only process failures. If you are interested in
implementing the algorithms in this chapter in a real network, you will have
to add other mechanisms, such as repeated retransmissions, to cope with lost
messages. We allow any number of process stopping failures.

We assume that the input domain is {0, 1}, where 1 represents commit and
0 represents abort. We restrict attention here to the case where the network is a
complete graph. The correctness conditions are

Agreement: No two processes decide on different values.

7.3. THE COMMIT PROBLEM 183

Validity:

1. If any process starts with 0, then 0 is the only possible decision value.

2. If all processes start with 1 and there are no failures, then 1 is the
only possible decision value.

T e r m i n a t i o n : This comes in two flavors. The weak termination condition says
that if there are no failures then all processes eventually decide. The strong
termination condition (also known as the non-blocking condition) says that
all nonfaulty processes eventually decide.

Commit algorithms that satisfy the strong termination condition are sometimes
called non-blocking commit algorithms, while commit algorithms that satisfy the
weak termination condition but not the strong one are sometimes called blocking
commit algorithms.

Notice that our agreement condition is that no two processes decide on dif-
ferent values. Thus, we do not allow even a failed process to decide differently
from other processes. We require this because, in practical uses of a commit
protocol, a process might fail and later recover. Suppose, for example, that a
process i decides commit before it fails, and that later, other processes decide
abort. If process i recovers and retains its commit decision, then there would be
an inconsistency.

The formal problem statement is similar to two others we have already consid-
ered: the coordinated attack problem in Section 5.1 and the agreement problem
for stopping failures in Section 6.1. The most important difference between the
commit problem and the coordinated attack problem is that we are here consid-
ering process failure and not link failure; there is also a difference in the validity
condition. The important differences between the commit problem and the stop-
ping agreement problem are, first, the particular choice of validity condition,
and, second, the consideration of a weaker notion of termination. Results in
Section 6.7 about the stopping agreement problem imply a lower bound of n - 1
on the number of rounds needed to solve the commit problem with the strong
termination condition. (Note that the proof of Theorem 6.33 still works with the
commit validity conditions.)

In the rest of this section, we give versions of two standard practical commit
algorithms (for the simplified setting with only process faults). The first, two-
phase commit, is a blocking algorithm, while the second, three-phase commit, is
non-blocking. We then give a simple lower bound on the number of messages
needed to solve the problem, even if only weak termination is required.

184 7. M O R E CONSENSUS P R O B L E M S

7 . 3 . 2 T w o - P h a s e C o m m i t

The bes t -known practical commit a lgor i thm is two-phase commit; without any

embell ishments, this simple algori thm guarantees only weak terminat ion.

T w o P h a s e C o r n r n i t a l g o r i t h m "

The algori thm assumes a dist inguished process, say process 1.

Round 1: All processes except for process 1 send their initial values to

process 1, and any process whose initial value is 0 decides 0. Process 1

collects all these values, plus its own initial value, into a vector. If all

posit ions in this vector are filled in with ls, then process 1 decides 1.

O the rwise - - tha t is, if there is some posit ion in the vector that contains 0

or else some posit ion that is not filled in (because no message was received

from the corresponding process) - -process 1 decides 0.

Round 2: Process 1 broadcasts its decision to all the other processes. Any

process other than process 1 that receives a message at round 2 and has not

already decided at round 1 decides on the value it receives in that message.

See Figure 7.4 for an i l lustration of the communicat ion pa t te rn used in the failure-

free runs of TwoPhaseCornmit. a

T h e o r e m 7.21 TwoPhaseCommit solves the commit problem with the weak ter-
mination condition.

P r o o f . Agreement, validity, and weak terminat ion are all easy to show. El]

However, TwoPhaseCornrnit does not satisfy the strong terminat ion condi-

tion, that is, it is a blocking algorithm. This is because if process 1 fails before

beginning its broadcast in round 2, then no nonfaulty process whose initial value

is 1 ever decides. In practice, if process 1 fails, then the remaining processes usu-

ally carry out some sort of termination protocol among themselves and sometimes

manage to decide. For example, if process 1 fails but some other process, i, has

already decided 0 in round 1, then process i can inform the remaining nonfaul ty

processes that its decision is 0, and they can also safely decide 0. But the ter-

minat ion protocol cannot succeed in all cases. For example, suppose that all

processes except for 1 s tar t with input 1, but process 1 fails before sending any

a Our round designation does not correspond exactly to the usual designation of phases for
the two-phase commit protocol. Usually, an extra round is added at the beginning, in which
process 1 requests the commit or abort values from the other processes. Phase 1 then consists
of this extra round plus our round 1. We do not need the extra round for our simplified model
and problem statement.

7.3. THE C O M M I T P R O B L E M 185

processes

1 "l

2

3

4

1 2

rounds

F i g u r e 7.4: Communication pattern in TwoPhaseCommit.

messages. Then no other process ever learns process l ' s initial value, so, because
of the validity condition, no process can decide 1. On the other hand, no process
can decide 0, since as far as any other process can tell, it might be that process
1 has already decided 1 just before failing, and the inconsistency would violate
the agreement condition.

C o m p l e x i t y a n a l y s i s . TwoPhaseCommit takes only two rounds. Recall that
Theorem 6.33 gives a lower bound of f + 1 on the number of rounds for stopping
agreement. The time bound for TwoPhaseCommit does not contradict this lower
bound, because TwoPhaseCommit satisfies only the weak termination condition.
The communication complexity, as measured by the worst-case number of non-
null messages that are sent in any execution, is 2 n - 2; in particular, this number
of messages is sent in a failure-free execution.

7 . 3 .3 T h r e e - P h a s e C o m m i t

Now we describe the ThreePhaseCommit algorithm; this is an embellishment of

the TwoPhaseCommit algorithm that guarantees strong termination.
The key is simply that process 1 does not decide 1 unless every process

that has not yet failed is "ready" to decide 1. Making sure they are ready
requires an extra round. We first describe and analyze the first three rounds

186 7. MORE CONSENSUS PROBLEMS

of the algorithm. The rest of the algorithm, needed to obtain the non-blocking
property, is described afterward.

T h r e e P h a s e C o m m i t algorithm, first three rounds"

Round 1: All processes except for 1 send their initial values to process 1,
and any process whose initial value is 0 decides 0. Process 1 collects all
these values, plus its own initial value, into a vector. If all positions in this
vector are filled in with ls, then process 1 becomes ready but does not yet
decide. O the rwi se~ tha t is, if there is some position that contains 0 or else
some position that is not filled in (because no message was received from
the corresponding process)- -process 1 decides 0.

Round 2: If process 1 has decided 0, then it broadcasts decide(O). If not,
then process 1 broadcasts ready. Any process that receives decide(O) de-
cides 0. Any process that receives ready becomes ready. Process 1 decides
1 if it has not already decided.

Round 3: If process 1 has decided 1, it broadcasts decide(i). Any process
that receives decide(I) decides 1.

See Figure 7.5 for an illustration of the communication pat tern used in the failure-
free runs of ThreePhaseCommit. 4

Before presenting the termination protocol, we analyze the situation after the
first three rounds. We classify the states of each process (failed or not) into four
exclusive and exhaustive categories:

1. decO: Those in which the process has decided 0.

2. dec1: Those in which the process has decided 1.

3. ready: Those in which the process has not decided, but is ready.

4. uncertain: Those in which the process has not decided and is not ready.

The key properties of ThreePhaseCommit are expressed by the following
lemma. It describes certain combinations of states that cannot coexist.

L e m m a 7.22 After three rounds of ThreePhaseCommit, the following are true:

1. If any process's state is in ready or dec1, then all processes' initial values
are 1.

4Again, our round designation does not correspond exactly to the usual designation of phases
for the three-phase commit protocol. An extra request round is usually added at the beginning,
as well as some explicit acknowledgments.

7.3. THE C O M M I T P R O B L E M 187

.

2 ~

3

4

1 2 3

F i g u r e 7.5- Communication pattern in ThreePhaseCommit.

2. I f any process's state is in decO, then no process is in dec1, and no non-
failed process is in ready.

3. I f any process's state is in dec1, then no process is in decO, and no non-
failed process is in uncertain.

P r o o f . Straightforward. The most interesting part of the proof is the proof
of the third condition. For this, we note that process 1 can only decide 1 at
the end of round 2, after it has already broadcast ready messages. This means
that process 1 knows at the end of round 2 that each other process has either
received and processed the ready, thereby entering the ready state, or else has
failed. (The synchrony of the model is important here.) [S]

Now we can prove that most of the conditions of interest hold after the first
three rounds.

L e m m a 7.23 After three rounds of ThreePhaseCommit, the following are true:

1. The agreement condition holds.

2. The validity condition holds.

3. I f process 1 has not failed, then all non-failed processes have decided.

188 7. MORE CONSENSUS PROBLEMS

P r o o f . The agreement condition follows from Lemma 7.22, as does half of the
validity condit ion--the half that says that if some process starts with 0, then 0
is the only possible decision value. The other half of the validity condition can
be proved by inspection.

Finally, if process I has not failed, then we claim that every non-failed process
has decided. This is because process 1 cannot be prevented from deciding by
any actions of the other processes, and once 1 decides, it immediately broadcasts
its decision to the other processes, who decide in the same way. ff]

These three rounds alone are not enough to solve the non-blocking commit
problem, however, because they do not guarantee strong termination. If process
1 does not fail, then every nonfaulty process decides, as noted in Lemma 7.23.
But if process 1 fails, it is possible that the other processes might be left in an
undecided state. To take care of this case, the remaining processes must execute
a termination protocol after the first three rounds. The precise details can vary
somewhat; we describe one possibility below.

T h r e e P h a s e C o m m i t , t e r m i n a t i o n p r o t o c o l :

Round ~: All (not yet failed) processes send their current status,
either decO, dec1, ready, or uncertain, to process 2. Process 2 collects
all these status values, plus its own status, into a vector. Not all the
positions in the vector need be filled in--process 2 just ignores those
that are not. If the vector contains any decO values and process 2 has
not already decided, then process 2 decides 0. If the vector contains
any dec1 values and process 2 has not already decided, then process
2 decides 1. If all the filled-in positions in the vector contain the value
uncertain, then process 2 decides 0. Otherwise-- that is, if the only
values in the vector are uncertain and ready and there is at least one
ready--process 2 becomes ready but does not yet decide.

Round 5: In this and the next round, process 2 behaves similarly to
process 1 in rounds 2 and 3. If process 2 has (ever) decided, then
it broadcasts its decision, in a decide message. If not, then process
2 broadcasts ready. Any process that receives decide(O) or decide(I)
and has not already decided, decides 0 or 1, as indicated. Any process
that receives ready becomes ready. Process 2 decides 1 if it has not
already decided.

Round 6: If process 2 has decided 1, it broadcasts decide(I). Any
process that receives decide(i), and has not already decided, de-
cides 1.

7.3. THE COMMIT P R O B L E M 189

After round 6, the protocol then continues with three similar rounds
coordinated by each of processes 3 , . . . , n.

T h e o r e m 7.24 The complete ThreePhaseCommit algorithm, including the ter-
mination protocol, is a non-blocking commit algorithm.

P r o o f Ske tch . We first claim that the three properties listed in the statement
of Lemma 7.22 hold after any number of rounds of the full ThreePhaseCommit
algorithm, not just after three rounds as claimed. This can be shown by induction
on the number of rounds.

Then, agreement and half of the validity condit ion--that if some process
starts with 0, then 0 is the only possible decision value--follow from the extended
Lemma 7.22, as before. The other half of the validity condition is true, because
if there are no failures, all processes decide within the first three rounds.

We argue the strong termination property. If all processes fail, then this
property is vacuously true. Otherwise, suppose that i is a nonfaulty process.
Then during the time when i is the coordinator, every nonfaulty process decides.

D

C o m p l e x i t y ana lys i s . ThreePhaseCommit, in the version presented here, re-
quires 3n rounds. Even if we permit all the processes to fail, this is still much
higher than the bound of approximately n rounds that is generally achieved by
stopping agreement algorithms of the sort studied in Chapter 6. Of course, the
stopping agreement algorithms yield a different validity condition, but it is pos-
sible to modify them slightly to achieve the commit validity condition. So why
are algorithms like ThreePhaseCommit considered better in practice?

The main reason is that the ThreePhaseCommit algorithm can be tailored
to yield low complexity in the failure-free case. If no processes fail, then all
processes decide by round 3. Then it is possible to add a simple protocol whereby
processes can detect that every process has decided and can then discontinue
participation in the rest of the termination protocol. With this addition, the
entire algorithm requires only a small constant number of rounds and only O (n)
messages.

7 .3 .4 L o w e r B o u n d o n t h e N u m b e r o f M e s s a g e s

We close this chapter (and Part I) by considering the number of messages that
must be sent in order to solve the commit problem. Recall that the TwoPhase-
Commit algorithm uses 2 n - 2 messages in the failure-free case. ThreePhase-
Commit uses somewhat more, but still O (n) if the algorithm is modified to

190 7. M O R E CONSENSUS P R O B L E M S

terminate early. In this section, we prove that it is not possible to do better than
2n - 2 in the failure-free case, even if we are satisfied with a blocking algorithm.

T h e o r e m 7.25 Any algorithm that solves the commit problem, even with weak
termination, uses at least 2 n - 2 messages in the failure-free execution in which
all inputs are 1.

For the rest of this section, we fix a particular commit algorithm A and let
Ctl be the failure-free execution of A in which all inputs are 1. Our object is to
show that Ctl must contain at least 2 n - 2 messages.

We again use the definition of a communication pattern from Section 6.7.

This time, we use a communication pat tern to describe the set of messages that
are sent in a failure-free execution. (We do not assume, as we have done in the

past, that all processes send to all other processes at every round.) From any
failure-free execution c~ of A, we extract a communication pat tern patt(c~) in the
obvious way.

We also use the definition of the ordering <~ for a communication pat tern
~/, given in Section 5.2.2, to capture the flow of information between various

processes at various times. We say that process i affects process j in a commu-
nication pat tern ~ provided that (i, 0) <_~ (j, k) for some k. The key idea in the
lower bound is stated in the following lemma.

L e m m a 7.26 For every two processes i and j , i affects j in patt(c~l).

E x a m p l e 7.3.1 L o w e r b o u n d for c o m m i t

Before proving Lemma 7.26, we give an example to show why it is

true. Suppose that Ct I (the failure-free execution of A with all inputs
equal to 1) includes exactly the messages depicted in the left-hand
diagram in Figure 7.6.

By the validity and weak termination conditions, all processes
must eventually decide 1 in a l . Note that in patt(al) , process 4
does not affect process 1; let us see what problems arise as a result.

Consider an alternative execution c~, which is the same as Ctl except
that process 4's input is 0 and every process fails just after it first
gets affected by process 4. Execution c~ is depicted in the right-
hand diagram in Figure 7.6; the failures are indicated by Xs. It is

1
straightforward to show that Ct 1 ~ Ct l , which implies that process 1
also decides 1 in c~. But this violates the validity condition for c~,
yielding a contradiction.

The proof of Lemma 7.26 uses the same argument as in Example 7.3.1.

7.3. T H E C O M M I T P R O B L E M 191

371

4 D

G

D

[71
,

Di.x.

!

F i g u r e 7.6: Messages sent in al and ct 1.

P r o o f . By the validity and weak terminat ion conditions, all processes must

eventually decide 1 in C~l. Suppose that the lemma is false and fix two processes,

i and j , such that i does not affect j in patt(c~l). By definition, it must be that

i -r j . Const ruc t c~ by changing process i 's input to 0 and causing every process

to fail just after it first gets affected by process i. Then C~l j c~, so process j

also decides 1 in c~. This violates the validity condition, yielding a contradict ion.
D

In order to complete the proof of Theorem 7.25, we must s imply show that

the requirement that every process affect every other process implies that there

must be at least 2 n - 2 total messages. We use a lemma about communicat ion

patterns:

L e m m a 7 .27 Let ~ be any communicat ion pattern. I f in ~/, each of a set of

m > 1 processes affects each of the n processes in the system, then there are at

least n + m - 2 messages (triples) in ~/.

P r o o f . By induction on m .

Basis: m = 1. Let i be the single process that we have assumed affects each

of the n processes. Since i affects all n processes, 7 must contain some message

to each of the n - 1 processes other than i. This is a total of at least n - 1

messages, as needed.

Inductive step: We assume the lemma holds for m and show it for rn + 1.

Let I be a set of m + 1 processes that affect all n processes in 7. Wi thou t

loss of generality, we can assume that in round 1, at least one of the processes

in I sends a message to some process. For if not, then we could remove all

192 7. M O R E C O N S E N S U S P R O B L E M S

the initial rounds in which no process in I sends a message; in the remaining
communication pattern, all processes in I would still affect all n processes. Let
i be some process in I that sends a message at round 1 in 7.

Now consider the communication pattern 7', obtained from 7 by removing
a single round 1 message sent by i. Then all processes in I - {i} affect all n
processes in 7'. By induction, there are at least n + m - 2 messages in 7'- So 7
contains at least n + m - 1 = n + (m + 1) - 2 messages, as needed. F1

Now we can complete the proof of Theorem 7.25.

Proof (of Theorem 7.25). By Lemma 7.26, for every two processes i and j ,
i affects j in patt(c~l). Then Lemma 7.27 implies that there are at least 2 n - 2
messages in patt(a l) . [--]

7.4 Bibl iographic Notes

The k-agreement problem has usually been called the "k-set agreement problem"
in the literature. The problem was first introduced by Chaudhuri in [73] as a
natural extension of the previously well-studied ordinary agreement problem.
The FloodMin algorithm is taken from the work of Chaudhuri, Herlihy, Lynch,
and Tuttle [75] and is based on an algorithm originally designed by Chaudhuri
[73]. The lower bound argument for k-agreement is taken from [75, 76, 77].
Background for the algebraic topology used in the lower bound argument appears
in Spanier's classical book on algebraic topology [266]. Sperner's Lemma was
originally developed by Sperner [267] and is discussed in [266].

The work on approximate agreement is taken from a paper by Dolev, Lynch,
Pinter, Stark, and Weihl [98]. Other work on this problem has been done by
Fekete [110, 111] and by Attiya, Lynch, and Shavit [241. The material on the
commit problem, as well as the T w o P h a s e C o m m i t and T h r e e P h a s e C o m m i t al-
gorithms, is taken from a book by Bernstein, Hadzilacos, and Goodman on
database theory [50]. That book goes much further than this one in discussing
practical implementation issues for the protocols, including how to handle recov-
cry of failed processes. The lower bound on the number of messages for commit
is taken from work by Dwork and Skeen [106].

7.5 Exercises

7.1. If the FloodMin algorithm for k-agreement is run for only L~J rounds in-

stead of L~J + 1, what is the largest number of different decisions that can
be reached by nonfaulty processes?

7.5. EXERCISES 193

7.2. Give a good upper bound for the length of sequence seq(v), in the proof
of Theorem 7.14. In order to do this, you will need to describe an explicit
construction for the sequence.

7.3. Prove that the merge of a sequence of l-runs is in fact a k-run. This
involves showing that the conditions required in the definition of a run are
satisfied, as well as the conditions involving the tokens.

7.4. Prove Lemma 7.4.

7.5. Prove Lemma 7.5.

7.6. Prove Lemma 7.6.

7.7. Prove Lemma 7.7.

7.8. L e t n = 5 , k = f = 2 , a n d r = l .

(a)

(b)

(c)

Describe the Bermuda Triangle for these parameter values in detail,
as well as its labelling with k-runs and process indices.

Consider the trivial algorithm A that works as follows: all processes
exchange values once, and each chooses the minimum value it receives.
Describe the Sperner coloring CA.

Can you locate a particular tiny simplex in which three different values
are decided upon, for algorithm A?

7.9. Fix any n and f , where n > 3f, any e, any w E R >~ and any r C N. De-
scribe a particular execution of the ConvergeApproxAgreement algorithm
with termination, for n, f , and e, in which the multiset of nonfaulty pro-
cesses' initial values has width at most w and in which termination takes
more than r rounds.

7.10. Research Question: Modify ConvergeApproxAgreement so that the time
until all processes decide is bounded above by a function of n, f , c, and
the width w of the multiset of nonfaulty processes' initial values.

7.11. Suppose that, instead of computing mean(select(reduce(W)))in Converge-
ApproxAgreement, the processes instead compute one of the following:

(b) mean(reduce(W))
(c) m an(W)

194 7. MORE CONSENSUS PROBLEMS

Does the algorithm still solve the approximate agreement problem? Why
or why not?

7.12. Prove that the approximate agreement problem can be solved in a network
graph G, tolerating f Byzantine faults, if and only if both of the following
hold:

(a) n > 3f

(b) conn(G) > 2f

7.13. Design an approximate agreement algorithm for the case of stopping fail-
ures.

7.14.

(a) Try to minimize the number of processes needed, relative to the num-
ber of faults.

(b) Try to minimize the number of rounds required.

Formulate a variant of the approximate agreement problem that uses a fixed
number r of rounds and in which e is not predetermined. Each process
starts with a real value, as before. After r rounds, the processes should
output their final values. The validity condition is the same as before. The
object is now to ensure the best possible agreement, expressed as an upper
bound on the ratio of the width of the nonfaulty processes' final values to
the width of the nonfaulty processes' initial values.

(a) What ratio is achieved by the ConvergeApproxAgreement algorithm
in this setting?

(b) Prove a lower bound on the achievable ratio, in terms of n, f , and r.
(Hint: Use chain argument ideas similar to those used in the proof
of Theorem 6.33. Your upper and lower bounds probably will not
match.)

7.15. Write code for the complete ThreePhaseCommit algorithm (including the
termination protocol).

7.16. Prove carefully that Lemma 7.22 extends to any number of rounds of Three-
PhaseCommit.

7.17. Give a careful description of a modification to the ThreePhaseCommit al-
gorithm that permits processes to decide and halt quickly in the failure-free
case. Your algorithm should use a small constant number of rounds and
O (n) messages, in the failure-free case. Prove its correctness.

7.5. EXERCISES 195

7.18. Design an algorithm in the style of the stopping agreement algorithms in
Chapter 6 that solves the commit problem with strong termination. Try to
minimize the number of rounds.

7.19. Research Question: Design an algorithm that solves the commit problem
with strong termination. Can you simultaneously obtain a worst-case num-
her of rounds that is n + k for some constant k, a small constant number
of rounds for deciding and halting in the failure-free case, and a low com-
munication complexity in the failure-free case?

7.20. Fill in all the details of the proof of Lemma 7.26. Where does the proof
fail if we do not force any processes to fail when we construct c~, but only
change the initial value of process i from 1 to 07

7.21. Design a non-blocking commit algorithm that uses the fewest messages
you can manage, for failure-free runs. Can you prove that this number of
messages is optimal?

This Page Intentionally Left Blank

Part II

Asynchronous Algorithms

The second part consists of Chapters 8-22 and is, in fact, the bulk of the
book. These chapters make a major shift in computing paradigm, from the lock-
step synchronous model studied in Chapters 2-7 to the asynchronous model, in
which system components take steps at arbitrary speeds.

Like the synchronous model, the asynchronous model is not hard to describe.
The subtleties mainly involve liveness conditions, for example, requiring that
each component keep getting chances to take steps. It is, however, harder to
program than the synchronous model because of the extra uncertainty in the
order of events. The asynchronous model assumes less about time than is actually
guaranteed by typical distributed systems. Thus, algorithms designed for the
asynchronous model are general and portable, in that they are guaranteed to run
correctly in networks with arbitrary timing behavior.

The first chapter in Part II, Chapter 8, presents a general model for asynchro-
nous systems, the input/output automaton model. You can skip this chapter for
now if you like and refer back to it as needed. The rest of Part II is divided into
two subparts: Chapters 9-13 covering asynchronous shared memory algorithms,
and Chapters 14-22, covering asynchronous network algorithms.

This Page Intentionally Left Blank

Chapter 8

Modelling II: Asynchronous
System Model

The purpose of this chapter is to introduce a formal model for asynchronous com-
puting, the input/output (I/O) automaton model. This is a very general model,
suitable for describing almost any type of asynchronous concurrent system, in-
cluding the two types we will study in this book: asynchronous shared memory
systems and asynchronous network systems. By itself, the I /O automaton model
has very little structure, which allows it to be used for modelling many different
types of distributed systems. Additional structure must be added to the basic
model to enable it to describe particular types of asynchronous systems. What
the model does provide is a precise way of describing and reasoning about system
components (e.g., processes or communication channels) that interact with each
other and that operate at arbitrary relative speeds.

We begin with the definitions of an I /O automaton and its execution. We
then define a composition operation by which I /O automata can be combined to
form a larger automaton representing a concurrent system. We show that this
composition operation has the nice properties that it should. Then we introduce
the important notion of fairness, which specifies that all the components in a
system get "fair" turns to perform steps every so often. Fairness represents
a limitation on the arbitrary relative speeds of system components-- i t rules
out the possibility that some components are permanently denied turns to take
steps. We show how fairness interacts with the composition operation. The rest
of the chapter describes some conventions for specifying problems to be solved
by systems described as I /O automata, as well as some proof methods that are
useful for showing that the systems do in fact solve the problems.

200 8. MODELLING II: ASYNCHRONOUS SYSTEM MODEL

init(ide(v) i

send(m) i, j ~ I receive(m) j, i

F i g u r e 8.1" A process I/O automaton.

This chapter is intended to be used as a reference for methods of modelling
asynchronous sys tems--not only the systems described in this book, but many
others as well. You need not read this chapter carefully at this point. Instead,
we suggest that you begin reading some of the later algorithm chapters, such as
Chapters 10, 11, 12, and 15, returning to this chapter (as well as to Chapters 9
and 14) as needed, to supply the formal foundation.

8.1 I/O Automata

An I /O automaton models a distributed system component that can interact
with other system components. It is a simple type of state machine in which the
transitions are associated with named actions. The actions are classified as either
input, output, or internal. The inputs and outputs are used for communication
with the automaton 's environment, while the internal actions are visible only
to the automaton itself. The input actions are assumed not to be under the
automaton 's con t ro l~ they just arrive from the outside--while the automaton
itself specifies what output and internal actions should be performed.

An example of a typical I /O automaton is a process in an asynchronous
distributed system. The interface of a typical process automaton with its envi-
ronment is depicted in Figure 8.1. The automaton Pi is drawn as a circle, with
incoming arrows labelled by input actions and outgoing arrows labelled by out-
put actions. Internal actions are not shown. The depicted automaton receives
inputs of the form init(v)i from the outside world, which are supposed to repre-
sent the receipt of an input value v. It conveys outputs of the form decide(v)i,

8.1. 201 I / 0 A UTOMATA

send(m)i,j
. . . . ~ _ el, j

receive(m).
l, J_

F i g u r e 8.2" A channel I/O automaton.

which are supposed to represent a decision of v. In order to reach a decision,
process Pi may want to communicate with other processes using a message sys-
tem. Its interface to the message system consists of output actions of the form
send(rn)i,j, which represents process Pi sending a message with contents m to
process Pj, and input actions of the form receive(rn)j,i, which represents process
Pi receiving a message with contents rn from process Pj. When the automaton
performs any of the indicated actions (or any internal action), it may also change
state.

Another example of a typical I /O automaton is a FIFO message channel. A
typical channel automaton, named Ci,j, is depicted in Figure 8.2. Its input ac-
tions are of the form send(m)~,j, and its outputs are of the form receive(m)~,j. In
the usual way of describing a distributed system using I /O automata, a collection
of process automata and channel automata are composed, matching outputs of
one automaton with same-named inputs of other automata. Thus, a sendi,j out-
put performed by process Pi is identified with (i.e., performed together with) a
sencli,j input performed by channel Ci,j. The important thing to note is that the
various actions are performed one at a time, in an unpredictable order. This is
in contrast with synchronous systems, in which all the processes send messages
at once and then all receive messages at once, at each round of computation.

Formally, the first thing that gets specified for an I /O automaton is its "signa-
ture," which is simply a description of its input, output, and internal actions. We
assume a universal set of actions. A signature S is a triple consisting of three
disjoint sets of actions: the input actions, in(S), the output actions, out(S),
and the internal actions, int(S). We define the external actions, ext(S), to be
in(S)U out(S); the locally controlled actions, local(S), to be out(S)Uint(S); and
acts(S) to be all the actions of S. The external signature, extsig(S), is defined to
be the signature (in(S), out(S), 0). We will often refer to the external signature
as the external interface.

An I/O automaton A, which we also call simply an automaton, consists of
five components:

�9 sig(A), a signature

�9 states(A), a (not necessarily finite) set of states

202 8. MODELLING H: A S Y N C H R O N O U S S Y S T E M MODEL

�9 start(A), a nonempty subset of states(A) known as the start states or
initial states

�9 trans(A), a state-transition relation, where trans(A) C s t a t e s (A) x
acts(sig(A)) x states(A); this must have the property that for every state
s and every input action 7r, there is a transi t ion (s, 7r, s') C trans(A)

�9 tasks(A), a task partition, which is an equivalence relation on local(sig(A))
having at most countably many equivalence classes

We use acts(A) as shorthand for acts(sig(A)), and similarly in(A), and so on.

We say that A is closed if it has no inputs, that is, if in(A) = O.
This definition looks somewhat similar to that of a process in the synchronous

network model in Chapter 2. However, the signature allows for more gen-

eral types of actions than just the message-sending and message-receipt actions
modelled in the synchronous case. As for the set of process states in the syn-

chrononous network model, the set of states need not be finite. This generality is

important , since it permits us to model systems that have unbounded data struc-
tures such as counters and unbounded length queues. As in the synchronous case,
we allow multiple start states so that we can include some input information in
the start states.

We call an element (s, 7r, s ') o f trans(A) a transition, or step, of A. The

transi t ion (s, 7r, s ~) is called an input transition, output transition, and so on,

based on whether the action 7r is an input action, output action, and so on.
Unlike in the synchronous model, the transit ions are not necessarily associated
with the receipt of a collection of messages; they can be associated with arbi t rary
actions.

If for a part icular state s and action 7r, A has some transit ion of the form

(s, 7r, s~), then we say that 7r is enabled in s. Since every input action is required
to be enabled in every state, automata are said to be input-enabled. The input-
enabling assumption means that the automaton is not able to somehow "block"
input actions from occurring. This assumption means, for example, that a pro-
cess has to be prepared to cope in some way with any possible message value

when a message arrives. We say that state s is quiescent if the only actions that
are enabled in s are input actions.

You might think that the input-enabling property is too strong a restriction
to impose on a general model, because many system components are designed to

ezpect certain inputs only to occur at designated times. For example, an automa-
ton designed to model a resource-allocation system (as studied in Chapter 11)
might expect a user not to submit two requests in a row, before the system has
granted the first request. However, there are other ways of modelling such re-

8.1. I/O A UTOMATA 203

strictions on the environment, without requiring that the environment actually
be barred from performing the input. For example, in the resource-allocation
example, we might say that the environment is not expected to submit a second
request before receiving a response to the first, but that we do not constrain the
behavior of the system in the case of such an unexpected input. Or, we might
require the system to detect the unexpected input and respond with an error
message.

There are two major advantages of having the input-enabling property. First,
a serious source of errors in the development of system components is the failure
to specify what the component does in the face of unexpected inputs. Using a
model that requires consideration of arbitrary inputs is helpful in eliminating
such errors. And second, use of input-enabling makes the basic theory of the
model work out nicely; in particular, input-enabling makes it reasonable to use
simple notions of external behavior for an automaton, based on sequences of
external actions. (Theorem 8.4 is an example of a basic result that fails if we do
not assume input-enabling.)

The fifth component of the I /O automaton definition, the task partition
tasks(A), should be thought of as an abstract description of "tasks," or "threads
of control," within the automaton. This partition is used to define fairness condi-
tions on an execution of the automaton--condit ions that say that the automaton
must continue, during its execution, to give fair turns to each of its tasks. This is
useful for modelling a system component that performs more than one job--for
example, participating in an ongoing algorithm while at the same time period-
ically reporting status information to its environment. It is also useful when
several automata are composed to yield one larger automaton representing the
entire system. The partition is then used to specify that the automata being
composed all continue to take steps in the composed system. Another use of the
partition is in modelling asynchronous shared memory algorithms, as you will
see in Chapter 9. We will usually refer to the task-partit ion classes as just tasks.

We sometimes say that a task C is enabled in a state s; this is just a short
way of saying that some action in C is enabled in s.

We give an example of a simple I /O automaton. Here and in most of our de-
scriptions of I /O automata, the transition relation is described in a precondition-
effect style. This style groups together all the transitions that involve each par-
ticular type of action into a single piece of code. The code specifies the conditions
under which the action is permitted to occur, as a predicate on the pre-state s.
Then it describes the changes that occur as a result of the action, in the form of
a simple program that is applied to s to yield s ~. The entire piece of code gets
executed indivisibly, as a single transition. Grouping the transitions according

204 8. M O D E L L I N G II: A S Y N C H R O N O U S S Y S T E M M O D E L

to their actions tends to produce concise code, because the transitions involving
each action typically involve only a small portion of the state.

Programs written in precondition-effect style normally use only very sim-
ple control structures. This tends to make the translation from programs to
I /O automata t ransparent , which makes it easier to reason formally about the
automata.

E x a m p l e 8 .1 .1 C h a n n e l I / O a u t o m a t o n

As an example of an I /O automaton, consider a communication chan-
nel automaton Ci,j. Let M be a fixed message alphabet. First we
give the signature, sig(Ci , j) . Here and elsewhere, we use the conven-
tion that if we do not mention a signature component (usually, the

internal actions), then that set of actions is empty.

Signature:
Input: Output:

send(m)i,j, m E M receive(m)i,j, m e M

The states, s ta tes (Ci , j) , and the start states, s tar t (Ci , j) , are most
conveniently described in terms of a list of state variables and their

initial values. This is just as in the synchronous setting.

States:
queue, a FIFO queue of elements of M, initially empty

The transitions of Ci,j a r e described by the following code:

Transitions:

send(m)i,j
Effect:

add m to queue

receive(m)i,j
Precondition"

m is first on queue
Effect:

remove first element of queue

This code should be self-explanatory: the send action is allowed
to occur at any time and has the effect of adding the message to
the end of queue, while the receive action can only occur when the
message in question is at the front of queue, and has the effect of
removing it.

The task partition, tasks(Ci , j) , groups together all the receive

actions into a single task. That is, the job of receiving (i.e., delivering)
messages is thought of as a single task.

Tasks:
{receive(m)i,j " m e M}

8.1. I / / O A U T O M A T A 205

E x a m p l e 8 .1 .2 P r o c e s s I / O a u t o m a t o n

As a second example of an I / O au tomaton , consider a process au-

t o m a t o n Pi . This a u t o m a t o n has the ex terna l interface descr ibed

below. Here, V is a fixed value set, n u l l is a special value not in V,

and f is a fixed function, f : V ~ -+ V.

Signature:
Input:

init(v)i , v E V
receive(v)j,i, v C V, 1 < j < n, j ~ i

The s ta tes and s ta r t s ta tes are as follows:

States:
val, a vector indexed by {1 , . . . , n} of elements in V U {null}, all initially null

Output"
decide(v)~, v E V
send(v)~,j, v E V, 1 ~_ j ~_ n, j ~ i

The t rans i t ions are as follows"

Transitions:

init(v)i , v E V receive(v)j,i, v e V
Effect: Effect:

val(i) "-- v vat(j) "-- v

send(v)i , j , v E V decide(v)i, v e V
Precondition: Precondition:

val(i) - v for all j , 1 < j < n:
Effect: val(j) ~ null

none v - f (v a l (1) , . . . , val(n))
Effect"

none

Thus, the i n i t act ion causes Pi to fill in the des igna ted value in its

own posi t ion in the va l vector, while the rece i ve act ion causes it to

fill in ano ther posit ion. These values can be u p d a t e d any number of

t imes, by means of mult iple i n i t or rece i ve actions. Pi is allowed to

send its own value any number of t imes on any channel. Pi is also

allowed to decide any number of t imes, based on new appl icat ions of

f to its vector.
The task par t i t ion , t a s k s (P i) , contains n tasks: one for all the

send i , j act ions for each j ~r i, and one for all the d e c i d e actions.

Thus , sending on each channel is r ega rded as a single task, as is

r epor t ing decisions.

Tasks:
for every j ~ i:

{send(v) i , j " v e V }
{ decide(v)i " v e V }

206 8. MODELLING II: ASYN CHRONOUS S Y S T E M MODEL

Now we describe how an I /O automaton A executes. An execution fragment
of A is either a finite sequence, so, 7rl, Sl, 7r2,... , 7r~, s~, or an infinite sequence,

s0, Trl, Sl ,Tr2,. . . ,Tr~,Sr, . . . , of alternating states and actions of A such that
(sk, 7rk+l, Sk+l) is a transi t ion of A for every k > 0. Note that if the sequence is
finite, it must end with a state. An execution fragment beginning with a start

state is called an execution. We denote the set of executions of A by execs(A).
A state is said to be reachable in A if it is the final state of a finite execution of

A.
If c~ is a finite execution fragment of A and c~ ~ is any execution fragment of A

that begins with the last state of c~, then we write c~. c~ ~ to represent the sequence

obtained by concatenating c~ and c~ ~, eliminating the duplicate occurrence of the

last state of c~. Clearly, c~. c~ ~ is also an execution fragment of A.

Sometimes we will be interested in observing only the external behavior of

an I /O automaton. Thus, the trace of an execution c~ of A, denoted by trace(a),
is the subsequence of c~ consisting of all the external actions. We say tha t /3 is a
trace of A if ~ is the trace of an execution of A. We denote the set of traces of

A by traces (A).

Example 8.1.3 Execut ions

The following are three executions of the automaton Ci,j described

in Example 8.1.1 (assuming that the message alphabet M is equal to
the set {1, 2}). Here, we indicate the states by putting the sequences

in queue in brackets; A denotes the empty sequence.

[~], send(1)i,j, [1], receive(1)i,j, [~], send(2)i,j, [2], receive(2)i,j, [~]

[a], [1], [a], [2]

[A], send(1)i,j, [1], send(1)i,j, [11], send(1)i,j, [111],. . .

The last two are allowed even though they contain messages that are

sent but never received. This is because we have (so far) placed no
restrictions on executions saying that enabled actions must occur.
In Section 8.3 we introduce fairness requirements, which allow us to
express such restrictions.

8.2 O p e r a t i o n s on A u t o m a t a

In this section, we define the operation of composition and the operation of hiding
output actions for I /O automata.

8.2. OPERATIONS ON AUTOMATA 207

8.2.1 Composition

The composition operation allows an automaton representing a complex sys-
tem to be constructed by composing automata representing individual system
components. The composition identifies actions with the same name in differ-
ent component automata. When any component automaton performs a step
involving 7r, so do all component automata that have 7r in their signatures.

We impose certain restrictions on the automata that may be composed.
First, since internal actions of an automaton A are intended to be unobservable
by any other automaton B, we do not allow A to be composed with B unless the
internal actions of A are disjoint from the actions of B. (Otherwise, A's perfor-
mance of an internal action could force B to take a step.) Second, in order that
the composition operation might satisfy nice properties (such as Theorem 8.4
below), we establish a convention that at most one component automaton "con-
trols" the performance of any given action; that is, we do not allow A and B to
be composed unless the sets of output actions of A and B are disjoint. Third,
we do not preclude the possibility of composing a countably infinite collection of
automata, but we do require in this case that each action must be an action of
only finitely many of the component automata. This latter restriction is needed
because otherwise Theorem 8.3 (for example) fails.

Why do we not simply rule out the composition of infinitely many automata?
After all, physical computer systems consist of only finitely many components
(computers, message channels, etc.). The reason for allowing infinite composi-
tion is that I /O automata are used to model logical systems as well as physical
systems. A logical system can consist of a large number of logical components,
intended to be implemented on a physical system with fewer components. In
fact, some logical systems allow components to be created dynamically, during
execution~possibly infinitely many components over the course of an infinite
execution. (For example, database systems can allow the creation of new trans-
action instances while the system is executing.) The way to model component
creation using I /O automata is to imagine that all possible components that
might ever be created arc actually present from the beginning but have special
wakcup input actions that wake them up when they are supposed to be created.
With this modelling trick, the ordinary composition operator is adequate for
describing the way the dynamically created components interact with the rest
of the system. But it is necessary to allow infinitely many components to be
combined.

Formally, we define a countable collection {Si}i~I of signatures to be com-
patible if for all i, j E I, i # j , all of the following hold:

1. i t(s) n act (Sj) = 0

208 8. M O D E L L I N G II: A S Y N C H R O N O U S S Y S T E M M O D E L

2. out(S)n o u t (s j) = 0

3. No action is contained in infinitely many sets acts(S i)

We say that a collection of automata is compatible if their signatures are com-
patible.

When we compose a collection of automata, output actions of the compo-
nents become output actions of the composition, internal actions of the compo-
nents become internal actions of the composition, and actions that are inputs to
some components but outputs of none become input actions of the composition.

Formally, the composition S = l-lie1 Si of a countable compatible collection of
signatures {Si}i~I is defined to be the signature with

�9 o t(s) =

�9 in t (S) = Uiei int(Si)

�9 i (s) = -

Now the composition A = Y i i c I Ai of a countable, compatible collection of
I /O a u t o m a t a {Ai}iEI can be defined. It is the automaton defined as follows "1

�9 sig(A) = [Ii~I sig(Ai)

�9 states(A) = [lie1 states(Ai)

�9 s tart(A) = I-IieI s tart(Ai)

�9 trans(A) is the set of triples (s, ~, s') such that, for all i E I, if ~ E acts(Ai) ,
!

then (si, 7~, s~) E trans(Ai); otherwise si - s i

�9 t a s k s (A) = Ui~itasks(Ai)

Thus, the states and start states of the composition automaton are vectors of
states and start states, respectively, of the component automata. The transitions
of the composition are obtained by allowing all the component automata that
have a particular action ~ in their signature to participate simultaneously in
steps involving ~, while all the other component automata do nothing. The task

parti t ion of the composition's locally controlled actions is formed by taking the
union of the components ' task partitions; that is, each equivalence class of each

1The II notation in the definition of start(A) and states(A) refers to the ordinary Cartesian
product, while the II notation in the definition of sig(A) refers to the composition operation just
defined, for signatures. Also, we are here using the notation si to denote the ith component of
the state vector s.

8.2. O P E R A T I O N S ON A U T O M A T A 209

component automaton becomes an equivalence class of the composition. This

means that the task structure of individual components is preserved when the

components are composed. Notice that since the automata Ai are input-enabled,

so is their composition. It follows that I-IicI Ai is actually an I /O automaton.
When I is a finite set, we sometimes use the infix operation symbol x to de-

note composition. For instance, if I = {1 , . . . , n}, we sometimes denote I-Iicx Ai
b y A l X - - - x A n .

Notice that an action 7r that is an output of one component and an input of

another is classified as an output action in the composition, not as an internal
action. This is because we want to permit the possibility of further communica-

tion using 7r. For example, suppose that automaton A has 7r as an output action,
while automata B and C both have 7r as input actions. Thus, 7r is essentially

a broadcast action from A to both B and C in the composition A x B x C of
the three automata. We would like to be able to think about this composition

in a modular way, first constructing A x B, then composing the result with C.
According to the way we have defined composition, A x B x C is actually iso-

morphic to (A x B) x C, the result of first composing A and B, then composing

the result with C. But if 7r were classified as internal in the composition A x B,
then we no longer would have this modularity: the composition A x B could

not even be composed with C, since the first compatibility condition would be
violated.

It is possible to "hide" actions that are used for communication between com-
ponents, thereby preventing them from being used for further communication.

This is done using the hiding operation defined in Section 8.2.2 in addition to

the composition operation.

Example 8.2.1 Composit ion of automata

Consider a fixed index set I = {1 , . . . , n} and let A be the composi-
tion of all the process automata Pi, i E I, from Example 8.1.2 and all

the channel automata Ci,j, i , j E I, from Example 8.1.1. In order to
compose them, we must assume that the message alphabet M for the
channel automata contains the value set V for the process automata.
Figure 8.3 depicts the "architecture" for the special case where n = 3.

The resulting composition is a single automaton representing a
distributed system. The state of the system consists of a state for each

process (each a vector of values, one per process), plus a state for

each channel (each a queue of messages in transit). Each transition

of the system involves one of the following:

210 8. MODELLING H: A S Y N C H R O N O US S Y S T E M MODEL

F i g u r e 8.3" Composition of Pis and Ci,js.

1. An init(v)i input action, which deposits a value in Pi's val(i)
variable, val(i)i 2

2. A send(v)~,j output action, by which P~'s value val(i)~ gets put
into channel Ci,j

3. A receive(v)i,j output action, by which the first message in Ci,j
is removed and simultaneously placed into Pj's variable val(i)j

4. A decide(v)i output action, by which Pi announces its current
computed value

A sample trace of this composition, for n - 2, where the value set V
is N and where f is addition, is

init(2)l, init(1)2, send(2)1,2, receive(2)1,2, send(i)2,1,
receive(I)2,1, init(4)l, init(O)2, decide(5)1, decide(2)2

In the unique system state that is reachable using this trace, P1 has
val vector (4, 1) and P2 has val vector (2, 0), and both channels are
empty. Of course, there are many other traces that can arise in
executions of this composed system.

2As in the chapters on the synchronous model, we use the convention of subscripting a
variable by the index of the process at which the variable resides.

8.2. O P E R A T I O N S ON A U T O M A T A 211

We close this subsection with three basic results that relate the executions

and traces of a composition to those of the component automata. The first says
that an execution or trace of a composition "projects" to yield executions or

traces of the component automata. Given an execution, a = so, 7rl, S l , . . . , of A,
let alAi be the sequence obtained by deleting each pair 7r~, s~ for which :r~ is not
an action of Ai and replacing each remaining s~ by (s~)i, that is, automaton Ai's
piece of the state Sr. Also, given a trace/3 of A (or, more generally, any sequence
of actions), let/31Ai be the subsequence of 13 consisting of all the actions of Ai
in/3. We also use the I notation to represent the subsequence of a sequence/3 of
actions consisting of all the actions in a given set in/3.

T h e o r e m 8.1 Let {Ai}ieI be a compatible collection of automata and let A =

I-IiEI Ai.

1. I f a E execs(A), then aIA~ ~ execs(Ai) for every i E I.

2. I f ~ E traces(A), then/3lAi E traces(Ai) for every i E I.

P r o o f . The proof is left as an exercise. V]

The other two are converses of Theorem 8.1. The next theorem says that,

under certain conditions, executions of component automata can be "pasted to-

gether" to form an execution of the composition.

T h e o r e m 8.2 Let {Ai}iEI be a compatible collection of automata and let A =
l--[iEI Ai. Suppose ai is an execution of Ai for every i E I, and suppose ~ is a
sequence of actions in ext(A) such that/31Ai = trace(ai) for every i E I. Then
there is an execution a of A such that/3 = trace(a) and ai = aiAi for every
i E I .

P r o o f . The proof is left as an exercise.

The final theorem says that traces of component automata can also
together to form a trace of the composition.

[-]

be pasted

T h e o r e m 8.3 Let {Ai}iEI be a compatible collection of automata and let A =
YIiEI Ai. Suppose/3 is a sequence of actions in ext(A). If/3lAi E traces(Ai) for
every i E I, then/3 E traces(A).

P r o o f . The proof is left as an exercise. [-1

Theorem 8.3 implies that in order to show that a sequence is a trace of
a system, it is enough to show that its projection on each individual system

component is a trace of that component.

212 8. M O D E L L I N G H: A S Y N C H R O N O U S S Y S T E M M O D E L

8.2.2 Hiding

We now define an operation that "hides" output actions of an I /O automaton
by reclassifying them as internal actions. This prevents them from being used
for further communication and means that they are no longer included in traces.

We first define the hiding operation for signatures" if S is a signature and
C_ out(S) , then hideq,(S) is defined to be the new signature S', where in(S') -

in(S) , out(S') - out(S) - ~, and int(S ') - int(S) U ~.
The hiding operation for I /O au tomata is now easy to define" if A is an

au tomaton and (I) C_ out(A), then hidee(A) is the au tomaton A' obtained from
A by replacing s i g (A) w i t h s i g (A ') - hideq~(sig(A)).

8.3 Fairness

In distr ibuted systems, we are usually interested only in those executions of a
composition in which all components get fair turns to perform steps. In this
section, we define an appropriate notion of fairness for I /O automata .

Recall that each I /O au tomaton comes equipped with a part i t ion of its locally
controlled actions; each equivalence class in the parti t ion represents some task
that the au tomaton is supposed to perform. Our notion of fairness is that each
task gets infinitely many opportunit ies to perform one of its actions.

Formally, an execution fragment c~ of an I /O automaton A is said to be fair
if the following conditions hold for each class C of tasks(A):

1. If c~ is finite, then C is not enabled in the final state of c~.

2. If c~ is infinite, then c~ contains either infinitely many events from C or
infinitely many occurrences of states in which C is not enabled.

Here and elsewhere, we use the term event to denote the occurrence of an action
in a sequence, for example, an execution or a trace.

We can understand the definition of fairness as saying that infinitely often,
each task (i.e., equivalence class) C is given a turn. Whenever this happens,
either an action of C gets performed or no action from C could possibly be
performed since no such action is enabled. We can think of a finite fair execution
as an execution at the end of which the au tomaton repeatedly gives turns to all
the tasks in round-robin order, but never succeeds in performing any action since
none are enabled in the final state.

We denote the set of fair executions of A by fairezecs(A). We say tha t /3 is
a fair trace of A if/3 is the trace of a fair execution of A, and we denote the set
of fair traces of A by fairtraces(A).

8.3. F A I R N E S S 213

E x a m p l e 8.3.1 Fairness

In Example 8.1.3, the first execution given is fair, because no receive

action is enabled in its final state. The second is not fair, because it
is finite and a receive action is enabled in the final state. The third
is also not fair, because it is infinite, contains no receive events, and
has receive actions enabled at every point after the first step.

E x a m p l e 8.3.2 Fairness

To further illustrate the fairness definition, consider the following
Clock I /O automaton, representing a discrete clock.

Clock automaton:

Signature:

Input:
request

Output:
clock(t), t C N

Internal"
tick

States:
counter C 1% initially 0
flag, a Boolean, initially false

Transit ions:
tick

Precondition:
true

Effect:
counter := counter + 1

request
Effect"

flag := true

Tasks:
{tick}
{ clock(t)" t e N}

clock(t)
Precondition:

f l a g - true
c o u n t e r - t

Effect:
flag " - false

The Clock automaton simply "ticks" forever, incrementing a counter.
In addition, if a request arrives, Clock responds (in a separate step)
with the current value of the counter. The following is the sequence
of actions in a fair execution of Clock"

214 8. M O D E L L I N G H: A S Y N C H R O N O US S Y S T E M M O D E L

tick, tick, tick,

The following is the action sequence of an execution that is not fair:

tick, tick, tick

In fact, Clock has no finite fair executions, since tick is always en-
abled. The following is fair:

tick, tick, request, tick, tick, clock(4), tick, t i c k , . . . ,

since once Clock has responded to the single request, no further clock
action is enabled. Finally, the following is not fair:

tick, tick, request, tick, tick, t i c k , . . . ,

because after the request event, the clock task remains enabled but
no clock action ever occurs.

We can prove the following analogues to Theorems 8.1-8.3:

T h e o r e m 8.4 Let {Ai}i~I be a compatible collection of automata and let A =

I]iei Ai.

1. I f c~ E fairexecs(A), then c~]Ai C fairexecs(Ai) for every i C I.

2. I f ~ E fairtraces(A), then/3]Ai C fairtraces(Ai) for every i E I.

T h e o r e m 8.5 Let {Ai} icI be a compatible collection of automata and let A =
1-IicI Ai. Suppose ai is a fair execution of Ai for every i C I, and suppose ~ is a
sequence of actions in ext(A) such that ~lAi = trace(c~i) for every i E I. Then
there is a fair execution ~ of A such that/3 = trace(a) and c~i = c~lAi for every
i c I .

T h e o r e m 8.6 Let {Ai} icI be a compatible collection of automata and let A =
Ilia1 Ai. Suppose/~ is a sequence of actions in ext(A). If/31Ai E fairtraces(Ai)
for every i E I, then/3 C fairtraces(A).

P r o o f s . The proofs are left as exercises. [=]

Theorems 8.1-8.3 and Theorems 8.4-8.6 make it possible to reason in a mod-
ular way about the behavior of a dis tr ibuted system modelled as a composition.

8.4. I N P U T S A N D O U T P U T S FOR P R O B L E M S 215

Example 8.3.3 Fairness

We consider the fair executions of the system of three processes and

three channels in Example 8.2.1. In every fair execution, every mes-
sage that is sent is eventually received. Also, in every fair execution
containing at least one initi event for each i, each process sends
infinitely many messages to each other process and each process per-

forms infinitely many decide steps.
On the other hand, in every fair execution that does not contain

at least one init event for each process, no process ever performs
a decide step. Note that fairness imposes no requirements on the
occurrence of init events-- the number of initi events involving each

Pi can be finite (possibly zero) or infinite.

We close this section with a theorem that says that every finite execution (or
trace) can be extended to a fair execution (or trace).

T h e o r e m 8.7 Let A be any I / O automaton.

1. I f a is a finite execution of A, then there is a fair execution of A that starts
with a.

2. If/3 is a finite trace of A, then there is a fair trace of A that starts with/3.

3. I f a is a finite execution of A and/3 is any (finite or infinite) sequence of
input actions of A, then there is a fair execution a . a' of A such that the
sequence of input actions in a' is exactly/3.

~. I f /3 is a finite trace of A and/3' is any (finite or infinite) sequence of
input actions of A, then there is a fair execution a . a' of A such that
trace(a) =/3 and such that the sequence of input actions in a' is exactly
~'.

P r o o f . The proof is left as an exercise. Eli

8.4 Inputs and Outputs for Problems

Problems to be solved by I /O automata normally have some type of input and
output; we must model this somehow. In the synchronous model, we generally
modelled such input and output in terms of special state variables, assuming that
inputs are built into designated variables in the start states and that outputs
appear in designated write-once variables. It is possible to do the same thing

216 8. MODELLING II: A S Y N C H R O N O US S Y S T E M MODEL

in the asynchronous setting. However, since I /O automata can have input and
output actions, it is usually more natural to model inputs and outputs of systems
directly, in terms of input and output actions.

8.5 Propert ies and Pr oo f Methods

I /O automata can be used not only to describe asynchronous systems precisely,
but also to formulate and prove precise claims about what the systems do. In
this section, we describe some of the types of properties that are typically proved
about asynchronous systems, as well as some of the methods that are typically
used to prove them.

In our chapters on asynchronous algorithms, Chapters 10-13 and 15-22, we
use the methods described here (plus some ad hoc arguments) to prove properties
of asynchronous algorithms. Whether the arguments are done using one of the
typical methods or not, they can all be made rigorous using I /O automata.

8.5.1 Invariant Assert ions

The most fundamental type of property to be proved is an invariant assertion,
or just invariant, for short. In this book, we define an invariant assertion of an
automaton A to be any property that is true of all reachable states of A.

Invariants are typically proved by induction on the number of steps in an
execution leading to the state in question. More generally, it is possible to prove
invariants one (or a few) at a time, making use of the invariants previously proved
when carrying out subsequent inductive proofs.

Recall that we also used invariant assertions to prove properties of syn-
chronous algorithms. In the synchronous setting, invariants are proved about
the system state after an arbitrary number of rounds. On the other hand, in
the asynchronous setting, invariants are proved about the system state after an
arbitrary number of steps. Since the granularity of the reasoning is much smaller
for asynchronous algorithms, the arguments are typically longer, more detailed,
and more difficult.

8 .5 .2 T r a c e Properties

An I /O automaton can be viewed as a "black box" from the point of view of
a user. What the user sees is just the traces of the automaton's executions (or
fair executions). Some of the properties to be proved about I /O automata are
naturally formulated as properties of their traces or fair traces.

Formally, a trace property P consists of the following:

8.5. PROPERTIES AND PROOF METHODS 217

�9 sig(P), a signature containing no internal actions

�9 traces(P), a set of (finite or infinite) sequences of actions in acts(sig(P))

That is, a t race proper ty specifies both an external interface and a set (in other
words, a property) of sequences observed at that interface. We write acts(P) as
shor thand for acts(sig(P)), and similarly in(P), and so on.

The s ta tement that an I / O au tomaton A satisfies a t race proper ty P can
mean either of (at least) two different things"

1. extsig (A) - sig (P) and traces (A) C_ traces (P)

2. extsig(A) - sig(P) and fairtraces (A) C_ traces (P)

In either case, the intuitive idea is that every external behavior that can be pro-
duced by A is permi t ted by proper ty P. Note that we do not require the opposite
inc lus ion- - tha t every trace of P can actually be exhibi ted by A. Nevertheless,
the given inclusion s ta tements are not trivial" the fact that A is input-enabled

ensures that fairtraces(A) (and so traces(A)) contains a response by A to each
possible sequence of input actions. If fairtraces(A) C traces(P), then all of the
resulting sequences must be included in the proper ty P.

Since there is some ambigui ty in what we mean by an au tomaton "satisfying
a t race property," we will say explicitly what we mean each time the issue arises.

Example 8.5.1 Automata and trace propert ies

Consider au tomata and trace propert ies with input set {0} and output
set {1, 2}. First suppose that traces(P) is the set of sequences over
{0, 1, 2} that include at least one 1. Then fairtraces(A) C_ traces(P)
means that in every fair execution, A must output at least one 1. It
is easy to design an I /O automaton for which this is the case- - for
example, it can include a task whose entire job is to output 1. The
fairness condition is used to ensure that this task actually does get
a chance to output 1. On the other hand, there does not exist any
au tomaton A for which traces(A) C_ traces(P), because traces(A)
always includes the empty str ing A, which does not contain a 1.

Now suppose that traces(P) is the set of sequences over {0, 1, 2}
that include at least one 0. In this case, there is no I / O automa-
ton A (with the given external interface) for which fairtraces(A) C_
traces(P), because fairtraces(A) must contain some sequence that
includes no inputs.

We define a composi t ion operation for trace properties. Namely, we say that

a countable collection {Pi}icI of trace propert ies is compatible if their s ignatures

218 8. MODELLING H: ASYNCHRONO US S Y S T E M MODEL

are compatible.
that

Then the composition P - 1-IicI Pi is the trace property such

�9 sig(P) = Hi~I sig(Pi)

�9 traces(P) is the set of sequences /3 of external actions of P such that
/~Iacts(Pi) E traces(Pi) for a l l / C I

8 . 5 . 3 S a f e t y a n d L i v e n e s s P r o p e r t i e s

In this section, we define two important special types of trace properties--safety
properties and liveness properties, give two basic results about these types of
properties, and indicate how such properties can be proved.

S a f e t y p r o p e r t i e s . We say that a trace property P is a trace safety property,
or a safety property for short, provided that P satisfies the following conditions.

1. traces (P) is nonempty.

2. traces(P) is prefix-closed, that is, if/3 c traces(P) and/3 ' is a finite prefix
of/3, then/3 ' C traces(P).

3. traces(P) is limit-closed, that is, if /~1, /~2, . . . is an infinite sequence of
finite sequences in traces(P), and for each i , /3 / i s a prefix of/3/+1, then the
unique sequence ~ that is the limit of the/3i under the successive extension
ordering is also in traces (P).

A safety property is often interpreted as saying that some particular "bad"
thing never happens. We presume that, if something bad happens in a trace,
then it happens as a result of some particular event in the trace; therefore, limit-
closure is a reasonable condition to include in the definition. Also, if nothing
bad happens in a trace, then nothing bad happens in any prefix of the trace;
thus, prefix-closure is reasonable. Finally, nothing bad can happen before any
events occur, that is, nothing bad happens in the empty sequence A; therefore,
nonemptiness is a reasonable condition.

Example 8.5.2 Trace safety property

Suppose sig(P) consists of inputs init(v), v E V and outputs decide(v),
v E V. Suppose traces(P) is the set of sequences of init and decide
actions in which no decide(v) occurs without a preceding init(v) (for
the same v). Then P is a safety property.

8.5. PROPERTIES AND PROOF METHODS 219

If P is a safety property, then the statement that traces(A) C_ traces(P) is
equivalent to the statement that fairtraces(A) C_ traces(P), which is in turn
equivalent to the statement that the finite traces of A are all in traces(P). (We
leave the proof as an exercise.) For a given automaton A, the simplest to prove
of these three statements is usually that the finite traces of A are all in traces(P).
This is usually proved by induction on the length of a finite execution generating
the given trace. The strategy is closely related to the strategy used to prove
invariants. In fact, by adding a state variable to A to keep track of the trace
that has been generated so far, the safety property P can be reformulated as an
invariant about the automaton's state.

L i v e n e s s p r o p e r t i e s . We say that a trace property P is a trace liveness prop-
erty, or a liveness property for short, provided that every finite sequence over
acts(P) has some extension in traces(P).

A liveness property is often informally understood as saying that some par-
ticular "good" thing eventually happens (though the formal definition includes
more complicated statements than this). We assume that no matter what has
happened up to some point, it is still possible for the good occurrence to happen
at some time in the future.

E x a m p l e 8.5.3 T r a c e l iveness p r o p e r t y

Suppose sig(P) consists of inputs init(v), v e V and outputs decide(v),
v E V. Suppose traces(P) is the set of sequences/3 of init and decide
actions in which, for every init event in/3, there is some decide event
occurring later in/3. Then P is a liveness property. The same is true
for the condition that for every init event in /3, there are infinitely
many decide events occurring later in ,~.

One often wants to prove that fairtraces(A) C_ traces(P) for some automaton
A and liveness property P, that is, that the fair traces of A all satisfy some
liveness property. Methods based on temporal logic work well in practice for
proving such claims. A temporal logic consists of a logical language containing
symbols for temporal notions like "eventually" and "always," plus a set of proof
rules for describing and verifying properties of executions.

Another method for proving liveness claims, which we call the progress func-
tion method, is specially designed for proving that some particular goal is even-
tually reached. This method involves defining a "progress function" from states
of the automaton to a well-founded set and showing that certain actions are
guaranteed to continue to decrease the value of this function until the goal is
reached. The progress function method can be formalized using temporal logic.

220 8. MODELLING II: A S Y N C H R O N O U S S Y S T E M MODEL

In this book, we prove liveness properties informally; however, all our liveness
arguments can be formalized using temporal logic.

There are two simple theorems that describe basic connections between safety
and liveness properties. The first says that there are no nontrivial trace properties
that are both safety and liveness properties.

T h e o r e m 8.8 If P is both a safety property and a liveness property, then P is
the set of all (finite and infinite) sequences of actions in acts(P).

P r o o f . Suppose that P is both a safety and a liveness property and let /3 be
an arbi t rary sequence of elements of acts(P). I f /3 is finite, then since P is
a liveness property, /3 has some extension r in traces(P). Then since P is a
safety p roper ty - - in particular, since traces(P) is prefix-closed--i t must be that
/3 E traces(P). Thus, any finite sequence of elements of acts(P) must be in
traces(P).

On the other hand, if/3 is infinite, then for each i > 1, define/3i to be the
length i prefix of/3. As shown in the previous paragraph, each/3i is in traces(P).
Therefore, since P is a safety p roper ty - - in particular, since traces(P) is limit-
c losed-- i t must be tha t /3 C traces(P).

The second theorem says that every trace property can be expressed as the
intersection (or equivalently, the conjunction) of a safety property and a liveness
property.

T h e o r e m 8.9 If P is an arbitrary trace property with traces(P) r O, then there
exist a safety property S and a liveness property L such that

1. s i g (S) - s i g (L) - sig(P)

2. traces(P) - traces(S)n traces(L)

P r o o f . Let traces(S) be the prefix- and limit-closure of traces(P), that is, the
smallest set of sequences over acts(P) that is prefix-closed and limit-closed and
contains traces(P). Obviously, S is a safety property. Let

traces (L) - traces (P)

U {/3"/3 is a finite sequence and no extension of/3 is in traces(P)}.

Then we claim that L is a liveness property. To see this, consider any finite
sequence/3 of actions in acts(P). If some extension of/3 is in traces(P), then
certainly that extension is in traces (L) since traces (P) C_ traces (L). On the other
hand, if no extension of/3 is in traces(P), then/3 is explicitly defined to be in

8.5. PROPERTIES AND PROOF METHODS 221

traces(L). In either case,/3 has an extension in traces(L), so that L is a liveness

property.
Now we claim that traces(P) = traces(S)n traces(L). It is obvious that

traces(P) C_ traces(S)n traces(L), since each of S and L is explicitly defined so
that its traces include those of P. We must show that traces(S) N traces(L) C_
traces(P). So suppose for the purpose of contradiction that /3 C traces(S) n
traces(L) and /3 ~ traces(P). Then by definition of L, /3 is a finite sequence
having no extension in traces(P). But /3 E traces(S), which is the prefix- and
limit-closure of traces(P); since/3 is a finite sequence, ~ must be a prefix of an
element of traces(P). This is a contradiction. F-]

So far, we have only defined safety and liveness properties for traces. But
analogous definitions can also be made for safety and liveness properties of exe-
cutions, and the results are analogous to those for traces. In future chapters, we
will often classify properties of executions as safety or liveness properties.

8.5.4 Compositional Reasoning

In order to prove properties of a composed system of automata, it is often helpful
to reason about the component automata individually. In this section, we give
some examples of this sort of "compositional" reasoning.

First, if A = 1-Ii~I Ai and each Ai satisfies a trace property Pi, then it follows
that A satisfies the product trace property P = 1-IieI Pi. Theorem 8.10 states
this more precisely.

T h e o r e m 8.10 Let {Ai}icI be a compatible collection of automata and let A -
l-IieI Ai. Let {Pi}iei be a (compatible) collection of trace properties and let
P - I-Ii~i Pi.

1. If extsig(Ai) - sig(Pi) and traces(Ai) C traces(Pi) for every i,
extsig(A) - sig(P) and traces(A) C_ traces(P).

then

2. If extsig(Ai) - sig(Pi) and fairtraces(Ai) C traces(Pi) for every i, then
e x t s i g (A) - sig(P) and fairtraces(A) C traces(P).

P r o o f Ske tch . Part 1 can be shown using Theorem 8.1 (which says that every
trace of the composed system A projects on each Ai to give a trace of Ai). Part
2 follows analogously from Theorem 8.4. [2]

E x a m p l e 8.5.4 Sa t i s fy ing a p r o d u c t t r a c e p r o p e r t y

Consider the composed system of Example 8.2.1. Each process au-
tomaton Pi satisfies (in the sense of trace inclusion) a trace safety

222 8. MODELLING H: ASYNCHRONOUS SYSTEM MODEL

property that asserts that any decidei event has a preceding initi
event. Also, each channel automaton Ci,j satisfies a trace safety prop-
erty that asserts that the sequence of messages in receivei,j events is
a prefix of the sequence of messages in sendi,j events.

Then it follows from Theorem 8.10 that the composed system
satisfies the product trace safety property. This means that in any
trace of the combined system, the following hold:

1. For every i, any decidei event has a preceding init4 event.

2. For every i and j , i -7(= j , the sequence of messages in receivei,j
events is a prefix of the sequence of messages in sendi,j events.

Second, suppose that we want to show that a particular sequence of actions

is a trace of a composed system A = 1-IiEI Ai. This typically arises if A is an
abstract system used as a problem specification. Theorem 8.3 shows that, in
order to do this, it is enough to show that the projection of the sequence on each
of the system components is a trace of that component. Theorem 8.6 implies an
analogous result for fair traces.

Third, consider the compositional proof of safety properties. Suppose we

want to show that a composed system A = 1-Ii~I Ai satisfies a safety property
P. One strategy is to show that none of the components Ai is the first to violate
P. This strategy is useful, for example, when we want to show that a pair of
components observe a "handshake protocol" between them, alternating signals
from one to the other. If we can show that neither component is the first to
violate the handshake protocol, then we know that the protocol is observed.

Formally, we define the notion of an automaton "preserving" a safety prop-
erty. Let A be an I /O automaton and let P be a safety property with acts(P) N
int(A) = 0 and in(P)n out(A) = 0. We say that A preserves P if for every finite
sequence ~ of actions that does not include any internal actions of A, and every

7r E out(A), the following holds. I f /3 lac ts (P) E traces(P) and ~TrlA E traces(A),
then /~Triacts(P) E traces(P). This says that A is not the first to violate P:
as long as A's environment only provides inputs to A in such a way that the
cumulative behavior satisfies P, then A will only perform outputs such that the
cumulative behavior satisfies P.

The key fact about preservation of safety properties is that if all the compo-
nents in a composed system preserve a safety property, then so does the entire
system. Moreover, if the composed system is closed, then it actually satisfies the
safety property.

8.5. PROPERTIES AND PROOF M E T H O D S 223

Theorem 8.11 Let {Ai}i~I be a compatible collection of automata and let A =
l-IicI Ai. Let P be a safety property with a c t s (P) n int(A) - 0 and i n (P) N
out(A) = 0 .

1. If Ai preserves P for every i C I, then A preserves P.

2. If A is a closed automaton, A preserves P, and acts(P) C_ ext(A), then
traces(A)tacts(P) C_ traces(P).

3. If A is a closed automaton, A preserves P, and a c t s (P) = ext(A), then
traces(A) C_ traces (P) .

P r o o f . The proof is left as an exercise, ff]

Example 8.5.5 Automata preserving properties

Let A be an automaton with output a and input b, and B an automa-
ton with output b and input a. We consider the safety property P
such that sig(P) has no inputs and has both a and b as outputs, and
such that traces(P) is the set of all finite and infinite sequences of
alternating a's and b's, beginning with an a (plus the empty sequence

A). P represents a handshake protocol between A and B, with A

initiating the handshake.
Suppose that A has one variable turn, with values in the set {a, b},

initialized at a. A's transit ions are as follows.

T r a n s i t i o n s :

a b
Precondi t ion :

t u r n = a

Effect:

t u r n := b

Effect:

t u r n : = a

Thus, A can perform a at the beginning and again each time it
receives a b input. If it receives two b inputs in a row before it has
had a chance to respond with the next a, then A can only respond

with one a.
Automaton B has one variable turn, with values in the set {a, b},

initialized at a, plus a Boolean variable error, initially false. B's

transitions are as follows.

T r a n s i t i o n s :

b a

Precondi t ion :

t u r n - b or e r r o r - t r u e

Effect"

if e r r o r - f a l s e then t u r n " - a

Effect:
if e r r o r - f a l s e then

if t u r n - a then t u r n " - b

else e r r o r " - t r u e

224 8. MODELLING II: ASYNCHRONOUS S Y S T E M MODEL

Thus, B can only perform b once each time it receives an a input,
as long as its environment does not submit two a's in a row. If the
environment does submit two a's in a row, then B sets an error flag,
which allows it to output b's at any time.

Each of A and B preserves P. It follows from Theorem 8.11 that
every trace of the composition A x B is in traces(P).

8 .5 .5 H i e r a r c h i c a l P r o o f s

In this section, we describe an important proof strategy based on a hierarchy
of automata. This hierarchy represents a series of descriptions of a system or
algorithm, at different levels of abstraction. The process of moving through
the series of abstractions, from the highest level to the lowest level, is known
as successive refinement. The top level may be nothing more than a problem
specification written in the form of an automaton. The next level is typically
a very abstract representation of the system: it may be centralized rather than
distributed, or have actions with large granularity, or have simple but inefficient
data structures. Lower levels in the hierarchy look more and more like the actual
system or algorithm that will be used in practice: they may be more distributed,
have actions with small granularity, and contain optimizations. Because of all this
extra detail, lower levels in the hierarchy are usually harder to understand than
the higher levels. The best way to prove properties of the lower-level automata is
by relating these automata to automata at higher levels in the hierarchy, rather
than by carrying out direct proofs from scratch.

Chapters 4 and 6 contain examples of such a process of refinement for the
synchronous setting. For example, in Chapter 6, we first presented an algorithm
(FloodSet) for agreement in the face of stopping failures that was liberal in its
use of communication. Then we presented an improved ("lower-level") version
of the algorithm (OptFloodSet) in which many of the messages were pruned out;
this yielded a smaller bound on communication. The improved algorithm was
verified using a simulation relation relating the states of the two algorithms. The
correctness proof involved showing, by induction on the number of rounds, that
the simulation relation was preserved throughout the computation. Essentially,
this strategy involved running the two algorithms side by side, with the same
inputs and failure pattern, and observing similarities between the two executions.

How can we extend the simulation method to asynchronous systems? The
asynchronous model allows much more freedom than does the synchronous model,
both in the order in which components take steps and in the state changes that
accompany each action. This makes it more difficult to determine which execu-
tions to compare. It turns out that it is enough to obtain a one-way relationship

8.5. PROPERTIES AND PROOF METHODS 225

between the two algorithms, showing that for any execution of the lower-level
au tomaton there is a "corresponding" execution of the higher-level automaton.
We do this by defining a simulation relation between states of the two automata.

Specifically, let A and B be two I /O automata with the same external in-
terface; we think of A as the lower-level automaton and B as the higher-level

automaton. Suppose f is a binary relation over states(A) and states(B), that is,
f C_ states(A) • states(B); we use the notation u E f (s) as an alternative way of
writing (s, u) E f . Then f is a simulation relation from A to B, provided that

both of the following are true"

1. If s E start(A), then f (s) A start(B) ~ O.

2. If s is a reachable state of A, u E f (s) is a reachable state of B, and
(s, 7~, s') E trans(A), then there is an execution fragment c~ of B starting
with u and ending with some u' E f (s ') , such that t race (a) - trace(u).

The first condition, or start condition, asserts that any start state of A has
some corresponding start state of B. The second condition, or step condition,
asserts that any step of A, and any state of B corresponding to the initial state
of the step, have a corresponding sequence of steps of B. This corresponding
sequence can consist of one step, many steps, or even no steps, as long as the
correspondence between the states is preserved and the external behavior is the
same. A representation of the step correspondence, for the case where 7~ is an
external action, appears in Figure 8.4. The following theorem gives the key

property of simulation relations:

Theorem 8.12 /f there is a simulation relation from A to B, then traces(A) C
traces(B).

P r o o f . The proof is left as an exercise. V]

In particular, Theorem 8.12 implies that any safety property that is satisfied
by B is also satisfied by A" if P is a trace safety property, extsig(A) - sig(P), and
traces(A) C_ traces(P), then also extsig(B) - sig(P) and traces(B) C_ traces(P).
Proofs of correctness based on simulation relations are quite s tyl ized--so stylized

that they are amenable to computer assistance.

Example 8.5.6 Simulation proof

As a simple example of a simulation proof, we show that two channel
automata compose to implement another channel automaton.

Let C be the communication channel given in Example 8.1.1. (We
suppress the subscripts in this example.) Let A and B be automata

226 8. MODELLING II: ASYNCHRONOUS SYSTEM MODEL

f (s)

, . . . _

v

f (s9

y -

S ~ S I

F i g u r e 8.4: Step correspondence for a simulation relation.

C:

D:

u. queue

send(m) _ f " ~
" - ~ . ~

send(m)__ (~
T f

~ " ~ pass(m) (~
A

s.B. queue s.A. queue

F i g u r e 8.5" Simulation relation f from D to C.

receive(m 2

receive(m)

that are the same as C except for some renaming of actions. Namely,

the outputs of B are renamed as pass(m) instead of receive(m), and

the inputs of A are renamed as pass(m) instead of send(m). Let D

be the result of composing A and B and then hiding the pass actions.

Note that C and D have the same external interface.

We claim that traces(D) C_ traces(C). To see this, we define a

simulation relation f from D to C. See Figure 8.5.

Namely, if s is a state of D and u is a state of C, then we define

(s, u) E f , provided that the following holds (we use dot notat ion

both to denote the value of a given variable in a state and to denote

a given au tomaton in a composition)"

8.5. P R O P E R T I E S AND PROOF M E T H O D S 227

u.queue is the concatenation of s.A.queue and s.B.queue
(with s.A. queue coming first)

To see that f is in fact a simulation relation, we must check the
two conditions in the definition. The start condition is trivial, because
the initial states of A, B, and C are all the empty queue. For the
step condition, suppose that s is a state of D, u E f (s) is a state of
C, and (s, 7r, s') E trans(D). We consider cases, based on the type
of action being performed.

1. ;r = send(m).

Let the corresponding execution fragment of C consist of a sin-
gle send(m) step. The given step in D adds m to the end of
s.B.queue, while the step in C adds m to the end of u.queue.
This preserves the state correspondence given by the definition

of f.

. 7r = r e c e i w (m) .

Let the corresponding execution fragment of C consist of a sin-
gle receive(m) step. The given step in D removes rn from the
front of s.A.queue. The correspondence between s and u im-
plies that m is also at the front of u.queue, which implies that
the receive(m) action is in fact enabled in u. Then the step in
C removes m from the front of u.queue. Again, this preserves
the state correspondence given by f .

3. 7r = pass(m).

Let the corresponding execution fragment of C consist of 0 steps.
Since the step of D does not affect the concatenation of the two
queues, the state correspondence is preserved.

It follows that f is a simulation relation. Since f is a simulation re-
lation, Theorem 8.12 implies that traces(D) C_ traces(C), as needed.

Simulations are sometimes also useful in helping to prove that liveness prop-
erties of B are satisfied by A. The idea is that a simulation relation from A to
B actually implies more than just trace inc lus ion~i t implies a close correspon-
dence, involving both traces and states, between each execution of A and some
execution of B. Such a strong correspondence, together with fairness assump-
tions for A, can sometimes be used to prove the needed liveness properties.

For example, here is one useful formal definition of a stronger correspondence
between executions. Let A and B be two I /O automata with the same input and
output actions. Let c~ and c~' be executions of A and B, respectively, and let f

228 8. M O D E L L I N G II: A S Y N C H R O N O U S S Y S T E M M O D E L

be a binary relation over states(A) and states(B). Then we say that c~ and c~'

correspond with respect to f , provided that there is a mapping g from indices
(occurrences) of states in c~ to indices of states in c~ ~, satisfying the following

properties"

1. g is monotone nondecreasing.

2. g exhausts all of c~ ~ (i.e., the supremum of the range of g is the supremum

of the indices of states in c~).

3. g-corresponding pairs of states are related by f .

4. Between successive g-corresponding pairs of states, the traces in c~ and c~ ~
are identical.

Then it is not hard to see that a simulation relation yields this type of corre-

spondence between executions"

T h e o r e m 8.13 I f f is a simulation relation from A to B, then for every exe-
cution c~ of A, there is an execution c~ I of B such that c~ and c~ ~ correspond with
respect to f .

Theorem 8.13 can be used to prove a liveness property for A, assuming a

similar liveness property for B. We use this strategy, for example, in our proof

sketch for a mutual exclusion algorithm (TicketME, Theorem 10.40) and our

proof sketch for a data link protocol (Stenning, Lemma 22.2).

8.6 Complexity Measures

Even though the I /O automaton model is asynchronous, it has a natural notion
of time complexity. For a given automaton A, we define upper time bounds for
any subset of the equivalence classes in the task parti t ion tasks(A). Specifically,
for any task C, we may define a bound upperc, which can be either a positive

real number or oc. Then for any fair execution c~ of A, a real-valued time can

be associated with every event of c~, subject to the following conditions:

1. The times are monotone nondecreasing in c~.

2. If c~ is infinite, then the times approach co.

3. From any point in c~, a task C can be enabled for time at most upperc
before some action in C must occur.

8.7. I N D I S T I N G U I S H A B L E E X E C U T I O N S 229

Roughly speaking, this imposes an upper bound of upperc on the time between
successive chances by task C to perform a step. A fair execution with times

associated in this way is called a timed execution.
Notice that, for a given set of upperc bounds, there are many ways that

times can be associated with the events of c~, that is, many timed executions.

We measure the time until some designated event 7r in c~ by the supremum of

the times that can be assigned to 7r in all such timed executions. Likewise, we

measure the time between two events in c~ by the supremum of the differences

between the times that can be assigned to those two events.

Example 8.6.1 Time analysis

Let c~ be any fair execution of the system of Example 8.2.1 in which
all processes receive init inputs. We associate an upper bound of

with each task of each process and an upper bound of d with the
single task of each channel. Then the time from when the last process

receives its first init input in c~ until all processes have performed a

decide output is at most t~ + d + t~ = d + 2g. The reason is that it

takes at most time t~ for the last process that receives an init input

to perform send events for all its neighbors. Then it takes at most
time d for all of these messages to be delivered, and then at most

time t~ for each process to perform decide.

8.7 Indist inguishable Execut ions

We define a notion of indistinguishability that will be useful in some impossi-

bility proofs. This is analogous to the notion of indistinguishability defined in

Section 2.4 for executions of synchronous systems.
If c~ and c~ ~ are executions of two composed systems of automata, each con-

taining automaton A, then we say that c~ and c~ ~ are indistinguishable to A
provided that c~lA = c~'lA.

8.8 Randomizat ion

As in synchronous systems, it is sometimes useful to allow components in asyn-
chronous systems to make random choices based on some given probability distri-

butions. In order to model such random choices, we augment the I /O automaton

model to obtain a new probabilistic I /O automaton model. A probabilistic I /O
automaton is just like an I /O automaton, except that the notion of a transit ion
is modified: instead of being a triple (s, 7c, s'), it is a triple of the form (s, 7r, P) ,

where P is a probabili ty distr ibution over some subset of the set of states. (If a

230 8. MODELLING II: ASYNCHRONOUS S Y S T E M MODEL

step does not involve a random choice, we model it using a trivial distribution
P.) Every probabilistic I /O automaton A has a nondeterministic version, N'(A),
which is obtained by replacing each transition (s, 7r, P) by the set of transitions
(s, 7r, s'), where s' is an element of the domain of P. Thus, Af(A) simply re-
places random choices with nondeterministic choices. Af(A) is an ordinary I /O
automaton.

An execution of probabilistic I /O automaton A is generated by means of a
series of pairs of choices. In each pair, a nondeterministic choice is made first, to
determine the next transition (s, 7r, P), and then a random choice is made, using
P, to determine the next state. The only restriction on the choices is that the
nondeterministic choice of the next transition must be "fair," in the sense that
all the executions generated by all possible sequences of random choices are fair
executions (in the usual sense)of the I /O automaton A/'(A).

As in the synchronous case, claims about what is computed by a randomized
system are usually probabilistic. When a claim is made, the intention is generally
that it is supposed to hold for all inputs and all fair patterns of nondeterministic
choices. As in Chapter 5, a fictitious adversary is usually invented to describe
these inputs and nondeterministic choices, and the automaton is required to
behave well in competition with any adversary.

8.9 Bibliographic Notes

The I /O automaton model was originally developed in Tuttle's M.S. thesis [217].
The important features of the model are summarized in papers by Lynch and Tut-
tle [217, 218]. Descriptions and proofs of algorithms modelled as I /O automata
are sprinkled throughout the research literature on distributed algorithms; some
representative examples appear in the work of Afek et al. and Bloom [3, 4, 53].
An example of the use of I /O automata to model systems with dynamic pro-
cess creation is the framework for modelling database concurrency control algo-
rithms presented in the book Atomic Transactions, by Lynch, Merritt, Weihl,
and Fekete [207]. The I /O automaton model has been influenced by many other
models for concurrent systems, most notably the asynchronous shared memory
model of Lynch and Fischer [216], the Actor model of newitt [7, 81], and the
Communicating Sequential Processes model of Hoare [159].

The origins of the notion of invariant assertion are discussed in the Biblio-
graphic Notes at the end of Chapter 2. The notion of trace property described
here is adapted from the "schedule module" definition in [217, 218]. The notions
of safety and liveness are adapted from work by Lamport [175] and by Alpern
and Schneider [8]. Theorem 8.9 is adapted from [8].

A good reference for temporal logic is the book by Manna and Pnueli [219].

8.10. E X E R C I S E S 231

Lamport 's work on Temporal Logic of Actions (TLA) contains a useful temporal
logic framework [184], plus a well-developed methodology for using the framework
to verify algorithms.

The strategy of showing that a sequence projects to give traces of all the
components of a composed system A, in order to prove that the sequence is
in fact a trace of the entire system A, is used in [207]. There, the system A
is an abstract specification of a database system that executes all transactions
serially. It is shown, by analyzing projections in this way, that certain sequences
produced by database systems that execute the transactions concurrently are in
fact traces of A. This is the key to the correctness of these database systems.
The work on preservation of safety properties is derived from [218].

Simulation relations originate from many sources. They are a generalization
of the notion of refinement mapping used by Lamport in [177]; they are an
abstraction of the history variables of Owicki and Gries [235]; and they are very
similar to the simulations of Park [236], the possibilities mappings of Lynch [203,
214] and of Lynch and Tuttle [217, 218], and the simulations of Jonsson [165]. The
value of the simulation method for verifying safety properties of asynchronous
systems is now well established. Many papers and books, for example, [217,
288, 69, 233, 214, 207, 189, 190], contain substantial examples of its use. A
fair number of proofs using simulations have been carried out with computer
assistance and checking. See work by Nipkow [233] and by S0gaard-Andersen,
Garland, Guttag, Lynch, and Pogosyants [265] for representative examples, the
former using the Isabelle Theorem Prover and the latter using the Larch Prover.

The modelling of randomized systems is derived from the work of Segala and
Lynch [257].

General results about models for concurrent systems are well represented in
the annual International Conference on Concurrency Theory (CONCUR).

8.10 E x e r c i s e s

8.1. Consider the composition of the automata Pi and Ci,j, 1 < i , j < n, in
Example 8.2.1.

(a) Describe all the states that arise in the unique execution arising from
the trace given in that example (for n = 2).

(b) Now let n = 3. Let m be any arbitrary natural number. Describe
an execution in which m gets decided by all three processes. In your
execution, the successive initl values should be some prefix of the
sequence 0, 4, 8, 12, . . . , the successive init2 values should be some

232 8. M O D E L L I N G II: A S Y N C H R O N O U S S Y S T E M M O D E L

prefix of 0, 2, 0, 2, . . . , and the successive init3 values should be some
prefix of 0, 1, 0, 1,

(c) Again let n = 3. This time, let ml , m2, and rn3 be three arbi trary
natural numbers. Describe an execution in which mi gets decided by
Pi, i E {1, 2, 3}. The successive init values of the three processes
should be as in (b), above.

8.2. Prove Theorems 8.1, 8.2, and 8.3. Where are the compatibility conditions
used?

8.3. Prove Theorems 8.4, 8.5, and 8.6. Where are the compatibility conditions
used? Where is the input-enabling condition used?

8.4. Consider the following two I /O automata. Note that they are not written
using precondition-effect notation, but just using a brute force listing of all
the components.

�9 Automaton A:
in(A) = in t (A) = O, out (A) - {go},
states (A) - { s, t },
s tar t (A) = {s},
t rans(A) = {(s, go, t)}, and
tasks(A I = {{go}}.

�9 Automaton B:
in (B) = {go}, ou t (B) - { ack}, in t (B) = { increment} ,
states (B) = { on, of f} x N,
s tar t (B) = {(on, 0)},
trans (B)) = {((on, i), increment , (on, i + 1)), i C N} U

i), go, (02 i)), i N} u
{((off , i), go, (o# , 0)), i e u
{((of f , i), ack, (off, i - 1)),i e N - { 0 } } , and

tasks (B) = { { increment }, { ack } }.

For each of the three automata A, B, and A x B, describe the sets of traces
and fair traces.

8.5. (a) Define an I /O automaton A representing a reliable message channel
that accepts and delivers messages from the union of two alphabets,
M1 and M2. The message channel is supposed to preserve the order
of messages from the same alphabet. Also, if a message from alpha-
bet M1 is sent prior to another message from alphabet M2, then the
corresponding deliveries must occur in the same order. However, if a

8.10. EXERCISES 233

(b)

message from M1 is sent after a message from M2, then the deliveries
are permitted to occur in the opposite order. Your automaton should
actually exhibit all of the allowable external behaviors. Be sure to
give all the components of A: the signature, states, start states, steps,
and tasks.

For your automaton, give an example of each of the following: a fair
execution, a fair trace, an execution that is not fair, and a trace that
is not fair.

8.6. Describe a specific I /O automaton having no input actions, whose output
actions are {0, 1, 2 , . . . }, and whose fair traces are exactly the sequences in
set S, defined as follows. S consists of all the sequences of length 1 over the
output set, that is, all the sequences consisting of exactly one nonnegative
integer.

8.7. Prove Theorem 8.7.

8.8. Let A be any I /O automaton. Show that there is another I /O automaton
B with only a single task, such that fairtraces(B) C fairtraces(A). (You
do not need to show fairtraces (B) = fairtraces (A)--inclusion is enough.)

8.9. Let A be any I /O automaton with a single task. Show that there is another
I /O automaton B, also with a single task, that is "deterministic" in the
sense that the following all hold:

(a) There is exactly one initial state.

(b) For every state s and every action 7r, there is at most one transition
of the form (s, 7r, s').

(c) In every state, at most one locally controlled action is enabled.

Moreover, fairtraces(B) C_ fairtraces(A). (You do not need to show
fairtraces (B) = fairtraces (A)--inclusion is enough.)

8.10. State and prove a theorem that combines the results of Exercises 8.8 and
8.9.

8.11. Reconsider Exercises 8.8, 8.9, and 8.10 in the case where the equality
fairtraces(B) = fairtraces(A) is required. If these exercises can be solved
with this stronger requirement, then solve them. Otherwise, show that they
cannot be solved.

8.12. If P is a safety property, prove that the following three are equivalent
statements about an I /O automaton A:

234 8. MODELLING H: ASYNCHRONOUS SYSTEM MODEL

(a) traces (A) C_ traces (P).

(b) fairtraces(A) C_ traces(P).

(c) The finite traces of A are all in traces(P).

8.13. Consider the following trace properties P; in each case, sig(P) is the sig-
nature consisting of no inputs and outputs {1, 2}.

(a) Suppose traces(P) is the set of sequences over {1, 2} in which there
is no instance of a 1 followed immediately by a 2. Show that P is a
safety property.

(b) Suppose that traces(P)is the set of sequences over {1, 2} in which
every occurrence of 1 is eventually followed by a 2. Show that P is a
liveness property.

(c) Suppose that traces(P)is the set of sequences over {1,2} in which
every occurrence of 1 is immediately followed by a 2. Show that P is
neither a safety property nor a liveness property. Show explicitly how
to express P as the intersection of a safety property and a liveness
property.

8.14. Formulate careful definitions of safety and liveness properties for execu-
tions, analogous to those for traces. Prove the analogues of Theorems 8.8
and 8.9.

8.15. Prove Theorem 8.11.

8.16. Prove Theorem 8.12.

Part IIA

Asynch ronous Shared Memory
Algorithms

The next several chapters, Chapters 9-13, deal with algorithms for the asyn-

chronous shared memory model, in which processes take steps asynchronously
and communicate via shared memory.

The first chapter in this part, Chapter 9, simply presents our formal model
for asynchronous shared memory systems. As before, skip it for now and use
it as a reference. Chapter 10 deals with the fundamental problem of mutual

ezclusion, and Chapter 11 deals with the more general problem of distributed
resource allocation. Chapter 12 contains fundamental results on consensus in
fault-prone asynchronous systems. Finally, Chapter 13 contains a study of atomic

objects--powerful abstract objects for programming distributed systems.

This Page Intentionally Left Blank

Chapter 9

Modelling III: Asynchronous
Shared Memory Model

In this chapter, we give a formal model for asynchronous shared memory sys-

terns. This model is presented in terms of the general I /O automaton model for

asynchronous systems that we defined in Chapter 8.

A shared memory system consists of a collection of communicating processes,
as does a network system. But this time, instead of sending and receiving mes-

sages over communication channels, the processes perform instantaneous opera-
tions on shared variables.

9.1 Shared Memory Systems

Informally speaking, an asynchronous shared memory system consists of a finite
collection of processes interacting with each other by means of a finite collection

of shared variables. The variables are used only for communication among the
processes in the system. However, so that the rest of the world can interact

with the shared memory system, we also assume that each process has a port,
on which it can interact with the outside world using input and output actions.

The interactions are depicted in Figure 9.1.
We model a shared memory system using I//O automata, in fact, using just

a single I//O automaton with its external interface consisting of the input and
output actions on all the ports. It might seem more natural to use several

automata, one per process and one per shared variable. However, that leads to
some complications we would rather avoid in this book. For instance, if each
process and each variable were an I//O automaton and we combined them using

ordinary I /O automaton composition, then we would get a system in which an

238 9. M O D E L L I N G III: A S Y N C H R O N O U S S H A R E D M E M O R Y M O D E L

ports processes shared variables

F i g u r e 9.1- An asynchronous shared memory system.

operation by a process i on a shared variable x would be modelled by a pair of

events--an invocation that is an output of process i and an input of variable x,

followed by a response that is an output of variable x and an input of process
i. But then the system would also have some executions in which these pairs
of events are split. For instance, several operations could be invoked before the

first of them returns. This kind of behavior does not occur in the shared memory
systems that we are trying to model.

One way out of this difficulty would be to consider a restricted subset of all
the possible executions--those in which invocations and corresponding responses

occur consecutively. A second way out would be to model only the processes as

I /O automata, but to model the shared variables as state machines of a different
kind (with invocations and responses combined into single events); in this case, a
new composition operation would have to be defined to allow combination of the

process and variable automata into one I /O automaton. Since these approaches

9.1. S H A R E D M E M O R Y S Y S T E M S 239

introduce their own complexi t ies - - res t r ic ted subsets of the set of executions,

pairs of events, a new kind of state machine, or a new opera t ion- -we sidestep

all these issues by just modelling the entire system as one big I / O au tomaton A.

We capture the process and variable s t ructure within au tomaton A by means of

some locality restr ict ions on the events.

As in the synchronous network model, we assume that the processes in the

system are indexed by 1 , . . . , n. Suppose that each process i has an associated set

of states, statesi, among which some are designated as start states, starts. Also

suppose that each shared variable x in the system has an associated set of values,
valuesx, among which some are designated as the initial values, initialx. Then

each state in states(A) (the set of states of the system au tomaton A) consists

of a state in statesi for each process i, plus a value in values~ for each shared

variable x. Each state in start(A) consists of a state in start~ for each process i,

plus a value in initialx for each shared variable x.

We assume that each action in acts(A) is associated with one of the processes.

In addition, some of the internal actions in int(A) may be associated with a

shared variable. The input actions and ou tpu t actions associated with process

i are used for interaction between process i and the outside world; we say they

occur on port i. The internal actions of process i that do not have an associated

shared variable are used for local computat ion, while the internal actions of i

that are associated with shared variable x are used for performing operations
on x.

The set trans(A) of transitions has some locality restrictions, which model

the process and shared variable structure of the system. First, consider an action

7r that is associated with process i but with no variable; as we noted above, 7r is

used for local computation. Then only the state of i can be involved in any 7r

step. That is, the set of 7r transitions can be generated from some set of triples

of the form (s, 7r, s~), where s, s ~ E statesi, by attaching any combination of states

for the other processes and values for the shared variables to both s and s ~ (the

same combination to both).

On the other hand, consider an action ~ that is associated with both a process

i and a variable x; as we noted above, ~ is used by i to perform an operation

on x. Then only the state of i and the value of x can be involved in any 7r step.

That is, the set of 7r transitions can be generated from some set of triples of

the form ((s, v), 7~, (s ~, v~)), where s, s ~ E statesi and v, v ~ E valuesx, by at taching

any combination of states for the other processes and values for the other shared

variables. There is a technicality: if ~ is associated with process i and variable
x, then whether or not 7~ is enabled should depend only on the state of process i,

a l though the resulting changes may also depend on the value of x. That is, if

is enabled when the state of i is s and the value of x is v, then 7~ is also enabled

when the state of i is s and when x has any other value v ~.

240 9. M O D E L L I N G III : A S Y N C H R O N O U S S H A R E D M E M O R Y M O D E L

The task par t i t ion t a s k s (A) must be consis tent with the process s t ructure:

that is, each equivalence class (task) should include locally control led act ions of

only one process. In m a n y cases that we will consider, there will be exact ly one

task per p r o c e s s - - t h i s makes sense, for example, if each process is a sequent ial

p rogram. In this case, the s t anda rd definition of fairness for I / O au tomata ,

given in Section 8.3, says that each process gets infinitely m a n y chances to take

steps. In the more general case, where there can be several tasks per process,

the fairness definition says that each task gets infinitely m a n y chances to take

steps.

E x a m p l e 9 .1 .1 S h a r e d m e m o r y s y s t e m

Let V be a fixed value set. Consider a shared m e m o r y sys tem A

consis t ing of n processes, numbered 1 , . . . ,n , and a single shared

variable x with values in V U { u n k n o w n } , initially u n k n o w n . The

inputs are of the form i n i t (v) i , where v E V and i is a process index.

The ou tpu t s are of the form d e c i d e (v) i . The internal actions are of

the form accessi . All the actions with subscr ipt i are associa ted with

process i, and in addi t ion, the access actions are associa ted with

variable x.

After process i receives an i n i t (v) i input , it accesses x. If it finds

x = u n k n o w n , then it wri tes its value v into x and decides v. If it

finds x - w, where w E V, then it does not write any th ing into x,

but decides w.
Formally, each set s ta tes i consists of local variables.

S t a t e s o f i:
status E {idle, access, decide, done}, initially idle
input E V tJ {unknown}, initially unknown
output C V U {unknown}, initially unknown

The t rans i t ions are

T r a n s i t i o n s o f i:

init(v)i
Effect:

input := v
if status = idle then

status := access

a c c e s s i

Precondition:
status = access

Effect:
if x -- unknown then x := input
output := x
status := decide

decide(v)i
Precondition:

status -- decide
output = v

Effect:
status := done

9.2. E N V I R O N M E N T MODEL 241

There is one task per process, which contains all the access and

decide actions for that process.
It is not hard to see that in every fair execution c~ of A, any pro-

cess that receives an init input eventually performs a decide output.
Moreover, every execution (fair or not, and with any number of init
events occurring anywhere) satisfies the "agreement property" that
no two processes decide on different values, and the "validity prop-
erty" that every decision value is the initial value of some process.

We can formulate these correctness claims in terms of trace prop-
erties, according to the definition in Section 8.5.2. For example, let
P be the trace property such that s i g (P) = extsig(A) and traces(P)
is the set of sequences/3 of actions in acts(P) satisfying the following

conditions:

1. For any i, if exactly one init4 event appears in/3, then exactly

one decidei event appears in/3.

2. For any i, if no initi event appears in/3, then no decidei event
appears in/3.

3. (Agreement) If decide(v)i and decide(w)j both appear in fl, then
V ~ W .

4. (Validity) If a decide(v)i event appears in/3, then some init(v)j
event (for the same v) appears in/3.

It is then possible to show that fairtraces(A) c_ traces(P). The proof
is left for an exercise.

9.2 E n v i r o n m e n t M o d e l

Sometimes it is useful to model the environment of a system as an automaton
also. This provides an easy way to describe assumptions about the environment 's
behavior. For instance, in Example 9.1.1, we might like to specify that the
environment submits exactly one initi input for each i, or maybe at least one for
each i. For shared memory systems that arise in practice, the environment can

often be described as a collection of independent user automata, one per port.

Example 9.2.1 Environment model

We describe an environment for the shared memory system A de-

scribed in Example 9.1.1. The environment is a single I /O automaton
that is composed (using the composition operation for I /O automata
defined in Section 8.2.1) of one user automaton, Ui, for each process
index i. Ui's code is as follows.

242 9. MODELLING III: A S Y N C H R O N O U S SHARED M E M O R Y MODEL

Ui automaton:

Signature:

Inpu t :

decide(v) i , v C V

O u t p u t :

i n i t (v) i , v C V

In ternal :

d u m m y i

States:
s ta tus C { reques t , wai t , d o n e } , ini t ia l ly reques t

dec i s ion C V U { u n k n o w n } , ini t ia l ly u n k n o w n

error, a Boolean , ini t ia l ly fa l se

Trans i t ions :

i n i t (v) i

Precondi t ion :

s ta tus = reques t or error = t rue

Effect:

if error = fa lse then s ta tus := wai t

d u m m y i

Precondi t ion :

error = t rue

Effect:

none

Tas ks:
All local ly cont ro l led act ions are in one class.

dec ide (v) i

Effect:

if e r r o r - fa l se then

if s ta tus = wai t then

dec i s ion := v
s ta tus := done

else error := t rue

Thus, Ui initially performs an initi action, then waits for a de-
cision. If the shared memory system produces a decision without a
preceding initi or produces two decisions, then Ui sets an error flag,
which allows it to output any number of inits at any time. (The
presence of the dummyi action allows it also to choose not to per-
form outputs.) Of course, the given shared memory system is not
supposed to cause such errors.

The composition of the shared memory system A with all the Ui,
1 _< i _< n, is depicted in Figure 9.2. This composition is quite well-
behaved" in any fair execution of the composition, there is exactly
one initi event and exactly one decidei event for each i. Moreover, the
decide events satisfy appropriate agreement and validity conditions.

More formally, let Q be the trace property such that sig(Q) con-
sists of outputs init(v)~ and decide(v)~ for all i and v, and such that

9.2. ENVIRONMENT MODEL 243

users processes

init(v___~) l.

~ d e c i d e (v) ,

F i g u r e 9.2" Users and shared memory system.

traces(Q) is the set of sequences/3 of actions in acts(Q) satisfying
the following conditions:

1. For any i,/3 contains exactly one initi event followed by exactly
one decidei event.

2. (Agreement) If decide(v)i and decide(w)j both appear in r then
V - - W .

3. (Validity) If a decide(v)i event appears in fl, then some init(v)j
event (for the same v) appears in/3.

Then it is possible to show that fairtraces(Axl-Ii<i<n Ui) g traces(Q).
The proof is left for an exercise.

244 9. M O D E L L I N G III: A S Y N C H R O N O U S S H A R E D M E M O R Y M O D E L

9.3 Indistinguishable States

We define a not ion of ind is t inguishabi l i ty tha t will be useful in some imposs ib i l i ty

proofs in C h a p t e r 10.

Cons ider an n-process shared m e m o r y sys t em A and a collection of users Ui,

1 _< i <_ n. Let s and s ~ be two s ta tes of the c o m p o s e d sys t em A x I - I i< i<n gi.
Then we say tha t s and s ~ are indistinguishable to process i if the s ta te of process

i, the s ta te of Ui, and the values of all the shared var iables are the same in s and
i 8/ s ~. We wri te s ~ to indicate tha t s and s ~ are indis t inguishable to i.

9.4 Shared Variable Types

In the general definit ion we have given for shared m e m o r y sys tems, we have not

r e s t r i c t ed the types of opera t ions a process m a y per form on a shared var iable

when it accesses the variable. T h a t is, when a process i accesses a var iable x,

we have allowed a r b i t r a r y changes to the s ta te of i and the value of x to occur,

depending in a r b i t r a r y ways on the previous s ta te of i and value of x. Bu t in

pract ice, shared var iables normal ly suppor t only a fixed set of operat ions , such

as read and wri te operat ions , or a combined r ead -mod i fy -wr i t e operat ion. In this

subsect ion, we define the not ion of a variable type, and say wha t it means for a

shared m e m o r y sys t em to observe type res t r ic t ions . 1

A variable type consis ts of

�9 a set V of values

�9 an init ial value v0 E V

�9 a set of invocations

�9 a set of responses

�9 a funct ion f " invocations x V -+ responses x V

The funct ion f says what happens when a given invocat ion arr ives at the variable

and the variable has a given value; f descr ibes the new value the variable takes

on and the response tha t is r e tu rned . Note tha t a variable type is not an I / O

au toma ton , even though some of its componen t s look s imilar to I / O a u t o m a t o n

components . Most impor tan t ly , in a var iable type, the invocat ions and responses

are though t of as occurr ing together as pa r t of one funct ion appl icat ion, whereas

1The definition we use here requires the variable to behave deterministically. This could be
generalized to allow nondeterminism, but we would rather avoid the complication here, since it
is not needed for the results in this book.

9.4. SHARED V A R I A B L E T Y P E S 245

in the I /O automaton model, inputs and outputs are separate actions (and other

actions may occur between them).
Suppose we have a shared memory system A. What does it mean to say that

shared variable x in system A is of a given variable type? It means, first, that
the set valuesx must be equal to the set V of values of the type, and that the set
initial~ of initial values for x consists of just one element, v0. Moreover, all the
transitions involving x must be describable in terms of the invocations and re-
sponses allowed by the type. Namely, each action involving x must be associated
with some invocation a of the variable type. Moreover, for each process i and
each invocation a, the set of transitions involving i and a must be describable in

the following form, where p is some predicate on statesi and g is some relation,
g C_ statesi • responses • statesi. (In the code, we use the notation state4 to
denote the state of process i.)

Trans i t ions involving i and a

Precondi t ion :

p(statei)
Effect:

(b, x) := f (a, x)
statei := any s such tha t (statei, b, s) E g

This code means that the determination that variable x is to be accessed
by process i using invocation a is made according to predicate p (which just
involves the state of i). If this access is to be performed, then the function f for
the variable type is applied to the invocation a and the value of variable x to
determine a response b and a new value for x. The response b is then used by

process i to update its state, in some way allowed by relation g.
In the descriptions of shared memory algorithms in this book, transitions

involving accesses to shared variables of particular types will not be writ ten ex-
plicitly in terms of predicates p and relations g as above. However, theoretically,
they could all be expressed in this style.

Example 9.4.1 Read/write shared variables (registers)

The most frequently used variable type in multiprocessors is one
supporting only read and write operations. A variable of this type

is known as a read/write variable, or a read/write register, or just a
register.

A read/wri te register comes equipped with an arbi t rary set V of
values and an arbi t rary initial value v0 E V. Its invocations are read

246 9. M O D E L L I N G I I I : A S Y N C H R O N O U S S H A R E D M E M O R Y M O D E L

and w r i t e (v) , v E V . Its responses are v E V and ack. 2 Its funct ion

f is defined by: f (r e a d , v) = (v, v) and f (w r i t e (v) , w) = (a c k , v) .

Note that variable x in the sys tem of Example 9.1.1 cannot be

descr ibed as a r e a d / w r i t e register, because there is no way that the

given accesses could be rewri t ten in the form given above. It is pos-

sible to rewri te the a lgor i thm so that x is a register, for example,

by separa t ing each access into a read and a write step. The result-

ing process code might look as follows. The s t a t u s value a c c e s s is

replaced by two new s t a t u s values, r e a d and w r i t e .

Trans i t ions :

init(v) i write(v) i
Effect: Precondition:

input := v status = write
if status = idle then status := read v = input

Effect:
readi x := v

Precondition: status := decide
status = read

Effect: decide(v) i
if x = unknown then Precondition:

output := input status = decide
status := write output = v

else Effect:
output := x status := done
status := decide

The task par t i t ion again groups together all locally control led

actions of process i. Al though this code is not explicitly wr i t ten in

te rms of a predicate p and a relat ion g, note that it could easily be

rewri t ten in this way. For instance, for the readi action, the predicate

p is s imply " s t a t u s = r e a d , " and the relat ion g is jus t the set of t r iples

(s , b, s ') E s t a t e s i x (V U { u n k n o w n }) x s t a t e s i such that s' is ob ta ined

f rom s by the code:

if b = unknown then
output := input
status := write

else
output := b
status := decide

For the w r i t e (v) i action, the predicate p is s imply " s t a t u s - w r i t e

and v - i n p u t , " and the relat ion g is jus t the set of t r iples (s, b, s ~) E

2The invocations and responses will sometimes also include additional information such as
the name of the register. We mostly ignore such complications here.

9.4. SHARED VARIABLE TYPES 247

statesi x (V U {unknown}) x statesi such that s' is obtained from s

by the code:

status := decide

So x is a r ead /wr i t e shared variable.

Notice that when we rewrite the algori thm in this way, the agree-

ment condition mentioned in Example 9.1.1 is no longer guaranteed.

Example 9.4.2 Read-modify-write shared variables

Another impor tan t variable type allows the powerful read-modify-
write operation. In one instantaneous read-modify-wri te operat ion

on a shared variable x, a process i can do all of the following:

1. Read x.

2. Carry out some computat ion, possibly using the value of x, that

modifies the state of i and determines a new value for x.

3. Write the new value to x.

It is not easy to implement a general read-modify-wri te operat ion

using the usual primitives provided by multiprocessors. The shared

memory model requires not only that each access to the variable be

indivisible, but also that all the processes should get fair turns to

perform such accesses. Implement ing this fairness requires some sort

of low-level arbi t ra t ion mechanism.

As we have described it, it is not obvious that read-modify-wri te

variables can be modelled in terms of variable types: the read-modify-

write operation appears to involve two accesses to the variable rather

than just one as required. One way to do this is to have a process

that wishes to access the variable determine, based on its state, a

function h to use as an invocation of the variable. The function h

provides the information from the process 's state that is needed to

determine the t ransi t ion, expressed in the form of a function to apply

to the variable. The effect of the function h on the variable when it

has value v is to change the variable's value to h(v) and re turn the

previous value v to the process. The process can then change its

state, based on its old state and v.

Formally, a read-modify-wri te variable can have any set V of

values and any v0 C V as an initial value. Its invocations are all the
functions h, where h : V ~ V. Its responses are v E V. Its function

f is defined by f (h , v) = (v, h(v)). That is, it responds with the prior

value and updates its value based on the submit ted function.

248 9. MODELLING III: ASYNCHRONOUS SHARED MEMORY MODEL

For instance, in Example 9.1.1, the function submitted by a pro-
cess to the variable is of the form h~, where

h ~ (x) - ~ v, if x - u n k n o w n
[x, otherwise

The particular hv submitted by a process uses the process's input as
the value of v. A return value of unknown causes output to be set
to the value of input, while a return value of v c V causes output to
be set to v. In either case, status is appropriately modified.

Example 9.4.3 Other variable types

Many of the variable types used in shared memory multiprocessors
include restricted forms of read-modify-write, plus basic operations
such as read and write. Some popular restricted form of read-modify-
write include compare-and-swap, swap, test-and-set, and fetch-and-
add operations. These operations are defined as follows. Fix a set V
and initial value v0.

The invocations for compare-and-swap operations are of the form
compare-and-swap(u, v), u, v c V, and the responses are elements of
V. The function f is defined for compare-and-swap invocations by

f(compare-and-swap(u,v) w) - { ((w 'v) ' i f u - w
' , w), otherwise

That is, if the variable's value is equal to the first argument, u, then
the operation resets it to the second argument, v; otherwise, the
operation does not change the value of the variable. In either case,
the original value of the variable is returned.

The invocations for swap operations are of the form swap(u),
u C V, and the responses are elements of V. The function f is
defined for swap invocations by

v) =

That is, the operation writes the input value u into the variable and
returns the original variable value v.

The invocations for test-and-set operations are of the form test-
and-set, and the responses are elements of V. The function f is
defined for test-and-set by

f (test-and-set, v) = (v, 1).

9.4. SHARED V A R I A B L E T Y P E S 249

That is, the operat ion writes 1 into the variable and returns the

original variable value v. (We assume that 1 E V.)

Finally, the invocations for fetch-and-add operations are of the
form fetch-and-add(u), u C V, and the responses are elements of V.

The function f is defined for fetch-and-add by

f(fctch-and-add(u), v) = (v, v + u).

Tha t is, the operation adds the input value u to the variable value

v and returns the original value v. (This operat ion requires that the

set V support a notion of addition.)

We can define the executions of a variable type in a natural way, as finite se-

quences v0, al , bl, Vl, a2, b2, v2 , . . . , v~ or infinite sequences v0, al , bl, Vl, a2, b2, v2,
. . . . Here, the v's are values in V, v0 is the initial value of the variable type, the

a's are invocations, the b's are responses, and the quadruples vk, ak+l, bk~-l, Vk+l
satisfy the function of the type. (That is, (bk+l, Vk+l) = f (ak+l , vk).) Also, the
traces of a type are the sequences of a's and b's tha t are derived from executions

of the type.

E x a m p l e 9.4.4 Trace of a r e a d / w r i t e variable type

The following is a trace of a read /wr i te variable type with V = N

and v0 = 0:

read, 0, write (8), ack, read, 8

We finish this section by defining a simple composition operat ion for variable
types. This lets us regard a collection of separate variable types, each with its
own operations, as a single variable type with several components, and with

operations acting on the individual components.
We define a countable collection {Ti}icI of variable types to be compatible

if all their sets of invocations are disjoint, and likewise for all their sets of re-

sponses. Then the composition 7- - l-Ii~I 7~ of a countable compatible collection
of variable types is defined as follows:

�9 The set V is the Cartesian product of the value sets of the Ti.

�9 The initial value v0 consists of the initial values of the 7i.

�9 The set of invocations is the union of the sets of invocations of the 7~.

�9 The set of responses is the union of the sets of responses of the 7i.

250 9. MODELLING III: A S Y N C H R O N O U S SHARED M E M O R Y MODEL

�9 The function f operates "componentwise." That is, consider f (a , w), where
a is an invocation of ~ . Function f applies a to the ith component of w,

using the function of 7~, to obtain (b, v). It returns b and sets the ith
component of w to v.

When I is a finite set, we sometimes use the infix operation symbol x to denote
composition.

Example 9.4.5 Composition of variable types

We describe the composition of two read/wr i te variable types Tz and

Ty. (You should think of x and y as the names of two registers.)
Suppose the value sets are V~ and try, respectively, and the initial

values are Vo,x and Vo,y.
We can only compose these two types if they are compatible. So

we disambiguate the invocations and responses of the two types by

attaching the (literal) subscript x or y. Then the composed type

T~ x Ty has V~ x Vy as its value set and the pair (Vo,x, Co,y) as its
initial value. Its invocations are readx, read v, write(v)x, v C Vx, and
write(v)y, v C try. Its responses are Vx, v C Vx, plus vy, v E V~, plus

aCkx and ack v.
Now we consider the function f . Let w = (v, v ~) be an arbi-

t ra ry element of V~ x Vy. Then f is defined for w by f(readx, w) =
(Vx, w), f(ready, w) - (Vy, w), f (write(v")~, w) - (ackx, (v", v')),
and f (wri te(v")y, w) = (acky, (v, v")). Thus, a read returns the in-
dicated component of the vector, while a write updates the indicated
component.

9.5 Complexity Measures

In order to measure time complexity in asynchronous shared memory systems,

we assume an upper bound of t~ on process step time. Such an upper bound
allows us to prove upper bounds on the time required for events of interest to

occur (e.g., for a process that has received an initi input to produce a decidei
output) .

More precisely, we establish a time complexity measure for shared memory

systems as a special case of the time complexity measure defined for general
I /O automata in Section 8.6. That is, we define an upper bound of t~ for each
task C of each process; this imposes an upper bound of t~ on the time between
successive chances by task C to perform a step. We measure the time until some

9.6. FAIL URES 251

designated event 77 by the supremum of the times that can be assigned to 7r by

time assignments that respect the upper bounds. Likewise, we measure the time
between two events of interest by the supremum of the differences between the

times that can be assigned to those two events.
Note that our time measure does not take into account any overhead due to

contention among processes for accessing a common variable. In multiprocessor
settings where such contention is an issue, the time measure must be modified
accordingly.

Other interesting measures of complexity for shared memory systems include

some static measures such as the number of shared variables and the size of their
value sets.

9.6 Failures

The stopping failure of a process i in a shared memory system is modelled using

an input action stopi, which causes the stopping failure of all tasks of process i but
does not affect any other processes. More precisely, a stopi event can change
only the state of process i, although we do not constrain these state changes

except for requiring that they permanently disable all the tasks of process i. We
leave open the issue of whether later inputs to process i are ignored, or cause the

same changes to the state of process i that they would if no stopi had occurred,
or cause some other state changes. These distinctions do not matter, because the

effects of such state changes could never be communicated to any other processes.
Figure 9.3 depicts the architecture for an asynchronous shared memory sys-

tem with stopping failures.

9.7 R a n d o m i z a t i o n

A probabilistic shared memory system is defined by specializing the general def-
inition of a probabilistic I /O automaton in Section 8.8 to the case where the I /O

automaton is a shared memory system.

9.8 Bibl iographic N o t e s

There are no special references for the basic model described in this chapter. It

is a garden-variety shared memory model, formulated within the I /O automaton
framework. Another model for shared memory systems was defined by Lynch and
Fischer [216]; in that model, processes communicate by means of instantaneous
accesses to shared variables, but not by means of external events. Kruskal,

252 9. MODELLING III: ASYNCHRONOUS SHARED M E M O R Y MODEL

ports .. processes shared variables

d'l~

F i g u r e 9.3" Architecture for asynchronous shared memory system with stopping fail-
ures.

Rudolph, and Snir [171] defined the various types of variables used in shared
memory multiprocesssors.

Dwork, Herlihy, and Waarts [103] have suggested a time complexity measure
that takes into account contention for shared memory access. The formal mod-
elling of probabilistic shared memory systems is derived from work by Lynch,
Saias, and Segala [208].

9.9 E x e r c i s e s

9.1. Let A be the shared memory system described in Example 9.1.1.

(a) Prove that fairtraces(A) C traces(P), where P is the trace property
described in Example 9.1.1.

(b) Define an interesting trace safety property Q and show that the (not

9.9. EXERCISES 253

necessarily fair) traces of A satisfy it. That is, show traces(A) C_
traces(Q). Your property should include mention of what can happen
where there is more than one initi action for the same process i.

9.2. Prove that fairtraces(A x l-II<i<n gi) C traces(Q), where A is the shared
memory system described in Example 9.1.1 and Q is the trace property
described in Example 9.2.1.

One way to do this is to reformulate Q as the intersection of a safety
property S and a liveness property L. S can include the agreement and
validity condition, plus part of the first cond i t i on~ tha t for each i, the
subsequence of actions of i is some prefix of a sequence of the form initi,
decidei. L can just say that at least one init4 event and at least one decidei
event occur, for each i. Show that each system component preserves S and

use Theorem 8.11 to show that traces(A x I-II<i<n Ui) C traces(S). (The
fact that A preserves S could be argued from the fact that traces(A) C
traces(P).) Then use the fairness assumptions to show liveness.

9.3. Prove that the following is an invariant of the system A x Fll<i<n gi of
Example 9.2.1" If decisiong~ 7~ unknown and decisionuj 7~ unknown, then
decisionv~ - decisionv~ .3 Do this in two alternative ways"

(a) Based on the fact that traces(A x YIl<i<n Ui) C traces(S), proved in
Exercise 9.2.

(b) Using the usual method for proving invar ian ts - -an induction on the
length of an execution leading to a given system state.

9.4. Does the system described in Example 9.4.1, based on a read/wr i te regis-
ter, satisfy the same trace property P as the system in Example 9.1.1? If
so, prove this. If not, then give a counterexample and then state and prove
the strongest claims you can for the system's behavior.

9.5. Research Question: Define an alternative model for shared memory sys-
tems by using I /O automata to model processes only, and by defining a
new type of state machine (similar to the model for variable types) for
shared variables. Define an appropriate composition operation to combine
"compatible" process and shared variable automata into a single I /O au-
tomaton to model the entire system. What modifications are needed to the
results in subsequent chapters to fit them to your new definitions?

aWe use the subscript notation to designate the variables belonging to particular automata.

This Page Intentionally Left Blank

Chapter 10

M u t u a l E x c l u s i o n

In this chapter, we begin the study of asynchronous algorithms. Asynchronous
algorithms are generally quite different from synchronous algorithms, since they
must cope with the uncertainty imposed by asynchrony as well as the uncertainty
caused by distribution. In asynchronous networks, for example, process steps
and message deliveries do not necessarily take place in lock-step synchrony;
rather, they may happen in an arbitrary order.

Instead of moving immediately to the study of asynchronous network algo-
rithms, we first study algorithms in the asynchronous shared memory setting.
The main reason we do this is that the setting is somewhat simpler. But also, as
you will see in Chapter 17, there are close connections between the asynchronous
shared memory model and the asynchronous network model. For instance, it
is possible to translate algorithms written for the asynchronous shared memory
model into versions that can run in asynchronous networks. In this chapter and
Chapter 11, we will not consider failures very much; asynchrony alone introduces
enough interesting complications for now.

The problem we study here is the mutual ezclusion problem, a problem of
managing access to a single indivisible resource (e.g., a printer) that can only
support one user at a time. Alternatively, it can be viewed as the problem
of ensuring that certain portions of program code are executed within critical
regions, where no two programs are permitted to be in critical regions at the
same time. It is not known which users are going to request the resource nor
when they will do so. This problem arises in both centralized and distributed
operating systems.

We present several mutual exclusion algorithms for the read/wri te shared
memory model, starting with an early algorithm by Dijkstra. Subsequent algo-
rithms improve on Dijkstra's by guaranteeing fairness to the different users and
by weakening the type of shared memory that is used. We then give a fundamen-

256 10. M U T U A L EXCLUSION

tal lower bound for the number of read/wri te shared variables that are needed to
solve the problem. Finally, we give a collection of upper and lower bound results
for the case where the shared memory consists of stronger, read-modify-write
shared variables.

This chapter is quite long. The main reason for its length is that we are using
it not just to present a collection of algorithms and impossibility results, but also
to introduce many ideas that will be used in the rest of the book. These include
techniques for modelling shared memory systems and their environments, state-
ments of correctness conditions for asynchronous algorithms (including safety,
progress, and fairness conditions), proof techniques for asynchronous algorithms
(including operational, invariant assertion, and simulation relation proofs), ways
of defining and analyzing time complexity for asynchronous algorithms, and tech-
niques for proving lower bounds.

10.1 Asynchronous Shared Memory Model

Before we begin describing any algorithms, we describe the computation model
we will use in this and the next three chapters. Here, we describe the model briefly
and informally; a more complete, formal description appears in Chapter 9.

The system is modelled as a collection of processes and shared variables,
with interactions as depicted in Figure 10.1. Each process i is a kind of state
machine, with a set statesi of states and a subset start4 of statesi indicating the
start states, just as in the synchronous setting. However, now process i also
has labelled actions, describing the activities in which it participates. These are
classified as either input, output, or internal actions. In Figure 10.1, the arrows
entering and leaving the process circles represent the input and output actions
of the various processes. We further distinguish between two different kinds of
internal actions: those that involve the shared memory and those that involve
strictly local computation. If an action involves the shared memory, we assume
that it only involves one shared variable.

Unlike in the synchronous setting, there is no message-generation function,
since there are no messages in this model. All communication between the pro-
cesses is via the shared memory.

There is a transition relation trans for the entire system, which is a set of
(s, 7r, s ~) triples, where s and s ~ are automaton states, that is, combinations of
states for all the processes and values for all the shared variables, and where 7r
is the label of an input, output, or internal action. We call these combinations
of process states and variable values "automaton states" because, in the formal
model of Chapter 9, the entire system is modelled as a single automaton. The
statement that (s, 7r, s ~) E trans says that from automaton state s it is possible to

10.1. A S Y N C H R O N O U S S H A R E D M E M O R Y MODEL 257

ports processes shared variables

F i g u r e 10.1" An asynchronous shared memory system.

go to au tomaton state s I as a result of performing action 7r. Note that trans is a

relation rather than a func t ion- - for convenience, we allow our model to include

nondeterminism.

We assume that input actions can always happen, that is, that the system is

input-enabled. Formally, this means that for every au tomaton state s and input

action 7r, there exists s ~ such that (s, 7r, s ~) C trans. In contrast , ou tput and

internal steps might be enabled only in a subset of the states. The intuit ion

behind the input-enabling proper ty is that the input actions are controlled by an

a rb i t ra ry external user, while the internal and output actions are controlled by

the system itself.

The set of t ransi t ions has some "locality" restrictions. First , for any transi-

t ion that does not involve the shared memory, only the state of the process that

performs the action can be involved. On the other hand, for a t rans i t ion that

involves a process i and a shared variable x, only the state of process i and the

258 10. MUTUAL EXCLUSION

value of variable x can be involved. We assume that the enabling of a shared
memory action depends only on the process state and not on the value of the
shared variable accessed. However, the resulting changes to the process state
and the variable value may depend also on the variable value.

The shared variable steps are usually constrained further, to be executions of
operations of particular types, such as read and write. A read step for variable
x involves changing the process state, based on its previous state and the value
in x; however, the value of variable x does not change. A write step involves
writing a designated value to a shared variable, overwriting whatever was there
before; it may also change the process state. We will mostly consider the model
in which the variables are accessed using read and write operations, but we will
also consider some more powerful operations such as read-modify-write.

The execution of an asynchronous shared memory system is very different
from that of a synchronous system. This time, processes are assumed to take
steps one at a time, in an arbitrary order rather than in synchronized rounds.
This arbi t rary order is the essence of the asynchronous model. An execution

is formalized as an alternating sequence, so, ~1, Sl, . . . , consisting of automaton
states alternated with actions (each action belonging to a particular process),
where successive (state, action, state) triples satisfy the transit ion relation. An
execution may be a finite or an infinite sequence.

There is one important exception to the arbitrariness in the order of process
steps. We do not want to allow a process to stop taking steps when it is supposed
to be taking steps, that is, when the process is in a state in which some locally
controlled action (i.e., a non-input action) is enabled. (Although input actions
are always enabled, we do not assume that they ever occur.) This condition is a
little tricky to state precisely.

For example, we might t ry to express it by saying: "If a process takes only
finitely many steps, then its final state is one in which no locally controlled action
is enabled." But this is not quite su i~c ien t~we might want also to rule out some
situations in which a process takes infinitely many steps, but after some point,
all the remaining steps are input steps. We need to make sure that the process
itself also gets turns to perform locally controlled actions.

So, we might t ry to express the needed condition by saying: "If a process
takes only finitely many steps, then its final state is one in which no locally
controlled action is enabled, and if a process takes infinitely many steps, then
infinitely many of these steps are locally controlled steps." But again this is
not quite r ight - -consider the situation in which the process receives infinitely
many inputs and performs no locally controlled actions, but in fact no locally
controlled actions are enabled. That situation seems fine, since we could say that

10.2. THE PROBLEM 259

the process had "turns" to perform locally controlled steps, but simply had none

that it "wanted" to perform.

We account for all these possibilities in the following definition. For each
process i, we assume that one of the following holds:

1. The entire execution is finite, and in the final state no locally controlled

action of process i is enabled.

2. The execution is infinite, and there are either infinitely many occurrences

of locally controlled actions of i, or else infinitely many places where no

such action is enabled.

We call this condition the fairness condition for this shared memory system. (In

terms of the I /O automaton definitions in Chapter 8, this amounts to grouping
all the locally controlled actions of one process into one task.)

10.2 T h e P r o b l e m

The mutual exclusion problem involves the allocation of a single, indivisible,

nonshareable resource among n users, U1 , . . . , Un. The users can be thought of

as application programs. The resource could be, for example, a printer or other
output device that requires exclusive access in order to ensure that the output is

sensible. Or it could be a database or other data structure that requires exclusive

access in order to avoid interference among the operations of different users.

A user with access to the resource is modelled as being in a critical region,
which is simply a designated subset of its states. When a user is not involved
in any way with the resource, it is said to be in the remainder region. In order

to gain admit tance to its critical region, a user executes a trying protocol, and
after it is done with the resource, it executes an (often trivial) exit protocol. This

procedure can be repeated, so that each user follows a cycle, moving from its

remainder region (R) to its trying region (T), then to its critical region (C), then
to its exit region (E), and then back again to its remainder region. This cycle is

shown in Figure 10.2.
We consider mutual exclusion algorithms within the shared memory model

described above--see Figure 10.1 for the architecture. The shared memory sys-
tem contains n processes, numbered 1 , . . . , n, each corresponding to one user Ui.
The inputs to process i are the tryi action, which models a request by user Ui
for access to the resource, and the exiti action, which models an announcement
by user Ui that it is done with the resource. The outputs of process i are criti,
which models the granting of the resource to Ui, and rerni, which tells Ui that

it can continue with the rest of its work. The try, crit, exit, and rem actions

260 10. M U T U A L E X C L U S I O N

T

1
C

F i g u r e 10.2" The cycle of regions of a single user.

are the only external actions of the shared memory system. The processes are

responsible for performing the trying and exit protocols. Each process i acts as

an "agent" on behalf of user Ui.
Each of the users Ui, 1 <_ i < n, is modelled as a state machine (formally, an

I / O automaton) that communicates with its agent process using the tryi, criti,
ezit4, and remi actions. The external interface (formally, the external signature)
of Ui is depicted in Figure 10.3.

= try,.

crit~

= exit~

rein i

F i g u r e 10.3" External interface of user Ui.

We think of each user Ui as executing some application program. The only
thing that we assume about Ui is that it obeys the cyclic region protocol, that is,

that Ui is not the first to violate the cyclic order of actions, tryi, criti, ex i t i , . . .
(starting with tryi), between itself and its agent process. Formally, we define a
sequence of tryi, criti, exit4 and rerr~ actions to be well-formed for user i if it is
a prefix of the cyclically ordered sequence tryi, criti, exiti, remi, tryi, Then

we require that Ui preserve the trace property defined by the set of sequences

10.2. THE P R O B L E M 261

that are well-formed for user i. (We use the definitions of trace property and

preserves from Section 8.5.4.)

In executions of Ui that do observe the cyclic order of actions, we say that

U~ is

�9 in its remainder region initially and in between any rerni event and the

following tryi event.

�9 in its trying region in between any tryi event and the following criti event.

�9 in its critical region in between any criti event and the following exiti event.

During this time, Ui should be thought of as being free to use the resource

(although we do not model the resource explicitly).

�9 in its exit region in between any exiti event and the following rerni event.

Figure 10.4 depicts all the interactions in the system.
Now we can state what it means for a shared memory system A to solve the

mutual exclusion problem for a given collection of users. Namely, the combina-
tion (formally, the composition) of A and the users must satisfy the following

conditions:

W e l l - f o r m e d n e s s : In any execution, and for any i, the subsequence describing

the interaction between Ui and A is well-formed for i.

M u t u a l e x c l u s i o n : There is no reachable system state (that is, a combination

of an automaton state for A and states for all the Ui) in which more than

one user is in the critical region C.

P r o g r e s s : At any point in a fair execution

1. (Progress for the trying region) If at least one user is in T and no

user is in C, then at some later point some user enters C.

2. (Progress for the exit region) If at least one user is in E, then at some

later point some user enters R.

We say that a shared memory system A solves the mutual exclusion problem
provided that it solves it for every collection of users.

Note that we have stated the correctness conditions in terms of the users'

regions. Normally, the process states will also be classified according to their

regions, and these regions will correspond exactly to the user regions. So we can
equivalently state the correctness conditions in terms of process regions. We will
talk interchangeably about user regions and process regions in the rest of this

chapter.

262 10. M U T U A L E X C L U S I O N

ports processes shared variables

= try i �9

crit~-

= ex i t i

r em i

F i g u r e 10.4: Interactions between components for the mutual exclusion problem.

Note that the progress condition assumes that the execution of the system is
fair, that is, it assumes that all the processes (and users) continue taking steps.
If we did not assume this, then it would not be reasonable to require that cr i t

or re in outputs eventually be performed. On the other hand, we do not need to
assume fairness in order to require that the system guarantee well-formedness
or mutual exclusion. The difference is that the well-formedness and mutual
exclusion conditions are s a f e t y p r o p e r t i e s (properties that say that particular
"bad" things never happen), while the progress condition is a l i v e n e s s p r o p e r t y

(a property that says that some "good" thing eventually happens).

T r a c e p r o p e r t i e s . Still another equivalent way of presenting these correctness
conditions is in terms of a t race p r o p e r t y , as defined in Section 8.5.2. For example,
we can define a trace property P, where s i g (P) has all the try, crit , exit , and

10.2. T H E P R O B L E M 263

rein actions as outputs, and traces(P) is the set of sequences/3 of these actions

that satisfy the following three conditions:

1. /3 is well-formed for each i.

2. /3 does not contain two crit events without an intervening exit event.

3. At any point in/3,

(a) If some process's last event is try and no process's last event is crit,
then there is a later crit event.

(b) If some process's last event is exit, then there is a later rein event.

Then an equivalent restatement of the mutual exclusion problem is the require-
menU that, for all combinations B of A with users, fairtraces(B) C_ traces(P).
(Recall that the external actions of B are just the try, crit, exit, and rein actions.)
Trace property P could also be split into two parts, a safety property encompass-
ing the well-formedness and mutual exclusion conditions, and a liveness property
for the progress condition.

S h a r e d r e s p o n s i b i l i t y for p r o g r e s s . According to the correctness conditions
we have given, responsibility for the continuing progress of the entire system
rests not only with the protocol, but with the users as well. If a user Ui gets
the resource (by means of a crit4 event) but never returns it (by means of an
exit~ event), then the entire system grinds to a halt. But if each user eventually

returns the resource every time it receives it, then the progress condition implies
that the entire system continues to make progress, repeatedly moving processes
to new regions (unless all users remain in their remainder regions from some
point on).

L o c k o u t . The progress condition we have stated does not imply that any par-
ticular requesting user ever succeeds in reaching its critical region. Rather, it is
a "global" notion of progress, saying only that some user reaches its critical re-
gion. For instance, the following scenario does not violate the progress condition:
Starting from an initial state, user U1 enters T. Then user U2 cycles through
its four regions infinitely many times, while U1 remains in T and the rest of the
processes remain in R. Our progress condition does not guarantee that U1 ever
reaches C.

R e s t r i c t i n g p r o c e s s ac t iv i ty . There is one other cons t ra in t - -a technical
one- - tha t we assume in this chapter: that a process within the shared mem-
ory system can have a locally controlled action enabled only when its user is in

264 10. M U T U A L E X C L U S I O N

the trying or exit region. This says that a process can be actively engaged in

executing the protocol only while it has active requests. This assumption is con-

sistent with the view that each process is simply an agent for its corresponding
user.

In practical settings, this assumption might or might not be reasonable. The

mutual exclusion problem was first studied in the setting of a time-shared unipro-

cessor, where the users are logically independent processes sharing a single pro-

cessor. In this setting, allowing a permanent process to manage access to the
resource would cause extra context-switching, between the manager process and
the user processes. In a true multiprocessor environment, it is possible to avoid

the context-switching by using a dedicated processor to manage the resource.

However, there will generally be many resources to be managed, and all the pro-

cessors dedicated to managing resources would be unavailable for participation
in other computational tasks.

R e a d / w r i t e s h a r e d va r i ab l e s . For most of the chapter (except for Section

10.9), we assume that the shared variables are read/wri te variables, also known
as registers. In one step, a process can either read or write a single shared

variable, but not both. Thus, the two actions involving process i and register x
are

1. (read) Process i reads register x and uses the value read to modify the
state of process i.

2. (write) Process i writes a value determined from process i's state to regis-

ter x.

We finish this section with a simple lemma saying that processes cannot stop

taking steps while they are in their trying or exit regions.

L e m m a 10.1 Let A be an algorithm that solves the mutual ezclusion problem

(for all collections of users). Let U1, . . . , U~ be any particular collection of users,

and let B be the combination of A and the given collection of users. Let s be a

reachable state of B .

I f process i is in its trying or exit region in state s, then some locally con-

trolled action of process i is enabled in s.

P r o o f . Without loss of generality, we may assume that each of the users,

U1, . . . , Un, always returns the resource.
Let c~ be a finite execution of B ending in s, and suppose for the sake of

contradiction that process i is in either its trying or exit region in state s, and

10.3. DIJKSTRA 'S MUTUAL EXCLUSION ALGORITHM 265

no locally controlled action of process i is enabled in s. Then we claim that no
events involving i occur in any execution of B that extends c~, after the prefix c~.
This follows from the fact that enabling of locally controlled actions is determined
only by the local process state, plus the fact that well-formedness prevents inputs
to process i while process i is in T or E.

Now let c~ ~ be a fair execution of B that extends c~, in which no try events
occur after the prefix c~. Repeated use of the progress assumption, plus the fact
that the users always return the resource, imply that process i must eventually

perform either a criti or a rerni action. But this contradicts the fact that c~ ~
contains no further actions of i. D

10.3 Dijkstra's Mutual Exclusion Algorithm

The first mutual exclusion algorithm for the asynchronous read/wr i te shared
memory model was developed in 1965 by Edsger Dijkstra, based on a prior two-
process solution by Dekker. This algorithm is not the most elegant or efficient
algorithm now available, nor does it satisfy the strongest conditions. However,
we present it anyway, for several reasons. First, it is the earliest example we
can find of an algorithm that we would categorize as "distributed." Second, it
contains several interesting algorithmic ideas. And third, it is a good example
to use for illustrating some of the basic reasoning techniques for asynchronous
shared memory algorithms.

1 0 . 3 . 1 T h e Algorithm

We begin by presenting code for the algorithm in a traditional "pseudocode"
style, similar to that used in the original paper by Dijkstra. Although this code
should make sense informally, it is probably not completely clear how it should
be t ranslated into an instance of our model. We call the algorithm DijkstraME.

D i j k s t r a M E algorithm:

S h a r e d v a r i a b l e s :
turn C {1 , . . . , n}, initially arbitrary, writable and readable by all processes
for every i, 1 _~ i _~ n"

flag(i) C {0, 1, 2}, initially 0, writable by process i and readable by all processes

266 10. M U T U A L E X C L U S I O N

P r o c e s s i:

** R e m a i n d e r reg ion **

L:
try i
f lag(i):= 1
while turn r i do

if flag(turn) = 0 t hen turn := i

f lag(i):= 2
for j -7(= i do

if f l ag (j)= 2 then go to L
criti

** Cr i t i ca l reg ion **

exiti
f lag(i) ' - o
remi

The shared variables are turn, an integer in { 1 , . . . , n}, and flag(i), 1 <_ i <_ n,
one per process, each taking on values from {0, 1, 2}, initially 0. The turn vari-

able is a multi-writer/mult i-reader register, writable and readable by all pro-

cesses. Each flag(i) is a single-writer/multi-reader register, writable only by
process i but readable by all processes.

In process i's first stage, it starts by setting its flag to 1 and then repeatedly
checks the turn variable to see if t u r n - i. If not, and if the current owner of

turn is seen not to be currently active, process i sets turn "- i. Once having

seen t u r n - i, process i moves on to the second stage.

In the second stage, process i again sets its flag, this time to 2, and then checks
to see that no other process has its j q a g - 2. This check of other processes' flags
can be done in any order. If the check completes successfully, process i goes
to its critical region; otherwise, it returns to the first stage. Upon leaving the

critical region, process i lowers its flag back to 0.
Before we can prove anything about DijkstraME, we need to understand it

as an instance of our formal state machine model. It is not completely obvious

how to translate the code into an automaton.

First, the state of each process should consist of the values of its local vari-

ables, as you would expect, plus some other information that is not represented
explicitly in the code, including

�9 temporary variables needed to remember values just read from shared vari-

ables

10.3. D I J K S T R A 'S M U T U A L E X C L U S I O N A L G O R I T H M 267

�9 a program counter, to say where the process is in its code

�9 temporary variables introduced by the flow of control of the program (e.g.,
the for loop can introduce a set variable to keep track of the indices of
processes that have already been checked successfully)

�9 a region designation, R, T, C, or E (R indicates the remainder region, T
indicates the portion of the code from a tryi event until the next criti event,
C indicates the critical region, and E indicates the portion of the code from
an exiti event until the next remi event)

The unique start state of each process should consist of specified initial values
for local variables, arbitrary values for temporary variables, and the program
counter and the region designation indicating the remainder region. The initial
value for each shared variable is as specified.

The steps of the automaton should follow the code; however, there are some
ambiguities in the code that need to be resolved in the automaton. Although
the code describes the changes to the local and shared variables, it does not
say explicitly what happens to the implicit variables (the temporaries, program
counter, and region designation). For example, when a tryi action occurs, i's pro-
gram counter should move to statement L in the code and i's region designation
should become T. These changes must be described explicitly in the automaton.

The code also does not specify exactly which portions of the code comprise
indivisible steps. However, it is essential to know this in order to reason carefully
about the algorithm. For DijkstraME, the indivisible steps are the try, crit, exit,
and rein steps at the user interface, plus individual writes to and reads from
the shared variables, plus some local computation steps. There is at least one
minor subtlety: the test for whether flag(turn) = 0 does not require two separate
reads--since turn was just read in the previous line, a local copy of turn can be
used.

We resolve all of these ambiguities by rewriting the DijkstraME code by hand,
in the precondition-effect style used in Chapter 8. Rewriting in this way makes
the code a good deal longer, but all the transitions are now described explicitly.
For readability, we arrange the pieces of code for the different actions in ap-
proximately the order in which they are supposed to be executed; however, note
that this order has no significance in the formal model - -any action is allowed to
occur at any time when it is enabled. The region designations R, T, C, and E
are encoded into program counter values: R corresponds to rein; T corresponds
to set-flag-i, test-turn, test-flag, set-turn, set-flag-2, check, and leave-try; C cor-
responds to crit; and E corresponds to reset and leave-exit. Note that each code
fragment is performed indivisibly.

2 6 8 10. M U T U A L E X C L U S I O N

D i j k s t r a M E a l g o r i t h m (r e w r i t t e n) "

Shared variables:
turn C { 1 , . . . ,n} , initially a rb i t r a ry
for every i, 1 < i < n:

flag(i) C {0, 1,2}, initially 0

A c t i o n s of i:
Input : Internal :

tryi set-flag- h
exiti test-turni

Outpu t : test-flag(j)~, 1 < j <__ n, j # i
criti set-turni
remi s et-flag- 2i

check(j)~, 1 <_ j < n, j # i
reset~

States of i:
pc 6 { rein, set-f lag-I, test-turn, test- f lag(j) , set-turn, set-flag-2, check, leave-try, crit,

reset, leave-exit}, init ially rein
S, a set of process indices, init ially 0

Trans i t ions of i:

tryi set-turn~
Effect: Precondi t ion:

pc := set-flag-1 pc = set-turn
Effect:

set-flag-l~ turn := i
Precondi t ion: pc := set-flag-2

pc = set-flag-1
Effect: s et-flag- 2~

flag(i) := 1 Precondi t ion:
pc := test- turn pc = set-flag-2

Effect:

f l ag (i) := 2
s := {i}
pc : : check

test-turni
Precondi t ion:

pc = test-turn
Effect:

if turn = i then pc := set-flag-2
else pc := test- f lag(turn)

test-f lag(j)i
Precondi t ion:

pc - test-flag (j)
Effect:

if f lag(j) - 0 then pc " - set- turn
else pc " - test-turn

check(j)~
Precondi t ion:

p c - check
j ~ S

Effect:

if f lag(j) = 2 then
S : = O
pc := set-flag-1

else
S:=SO{j}
if ISI = n then pc := leave-try

10.3. D I J K S T R A 'S M U T U A L E X C L U S I O N A L G O R I T H M 269

criti reseti
Precondition: Precondition:

pc = leave-try pc = reset
Effect: Effect:

pc := crit flag(i) := 0
S:=O

eziti pc := leave-exit
Effect:

pc := reset remi
Precondition:

pc = leave-exit
Effect:

p c :--- r e i n

The translation should be mainly self-explanatory. Note that the new style
makes it easy to express slight improvements; for instance, the set- turni action
can allow process i to go directly to the second stage, without retesting turn.

10.3.2 A Correctness Argument

In this section we sketch a correctness proof for Dijks traME. This will be a

somewhat brute-force operational proof, that is, one that consists of ad hoc

arguments about executions. In the following section, Section 10.3.3, we give an
alternative, more stylized proof of the mutual exclusion condition using invariant

assertions.
We give three lemmas showing that Di jk s t raME satisfies its requirements.

L e m m a 10.2 Di jk s t raME guarantees wel l - formedness for each user.

More precisely, we mean that in any execution of the combination (composi-
tion) of Di jk s t raME and any collection of users, the subsequence describing the

interaction between any Ui and Di jk s t raME is well-formed for user i.

P r o o f . By inspection of the code, it is easy to check that Di jk s t raME preserves
well-formedness for each user. Since, by assumption, the users also preserve well-

formedness, Theorem 8.11 implies that the system produces only well-formed

sequences. D

L e m m a 10.3 Di jk s t raME satisfies mutua l exclusion.

More precisely, we mean that in the combination of Di jk s t raME and any
collection of users, there is no reachable state in which more than one user is in

the critical region C.

270 10. MUTUAL EXCLUSION

I
s e t ~ 2 ~

s e t - f l a g - 2 j

I
j finds f l ag (i) :t 2 cri t j

! I I

~ ti

f l ag (i) = 2

F i g u r e 10.5" Order of events in the proof of Lemma 10.3.

P r o o f . By contradiction. Assume that Ui and Uj, i r j, are simultaneously in
region C in some reachable state. Consider an execution that leads to this state.
By the code, both process i and process j perform set-flag-2 steps before entering
their critical regions. Consider the last such step for each process and assume,

without loss of generality, that set-flag-2i comes first. Then flag(i) remains equal
to 2 from that point until process i leaves C, which must be after process j
enters C, by the assumption that they both end up in C simultaneously. So,

flag(i) has the value 2 throughout the interval from the set-flag-2j event until
process j enters C. See Figure 10.5. But, during this time, process j must test
flag(i) and find it unequal to 2, a contradiction. D

L e m m a 10.4 DijkstraME guarantees progress.

P r o o f . The argument for the exit region is easy: If at any point in a fair
execution, Ui is in the exit region, then process i keeps taking steps. After at
most two more of these steps, process i will perform a rerni action, sending Ui
to its remainder region.

We consider the progress condition for the trying region. Suppose for the
sake of contradiction that a is a fair execution that reaches a point where there
is at least one user in T and no user in C, and suppose that after this point, no
user ever enters C.

We begin by removing some complications. First, any process in E keeps
taking steps, so after at most two steps, it must reach R. So, after some point in
c~, every process must be in T or R. Second, since there are only finitely many
processes in the system, after some point in c~, no new processes enter T. Thus,
after some point in (~, every process is in T or R, and no process ever again
changes region. This implies that a has a suffix O~ 1 in which there is a fixed
nonempty set of processes in T, continuing to take steps forever, and no region
changes occur. Call these processes contenders.

10.3. D I J K S T R A 'S M U T U A L E X C L U S I O N A L G O R I T H M 271

Note that after at most a single step in Ctl, each contender i ensures that
flag(i) >_ 1, and it remains _> 1 for the rest of C~l. So we can assume, without
loss of generality, that flag(i) > 1 for all contenders i throughout C~l.

Clearly, if turn is modified during c~1, it is changed to a contender's index.
Moreover, we have the following claim.

C l a i m 10.5 In aa, turn eventually acquires a contender's index.

P r o o f . Suppose not, that is, suppose the value of turn remains equal to the
index of a non-contender throughout C~l. Consider any contender i.

If pc/ever reaches test-turn (i.e., the beginning of the while loop in the original
code), then we claim that i will set turn to i. This is because i first performs
a test-turr~ and finds that turn equal to some j ~ i. Then it performs a test-
f lag(j)i and finds f lag(j) = 0, since j is not a contender. Process i therefore
performs set-turni, setting turn to i.

Now we show that i reaches test-turn. The only way it might not is if i
succeeds in its checks of all the other processes' flags (in the second stage of the
original code) and proceeds to leave-try. But by assumption about c~1, we know
that i does not reach C. So it must be that some check must fail, taking i back
to set-flag-i, from which it proceeds to test-turn.

So, i reaches test-turn and thereafter sets turn := i. Since i is a contender,

this is the needed contradiction. D

Once turn is set to a contender's index, it is always thereafter equal to some
contender's index, although the value of turn may change to the index of dif-
ferent contenders. (This is because it is possible for several processes to be
simultaneously at set-turn.) Then any later test-turn and subsequent test-flag
yield f lag(turn) > 1, since for all contenders i, flag(i) _> 1. Thus, turn will not
be changed as a result of these tests. Therefore, eventually turn stabilizes to a
final (contender's) index. Let c~2 be a suffix of C t l in which the value of turn is
stabilized at some contender's index, say i.

Next we claim that in c~2, any contender j -r i eventually ends up with its
program counter looping forever between test-turn and test-flag. (That is, it
winds up looping forever in the while loop.) This is because if it ever reaches
check (in the second stage), then, since it doesn't reach C, it must eventually
return to set-flag-1. But then it is stuck looping forever, because turn = i 7/= j
and flag(i) ~ 0 throughout c~2. So let c~3 be a suffix of c~2 in which all contenders
other than i loop forever between test-turn and test-flag. Note that this means
that all contenders other than i have their flag variables equal to 1 throughout

Ct 3 �9

272 10. M U T U A L E X C L U S I O N

cz" some process in T, none in C
r

o~ ~" all in T, R, no region changes, flag > 1 for all contenders

2" turn stabilized at index of contender i

1~ 3" all contenders j ~ i have flag ~ 2

F i g u r e 10.6" Successive sumxes in proof of Lemma 10.4.

y

. . . . _

v

We conclude the argument by claiming that in c~3, process i (the one whose
index is in turn) has nothing to stand in the way of its reaching C. For example,
if i performs test-turn, then i finds turn = i and so proceeds to set-flag-2. Then,
since no other process has flag = 2, process i succeeds in all its checks and
enters C.

See Figure 10.6 for a depiction of the successive suffixes that appear in this
proof.

T h e o r e m 10.6 DijkstraME solves the mutual ezclusion problem.

Although the arguments above are correct, they are rather intricate and ad
hoc. It would be nice to have some more systematic ways of carrying out such
proofs. In the following section, we give an alternative proof of the mutual
exclusion condition, using invariant assertions. The progress condition could

also be proved somewhat more systematically using temporal logic, but we do
not do that in this book.

1 0 . 3 . 3 A n A s s e r t i o n a l P r o o f o f t h e M u t u a l E x c l u s i o n C o n d i t i o n

In the synchronous network model, many of the neatest and most systematic
proofs are based on invariant assertions about the state of the system after some
number of rounds. In the asynchronous setting, there is no notion of round,
but invariants can still be used. The method just has to be applied at a finer
granularity, to verify claims about the system state after any number of individual

process steps. Of course, it is usually harder to devise statements about the
state of an asynchronous system after any number of steps than it is to devise
statements about the state of a synchronous system after any number of rounds.
And proving such statements is also usually more dimcult. But the effort is

10.3. D I J K S T R A 'S M U T U A L E X C L U S I O N A L G O R I T H M 273

generally worthwhile because of the insights that the invariants provide. Invariant

assertions are the single most impor tan t formal tool for reasoning about the

correctness of asynchronous algorithms.

We now give an assertional proof of the mutual exclusion condition for the

DijkstraME algorithm.

P r o o f (of L e m m a 10 .3) . To prove mutual exclusion, we must show

A s s e r t i o n 10 .3 .1 In any reachable system state, 1 I{i : pc i = crit}l <_ 1.

We would like to prove this assert ion by induction on the number of steps in

an execution. But, as usual, the given s ta tement is not s trong enough to prove

alone in this w a y - - w e need some auxiliary invariants. We prove Assert ion 10.3.1

as a consequence of the next two assertions.

A s s e r t i o n 10 .3 .2 In any reachable system state, if pci E {leave-try, crit,
reset}, then I Sil = n.

A s s e r t i o n 10 .3 .3 In any reachable system state, there do not exist
i and j , i ~ j , such that i C Sj and j E Si.

If both Assertions 10.3.2 and 10.3.3 are true, then Assert ion 10.3.1 follows

immediately: Assume, for contradict ion, that in some reachable system state,

there are two dist inct processes, i and j , such that pci - pcj - crit. Then by

Assert ion 10.3.2, ISil = ISjl = n. But then j C Si and i E Sj, contradict ing

Assert ion 10.3.3.

Assert ion 10.3.2 can be proved easily by induction on the length of an exe-

cution. The basis is t rue vacuously, since all the processes are in R in the initial

system state. The inductive step is a case analysis, considering all the types of

actions one at a time. In this case, the only steps that could cause a violation are

those that cause pci to enter the set of listed values and those that reset Si to

0, namely, checki and reseti. In the case of a checki, the only way the condition

pci C {leave-try, crit, reset} could be true after the step is if I SiI = n, which is
just what we need. In the case of a reseti, the process leaves the indicated set of

values after the step, so the s ta tement is t rue vacuously.

So it remains to prove Assert ion 10.3.3. This uses two simple facts. The first

one constrains where process i can be in its code when Si ~ O.

A s s e r t i o n 10 .3 .4 In any reachable system state, if Si ~ O, then
pci c {check, leave-try, crit, reset}.

1Recall that a system state is a combination of states of the users and processes plus values
of the shared variables.

274 10. MUTUAL EXCLUSION

This is also proved by a simple induction on the length of an execution. The

basis is easy, since Si = 0 in the initial system state. For the inductive step, the

only events that could cause a violation of this s ta tement are events that cause

Si to become unequal to 0 and events that cause pc/ to leave the set of listed

values, that is, set-flag-2i, check4, and reset4. But set-flag-2i sets pci := check.
Also, when checki causes pci to leave the set of listed values, it also sets Si := 0.

Finally, reset sets Si := 0. Thus, all these events preserve the condition.

The second fact says that flag(i) = 2 when process i is at certain points in

its code.

A s s e r t i o n 10 .3 .5 In any reachable system state, if pci C {check,
leave-try, crit, reset}, then flag(i)= 2.

This is also proved by an easy induction on the length of an execution. Put t ing

these two facts together, we see the following:

A s s e r t i o n 10 .3 .6 In any reachable system state, if Si r O, then
flag(i) = 2.

Now we can prove Assert ion 10.3.3, again by induction on the length of an

execution. The basis is easy because in the initial state, all sets Si are empty.

For the inductive step, the only event that could cause a violation is one that

adds an element j to Si for some i and j , i 7(= j , that is, a check(j)i for some

i and j , i ~: j . So consider the case where j gets added to Si as a result of a

check(j)i event. Then it must be that flag(j) ~: 2 when this event occurs. But

then Assert ion 10.3.6 implies that Sj = 0, so i ~ Sj. Thus, this step cannot

cause a violation. [-1

10.3.4 Running Time

In this section, we prove an upper bound on the time from any point in an

execution when some process is in T and no one is in C, until someone enters C.

The first difficulty we face in proving such a bound is that it is not clear what

this "time" should mean- -un l ike in the synchronous setting, there are no rounds

to count. Instead, we just assume that each step occurs at some point in real t ime

and that the execution begins at real t ime 0. We impose an upper bound of t~ on

the time between successive steps of each process (when these steps are enabled);

recall that all the precondition-effect code for one action is assumed to comprise
a single step. We also assume an upper bound of c on the max imum time that

any user spends in the critical region. In terms of these assumed bounds, we can

deduce upper bounds for the time required for interesting activity to occur.

10.3. D I J K S T R A 'S M U T U A L E X C L USION A L G O R I T H M 275

T h e o r e m 10.7 In DijkstraME, suppose that at a particular t ime some user is

in T and no user is in C. Then within t ime 0 (t~n), some user enters C.

The constant involved in the big-O is independent of g, c, and n. This proof
is ad hoc and a little tricky, using ideas from the proof of the progress condition.

P r o o f . Suppose the lemma is false and consider an execution in which, at some
point, process i is in T and no process is in C, and in which no process enters C
for time at least k~n, for some particular large constant k. Constant k is chosen
to be considerably bigger than the constants in the big-O terms in the following
analysis.

First, it is easy to see that the time elapsed from the starting point of the
analysis until there is no process either in C or E is at most O (g).

Second, we claim that the additional time until process i performs a test-turni
is at most O (~n). This is because i can at worst spend this much time checking
flags in the second stage before returning to set-flag-1. We know that it must
re turn to set-flag-I, because otherwise it would go to C, which we have assumed
does not happen this quickly.

Third, we claim that the additional time from when process i does test-turni

until the value of turn is a contender index is at most O (~). To see this, we need
a rather annoying case analysis. If at the time i does test-turni, turn already
holds a contender index, then we are done, so suppose that this is not the case;
specifically, suppose that turn = j , where j is not a contender. Then within time

O (e) after this test, i performs a test-flag(j)i. If process i finds f lag(j) = 0, then
i sets turn to i, which is the index of a contender, and we are again done. But
if it finds f lag(j) -r 0, then it must be that in between the test-turr~ and the
test-flag(j)i, process j entered the trying region and became a contender. If turn

has not changed in the interim, then turn is equal to the index of a contender
(j) and we are done. But if turn has changed in the interim, then it must have
been set to the index of a contender. So again, we are done.

Fourth, after an additional time O (~), a point is reached at which the value
of turn has stabilized to the index of some particular contender, say j , and
furthermore no process advances again to set-turn or set-flag-2 (at least until
time kgn after the starting point of the analysis).

Fifth, we claim that by an additional time O (gn), all contenders other than j
will have their program counters in { test-turn, test-flag}. This is because other-
wise they would reach C, which we have assumed does not happen this quickly.

Sixth and finally, within an additional time O (gn), j must succeed in entering
C. This contradicts the assumption that no process enters C within this amount
of time.

276 10. MUTUALEXCLUSION

I
i i n T ,
no process
in C

O(1) O(In) O(l) O(1) O(ln) O(ln)
I I I I I [

i in T, test-turn i turn= turn other critj
no process contender stable contenders
in C or E testing

Figure 10.7: Order of events and time bounds in proof of Theorem 10.7.

The order of events in this proof, and the time bounds between them, are
depicted in Figure 10.7. gl

10.4 Stronger Conditions for Mutual Exclusion
Algorithms

Although the DijkstraME algorithm guarantees mutual exclusion and progress,
there are other desirable conditions that it does not guarantee. It does not
guarantee that the critical region is granted fairly to different users; for example,
it allows one user to be repeatedly granted access to its critical region while other
users trying to gain access are forever prevented from doing so. This situation
is sometimes called lockout or starvation.

Note that the kind of fairness we are talking about here is different from that
discussed up to this point. So far, we have been talking about fair execution
of process steps (and user automata steps), whereas now we are talking about
fair granting of the resource. In order to distinguish these two types of fairness,
we will call the fair execution of process steps and user automata steps low-level
fairness, and the fair granting of the resource high-level fairness. In practice,
high-level fairness might not be critical; in many practical situations in which
mutual exclusion is used, contention between users is sufficiently infrequent that
a user can afford to wait until all conflicting users get their turns. The importance
of high-level-fairness considerations depends on the amount of contention for the
resource, as well as the criticality of individual user programs.

Another not-so-attractive property of Dijkstra's algorithm is that it uses a
shared multi-writer/multi-reader register (turn). Such a variable is difficult and
expensive to implement in many kinds of multiprocessor systems (as well as in
nearly all message-passing systems). It would be better to design algorithms thal~
use only single-writer/multi-reader registers, or even better, single-writer/single-
reader registers.

Many mutual exclusion algorithms that improve upon DijkstraME in vari-
ous ways have been designed. In the rest of this chapter, we shall look at a
representative collection of these algorithms.

1 0 . 4 . S T R O N G E R C O N D I T I O N S 277

Before proceeding to the algorithms, we define carefully what it means for
a mutual exclusion algorithm to guarantee high-level fairness. Depending upon
the context in which the algorithm is used, different notions of high-level fairness
may be appropriate; we define three notions. Each of these properties is stated for
a particular mutual exclusion algorithm A composed with a particular collection

U1, . . . , U n of users.

L o c k o u t - f r e e d o m : In any low-level-fair execution, the following hold:

1. (Lockout-freedom for the trying region) If all users always return the
resource, then any user that reaches T eventually enters C.

2. (Lockout-freedom for the exit region) Any user that reaches E even-
tually enters R.

Note that the lockout-freedom condition, like the basic well-formedness, mutual
exclusion, and progress conditions, can be expressed as a trace property.

T i m e b o u n d b: In any low-level-fair execution with associated times, the fol-
lowing hold:

1. (Time bound b for the trying region) If each user always returns the
resource within time c of when it is granted, and the time between
successive steps of each process in T or E is at most g, then any user
that reaches T enters C within time b.

2. (Time bound b for the exit region) If the time between successive steps
of each process in T or E is at most g, then any user that reaches E
enters R within time b.

(Note that the value of b will typically be a function of t~ and c.)

N u m b e r of b y p a s s e s a: Consider any interval of an execution starting when
a process i has performed a locally controlled step in T, and throughout
which it remains in T. During this interval, any other user j , j :fi i, can
only enter C at most a times.

In the first two cases above, we have stated high-level-fairness conditions for the
exit region that are similar to those for the trying region. However, in most
algorithms, the exit regions are actually trivial.

We say that algorithm A is l o c k o u t - f r e e provided that it guarantees lockout-
freedom for all collections of users. We extend the other high-level-fairness deft-
nitions similarly. There are some simple implications among these fairness con-
ditions:

278 10. M U T U A L E X C L U S I O N

Theorem 10.8 Let A be a mutual exclusion algorithm, let U1, . . . , U~ be a col-

lection of users, and let B be the composition of A with U1, . . . , Un. I f B has any
finite bypass bound and is lockout-free for the exit region, then B is lockout-free.

P r o o f . Consider a low-level-fair execution of B in which all users always return
the resource, and suppose that at some point in the execution, i is in T. Assume
for the sake of contradiction that i never enters C.

Lemma 10.1 implies that eventually i must perform a locally controlled action
in that trying region, if it has not already done so. Repeated use of the progress
condition and of the assumption that users always return the resource together
imply that infinitely many total region changes occur. But then some process
other than i enters C an infinite number of times while i remains in T, which
violates the bypass bound. N

Theorem 10.9 Let A be a mutual exclusion algorithm, let U 1 , . . . , Un be a col-

lection of users, and let B be the composition of A with U I , . . . , U~. I f B has
any time bound b (for both the trying and the exit region), then B is lockout-free.

P r o o f . Consider a low-level-fair execution of B in which all users always return
the resource, and suppose that at some point in the execution, i is in T.

Associate times with the events in the execution in any monotone nondecreas-
ing, unbounded way, so that the times for the steps of each process are at most

and the times for all the critical regions are all at most c.
Since the algorithm satisfies the time bound b, i enters C in at most time b,

so in particular, i eventually enters C, as needed for lockout-freedom. [-1

In the following sections, we will look at some protocols that satisfy some of
these stronger high-level-fairness conditions.

10.5 Lockout-Free Mutual Exclusion Algori thms

The first improvements that we present are a trio of algorithms developed by
Peterson, all of which guarantee lockout-freedom. The first algorithm is for two
processes only, but it demonstrates most of the basic ideas. This algorithm is
then extended to n > 2 processes in two ways: first, by using a version of the
two-process algorithm in a series of n - 1 competitions, and second, by using a
version of the two-process algorithm in a tournament to select a single winner.

10.5.1 A T w o - P r o c e s s A l g o r i t h m

We start with the two-process solution, which we call Peterson2P. Usually, we
name the two processes in a two-process system processes 1 and 2. This time,

10.5. L O C K O U T - F R E E M U T U A L E X C L U S I O N A L G O R I T H M S 279

for convenience, we count mod 2 and identify 2 with 0, that is, we call the two

processes 0 and 1. If i E {0, 1}, then we write i to indicate 1 - i, the index of the

other process. The code, in a tradit ional style, is given below.

P e t e r s o n 2 P a l g o r i t h m "

S h a r e d var iables :
turn E {0, 1}, initially arbitrary, writable and readable by all processes
for every i E {0, 1}:

_

flag(i) E {0, 1}, initially 0, writable by i and readable by i

P r o c e s s i:

** Remainder region **

trYi
flag(i):= 1
turn "-- i
waitfor flag(~) - 0 or turn ~ i
criti

** Critical region **

exit~
flag(i)'-- 0
r e m i

In the P e t e r s o n 2 P algorithm, process i starts by setting its f lag to 1, which is
the same as the processes do in Dijks t raME. But this time, process i immediately
proceeds to set turn : - i. It then waits to discover either that the other process's

f lag is 0, or else that turn ~ i. That is, either the other process is not currently
involved in the competit ion at all, or else the turn variable has been reset by
the other process since the most recent time when i set it. Thus (and slightly
strangely), having the turn variable set to the index of the other process gives

permission for i to enter its critical region.
How can this program be t ranslated into a state machine in the formal model?

As before, we need to introduce a program counter, t emporary variables, and a

region designation. An ambiguity in the code that needs to be resolved is the

order in which process i checks the]tag and the turn variables, in the waitfor
statement. For correctness, it is necessary that both checks be done repeatedly;

for simplicity, we assume that the checks are done alternately, though looser

assumptions would also work.

280 10. M U T U A L EXCLUSION

We rewrite the algorithm in precondition-effect notation, in order to make
it easier to carry out a proof. Here, the region designation R corresponds to
rein; T corresponds to set-flag, set-turn, check-flag, check-turn, and leave-try; C
corresponds to crit; and E corresponds to reset and leave-exit.

P e t e r s o n 2 P algorithm (rewritten)-

S h a r e d var iables :
turn C {0, 1}, initially a rb i t ra ry
for every i C {0, 1}:

f lag(i) C {0, 1}, initially 0

A c t i o n s o f i:
Input : Internal:

tryi set-flagi
exiti set- turni

Output : check-flagi
criti check-turni
re mi re s e ti

S t a t e s o f i:
pc E { rein, set-flag, se t - turn, check-flag, check-turn, leave-try, crit, reset, leave-exit },

initially rein

T r a n s i t i o n s o f i:

tryi
Effect"

pc "- set-flag

set-flag~
Precondi t ion:

pc "- set-flag
Effect"

f l a g (i) ' - 1
pc " - se t - turn

set- turni
Precondi t ion:

pc = se t - turn
Effect:

turn := i
pc := check-flag

check-flagi
Precondi t ion:

pc = check-flag
Effect:

if flag(~) ---- 0 then
pc : - leave-try

else
pc := check-turn

check-turni
Precondi t ion:

pc = check-turn
Effect:

if turn # i then
pc := leave-try

else
pc := check-flag

10.5. L O C K O U T - F R E E M U T U A L E X C L U S I O N A L G O R I T H M S 281

cr i t i r e se t i

P r e c o n d i t i o n : P r e c o n d i t i o n :

pc = l e a v e - t r y pc = r e s e t

Effect : Effect:

pc : = cr i t f l a g (i) : = 0

pc : = l e a v e - e x i t

ex i t i

Effect"

pc " - r e s e t

r e m i

P r e c o n d i t i o n :

p c - l e a v e - e x i t

Effect:

pc " - re in

We now argue that the Peterson2P algorithm is correct. Well-formedness is
easy to check.

L e m m a 10.10 Peterson2P satisfies mutual exclusion.

P r o o f . We use an argument based on invariant assertions. It is easy to show
by induction that

A s s e r t i o n 10.5 .1 In any reachable system state, if flag(i) - 0, then
pci E {leave-exit, rein, set-flag}.

Using Assertion 10.5.1, we can show by induction that

A s s e r t i o n 10.5 .2 In any reachable system state, if pci C {leave-try,
crit, reset} and p~ C {check-flag, check-turn, leave-try, crit, reset},
then turn 7~ i.

That is, if i has won the competition, and if i is a competitor, then the turn
variable is set favorably for i, that is, set to the value i. In the inductive step of
the proof of Assertion 10.5.2, the key events to check are

o "Successful" check-flagi events, that is, those that cause pc / to reach leave-
try

2. Successful check-turr~ events

3. set-turn~ events, which cause pq to take on the value check-flag

4. set-turni events, which falsify the conclusion turn # i

282 10. M U T U A L E X C L U S I O N

When i does a successful check-flagi, it must be that flag(i) - 0, which implies by
Assertion 10.5.1 that p q ~ {check-flag, check-turn, leave-try, crit, reset}, which
makes the statement true vacuously. When i does a successful check-turni, it
must be that turn ~ i, which suMces. When i does set-turn~, it explicitly
sets turn ~ i, which suffices. Finally, when i does set- turfs , then the resulting

pc4 - check-flag, which makes the statement true vacuously.
This proves Assertion 10.5.2. Now mutual exclusion follows easily" Suppose

that both i and i are in C, in some reachable state. Then Assertion 10.5.2,
applied twice--for i a n d / - - i m p l i e s that both turn ~ i and turn ~ i. This is a
contradiction. D

L e m m a 10.11 Peterson2P guarantees progress.

P r o o f . Suppose for the sake of contradiction that a is a low-level-fair execution
that reaches a point where at least one of the processes, say i, is in T and neither
process is in C, and suppose that after this point, neither process ever enters
C. We consider two cases. First, if i is in T sometime after the given point in
a, then both processes must get stuck permanently in their check loops, since
neither ever enters C. But this cannot happen, since turn must stabilize to a
value that is favorable to one of them.

On the other hand, suppose that i is never in T after the given point in c~.
In this case, we can show that flag(i) eventually becomes and stays equal to 0,
contradicting the assumption that i is stuck in its check loop. D

L e m m a 10.12 Peterson2P is lockout-flee.

P r o o f . The argument for the exit region is trivial; we consider the trying
region. We show the stronger condition of two-bounded bypass and invoke The-
orem 10.8.

Suppose the contrary, that is, that at some point in execution a, process i
is in T after having performed set-flagi, and thereafter, while i remains in T,
process i enters C three times. Note that in each of the second and third times,
it must be that i first sets turn " - i and then sees turn - i; it cannot see
flag(i) - O, because flag(i) remains at 1. This means that there are at least two
occurrences of set-turn~ after the given point in c~, because only i can set turn
to i. But set-turni is only performed once during one of i's trying regions. This
is a contradiction. [3

So we have Theorem 10.13.

T h e o r e m 10.13 Peterson2P solves the mutual exclusion problem and guaran-
tees lockout-freedom.

10.5. L O C K O U T - F R E E M U T U A L E X C L U S I O N A L G O R I T H M S 283

C o m p l e x i t y a n a l y s i s . As for the analysis of DijkstraME, let t~ and c be upper

bounds on process step time and critical section time, respectively. You might
want to reread our discussion at the beginning of Section 10.3.4 to be sure you

understand exactly what these bounds mean.

T h e o r e m 10.14 In Peterson2P, the time from when a particular process i en-
ters T until it enters C is at most c + 0 (~).

Proof S k e t c h . Suppose the bound does not hold and consider an execution
in which process i is in T at some point, but does not enter C for time at least

c + kf after that point, for some particular large constant k. The constant k is

chosen to be considerably bigger than the constants in the big-O terms in the
following analysis.

First, within time at most 3t~, process i performs check-flagi. This can be seen
by a case analysis, based on the various places where i might be in its t rying re-

gion. Note that i cannot succeed in any of its checks during this time, because if it
did, it would go to C within time O (t~), which we have assumed does not happen

this quickly. Then when process i performs this check-flag~, it must find flag(i) -
1, because otherwise i would reach C within time O (f). So by Assertion 10.5.1,

it must be that pq C {set-turn, check-flag, check-turn, leave-try, crit, reset} at
that point.

Then we claim that either crit~ occurs within additional time O (f) or reset~
occurs within additional time c + O (f). This is argued by a case analysis, based

on the value of turn and where the processes are in their code; the key point is that

the turn variable, once stabilized, will be set favorably to one of the processes.

But the former case would again mean that i would reach C too soon, so the

latter must hold, that is, reset~ occurs within additional time c + O (~).

Now i performs check-flagi again, within additional time O (~). Once again,
it must find flag(7) - 1. This means that ~ has entered T again, after the resets.
Then either turn already has taken on the value i, or will do so within additional
time t~. Then within at most another time O (t~), process i finds conditions favor-
able for it to enter C. This contradicts the assumption that i does not enter C
within this amount of time. Figure 10.8 shows the order of events in this proof
and the time bounds between them. V1

10.5.2 An n -Proces s A lgor i thm

For n processes, we can use the idea of the Peterson2P algorithm iteratively,
in a series of n - 1 competitions at levels 1, 2 , . . . , n - 1. At each successive
competition, the algorithm ensures that there is at least one loser. Thus, all n

284 10. M U T U A L E X C L U S I O N

O(l) l 0(1) I 3l [c +O(1) I [I I

i in T check - f lag i reset_ check - f l ag i t u r n - i criti
i

Figure 1 0 . 8 " Orde r of events and t ime bounds in the p roof of T h e o r e m 10.14.

processes may compete in the level 1 competi t ion, but at most n - 1 processes

can win. In general, at most n - k processes can win at level k. So at most one

process can win at level n - 1, which yields the mutual exclusion condition.

The code is given below. Here we have reverted to our usual convention of

numbering the processes 1 , . . . , n. We call the a lgori thm P e t e r s o n N P .

P e t e r s o n N P algorithm:

S h a r e d var iables :
for every k E { 1 , . . . , n - 1}"

turn(k) E { 1 , . . . , n}, initially arbitrary, writable and readable by all processes
for every i, 1 _< i _< n:

f lag(i) E { 0 , . . . , n - 1}, initially 0, writable by i and readable by all j :fi i

P r o c e s s i:

** Remainder region **

trYi
f o r k - 1 t o n - 1 do

f lag(i) "-- k
turn(k) " - i
waitfor [Vj ~ i" f lag(j) < k] or [turn(k) ~ i]

crit~

** Critical region **

exit~
~ag(i) "- o
remi

Process i engages in one compet i t ion for each level, 1 _< k _< n - 1. Now each

level k has its own t u rn variable, t u rn (k) . At each level k, process i behaves

similarly to the way a process behaves in the P e t e r s o n 2 P algorithm" it sets

t u rn (k) " - i, then waits to discover either that all the other processes ' f lag

10.5. LOCKOUT-FREE MUTUAL EXCLUSION ALGORITHMS 285

variables are strictly less than k, or else that turn(k) 7~ i. That is, either none
of the other processes is currently involved in the level k competition, or else the
turn(k) variable has been reset by some other process since i most recently set
it.

As before, there are some ambiguities in the code that need to be resolved.
First, one of the conditions in the waitfor statement involves the flag variables
for all the other processes. In our model, these variables cannot all be checked
simultaneously. Rather, we intend that the variables be checked one at a time,
and we regard the condition as satisfied if all the values seen during these checks
are less than k. Second, we need to specify some conditions on the order in
which process i checks the various flag variables and the turn(k) variable, in the
waitfor statement. For simplicity, we assume that process i cycles through the

checks, in each cycle first checking all the flag variables in arbi t rary order and
then checking the turn(k) variable.

The details appear below. The code is quite similar to that of Peterson2P.
Note the use of the local variable level to keep track of which competition the
process is engaged in (or is ready to engage in) and the use of S to keep track

of processes that have been observed to have flag values smaller than k.

P e t e r s o n N P a l g o r i t h m (r e w r i t t e n) "

S h a r e d v a r i a b l e s :
for every k E { 1 , . . . , n - 1}"

turn(k) E { 1 , . . . , n}, initially arbi t rary
for every i, 1 ~_ i ~_ n:

flag(i) E { 0 , . . . , n - 1}, initially 0

A c t i o n s of i:
Input: Internal:

tryi set-flagi
exiti set-turni

Output: check-flag(j)~, 1 < j <_ n, j ~ i
criti check-turni
remi reseti

S t a t e s o f i:
pc C { rem, set-flag, set-turn, check-flag, check-turn, leave-try, crit, reset, leave-exit}, initially rein
level C {1 , . . . , n - 1}, initially 1
S, a set of process indices, initially 0

286 10. M U T U A L E X C L U S I O N

T r a n s i t i o n s o f i:

tryi
Effect:

pc " - set-flag

set-flagi
Precondition:

pc " - set-flag
Effect:

flag(i) " - level
pc " - se t - turn

set- turni
Precondition:

pc = set - turn
Effect:

turn(level) := i
s := {i}
pc : : check-flag

check-f lag(j) i
Precondition:

pc = check-flag
j ~ S

Effect:
if f l a g (j) < level then

S::SU{j}
if IS] : n then

S : = 0
if level < n - 1 then

level := level + 1

pc := set-flag
else

pc := leave-try
else

S : = 0
pc := check-turn

check-turni
Precondition:

pc = check-turn
Effect:

if turn(level) # i then
if level < n - 1 then

level := level + 1

pc := set-flag
else

pc := leave-try
else

s:={i}
pc := check-flag

criti
Precondition"

p c - leave-try
Effect"

pc "- crit

exit~
Effect"

pc " - reset

reseti
Precondition:

pc = reset
Effect:

f lag(i) := 0
level := 1
pc := leave-exit

remi
Precondition"

p c - leave-exit
Effect:

pc "- rein

W e n o w a r g u e t h a t P e t e r s o n N P is c o r r e c t . W e l l - f o r m e d n e s s is c lear . F o r

m u t u a l e x c l u s i o n , t h e key i d e a is t h a t t h e level k c o m p e t i t i o n o n l y p e r m i t s n - k

w i n n e r s .

I n a n y s y s t e m s t a t e of P e t e r s o n N P , we s a y t h a t a p r o c e s s i is a w i n n e r at level

k p r o v i d e d t h a t e i t h e r level~ > k or e lse level~ = k a n d pc4 E { l e a v e - t r y , c r i t , r e s e t } .

(T h i s l a t t e r c o n d i t i o n wil l o n l y a r i s e for k = n - 1.) W e a lso s a y t h a t p r o c e s s i

10.5. L O C K O U T - F R E E M U T U A L E X C L U S I O N A L G O R I T H M S 287

is a competitor at level k, provided that it is either a winner at level k or else

leveli - k and pc4 E { check-flag, check-turn}.

L e m m a 10 .15 PetersonNP satisfies mutual exclusion.

P r o o f . In order to prove mutual exclusion, we prove the following assertion,

which is analogous to Assert ion 10.5.2 for Peterson2P. An impor tan t difference

is that now the assert ion must deal with intermediate stages in the process of

checking flags.

A s s e r t i o n 10 .5 .3 In any reachable system state of PetersonNP, the
following are true"

1. I f process i is a competitor at level k, if pci - check-flag, and if
any process j 7~ i in Si is a competitor at level k, then turn(k) 7~
i.

2. I f process i is a winner at level k and if any other process is a
competitor at level k, then turn(k) r i.

The proof, by induction as usual, is left as an exercise. Using Assert ion 10.5.3,

we prove

A s s e r t i o n 10 .5 .4 In any reachable system state of PetersonNP, if
there is a competitor at level k, then the value of turn(k) is the index
of some competitor at level k.

Again, the inductive proof is left as an exercise. Finally, we show the following,

which directly implies the mutual exclusion condition.

A s s e r t i o n 10 .5 .5 In any reachable system state of PetersonNP,
and for any k, 1 <_ k <_ n - 1, there are at most n - k winners
at level k.

The proof of Assert ion 10.5.5 is also an induction, but not on the length of

an execution. Rather, we use induction on the value of k.

Basis: k - 1. If the s ta tement is false for k - 1, it means that all n processes

are winners at level 1. Then Assert ion 10.5.3 implies that the value of turn(l)
cannot be the index of any of the processes, a contradict ion.

Inductive step" We assume the s ta tement for k, 1 _< k _< n - 2, and show it

for k + 1. Suppose for the sake of contradict ion that the s ta tement is false for

k + 1, that is, that there are strictly more than n - (k + 1) winners at level k + 1;

let W be the set of such winners. Every winner at level k + 1 is also a winner

288 10. M U T U A L E X C L U S I O N

at level k, and by the inductive hypothesis, the number of winners at level k is

at most n - k. It follows that W is also the set of winners at level k, and that
I w l - k _ 2.

Then Assert ion 10.5.3 implies that the value of turn(k + 1) cannot be the
index of any of the processes in W. And Assert ion 10.5.4 implies that the value
of turn(k + 1) is the index of some compet i tor at level k + 1. But every compet i tor
at level k + 1 is a winner at level k, and so is in W. This is a contradiction. 77

In order to prove progress, it is enough to prove lockout-freedom (see Exer-
cise 10.6). And Theorem 10.9 implies that lockout-freedom is in turn implied by
a time bound. A time bound for the exit region is trivial; the following theorem
gives a time bound for the t rying region. Warning: We do not claim that this
bound is t i gh t - -we leave it as an exercise to t ry to t ighten i t - - b u t any bound is
enough to prove lockout-freedom.

T h e o r e m 10 .16 In PetersonNP, the time from when a particular process i en-
ters T until it enters C is at most 2n-lc-+-0 (2~ng).

P r o o f . We prove the bound using a recurrence. Define T(0) to be the maxi-
mum time from when a process enters T until it enters C. For k, 1 _< k _< n - 1,
define T(k) to be the max imum time from when a process becomes a winner at
level k until it enters C. We want to bound T(0).

By the code, we know that T (n - 1) <_ g, since only one step is needed to
enter C after winning the final competit ion. In order to bound T(0), we set up
a recurrence for T(k) in terms of r (k + 1), where 0 <_ k <_ n - 2.

Suppose process i has just won at level k if k _> 1, or has just entered T if
k - 0. Then within time 2g, process i performs set-turn~, setting turn(k+ 1) " - i.
Let 7r denote this set-turn~ event. We consider two cases.

First , if turn(k + 1) gets set to some value other than i within time T(k +
1) + c + (2n + 2)g after 7r, then i wins at level k + 1 within an addit ional time
ng. Then within addit ional time T(k + 1), i enters C. In this case, the total time
from 7r until i 's entrance to C is at most 2r(k + 1) + c + (3n + 2)g.

On the other hand, assume that turn(k + 1) does not get set to any value
other than i within time T(k + 1) + c + (2n + 2)g after 7r. Then no process can
set its flag to k + 1 within time T(k + 1) + c + (2n + 1)g after 7r. Let I be the set
of processes j # i for which flag(j) > k + 1 when 7r occurs. Then each process
in I wins at level k + 1 within time at most ng after 7r (since it finds turn(k + 1)

unequal to its index), then enters C within an addit ional time T(k + 1), then
leaves C within addit ional time c and performs reset within addit ional time g.
Tha t is, within time ng + T(k + 1) + c + g - T(k + 1) + c + (n + 1)g after 7c, all

processes in I set their flags to 0.

10.5. LOCKOUT-FREE MUTUAL EXCLUSION ALGORITHMS 289

Thus, within time T(k + 1) + c + (n + 1)e after rr, all processes j # i for

which flag(j) _> k + 1 when rr occurs, set their flags to 0. As we assumed above,
for an addit ional time ng after that, no process sets its flag to k + 1. Tha t is
sufficient time for process i to detect that all the flag variables are less than k + 1
and so to win at level k + 1. That is, in this case, process i wins at level k + 1
within time T(k + 1) + c + (2n + 1)g after zr. Again, within another T(k + 1), i

enters C. In this case, the total t ime from :r until i 's entrance to C is at most
2T(k + 1) + c + (2n + 1)g.

The worst-case time is thus at most 2g plus the maximum of the times in the
two cases above, that is, 2T(k + 1) + c + (3n + 4)g. Thus, we need to solve the
following recurrence for T(0):

T(k) < 2T(k + l) + c + (3n + 4)g, f o r O _ < k _ < n - 2

T (n - 1) _< g

Solving this recurrence yields the claimed time bound. (See the following sub-
section, Section 10.5.3, for a more detailed solution for a similar recurrence.)

77

We have

T h e o r e m 10 .17 PetersonNP solves the mutual exclusion problem and is lockout-
free.

10.5.3 Tournament Algori thm

Another way to extend the basic Peterson2P algori thm to more processes is
to use a version of the basic two-process a lgori thm as a building block in a
tournament. For simplicity, we assume that n, the number of processes, is a

power of 2. Once again, we number the processes s tar t ing with 0, as 0 , . . . , n - 1
rather than 1 , . . . , n. Each process engages in a series of log n competi t ions in
order to obtain the resource. You should think of these competi t ions as being
a r ranged in a complete n-leaf binary tournament tree; the n leaves correspond
left-to-right to the n processes 0 , . . . , n - 1.

We need some notat ion to name the various competit ions, the roles played
by the processes in all of the competi t ions, and the set of potential opponents
that all the processes can have in all the competit ions. For 0 < i < n - 1 and
1 < k < log n, we define the following notions.

�9 comp(i, k), the level k competition of process i, is the str ing consisting of
the high-order l o g n - k bits of the binary representat ion of i. In terms

290 10. MUTUAL EXCLUSION

0 1

0 1 2 3 4 5 6 7

(000) (001) (010) (011) (100) (~01) (~ 1 0) (~)

level 3

level 2

level 1

F i g u r e 10.9: Names of competitions in the Tournament algorithm.

of the tournament tree, comp(i, k) can be used as a name for the internal

node that is the level k ancestor of i's leaf. In particular, the root is named
by A, the empty string.

�9 role(i,k), the role of process i in the level k competit ion of process i, is

the (log n - k + 1)st bit of the binary representation of i. In terms of the

tournament tree, role(i, k) indicates whether i's leaf is a descendant of the
left or right child of the node for competit ion comp(i, k).

�9 opponents(i,k), the opponents of process i in the level k competit ion of
process i, is the set of process indices with the same high-order log n - k

bits as i and the opposite (log n - k + 1)st bit. In terms of the tournament
tree, the processes in opponents(i, k) are those whose leaves are descendants

of the opposite child of node comp(i, k), that is, of the child that is not an
ancestor of i's leaf.

E x a m p l e 10 .5 .1 T o u r n a m e n t t ree

Figure 10.9 shows the tournament tree for n = 8. For example, note
that comp(5, 2) - 1, role(5, 2) - 0 and opponents(5, 2) - {6, 7}.

We call the algorithm the Tournament algorithm.

10.5. L O C K O U T - F R E E M U T U A L E X C L U S I O N A L G O R I T H M S 291

T o u r n a m e n t a l g o r i t h m :

S h a r e d variables:
for every binary string x of length at most log n - 1:

turn(x) E {0, 1}, initially arbitrary, writable and readable by exactly those
processes i for which x is a prefix of the binary representation of i

for every i, 0 < i _< n - 1"
flag(i) E {0,... ,log n}, initially 0, writable by i and readable by all j r i

Process i:

** Remainder region **

try i
f o r k - - 1 to logndo

flag(i):= k
turn(comp(i,k)) := role(i,k)
waitfor [Vj E opponents(i,k) : flag(j) < k] or [turn(comp(i,k)) ~ role(i,k)]

criti

** Critical region **

exiti
flag(i):= 0
remi

This code is very much like that of the PetersonNP algori thm. The main

difference is that in each compet i t ion , the process only checks the flags of its

opponents in that compet i t ion. As in PetersonNP, we assume that a process

checks its opponents in any order, one at a time. The tes t ing must a l ternate in

some systemat ic way; for example, it can be done in a cycle where all the flags
are first tes ted, and then turn. We only sketch the correctness a rguments for

the Tournament a lgor i thm briefly, since the ideas are so similar to those for the

PetersonNP and Peterson2P algori thms.

Firs t , the a lgor i thm should be rewri t ten in precondit ion-effect style, making

explicit the p rog ram counters and the variables that accumulate the sets of pro-

cesses whose flags have a l ready been checked. Then not ions such as "winner

at level k" and "compet i to r at level k" must be defined for the Tournament
algor i thm, analogously to the way they were defined for PetersonNP.

L e m m a 1 0 . 1 8 The Tournament algorithm satisfies mutual exclusion.

292 10. M U T U A L EXCLUSION

P r o o f S k e t c h . The proof uses the same ideas as the invariant assert ion proofs

of the Peterson2P and PetersonNP algorithms. This time, the key invariant is

A s s e r t i o n 10 .5 .6 In any reachable system state of the Tournament
algorithm, and for any k, 1 < k < logn, at most one process from
any subtree rooted at level k is a winner at level k.

This follows immediately from an invariant analogous to the second par t of
Assert ion 10.5.3.

A s s e r t i o n 10 .5 .7 If process i is a winner at level k and if any level-
k opponent of i is a competitor at level k, then turn(comp(i, k)) r
role(i,k).

As for the second part of Assert ion 10.5.3, we cannot prove Assert ion 10.5.7
directly by induction. We must s t rengthen it as before to include some informa-
tion about what happens inside the waitfor loop, after the process has discovered
that some of its opponents have flag variables with values that are strictly less
than k. We leave this s t rengthening and the inductive proof as an exercise for
the reader, ff]

In order to show progress and lockout-freedom, we prove a time bound.

T h e o r e m 10 .19 In the Tournament algorithm, the time from when a particular
process i enters T until it enters C is at most (n - 1)c + O (n2g).

P r o o f . The proof is like the proof of Theorem 10.16. Define T(0) to be the
max imum time from when a process enters T until it enters C. For k, 1 _<
k ~_ log n, define T(k) to be the max imum time from when a process wins at
level k until it enters C. We want to bound T(0). By the code, we know that
T(log n) <_ t~, since only one step is needed to enter C after winning the final
competit ion. We bound T(k) in terms of T(k + 1), where 0 _< k _~ log n - 1.

Suppose process i has just won at level k if k _> 1, or has just entered T if
k - 0. Let x denote comp(i, k + 1). Then, within time 2~, process i sets the
turn(x) variable to role(i, k + 1). Let ~ denote this event; we consider two cases.

First , if turn(x) gets changed within time T(k + 1) + c + (2 k+l + 4)t~ after
7r, then i wins at level k + 1 within an addit ional time (2 k + 1)t~. Then, within
addit ional time T(k + 1), i enters C. In this case, the total time from 7r until i 's
entrance to C is at most 2T(k + 1) + c + (2 k+l + 2 k + 5)t~.

On the other hand, assume that turn(x) does not get changed within time
T(k + 1) + c + (2 k+l + 4)t~ after 7r. Then no level k + 1 opponent of i can set
its flag to k + 1 within time T(k + 1) + c + (2 k+l + 3)t~ after 7r. If j is a level

10.5. LOCKOUT-FREE MUTUAL EXCLUSION ALGORITHMS 293

k + 1 opponent of i for which flag(j) _> k + 1 when 7r occurs, then within t ime
(2 k + 1)~ + T(k + 1) + c + ~ - T(k + 1) + c + (2 k + 2)g after ~, process j sets its

flag to 0.
Thus, within t ime T(k + 1) + c + (2 k + 2)~ after 7r, all level k + 1 opponents j

of i for which flag(j) _> k + 1 when 7~ occurs, set their flags to 0. As we assumed
above, for an addit ional t ime (2 k + 1)t~ after that, no process sets its flag to k + 1.
Tha t is sufficient t ime for process i to detect that all its level k + 1 opponents '
flag variables are less than k + 1, and so to win at level k + 1. Tha t is, in this
case, process i wins at level k + 1 within t ime T(k + 1) + c + (2 k+l + 3)~ after 7~.
Wi th in another T(k + 1), i enters C. In this case, the total t ime from 7r until i 's
entrance to C is at most 2T(k + 1) + c + (2 k+l + 3)g.

The worst-case t ime is thus at most 2~ plus the max imum of the t imes in the
two cases above, that is, 2T(k + 1) + c + (2 k+l + 2 k + 7)t~. Thus, we need to solve
the following recurrence for T(0)"

T (k) < _ 2 T (k + l) + c + (2 k + l + 2 k + 7) f , f o r 0 _ < k < _ l o g n - 1

T(log n) < e.

Choose some constant a such that (2 k+l + 2 k + 7) _< a . 2 k. Then we have

T(0) _< 2T(1) + 2 ~ + a2~

_~ 22T(2) + (20 + 21)c Jr- a(2 ~ + 22)g

<_ 23T(3) + (20 + 21 -+- 22)c -+- a(2 ~ + 22 -F 24)~

~_ 2aT(k) + (2 0 + 21 -F...-+- 2 k-1)c JF a(2 ~ + 2 2 -+-�9 22k-2)g

21~ 71) -JF (2 0 -t- 21 -Jr-...-Jr- 21~ -+- a(2 0 -Jr- 2 2 -Jr-... 22(1~

_< - + + o

= (n - 1) c + O (n 2 e) .

D

T h e o r e m 10 .20 The Tournament algorithm solves the mutual exclusion prob-
lem and is lockout-free.

B o u n d e d b y p a s s . The Tournament algori thm does not guarantee any bound
on the number of bypasses. To see this, consider an execution in which process
0 enters the tou rnamen t at its leaf and takes steps with intervening t imes exactly

294 10. MUTUAL EXCLUSION

equal to the assumed upper bound t~. Meanwhile, process n - 1 enters the tour-
nament at its leaf, going much faster. Process n - 1 can reach the top and win,
and in fact it can repeat this arbitrari ly many times, before process 0 even wins
at level 1. This is possible because we have not assumed any lower bound on
process step times.

Note that there is no contradiction between unbounded bypass and a time
upper bound. No process is locked out for very long-- the unbounded bypasses
only occur because some processes operate very fast.

10.6 An Algorithm Using Single-Writer Shared
Registers

The mutual exclusion algorithms we have studied so far use multi-writer shared
registers (the turn variables) as well as single-writer shared registers (the flag
variables). Because multi-writer registers are often difficult to implement, it is
worth investigating algorithms that use only single-writer shared registers. In
this section and the next, we present two such algorithms.

The algorithm in this section solves the mutual exclusion problem (including
the progress condition, as usual), but does not guarantee any high-level-fairness
condition. Its shared registers are all binary. The algorithm in Section 10.7 is
also lockout-free, but it has the disadvantage of using unbounded size variables.

We call the first algorithm BurnsME, after Burns, its inventor.

B u r n s M E algorithm:

S h a r e d var iab le s :
for every i, 1 _~ i _~ n:

flag(i) E {0, 1}, initially 0, writable by i and readable by all j :/: i

P r o c e s s i:

** Remainder region **

try i
L: f lag(i) := 0

for j , 1 < j < i - 1 do
if f l a g (j) = 1 then goto L

f lag(i) := 1
for j , l ~ j ~ i - l d o

if f l a g (j) = 1 then goto L
M: for j , i + l ~ j ~_ n do

if flag(j) = 1 then goto M

10.6. ALGORITHM USING SINGLE-WRITER SHARED REGISTERS 295

criti

** Cr i t i ca l r eg ion **

exiti
f lag(i):= 0
remi

The flag values used in BurnsME are 0 and 1 instead of 0, 1, and 2 as in
DijkstraME. Each process executes three for loops. The first two loops involve
checking the flags of all processes with smaller indices, while the third loop
involves checking the flags of all processes with larger indices. If process i passes
all the tests in all three loops, it proceeds to its critical region.

L e m m a 10.21 The BurnsME algorithm satisfies mutual exclusion.

P r o o f . The proof is similar to the first (operational) proof that DijkstraME
satisfies mutual exclusion (see Lemma 10.3). The main difference is that now

the flag variables are set to 1, whereas in DijkstraME they are set to 2.
Thus, if processes i and j are simultaneously in C, then assume that i sets

its flag to 1 first. Then flag(i) keeps the value 1 until process i leaves C. But
after j sets flag(j) to 1, j must check that flag(i) = 0 before j can enter C. (If
i < j , then this is done in the second for loop, while if i > j , then it is done in
the third for loop.) This check must occur during the interval when the value of
flag(i) = 1, which yields a contradiction. D

Note that the first for loop in the code is not needed for the mutual exclusion
condition.

L e m m a 10 .22 BurnsME guarantees progress.

P r o o f . The argument for the exit region is easy. For the t rying region, we
assume for the sake of contradict ion that a is a low-level-fair execution that
reaches a point where there is at least one process in T and no process in C, and
that after this point, no process ever enters C. Arguing similarly to the way we
did in the proof of Lemma 10.4, we can assume without loss of generali ty that
every process is in T or R and that no process changes region, in a. Let the
contenders be the processes in T.

Now we part i t ion the contenders into two sets: those that ever reach label M
and those that never do. Call the first set P and the second set Q. There must

296 10. MUTUAL EXCLUSION

be some point in a by which all the processes in P have already reached label
M; note tha t they never thereafter drop back to any point in the code prior to
label M. Let O~1 be a suffix of a in which all processes in P are in the final for
loop, after label M.

We claim tha t there is at least one process in P. Specifically, the process
with the smallest index among all the contenders is not blocked from reaching
label M.

Let i be the largest index of a process in P. We claim tha t eventually in
O~1, any process j E Q such tha t j > i has flag(j) set permanent ly to 0. This
is because each t ime j executes one of the first two for loops, it discovers the
presence of a smaller index contender and returns to L. Whenever it does this,
it sets flag(j) := 0, and once it has done this, it can never progress far enough
to set flag(j) := 1. So let a2 be a suffix of a l in which all processes in Q with
indices :> i always have their flags equal to 0.

Now in a2, there is nothing to stop process i from reaching C: every larger-
index process j has flag(j) = 0, so i will complete the third for loop successfully.
Thus, i enters C, which is a contradiction. [::]

T h e o r e m 10.23 BurnsME solves the mutual exclusion problem.

10.7 The Bakery Algorithm

In this section we present the Bakery algorithm for mutual exclusion. It works
somewhat the way a bakery does, where customers draw tickets when they enter
and are served in the order of their ticket numbers.

The Bakery algori thm only uses s ingle-wri ter /mult i - reader shared registers.
In fact, it also works using a weaker form of register known as a safe register, in
which the registers are allowed to provide arbi t rary responses to reads tha t are
performed concurrently with writes.

The Bakery algori thm guarantees lockout-freedom and a good t ime bound.
It guarantees bounded bypass and also a related cond i t i on~ i t is "FIFO after
a wait-free doorway" (to be defined below). An unat t rac t ive proper ty of the
Bakery algori thm is tha t it uses unbounded size registers.

The code follows. We remark tha t the code given here can be simplified i f
we are only interested in the usual sort of registers (and not weaker types of
registers such as safe registers). We leave this simplification for an exercise.

10.7. THE BAKERY ALGORITHM 297

Bakery algorithm:

S h a r e d v a r i a b l e s :
for every i, 1 _< i _< n:

choosing(i) C {0, 1}, initially 0, writable by i and readable by all j -r i
number(i) C N, initially 0, writable by i and readable by all j :fi i

P r o c e s s i:

** Remainder region **

try i
choosing(i) := 1
numbed(i) := 1 + m~xj~ ~.~b~(j)
choosing(i) := 0
for j ~ i do

waitfor choosing(j) = 0
waitfor n u m b e r (j) = 0 or (number(i) , i) < (number (j) , j)

criti

** Critical region **

exit~
number(i) "- 0
remi

In the Bakery algorithm, the first part of the trying region, until the point
where process i sets choosing(i) := 0, is designated as the doorway. While in the

doorway, process i chooses a number that is greater than all the numbers that
it reads for the other processes. It reads the other processes' numbers one at a
time, in any order, then writes its own number. While it is reading and choosing

numbers, i makes sure that choosing(i) = 1, as a signal to the other processes.
Note that it is possible for two processes to be in the doorway at the same

time, which can cause them to choose the same number. To break such ties,

processes compare not just their numbers, but their (number, index) pairs. This
comparison is done lexicographically, thus breaking ties in favor of the process

with the smaller index.
In the rest of the trying region, the process waits for the other processes to

finish choosing and also waits for its (number, index) pair to become the lowest.

To prove correctness, let D denote the doorway (i.e., the set of process states
in which the process is in the doorway), and let T - D denote the rest of the
trying region. Well-formedness is easy to see. To show the mutual exclusion

condition, we use a lemma.

298 10. MUTUAL EXCLUSION

L e m m a 10.24 In any reachable system state of the Bakery algorithm, and for
any processes i and j, i 7~ j, the following is true. If i is in C and j is in
(r - D) U C, then (number(i), i) < (number(j), j).

We give an operational proof, since it can be extended more easily to the safe
register case.

P r o o f . Fix some point s in an execution in which i is in C and j is in (T -
D) tJ C. (Formally, s is an occurrence of a system state.) Call the values of

number(i) and number(j) at point s the correct values of these variables.
Process i must read choosing(j) = 0 in its first waitfor loop, prior to entering

C. Let 7r denote this reading event; thus, 7r precedes s. When 7r occurs, j
is not in the "choosing region" (i.e., the portion of the doorway after setting
choosing(j) := 1). But since j is in (T - D) tJ C at point s, j must pass through
the choosing region at some point. There are two cases to consider.

1. j enters the choosing region after 7r. Then the correct number(i) is chosen
before j starts choosing, ensuring that j sees the correct number(i) when
it chooses. Therefore, at point s, we have number(j) > number(i), which
SOt:tCiCC S.

2. j leaves the choosing region before 7r. Then whenever i reads j ' s number
in its second waitfor loop, it gets the correct number(j) But since i decides
to enter C anyhow, it must be that (number(i), i) < (number(j),j). This
again suffices.

[2

L e m m a 10.25 The Bakery algorithm satisfies mutual exclusion.

P r o o f . Suppose that, in some reachable state, two processes, i and j , are both
in C. Then by Lemma 10.24 applied twice, we must have both (number(i), i) <
(number(j), j)and (number(j), j) < (number(i),i). This is a contradiction. [7

L e m m a 10.26 The Bakery algorithm guarantees progress.

P r o o f . The exit region is easy, as usual. For the trying region, we again argue
by contradiction. Suppose that progress is not guaranteed. Then eventually
a point is reached after which all processes are in T or R, and no new region
changes occur. By the code, all of the processes in T eventually complete the
doorway and reach T - D. Then the process with the lowest (number, index)
pair is not blocked from reaching C.

10.7. THE BAKERY ALGORITHM 299

L e m m a 10.27 The Bakery algorithm guarantees lockout-freedom.

P r o o f . Consider a particular process i in T and suppose it never reaches C.
Process i eventually completes the doorway and reaches T - D. Thereafter, any
new process that enters the doorway sees i's latest number and so chooses a
higher number. Thus, since i doesn't reach C, none of these new processes reach
C either, since each is blocked by the test of number(i) in its second wait loop.

But repeated use of Lemma 10.26 implies that there must be continuing
progress, including infinitely many crit events, which contradicts the fact that
all new entrants to the trying region are blocked. D

T h e o r e m 10.28 The Bakery algorithm solves the mutual exclusion problem
and is lockout-free.

C o m p l e x i t y ana lys i s . An upper bound for the time from when a process i
enters the trying region until it enters the critical region is (n - 1)c + O (n2/~).
This is not so easy to show; we just give a brief sketch and leave the details for
an exercise.

First, it only takes time O (nt~) for process i to complete the doorway; we
must bound the length of the time interval I that i spends in T - D. Let P be
the set of other processes already in T at the moment i enters T - D. Then only
processes in P can enter C before i does, and each of these can only do so once.
It follows that the total time within interval I during which some process is in C
is at most (n - 1)c, and that the total time within interval I during which some
process is in the doorway is at most O (n2t~).

It remains to bound the residual time within interval I, that is, the total time
within I during which no process is either in C or in the doorway. We bound
the residual time by considering the progress of processes in P U {i}. During
the residual time, note that none of these processes is ever blocked in its first
waitfor loop, since all the choosing variables are 0. Moreover, some process in
P U {i} will not be blocked at any step of its second waitfor loop either, and so,
within residual time O (nt~), will enter C. After it finishes, some other process in
P U {i} will not be blocked, and so, within an additional residual time O (nt~),
will enter C, and so on. This continues until i enters C, for a total residual time
of O (n2e).

F I F O a f t e r a w a i t - f r e e d o o r w a y . The Bakery algorithm guarantees a high-
level-fairness condition that is somewhat stronger than lockout-freedom. Namely,
if process i completes the doorway before j enters T, then j cannot enter C before
i does. Note that the algorithm is not actually FIFO based on the time of entry

300 10. MUTUAL EXCLUSION

to T, or even the first locally controlled step in T. For example, process 1 could
enter and set choosing(i) := 1; then process 2 could enter, choose a number,
and complete the doorway; then process 1 could choose its number. In this case,
process 1 would choose a larger number than process 2's, allowing 2 to precede
it into C.

It would not be useful just to claim that an algorithm was "FIFO after a
doorway," because there are no constraints on where the doorway might end.
(If the doorway ended right at the entrance to C, then this claim is completely
trivial.) However, the doorway in the Bakery algorithm has an interesting prop-
erty: it is wait-free, which means that a process is guaranteed eventually to
complete it, if that process continues to take steps, regardless of whether any
other processes continue to do so.

Thus, the property of being "FIFO after a wait-free doorway," which is a
nontrivial and interesting high-level-fairness condition, is satisfied by the Bakery
algorithm.

10.8 Lower B o u n d on the N u m b e r of R e g i s t e r s

We have presented several mutual exclusion algorithms that use read/wr i te
shared memory. All guarantee the basic conditions of mutual exclusion and
progress, and most also guarantee some sort of high-level-fairness condition:
lockout-freedom, a time bound, or a bypass bound. One thing that all the algo-
ri thms have in common, though, is that they all use at least n shared variables.

In this section, we show that this is not an accident: it turns out that the
mutual exclusion problem cannot be solved at all with fewer than n read/wr i te
shared variables! This is so even if we only require the basic cond i t ions~mutua l
exclusion and progress; no high-level-fairness requirements are needed for prov-
ing this lower bound. Also, the impossibility result holds regardless of the size
of the shared variables (as measured by the number of values they can take
o n) ~ t h e y can be as small as a single bit or even unbounded in size. This result
represents a fundamental limitation on the power of shared memory systems.

We need two definitions. First, as in Section 9.3, we say that two system

states, s and s ~, are indistinguishable to process i, written as s ~ s ~, if the state
of process i, the state of Ui, and the values of all the shared variables are the
same in s and s ~. Second, we define a system state s to be idle if all processes
are in their remainder regions in s.

In the proof, we consider a fixed collection of user automata. Namely, we
assume that each user Ui is the most nondeterministic poss ible-- that it is able to
perform its try and exit outputs at any time, subject only to the well-formedness

10.8. L O W E R BOUND ON THE N U M B E R OF R E G I S T E R S 301

condition. Res t r ic t ing a t tent ion to this collection of users does not cause any

loss of generality, because the a lgor i thm is supposed to work for all collections

of users. We leave it for an exercise to show that , for each i, there is in fact a

single I / O au toma ton U / t h a t exhibi ts exact ly the allowable nonde te rmin ism.

10.8 .1 B a s i c Facts

The proof uses two basic facts. The first is that a process running on its own

from an idle state can reach its critical region.

L e m m a 10 .29 Suppose that an algorithm A solves the mutual exclusion prob-

lem (that is, guarantees well-formedness, mutual exclusion, and progress) for
n > 2 processes, using only read/write shared variables. Suppose that s is a

reachable idle system state and let i be any process.
Then there is an execution fragment 2 starting from state s and involving

steps of process i only, in which process i reaches C.

P r o o f . This follows from the progress condition. (Formally, the progress con-

di t ion is applied to a low-level-fair execut ion containing s in which i enters T

after the occurrence of s.) [-1

As an easy consequence, we have that a process running on its own from a

sys tem state that appears to be an idle state can reach C.

L e m m a 1 0 . 3 0 Suppose A solves the mutual exclusion problem for n > 2 pro-
cesses, using only read/write shared variables. Let s and s I be reachable system
states that are indistinguishable to process i and suppose that s ~ is an idle state.

Then there is an execution fragment starting from state s and involving steps

of process i only, in which process i reaches C.

The second basic fact is that any process that reaches C on its own must

write something in shared m e m o r y before doing so.

L e m m a 10 .31 Suppose A solves the mutual exclusion problem for n > 2 pro-
cesses, using only read/write shared variables. Suppose that s is a reachable
system state in which process i is in the remainder region. Suppose that process

i reaches C in an execution fragment starting from s that involves steps of i
only. Then, along the way, i must write some shared variable.

2This is just an execution that starts in an arbitrary state, not necessarily an initial state of
the algorithm.

302 10. M U T U A L EXCLUSION

P r o o f . Let O~ 1 be any finite execution fragment that s tar ts from state s, in-
volves steps of i only, and ends with process i in C. Suppose for the sake of

contradict ion that Ct I does not include any write to a shared variable. Let s'
denote the state at the end of C~l. Since process i does not write any shared
variable, the only differences between s and s' are in the states of process i and

user Ui. So s j s' for every j :/: i.
Repea ted use of the progress condition implies that there is an execution

fragment s tar t ing from s and not including any steps of process i, in which some

process reaches C. Since s j s' for every j # i, there is also such an execution
fragment s tar t ing from s'.

But this easily yields a counterexample execution a. Execution c~ begins with
a finite execution fragment leading to reachable state s, then continues with Ctl,
thus letting i into C with no shared variable writes. It finishes by letting another
process go to C without any steps of i, s tar t ing from s'. This violates the mutual
exclusion condition, because two processes are in C at the end of a. [-1

10.8.2 S ing le -Wri ter Shared Variables

If the shared variables are constrained to be s ingle-wri ter /mul t i - reader r ead /wr i t e
registers (like the variables used in the BurnsME and Bakery algorithms), then
Lemmas 10.29 and 10.31 immediate ly imply the lower bound:

Theorem 10 .32 If algorithm A solves the mutual exclusion problem for n >_ 2
processes, using only single-writer/multi-reader read/write shared variables, then
A must use at least n shared variables.

P r o o f . Consider any process i. By Lemma 10.29, i can reach C on its own,
s tar t ing from an initial (idle) system state of A. Then Lemma 10.31 implies
that i must write some shared variable along the way. Since this holds for every
process i, and since each shared variable has only a single writer, there must be
at least n shared variables. D

10.8.3 Mul t i -Wri ter Shared Variables

But notice that even the algori thms that we have presented that use mult i-writer
registers (like the DijkstraME and Peterson algori thms) require at least n vari-
ables. In this subsection, we extend Theorem 10.32 to the case of mult i-writer
registers. That is, we prove"

10.8. L O W E R BOUND ON THE N U M B E R OF R E G I S T E R S 303

T h e o r e m 10 .33 If algorithm A solves the mutual exclusion problem for n >_ 2
processes, using only read/write shared variables, then A must use at least n
shared variables.

To give the intuit ion for the proof, we star t by proving two special cases.

We first show impossibi l i ty for two processes and one variable, then for three

processes and two variables. Afterward, we extend the ideas to the general case.

T w o p r o c e s s e s a n d o n e v a r i a b l e . We use the following definition many

times in the proofs: we say that process i covers shared variable x in system

state s provided that in state s, process i is enabled to write to x. (That is,

process i can write to x in its next step.)

T h e o r e m 10 .34 There is no algorithm that solves the mutual exclusion problem
for two processes using only one read/write shared variable.

P r o o f . Suppose for the sake of contradict ion that there is such an algori thm,

A, using a single shared register x. Let s be an initial (idle) system state. We

construct an execution of A that violates mutual exclusion.

Lemmas 10.29 and 10.31 imply that there is an execution involving process

1 only, s tar t ing from state s, that causes process 1 to enter C and to write the

single shared variable x before doing so. Jus t before process 1 writes x, it covers

x. Let Ct 1 be the prefix of this execution up to the first point where process 1

covers x and let s ~ denote the final state of C~l. Note that s 2 s ~, since process

1 does not write anything to shared memory during c~1. Then Lemma 10.30

implies that process 2 can reach C on its own, s tar t ing from state s ~.

The counterexample execution c~ begins with c~1, thus bringing process 1

to state s ~, where it covers x. It then continues by letting process 2 reach C,

running on its own from s ~. Next, we resume process 1, allowing it to write x,

thereby overwrit ing anything process 2 might have wri t ten on its way to C. This

eliminates all t races of process 2's execution. So process 1 can continue to run

just as it does in its solo execution and reach C. But this puts both processes

in C, which contradicts the mutual exclusion requirement.

Execution c~ is depicted in Figure 10.10. It "splices" several steps of process

2 into an execution involving process 1 only. [7

T h r e e p r o c e s s e s a n d t w o v a r i a b l e s .

processes and two variables.

Now we show impossibi l i ty for three

T h e o r e m 10 .35 There is no algorithm that solves the mutual exclusion problem
for three processes using only two read/write shared variables.

304 10. M U T U A L E X C L U S I O N

cz 1 1 covers x 1 in C

i I
1 only

S I

2 i n C

I
l i n C

2 i n C

F i g u r e 10.10" Execution (~ for proof of Theorem 10.34.

P r o o f . Suppose for the sake of contradic t ion that there is such an algori thm,

A, using shared registers x and y. Let s be an initial sys tem state. We construct

an execution of A that violates mutual exclusion.

We will use the following strategy. Star t ing from s, we will maneuver pro-

cesses 1 and 2 only, to a point where each covers one of the two variables x and

y; moreover, the result ing state, s ~, will be indist inguishable to process 3 from

a reachable idle state. Then we run process 3 on its own from state s ~ until it

reaches C; L e m m a 10.30 implies that this is possible.

Next, we let each of processes 1 and 2 take one step. Since each covers one

of the two shared variables, they can thereby eliminate all t races of process 3's

execution. Then we let processes 1 and 2 continue to take steps; since they

have el iminated all evidence of process 3, they can run as if process 3 had never

entered its t ry ing region. Thus, by the progress condition, either 1 or 2 will

eventual ly reach C. But this yields two processes in C, contradict ing the mutual

exclusion condition.

It remains to show how to maneuver processes 1 and 2 to cover the two shared

variables while appear ing to process 3 to still be in R. We do this as follows (see
Figure 10.11).

Firs t , we construct execution c~1 by running process 1 alone from s until it

first covers a shared variable. Then we extend O~ 1 t o Ct 2 by continuing to run

process 1 alone until it enters C, then E, then R, then T once again, and again

covers some shared variable. We extend c~2 to c~3 in the same way. Let the final

states of c~1, c~2, and c~3 be Sl, s2, and s3, respectively.

10.8. L O W E R B O U N D ON THE N U M B E R OF R E G I S T E R S 305

(Z 3

S
(Z I

I [I
$2

F i g u r e 10.11" Process 1 runs alone.

S 3

S 1

I

S 2, 1 covers x s", idle

I

2 covers y

S 3 1 covers x

l

t

S I ,

i
1 covers x
2 covers y

F i g u r e 10.12" Construction of ~.

Since there are only two shared variables, in two of the three s tates s l, s2,

and s3, process 1 must cover the same variable. To be specific, suppose that in

s2 and s3, process 1 covers variable x. (The same a rgument holds for all the

other cases.)

Now consider what happens if we run process 2 alone, s ta r t ing from state s2.

We claim that process 2 can enter C; this follows from L e m m a 10.30, because

state s2 is indis t inguishable to process 2 from the last preceding state in c~ in

which process 1 is in R. Moreover, we claim that along the way process 2 must

write the other shared variable y. For otherwise, process 2 could reach C, then

process 1 could take one step, overwri t ing whatever process 2 wrote to variable

x and thus el iminat ing all t races of 2, and then process 1 could continue and

violate mutua l exclusion.

Now we cons t ruc t a counte rexample execut ion a (see Figure 10.12). Execut ion

c~ begins with (~2, thus br inging process 1 to a point where it covers x. It then

306 10. M U T U A L E X C L U S I O N

continues by letting process 2 run just until the first point where it covers y. At

this point, we have processes 1 and 2 covering variables x and y respectively.

But we are not yet done, because we still need the resulting state to be indis-

t inguishable to process 3 from some idle state. (In the si tuat ion we have so far,

process 2 might have wri t ten x since it last left R, which could be detectable by
process 3.)

So we continue; from the point where process 2 covers y, we resume process

1. It can first write x, thereby eliminating all traces of process 2. Then process

1 can continue to run just as it does in its solo execution and reach a point that

looks to it like the point after c~3, where it again covers x. This completes the

construct ion of c~; let s' be the final state of c~.

We claim that c~ has all the properties we want. It is easy to see that processes

1 and 2 cover variables x and y respectively, in state s'. It remains to show that

s' is indistinguishable to process 3 from a reachable idle state. Let s" be the last

idle state occurring in a3. Then the only differences between s" and s3 are in

the state of process 1 and user U1, while the only differences between s' and s3

are in the states of process 2 and user U2. It follows that s' 3 s", as needed. K]

T h e g e n e r a l case . The proof for the general case is a natural extension of the

proofs for the two special cases, using induction on the number of variables. We

need one more basic f a c t - - a s t rengthened version of Lemma 10.31. It says that

a process must not only write some variable on the way to C, it must in fact

write a variable that is not covered by another process. We have already used

this idea, within the proof of Theorem 10.35.

L e m m a 10 .36 Suppose A solves the mutual ezclusion problem for n >_ 2 pro-
cesses, using only read/write shared variables. Suppose that s is a reachable
system state in which process i is in the remainder region. Suppose that process

i reaches C in an execution fragment starting from s that involves steps of i
only. Then, along the way, i must write some shared variable that is not covered
by any other process in s.

P r o o f S k e t c h . The proof is similar to that of Lemma 10.31. The main differ-

ence is that now we must ensure that the execution fragment involving the other

processes begins with a single step of each process that covers a shared variable,

thus overwriting that variable. This allows the other processes to eliminate all

traces of i 's computat ion. A detailed proof is left for an exercise. D

We can now prove the main lemma. For any k, 1 _< k _< n, we say that one

system state is k-reachable from another if it is reachable using steps of processes
1 , . . . , k only.

10.8. L O W E R B O U N D O N T H E NUlVlBER OF R E G I S T E R S 307

L e m m a 10 .37 Suppose A solves the mutual exclusion problem for n >_ 2 pro-

cesses, using only read/write shared variables. Assume that there are exactly

n - 1 shared variables. Let s be any reachable idle system state. Suppose

1 <_ k <_ n - 1. Then there are two system states, s ~ and s", each k-reachable

f rom s, satisfying the following properties:

1. k distinct variables are covered by processes 1 , . . . , k in s ~.

2. s" is an idle state.

3. s ~ i s" for all i, k + l < i < n.

P r o o f . By induction on k.

Basis" k - 1. We run process 1 alone from s until it first covers a shared

variable; Lemmas 10.29 and 10.31 imply that it is possible to do this. Defining

s ~ to be the resulting state and s " - s gives the needed properties.

Inductive step: Suppose the lemma holds for k, where 1 < k < n - 2; we

prove it for k + 1. Using the inductive hypothesis, we obtain a state t l that is

k-reachable from s and in which processes 1 , . . . , k cover k dist inct variables;

however, tl is indistinguishable to processes k + 1 , . . . , n from some idle state

that is also k-reachable from s. Next, we let each of processes 1 , . . . , k take

one step from t l, thereby writ ing the variable that it covers. Then we let all of

1 , . . . , k proceed to R, resulting in a new reachable idle state u l.

Now we apply the inductive hypothesis again to obtain a state t2 that is k-

reachable from U l and in which processes 1 , . . . , k cover k dist inct variables, yet

which is indistinguishable to processes k + 1 , . . . , n from an idle state that is

k-reachable from ul. Again let processes 1 , . . . , k write their covered variables

and re turn to an idle state u2.

We repeat this procedure a total of (~k 1) + 1 times, yielding "covering states"
n - - t l , . . , t(~-i Now, by the Pigeonhole Principle, among these (k 1) -]- 1 cov- ' k)+1"

ering states, there must be two in which processes 1 , . . . , k cover the same set

of k shared variables; call this set X. Let S l be the first of these two covering

states and s2 the second. Also, let s~ be the idle state that was constructed to

i i s~ for all i, correspond to s l, and likewise s~ for s2. Thus, S l ~ s~ and s2
k + l < i < n .

Now consider what happens if we run process k + 1 alone from system state

k+l ~ and s~ is a reachable idle state, Lemma 10.30 implies that Sl. Since Sl ~ s 1
precess k + 1 can eventually enter C. Along the way, by Lemma 10.36, it must

write to some variable x not in X.

Now we are ready to define the two needed states, s t and s", both k + 1-

reachable from the original state s. (See Figure 10.13.) First , to define s ~ (the

308 10. M U T U A L E X C L U S I O N

I
S1

S1, X covered

I

ve

I ~ S I I
S 2

$2, X covered

I

k + l covers x g X

1
I s , X tO { x } covered

F i g u r e 10.13- Construction for the general case.

state in which k + 1 variables are covered), run process k + 1 from 81 just

until it first covers a shared variable not in X. Then resume processes 1 , . . . , k,

letting them first write the covered variables, and then proceed to the point

corresponding to s2, where they cover X again. Let s ~ be the resulting state.

Note that s ~ is the same as s2, except for the state of process k + 1. To define s"

(the idle state), we simply let s " - s~.

We claim that s ~ and s" have all the required properties. First , note that

only processes 1 , . . . , k + 1 are involved in the construct ion (including the uses

of the inductive hypothesis); so s ~ and s" are both k + 1-reachable from s. Also,

it should be easy to see that k + 1 variables are covered in s': the k variables in

X plus the new variable x covered by process k + 1. Furthermore, s" - s~ is an

idle state by the definition of s~.

It remains only to show that s ~ and s" are indistinguishable to all processes

implies that s2 and s" i, k + 2 _< i _< n. But the definition of s2 and s 2 - s~ are

indistinguishable to all processes i, k + 1 _< i _< n. And we have already noted

that s2 and s ~ are indistinguishable to all processes except k + 1. Put t ing these

two facts together implies the needed condition. [:]

Now Theorem 10.33 follows"

P r o o f (o f T h e o r e m 10 .33) . Suppose for the sake of contradict ion that algo-

r i thm A solves the mutual exclusion problem for n _> 2 processes using at most

n - 1 read /wr i t e shared variables. Wi thou t loss of generality, we may assume

that A has exactly n - I shared variables.

10.9. READ-MODIFY- W R I T E SHARED VARIABLES 309

Let s be any initial system state of A. Then Lemma 10.37 implies that there
are two system states, s' and s", each n - 1-reachable from s, such that all of

the n - 1 shared variables are covered by processes 1 , . . . , n - 1 in s', s" is an
idle state, and s' L s". Lemma 10.30 implies that there is an execution fragment
start ing from s' and involving steps of process n only, in which process n reaches
C. Lemma 10.36 implies that in this execution fragment, process n must write
some shared variable that is not covered in s'. But all the n - 1 variables are

covered in s', so this is a contradiction. s

We emphasize again that Theorem 10.33 holds regardless of the size of the
shared variables: they can even be unbounded in size. Moreover, no high-level-

fairness assumption is needed; the progress condition is the only liveness assump-

tion that is needed for this impossibility result.

10.9 Mutual Exclusion Using Read-Modify-Wri te
Shared Variables

In this final section, we consider mutual exclusion using read-modify-write shared
memory. That is, a process is able, in one instantaneous step, to access a shared
variable and to use the variable value and the process state to determine a new
variable value and a new process state. A formal definition appears in Section 9.4.

You might think that considering the mutual exclusion problem in the read-
modify-write model is a trivial exercise, because this model is so powerful. The
read-modify-write model provides fair exclusive access to each shared var iable- -
each process gets fair turns to access the variable, and when it does so, it can
perform an arbi t rary computat ion before the variable is released. This is very
close to what is required of a fair mutual exclusion algorithm, namely, fair ex-
clusive access to the critical region. It almost seems as though we are assuming
a solution to the very problem we are trying to solve.

Indeed, having such a powerful form of shared memory does simplify the
situation considerably, but it does not make all the difficulties disappear. Along
with a collection of algorithms, we shall present some nontrivial lower bound

results.
We consider the basic mutual exclusion problem first, then consider what

happens when we add a high-level-fairness requ i rement - -bounded bypass or

lockout-freedom.
For the rest of this section, we assume that the shared memory system only

contains a single shared variable. This does not cause any loss of generality in the
read-modify-write model, because several read-modify-write variables could be
combined into a single mult ipart read-modify-write variable, anyway. Contrast

310 10. M U T U A L EXCLUSION

this with the situation for the read/wr i te model, for which we have shown that
the existence of a solution to the mutual exclusion problem is quite sensitive to

the number of read/wri te shared variables.

10.9.1 The Basic P r o b l e m

To see how different the read-modify-write model is from the read/wr i te model,
consider the following trivial one-variable algorithm, TrivialME. In this algo-
rithm, the shared variable x has value 1 exactly if the resource has been granted
to some process. Any process in the trying region simply tests x until it discov-
ers x = 0, at which time it immediately sets x := 1. Upon exiting, a process
resets x := 0. It is straightforward to see that the TrivialME algorithm solves
the mutual exclusion problem.

Tr iv ia lME algorithm:

S h a r e d var iables :
x E {0, 1}, ini t ia l ly 0

A c t i o n s o f i:
Input :

tryi
exiti

Outpu t :
criti
r e m i

Internal :
testi
reset~

S t a t e s o f i:
pc C {rein, test, leave-try, crit , reset, leave-exit} , ini t ial ly rein

T r a n s i t i o n s o f i:

try~ criti
Effect: Precondi t ion :

pc := test pc = leave-try
Effect:

testi pc := crit

Precondi t ion :
pc = test exit~

Effect: Effect:

if x = 0 then pc := reset
x : = l
pc := leave-try

10.9. READ-MODIFY-WRITE SHARED VARIABLES 311

reseti remi
Precondi t ion: Precondit ion:

pc = reset pc = leave-exit
Effect: Effect:

x : = O pc := rem
pc := leave-exit

Theorem 10.38 TrivialME solves the mutual exclusion problem.

10.9.2 Bounded Bypass

The TrivialME algorithm does not guarantee any high-level-fairness conditions.
However, we can easily obtain very strong high-level-fairness conditions, even a
FIFO condition (based on the first locally controlled step each process takes in
its trying region), still just using a single shared variable. For example, we have
the QueueME algorithm.

QueueME algorithm (informal):

The processes maintain a queue of process indices, initially empty, in the
shared variable. A process that enters T adds its index to the end of the
queue; a process that finds itself at the beginning of the queue goes to C;
and when a process leaves C, it deletes itself from the queue.

Expressing this more formally in precondition-effect notation, we have the
following.

QueueME algorithm (formal)"

S h a r e d var iables :
queue, a F I F O queue of process indices, initially empty

A c t i o n s o f i:
Input :

tryi
exit~

Outpu t :
criti

remi

Internal:
enter~
test~

reset~

S t a t e s o f i:
pc E {rem, enter, test, leave-try, crit, reset, leave-exit} , initially rem

312 10. M U T U A L E X C L U S I O N

T r a n s i t i o n s o f i:
try~

Effect:
pc := enter

enter~
Precondition:

pc = enter
Effect:

add i to queue
if i is first on queue then

pc := leave-try
else pc := test

testi
Precondition:

pc = test
Effect:

if i is first on queue then
pc := leave-try

criti
Precondition:

p c - leave-try
Effect"

p c - crit

exiti
Effect:

pc "- reset

reset~
Precondition:

pc = reset
Effect:

remove first element of queue
pc := leave-exit

remi
Precondition:

p c - leave-exit
Effect:

pc "- rein

It should be easy to see that Q u e u e M E guarantees well-formedness, mutual

exclusion, and progress. Moreover, it satisfies the high-level-fairness condition

that ent ry to the critical region is F I F O with respect to the first locally controlled

action in the t ry ing region (the e n t e r action). This implies that Q u e u e M E guar-

antees bounded bypass (with a bound of 1).

T h e o r e m 10 .39 Q u e u e M E s o l v e s the m u t u a l e x c l u s i o n p r o b l e m a n d g u a r a n t e e s

b o u n d e d bypass .

The Q u e u e M E algor i thm is simple and is also fast, at least according to our

t ime measure, but it does have the problem that the shared variable is very large.

There are n! + (n - 1)! + . . . different queues consisting of at most n dist inct

indices, so the variable must be able to assume that many different values. This

requires ~ t (n logn) bits. It would be bet ter to reduce the size of the shared

variable, not jus t in order to save shared memory, but also because it is not so

reasonable to assume ins tantaneous access to such a large variable. An interest ing

10.9. READ-MODIFY-WRITE SHARED VARIABLES 313

question is how large the shared variable must be in order to guarantee high-level
fairness. Can we solve the problem with a variable that takes on a number of
values that is linear in n? What about a constant number of values?

It is not very hard to achieve the same type of FIFO behavior as the QueueME
algorithm, using a shared variable with only n 2 values (2 log n bits). For example,
we may use an algorithm based on issuing "tickets" to the critical region.

T i c k e t M E algorithm (informal)"
The shared variable holds a pair (next, granted), of values in {0 , . . . , n - 1},
initially (0, 0). The next component represents the next "ticket" to the
critical region that is to be issued to a process, while the granted component
represents the last "ticket" that has been granted permission to enter the
critical region. When a process enters the trying region, it "takes a ticket,"
that is, it copies and increments the next component. If a process's ticket
is equal to the granted component, it goes to the critical region. When a
process exits, it increments the granted component modulo n.

Now we present the algorithm in the more formal precondition-effect style.

T i c k e t M E algorithm (formal)"

S h a r e d var iab les :
(next, granted), a pair of e lements of { 0 , . . . , n - 1}, initially (0,0)

A c t i o n s o f i:
Input :

tryi
exit~

Outpu t :
criti
remi

Internal :
enter~
testi
reset~

S t a t e s o f i:
pc E {rein, enter, test, leave-try, crit, reset, leave-exit}, init ially rein
ticket E { 0 , . . . , n - 1} U {null}, init ially null

T r a n s i t i o n s o f i:

tryi
Effect:

pc : - enter

enter~
Precondi t ion:

pc = enter
Effect:

ticket :-- next
next := next + 1 mod n
if ticket = granted then

pc := leave-try
else pc := test

314 10. M U T U A L E X C L U S I O N

testi
Precondition:

pc = test
Effect:

if ticket = granted then
pc := leave-try

criti
Precondition:

p c - leave-try
Effect:

p c - crit

exiti
Effect"

pc "- reset

reseti
Precondition:

pc = reset
Effect:

granted := granted + 1 mod n
ticket := null
pc := leave-exit

remi
Precondition:

p c - leave-exit
Effect"

pc "-- rein

T i c k e t M E satisfies the same correctness conditions as Q u e u e M E , including

being F IFO with respect to the first locally controlled action in the t rying region.

The proof of the following theorem appears in Section 10.9.4.

T h e o r e m 10 .40 T i c k e t M E solves the m u t u a l exc lus ion prob lem and guarantees

bounded bypass, using n 2 values of shared m e m o r y .

Can we do bet ter than n2? The following theorem gives a simple lower bound

of n on the number of shared variable values required to solve bounded bypass

mutual exclusion.

T h e o r e m 10 .41 Let A be an n-process m u t u a l exc lus ion a lgor i thm guarantee-

ing bounded bypass, using a single read-modi fy -wr i t e shared variable. T h e n the

l~t11~bcr of d is t inc t values the variable can take on is at least n.

P r o o f . Suppose that A is an n-process mutual exclusion algori thm guarantee-

ing bounded bypass, with a bypass bound of a. Assume again (as in Section 10.8),

without loss of generality, that the users Ui are the most nondeterminis t ic pos-

sible. We proceed by contradiction: we construct an execution in which some

process is bypassed more than a times.

We start by defining a sequence of finite executions, C~l, c~2,... , c~, each an

extension of the previous one. Execution ct 1 is obtained by letting process 1
run alone from an initial system state until it enters C. (The progress condition

implies that this is possible.) To obtain c~2, we extend ct 1 by letting process 2

enter the t rying region and take one locally controlled step. Obviously, process 2

10.9. R E A D - M O D I F Y - W R I T E S H A R E D V A R I A B L E S 315

must remain in its t rying region after c~2, in order to avoid violating the mutual
exclusion condition. Then execution c~i, for 3 _< i <_ n, is const ructed in a similar
way to c~2" s tar t ing at the end of c~i-1, we let process i enter the trying region
and take one locally controlled step. Each process i, 3 _< i _< n, also remains in
its t rying region.

Define si to be the system state and vi the value of the shared variable after

c~i, 1 <_ i _< n. We claim that vi # vj for 1 _< i , j <_ n, i 7~ j , which implies the
result.

So assume the contrary, that is, that vi - vj for some part icular i and j ,
k

i r j , and assume without loss of generali ty that i < j . Then si ~ sj for every
process k, 1 <_ k _< i. (That is, the system states after c~i and c~j include the
same states for processes and users 1 , . . . , i, and the same value of the shared
variable.)

Now, there is some low-level-fair execution that extends c~i, involving only
processes 1 , . . . , i, that causes some process to enter C infinitely many times.
This follows from the progress assumpt ion (which only applies in low-level-fair
executions). The same steps can be applied after c~j, again yielding an execution
in which the same process enters C infinitely many times. Note that this new
execution is not low-level fair: processes i + 1 , . . . , j do not perform any steps
in the port ion of the execution after c~j, even though they are all in T. But this
does not matter" low-level fairness is not required for a violation of the bypass
bound. Jus t running a sufficiently large port ion of this execution is enough to
cause process j to be bypassed more than a times by some other process, which
is the needed contradiction.

The construct ion is i l lustrated in Figure 10.14. D

C

2 3 i j n

v 3 v , v .

F i g u r e 10 .14: Construction of execution for the proof of Theorem 10.41.

Is this lower bound tight, or can it be raised, say to f~(n2)? It turns out that
it c a n n o t - - t h e r e is a counterexample algorithm (i.e., an a lgor i thm that is not
of much interest on its own, that is neither practical nor elegant, but that does

316 10. MUTUAL EXCLUSION

serve to demonstrate a counterexample to an impossibility conjecture) that only

requires O (n) values. In fact, the algorithm only needs n + k values, for a small
constant k. We call this algorithm the BufferMainME algorithm, for reasons
that will become apparent in a moment.

BufferMainME algorithm:
The basic idea of the BufferMainME algorithm is as follows. The trying
region is divided into two pieces, called the buffer region and the main
region. When processes enter the trying region, they go into the buffer;
no order information is maintained among the processes in the buffer. At
some time, when the main region is empty, all processes in the buffer go
to the main region, thereby emptying the buffer. From the main region,
processes go one at a time, in an arbi t rary order, to the critical region.

Implementing this idea requires some communication mechanisms, so that
processes can discover when they should change regions. For a first cut at
an implementation, suppose that in addition to the usual "agent" processes
1 , . . . , n, we allow a dedicated supervisor process that is always allowed to
take steps. We will design a solution that centralizes system control in the
supervisor process: the supervisor keeps track of when processes should
change regions and informs them accordingly. Afterward, we will describe
how to remove the need for the special supervisor process.

Using the supervisor process, we have the following strategy. First, let the
variable have two components, one for a count C {0 , . . . , n} and one for a
message chosen from a designated finite set of control messages. This is a
total of kn values for some constant k, but we can optimize this to n + k
by using a priority scheme to allow reuse of the variable for different types
of communication.

The supervisor maintains local variables buffer-count and main-count,
counts of the numbers of processes that it has heard about that are in
the buffer and main regions. When a process enters the trying region, it
increments the count component of the shared variable to inform the super-
visor that some new process has entered and then waits in the buffer. The
supervisor, whenever it sees a non-zero count in the shared variable, ab-
sorbs the count into its local buffer-count and resets the count component
of the variable to 0.

The supervisor can figure out when to move the processes in the buffer to
the main region, that is, after its main-count is 0. It moves them, one at
a time, by putting enter-main messages in the message component of the
shared variable. The supervisor stops moving processes from the buffer

10.9. R E A D - M O D I F Y - W R I T E S H A R E D V A R I A B L E S 317

to the main region when it sees that its buffer-count and the count in the
variable are both equal to O. Then the supervisor moves processes from
the main region to the critical region, by putting enter-cr i t messages in the
message component of the shared variables.

The control messages that are used are

�9 enter-main: The supervisor places this into the message component
of the shared variable to move a process from the buffer to the main
region. The first process in the buffer that sees this message picks it

up and proceeds to the main region.

�9 ack-main: A process that picks up an en t e r -ma in message from the
shared variable leaves this in its place as an acknowledgment to the

supervisor. The supervisor picks this up.

�9 enter-crit: The supervisor places this into the message component of
the shared variable to move a process from the main region to the

critical region. The first process in the main region that sees this
message picks it up and proceeds to the critical region.

�9 ack-crit: A process that picks up an enter-cr i t message from the
shared variable leaves this in its place as an acknowledgment to the

supervisor.

�9 done: A process exiting the critical region places this into the message

component of the shared variable to announce that it is done.

Now we outline how we can avoid the two separate components in the
shared variable. Note that the variable is being used for two purposes:
recording the number of newly entered processes and communicating con-
trol messages. We will now "time-share" the variable, allowing it to serve
both purposes, but not at the same time. The variable will at any point
have a value that is either a count or a control message, but not both.

Note that, in the algorithm described so far, control-message communi-
cation proceeds according to a single sequential "thread of control," as

depicted in Figure 10.15.

Suppose that this thread were to be interrupted by a newly entering process
i overwriting a control message with a count (of 1, announcing its own

arrival). Then (because there are only finitely many processes that can
enter the system), the system would eventually reach a stable state. The
supervisor would eventually absorb all count information in the shared
variable, making the count in the variable permanently equal to 0. At this

318 10. M U T U A L E X C L U S I O N

supervisor process

F i g u r e 10.15- A thread of control for the bounded bypass mutual exclusion algo-
rithm.

point, it would be possible for process i to put the overwritten message
back in the variable, allowing the thread of control to resume.

More specifically, the following occurs. When process i enters the trying
region and sees a control message in the shared variable, it remembers the
message and replaces it with a count of 1. Process i holds the message until
it sees that the count is 0, and then overwrites the 0 with the remembered
message. The result is a mutual exclusion algorithm with bounded bypass
that uses n + 6 values of the shared variable, assuming the availability of a
dedicated supervisor process.

Now we modify this algorithm so that it works in the model we have been
s tudying- - tha t is, without a dedicated supervisor process. The idea is to
allow the processes to cooperate in a distr ibuted simulation of the supervi-
sot. (The simulation has to be distributed, since there is no process that is
guaranteed to be available at all times.) The processes simply take turns
performing the simulation; in particular, whenever a process is in the crit-
ical region, it will be the process responsible for the supervisor simulation.

The main difficulty of this simulation is that a process leaving C must
pass the responsibility for the supervisor simulation on to the next process

10.9. READ-MODIFY-WRITE SHARED VARIABLES 319

to enter C. This involves communicating all the state information needed

by the supervisor (in particular, buffer-count and main-count) to the next

process. We must use the shared variable for this new type of communica-
tion, as well as for the other two types of communication we have already
discussed; again, we time-share. Note that the new state communication

does not go on at the same time as the control-message communication, so
there is no interference here. Moreover, interference between the counts of

newly arrived processes and the communication of state information can
be managed in the same way as the interference between the counts and

the control messages.

One last detail: Sometimes, when a process leaves C, there will be no other

process to which it can pass responsibility for the supervisor simulation.
In such a case, it means that there is no other process in the trying region.

But then there is no interesting information in the supervisor state, anyway,

so the process can just abandon responsibility, leaving a special indicator
in the shared variable.

Theorem 10.42 The BufferMainME algorithm solves the mutual exclusion prob-
lem, guaranteeing bounded bypass, using a single read-modify-write shared vari-
able with only n + k values (for some small constant k).

10.9.3 L o c k o u t - F r e e d o m

The lower bound of Theorem 10.41 only holds when the high-level-fairness re-

quirement is bounded bypass. For the weaker requirement of lockout-freedom,
the proof does not work. The problem is that lockout-freedom is a property of
low-level-fair executions, and the bad execution constructed in the proof was not
fair to processes i + 1 , . . . , j . In fact, the result of Theorem 10.41 does not hold
for lockout-freedom. We have another counterexample algorithm, this one with

a surprisingly small bound. We call this one the Executive algorithm.

E x e c u t i v e algorithm:

The idea of the algorithm is as follows. As in the BufferMainME algorithm,
each incoming process increments a count in the shared variable, but this

.. n before wrapping time the count is only allowed to take on values 0, . ,
back around to 0. The count is absorbed by a (simulated) supervisor, as
before.

n When the count wraps around to 0, a group of ~ -t- 1 processes is tem-
porarily "hidden" from the rest of the system; the resulting system state is
indistinguishable to all the other processes from the state just before they

320 10. MUTUAL EXCLUSION

all entered. If these hidden processes take no further steps, the rest of the
system will proceed as if the hidden processes were still in R. However, in
a low-level-fair execution, the hidden processes will take further steps and
so can make their presence known.

To make sure that the processes do not remain hidden, we designate the
n process that performs the transit ion from 5 to 0 as the executive, and

give it responsibility for the hidden processes. The executive sends special
sleep messages to (an arbi t rary set of) ~ processes in the buffer, to put
them to sleep for a while. Then, having removed ~ processes from the
competition, the executive reenters the system, incrementing the count on

n its own behalf once again. Now, with ~ processes sleeping, the algorithm

runs exactly like the BufferMainME algorithm; the shared variable cannot
remaining active processes and overflow now, because there are at most

n In particular, a second the count in the variable is allowed to reach ~.
concurrent executive cannot be created. According to the behavior of the

BufferMainME algorithm, the executive eventually reaches C.

When the executive reaches C, it takes care of the sleepers by sending them
wakeup messages and telling the supervisor about them. Again, we must
time-share the variable for these new types of communication, now with a
slightly more complicated priority scheme.

T h e o r e m 10.43 The Executive algorithm solves the mutual exclusion problem,
guaranteeing lockout-freedom, using a single read-modify-write shared variable

n with only -~ + k values (for some small constant k).

We finish this subsection with a lower bound of approximately x/~ on the

number of values needed for lockout-free mutual exclusion. This bound is not
n tight with respect to the g + k upper bound, but the proof does contain an

interesting method of constructing bad low-level-fair executions.

T h e o r e m 10.44 Let k _> 2. Let A be any system of n -> k2-k2 + 1 processes
solving the mutual exclusion problem and guaranteeing lockout-freedom, using a
single read-modify-write shared variable. Then the number of distinct values the
variable can take on in reachable states of A is at least k.

P r o o f . Again, we assume that the users are the most nondeterministic possible.

We proceed by induction on k.
Basis: k - 2. Then the inequality says that n _> 2. It is easy to show that the

variable must take on at least two values, since otherwise the processes could not
communicate. The formal argument is similar to the one used for Lemma 10.31.

10.9. R E A D - M O D I F Y - W R I T E S H A R E D V A R I A B L E S 321

I n d u c t i v e s tep: Assume now that the result holds for k _> 2; we show that it

holds for k + 1. Suppose n > (k+l)2-(k+l) - 2 + 1, and suppose for contradict ion

that the number of values of the shared variable is strictly less than k + 1. By

the inductive hypothesis, it follows that the number of values is at least k, so it

must be exactly k. We now construct a bad execution to derive a contradiction.

We define finite execution Ct 1 by running process 1 alone until it enters C; let

the resulting system state be Sl. Then we extend Ct 1 t o Ct 2 by running process 2

just until a system state s2 is reached in which the shared variable has a value that

process 2 can cause to recur infinitely many times by running on its own from

state s2. Such a state must exist since the variable can assume only finitely many

values. Likewise, we define c~i, for 3 _< i _< n, by running process i after c~i-1 until

a system state si is reached in which the variable has a value that process i can

cause to recur infinitely many times by running on its own from state si. Let vi

be the value of the variable in system state si, for all i, 1 _< i _< n. Since there are

only k values that are taken on by the shared variable, the Pigeonhole Principle

implies that there must be two processes, i and j , where n - k _< i < j _< n, such
m

that vi - v j . Fix these i and j . Note that si ~ s j for all processes m, 1 _< m _< i.

Now, processes 1, , i const i tute a system with at least k2-k + 1 processes,
~ ~ ~ 2

solving the mutual exclusion problem with lockout-freedom. So, by the inductive

hypothesis, they must use all k values of shared memory. In fact, we can sharpen

this claim: for every system state s that is i-reachable 3 from system state si, and

every value v of shared memory, there must be a system state that i s / - reachable

from s in which the value of the shared variable is v. (If not, then we could

use any idle state that is /-reachable from s as an initial state for a system

involving processes 1 , . . . , i, in which the variable takes on fewer than k values.

This contradicts the inductive hypothesis .) Using this sharpened claim, we can

produce a low-level-fair execution of processes 1 , . . . , i that extends c~i and in

which all k values of the shared variable recur infinitely many times.

Now we construct the bad execution a as follows. It begins with c~j, which

brings processes 1 , . . . , j into the system and brings the system state to sj and

the variable value to vj - vi. Next, run processes 1 , . . . , i as described above,

but from state sj instead of si; again, these processes cause each of the k values

of the shared variable to recur infinitely often.

Now recall that from its local state in sin, each process rn, i + 1 _< m _< j is
able to cause the value of the variable in state sm to recur infinitely often. So

we splice into the main execution of processes 1 , . . . , i some steps of processes

i + 1 , . . . , j as follows" each time the shared variable is set in the main execution

3As in Section 10.8, we define this to mean that the state s is reachable using steps of

processes 1 , . . . , i only.

322 10. M U T U A L EXCLUSION

to some value vm, i + 1 < m <_ j, we run process m for just enough steps (but

at least one step) to let it re turn the value of the shared variable to Vm. These
insertions yield an infinite execution that is fair to all processes and that locks
out all processes m, i + 1 _< m <_ j. [--I

The key idea to remember in the proof of Theorem 10.44 is the construction of
bad low-level-fair executions by splicing together execution fragments. Also, note
that Theorem 10.44 implies what might at first seem to be a paradox. Namely,
there is a nontrivial inherent cost to solving lockout-free mutual exclusion, even
though our model already contains something very close to what is needed-- fa i r
exclusive access to a shared variable for arbi t rary computation.

Note that there is a gap between the upper bound of Theorem 10.43 and the
lower bound of Theorem 10.44. Closing this gap is a research question.

1 0 . 9 . 4 A S i m u l a t i o n P r o o f

We close this section by outlining a correctness proof for the TicketME algo-
r i thm presented in the previous section. Our proof uses the simulation method
described in Section 8.5.5. We have already used the simulation method to show
correctness of several a lgori thms--for example, OptFloodSet--in the synchronous
model; however, this is our first interesting use of this method for asynchronous
algorithms.

We would like to prove that the TicketME algorithm guarantees the same
correctness conditions as the QueueME algorithm: well-formedness, mutual ex-

clusion, progress, and FIFO behavior with respect to the first locally controlled
event in T. Showing this would imply Theorem 10.40. It turns out that a good
way to understand the TicketME algorithm is to relate it, not to QueueME, but
to a new Infinite TicketME algorithm that is just like TicketME except that it
uses an infinite sequence of tickets rather than counting modulo n. Then Tick-
etME can be seen as a reduced-complexity version of Infinite TicketME. Here
are the modifications to TicketME needed to obtain the new Infinite TicketME
algorithm"

I n f i n i t e T i c k e t M E a l g o r i t h m :

Shared variables:
(next, granted) E N x N, initially (0, 0)

Actions of i:
As for TicketME.

10.9. R E A D - M O D I F Y - W R I T E S H A R E D V A R I A B L E S 323

S t a t e s o f i:
ticket C N U {null}, initially null

T r a n s i t i o n s o f i:

enteri reset~
Precondition: Precondition:

pc = enter pc = reset
Effect: Effect:

ticket := next granted := granted + 1
next := next + 1 ticket := null
if ticket = granted then pc := leave-exit

pc := leave-try
else pc : - test

It is easy to show that I n f i n i t e T i c k e t M E satisfies all the properties claimed

for Ticke tME, since only one ticket is granted at a time and tickets are never

reused. Then we can show the correctness of T i c k e t M E by relating it formally

to Inf ini te T icke tME, using the method of simulations. The idea is to run the two

algori thms side by side, proving that certain s trong relationships hold between

the two executions.

Some invariants for Inf ini te T i c k e t M E are useful. (These would natural ly be

proved anyway in the course of verifying the a lgor i thm's properties.)

L e m m a 10 .45 In any reachable sys tem state of Inf ini te T icke tME, the fol lowing
are true:

1. A process i has a non-nul l t icket exactly i f pc4 C { tes t , leave-try, crit, reset} .

2. The non-nul l t icket values are exactly the integers in the interval [granted,

next) , and each is held by exactly one process.

3. granted <_ next <_ granted + n.

~. I f pci C {leave-try, crit, exi t} , then ticketi - granted.

The next step is to define a simulation relation f between the system states

of T i c k e t M E and Inf ini te T i c k e t M E when the two algori thms are combined with

the same collection of users. This correspondence is simple: we define (s, u) C f

(alternatively wri t ten as u E f (s)) provided that the two states are identical

except that the various corresponding ticket components are only required to be

the same modulo n. We use dot notat ion below to indicate the value of a given

variable in a given state.

324 10. M U T U A L E X C L U S I O N

1. All user states are identical in s and u.

2. For every i, s.pc i = u.pc i.

3. s .granted = u.granted mod n.

4. s .nex t = u .nex t mod n.

5. For every i, s . t icket i = u. t icket i mod n.

We show that f is a simulation relation. More precisely, we define T and I
to be the T i c k e t M E and Inf ini te T i c k e t M E systems, respectively, each modified
slightly so that all the actions are classified as external. We show that f is a
simulation relation from T to I. The two conditions that we need to show are

1. If s is an initial state of T, then f (s) contains an initial state of I.

2. If s is a reachable state of T, u E f (s) is a reachable state of I, and (s, 7r, s')
is a t ransi t ion of T, then there is a step (u, 7r, u') of I, where u' C f (s ') .

L e m m a 10 .46 f is a s imula t ion relation f rom T to I .

P r o o f . The two conditions given above are s t ra ightforward to prove. For the
first condition, that is, the s tar t condition, a s tar t state s of T consists of the
unique s tar t state of the T i c k e t M E algori thm and a rb i t ra ry s tar t states for the
users. It is easy to see that the unique s tar t state of the Inf ini te T i c k e t M E algo-
r i thm, together with the same star t states for the users, is in f (s) .

The second condition, that is, the step condition, is proved by a case analysis,
according to the type of action being performed. Any locally controlled actions
of the users are mimicked exactly. For each locally controlled action of the
algori thm, the existence of a step (s, 7r, s') in T immediately implies that the
same action 7c is enabled in the corresponding state of I, because the enabling
conditions are based only on the pc values. Also, in every case, the new state u ~

is uniquely determined by the definition of Inf ini te T icke tME. The only remaining
thing to show, then, is that u ~ E f(s~).

But this is also easy. The only interesting case is an action of the form testi,
where a process i makes a decision, based on whether ticketi = granted, about
whether it should proceed to C. We must verify that the two algori thms do not

make different decisions. Because T i c k e t M E only uses ticket values 0 , . . . , n -
1 and corresponding values in s and u are the same modulo n, the only way
that the decisions could be different is if equali ty holds in T i c k e t M E but not in
Inf ini te T icke tME. That is, the danger is that incrementing ticket values modulo

10.9. R E A D - M O D I F Y - W R I T E S H A R E D V A R I A B L E S 325

n might be blurring distinctions that are important in determining the behavior

of Infinite TicketME.
But this turns out not to be a problem. Suppose that s.ticketi - s.granted.

Then the fact that u C f (s) implies that u.ticketi - u.granted mod n. The
invariants proved in Lemma 10.45 imply that u.granted ~ u.ticketi < u.next
and u.next ~ u.granted + n. Therefore, u.granted ~ u.ticketi < u.granted + n.
So it must be that u.ticketi - u . g r a n t e d , as needed. E]

How does Lemma 10.46 help to prove the correctness of TicketME?.

P r o o f Ske t ch (of T h e o r e m 10.40) . Lemma 10.46 and Theorem 8.12 imply
that traces(T) C traces(I). The well-formedness, mutual exclusion, and FIFO

conditions can all be expressed as properties of traces (when all the actions are
included, as they are here). So the fact that these three conditions hold for I

implies that they also hold for T. This implies that TicketME guarantees the

well-formedness, mutual exclusion, and FIFO conditions.

But this does not prove that TicketME guarantees progress. The progress
condition is different from the other three conditions in that it is supposed to

hold only for the fair executions of an algorithm. To show that this condition

carries over from Infinite TicketME to TicketME, we would like to know that

fairtraces(T) C_ fairtraces(I). It turns out that the simulation relation f can also
be used to help prove this inclusion.

The key idea is that a simulation relation actually implies more than just
inclusion of sets of t races- - i t really establishes a close correspondence between

executions of the two algorithms. See Section 8.5.5 for a formal definition of such

a correspondence. In the present situation, Theorem 8.13 of Section 8.5.5 implies

that for any execution c~ of T, there is an execution c~ ~ of I that corresponds to

it in the following very strong sense:

1. The sequences of actions in c~ and ~ are identical.

2. States in the same position in c~ and c~ ~ are related by f .

We obtain such a strong correspondence here because all actions of T and I are
external.

Now we argue that fairtraces(T) C_ fairtraces(I). Let /~ C fairtraces(T)
and let c~ be any fair execution of T such that /~ - trace(a). Then, by Theo-
rem 8.13, there is a corresponding execution (~ of I satisfying the two conditions

enumerated above. In particular, the traces of c~ and c~ ~ are the same, so that
- trace(c~). We claim that c~ ~ is a fair execution of I.

There are two ways in which it might fail to be fair. First, there might

be some process i that is enabled (to take a locally controlled step) from some

326 10. MUTUAL EXCLUSION

point on in c~', yet no such step occurs after that point in c~'. Then the strong
correspondence implies that process i is also enabled from the same point on in
c~, but no such step occurs after that point in c~. This violates the fairness of c~, a
contradiction. Second, there might be some user task that is enabled from some
point on in c~', yet no step of that task occurs after that point in c~'. Again, the
correspondence implies that the same thing happens in c~, violating the fairness
of Ct.

It follows that c~' is a fair execution of I, which implies that/3 6 fairtraces(I).
Thus, fairtraces(T) C_ fairtraces(I). Since the progress condition can be ex-
pressed as a property of fair traces (when all the actions are included, as they
are here), this implies that the progress condition carries over from Infinite-
TicketME to TicketME. D

10.10 Bibliographic Notes

The DijkstraME algorithm appeared in a short note by Dijkstra [90]. It extended
a previous two-process algorithm by Dekker to an arbitrary number of processes.
Before these results, it was not even clear that the problem could be solved with
only read/write shared memory. The assertional proof that DijkstraME satisfies
the mutual exclusion condition is adapted from a paper by Goldman and Lynch
on shared memory modelling [141]. Dijkstra's original note was followed by a
series of replies, by Knuth, de Bruijn, and Eisenberg and McGuire [168, 86,
108], each improving on the prior solutions by adding new high-level-fairness
conditions and/or better performance properties.

The Peterson2P and PetersonNP algorithms were designed by Peterson [238].
The Tournament algorithm is based on a combination of the ideas of Peterson2P
and those of the tournament protocol of Peterson and Fischer [242]. Our Tour-
nament algorithm is simpler and easier to prove correct than the tournament
algorithm in [242]; however, it has the disadvantage that it uses multi-writer
variables, while the original requires only single-writer variables.

The BurnsME algorithm is due to Burns [60], and the Bakery algorithm to
Lamport [174]. A later paper by Lamport [180] contains additional improved
mutual exclusion algorithms. The lower bound on the number of registers re-
quired for solving the mutual exclusion problem is due to Burns and Lynch [63].

The TicketME algorithm is due to Fischer, Lynch, Burns, and Borodin
[120, 121]. The results on bounded bypass and lockout-free mutual exclusion
with read-modify-write shared memory all appear in a paper by Burns, Fis-
cher, Jackson, Lynch, and Peterson [62]. These results build on earlier work by
Cremers and Hibbard [84]; in particular, the BufferMainME algorithm is based

10.11. E X E R C I S E S 327

closely on an algorithm of [84]. Another result in [62], not discussed in this
n values of chapter, says that lockout-free mutual exclusion requires at least

shared memory, if the special assumption is made that processes have only a
single remainder state. (That is, they cannot retain any memory of prior ex-
ecutions of the algorithm.) Cremers and Hibbard [85] also designed an n + k
algori thm to achieve FIFO access to the critical region, using read-modify-write
shared memory.

A good source for information about temporal logic, which can be used to
formalize the liveness proofs in this chapter and elsewhere in this book, is the
book by Manna and Pnueli [219].

The k-exclusion problem considered in Exercise 10:13 was first defined by
Fischer, Lynch, Burns, and Borodin [120] and later studied by Shavit [261]. A
book by Raynal [249] contains descriptions of many mutual exclusion algorithms,
for both the asynchronous shared memory and asynchronous network models.
Mutual exclusion is also discussed in books by Ben-Ari [45] and by Peterson and
Silberschatz [262].

10.11 E x e r c i s e s

10.1. Consider yet another way of defining the mutual exclusion problem, this
one in terms of the traces of the shared memory system A alone, rather
than in terms of the combination of A and the users. That is, define a trace
property Q such that traces(Q) is the set of sequences/3 of try, crit, exit,
and rein actions that satisfy the following three conditions:

(a) In/3, the system is not the first to violate well-formedness, for any i.

(b) If/3 is well-formed for every i, then/3 does not contain two crit events
without an intervening exit event.

(c) If/3 is well-formed for every i, then the following hold:

i. If at some point in /3, some process's last event is try and no
process's last event is crit, then there is a later crit event.

ii. If at some point in/3, some process's last event is exit, then there
is a later rein event.

Prove that if fairtraces(A) C_ traces(Q), then A combined with any collec-
tion of users satisfies the definition of the mutual exclusion problem given
in Section 10.2.

10.2. Describe a fair execution of the DijkstraME algorithm in which a part icular
process is locked out.

328 10. MUTUAL EXCLUSION

10.3. Show that the second phase of the DijkstraME algorithm (where the flag is
raised to 2 and the other processes' flags are tested) is needed to solve the
problem correctly.

10.4. Fill in more details in the inductive proof of mutual exclusion, for the
DijkstraME algorithm.

10.5. Consider the t iming analysis for DijkstraME, for the time from a point
where some user is in T and no user is in C until a point where some user
enters C.

(a) Refine the analysis to express the bound in the form king + k2s where
kl and k2 are part icular constants. Try to make kl and k2 as small as
possible.

(b) Construct an execution of DijkstraME in which the bound is as large
as you can make it; t ry to match your computed upper bound.

10.6. The lockout-freedom condition makes sense for those algorithms that guar-
antee well-formedness, but not necessarily mutual exclusion or progress.
Prove carefully that if an algorithm guarantees well-formedness and is
lockout-free (for all collections of users), then it also guarantees progress
(for all collections of users).

10.7. Modify the processes in the Peterson2P algorithm so that they do not
necessarily perform check-flag and check-turn in strict alternation, but
according to some looser discipline. Make sure your resulting algori thm
is still a lockout-free mutual exclusion algorithm. Prove the correctness of
your modified algorithm and analyze its time complexity.

10.8. Design a lockout-free mutual exclusion algori thm for two processes that
uses only single-writer~multi-reader read/wr i te registers. Prove the cor-
rectness of your algorithm, preferably using invariant assertions. (Hint:
If you get stuck, you might want to consider the two-process solution in
[242]. You're on your own for the invariant proof, though.)

10.9. Prove Assertion 10.5.3.

10.10. Prove Assertion 10.5.4.

10.11. Reconsider the time bound proved in Theorem 10.16, for the PetersonNP
algorithm. Is it tight? Either exhibit an execution in which the exponential
behavior described there is actually realized, or else give a finer analysis
with a smaller complexity bound.

10.11. EXERCISES 329

10.12. Does the PetersonNP algorithm guarantee bounded bypass? Prove that it
does or give a counterexample.

10.13. Modify the PetersonNP algorithm to yield a solution to the k-exclusion
problem, 2 <<_ k < n. This problem allows k processes to coexist inside the
critical region at the same time. Formally, the mutual exclusion condition
is modified to forbid more than k users to be in C at once. The progress
condition for the trying region is also modified, to say that if there is at least
one user in T and at most k - 1 users are in C, then some user eventually
enters C. Prove that your algorithm works correctly. State carefully the
high-level-fairness conditions that your algorithm satisfies.

10.14. (a)
(b)

(c)

(d)

Rewrite the Tournament algorithm in precondition-effects form.

In terms of this rewrite, define the notions of "winner" and "competi-
tor" carefully.

Prove Assertion 10.5.7. (Hint: Strengthen it to include some infor-
mation about what happens when a process is inside the waitfor loop,
after the process has discovered that some of its opponents have flag
variables strictly less than k. Then prove the strengthened invariant
together with the original one by induction.)

Complete the proof that the Tournament algorithm guarantees mutual
exclusion.

10.15. Show how the Tournament algorithm can be adapted for use with n pro-
cesses, where n is not a power of 2. What happens to the time complexity?

10.16. Research Question: Devise a variant of the Tournament protocol that uses
single-writer/multi-reader registers rather than multi-writer/multi-reader
registers. Provide a complete correctness proof and analysis.

10.17. What happens to the behavior of the BurnsME algorithm if the second
for loop is removed? Either prove that it still solves the mutual exclusion
problem or exhibit a counterexample execution.

10.18. Give an assertional proof showing that the BurnsME algorithm satisfies the
mutual exclusion condition. To do this, you should rewrite the algorithm
in precondition-effect form and define explicit variables to keep track of
checked processes within the for loops.

10.19. Exhibit a low-level-fair execution of the BurnsME algorithm in which some
process is locked out.

330 10. MUTUAL EXCLUSION

10.20. Carry out a time analysis for the progress condition, for the BurnsME
algorithm. That is, assume that c and t~ are upper bounds on critical
region time and process step time, and consider the time from when there
is some process in T and no process in C until some process enters C.

(a) Prove an upper bound for this time.

(b) Exhibit a part icular execution in which this time is as large as possible.

Try to get your bounds in (a) and (b) to be as close as possible.

10.21. Describe an execution of the Bakery algorithm in which the values taken
on by the number registers are unbounded.

10.22. Why does the Bakery algorithm fail if the integers are replaced by the
integers mod b, for some very large value of b? Describe a specific coun-
terexample execution.

10.23. Rewrite the Bakery algorithm in precondition-effect form. While doing
this, t ry to generalize the algorithm slightly by allowing as much nonde-
terminism in the order of actions as you can. (The precondition-effect
notation generally makes it easier to express such nondeterminism than
does the usual flow-of-control notation.) Give an assertional proof of the
mutual exclusion condition for the generalized algorithm.

10.24. Prove that the Bakery algorithm works correctly even in the following much
weaker model. Suppose that reads and writes are no longer instantaneous,
but have duration. Suppose that the shared registers are only guaranteed to
be safe, that is, to yield the correct value only in the absence of concurrent
reading and writing. In the event that a read overlaps any write, any value
might be returned by the read.

10.25. Does Burns 's mutual exclusion algorithm work if the shared registers are
all safe registers (as defined in Exercise 10.24)? Why or why not?

10.26. Suppose that the Bakery algorithm only needs to work for the case of
instantaneous-access shared memory, not the more general model with safe
registers. Give a simplified version of the algorithm that guarantees the
same mutual exclusion and high-level-fairness conditions as the original
Bakery algorithm. Prove your claims.

10.27. Fill in the details for the complexity analysis of the Bakery algorithm,
sketched at the end of Section 10.7.

10.11. EXERCISES 331

10.28. Give explicit code for a particular user automaton Ui that exhibits all the
nondeterminism allowed for user / - - i t should be able to perform its tryi
and exit~ actions at any time, or never perform them, subject only to the
well-formedness condition. Your automaton should have the property that
for any other user automaton V{ for i, fairtraces(Vi) C_ fairtraces(Ui).

10.29. Give a careful proof for Lemma 10.36.

10.30. Research Question" How are the results in Section 10.8 affected if, instead
of the mutual exclusion problem, we consider"

(a) The k-exclusion problem, 2 < k _< n, as defined in Exercise 10.13.

(b) A weaker version of the k-exclusion problem, which uses the modified
mutual exclusion condition as above, but retains the original progress
condition.

10.31. Programmers at the Flaky Computer Corporation have designed the fol-
lowing algorithm for n-process mutual exclusion. They claim that their
algorithm guarantees mutual exclusion and progress, but do not claim any
high-level-fairness conditions.

n o

S h a r e d v a r i a b l e s :
x E {1 , . . . ,n}, initially a rb i t ra ry
y E {0, 1}, initially 0

P r o c e s s i:

** Remainder region **

L:
try i
x : = i

if y r 0 then goto L
y : = l
if x ~= i then goto L
criti

** Crit ical region **

exiti

y := 0
remi

Does this protocol satisfy the two claimed conditions? Either prove that it
does or give explicit counterexample executions to show that it doesn't.

332 10. MUTUAL EXCLUSION

10.32. Research Question: Consider a generalization of the progress condition to
the k-concurrent progress condition, which only requires progress if there
are never more than k users concurrently outside of R:

k - c o n c u r r e n t p r o g r e s s : In any fair execution in which there are never
more than k users outside of R at once:

(a) (k-concurrent progress for the trying region) If at least one user
is in T and no user is in C, then at some later point some user
enters C.

(b) (k-concurrent progress for the exit region) If at least one user is
in E, then at some later point some user enters R.

Give the best upper and lower bounds you can on the number of shared
read/wri te variables needed to achieve well-formedness, mutual exclusion,
and k-concurrent progress.

10.33. Design a good mutual exclusion algorithm for a read/wri te shared memory
model that is a little different from the model used in this chapter. In this
new model, there is one extra process besides the usual "agent" processes
1 , . . . ,n: a supervisor process, which is always permitted to take steps.
The model should use single-writer/multi-reader shared variables. Prove
your algorithm's correctness and analyze its complexity.

10.34. Prove all the claimed properties for the QueueME algorithm. You should
begin by identifying and proving key system invariants and then use these
to prove the mutual exclusion condition. Progress can then be proved
using an argument by contradiction, as usual. The FIFO condition can
use an ad hoc operational argument. In particular, your proofs should
yield Theorem 10.39.

10.35. In the Bakery algorithm, it is not possible to reduce the unbounded ticket
values by counting modulo any integer; however, this trick works for the
TicketME algorithm. Explain the reasons for this difference.

10.36. Consider the BufferMainME algorithm.

(a) Write precondition-effect code for the supervisor and "agent" pro-
cesses, for the version of the algorithm with a supervisor. Prove that
the algorithm works correctly.

(b) Do the same for the final version of the algorithm, without a supervi-
sor. (Hint: You might try to relate this to the version with a super-
visor, using a simulation proof.)

10.11. EXERCISES 333

10.37. Design a new algorithm that solves mutual exclusion using a single read-
modify-write shared variable, and is FIFO (with respect to the first locally
controlled step in the trying region). Try to minimize the number of values
taken on by the shared variable. You may assume a dedicated supervisor
process. (Hint: n + k is achievable, for a small constant k.)

10.38. Show that the Executive algorithm does not guarantee bounded bypass.

10.39. Research Question: Write code for the Executive algorithm and argue its
correctness. Can its proof be based formally on the correctness of the
BufferMainME algorithm? Can a simulation proof be used?

10.40. Give upper bounds on the time from when a process enters T until it enters
C, in

(a) The BufferMainME algorithm

(b) The Executive algorithm

Your analysis should be based on the underlying I /O automata rather than
the code. You will probably find it convenient to write precondition-effect
code for the algorithms.

10.41. Why doesn't the idea of the Executive algorithm generalize to allow the
n values? variable to have only

10.42. Research Question: Close the gap between the upper and lower bound
results in Theorems 10.43 and 10.44. (Hint: A partial result appears in
[62].)

10.43. Carry out all the details of the proof of Lemma 10.46.

10.44. Research Question: Redo all the proofs of liveness conditions (progress and
lockout-freedom) in this chapter using a formal temporal logic.

This Page Intentionally Left Blank

Chapter 11

R e s o u r c e Al loca t ion

In Chapter 10, we considered the mutual exclusion problem, an abstract resource-
allocation problem involving access by concurrent users to a single unshareable
resource. In this chapter, we generalize the problem to include many resources

instead of just one. This generalization is useful for modelling application pro-
grams that require several resources for their execution, for example, a printer

plus a database plus a network port.
There are more general types of resource-allocation problems than those we

consider here. For instance:

1. We do not consider (except in some general definitions and some exercises)
the possibility that a user might be willing to accept alternative combina-
tions of resources. For example, a user might request "some printer" rather

than a specific printer.

2. We do not consider the possibility that resources might be shared. For ex-
ample, individual data objects in a database can be thought of as resources
to be allocated to database transactions. In this case, some sharing is typ-
ically permitted; for example, two transactions that need only to read an
object can be allowed concurrent access to the object.

We begin by defining our generalized resource-allocation problem, including
the Dining Philosophers problem as an interesting special case. We then give
several typical solutions. Our last solution is a randomized protocol - -our first

example of a randomized protocol for the asynchronous setting.

336 11. RESOURCE ALLOCATION

1 1 . 1 T h e P r o b l e m

In this section, we begin by giving some ways of specifying conflict relationships
among users. Then we describe how to use such specifications to define resource-
allocation problems. Finally, we define the Dining Philosophers problem.

11 .1 .1 E x p l i c i t R e s o u r c e S p e c i f i c a t i o n s a n d E x c l u s i o n
S p e c i f i c a t i o n s

There are two different ways of looking at the mutual exclusion problem: as
the problem of allocating an explicitly represented resource or as the problem of
ensuring that only one user at a time is in its critical region. We can also look
at generalized resource-allocation problems in these two ways. Thus, we define
both explicit resource specifications and exclusion specifications as alternative
ways of describing conflict relationships among users.

An explicit resource specification Tt for n users consists of

1. A universal finite set R of objects known as resources

2. For everyi , l _ < i < n , a s e t R i C _ R

The intention is that the resources in Ri should be those that user Ui needs to
perform its work. We say that two users Ui and Uj conflict with respect to a
given explicit resource specification if they require some common resource, that
is, if R~ N Rj r O.

E x a m p l e 11.1.1 E x p l i c i t r e s o u r c e spec i f i c a t i on

Consider an explicit resource specification for four users, U1, . . . , U4.
The set R of resources is {r(1), r(2), r(3), r(4)}. The resource re-
quirements for the four users are

U1 : {r(1),r(2)}
U2 : {r(1),r(3)}
V3 :
U4 :

Thus, U1 needs exclusive possession of resources r(1) and r(2) to
perform its work, and so on. Users U1 and U2 conflict, as do U1 and

U3, U2 and U4, and U3 and U4.

all.
On the other hand, an exclusion specification does not mention resources at

Rather, the specification is given in terms of a collection $ of "bad sets"

11.1. THE P R O B L E M 337

of user indices. A "bad set" is a set of indices of users that are not allowed
to perform their work simultaneously. There is one restriction on exclusion
specifications: the collection of bad sets is required to be closed under superset.
That is, if a particular bad set E of users belongs to an exclusion specification
g, then any superset of E also belongs to $.

Example 11.1.2 Exclusion specification

The mutual exclusion condition can be described by the exclusion
specification g' = {E C_ {1 , . . . , n } : [E[> 1}.

Example 11.1.3 Another exclusion specification

The k-exclusion condition (in which the number of users in the criti-
cal region at any time is constrained to be at most k) can be defined
by the exclusion specification g = {E C_ { 1 , . . . , n } : [E[> k}. The
k-exclusion condition is introduced in Exercise 10.13.

Example 11.1.4 Still another exclusion specification

For n = 4, consider the exclusion specification g consisting of the
two-element sets {1, 2}, {1, 3}, {2, 4}, and {3, 4}, plus all the sets that
contain these two-element sets. In this exclusion specification, note
that user U1 does not exclude user U4, and U2 does not exclude U3.
This means that U1 and U4 can perform their work simultaneously,
as can U2 and U3.

Note that any explicit resource specification gives rise to an exclusion speci-
fication that is equivalent in that it permits the same combinations of users to
execute simultaneously. This exclusion specification consists of exactly those sets
of users that include at least two users with overlapping resource requirements.

Example 11.1.5 Corresponding specifications

The exclusion specification that corresponds to the explicit resource
specification in Example 11.1.1 consists of the two-element sets {1, 2},
{1,3}, {2, 4}, and {3, 4}, plus all the sets that contain these two-
element sets.

However, it is not the case that every exclusion specification has a corre-
sponding explicit resource specification. We leave this for an exercise.

11.1.2 R e s o u r c e - A l l o c a t i o n P r o b l e m

We now describe how to incorporate explicit resource specifications and exclusion
specifications into resource-allocation problems to be solved by shared memory

338 11. RESOURCE ALLOCATION

systems. To be specific, consider a fixed exclusion specification g (which could
be derived from an explicit resource specification).

The architecture is exactly the same as we used for the mutual exclusion
problem in Chapter 10- -a combination of user automata and a shared memory
system automaton (see Figure 10.4). Again, users cycle through their remainder
(R), trying (T), critical (C), and exit (E) regions, as depicted in Figure 10.2.
A sequence of interactions between Ui and the shared memory system is well-
formed for user i if it respects this cyclic order.

The well-formedness condition on the composed system is as before.

W e l l - f o r m e d n e s s : In any execution, and for any i, the subsequence describing
the interaction between Ui and A is well-formed for i.

The mutual exclusion condition is now replaced by the more general exclusion
condition.

E x c l u s i o n : There is no reachable system state in which the set of users in their
critical regions is a set in g.

The progress condition is as before.

P r o g r e s s : At any point in a fair execution,

1. (Progress for the trying region) If at least one user is in T and no
user is in C, then at some later point some user enters C.

2. (Progress for the exit region) If at least one user is in E, then at some
later point some user enters R.

We say that a shared memory system A solves the general resource-allocation
problem for a given collection of users provided that, in combination with those
users, it satisfies the well-formedness, exclusion, and progress conditions. We
say that A solves the general resource-allocation problem provided that it solves
it for every collection of users.

The progress condition for the trying region is weaker than one might like
in the present setting. For general resource-allocation problems, we would like
also to say that users that do not conflict with each other should not prevent
each other from entering the critical region, even if they hold onto the resources
forever. We do not know a good way of stating such a condition, for arbi t rary

exclusion specifications. However, for explicit resource specifications, we can at
least state the following condition.

I n d e p e n d e n t p r o g r e s s : At any point in a fair execution,

11.1. THE P R O B L E M 339

1. (Independent progress for the trying region) If Ui is in T and all
conflicting users are in R, then at some later point either Ui enters C
or some conflicting user enters T.

2. (Independent progress for the exit region) If Ui is in E and all con-
flicting users are in R, then at some later point either Ui enters R or
some conflicting user enters T.

For high-level-fairness conditions, the same lockout-freedom and time bound
conditions that we defined for the mutual exclusion problem also make sense for
the general resource-allocation problem. We will not discuss the bounded bypass
condition here. Some simple relationships among these properties are as follows.
(Compare with Theorem 10.9 and Execise 10.6.)

L e m m a 11.1

1. If a general resource-allocation algorithm has any time bound b, then it is
lockout-free.

2. If an algorithm in the model of this chapter guarantees well-formedness
and lockout-freedom, then it also guarantees progress.

P r o o f . The proof is left as an exercise. V7

T r a c e p r o p e r t i e s . As we did for similar properties in Chapter 10, we can ex-
press the well-formedness, exclusion, progress, independent progress, and lockout-
freedom conditions equivalently in terms of trace properties. Each of these trace
properties P has a signature consisting of try, crit, exit, and rein outputs (and
no inputs). The external actions of the combined system are also exactly these
actions, and the requirement in each case is that the fair traces of the combined
system are all in traces (P).

R e s t r i c t i n g p r o c e s s ac t iv i ty . As in Chapter 10, we assume in this chapter
that a process within the shared memory system can have a locally controlled
action enabled only when its user is in the trying or exit region. Thus, the
processes can only be actively engaged in executing the protocol while there are
active requests.

11.1.3 Dining Philosophers Problem

The Dining Philosophers problem, one of the best-known problems in distributed
computing theory, is a simple special case of our general resource-allocation
problem. It is usually formulated in terms of an explicit resource specification.

340 11. RESOURCE ALLOCATION

Traditionally, the problem is described in terms of the following informal
scenario. There are n philosophers (users) seated around a table, usually thinking
(i.e., in R). Between each pair of philosophers is a single fork (resource). From
time to time, any philosopher might become hungry (i.e., enter T) and attempt
to eat (i.e., to enter C). In order to eat, the philosopher needs exclusive use of
the two adjacent forks. After eating, the philosopher relinquishes the two forks
(i.e., performs an exit protocol E) and resumes thinking (R).

For each philosopher Pi, we label the forks to the right (counterclockwise) and
left (clockwise) by f (i) and f (i + 1), respectively. (As usual, addition is modulo
n, identifying n with 0.) See Figure 11.1 for the arrangement of philosophers and
forks for n = 5.

/

F i g u r e 11.1: Dining Philosophers problem (n - 5).

In our formal model, there is one user and one agent process for each philoso-
pher. As usual, the user decides when to request and return the resources, and
the agent process performs the algorithm.

The exclusion specification for n dining philosophers consists of the two-
element sets {{i,i + 1} �9 1 < i < n} together with all sets containing them.

11.2. S Y M M E T R I C DINING PHILOSOPHERS ALGORITHMS 341

11.1 .4 R e s t r i c t e d Form of So lut ions

All the solutions we consider in this chapter are of a particular form: there
is exactly one read-modify-write shared variable associated with each resource,
accessible only by the processes whose users require the corresponding resource.

The architecture for solutions to the Dining Philosophers problem in this
restricted form is depicted in Figure 11.2. Notice that the diagram is very similar
to the one in Figure 11.1; the new diagram includes the users Ui and relabels
the processes by their indices. The shared variables correspond exactly to the
forks f (1) , . . . , f(5). Note that each process i accesses fork variables f (i) and
f (i + 1).

1 4il ili:)l

F i g u r e 11.2" Dining Philosophers problem, with user automata.

11.2 Nonexistence of Symmetric Dining
Philosophers Algorithms

An interesting class of candidate Dining Philosophers algorithms is the class
of symmetric algorithms. An algorithm in the given framework is said to be

342 11. RESOURCE ALLOCATION

symmetric if all processes are identical and may only refer to their accessible

fork variables by the local names f(left) and f(right), and if all the shared
variables have the same initial values. As for the leader-election problem in
Chapter 3, it is not hard to see that the Dining Philosophers problem cannot be
solved in the symmetric case. The argument is essentially the same as the one
for Theorem 3.1:

T h e o r e m 11.2 There is no symmetric solution to the Dining Philosophers prob-
tern.

P r o o f . Assume for the purpose of contradiction that there is a symmetric
algorithm for n processes, say A. Consider an execution c~ of A that begins with
all processes in the same process state and all shared variables with the same
initial value. Execution c~ then proceeds "round robin," where processes take
corresponding steps in order, 1 , . . . , n , 1 , . . . , starting with a try step for each
process. Moreover, all nondeterministic choices are resolved in the same way.

For example, when a tryl action occurs, a try action will also occur for each
other process, and the local state changes associated with this action will be the
same as those for process 1. For another example, if process 1 accesses its left
variable, then all the other processes also access their left variables, and the state
changes and variable value changes are the same as those for process 1.

Then it is straightforward to show, by induction on the number r of round-
robin "rounds," that all processes are again in the same state and all variables
have the same value, after r rounds. But the progress property says that some
process eventually enters C. This implies that all other processes also enter C
at the same round. But this is a contradiction to the exclusion property. D

For example, consider the following simple symmetric algorithm.

WrongDP a l g o r i t h m (i n f o r m a l) :

Each process, upon entering the trying region, waits first for its right fork
and then for its left fork. After getting both forks, it goes to C. When a
process exits C, it puts down both forks before returning to R.

The formal code follows; right and left are local names used by process i to
denote the indices i and i + 1 (for its two forks), respectively.

WrongDP a l g o r i t h m (formal)"

S h a r e d v a r i a b l e s :
for every i, 1 _< i < n:

f (i) , a Boolean, initially false, accessible by processes i and i - 1

11.2. S Y M M E T R I C D I N I N G P H I L O S O P H E R S A L G O R I T H M S 343

A c t i o n s o f i:
Input: Internal:

tryi test-righti
exit~ test-lefti

Output: res et- righti
criti reset-lefti
r e m i

S t a t e s o f i:
pc E {rein, test-right, test-left, leave-try, crit, reset-right, reset-left, leave-exit}, initially rein

T r a n s i t i o n s o f i:

tryi exiti
Effect: Effect:

pc :-- test-right pc := reset-right

test- righti reset- righti
Precondition: Precondition:

pc = test-right pc = reset-right
Effect: Effect:

if f (right) = false then f (right) := false
f (r ight) := true pc := reset-left
pc := test-left

reset-left~
test-lefti Precondition:

Precondition: pc = reset-left
pc = test-left Effect:

Effect: f (left) := false
if f (left) = false then pc := leave-exit

f(14t) : = t ~

pc := leave-try remi
Precondition:

criti pc = leave-exit
Precondition: Effect:

pc = leave-try pc := rein
Effect:

pc := crit

Since the W r o n g D P a lgor i thm is symmetr ic , Theo rem 11.2 implies tha t it

does not solve the Dining Phi losophers problem. But it is in terest ing to see what

goes wrong. It should be clear that W r o n g D P does guaran tee well-formedness

and does satisfy the exclusion condition; this lat ter is because the code ensures

tha t a process tha t reaches C has explicit ly "obta ined" bo th its adjacent forks.

344 11. RESOURCE ALLOCATION

The progress property, however, fails. Consider an execution in which all
of the processes enter their trying regions, one after the other. Next, all of the
processes grab their right forks. At this point, each process is ready to try to
obtain its left fork. But since all forks have already been picked up, no process
can do so. The system is now deadlocked--there is no way that any further
progress can be made.

Theorem 11.2 implies that it is necessary to break the symmetry of a ring
network in order to solve the Dining Philosophers problem. There are several
ways of doing this. The processes could use different programs, or the same
program but different initial states or unique identifiers. Or, the variables could
be initialized differently. Or, we could use randomization. In the rest of this
chapter, we will illustrate some of these approaches.

11.3 Right-Left Dining Philosophers Algorithm

In this section, we present a (correct) Dining Philosophers algorithm that we
call the RightLeftDP algorithm. In addition to satisfying the basic required
properties, this algorithm also guarantees lockout-freedom. It also has a good
worst-case time bound: a constant, independent of the size of the ring. The way
the RightLeftDP algorithm breaks symmetry is by having processes classified
into two categories, which we call "right" and "left." The two types of processes
execute slightly different programs, with their category indicating which adjacent
fork to seek first.

11.3.1 Waiting Chains

The constant-time bound property is especially notable. It is certainly desirable,
in a distributed system, to have time performance that is independent of the size
of the system. But how can such a small time bound be achieved?

The RightLeftDP algorithm is one of a general class of algorithms in which
processes proceed sequentially, waiting first for one fork and then for the other.
In such algorithms, we must be careful about the order in which the forks are
sought. For example, if all processes seek their right forks first, then there is the
possibility of deadlock as in the WrongDP algorithm. There are other orders that
do not admit the possibility of deadlock but still allow for executions with very
poor time performance. In particular, some orders can lead to the establishment
of long waiting chains of processes, each waiting for a resource held by the
process ahead of it in the chain.

11.3. R I G H T - L E F T D I N I N G P H I L O S O P H E R S A L G O R I T H M 345

Example 11.3.1 Waiting chain

Consider a five-node ring. Suppose that an algorithm in this ring
has an execution in which the following events occur, in the indicated
order"

Process 5 obtains both forks.
Process 4 obtains its right fork, then waits for its left fork.
Process 3 obtains its right fork, then waits for its left fork.
Process 2 obtains its right fork, then waits for its left fork.

This yields a chain in which process 2 is waiting for a fork held by 3,
which is waiting for a fork held by 4, which is in turn waiting for a
fork held by 5. This is a waiting chain of length 3. See Figure 11.3.

i f (5) ~ " ~ f(1)
4

!

Q

II(:i I

~176

F i g u r e 11.3: A waiting chain. Solid arrows indicate possession of the fork, while
dotted arrows indicate waiting.

The same example, for arbitrary n >_ 3, yields a waiting chain of
length n - 2.

Notice that the processes in a waiting chain must enter the critical region
sequentially. Thus, for any algorithm of this general type, the worst-case time
for a trying process to enter the critical region is at least proportional to the
maximum length of a waiting chain that can be produced. In order to obtain
a small time bound, then, we must guarantee a small bound on the maximum

346 11. RESOURCE ALLOCATION

length of a waiting chain. In fact, the maximum length of the waiting chain
produced by RightLeftDP is 3.

11.3.2 The Basic Algorithm

In the RightLeftDP algorithm, the shared variable associated with each fork
contains a FIFO queue of process indices, of length at most 2. This queue is
designed to hold the indices of processes wanting the fork, in the order in which
they begin trying to get it. Since there are only two processes that can request
each fork, a length 2 queue suffices.

For simplicity, we assume here that the number of processes in the ring is
even. There is a simple modification, left for an exercise, that works in the case
of an odd number of processes.

RightLeftDP algorithm (n even):

There are two different programs: one for the processes with odd indices
and one for those with even indices. The basic strategy is very simple: odd-
numbered processes seek their right fork first and even-numbered processes
seek their left fork first. A process seeks a fork by putting its index at the
end of that fork's queue. The process obtains the fork when its index
reaches the front of that fork's queue. When a process exits C, it returns
both forks by removing its index from their queues before entering R.

We give the code for a process with an odd index i in precondition-effect
style. The code for even i is symmetric.

RightLeftDP algorithm (even n, o d d i)"

S h a r e d var iables :
for every i, 1 < i _< n:

f (i) , a queue of process indices of length at most 2, initially empty,
accessible by processes i and i - 1

A c t i o n s o f i:
Input: Internal:

tryi test-right
exiti test-left

Output : reset-right
criti reset-left
remi

S t a t e s o f i:
pc C {rein, test-right, test-left, leave-try, crit, reset-right, reset-left, leave-exit}, initially rein

11.3. R I G H T - L E F T D I N I N G P H I L O S O P H E R S A L G O R I T H M 347

T r a n s i t i o n s o f i:

tryi exit~
Effect: Effect:

pc := test-right pc := reset-right

test-right~
Precondition:

pc - test-right
Effect:

if i is not on f(i) .queue then
add i to f (i) .queue

if i is first on f(i) .queue then
pc := test-left

test-lefti
Precondition:

pc = test-left
Effect:

if i is not on f(i + 1).queue then
add i to f (i + 1).queue

if i is first on f(i + 1).queue then
pc := leave-try

crit~
Precondition:

pc = leave-try
Effect:

pc := crit

reset-right~
Precondition:

pc = reset-right
Effect:

remove i from f (i) .queue
pc := reset-left

reset-lefti
Precondition:

pc = reset-left
Effect:

r emove / f rom f (i + 1).queue
pc := leave-exit

r e m i

Precondition:
pc = leave-exit

Effect:
p c :--- r e m

N ow we a r g u e co r rec tness . T h e we l l - f o r me d n e s s c o n d i t i o n is obvious . T h e

exc lus ion cond i t i on shou ld be easy to see, b e c a u s e the code e n s u r e s t ha t a p r o c e s s

t ha t r eaches C is first on the q u e u e s of b o t h of its forks. We will p rove an expl ic i t

u p p e r b o u n d on the t ime for any t r y i n g p roces s to r each the cr i t ica l region. A

smal l u p p e r b o u n d (i n d e p e n d e n t of n) for the exi t r eg ion is easy to see. In v iew

of L e m m a 11.1, t hese b o u n d s are sufficient to imp ly l o c k o u t - f r e e d o m , wh ich in

t u r n is sufficient to imp ly p rogress .

For the t ime b o u n d , we a s s u m e as before t ha t t~ is an u p p e r b o u n d on the

s tep t ime for each p rocess , and c is an u p p e r b o u n d on the t ime any use r s p e n d s

in the cr i t ica l region.

L e m m a 1 1 . 3 I n R i g h t L e f t D P , the t i m e f r o m w h e n a p a r t i c u l a r process i e n t e r s

T un t i l it en t e r s C is at m o s t 3c + 18t~.

348 11. R E S O U R C E A L L O C A T I O N

P r o o f . The key idea is that a fork between two processes is either the first fork
for both or the second fork for both. This implies (for the case we are assuming,
where n is even) that the max imum length of a waiting chain is at most 2.

Define T to be the max imum time from when any process i enters the t rying
region until that process enters the critical region. Our goal is to bound T. As an
auxiliary quantity, we define S to be the maximum time from when any process
i obtains its first fork until that process enters the critical region. Formally, we
say that process i obtains its first fork at the event where i becomes first on the
queue for that fork. (This could be either a step of i or a step of the neighbor
with which i shares the fork.)

We star t by bounding T in terms of S. Consider a process i entering the
t rying region. With in time g, it performs a test event rr to t ry to get its first
fork. If it obtains the fork immediately, then within addit ional time S, process i
enters the critical region. This is a total time of at most g + S.

Otherwise, the neighbor with which i shares the fork, say j , has the fork when
rr occurs. As mentioned above, this fork must also be j ' s first fork. Hence the
addit ional time until j releases this fork is at most S + c + t7 (enough time for
j to reach the critical region, leave the critical region, and release its first fork).
At the instant j releases the fork, process i obtains it; this is because of the way

"obtaining a fork" is defined, and because of the fact that process i puts its index
on the queue in event rr. Then, within addit ional time S, i reaches the critical
region. It follows that in this case process i enters the critical region after a total
of at most g + (S + c + g) + S = c + 2t~ + 2S time.

We conclude that

T _ < m a x { g + S , c + 2 t T + 2 S } - c + 2 g + 2 S . (11.1)

Next we bound S. Consider a process i that has just obtained its first fork
(i.e., has become first on the queue for that fork). With in time g, it discovers
this fact, and within an addit ional time t~, it performs a test action on its second
fork. If it obtains this second fork immediately, then, within an addit ional time
g, it goes to the critical region, for a total time of at most 3g.

Otherwise, the neighbor with which i shares the fork has it, and it is also the
neighbor 's second fork. The time until the neighbor releases the second fork is
at most 2g + c + 2g (enough time for the neighbor to discover that it has the fork,
reach the critical region, leave the critical region, and release the two forks).

From the point after the neighbor releases the fork, it is at most time g until
process i discovers it and an addit ional time t~ until process i enters the critical
region. It follows that in this case process i enters the critical region after at
most 2g + (2t7 + c + 2g) + 2t7 = c + 8t7 time.

11.3. RIGHT-LEFT DINING PHILOSOPHERS ALGORITHM 349

We conclude that

S _< max{3t~, c + 8t~} - c + 8g. (11.2)

Combining Equations 11.1 and 11.2 yields

T < 3c + 18f.
D

Since it is easy to see that the algorithm also satisfies the independent progress
condition, we obtain

T h e o r e m 11.4 The RightLeftDP algorithm solves the Dining Philosophers prob-
lem and guarantees lockout-freedom, independent progress, a time bound of 3c +
18t~ for the trying region, and a time bound of 3g for the exit region.

So, the RightLeftDP algorithm breaks symmetry by distinguishing the odd-
and even-numbered processes. Depending on the environment in which this
algorithm is to be run, it might or might not be reasonable to assume that
processes have this knowledge. For instance, if it is to be run in a distr ibuted
network (as we consider in Chapter 17), then an additional protocol may be
needed for determining this pari ty information and communicating it to all the
processes.

11 .3 .3 A G e n e r a l i z a t i o n

We describe a straightforward way to generalize the strategy in the RightLeftDP
algorithm to an arbi t rary resource-allocation problem, given by an arbi t rary
explicit resource specification. The generalization still has the virtue of having a
time bound that is independent of the number of processes. However, the bound
is not very smal l - - there is still room for performance improvement.

We continue to assume that each resource has an associated shared variable,
shared by all processes that require that resource. As in RightLeftDP, we assume
that the variable contains a FIFO queue to record who is waiting for the resource.
As in RightLeftDP, each process waits for its required resources one at a time.
To avoid deadlock, however, we assume that the resources are totally ordered
and allow each process to obtain its needed resources in order, according to
this total order ing--smalles t to largest. This strategy is known as hierarchical
resource allocation.

It is not hard to see that hierarchical resource allocation guarantees progress.
Roughly speaking, if process i waits for a resource held by process j , then j could
only be delayed by waiting for a resource that is strictly larger (in the resource

350 11. R E S O U R C E A L L O C A T I O N

ordering) than the one for which i is waiting; since there are only finitely many
processes, the one that holds the largest resource is not blocked. The FIFO
nature of the queues also prevents lockout.

Although hierarchical resource allocation guarantees progress and lockout-
freedom, the time performance of this strategy is not very good, in general. The
only upper limit on the length of waiting chains is the total number n of processes,
leading to time performance that is at least proportional to n. For instance, the
chain described in Example 11.3.1 can be produced by a hierarchical resource-
allocation algorithm in which the total order of resources is just the numerical
order, f(1) , f(2) , f(3), f(4) , f(5).

What we would like is a "good" total ordering of resources, one that produces
as small a time bound as possible. A reasonable strategy is to try to minimize
the length of the waiting chains that are produced.

Suppose we are given a particular explicit resource specification T4, with
universal resource set R and individual process resource requirements Ri. To
construct a good total ordering, we first construct the resource graph for this
specification. The nodes of this graph represent the resources, and there is an
edge from one node to another exactly if there is some process that uses both
associated resources.

Example 11.3.2 Resource graph

For the Dining Philosophers problem with six nodes, the resource
graph is as in Figure 11.4.

II ,,I

F i g u r e 11.4: Resource graph for Dining Philosophers (n - 6).

Next, we color the nodes of the graph in such a way that adjacent nodes
have different colors. We try to minimize the number of colors used. (We do
not consider the problem of how to obtain a small number of colors. Actually
obtaining the minimum number is an NP-complete problem, but for our purposes
here, a small number of colors will do. For example, a greedy algorithm can be

11.3. RIGHT-LEFT DINING PHILOSOPHERS ALGORITHM 351

used to color the graph with no more than d § 1 colors, where d is an upper

bound on the degree of any node in the graph.)

E x a m p l e 11.3.3 C o l o r i n g of r e s o u r c e g r a p h

The resource graph of Figure 11.4 can be colored with only two colors,

for example, by coloring the odd-numbered resources with color 1 and
the even-numbered resources with color 2.

Now we totally order the colors in an arbitrary way. This induces a partial
order on the resources, where r(i) < r(j) if and only if the color of r(i) is ordered

ahead of the color of r(j). Although this is only a partial order, note that it totally

orders the resources needed by any single process. Since we seek a total ordering

of all the resources, we simply complete the partial order to a total order in an
arbitrary way (that is, we use a topological sort of the partial order).

E x a m p l e 11.3.4 P a r t i a l o r d e r of r e s o u r c e s

The coloring in Example 11.3.3 induces the partial order on resources
depicted in Figure 11.5. "Smaller" resources appear at the top of the

diagram.

li' i
Is< l

F i g u r e 11.5" Partial ordering on resources.

Now we can describe the algorithm.

Coloring a l g o r i t h m :

Each process seeks its resources in increasing order according to the total
ordering constructed above, based on coloring. A process seeks a resource
by putting its index at the end of that resource's queue. The process
obtains the resource when its index reaches the front of that resource's
queue. When a process exits C, it returns all of its resources by removing
its index from their queues.

Since any two resources needed by the same process are ordered with respect
to each other (i.e., are colored differently), an equivalent description of Color-
ing is that every process seeks its resources in increasing order according to the

352 11. RESOURCE ALLOCATION

partial ordering. Notice that, in the special case of the Dining Philosophers prob-
lem for an even-sized ring, the Coloring algorithm reduces to the RightLeftDP
algorithm.

In the Coloring algorithm, the maximum length of a waiting chain is at most
equal to the number of distinct colors. This is because if a process i waits for
a resource held by a process j , then j may be waiting only for a resource of a
"larger" color.

The interesting property to verify for the Coloring algorithm is a time bound
that is independent of the total numbers of processes and resources. As usual,
we let g be an upper bound on process step time and c an upper bound on critical
region time. Also let k be the total number of colors used to color the resources
and let rn be the maximum number of processes that require any single resource.
We show that the worst-case time bound is O(mkc + krnkg). We can interpret
this as saying that the time depends only on "local" parameters, since the number
of colors and the number of users per resource need not depend on the size of
the system. If rn and k are small relative to n (the total number of processes
in the system), then this bound represents an improvement over the hierarchical
resource-allocation strategy using an arbi t rary total order; this is because the
general strategy admits waiting chains of length nearly n. But note that this
bound is not as small as one might l ike-- instead of being proportional to the
maximum length of a waiting chain, that is, proportional to k, it is exponential
in k.

L e m m a 11.5 Let k be the number of colors and let rn be an upper bound on the
number of users for a single resource, in an instance of the Coloring algorithm.
Then the time from when any particular process i enters T until it enters C is
O(mkc + krnk f).

P r o o f Ske t ch . Suppose the colors are exactly the integers 1 , . . . , k. Define
T(i , j) , where 1 < i _< k and 1 < j _< m, to be the worst-case time from when a
process reaches any position < j on the queue for a resource of any color _> i,
until it reaches its critical region. We wish to bound T, the worse-case time from
entry to the trying region until entry to the critical region. From when a process
enters the trying region, it is at most time t~ until its index is placed on some
resource queue. Thus,

T <_ g + T (1 , m) .

We bound the T(i , j) by setting up recurrence equations as we did for the
RightLe~DP algorithm. The base case is when a process is first on the queue
for a resource with the highest color:

T(k, 1)<_ 2t~

11.3. RIGHT-LEFT DINING PHILOSOPHERS ALGORITHM 353

This allows time for the process to discover it is first on the queue and then to
go to the critical region.

Another case is when a process is first on the queue for a resource with some
color other than the highest"

T(i, 1) _< max (2t~, 2t~ + T(i + 1, m)) - 2~ + T(i + 1, m) for every i, 1 _< i < k

This gives the process time to discover it is first on the queue and then either
proceed to the critical region or get on another queue, necessarily of a higher-
colored resource.

The last case is when a process is in some position other than the first, on
some queue.

T (i , j) < T (i , j - 1) + c + k s 1) for e v e r y j , l < j < m

This allows time for the predecessor of the process on the queue to reach its
critical region, then finish the critical region, then release all of its < k resources
(which will move the original process to the first position on the given queue),
and then time for the process, now in position 1, to reach the critical region.

Solving these inequalities yields the claimed bound. For all i, 1 < i < k, we
obtain that

T(i, m) <_ (m - 1)(c + k~) + roT(i, 1).

Thus,

and

So

Thus,

T(i, m) <_ m(c + (k + 2)t~) + mT(i + 1, m) for every i, 1 _< i < k,

f (k , m) < + (k + 2)e).

k

T(1, m) _< (c + (k + 2) g) E mi
i=1

- o + (k + 2) 0)

D

T h e o r e m 11.6 The Coloring algorithm solves the resource-allocation problem
and guarantees lockout-freedom, independent progress, a time bound of O(mkc +
krnkg) for the trying region, and a time bound of O(k~) for the exit region.

354 11. R E S O U R C E A L L O C A T I O N

It turns out that there are some executions of the Coloring algorithm with
time performance that is close to this exponential bound. We leave it as an
exercise for you to find such executions. Of course, it would be nice to cut down
the time bound from exponential to linear in the number of colors, but that would
require a different algorithm.

11.4 Randomized Dining Philosophers Algorithm*

The final algorithm we present is a randomized Dining Philosophers algorithm
that guarantees exclusion (with certainty) and ensures progress with probability
1. We call this algorithm LehmannRabin after its inventors. In this algorithm,
all processes are identical; the symmetry is broken by the use of randomization.

We have several points we hope to make by presenting this algorithm. First,
it demonstrates that randomized algorithms can be used in the asynchronous set-
ting as well as the synchronous setting, and that they sometimes can accomplish
things that cannot be accomplished by nonrandomized algorithms. For example,
the LehmannRabin algorithm can solve the Dining Philosophers problem even
though the processes are identical, whereas Theorem 11.2 implies that this can-
not be done by any nonrandomized algorithm. Actually, we should be careful
when we say that this algorithm "solves the Dining Philosophers problem": the
correctness conditions satisfied are not exactly those specified earlier, in that the
progress condition only holds with probability 1, and not with absolute certainty.

Second, we show how meaningful probabilistic claims can be made for ran-
domized asynchronous systems. It is not obvious how to do this, because a
randomized algorithm does not by itself give rise to a probability distribution
on executions. For instance, the order in which processes take steps in an asyn-
chronous algorithm is rather arbitrary, not determined randomly. This order
must be determined somehow in order to define a probability distribution.

Third, we demonstrate a Markov-style analysis technique for proving prob-
abilistic time bound properties. Such properties can in turn be used to prove
probabilistic liveness properties.

11.4.1 The Algorithm*

Because the processes are identical, they are assumed to know their forks by
local names. As before, we assume that each process knows its forks by the local
names f (right) and f (left). We use the notation

- { left, if j - right
J - right, if j - left

11.4. R A N D O M I Z E D D I N I N G P H I L O S O P H E R S A L G O R I T H M * 355

Also, the s ta tement f irst " - random here means that first is set either to right
1 An informal description follows. or left, each with probabil i ty ~.

L e h m a n n R a b i n algorithm:

S h a r e d var iab le s :
for every i, 1 _< i _< n:

f (i) , a Boolean, init ial ly false, accessible by processes i and i - 1

P r o c e s s i:

** Rema inde r region **

L:

trY i
do forever

first : - random
wait until f (f i rs t) = false
f (first) : - true
if f (f i rs t) = false then

f (first) : - true
goto L

else f (first) := false

crit~

** Cri t ical region **

exiti
put down bo th forks

r e l n i

Thus, a t rying process i executes a loop, in each i teration a t tempt ing to
obtain both of its forks. In each iteration, it chooses a first fork randomly and
waits as long as necessary to obtain it. After obtaining its first fork, it does
not wait indefinitely for the second fork. Rather, it just checks once to see if
the second fork is available. If it is, then process i obtains it and proceeds to
C. If not, then process i gives up on this iteration, puts its first fork down, and
proceeds to t ry again in the next iteration.

To resolve ambiguities, we give the precondition-effect code.

L e h m a n n R a b i n algorithm (rewritten)"

S h a r e d var iab le s :
for every i, 1 _(i _(n:

f (i) , a Boolean, init ial ly false

356 11. RESOURCE A L L O C A T I O N

A c t i o n s o f i:
I n p u t : I n t e r n a l :

try~ flipi
exit~ wait~

O u t p u t : second~
criti dropi
remi reset-right~

reset-lefti

S t a t e s o f i:
pc C {rein, flip, wait, second, drop, leave-try, crit, reset-right, reset-left, leave-exit}, i n i t i a l ly rein
first E { right, left }, in i t i a l ly a r b i t r a r y

T r a n s i t i o n s o f i:

tryi dropi
Effect : P r e c o n d i t i o n :

pc := flip pc = drop
Effect :

flipi f (first) := false
P r e c o n d i t i o n : pc := flip

pc :=f l ip
Effect : crit~

first :-- random P r e c o n d i t i o n :

pc : - wait pc = leave-try
Effect :

pc : - crit wait~
P r e c o n d i t i o n :

pc - wait
Effect :

if f (f i rs t) = false t h e n

f (first) := true
pc : - second

secondi
P r e c o n d i t i o n :

pc - second
Effect :

if f (first) - false t h e n

f (f i rs t) : = true
pc :-- leave-try

else pc := drop

exiti
Effect :

pc := reset-right

reset-righti
P r e c o n d i t i o n :

pc = reset-right
Effect :

f (right) :-- false
pc := reset-left

11.4. R A N D O M I Z E D D I N I N G P H I L O S O P H E R S A L G O R I T H M * 357

reset-le~ remi
Precondition: Precondition:

pc = reset-left pc = leave-exit
Effect: Effect:

f (l r := fal~ pc := ~ n
pc := leave-exit

Formally, the object described by this code is a probabilistic I//O automaton,

as defined in Section 8.8. The random choice steps are exactly the flip steps; in-
stead of a new state, each of these steps has a probability distr ibution containing

1 Note that system execution two possible next states, each with probability ~.
proceeds by means of a combination of nonde termin i s t i c choices and probabilis-

tic choices. The nondeterministic choices determine which process takes the
next step and thereby determine what the next step is, whereas the probabilistic

choices determine the new state for flip steps.

1 1 . 4 . 2 C o r r e c t n e s s *

It is easy to see that the L e h m a n n R a b i n algorithm guarantees well-formedness,
exclusion, and independent progress; there is no probability involved in any of
these claims. Formally, they are claims about the nonde termin i s t i c version of
the system, as defined in Section 8.8. However the progress condition is not
guaranteed with certainty.

E x a m p l e 11.4.1 E x e c u t i o n of L e h m a n n R a b i n t h a t d o e s n o t m a k e
p r o g r e s s

Consider an execution a of L e h m a n n R a b i n in which the processes
take steps in round-robin order and always make the same random
choices. Note that c~ is a fair execution (of the nondeterministic
version of the system). In a, no process ever reaches C.

The interesting thing to prove about the L e h m a n n R a b i n algorithm is that
it guarantees progress with probability 1. Actually, rather than just proving
progress with probability 1, we will prove a stronger probabilistic t ime bound

claim, of the form 7 - - ~ C. Informally speaking, this means that from any reach-
p

able state in which some process is in T, with probability at least p and within
time t, some process is in C. The probability 1 progress condition can then be
proved by repeated application of this claim.

In order to make claims about the probability of certain events, we need a
probability distribution on executions. As described so far, the system includes

358 11. R E S O U R C E A L L O C A T I O N

nondeterministic choices--that is, which process takes the next s tep- -as well as
probabilistic choices. The nondeterministic choices must be resolved in order to
obtain a purely probabilistic system. In fact, we would like to claim that the
system has the desired property regardless of how the nondeterministic choices
are resolved.

It is useful to imagine that the nondeterministic choices are under the control
of an adversary. We allow the adversary to select arbitrary processes, as long
as it allows fair turns to each process that is in its trying or exit region. In fact,
since we are proving probabilistic time bound statements, we allow the adversary
to choose not only which process takes the next step, but also the time at which
that step occurs. The time decisions are subject to an upper bound of t~ on
process step time and an upper bound of c on critical region time, plus the
requirement that, if the execution is infinite, the time must pass to infinity. To
obtain the strongest result, we want to allow the adversary to be as powerful as
possible; thus, we assume that, when making its decisions about who takes the
next step and when, it has complete knowledge of the past execution, including
information about process states and past random choices.

Formally, an adversary A is a function mapping finite executions to (process,
time) pairs, indicating the next process to take a step and the time at which
the step is to be taken. For each particular sequence D of random draws, there
is a unique timed execution exec(A, D) generated by adversary A with random
choices given by D. The adversary is restricted so that all timed executions
in exec(A, D) have the fairness and timing properties described in the previous
paragraph.

A fixed adversary A determines a probability distribution on the set of timed
executions of the algorithm. Since each random choice is just "right" or "left,"

1 there is a probability associated with each (measurable each with probability ~,
set of) sequences of draws. This probability distribution on the sequences D
induces a probability distribution on the timed executions exec(A, D).

We need one more notion for the proof. If 5 / a n d b/~ are sets of states, then

we write 5 / - ~ b/~ to mean the following. For every adversary A, if the algorithm
p

is started in a state in /,/, then in the probability distribution of executions
determined by A, the probability that a state in L/~ is reached within time t is at
least p. Such statements can be combined. For example:

L e m m a 11.7

1. I f ld t bl' bl' t' bl" ~ ld" and ~ , then Lt .
p pl pp~

2. I f bl _L+ Lt ' , then bl U U " - ~ bl ' U bl " .
p p

11.4. RANDOMIZED DINING PHILOSOPHERS ALGORITHM* 359

Now we have enough machinery to prove the progress property. One techni-
cality: It happens that some of the constructions in our proof only work for the
case where n, the size of the ring, is at least 3. So we assume this from now on
in the chapter and leave as an exercise the (simpler) case where n = 2.

Define

�9 7" to be the set of reachable states of LehmannRabin in which some process
is in T

�9 C to be the set of reachable states in which some process is in C

We show that T - ~ C. That is, from any reachable state in which some process
1

16

is in T, with probability at least ~ , some process will be in C within time 14f.
We prove this claim by five auxiliary claims, expressed by Lemmas 11.8-11.12,
using the general rules expressed in Lemma 11.7.

Some shorthand is useful for classifying process states. We let F, W, S, D,
and L denote the sets of process states where pc = flip, wait, second, drop, and
leave-try, respectively; these five sets of states partition the trying region T. We
further subdivide the W, S, and D states according to the value of first: ~ , ~ ,
and ~ denote the subsets of W, S, and D, respectively, in which f i r s t - right,
while ~ , S , and ~ denote the subsets of W, S, and D, respectively, in which
first = left. We use the notation ,-+ to denote ~ [J -~ U ~ and analogously for
~, . Now we define the sets of system states that we will need in the auxiliary
claims.

Define

�9 s to be the set of reachable states in which some process is in L (i.e., at
leave-try)

�9 ~7 - to be the subset of 7- consisting of states in which all processes are
either in the remainder or trying region

�9 ~ to be the subset of ~7 - consisting of states in which some process is in
F (i.e., at flip)

�9 G to be the subset of 7~T consisting of states in which there is a process i
such that one of the following holds:

i E ~ U < - S - a n d i - 1 E ~* URUF

i E ~ U - ~ a n d i + l E ~ - - , U R U F

360 11. R E S O U R C E A L L O C A T I O N

The first three sets above should be self-explanatory. The last set, G, is the set
of "good" states, in which two processes are in a situation where, with high
likelihood, one will soon obtain both its forks. The two situations allowed by
are depicted in Figure 11.6. A rough intuition is that in a good configuration,
two neighboring processes have a high probability of having a common second
fork. If they have a common second fork, then whichever accesses it first will get
it and succeed in reaching C.

�9 �9
�9 �9

�9 �9 e Qo �9

, *

W R R W
~-- r
S F S

F i g u r e 11.6" Good states of the LehmannRabin algorithm.

Then we will show the following claims"

�9 T- Ir C
1

�9 7 TA4 u L
1

�9 f2 Gu
1

4

1
4

�9
1

Lemma 11.7 then allows these claims to be combined to yield the needed con-

clusion, 7- - ~ C.
1

16

We begin by proving the three probability 1 claims, since they are the easiest.
In fact, they are actually true with certainty, not just with probability 1.

L e m m a 11.8 s ~ C
1

P r o o f . If a process is at leave-trying, then within time t~, that same process
will take a step and enter C. El

11.4. R A N D O M I Z E D DINING P H I L O S O P H E R S A L G O R I T H M * 361

Lemma 11.9 T - - ~ T~T u d
1

P r o o f . If any process is initially in C or enters C within time 3t~, then we are

done, so assume that this is not the case. Then all processes are in R U T U E for

time at least 3g, and no process enters E during this time (because no process

is in C). But any processes that are initially in E re turn to R within time 3t~.

This forces all the processes into R U T within time 3g, as needed. [:]

Lemma 11.10 ~ T - ~ 9 c U/2
1

P r o o f . If any process is initially in F U L or enters L within time 3~, then we

are done, so assume that this is not the case. Then no process enters C within

time 3t~, so all the system states occurring within time 3g are in 7~T. Then, if

any process enters F within 3t~ time units, it places the system in $- and we are

done, so assume also that this is not the case. This implies, in part icular, that

no process enters the t rying region within 3t~ time units.

By elimination, all processes are initially in R U W U S U D. But if any is

initially in S U D, or reaches S U D within time t~, then within an addit ional t ime

2g, it goes to F U L, which is a contradiction. So the only possibil i ty is that all

processes are initially in R U W and (since 7~7- C_ 7-), some process is in W.

Moreover, no process reaches S U D within time t~. Note that this implies that

no fork is initially held by any process.

Because some process is in W, we know that some process must take a step

within time t~. Let i be the first process to take a step. If i is initially in R, then

it enters the t rying region, a contradict ion. On the other hand, if i is initially in

W, then, since no fork is held, i immediately obtains its first fork. But this puts

i in S, again a contradiction. V]

So far, we have avoided any arguments about probabilities. The remaining

two claims involve such arguments. The first of these shows why, from an arbi-
1 either a t ra ry state where some process is flipping, with probabil i ty at least ~,

good state is soon reached or else some process soon reaches leave-try.

Lemma II.II 9~ ~ ~' U/2
1
4

P r o o f . If any process is initially in L, then we are done, so assume that this is

not the case. Let i be any process that is initially in F . Then one of the following

must hold initially.

1. i - l c ~, u R u F .

362 11. RESOURCE A L L O C A T I O N

R
F

F

F i g u r e 11.7: Initial state for Case 1 of proof of Lemma 11.11.

1 i 's next random choice is left See Figure 11.7. Then with probability ~,
and i - l ' s next random choice is right. So assume this.

Then within time t~, i flips, putting itself in state ~ because i's next random
choice was left. There are two cases"

(a) In the meantime, i - 1 does not access the shared fork. Then we claim
that i - l ' s state must still be in the set ,-~ U R U F; this is argued
by an examination of the possible transitions out of this set of states,
using the fact that i - l ' s next random choice is right. This brings the
system state into G, which suffices.

(b) In the meantime, i - 1 does access the shared fork. Then consider the
first time it does so. At that time, the shared fork must be i - l ' s
second fork (In the cases ~ , R, and F, this is because of the fact that
i - l ' s next random choice is right.) Then i - 1 obtains its second fork
and goes to L, which suffices.

2. i + 1 C + ~ * u R u F .

See Figure 11.8. This is symmetric with the previous case.

R F

F

F i g u r e 11.8: Initial state for Case 2.

3. i - l C , + i - - a n d i + l E �9 -+.

11.4. R A N D O M I Z E D D I N I N G P H I L O S O P H E R S A L G O R I T H M * 363

�9 �9
�9 �9

* ~ ~ *

F

F i g u r e 11.9" Initial state for Case 3.

See Figure 11.9.

This is the interesting case, because the situation looks nothing at all like
what is supposed to happen in a good state. But because we are working
in a ring, the fact that the situation around i is unfavorable implies that
elsewhere in the ring, there must be some other process j such that j + 1 E
+Z-, and j E *-~ U R U F. (We leave it as a simple exercise to show this.)
See Figure 11.10. Then things look much better around process j .

~ - - ~ ~ "
,

-7"

R

F

F i g u r e 11.10" Elsewhere in the ring.

If j § 1 E ~ U ~-, then the initial state is already in G, and we are done.

The only other possibility is that j + l C ~ a n d j E * - ~ U R U F . But
1 ~ in this case, with probabili ty ~, j + 1 s next random choice is left and j s

next random choice is right; assume this. Then within time 2~, process
j + 1 takes two steps, which puts it in ~ . This means that the resulting
system state is in G, unless in the meantime, j has moved out of the set

U R U F. But if it has, then j has obtained its second fork and gone to
L, which suMces.

D

The final lemma shows why a good state is good: from a good state, with
1 probabili ty at least ~, some process soon reaches L.

364 11. R E S O U R C E A L L O C A T I O N

Lemma 11.12 G - ~ L;
1 _
4

P r o o f . Because the initial state is in G, it is in 7~7", and (at least) one of
the two conditions indicated in the definition of G holds. Assume without loss of
generality that the first holds, that is, that there is a process i such that i E ~ U ~-
and i - 1 E ,--+ U R U F. The argument for the second condition is symmetric.

We use three preliminary claims. Their statements do not involve probability
explicitly; rather, they involve it implicitly by referring to the values of certain
future random choices. The first one bounds the amount of time a process can
remain waiting for its first fork, if a neighbor is favorably oriented.

C l a i m 11.13 I f i + 1 E R U T with next random choice left, and i E ~ , then
within time 4~ either i E ~-S or i + 1 E L.

See Figure 11.11.

F i g u r e 11.11" Situation for Claim 11.13.

P r o o f . This is a (somewhat tedious) argument by cases, based on the state of
process i + 1.

1. i § E L .

Then we are done.

2. i + l E ~ - . U R U F .

Then, initially, i + 1 does not hold the shared fork. Within time t~, i checks
the shared fork. If in the meantime i + 1 has not accessed it, then i obtains

A..__.

it and goes to "S, as needed.

Suppose, on the other hand, that i + 1 has accessed the shared fork in the
meantime and consider the first such time. Because of i + l ' s state, the
shared fork must be i + l ' s second fork. (In the cases ~ , R, and F, this
is because of the fact that i + l 's next random choice is left.) Since i + 1
obtains this fork, it succeeds in reaching L, as needed. Note that the time
for this case is at most ~.

11.4. R A N D O M I Z E D DINING PHILOSOPHERS A L G O R I T H M * 365

. i + 1 c ~ .

Then within time t~, i § 1 drops its fork, which then puts the two processes
in a configuration where i + 1C F, with next random choice left, and i E ~ .
(Process i must still be in ~ because it cannot obtain its first fork until
process i + 1 drops it.) The resulting state then fits the previous case, so,

within an additional time t~, either i C ~- or i + 1 E L. The time for this
case is thus at most 2~.

4. i + 1 c -~.

Then within time t~, i + 1 checks its left fork and either goes immediately
to L, which satisfies the condition, or goes to ~ , which reduces to the
previous case. The time for this case is thus at most 3t~.

5. i + 1 c ~ .

Then within time ~, both i and i + 1 check their shared fork. Whichever
checks it first gets it. If the first one is i, then we have i C ~-, as needed.
If not, then we get i + 1 E -~, which reduces to the previous case. The
time for this case is thus at most 4f.

D

The second claim bounds the time from when a process is ready to test its
second resource and a neighbor is favorably oriented, until someone reaches L.

C l a i m 11.14 Suppose that iC ~ and either i - 1 E ~ U ~ or i - 1 E ~URUF
with next random choice right. Then within time ~, some process is in L.

See Figure 11.12.

S

W

S

R
F

F i g u r e 11.12" Situation for Claim 11.14.

366 11. R E S O U R C E A L L O C A T I O N

P r o o f . With in time t~, i checks the shared fork; it obtains it and goes to L
unless i - 1 has obtained it in the meantime. But if i - 1 has obtained it, then i
has gone to L, since the shared fork must be i - l ' s second fork. E]

The final claim combines the previous two. It bounds the time from when a
process i is waiting for its first fork and both neighbors are favorably oriented,
until someone reaches L.

C l a i m 11 .15 I f i + 1 E R U T with next random choice left, i 6 ~ , and i - 1 E
~, U R U F with next random choice right, then within time 5~, some process is
in L.

See Figure 11.13.

~ o o 0 y
LT . ~ R

F

Figure 11.13: Situation for Claim 11.15.

P r o o f . Claim 11.13 implies that within time 4g, either i reaches ~- or i t 1
reaches L. In the latter case, we are done, so assume that i reaches ~-.

If, in the meantime, i - 1 has reached L, we are done, so assume that it has
not. Then i - 1 must still be in %+ U RU F. Moreover, if i - 1 is still in ~ U RU F,
then i - l ' s next random choice is still right. So then Claim 11.14 implies that
in at most addit ional time t~, some process reaches L. O

Now we re turn to the proof of Lemma 11.12. Recall that we have assumed
that there is a process i such that i E ~ U ~- and i - 1 E ,-+ O R U F. See the first
d iagram in Figure 11.6. If i C ~ , then the result follows from Claim 11.15-- the

1 arises because that is the probabil i ty that i + l ' s next random probabil i ty of

choice is left and i - l ' s next random choice is right. On the other hand, if i E ~-,
1 then the result follows from Claim 11.14-- the probabil i ty of 5 arises because that

is the probabil i ty that i - l ' s next random choice is right.

Thus we have:

11.5. BIBLIOGRAPHIC NOTES 367

T h e o r e m 11.16 For n >_ 3, the LehmannRabin algorithm satisfies the property

that 7- - ~ C.
1

16

We can apply Theorem 11.16 repeatedly to show that with probability 1,
eventually someone reaches the critical region. We leave this for an exercise.

T h e o r e m 11.17 The LehmannRabin algorithm guarantees well-formedness, mu-
tual exclusion, and independent progress. It also guarantees progress with prob-
ability 1.

11.5 Bibl iographic Notes

The Dining Philosophers problem was originally defined by Dijkstra [91], who
devised an algorithm for an asynchronous shared memory model containing a
globally shared semaphore variable. The RightLeftDP algorithm seems to be
folklore; its generalization to the Coloring algorithm is due to Lynch [213].

The LehmannRabin algorithm was designed by Lehmann and Rabin [192].
An informal proof sketch appears in [192], but it is not clear how to formalize that
sketch. The proof presented here was developed by Lynch, Saias, and Segala
[208], following an earlier proof in a similar style by Pnueli and Zuck [244].
Lehmann and Rabin [192] gave a modification of the LehmannRabin algorithm
that also guarantees lockout-freedom with high probability.

All of the algorithms in this chapter use shared variables. There has also
been a considerable amount of work on resource-allocation problems in the asyn-
chronous network model; see Chapter 20. For example, Chandy and Misra [67]
present a solution for a general resource-allocation problem in asynchronous net-
works, together with an extension to a more dynamic version of the problem,
the Drinking Philosphers problem, in which the resource requirements of pro-
cesses can change over time. Also, Choy and Singh [80] and Awerbuch and Saks
[37] present resource-allocation algorithms for asynchronous networks; their al-
gorithms have good time complexity.

11.6 Exercises

11.1. Show that not every exclusion specification has an equivalent explicit re-
source specification.

11.2. It is possible to generalize the definition of an explicit resource specifica-
tion to allow for alternative resource possibilities. Namely, for each i, the
specification includes a description of resource requirements, in the form of

368 11. RESOURCE ALLOCATION

a monotone Boolean formula (i.e., one involving only A's and V's) over the
set 7~. A formula f(R1,R2,. . . ,Rk) specifies a collection of "acceptable"
sets of resources in the obvious way: a set S of resources is acceptable if
assigning true to all of the resources in S and false to all of the others
causes the formula f(R1, R2 , . . . , Rk) to evaluate to true. The meaning of
the formula is that the acceptable sets of resources are those sets whose
exclusive possession authorizes the user to enter the critical region.

(a) Give a generalized explicit resource specification that is suitable for
describing the k-exclusion problem, as defined in Chapter 10, Exercise
10.13.

(b) Show that any generalized explicit resource specification has an equiv-
alent exclusion specification.

(c) Show that any exclusion specification has an equivalent generalized
resource specification.

11.3. Prove Lemma 11.1.

11.4. Research Question: Define a notion of independent progress that is ap-
propriate for resource-allocation problems expressed in terms of general
exclusion conditions.

11.5. Generalize Theorem 11.2 to apply to a larger class of resource-allocation
problems than just the Dining Philosophers problem. Try to obtain the
largest class of resource-allocation problems you can.

11.6. Is the time upper bound on the RightLeftDP algorithm tight? Exhibit an
execution whose time is as close to the computed bound of 3c + 18t~ as you
can get.

11.7. Modify the RightLeftDP algorithm so that it works for a ring with an odd
number of processes. Obtain an upper bound for the time complexity of
the modified algorithm. The bound should be independent of n.

11.8. Construct an execution of the Coloring resource-allocation algorithm that
has time complexity as close to the computed upper bound of
0 (mkc + krnk~) as you can get.

11.9. Research Question: Construct a new algorithm for the general resource-
allocation problem of this chapter, for the model in which there is one
read-modify-write variable associated with each resource, accessible only

11.6. EXERCISES 369

by the processes that require the resource. Your new algorithm should have
a much better time performance than the Coloring algorithm.

Extend your algorithm to apply to more types of resource-allocation prob-
lems, such as the two described in the introduction to this chapter.

11.10. Show that there exists an adversary for the LehmannRabin randomized
Dining Philosophers algorithm for which the probability of locking out a
particular process is non-zero. What is the highest probability you can
achieve?

11.11. Prove the claim, made in Case 3 of the proof of Lemma 11.11, that there
must be some process j such that j + 1 E ~-, and j E *-~ U R U F.

11.12. Use Theorem 11.16 to prove the following, for the LehmannRabin algo-
rithm:

(a) From any state in which some process is in T, with probability 1,
some process eventually reaches C.

(b) From any state in which some process is in T, and for any t _> 0, with
probability f (t) , some process reaches C within time t. (You get to
define f - - t r y to make it as small as possible.)

11.13. Consider the LehrnannRabin algorithm for the special case where n = 2.

For this case, state and prove an interesting claim of the form T - ~ C.
p

11.14. A novice programmer at the Flaky Computer Corporation, upon learning
about the LehmannRabin algorithm, has proposed to improve its time per-
formance by removing the wait for the first fork. Now instead of waiting
for its first fork, a process simply tests it just as it does for its second fork.
If the fork is unavailable, then the process goes back to the beginning and
flips again.

Explain patiently to the programmer what is wrong with his algorithm.

11.15. Research Question: Can you generalize the idea of the LehmannRabin al-
gorithm to more general resource-allocation problems than just the Dining
Philosophers problem, while preserving the properties of exclusion, inde-
pendent progress, and progress with probability 1?

This Page Intentionally Left Blank

Chapter 12

C o n s e n s u s

In this chapter, we introduce another complication into our study of the asynchro-
nous shared memory model: the possibility of failures. We only consider faulty
processes, not faulty memory. In fact, we only consider the simplest type of
process failure: stopping failure, whereby a process just stops without warning.

The problem we study in this chapter is one of consensus. We have already
considered consensus problems extensively in the setting of synchronous message-
passing systems, in Chapters 5, 6, and 7. For the case of process failures, we
have shown that basic consensus problems are solvable, not only for stopping
failures, but also for less well-behaved Byzantine failures. However, we gave
several results showing that the costs of solutions, measured in terms of the

number of processes and the amount of time required, are necessarily large.
Perhaps surprisingly, the situation turns out to be very different in the asyn-

chronous setting, at least for read/wr i te shared memory. Namely, we present a
fundamental impossibility result, saying that a basic consensus problem cannot

be solved at all in the asynchronous read/wr i te shared memory setting, even if
it is known that at most one process will fail. The same result holds, as you will

see in Chapters 17 and 21, for the asynchronous network setting, and the reasons
are essentially the same.

The impossibility of consensus is considered to be one of the most fundamen-
tal results of the theory of distr ibuted computing. It has practical implications
for any distr ibuted application in which some type of agreement is required. For
example, processes in a database system may need to agree on whether a transac-
tion commits or aborts. Processes in a communication system may need to agree
on whether or not a message has been received. Processes in a control system
may need to agree on whether or not a particular other process is faulty. Then
the impossibility result implies that there is no purely asynchronous algorithm

that reaches the needed agreement and tolerates any failures at all.

372 12. CONSENSUS

This means that, in practice, designers must go outside the asynchronous
model in order to solve such problems, for example, relying on timing information

or being willing to settle for only probabilistic correctness.

12.1 T h e P r o b l e m

We define a particular consensus problem in the shared memory setting. Our
presentation is informal, but it can be formalized in terms of the model defined
in Chapter 9. Chapter 10 contains a similar informal presentation for the mutual
exclusion problem, plus some guidelines showing how it can be formalized. You

may find it useful to skim Sections 10.1 and 10.2 now.
The architecture we use here is essentially the same one we used in Chapters

9-11, with processes interacting with the environment via ports and communi-
cating with each other via shared variables. See Figure 10.1, for example. We
assume that n _> 2, where n is the number of ports. The entire assembly of
processes and variables is modelled as a single I /O automaton. We model the
users as automata Ui also, as we did in Chapters 10 and 11. See Example 9.2.1
for one collection of users for the agreement problem. We assume a fixed value
set V, fVf _> 2, for the inputs and decisions.

This time, we assume that the external interface of each user Ui consists of
output actions init(v)i, where v E V is an input value for the shared memory
system, and input actions decide(v)i inputs, where v E V is a decision value.
The external interface of the shared memory system includes all the input actions
init(v)~, where v E V is an input value and i is a port name (i.e., process index),
and all the output actions decide(v)i, where v E V is a decision value and i
is a port name. Thus, we are assuming that the inputs for the problem arrive
from the users in input actions. (Note that most of the research papers in this
area assume that the initial values appear in designated variables in the initial
process states, while decisions are writ ten into designated state variables. The
formulation we use is more consistent with the style we are using elsewhere in the
book.) Each user automaton must satisfy one restriction: it can only perform
at most one initi event in an execution; that is, we assume that each process
receives at most one input.

It is easy to formalize all of this in terms of I /O automata, as in Chapters 10
and 11. We assume in this chapter that there is exactly one task per process; in
light of Exercise 8.8, this is not a significant restriction.

We assume that the processes are subject to stopping failures, by which we
mean that they might simply stop without warning. Formally, we model this
by including special stopi input actions, one for each process, in the external
interface (external signature) of the shared memory system. A stopi event has

12.1. THE P R O B L E M 373

ports processes shared variables

init (v) i

decide (v) i

�9 \ I n

F i g u r e 12.1" Shared memory system for the agreement problem.

the effect of disabling any future locally controlled actions of process i. The stopi
actions are not considered to be par t of the external interfaces of the user au-
tomata; they just arrive from some unspecified external environment (see Section
9.6). The complete archi tecture is depicted in Figure 12.1. Wi th this method of
modelling failures, and according to the formal definitions in Chapter 8, the fair
executions of the system are those in which each process that does not fail, as
well as each user task, gets infinitely many opportunit ies to perform locally con-
trolled steps. We say that an execution of the system is failure-free if it contains
no stop events.

We say that a sequence of init4 and decidei actions is well-formed for user i,
provided that it is some prefix of a sequence of the form init(v)i, decide(w)i (i.e.,
the empty sequence, just an init(v)i, or a two-action sequence init(v)i, decide(w)i).
In part icular , it does not contain repeated inputs at port i, nor repeated decisions
at port i, nor does it contain any decision without a preceding input. Our as-

374 12. CONSENSUS

sumptions about the user automata imply that each Ui preserves well-formedness

(according to the definition of "preserves" in Section 8.5.4).

We require the following properties of any execution, fair or not, of the com-
bined system.

Well-formedness: For any i, the interactions between Ui and the system are
well-formed for i.

Agreement: All decision values are identical.

Validity: If all init actions that occur contain the same value v, then v is the

only possible decision value.

Notice that the agreement and validity conditions are analogous to the cur-
responding conditions in Section 6.1, for the stopping agreement problem in the

synchronous model; the main difference is in the input /output conventions.
We also need some kind of termination condition. The most basic requirement

is the following, for failure-free executions.

Failure-free termination: In any fair failure-free execution in which init events

occur on all ports, a decide event occurs on each port.

We say that a shared memory system A solves the agreement problem for a

particular collection of users Ui if it guarantees the well-formedness, agreement,

validity, and failure-free termination conditions for the users Ui. We say that i c

solves the agreement problem if it solves the agreement problem for all collections
of users.

We also consider some stronger termination conditions involving fault-toler-
ance. The strongest condition we consider is the following, for executions in

which any number of processes might fail:

Wait-free termination: In any fair execution in which init events occur on all
ports, a decide event occurs on every non-failing port (i.e., every port i on

which no stopi event occurs).

That is, any process that does not fail eventually decides, regardless of the fail-
ures of any of the other processes. This condition is analogous to the termination
condition given in Section 6.1, for the stopping agreement problem in the syn-

chronous setting. This condition is called wait-freedom because it implies that no
process can ever be blocked, waiting indefinitely for help from any other process.

Note that we have stated the wait-freedom condition to assume that inputs
arrive on all ports. We could have stated it equivalently to assume only that
an input arrives at port i. We leave it as an exercise for you to show that this

reformulation is in fact equivalent to our original statement.

12.1. THE P R O B L E M 375

Because the main impossibility result of this chapter involves only a sin-
gle process failure rather than arbi t rary process failures, we need yet another
termination condition.

f - f a i l u r e t e r m i n a t i o n , 0 < f _< n: In any fair execution in which init events
occur on all ports, if there are stop events on at most f ports, then a decide
event occurs on every non-failing port.

It should be easy to see that the failure-free termination and wait-free ter-

mination conditions are the special cases of the f-failure termination condition
where f is equal to 0 and n, respectively. The single-failure termination condi-
tion is the special case where f = 1.

L e m m a 12.1 Let A be an algorithm in the given architecture and Ui, 1 <_ i <_ n,
be a collection of users.

1. If A guarantees wait-flee termination for the users Ui, then A guarantees
f-failure termination for the Ui for any f , 0 <_ f <_ n.

2. If A guarantees f-failure termination condition for the Ui for any f , 0 <
f <_ n, then A guarantees failure-free termination.

We say that a shared memory system guarantees wait-flee termination, guar-
antees f-failure termination, and so on, provided that it guarantees the corre-
sponding condition for all collections of users.

Trace properties. As we did in Chapters 10 and 11, we can express the cor-
rectness conditions of this chapter equivalently in terms of trace properties. Each
of these trace properties P has a signature consisting of init(v)~ and decide(v)~
outputs and stopi inputs. The external actions of the combined system are also
exactly these actions, and the requirement in each case is that the fair traces of
the combined system are all in traces(P).

Synchronous termination c o n d i t i o n s . The wait-free termination condition
is similar to the termination condition used for the stopping agreement problem
in the synchronous model, in Section 6.1, as well as to the strong termination con-
dition used for the commit problem in Section 7.3. The failure-free termination
condition is similar to the weak termination condition of Section 7.3.

In most of this chapter, we will consider the case of read/wr i te shared mem-
ory, since that is the case in which the impossibility results hold. We allow the
variables to be mult i -wri ter /mult i -reader registers. Near the end of the chapter,

in Sections 12.3 and 12.4, we briefly consider other variable types.

376 12. C O N S E N S U S

12.2 Agreement Using Read/Write Shared Memory

Throughout this section, we suppose that A is an algorithm in the read/wri te

shared memory model that solves the agreement problem and guarantees 1-failure

termination. Our objective is to reach a contradiction, showing that such an A
cannot exist.

We first make some simplifying restrictions on A, all without loss of gener-

ality, and then present some needed terminology. Next, we prove a result about
the input values. Then, because the proof is easier, we show that the agree-

ment problem is unsolvable in the read/wri te shared memory model, if the very

strong wait-free terminat ion condition is required. Finally, we show the main
r e su l t~ tha t not even a single fault can be tolerated.

12.2.1 Restrictions

For simplicity, and without loss of generality, we make the following four assump-

tions: First, we assume that the value set V is just {0, 1}. Second, we consider
A in combination with a particular collection of users, trivial automata, each of

which generates a single (arbitrary) init event and does nothing else.
Third, we assume that A is "deterministic," in the sense that the automaton

has a unique initial state; that from any automaton state, any process has at most

one locally controlled step; and that for any automaton state and any init input,
there is a unique resulting automaton state. This does not restrict generality,

because if we are given a nondeterministic solution, we could simply prune out
all but one of the alternatives in each case. (This notion of determinism is similar

to the one described in Exercise 8.9.)
Finally, we assume that every non-failed process always has a locally con-

trolled step enabled, even after it decides. This does not restrict generality

because we can always include dummy internal steps.

12 .2 .2 Terminology

We define an initialization to be an execution of the combination of A and the
users consisting exactly of n init steps, one for each port, in order of index.

Thus, the trace of an initialization has the form

init(vl)l, init(v2)2,..., init(Vn)n

where Vl , . . . , vn E V. We define an execution c~ to be input-first provided that
it begins with an initialization. Our proofs involve only input-first executions.

We define a finite execution c~ to be O-valent if 0 is the only value that appears
in a decide event in (~ or in any execution that extends c~; moreover, we insist

12.2. A G R E E M E N T USING R E A D ~ W R I T E S H A R E D M E M O R Y 377

that the value 0 actually does occur in some such decide event. After a 0-valent

execution, the algorithm is already committed to 0 as the only decision value,
even though no actual decide(O) event might yet have occurred. Similarly, c~ is 1-
valent if the only such value is 1. We say that c~ is univalent if it is either 0-valent
or 1-valent, and bivalent if each value appears in some extension. Figure 12.2

depicts a bivalent execution.

Figure 12.2: Bivalent execution c~.

The following lemma says that this classification is exhaustive, in the absence
of failures. That is, there are no finite failure-free executions after which no
decision is possible.

L e m m a 12.2 Each finite failure-free execution c~ of A is either univalent or
bivalent.

P r o o f . Any such c~ can be extended to a fair failure-flee execution c~'. Then

the failure-free termination condition guaranteed by A implies that in c~', all

processes eventually decide. D

If c~ is a finite failure-free execution and i is any process, then define
extension(c~,i) to be the execution obtained by extending execution c~ by a
single step of i. The fact that this is well-defined depends on two of the re-
strictions we made above: that every non-failed process always has a locally
controlled step enabled and that the system is deterministic. This notation
is extended to sequences of process indices in the obvious way, for example,
extension(a, ij) = extension(extension(a, i), j) .

12.2.3 Bivalent Init ia l izat ions

We begin by showing that A must have a bivalent initialization. This means that
the final decision value cannot be determined just from the inputs. In contrast,

378 12. CONSENSUS

if the a lgori thm is not required to tolerate any faults, then there are simple

agreement algori thms in which the final value is completely determined by the

inputs. We leave the discovery of such algori thms for an exercise.

L e m m a 12.3 A has a bivalent initialization.

P r o o f . Suppose not; then all the initializations are univalent. Note that the

initialization a0 consisting of all 0s must be 0-valent, by the validity condition.

Similarly, the initialization a l consisting of all ls must be 1-valent.

Now we construct a chain of initializations, spanning from c~0 to c~1.1 At each

step of the chain, we simply change the initial value of a single process from 0 to

1; thus, any two consecutive initializations in the chain differ only in the input

to one process. By assumption, every initialization in the chain is univalent, so

there must be two consecutive initializations in the chain, say c~ and a ~, such that

c~ is 0-valent and c~ ~ is 1-valent. Suppose that they differ in the initial value of

process i.

Now consider any fair execution that extends c~ and in which i fails immedi-

ately after the initialization (i.e., the next action is stopi), but in which none of

the other processes ever fails. Then all processes other than i must eventually

decide, by the 1-failure terminat ion condition. Since c~ is 0-valent, this decision

must be 0.

Now we claim that it is possible to extend c~ ~ in the same way and still obtain

a decision of 0. This is because a and c~ ~ are identical except for the initial value

of i, and i fails immediately after the initialization in both extensions; thus, the

rest of the processes can behave in exactly the same way after c~ ~ as after a. See

Figure 12.3.

But this contradicts the assumpt ion that c~ ~ is 1-valent. E]

12.2.4 Impossibi l i ty for Wait-Free Termination

Now we can prove the first (simpler) impossibi l i ty r e su l t - - the one for wait-free

terminat ion. Namely, we suppose in this subsection that a lgor i thm A has the

wait-free terminat ion property, which is s tronger than the 1-failure te rminat ion

proper ty we have already assumed. We use the wait-free terminat ion proper ty

to obtain a contradict ion.

The contradict ion is based on pinpoint ing a way in which a decision might

be made. In part icular , we define a decider execution a to be a finite failure-free

input-first execution satisfying the following conditions:

1This chain construction is similar to the constructions used in the proof of Theorem 6.33,
the lower bound on the number of rounds needed for agreement in the synchronous setting.

12.2. A G R E E M E N T USING R E A D / W R I T E SHARED M E M O R Y 379

�9 �9 �9 (~

s t o p i

(~ 1 �9 �9 �9

s t o p i

F i g u r e 12.3: Construction for Lemma 12.3.

1. c~ is bivalent.

2. For every i, extension(c~, i) is univalent.

Thus, after a decider execution, no decision has yet been determined, but any
additional (non-stop) process step will determine the decision. We prove that A

(with the wait-free termination property) must have a decider execution.

L e m m a 12.4 A has a decider execution.

P r o o f . Suppose the contrary: that any bivalent failure-free input-first execu-

tion has a one-step bivalent failure-free extension.
Then start ing with a bivalent initialization (whose existence is guaranteed

by Lemma 12.3), we can produce an infinite failure-free input-first execution a,
all of whose finite prefixes are bivalent. Thus, in c~, no process ever decides.

The construction is simple: at each stage, we start with a bivalent failure-free
input-first execution, and we extend it by one step to another bivalent failure-free
execution. Our assumption at the beginning of this proof says that we can do
this.

Since a is infinite, it must contain infinitely many steps for some process, say

i. We claim that i must decide in c~, which yields a contradiction.
To see this, modify c~ by inserting a stopj event for each process j that

only takes finitely many steps, right after its last step in c~. Call the modified

execution a ' . Then c~' is a fair execution in which process i does not fail. The
wait-free termination condition then implies that i must decide in c~'. But c~ and
a ' look identical to process i, so i decides in c~ also. This is the contradiction
needed to prove this lemma. D

380 12. CONSENSUS

Now we can obtain the contradiction that we need to prove the impossibility

result for wait-free termination.

L e m m a 12.5 A does not exist.

P r o o f . By Lemma 12.4, we may fix some decider execution c~. Since c~ is
bivalent, there exist two processes, say i and j , such that after c~, a step of i

leads to a 0-valent execution and a step of j leads to a 1-valent execution. That

is, extension(c~,i) is 0-valent and extension(c~,j) is 1-valent. Obviously, i r j .
See Figure 12.4.

, bivalent

7
0-valent 1-valent

Figure 12.4: Execution a is a decider; extension(a, i) is 0-valent, and extension(a, j)
is l-valent.

We complete the proof with a case analysis, getting a contradiction for each
possibility.

1. Process i 's step is a read step.

Consider extending extension(c~,j) in such a way that no process fails,

process i takes no further steps, and each process except for i takes in-

finitely many steps. This looks to every process except i like a fair ex-

ecution in which process i fails immediately and no other process fails.
Thus, by the wait-free termination condition (in fact, 1-failure termination
is enough here), all processes except i must eventually decide, and since
extension(~, j) is 1-valent, they must decide 1.

Now, note that the states after c~ and extension(a, i) are indistinguishable

to every process except i, in the sense defined in Section 9.3. This is
because i's step is just a read, so the only thing it changes is the state of

process i. So we can take the same suffix that we previously ran after c~,
beginning with the step of j , and run it after extension(a, i). In this case
also, all processes except i decide 1, which contradicts the assumption that

extension(c~, i) is 0-valent. See Figure 12.5.

12.2. AGREEMENT USING READ/WRITE SHARED MEMORY 381

~, bivalent

i, r e a ~

0-valent % i x , . ~~v~ len t

F i g u r e 12.5" Construction for Case 1.

2. Process j ' s step is a read step.

This case is symmetric to Case 1, and the same argument applies.

3. Process i's step and process j ' s step are both writes.

We distinguish two subcases.

(a)

(b)

Processes i and j write to different variables.

Consider two executions that extend c~, one by allowing first i to
take its step and then j , and the other allowing first j , then i. Since
the two steps involve different processes and different variables, the
system state is the same after either execution. See Figure 12.6.

But then we have a common system state that can be reached after
either a 0-valent or a 1-valent execution. If we run all the processes
from this state with no failures, they are required to decide. However,
either decision yields a contradiction. For instance, if a decision of 0
is reached, then we have a decision of 0 in an execution extending a
1-valent prefix.

Processes i and j write to the same variable.

As in Case 1, we can run all processes but i after extension(c~, j) until
they decide 1. This time, note that the states after extension(c~,j)

382 12. CONSENSUS

o~

i j

O-valent 1 - v a l e n t

F i g u r e 12.6" Construction for Case 3(a).

and extension(a, ij) are indistinguishable to every process except for

i. This is because the step of j overwrites the value writ ten by i, so

the only memory of i's step is in the state of process i. So we can take
the same suffix that we previously ran after eztension(c~, j) and run it

after extension(a, ij). In this case also, all processes except i decide

1, which contradicts the 0-valence of extension(a, i). See Figure 12.7.

0~

i, wri

o-val nt -va,ent

F i g u r e 12.7: Construction for Case 3(b).

12.2. A G R E E M E N T USING R E A D ~ W R I T E S H A R E D M E M O R Y 383

So, we have contradictions in all possible cases, and thus we conclude that
no such algorithm A can exist. [2

We have proved the first impossibility theorem"

T h e o r e m 12.6 For n > 2, there is no algorithm in the read/write shared mem-
ory model that solves the agreement problem and guarantees wait-free termina-
tion.

1 2 . 2 . 5 I m p o s s i b i l i t y fo r S i n g l e - F a i l u r e T e r m i n a t i o n

Notice that the proof of Theorem 12.6 in the previous section does not work for

the case where we only assume 1-failure termination. The problem is in the proof
of Lemma 12.4, where we use the wait-free termination condition to assert that
process i must decide in a fair execution in which it does not fail. In this section,
we strengthen Theorem 12.6 to obtain the corresponding result for systems with
1-failure termination.

This time, the proof is based on the following lemma, which says that a
bivalent execution can be extended to allow a given process to take a step, while
still maintaining bivalence.

L e m m a 12.7 I f c~ is a bivalent failure-free input-first execution of A, and i is
any process, then there is a failure-free extension c~' of ct such that extension(c~', i)
is bivalent.

See Figure 12.8.

~, bivalent

bivalent

F i g u r e 12.8" Maintaining bivalence while allowing process i to take a step.

384 12. CONSENSUS

At this point, you might prefer to skip ahead to the proof of Theorem 12.8,
to see how Lemma 12.7 implies the impossibility result, before delving into the
more technical proof of the lemma.

P roof . We prove this lemma by contradiction. Suppose that the lemma is false.
Then there must be some bivalent failure-free input-first execution c~ of A and
some process i such that for every failure-free extension c~' of c~, extension(c~', i) is
univalent. This implies, in particular, that extension(a, i) is univalent; suppose
without loss of generality that it is 0-valent.

Since c~ is bivalent, there is some extension c~" of c~ containing a decision of 1.
We may assume without loss of generality that c~" is failure-free, since otherwise
we could simply eliminate any stop actions without affecting the decision. Then
it must be that extension(c~", i) is 1-valent. We consider what happens if i takes
a step at each point along the "path" from c~ to c~". See Figure 12.9.

o~

od' i ~ / / O - v a l e n t

/ ~ univalent

~ % , , , ~ - uniVl_valen~lent

F i g u r e 12.9" Process i's step leads to univalence.

At the beginning of the path, i's step yields 0-valence, while at the end, it
yields 1-valence. At each intermediate point, it yields univalence. Therefore,
it must be that there are two consecutive points in the path such that at the
first of these points, i's step yields 0-valence, while at the second, i's step yields
1-valence. Let a ' be the execution up to the first point. See Figure 12.10.

Suppose that j is the process that takes the intervening step. We claim that
j r i. This is true because if j = i, then we have a situation where one step of i
leads to 0-valence while two steps of i lead to 1-valence; since the processes are
deterministic, this gives a 0-valent execution with a 1-valent extension, which is
nonsense.

12.2. AGREEMENT USING READ/WRITE SHARED MEMORY 385

O~ t

F i g u r e 12.10" Two consecutive points where i yields different valences.

We finish with a case analysis similar to the one in the proof of Lemma 12.5,
obtaining a contradiction for each case.

Process i's step is a read step.

Then we claim that the states after extension(a', ji) and extension(a', iN)
are indistinguishable to every process except for i. This is because the
steps of i involved in these two extensions are both read steps, which do
not affect anything except the state of process i.

Consider extending extension(a ~, ij) in such a way that i takes no further
steps and every other process takes infinitely many steps. By the l-failure
termination condition, all processes except i must eventually decide, and
since extension(c~ ~, i) is 0-valent, they must decide 0. By the indistinguish-
ability claim just above, we can take the same suffix that we previously ran

after extension(a', iN) and run it after extension(c~',ji). In this case also,
the processes decide 0, which contradicts the l-valence of extension(c~ ~, ji).
See Figure 12.11.

2. Process j ' s step is a read step.

The argument is similar to that for Case 1. This time, the states after
extension(c~', i) and extension(c~', ji) are indistinguishable to all processes

except j. We can let all processes except j run after extension(a~,i),
forcing them eventually to decide 0. Then we can run them in the same way
after extension((~ ~, ji). They again decide 0, contradicting the l-valence of

extension(~', ji).

386 12. CONSENSUS

0~ m

d

f 0 vaent ad

1 valeot

F i g u r e 12.11" Construction for Case 1.

3. Process i's step and process j ' s step are both writes.

(a) Processes i and j write to different variables.

In this case we get the same sort of commutative scenario as in Case

3(a) of the proof of Lemma 12.5; see Figure 12.6. This implies the
same contradiction as in that proof.

(b) Processes i and j write to the same variable.

In this case, the states after extension(c~', i) and extension(c~', j i) are

indistinguishable to all processes except for j , because i's step over-

writes j ' s step. Running all processes except for j after extension(a ~, i)
and extension(c~ ~, j i) yields the same contradiction as before. See Fig-
ure 12.12.

K]

We can now prove the main theorem.

T h e o r e m 12.8 For n >_ 2, there is no algorithm in the read/write shared mem-
ory model that solves the agreement problem and guarantees l-failure termina-
tion.

12.3. R E A D - M O D I F Y - W R I T E SHARED M E M O R Y 387

j i

valent

1-valentX'~ \ ~

Figure 12.12: Construction for Case 3(b).

P r o o f . We use Lemma 12.7 to construct a fair failure-free input-first execution
in which no process ever decides. This contradicts the failure-free termination
requirement.

The construction begins with a bivalent initialization, whose existence is guar-
anteed by Lemma 12.3. Then we repeatedly extend the current execution, in-
cluding at least one step of process 1 in the first extension, then at least one step
of 2 in the second extension, and so on, in round-robin order, all while main-
taining bivalence and avoiding failures. Lemma 12.7 implies that each extension
step is possible.

The resulting execution is fair, because each process takes infinitely many
steps. However, no process ever reaches a decision, which gives the needed
contradiction. [5]

12.3 Agreement Using Read-Modify-Write Shared
Memory

In contrast to the situation for read/wr i te shared memory, it is very easy to
solve the agreement problem, guaranteeing wait-free termination, using read-
modify-write shared memory. In fact, a single read-modify-write shared variable
is enough.

388 12. CONSENSUS

RMWAgreement algorithm:

The shared variable begins with the value unknown. Each process accesses
the variable. If it sees the value unknown, then it changes the value to its
own initial value and decides on this value. On the other hand, if it sees a
value v 6 V, then it does not change the value written in the variable but
instead accepts the previously written value as its decision value.

The precondition-effect code for process i of the RMWAgreement algorithm
is the same as the code in Example 9.1.1, with the addition of some code for
handling failures. Namely, the state contains an additional component stopped,
a set of processes, initially empty. There is a new stopi action, which puts i into
stopped. The accessi and decidei actions have the additional precondition that
i ~ stopped, and the init~ action only makes its changes if i ~ stopped.

T h e o r e m 12.9 The RMWAgreement algorithm solves the agreement problem
and guarantees wait-free termination.

P r o o f . Straightforward. Wait-free termination follows, because each process
i, after receiving an initi input, is immediately enabled to perform an accessi
and then a decidei. Agreement and validity follow, because the first process to
perform an access establishes the common decision value. U]

12.4 Other Types of Shared Memory

The agreement problem can also be considered using shared memory of other
variable types besides read/wri te and read-modify-write. For example, we can
consider variables with operations such as swap, test-and-set, fetch-and-add, and
compare-and-swap. These operations are defined in Example 9.4.3. Among the
known results are the following theorems:

T h e o r e m 12.10 The agreement problem for any n can be solved with wait-
free termination, using a single shared variable that allows compare-and-swap
operations only.

T h e o r e m 12.11 If n >_ 3, then the agreement problem cannot be solved with
wait-free termination using shared variables that allow any combination of swap,
test-and-set, fetch-and-add, read, and write operations.

Proofs . The proofs are left for exercises. [3

12.5. C O M P U T A B I L I T Y 389

12.5 Computability in Asynchronous Shared
Memory Systems*

The agreement problem is only one example of a "decision problem" that can

be considered in the asynchronous shared memory model with stopping failures.

In this section, we define the general notion of a decision problem, give some
examples, and state (without proof) some typical computability results.

Our definition of a decision problem is based on the preliminary definition of

a decision mapping. A decision mapping D specifies, for each length n vector w
of inputs over some fixed value set V, a nonempty set D(w) of allowable length

n vectors of decisions. The vector w represents the inputs of processes 1 , . . . , n,

in order of process index, and, similarly, each vector in D(w) represents the

decisions of processes 1 , . . . , n, also in order of process index.
We use a decision mapping D in the formulation of a problem to be solved

by an asynchronous shared memory system. The external interface of the shared

memory system consists of init(v)~, decide(v)~, and stop~ actions, just as for the

agreement problem. The well-formedness condition and the various termination
conditions are defined in exactly the same way as for the agreement problem.
However, in place of the agreement and validity conditions used in the agreement

problem, we require only the single validity condition:

Validity" In any execution in which init events occur on all ports, it is possible

to complete the vector of decisions that are reached by the processes to a

vector in D(w), where w is the given input vector.

E x a m p l e 12.5.1 The agreement problem as a dec is ion prob lem

The agreement problem is an example of a decision problem, based

on the decision mapping D, defined as follows. For any vector w -

Vl , . . . , Vn of inputs in V, the set D(w) of allowable vectors of deci-
sions is defined by

1. I f V l ~-- v 2 - - . . . - - V n - - v , t h e n D(w) c o n t a i n s t h e single vector

x 1, . . . ,xn such that X l = x2 = Xn = v.

2. If v~ r vj for some i and j , then D(w) consists of exactly those

vectors x i , . . . ,xn such that X l = x2 = Xn.

It is easy to see that the decision problem based on D is the same as

the agreement problem. (One apparent difference is that the defini-
tion of a general decision problem only mentions executions in which
init inputs arrive on all ports, whereas the definition of the agree-
ment problem involves other executions as well. But this is not an

390 12. CONSENSUS

important difference, because any finite execution can be extended
to one in which inputs arrive everywhere.)

Two other important examples of decision problems are the k-agreement
problem and the approximate agreement problem, both of which we studied in
the synchronous network model in Chapter 7. In the k-agreement problem, where
k is any positive integer, the agreement and validity conditions of the agreement
problem are replaced with the following:

A g r e e m e n t : In any execution, there is a subset W of V, IWI = k, such that all
decision values are in W.

Va l id i ty : In any execution, any decision value for any process is the initial value
of some process.

The agreement condition is weaker than that for ordinary agreement in that it
permits k decision values rather than only one. The validity condition is a slight
strengthening of the validity condition for ordinary agreement. It is easy to
formalize the k-agreement problem as a decision problem. The following can be
shown, though we omit the proofs here and leave them for exercises:

T h e o r e m 12.12 The k-agreement problem is solvable with k - 1-failure termi-
nation in the asynchronous read/write shared memory model using single-writer/
multi-reader registers.

T h e o r e m 12.13 The k-agreement problem is not solvable with k-failure term#
nation in the asynchronous shared memory model with multi-writer/multi-reader
registers.

In the approzimate agreement problem, the set V of values is the set of real
numbers, and processes are permitted to send real-valued data in messages. Now
instead of having to agree exactly, as in the agreement problem, the requirement
is that the processes agree approximately, to within a small positive tolerance
e. That is, the agreement and validity conditions of the agreement problem are
replaced with the following:

A g r e e m e n t : In any execution, any two decision values are within e of each
other.

Val idi ty" In any execution, any decision value is within the range of the initial
values.

Again, it is easy to formalize this problem as a decision problem.

12.6. BIBLIOGRAPHIC NOTES 391

T h e o r e m 12.14 The approximate agreement problem is solvable with wait-free
termination, in the asynchronous read/write shared memory model using single-
writer/multi-reader registers.

Proof . The proof is left as an exercise. ff]

We close this chapter with a theorem that gives some conditions that im-
ply that a decision problem cannot be solved with l-failure termination. This
theorem generalizes Theorem 12.8.

For any set of length n vectors of elements of V, we define a graph. The
vertices of this graph are the vectors of length n, and the edges are the pairs of
vectors that differ in exactly one position.

T h e o r e m 12.15 Let D be a decision mapping whose associated decision prob-
lem is solvable with l-failure termination, in the read/write shared memory
model. Then there must be a decision mapping D' with D'(w) C_ D(w) for
all w, such that both of the following hold:

1. If input vectors w and w' differ in exactly one position, then there exist
y C D' (w) and y' C D' (w') such that y and y' differ in at most one position.

2. For each w, the graph defined by D'(w) is connected.

We leave the proof of Theorem 12.15 for an exercise; it uses ideas similar to
those used in the proof of Theorem 12.8.

12.6 Bibliographic Notes

The first result in the literature about the impossibility of agreement in fault-
prone systems was proved by Fischer, Lynch, and Paterson [123]. This result
was proved for the asynchronous message-passing setting, for the case of l-failure
termination. Later, this result and its proof were extended to the asynchronous
shared memory setting, a slightly stronger model, by Loui and Abu-Amara [199].
(See Chapter 17 for relationships between the asynchronous shared memory and
asynchronous network models.) The result about the impossibility of wait-free
agreement was proved by Loui and Abu-Amara [199] and independently by Her-
lihy [150]. The presentation in this chapter follows the proofs of [199].

The results about agreement using other types of shared variables besides
read/write variables are due to Herlihy [150]. Herlihy's paper not only classifies
which types of variables are capable of solving the agreement problem, but also
determines which types can "implement" which other types.

392 12. CONSENSUS

The problem of k-agreement was originally posed by Chaudhuri [73], in the
setting of asynchronous networks. Chaudhuri proved that k-agreement can be
solved with k - 1-failure termination, but the question of whether it can be
solved with k-failure termination remained open for several years. The (negative)
answer to this question appeared simultaneously in papers by Herlihy and Shavit
[152], by Borowsky and Gafni [55], and by Saks and Zaharoglou [253]. Herlihy
and Shavit presented their result in the context of a topological characterization
of the problems that can be solved in fault-prone asynchronous read/write shared
memory systems. They developed that characterization further in [151]. The
characterization includes consideration of restricted sets of input vectors rather
than just the complete sets considered in this book.

The problem of approximate agreement in asynchronous systems was origi-
nally defined by Dolev, Lynch, Pinter, Stark, and Weihl [98]. Their work was
carried out in the asynchronous network model. Attiya, Lynch, and Shavit [24]
developed a wait-free asynchronous shared memory algorithm for approximate
agreement.

Biran, Moran, and Zaks [51] characterized the decision problems that can
be solved in the asynchronous read/write shared memory setting with l-failure
termination, based on an earlier impossibility result by Moran and Wolfstahl
[230]. The characterization includes consideration of restricted sets of input vec-
tors. Theorem 12.15 follows from results in these two papers. These results were
originally proved for the asynchronous network setting, but the proofs extend to
the asynchronous read/write shared memory setting.

Chor, Israeli, and Li [78], Abrahamson [2], and Aspnes and Herlihy [16],
among others, gave randomized solutions to the agreement problem, using read/write
shared memory.

12.7 E x e r c i s e s

12.1. Prove that the stronger form of the wait-free termination condition in which
inputs need only arrive at port i is equivalent to the given formulation.
More specifically, show how to modify a given algorithm A that guarantees
well-formedness, agreement, validity, and wait-free termination, so that
the modified version guarantees the same conditions but with the stronger
wait-free termination condition.

12.2. Describe an algorithm that solves the agreement problem (without any
fault-tolerance requirements) in the read/write shared memory model and

(a) in which there exists a bivalent initialization.

12. 7. EXERCISES 393

(b) in which all initializations are univalent.

12.3. True or false?

(a) If A is a (non-fault-tolerant) agreement protocol in the read/write
shared memory model that satisfies the restrictions in Section 12.1
and that has a bivalent initialization, then A must have a decider
execution.

(b) If A is as in part (a) and is a two-process protocol, then A must have
a decider execution.

12.4. Show that Theorem 12.8 still holds if we weaken the problem requirements
by replacing the validity condition with the following weaker condition:
There exist two input-first executions, c~0 and c~1, such that 0 is decided
by some process in c~0 and 1 is decided by some process in c~1.

12.5. Reconsider the agreement problem using read/write shared memory. This
time consider a more constrained fault model than general stopping fail-
ures, in which processes can only fail at the very beginning of computation.
(That is, all stop events precede all other events.) Can the agreement prob-
lem be solved in this model, guaranteeing

(a) 1-failure termination?

(b) wait-free termination?

In each case, give either an algorithm or an impossibility proof.

12.6. Prove that any agreement protocol in the read-modify-write shared mem-
ory model that guarantees 1-failure termination must have a bivalent ini-
tialization.

12.7. Prove Theorem 12.10.

12.8. Show that for n > 3, the n-process agreement problem with wait-free
termination cannot be solved using any number of shared variables, where
each is of a type that is interfering, in the following sense. If a and b are
invocations of the variable type, then, letting f2(a, v) denote the second
projection of f(a, v) (i.e., the new value of the variable), at least one of
the following holds:

(a) (a and b commute) f2(a, f2(b, v)) - f2(b, f2(a, v)) for all v e V

(b) (a overwrites b) f2(a, f2(b, v)) - f2(a, v) for all v C V

(c) (b overwrites a) f2(b, f2(a, v)) - f2(b, v) for all v E V

394 12. CONSENSUS

We use notation from Section 9.4.

12.9. Use the result of Exercise 12.8 to prove Theorem 12.11.

12.10. Express the following formally as decision problems by giving the decision
mappings:

(a) The k-agreement problem

(b) The approximate agreement problem

12.11. Prove Theorem 12.12.

12.12. Prove Theorem 12.13. (Warning: This is very hard.)

12.13. Consider the approximate agreement problem for n = 2 processes. Give a
wait-free algorithm for this problem in the asynchronous shared memory
model with single-writer/multi-reader registers. Prove its correctness and
analyze its time complexity.

12.14. Generalize the result of Exercise 12.13 to an arbitrary number n of pro-
cesses. That is, prove Theorem 12.14.

12.15. An experienced software designer at the Flaky Computer Corporation has
come up with a clever idea for solving the agreement problem of this chap-
ter, for any number of stopping failures, for V = {0, 1}. Her idea is to
regard 0 and 1 as real numbers and to use a wait-free solution to the
approximate agreement problem as a "subroutine." Once the processes
obtain their answers for the approximate agreement subroutine, they can
simply round them off to the nearer of 0 or 1 to obtain their final decisions.

Explain what is wrong with her idea.

12.16. Consider the two-process wait-free approximate agreement algorithm you
designed for Exercise 12.13. (We are assuming that your algorithm is
"deterministic," as defined in Section 12.2.1.) For any input vector (Vl, v2),
define D~(vl, v2) to be the set of decision vectors that are actually attained
in input-first executions in which process 1 has input va and process 2 has
input v2.

(a) Describe the set D'(0, 1) and its associated graph, as defined just
before Theorem 12.15.

(b) Consider the failure-free infinite execution in which processes 1 and
2 first receive inputs 0 and 1, respectively, and then alternate steps
1, 2, 1, For each input-first prefix ct of this execution, describe the
set of decision vectors that are actually attained in extensions of a.

12. 7. EXERCISES 395

(c) Describe D'(vl, v2) for every input vector (Vl, v2).

(d) Show that for each (Vl, v2), the graph defined by D'(vl, v2) is con-
nected.

12.17. Prove Theorem 12.15. (Hint: Fix any algorithm A that solves D with
l-failure termination, in the read/write shared memory model. For any
input vector w, define D~(w) to be the set of decision vectors that are
actually attained in input-first executions of A with input vector w. For
part 1, use an argument like the one for Lemma 12.3. For part 2, argue
by contradiction, using an argument like the one for Theorem 12.8. This
time, after each finite failure-free input-first execution, consider whether
the set of attainable decision vectors is connected or disconnected. Use
an analogue to Lemma 12.7 that says that any "disconnected" c~ can be
extended to another "disconnected" c~ ~, while allowing any given process i
to take a step.)

12.18. Use Theorem 12.15 to prove Theorem 12.8.

12.19. Use Theorem 12.15 to prove that some other decision problems besides
ordinary agreement cannot be solved in asynchronous read/write shared
memory systems with l-failure termination. Define as many interesting
problems as you can for which impossibility can be proved in this way.

12.20. Extend the conditions in Theorem 12.15 to a general characterization of the
decision problems that can be solved in asynchronous read/write shared
memory systems with l-failure termination. (Warning: This is very hard.)

This Page Intentionally Left Blank

Chapter 13

Atomic Objects

In this chapter, our last on the asynchronous shared memory model, we introduce
atomic objects. An atomic object of a particular type is very much like an
ordinary shared variable of that same type. The difference is that an atomic
object can be accessed concurrently by several processes, whereas accesses to
a shared variable are assumed to occur indivisibly. Even though accesses are
concurrent, an atomic object ensures that the processes obtain responses that
make it look like the accesses occur one at a time, in some sequential order that

is consistent with the order of invocations and responses. Atomic objects are
also sometimes called linearizable objects.

In addition to the atomicity property, most atomic objects that have been
studied satisfy interesting fault-tolerance conditions. The strongest of these is
the wait-free terminat ion condition, which says that any invocation on a non-
failing port eventually obtains a response. This property can be weakened to
require such responses only if all the failures are confined to a designated set I
of ports or to a certain number f of ports. The only types of failures we consider
in this chapter are stopping failures.

Atomic objects have been suggested as building blocks for the construction
of multiprocessor systems. The idea is that you should begin with basic atomic
objects, such as single-writer/single-reader read/write atomic objects, which are
simple enough to be provided by hardware. Then starting from these basic
atomic objects, you could build successively more powerful atomic objects. The
resulting system organization would be simple, modular, and provably correct.
The problem, as yet unresolved, is to build atomic objects that provide suffi-
ciently fast responses to be useful in practice.

Atomic objects are indisputably useful, however, as building blocks for asyn-
chronous network systems. There are many distributed network algorithms that
are designed to provide the user with something that looks like a centralized, c o -

398 13. A T O M I C O B J E C T S

herent shared memory. Formally, many of these can be viewed as distributed im-
plementations of atomic objects. We will see some examples of this phenomenon
later, in Sections 17.1 and 18.3.3.

In Section 13.1, we provide the formal framework for the study of atomic
objects. That is, we define atomic objects and give their basic properties, in
particular, results about their relationship to shared variables of the same type
and results indicating how they can be used in system construction.

Then in the rest of the chapter, we give algorithms for implementing particular
types of atomic objects in terms of other types of atomic objects (or, equivalently,
in terms of shared variables). The types of atomic objects we consider are
read/wri te objects, read-modify-write objects, and snapshot objects. The results
we present are only examples-- there are many more such results in the research
literature, and there is still much more research to be done.

13.1 Def in i t i ons and B a s i c R e s u l t s

We first define atomic objects and their basic properties, then give a construction
of a canonical wait-free atomic object of a given type, and then prove some basic
results about composing atomic objects and about substituting them for shared
variables in shared memory systems. These results can be used to justify the
hierarchical construction of atomic objects from other atomic objects.

Many of the notions in this section are rather subtle. They are important,
however, not only for the results in this chapter, but also for material involving
fault-tolerance in Chapters 17 and 21. So we will go slowly here and present the
ideas somewhat more formally than usual. On a first reading, you might want to
skip the proofs and only read the definitions and results. In fact, you might want
to start by reading only the definitions in Section 13.1.1, then skipping forward
to Section 13.2 and referring back to this section as necessary.

13 .1 .1 A t o m i c O b j e c t Definit ion

The definition of an atomic object is based on the definition of a variable type
from Section 9.4. You should reread that section now. In particular, recall that a
variable type consists of a set V of values, an initial value v0, a set of invoca t ions ,

a set of responses , and a function f : i n v o c a t i o n s x V --+ responses x V . This
function f specifies the response and new value that result when a particular
invocation is made on a variable with a particular value.

Also recall that the e x e c u t i o n s of a variable type are the finite sequences v0,

al , bl, Vl, a2, b2, v2, . . . , vr and infinite sequences vo, al, bl, Vl, a2, b2, v2, . . . ,
where the a's and b's are invocations and responses, respectively, and adjacent

13.1. DEFINITIONS AND BASIC RESULTS 399

quadruples are consistent with f . Also, the traces of a variable type are the
sequences of a's and b's that are derived from executions of the type.

If 7- is a variable type, then we define an atomic object A of type 7- to
be an I /O automaton (using the general definition of an I /O automaton from
Chapter 8) satisfying a collection of properties that we describe in the next few
pages. In particular, it must have a particular type of external interface (external
signature) and must satisfy certain "well-formedness," "atomicity," and liveness
conditions.

We begin by describing the external interface. We assume that A is accessed
through n ports, numbered 1 , . . . , n. Associated with each port i, A has some
input actions of the form ai, where a is an invocation of the variable type, and
some output actions of the form bi, where b is a response of the variable type. If
ai is an input action, it means that a is an allowable invocation on port i, while
if bi is an output action, it means that b is an allowable response on port i. We

assume a technical condition: if ai is an input on port i and if f (a , v) = (b, w)
for some v and w, then bi should be an output on port i. That is, if invocation a
is allowed on port i, then all possible responses to a are also allowed on port i.

In addition, since we will consider the resiliency of atomic objects to stopping
failures, we assume that there is an input stopi for each port i. The external
interface is depicted in Figure 13.1.

E x a m p l e 13.1.1 R e a d / w r i t e a t o m i c o b j e c t e x t e r n a l i n t e r f a c e

We describe an external interface for a 1-writer/2-reader atomic ob-
ject for domain V. The object has three ports, which we label by 1, 2,
and 3. Port 1 is a write port, supporting write operations only, while
ports 2 and 3 are read ports, supporting read operations only. More
precisely, associated with port 1 there are input actions of the form
write(v)1 for all v E V and a single output action ackl. Associated
with port 2 there is a single input action read2 and output actions of
the form v2 for all v E V, and analogously for port 3. There are also
stop1, stop2, and stop3 input actions, associated with ports 1, 2, and
3, respectively. The external interface is depicted in Figure 13.2.

Next, we describe the required behavior of an atomic object automaton A
of a particular variable type 7-. As in Chapters 10-12, we assume that A is

composed with a collection of user automata Ui, one for each port. The outputs

of Ui are assumed to be the invocations of A on port i, and the inputs of Ui are
assumed to be the responses of A on port i. The stopi action is not part of the
signature of Ui; it is assumed to be generated not by Ui, but by some unspecified
external source.

400 13. ATOMIC OBJECTS

a l ..~

a2

_

F i g u r e 13.1" External interface of an atomic object.

write(v),

~ rev~d~ ~l I

read3~ /

F i g u r e 13.2" External interface of a 1-writer/2-reader read/write atomic object.

13.1. DEFINITIONS AND BASIC RESULTS 401

The only other proper ty we assume for Ui is that it preserve a "well-formed-

ness" condition, defined as follows. Define a sequence of external actions of user

Ui to be well-formed for user i provided that it consists of al ternat ing invocations

and responses, s tar t ing with an invocation. We assume that each Ui preserves
well-formedness for i (according to the formal definition of "preserves" in Section

8.5.4). That is, we assume that the invocations of operations on each por t are

str ict ly sequential, each waiting for a response to the previous invocation. Note

that this sequential i ty requirement only refers to individual ports; we allow con-

currency among the invocations on different ports. 1 Throughout this chapter, we

use the notat ion U to represent the composi t ion of the separate user au tomata

v = l-I

We require that A x U, the combined system consisting of A and U, satisfy

several properties. First , there is a well-formedness condition similar to the ones

used in Chapters 10, 11, and 12.

W e l l - f o r m e d n e s s : In any execution of A • U and for any i, the interactions

between Ui and A are well-formed for i.

Since we have already assumed that the users preserve well-formedness, this

amounts to saying that A also preserves well-formedness. This says that in

the combined system A x U, invocations and responses al ternate on each port ,

s tar t ing with an invocation.

The next condition is the hardest one to understand. It describes the apparent

a tomici ty of the operations, for a part icular variable type T. Note that a trace

of 7- describes the correct responses to a sequence of invocations when all the

operations are executed sequentially, that is, where each invocation after the first

waits for a response to the previous invocation. The atomici ty condition says

that each trace produced by the combined sys t em- -wh ich permits concurrent

invocations of operations on different p o r t s ~ " l o o k s like" some trace of T.

The way of saying this formally is a little more complicated than you might

expect, since we want a condition that makes sense even for executions of A x U

in which some of the invocat ions- - the last ones on some p o r t s - - a r e incomplete,
that is, have no responses. So we st ipulate that each execution looks as if the

operations that are completed and some of the incomplete ones are performed

instantaneously at some points in their intervals.

In order to define atomici ty for the system A x U, we first give a more basic

definition, of atomici ty for a sequence of user actions. Namely, suppose tha t /~

is a (finite or infinite) sequence of external actions of A x U that is well-formed

1in practice, you might want also to allow concurrent access on individual ports. This would
require some extensions to the theory presented in this chapter; we avoid these complications
so that we can present the basic ideas reasonably simply.

402 13. ATOMIC OBJECTS

for every i (that is, for every i, /3[ext(Ui) is well-formed for i). We say that /3
satisfies the atomicity property for 7- provided that it is possible to do all of the
following:

1. For each completed operation rr, to insert a serialization point ,,~ some-
where between rr's invocation and response in/3.

2. To select a subset (I) of the incomplete operations.

3. For each operation rr C q), to select a response.

4. For each operation rr C (I), to insert a serialization point ,,~ somewhere
after rr's invocation in/3.

These operations and responses should be selected, and these serialization points
inserted, so that the sequence of invocations and responses constructed as follows
is a trace of the underlying variable type T:

For each completed operation 7r, move the invocation and response
events appearing in /3 (in that order) to the serialization point ,~.
(That is, "shrink" the interval of operation rr to its serialization
point.) Also, for each operation rr E (I), put the invocation appearing
in /3, followed by the selected response, at ,~. Finally, remove all
invocations of incomplete operations rr ~ (I).

Notice that the atomicity condition only depends on the invocation and re-
sponse events-- i t does not mention the stop events. We can easily extend this
definition to executions of A and of A x U. Namely, suppose that c~ is any such
execution that is well-formed for every i (that is, for every i, c~lext(Ui) is well-
formed for i). Then we say that c~ satisfies the atomicity property for 7" provided
that its sequence of external actions, trace(a), satisfies the atomicity property
for T.

Example 13.1.2 Execut ions with serial izat ion points

Figure 13.3 illustrates some executions of a single-writer/single-reader
read/wri te object with domain V = H and initial value v0 = 0 that
satisfy the atomicity property for the read/wri te register variable
type. The serialization points are indicated by stars. Suppose that
ports 1 and 2 are used for writing and reading, respectively.

In (a), a read operation that returns 0 and a write(8) operation
overlap and the serialization point for the read is placed before that of
the write(8). Then if the operation intervals are shrunk to their serial-
ization points, the sequence of invocations and responses is read2, 02,

13.1. DEFINITIONS AND BASIC RESULTS 403

write(8)1, ackl. This is a trace of the variable type. (See Exam-
ple 9.4.4.)

In (b), the same operation intervals are assigned serialization
points in the opposite order. The resulting sequence of invocations
and responses is then write(8)l, ackl, read2, 82, again a trace of the
variable type.

Each of the executions in (c) a n d (d) includes an incomplete
write(8) operation. In each case, a serialization point is assigned to
the write(8), because its result is seen by a read operation. For (c),
the result of shrinking the operation intervals is write(8)l, ack 1, read2, 82,
whereas for (d), the sequence is read2, 02, write(8)l, ackl, read2, 82.
Both are traces of the variable type. (Again, see Example 9.4.4.)

In (e), there are infinitely many read operations that return 0,
and consequently the incomplete write(8) cannot be assigned a seri-
alization point.

write (8), ack, write (8!,

I * I I*
I * I -- I * I

read~ 0 2 read~ 8 2
_

(a) (c)

write(8), ack, write(8),

I* I I *
I * I ~ I *

read2 8~ read~ (

(b)

write(8),

I * I
read 2 0 2

(d)

I * I
read, 02

read 2

(e)

F i g u r e 13.3- Executions of a single-writer/single-reader read/write object satisfying
the atomicity property.

E x a m p l e 13 .1 .3 E x e c u t i o n s w i th no ser ia l i za t ion po int s

Figure 13.4 illustrates some executions of a single-writer/single-reader
read/write object that do not satisfy the atornicity property. In (a),
there is no way to insert serialization points to explain the occurrence
of a read that returns 8 followed by a read that returns 0. In (b),

404 13. ATOMIC OBJECTS

write (8), write (8), ack ,

i I I
! I I I - I I I i

read2 82 read2 02 read, 02 read2 02

(a) (b)

Figure 13.4: Executions of a single-writer/single-reader read/write object that do
not satisfy the atomicity property.

there is no way to explain the occurrence of a read that returns 0,
after the completion of a write of 8.

Now we are (finally) ready to define the atomicity condition for the combined
system A x U.

A t o m i c i t y : Let c~ be a (finite or infinite) execution of A x U that is well-formed
for every i. Then c~ satisfies the atomicity property (as defined just before
Example 13.1.2).

We can also express the atomicity condition in terms of a trace property
(see the definition of a trace property in Section 8.5.2). Namely, define the trace
property P so that its signature sig(P) is the external interface of A x U and
its trace set traces(P) is exactly the set of sequences that satisfy both of the
following:

1. Well-formedness for every i

2. The atomicity property for 7-

(For convenience, we include the stop actions in the signature of P, even though
they are not mentioned in the well-formedness and atomicity conditions.) The in-
teresting thing about P is that it is a safety property, as defined in Section 8.5.3.
That is, traces(P) is nonempty, prefix-closed, and limit-closed. This is not obvi-
ous, because the atomicity property has a rather complicated definition, involving
the existence of appropriate placements of serialization points and selections of
operations and responses.

T h e o r e m 13.1 P (the trace property defined above, expressing the combination
of well-formedness and atomicity) is a safety property.

The proof of Theorem 13.1 uses KSnig's Lemma, a basic combinatorial lemma
about infinite trees:

13.1. DEFINITIONS AND BASIC RESULTS 405

L e m m a 13.2 (KSnig ' s L e m m a) If G is an infinite tree in which each node
has only finitely many children, then C has an infinite path from the root.

P r o o f Ske tch (of T h e o r e m 13.1). Nonemptiness is clear, since A C traces(P).
For prefix-closure, suppose that /3 C traces(P) and let/3 ~ be a finite prefix of

/3. Since/3 c traces(P), it is possible to select a set (I) of incomplete operations,
a set of responses for the operations in ~, and a set of serialization points that
together demonstrate the correctness of/3. We show how to make such selections
for fl'-

Let -~ denote the sequence obtained from fl by inserting the selected seri-
alization points. Let -y~ be the prefix of "y ending with the last element of fl~.
Then -y~ includes serialization points for all the complete operations in fl~ and
some subset of the incomplete operations in/3 ~. Choose ~ , the set of incomplete
operations for fl~, to consist of those incomplete operations in fl~ that have seri-
alization points in -y~. Choose a response for each operation 7c C ~ as follows:
If 7r is incomplete in fl, that is, if 7r C ~, then choose the same response that
is chosen for 7r in ft. Otherwise choose the response that actually appears in ft.
Then it is not hard to see that the chosen set ~ , its chosen responses, and the
serialization points in 3/ together demonstrate the correctness of fl~. This shows
prefix-closure.

Finally, we show limit-closure. Consider an infinite sequence fl and suppose
that all finite prefixes of/3 are in traces(P). We use KSnig's Lemma.

The tree G that we construct in order to apply KSnig's Lemma describes
the possible placements of serialization points in ft. Each node of C is labelled
by a finite prefix of fl, with serialization points inserted for some subset of the
operations that are invoked in ft. We only include labels that are "correct" in
the sense that they satisfy the following three conditions:

1. Every completed operation has exactly one serialization point, and that
serialization point occurs between the operation's invocation and response.

2. Every incomplete operation has at most one serialization point, and that
serialization point occurs after the operation's invocation.

3. Every response to an operation 7r is exactly the response that is calculated
for 7r using the function of the given variable type T at the serialization
points. (Start with the initial value v0 and apply the function once for each
serialization point, in order, with the corresponding invocation as the first
argument. The response that is calculated for zc is the response obtained
when the function is applied for the serialization point ,~.)

Furthermore, in C,

406 13. ATOMIC OBJECTS

1. The label of the root is ~.

2. The label of each non-root node is an extension of the label of its parent.

3. The label of each non-root node ends with an element of/3.

4. The label of each non-root node contains exactly one more element of fl
than does the label of its parent node (and possibly some more serialization
points).

Thus, at each branch point in G, a decision is made about which serialization
points to insert, in which order, between two particular symbols in ft. By consid-
ering the prefix-closure construction above, we can see that G can be constructed
so that every finite prefix fl~ of/3, with every "correct" assignment of serialization
points prior to the last symbol of/3 ~, appears as the label of some node of G.

Now we apply KSnig's Lemma to the tree G. First, it is easy to see that each
node of G has only finitely many children. This is because only operations that
have already been invoked can have their serialization points inserted and there
are only finitely many places to insert these serialization points.

Second, we claim that G contains arbitrari ly long paths from the root. This
is because every finite prefix/3 ~ of the infinite sequence fl is in traces(P), which
means that fl~ has an appropriate assignment of serialization points. This as-
signment yields a corresponding path in G of length Ifl~l.

Since G contains arbitrari ly long paths from the root, it is infinite. Then
KSnig's Lemma (Lemma 13.2) implies that G contains an infinite path from
the root. The node labels on this path yield a correct selection of serialization
points (and consequently, of incomplete operations and responses) for the entire
sequence ft. F-1

Having defined the safety properties for atomic objects--well-formedness and
a tomici ty- -we now turn to liveness properties. The liveness properties we con-
sider are termination conditions similar to those we gave for the agreement prob-
lem, in Section 12.1. The simplest requirement is for failure-free executions, that
is, those executions in which no stop event occurs.

Fai lure- free t erminat ion: In any fair failure-free execution of A x U, every
invocation has a response.

With this one liveness property, we can define "atomic objects." Namely,
we say that A is an atomic object of variable type 7- if it guarantees the well-
formedness condition, the atomicity condition for 7-, and the failure-free termi-
nation condition, for all collections of users.

13.1. DEFINITIONS AND BASIC RESULTS 407

Note that if we wanted to consider only the failure-free case, then we could

simplify the statement of the atomicity condition, because there would never be

any need to consider incomplete operations. The reason we have given the more
complicated statement of the atomicity condition is that we shall also consider
failures.

As for the mutual exclusion problem in Section 10.2, it is possible to refor-
mulate the entire definition of an atomic object equivalently in terms of a trace

property P. This time, sig(P) includes all the external interface actions of the
atomic object, including the stop actions as well as the invocation and response

actions, and traces(P) expresses well-formedness, atomicity, and failure-free ter-
mination. Then an automaton A with the right interface is an atomic object of

type T exactly if, for all collections of users, fairtraces(A x U) C_ traces(P).
We also consider some stronger termination conditions involving fault-tolerance.

W a i t - f r e e t e r m i n a t i o n : In any fair execution of A x U, every invocation on a

non-failing port has a response.

That is, any port on which no failure occurs provides responses for all invoca-
tions, regardless of the failures that occur on any of the other ports. We generalize

this property to describe termination in the presence of any number of failures.

f - f a i l u r e t e r m i n a t i o n , 0 _< f _< n: In any fair execution of A x U in which
stop events occur on at most f ports, every invocation on a non-failing
port has a response.

Failure-free termination and wait-free termination are the special cases of the f-

failure termination condition where f is equal to 0 and n, respectively. A further
generalization allows us to talk about the failure of any particular set of ports.

/ - f a i l u r e t e r m i n a t i o n , I C_ { 1 , . . . , n} : In every fair execution of A x U in

which the only stop events occur on ports in I, every invocation on a

non-failing port has a response.

Thus, f-failure termination is the same as /-failure termination for all sets I
of ports of size at most f . We say that A guarantees wait-free termination,
guarantees I-failure termination, and so on, provided that it guarantees the
corresponding condition for all collections of users.

We close this section with a simple example of a shared memory system that
is an atomic object.

E x a m p l e 13.1.4 A r e a d / i n c r e m e n t a t o m i c o b j e c t

We define the read/increment variable type to have N as its domain,

0 as its initial value, and read and increment as its operations.

408 13. ATOMIC OBJECTS

Let A be a shared memory system with n processes in which each
port i supports both read and increment operations. A has n shared
read/wr i te registers x(i), 1 _< i _< n, each with domain l~l and initial
value 0. Shared variable x(i) is writable by process i and readable
by all processes.

When an increment4 input occurs on port i, process i simply
increments its own shared variable, x(i). It can do this using only a
write operation, by remembering the value of x(i) in its local state.
When a readi occurs on port i, process i reads all the shared variables
x(j) one at a time, in any order, and returns the sum.

Then it is not hard to see that A is a read/ increment atomic
object and that it guarantees wait-free termination. For example, to
see the atomicity condition, consider any execution of A x U. Let
q) be the set of incomplete increment operations for which a write
occurs on a shared variable. For each increment operation 7r that is
either completed or is in (I), place the serialization point ,~ at the
point of the write.

Now, note that any completed (high-level) read operation 7r re-
turns a value v that is no less than the sum of all the x(i) 's when the
read is invoked and no greater than the sum of all the x(i) 's when the
read completes. Since each increment operation only increases this
sum by 1, there must be some point within 7r's interval at which the
sum of the x(i) 's is exactly equal to the return value v. We place the
serialization point ,~ at this point. These choices allow the shrinking
needed to show atomicity.

1 3 . 1 . 2 A C a n o n i c a l W a i t - F r e e A t o m i c O b j e c t A u t o m a t o n

In this subsection we give an example of an atomic object automaton C for
a given variable type 7- and given external interface. Automaton C guarantees
wait-free termination. C is highly nondeterministic and is sometimes regarded as
a "canonical wait-free atomic object automaton" for the given type and external
interface. It can be used to help show that other automata are wait-free atomic
objects.

C automaton (informal):

C maintains an internal copy of a shared variable of type 7-, initialized
to the initial value v0. It also has two buffers, inv-buffer for pending
invocations and resp-buffer for pending responses, both initially empty.

13.1. DEFINITIONS AND BASIC RESULTS 409

Finally, it keeps track of the ports on which a stop action has occurred, in
a set stopped, initially empty.

When an invocation arrives, C simply records it in inv-buffer. At any
time, C can remove any pending invocation from inv-buffer and perform
the requested operation on the internal copy of the shared variable. When
it does this, it puts the resulting response in resp-buffer. Also at any
t ime, C can remove any pend ing r e sponse f rom resp-buf fer and convey the

r e sponse to the user.

A stopi event j u s t adds i to stopped, which enables a special d u m m y i ac t ion

hav ing no effect. It does not , however , d isable the o ther local ly con t ro l l ed

ac t ions involving i. All the local ly con t ro l led ac t ions involving each po r t i,

inc lud ing the d u m m y i act ion, are g r o u p e d into one task . Th i s m e a n s tha t

af ter a stopi, ac t ions involving i are p e r m i t t e d (but not r equ i red) to cease.

More precisely,

C automaton (formal)"

Signature:

Input"
ai's as in the given external interface
stopi, 1 < i < n

Output"
bi's as in the given external interface

Internal:
perform(a)i, ai in the external interface,

l < i < n
dummyi, 1 < i << n

States:
val, a value in V, initially v0
inv-buffer, a set of pairs (i, a), for ai in the external interface
resp-buffer, a set of pairs (i, b), for bi in the external interface
stopped C {1,. . . , n}, initially empty

Transitions:
a /

Effect:
inv-b~ff~r : - inv-b~Tf~r U { (i, a) }

p~fo~.~(a)~
Precondition:

(i, a) 6 inv-buffer
Effect:

inv-buffer := inv-buffer - { (i, a) }
(b, val) := f (a, val)
resp-buffer := resp-buffer U { (i, b)}

410 13. A T O M I C O B J E C T S

Precondition:
(i, b) E resp-buffer

Effect:
resp-buffer "- resp-buffer - { (i, b)}

stopi
Effect"

stopped "- stopped U { i }

dummyi
Precondition"

i E stopped
Effect:

none

Tasks :
for every i"

{perform(a)i" ai is an input} U {bi "b~ is an output} U {dummyi}

T h e o r e m 13.3 C is an atomic object with the given type and external interface,
guaranteeing wait-free terminat ion (for all collections of users).

P r o o f S k e t c h . Well-formedness is s t ra ightforward. To see wait-freedom, con-

sider any fair execution a of C x U and suppose that there are no failures on

port i in a. Then the dummyi action is never enabled in c~. The fairness of

then implies that every invocation on port i t r iggers a performi event and a

subsequent response.

It remains to show atomicity. Consider any execution c~ of C x U. Let (I)

be the set of incomplete operations for which a perform occurs in a. Assign a

serialization point ,~ to each operat ion 7r that is either completed in c~ or is in

(I): place ,~ at the point of the perform. Also, for each 7~ E (I), select the response

re turned by the perform as the response for the operation. These choices allow

the shrinking needed to show atomicity. [-]

C can be used to help verify that other au tomata are also wait-free atomic

objects, as follows"

T h e o r e m 13.4 Suppose that A is an I / O automaton with the same external
interface as C. Suppose that fa ir traces(A x U) C fair traces(C x U) for every
composition U of user automata. Then A is an atomic object guaranteeing wait-
free terminat ion.

P r o o f S k e t c h . Follows from Theorem 13.3. For the well-formedness and

atomicity, we use the fact that the combinat ion of these two conditions is a safety

proper ty (Theorem 13.1), plus the fact that every finite t race can be extended

to a fair t race (Theorem 8.7). The wai t - f reedom condition follows immedia te ly

from the definitions. KI

13.1. DEFINITIONS AND BASIC RESULTS 411

We also have a converse to Theorem 13.4, which says that every fair trace
that is allowed for a wait-free atomic object is actually generated by C:

Theorem 13.5 Suppose that A is an I /O automaton with the same external
interface as C. Suppose that A is an atomic object guaranteeing wait-free ter-
ruination. Then fairtraces(A x U) C_ fairtraces(C x V), for every composition
U of user automata.

Proo f . The proof is left as an exercise. ff]

13.1.3 Compos i t i on of Atomic Objects

In this subsection, we give a theorem that says that the composition of atomic
objects (using ordinary I /O automaton composition, defined in Section 8.2.1) is
also an atomic object. Recall the definitions of compatible variable types and
composition of variable types from the end of Section 9.4.

Theorem 13.6 Let {Aj}jE J be a countable collection of atomic objects having
compatible variable types {Tj}jej and all having the same set of ports { 1 , . . . , n}.
Then the composition A - H jc j Aj is an atomic object having variable type
7 - - I-Ijcj 7j and having ports { 1 , . . . , n}.

Furthermore, if every Aj guarantees I-failure termination (for all collections
of users), then so does A.

In atomic object A, port i handles all the invocations and responses that are
handled on port i of any of the Aj. According to the definition of composition,
the state of A has a piece for each Aj. The invocations and responses that are
derived from Aj only involve the piece of the state of A associated with Aj.
The stopi actions, however, affect all parts of the state. We leave the proof of
Theorem 13.6 for an exercise.

13.1.4 Atomic Objects versus Shared Variables

The definition of an atomic object says that its traces "look like" traces of a
sequentially accessed shared variable of the underlying type. What good is this?

The most important fact about atomic objects, from the point of view of
system construction, is that it is possible to substitute them for shared variables
in a shared memory system. This permits modular construction of systems:
it is possible first to design a shared memory system and then to replace the
shared variables by arbitrary atomic objects of the given types. Under certain

412 13. A T O M I C O B J E C T S

circumstances, the resulting system "behaves in the same way" as the original

shared memory system, as far as the users can tell.
In this section, we describe this substitution technique. First we give some

technical conditions on the original shared memory system that are required for
the replacement to work correctly. Next, we give the substitution construction.
Finally, we define the sense in which the resulting system behaves in the same
way as the original system and prove that, with the given conditions, the result-
ing system really does behave in the same way. Although the basic ideas are
reasonably simple, there are a few details that have to be handled carefully in
order to make the substitution technique work out right.

We begin with A, an arbi t rary algorithm in the shared memory model of

Chapter 9. We assume that A interacts with user automata Ui, 1 < i < n. We
permit each process i of A to have any number of tasks. We also include stopi

actions, as discussed in Section 9.6, and assume that each stopi event permanently
disables all the tasks of process i.

Now for the technical conditions we mentioned above. Consider A in combi-
nation with any collection of user automata Ui. W e assume that for each port i,
there is a function turni that, for any finite execution c~ of the combined system,
yields either the value sy s t em or user. This is supposed to indicate whose turn it
is to take the next step, after c~. Specifically, we require that if turn~(c~) - sys tem,

then Ui has no output step enabled in its state after c~, while if turni(c~) - user,

then process i of A has no output or in ternal step, that is, no locally controlled
step, enabled in its state after (~.

For example, all the mutual exclusion algorithms in Chapter 10 and all the
resource-allocation algorithms in Chapter 11 satisfy these conditions (if we add
the stop actions). In those cases, turr~(c~) - s y s t em for any c~ after which U~ is in
the trying or exit region, and turni(c~) - user if Ui is in the critical or remainder
region. In fact, the required conditions are implied by the restriction on process
activity assumed near the end of Section 10.2 and at the end of Section 11.1.2.

For consensus algorithms, as studied in Chapter 12, we may define turni(c~) -

s y s t em for any c~ that contains an initi event, and turni(c~) - user otherwise.
Then to satisfy the conditions we need here, we would have to add a restriction,
namely, that process i cannot do anything before an initi occurs. This condition
is satisfied by the only algorithm in Chapter 12, R M W A g r e e m e n t .

Now we give the substitution. Suppose that for each shared variable x of A,
we are given an atomic object automaton B~ of the same type and the appropriate
external interface. That is, Bx has ports 1 , . . . , n, one for each process of A. On
each port, it allows all invocations and responses that are used by process i in
its interactions with shared variable x in algorithm A. It also has stopi inputs,
one for each port, as usual.

13.1. DEFINITIONS AND BASIC RESULTS 413

Then we define Trans(A), the transformed version of A that uses the atomic

objects B~ in place of its shared variables, to be the following automaton:

Trans (tl) a u t o m a t o n :

Trans(A) is a composition of I /O automata, one for each process i and
one for each shared variable x of algorithm A. For each variable x, the

automaton is the atomic object automaton Bx. For each process i, the

automaton is Pi, defined as follows.

The inputs of Pi are the inputs of A on port i plus the responses of each

Bx on port i plus the stopi action. The outputs of Pi are the outputs of A
on port i plus the invocations for each B~ on port i.

Pi's steps simulate those of process i of A directly, with the following ex-

ceptions: When process i of A performs an access to shared variable x,
Pi instead issues the appropriate invocation to Bx. After it does this, it
suspends its activity, awaiting a response by Bx to the invocation. When

a response arrives, Pi resumes simulating process i of A as usual. There

is a task of Pi corresponding to each task of process i of A.

If a stopi event occurs, all tasks of Pi are thereafter disabled.

E x a m p l e 13.1.5 A a n d Trans(A)

Consider a two-process shared memory system A that is supposed to
solve some sort of consensus problem, using two read/wri te shared
variables, x and y. We assume that process 1 writes x and reads y,
and process 2 writes y and reads x. The interface between each Ui
and A consists of actions of the form init(v)i, which are outputs of Ui
and inputs of A, and actions of the form decide(v)i, which are outputs

of A and inputs of Ui. In addition, stopi, i E {1, 2} is an input of A.
The architecture of this system is depicted in Figure 13.5, part (a).

The architecture of the transformed system Trans(A) is depicted
in part (b). Note the external interfaces of the automata Bx and By.
For example, Bz has inputs write(v)1 and read2 and outputs ackl and
v2. 2 Bz also has inputs stop1 and stop2, which are identified with the

stop1 input to P1 and the stop2 input to P2, respectively. This means,
for example, that stop1 simultaneously disables all tasks of P1 and
also has whatever effect stop1 has on the implementation Bx.

2For the purpose of disambiguation, such invocation and response actions could also be
subscripted with the name of the object, here x and y. We avoid this detail in this example
since there happens to be no ambiguity here.

414 13. A T O M I C OBJECTS

~ - ~ init(v), write(v),

cide(v) ,"

Q ~ ~ d e c i d e (v) - write(v):

(b)

F i g u r e 13.5" Transformation of a shared memory system to include atomic objects.

Now we give a theorem describing what is preserved by transformation

Trans. Theorem 13.7 first describes conditions that hold for any execution

(~ of Trans(A). Execution a does not have to be fair for these conditions to

hold. These conditions say that a looks to the users like an execution a~ of

A. Moreover, the same stop events occur in c~ and a~, although we allow for

the possibility that the stop events could occur in different positions in the two

executions.

Theorem 13.7 then goes on to identify some conditions under which the

simulated execution a ~ of the A system is guaranteed to be a fair execution. As
you would expect, one of the conditions is that c~ is itself a fair execution of the

Trans(A) system. But this is not enough--we also need to make sure that the

object au tomata Bx do not cause processing to stop. So we include two other

conditions that together ensure that this does not happen, namely, that all the

failures that occur in a are confined to a particular set I of ports and that all the
object au tomata B~ can tolerate failures on I (formally, they guarantee / - fa i lure

termination).

T h e o r e m 13.7 Suppose that ~ is any execution of the system Trans(A) x U.
Then there is an execution a ~ of A x U such that the following conditions hold:

13.1. D E F I N I T I O N S A N D B A S I C R E S U L T S 415

1. ~ and ~ are indistinguishable 3 to U.

2. For each i, a stopi occurs in ~ exactly if a stopi occurs in c~ !.

Moreover, i f c~ is a fair execution, i f every i for which stopi appears in ~ is in
I , and if every Bx guarantees I-failure terminat ion (for all collections of users),
then c~ I is also a fair execution.

P r o o f Ske tch . We modify a to get c~ ~ as follows. First, since each Bx is an

atomic object, we can insert a serialization point ,~ in c~ between the invocation

and response of each completed operation 7r on Bx and also after the invoca-

tion of each of a subset �9 of the incomplete operations on B~. We also obtain

responses for all the operations in q). These serialization points and responses
can be guaranteed to satisfy the "shrinking" property described in the atomicity

condition.
Next, we move the invocation and response events for each completed oper-

ation 7~ on Bx so that they are adjacent and occur exactly at ,~. Also, for each
incomplete operation 7~ in ~ - - t h a t is, each incomplete operation that has been
assigned a serialization point- -we place the invocation, together with the newly

manufactured response, at ,~. And for each incomplete operation that is not in

(I)--that is, each incomplete operation that has not been assigned a serialization

point- -we simply remove the invocation event. There is one additional techni-
cality: if any stopi event in a occurs after an invocation by process i and before

the serialization point to which the invocation is moved, then that stopi event is
also moved to the serialization point, just after the invocation and response. We

move, add, and remove events in this way for all shared variables x.
We claim that it is possible to move all the events that we have moved in this

construction without changing the order of events of any Pi (with one technical

exception: a response to Pi by some Bx may be moved ahead of a stopi). This
follows from two facts. First, by construction, Pi performs no locally controlled

actions while it is waiting for a response to an invocation. And second, while Pi
is waiting for a response, it is the sys tem's turn to take steps. This means that

U~ will not perform any output steps, so Pi will receive no inputs.
Similarly, we claim that we can add the responses we have added and remove

the invocations we have removed in this construction without otherwise affecting
the behavior of Pi. This is because if Pi performs an incomplete operation in c~,
it does not do anything after that operation. It does not matter if Pi stops just
before issuing the invocation, while waiting for a response, or just after receiving

the response.

3We use the definition of indistinguishable given in Section 8.7.

416 13. A T O M I C O B J E C T S

Since we have not changed anything significant by this motion, addition, and
removal of events, we can simply fill in the states of the processes Pi as in c~.
(A technical exception" A response to Pi moved before a stopi might cause a
different change in the state of Pi than it did in c~.) The result is a new execution,
C~l, also of the system Trans(A) x U. Moreover, it is clear that c~ and Ct 1 are
indistinguishable to U and have stop events for the same ports.

Now, c~1 is an execution of Trans(A) x U, which is not exactly what we need;
rather, we need an execution of the system A x U. But notice that in C~l, all
the invocations and responses for the object automata Bz occur in consecutive
matching pairs. So we replace those pairs by instantaneous accesses to the cor-
responding shared variables and thereby obtain an execution c~' of the system
A x U. Then c~ and c~' are indistinguishable to U and have stop events for the
same ports. This proves the first half of the theorem.

For the second half, suppose that c~ is a fair execution of Trans(A) x U, that
I C_ {1 , . . . , n}, that every i for which stopi appears in c~ is in I, and that each B~
guaran tees / - fa i lu re termination. Then the only stopi inputs received by any B~
must be for ports i C I. Thus, since every B~ guaran tees / - fa i lu re termination,
it must be that every Bx provides responses for every invocation by a process

Pi for which n o 8topi event occurs in a. This fact, combined with the fairness
assumption for processes Pi, is enough to imply that c~' is a fair execution of
A x U. F1

Thus, Theorem 13.7 implies that any algorithm for the shared memory model
(with some simple restrictions) can be t ransformed to work with atomic objects
instead of shared variables and that the users cannot tell the difference.

We give as a corollary the special case of Theorem 13.7 where the atomic
objects Bx all guarantee wait-free termination. In this case, we can conclude
that c~' is fair just by assuming that c~ is fair.

C o r o l l a r y 13.8 Suppose that all the Bx guarantee wait-free termination. Sup-
pose that c~ is any fair execution of Trans(A) x U. Then there is a fair execution
~' of A x U such that the following conditions hold:

1. a and c~' are indistinguishable to U.

2. For each i, a stopi occurs in (~ exactly if a stopi occurs in c~'.

P r o o f . Immediate from Theorem 13.7, letting I - { 1 , . . . , n}. D

In the special case where A is itself an atomic object, Theorem 13.7 implies
that Trans(A) is also an atomic object. Including failure considerations, we
obtain the following corollary.

13.1. DEFINITIONS AND BASIC RESULTS 417

Corollary 13.9 Suppose that A and all the Bx's are atomic objects guarantee-
ing I-failure termination. Then Trans(A) is also an atomic object guaranteeing
I-failure termination.

P r o o f . First let c~ be any execution of Trans(A) and a collection of users

Ui. Then Theorem 13.7 yields an execution a~ of A x U such that c~ and c~ ~

are indistinguishable to U. Since A is an atomic object, c~ ~ satisfies the well-

formedness and atomici ty properties. Since both of these are propert ies of the

external interface of U, and a and (~ are indistinguishable to U, c~ also satisfies

the well-formedness and atomici ty properties.

It remains to consider t h e / - f a i l u r e terminat ion condition. Let a be any fair

execution of Trans(A) and a collection of users Ui such that every i for which

stopi appears in a is in I. Since all the Bx guarantee /-fai lure terminat ion,

Theorem 13.7 yields a fair execution c~ ~ of A x U, such that c~ and c~ ~ are indis-

t inguishable to U and c~ and c~ ~ contain stop events for the same set of ports.

Thus, every i for which stopi appears in c~ ~ is in I.

Now consider any invocation in c~ on a port i for which no stopi event occurs

in c~--that is, on a non-failing port . Since c~ and c~ ~ are indistinguishable to U,

the same invocation appears in c~ ~. Because A gua ran t ee s / - f a i l u r e terminat ion,

there is a corresponding response event in c~ ~. Then, since a and c~ ~ are indistin-

guishable to U, this response also appears in c~. This is enough to show/ - fa i lu re

termination. [~

Hierarchical construction of s h a r e d m e m o r y s y s t e m s . In the special case

where each atomic object Bx is itself a shared memory system, we claim that

Trans(A) can also be viewed as a shared memory system. Namely, each process

i of Trans(A) (viewed as a shared memory system) is a combination of process Pi
of Trans(A) and the processes indexed by i in all of the shared memory systems

Bx. This combinat ion is not exactly an I / O au tomaton composit ion, because the

processes in the Bx's are not I / O automata . However, the combination is easy

to describe: the state set of process i of Trans(A) is just the Car tes ian product

of the state set of Pi and the state sets of all the processes indexed by i in all the

Bx's, and likewise for the s tar t states. The actions associated with process i of

Trans(A) are just the actions of all the component processes i, and similarly for

the tasks.

The si tuat ion is depicted in Figure 13.6. Par t (a) shows Trans(A), including
the shared memory systems Bx plugged in for all the shared variables x of A. (For

simplicity, we have not drawn the stop input arrows.) All the shaded processes

are associated with port 1. Par t (b) shows the same system as in par t (a), with

418 13. ATOMIC OBJECTS

F i g u r e 13.6" Hierarchical construction of a shared memory system.

the processes that are to be combined grouped together. Thus, all the shaded
processes from part (a) are now combined into a single process 1 in part (b).

By the definition of Trans(A), the effect of a stopi event in the system of
part (a) is to immediately stop all tasks of all the processes associated with port
/ - - the tasks of Pi as well as the tasks of all the processes i of the Bx's. This
is the same as saying that stopi stops all tasks of the composed process i in the
system of part (b), which is just what stopi is supposed to do when that system
is regarded as a shared memory system.

H i e r a r c h i c a l c o n s t r u c t i o n of a t o m i c o b j e c t s . Finally, consider the very
special case where shared memory system A is an atomic object guaranteeing
/-failure termination and each atomic object Bx is a shared memory system
that guarantees /-failure termination. Then Corollary 13.9 and the previous
paragraph imply that Trans(A) is an atomic object guarantee ing/ - fa i lure ter-
mination and also that it is a shared memory system. This observation says that
two successive layers of atomic object implementations in the shared memory
model can be collapsed into one.

13.1. DEFINITIONS AND BASIC RESULTS 419

13.1.5 A Sufficient Condition for Showing Atomicity

Before presenting specific atomic object constructions, we give a sufficient condi-
tion for showing that a shared memory system guarantees the atomicity condition.
This lemma enables us to avoid reasoning explicitly about incomplete operations
in many of our proofs that objects are atomic.

For this lemma, we suppose that A is a shared memory system with an
external interface appropriate for an atomic object for variable type 7-. Also, we
suppose that Ui, 1 <_ i <_ n, is any collection of users for A; as usual, U - I-[Ui.

L e m m a 13.10 Suppose that the combined system A x U guarantees well-formed-
ness and failure-free termination. Suppose that every (finite or infinite) execu-
tion c~ of A x U containing no incomplete operations satisfies the atomicity
property. Then the same is true for every execution of A x U, including those
with incomplete operations.

P r o o f . Let c~ be an arbitrary finite or infinite execution of the combined system
A x U, possibly containing incomplete operations. We must show that c~ satisfies
the atomicity property, that is, that c~[ext(U) satisfies the atomicity property.

If c~ is finite, then the handling of stop events in a shared memory system im-
plies that there is a finite failure-free execution c~1, obtained by removing the stop
events from c~ (and possibly modifying some state changes associated with inputs
at ports on which a stop has occurred), such that C~llext(U) = c~[ext(U). By ba-
sic properties of I /O automata (in particular, Theorem 8.7), c~ can be extended
to a fair failure-free execution c~2 of A x U. Since A guarantees failure-free ter-
mination, every operation in c~2 is completed. Then, by assumption, c~2 satisfies
the atomicity property, that is, c~21ext(U) satisfies the atomicity property. But
C~l[ezt(U) is a prefix of c~2lezt(U). Since, by Theorem 13.1, atomicity combined
with well-formedness is a safety property and hence is prefix-closed, it follows
that ~1 l ext(U) satisfies the atomicity property. Since c~[ext(U) = C~l [ext(U), we
have that c~lext(U) satisfies the atomicity property, as needed.

On the other hand, suppose that c~ is infinite. By what we have just proved,
any finite prefix c~1 of c~ has the property that C~llext(U) satisfies the atomicity
property. But c~lext(U) is just the limit of the sequences of the form C~l[ext(g).
Since, by Theorem 13.1, atomicity combined with well-formedness is a safety
property and hence is limit-closed, it follows that alext(U) satisfies the atomicity
property, as needed. [2]

420 13. ATOMIC OBJECTS

13.2 Implementing Read-Modify-Write Atomic
Objects in Terms of Read/Write Variables

We consider the problem of implementing a read-modify-write atomic object in
the shared memory model with read/write shared variables. (See Section 9.4 for
the definition of a read-modify-write variable type.) To be specific, we fix an
arbitrary n and suppose that the read-modify-write object being implemented
has n ports, each of which can support arbitrary update functions as inputs.

If all we require is an atomic object and we are not concerned about tolerating
failures, then there are simple solutions. For instance,

R M W f r o m R W algorithm:

The latest value of the read-modify-write variable corresponding to the ob-
ject being implemented is kept in a read/write shared variable x. Using a
set of read/write shared variables different from x, the processes perform
the trying part of a lockout-free mutual exclusion algorithm (for example,
PetersonNP from Section 10.5.2) whenever they want to perform opera-
tions on the atomic object. When a process i enters the critical region of
the mutual exclusion algorithm, it obtains exclusive access to x. Then pro-
cess i performs its read-modify-write operation using a read step followed
by a separate write step. After completing these steps, process i performs
the exit part of the mutual exclusion algorithm.

However, this algorithm is not fault-tolerant: a process might fail while it
is in its critical region, thereby preventing any other process from accessing the
simulated read-modify-write variable. In fact, this limitation is not an accident.
We give an impossibility result, even for the case where only a single failure is
to be tolerated.

Theorem 13.11 There does not exist a shared memory system using read/write
shared variables that implements a read-modify-write atomic object and guaran-
tees 1-failure termination.

Proof. Suppose for the sake of contradiction that there is such a system, say B.
Let A be the RMWAgreement algorithm for agreement in the read-modify-write
shared memory model, given in Section 12.3. By Theorem 12.9, A guarantees
wait-free termination and hence guarantees 1-failure termination (as defined for
agreement algorithms in Section 12.1). Now we apply the transformation of
Section 13.1.4 to A, using B in place of the single shared read-modify-write
variable of A. Let Trans(A) denote the resulting system.

13.3. ATOMIC SNAPSHOTS OF SHARED MEMORY 421

C l a i m 13 .12 Trans(A) solves the agreement problem of Chapter 12 and guar-
antees 1-failure termination.

P r o o f . The proof of this is similar to that of Corollary 13.9. First let c~ be any
execution of Trans(A) and a collection of users Ui. Then Theorem 13.7 yields
an execution c~' of A x U such that c~ and c~' are indistinguishable to U. Since
A solves the agreement problem, c~' satisfies the well-formedness, agreement,
and validity properties. Then since c~ and c~' are indistinguishable to U, c~ also

satisfies the well-formedness, agreement, and validity properties.
It remains to consider the l-failure terminat ion condition. Let c~ be any fair

execution of Trans(A) and a collection of users Ui, in which init events occur
on all ports and in which there is a stop event for at most one port. Since
B guarantees l-failure termination, Theorem 13.7 yields a fair execution c~' of
A x U such that c~ and c~' are indistinguishable to U and contain stop events for
the same set of ports. Thus, init events occur on all ports in c~', and there is a
stop event for at most one port in c~'.

Now consider any port i with no stopi event in c~. Since c~ and c~' contain
stop events for the same ports, there is also no stopi event in c~'. Because A
guarantees l-failure terminat ion, there is a decidei event in c~'. Then, since c~
and c~' are indistinguishable to U, this decidei also appears in c~. This is enough
to show 1-failure termination. [-1

However, by the pa ragraph at the end of Section 13.1, Trans(A) is itself
a shared memory system in the r ead /wr i t e shared memory model. But then
Trans(A) contradicts Theorem 12.8, the impossibil i ty of agreement with l-failure
terminat ion in the r ead /wr i t e shared memory model.

13.3 Atomic Snapshots of Shared Memory

In the rest of this chapter, we consider the implementat ion of par t icular types
of atomic objects in terms of other types of atomic objects, or, equivalently, in
terms of shared variables. This section is devoted to snapshot atomic objects,
and the next is devoted to r ead /wr i t e atomic objects.

In the r ead /wr i t e shared memory model, it would be useful for a process to
be able to take an instantaneous snapshot of the entire state of shared memory.
Of course, the r ead /wr i t e model does not directly provide this capabi l i ty - - i t
only permits reads on individual shared variables.

In this section, we consider the implementat ion of such a snapshot. We
formulate the problem as that of implementing a par t icular type of atomic object

422 13. ATOMIC OBJECTS

called a snaphot atomic object, using the read/wr i te shared memory model. The

variable type underlying a snapshot atomic object has as its domain V the set

of vectors of some fixed length over a more basic domain W. The operations
are of two kinds: writes to individual vector components, which we call update
operations, and reads of the entire vector, which we call snap operations. A
snapshot atomic object can simplify the task of programming a read/wr i te system

by allowing the processes to view the entire shared memory as a vector accessible
by these powerful operations.

We start with a description of the problem, then give a simple solution that

uses read/wr i te shared variables of unbounded size. Then we show how the
construction can be modified to work with bounded-size shared variables. Sec-

tion 13.4.5 contains an application of snapshot atomic objects in the implemen-
tation of read/wr i te atomic objects.

1 3 . 3 . 1 T h e P r o b l e m

We first define the variable type 7- to which the snapshot atomic object will
correspond; we call this a snapshot variable type.

The definition begins with an underlying domain W with initial value w0.

The domain V of T is then the set of vectors of elements of W of a fixed length
m. The initial value v0 is the vector in which every component has the value w0.
There are invocations of the form update(i, w), where 1 _< i < m and w E W, with
response ack, and an invocation snap, with responses v C V. An update(i,w)
invocation causes component i of the current vector to be set to the value w and

triggers an ack response. A snap invocation causes no change to the vector but

triggers a response containing the current value of the entire vector.

Next we define the external interface that we will consider. We assume that
there are exactly n - m + p ports, where rn is the fixed length of the vectors
and p is some arbi t rary positive integer. The first m ports are the update ports,

and the remaining p ports are the snap ports. On each port i, 1 _< i < m,
we permit only invocations of the form update(i, w) - - t h a t is, only updates to

the ith vector component are handled on port i. We sometimes abbreviate the
redundant notation update(i, w)~, which indicates an invocation of update(i, w)
on port i, as simply update(w)i. On each port i, m + 1 _< i _< n, we permit only
snap invocations. See Figure 13.7.

Notice that we are considering a special case of the general problem, where
updates to each vector component arrive only at a single designated port and
hence arrive sequentially. It is also possible to consider a more general case,
where many ports allow updates to the same vector component. Of course, we

13.3. A T O M I C S N A P S H O T S OF S H A R E D M E M O R Y 423

m update ports

update(w),

__. ack,

update(w) m

--.~ ackm [

p snap ports

snap ,,,+ l

V m + l
--,,..1

snap n

12 n

F i g u r e 13.7: External interface of a snapshot atomic object (stop actions not de-
picted).

could also consider the case where update and snap operations are allowed to
occur on the same port.

We consider implementing the atomic object corresponding to this variable
type and external interface using a shared memory system with n processes,
one per port. We assume that all the shared variables are l -wr i te r /n- reader
read/wr i te shared variables. The implementations we describe guarantee wait-
free termination.

13.3.2 An Algori thm with Unbounded Variables

The UnboundedSnapshot algorithm uses m 1-wri ter /n-reader read/wr i te shared
variables x(i), 1 _< i <_ rn. Each variable x(i) can be writ ten by process i (the
one connected to port i, which is the port for update(i, w) operations) and can

be read by all processes. The architecture appears in Figure 13.8. Each variable
x(i) holds values each of which consists of an element of W plus some additional
values needed by the algorithm. One of these additional values is an unbounded
integer "tag."

424 13. ATOMIC OBJECTS

m update ports

p snap ports

F i g u r e 13.8" Architecture for UnboundedSnapshot algorithm.

In the UnboundedSnapshot algorithm, each process i writes the values that it
receives in updatei invocations into the shared variable x(i). A process perform-
ing a snap operation must somehow obtain consistent values from all the shared
variables, that is, values that appear to have coexisted in the shared memory at
some moment in time. The way it does this is based on two simple observations.

Observation 1: Suppose that whenever a process i performs an update(w)i
operation, it writes not only the value w into x(i), but also a "tag" that uniquely
identifies the update. Then, if a process j that is a t tempt ing to perform a snap
operation reads all the shared variables twice, with the second set of reads
start ing after the first set of reads is finished, and if it finds the tag in each
variable x(i) to be the same in the first and second set of reads, then the common
vector of values returned in the two sets of reads is in fact a vector that appears
in shared memory at some point during the interval of the snap operation. In
particular, this vector is the vector of values at any point after the completion
of the first set of reads and before the start of the second set.

Observation 1 suggests the following simple algorithm. Each process i per-
forming an update(w) operation writes w into x(i), along with a unique local tag,

13.3. ATOMIC SNAPSHOTS OF SHARED M E M O R Y 425

obtained by starting with 1 for the first update at i and incrementing for each

successive update at i.
Each process j performing a snap repeatedly performs a set of reads, one

per shared variable, until two consecutive sets of reads are "consistent," that is,
they return identical tags for every x(i). When this happens, the vector of values
returned by the second set of reads (which must be the same as that returned
by the first set of reads) is returned as the response to the snap operation.

It is easy to see that whenever this simple algorithm completes an operation,
the response is always "correct," that is, it satisfies the well-formedness and
atomicity conditions. However, it fails to guarantee even failure-free termination:
a snap may never return, even in the absence of process failures, if new update
operations keep getting invoked while the snap is active. A way out of this

difficulty is provided by
Observation 2: If process j , while performing repeated sets of reads on behalf

of a snap, ever sees the same variable x(i) with four different t ags - - say tagl, tag2,
tag3, and tag4--then it knows that some updatei operation is completely contained
within the interval of the current snap. In particular, the updatei operation that

writes tag3 must be totally contained within the current snap.
To see why this is so, we argue first that the update that writes tag3 must

begin after the beginning of the snap. This is because it begins after the end
of the update that writes tag2, and the end of the update that writes tag2 must
happen after the beginning of the snap interval (since the snap sees tag1).

Second, we argue that the update that writes tag3 must end before the end of

the snap. This is because it ends before the beginning of the update that writes

tag4, and the snap sees tag4.
Observations 1 and 2 suggest the UnboundedSnapshot algorithm. It extends

the simple algorithm above so that before an update process i writes to x(i), it
first executes its own embedded-snap subroutine, which is just like a snap. Then,
when it writes its value and tag in x(i), it also places the result of its embedded-
snap in x(i). A snap that fails to discover two sets of reads with identical tags
despite many repeated at tempts can use the result of an embedded-snap as a
default snapshot value. A more careful description follows. In this description,
each shared variable is a record with several fields; we use dot notation to indicate
the fields.

UnboundedSnapsho t a l g o r i t h m :

Each shared variable x(i), 1 _< i <_ m, is writable by process i and readable

by all processes. It contains the following fields:

426 13. A T O M I C OBJECTS

valc W, initially w0
tag E I~t, initially 0
view, a vector indexed by {1,... ,m} of elements of W, initially identically w0

When a snapj input occurs on port j , m + 1 _< j _< n, process j behaves

as follows. It repeatedly performs sets of reads, where a set consists of m

reads, one read of each shared variable x(i) , 1 _< i _< m, in any order. It

does this until one of the following happens:

1. Two sets of reads re turn the same x(i).tag for every i.

In this case, the snap re turns the vector of values x(i).val, 1 <_ i <<_ m,
re turned by the second set of reads. (This is the same as the vector

re turned by the first set of reads.)

2. For some i, four dist inct values of x(i).tag have been seen.

In this case, the snap re turns the vector of values in x(i).view associ-

ated with the third of the four values of x(i).tag.

When an update(w)i input occurs, process i behaves as follows. First , it

performs an embedded-snap. This involves exactly the same work as is

performed by a snap, except that the vector determined is recorded locally

by process i instead of being re turned to the user. Second, process i

performs a single write to x(i), setting the three fields of x(i) as follows:

1. x(i).val "- w

2. x(i).tag is set to the smallest unused tag at i.

3. x(i).view is set to the vector re turned by the embedded-snap.

Finally, process i outputs acki.

T h e o r e m 13 .13 The UnboundedSnapshot algorithm is a snapshot atomic ob-
ject guaranteeing wait-free termination.

P r o o f . The well-formedness condition is clear. Wait-free terminat ion is also

easy to see: the key is that every snap and every embedded-snap must terminate

after performing at most 3m + 1 sets of reads. This is because after 3rn + 1 sets

of reads, there must either be two consecutive sets with no changes or else some

variable x(i) with at least four different tags. In either of these two cases, the

operation terminates.

It remains to show the atomici ty condition. Fix any execution c~ of the

UnboundedSnapshot algori thm plus users. In view of Lemma 13.10, we may

13.3. ATOMIC SNAPSHOTS OF SHARED M E M O R Y 427

assume without loss of generality that a contains no incomplete operations. We

describe how to insert serialization points for all operations.
We insert the serialization point for each update operation at the point at

which its write occurs. The insertion of serialization points for snap operations
is a little more complicated. To describe this insertion, we find it helpful to assign
serialization points not just to the snap operations but also to the embedded-snap
operations.

First, consider any snap or embedded-snap that terminates by finding two
consistent sets of reads. For each such operation, we insert the serialization
point anywhere between the end of the first of its two sets of reads and the
beginning of its second.

Second, consider those snap and embedded-snap operations that terminate by
finding four different tags in the same variable. We insert serialization points for
these operations one by one, in the order of their response events. For each such
operation 7~, note that the vector it returns is the result of an embedded-snap
r whose interval is totally contained within the interval of operation ~. Note
that this operation r has already been assigned a serialization point, since it
completes earlier than 7~. We insert the serialization point for 7~ at the same
place as that for r

It is easy to see that all the serialization points are within the required inter-
vals. For the update operations and for the snap and embedded-snap operations
that terminate by finding two consistent sets of reads, this is obvious. For the
snap and embedded-snap operations that terminate by finding four distinct tags,
this can be argued by induction on the number of response events for such oper-
ations in a.

It remains to show that the result of shrinking the operation intervals to their
respective serialization points is a trace of the underlying snapshot variable type.
For this, first note that after any finite prefix a ' of a, there is a unique vector
in V resulting from the write events in a ' . Call this the correct vector after c~'.
It is enough to show that every snap operation returns the correct vector after
the prefix of a up to the operation's serialization point. More strongly, we argue
that every snap and embedded-snap operation returns the correct vector for its
serialization point.

This is clear for the operations that terminate by finding two consistent sets
of reads. For the other snap and embedded-snap operations, we argue this by
induction on the number of response events for such operations in ~. [:]

C o m p l e x i t y a n a l y s i s . The UnboundedSnapshot algorithm uses m shared vari-
ables, each of which can take on an unbounded set of values. Even if the un-
derlying domain W is finite, the variables are still unbounded because of the

428 13. ATOMIC OBJECTS

unbounded tags. For time complexity, a non-failing process executing a snap
performs at most 3m + 1 sets of reads, or at most (3m + 1)m shared memory
accesses, for a total time that is O (m2t0, where t~ is an upper bound on pro-
cess step time. A non-failing process executing an update also performs O (m 2)
shared memory accesses, for a total time that is O (m2t0; this is because of its
embedded-snap operation.

13.3.3 An Algori thm with Bounded Variables*

The main problem with the UnboundedSnapshot algorithm is that it uses un-
bounded-size shared variables to store the unbounded tags. In this subsection,
we sketch an improved algorithm called BoundedSnapshot, which replaces the
unbounded tags with bounded data. In order to achieve this improvement in
efficiency, the BoundedSnapshot algorithm uses some mechanisms that are more
complicated than simple tags.

Note that the unbounded tags are used in the UnboundedSnapshot algori thm
only for the purpose of allowing processes performing snap and embedded-snap
operations to detect when new update operations have taken place. This infor-
mation could, however, be communicated using a less powerful mechanism than
a tag, in particular, using a combination of handshake bits and a toggle bit.

The handshake bits work as follows. There are now n + m shared variables"
variables x(i), 1 < i < m as in the UnboundedSnapshot algorithm, plus new
variables y(j), 1 <<_ j <<_ n. Each variable x(i) is writable by update process i and
readable by all processes, as before. Each variable y(j), 1 <_ j <_ m, is writable
by update process j (specifically, by the embedded-snap part of update process
j) and is readable by all update processes, and each variable y(j), m + 1 <_
j < n, is writable by snap process j and readable by all update processes.
Note that, unlike in the UnboundedSnapshot algorithm, the execution of the snap
and embedded-snap operations in BoundedSnapshot involve writing to shared
memory.

For each update process i, 1 _< i < m, there are n pairs of handshake bits,
one pair per process j. The pair of bits for (i, j) allow process i to tell pro-
cess j about new updates by process i and also allow process j to acknowledge
that it has seen this information. Specifically, x(i) contains a length n vector
comm of bits, where the element comm(j) in variable x (i) - -which we denote by
x(i) .comm(j)-- is used by process i to communicate with process j about new
updates by process i. And y(j) contains a length m vector ack of bits, where
the element ack(i) in variable y(j)--which we denote by y(j).ack(i)--is used by
process j to acknowledge that it has seen new updates by process i. Thus, the
pair of handshake bits for (i , j) are x(i).comm(j) and y(j).ack(i).

13.3. ATOMIC SNAPSHOTS OF SHARED MEMORY 429

The way these handshake bits are used is roughly as follows. When a process
i executes an update(w), it begins by reading all the handshake bits y(j).ack(i).
Then it performs its write to x(i); when it does this, it writes the value w and
embedded snap response view, as it does in UnboundedSnapshot, and in addition
writes the handshake bits in comm. In particular, for each j , it sets the bit
comm(j) to be unequal to the value of y(j).ack(i) read at the beginning of the
operation.

A process j performing a snap or embedded-snap repeatedly tries to perform
two sets of reads, looking for the situation where nothing has changed in between
the two sets of reads. But this time, changes are detected using the handshake
bits rather than integer-valued tags. Specifically, before each at tempt to find two
consistent sets of reads, process j first reads all the handshake bits x(i).comm(j)
and sets each handshake bit y(j).ack(i) equal to the value of x(i).comm(j) just
read. (Thus, the update operations at tempt to set the handshake bits unequal
and the snap and embedded-snap operations at tempt to set them equal.) Process
j looks for changes to the handshake bits comm(j) in between its two sets of
reads; if it finds such changes on 2m + 1 separate attempts, then it knows it has
seen the results of four separate update operations by the same process i and can
adopt the vector view produced by the third of these operations.

The handshake protocol described so far is simple and is "sound" in the sense
that every time a process performing a snap or embedded-snap detects a change,
a new update has in fact occurred. However, it turns out that the handshake is
not sufficient to discover every upda te - - i t is possible for two consecutive updates
by a process i not to be distinguished by some other process j. Consider, for
example, the following situation.

E x a m p l e 13.3.1 In su f f i c i ency of h a n d s h a k e b i t s

Suppose that at some point during an execution, x(i).comm(j) = 0
and y(j).ack(i) = 1, that is, the handshake bits used to tell j about
i 's updates are unequal. Then the following events may occur, in the
indicated order. (The actions involving the two processes i and j
appear in separate columns.)

430 13. A T O M I C O B J E C T S

update(wl)i
i reads y(j).ack(i)= 1
i writes Wl and sets x(i).eomm(j):= 0
acki
update(w2)i
i reads y(j). ack (i) = 1

snapj
j reads x(i).comm(j) = 0
j sets y(j).ack(i):= 0
j reads x(i).comm(j) = 0

i writes w2 and sets x(i).eomm(j):= 0
acki

j reads x(i).comm(j)= 0 and decides that no updates have
occurred since its previous read of x(i)

In this sequence of events, process j per forms three reads of x (i) . c o m m (j) .
The first of these is jus t a p re l iminary test; the second and th i rd are

par t of an a t t e m p t to find two consis tent sets of reads. Here, process

j de te rmines as a resul t of its second and third reads tha t no upda tes

have occur red in between. Th is is erroneous.

To overcome this problem, we augment the handshake protocol with a second

mechanism: each x(i) contains an addi t ional toggle bit that is flipped by process

i dur ing each of its write steps. This ensures tha t each update changes the value

of the shared variable x(i) . In a bit more detail , the protocol works as follows:

BoundedSnapshot algorithm:
Each shared variable x(i) , 1 <_ i < m, is wri table by process i and readable

by all processes. It contains the following fields"

val c W, initially w0
comm, a vector indexed by {1 , . . . , n} of {0, 1 }, initially identically 0
toggle E {0, 1}, initially 0
view, a vector indexed by {1,... , m} of elements of W, initially identically w0

Also, each shared variable y(j) , 1 < j < n, is wri table by process j and

readable by processes i, 1 < i < m. It contains the following field:

ack, a vector indexed by {1 , . . . , m} of {0, 1}, initially identically 0

W h e n a snapj input occurs on por t j , m + 1 < j < n, process j behaves

as follows. It r epea ted ly a t t e m p t s to ob ta in two sets of reads tha t look

"consis tent ." Specifically, in each a t t empt , process j first reads all the

relevant handshake bits x (i) . c o m m (j) , for all i, 1 < i < m, in any order.

Then for each i, process j sets y (j) . ack (i) to be equal to the value read in

13.3. ATOMIC SNAPSHOTS OF SHARED MEMORY 431

x(i).comm(j); it does this in a single write step. Then process j performs

two complete sets of reads, the first set finishing before the second set

begins. If for every i, x(i).comm(j) and x(i).toggle are identical in the two
reads of x(i), and, moreover, the common value of comm(j) is the same one

that process j read at the beginning of this attempt, then the snap returns
the vector of values x(i).val obtained in the final set of reads. Otherwise,

process j records which variables x(i) have changed.

If process j ever records on three separate attempts that the same x(i)
has changed, then consider the second of these three attempts. The snapj
operation returns the vector of values in x(i).view obtained in the final read
of x(i) at that attempt. (It is guaranteed that this vector was written in
the course of an update operation whose interval is completely contained

within the interval of the given snapj.)

When an update(w)i input occurs on port i, 1 _< i _< m, process i behaves
as follows. First, it reads all the relevant handshake bits y(j).ack(i), 1 <_
j <_ n. Second, it performs an embedded-snap, which is the same as a

snap except that the vector determined is not returned to the user. Third,

process i performs a single write to x(i), setting the four fields of x(i) as
follows"

1. x(i).val := w

2. For each j , x(i).comm(j) is set unequal to the value of y(j).ack(i)
obtained in the initial read of y(j).

3. x(i).toggle is set unequal to its previous value.

4. x(i).view is set to the vector returned by the embedded-snap.

Finally, process i outputs acki.

T h e o r e m 13.14 The BoundedSnapshot algorithm is a snapshot atomic object
guaranteeing wait-flee termination.

P r o o f Ske tch . Well-formedness and wait-freedom are easy to see, as in the
proof of Theorem 13.13 for the UnboundedSnapshot algorithm. It remains to
show the atomicity condition. The argument is similar to that for Unbounded-
Snapshot.

Again, we fix execution c~ and (in view of Lemma 13.10) assume without loss

of generality that c~ contains no incomplete operations. The serialization points

are inserted exactly as for the UnboundedSnapshot algorithm. For example, for a
snap or embedded-snap operation that terminates by finding two consistent sets
of reads, we select any point between the end of the first of these two sets and

432 13. A T O M I C O B J E C T S

the beginning of the second. As before, it is easy to see that the serialization
points occur within the required intervals. It remains to show that the result
of shrinking the operation intervals to their respective serialization points is a
trace of the snapshot variable type. As before, it is enough to show that every
completed snap and embedded-snap operation returns the correct vector after the
prefix of c~ up to the serialization point.

This time, it is not so easy to show this property for snap and embedded-snap
operations that terminate by finding two consistent sets of reads. To show this,
it is enough to prove the following claim.

C l a i m 13.15 If a snap or embedded-snap terminates by finding two consistent
sets of reads, then the following is true for all i. No write event by process i
occurs between the read of x(i) in the first set and the read of x(i) in the second
set.

P r o o f . By contradiction, using a somewhat detailed operational argument.
Suppose that a snap on port j terminates by finding two consistent sets of reads,
yet a write event by process i occurs between 7rl, the read of x(i) in the first
set, and 7r2, the read of x(i) in the second set. (The argument is the same for an
embedded-snap.) Let r be the last such write, that is, the last write of x(i) prior
to 7r2.

By the fact that the two sets of reads are consistent, the values of x(i).comm(j)
read in 7rl and 7r2 are equal and, moreover, are the same as the value last written

in y(j) .ack(i) before 71" 1 (aS part of process j ' s successful at tempt to find the
consistent sets of reads). Let b denote this common value and let :r0 denote this
last write event. Also by consistency, the values of x(i).toggle read in :rl and 7r2
are equal. Let t denote this common value.

Since r is the last write of x(i) prior to 7r2, it must be that it sets x(i) . comm(j)
�9 = b and x(i).toggle "- t. The update operation containing r must contain an
earlier read event r of y(j) . By the way update operations behave, the value of
y(j) .ack(i) read by r must be b. (We are using the bar notation here to denote
bit complementation.) This implies that ~p must precede 7r0.

Thus, the order of the various read and write events must be the follow-
ing. (Again, the actions involving the two processes i and j appear in separate
columns.)

m

~" A read by i sees y(j) .ack(i) - b.
7r0: A write by j sets y (j) . ack (i) := b.
7r1: A read by j sees x(i) . comm(j) = b and x(i).toggle = t.

r A write by i sets x (i) . c o m m (j) : = b and x(i).toggle := t.
7r2: A read by j sees x(i) . comm(j) = b and x(i).toggle = t.

13.3. ATOMIC SNAPSHOTS OF SHARED MEMORY 433

But note that the read event ~ is part of the same update operation as the
write event r This implies that the two read events 7rl and 7r2 must be returning
results written by two consecutive writes by process i. However, the toggle bits
returned by 7rl and 7r2 are identical, which contradicts the way the toggle bits
are managed. KI

This shows Claim 13.15, which implies that every snap or embedded-snap
operation that terminates by finding two consistent sets of reads in fact returns
the correct vector after the prefix of a up to the serialization point. For the
other snap and embedded-snap operations, the needed property is argued, as for
UnboundedSnapshot, by induction on the number of response events for such
operations in a.

C o m p l e x i t y ana lys i s . The BoundedSnapshot algorithm uses n + m shared
variables. Each variable x(i) takes on IW]m+12 n+l values, and each variable y(j)
takes on 2 m values. For time complexity, a non-failing process executing a snap
makes at most 2rn + 1 at tempts to find two consistent sets of reads. For each
attempt, there are at most 4m shared memory accesses, for a total time that is
0 (m2g). The same bound holds for an update.

U s i n g s n a p s h o t s in p r o g r a m m i n g r e a d / w r i t e s h a r e d m e m o r y s y s t e m s .
Snapshot shared variables represent a powerful type of shared memory. For
example, using a single snapshot shared variable, it is possible to simplify con-
siderably the Bakery mutual exclusion algorithm of Section 10.7. We leave this
for an exercise.

Using the techniques of Section 13.1.4 and a snapshot algorithm such as
the ones in this section, an algorithm A that uses snapshot shared variables
can be transformed into an algorithm that uses only single-writer/multi-reader
read/wri te shared variables. This transformation requires some simple restric-
tions on A, as discussed in Section 13.1.4. (Also, technically, the snapshot atomic
objects used in the transformation have one port corresponding to each process
of A; process i of A might submit both update and snap operations on the same
port i. But there is no problem in modifying the snapshot atomic object external
interface and implementations to permit this.)

R e a d / u p d a t e / s n a p va r i ab l e s . A useful variation on a snapshot shared vari-
able, which only supports update and snap operations, is a r ead /upda te / snap
shared variable, which supports read operations on individual locations in the
shared vector in addition to snap operations returning the entire vector. Of
course, a model using read /upda te / snap shared variables has no more power than
a model using only snapshot variables, because a read can be implemented using

434 13. ATOMIC OBJECTS

a snap. However, the use of r ead /upda t e / snap shared variables can allow more
efficient programming, because it is possible to implement a r e ad /upda t e / snap
atomic object so that the reads are very fast. We leave this for an exercise.

13.4 Read/Write Atomic Objects

Read/wr i te shared variables (registers) are among the most basic building blocks
used in shared memory multiprocessors. In this section, we consider the imple-
mentation of powerful mult i-wri ter /mult i-reader registers in terms of less power-
ful registers, such as single-writer/single-reader registers. More precisely, we con-
sider the problem of implementing mult i -wri ter /mult i -reader read/wr i te atomic
objects using single-writer/single-reader shared variables.

1 3 . 4 . 1 T h e P r o b l e m

Fix a domain V and initial value v0 E V.
In Example 13.1.1, we described an external interface for a 1-writer/2-reader

read/wr i te atomic object for domain V. In general, an m-writer~p-reader read /
write atomic object for domain V has an analogous external interface, where
ports 1 , . . . , m are write ports and ports m + 1 , . . . , m + p are read ports. We
again let n - m + p.

Since we consider the implementation of read/wr i te atomic objects in terms
of read/wr i te shared variables, we need a way of distinguishing the high-level
read and write operations that are submitted by the users at the ports from
the low-level read and write operations that are performed on the read/wr i te
shared variables. We use the convention of capitalizing the names of the high-
level operations. Thus, associated with port i, 1 < i < m, there are WRITE(v)i
inputs, v E V, and ACKi outputs, and associated with port j , m + 1 < j < n,
there are READj inputs and vj outputs, v E V. (We don' t a t tempt to capitalize
the values in V.) There are also STOPi inputs, 1 < i < n.

We consider implementing such an m-writer~p-reader atomic object, where
n - m +p, using a shared memory system with n processes, one per port. We as-
sume that all the shared variables in this system are read/wr i te shared variables,
but the numbers of readers and writers will vary in the different algorithms we
present. All the implementations we describe guarantee wait-free termination.

1 3 . 4 . 2 A n o t h e r L e m m a fo r S h o w i n g Atomicity

We begin with a technical lemma that is useful for showing that a sequence
of actions of a read/wri te atomic object external interface satisfies the atomicity
property for read/wri te objects. This lemma lists four conditions involving a

13.4. R E A D ~ W R I T E ATO MIC OBJECTS 435

partial order on operations in/3. If an ordering satisfying these four conditions
exists, it is guaranteed that there is some way to insert serialization points so as
to satisfy the atomicity property. When reasoning about algorithms, it is often
easier to show the existence of such a partial order than it is to explicitly define
the serialization points.

L e m m a 13.16 Let/3 be a (finite or infinite) sequence of actions of a read/write
atomic object external interface. Suppose that/3 is well-formed for each i, and
contains no incomplete operations. Let II be the set of all operations in/3.

Suppose that -< is an irreflexive partial ordering of all the operations in II,
satisfying the following properties:

1. For any operation 7r E II, there are only finitely many operations r such
that r -< 7r.

2. I f the response event for 7r precedes the invocation event for r in/3, then
it cannot be the case that r 7r.

3. If 7c is a W R I T E operation in II and r is any operation in II, then either
7r -< r o r e - < 7r.

~. The value returned by each READ operation is the value written by the
last preceding W R I T E operation according to -4 (or vo, if there is no such
WRITE).

Then/3 satisfies the atomicity property.

Condition 1 is a technical one, ruling out funny orderings in which infinitely
many operations precede some particular other operation. Condition 2 says that
the -4 ordering must be consistent with the order of invocations and responses
by the users. Condition 3 says that -< totally orders all the W R I T E operations
and orders all the READ operations with respect to the W R I T E operations.
Condition 4 says that the responses to READs are consistent with -<.

P r o o f . We describe how to insert a serialization point ,~ for every operation
7r C II. Namely, we insert each serialization point ,~ immediately after the
latest of the invocations for 7r and for all the operations r such that r -4 7r.
Condition 1 implies that this position is well-defined. We order , ' s that are
thereby placed contiguously in any way that is consistent with the ordering -<
on the associated operations; that is, if 7r and r are two operations whose , ' s
are placed contiguously, and if r -< re, then ,r precedes ,~.

We claim that the total order of the serialization points is consistent with -<;
that is, for any operations 7r and r in II, if r -< 7r, then ,r precedes ,~. To see

436 13. ATOMIC OBJECTS

this, assume that r --< 7r. By construction, ,r is placed after the latest of the
invocations for r and for all the operations that precede r in the -4 order. And
�9 ~ is placed after the latest of the invocations for 7c and for all the operations
that precede 7c in the -4 order. But since r -< 7c, it follows that any operation
that precedes r in -4 also precedes 7r in -<. Since a tie would be broken by
ordering ,r before ,~, it follows that ,r precedes , . , as claimed.

Next, we claim that these serialization points are within the required inter-
vals. To see this, consider any operation 7c c II. By construction, the serializa-
tion point ,~ for 7r must appear after the invocation for 7r. We show that ,~
appears before the response for 7c. Suppose for the sake of contradiction that
it appears after the response for 7r. Then, by construction, this means that the
response for 7r must precede (in ~) the invocation for some operation r where
r -< 7r. But this contradicts Condition 2.

It remains to show that the result of shrinking the operation intervals to their
serialization points is a trace of the underlying read/wri te variable type. This
means that each READ operation 7r returns the value of the WRITE whose
serialization point is the last one before , . (or v0, if there is no such WRITE).

But Condition 3 says that -< orders all the WRITE operations in II with
respect to all operations in II. And by Condition 4 for READ operations, the
value returned by any READ operation 7r is the value writ ten by the last pre-
ceding WRITE operation according to -< (or v0, if there is no such WRITE).
Since the total order of the serialization points is consistent with -<, it follows
tha t 77 returns the required value. D

In the rest of this section, we use Lemma 13.16 to show that objects guarantee
the atomicity condition.

13.4.3 An Algor i thm with U n b o u n d e d Variables

Our first algorithm is the VitanyiAwerbuch algorithm, which implements m-
wri ter /p-reader read/wri te atomic objects using single-writer/single-reader reg-
isters. (Recall that n = m+p.) This algorithm is simple but has the disadvantage
that the shared variables are unbounded in size.

Vi tany iAwerbuch algorit hm-

The algorithm uses n 2 shared variables, which we can imagine to be ar-
ranged in an n x n matr ix X, as depicted in Figure 13.9. The variables
are named x(i,j): 1 ~_ i, j <_ n. Each variable x(i , j) is readable only by
process i and writable only by process j; thus, each process i can read all
the variables in row i and can write all the variables in column i of X.

Each shared register x(i, j) has the following fields:

13.4. R E A D ~ W R I T E A T O M I C O B J E C T S 437

WRITE processes write

1 ' ' ' m

READ processes write

m + l ' ' ' n

WRITE processes

read

1 x (1 , 1) " ' '

m x (m , 1) " " "

x (1, m) x (1, r e + l) �9 �9 �9 x (1, n)

x (m , m) x (m , m + l) �9 . . x (m , n)

READ processes

read

m + l x (m + l , 1) �9 �9 �9

n x (n , 1) , , ,

x (m + l , m) x (m + l , m + l) " ' " x (m + l , n)

x (n , m) x (n, m+l) . . . x (n, n)

F i g u r e 13.9: Matrix X of shared registers used in the VitanyiAwerbuch algorithm.

val E V, i n i t i a l l y v0

tag C 51, i n i t i a l l y 0

i n d e x E { 1 , . . . , m } , i n i t i a l l y 1

We use the abbreviation tagpair for the pair (tag, index). We order tag-
pairs lexicographically.

When a WRITE(v) i input occurs, process i behaves as follows. First,
it reads all the variables x (i , j) , 1 <_ j < n (in any order). Let k be the
greatest tag it finds. Next, process i performs a single write to each x(j , i),
1 < j < n, setting the three fields of x(j , i) as follows"

1. x(j , i).val "- v

2. x(j , i).tag "- k + 1

3. x(j , i) . index "- i

Finally, process i outputs A CKi.

When a READi input occurs, process i behaves as follows. First, it reads
all the variables x (i , j) , 1 <_ j <_ n (in any order). Let (v , k , j) be any
(val, tag, index) triple it finds with maximum tagpair = (tag, index). Next,
process i performs a single write to each x(j , i), 1 _< j _< n, setting the
three fields of x(j , i) as follows:

1. x(j , i).val "- v

2. x(j , i).tag "- k

438 13. A T O M I C OBJECTS

3. x(j, i) . index := j

(That is, it propagates the best information it has read to all the variables
it can write.) Finally, process i outputs vi (i.e., outputs value v on port i).

T h e o r e m 13.17 The VitanyiAwerbuch algorithm is a read/write atomic object
guaranteeing wait-free termination.

In order to prove the correctness of the VitanyiAwerbuch algorithm, we could
proceed as in the proofs for the snapshot algorithms, explicitly inserting serial-
ization points and then showing that the atomicity property is satisfied. However,
for the VitanyiAwerbuch algorithm, it is not easy to see (as it is for the earlier
algorithms) exactly where the serialization points ought to be placed. A more
natural proof strategy here is to establish a partial order of operations based on
the tagpair values, and then show that this partial order satisfies the conditions
of Lemma 13.16.

P r o o f . Well-formedness and wait-free termination are easy to see. For atom-
icity, we use Lemma 13.16.

Let c~ be any execution of the VitanyiAwerbuch algorithm. In view of Lemma
13.10, we may assume without loss of generality that c~ contains no incomplete
operations. We begin with a simple claim.

C l a i m 13.18 For any variable x (i , j) ,
monotone nondecreasing in c~.

the tagpair = (tag, index) values are

P r o o f . Fix i and j. Note that variable x (i , j) is writ ten only by process j
and that, by well-formedness, all operations by j must occur sequentially. Also,
after any number of complete operations by j , all the variables in the j t h column
contain the same tagpair.

Each time j performs an operation, it starts by reading all variables in the
j t h row, including the "diagonal" variable x(j, j). The tagpair that it writes is
then chosen to be at least as large as the tagpair that it finds in x (j , j) . But
this is the same as the tagpair in x (i , j) prior to the operation. So the tagpair
in x(i, j) after the operation is at least as large as before the operation. This is
enough to show the claim. [--I

Next, define II to be the set of operations occurring in c~. For every (W R I T E
or READ) operation 7r C II, we define tagpair(Tr) to be the unique tagpair value
that it writes.

C l a i m 13.19 All tagpair(Tr) values for distinct W R I T E operations in c~ are
distinct.

13.4. R E A D / W R I T E A T O M I C O B J E C T S 439

P r o o f . For W R I T E operations on different ports this is certainly true, since

the index fields of the tagpairs are different.
So consider operations on the same port; by well-formedness, these operations

occur sequentially. Let ~ and r be two W R I T E operations on port i and assume
without loss of generality that ~ precedes r Then ~ completes writing to all the
variables in the ith column before r begins reading the variables in the ith row.
In particular, r sees, in the "diagonal" variable x(i, i), a tagpair written by ~ or
a later operation. By Claim 13.18, this tagpair is at least as large as that of ~.

Then r chooses a larger, and hence a different, tagpair for itself. D

Now we define a partial ordering on operations in H. Namely, we say that
-~ r exactly if either of the following applies"

1. tagpair(7c) < tagpair(r

2. tagpair(7c) - tagpair(r 7r is a W R I T E and r is a R E A D

It is enough to verify that this satisfies the four conditions needed for Lemma
13.16 (w h e r e / 3 - trace(c~) - c~]ext(A x U)).

1. For any operation 7r C H, there are only finitely many operations r such
that r -~ 7r.

Suppose for the sake of contradiction that operation 7r has infinitely many
-~ predecessors. Claim 13.19 implies that it cannot have infinitely many
predecessors that are W R I T E operations, so it must have infinitely many
predecessors that are R E A D operations. Without loss of generality, we

may assume that ~ is a WRITE.

Then there must be infinitely many R E A D operations with the same tag-
pair, t, where t is smaller than tagpair(Tc). But the fact that ~ completes in

implies that tagpair(Tr) eventually gets writ ten to some variable in each

row. After this happens, Claim 13.18 implies that any R E A D operation
that is subsequently invoked is guaranteed to see, and thus to obtain, a tag-
pair that is _> tagpair(zr) > t. This contradicts the existence of infinitely
many R E A D operations with tagpair t.

2. If the response event for 7r precedes the invocation event for r in ~, then

it cannot be the case that r -~ ~.

Suppose that ~'s response precedes the invocation of r When ~ com-
pletes, its tagpair has been writ ten to all its column variables. Thus by
Claim 13.18, when r reads its row variables, it reads a tagpair that is at
least as large as tagpair(zr). Therefore, tagpair(r is chosen to be at least as

440 13. ATOMIC OBJECTS

large as tagpair(Tr). Moreover, if r is a WRITE operation, then tagpair(r
is chosen to be strictly greater than tagpair(7c).

Since tagpair(Tr) <_ tagpair(r the only way we could have r -< :r is if
tagpair(Tr) = tagpair(r 7r is a READ operation and r is a WRITE oper-
ation. But this is not possible, because if r is a WRITE, then, as noted
above, we have tagpair(r > tagpair(Tr). So it is not the case that r -< 7r.

3. If 7r is a WRITE operation in II and r is any operation in II, then either
7r -< r r 7r.

By Claim 13.19, all WRITE operations obtain distinct tagpairs. This
implies that all of the WRITEs are totally ordered and also that each

READ is ordered with respect to all the WRITEs.

4. The value returned by each READ operation is the value writ ten by the
last preceding WRITE operation according to -< (or v0, if there is no such
WRITE).

Let 7r be a READ operation. The value v returned by 7r is just the value
that 7r finds associated with the largest tagpair, t, among the variables in
its row; this t also becomes the tagpair of 7r. There are two cases:

(a) Value v has been written by some WRITE operation r with tagpair
t.
In this case, the ordering definition ensures that r is the last WRITE
preceding 7r in the -< order, as needed.

(b) v = v 0 a n d t = 0 .
In this case, the ordering definition ensures that there are no WRITEs
preceding 7r in the -< order, as needed.

C o m p l e x i t y a n a l y s i s . The VitanyiAwerbuch algorithm uses n 2 shared vari-
ables, each of unbounded size, even if the underlying domain V is finite. Each
READ and each WRITE that completes involves 4n shared memory accesses,
for a total time complexity that is O (ng).

1 3 . 4 . 4 A B o u n d e d A l g o r i t h m fo r T w o W r i t e r s

Like the UnboundedSnapshot algorithm, the VitanyiAwerbuch algorithm has the
disadvantage that it uses unbounded-size shared variables to store unbounded
tags. Many alternative algorithms have been designed that use only bounded
data, but unfortunately, most are rather complicated (as well as too inefficient

13.4. R E A D ~ W R I T E ATOMIC OBJECTS 441

WRITE,
~ - ~ write

WRITE, ..-

READ2

F i g u r e 13.10" Architecture for the Bloom algorithm with two readers.

to be practical). In this section, we present only one very simple algorithm, for
a special case.

Namely, we describe the Bloom algorithm for implementing a 2-writer/p-
reader read /wr i te atomic object using two 1-wri ter /p + 1-reader registers, x(1)
and x(2). (Now n = 2 + p.) Each x (i) i s writable by WRITE process i and
readable by all the other processes. Figure 13.10 depicts the architecture for
the special case of two readers. The algori thm is simple but does not have an
apparent generalization to more writers.

B l o o m a l g o r i t h m :

The algori thm uses two shared variables, / (1) and x(2), where x(i) is
writable by process i and readable by all other processes. Here let i denote
2 if i - 1, and 1 if i - 2. Register x(i) has the following fields:

valc V, initially v0
tag C {0, 1}, initially 0

When a WRITE(v)i occurs on port i, i C {1,2}, process i behaves as
follows. First , it reads x(i); let b be the tag it finds there. Then it writes
x(i), setting the fields as follows"

1. x (i) . v a l " - v

2. x(i).tag "- b + i rood 2

442 13. ATOMIC OBJECTS

Finally, it outputs A CKi.

Thus, when a WRITE process i performs a WRITE, it not only writes the
new value into its variable, but it also at tempts to make the sum of the tags
in the two variables equal to its own index, modulo 2. That is, process 1
always tries to make the tags in the two variables unequal, while process

2 tries to make them equal.

When a READi occurs on port i, 3 _< i _< n, process i behaves as follows.

First, it reads both registers; let b be the sum modulo 2 of the two tags
that it finds there. Then it rereads register x(1) if b - 1 and register x(2)

if b - 0, and returns the val that it finds there.

Thus, all READ processes behave in exactly the same way. Each READ
process reads both registers to determine whether they contain equal or

unequal tags. If the tags are equal, the process obtains its return value
from x(2), and otherwise from x(1).

T h e o r e m 13.20 The Bloom algorithm is a read/write atomic object guarantee-
ing wait-free termination.

Once again, in order to prove correctness, we could proceed by explicitly

inserting serialization points and then showing that the atomicity property is

satisfied. However, this time we use an interesting strategy based on a combina-
tion of Lemma 13.16 and a simulation proof, as defined in Section 8.5.5. We first

define a variant of the Bloom algorithm, IntegerBloom, which uses integer-valued
tags instead of bits. We show that IntegerBloom is correct, using Lemma 13.16.
Then we show that Bloom is correct by using a simulation relation from Bloom
to IntegerBloom.

I n t e g e r B l o o m algorithm:

The algorithm uses two shared variables, x(1) and x(2), where x(i) is

writable by process i and readable by all other processes. Register x(i)
has the following fields:

val E V, initially vo
tag E N, initially 0 for i - 1 and 1 for i - 2

When a WRITE(v)i occurs on port i, i e {1,2}, process i behaves as
follows. First, it reads x(i); let t be the tag it finds there. Then it writes

x(i), setting the fields as follows"

1. x(i). val "-- v

2. x(i).tag "-- t + 1

13.4. R E A D / W R I T E ATOMIC OBJECTS 443

Finally, it outputs A CKi.

When a READi occurs on port i, 3 _< i _< n, process i behaves as follows.
First , it reads both registers; let t l and t2 be the respective tags it finds
there. Then there are two cases" If I t l - t2[_< 1, then process i rereads
the register holding the greater tag and returns the val that it finds there.
(This register must be uniquely defined, because, as we state in Lemma
13.21 below, the tags in x(1) are always even and the tags in x(2) are always
odd.) O the rwi se - - tha t is, if [tl - t2l > 1- -process i nondeterminist ical ly
chooses either register to reread and re turns the val that it finds there.

The following lemma gives some basic propert ies of IntegerBloom. It is easy

to prove.

L e m m a 13.21 In any reachable state of IntegerBloom, the following are true:

1. x(1).tag is even.

2. x (2). tag is odd.

3. Ix (1) . tag- x(2).tag I <_ 1.

T h e o r e m 13 .22 The IntegerBloom algorithm is a read/write atomic object guar-
anteeing wait-free termination.

P r o o f . Similar to the proof of Theorem 13.17. Well-formedness and wait-free
terminat ion are easy to see. For atomicity, we use Lemma 13.16. Let a be any
execution of the IntegerBloom algorithm. As before, we assume without loss of

generality that a contains no incomplete operations.

C l a i m 13 .23 For each variable x(i), the tag values are monotone nondecreasing
in a.

Let II denote the set of operations occurring in a. For every WRITE op-
eration 7r in II, we define tag(Tr) to be the tag value wri t ten by 7r in its write
step.

Now we define a part ial ordering on operations in II. First , we order the
WRI TE operations by their tag values. If two WRITE operations have the
same tag, then they must belong to the same writer, and we order them in the
order in which they occur. Next, we order each READ operat ion in II just after
the WRI TE whose value it obtains (or before all the WRITEs, if there is no

such WRITE).
It is enough to verify that this satisfies the four conditions needed for Lemma

13.16 (w h e r e / 3 - trace(a) - alext(A x g)) . Conditions 3 and 4 are immediate,
so all we must show are Conditions 1 and 2. For these, the following is useful:

444 13. ATOMIC OBJECTS

C l a i m 13.24 If the write step of WRITE operation ~ precedes the invocation
of WRITE operation d?, then ~ -~ r

P r o o f . If 7~ and r occur on the same port, then Claim 13.23 implies tha t

tag(Tr) < tag(d?), and the definition of -~ implies that 7r -~ r On the other hand,
if ~ and r occur on different ports, then r reads the result of either ~ or a later

WRITE on ~'s port. By Claim 13.23, the tag read by r is greater than or equal

to tag(Tr). Therefore, tag(Tr) < tag(C), so again 7r -< r ff]

C l a i m 13.25 If the write step of WRITE operation 7~ precedes the invocation
of READ operation r then 7~ -~ r

P r o o f . We must show tha t r returns the result of ~ or of some other WRITE
~p with 7~ -~ ~p. Let t - tag(~) and suppose that 7~ occurs on port i.

When r is invoked, Claim 13.23 implies that x(i).tag > t, and Lemma 13.21
implies that]x(1).tag - x(2).tag] ! 1. Therefore, when r is invoked, x(i).tag >
t - 1. By the definition of -~ and Claim 13.23, the only problem is if r returns
the value of some WRITE with t a g - t - 1. So suppose this is the case.

Then r must see x(i).tag - t - 1 on either its first or its second read, and

again on its third read. If r sees x(i).tag - t on either its first or second read,
then the combination of tags t - 1 and t causes 4) to choose to reread register x(i)
ra ther than register x(i), a contradiction. So it must be that r sees x(i).tag > t.
But Lemma 13.21 implies that by the time 4) sees x(i).tag > t, it must also be
the case that x(i) > t - 1. This means tha t 4) cannot see x(i) - t - 1 on its third
read, again a contradiction. D

Using Claims 13.24 and 13.25, Condition 1 is easy to show; we leave this for
an exercise.

For Condition 2, suppose tha t the response event for 7~ precedes the invoca-
tion for r in/3. If ~ is a WRITE, then Claims 13.24 and 13.25 imply that 7~ -~ r
So suppose tha t 7~ is a READ. Suppose for the sake of contradiction tha t ~b -~ 7~.

If r is a WRITE, then clearly ~ cannot re turn the result of r since r does
not perform its write step until after r has completed. So the only problem is
if 7~ returns the result of some WRITE ~, where r -~ W. But in this case, the
write step within ~ precedes the end of 7~ and so precedes the invocation of r
But then Claim 13.24 implies tha t ~ -< r a contradiction.

On the other hand, if r is a READ, then the assumption that r -~ ~ implies
that there must be some WRITE operat ion ~ such that r -< ~ and 7~ obtains
the result of ~. Since w obtains the result of ~, it must be tha t the write step
within ~ precedes the end of 7~ and so precedes the invocation of r But then

Claim 13.25 implies tha t ~p -~ r again a contradiction. E]

13.4. READ~WRITE ATOMIC OBJECTS 445

Now we show the correspondence between the Bloom and IntegerBloom al-
gorithms, using a simulation relation. The general strategy is described in Sec-
tion 8.5.5 and is used in other proofs in Example 8.5.6 and in Section 10.9.4.

The correspondence between the two algorithms turns out (strangely enough)
to be that the {0, 1}-valued tags used in the Bloom algorithm are the second-
lowest-order bits of the integer-valued tags in the IntegerBloom algorithm.

Example 13.4.1 Bits versus integers in the B l o o m algorithm

Consider an execution of IntegerBloom in which WRITE operations
alternate on ports 1 and 2, beginning with port 1; each WRITE
begins only after the previous one has completed. Then each WRITE
produces a successively larger tag. The tag values in the two registers,
written in binary notation, are shown in Figure 13.11. Initially, x(1)
and x(2) start with tags 0 and 1, respectively. The first WRITE1
sets x(1).tag := 2, and then a WRITE2 sets x(2).tag := 3, and so on.

In the corresponding execution of Bloom, the tag values in the
two registers are as shown in Figure 13.12. Initially, both registers
start with tag = 0. Each WRITE1 sets x(1).tag to be unequal to
x(2).tag, while each WRITE2 sets x(2).tag to be equal to x(1).tag.

Notice that in each case, the tag in the Bloom execution is just the
second-lowest-order bit of the corresponding tag in the IntegerBloom
execution.

It turns out that the correspondence illustrated in Example 13.4.1 holds in all
executions of the two algorithms. If s and u are states of the Bloom and Integer-
Bloom systems (algorithms plus users), respectively, then we define (s, u) C f
(or u C f(s)), provided that all state components are identical, except that wher-
ever u has an integer-valued tag, t, s has a bit-valued tag whose value is the
second-lowest-order bit of t.

X (1): 000 010 100 110

// // // ,,X i...
x (2): 001 O11 101 111

Figure 13.11: Successive tag values in the two registers, in the IntegerBloom algo-
rithm.

446 13. ATOMIC OBJECTS

x (1): 0 1 0

/ / / /
x (2): 0 1

1

/ / i
0 1

OD O

F i g u r e 13.12" Successive tag values in the two registers, in the Bloom algorithm.

L e m m a 13 .26 f is a simulation relation from Bloom to IntegerBloom.

P r o o f S k e t c h . Since the unique initial states of the two algori thms are related
by f , the s tar t condition of the simulation definition is s t raightforward. The
interesting thing to show is the step condition. It is enough to show that for any
step (s, rr, s') of Bloom and any u E f(s) , where s and u are reachable states,
there is a corresponding step (u, r u/) of IntegerBloorn, where u' C f(s ') and r is
"almost" the same as 7r. Specifically, r is the same as 7r except that it can involve
an integer value, whereas 7r involves the second-lowest-order bit. We consider
cases, based on 7r. If rr is an invocation or response event, then the arguments
are s t raightforward. The interesting steps are the write steps within the WRITE
operations and the third read steps within the READ operations.

So suppose that (s, rr, s') is a step of Bloom in which process 1 writes x(1)

as par t of a WRITE1 operation. Then process 1 sets x(1).tag to be unequal to
the value b that it remembers reading from x(2).tag. That is, s'.x(1).tag r b.
In the corresponding state u of IntegerBloom, process i remembers reading an
integer-valued tag t from x(2).tag; since u E f(s) , it must be that b is the second-
lowest-order bit of t. Let u t be the unique state that results in IntegerBloom.
Then u'.x(1).tag = t + 1. To see that u' C f(s ') , we need to show that the
second-lowest-order bit of u'.x(1).tag is equal to s'.x(1).tag, that is, that the
second-lowest-order bit of t + 1 is unequal to b. But this follows from the fact
that t is odd (by Lemma 13.21) and the fact that b is the second-lowest-order bit
of t.

The argument for the case where (s, rr, s ~) is a step in which process 2 writes

x (2) is similar.
Now suppose that (s, 7r, s ~) is a step of Bloom at which process i performs

the third read step within a READ. The key claim is that IntegerBloom permits

process i to read the same register, x(1) or x(2). Suppose that, in state s, the
tags that process i of Bloom remembers reading in x(1) and x(2) are bl and
b2, respectively; likewise, suppose that in state u, the tags that process i of
IntegerBloom remembers reading in x(1) and x(2) are tl and t2, respectively.

13.4. READ~WRITE ATOMIC OBJECTS 447

Since u E f (s) , we know that bl is the second-lowest-order bit of tl and b2 is the
second-lowest-order bit of t2. There are three cases.

1. tl = t 2 + 1.
Then Lemma 13.21 implies that the second-lowest-order bits of t l and t2
are unequal. In this case, both Bloom and IntegerBloom read from register
x(1).

2. t2 = t 1 + 1 .
Then Lemma 13.21 implies that the second-lowest-order bits of t l and t2
are equal. In this case, both Bloom and IntegerBloorn read from register

3. tl 7 ~ t2 + 1 and t2 :/: tl + 1.
Then Lemma 13.21 implies that It1 - t21 > 1. In this case, IntegerBloom
permits either register to be read.

El

Now we can prove Theorem 13.20, which asserts the correctness of the Bloom
algorithm.

P r o o f (of T h e o r e m 13.20) . Lemma 13.26 and Theorem 8.12 imply that ev-
ery trace of the Bloom system is a trace of the IntegerBloom system. (Recall
that traces here include invocation and response events on ports, plus the stop
events.) Theorem 13.22 implies that the well-formedness and atomicity condi-
tions hold for IntegerBloom. Since the well-formedness and atomicity conditions
are expressible as properties of traces, they carry over to the Bloom algorithm.
Wait-free termination is easy to see. 77

C o m p l e x i t y a n a l y s i s . The Bloom algorithm uses two shared variables, each
of which can take on 2IV I values. Each operation requires only a constant number
of shared memory accesses, or time O (g).

13.4.5 An Algor i thm Us ing Snapshots

In this final subsection, we give an implementation, SnapshotRegister, of a wait-
free m-writer~p-reader read/wr i te atomic object using a snapshot shared vari-
able. (Again, let n = rn + p.) Combining SnapshotRegister with the implemen-
tations of snapshot atomic objects in Section 13.3, using Corollary 13.9, yields
implementations of wait-free m-writer~p-reader atomic objects using l -wr i te r /n -
reader shared registers.

448 13. ATOMIC OBJECTS

The snapshot shared variable used by SnapshotRegister has unbounded size,
even if the underlying domain V for the read/wri te atomic object being imple-
mented is bounded. It is possible, though quite difficult, to modify the Snapshot-
Register algorithm to use a bounded snapshot shared variable.

SnapshotRegister algorithm:
The algorithm uses a single shared variable x, which is a snapshot object
based on a length m vector. The domain W for each component of x
consists of pairs (val, tag), where val E V and tag C N; the initial value w0
is (v0, 0).

Each WRITE process i, 1 <_ i _< m, performs update(i, w) and snap op-
erations on x, while each READ process i, m + 1 _< i _< n, performs only
snap operations on x.

When a READi input occurs on port i, m + 1 _< i <__ n, process i behaves
as follows. First, it performs a snap operation on x, thereby determining a
vector u. Let j be the index, 1 _< j _< m, such that the pair (u(j).tag, j) is
largest, in the lexicographic ordering of pairs. Then process i returns the
associated value u(j).val.

When a WRITE(v)i input occurs on port i, 1 <_ i <_ m, process i behaves
as follows. First, it performs a snap operation on x, thereby determining
a vector u. As above, let j be the index, 1 _< j _< m, such that the pair
(u(j).tag, j) is largest, in the lexicographic ordering of pairs. Then process
i performs an update(i, (v, u(j).tag + 1)). Finally, process i outputs ACKi.

The SnapshotRegister algorithm is somewhat similar to the VitanyiAwerbuch
algorithm, but it is simpler because of the extra power provided by the snapshot
shared memory.

T h e o r e m 13.27 The SnapshotRegister algorithm is a read/write atomic object
guaranteeing wait-free termination.

P r o o f Ske tch . This is similar to the proofs for VitanyiAwerbuch and Integer-
Bloom, using Lemma 13.16, but simpler. We leave it as an exercise. [-1

C o m p l e x i t y ana lys i s . The SnapshotRegister algorithm uses one snapshot
shared variable, which is of unbounded size, even if the underlying domain V
is finite. Each operation requires only a constant number of shared memory
accesses, for a total time that is 0 (t~).

13.5. BIBLIOGRAPHIC NOTES 449

Hie ra rch ica l cons t ruc t ion . Theorem 13.27 and any wait-free implementa-
tion of the snapshot atomic object together yield a wait-free implementation
of an m-writer/p-reader read/write atomic object using 1-writer/m + p-reader
shared registers. The proof is based on Corollary 13.9. (Technically, in order to
apply Corollary 13.9, we need a snapshot atomic object with only n - m + p
ports, one per process--for example, WRITE process i should perform both its
update and snap operations on the same port. There is no problem modifying
the snapshot atomic object external interface and implementations to permit
this.)

Genera l i za t ions . There are several interesting generalizations of the Snapshot-
Register algorithm that also work correctly. First, during a WRITEi, if i = j - -
that is, if process i itself has the largest tag pair-- then i may optionally use the
same tag that it previously had. Second, it is possible to use nonnegative real-
valued tags rather than integer-valued tags. Then the tag chosen by a writer
i can be any real number that is strictly greater than the largest tag it sees.
Once again, if i itself has the greatest tag pair, then it can reuse its previous
tag. Both of these generalizations are useful for proving the correctness of other
implementations of read/write atomic objects using a snapshot shared variable.

13.5 Bibliographic Notes

The idea of an "atomic object" appears to have originated with the work of Lam-
port [181, 182] on read/write atomic objects. Herlihy and Wing [153] extended
the notion of atomicity to arbitrary variable types and renamed it linearizability.
Khnig's Lemma was originally proved by Khnig [170]; a proof appears in Knuth's
book [169]. The canonical wait-free atomic object automaton is derived from the
work of Merritt, described in [3]. The connection between atomic objects and
shared variables is derived from work by Lamport and Schneider [186] and by
Goldman and Yelick [139]. The impossibility of implementing read-modify-write
atomic objects using read/write objects is due to Herlihy [150].

The idea of a snapshot atomic object is due to Afek, Attiya, Dolev, Gafni,
Merritt, and Shavit [3] and to Anderson [11, 12], inspired by the work of
Chandy and Lamport on consistent global snapshots in distributed networks [68].
The snapshot atomic object implementations presented here, both Unbounded-
Snapshot and BoundedSnapshot, are due to Afek, et al. The handshake strategy
used in the BoundedSnapshot protocol is due to Peterson [240]. A more re-
cent atomic snapshot algorithm, requiring only O (nt~logn) time rather than
quadratic time, has been developed by Attiya and Rachman [26].

450 13. ATOMIC OBJECTS

Many algorithms have been designed for implementing read/write atomic
objects in terms of simpler kinds of read/write registers. The VitanyiAwerbuch
algorithm appears in a paper by Vitanyi and Awerbuch [283]; that paper also
contains an algorithm using bounded shared variables, but that algorithm is in-
correct. The Bloom algorithm is due to Bloom [53], and the SnapshotRegister
algorithm is derived from work by Gawlick, Lynch, and Shavit [135]. Bounded al-
gorithms for implementing single-writer/multi-reader atomic objects using single-
writer/single-reader registers have been designed by Singh, Anderson, and Gouda
[263] and Haldar and Vidyasankar [144]. Bounded algorithms for implementing
multi-writer/multi-reader atomic objects using single-writer/multi-reader regis-
ters have been designed by Peterson and Burns [241]; Schaffer [254]; Israeli and
Li [162]; Li, Tromp, and Vitanyi [196]; and Dolev and Shavit [100]. In particular,
Schaffer's algorithm corrects errors in Peterson and Burns's algorithm. Gawlick,
Lynch, and Shavit [135] describe an implementation of multi-writer/multi-reader
atomic objects using a bounded snapshot variable and prove the correctness of
this algorithm by a simulation proof, relating it to the generalized version of
the SnapshotRegister algorithm. Several of these constructions use a notion of
"bounded timestamping." Bounded timestamping algorithms have been given
by Israeli and Li [162]; Dolev and Shavit [100]; Gawlick, Lynch, and Shavit
[135]; Israeli and Pinchasov [163]; Dwork and Waarts [107]; and Dwork, Herlihy,
Plotkin, and Waarts [102].

Attiya and Welch have compared the costs of implementing read/write atomic
objects with those of implementing read/write objects with slightly weaker con-
sistency requirements [28]. Their work is carried out in the asynchronous network
model.

13.6 E x e r c i s e s

13.1. Define the external interface for a 2-writer/i-reader atomic object and give
several interesting examples of sequences for this external interface that
satisfy the atomicity property, as well as sequences that do not satisfy the
atomicity property. Be sure to include both finite and infinite sequences,
as well as sequences that contain incomplete operations.

13.2. Consider a read-modify-write atomic object whose domain V is the set of
integers and whose initial value is 0. (See Section 9.4 for the definition
of a read-modify-write variable type--recall that the return value for a
read-modify-write shared variable is the value of the variable prior to the
operation.)

The object has two ports: port 1 supports increment operations (which

13.6. EXERCISES 451

add 1 to the value in the object) only and port 2 supports decrement
operations (which subtract 1) only. Which of the following sequences satisfy
the atomicity property?

(a) increment1, decrement2, 01,02

(b) increment1, decrement2,--11,02

(c) incrementl, decrement2, 01, 12

(d) decrement2, incrementl, 01, incrementl, 11, incrementl, 21, increment1,
31, . . .

(e) decrement2, incrementl, 01, incrementl, 01, increment1, 11, increment1,
21, . . .

13.3. Fill in some more details in the proof of Theorem 13.1. In particular, show
in more detail than we have in the text that there are arbitrari ly long paths
from the root and that an infinite path yields a correct selection for the
entire sequence/3.

13.4. Generalize the definition of a variable type to allow finitely many initial
values rather than just one and to allow finite nondeterministic choice rather
than just a function. Generalize Theorem 13.1 and its proof to this new
setting. What happens if we allow infinite nondeterminism?

13.5. Suppose that we modify Example 13.1.4 so that the system supports decre-
ment operations as well as read and increment operations. The algori thm
is the same as before, with the following addition: when a decrementi input
occurs on port i, process i decrements x(i).

Is the resulting system a read / increment /decrement atomic object? Either
prove that it is or give a counterexample execution.

13.6. Prove Theorem 13.4.

13.7. Prove Theorem 13.5.

13.8. Prove Theorem 13.6.

13.9. Show that Theorem 13.7 is false if we do not include the special assumption
about A's turn function.

13.10. Give a formal description, using precondition-effect notation, of the RMW-
fromRW algorithm. Your description should be modular in that it should
represent the mutual exclusion component as a separate automaton, com-
bined with the main portion of the RMWfromRW algorithm using I /O

452 13. ATOMIC OBJECTS

automaton composition. Prove that your algorithm works correctly (as-
suming the correctness properties of the mutual exclusion component).

13.11. Consider a modification of the UnboundedSnapshot algorithm in which each
snap and embedded-snap looks for three different tags for some x(i) rather
than four as described. Is the modified algorithm still correct? Either
prove that it is or give a counterexample execution.

13.12. Consider a modification of the UnboundedSnapshot algorithm in which pro-
cess i increments x(i).tag when it performs a snap operation, as well as
when it performs an update operation. (The x(i).val and x(i).view com-
ponents are not changed, and the embedded-snap operation is not modified
in any way.)

Is the modified algorithm still correct?
counterexample execution.

Either prove that it is or give a

13.13. Research Question: Can you give an alternative proof of correctness for
the UnboundedSnapshot algorithm, based on a formal relationship with the
appropriate canonical wait-free atomic object automaton?

13.14. Design a modification of the BoundedSnapshot algorithm that eliminates
the toggle bits. In your algorithm, a snap process should determine the
consistency of two sets of reads, based not only on the handshake bits but
also on the val fields. Prove that your algorithm is correct.

13.15. Research Question: Design a more efficient implementation of a wait-free
snapshot atomic object than the BoundedSnapshot algorithm, also using
bounded-size single-writer/multi-reader read/wri te shared variables. Can
you design one that terminates in linear rather than quadratic time in the
number of processes?

13.16. Research Question: Design a good implementation of a snapshot atomic
object that allows updates to the same vector component to occur on several
ports (and hence, concurrently).

13.17. Give a simplified version of the Bakery algorithm of Section 10.7 that uses
snapshot shared variables. Prove its correctness.

13.18. State carefully and prove a result asserting the impossibility of solving
the agreement problem with l-failure termination using snapshot atomic
objects.

13.6. EXERCISES 453

13.19. Give an efficient implementation of a read/update/snap atomic object, us-
ing single-writer/multi-reader read/write shared variables. Prove its cor-
rectness and analyze its complexity.

13.20. Give a simplified version of the Bakery algorithm of Section 10.7 that uses
read/update/snap shared variables. Try to make your algorithm as sim-
ple and efficient as you can. Prove its correctness and analyze its com-
plexity. In your complexity analysis, consider the cost of implementing
the read/update/snap variables in terms of an underlying model based
on single-writer/multi-reader read/write shared variables, as described in
Exercise 13.19.

13.21. Generalize Lemma 13.16 to handle arbitrary variable types rather than just
read/write types.

13.22. Is the "propagation phase" of the READ protocol in the VitanyiAwerbuch
algorithm needed? Either prove that the algorithm works without it or
exhibit a counterexample.

13.23. Give an alternative correctness proof for the VitanyiAwerbuch algorithm,
based on explicitly inserting serialization points into an arbitrary execu-
tion in which all operations complete, and then showing that the atomicity
property is satisfied.

13.24. Design a simplified version of the VitanyiAwerbuch algorithm for the set-
ting where the read/write shared variables are single-writer/multi-reader
variables. Is the propagation phase of the READ protocol needed? Prove
correctness and analyze complexity.

13.25. Prove that the third read within the READ protocol in the Bloom algorithm
is necessary. That is, give an incorrect execution of the modified algorithm
in which each READ simply returns the value already read (in the first or
second read) from the appropriate register.

13.26. Near the end of the description of the IntegerBloom algorithm, it is specified
that if Itl - t21 > 1, then process i nondeterministically chooses either
register to reread. Give a particular execution in which this case arises.

13.27. Prove that Condition 1 of Lemma 13.16 holds, in the proof of Theo-
rem 13.22.

13.28. Fill in the details in the proof of Lemma 13.26. This requires writing
precondition-effect code for the Bloom and IntegerBloom algorithms.

454 13. ATOMIC OBJECTS

13.29. Research Question: Try to extend the Bloom algorithm to more than two
writers.

13.30. Prove Theorem 13.27.

13.31. Give example executions to show that the SnapshotRegister algorithm is not
correctly serialized by serialization points placed in either of the following
two ways:

(a) For a READ: at the point of its snap operation; for a WRITE: at the
point of its update operation.

(b) For every operation: at the point of its snap operation.

13.32. Describe a single algorithm that generalizes the SnapshotRegister algorithm
in both of the two ways described at the end of Section 13.4.5. That is,
a WRITE process whose own tag is the largest is allowed (though not
forced) to reuse its tag, and real-value tags are permitted. Try to make
your algorithm as nondeterministic as possible.

13.33. Design an algorithm to implement an m-writer/p-reader read/write atomic
object with domain V and initial value v0, using a snapshot shared variable.
Unlike the SnapshotRegister algorithm, your snapshot variable should be of
bounded size, in the case where V is finite. (Warning: This is very hard.)

13.34. Research Question: Use Lemma 13.16 to prove the correctness of some of
the other atomic register implementations in the research literature.

13.35. Research Question: Design efficient and simple implementations of multi-
writer/multi-reader read/write atomic objects using bounded-size single-
writer/single-reader registers.

13.36. Research Question: Design a hierarchy of atomic objects that are efficient
and simple enough to be used as the basis for the development of a practical
multiprocessor system.

Part IIB

Asynchronous Network
Algorithms

Chapters 14-22 deal with algorithms for the asynchronous network model,
in which processes take steps asynchronously and communicate by exchanging
messages. The ideas in these chapters build in many interesting ways on ideas
presented in Parts I and IIA.

As usual, we begin with a chapter containing our formal model, Chapter 14.
We follow this with Chapter 15, which contains a survey of basic algorithms for
asynchronous networks, all programmed directly in terms of the model. Since
some of these algorithms turn out to be quite complicated, we proceed, in Chap-
ters 16-19, to introduce four techniques for simplifying the programming of asyn-
chronous networks. The first technique, described in Chapter 16, is the intro-
duction of a synchronizer. The second technique, described in Chapter 17, is
the simulation of the asynchronous shared memory model by the asynchronous
network model. The third technique, described in Chapter 18, is the assignment
of consistent logical times to events in an asynchronous distributed network.
Chapter 19 contains our fourth technique, the monitoring of asynchronous net-
work algorithms while they run.

We then return to the study of specific problems in the asynchronous network
setting. Chapter 20 studies the problem of resource allocation in asynchronous
networks. Chapter 21 considers the problem of computing in an asynchronous
network in the presence of failures. Finally, Chapter 22 considers the data link
problem, a problem of implementing reliable communication in an unreliable
network.

This Page Intentionally Left Blank

Chapter 14

Modelling IV: Asynchronous
Network Model

In this chapter, we change the computing paradigm once again, this time switch-
ing from asynchronous shared memory systems to asynchronous networks. An
asynchronous network consists of a collection of processes communicating by
means of a communication subsystem. In the version of this model that is most
frequently encountered, this communication is point-to-point, using send and re-
ceive actions. Other versions of the model allow broadcast actions, by which a
process can send a message to all processes in the network (including itself),
or multicast actions, by which a process can send a message to a subset of the
processes. Special cases of the multicast model are also possible, for example,
one that allows a combination of broadcast and point-to-point communication.
In each case, various types of faulty behavior of the network, including message
loss and duplication, can be considered.

The chapter contains three main sections, treating send/receive systems,
broadcast systems, and multicast systems, respectively.

14.1 Send/Receive Systems

As in the synchronous network model defined in Chapter 2, we start with an
n-node directed graph G = (V, E). As before, we use the notation out-nbrsi and
in-nbrsi to denote the outgoing and incoming neighbors of node i in the digraph,
distance(i, j) for the length of the shortest directed path from i to j in G, and
diam for the maximum distance from any node to any other.

As in the synchronous network model, we associate processes with the nodes
of G and allow them to communicate over channels associated with directed

458 14. MODELLING IV: ASYNCHRONOUS NETWORK MODEL

edges. However, unlike in the synchronous model, there are no synchronous
rounds of communication: now we allow asynchrony in both the process steps
and the communication. To describe this asynchrony, we model the processes
and the channels as I /O automata. Let M be a fixed message alphabet.

14 .1 .1 P r o c e s s e s

The process associated with each node i is modelled as an I /O automaton, Pi.
Pi usually has some input and output actions by which it communicates with an
external user; this allows us to express problems to be solved by asynchronous
networks in terms of traces at the "user interface." In addition, Pi has outputs
of the form send(m)i,j, where j is an outgoing neighbor of i and m is a message
(that is, an element of M), and inputs of the form receive(m)j,i, where j is an
incoming neighbor of i. Except for these external interface restrictions, Pi can
be an arbitrary I /O automaton. (For specific results, we might sometimes want
to impose additional restrictions on Pi, such as limiting the number of tasks
or the number of states.) See Example 8.1.2 for an example of a process I /O
automaton.

We consider two kinds of faulty behavior on the part of node processes:
stopping failure and Byzantine failure. The stopping failure of Pi is modelled by
including in the external interface of Pi a stopi input action, the effect of which
is to permanently disable all tasks of Pi. (We do not constrain the state changes
caused by a stopi, nor the state changes caused by subsequent input actions.
It is not important to constrain these state changes, because their effects could
never be seen outside Pi, anyway.) The Byzantine failure of Pi is modelled
by allowing Pi to be replaced by an arbitrary I /O automaton having the same
external interface.

14 .1 .2 S e n d / R e c e i v e C h a n n e l s

The channel associated with each directed edge (i, j) of G is modelled as an I /O
automaton Ci,j. Its external interface consists of inputs of the form send(m)i,j
and outputs of the form receive(m)i,j, where m E M. In general, except for this
external interface specification, the channel could be an arbitrary I /O automaton.
However, interesting communication channels have restrictions on their external
behavior, for example, that any message that is received must in fact have been
sent at some earlier time. The needed restrictions on the external behavior of
a channel can generally be expressed in terms of a trace property P, as defined
in Section 8.5.2. The allowable channels are those I /O automata whose external
signature is sig(P) and whose fair traces are in traces(P).

14.1. SEND/RECEIVE SYSTEMS 459

There are two ways in which such a trace property P is commonly specified:
by listing a collection of axioms or by giving a particular I /O automaton whose
external interface is sig(P) and whose fair traces are exactly traces(P). An
advantage of listing axioms is that this makes it easier to define a variety of
channels, each of which satisfies a different subset of the axioms. On the other
hand, an advantage of giving an explicit I /O automaton is that in this case,
the entire system consisting of the processes and the most general allowable
channels is described as a composition of I /O automata, which is itself another

I /O automaton. This allows us to use the proof methods that have been developed
for automata. For example, this provides us with a notion of "state" for the entire
system, both processes and channels, which we can use in invariant assertion and
simulation proofs.

Sometimes it may be necessary to do some rather annoying programming
to specify the desired trace property as an I /O automaton; this is especially so
when the trace property involves complicated liveness constraints. This often
leads to a mixed strategy wherein the safety properties are described in terms of
a basic automaton (which provides the machinery needed to support invariant
and simulation proofs), while the liveness properties are described using special
liveness axioms. The complete trace property P then has its traces defined to

be exactly those traces of the basic automaton that satisfy the liveness axioms.
In the rest of this subsection, we describe some particular send/receive chan-

nels that we will use in Chapters 15-22.

R e l i a b l e F I F O c h a n n e l . The communication channel that is most frequently
assumed in the research literature and that we will use most frequently here is
a reliable FIFO channel. The behaviors allowed for such a channel are easily
specified as the fair traces of an I /O automaton with the appropriate external

interface, whose state is a queue of messages. The send(m)i,j action adds m to
the end of the queue. The receive(m)i,j action is enabled if m is first on the queue,
and its effect is to remove the first message from the queue. The task parti t ion
puts all the locally controlled actions in a single class. A formal definition of this
automaton has already been given, in Example 8.1.1.

This automaton is not only a specification of the allowable behavior for reli-
able FIFO channels, it is itself an example of a reliable FIFO channel. We call
it the universal reliable FIFO channel with the given external interface.

Now we give an alternative specification, using axioms, of the allowed be-
havior for a reliable FIFO channel. Namely, we define a trace property P with
sig(P) equal to the given signature and traces(P) equal to the set of sequences
/3 of actions in sig(P) that satisfy the following condition.

460 14. M O D E L L I N G IV: A S Y N C H R O N O U S N E T W O R K M O D E L

There exists a function cause mapping each receive event in/3 to a
preceding send event in/3 such that

1. For every receive event 7r, 7r and cause(Tr) contain the same
message argument.

2. cause is surjective (onto).

3. cause is injective (one-to-one).

4. cause preserves order, that is, there do not exist receive events
71-1 and 7r2 with 7t- 1 preceding 7r2 in/3 and cause(Tr2) preceding
cause(Trx) in/3.

The cause function is a device for identifying which send event "causes" each re-

ceive event. Condition 1 says that only correct messages are delivered; Condition
2 says that messages are not lost; Condition 3 says that they are not duplicated;
and Condition 4 says that they are not reordered.

Notice that (for this part icular trace property P) the cause function for each
sequence in t races (P) is unique.

R e l i a b l e r e o r d e r i n g c h a n n e l . Another type of channel that is often con-
sidered guarantees delivery of all messages, each exactly once, but does not
necessarily preserve their order. The behaviors allowed for this type of channel
are not so easily specified using an I /O automaton, so we instead use axioms.
Namely, the specification is exactly the same as the axiomatic specification P for
the reliable FIFO channel, given above, except that Condition 4 for the cause

function is dropped.
An alternative, equivalent specification can be given using the mixed strategy

mentioned above--us ing a basic I /O automaton A to describe the safety prop-
erties and additional axioms to describe liveness. This basic automaton A is as
follows. (Here, U and E are multiset operations.)

A a u t o m a t o n :

Signature:

Input:
send(m) id , m C M

Output:
receive(m)i,j , m C M

States :
in-transit, a multiset of elements of M, initially empty

14.1. S E N D / R E C E I V E S Y S T E M S

Trans i t i ons :

send(m)i , j
Effect"

in-transit : - in-transit U { m }

461

receive(m)i,j
Precondi t ion :

m 6 in-transit
Effect:

remove one copy of m f rom in-transit

Tasks:
Arbi t ra ry .

The task part i t ion does not matter , because we are not using it here. Using
au tomaton A, we define a t race proper ty P. The signature is the same as sig(A),
and traces(P) is the set of t races of (not necessarily fair) executions c~ of A that
satisfy the following condition.

If at any point in c~ and for any m E M we have m C in-transit, then
at some later point in c~, a receive(m) event occurs.

C h a n n e l s w i t h f a i l u r e s . We can also consider send/receive channels in which
some failures occur. In this book, the only kinds of channel failures we discuss
are message loss and duplication.

A channel permit t ing a rb i t ra ry loss but no duplication, or a rb i t ra ry duplica-
tion but no loss, or a rb i t ra ry duplication and loss, can be specified in the same
way as reliable reordering channels, using the cause function. All we need to do
is to omit Condit ion 2 and /o r Condit ion 3, as appropriate.

However, often we want to assume a limited amount of message loss and /o r
duplication. For example, when we consider message loss, we generally do not
want to consider the case where all messages are lost, because in this case nothing
can be guaranteed ever to happen. A typical condition restr ict ing message loss is
one that says that a message that is sent infinitely many times must be received
infinitely many times. To say this formally, we use the following condition on
the cause function.

S t r o n g loss l i m i t a t i o n (SLL)" If there are infinitely many send(m) events in
/3 (for any par t icular m), then there are infinitely many send(m) events in
the range of the cause function.

Notice that this says that infinitely many different send events succeed in having
their messages delivered. This condition is not satisfied, for example, by a

462 14. M O D E L L I N G IV: A S Y N C H R O N O U S N E T W O R K M O D E L

sequence in which there are infinitely many receive events, all caused by the
same send event.

Another typical condition restricting message loss is one that does not men-
tion any particular m, but just says that infinitely many sends cause receives of
infinitely many messages.

W e a k l o s s l i m i t a t i o n (W L L) : If there are infinitely many send events in/3,

then the range of the cause function is infinite.

For duplication, we might want to limit the number of copies of each message
to be finite or to be bounded by some particular number k. For example,

F i n i t e d u p l i c a t i o n : The cause function maps only finitely many receive events
to any part icular send event.

So far, we have described all the channels with failures using axioms. We
now use the mixed strategy to specify two such channels.

E x a m p l e 14.1 .1 A lossy F I F O c h a n n e l

We define a channel that allows limited loss, finite duplication, and no

reordering. (This channel will be used in Section 22.3, in the descrip-
tion of the Alternating Bit communication protocol.) The automaton
is as follows.

A a u t o m a t o n :

Signature:

As usual.

States:
queue, a FIFO queue of elements of M, initially empty

Transitions:

send(m)i,j
Effect-

add any finite number of copies
of m to queue

Tasks:
Arbitrary.

receive(m)i,j
Precondition"

rn is first on queue
Effect:

remove first element of queue

The definition of automaton A guarantees that the channel does not
reorder messages and only delivers finitely many copies of any mes-

sage. However, we need to impose two extra liveness conditions.

14.1. S E N D / R E C E I V E S Y S T E M S 463

1. If, at any point, queue is nonempty, then at some later point, a
receive event occurs.

2. If there are infinitely many send events, then infinitely many of
them succeed in putting (at least one copy of) their messages
on the queue.

The combination of A and the liveness conditions are used to define a
trace property as before. This trace property implies that if there are
infinitely many send events, then infinitely many of those have cor-
responding receive events, that is, it implies the weak loss limitation
(WLL) condition.

E x a m p l e 14.1.2 A lossy r e o r d e r i n g c h a n n e l

We define a channel that allows limited loss, finite duplication, and
reordering. (This channel will be used in Section 22.2, in the de-
scription of Stenning's communication protocol.) The automaton is
as follows.

A a u t o m a t o n :

S i g n a t u r e :

As usual.

States :
in-transit, a mult iset of elements of M, initially empty

Trans i t i ons :

send(m)i, j
Effect:

add any finite number of copies
of m to in-transit

Tasks:
Arbi t rary.

receive(m)i,j
Precondit ion:

m E in-transit
Effect"

remove one copy of m from in-transit

We add two liveness conditions.

1. If, at any point, in-transit is nonempty, then at some later point,
a receive event occurs.

2. If there are infinitely many send events, then infinitely many of
them succeed in putting (at least one copy of) their messages in
in-transit.

464 14. MODELLING IV: ASYNCHRONOUS N E T W O R K MODEL

As in Example 14.1.1, the resulting trace property implies that if there
are infinitely many send events, then infinitely many of them have
corresponding receive events, that is, it implies the WLL condition.

Note that every trace allowed by the specification in Example 14.1.1
is also allowed by this specification. However, there are some traces
allowed by this specification that are not allowed by the previous one.

14.1.3 Asynchronous Send/Receive Systems

An asynchronous send/receive network system for directed graph G is obtained
by composing the process and channel I /O automata, using ordinary I /O au-
tomaton composition. An example of the architecture for such a system appears
in Figure 8.3. The composition definition allows for the right interactions among
the components; for example, when process Pi performs a send(m)i,j output
action, a simultaneous send(m)i,j input action is performed by channel Ci,j.
Appropriate state changes occur in both components.

Sometimes it is convenient to model the users of a send/receive system as
another I /O automaton, U. U's external actions are just the actions of the
processes at their user interface. The user automaton U is often described as
the composition of a collection of user automata Ui, one for each node i of the
underlying graph. In this case, Ui's external actions are the same as the actions
of Pi at the user interface. (If stopping failures are considered, the stop actions
are not included among the actions of the users.)

1 4 . 1 . 4 Properties of Send/Receive Systems with Reliable FIFO
Channels

We give a basic theorem about asynchronous send/receive network systems with
universal reliable FIFO channels, for use in Chapters 18 and 19. It identifies
circumstances under which the events of a fair trace can be reordered to yield
another fair trace. (Note that, according to the formal definition of I /O automa-
ton composition, the traces include the send and receive events, as well as the
events at the user interface.) What is required is that the reordering should
respect certain basic dependencies: the dependency of a receive event on the cor-
responding send event (with respect to the uniquely determined cause function)
and the (possible) dependency of any event on all preceding events at the same
node process.

Fix any asynchronous send/receive system A with universal reliable FIFO
channels. Let ~ be any trace of A. We define an irreflexive partial order --+~ on

14.1. S E N D / R E C E I V E S Y S T E M S 465

the events in/~ as follows. If 7r and r are two events in fl, with 7r preceding r

then we say that 7r -+Z r or r depends on 7r, provided that one of the following
holds"

1. 7r and r are events of the same process Pi.

2. 7r is of the form send(m)i,j, and 4) is the corresponding receive(m)i,j event.

3. 7r and r are related by a chain of relationships of types 1 and 2.

T h e o r e m 14.1 Let A be an asynchronous send/receive system with universal
reliable FIFO channels, and let /3 be a fair trace of A. Let y be a sequence
obtained by reordering the events in ~ while preserving the - -~ ordering. Then
"7 is also a fair trace of A.

P r o o f . Theorem 8.4 implies that fllPi E fairtraces(Pi) for every i. Since 7lPi =

~lPi for every i, it follows that ~/IP~ E fairtraces(Pi) for every i.
Theorem 8.4 also implies that ~lCi,j E fairtraces(G,j) for every i and j .

Since "~lCi,j has the same set of events as ~]Ci,j, and the reordering preserves the
order of events at Pi, the order of events at Pj, and the ordering of receive events

after their corresponding send events, it follows that lc ,j ~ fairtraces(C~,j).
Theorem 8.6 then implies that ~/E fairtraces(A). [-1

Theorem 14.1 has a corollary that says that certain reorderings of fair exe-

cutions are also fair executions.

C o r o l l a r y 14.2 Let A be an asynchronous send/receive system with universal
reliable FIFO channels, and let c~ be a fair execution of A. Let ~/ be a sequence
that is obtained by reordering the events in /3 = trace(a) while preserving the
---~ ordering. Then there is a fair execution c~' of A such that trace(c~') = "7 and
such that c~ and c~ ~ are indistinguishable 1 to every process Pi.

P r o o f S k e t c h . Theorem 14.1 implies that ~ E fairtraces(A).
and 8.5 can then be used to show the existence of the needed c~ ~.

Theorems 8.4

The execution c~ ~ whose existence is guaranteed by Corollary 14.2 cannot be
distinguished from the original execution c~ by the processes in system A (even

if they combine their information). This means that the processes do not know

the total ordering of events in an execution; they cannot determine the order of
events at different processes if those events are not related by the message and
process dependencies described by the partial order --+Z.

1This uses the formal definition of indistinguishable from Section 8.7.

466 14. MODELLING IV: ASYNCHRONOUS N E T W O R K MODEL

1 4 . 1 . 5 C o m p l e x i t y M e a s u r e s

We measure communication complexity in terms of the number of messages that
are sent and /or the number that are received. We can also take into account the
number of bits in the messages.

For measuring time complexity, we use a special case of the general time

complexity measure defined for I /O automata in Section 8.6. That is, we asso-
ciate an upper bound of t~ with each task of each process; this imposes an upper
bound of t~ on the time between successive chances for that task to perform a
step. We also need assumptions about the time for delivery of messages. For the
special case of universal reliable FIFO channels, we usually associate an upper
bound of d with the single task consisting of the receive actions of each channel;
this imposes an upper bound of d on the delivery time for the oldest message
in the channel. Thus, our usual time complexity measure takes into account the
costs of pileups of messages in channels-- the kth message on a channel's queue
is guaranteed to be delivered within time kd.

We sometimes also make a less realistic but simpler assumption about mes-
sage delivery time: an upper bound of d on the delivery time for each message
in a channel, regardless of pileups. This assumption is not expressible just by
associating time bounds with tasks (but it makes sense nonetheless). Also, we
can extend the channel time bound assumptions to non-universal FIFO channels,
in the obvious way.

14.2 Broadcast Systems

A broadcast system consists of a set of processes numbered 1 , . . . , n, plus a single
broadcast channel to model the broadcast communication subsystem. Again, let
M be a fixed message alphabet.

14 .2 .1 P r o c e s s e s

Process i in a broadcast system is modelled as an I /O automaton Pi. As for
processes in send/receive network systems, Pi usually has some input and output
actions by which it communicates with an external user. In addition, Pi has
outputs of the form bcast(m)~, where m E M, and inputs (as before) of the form
receive(m)j,i, where rn C M. Except for these external interface restrictions, Pi
can be an arbi t rary I /O automaton. See Figure 14.1.

14.2. B R O A D C A S T S Y S T E M S 467

er interface

bcast(m), ~ I receive(m;, i

F i g u r e 14.1" A process I/O automaton for an asynchronous broadcast system.

14 .2 .2 B r o a d c a s t C h a n n e l

A broadcast channel is modelled as a single I /O automaton. Its external interface
consists of inputs of the form bcast(m)~ and outputs of the form receive(m)~,j,
where m C M. In this book, we consider only reliable broadcast channels, but it
is possible also to define other types of broadcast channels that exhibit various
forms of failure.

R e l i a b l e b r o a d c a s t channe l s . A reliable broadcast channel delivers every
message that is broadcast, to every process, including the sender. We make one
assumption about the ordering of the message deliveries: that the delivery order
is FIFO between each particular pair of processes. The allowed behaviors for
such a channel are easily specified as the fair traces of a single I /O automaton
B that maintains a separate queue for each ordered pair of processes.

B a u t o m a t o n "

Signa tu re :

Input:
bcast(m)i , m E M , 1 <_ i ~_ n

Output:
receive(m)i , j , m C M , 1 <_ i , j <_ n

States:
for every i , j , 1 < i , j _~ n"

queue(i , j) , a FIFO queue of elements of M, initially empty

468 14. M O D E L L I N G IV: A S Y N C H R O N O U S N E T W O R K M O D E L

Transitions:
bcast(m)i

Effect:
for all j do

add m to queue(i, j)

Tasks:
for every i, j:

receive(m)i,j
Precondition:

rn is first on queue(i, j)
Effect:

remove first element of queue(i, j)

We call B the universal reliable broadcast channel with the given external

interface.

14.2 .3 A s y n c h r o n o u s B r o a d c a s t S y s t e m s

An asynchronous broadcas t system is obta ined by composing the process and

broadcas t channel I / O automata .

1 4 . 2 . 4 Properties of Broadcast Systems with Reliable
Broadcast Channels

The definitions and results in Section 14.1.4 can be modified for broadcas t sys-

tems with universal reliable broadcas t channels. The relevant dependencies now

are the dependency of a receive event on the corresponding bcast event and the

(possible) dependency of any event on all preceding events at the same node

process.

Fix any asynchronous broadcas t sys tem A with a universal reliable broadcas t

channel. Let ~ be any t race of A. We define an irreflexive par t ia l order on the

events in/3 as follows. If 7r and r are two events in ~, with 7r preceding r then

we say that 7r --+Z r or r depends on 7r, provided that one of the following holds:

1. 7r and r are events of the same process Pi.

2. 7r is of the form bcast(m)i, and r is a corresponding receive(m)i,j event.

3. 7r and r are related by a chain of relat ionships of types 1 and 2.

Theorem 14.3 Let A be an asynchronous broadcast system with a universal
reliable broadcast channel and let/3 be a fair trace of A. Let ~/ be a sequence
obtained by reordering the events in/3 while preserving the --+~ ordering. Then

is also a fair trace of A.

14.3. M U L T I C A S T S Y S T E M S 469

P r o o f . The proof is left as an exercise. D

C o r o l l a r y 14.4 Let A be an asynchronous broadcast system with a universal
reliable broadcast channel and let c~ be a fair execution of A. Let "7 be a sequence
obtained by reordering the events in /3 = trace(a), while preserving the --+~
ordering. Then there is a fair execution c~' of A such that trace(c~') = ~/ and
such that c~ and c~' are indistinguishable to every process Pi.

P r o o f . The proof is left as an exercise. D

1 4 . 2 . 5 C o m p l e x i t y M e a s u r e s

We can measure communication complexity either in terms of the number of
bcast events or the number of receive events.

For measuring time complexity, we use a special case of the time complexity
measure for I /O automata. Namely, we associate an upper bound of t~ with each

task of each process. And for the special case of a universal reliable broadcast

channel, we usually associate an upper bound of d with each task; this imposes

an upper bound of d on the delivery time for the oldest message in t ransi t from
each Pi to each Pj. Thus, we again take into account the costs of pileups of
messages.

Again, we occasionally make the stronger assumption of an upper bound

of d on the delivery time for each message and extend the channel time bound
assumptions to non-universal reliable broadcast channels.

14.3 Multicast Systems

Send/receive and broadcast systems are both generalized by multicast systems,
which allow each process to send a message to a subset of the processes in the
network. A multicast system contains a set of processes numbered 1 , . . . , n, plus
a single multicast channel to model the multicast communication subsystem.

The system is parameterized by a se t /7 of pairs of the form (i, I) , where i is a

process index and I is a set of process indices. Each such pair (i, I) indicates
that process i can use set I as a destination set for multicasts. Again, M is a
fixed message alphabet.

1 4 . 3 . 1 P r o c e s s e s

We again use an I / 0 automaton Pi. In addition to some actions at the user

interface, Pi has outputs of the form mcast(m)i, i , where rn is a message and

470 14. MODELLING IV: ASYNCHRONOUS N E T W O R K MODEL

(i, I) E 27, and inputs of the form receive(m)j,i. Except for these external interface
restrictions, Pi can be an arbitrary I /O automaton.

14 .3 .2 M u l t i c a s t C h a n n e l

A multicast channel is modelled as a single I /O automaton. Its external interface
consists of inputs of the form mcast(m)~,i, (i, I) E 17, and outputs of the form
receive(m)i,j. We consider only reliable multicast channels.

Rel iable mult icast channels . The allowed behaviors for a reliable multicast
channel with set I of pairs are easily specified as the set of fair traces of the
following I /O automaton B.

B automaton:

Signature:

Input:
mcast(m)i,i, m E M, (i, I) E 5[

Output :
receive(m)i,j, m E M, 1 < i , j < n

States:
for every i , j , 1 < i , j < n"

queue(i, j), a F IFO queue of elements of M, initially empty

Trans i t ions:
mcast(m)i,~

Effect:
for all j E I do

add m to queue(i, j)

receive(m)i,j
Precondit ion:

rn, is first on queue(i,j)
Effect"

remove first e lement of queue(i, j)

Tasks:
for every i, j"

{ ~ c ~ i w (. ~) ~ , , " m e M }

We call B the universal reliable multicast channel with the given external
interface.

An interesting special case of a reliable multicast channel is one in which the
allowable destination sets are exactly the singleton sets and the set { 1 , . . . , n}
of all processes. This channel supports a combination of point-to-point and
broadcast communication. Note that the FIFO order is guaranteed even between
broadcast and point-to-point messages.

14.4. BIBLIOGRAPHIC NOTES 471

14 .3 .3 Asynchronous Multicast Systems

An asynchronous multicast system is obtained by composing the process and
multicast channel I /O automata. It is straightforward to extend the definitions
and results in Section 14.1.4 to multicast systems based on universal reliable
multicast channels. Likewise, the complexity measures for broadcast systems
can be extended to multicast systems.

14.4 Bibl iographic Notes

In general, we use no special source for the modelling of asynchronous send/receive,
broadcast, and multicast networks; similar material appears in many papers on
distributed algorithms and on formal verification of network protocols. The use
of a cause function to describe the explicit connection between message sending
and receiving events is derived from the work of Fekete, Lynch, Mansour, and
Spinelli [112] and Afek, Attiya, Fekete, Fischer, Lynch, Mansour, Wang, and
Zuck [4].

Our modelling of broadcast and multicast channels only includes basic cot-
rectness and complexity properties. There has been much work on the imple-
mentation and use of broadcast and multicast channels with stronger properties,
including stronger ordering requirements and fault-tolerance properties. Hadzi-
lacos and Toueg's paper [143] gives a good overview.

14.5 Exercises

14.1. Let P be the trace property defined in Section 14.1.2 to describe the al-
lowable behaviors for a reliable FIFO send/receive channel. Prove that
traces(P) is exactly equal to the set of fair traces of the universal reliable
FIFO channel automaton with the same external interface.

14.2. Let A be any I /O automaton that implements a universal reliable FIFO
send/receive channel B - - t h a t is, A has the same external signature as
B and fairtraces(A) C_ fairtraces(B). Prove that in fact fairtraces(A) -
fairtraces(B). (In this sense, any reliable FIFO channel must be universal.)

14.3. Consider an alternative trace property Q as a specification for the allowable
behavior of a reliable FIFO send/receive channel. Q is the same as P,
only it does not require that cause(77) precede 77. Prove that for every
I /O automaton A with the appropriate external interface, fairtraces(A) C_
traces(Q) if and only if fairtraces(A) C_ traces(P).

472 14. MODELLING IV: ASYNCHRONOUS N E T W O R K MODEL

14.4. Give a careful description of a send/receive channel C that can lose mes-
sages, but not duplicate or reorder them, as an explicit I /O automaton.
Suppose that C is even permitted to lose all of its messages. However, C
should exhibit all the possible traces that satisfy this condition~for exam-
ple, it should not be required to lose messages. Define a simulation relation
(as defined in Section 8.5.5) from the universal reliable FIFO send/receive
channel of Section 14.1.2 to C, and prove that it actually is a simulation
relation.

14.5. (a) Prove that the two given specifications for the allowable behaviors of
a reliable reordering send/receive channel are equivalent.

(b) Can the allowable behaviors for a reliable reordering send/receive
channel be equivalently defined by an I /O automaton? That is, does
there exist an I /O automaton with the appropriate external signature
whose fair traces are exactly the specified sequences of actions?

14.6. (Channel multiplexing) It is possible to use a single "real" send/receive
channel to implement two or more "logical" send/receive channels, each
needed for a separate algorithm or a separate piece of one algorithm. For-
mally, suppose that P1 and P2 are trace properties describing the correct-
ness requirements for two separate channels, with disjoint message alpha-
bets Mx and M2. Then the product trace property P1 x P2 (see Section 8.5.2
for the definition of the product of trace properties) can be regarded as the
specification for another channel, guaranteeing both sets of requirements.

As an example, let P1 and P2 describe the allowed behaviors for reliable
FIFO channels, for message alphabets M1 and 3/2, respectively. Let P
descibe the allowed behaviors for a reliable FIFO channel for message al-
phabet M - M1 U 21//2.

(a) Prove that traces(P) C traces(P1 x P2).
This implies that any I /O automaton A that implements P (in the
sense that extsig(A) - sig(P) and fairtraces(A) C traces(P)) in fact
implements both channels P1 and P2 (in the sense that eztsig(A) -
sig(P1 x P2) and fairtraces (A) C_ traces (P1 x P2)).

(b) Show that t races(P)# traces(P1 x P2).
This says that P ' s behavior is more constrained than is needed in
order to implement the two channels P1 and P2.

14.7. Repeat Exercise 14.6, but in place of reliable FIFO send/receive channels,
consider channels that allow arbitrary reordering, strong loss limitation
(SLL), and

14.5. EXERCISES 4 73

14.8.

(a) no duplication

(b) finite duplication

(c) arbi t rary duplication

Prove that the FIFO assumption for reliable send/receive channels is not
necessary. Specifically, show how to t ransform any send/receive system A
based on reliable FIFO channels into a send/receive system T(A) based
on reliable reordering channels that looks the same to the environment,
in the following sense. For every fair execution c~ of T(A) there is a fair
execution a ~ of A that projects to give the same sequence of actions at the
user interface. Be sure to state your result precisely.

14.9. Prove that the FIFO assumption for reliable broadcast channels is not
necessary. That is, show that a system A with this assumption can be

t ransformed into a system T(A I without this assumption that looks the
same to the environment. Be sure to state your result precisely.

14.10. Strengthen Theorem 14.1 so that it includes a claim about what is preserved
at the user interface.

14.11. Prove Theorem 14.3.

14.12. Prove Corollary 14.4.

This Page Intentionally Left Blank

Chapter 15

Basic Asynchronous Network
Algorithms

In this chapter, we describe a collection of algorithms for solving some basic
problems--leader election, constructing an arbitrary spanning tree, broadcast
and convergecast, breadth-first search, finding shortest paths, and constructing
a minimum spanning t ree-- in the asynchronous network model with reliable
FIFO send/receive channels. The problems are, for the most part, the same
ones considered in the synchronous network model in Chapter 4. As before,
these problems are motivated by the need to select a process to take charge of a
network computation and by the need to build structures suitable for supporting
efficient communication. We do not consider faults in this chapter.

All the algorithms in this chapter are constructed by direct programming
of the "bare" asynchronous network model. It will not take long for us to see
that this model is much more difficult to program than the synchronous network
model. This will lead us to seek ways of simplifying and systematizing the
programming task. In the four chapters following this one, Chapters 16-19, we
introduce four such simplification techniques: synchronizers, simulating shared
memory, logical time, and runtime monitoring.

15.1 Leader E l e c t i o n in a R i n g

We considered the problem of leader election in a synchronous ring in Chapter 3.
For the asynchronous version of the problem, the underlying digraph is again a
ring of n processes, numbered 1 to n in the clockwise direction. As before,
we often count mod n, allowing 0 to be another name for process n, and so
on. The ring can be either unidirectional or bidirectional. Figure 15.1 shows

476 15. BASIC ASYNCHRONOUS N E T W O R K ALGORITHMS

I

F i g u r e 15.1- Architecture for unidirectional ring network.

the architecture for an asynchronous unidirectional ring network, including both
processes and channels.

Now processes and channels are modelled as I /O au tomata . As in the syn-
chronous setting, processes do not know their indices, nor those of their neigh-
bors, but use local, relative names. This allows arbi t rary processes to be ar-
ranged into a ring in an arbi t rary order. Besides the send and receive actions
by which process au tomaton Pi interacts with its channels, Pi has a leaderi out-
put action by which it can announce its election as leader. We assume, here
and throughout the rest of the chapter, tha t the channels are reliable FIFO
send/receive channels. We also assume here tha t the processes have UIDs. The
problem is for exactly one process eventually to produce a leader output .

1 5 . 1 . 1 T h e L C R A l g o r i t h m

The LCR algori thm described in Section 3.3 can easily be adapted to run in an
asynchronous network. Recall tha t in the LCR algorithm, each process sends
its identifier around the ring. When a process receives an incoming identifier,
it compares tha t identifier to its own. If the incoming identifier is greater than
its own, it keeps passing the identifier; if it is less than its own, it discards the
incoming identifier; if it is equal to its own, the process outputs leader.

15.1. L E A D E R E L E C T I O N I N A R I N G 477

T h e same idea still works in an a s y n c h r o n o u s ne twork; the m a i n difference is

t ha t now each p roces s ' s send buffer m u s t be able to hold any n u m b e r (up to n)

of m e s s a g e s i n s t ead of j u s t a single one. T h e reason for the dif ference is tha t the

a s y n c h r o n y can cause p i leups of UIDs at nodes . We call the mod i f i ed a l g o r i t h m

A s y n c h L C R .

In the following code, we use A synchLCRi as an a l t e rna t ive n a m e for p rocess

Pi in the A s y n c h L C R a lgo r i thm. W h e n we discuss the a lgo r i t hm, we use the

two names , A s y n c h L C R i and Pi, as convenient ; we also s o m e t i m e s deno te this

p rocess s imp ly as "process i." We use s imi la r convent ions e lsewhere .

A s y n c h L C R i a u t o m a t o n :

Signature:

Input" Output:
receive(v)i_l,i, v a UID send(v)i,i+l, v a UID

leader~

States:
u, a UID, initially i's UID
send, a FIFO queue of UIDs, initially containing only i's UID
status, with values in {unknown, chosen, reported}, initially unknown

Transitions:
send(v)i,i+ l leaderi

Precondition: Precondition:
v is first on send status = chosen

Effect: Effect:
remove first element of send status := reported

receive(v)i_l,i
Effect:

case

v ~ u: add v to send
v -- u: status := chosen
v < u: do nothing

endcase

Tasks:
{send(v)~,i+l"v a UID}
{leaderi}

478 15. B A S I C A S Y N C H R O N O U S N E T W O R K A L G O R I T H M S

The transitions should be self-explanatory. Process i is responsible for per-

forming two tasks: sending messages to process i + 1 and announcing itself as

the leader. Thus, it has two tasks, one for all its send actions and one for its

leader action. The behavior of the A synchLCR is essentially the same as that of
LCR, but possibly "skewed" in time.

In order to prove that AsynchLCR solves the leader-election problem, we use

invariant assertions as we did for the synchronous LCR algorithm. Invariant

assertion proofs work for asynchronous networks just as well as for synchronous

networks; the main difference is that now the method must be applied at a finer
granularity, to reason about individual events rather than about rounds.

Technically, in order to use invariant assertion proofs, we must know the

structure of the state of each channel automaton. Thus, for convenience, we

assume that the channels Ci,i+l are all universal FIFO reliable channels as defined
in Section 14.1.2. Then we know that the state of each Ci,i+l consists of a single

queue component, which we refer to as queuei,i+l. This assumption does not
restrict the generality of the results, because an algorithm that works correctly

with universal reliable FIFO channels must also work with arbitrary reliable

FIFO channels. We will make the same assumption in all of our correctness
proofs for send/receive systems with reliable FIFO channels.

Let /max denote the index of the process with the maximum UID, and let
Umax denote its UID. Here, as in the synchronous case, we must show two things:

1. No process other than imax ever performs a leader output.

2. Process imax eventually performs a leader output.

The first of these two conditions is a safety property while the second is a liveness
property.

L e m m a 15.1 No process other than imax ever performs a leader output.

P r o o f . We use an invariant similar to Assertion 3.3.3 for the synchronous
case. Recall that Assertion 3.3.3 said that no UID v could reach any send queue

between/max and v's original home i. Now, because the AsynchLCR algorithm
includes channel automata, we need a slightly stronger assertion that involves
the UIDs in the channel states as well as the UIDs in the process states. As

usual, we subscript process state components by the index of the process; we
also subscript channel state components by the two indices of the channel.

A s s e r t i o n 15.1.1 The following are true in any reachable state:

1. I f i 7~ imax and j E [imaz, i), then ui does not appear in sendj.

15.1. LEADER ELECTION IN A RING 479

2. If i ~ imax and j c [imax, i), then ui does not appear in queuej,j+l.

Assertion 15.1.1 is proved by induction on the number of steps in a finite

execution leading to the given state. The proof is generally similar to that of
Assertion 3.3.3. This time, we proceed by case analysis based on the individual

send, receive, and leader events. The key case is that of a receive(v)j_l,j event

where j =/max; for this case, we must argue that if v = ui where i J=/max, then
v gets discarded.

Assertion 15.1.1 can be used to prove Assertion 15.1.2.

A s s e r t i o n 15.1.2 The following is true in any reachable state: If
i ~ imax then statusi = unknown.

Then it is easy to see that no process other than im~x ever performs a leaderi
output, since the precondition of this action is never satisfied. E]

Now we turn to the liveness property. Notice that this needs the hypothesis
that the execution of A synchLCR is fair. This formal notion means that the
processes and channels continue to perform their work.

L e m m a 15.2 In any fair execution, process imax eventually performs a leader
output.

P r o o f . The proof of this property for A synchLCR is quite different from the
proof of the corresponding result, Lemma 3.2, for the synchronous LCR algo-
rithm. Recall that in the synchronous case, we used a very strong invariant

assertion, Assertion 3.3.2, which described exactly where the maximum UID

had travelled after any number r of rounds. Now we have no notion of round.

Also, it is impossible to characterize precisely what happens in the computation,
since the asynchrony introduces so much uncertainty. So we must use a different
method.

Our proof is based on establishing intermediate milestones toward the main
goal of electing a leader. In particular, we show inductively on r, for 0 _< r _<

n - 1, that eventually Umax appears in the buffer 8endimax+r. Using this claim

for r - n - 1, we show that eventually Umax is placed in channel Cim~x-l,im~x,
that thereafter eventually Um~x is received by process im~x, and that thereafter
eventually process/max performs a leader output. The fairness properties of the

process and channel I /O automata are used to prove all these eventuality claims.

For example, consider a state s in a fair execution c~ in which any UID
v appears at the head of the sendi buffer. We argue that eventually send(v)i
occurs. If not, then examination of the transitions of process AsynchLCRi shows

that v remains at the head of the sendi buffer forever. This implies that the sendi

480 15. BASIC A S Y N C H R O N O U S N E T W O R K A L G O R I T H M S

task stays enabled forever, so by fairness, some sencli event must subsequently
occur. But since v is the message at the head of the send4 buffer, this means that
send(v)i must eventually occur.

Also, if v appears in the kth position on the sendi buffer, for any value of
k _> 1, we can show that eventually send(v)i occurs. This follows by induction
on k, with the basis case, k - 1, given just above. For the inductive step, we
note that a UID v in position k > 1 eventually reaches position k - 1, when the
head of the buffer gets removed, and then the inductive hypothesis implies that
send(v)i eventually occurs.

Similar arguments can be made for the UIDs in the channels. 77

Putt ing these arguments together, we obtain

T h e o r e m 15.3 AsynchLCR solves the leader-election problem.

We next consider the complexity of the AsynchLCR algorithm. The number
of messages is O (n2), just as for the synchronous LCR algorithm. Recall that
the time bound for L CR is n rounds. For the time analysis of A synchLCR, we
assume an upper bound of t~ for each task of each process, and an upper bound
of d on the time to deliver the oldest message in each channel queue.

A naive analysis gives an O (n2(g + d)) time bound, by integrating time
bounds into the eventuality argument in the proof of Lemma 15.2. Namely,
note that the maximum length of any process send buffer or any channel queue
is n. Therefore, it takes at most ng time for a UID in a process send buffer to
get placed in the adjacent channel, and at most nd time for a UID in a chan-
nel queue to get received by the next process. The overall time complexity is
therefore O (n 2 (g + d)).

However, it is possible to carry out a more refined analysis, yielding an upper
bound that is only O (n(t~ + d)). The point is that although some send buffers
and queues can reach size n, this cannot happen everywhere. In order for a
pileup to form, some UIDs must travel faster than the worst-case upper bound
in order to overtake others. The overall time turns out to be no worse than if
the UIDs had all travelled at the same speed. We show:

L e m m a 15.4 In any fair execution, for any r, 0 < r < n - 1, and for any i,
the following are true:

1. By time r(g + d), UID u~ either reaches the send4+~ buffer or is deleted.

2. By time r(g + d) + ~, UID ui either reaches queuei+r,i+r+l or is deleted.

P r o o f . By induction on r.

15.1. L E A D E R E L E C T I O N IN A R ING 481

Basis: r = 0. UID ui starts out in sendi, and within time t~ is placed in
queuei,i+l, as needed.

Inductive step: Suppose that the claim holds for r - 1 and prove it for r. Fix
any i. For Part 1, suppose that ui is not deleted by time r(t~ + d). Then the
inductive hypothesis implies that by time t = (r - 1)(t~ + d) + t~, UID u~ reaches

queltei+r-l,i+r.

C l a i m 15.5 I f ui is not delivered to process i + r by time t, then ui reaches the
head of queuei+~-l,i+~ by time t.

P r o o f . Suppose for the sake of contradiction that ui is not delivered to process
i + r by time t and also does not reach the head of queue4+~-l,i+~ by time t.
Then it must be that some other UID, uj, is ahead of ui on queuei+~-l,i+~ at
time t. This is a pileup, where ui has overtaken uj; since ui has not yet travelled
distance r around the ring, it follows that uj has not yet travelled distance r - 1
around the ring.

However, the inductive hypothesis implies that uj either reaches sendj+~_l
(i.e., travels at least distance r - 1) or is deleted, by time (r - 1)(t~ + d)
t. This implies that uj cannot still be in queuei+~-l,i+~ at time t, which is a
contradiction. K]

Thus, either ui is delivered to process i + r by time t, or else ui reaches the head
of queue~+~_l,i+~ by time t. In this latter case, within an additional t ime d, ui
is delivered to process i + r. In either case, ui is delivered to process i + r by
time t + d = r(t~ + d) and placed in the send~+~ buffer, as needed.

The proof for Part 2 is similar.

T h e o r e m 15.6 The time until a leader event occurs in any fair execution of
AsynchLCR is at most n(~ + d) + ~, or 0 (n(g + d)).

P r o o f . Lemma 15.4 for r = n - 1 implies that UID Umax reaches qucUeimax-l,imax
by time (n-1)(t~+d)+t~, and the same argument used in the proof of Lemma 15.4
implies that it reaches the first position on that queue by that time. Then within
an additional t ime d, Uma• is delivered to process /max, which then performs a
leader output within an additional time t~. The total is n(t~ + d) + t~, as claimed.

�89

W a k e u p s . We can modify the i npu t /ou tpu t conventions for the leader-election
problem so that the inputs (here, the UIDs) arrive at the processes in special
wakeup(v)i messages from an external user U, instead of originating in the start
states. The correctness conditions would then be modified to assume that exactly

482 15. BASIC ASYNCHRONOUS NETWORK ALGORITHMS

one wakeup(v)i occurs for each i. Then the AsynchLCR algorithm can easily be
modified to satisfy the new correctness conditions: each process Pi simply delays
performing any locally controlled actions until after it receives its wakeup. If Pi
receives any messages before receiving its wakeup, then it buffers those messages
in a new receive buffer and processes them after receiving the wakeup.

A similar modification can be made to the other leader-election algorithms
later in this section. More generally, any distributed problem that is formulated
with inputs in the start states can be reformulated to allow the inputs to arrive in
wakeup messages. Using the same strategy described above, we can modify any
algorithm that solves the original problem so that it satisfies the new correctness
conditions.

15 .1 .2 T h e H S A l g o r i t h m

Recall the synchronous HS algorithm of Section 3.4, in which each process sends
exploratory messages in both directions, for successively doubled distances. It is
straightforward to see that this algorithm, suitably rewritten in terms of process
I /O automata, still works correctly in the asynchronous network model. Its
communication complexity is O (n log n), as before. We leave the determination
of an upper bound on the time complexity for an exercise.

15 .1 .3 T h e Peterson Leader-Election Algorithm

The HS algorithm (in both its synchronous and asynchronous versions) requires
only O (n logn) messages and uses bidirectional communication. In this sub-
section, we present the PetersonLeader algorithm, which achieves O (n logn)
communication complexity using only unidirectional communication. This al-
gorithm does not rely on knowledge of n, the number of nodes in the ring. It
uses comparisons of UIDs only. It elects an arbitrary process as the leader, not
necessarily the process with the maximum or minimum UID. The O (n logn)
communication complexity has only a small constant factor (approximately 2).

P e t e r s o n L e a d e r algorithm (informal):

While the algorithm is executing, each process is designated as being either
in active mode or relay mode; all processes are initially active. The active
processes carry out the "real work" of the algorithm; the relay processes
just pass messages along. An execution of the PetersonLeader algorithm
is divided into (asynchronously determined) phases. In each phase, the
number of active processes is reduced by a factor of at least 2, so there are
at most log n phases.

15.1. L E A D E R E L E C T I O N I N A R I N G 483

In the first phase of the algorithm, each process i sends its UID two steps
clockwise. Then process i compares its own UID to those of its two pre-
decessors in the counterclockwise direction. If the counterclockwise neigh-
bor's UID is the highest of the three, that is, if ui-1 > ui-2 and ui-1 > ui,

then process i remains active, adopting the UID ui-1 of its counterclock-
wise neighbor as a new "temporary UID." On the other hand, if one of the
other two UIDs is the highest of the three, then process i simply becomes
a relay for the remainder of the execution.

Each subsequent phase proceeds in much the same way. Each active pro-
cess i now sends its temporary UID to the next and second-next active
processes in the clockwise direction, and waits to learn the temporary
UIDs from its two active predecessors in the counterclockwise direction.
Now if the first active predecessor's UID is the largest of the three UIDs,
process i remains active, adopting that predecessor's UID as its new tem-
porary UID. On the other hand, if one of the two other UIDs is the largest
of the three, then process i becomes a relay.

Also, if at any phase, a process i sees that the temporary UID it receives
from its immediate active predecessor is the same as its own temporary
UID, then i knows that it is the only active process left. In this case,

process i elects itself as the leader.

It should be clear that in any phase in which there is more than one active
process, at least one process will discover a combination of UIDs that allows it to
remain active at the next phase. Moreover, at most half of the active processes
can survive a given phase, since every process that remains active must have an
immediate active predecessor that becomes a relay.

PetersonLeaderi automaton (formal):

Signature-

Input: Internal :
receive(v)i_l,i, v a UID get-second-uidi

O u t p u t : g et- third- uidi
send(v)i,~+l, v a UID advance-phasei
leaderi become- rela y~

relayi

States-
mode E (active, relay}, init ially active
status C (unknown, chosen, reported}, init ial ly unknown
uid(j), j C {1 ,2 ,3} , each a UID or null; ini t ial ly uid(1) - i's UID, uid(2) - uid(3) - null

4 8 4 15. B A S I C A S Y N C H R O N O U S N E T W O R K A L G O R I T H M S

send, a F I F O queue of UIDs, init ial ly conta in ing i 's UID
receive, a F I F O queue of UIDs, init ial ly e m p t y

T r a n s i t i o n s :

get-second-ui&
Precondi t ion :

mode = active
receive is n o n e m p t y
uid(2) = null

Effect:

uid(2) := first e lement of receive
remove first e lement of receive
add uid(2) to send
if uid(2) = uid(1) then status := chosen

get-third-ui&
Precondi t ion :

mode = active
receive is n o n e m p t y
uid(2) # null
uid(3) = null

Effect:
uid(3) := first e lement of receive
remove first e lement of receive

advance-phasei
Precondi t ion :

mode = active
uid(3) # null
uid(2) > max { uid (1), uid (3) }

Effect:
uid(1) := uid (2)
uid(2) := null
uid(3) := null
add uid(1) to send

become-relayi
Precondi t ion :

mode = active
uid(3) # null
uid(2) <_ max { uid (1), uid (3) }

Effect:
mode := relay

relayi
Precondi t ion :

mode = relay
receive is n o n e m p t y

Effect:
move first e lement of receive

to send

leaderi
Precondi t ion :

status = chosen
Effect:

status := reported

send(v)i
Precondi t ion :

v is first oft send
Effect:

remove first e lement of send

receivei(v)
Effect:

add v to receive

Tas ks:
{send(v)i,i+l :v is a UID}

{get-second-uidi, get-third-uidi, advance-phasei, become-relayi, relayi}
{leaderi}

15.1. L E A D E R E L E C T I O N IN A RING 485

T h e o r e m 15.7 PetersonLeader solves the leader-election problem.

Now we analyze the complexity. As stated above, the number of active pro-
cesses is at least halved in each phase, until only one active process remains.
This means that the total number of phases until a leader is elected is at most
[log nJ + 1. During each phase, each process (either active or relay) sends at
most two messages. Thus, at most 2n([log nJ + 1) messages are sent in any ex-
ecution of the algorithm. This is O (n log n), with a much better constant factor
than in the HS algorithm.

For the time complexity, it is not hard to prove a naive upper bound of
O (n log n(t~ + d)). This is because there are O (log n) phases, and we can show
that, for any p, the first p phases are completed within time O (pn(g + d)). (In
each phase, each UID travels distance O (n) around the ring. It takes time at
most t~ + d for a message to travel from one node to the next, provided that it is
not blocked by a pileup. The same method we used in the proof of Lemma 15.4
can be used to argue that pileups cannot hurt the worst-case bound.)

A more refined analysis yields an upper bound of 0 (n(t~ + d)):

T h e o r e m 15.8 The time until a leader event occurs in any fair execution of
PetersonLeader is 0 (n(~ + d)).

We only sketch the main ideas here, leaving the proof for a somewhat intricate
exercise.

P r o o f Ske t ch . First, we can ignore pileups, since arguments such as those for
Lemma 15.4 can be used to show that they do not affect the worst-case bound.
The following claim is useful for the analysis.

C l a i m 15.9 I f processes i and j are distinct processes that are both active at
phase p, then there must be some process k that is strictly after i and strictly
before j in the clockwise direction, and such that process k is active at phase
p - 1 .

The time complexity is proportional to the length of a certain chain of mes-
sages, ending with the message at the final phase p that causes the leader, ip, to
become chosen. The UID in that message originates at ip itself at phase p and
so travels a total distance of n at phase p. Process ip starts this UID on its way
when it enters phase p, which is just after ip receives its uid(3) at phase p - 1.
This uid(3) in turn originates at ip'S second predecessor that is active at phase
p - 1, ip-1, when ip-1 enters phase p - 1. By Claim 15.9, there is some process
other than ip that reaches phase p - 1, which implies that the greatest possible
distance this UID can travel at phase p - 1 is n .

486 15. BASIC A S Y N C H R O N O U S N E T W O R K A L G O R I T H M S

We continue tracing the chain backward. Process ip-1 en te r s phase p - 1
when it receives its uid(3) at phase p - 2. This uid(3) originates at ip_l'S second
predecessor that is active at phase p - 2, ip-2, when ip-2 en te r s phase p - 2.
Claim 15.9 can be used to show that ip-2 is no further back from ip-1 than
ip_l'S first predecessor that is active at phase p - 1. Continuing backward, we
define ip-3,... ,il, where each iq-1 is no further back from iq than iq'S first
predecessor that is active at phase q.

Now, using Claim 15.9 repeatedly, it is possible to show that the total length
of the chain from ip-1 backward to i l is at most n. This implies that the total
length of the chain is 3n, which translates into a time bound of O (n(g + d)). D

15.1.4 A Lower B o u n d on C o m m u n i c a t i o n C o m p l e x i t y

We have just described two asynchronous network leader-election algorithms,
PetersonLeader and the asynchronous version of HS, that have communication
complexity O (n log n). In this section, we argue that the problem also has a
lower bound of f~(n log n). Throughout this section we assume, without loss of
generality, that the channels are universal reliable FIFO channels.

Recall that we have already given two f~(nlogn) lower bound results for
leader election in the synchronous setting, Theorems 3.9 and 3.11. Theorem 3.9
gives a lower bound for algorithms that are comparison based; it allows bidirec-
tional communication and allows processes to know the number of nodes in the
network. This result can be carried over directly to the asynchronous setting,
since the synchronous model can be formulated as a restriction of the asynchro-
nous model.

T h e o r e m 15.10 Let A be a comparison-based algorithm that elects a leader
in asynchronous ring networks of size n, where communication is bidirectional
and n is known to the processes. Then there is a fair execution of A in which
~(n log n) messages are sent by the time the leader is elected.

Theorem 3.11 gives a lower bound for algorithms that can use UIDs in ar-
bitrary ways but that have a fixed time bound and a large space of identifiers.
Again, it allows bidirectional communication and allows processes to know the
number of nodes. We also carry over a version of this result to the asynchronous
setting:

T h e o r e m 15.11 Let A be any (not necessarily comparison-based) algorithm
that elects a leader in asynchronous rings of size n, where the space of UIDs
is infinite, communication is bidirectional, and n is known to the processes.

15.1. L E A D E R E L E C T I O N IN A RING 487

F i g u r e 15.2" A line of automata.

Then there is a fair execution of A in which f~(n log n) messages are sent by the
time the leader is elected.

P r o o f Ske t ch . If there is any fair execution of A in which more than n log n
messages are sent by the time the leader is elected, then we are done, so assume
that this is not the case. We "restrict" A to yield a synchronous algorithm S in
which some message is sent at every round. Since at most n log n messages are
sent in any fair execution of A by the time the leader is elected, this means that
the number of rounds required for S to elect a leader is at most n log n. Since the
UID space is infinite, Theorem 3.11 applies to show that there is an execution of
S in which ft(n log n) messages are sent by the time the leader is elected. This
can be converted into a fair execution of A in which f~(n log n) messages are sent
by the time the leader is elected. [~

Since Theorem 3.11 appears in a starred section of this book, we present
an alternative, more elementary, lower bound proof for non-comparison-based
algorithms. This proof is quite different from those of Theorems 3.9 and 3.11 in
that it is based on asynchrony and on the assumption that the processes do not
know the size of the ring.

T h e o r e m 15.12 Let A be any (not necessarily comparison-based) algorithm
that elects a leader in rings of arbitrary size, where the space of UIDs is infinite,
communication is bidirectional, and the ring size is unknown to the processes.
Then there is a fair execution of A in which f t(n log n) messages are sent.

The proof requires a few preliminary definitions. Assume that we have a
universal infinite set P of process automata. All processes in P are assumed
to be identical except for UIDs; also, they are assumed to know their neighbors
only by local names, say "right" and "left."

Our main interest is in seeing how a collection of process automata from T)
behave when they are arranged in a ring; however, it is also useful to see how
they behave when arranged in a straight line, as depicted in Figure 15.2. We
define a line to be a linear composition (using I /O automaton composition) of
distinct process automata from P, with intervening reliable FIFO send/receive
channels in both directions.

488 15. BASIC ASYNCHRONOUS NETWORK ALGORITHMS

We say that two lines are disjoint if they contain no common process automa-

ton, that is, no common UID. If L and M are two disjoint lines of automata,

we define join(L, M) to be the line consisting of L concatenated with M, with

new reliable FIFO send/receive channels inserted between the r ightmost process
of L and the leftmost process of M. The join operator is associative, so we

can extend it to apply to any number of lines. If L is any line of automata, we
define ring(L) to be the ring consisting of L wrapped around, with new reliable

FIFO send/receive channels inserted in both directions between the r ightmost
and leftmost processes of L. Each process's right neighbor in the line becomes

its clockwise neighbor in the ring. The ring and join operations are depicted in

Figure 15.3. (We now represent the channels as just arrows rather than ovals.)

L

join(L,M)

M

L

#---

ring(L)

F i g u r e 15.3: The join and ring operations.

If c~ is an execution of a line or ring, we define C(c~) to be the number of
messages sent in c~. If R is a ring, we define C(R) to be sup{C(c~) : c~ is an
execution of R}, that is, the supremum of the number of messages that are sent

in any execution of R. For a line, we consider the number of messages that can
be sent when the line operates "in isolation," with no messages arriving at the
end processes from the line's environment. Thus, if L is a line, we define C(L) to
be sup{C(c~) : c~ is an input-free execution of L}, that is, the supremum of the

15.1. L E A D E R E L E C T I O N IN A R I N G 489

number of messages that are sent in any execution of L without any messages

arriving at its endpoints from outside the line.
We say that a state s of a ring is silent if there is no execution fragment

starting from s in which any new message is sent. We say that a state s of a line
is silent if there is no input-free execution fragment starting from s in which any
new message is sent. Note that if a ring or line is in a silent state, it does not

mean that no further activity is possible--i t just means that no further message-

sending events can occur. It is still possible for processes to receive messages

and perform internal steps and leader outputs.
We begin with a preliminary lemma.

L e m m a 15.13 There is an infinite set of process automata in P, each of which

can send at least one message without first receiving any message.

P r o o f . We show something stronger: that all except possibly one process au-
tomaton in P can send at least one message without first receiving any message.

Suppose, to obtain a contradiction, that there are two processes in P, say
processes i and j , such that neither can send a message without first receiving

one. Then consider the three rings R1, R2, and Ra shown in Figure 15.4. (Now,

for simplicity, we do not depict the channel automata at all.)

F i g u r e 15.4" Rings R1, R2, and R3 in the proof of Lemma 15.13.

Since neither i nor j can send a message unless it first receives one, no
messages are ever sent in any execution of any of the three rings. Thus, the
processes i and j proceed independently, performing local computation and leader

actions, but never any communication actions. Since R1 solves the leader-election
problem, i must eventually perform a leader output in any fair execution of R1.
Likewise, since R2 solves the leader-election problem, j must eventually perform
a leader output in any fair execution of R2. Now consider any fair execution c~

490 15. B A S I C A S Y N C H R O N O U S N E T W O R K A L G O R I T H M S

of R3. Because there is no communication, a is indistinguishable by process i

from some fair execution of R1 (using the formal notion of "indistinguishability"

defined in Section 8.7), so i eventually performs a leader output in c~. Likewise,

c~ is indistinguishable by process j from some fair execution of R2, so j eventually
performs a leader output in c~. But this causes two leaders to be elected in R3,
a contradiction.

We have shown that there cannot be two processes, i and j , in P, neither of
which can send a message without first receiving one. That is, there is at most

one process in P that cannot send a message before receiving one. Since P is
an infinite set, removing one process leaves an infinite set of processes, each of

which can send a message without first receiving one. D

The proof of Theorem 15.12 uses the following key lemma.

L e m m a 15.14 For every r >_ O, there is an infinite collection of pairwise-
disjoint lines, s such that for every L E s it is the case that ILl - 2 r
and C(L) >_ r2 r-2.

P r o o f . By induction on r.

Basis: r - O. Let L:0 be the set of all single-node lines corresponding to all
the processes in P. The claim is trivial.

Basis" r - 1. Let s be any infinite collection of disjoint two-node lines
composed of processes each of which can send a message without first receiving
one. The existence of this collection is implied by Lemma 15.13. Then if L is

any line from s there must be an input-free execution of L in which at least

one message is sent: simply let one of the two processes send a message without
first receiving one. This suffices.

Inductive step" Assume that r _> 2 and the lemma is true for r - 1, that is,

that there is an infinite collection of pairwise-disjoint lines, s such that for
every L C L:~-I, it is the case that I L l - 2 ~-1 and C(L) >_ (r - 1)2 ~-3. Let
n - 2 r,

Let L, M, and N be any three lines from s We consider the six possible
joins of two of these three lines: join(L, M), join(M, L), join(L, N), join(N, L),

jo in(M, N), and join(N, M) . We show the following claim.

C l a i m 15.15 At least one of these six lines has an input-flee execution in which
n log n - - r 2 r - 2 messages are sent. at least -~

The lemma then follows from Claim 15.15, because infinitely many sets of

three lines can be chosen from s without reusing any processes.

15.1. LEADER ELECTION IN A RING 491

P r o o f (of C l a i m 15.15) . Assume the contrary, that none of these six lines
n log n messages. By the inductive hypothesis, can be made to send as many as

there is a finite input-free execution C~L of L for which C(C~L) > (r - 1)2 ~-3 =
n log ~ ~. We can assume without loss of generality that the final state of OLL is

silent, since otherwise aL could be extended to a longer finite execution in which

more messages are generated. (This extension cannot go on indefinitely, since
log n messages.) Similarly, we know that L alone cannot send as many as

we obtain finite input-free executions C~M of M and C~N of N with the same
properties.

Now we construct a finite execution C~L,M of the line join(L, M). Execution

OZL, M starts by running a L on L and C~M on M, delaying all messages sent on

the channels connecting the lines L and M. In this prefix of OLL,M, at least
2(r ig) log gn _ ~n (log n - 1) messages are sent.

Next, O~L, M continues to a silent state. Note that , however this happens, the
number of additional messages that are sent in the extension must be strictly

n because otherwise the total number of messages in CtL, M would be less than g,
n log n, contradicting our assumption. at least

n _ 1 The particular way in which we make this extension is to allow only the~
processes of L and the n ~ _ 1 processes of M that are closest to the junction of

L and M to take steps after O~ L and C~M, until the system reaches a state from

which none of these processes can send any more messages. We claim that the

resulting state of join(L, M) must be silent. For if not, then a series of at least
n 1 messages must have been sent after the initial O~ L and aM conveying 4

information about the junction to a process at distance ~ from the junction and

enabling that process to send yet another message. (Convince yourself of this.)
But this is a total of at least ~ additional messages in the extension of aL and

C~M, which is impossible. So the indicated state of join(L, M) must be silent.
Informally speaking, after aL,M, information about the junction of lines L

and M has not reached either the midpoint of L or the midpoint of M. Only
the ~ processes on either side of the junction can know about the junction, and

n from the junction cannot send any new the two processes at distance exactly
messages as a result of this knowledge. Figure 15.5 depicts the junction of L

and M, for the case where n - 16.

In a similar way, we define finite executions O~M,L, O~L,N, and so on.
Now we combine the lines L, M, and N into several different rings to ob-

tain a contradiction. First define R~ to be ring(join(L, M, N)), as depicted in

Figure 15.6. Define a fair execution O~ 1 o f R1, as follows. Execution OL1 begins
with C~L, C~M, and aN, thus making the three separate lines L, M, and N silent.

Then O~ 1 continues as in C~L,M, O~M,N, and C~N,L. Since the processes that learn
about each junction extend at most halfway into each of the adjacent lines, there

492 15. BASIC ASYNCHRONOUS N E T W O R K ALGORITHMS

L M

S h h

\ S
Only these processes can know about join

Figure 15.5" O~L, M

....w'''" I
. . . " " " ' " " M

g

?
:

Y

Figure 15.6: R~ = ring(join(L, M, N)).

is no interference among these three extensions. Furthermore, after these three
extensions, the entire ring is silent. Then Ct I continues in any fair manner. The
correctness conditions imply that some leader, say il, is elected in C~l. We may
assume without loss of generality that process il is between the midpoint of L
and the midpoint of M, as depicted in Figure 15.6.

Next we define R2 = ring(join(L, N, M)), and define a fair execution c~2 of
R2 analogous to C~l (t h i s time using C~L, C~M, C~N, aL,N, aN, M, and C~M,L). Then
some leader, say i2, is elected in c~2 (see Figure 15.7).

Next define R3 = ring(join(M,N)), and define a fair execution c~3 of R3
(using aM, aN, CtM, N, and C~N,M). Again, some leader, say i3, must be elected

15.1. LEADER ELECTION IN A RING 493

N " ' " ' " . . .

I

-4.

F i g u r e 1 5 . 7 : R 2 = ring(join(L, N, M)).

in c~3 (see Figure 15.8). We claim that i3 must be in the lower half of R3 as
it is drawn in Figure 15.8, that is, somewhere between the midpoint of N and
the midpoint of M, moving clockwise. For if i3 were in the upper half of R3,
then O~ 1 and c~3 would be indistinguishable to process i3, so i3 would also be
elected in c~1. But then two distinct processes, il and i3, would be elected in
c~1, a contradiction. (Processes il and i3 are distinct because il is between the
midpoints of L and M, while i3 is between the midpoints of M and N.)

Since i3 is in the lower half of R3, c~2 and c~3 are indistinguishable to i3;
hence, i3 is also elected in R2. Note that i3 is between the midpoint of N and
the midpoint of M in R2. Since only one leader can be elected in c~2, we have
i2 = i3. See Figure 15.7.

Finally, we define R 4 = ring(join(L, N)) and define a fair execution O~4 of/~4
(using C~L, C~N, OiL,N, and O~N,L). See Figure 15.9. We claim that no leader can
be elected in c~4. For if a leader were elected from the top half of R4, then that
leader would also be elected in c~2, yielding two leaders in c~2. And if a leader
were elected from the bot tom half of R4, then that leader would also be elected
in c~1, yielding two leaders in (~1. Either way is a contradiction.

But the fact that no leader is elected in O~4 violates the problem requirements,
which yields the contradiction needed to prove the claim. KI

The lemma now follows immediately from Claim 15.15, as described just
before the proof of the claim.

494 15. BASIC A S Y N C H R O N O U S N E T W O R K A L G O R I T H M S

****~ m m m w. m. m,,o~176176176176

F i g u r e 15.8 : Ra = ring(join(M, N)).

N

F i g u r e 1 5 . 9 : R 4 = ring(join(L, N)).

Now using L e m m a 15.14, it is easy to complete the proof of Theorem 15.12.

P r o o f (o f T h e o r e m 1 5 . 1 2) . Firs t suppose that n is a power of 2, say n =

2 ~. Let L be any line in s L e m m a 15.14 implies that ILl = n and C(L) >_
- ~ log n. Define n4 log n. Let c~ be an input-free execut ion of L such that C(c~) _>

R = ring(L), tha t is, paste L into a ring. Define an execut ion c~ ~ of R that
behaves exactly like c~ on L, delaying all messages across the junc t ion between

the endpoin ts of L until after at least ~ log n messages have been sent. Then

log n. C(c~') _> ~n log n, which proves that C(R) _> -~

15.2. LEADER ELECTION IN AN A R B I T R A R Y N E T W O R K 495

We leave the argument for values of n that are non-powers of 2 for an exercise.
D

Note the crucial parts played in the proof of Theorem 15.12 by the asyn-
chrony and the unknown ring size.

15.2 L e a d e r E l e c t i o n in an A r b i t r a r y N e t w o r k

So far in this chapter, we have considered algorithms for electing a leader in an
asynchronous ring network. Now we will consider the leader-election problem
in networks based on more general graphs. We assume in this section tha t the
underlying graph is undirected, that is, that there is bidirectional communication
on all the edges, and that it is connected. Processes are assumed to be identical
except for UIDs.

Recall the FloodMax algorithm for synchronous networks from Section 4.1.2.
It requires that processes know diarn, the diameter of the network. In that
algorithm, every process maintains a record of the maximum UID it has seen
so far, initially its own. At each synchronous round, the process sends this
maximum on all its channels. The algorithm terminates after diam rounds; the
unique process that has its own UID as its known maximum then announces
itself as the leader.

The FloodMax algorithm does not extend directly to the asynchronous set-
ting, because there are no rounds in the asynchronous model. However, it is
possible to simulate the rounds asynchronously. We simply require each process
that sends a round r message to tag that message with its round number r.
The recipient waits to receive round r messages from all its neighbors before
performing its round r transition. By simulating diam rounds, the algorithm
can terminate correctly.

In the synchronous setting, we described an optimization of FloodMax called
OptFloodMax, in which each process only sends messages when it has new infor-
mation, that is, when its maximum UID has just changed. It is not clear how
to simulate this optimized version in an asynchronous network. If we simply tag
messages with round numbers as for FloodMax, then a process that does not hear
from all its neighbors at a round r cannot determine when it has received all its
incoming messages for round r, so it cannot tell when it can perform its round r
transition. We can, of course, add dummy messages between pairs of neighbors
that do not otherwise communicate, but that destroys the optimization.

Alternatively, we can simulate OptFloodMax purely asynchronously--whenever
a process obtains a new maximum UID, it sends that UID to its neighbors at
some later time. This strategy will indeed eventually propagate the maximum to

496 15. BASIC ASYNCHRONOUS NETWORK ALGORITHMS

all processes. But there is a problem: now the processes have no way of knowing
when to stop.

Many different solutions can be developed for the leader-election problem
in general asynchronous networks, using many of the techniques that we will
develop in the following sections and chapters. Some such techniques include

1. Asynchronous broadcast and convergecast, based on a searching algorithm
(Section 15.3).

2. Convergecast using a spanning tree (Section 15.5).

3. Using a synchronizer to simulate a synchronous algorithm (Section 16.5.1).

4. Using a consistent global snapshot to detect termination of an asynchro-
nous algorithm (Section 19.2.3).

15.3 Spanning Tree Construction, Broadcast and
Convergecast

Among the most fundamental tasks to be performed in an asynchronous network
are the construction of a spanning tree for the network rooted at a given source
node i0 and the use of such a tree for performing broadcast and convergecast
communication. In this section, we describe protocols for these tasks. We again
assume that the underlying graph G = (V, E) is undirected and connected. The
processes do not need to know the size or diameter of the network. No UIDs are
needed.

For the spanning tree problem, the requirement is that each process in the
network should eventually report, via a parent output action, the name of its
parent in a spanning tree of the graph G. Recall that in Section 4.2, we described
a synchronous algorithm, SynchBFS, that constructs a breadth-first spanning
tree rooted at i0. The SynchBFS algorithm searches the graph synchronously
starting from i0, allowing each non-source process i to report as its parent the
first neighbor from which it hears. This algorithm can be run in the asynchronous
setting and is still guaranteed to produce a spanning tree, though not necessarily
a breadth-first spanning tree. The code for the asynchronous algorithm follows.

A synchSpanning Treei a u t o m a t o n :

Signature:
Input: Output:

j c j
parent(j)i, j E nbrs

15.3. S P A N N I N G T R E E , B R O A D C A S T A N D C O N V E R G E C A S T 497

States :
parent E nbrs U {null}, initially null
reported, a Boolean, initially false
for every j E nbrs:

send(j) E {search, null}, initially search if i = i0, else null

Trans i t i ons :

send("s earch ") i,j parent(j) i
Precondition: Precondition:

send(j) = search parent = j
Effect: reported = false

send(j) := null Effect:
reported := true

receive("search") j,i
Effect:

if i # i0 and parent = null then
parent := j
for all k E nbrs - {j} do

send(k) := search

Tasks:
{parent(j)i : j E nbrs}
for every j E nbrs:

{ send("search")i,j }

T h e o r e m 1 5 . 1 6 The A synchSpanning Tree algorithm constructs a spanning tree.

P r o o f S k e t c h . A key a s se r t ion for the p roof is

A s s e r t i o n 1 5 . 3 . 1 In any reachable state, the edges defined by all the

parent variables f o r m a spanning tree of a subgraph of G, containing

io; moreover, i f there is a message in any channel Ci,j then i is in
this spanning tree.

Thi s is p roved by induct ion , as usual . To show the l iveness c o n d i t i o n - - t h a t each

node even tua l ly gets inc luded in the s p a n n i n g t r e e - - w e use a n o t h e r invar ian t :

A s s e r t i o n 1 5 . 3 . 2 In any reachable state, i f i = io or parenti ~ null,

and if j E n b r s i - {i0}, then either parentj ~ null or Ci,j contains a

search message or scnd(j) i contains a search message.

We can then a rgue tha t for any i # i0, we have parent~ ~ null wi th in t ime

distance(io, i) . (~ + d), which impl ies the l iveness condi t ion . [:]

498 15. BASIC ASYNCHRONOUS NETWORK ALGORITHMS

C o m p l e x i t y ana lys i s . In any fair execution of A synchSpanningTree, the total
number of messages is O (IEI), and all the processes except i0 produce parent
outputs within time diam(~ + d)+ g. (Pileups are not an issue here, because only
one message is ever sent on each channel.)

Note that the paths that are produced by the A synchSpanningTree algorithm
might be longer than the diameter of the network. This is because, in an asyn-
chronous network, messages can sometimes travel faster on longer paths than
on shorter ones. Nevertheless, the time to produce the tree is still bounded in
terms of the diameter, because the time for each process to receive its first search
message is no greater than the time for a message to travel to it from i0 along a
shortest path.

M e s s a g e b r o a d c a s t . As for SynchBFS, it is easy to augment the A synch-
Spanning Tree algorithm to implement message broadcast from the source i0.
The message need only be piggybacked on all search messages during the for-
mation of the spanning tree. The communication complexity of this broadcast is
thus O (IEI) and the time for it is O (diam(f + d)).

C h i l d p o i n t e r s . It is also easy to augment the AsynchSpanningTree algorithm
so that parents learn who their children are. Since communication is here as-
sumed to be bidirectional, all that is needed is for each recipient of a search
message to respond directly with either a parent or non-parent message, as ap-
propriate.

A precomputed spanning tree with child pointers can be used for broadcasting
messages from process i0 to all the other processes in the network. Each message
is sent by i0 to all its children, then forwarded from parents to children until
it reaches the leaves of the tree. The total number of messages is only O (n)
per broadcast, and the time complexity is O (h(t~ + d)), where h is the height
of the spanning tree. There is an interesting timing anomaly: if the tree is
produced using the AsynchSpanningTree algorithm, then the time complexity of
the broadcast is O (n(e + d)); it is not necessarily O (dia,~(e + d)), even though
the A synchSpanningTree algorithm itself takes time bounded by the diameter.
This is because the height of the tree that is produced by AsynchSpanningTree
may be bigger than the diameter.

A precomputed spanning tree with child pointers can also be used for con-
vergecasting information from all the processes in the tree to i0. This works
in the same way as it does in the synchronous setting: Each leaf process sends
its information to its parent. Each internal process other than i0 waits until it
receives information from all its children, then combines this information with its
own and sends the result to its parent. Finally, i0 waits until it receives informa-

15.3. SPANNING TREE, BROADCAST AND CONVERGECAST 499

tion from all its children, then combines this information with its own to produce

the final result. The number of messages is O (n), and the time is O (h(e + d)).
As in the synchronous setting, this scheme can be used for the computation of a

function based on distributed inputs.
A combination of a broadcast and a convergecast can be used to allow i0 to

send a message to all the other processes and to receive an acknowledgment that

all processes have received it. Each leaf simply initiates a convergecast when it
receives the broadcast message. The total number of messages is again O (n),
and the time is again O(h(e + d)).

We can also allow i0 to broadcast a message and receive acknowledgments
from all processes while a spanning tree is being constructed. Let W be the set

of values that can be broadcast. The set M of messages is {("bcast", w) : w E
W} U { "ack"}.

A synchBcastAck4 a u t o m a t o n :

Signature:

Input:
receive(m)j,i, rn E M, j E nbrs

Output :
send(m)i,j, m E M, j E nbrs

Internal:
report~

States:
val E W tJ {null}, initially the value to be broadcas t if i = i0, else null
parent E nbrs U {null}, initially null
reported, a Boolean, initially false
acked, a subset of nbrs, initially 0
for every j E nbrs:

send(j), a F IFO queue of messages in M; if i = i0 then this initially contains the
single element ("bcast", w), where w E W is the value to be broadcast ; otherwise
this is empty

Transitions:
send(m)i,j

Precondit ion:
m is first on send(j)

Effect:
remove first element of send(j)

receive("bcast", W)j,i
Effect:

if v a l - null then
val : - w
parent : - j
for all k E nbrs - {j} do

add ("bcast", w) t o send(k)
else add "ack" to send(j)

500 15. BASIC ASYNCHRONOUS N E T W O R K ALGORITHMS

receive("ack")j,~
Effect"

acked "- acked U { j}

reporti (for i :/: i0)
P r e c o n d i t i o n :

parent ~: null
acked = nbrs - {parent }
reported = false

Effect :

a d d "ack" to send(parent)
reported := true

report~ (for i -- io)
P r e c o n d i t i o n :

a c k e d - nbrs
repor ted- false

Effect :
reported :-- true

Tasks:
{ reporti }
for e v e r y j C nbrs"

{~d(.~)~,j . ,~ ~ M}

C o m p l e x i t y ana lys i s . The total communication is O (IEI), and the time is
O (n(~ + d)). The upper bound on time depends on n instead of diam because
of the timing anomaly described above--the broadcast might travel fast along a
long path, and the subsequent acknowledgments might travel slowly when they
return along the same path. In Chapter 16, we will see how to obtain an algorithm
whose time complexity depends only on diam.

G a r b a g e co l lec t ion . If the tree in AsynchBcastAck is only needed for sending
and acknowledging one message, each process can delete all of the information
about the algorithm after it performs its report action and sends out its acks.
We leave this modification and its correctness proof as an exercise.

A p p l i c a t i o n to l e a d e r e lec t ion . Asynchronous broadcast and convergecast
can be used to solve the leader-election problem in arbitrary graphs without any
distinguished source node and without the processes having any knowledge of
the number of nodes or the diameter of the network. Now the processes need
UIDs. We simply allow every node to initiate a broadcast-convergecast in order
to discover the maximum UID in the network. The node that finds that the
maximum is equal to its own UID elects itself as leader. This algorithm uses
0 (nlEI) messages. We leave the time complexity for an exercise.

We finish this section by noting a close connection between two fundamental
problems, in a connected, undirected graph network with only local knowledge,
without any distinguished nodes, but with UIDs:

15.4. B R E A D T H - F I R S T S E A R C H AND S H O R T E S T PATHS 501

1. Finding an (unrooted) spanning tree for the graph

2. Electing a leader node

First, if we are given an unrooted spanning tree, then it is possible to elect
a leader as follows. The idea is the same as we discussed for the synchronous
case, at the end of Section 4.4.

S T t o L e a d e r algorithm-

The algorithm uses a convergecast of elect messages starting from the
leaves of the tree. Each leaf node is initially enabled to send an elect
message to its unique neighbor. Any node that receives elect messages
from all but one of its neighbors is enabled to send an elect message to its
remaining neighbor.

In the end, there are two possibilities: either some particular process re-
ceives elect messages along all of its channels before it has sent out an elect
message, or elect messages are sent on some particular edge in both direc-
tions. In the first case, the process at which the elect messages converge
elects itself as the leader. In the second case, one of the two processes
adjacent to this edge, say the one with the larger UID, ele'cts itself as the
leader.

Theorem 15.17 The S TtoLeader algorithm elects a leader in a connected undi-
rected graph network with a spanning tree in which the processes have only local
knowledge and have UIDs.

Complexity analysis. The STtoLeader algorithm uses only at most n mes-
sages and takes time only O (n(~ + d)).

Conversely, if a leader is given, then we have already shown how to construct
a spanning tree, using AsynchSpanningTree. This requires O (IEI) messages and
0 (diam(g + d)) time. So, modulo the (reasonably small) costs of these two basic
algorithms, the problems of leader election and finding an arbi t rary spanning tree
are equivalent.

15.4 B r e a d t h - F i r s t Search and Shortes t Paths

Now we reconsider the problem of breadth-first search (BFS / that we considered
in Section 4.2 and the problem of finding shortest paths that we considered
in Section 4.3, this time in asynchronous networks. Now we assume that the
underlying graph G = (V, E) is a connected undirected graph and that there is a

502 15. B A S I C A S Y N C H R O N O U S N E T W O R K A L G O R I T H M S

dis t inguished source node i0. For the shor tes t pa ths problem, we also assume tha t

each undi rec ted edge (i, j) E E has a nonnegat ive rea l -valued weight, weight(i, j) ,

known at bo th endpoin t processes. We assume tha t the processes do not know

the size or d iamete r of the network and tha t there are no UIDs.

For breadth- f i r s t search, the p rob lem is for each process in the ne twork even-

tua l ly to repor t , via a parent ou tpu t action, the name of its pa ren t in a b read th-

first spann ing tree. Recall that in the synchronous case, this can be accompl i shed

by the simple S y n c h B F S algor i thm. The asynchronous version of S y n c h B F S is

the AsynchSpann ingTree a lgor i thm of Section 15.3; this is gua ran t eed to produce

a spanning t ree but not necessar i ly a breadth- f i r s t spann ing tree.

It is possible to modify A synchSpanningTree so that processes correct er-

roneous parent designat ions. T h a t is, if process i init ial ly identifies one of its

neighbors , say j , as its parent , and later obta ins informat ion from another neigh-

bor, say k, along a shor ter path, then process i can change its parent designat ion

to k. In this case, process i must inform its other neighbors about its correc-

tion, so that they might also correct their parent designat ions. The code appears

below.

A s y n c h B F S i a u t o m a t o n :

Signature:

Input:
receive(rn)j,i, m E IN, j E nbrs

Output:
send(m)i,j, m E IN, j E nbrs

States:
dist E N U {ec}, initially 0 if i = i0, ec otherwise
parent E nbrs U {null}, initially null
for every j E nbrs:

send(j), a FIFO queue of elements of N, initially containing the single element 0 if i = i0,
else empty

Transitions:
send(m)i,j

Precondition:
m is first on send(j)

Effect:
remove first element of send(j)

receive(m)j,i
Effect:

if rn § 1 < dist then
dist :- m § 1
parent :-- j
for all k E nbrs - {j} do

add dist to send(k)

Tasks:
for every j E nbrs:

{send(m)i,j : m E IN}

15.4. B R E A D T H - F I R S T SEARCH AND S H O R T E S T PATHS 503

T h e o r e m 15.18 In any fair execution of the A synchBFS algorithm, the system
eventually stabilizes to a state in which the parent variables represent a breadth-
first spanning tree.

P r o o f S k e t c h . We first prove

A s s e r t i o n 15.4.1 The following are true in any reachable state.

1. For every process i ~ io, if disti ~ oc then dist~ is the length of
some path p from io to i in G in which the predecessor of i is
parenti .

2. For every message m in channel Ci,j, m is the length of some
path p from io to i.

This implies that each process i always has correct information about some
path from i0 to i. But in order to show the liveness p rope r ty - - tha t each process
eventually obtains information about a shortest pa th - -we need another invariant
that implies that information about shortest paths is "conserved."

A s s e r t i o n 15.4.2 The following is true in any reachable state. For
every pair of neighbors i and j , either distj < disti + 1, or else either
send(j)i or Ci,j contains the value disti.

We can then argue that for any i, we have disti = distance(io, i) within time
distance(io, i).n(g+d); this argument can be made by induction on distance(io, i).
(We are taking pileups into account here.) This is enough to prove the liveness
requirement. [-q

C o m p l e x i t y ana lys i s . The number of messages sent in an execution of Asynch-
BFS is O (nlEI); this is because each node can acquire at most n different esti-
mates of its distance from i0, each of which causes a constant number of messages
to traverse its incident edges. The time until the system reaches a stable state is
0 (diam. n(g + d)); this is because the length of a shortest path from i0 to any
node is at most diam, and at most n messages are ever in any channel. (Again,
we are taking pileups into account.)

T e r m i n a t i o n . A problem with AsynchBFS is that there is no way for a process
to know when there are no further corrections for it to make. (This would be true
even if the size of the network were known.) Thus, the algorithm is technically
not a solution to the BFS problem, because it never produces the required parent
outputs. It is possible to augment A synchBFS to produce the outputs by adding
acknowledgments for all messages, convergecasting the acknowledgments back to
i0 as in AsynchBcastAck. This enables i0 to learn when the system has reached

504 15. BASIC ASYNCHRONOUS NETWORK ALGORITHMS

a stable state and then to broadcast a signal to all the processes to perform their
parent outputs.

This convergecast is a bit complicated, because, unlike for AsynchBcastAck,
a process i may need to participate many times. Each time process i obtains a
new dist estimate from a neighbor j and sends out corrections to all of its other
neighbors, it waits for corresponding acknowledgments from all those neighbors
before sending an acknowledgment to j. Bookkeeping is needed to keep the
different sets of acknowledgments separate. We leave this for an exercise.

K n o w n d i a m e t e r . If diam is known, then A synchBFS can be improved some-
what by only allowing distance estimates that are less than or equal to diam.
With this modification, each node can only acquire at most diam different esti-
mates of its distance from i0, leading to communication complexity O (diamlEI)
and time complexity O (diam2(g + d)). Adding termination as above keeps the

f

same complexity bounds.
We now give another solution; this one does produce the needed parent out-

puts. It does not require any knowledge of the size or diameter of the net-
work graph. This solution has smaller communication complexity than any of
the versions of A synchBFS but has higher time complexity than the version of
A synchBFS with known diam.

LayeredBFS a l g o r i t h m :

The BFS tree is constructed in layers, where each layer k consists of the
nodes at depth k in the tree. The layers are constructed in a series of
phases, one per layer, all coordinated by process i0.

In the first phase, process i0 sends search messages to all of its neighbors
and waits to receive acknowledgments. A process that receives a search
message at phase 1 sends a positive acknowledgment. This enables all the
processes at depth 1 in the tree to determine their parent, namely i0, and,
of course, i0 knows its children. This constructs layer 1.

Inductively, we assume that k phases have been completed and that the
first k layers have been constructed: each process at depth at most k
knows its parent in the BFS tree, and each process at depth at most k - 1
knows its children. Moreover, the source i0 knows that all of this has been
accomplished. To construct the k + 1st layer in phase k + 1, process i0
broadcasts a newphase message along all the edges of the spanning tree
constructed so far, intended for the depth k processes.

Upon receiving a newphase message, each depth k process sends out search
messages to all its neighbors except its parent and waits to receive acknowl-

15.4. BREADTH-FIRST SEARCH AND SHORTEST PATHS 505

edgments. When a non-i0 process receives its first search message in an
execution, it designates the sender as its parent and returns a positive ac-
knowledgment. When a non-i0 process receives a subsequent search mes-
sage, it returns a negative acknowledgment. When i0 receives any search
message, it returns a negative acknowledgment. When a depth k process
has received acknowledgments for all its search messages, it designates the
processes that have sent positive acknowledgments as its children.

Then the depth k processes convergecast the information that they have
completed the determination of their children back to i0, along the edges
of the depth k spanning tree. They also convergecast a bit, saying whether
any depth k + 1 nodes have been found. Process i0 terminates the algorithm

after a phase at which no new nodes are discovered.

T h e o r e m 1 5 . 1 9

tree.
The LayeredBFS algorithm produces a breadth-first spanning

C o m p l e x i t y a n a l y s i s . The LayeredBFS algorithm uses 0 (IEI + n. diam)
messages. There are a total of O (IEI) search and acknowledgment messages
because each edge is explored at most once in each direction. Also, at every
phase, each tree edge is t raversed at most once by newphase and convergecast
messages; since there at most diam + 1 phases, this yields a total of at most
0 (n. diam) such messages. Each phase takes time O (diam(~ + d)), so the time

complexity is O (diam2(e + d)).
The A synchBFS algorithm with known diam and the LayeredBFS algorithm

illustrate a trade-off between communication and time complexity. This trade-off
is further illustrated by the following hybrid of the A synchBFS and LayeredBFS
algorithms. The HybridBFS algorithm uses a parameter m, 1 <_ m <_ diam.
If m - 1, then HybridBFS is the same as LayeredBFS, while if m - diam,
HybridBFS is similar to A synchBFS with known diam. For intermediate values
of m, the communication and time complexity measures are between those of
LayeredBFS and A synchBFS with known diam.

H y br idBFS a l g o r i t h m :

The algorithm works in phases. In each phase, m layers in the BFS tree
are determined (rather than just one as in LayeredBFS). In each phase, the
next m layers are explored asynchronously, with corrections as in A synch-
BFS. Acknowledgments are convergecast back to process i0. By the time
a convergecast is completed, process i0 knows that all the processes in the
layers being explored in the current phase have stabilized to their correct

distance estimates.

506 15. BASIC ASYNCHRONOUS NETWORK ALGORITHMS

C o m p l e x i t y analys is . The HybridBFS algorithm has communication com-
plexity O (rolE I + n.diam).m There are a total of 0 (m El) search and acknowl-
edgment messages because each edge only carries information about at most m
different distance estimates. Also, at every phase, each tree edge is traversed at
most once by newphase and convergecast messages; since there at most O (A_~)
phases, this yields at most O (n.diam) such messages. Each phase takes time

m

0 (diam(g + d) + m2(g + d)). (The m 2 term results from the possibility of a
pileup of m messages in a single channel.) Thus, the total time complexity is

0 (diam2 (e + d)-4- diam. m(e + d))
m

We have given three algorithms to solve the BFS problem: the AsynchBFS
algorithm (with termination), the LayeredBFS algorithm, and the HybridBFS
algorithm. For a simple comparison among the three, we consider the version of
AsynchBFS with termination and in which diam is known. We neglect the local
processing time g and also neglect the effects of pileups in the links, using d as
an upper bound for the delivery of each message in a channel. We obtain

Messages Time

AsynchBFS: O (diamlEI) O (diam . d)

LayeredBFS: 0 (IEI + n. diam) 0 (diam2d)

gybI'idBFS: 0 (Tt%IE 1 + n.diam]m , 0 (diam2d)m

Now we turn to the problem of finding shortest paths in an asynchronous
network based on a weighted undirected graph. The problem is for each process
in the network to determine and output its parent in a shortest paths tree from
the source node i0, as well as its distance from i0. The problem of breadth-first
search is just the special case of the shortest paths problem when all the weights
are 1.

Recall that in the synchronous setting, the BellmanFord algorithm solves the
problem of finding shortest paths. Even though this algorithm is synchronous,
it must correct erroneous estimates of its distance. The BellmanFord algorithm
can be run asynchronously, using the following code, which is the natural gen-
eralization of the code for AsynchBFS. The AsynchBellmanFord algorithm was
the algorithm used to establish routes in the ARPANET between 1969 and 1980.

15.4. B R E A D T H - F I R S T S E A R C H A N D S H O R T E S T P A T H S 507

A s y n c h B e l l m a n F o r d i a u t o m a t o n :

Signature:

Input:
receive(w)j,i, w E R >-~ j E nbrs

Output:
send(w)i,j, w E R >-~ j E nbrs

States:
dist E R ->~ U {oc}, initially 0 if i = i0, oc otherwise
parent E nbrs U {null}, initially null
for every j E nbrs:

send(j), a FIFO queue of elements of R ->~ initially containing the single element 0 if i = i0,
else empty

Transit ions:
send(w)i,j

Precondition:
w is first on send(j)

Effect:
remove first element of send(j)

receive(w)j,~
Effect:

if w + weight(j, i) < dist then
dist := w + weight(j, i)
parent := j
for all k E nbrs- {j} do

add dist to send(k)

Tasks:
for every j E nbrs:

{send(w)i,j:w E R >~

T h e o r e m 1 5 . 2 0 In any fair execution of the AsynchBel lmanFord algorithm,
the system eventually stabilizes to a state in which the parent variables represent

a shortest paths tree rooted at io, and in which the dist variables contain the

correct distances of the nodes from io.

A prob lem for AsynchBellmanFord, as for AsynchBFS, is t ha t there is no

way for a process to know when it has no fur ther correct ions to make. Thus, the

a lgor i thm is not s t r ic t ly correct , because it never produces the required ou tpu t s .

We can a u g m e n t AsynchBel lmanFord with a convergecast of acknowledgments ,

in the same way t h a t we did for A synchBFS, and thus ob ta in the needed ou tpu t s .

The complex i ty analysis of AsynchBel lmanFord is interest ing, main ly be-

cause the worst -case message and t ime complexi t ies are ex t remely b a d - - t h e y

are b o t h exponential in n. For compar ison , recall t ha t the synchronous Bell-
manFord a lgor i thm requires only (n - 1)]E I messages and n - 1 rounds, while

508 15. B A S I C A S Y N C H R O N O U S N E T W O R K A L G O R I T H M S

the AsynchBFS algorithm (without known diameter and without termination)

requires only O (n[Ef) messages and O (d iam. n(~ + d)) time.

T h e o r e m 15.21 Let n be any even number, n 2 4. Then there is a weighted
graph G with n nodes, in which the A synchBellmanFord algorithm sends at least
f~(c n) messages and takes at least f~(cnd) time to stabilize in the worst case, for

1
some constant c > 1. (We may take c - 23.)

P r o o f . We assume that the channels are universal FIFO reliable channels. Let
k - ~-2 Let G be the weighted graph depicted in Figure 15 10 Most of the

2 " " "

edges in graph G have weight 0; the only edges with non-zero weights are the
right-facing sloped edges, and they have weights that are successively decreasing
powers of 2.

1 0

ooo

o "z'/ o "71.
io l , 12 l k_ l 1 k

0 �9
lk+ 1

F i g u r e 15.10: Bad weighted graph for the AsynchBellmanFord algorithm.

We claim that the possible finite dist estimates that process ik can take on
during an execution of AsynchBel lmanFord on graph G are exactly the numbers
in the set {2 k - 1, 2 k - 2 , . . . , 3, 2, 1, 0}. Each of these can be generated by the

flow of messages along a particular path from i0 to ik. In fact, we claim that it
is possible to force ik to take on all of these estimates in order, from the largest
to the smallest, in the same execution, as follows.

Suppose that the messages on the upper paths propagate very fast, thus giving
ik the estimate 2 k - 1. Next, the message from ik-1 to ik along the lower path
arrives at ik, giving ik the new estimate 2 k - 2. Next, the message from ik-2 to

ik-1 along the lower path arrives at ik-1, causing ik-1 to reduce its estimate by
2, from 2 k - 2 to 2 k - 4 . Process ik-1 then sends this reduced estimate on both
paths to ik. Once again, suppose that the messages on the upper path travel
faster, so process ik next obtains an estimate of 2 k - 3, and afterward 2 k - 4 .

Next, the message from ik-3 to ik-2 along the lower path arrives at ik-2,
causing ik-2 to reduce its estimate. Continuing in this way, we can cause process
ik to obtain all of the estimates, 2 k - 1 , . . . , 0, in order.

It is possible to run the system in such a way that all the processes, and all
the channels except for Cik,ik+l, operate very quickly. This results in a queue of

2 k messages in Cik,ik+l, which is f~(22)messages, or ft(c ~) messages. Moreover,

15.5. MINIMUM SPANNING TREE 509

if all these messages take the maximum time to get delivered, then the time
complexity is ft(cnd), as needed. N

We next consider upper bounds on complexity for A synchBellmanFord. The
number of messages sent on any channel Ci,j is proportional to the number of
different estimates that the sending process, i, obtains. The number of such
estimates is certainly no greater than the number of distinct simple paths from
i0 to i in the graph, which is O (n~). (Actually, it is smaller, but we leave
the improvement for an exercise.) Thus, the total communication complexity is
0 (nnlEI). An upper bound on the time complexity is O (nn+l(g + d)), using the
bound of n n on the number of messages in one channel.

Notice how heavily the time bounds depend on the pileups in the message
channels. If we adopt the simpler assumption, sometimes made in the theoretical
research literature, that any message takes at most time d from sending until
receipt (and if we ignore local processing time), then the time bound for Asynch-
BellmanFord can be calculated as only O (nd). This is certainly not a realistic
analysis for this algorithm.

15.5 Min imum Spanning Tree

For the last section in the chapter, we return to the problem of constructing a
minimum-weight spanning tree of a network based on an arbitrary connected
undirected graph. In Section 4.4, we gave an algorithm, SynchGHS, to solve this
problem in the synchronous setting; now we show how to modify this algorithm
so that it can be used in the asynchronous setting. The resulting algorithm,
which we call GHS after its discoverers, Gallager, Humblet, and Spira, is one
of the best-known algorithms in distributed computing theory. It is a carefully
engineered, complex algorithm that has been considered interesting enough to
serve as a case study for algorithm verification methods.

We suggest that you reread Section 4.4 at this point; it contains the underly-
ing theory on which the GHS algorithm is based, plus the SynchGHS algorithm,
which contains many of the ideas needed for GHS.

15 .5 .1 P r o b l e m S t a t e m e n t

As before, we assume that the underlying graph G = (V, E) is connected and
undirected, and we assume that the edges have associated weights. We want the
processes to cooperate to construct a minimum-weight spanning tree (MST) for
the graph G, that is, a tree spanning the vertices of G whose total edge weight
is less than or equal to that of every other spanning tree for G.

510 15. BASIC ASYNCHRONOUS NETWORK ALGORITHMS

We assume that processes have UIDs and that the weight Of each edge is
known to the processes associated with the incident vertices. We make one
technical assumption: we assume that all the edge weights are unique. The
same argument that we gave at the end of Section 4.4 shows that this uniqueness
assumption is not significant--ties among edges with the same weights can be
broken using the adjacent process UIDs. We assume that the processes have
only local knowledge of the graph; in particular, they do not know the number
of nodes or the diameter.

We assume that the processes are initially quiescent, that is, that no locally
controlled actions are enabled in their start states. We assume that each process
has a wakeup input action by which the environment signals it to begin executing
an MST algorithm. We allow any number of processes to receive wakeup inputs
during the course of an execution; thus, the algorithm must work regardless of
the number of processes that initiate computation and regardless of when they
do so. Note that we assume only that processes' start states are quiescent; we
permit a process to awaken when it receives any sort of inpu t - -a wakeup or a
message from another process. 1 The output of the algorithm is the set of edges
comprising an MST, in particular, every process is required to output the set of
edges adjacent to it that are in the MST.

15.5.2 The Synchronous Algorithm" Review

Recall that the SynchGHS algorithm is based on two fundamental properties of
MSTs, given by Lemmas 4.3 and 4.4. These properties are used to justify a
strategy in which, at any intermediate state, the algorithm has constructed a
spanning forest all of whose edges are in the MST. Then each of an arbitrary
subset of the components of the spanning forest may independently determine
its own minimum-weight outgoing edge (MWOE), knowing that all such edges
found must be included in the unique MST.

The SynchGHS algorithm works in "levels." The level 0 spanning forest
consists of individual nodes and no edges. Given the level k spanning forest, the
algorithm constructs the level k + 1 spanning forest by allowing all components
in the level k spanning forest to determine their MWOEs and then combining
all the components along these edges. It follows that each level k component
contains at least 2 k nodes.

The determination of the MWOE for a component is managed by a dis-
tinguished leader node of the component, whose UID is used as a component

1The assumpt ions we are making here about wakeup messages are different from those we

made at the end of Section 15.1.1. There, we assumed that wakeup messages arrived at all
processes.

15.5. MINIMUM SPANNING TREE 511

identifier. The leader broadcasts a request to determine the MWOE along the
component edges, then the processes engage in a query protocol to learn which
of their neighbors are in the same or different components, and then the pro-
cesses convergecast their information back to the leader. The combination of
components involves communication from the leader to the process adjacent to
the MWOE. Using careful bookkeeping, the processes can ensure that the com-
munication complexity is kept to O (n log n + IEI) and the number of rounds to
O(nlogn).

If we try to run SynchGHS in an asynchronous network, some dimculties
arise. For instance,

Difficulty 1: In Synch GHS, when a process i queries a neighbor j to see if j is
in the same component of the current spanning forest, it knows that j is up to the
same level of the construction. Therefore, if process j has a distinct component
identifier, then it must be the case that j is not in the same component. But in
the asynchronous setting, a situation could arise whereby process j is actually
in the same component as i but has not yet learned this (because a message
containing the latest component identifier has not yet reached it).

Difficulty 2: The SynchGHS algorithm achieves a message cost of O(n log n +
IEI), based on the fact that the levels are kept synchronized. Each level k
component has at least 2 k nodes, which implies that the total number of levels
is at most log n. In the asynchronous setting, there is a danger of constructing
the components in an unbalanced way, leading to many more messages. The
number of messages sent by a component to find its MWOE will be at least
proportional to the number of nodes in the component. We must avoid the
situation where a large component repeatedly discovers that its MWOE leads to
a single-node component and combines with that single node (as in Figure 15.11),
for this could require ft(n 2) messages.

Difficulty 3: In SynchGHS, the levels remain synchronized, whereas in the
asynchronous setting, some components could advance to higher levels than
others. It is not clear what type of interference might occur as a result of
concurrent searches for MWOEs by adjacent components at different levels.

These difficulties require careful consideration in adapting the SynchGHS
algorithm to the asynchronous setting.

15.5.3 The G H S Algorithm: Outline

The GHS algorithm follows the SynchGHS algorithm quite closely. In partic-
ular, it achieves the same communication complexity, O (n l o g n + IEI), and a
corresponding time bound, O (n log n(g + d)).

In the GHS algorithm, processes form themselves into components, which

512 15. BASIC A S Y N C H R O N O U S N E T W O R K A L G O R I T H M S

F i g u r e 15.11- A large component might grow by one node at a time.

combine to form larger components. The initial components are just the indi-
vidual nodes. Each component has a distinguished leader node, as well as a
spanning tree that is a subgraph of the MST.

Within any component, the processes cooperate in an algorithm to find the
M W O E for the entire component. This involves a broadcast originating at the
leader, asking each process in the component to determine its own minimum-
weight edge that leads outside the component. Information about all these edges
is convergecast back to the leader, who can determine the MWOE for the entire
component. This MWOE will be included in the MST.

Once the MWOE is found, a message is sent out over that edge to the com-
ponent on the other side. The two components may then combine into a new,
larger component. In this case, the entire procedure is repeated for the new com-
ponent. Enough combinations are carried out so that, eventually, all the nodes in
the graph are included in a single component, whose spanning tree is the needed
MST.

There are several problems that need to be addressed in making this algo-
r i thm work correctly. First, how does a process i know which of its edges lead

outside its current component? Certainly, we need some way of naming compo-
nents so that two processes can use the names to determine whether they are in
the same component. But this issue is more complicated than this: it may be,
as described in Difficulty 1 above, that an adjacent process j with a different
component name is in fact in the same component as the querying process i,
but has not yet learned this fact because of communication delays. Some sort of
synchronization is needed, to ensure that process j does not respond that it is
in a different component unless it has current information about its component
name.

The second problem, described in Difficulty 2 above, involves an excessive
number of messages that might be produced by an unbalanced combination of
components. In order to cope with this difficulty, we will try to keep the sizes of

15.5. MINIMUM SPANNING TREE 513

components that are combined roughly equal. More precisely, we will associate
a level with each component, as we do in SynchGHS. As in SynchGHS, all the
initial single-node components will have l eve l - 0, and the number of nodes in
a level k component will be at least 2 k. A level k + 1 component will only be
formed by combining exactly two level k components, thereby preserving the
size requirement. This strategy departs slightly from that used in SynchGHS:
in SynchGHS, an arbitrary number of level k components can be combined to
yield a level k + 1 component.

As it turns out, these levels will not only be useful in keeping the combi-
nations balanced-- they also provide some identifying information that can help
processes determine if they are in the same component.

The third problem, described in Difficulty 3, is that some components can
advance to higher levels than others, leading to possible interference between
concurrent searches for MWOEs by adjacent components at different levels.
Some synchronization will be required to prevent such interference.

15.5 .4 In M o r e D e t a i l

The GHS algorithm combines components in two different ways, which we call
merging and absorbing.

merge: This combining operation is applied to two components, C and C ~,
where level(C), the level of C, is the same as level(C) and where C and
C ~ have a common MWOE. The result of the merge is a new component
containing all the nodes and edges of C and C ~ plus the common MWOE.
The new component is assigned level = level(C) + 1.

absorb: This combining operation is applied to two components, C and C t,
where level(C) < level(C') and the MWOE of C leads to a node in C'.
The result of the absorb is a new component containing all the nodes and
edges of C and C ~, plus the MWOE of C. The new component is assigned
the same level as C ~. In fact, we prefer not to think of the absorb as
actually producing a "new component," but rather as just adding C to
the already existing C ~.

The absorb operation is useful for the case where some processes lag behind
others. Suppose that a large group of nodes are formed into a large component,
C ~, with a high level by a series of merge operations, while some other small
components lag behind with lower levels. If one of the small components, C,
discovers that its MWOE leads to C ~, then C can be absorbed into C ~ without
obtaining any information about the MWOE of C ~. This will be an inexpensive
operation.

514 15. B A S I C A S Y N C H R O N O US N E T W O R K A L G O R I T H M S

F i g u r e 15.12" Merging and absorbing.

These two combining strategies are illustrated roughly by Figure 15.12. Note
that the fact that level(C) < level(C') in an absorb operation does not imply that
C has fewer nodes than C~; the illustration is meant only to suggest the "typical"
case.

The merge and absorb operations manipulate the levels in a way that handles
Difficulty 2; in particular, they guarantee that any level k component has at least
2 k nodes. We now argue that the merge and absorb operations are sumcient to
combine all components into an MST for the entire graph.

L e m m a 15.22 Suppose that we start from an initial situation in which each
component consists of a single node with level = O, and apply any allowable

finite sequence of merge and absorb operations. Then after this sequence of
operations, either there is only one component, or else some merge or absorb
operation is enabled.

P r o o f . Suppose that there is more than one component after a sequence of
mewe and absorb operations. We show that there is some applicable operation.

We consider the "component digraph" G ~, whose nodes are the current com-
ponents and whose directed edges correspond to the MWOEs; each edge is di-
rected away from the component for which it is the MWOE. Lemma 4.5 implies
that in any weakly connected portion of G ~, there is a unique cycle of length 2.
This says that there are two components, C and C , whose MWOEs point to
each other. But it is easy to see that in this case, the two MWOEs must be the
same edge of the original graph G.

Now we claim that 6' and C ~ can be combined, using either a merge or an
absorb operation. For if level(C) = level(C'), then a merge operation is enabled,

15.5. M I N I M U M S P A N N I N G T R E E 515

whereas if C and C' have different levels, then the one with the smaller level can

be absorbed into the one with the larger level. K]

Now we consider in more detail how the MWOE is found for a given com-
ponent. This involves each process i in the component determining its own
minimum-weight edge (if any) that is outgoing from the component, mwoe(i) ,

and then all the processes sending their information to a leader node, who se-
lects the one with the minimum weight overall. This requires some additional
machinery. First, we need a mechanism for selecting the leader process for each
component. And second, we need a way for a process to determine whether a
given edge is outgoing from the component.

To help in these tasks, for every component of level 1 or greater, we identify
a specific edge that we call its core edge. This edge is defined in terms of the
series of merge and absorb operations that are used to construct the component.

�9 After a merge operation, the core is the common MWOE of the two original
components.

�9 After an absorb operation, the core is the core of the original component
with the larger level number.

Thus, the core of a component is the edge along which the last merge that was

used in the formation of the component took place.
For a component of level 1 or greater, we use the pair consisting of the core

(technically, the weight of the core) and the level as a component identifier. This
makes sense because the weights of edges are assumed to be unique. We also
designate one of the endpoints of the core edge--for instance, the one with the
higher UID- -a s the leader. For a level 0 component, the unique node is, of
course, the leader.

Now suppose that process i wishes to determine whether its edge to neigh-
boring process j is outgoing from i's current component. If process j ' s current
component identifier is the same as that of i, then process i is certain that j is
in the same component as itself. However, if j ' s component identifier is different
from that of i, then it is still possible that i and j are in the same component but
that j has not yet received notification of the current component identifier. There
is one special case that can be resolved: if j ' s component identifier is different
from that of i, and j ' s latest known level is at least as high as that of i, then it is

certain that j cannot be in the same component as i. This is so because, in the
course of an execution, a node can only have at most one component identifier
for each level, and because, when i is actively searching for its outgoing edges,
it is certain that i 's component identifier is up-to-date.

516 15. BASIC ASYNCHRONO US N E T W O R K ALGORITHMS

Thus, if i and j have the same component identifiers, j responds that it is in
the same component. Also, if i and j have different component identifiers and
the level of j is at least as great as that of i, then j responds that it is in a
different component. The only remaining case is where the level of j is strictly
smaller than that of i; in this case, process j simply delays answering i until its
own level rises to become at least as great as that of i. This handles Difficulty
1.

However, notice that we now have to reconsider the progress argument, since
this new delay could conceivably cause progress to be blocked. The fact that
some processes in a component can be delayed in finding their minimum-weight
outgoing edges means that the component as a whole can be delayed in finding
its MWOE; we must consider whether this can cause the system to reach a state
in which no further merge or absorb operations can be performed.

To see that this cannot happen, we use essentially the same progress ar-
gument as before, but this time we consider only those components with the
current lowest level, say k. All the processes in these components must suc-
ceed in their individual minimum-weight outgoing edge determinations, so these
components must succeed in determining their MWOEs. If any of the level k
components finds that its MWOE leads to a higher-level component, then an
absorb operation is possible. On the other hand, if every level k component finds
that its MWOE leads to another level k component, then Lemma 4.5 implies
that we must have a length 2 cycle involving level k components, and a merge
operation is possible. Thus, even with the new type of delay, the algorithm must
make progress until the complete MST is found.

Thus, we have seen how each process determines its own minimum-weight
outgoing edge (if any). Then, as described above, the leader of the component
determines the MWOE for the component via a broadcast and convergecast,
selecting the edge with the overall minimum weight.

We must still consider Difficulty 3: the possible interference between con-
current searches for MWOEs by adjacent components at different levels. In
particular, we consider what happens if a lower-level component C gets ab-
sorbed into a higher-level component C ~ while C '~ is involved in determining its
own MWOE. Suppose that the MWOE of C connects node i of C and node j
of C'. See Figure 15.13.

There are two cases to consider. First, suppose that process j has not yet de-
termined its minimum-weight edge outgoing from the component at the time the
absorb occurs. In this case, the algorithm searches for the MWOE of the com-
bined component in C as well as in C . The fact that j has not yet determined
mwoe(j) means that it is not too late to include C in the search.

15.5. MINIMUM SPANNING TREE 517

F i g u r e 15.13: Component C is absorbed into C t, while C ~ is searching for its MWOE.

On the other hand, suppose that process j has already determined mwoe(j) at
the time the absorb occurs. In this case, we claim that mwoe(j) r (i, j), that is,
the minimum-weight edge for j cannot possibly be the same as the MWOE for C.
This is because the fact that mwoe(j) has already been determined implies that
it leads to a component with a level at least as great as that of C ~. (A technical
point: The fact that the level told to j by the other endpoint of mwoe(j) was at
least as great as the level of C ~ implies that it is still at least as great, because the
level known by a process cannot decrease.) However, since C is absorbed into
C', we know that level(C) is strictly smaller than level(C'). So mwoe(j) r (i, j),
as claimed. This implies that the weight of mwoe(j) is strictly less than the
weight of (i, j).

Then we claim that the MWOE for the combined component cannot possibly
be adjacent to a node in C. This is true because (i, j) is the MWOE for fragment
C, so there can be no edges leading out of C with smaller cost than (i, j) , and so
no edges leading out of C with smaller cost than the already discovered mwoe(j).
Thus, if mwoe(j) has already been determined at the time of the absorb, the
algorithm need not search for the MWOE of the combined component in C.
This is fortunate, since it might already be too late to search there--process j
might have already reported its minimum-weight edge, and component C ~ might
be in the process of deciding on an overall MWOE without knowing about the
newly absorbed nodes.

15 .5 .5 S p e c i f i c M e s s a g e s

We now give a little more detail about the specific messages that are sent in the
GHS algorithm. The messages are of the following types:

�9 initiate. An initiate message is broadcast throughout a component, start-
ing at the leader, along the edges of the component 's spanning tree. Nor-
mally, 2 it triggers processes to start trying to find their mwoes. It also
carries the component identifier (core and level).

2There is an exceptional case, which we will mention below.

518 15. B A S I C A S Y N C H R O N O US N E T W O R K A L G O R I T H M S

�9 report. A report message convergecasts information about minimum-weight
edges back toward the leader.

�9 test. A process i sends a test message to a neighbor j to try to ascertain
whether or not j is in the same component as i. This is part of the procedure
by which process i searches for its own mwoe.

�9 accept and reject. These are sent in response to test messages. They tell
the testing node whether the responding node is in a different component
(accept) or the same component (reject).

�9 changeroot. A changeroot message is sent from the leader of a component
toward the component process that is adjacent to the component 's MWOE,
after the MWOE has been determined. It is used to tell that process to
at tempt to combine with the component at the other end of the MWOE.

�9 connect. A connect message is sent across the MWOE of a component C
when that component at tempts to combine with another component. A
merge operation occurs when connect messages have been sent both ways
along the same edge. An absorb operation occurs when a connect message
has been sent one way along an edge that leads to a process at a higher
level than the sender.

In the test-accept-reject protocol, there is some bookkeeping that the testing
process i must do in order to keep the communication complexity low; this is
similar to the bookkeeping described earlier for SynchGHS. Namely, process i
maintains a list of its incident edges in increasing order of weight. It classifies
these incident edges into three categories:

�9 branch edges are those that have already been determined to be part of
the MST.

�9 rejected edges are those that have already been determined not to be part
of the MST, because they lead to other nodes within the same component.

�9 basic edges are all the others. These are the edges that process i cannot
yet classify as being in or out of the MST.

Initially, all the edges are classified as basic.

When process i searches for its minimum-weight outgoing edge, it only needs
to send test messages along basic edges. It tests the basic edges sequentially,
lowest weight to highest. For each basic edge, process i sends a test message
containing the component identifier (core and level) of its component C. The

15.5. M I N I M U M SPANNING T R E E 519

recipient j of a test message checks to see if its own latest known component
identifier is the same as that of the sender i. If so, it responds with a reject
message. When i receives the reject message, it reclassifies the edge as a rejected
edge. Also, if the recipient j ' s core is different from that of i and its level is at
least as great as that of i, then j responds with an accept message. (This does
not cause i to reclassify the edge.) Finally, if j ' s core is different from that of i
and its level is strictly smaller than that of i, process j simply delays responding
until such time as it is able to send back a reject or accept, according to the rules
above .

Note that it is possible for i to receive an accept message for edge (i, j) ,
but for edge (i, j) not to be the one eventually identified as the M W O E for the
entire component C. In this case, the same edge (i, j) may be re tes ted by i in
subsequent searches. Process i only reclassifies an edge as a branch edge when
it actually discovers that the edge is par t of the MST, for example, when process
i receives a changeroot message referring to that edge or receives a connect
message over the edge.

When two connect messages cross on a single edge, a merge operation occurs.
Then the common edge is identified as the new core, the level is increased by
one, and the endpoint with the larger UID is chosen as the new leader. The
new leader then broadcasts initiate messages to begin looking for the M W O E of
the new component formed by the merge. When a connect message is received
by a process from a lower level component , an absorb operation occurs. The
recipient process knows whether or not it has already found its mwoe and thus
knows whether it needs to tr igger a search in the newly absorbed component . In
either case, it will broadcas t an initiate message to that component to tell the
processes in that component the latest component identifier. 3

Note that each process is able to perform its output as soon as it no longer
classifies any of its incident edges as basic; the output is simply the set of branch
edges.

T h e o r e m 15 .23 The GHS algorithm solves the M S T problem in an arbitrary
connected undirected weighted graph network.

15.5.6 Complexity Analysis

The communicat ion complexity analysis is similar to that for SynchGHS, giving

the same bound of 0 (n l o g n + tel) . We divide the messages into two sets,
resulting separately in the O (n log n) term and the 0 (IE[) term. The 0 (IEI)
counts the test messages that lead to rejection, plus the reject messages, on all

3This is the exceptional case mentioned earlier.

520 15. B A S I C A S Y N C H R O N O U S N E T W O R K A L G O R I T H M S

edges. This is a total of O (IEI), because each edge is rejected at most once:
after a reject message is received on an edge by a process i, i never again tests
that edge.

All the other messages-- the test-accept pairs that enable a process to accept
an edge as its mwoe, the initiate and report messages that are used for broadcast
and convergecast, and the changeroot and connect messages that are used after
a component has determined its M W O E ~ a r e charged to the task of finding the
MWOE for a specific component (i.e., for a specific core and level). In this task
for one component, these messages can be associated with nodes in such a way
that there is at most one of each of these types of messages associated with each
node. (In particular, each process sends at most one successful test message.)
Thus, the number of messages charged to one component C is O (ICt), where we
are using]C I to denote the number of nodes in component C. The total number
of messages is, therefore, proportional to

Zlcl.
C

Organizing the components according to their levels, we rewrite this expression
a s

k:O<k<logn C:level(C)=k

For each level k, the inner sum is at most n, because no node ever appears in
more than one component with level = k. Therefore, this expression is at most
equal to

log n

n - 0 (n log n) .
0

It follows that the overall communication complexity of the algorithm is O(n log n-t-

IEI), claimed.
For the time complexity, it is convenient to include a preliminary protocol

to awaken all the processes as quickly as possible. Then it can be shown by
induction on k that the time for all the processes to reach level at least k is
0 (kn(f + d)). Thus, the total time is O (n log n(t~ + d)).

L o w e r b o u n d . Note that the communication complexity must be f~(n log n), at
least for some graphs. For example, if the communication complexity of MST in
rings were less than this, then it would be possible to combine a communication-
efficient MST algorithm with the STtoLeader algorithm to obtain a leader-
election algorithm whose communication complexity is also less than this. But

15.5. MINIMUM SPANNING TREE 521

would contradict Theorem 15.12, which says that f~(nlogn) messages are nec-
essary for leader election in rings of size n.

15 .5 .7 P r o v i n g C o r r e c t n e s s for t h e G H S A l g o r i t h m

The GHS algorithm is the first one in this book for which we have not at least
outlined a correctness proof. There is a good reason for this: at the present
time, no simple proof is known. The algorithm has been proved correct, at least
four times, by a variety of methods, but none of the proofs is sufficiently nicely
organized to be outlined in a few pages.

One approach that works is the usual invariant assertion approach. Here,
this involves collecting a rather large number of invariants, describing all the
different tasks performed by the algorithm. For instance, there are invariants
describing the correct operation of the broadcast and convergecast tasks, in-
variants describing the test-accept-reject protocol, and invariants describing the
changeroot-connect protocol. All of these invariants can be proved together by
a huge inductive argument. Such a proof involves a large number of cases and
a large amount of tedious detail, but is, in principle, quite straightforward.

But such a brute-force proof does not seem to take full advantage of the mod-
ularity that is present in the algorithm. For instance, the algorithm appears to
be decomposable into separate tasks such as broadcast-convergecast and testing,
yet this decomposition is not expressed formally (e.g., using the I/O automaton
composition operation). So it is not clear how we could carry out the correctness
proofs for the various tasks separately and then combine the results.

Also, the brute-force invariant assertion proof does not take much advantage
of high-level intuition about the algorithm. Note that much of our discussion of
the algorithm has involved high-level notions such as graphs, components, levels,
and MWOEs, rather than low-level concepts such as messages and local vari-
ables. It seems that a good proof ought to proceed, as far as possible, in terms of
the high-level notions. In fact, a second approach that works is to give a high-
level description of the algorithm, as an automaton that manipulates graphs,
components, and so on, and to prove this correct using invariants. Then it is
possible to prove that the detailed algorithm correctly simulates the high-level
description. The formal correspondence between the low-level and high-level
algorithms is a simulation relation, as defined in Section 8.5.5. For examples
of simulation proofs, see the proof of the Infinite TicketME mutual exclusion
algorithm in Section 10.9.4 and the proofs of the SimpleSynch and SafeSynch
synchronizer algorithms in Chapter 16. The proofs for synchronizer algorithms
demonstrate especially nicely how some complex asynchronous network algo-
rithms can be decomposed in two ways: using I/O automaton composition for

522 15. B A S I C A S Y N C H R O N O U S N E T W O R K A L G O R I T H M S

separating the reasoning about separate tasks and using simulation relations to
allow reasoning at the highest possible level of abstraction.

Another approach to proving the correctness of GHS is to try to relate its
behavior formally to that of the synchronous version of the algorithm, Synch-
GHS. Informally speaking, the correspondence seems very close. Note that this
relationship cannot be a simple simulation relation, because in the asynchronous
algorithm, different portions of the network can be far out of synchronization, as
determined by the current levels. Whatever correspondence is used must allow
some reordering of activities that happen in different places in the network.

We regard it as an interesting open problem to find a nicely decomposed
proof of correctness for the GHS algorithm. It would be acceptable to modify
the algorithm slightly to obtain the modularity, as long as the modifications do
not affect the important algorithmic ideas or the complexity.

In Chapters 16-22, you will see a variety of asynchronous network algorithms,
decomposed using a variety of methods. We hope that the complications of
algorithms such as GHS have convinced you that it is important to find such
decompositions.

15 .5 .8 A S i m p l e r " S y n c h r o n o u s " S t r a t e g y

Note that the GHS algorithm has many complications that do not arise in the
SynchGHS algorithm; most of these are the result of the fact that different pot-
tions of the network can be far out of synchronization, as determined by the
current levels. One way of avoiding these complications is to try to simulate
SynchGHS as closely as possible, keeping the levels of nearby processes close to
each other.

SimpleMS T algorithm"
The algorithm is again based on combining components, where each com-
ponent has an associated level. The initial components are just the indi-
vidual nodes, each with level = 0. Now level k components can only be
combined into level k + 1 components, using the same general strategy as
in SynchGHS.

Each process i maintains a local-level variable, which keeps track of the
latest level process i knows for its component. Initially, the local-level is 0,
and when process i learns about its membership in a new component with
level = k, i raises its local-level to k.

The key idea is that a process i with local-level = k tries not to participate
in the algorithm for finding its level k component 's MWOE until all the
processes in the network have local-levels at least equal to k. Actually

15.6. BIBLIOGRAPHIC NOTES 523

achieving this would require expensive global synchronization. But in fact,
a weaker local synchronization is enough: each process only waits to learn
that all of its neighbors in the underlying graph have local-levels at least
k. So that all processes can discover this, each process sends a message on
each of its incident edges each time its local-level increases.

The SimpleMST algorithm has the same time complexity upper bound as
GHS, namely, O (n log n(t~ + d)), and, of course, it is much simpler than GHS.
The communication complexity is worse, however, because of the synchronization
messages used at every level: now it is O (IZl log n).

15.5.9 Applicat ion to Leader Elect ion

An MST algorithm can be used to solve the leader-election problem in an arbi-
trary connected undirected weighted graph with UIDs. Namely, after establish-
ing an MST, the processes participate in the STtoLeader protocol to select the
leader.

Note that the processes do not need to know when the MST algorithm has
completed its execution throughout the network; it is enough for each process i
to wait until it is finished locally, that is, has output its set of incident edges in
the MST. If process i receives a message that is part of the STtoLeader algorithm
before it has performed its output for the MST protocol, it simply delays the
message until it is done with MST. The idea is the same as in the general strategy
for handling input arrivals in wakeup messages, described at the end of Section
15.1.1.

If the GHS algorithm is used for establishing the MST, the total number of
messages to elect a leader is O (n log n + IEI) and the total time is O (n log n(t~ + d)).

15.6 Bibliographic Notes

The A synchLCR and the asynchronous version of the HS algorithm, like the syn-
chronous versions of these algorithms, are derived from the papers by LeLann
[191], Chang and Roberts [71], and Hirschberg and Sinclair [156]. The Peterson-
Leader algorithm was developed by Peterson and appears in [239]. Another
unidirectional algorithm that achieves O (n log n) communication complexity was
developed by Dolev, Klawe, and Rodeh [97]. The smallest upper bound currently
known for the communication complexity for leader election in an asynchronous
ring is 1.271n log n + O (n), by Higham and Przytycka [155].

524 15. BASIC ASYNCHRONOUS NETWORK ALGORITHMS

The observations at the beginning of Section 15.1.4, indicating how the syn-
chronous lower bound results for the communication complexity of leader election
carry over to the asynchronous setting, are due to Gafni [129]. The direct proof
of the lower bound for the asynchronous setting is due to Burns [61].

Afek and Gafni [6] have developed complexity bounds for leader election in
complete asynchronous networks.

The key ideas for the simple spanning tree, broadcast, and convergecast
algorithms appear to have originated in papers by Segall [258] and by Chang [72].
The AsynchBFS and AsynchBellmanFord algorithms are based on the sequential
shortest paths algorithm of Bellman and Ford [43, 125]. The AsynchBellmanFord
algorithm is essentially the algorithm used to establish routes in the ARPANET
between 1969 and 1980 [223]. The termination protocol described for AsynchBFS
and AsynchBellmanFord in this chapter is based on the work of Dijkstra and
Scholten on termination detection for "diffusing computations" [92]; we present
this work in Section 19.1. The LayeredBFS and its m-layer version are inspired
by the work of Gallager [131]; these results were later improved by Awerbuch
and Gallager [33]. Another interesting shortest paths algorithm was designed by
Gabow [128].

The GHS protocol was developed by Gallager, Humblet, and Spira [130]. The
code in their paper is of a slightly different style from the precondition-effect code
of this book; a version more in the style of this book appears in Welch's Ph.D.
thesis [287]. There have been several papers published with correctness proofs for
the GHS algorithm or variants of it. Welch, Lamport, and Lynch [288] proved
correctness using simulation methods. Chou and Gafni [79] verified a slightly
modified version of the algorithm, using a correspondence with the synchronous
algorithm. Stomp and de Roever [87] and Janssen and Zwiers [164] also carried
out proofs. Awerbuch [31] developed an O (rid) time, O (n log n) message MST
algorithm. Garay, Kutten, and Peleg [132] developed an O ((diam + v/-~)d) time
algorithm. Awerbuch, Goldreich, Peleg, and Vainish [34] proved a lower bound
result that says that the number of messages needed to establish a minimum
spanning tree is ~([E[); this result assumes that the messages are of bounded
length. The SimpleMST algorithm is due to Awerbuch.

Humblet [160] designed an asynchronous distributed algorithm for finding a
minimum spanning tree in a directed graph network.

15.7 Exerc i ses

15.1. Give an alternative proof of correctness for the AsynchLCR algorithm,
based on relating it formally to the synchronous L CR algorithm.

15.7. EXERCISES 525

15.2. Give precondition-effect code for the modification of AsynchLCR, described
at the end of Section 15.1.1, which includes wakeup inputs and receive
buffers.

15.3. For the asynchronous version of the HS algorithm:

(a) Give precondition-effect code.

(b) Prove the correctness of the algorithm, based on the code.

(c) Analyze its time complexity, assuming the usual upper bounds of t~
for each task of each process and d on delivery time for the oldest
message in any channel.

(d) Analyze its time complexity, assuming an upper bound of d on the
delivery time for an arbitrary message and neglecting local processing
time.

15.4. Consider the PetersonLeader algorithm in a ring with n = 15 nodes, in
which the UIDs for processes P I , . . . , P16 are, respectively, 25, 3, 6, 15, 19,
8, 7, 14, 4, 22, 21, 18, 24, 1, 10, 23. Which process is elected as leader?

15.5. Design a version of the PetersonLeader algorithm for the synchronous net-
work model described in Chapters 2 and 3. The processes in your algo-
rithm may know n. Strive to make your algorithm as simple (to write
and to understand) as possible, while keeping the unidirectionality and
the O (n log n) communication complexity. Analyze the time (number of
rounds) complexity of your algorithm.

15.6. Give a careful proof of the O (n(t~ + d)) upper bound for the time complexity
of the PetersonLeader algorithm.

15.7. Design a version of the PetersonLeader leader-election algorithm for rings
with bidirectional communication. In the new version of the algorithm, the
UIDs remaining in contention do not need to precess around the ring, but
can stay where they originate; each process simply collects the UIDs from
its two active neighbors at each phase. Give precondition-effect code for
your algorithm. Analyze its message and time complexity.

15.8. Extend the AsynchLCR algorithm, the asynchronous HS algorithm, and
the PetersonLeader algorithm so that the non-leaders also announce that
they are not the leader, via non-leaderi output actions. Analyze the com-
munication and time complexities of the resulting algorithms.

15.9. Fill in the details of the proof sketch for Theorem 15.11.

526 15. BASIC ASYNCHRONOUS NETWORK ALGORITHMS

15.10. Give a careful argument to justify the statement made in the inductive step
of the proof of Claim 15.15, that the state after C~L,M is silent.

15.11. Extend the proof of Theorem 15.12 so that it applies to rings whose sizes
are not powers of 2. What is the best lower bound you can obtain in this
way?

15.12. Consider the problem of leader election in networks based on bidirectional
line graphs; such a graph consists of n processes numbered 1 , . . . , n, ar-
ranged in a line, with bidirectional edges between each pair of neighbors.
Assume that each process knows its neighbors by the local names "right"
and "left," with the orientation consistent along the line. Assume that each
process knows whether or not it is an endpoint. Assume that the processes
have no knowledge of n.

(a) Give a leader-election algorithm for such networks that uses a small
number of messages.

(b) Why does this result not contradict the lower bound in Lemma 15.147

15.13. Consider the asynchronous simulation of OptFloodMax described in Sec-
tion 15.2, in which the processes do not know when to terminate.

(a) Write precondition-effect code for the asynchronous simulation.

(b) For an arbitrary graph G and UID assignment, compare the maximum
number of messages sent in your simulation to the maximum number
sent in the synchronous OptFloodMax algorithm.

15.14. Fill in the details of the proof of Theorem 15.16.

15.15. Give a careful proof of correctness for AsynchBcastAck.

15.16. Write precondition-effect code for a modification of AsynchBcastAck in
which each process garbage-collects all information about the algorithm
after perfoming a report action and sending out its acks. Prove its correct-
ness and analyze its complexity.

15.17. Design an algorithm for broadcast and acknowledgment in asynchronous
networks, in which the time complexity depends on the diameter of the
network rather than the total number of nodes.

15.18. Extend the spanning tree, broadcast, and convergecast algorithms in Sec-
tion 15.3 to the case where the network is based on a strongly connected
directed graph. Analyze the complexity of your algorithms.

15.7. EXERCISES 527

15.19. Give a careful description and complexity analysis for the leader-election
strategy given just after the description of AsynchBcastAck. Analyze the
time complexity under two different assumptions: the usual upper bound
of d on delivery of the oldest message in each channel and an upper bound
of d on the delivery of an arbitrary message in each channel. In the latter
case, you may ignore local processing time.

15.20. Describe in detail an algorithm that allows a distinguished process i0 in an
asynchronous network based on an arbitrary connected undirected graph
G to calculate the number of nodes in G. Sketch a correctness proof.

15.21. Fill in the details of the proof of Theorem 15.18.

15.22. For the AsynchBFS algorithm,

(a) Produce an execution that uses as many messages as you can manage;
try to achieve the given upper bound of O (~IEI).

(b) Produce an execution that takes the longest time that you can manage
until a stable state is reached; try to achieve the given upper bound
of O (diam . n(e + d)).

15.23. Write precondition-effect code for the modification of A synchBFS in which
processes produce parent outputs, by means of an acknowledgment proto-
col. Do not assume any knowledge of the size or diameter of the network
graph.

Prove the correctness of your protocol and analyze its complexity. (Hint:
The communication complexity should be the same as for the basic Asynch-
BFS algorithm. The time complexity becomes bigger because of the timing
anomaly discussed for AsynchSpanningTree and AsynchBcastAck.)

15.24. Repeat Exercise 15.23 for the modification of A synchBFS in which diarn
is known and in which processes produce parent outputs.

15.25. Write precondition-effect code for LayeredBFS and prove its correctness.

15.26. Give a detailed description of the HybridBFS algorithm, either using pre-
condition-effect code or using very precise English. Prove correctness.

15.27. Design an efficient algorithm that allows a distinguished process i0 in an
asynchronous network based on an arbitrary connected undirected graph
G to determine the maximum distance k from i0 to the furthest node in
the network. Analyze its message and time complexity.

528 15. BASIC ASYNCHRONOUS N E T W O R K ALGORITHMS

15.28. Give an upper bound for the time complexity of the AsynchBellmanFord
shortest paths algorithm. It should be as tight as you can make it.

15.29. Write precondition-effect code for a modification of A synchBellmanFord in
which processes produce parent and distance outputs, by means of an ac-
knowledgment protocol. Prove the correctness of your protocol and analyze
its complexity.

15.30. Design an algorithm to find the shortest paths from a fixed source node i0
to all other nodes in the network. Your algorithm should have a much better
time bound than the AsynchBellmanFord algorithm, say, O (n(g + d)).

15.31. Extend the breadth-first search and shortest paths algorithms in Section 15.4
to the case where the network is based on a strongly connected directed
graph. Analyze the complexity of your algorithms.

15.32. Give complete precondition-effect code for the GHS minimum spanning
tree algorithm.

15.33. Consider the GHS minimum spanning tree algorithm.

(a) State and prove carefully an upper bound on the time from when the
first process awakens until the last process announces its results. You
may assume that a preliminary protocol is used to awaken all the
nodes as quickly as possible.

(b) How tight is the upper bound you proved in (a)? That is, describe a
particular execution of the algorithm that takes time that is as close
as you can get to your upper bound.

15.34. Describe an execution of GHS in which a reject message arrives at process
i along channel Cj,i, in response to a previous test message by i, at a time
when i classifies edge (i, j) as a branch edge. Argue that the algorithm
handles this case correctly.

15.35. Suppose that, at some point in an execution of the GHS algorithm, a pro-
cess i in a component C sends a connect message over some edge (i, j) ,
directed toward a component C' having the same level as C. Argue that
component C eventually either gets merged with C' or else absorbed into
some component that includes C'.

15.36. Research Question: Compare the operation of the GHS minimum spanning
tree algorithm to that of SynchGHS. For example, what is the relationship
between the components produced in the two cases? (It may be possible
to exploit such a connection in a formal proof of correctness for GHS.)

15.7. E X E R C I S E S 529

15.37. Research Question: Find a nice, simple proof of correctness for the GHS
algorithm as described in this chapter and in [130]. If it helps, you may
modify the algorithm slightly, as long as you retain the same basic algo-
rithmic ideas and the same message and time complexity.

15.38. For the S imp leMST algorithm,

(a) Write precondition-effect code.

(b) Prove correctness.

15.39. Research Question: Find an MST algorithm with approximately O (diam �9 d)
time complexity and with all messages of size O (log n).

15.40. Give a formal description of the leader-election strategy described in Sec-
tion 15.5.9, as a composition of I /O automata that produce an MST and
I /O automata that use an MST to elect a leader. Describe the interactions
between these two sets of automata carefully, identifying what actions are
used for communication between the two sets of automata and identifying
exactly what behavior each set of automata requires of the other set.

15.41. Consider a network based on a line graph, as described in Exercise 15.12.
That is, the graph consists of n processes numbered 1 , . . . , n, arranged
in a line, with bidirectional edges between each pair of neighbors. Each
process knows its neighbors by the local names "right" and "left," with the
orientation consistent along the line. Each process knows whether or not

it is an endpoint. Processes do not know n.

Assume that each process i initially has a very large integer value vi, and
that it can hold in memory only a constant number of such values at any
time. Design an algorithm to sort the values among the processes, that is,
to cause each process i to return one output value oi, where the multiset of
outputs is equal to the multiset of inputs and Ol _< 02 <_ . . . <_ On. Try to
design the most efficient algorithm you can, both in terms of the number
of messages and in terms of the time. Prove your claims.

15.42. Consider an asynchronous connected undirected network of arbi t rary topol-
ogy in which each process has a UID. Assume that each process i initially

receives as input some integer value vi. Design an algorithm that will
cause each process to return the sum of all the inputs in the network. Try
to keep the communication complexity, as measured in terms of the number
of messages, low. Prove your claims.

530 15. BASIC ASYNCHRONOUS N E T W O R K ALGORITHMS

15.43. Consider a "banking system" in which each process in a network keeps a
number indicating an amount of money. We assume, for simplicity, that
there are no external deposits or withdrawals, but messages travel between
processes at arbitrary times, containing money that is being "transferred"
from one location to another. The channels preserve FIFO order.

Design a distributed network algorithm that allows each process to decide
on (that is, to output) its own balance, so that the total of all the balances
is the correct amount of money in the system. Assume that the execution
of this algorithm is triggered by signals arriving from the outside, at one
or more of the system locations. (These signals could happen at any time
and could happen at different times at different locations.)

Your algorithm should not halt or delay transfers "unnecessarily." Give a
convincing argument that your algorithm works correctly.

15.44. Design a version of the LubyMIS algorithm of Section 4.5 that works in
asynchronous networks. Give a careful statement of what your algorithm
guarantees and prove it.

Chapter 16

Synch r o n l z e r s

In Chapter 15, we gave several examples of distributed algorithms programmed
directly on the "bare" asynchronous network model. As should be apparent by
now, this model has so much uncertainty that it is very difficult to program di-
rectly. It is, therefore, desirable to have simpler models that can be programmed
more easily and whose programs can be translated into programs for the general
asynchronous network model.

We have already presented two models that are simpler than the asynchro-
nous network model--the synchronous network model and the asynchronous
shared memory model--and have given many examples of algorithms for these
two models. In this chapter, we show how algorithms for the synchronous network
model can be transformed into algorithms for the asynchronous network model,
while in Chapter 17, we show how asynchronous shared memory algorithms can
be transformed into asynchronous network algorithms. These transformations
enable algorithms for the two simpler models to be run in asynchronous networks.

The idea of transforming synchronous network algorithms into asynchronous
algorithms has already been suggested by some of the algorithms that appear
in Chapter 15, namely, the simulation of FloodMaz using round numbers on all
messages in Section 15.2 and the SimpleMST algorithm in Section 15.5.8.

The strategy of transforming synchronous to asynchronous network algo-
rithms works only for non-fault-tolerant algorithms. In fact, such a transfor-
mation cannot work for fault-tolerant algorithms because, as we will show in
Chapter 21, the capabilities for fault-tolerance are fundamentally different in
synchronous and asynchronous networks.

We formulate the transformation from the synchronous network model to
the asynchronous network model in terms of a system module called a (local)
synchronizer. We then describe several distributed implementations of the syn-
chronizer. All of these implementations involve synchronizing the system at every

532 16. SYNCHRONIZERS

synchronous round; this is necessary because the transformations are designed
to work for arbitrary synchronous algorithms. The ability to synchronize less
frequently (as, for example, in the SimpleMST algorithm) depends on special
properties of the algorithm that ensure that it still works correctly if it is al-
lowed to exhibit arbitrary interleavings of process steps between synchronization
points.

Our presentation of the synchronizer implementations turns out to be a very
good example of modular decomposition of distributed algorithms. We use sev-
eral algorithm decomposition techniques, most of which are described in Chap-
ter 8. We begin with a "global" specification of correctness in terms of I /O
automata. Then we define a local synchronizer abstractly and show that it
implements the global specification; this requires techniques based on partial
orders of events. Next we describe several alternative ways of implementing the
local synchronizer; each could be shown to do so using the simulation method
of Section 8.5.5. However, most of these implementations can take advantage of
additional decomposition steps. Thus, we define another system module known
as a safe synchronizer, show how it can be used to implement the local syn-
chronizer, and then develop several distributed algorithms as implementations
of the safe synchronizer. The entire development is a good illustration of the
power of decomposition methods in enabling simple description (and proofs) of
complicated distributed algorithms.

We close the chapter with a contrasting lower bound on the time overhead
required to run a synchronous network algorithm in an asynchronous network,
if the synchronization requirements are very strong.

16.1 T h e P r o b l e m

In this section, we describe the problem to be solved by a synchronizer. The
starting point is the synchronous network model, with a collection of n syn-
chronous processes running at the nodes of an undirected graph G - (V, E),
communicating by messages sent over the edges. In the formulation of that
model in Chapter 2, each process i is presented as a kind of state machine,
with message-generation and transition functions. Here, we deviate from the
earlier development by instead representing each process i as a "user process"
I /O automaton Ui. 1

Let M be the fixed message alphabet used in the synchronous system. We
define a tagged message to be a pair (m, i), where m E M and 1 < i _< n.

The user automaton Ui has output actions of the form user-send(T, r)i, where

1We are referring to these processes here as "user processes" because they are users of the
synchronizer system, which is the main system component we are now studying.

16.1. THE PROBLEM 533

T is a set of tagged messages and r E N +, by which it sends messages to its

neighbors. The tag in a tagged message indicates the message destination, and
the r argument represents the round number. If Ui does not have any messages
to send at round r, then it performs user-send(O, r)i. Ui also has input actions of
the form user-receive(T, r)i, where T is a set of tagged messages and r C N +, by
which it receives messages from its neighbors. Here, a tag indicates the message
source and r is again the round number. Ui may also have other external actions
by which it interacts with the outside world. We now model inputs and outputs
of the user automata using input actions and output actions rather than encoding
them in the states (as we did in Chapter 2).

Example 16.1.1 user-send a n d user-receive a c t i o n s

Suppose that n = 4. Then user-send({(ml, 1), (m2, 2)}, 3)4 indi-
cates that at round 3, user U4 sends message ml to user U1 and
message m2 to user U2, a n d sends no other messages. Also, user-
receive({(ml, 1), (m2,2)},3)4 indicates that at round 3, U4 receives
message ml from U1 and message m2 from U2, and receives no other
messages.

Ui is expected to preserve the well-formedness condition that the user-sendi
and user-receivei actions alternate, starting with a user-sendi action, and that
successive pairs of actions occur in order of rounds. That is, the sequence of such
actions is a prefix of an infinite sequence of the form

user-send(T1, 1)i, user-receive(T~, 1)i, user-send(T2, 2)i, user-receive(T~, 2)i,
user-send(T3, 3),

There is one other condi t ion--a liveness condi t ion-- that Ui is required to
satisfy: in any well-formed fair execution, Ui must eventually perform a user-
sendi for each round r such that user-receivei events for all previous rounds have
already occurred. That is, the users continue sending messages for infinitely
many rounds, as long as the system keeps responding.

We describe the rest of the system as a global synchronizer, GlobSynch. Its
job is, at each round, to collect all the messages that are sent by user automata
at that round in user-send actions and to deliver them to all the user automata in
user-receive actions. It synchronizes globally, after all the user-send events and
before all the user-receive events of each round. See Figure 16.1 for a picture of
the combination of user and GlobSynch automata, that is, the GlobSynch system.
Notice that user-send actions are input actions of GlobSynch, while user-receive
actions are output actions of GlobSynch.

534 16. S Y N C H R O N I Z E R S

GlobSynch

us -receive j

I
us ive i

F i g u r e 16 .1" Archi tecture for the GlobSynch system.

GlobSynch c a n eas i ly be d e s c r i b e d as an I / O a u t o m a t o n .

G l o b S y n c h a u t o m a t o n "

Signature:

Input:
user-send(T, r)i, T a set of tagged messages, r E 1N +, 1 < i < n

Output"
user-receive(T, r)i, T a set of tagged messages, r E 1N +, 1 < i < n

States:
tray, an array indexed by {1, . . . , n} x N + of sets of tagged messages, initially all 0
user-sent, user-rcvd, each an array indexed by {1, . . . , n} x N + of Booleans, initially all false

Transit ions:
user-send(T,r)i

Effect:
user-sent(i, r):= true
for all j ~ i do

tray(j,r) := tray(j,r) U {(m,i)l(rn, j) E T}

user-receive(T, r)i
Precondition:

for all j
user-sent(j, r) = true

user-rcvd(i, r) = false
T = tray(i, r)

Effect:
user-rcvd(i, r):= true

Tasks:
for every i, r:

{user-receive(T, r) i" T a set of tagged messages}

In th i s code , tray(i, r) is d e s i g n e d to hold the m e s s a g e s to Ui t h a t a re s u b m i t -

t e d by all i ts n e i g h b o r s ; t h e s e m e s s a g e s a re t a g g e d w i t h the i r s e n d e r s ' indices .

16.2. THE LOCAL SYNCHRONIZER 535

The user-sent and user-rcvd components just keep track of whether user-send
and user-receive events have occurred.

It should not be hard to see that any algorithm in the synchronous network
model of Chapter 2 can be described in this new s ty le- -as a composition of user
automata Ui and the GlobSynch automaton. We leave this for an exercise.

The synchronizer problem is to "implement" the GlobSynch automaton with
an asynchronous network algorithm, with one process Pi at each node i of the
underlying graph G and a reliable FIFO send/receive channel Ci,j in each di-
rection on each edge (i, j) of G. This implementation should ensure that the
individual user automata Ui cannot tell the difference between running in the
implementation system (i.e., user automata plus the distr ibuted algorithm) and
running in the GlobSynch system. That is, we want to ensure that if a is any fair
execution of the implementation system, then there is a fair execution a ~ of the
specification system such that for each i, a is indistinguishable from a ~ to Ui. 2

Note that we do not require that the relative order of events at different users
be preserved, but only the view of each individual user. We will return to this
issue in Section 16.6.

16.2 The Local Synchronizer

All of the synchronizer implementations we describe are "local," in the sense that
they only involve synchronization among neighbors in the network rather than
among arbi t rary nodes. The advantage of using only local synchronization is the
potential for savings in communication and time complexity. In this section, we
define a local variant of GlobSynch that we call LocSynch; the algorithms will be
presented as implementations of LocSynch.

LocSynch is nearly identical to GlobSynch. The only difference is in the
user-receive transitions, which are now described by

LocSynch a u t o m a t o n "

T r a n s i t i o n s :
user-receive(T, r)i

Precondition:
for all j E nbrs U { i }

user-sent(j , r) = true
user-rcvd(i, r) = false
T = tray(i, r)

Effect:
user-rcvd(i, r) : = true

2This uses the definition of "indistinguishable" from Section 8.7, which says that the two
executions project to give identical executions of Ui.

536 16. S Y N C H R O N I Z E R S

Thus, in LocSynch, round r messages can be sent to Ui as soon as round r

messages have been received from all its neighbors and from Ui itself; it is not

necessary to wait for messages from all users in the entire network.

L e m m a 16.1 If c~ is any fair execution of the LocSynch system (i.e., users
plus LocSynch), then there is a fair execution c~ ~ of the GlobSynch system that
is indistinguishable from c~ to each Ui.

We cannot use simulation techniques to prove this correspondence as we
did, for example, in the proof of TicketME in Section 10.9. This is because the
relative order of external actions that happen at different nodes is sometimes
different in the two systems. Rather , we use a method based on partial orders
of events.

P r o o f S k e t c h . Let L and G denote the LocSynch and GlobSynch systems,
respectively, modified slightly by reclassifying all the internal actions of the user
au toma ta as outputs. (Thus, the external actions of each system are exactly
all the actions of the user au tomata .) Certain events of L "depend on" other
events: a user-receive event depends on user-send events for the same round at
the same or neighboring nodes, and any event at a user au tomaton may depend
on any preceding event at the same automaton. If /3 is any trace of L, then
we define an irreflexive part ial order ~ on the events of/3 as follows. (This is

similar to the dependency relations defined in Sections 14.1.4 and 14.2.4.) If 7r

and r are two events in fl, with 7c preceding r then we say that 7r --+~ r or r
depends on 7r, provided tha t one of the following holds:

1. 7r and r are events of the same user Ui.

2. 7r = user-send(T, r)i and r = user-receive(T', r)j, where j e nbrsi.

3. 7r and r are related by a chain of relationships of types 1 and 2.

The key proper ty of these relations is the following claim. It says tha t the --+Z
relations capture enough about the dependencies in the fair t race /3 to ensure
tha t any reordering tha t preserves these dependencies is still a fair trace. (This
claim is similar to Theorems 14.1 and 14.3.)

C l a i m 16.2 If/3 is a fair trace of L and ~/ is a sequence obtained by reordering
the events in/3 while preserving the ~ ordering, then 7 is also a fair trace of L.

Given Claim 16.2, to prove the lemma, we start with any fair execution c~

of L and let /3 = trace(a). We reorder the events of/3 to get a new trace 7
in which the rounds "line up" globally: we do this by explicitly put t ing all the
user-send events for a part icular round r before all the user-receive events for the

16.2. THE LOCAL SYNCHRONIZER 537

same round r. This new ordering requirement is consistent with the dependency
requirements in --4Z, since they never require the reverse order, even when they
are applied transitively. By Claim 16.2, y is also a fair trace of L. But, in
addition, since all the user-send events for each round r precede all the user-
receive events for the same round r, it is not hard to show that 7 is a trace
of G. To complete the proof, we fill in the states in ~ to get an execution of
G, filling in the user states as in (~. Formally, this filling in can be done using
general theorems about I /O automaton composition, in particular, Theorems 8.4
and 8.5. [-1

A simple example of a distr ibuted algorithm that implements LocSynch is as
follows.

SimpleSynch algorithm (informal):
For any round r, after receiving an input of the form user-send(T,r)i,
process SimpleSynchi first sends a message to each neighbor SimpleSynchj,
containing the round number r and any messages from Ui to Uj that appear
in T. When SimpleSynchi has received a round r message from each of its
neighbors, it outputs user-receive(T', r)i, where T' is the set of messages

received, each tagged with its sender.

More formally, SimpleSynch~ is the following automaton.

SimpleSynch~ automaton (formal):

Signature:

Input :
user-send(T, r) i , T a set of tagged messages, r C N +
receive(N,r)j,i, N a set of messages, r C N +, j E nbrs

Output :
user-receive(T, r) i , T a set of tagged messages, r E N +
send(N,r)i,j, N a set of messages, r C N +, j C nbrs

States:
user-sent, user-rcvd, each a vector indexed by N + of Booleans, initially all false
pkt-sent, pkt-rcvd, each an ar ray indexed by nbrs• + of Booleans, initially all false
outbox, an ar ray indexed by nbrsxN + of sets of messages, initially all 0
inbox, a vector indexed by N + of sets of tagged messages, initially all 0

538 16. S Y N C H R O N I Z E R S

Figure 16.2" Architecture for the SimpleSynch system.

T r a n s i t i o n s :

user-send(T, r)i
Effect:

user-sent(r) := true
for all j E nbrs do

outbox(j, r):= {ml(m , j) C T}

send(N, r)~,y
Precondition:

user-sent(r) = true
pkt-sent(j, r) = false
N = outbox (j, r)

Effect:
pkt-sent(j, r):= true

receive(N, r)j,i
Effect:

inbox(r) := inbox(r)U {(m, j) lm E N}
pkt-rcvd(j, r):= true

user-receive(T, r)i
Precondition:

user-sent(r) = true
for all j E nbrs

pkt-rcvd(j, r) = true
T = inbox (r)
user-rcvd(r) = false

Effect:
user-rcvd(r) : - true

Tasks:
for every r:

{user-receive(T, r) i : T a set of tagged messages}
for every j C nbrs and every r:

{send(N, r)i,j: N a set of messages}

T h e S i m p l e S y n c h s y s t e m is o b t a i n e d by c o m p o s i n g the S impleSynch i pro-

cesses, rel iable F I F O send / r ece ive channe ls Ci,j for all the edges, and the users.

See F igure 16.2.

16.2. THE L O C A L S Y N C H R O N I Z E R 539

L e m m a 16.3 I f c~ is any fair execution of the SimpleSynch system, then there
is a fair execution c~ ~ of the LocSynch system that is indistinguishable from c~ to
each Ui.

P r o o f Ske t ch . This time, unlike in the proof of Lemma 16.1, there is no
reordering of events at different users, and the correspondence can be proved
using simulation methods. Let S and L denote the SimpleSynch and LocSynch
systems, respectively, each modified slightly so that the actions that are classified
as external are exactly all the actions of the user automata. (That is, the internal
actions of the users are reclassified as outputs and the send and receive actions are
"hidden"--reclassified as internal.) If s and u are states of S and L, respectively,

then we define (s, u) C f exactly if all of the following hold:

1. All user states are identical in s and u.

2. u.user-sent(i , r) = s.user-sent(r)i

3. u.user-rcvd(i, r) = s.user-rcvd(r)i

4. u.tray(i, r) - [.Jj~i{(m,j) " m E s.outbox(i, r) j}

To prove that f is a simulation relation, we need the following invariant assertion
for S.

A s s e r t i o n 16.2.1 In any reachable state of the SimpleSynch sys-
tem, if pkt-rcvd(j, r)i = true, then

1. user-sent(r)j -- true

2. { m : (m, j) e inbox(r)i} = outbox(i ,r)j

The proof of this invariant uses other intermediate invariants, involving the cor-
rectness of the messages in transit . (As before, we assume that the channels are
universal reliable FIFO channels in the statement and proof of such invariants.)
Given Assertion 16.2.1, the proof that f is a simulation relation is straightfor-
ward; the only interesting case is user-receive, which uses Assertion 16.2.1 in its
proof. We leave the details of the invariant and simulation proofs as an exercise.

The existence of a simulation relation implies that every trace of S is a trace of
L. (Recall that the actions that are included in these traces are exactly the actions
of the user automata.) But we need more - - in particular, we need to know that
the fairness conditions of S imply the fairness conditions of L. We prove that
fairtraces (S) C fairtraces (n), then apply general composition theorems about
I /O automata (Theorems 8.4 and 8.5) to fill in the user states and obtain the
needed relationship between executions.

540 16. S Y N C H R O N I Z E R S

To prove fair trace inclusion, we use the fact tha t a simulation relation guar-
antees more than just trace inclusion-- i t also guarantees a close correspondence

between executions, as defined in Section 8.5.5. Let t3 C fairtraces(S) and let
be any fair execution of S wi th /3 = trace(a). Then Theorem 8.13 implies that

there is an execution c~ ~ of L tha t corresponds to c~, with respect to f . We claim
tha t c~ ~ is a fair execution of L.

There are two ways in which it might fail to be fair. First, there might be

some user task that is enabled from some point on in c~ ~, yet no step of tha t task
occurs after tha t point in a~. Then the correspondence implies that the same

user task is enabled from some point on in (~, but no step of that task occurs;

this is a contradiction to the fairness of a with respect to tha t user task.
Second, there might be some i and r such tha t the user-receivei task for

round r is enabled from some point on in c~ ~, yet no step of that task occurs.
This implies that , from the given point on in c~ ~, user-sent(j, r) = true for all
j E nbrsiU{i}, and user-rcvd(i, r) = false. The correspondence then implies that
from the corresponding point in c~, user-sent(r)j - true for all j E nbrs~ U {i},

and user-rcvd(r)i = false.
We use the following assertion.

A s s e r t i o n 16.2 .2 In any reachable state of the SimpleSynch sys-
tem, the following holds. I f pkt-sent(i, r)j = true, then either channel
Cj,i contains a message or pkt-rcvd(j, r)i = true.

Then for each j E nbrsi, fairness for the send task at round r implies tha t
eventually in a, pkt-sent(j, r)i becomes true. Then Assertion 16.2.2 and channel
fairness imply tha t eventually pkt-rcvd(j, r)i becomes true. Then fairness for
the user-receivei task at round r in S implies tha t a step of this task eventually

occurs in a, and so, by the correspondence, in a ~, a contradiction. Q

Note tha t the proof of Lemma 16.3 actually shows that fairtraces(S) c
fairtraces(L), in addit ion to showing indistinguishabili ty to the individual users.
Lemmas 16.1 and 16.3 imply

T h e o r e m 16.4 I f a is any fair execution of the SimpleSynch system, then there
is a fair execution a ~ of the GlobSynch system that is indistinguishable from a
to each Ui.

C o m p l e x i t y a n a l y s i s . Each round requires 2]E[messages, one in each direc-

tion on each edge of the graph. Suppose that c is an upper bound on the time for
any user-sendi event to occur, once all user-receive4 events for any smaller rounds
have occurred; tha t t~ is an upper bound on the time for any task of any process;

16.3. THE SAFE SYNCHRONIZER 541

and that d is an upper bound on the time for delivering the oldest message in
any channel. Then the total amount of time required to simulate r rounds is at
most r(c + d + 0 (e)).

16.3 The Safe Synchronizer

It is impossible to reduce the time complexity of the SimpleSynch algorithm
significantly, but it is possible to reduce the communication complexity. Namely,
if there is no message from Ui to neighbor Uj at round r in the underlying
synchronous algorithm, then we may be able to avoid a round r message from
process i to process j in the asynchronous algorithm. But we cannot simply omit
these messages. Each process needs to determine that it has already received all
the messages that its neighbors will ever send it for round r, before it can perform
a user-receive output for round r. The messages of the SimpleSynch algorithm
are used to help determine this, as well as to deliver the user's messages. The
basic strategy for reducing communication is to separate these two functions.

Thus, we decompose the implementation of LocSynch into several pieces:
a "front end," FrontEnd for each node, communicating with the FrontEnds of
neighboring nodes over special channels Di,j, and a "safe synchronizer," Safe-
Synch. See Figure 16.3 for this new architecture. The job of each FrontEndi
is to deliver the messages received from the local user Ui in user-sendi events.
At each particular round r, after receiving a user-send4, FrontEndi sorts all the
outgoing messages for round r into "outboxes." Then it sends the contents of
each nonempty outbox to the appropriate neighbor j using channel Di,j and waits
to receive an acknowledgment on Dj,i. When FrontEndi has received acknowl-
edgments for all of its messages, it is said to be safe; this implies that all of i 's
messages have been received by the appropriate neighboring FrontEnds. Mean-
while, FrontEndi collects and acknowledges messages sent to it by its neighboring
FrontEnds.

When is it permissible for FrontEndi to perform a user-receivei for round
r, that is, to deliver to Ui all the round r messages it has collected from its
neighbors? It can only do this when it knows that it already has received all the
messages it will ever receive for round r. It is therefore sufficient for FrontEndi
to determine that all its neighboring FrontEnds are safe for round r, that is, that
those neighbors know that all their messages for round r have been received by

the appropriate FrontEnd automata.
Thus, the job of the safe synchronizer automaton SafeSynch is to tell each

FrontEnd automaton when all its neighbors are safe. To do this, SafeSynch has
ok input actions, outputs of the FrontEnd automata, by which the FrontEnd
automata tell SafeSynch that they are safe. SafeSynch sends goi to FrontEndi
when it has received an ok from each of i 's neighbors, as well as from i itself.

542 16. S Y N C H R O N I Z E R S

ser -send i user-send j

user- rece user- receiv

" [, s e n d i . j . ~ ~ r e c e i v e ~ j [_ _ . I

[FrontEndi [l~'r~ I

0

i .

SafeSynch

F i g u r e 16.3" Decomposition of LocSynch using SafeSynch.

After Fron tEnd i receives goi, it can p e r f o r m a user-receivei . In the res t of this

sect ion, we desc r ibe this d e c o m p o s i t i o n in more detai l .

1 6 . 3 . 1 F r o n t - E n d A u t o m a t a

F r o n t E n d i a u t o m a t o n "

Signature"
Input:

user-send(T, r)i, T a set of tagged messages, r C N +
receive("msgs", N, r)j,i, _IV a set of messages, r E l~ + , j E nbrs
receive("ack", r) j , i , r E M -b , j ~ nbrs
go(r)~, r 6 I~ +

16.3. THE SAFE SYNCHRONIZER 543

Output :

user-receive(T, r) i , T a set of tagged messages, r E IN+
send("msgs",N,r)~,j, N a set of messages, r E l~ + , j E nbrs
send("ack", r) i , j , r E 1N + , j E nbrs
ok(r)i, r E 1N +

States :
user-sent, user-rcvd, each a vector indexed by N + of Booleans, initially all false
pkt-for, pkt-sent, pkt-rcvd, ack-rcvd, each an ar ray indexed by nbrsxN + of Booleans,

initially all false
ack-sent, an ar ray indexed by nbrsxN + of Booleans, initially all false
outbox, an ar ray indexed by nbrsxN + of sets of messages, initially all 0
inbox, a vector indexed by N + of sets of tagged messages, initially all 0
ok-given, go-seen, each a vector indexed by N + of Booleans, initially all false

Trans i t i ons :

user-send(T,r)i
Effect:

user-sent(r) := true
for all j E nbrs such that 3m, (m, j) E T do

outbox(j, r) := { m l (m , j) E T}
pkt-for(j, r) := true

send("msgs", N, r)i,j
Precondit ion:

pkt-sent(j, r) = false
pkt-for(j, r) = true
N = outbox (j, r)

Effect:
pkt-sent(j, r) := true

receive("ack", r)j,i
Effect:

ack-rcvd(j, r) := true

receive("msgs", N, r)j,i
Effect:

inbox(r) : - inbox(r) U { (m , j) i m E N}
pkt-rcvd(j, r) := true

send("ack", r)i,y
Precondit ion:

pkt-rcvd(j, r) = true
ack-sent(j, r) = false

Effect:
ack-sent(j, r) := true

ok(~)~
Precondit ion:

user-sent(r) = true
for all j E nbrs

if pkt-for(j, r) = true then
ack-rcvd(j, r) = true

ok-given(r) = false
Effect:

ok-given(r) := true

Effect:
go-seen(r) := true

user-receive(T, r)i
Precondit ion:

go-seen(r) = true
T = inbox(r)
user-rcvd(r) = false

Effect:
user-rcvd(r) := true

544 16. SYNCHRONIZERS

Tasks:
for every r:

{user-receive(T, r) i : T a set of tagged messages}
{ok(~)~}

for every j and every r:
{send("msgs", N, r)i,j : N a set of messages}
{send("aek",r)i,j}

16.3.2 Channe l A u t o m a t a

Each pair of front end automata, FrontEndi and FrontEndj, communicate by
means of two channel automata, Did and Dj,i. These are reliable send/receive
channels from i to j and from j to i respectively, as defined in Section 14.1.2.

16.3.3 The Safe Synchron izer

The entire job of the safe synchronizer, SafeSynch, is to wait until it has received
oks from all of the neighbors of FrontEndi and from FrontEncli itself before
performing goi.

SafeSynch automaton:

Signature:

Input:
ok(r)i, r C N +, l < _ i _ < n

Output:
go(r)i, r C N +, 1 <_ i<_n

States:
ok-seen, go-given, each an array indexed by {1 , . . . , n} x N + of Booleans, initially all false

Transitions:
ok(r)~

Effect:
ok-seen(i, r) "- true

Tasks:
for every i, r:

Precondition:
for a l l j C nbrsi U {i}

ok-seen(j, r) = true
go-given(i, r) = false

Effect:
go-given(i, r) := true

16.3. THE SAFE S Y N C H R O N I Z E R 545

1 6 . 3 . 4 C o r r e c t n e s s

L e m m a 16.5 If c~ is any fair execution Of the SafeSynch system (i.e., Front-
End, channel, SafeSynch, and user automata, as depicted in Figure 16.3), then
there is a fair execution c~ I of the LocSynch system that is indistinguishable from
c~ to each Ui.

P r o o f Ske tch . This is proved using a simulation relation from the SafeSynch
system to the LocSynch system. The strategy is the same as the one used in the
proof of Lemma 16.3 for the SimpleSynch algorithm, using exactly the same sim-
ulation relation f , but the details are a little more complicated here because the
algorithm is more complicated. Again, the only interesting case in the simulation
proof is the user-receive action, which here requires this invariant assertion.

A s s e r t i o n 16.3.1 In all reachable states of the SafeSynch system,
the following holds. If go-seen(r)i = true, then for all j E nbrsi,

1. user-sent(r)j = true

2. { m : (m, j) e inbox(r)i} = outbox(i, r)j

This assertion in turn needs some auxiliary invariants for its proof, for example,

A s s e r t i o n 16.3.2 In all reachable states of the SafeSynch system,
the following holds. If ok-seen(j, r) - true, then 3

1. user-sent(r)j = true

2. { m : (m, j) e inbox(r)i} = outbox(i, r)j for all i e nbrsj

Further details are left to the reader. ff]

Now Lemmas 16.1 and 16.5 imply

L e m m a 16.6 If c~ is any fair execution of the SafeSynch system, then there is
a fair execution c~ I of the GlobSynch system that is indistinguishable from ct to
each Ui.

It still remains to implement the SafeSynch automaton with a distributed
algorithm. We describe several ways of doing this in the following section. It
is also necessary to implement the Di,j channels using the actual send/receive
channels Ci,j. This is done by "multiplexing" the C~,j so that they implement not
only the channels of the distributed implementation of SafeSynch but the Di,j's
as well. The multiplexing strategy is described in Exercise 14.6.

3Recall that ok-seen is part of the state of the SafeSynch component.

546 16. SYNCHRONIZERS

16.4 Safe Synchronizer Implementations

In this section, we describe several implementations of SafeSynch by distributed
algorithms. There are two main implementations, Alpha and Beta, plus a way
of combining them to obtain a hybrid implementation Gamma.

Recall that the job of SafeSynch is, for each round and each i, to wait until
it has received oks from all of the neighbors of FrontEnd4 and from FrontEndi
itself, and then to perform goi.

16.4.1 Synchronizer Alpha

The most straightforward implementation of SafeSynch is the Alpha synchro-
nizer, which works as follows.

Alpha synchronizer:

When any process Alphai receives an oki for any round r, it sends this
information to all of its neighbors. When Alpha~ has heard that all its
neighbors have received oks for round r and Alph~ itself has also received
an ok for round r, then Alphai outputs goi.

We leave to the reader the task of writing the precondition-effect code for
each Alpho4; the structure of the code is somewhat similar to that of SimpleSynchi.
Correctness--both safety and liveness--is easy to show, using simulation tech-
niques to relate the Alpha system (Alpho4, FrontEnd, Di,j, and user automata)
to the SafeSynch system. 4 We obtain

Theorem 16.7 If (~ is any fair execution of the Alpha system, then there is
a fair execution (~ of the GlobSynch system that is indistinguishable from (~ to
each Ui.

C o m p l e x i t y ana lys i s . We analyze the complexity of the entire Alpha system.
The communication complexity depends on the number of messages sent by the
underlying synchronous algorithm: if the synchronous algorithm sends a total
of m non-null messages in r rounds, then the Alpha system sends a total of at
most 2m + 2rlE I messages to simulate r rounds. The 2m is for the msgs and ack
messages sent by the FrontEnds, while the 2tiE t term is for the messages sent

4This s t ra tegy may not seem very modular , since the same user, FrontEnd and Di,j au-
t o m a t a appear in bo th systems. However, they can be handled in a tr ivial way, let t ing the
s imulat ion relat ion leave t h e m unchanged. An a l te rna t ive approach would involve formula t ing
a more abs t rac t (and more general) envi ronment for the SafeSynch au toma ton .

16.4. SAFE SYNCHRONIZER IMPLEMENTATIONS 547

within Alpha itself. This term accounts for a message in each direction on each
edge at each round.

If c, t~, and d are defined as for the SimpleSynch algorithm, then the total
amount of time required to simulate r rounds is at most r(c + 3d + O (t~)). (This
does take pileups in the underlying channels into account.) Thus, both the
communication complexity and the time complexity of Alpha are worse than
the corresponding costs for SimpleSynch.

Like SimpleSynch, Alpha has a reasonable time complexity but high commu-
nication complexity. In the following subsection, we give an alternative imple-
mentat ion of SafeSynch that has better communication complexity but at the
cost of additional time complexity.

1 6 . 4 . 2 S y n c h r o n i z e r B e t a

Synchronizer Beta assumes the existence of a rooted spanning tree of the entire
graph G, preferably one of small height.

B e t a synchronizer:
At round r, all processes convergccast all their ok information to the root,
along the edges of the spanning tree. After the root has collected this
information from all the processes, it broadcasts permission to perform go
outputs, also along the edges of the spanning tree.

Again, we leave to the reader the task of writing the precondition-effect code
for each process Betai of Beta. The ideas are similar to those used for broadcast
and convergecast in Section 15.3. Again, correctness is easy to show, using
simulation techniques to relate the Beta system to the SafeSynch system.

T h e o r e m 16.8 If c~ is any fair execution of the Beta system (Betai, FrontEnd,
Di,j, and user automata), then there is a fair execution c~ ~ of the GlobSynch
system that is indistinguishable from c~ to each Ui.

C o m p l e x i t y ana lys i s . If the underlying synchronous algorithm sends a total
of rn non-null messages in r rounds, then the Beta system sends a total of at
most 2m + 2rn messages to simulate r rounds. The 2m is as for Alpha, while
the 2rn is for the broadcast and convergecast messages. If h is an upper bound
on the height of the spanning tree, then the total amount of time to simulate r
rounds is at most r(c + 2d + 0 (e) + 2h(d + 0 (t~))), or r(c + 0 (hd) + 0 (he)).

548 16. SYNCHRONIZERS

F i g u r e 16.4: Network graph G.

1 6 . 4 . 3 S y n c h r o n i z e r G a m m a

By combining the ideas of synchronizers Alpha and Beta, we can get a hybrid
algorithm, Gamma, that (depending on the structure of the graph G) can si-
multaneously do as well as Alpha in terms of time and as well as Beta in terms
of communication.

Algorithm Gamma assumes a spanning forest of G, where each tree in the
forest is rooted. We call each tree a cluster;, for each cluster C, we write nodes(C)
for its set of nodes. (Constructing a suitable spanning forest is itself an inter-
esting problem, but we do not describe how to do this here.) Gamma uses a
version of Beta to synchronize the nodes within each cluster and a version of
Alpha to synchronize among clusters.

In the extreme case where each cluster consists of a single node, Gamma is
the same as Alpha, whereas in the case where there is only a single cluster con-
taining all the nodes, Gamma is the same as Beta. For intermediate cases, both
the communication and time complexity measures of Gamma are intermediate
between those of Alpha and Beta.

Example 16.4.1 Cluster decomposition

Consider a network graph G consisting of p complete graphs, each
with k nodes. The complete graphs are arranged in a line, with all
the nodes of adjacent pairs of complete graphs connected to each
other. See Figure 16.4 for the case where p = 5 and k = 4. (In the
diagram, some edges arc not visible because they are "under" other
edges.) Now consider the cluster decomposition for G depicted in
Figure 16.5.

F i g u r e 16.5: Cluster decomposition for G.

Each cluster C of this decomposition is a tree for one of the k-
node complete graphs in G. The root for each cluster tree is the node

16.4. SAFE SYNCHRONIZER IMPLEMENTATIONS 549

at the top. Algorithm Gamma uses a version of Beta to synchronize

within each of the k-node trees, and a version of Alpha to synchronize
among the p trees.

Since Gamma is a combination of two algorithms, we begin with a high-
level decomposition of SafeSynch into two kinds of automata, which we call
ClusterSynch and ForestSynch automata. There is a ClusterSynchk automaton
for each cluster Ck, and a single ForestSynch automaton. See Figure 16.6 for the
architecture.

~ . . .

/ '

Cluster �9 �9 .

ForestSynch

F i g u r e 16.6" Decomposition of SafeSynch into ClusterSynch and ForestSynch au-
tomata.

For each cluster Ck and any round r, the automaton ClusterSynchk has two
jobs. First, after it receives oki inputs for all nodes i in Ck, it outputs a single
cluster-okk to ForestSynch. And second (in a completely independent task), after
a cluster-gok input arrives from ForestSynch, ClusterSynchk produces a go~ for
each node i in Ck. This combination of jobs is a lot like the activities of Beta.
Written as an abstract automaton:

550 16. S Y N C H R O N I Z E R S

C l u s t e r S y n c h k a u t o m a t o n :

Signature:

Input:
ok(r)i, r e N + , i e nodes (Ck)
cluster-go(r)k, r C N +

Output:
go(~)~, ~ ~ N + , i c n o d ~ (c~)
cluster-ok(r)k, r E N +

States:
ok-seen, go-given, each an array indexed by nodes(Ck) • N + of Booleans, initially all false
cluster-ok-given, cluster-go-seen, each a vector indexed by N + of Booleans, initially all false

Transitions:
ok(~) ~ c lu~t~-go(~)

Effect: Effect:
o k - ~ (i , ~) := t ~ c l ~ t ~ - g o - ~ (~) : = t ~

cluster-ok(r)k
Precondition:

for all i E nodes(Ck)
ok-seen(i, r) = true

cluster-ok-given(r) = false
Effect:

cluster-ok-given(r) := true

Precondition:
cluster-go-seen(r) = true
go-given(i, r) -- false

Effect:
go-given(i,r) := true

Tasks:
for every r:

for every i, r:

The Fores tSynch a u t o m a t o n is (up to renaming of external actions) a safe

synchronizer for the cluster graph G' of G, where the nodes of G' cor respond to

the clusters of G, and there is an edge in G' f rom Ck to C~ exact ly if there is an

edge in G from some node in Ck to some node in C~. Define the ClusterForest

sys tem to consist of the Clus terSynch, Fores tSynch, FrontEnd, Di, j , and user

au tomata .

L e m m a 16 .9 I f c~ is any fa i r execut ion of the ClusterForest sys tem, then there

is a fa i r execut ion c~' of the S a f eS yn ch sy s t em that is indis t inguishable f r o m c~

to each Ui.

16.4. SAFE SYNCHRONIZER IMPLEMENTATIONS 551

P r o o f Ske tch . A simulation proof can be used, but, for variety, we sketch an
operational argument, based on executions. The main thing that needs to be
shown is that if go(r)~ occurs, then previously ok(r)j must have occurred, for
each j E nbrsi U {i}. There are two cases.

1. i and j are in the same cluster Ck (possibly with i = j) .
Then the code for ClusterSynchk implies that prior to the go(r)i, there
must be a cluster-go(r)k. Then the definition of ForestSynch implies that
prior to the cluster-go(r)k, there must be a cluster-ok(r)k. But this in turn
implies that there is a previous ok(r)j, which suffices.

2. i is in cluster Ck, and j is in cluster Ce, k r ~.
Since j E nbrsi, it must be that the two clusters Ck and Ce are neighbors
in the cluster graph G ~ (by definition of neighboring clusters in the cluster
graph). As before, prior to the go(r)~, there must be a cluster-go(r)k. Then
the definition of ForestSynch implies that, prior to this, there must be a
cluster-oke. This implies as before that there is a previous ok(r)j.

KI

To finish the description of synchronizer Gamma, we describe how to imple-
ment the ForestSynch and ClusterSynch automata with distributed algorithms.
ClusterSynchk can be implemented using a variant of synchronizer Beta on the
rooted tree Ck. That is, a convergecast is first carried out, collecting the oks
at the root, which then performs a cluster-ok output. The root also receives
cluster-go, then broadcasts to all the nodes in nodes(Ck) to tell them to per-
form go. (These two activities could actually be formalized using two separate
automata.)

Any implementation of SafeSynch may, with suitable renaming, be used to
implement ForestSynch; we choose synchronizer Alpha. A technical complication
is that we cannot run Alpha directly on the given distributed network, because
Alpha is supposed to run on processes that correspond to the entities being syn-
chronized (which in this case are whole clusters), using channels that correspond
to edges between neighboring entities (here, clusters). The given model only
allows processes and channels corresponding to the nodes and edges of G. How-
ever, it is not hard to implement the needed processes and channels: we run
the process for any cluster at the cluster's root node and simulate direct com-
munication between processes for neighboring clusters using a designated path
between the root nodes in the two clusters. Such a path must exist, because the
clusters are connected and there exist nodes in the two clusters that are neigh-
bors in G. Again, some preprocessing is needed to determine these paths, but

552 16. SYNCHRONIZERS

we ignore this issue here. The cluster-ok and cluster-go actions are implemented
as internal actions of the processes at the root nodes of the clusters.

Example 16.4.2 Implementing Alpha
Consider the network graph G and cluster decomposition of Exam-
ple 16.4.1. For that graph and decomposition, we run the Alpha
process for each cluster at the root (the top node, in Figure 16.5) of
that cluster's tree. Communication between the Alpha processes for
neighboring clusters could be simulated using the direct edge in the
underlying graph G (in Figure 16.4) between the roots of the clusters.

In the complete implementation Gamma, the process associated with each
node i of G is, formally, a composition of three processes: FrontEndi, process
i in the ClusterSynch implementation, and process i in the ForestSynch imple-
mentation. Each channel Ci,j is used to implement three channels: Di,j and
the channels from i to j in the ClusterSynch and ForestSynch implementations.
Defining the Gamma system to be the entire implementation, we can use simu-
lation techniques to prove the following.

Theorem 16.10 If (~ is any fair execution of the Gamma system, then there is
a fair execution c~ ~ of the GlobSynch system that is indistinguishable from c~ to
each Ui.

O r t h o g o n a l d e c o m p o s i t i o n s . You may find it interesting to observe that
the complete Gamma system has two natural decompositions. One is logical, in
terms of the functions (data communication, cluster synchronization, and forest
synchronization) being performed. The other is spatial, in terms of processes and
channels in the complete implementation. These two decompositions correspond
to different orders of composing the primitive I /O automata that constitute the
algorithm. Since the composition operation is associative, we end up with the
same algorithm either way we look at it.

Complexity ana lys i s . Let h be the maximum height of any cluster tree and
let e ~ be the total number of edges on all the paths used for communication
among the roots. If the underlying synchronous algorithm sends a total of m
non-null messages in r rounds, then the Gamma system sends a total of at most
2m + 0 (r(n + e')) messages. The 0 (rn) is for the messages sent within all the
cluster trees in the ClusterSynch implementation. The 0 (re ~) is for the messages
sent between roots in the ForestSynch implementation. The time required to
simulate r rounds is 0 (r(c + 0 (hd) + 0 (h())). If n + e' << IEI, then Gamma

16.5. APPLICATIONS 553

uses fewer messages than Alpha, and if the maximum height of a cluster spanning
tree is much less than the height of a spanning tree of the entire network, then
Gamma takes less time than Beta.

E x a m p l e 16.4.3 C o m p a r a t i v e complex i ty of Alpha, Beta, and Gamma

Again consider the network graph G and cluster decomposition of
Example 16.4.1. For that graph and decomposition, we compare the
costs of the three safe synchronizer implementations we have given.
Costs are per round, and we neglect the costs incurred by the users,
FrontEnds, and Di,j's, which are the same for all three algorithms;
we also neglect local processing time. For Beta, we assume that the
tree used has the minimum possible height, approximately p.

Messages Time

Alpha: 0 (pk 2) 0 (d)

Beta: 0 (pk) 0 (pd)

Gamma: O(pk) O(d)

If p and k are approximately equal, then Gamma represents an
order-of-magnitude improvement over each of Alpha and Beta.

16.5 Applications

The synchronizer algorithms given in the previous sections allow a fault-free
asynchronous network to implement any non-fault-tolerant synchronous network
algorithm. (The synchronizers do not work for fault-tolerant algorithms such as
those in Chapter 6.) In this section, we give a few examples of asynchronous
algorithms constructed using synchronizers.

Recall that we are considering only undirected networks in this chapter. In
all the analyses in this section, we neglect local process step times.

16.5.1 L e a d e r E l e c t i o n

Using synchronizers, synchronous ring leader-election algorithms such as LCR
and HS can be run in an asynchronous ring. But this is not interesting, because
these algorithms already work in an asynchronous network, without the overhead
introduced by synchronizers.

554 16. SYNCHRONIZERS

In an asynchronous network based on an arbitrary undirected graph with a
known diameter, diarn, a synchronizer can be used to run the FloodMax syn-
chronous leader-election algorithm. Using synchronizer Alpha, the resulting al-
gorithm sends 0 (IE]. diam) messages and takes 0 (diam. d) time to simulate
the necessary diarn synchronous rounds.

A synchronizer can also be used to run the OptFloodMax synchronous leader-
election algorithm, which is like FloodMax except that nodes only send messages
when they have new information to send. If synchronizer Alpha is used, the ad-
vantage of the optimization is lost, since the synchronizer itself sends messages
on all channels at all rounds. However, if synchronizer Beta is used, then com-
munication complexity is kept reasonably low (at the cost of additional time).

16 .5 .2 B r e a d t h - F i r s t S e a r c h

Recall that the SynchBFS algorithm in Section 4.2 requires O (IE[) messages
and O (diam) rounds in a network with diameter diam; the processes are not
required to know diam. Using synchronizers, the SynchBFS algorithm can be run
in an asynchronous network. With synchronizer Alpha, the resulting algorithm
sends O ([El. diam) messages and requires O (diam. d) time to simulate the diam
rounds needed for all processes to output their parent information. With Beta
(using a tree of height at most diam), the algorithm sends only 0 (tEI+ n. diam)

and takes O (diam 2. d) time, which is the same as the
/ \

messages LayeredBFS
\ /

algorithm given in Section 15.4. Some improvement in the time complexity is
possible using Gamma, at the expense of extra communication complexity.

There is a technicality: it is not obvious how the BFS algorithms obtained
using the synchronizers are supposed to terminate. As described, the implemen-
tation continues to simulate rounds forever, thus generating an infinite number
of messages. (If the processes knew diam, then they could simply stop after sim-
ulating diam rounds, but we have assumed here that the processes do not know
diam.) An ad hoc solution to this problem is to have each user automaton that
determines its parent perform only one additional round to notify its neighbors
and then halt.

16 .5 .3 S h o r t e s t P a t h s

For the problem of finding shortest paths from a designated source, the use
of a synchronizer is a big win. Recall that the AsynchBellmanFord algorithm
has both message and time complexities that are exponential in the number
of nodes. However, the synchronous BellmanFord algorithm has communication

16.6. LOWER BOUND ON TIME 555

complexity "only" O (nlEI) and round complexity only O (n), for a network with
known size n. We can run the synchronous BellrnanFord algorithm using, say,
synchronizer Alpha, obtaining an algorithm that sends O (IEI) messages and
uses O (nd) time to simulate the required n rounds. Synchronizer SimpleSynch
would work just as well.

16.5.4 Broadcast and Acknowledgment

It is possible to design a synchronous algorithm that allows a process to broadcast
a message to all other processes and receive an acknowledgment in return and
that uses O (IE]) messages and O (diam) rounds (see Exercise 4.8). We can
run this algorithm using synchronizer Alpha, thus obtaining an asynchronous
algorithm for broadcast and acknowledgment that uses O (IEI" diam) messages
and O (diam. d) time. Compare this with the complexity of AsynchBcastAck in
Section 15.3.

16.5.5 Maximal Independent Set

Synchronizers can also be used with randomized synchronous algorithms such
as LubyMIS. We leave the details for you to work out.

1 6 . 6 L o w e r B o u n d o n T i m e

An informal paraphrase of the results about synchronizers is as follows:

Any (non-fault-tolerant) synchronous algorithm can be transformed
into a corresponding asynchronous algorithm without too great an
increase in costs.

In particular, by using synchronizer Alpha or SimpleSynch, it is possible not to
increase the time cost at all. In this section, we show a limitation on the synchro-
nizer approach, by giving a lower bound on the time required for an asynchronous
network algorithm to solve a particular problem. Since there is a very fast syn-
chronous algorithm to solve the same problem, this means (informally speaking)
that

Not every synchronous algorithm can be transformed to a corre-
sponding asynchronous algorithm with a similar time complexity.

These two informal paraphrases appear to be contradictory. It turns out that the
reason for the difference is the locality of the correctness condition guaranteed
by the synchronizers. We return to this point after the lower bound proof.

556 16. S Y N C H R O N I Z E R S

The result of this section is the only lower bound in this book for the time
complexity of a problem in an asynchronous distributed system.

The problem we consider is called the "session problem." Let G - (If, E)
be a graph, with diam its diameter as usual. The system's interface with its
environment includes flashi output actions, one for each node i of G; flash4 is an
output of the process automaton at node i. We treat the flash actions as abstract
actions, but you might want to think of them as signals that the corresponding
processes have completed some computation task.

Define a session to be any sequence of flash events containing at least one
flashi for every i. For any nonnegative integer k, the k-session problem requires
simply that the algorithm should perform at least k disjoint sessions, in any fair
execution.

E x a m p l e 16.6.1 M o t i v a t i o n for the k - s e s s i o n p r o b l e m

The k-session problem was originally inspired by a matrix computa-
tion problem for the asynchronous shared memory model. Consider
a collection of asynchronous parallel processes performing a coor-
dinated calculation of the transitive closure of an rn x rn Boolean
matrix. The matrix starts out in shared memory, and all the partial
results and final outputs are written to shared memory.

There is a proces s Pi,j,k for every i, j, k, 1 <_ i, j, k <_ m. Each
process Pi,j,k is responsible simply for writing 1 in location (i, j)
of the output matrix in case it ever sees ls in both locations (i, k)
and (k, j) . Thus, each goes through a simple loop, reading locations
(i, k) a n d (k, j), then (possibly)wri t ing (i, j). Each individual read
or write operation on shared memory is represented abstractly as a

flash output.
Basic properties of matrices then imply that the calculation is

performed correctly if there is "enough" interleaving among the pro-
cess steps. Specifically, O (log n) sessions suffice. It does not matter
if the processes do excess reading and wri t ing--as long as enough
interleaving occurs, the correct output will be produced.

A simpler version of the problem for which a similar lower bound could be
proved is one in which each process is required to perform ezactly one flash in
each session. The version of the problem that we use is less constrained, so it
leads to a stronger lower bound result.

It is trivial to solve the k-session problem in the synchronous network setting.
All we need is for each process i to perform a single flash4 output at each of k
rounds. No communication between processes is required. The number of rounds
needed is exactly k.

16.6. LOWER BOUND ON TIME 557

In the asynchronous network setting, we model the processes as I / O au tomata

as usual, connected by reliable F IFO send/receive channels. Wi thout loss of

generality, we assume that the channels are universal. We associate times with

events as usual, with t~ as an upper bound for the time of each process task and d

as an upper bound for the delivery time of the oldest message in each channel. We

assume that g << d and in fact will ignore t~ in our result and proof. Recall from

Section 8.6 that a fair execution with times associated with all events, subject to

the given restrictions, is called a timed execution.
Next, we define the time measure T(A) for a lgor i thm A. For each t imed

execution c~ of A, define T(c~) to be the supremum of the times at which a flash
event occurs in c~. (We use a supremum instead of a max imum here because

there could be infinitely many such events.) Then define

T(A) = sup{T(c~) : c~ is a t imed execution of A}.

That is, T(A) is the supremum of the times at which a flash occurs in any t imed

execution of A.

We can now state and prove the lower bound.

T h e o r e m 16 .11 Suppose A is an asynchronous network algorithm that solves
the k-session problem on graph G. Then T(A) > (k - 1)diam. d.

In order to compare this result with the simple upper bound of k rounds for

the synchronous setting, it is probably reasonable to charge time d, the maxi-

mum message-delivery time, for each round. Then the discrepancy between the

inherent lower bound of Theorem 16.11 and the small upper bound of kd is ap-

proximately a factor of diam. This proves that the inherent overhead due to

asynchrony, for the session problem, is a factor of diam.

P r o o f . We assume without loss of generality that all actions of A are external.

We proceed by contradiction.

Suppose that there exists an a lgori thm A with T(A) < (k - 1) . diam. d.
Define a t imed execution of A to be slow if all the message deliveries take the

max imum time d. Let c~ be any slow t imed execution of A; note that c~ with its

t ime information suppressed must be a fair execution of A. Since A is correct, c~

must contain k sessions. By assumption, no flash event occurs in c~ at or after
t ime (k - 1) - d i a m . d. So we can write c~ as a concatenation c~ ~. c~", where the

time of the last event in c~ ~ is strictly less than (k - 1). diam. d and where there

are no flash events in c~". Moreover, we can decompose c~ ~ into k - 1 smaller

pieces, as a concatenat ion ct 1 . C t 2 - Ctk_l, where in each of the fragments c~,

1 _< r _< k - 1, the difference between the times associated with the first and last

events is strictly less than diam.d.

558 16. S Y N C H R O N I Z E R S

We now construct a fair t race fl of A; fl will be an ordinary unt imed fair
t r ace - -w i thou t times associated with its events. It is constructed as a concate-

nation of the form fl - fll'fl2" . . ' i lk 1 where each fl~ is obtained by reordering
the actions in c~ (and removing the times) and fl" is just the sequence of actions
in c~" (with the times removed). We will show that fl contains fewer than k
sessions, which will contradict the correctness of A.

All the reordering that we do in construct ing fl will preserve the impor tan t
dependencies among actions in c~, in part icular, the dependency of a receive
event on the corresponding send event and the (possible) dependency of any
event of any process i on any prior event of the same process. We use the

notat ion --~t~a~e(~), as defined in Section 14.1.4, for the irreflexive part ial order
that describes these dependencies. Theorem 14.1 will be used to show that fl is
in fact a fair t race of A.

The following claim describes the propert ies we require of our reordered se-

quences fir. Fix j0 and j l to be any two nodes of G whose distance is equal to
diam, and define

j0, i f r i s e v e n
i r - j l , i f r i s o d d

C l a i m 16 .12 For every r, 1 < r < k - 1, there exists a sequence fir of actions
of A such that the following properties hold:

1. fir is obtained f rom the sequence of actions in C~r by reordering, preserving

the -+ trace(c~) order.

2. fl~ can be writ ten as a concatenation ~5~, where "y~ contains no event of
process it-1 and 5~ contains no event of process i~.

We first show how to complete the proof of the theorem using Claim 16.12.
Since the only reordering of events is for individual fl~ sequences and since that

reordering respects the -+t~acr dependencies, Theorem 14.1 implies that fl is
a fair t race of A. But we can show that fl contains at most k - 1 sessions" No
session can be entirely contained within 71, since "yl contains no event of i0.
Likewise, no session can be entirely contained within any segment of the form
5~-17~, since this sequence contains no event of process ir-1. This implies that
each session must contain events on both sides of some 7~-5~ boundary. But
there are only k - 1 such boundaries, hence at most k - 1 sessions. Thus, fl
violates the correctness guarantees of A, which yields a contradiction.

It remains to construct the sequences fl~ required for Claim 16.12. So fix any
a rb i t ra ry r, 1 _< r _< k - 1. We consider the following cases:

1. C~r contains no event of ir-1.

16.6. L O W E R BOUND ON TIME 559

Then let/3~ be the sequence of actions in a~, without any reordering. Tak-

ing % =/3~ and 5~ = A (the empty sequence) gives the needed properties.

2. c~ contains no event of i~.

Then let /3~ be the sequence of actions in c~, without any reordering.
Taking ~/~ = ~ and 5~ = ~ suffices.

3. c~r contains at least one event of ir-1 and at least one event of it.

Then let 7r be the first event of i,_1 in c~ and let r be the last event of i~ in

c~. We claim that we cannot have 7r --~t,'ac~(~) r that is, r cannot depend
on 7r. This is so because c~ is a slow execution, so the time for a message to

propagate from process it-1 to process i~ in c~ is at least diam.d; however,
the time between the first and last events in c~ is strictly less than diam.d.

Then we claim (and leave as an exercise to show) that it is possible to
reorder the events of c~ so that r precedes 7r, while still preserving the
--+t~ac~(c~) partial order. Let ~ be the resulting sequence of events, ~ the
prefix of ~ ending with r and 5~ the rest o f /~ . These sequences have all
the needed properties.

D

We emphasize again that the t race/3 that we construct in the proof of The-
orem 16.11 does not have times associated with its events. The contradiction
arises because/3 does not contain enough sessions, not because of any timing
properties of ~. Timing information is used in the proof to deduce that certain

events cannot depend on others, in the slow timed execution c~.

Loca l n o t i o n of c o r r e c t n e s s . Theorem 16.11 looks almost like a contradic-
tion to some of the synchronizer resul ts- - those that give transformations from
synchronous to asynchronous algorithms with only constant time overhead. The
difference is that the synchronizers only guarantee a "local" notion of correctness.
Rather than preserving the behavior of the collection of users (i.e., synchronous
processes) as a whole, they only preserve the behavior of each user separately,
permitt ing reordering of the events at different users.

For many distr ibuted applications, the order of events at different users does
not matter; for instance, typical data processing and financial applications can

generally withstand out-of-order processing of the transactions of different users.
However, for applications in which there is significant communication among the
users outside of the distr ibuted system, the order of events at different users may
be important .

560 16. SYNCHRONIZERS

16.7 Bibl iographic N o t e s

Awerbuch [29] introduced the general notion of a synchronizer, as well as the
decomposition of the synchronizer problem into a data communication part and
a safe synchronizer. Awerbuch's paper also defines the Alpha, Beta and Gamma
synchronizers and contains algorithms for obtaining good cluster decompositions
for Gamma. Applications of synchronizers to obtain efficient asynchronous al-
gorithms for breadth-first search and maximum flow are presented in [29, 30].
Further work on efficient cluster decompositions appears in [35, 36, 32]. The
formal presentation of synchronizers using I /O automata is due to Devarajan
[89], following an earlier development by Fekete, Lynch, and Shrira [109].

The lower bound proof is due to Arjomandi, Fischer, and Lynch [14], who
presented the result for a shared memory model. The presentation in this chapter
uses some simplifications by Attiya and Mavronicolas [17]. Attiya and Mavron-
icolas [17] also extended the lower bound result to the setting of partially syn-
chronous systems. Raynal has written a book entirely about synchronizers [250].

16.8 Exerc i ses

16.1. State and prove a close correspondence between the synchronous model of
Chapter 2 and the asynchronous model consisting of user automata Ui and
GlobSynch that is given in Section 16.1.

16.2. Fill in the details of the proof of Lemma 16.1. Specifically, Claim 16.2
needs a proof, as does the claim that it is possible to reorder the events of

to obtain 7 without violating the --+Z ordering.

16.3. Let L and G denote the LocSynch and GlobSynch systems, respectively,
modified slightly so that the external actions are exactly all the actions of
the user automata. (That is, the internal actions of the users are reclassified
as outputs.) Prove, by exhibiting a counterexample execution, that it is
not the case that fairtraces(L) C_ fairtraces(G).

16.4. Fill in all the details of the proof and complexity analysis for the Simple-
Synch system. In particular,

(a) State and prove all needed invariants.

(b) Prove that f is a simulation relation.

(c) Carry out the fairness argument carefully in terms of Theorem 8.13.

16.8. EXERCISES 561

(d) Give a careful proof of the time complexity claim. (Don't forget that
the assumed bound of d only refers to the delivery of the oldest mes-
sage currently in any channel.)

16.5. Let S and G denote the SimpleSynch and GlobSynch systems, respectively,
modified so that the external actions are exactly all the actions of the
user automata. (That is, the internal actions of the users are reclassified as
outputs, and the send and receive actions are "hidden"-- tha t is, reclassified
as internal.)

(a) Prove, by exhibiting a counterexample execution, that it is not the
case that fairtraces (S) C_ fairtraces (G).

(b) Modify S to obtain a new system S ~, also composed of user automata
plus a distributed algorithm, such that fairtraces(S') C_ fairtraces(G).
Analyze its complexity.

16.6. Fill in the details in the proof of Lemma 16.5.

16.7. Write precondition-effect code for the Alphai automaton and prove its cor-
rectness theorem, Theorem 16.7. Use a simulation relation from the Alpha
system to the SafeSynch system.

16.8. Write precondition-effect code for the Betai automaton and prove its cor-
rectness theorem, Theorem 16.8. Use a simulation relation from the Beta
system to the SafeSynch system.

16.9. True or false?
Let B and G denote the Beta and GlobSynch systems, respectively, again
modified so that the actions that are classified as external are exactly all
the actions of the user automata. Then fairtraces (B) C fairtraces (G).

Prove your answer.

16.10. Give precondition-effect code for the node processes in the implementations
of the ClusterSynch and ForestSynch automata, in the Gamma synchro-
nizer. Prove Theorem 16.10.

16.11. Give a distributed algorithm that operates in an arbitrary network graph
G and produces a minimum-height rooted spanning tree for the use of the
Beta synchronizer. You may assume the nodes have UIDs, but there is no
distinguished node. How efficient an algorithm can you design?

562 16. SYNCHRONIZERS

16.12. Give a distributed algorithm that operates in an arbitrary network graph
G and obtains a "good" spanning forest for the use of the Gamma synchro-
nizer. Also, produce the distinguished paths for communication between
the roots of neighboring clusters. You may assume the nodes have UIDs,
but there is no distinguished node. Your algorithm should yield trees of
small height, as well as short communication paths.

16.13. Consider a square grid graph G, consisting of x/~ x ~ nodes. Consider
a partition Pk into k 2 equal-sized clusters, obtained by dividing each side
into k equal intervals. In terms of n and k, what are the communication
and time complexity bounds for synchronizer Gamma based on partition
Pk? (You may assume the best possible spanning trees and communication
paths for the given decomposition.)

16.14.

16.15.

A programmer at the Flaky Computer Corporation who has substantial
experience with fault-tolerant algorithms has just had a brilliant idea for a
synchronizer to be used in fault-tolerant asynchronous network program-
ming. He admits that his idea only works for a completely connected
network G but still thinks it is a big win.

His synchronizer is like GlobSynch, except that at each round r, it waits to
obtain user-sends for round r from at least n - f of the processes (including
i), rather than from all n processes, before performing a user-receivei event
for round r.

Show his superiors that his algorithm is incorrect before they install it in
a fault-tolerant aircraft-control system. (Hint: You can consider a correct
synchronous consensus algorithm such as FloodSet in conjunction with the
proposed synchronizer. Produce an incorrect execution of the combined
algorithm.)

Prove that the termination strategy described for SynchBFS with a syn-
chronizer works correctly.

16.16. State and prove a result giving the important properties guaranteed by the
asynchronous algorithm obtained by running LubyMIS with your favorite
synchronizer.

16.17. Prove that O (log n) sessions suffice to solve the Boolean matrix, transitive
closure problem described in Example 16.6.1. What is the best constant
you can prove?

16.18. Prove the missing claim in the proof of Theorem 16.11, that is, that it

16.8. E X E R C I S E S 563

is possible to reorder the events of c~r so that r precedes 7r while still

preserving ~t~a~(~).

16.19. Obtain the best upper bound you can for the time complexity of an asyn-
chronous solution to the k-session problem. Generalize your algorithm
to the asynchronous implementation of arbitrary synchronous algorithms.
What correctness conditions are guaranteed?

16.20. Redo Exercise 15.40, this time using some of the algorithm decomposition
ideas presented in this chapter. Try to use all the modularity you can.
For example, you should give abstract automata to represent the behavior
required of the MST algorithm and of the algorithm that uses the MST to
elect a leader.

This Page Intentionally Left Blank

Chapter 17

S h a r e d M e m o r y
N e t w o r k s

versus

In the previous chapter, we described synchronizers, which comprise one method
for simplifying the programming of asynchronous networks. This method enables
(non-fault-tolerant) synchronous network algorithms such as those described in
Chapter 4 to be used in asynchronous networks. In this chapter, we describe
a second strategy for simplifying the programming of asynchronous networks:
using them to simulate asynchronous shared memory systems. This enables
asynchronous shared memory algorithms such as those described in Chapters
10, 11, and 13 to be used in asynchronous networks. Many other asynchronous
shared memory algorithms can also be adapted to run in asynchronous networks,
including practical algorithms for scientific programming and financial databases.
The premise underlying this strategy is that the asynchronous shared memory
model is easier to program than the asynchronous network model.

More generally, this chapter deals with relationships between the asynchro-
nous shared memory model and the asynchronous network model. It turns out
that there are strong transformation results in both directions, some of which
preserve even some fault-tolerance properties. This leads to the conclusion that
(except for differences in efficiency) the two models are pretty much the same.

There are other consequences of these transformation results besides just
the provision of a simpler programming model for asynchronous networks. For
example, a fault-tolerant transformation from the network model to the shared
memory model implies that certain impossibility results for the asynchronous
shared memory model yield corresponding impossibility results for the asyn-
chronous network model.

A different kind of transformation from the asynchronous shared memory

566 17. S H A R E D M E M O R Y V E R S U S N E T W O R K S

model to the asynchronous network model appears in Section 18.3.3. That trans-

formation rests on the establ ishment of a notion of logical t ime in an asynchro-

nous network.

17.1 Transformations from the Shared M e m o r y
Mode l to the Network Mode l

In this section, we describe several ways of t ransforming asynchronous shared

memory systems into asynchronous send/receive network systems. Subsection

17.1.1 gives the correctness conditions to be satisfied by the t ransformations.

Subsection 17.1.2 contains non-faul t- tolerant strategies, while Subsection 17.1.3

contains fault- tolerant strategies. The only types of failures we consider here are

process stopping failures.

1 7 . 1 . 1 The P r o b l e m

We star t with a shared memory system A in the model of Chapter 9. As usual,

we assume that A interacts with its environment using a set of n ports, numbered

1 , . . . , n; on port i, A interacts with user au tomaton Ui. As for the user au tomata

in Chapters 10-13, we assume that the external actions of each Ui are exactly

those actions by which it interacts with A. In this chapter, we permit each process

i of A to have any number of tasks. Because some of our t ransformat ions preserve

fault-tolerance properties, we also include stopi input actions, as discussed in

Section 9.6, and assume that each stopi event permanent ly disables all the tasks

of process i.

It turns out that we need a technical restr ict ion on A in order for our trans-

formations to work correctly. This technical restr ict ion is the same one we used

in Section 13.1.4. That is, consider A in combination with any collection of user

automata. We assume that for each port i, there is a function turv4 that, for any

finite execution c~ of the combined system, yields either the value sys tem or user.
This is supposed to indicate whose turn it is to take the next step, after c~. We

require that if turni(c~) - sys tem, then Ui has no output step enabled in its state

after c~, while if turni(c~) - user, then process i of A has no output or internal

s t e p - - t h a t is, no locally controlled s t ep - -enab led in its state after c~. Thus, we

assume the same shared memory model as we did in Section 13.1.4.

The general problem (including a fault-tolerance requirement for an a rb i t ra ry

set I of ports) is to design an asynchronous send/receive network system B with

processes Pi, 1 <_ i <_ n, that is an I - s imu la t ion of A, defined as follows. For any

execution c~ of B with any collection of users Ui, there should be an execution

c~ ~ of A with the same users such that the following conditions hold"

17.1. TRANSFORMATION FROM SHARED MEMORY TO NETWORK 567

1. a and a ' are indistinguishable I to U (the composition of the users Ui).

2. For each i, a stopi occurs in c~ exactly if a stopi occurs in c~'.

Moreover, if a is a fair execution and if every i for which stopi appears in c~ is in
I, then a ' is also a fair execution. If B is a n / - s i m u l a t i o n of A for every I with

III _< f , then we say that B is an f-simulation of A.
You might recognize these conditions as being similar to the ones that are

asserted in Theorem 13.7. This connection will be exploited in this chapter, in
proving that certain network systems simulate shared memory systems.

As described in Section 14.1.1, in system B, each stopi event permanently
disables all the tasks of process Pi. However, a stop event has no effect on the
channels.

17.1.2 Strategies Assuming No Failures

In the absence of failures, there are simple strategies that work. Most of these

can be classified as single-copy or multi-copy schemes, based on the number of

copies of each shared variable that are maintained in the network.

S i n g l e - c o p y s c h e m e s . The simplest simulation strategy involves just dis-
t r ibuting the shared variables of A arbi trar i ly among the processes of B, with
each shared variable located at a single process. This strategy works for shared
variables of arbi t rary types.

SimpleSh VarSim algorithm:

Each shared variable x of A is assumed to be "owned" by a single process

Pi of B. The job of process Pi is twofold: to simulate the corresponding
process i of A and to manage the shared variables that it owns.

For each i, process Pi has the same actions at the user interface as does
process i of A. Pi's steps simulate those of process i directly, with the
following exceptions: When process i of A performs an access to a shared
variable x, Pi instead sends a message containing the invocation to the
process Pj that owns variable x. (If Pi itself is the owner, it just passes
the invocation request to a "subroutine.") Then Pi suspends all locally
controlled steps of its simulation of process i, pending a response to the

invocation. When a response arrives, Pi resumes simulating process i of A
as u s u a l .

When the owner of a shared variable x receives a message (or a local

invocation request) containing an invocation of x, it simply applies it to x,

1This uses the formal notion of "indistinguishable" from Section 8.7.

568 17. SHARED MEMORY VERSUS NETWORKS

in one indivisible step. The response is sent in a response message to the

sender of the invocation (or passed back to the main simulation task, if the
request is local).

The SimpleShVarSim algorithm has some interesting modularity. We can
express each process Pi as the composition of an I /O automaton Qi, which is
responsible for simulating process i of A, and an I /O automaton Rx,i for each
shared variable x. 2

For Qi, we simply use automaton Pi of the Trans(A) algorithm of Section
13.1.4. More precisely, we assume that the outputs of automaton Qi include
actions of the form ax,i, where a is an invocation that process i of A uses on
shared variable x, and that the inputs include actions of the form bx,i, where b is
a response to process i from shared variable x.

Each Rx,i has inputs ax,i and outputs bx,i. For convenience, we assume
that for any particular shared variable x, all the automata Rx,i have reliable
FIFO send/receive channels by which they communicate with each other. As
in Exercise 14.6, the channels for the individual x can all be simulated by the
given FIFO reliable channels. It will turn out that, for each x, the composition

of all the automata Rx,i, together with the channels between them, constitute an
atomic object of x's variable type.

Figure 17.1 shows the architecture for SimpleSh VarSim, for the special case
of two processes and two shared variables. We have not explicitly represented

the stop act ions--we assume that each stopi is an input to Qi and to all the Rx,i.
The code for R~,i is as follows. It is presented in two parts, based on whether

or not Pi is the owner of x. Because the stopi action is included in the signature
of Rx,i, we include an explicit description of the handling of the stopi action"
it simply sets a stopped flag, which disables all locally controlled actions and
prevents any changes associated with input actions. (This handling is not par-
ticularly interesting here, because we do not make any claims about the behavior
of this algorithm in the presence of faults.) For the purpose of disambiguation,
we subscript channel actions by the name of the variable as well as the nodes at
both ends.

R~,i, Pi t he o w n e r of x:

S i g n a t u r e :

Input:

ax,i, a an invocation of x by process i
receive("invoke", a)x,j,i, a an invocation of x by j , j -r i
stop~

2We also hide the communicat ion actions between them.

17.1. T R A N S F O R M A T I O N FROM SHARED M E M O R Y TO N E T W O R K 569

F i g u r e 1 7 . 1 " A r c h i t e c t u r e for SimpleShVarSim-- two p r o c e s s e s and two s h a r e d var i -

ables .

Outpu t :
bx,i, b a response of x to process i
send("respond", b)x,~,j, b a response of x to j , j # i

Internal:
perform(a, j)x,i, a an invocation of x, 1 < j _~ n

States :
val, a value in the domain of x, initially the initial value of x
inv-buffer, a set of pairs (a, j) , a an invocation, 1 ~ j < n, initially empty
resp-buffer, a set of responses b, initially empty
stopped, a Boolean, initially false
for every j ~ i:

send-buffer(j), a F I F O queue of responses, initially emp ty

Trans i t i ons :

ax,i
Effect:

if stopped- false then
inv-buffer := inv-buffer U { (a, i)}

receive("invoke", a)x,j,i
Effect:

if stopped = false then
i nv -bu j~ : - in~-b~ff~ U { (a, j)}

570 17. SHARED MEMORY VERSUS NETWORKS

perform(a, j)~,i
Precond i t ion :

stopped = false
(a, j) E inv-buffer

Effect:

inv-buffer := inv-buffer - { (a, j) }
(b, val) := f(a, val)
if j = i t hen

~ p - b ~ # ~ := ~ p - b ~ f f ~ u {b}
els~

add b to send-buffer(j)

bx,i
Precond i t ion :

stopped = false
b E resp-buffer

Effect:

~ p - b ~ # ~ : = ~ p - b ~ f f ~ - {b}

send("respond ", b) ~,i,j
P recond i t ion :

stopped = false
b is first on send-buffer(j)

Effect:
remove first e lement of send-buffer(j)

stopi
Effect:

stopped := true

Tasks:
{b~,i :b is a response}
for every j :

{send("respond", b)~,i,j : b is a response}
{perform(a, j)x , i :a is an invoca t ion}

R ~ , i , P i n o t t h e o w n e r o f x:

Signature:

Inpu t :

ix , i , a an invoca t ion of x by process i
receive("respond", b)x,j,i, b a response of x to i, j the owner of x
stop~

O u t p u t :

b~,i, b a response of x to process i

send("invoke", a)~,i,j, a an invoca t ion of x by i, j the owner of x

States:
resp-buffer, a set of responses b, ini t ia l ly e m p t y
send-buffer, a F I F O queue of invocat ions , ini t ia l ly e m p t y
stopped, a Boolean, ini t ia l ly false

17.1. T R A N S F O R M A T I O N FROM SHARED M E M O R Y TO N E T W O R K 571

Trans i t ions :

ax,i
Effect"

if stopped- false then

add a to send-buffer

send("invoke", a)x,i,j
Precondi t ion :

stopped = false
a is first ,on send-buffer

Effect:

remove first e lement of send-buffer

receive("respond", b) x, j , i

Effect:
if stopped- false then

~p-b~Z~ := ~ p - b ~ u {b}

bz,i
Precondi t ion :

stopped- false
b E resp-buffer

Effect:
~p-b~/]~ . - ~ p - b ~ - {b}

stop~
Effect:

stopped : - true

Tasks:
{b~,~- b is a response}

{send("invoke",a)x,i,j'a is an invocat ion}

T h e o r e m 17.1 The SimpleShVarSim algorithm based on A is a O-simulation
of A. (We do not claim any fault-tolerance properties.)

P r o o f Ske tch . We first claim that for each x, the composition of all the au-
tomata Rx,i, 1 <__ i ~_ n, plus the channels between them (with hiding of send and
receive actions), constitute an atomic object Bx of x's variable type and of the
interface specified for the definition of Trans in Section 13.1.4. (We do not claim
any fault-tolerance properties for B~, however.) With these atomic objects Bx,
system B is exactly the system Trans(A). This allows us to apply Theorem 13.7,
with I - 0" if c~ is any execution of B with users Ui, then Theorem 13.7 yields
an execution c~ ~ of A with the same users, satisfying all the conditions in the
definition of a 0-simulation.

L o c a t i o n of s h a r e d va r i ab l e s . The SimpleSh VarSim algorithm permits the
variables to be owned by arbitrary processes. As a general guideline, however,
the best performance is obtained by locating variables at the processes that access
them most frequently.

For example, if a single-writer/multi-reader read/wri te shared variable x is
written more frequently than it is read, then it is natural to locate it at the
process corresponding to the writer. If we do this, then write accesses are fast,

572 17. SHARED M E M O R Y VERSUS N E T W O R K S

since they are performed locally. Of course, in this case all read accesses by
processes other than the writer are slow, since they involve message exchanges
over the network. If write accesses are frequent relative to read accesses, this
arrangement works well, but it may not be the best if writes are relatively rare.

F a u l t - t o l e r a n c e . The SimpleSh VarSim algorithm does not have any interest-
ing fault-tolerance properties. For example, if a stopi occurs, then all processes
are thereafter prevented from accessing any of the variables owned by process
P~.

B u s y - w a i t i n g . Some shared memory algorithms, such as the Bakery mutual
exclusion algorithm of Section 10.7 and the RightLeftDP Dining Philosophers al-
gorithm of Section 11.3, include busy-waiting loops in which a process repeatedly
checks a shared variable, waiting for a particular condition to become satisfied.
The SimpleSh VarSim algorithm could be modified to remove such loops, by in-
stead having the owner of the variable notify the busy-waiting process when the
value of the variable changes (or when the awaited condition becomes true). This
serves to reduce the communication complexity.

M u l t i - c o p y s chemes . It is sometimes useful to allow several processes to
maintain copies of the same shared variable x. Consider, for example, the case
where x is a read/wri te shared variable for which read operations are frequent
but write operations are rare. (This is the situation in many databases.) Then,
if many processes maintain "cached" copies of x, many reads can be performed
locally and therefore at low cost. The problem, however, is that write operations
become more expensive than before, since they must be performed on all copies
of x. This means that messages have to be sent from a writer process to all the
processes that maintain copies of x.

The problem is even worse than this, though. Suppose, for example, that x is
a multi-writer register. Then two processes, say P1 and P2, could simultaneously
at tempt to write to x, and two processes maintaining copies of x, say P3 and P4,
could receive the messages from P: and P2 in opposite orders. This could lead
them to apply the writes to their copies in different orders, yielding inconsistent
results for subsequent reads.

Even in the case where x is a single-writer register, anomalies can occur. If
the writer sends out messages for a write, its message might arrive much earlier
at one process, say P1, than at another, say P2. A local read could occur at P1
after it receives the message, obtaining the new value, then another local read
could later occur at P2 before it receives the message, obtaining the old value. If

17.1. TRANSFORMATION FROM SHARED MEMORY TO N E T W O R K 573

the first read finishes before the second read begins, this behavior is not allowable
for a read/wri te atomic object.

Thus, a more clever protocol is required to manage the writes. For instance,
a writer could work in two phases: "locking" and modifying all the copies of x
in the first phase, then releasing the locks in the second. A read operation would
be delayed while the local copy is locked. In this case, some care must be taken
that all invoked operations eventually get performed.

This type of algorithm is an example of a concurrency control algorithm.
Specifically, the algorithm we just sketched is a read/write locking algorithm
implementing an atomic transaction that writes to all the copies of x. This
means that it appears to the processes performing operations on x that writes
to all copies are performed instantaneously, at some "serialization point" within
the interval of the containing write operation. There are many other kinds of
concurrency control protocols, including locking algorithms for other types of
shared variables besides read/wri te variables, timestamp-based algorithms, hy-
brid algorithms that combine the use of locking and timestamps, and optimistic
algorithms. We do not present these here, but instead refer you to the book
Atomic Transactions, by Lynch, Merritt, Weihl, and Fekete for a complete pre-
sentation (in the same style as this book).

A popular multi-copy algorithm for read/wri te shared variables is the Major-
ity Voting algorithm. The heart of this algorithm is the implementation, for each
read/wri te shared variable x, of a read/wri te atomic object for x. This implemen-
tation is in turn based on an underlying implementation of atomic transactions.

Majority VotingObject algorithm (informal):
Each of the n processes maintains a copy of x, initially the initial value of
x, together with a nonnegative integer tag, initially 0.

A process that wants either to read or to write x performs an atomic trans-
action involving some of the copies of x. The atomic transaction consists
of a series of operations that appear to be performed instantaneously at
some "serialization point" during the execution of the transaction. (An
incomplete operation might or might not have a serialization point.) The
transactions can be implemented using two-phase locking, or t imestamp-
based, hybrid, or optimistic concurrency control methods, augmented by
some priority mechanism to ensure that (if no process fails) each transac-
tion eventually completes.

In order for process Pi to perform a read of x, it reads at least a majority
of the copies of x. Among these, it chooses one with the largest tag and
returns the associated value of x. All these steps are part of the same
atomic transaction and so are executed "as if" instantaneously.

574 17. SHARED MEMORY VERSUS NETWORKS

In order for process Pi to perform a write(v) to x, it first performs an
embedded-read, which is exactly like a read as described just above. From
the result of this embedded-read, Pi determines the largest tag, t. Then it
writes (v, t + 1) to at least a majority of the copies of x. All these steps
those of the embedded-read and those that write the copies--are part of the
same atomic transaction and so are executed "as if" instantaneously.

L e m m a 17.2 The Majority VotingObject algorithm is a read/write atomic ob-
ject.

P r o o f Ske tch . We verify the conditions in the definition of an atomic object,
as given in Section 13.1.1. Well-formedness and failure-free termination should
be easy to see. For the atomicity condition, fix any execution a of the Majority-
VotingObject algorithm (with any set of user automata). We choose the subset
(I) of incomplete operations to be exactly those that are assigned serialization
points in the underlying transaction implementation and adopt the responses for
the operations in (I) and the serialization points from the transaction implemen-
tation. To see that the shrinking property holds, we need to know that each read
obtains the value written by the write serialized just before it, if there is one; if
not, it obtains the initial value v0.

The keys to seeing this are the following facts:

1. The write operations obtain tags 1, 2 , . . . , in the order of their serialization
points.

2. Each read or embedded-read obtains the largest tag that has been written
by a write operation serialized before it (or 0 if there are none), together
with the accompanying value.

These facts are true because each read or embedded-read reads a majority of
the copies, the largest tag has been written to a majority of the copies, and all
majorities intersect. D

Now, if the shared memory system A uses read/wri te shared variables, we
define the Majority Voting algorithm based on A to consist of the same Qi com-
ponents that are used in SimpleSh VarSim, together with Majority VotingObjects
for all the read/wri te shared variables. Then Lemma 17.2 implies

T h e o r e m 17.3 Suppose that A uses read/write shared variables.
Majority Voting algorithm based on A is a O-simulation of A.

Then the

17.1. TRANSFORMATION FROM SHARED M E M O R Y TO N E T W O R K 575

Fault-tolerance. Although the Majority VotingObject algorithm allows flexi-
bility in the choice of which major i ty is read or written, it does not, in general,
provide a fault-tolerant implementat ion of an atomic object for x. This is because
the s tandard t ransact ion implementations are not fault-tolerant. For example, in
a read/wr i te locking algorithm, a process performing a read t ransact ion might
send out messages to read a majori ty of the copies, causing a majori ty of the
copies to become locked. Then the process might fail without releasing its locks.
This would prevent any later write t ransact ion from ever obtaining the locks it
requires. In practice, this problem can be handled by using timeouts to detect
process failures (which we cannot do in the asynchronous network model) and /or
weakening the resiliency requirements.

17.1.3 An Algorithm Tolerating Process Failures

As we noted, the strategies described in Section 17.1.2 do not have any interesting
fault-tolerance properties. In this section, we present the ABD algorithm of
Attiya, Bar-Noy, and Dolev, which works in the presence of a limited number f
of process stopping failures; the network is assumed to be reliable. We assume
that n, the total number of processes, is strictly greater than 2f, that is, that
a majority of the processes do not fail. We only consider the case of single-
wri ter /mul t i - reader read/wr i te shared memory.

The heart of the ABD algorithm is the implementation, for each read/wr i te
shared variable x, of a read/wr i te atomic object guaranteeing f-failure termina-
tion. For simplicity, we describe this implementat ion assuming that only write
operations occur on port 1 and only read operations on ports 2 , . . . , n; we will
later have to modify this implementation slightly in order to use it in the general
simulation. The algorithm uses ideas from the Majority Voting algorithm and
from the VitanyiAwerbuch algorithm of Section 13.4.3. The main idea is that
the result of each write is stored at a major i ty of the nodes in the network, before
the write completes.

A B D O b j e c t algorithm (informal):

Each of the n processes maintains a copy of x, initially the initial value of
x, together with a nonnegative integer tag, initially O.

When the unique writer process wants to perform a write(v) on x, it first
lets t be the smallest tag that it has not yet assigned to any write. Then
it sets its local copy of x and local tag to v and t, respectively, and sends
("write", v, t) messages to all the other processes. A process receiving such
a message updates its copy of x and its tag in the same way, provided that
t is greater than its current tag; in any case, it sends an acknowledgment

576 17. SHARED MEMORY VERSUS NETWORKS

to the writer. When the writer knows (via the acknowledgments and its

knowledge of its own local behavior) that a major i ty of the processes have
their tag values equal to t, it re turns ack.

When any process Pi wants to perform a read of x, it sends read messages
to all the other processes and also reads its own value of x and its own
tag. A process receiving such a message responds with its latest value of
x and tag. When Pi has learned the x and tag values of a major i ty of
the processes, it prepares to re turn the value v of x associated with the

largest tag t it has seen. But before doing this, Pi propagates (v, t) to a
major i ty of the processes: it updates its own value of x and tag and also
sends a second round of messages to all the other processes (except for the
writer). A process receiving such a message updates its copy of x and its tag
accordingly, provided that t is greater than its current tag; in any case, it
sends an acknowledgment to Pi. When Pi knows (via the acknowledgments
and its knowledge of its own local behavior) that a major i ty of the processes
have their tag values at least equal to t, it re turns v.

The code is as follows. ABD1 is the writer process and ABD2, . . . , ABDu
are reader processes. For simplicity, we do not include explicit mention of stop
actions, which we assume are handled as for SimpleSh VarSim. Also, we omit
the explicit subscript x on the various actions. (The code is a lready long enough
without these details.) We assume that V is the domain of values and v0 the
initial value for x.

ABDObject l a u t o m a t o n (f o r m a l) :

S i g n a t u r e :

Input :
write(v) 1, v E V
receive("write-ack", t)j,1, t C N + , j r 1
receive("read", u)j,1, u E N + , j =fi 1

Ou tpu t :

ackl
send("write", v, t) l , j , v E V, t E N + , j # 1
send("read-ack", v, t, U)l,j , v E V, t E N, u E N + , j # 1

States:
val E V, init ially v0
tag E N, init ially 0
status E {idle, active}, init ially idle
count E N, init ially 0
for every j # 1:

send-buffer(j), a F I F O queue of messages , initially e m p t y

17.1. TRANSFORMATION FROM SHARED MEMORY TO NETWORK 577

Transitions:
write(v)1

Effect:
val := v
tag := tag + l
status := active
count := 1
for all j =fi 1 do

add ("write", v, tag) to send-buffer(j)

send(m)l , j
Precondi t ion"

m is first on send-buffer(j)
Effect:

r emove first e lement of send-buffer(j)

receive("write-ack ", t) j,1

Effect:
if s t a t u s - active and t - tag then

count " - count + 1

ackl
Precondi t ion :

status = active
n count >

Effect:
count := 0
status := idle

receive("read", u)j,1
Effect"

add ("read-ack", val, tag, u)
to send-buffer(j)

Tasks:
{ack l}
for every j"

{ s e n d (m) l , j ' m a message}

Note that, in contrast to the Majority Voting and VitanyiAwerbuch algo-
rithms, the choice of a new tag is simple in the ABDObject algorithm, because
there is only one writer. The following is the code for the reader processes.

ABDObjecti a u t o m a t o n , 2 _< i <_ n (formal)"

Signature:

Inpu t :
re a di
receive("write", v, t) l , i , v E V, t E N +
receive("read-ack", v, t, u)j,~, v E V, t E N,�9 u E N + , j # i
receive("prop-ack", u)j , i , u C N + , j ~ { 1, i}
receive("read", u)j,i, u e N + , j ~ {1, i}
receive("propagate", v, t, u)j,i, v C V, t C N, u C N + , j ~ {1, i}

O u t p u t :
vi, v C V
send("write-ack", t)i,1, t E N +
send("read", u)~,j, u C N + , j :/= i
send("propagate" ,v , t ,u) i , j , v E V, t C N, u E N +, j ~ {1, i}
send("read-ack", v, t, u)i , j , v E V, t E N, u C N + , j ~ { 1, i}
send("prop-ack", u)i,j , u C N + , j ~ {1, i}

5 7 8 17. S H A R E D M E M O R Y V E R S U S N E T W O R K S

States:
val E V, ini t ial ly v0
tag E N, ini t ial ly 0
response-val E V, ini t ia l ly v0
read-tag E N, ini t ia l ly 0

status E {idle, active1, active2}, ini t ia l ly idle
count E N, ini t ia l ly 0
for every j 7(= i:

send-buffer(j), a F I F O queue of messages, ini t ia l ly e m p t y

Trans i t ions :

r e a d i

Effect:

read-tag : - read-tag + 1
status := active1
count : - 1
for all j ~ i do

add ("read", read-tag)
to send-buffer(j)

send(m)i,j
Precondi t ion :

m is first on send-buffer(j)
Effect:

remove first e lement of send-buffer(j)

receive("read-ack", v, t, u)j,i
Effect:

if status = active1 and u = read-tag then
count := count + 1
if t > tag then

vat := v
tag := t

r t if count > y then
response-val := val
status := active2
count := 1
for a l l j ~ { 1 , i } d o

add ("propagate", val, tag, read-tag)
to send-buffer(j)

receive("prop-ack ", u) j , i

Effect:
if status = active2 and u -- read-tag

then count : - count + 1

Vi

Precondi t ion :
status = active2

n count > -i
v = response-val

Effect:
count := 0
status := idle

receive("write ", v, t) 1,i

Effect:
if t > tag then

vat := v
tag := t

add ("write-ack", t) to send-buffer(I)

receive("read", u) j,i
Effect:

add ("read-ack", val, tag, u)
to send-buffer(j)

receive("propagate", v, t, u)j,i
Effect:

if t > tag then
val :-- v
tag := t

add ("prop-ack", u) to send-buffer(j)

17.1. T R A N S F O R M A T I O N F R O M S H A R E D M E M O R Y TO N E T W O R K 579

Tasks :

for every j:
{~d (.~)~ , j : .~ ~ message}

In this code, the read-tag is used to keep track of which acknowledgments
belong to the current operation. The response-val is used to remember the value
to be returned while it is being propagated. Note that it is not necessary to
propagate the response value to the writer, since the writer must already have
the latest information.

T h e o r e m 17.4 The ABDObject algorithm, for n > 2f , is a read/write atomic
object guaranteeing f-failure termination.

P r o o f Ske tch . This is similar to the proofs of the VitanyiAwerbuch and Integer-
Bloom algorithms in Chapter 13. Well-formedness is easy to see. It is also easy
to prove f-failure termination, because each operation requires the participation
of only a majority of the processes and n > 2f. So, as usual, atomicity is the
key property to show. We use Lemma 13.16.

Let c~ be any execution of the ABDObject algorithm. Using a restatement of
Lemma 13.10 for the asynchronous network setting, we may assume without loss
of generality that c~ contains no incomplete operations.

Define II to be the set of operations occurring in c~. We define a partial
ordering on II as follows. First, order the write operations in the order in which
they are performed, that is, in the order of their tags. Then order each read
right after the write whose tag it obtains, if any, otherwise prior to all the write
operations.

The key properties that need to be shown are

1. If a write 7r with tag = t completes before a read r is invoked, then r
obtains a tag that is at least as large as t.

This is because 7o's tag is received by a majority of the copies, r reads a
majority of the copies, and all majorities intersect.

2. If read 7r completes before read r is invoked, then the tag obtained by r is
at least as great as that obtained by 7r.

This is by a similar argument, because 7r propagates its information to a
majority of the copies.

580 17. SHARED M E M O R Y VERSUS N E T W O R K S

Using these two properties, it is not hard to show that the four conditions
required for Lemma 13.16 hold, which implies the atomicity condition. [3

Obviously, we can modify the ABDObject algorithm so that any other port
i is the write port, rather than port 1. It is also easy to modify the algorithm
so that read operations are also permitted on the single write port. The results
of such modifications still guarantee f-failure termination. The complete ABD
algorithm based on A is then constructed by using the processes of Trans(A), as
we did for SimpleSh VarSim and Majority Voting, plus an atomic object for each
shared variable x. Each atomic object is the appropriately modified version of
the ABDObject.

T h e o r e m 17.5 Suppose that A uses single-writer/multi-reader shared memory
and that n > 2 f . Then the ABD algorithm based on A is an f-simulation of A.

Proo f . By Theorems 17.4 and 13.7. D

B o u n d e d tags. The ABD algorithm uses unbounded tag values. It is possible
to modify the algorithm so that it uses bounded tags instead. We leave this for
an exercise.

Applications. The ABD algorithm can be used to obtain distributed imple-
mentations for many interesting fault-tolerant shared memory algorithms based
on single-writer/multi-reader registers. For example, the atomic snapshot and
atomic multi-writer register algorithms in Chapter 13 can be transformed using
ABD into algorithms implementing the same objects in the asynchronous send/
receive network model. But note that although the original algorithms in these
cases guarantee wait-free termination, the transformed versions only tolerate f
failures, where n > 2f.

17.1.4 An Impossibility Result for ~ Failures

It is not hard to see that the ABD algorithm does not tolerate f failures if
n < 2f. This is because the failure of this many processes makes the other
processes permanently unable to secure the majorities that they need to complete
their work. It turns out that this limitation is inherent. The key result is the
following, giving a limitation on the fault-tolerance of read/wri te atomic object
implementations in asynchronous networks. To get a stronger statement, we
state the result in terms of broadcast systems rather than send/receive systems.,

17.1. T R A N S F O R M A T I O N F R O M SHARED M E M O R Y TO N E T W O R K 581

T h e o r e m 17.6 Let n - m + p, where m , p > 1, and suppose that n < 2f .
Then there is no algorithm in the asynchronous broadcast model (with a reliable
broadcast channel) that implements a read/write atomic object with m writers
and p readers, guaranteeing f-failure termination.

P r o o f . Suppose for the sake of contradiction that there is such an algorithm,
say A. As usual for such impossibility proofs, we assume that the users are the
most nondeterministic possible.

Let G1 be the set 1 , . . . , n - f and G2 the set n - f + 1 , . . . , n. By assumption,

IGl[__ f and IG2[_ f .
Consider a fair execution Ctl of the system (A plus users) that contains an

invocation write(v)l on port 1, where v =/= vo, and no other invocations. Fur-
thermore, suppose that stop inputs occur on exactly the ports in G2 and that
these events occur right at the start of the execution; this implies that processes
with indices in G2 never perform any locally controlled actions. By f-failure
termination, the write must eventually terminate with a matching ackl. Let a~
be the prefix of Ct I ending with the ackl.

Now consider a second fair execution a2 containing an invocation readn on
port n and no other invocations. Furthermore, suppose that stop events occur
on exactly the ports in G1, at the start of the execution. Again by f-failure
termination, the read must eventually terminate, and the response value must be
v0. Let a~ be the prefix of a2 ending with this response.

Now we construct a finite execution a that does not satisfy the atomicity
property, thus yielding a contradiction. Execution a satisfies the following con-
ditions:

1. a is indistinguishable from a~ to the processes with indices in G1.

2. a is indistinguishable from a~ to the processes with indices in G2.

3. In a, the ackl response event precedes the rea~ invocation event.

This violates the atomicity condition, which says that the read is supposed to
return v, the value written by the write, rather than the initial value v0.

Execution a is constructed as follows. It contains no stop events. It begins
with all the activity of a~ except for the stop events and the receive events at
processes with indices in G2. Since the processes in G2 fail right at the start in
a~, anyhow, the result of eliminating all of these events is still an execution and
is indistinguishable from a~ to the processes in G1. Execution a then finishes
with all the activity of a~, except for the stop events and the receive events at
processes with indices in G1.

582 17. S H A R E D M E M O R Y V E R S U S N E T W O R K S

Thus, in c~, the processes in each group, G1 or G2, behave independently of
the processes in the other group. None of the messages broadcast by processes
in G1 are delivered to processes in G2, and vice versa. It is easy to see that c~
satisfies all the required properties. D

n Theorem 17.6 implies that, for any fixed n and f , where n > 2 and f > ~,
there can be no general method for producing f-simulations of n-process shared
memory algorithms, even if the underlying shared variables are restricted to be
single-writer/single-reader registers. To see this, note that for any such n, there is
a trivial wait-free shared memory algorithm A that implements a 1 - w r i t e r / n - 1-
reader read/wri te atomic object using a single 1 - w r i t e r / n - 1-reader read/wri te
register. An f-simulation of A, if it existed, would yield a send/receive network
algorithm that implemented a 1 - w r i t e r / n - 1-reader read/wri te atomic object
with f-failure termination. (The argument for this is similar to the proof of
Corollary 13.9.) But this contradicts Theorem 17.6.

17.2 Transformat ions from the N e t w o r k Mode l to
the Shared M e m o r y Mode l

Now we describe transformations in the opposite direction, from the asynchro-
nous network model to the shared memory model. These transformations tolerate
process stopping failures: a shared memory system with at most f process fail-
ures can simulate a network with at most f process failures (and reliable commu-
nication). Now there is no special requirement on the number of failures--unlike
the transformations in the opposite direction, these constructions work even if
n _< 2f. Moreover, the constructions are much simpler than the transformations
in the opposite direction.

The reason why these constructions are simpler and yield stronger results is
that the asynchronous shared memory model is, in a sense, more powerful than
the asynchronous network model. The extra power comes from the availability
of reliable shared memory.

It is possible to use these transformations to run asynchronous network al-
gorithms in asynchronous shared memory systems. But this is probably not
a very interesting thing to do, because the shared memory model is easier to
program. A more important use is to allow impossibility results for the asyn-
chronous shared memory model to be carried over to the asynchronous network
model. For example, the impossibility of consensus in the presence of failures,
proved in Theorem 12.8 for the shared memory model, can be extended to the
network model using these transformations.

17.2. TRANSFORMATION FROM N E T W O R K TO SHARED M E M O R Y 583

We present two transformations" one for send/receive systems and one for
broadcas t systems.

1 7 . 2 . 1 S e n d / R e c e i v e S y s t e m s

Suppose that we are given an asynchronous send/receive system A in the model
of Chapter 14, based on a directed graph G, with processes Pi, 1 ~_ i ~_ n, and
reliable F IFO channels Ci,i. As before, each stopi event immediately disables all
tasks of Pi but has no effect on the channels.

The general problem (including fault- tolerance requirements) is to produce
a shared memory system B with n processes, using s ingle-wri ter /s ingle-reader
shared registers, that "simulates" A. The sense in which it should simulate A
is exactly the same as for the t ransformat ion in the reverse direction. For any
execution a of B with any set of users Ui, there should be an execution ~ of A
with the same users such that the following conditions hold:

1. a and ~ are indistinguishable to U.

2. For each i, a stopi occurs in ~ exactly if a stopi occurs in ~ .

Moreover, if ~ is a fair execution and if every i for which stopi appears in a is in
I, then ~ is also a fair execution. I f /3 simulates A in this way, for a par t icular
I, then we say that B is an I-simulation of A. If B is a n / - s i m u l a t i o n of A for

every I with [I I ~_ f , then we say that B is an f-simulation of A.
We give an algori thm, SirapleSRSira, that works for a rb i t ra ry failures, that

is, an n-simulation.

S i m p l e S R S i m a l g o r i t h m (i n f o r m a l) "

For each directed edge (i, j) in the underlying directed graph G , / 3 includes
a s ingle-wri ter /s ingle-reader r ead /wr i t e shared variable x(i, j), writable by
process i and readable by process j. It contains a queue of messages,

initially empty. Process i only adds messages to the queue; no messages
are ever removed.

Process i of B simulates process Pi of A. Simulations of user interface
steps and internal steps of Pi are direct. In order to simulate a send(m)i,j
action of Pi, process i of A adds the message m to the end of the queue in
the variable x(i, j). (It can do this using only a write operat ion by keeping
a duplicate local copy of the queue.) Also, from time to time, process i
checks all its "incoming" variables x(j, i) in order to determine if there
are any new messages that have been placed there since the last time it
checked. If so, process i handles those messages in the same way that Pi
handles them.

584 17. S H A R E D M E M O R Y V E R S U S N E T W O R K S

T h e c o d e is as fol lows. N o t e t h a t e a c h p r o c e s s ha s s e v e r a l t a sks . In t he c o d e

for check(j)i , we u s e t h e n o t a t i o n receive(M)j, i as s h o r t h a n d for t h e s e q u e n c e of

a c t i o n s receive(ml)j , i , r e c e i v e (m 2) j , i , . . . , w h e r e M is t he s e q u e n c e of m e s s a g e s

m l, m2 , I n t h a t c o d e f r a g m e n t , t h e s e q u e n c e M c o n t a i n s t h e n e w m e s s a g e s

t h a t h a v e b e e n p l a c e d in x(j , i) s ince t h e l a s t t i m e p r o c e s s i c h e c k e d .

S i m p l e S R S i m a l g o r i t h m (f o r m a l) :

S h a r e d va r i ab les :
for every edge (i, j) of G:

x(i, j) , a FIFO queue of messages, initially empty

A c t i o n s of i:
As for P~, except:
Input:

Omit all receive actions.
Output:

Omit all send actions.

Internal:
send(m,j)i for every send(m)~,j E out(P~)
check(j)~ for every j E in-nbrs

S t a t e s o f i:
pstate E states(Pi), initially a start state
for every j E out-nbrs:

out-rnsgs(j), a FIFO queue of messages, initially empty
for every j E in-nbrs:

in-rnsgs(j), a FIFO queue of messages, initially empty
processed-rnsgs(j), a FIFO queue of messages, initially empty

T r a n s i t i o n s of i:
7r, an input of Pi ~ receive

Effect:
pstate :-- any s such that

(pstate, ~v, s) E trans(Pi)

7r, a locally controlled action of Pi # send
Precondition:

7r is enabled in pstate
Effect:

pstate :-- any s such that
(pstate, 7r, s) E trans(P~)

send(m,j)i
Precondition:

send(rn)i,j is enabled in pstate
Effect:

add rn to out-msgs(j)
x(i , j) := out-msgs(j)
pstate := any s such that

(pstate, send(m)i,j, s) E trans(Pi)

check(j)i
Precondition:

true
Effect:

processed-msgs(j) := in-msgs(j)
in-msgs(j) := x(j, i)
pstate :-- last state of any execution

fragment starting with pstate and
with action sequence receive(M)j,i,
where processed-msgs(j) . M = in-msgs(j)

17.2. TRANSFORMATION FROM N E T W O R K TO SHARED M E M O R Y 585

Tasks of i:
As for gi, except:

replace each send(m)~,j by send(m,j)~
add, for every j:

{check(j)~}

Then it should not be hard to see that the simulation is correct.

T h e o r e m 17.7 If A is an asynchronous send/receive system with reliable FIFO
send/receive channels, then the SimpleSRSim algorithm is an n-simulation of
A.

P r o o f . We leave the proof for an exercise. ff]

1 7 . 2 . 2 B r o a d c a s t S y s t e m s

A similar construction to SimpleSRSim can be used to simulate an asynchronous
broadcast system having a reliable broadcast channel. The correctness conditions

for the simulation are the same as for send/receive systems. The main difference
is that the new simulation uses single-writer/multi-reader registers instead of

single-writer/single-reader registers.

S i m p l e B c a s t S i m a l g o r i t h m :

For each i, 1 < i <_ n, B includes a single-writer/mult i-reader shared
variable x(i), writable by i and readable by all processes (including i). It

contains a queue of messages, initially empty.

As before, process i of B simulates process Pi of A, with direct simulations
of user interface steps and internal steps of Pi. In order to simulate a
bcast(m)i action of P/, process i of A adds the message m to the end of

the queue in the variable x(i). Also, from time to time, process i checks all
variables x(j) (including x(i)) in order to determine if there are any new

messages. If so, process i handles those messages in the same way that P/
handles them.

T h e o r e m 17.8 If A is an asynchronous broadcast system with a reliable broad-
cast channel, then the SimpleBcastSim algorithm is an n-simulation of A.

586 1Z SHARED M E M O R Y VERSUS N E T W O R K S

17.2 .3 I m p o s s i b i l i t y o f A g r e e m e n t in A s y n c h r o n o u s N e t w o r k s

Theorem 17.8 can be used to prove the impossibility of solving the fundamen-
tal agreement problem of Chapter 12 in an asynchronous network, even if the
network guarantees reliable broadcast, there is guaranteed to be no more than
one process failure, and the only type of failure is stopping! This impossibil-
ity result represents a fundamental limitation on the computing capabilities of
asynchronous networks.

This result should be contrasted with the results in Chapter 6 for the stop-
ping agreement problem in the synchronous network model. In that setting, the
problem is solvable, although it has a nontrivial inherent time cost that depends
on the number of tolerated failures. The proof of Theorem 6.33, the lower bound
on the time, rests on the possibility that a process might stop in the middle of a
broadcast. In contrast, in the asynchronous model, the impossibility result still
holds even without the possibility of partial broadcasts.

We use the problem statement given in Section 12.1 for the agreement problem
with l-failure termination. (Note that that statement can be formulated in terms
of trace properties and so makes sense for asynchronous network systems as well
as for shared memory systems.)

T h e o r e m 17.9 There is no algorithm in the asynchronous broadcast model with
a reliable broadcast channel that solves the agreement problem and guarantees 1-
failure termination.

Proof . Suppose for the purpose of obtaining a contradiction that there is such
an algorithm A. Then Theorem 17.8 yields an algorithm B in the single-writer/
multi-reader shared memory model that is an n-simulation of A. The definition
of an n-simulation implies that B is a solution to the agreement problem and
that it guarantees 1-failure termination. But this contradicts Theorem 12.8, the
impossibility of solving the agreement problem in the read/write shared memory
model. [--1

17.3 Bibliographic Notes

Good references for concurrency control algorithms for implementing atomic
transactions are the books by Lynch, Merritt, Weihl, and Fekete [207] and by
Bernstein, Hadzilacos, and Goodman [50].

The Majority Voting algorithm is due to Gifford [137]. It has been generalized
by Herlihy [154, 149] and by Goldman and Lynch [140]; this latter extension also
appears in [207].

17.4. EXERCISES 587

The ABD algorithm is due to Attiya, Bar-Noy, and Dolev [18]. Their paper
also includes an algorithm that uses bounded tags, based on the ideas of Israeli
and Li [162], plus additional applications for the ABD simulation. The impossi-
bility result for n _< 2f is adapted from similar proofs by Bracha and Toueg [56]
and by Attiya, Bar-Noy, Dolev, Peleg, and Reischuk [20].

Theorem 17.9, the impossibility of agreement in fault-prone asynchronous
networks, is due to Fischer, Lynch, and Paterson [123]. They proved the result
directly, in terms of the network model, rather than via a transformation as we
have presented.

17.4 E x e r c i s e s

17.1. Prove the claim within the proof sketch for Theorem 17.1--that for each x,
the composition of all the automata Rx,i plus the channels between them
(with hiding of send and receive actions) constitute an atomic object Bx
of the appropriate type and interface.

17.2. State and prove a result relating the time complexity of the system B
obtained by applying the SimpleSh VarSim algorithm to a shared memory
system A, to the time complexity of the original system A. Be sure to state
carefully any assumptions you make.

17.3. Let B be an asynchronous network algorithm obtained by applying Simple-
Sh VarSim to the PetersonNP algorithm of Section 10.5.2. Obtain the best
upper bound you can on the time complexity of B, more specifically, on
the time from any tryi event to the corresponding criti event. How does
this compare to the general upper bound obtained for Exercise 17.2?

17.4. Research Question: State and prove a result describing what is guaran-
teed when the SimpleSh VarSim transformation is applied to a random-
ized shared memory system such as the LehmannRabin algorithm in Sec-
tion 11.4.

17.5. Give precondition-effect code for the read/write locking algorithm outlined
in Section 17.1.2, for simulating single-writer/multi-reader shared memory
algorithms in an asynchronous network. (This outline appears a couple of
paragraphs before the description of the Majority VotingObject algorithm.)
Each reader of a shared variable x should keep a local copy of x and read it
(if it is available). The writer should perform its writes to individual copies
using a two-phase locking protocol. All operations should be guaranteed
to terminate. State and prove a correctness result.

588 17. SHARED MEMORY VERSUS NETWORKS

17.6. Generalize your answer to Exercise 17.5 to multi-writer/multi-reader shared
memory algorithms.

17.7. Consider the Bakery mutual exclusion algorithm of Section 10.7, trans-
formed to run in asynchronous networks in two different ways:

(a) Using SimpleSh VarSim.

(b) Using the two-phase locking strategy developed in Exercise 17.5.

Compare the time and communication complexity of the two resulting al-
gorithms.

17.8. Generalize the Majority VotingObject algorithm to allow each read opera-
tion to access a read quorum of copies instead of a majority of copies, and
each write operation to access a write quorum of copies. Read and write
quorums do not have to be strict majorities; what conditions do they need
to satisfy? Describe the algorithm using precondition-effect notation and
prove its correctness.

17.9. Is the "propagation phase" of the reader code in the ABDObject imple-
mentation necessary? Either argue that the algorithm works without it or
exhibit a counterexample.

17.10. Extend the ABDObject algorithm so that it implements a multi-writer/
multi-reader read/wri te atomic object, guaranteeing f-failure termination,
if n > 2f. Show how to incorporate this extension into a fault-tolerant
asynchronous network simulation of the shared memory model with multi-
writer/multi-reader shared registers.

17.11. Modify the ABDObject algorithm so that it uses bounded instead of un-
bounded tags. (Hint: It is not enough just to use the integers mod k
for some fixed k; a finite data type D with more interesting structure is
needed. See [162] for one data type that works. The writer needs to choose
successively "larger" tags, according to data type D, knowing that any old
tags that are held by slow processes can be detected by those processes
to be "smaller" than the newer tags. So when the writer chooses a new
tag, it needs to take account of all the tags that could possibly be held by
any process. In order for the writer to keep track of this set, whenever
any process modifies its local tag, it first ensures that a majority of the
processes know that it is adopting the new tag. Then the writer can always
determine the possible tags at all processes, simply by querying a majority
of the processes for this information. See [18] for more hints.)

17.4. EXERCISES 589

17.12. State and prove a result similar to Theorem 17.6 for the problem of imple-
menting a snapshot atomic object in an asynchronous network with n < 2f.

17.13. Prove Theorem 17.7.

17.14. Give precondition-effect code for the SimpleBcastSim algorithm, in the
same style as we gave for the SimpleSRSim algorithm. Prove its correctness
(Theorem 17.8).

This Page Intentionally Left Blank

Chapter 18

Logical Time

In this chapter we present the third of our major methods for simplifying the
job of programming an asynchronous network: the introduction of a notion of
logical time. In our asynchronous network model, there is no built-in notion of
real time. It is, however, possible to impose a notion of logical time by means of
special protocols. Logical time can sometimes be used in place of real time, in
cases where the users of the system do not care about the relative order of events
that occur at different network locations.

18.1 Logical Time for Asynchronous Networks

The basic idea is for every event of an execution of an asynchronous network
system A to be assigned a "logical time," which is an element of some fixed
totally ordered set T. 1 Typically, this set T is either the nonnegative integers or
the nonnegative reals (perhaps with other types of values such as process indices
as tiebreakers). These logical times need not have any particular relationship to
real time. However, the logical times of different events are required to respect
all the possible dependencies among the events within system A, as described
in Section 14.1.4. Under these assumptions, we will be able to prove that the
logical-time assignment "looks like" a real-time assignment to the processes.

We consider logical time for send/receive systems and broadcast systems
separately. We assume throughout the chapter that the channels are the particular

universal channels defined in Chapter 14. We do not consider faults.

1T must satisfy one technical assumption: there must be a sequence tl, t2 , . . , of increasing
elements of T such that every t E T is bounded above by some ti.

592 18. L O G I C A L T I M E

1 8 . 1 . 1 S e n d / R e c e i v e S y s t e m s

We consider an asynchronous send/receive network system with universal reliable
FIFO send/receive channels. We assume that the underlying network graph G
is an arbi t rary strongly connected directed graph. Recall that the events of
such a system are of the following types: user interface events by which process
automata communicate with the system's users, send and receive events by which
process automata interact with channel automata, and internal events of process
automata. (We do not need to consider internal events for channels, because the
particular universal channels we are using do not have any internal events.)

Let c~ be an execution of an asynchronous send/receive network system A.
Then a logical-time ass ignment for c~ is defined to be an assignment of a value in
T to every event in c~, in a way that is "consistent" with all possible dependencies
among events in c~. Specifically, we require the following four properties:

1. No two events get assigned the same logical time.

2. The logical times of events at each process are strictly increasing, according
to their order of occurrence in c~.

3. The logical time of any send event is strictly smaller than that of the
corresponding receive event.

4. For any particular value t E T, there are only finitely many events that get
assigned logical times smaller than t.

Properties 2 and 3 imply that the order of logical times must be consistent with
the ordering --+t~a~(~), as defined in Section 14.1.4. However, we allow some
events at different processes to have their logical times ordered in the opposite
order from their order in c~.

We claim that any logical-time assignment "looks like" a real-time assignment
to every process in the network. Specifically, any fair execution c~ with a logical-
time assignment l t ime looks to every process like another fair execution c~ ~ in
which the l t imes behave like real t imes- - tha t is, in which events occur in the
order of their l t imes.

T h e o r e m 18.1 Let c~ be a fa ir execution of a sendfreceive network sys tem A

with universal reliable F IFO channels and let ltirne be a logical-time ass ignment

for c~. Then there is another fa i r execution a ~ of A such that

1. c~ ~ contains the same events as c~.

2. The events in c~ t occur in the order of their l t imes in c~.

18.1. L O G I C A L T I M E F O R A S Y N C H R O N O U S N E T W O R K S 593

3. a ~ is indistinguishable f rom a to every process automaton. 2

Theorem 18.1 specifies that the order of the events of each particular process
must be the same in a and a ~. However, it permits events at different processes
to be reordered.

P r o o f . Let 7 be the sequence obtained by reordering the events of a in the

order of their ltimes. Properties 1 and 4 of the definition of logical time imply
that a unique such sequence exists. Then we can use Corollary 14.2 to infer

the existence of the needed fair execution a ~. In applying Corollary 14.2, we
regard (i.e., reclassify) all process actions as external. Properties 2 and 3 of the

logical-time definition then imply that the reordering preserves -+trace(a)" This
is as needed for Corollary 14.2. K]

Example 18.1.1 Send/receive diagram

Consider a send/receive system A based on a three-node complete
undirected graph. Consider an execution a of A in which messages

are sent and received according to the pattern in Figure 18.1.

In this send/receive diagram, each process's execution is repre-

sented by a vertical line, with time proceeding downward. The dots
indicate send and receive events, and each slanted line joins the send

event to the receive event for a single message. Here we do not de-

pict other events, that is, internal events of processes and events by

which the processes communicate with the users. These could be
represented by other dots on the vertical lines.

Figure 18.2 shows a logical-time assignment ltime for a (assuming
that a contains only send and receive events). Since time proceeds

downward, the ltime order does not coincide with the order of events

in a. However, it is consistent with all possible dependencies among
events in a.

Figure 18.3 depicts the reordering of the events of a in the order
of their ltimes, yielding a ~ as described in Theorem 18.1. Note that
the order of events at each process is the same in a and a ~.

Notice the close parallel between the ideas of this section and those used in
Section 16.2 to relate local and global synchronizers. In each case, a dependency
order is defined on events in an execution, capturing all possible dependencies
among events. Then, in each case, the events of the execution are reordered, pre-
serving all dependencies but realigning them according to a global notion of time

eWe use the formal definition of "indistinguishable" from Section 8.7.

594 18. L O G I C A L T I M E

1 2 3

I

F i g u r e 18.1: Send/receive diagram for execution a.

(synchronous rounds or logical time). (The definitions of a local synchronizer
and of logical time are used to show that this can be done.) In each case, the
conclusion is that the reordered execution is locally indistinguishable from the
original execution. Thus, it looks to all the participants in the original execution
as if they are operating in global synchrony.

18 .1 .2 B r o a d c a s t S y s t e m s

We can also define logical time for reliable asynchronous broadcast systems with
universal reliable broadcast channels. In this case, the events are user-interface
events, bcast and receive events, and internal events of processes.

Let a be an execution of an asynchronous broadcast system. A logical-time
assignment for a is defined to be an assignment of a value in T to every event
in a, in such a way as to satisfy the same properties as for send/receive systems,
except that Property 3 now says:

3 ~. The logical time of any bcast event is strictly smaller than that of
each corresponding receive event.

18.1. L O G I C A L T I M E F O R A S Y N C H R O N O U S N E T W O R K S 595

1 2 3

M

M

F i g u r e 18.2" A logical-time assignment for c~.

As for send/receive systems, we have

T h e o r e m 18.2 Let c~ be a fa i r execut ion of a broadcast s y s t em A with a uni-

versal reliable broadcast channel, and let l t ime be a logical-t ime as s ignmen t f o r

c~. Then there is ano ther fa i r execut ion c~ I of A such that

1. c~ ~ contains the same events as c~.

2. The events in c~ ~ occur in the order of their l t imes in c~.

3. c~ I is indis t inguishable f r o m c~ to every process au tomaton .

P r o o f S k e t c h . Similar to the proof of Theorem 18.1, but this time based on
Corollary 14.4. It is left as an exercise. M

596 18. LOGICAL TIME

1 2 3

V1

M

V-1

m

m

Figure 18.3" Send/receive diagram for reordered execution c~'.

18.2 Adding Logical Time to Asynchronous
Algorithms

In the previous section, we defined the notion of logical time for asynchronous
send/receive and broadcast systems. Now we give two algorithms for generat-
ing logical times for the events of a given asynchronous send/receive network
algorithm A. Each of these algorithms is really an algorithm transformation
that "transforms" the given algorithm A into a new asynchronous send/receive
algorithm L(A) with the same underlying network digraph. The transformation
works process by process, defining L(A)i (process i of the L(A) system) in terms
of A~ (process i of the A system). The processes in L(A) cooperate to somehow
"simulate" a fair execution of A, where each L(A)i simulates the corresponding
Ai. Whenever a process of L(A) simulates a step of A, it also "generates" a
logical-time value. The fact that we have included quotes around some terms
(i.e., "transform," "simulate," "generate") indicates that we do not have a sin-
gle clear meaning for these terms but will interpret them slightly differently in
different situations.

18.2. ADDING LOGICAL TIME 597

Both the transformations we describe can be modified for use in broadcast
systems.

18 .2 .1 A d v a n c i n g t h e C l o c k

The following is a simple algorithm transformation for producing logical times for
an execution of a given asynchronous send/receive network algorithm A. We call
it the LamportTime transformation after Lamport , its discoverer. It is based on
maintaining local clocks, advancing them when messages are received in order
to keep them adequately synchronized. The logical-time domain T is the set of
pairs (c, i), where c is a nonnegative integer and i is a process index; the ordering
of pairs is lexicographic.

Lamport Time transformation:

Process LamportTime(A)i maintains the state of process Ai, plus a local
variable clock that takes on nonnegative integer values, initially O. The
clock variable gets increased by at least 1 at every event (including user
interface events, send and receive events, and internal events) that occurs
at process i. The logical time of any event is defined to be the value of the
clock variable immediately after the event, paired with the process index i
as a tiebreaker.

Whenever process i performs a send event, it first increments its clock
variable to get the clock value v for the send event, then it attaches value
v to the message being sent, as a timestamp. When process i performs a
receive event, it increases its clock variable to be not only strictly larger
than its previous value, but also strictly larger than the t imestamp of the
message. The new clock value gets assigned to the receive event.

More precisely, the code for process i in the LamportTime(A) algorithm is
as follows.

LamportTime(A)i"

Signature:

As for Ai, except that send(m)i and receive(m)i actions are replaced,
respectively, with send(m, c)i and receive(m, c)i actions, where c C IN.

States:
As for Ai, plus:
clock E IN, initially 0

598 18. LOGICAL TIME

Trans i t i ons :
As for Ai, with the following modifications:
Input action ~ receive

Effect"
As for Ai, plus:
clock " - clock + 1

Locally controlled action ~ send
Precondition:

As for Ai.
Effect:

As for Ai, plus:
clock := clock + 1

Tasks:
As for Ai (modulo the replacements).

send(m, c)i
Precondition:

As for send(m) i in Ai, plus"
c = clock + 1

Effect:
As for send(m) i in Ai , plus"
clock := c

~eceive(~, ~)i
Effect:

As for receive(m)i in Ai, plus"
clock " - max (clock, c) + 1

Because each process increments its clock at every step and because of the
tiebreaker, it is easy to see that LamportTime(A) satisfies Properties 1 and 2 of
the definition of logical time. Property 3 follows from the handling of the receive
events. Property 4 follows from the fact that each event causes its associated
clock variable to be increased by at least 1.

In terms of the informal conditions mentioned at the beginning of this section,
the "transformation" of each Ai that produces LamportTime(A)i simply adds the
new clock component, plus statements to maintain it. It does not, for example,
add entirely new types of actions or delay events. The "simulation" is step by
step, directly producing a fair execution of A. When process LarnportTime(A)i
simulates a step of Ai, the logical-time value that is "generated" is just the pair
(c, i), where c is the value of clock after the step.

B r o a d c a s t . It is easy to modify the LamportTime transformation to work in
asynchronous broadcast systems.

18.2.2 Delaying Future Events

Now we give an alternative algorithm transformation for producing logical times
in an execution of a send/receive network algorithm A. We call this one Welch-
Time, after Welch, its discoverer. Like LamportTime, Welch Time is based on
maintaining local clocks, only this time the clocks are not advanced in response
to message receipts; rather, messages that arrive "too soon" are delayed. In a

18.2. ADDING LOGICAL TIME 599

sense, this t ransformation is more "intrusive" than the LamportTime transfor-
mation, because it introduces delays in the events of the underlying execution.
The logical time domain T is the set of triples (c, i, k), where c is a nonnegative
real, i is a process index, and k C N+; the ordering of triples is lexicographic.

Welch Time t r a n s f o r m a t i o n :

Each process Welch Time(A)i maintains a local variable clock, with non-
negative real values. We assume that the clock values of process i are
maintained by a separate task, which ensures that the values of the clock
are monotonically nondecreasing and unbounded.

The logical time of any event is defined to be the value of clock when the
event occurs, with the process index as a first-order tiebreaker and (for
events at the same process when the clock has the same value) a sequence
number giving the order of execution as a second-order tiebreaker. Note
that the clock value does not change during the performance of any event
of the underlying algorithm A. The clock value of a send event is at tached
as a timestamp to the message being sent.

Each process i maintains a FIFO queue receive-buffer, in order to hold
messages whose t imestamps are greater than or equal to the local clock
value. When a message arrives at process i, its t imestamp is examined. If
the t imestamp is less than the current clock value, the message is processed
immediately; otherwise, it is placed in the receive-buffer. At each locally
controlled non-clock step, process i first removes from the receive-buffer
and processes all messages whose t imestamps are less than its current clock
value; these messages are processed in the order in which they appear in
the receive-buffer.

This algorithm is said to simulate a receive(m)i event of A when the corre-
sponding message is processed (rather than when it first arrives at process
i). The clock value that gets associated with the receive event is the clock
value at the time the message is processed.

Property 4 of Welch Time(A) follows from the unboundedness of the local
clock variables. The unboundedness of the local clock variables also implies
that every message in a receive-buffer is eventually processed, so every receive
event is eventually simulated and assigned a logical time. Thus, every event
does indeed obtain a logical time. Then Properties 1 and 2 follow from the
tiebreakers and the monotonicity of the local clocks. Property 3 is guaranteed
by the receive-buffer discipline.

In terms of the informal conditions mentioned earlier, the "transformation"
of each Ai that produces Welch Time(A)i adds and manages the clock, receive-
buffer, and sequence-number tiebreaker components. In this transformation,

600 18. LOGICAL TIME

receive actions of Ai can be delayed. The "simulation" now produces a fair
execution of A that reorders some receive events of A with respect to other
events. Each time process i simulates a step of A, the logical-time value that is
"generated" is just the triple (clock, i, k), where k is a sequence number used as
a second-order tiebreaker.

Note that the amount of delay introduced by the Welch Time transformation
is especially great when the local clocks are far out of synchronization. This
algorithm works best when the clocks happen to stay closely synchronized.

B r o a d c a s t . It is easy to modify the Welch Time algorithm transformation to
work in asynchronous broadcast systems.

18.3 Applications

In this section, we present some simple applications of the addition of logical
time to asynchronous network algorithms.

18 .3 .1 B a n k i n g S y s t e m

We consider the problem, given in Exercise 15.43, of counting the total amount of
money in a banking system in which there are no external deposits or withdrawals
but in which money is transferred between processes via messages.

The banking system is modelled as an asynchronous send/receive network
algorithm A with no actions at its user interface. Each process has a local variable
money that contains the amount of money currently residing at that location.
The send and receive actions have arguments that represent amounts of money.
The processes in A decide when and where to send money and how much to
send. We make one technical assumption: that each process sends infinitely
many messages to each of its neighbors. This is not a serious restr ic t ion-- i t is
always possible to add dummy messages containing $0.

We would like an asynchronous send/receive network algorithm in which each
process decides on a local balance, in such a way that the total of all the balances
is the correct amount of money in the system. The execution of this algorithm
should be triggered by signals arriving from the outside, at one or more of the
system locations. (These signals could happen at any time and could happen at
different times at different locations.)

So, we suppose that algorithm A is transformed somehow (e.g., using Lamport-
Time or WelchTime) to a new system L(A), which simulates A and generates
logical times for its events. Then the required algorithm, CountMoney, is oh-
tained as a further transformation of L(A), where each process CountMoneyi

18.3. APPLICATIONS 601

of CountMoney is responsible for "monitoring" the work of the corresponding
process L(A)i of L(A). 3

CountMoney algorithm-
The heart of the algorithm is a "subroutine" that uses a predetermined

logical time t E T, assumed to be known to all processes. Assuming that

t is known, the general strategy is

1. For each process of A, determine the value of the money variable

after all events with logical times less than or equal to t and before

all events with logical times greater than t.

2. For each channel, determine the amount of money in all the messages
sent at logical times less than or equal to t but received at logical

times strictly greater than t.

Specifically, each process CountMoneyi is responsible for determining the
value of the money variable of process Ai, as well as the amounts of money

in all the channels incoming to Ai.

To determine these amounts, process CountMoneyi attaches the logical
time of each send event to the message being sent, as a timestamp. In

order to determine the value of the money variable of process Ai, process

CountMoneyi keeps track of the money values before and after the event of

Ai most recently simulated. When it simulates the first event of Ai having a

logical time strictly greater than t, CountMoneyi returns the recorded value
of the money variable before this event. (There must be such an event,

because Ai performs infinitely many events and there are only finitely many

events with logical time less than or equal to t.)

In order to determine the amount of money in the channel from j to i,

process CountMoneyi needs to determine the messages whose sendj events
have logical time less than or equal to t and whose receivei events have
logical time strictly greater than t. Thus, starting with the first event of

Ai with logical time exceeding t (i.e., the one at which CountMoneyi deter-
mines the value of money at Ai), process CountMoneyi records messages
coming in on the channel. It continues recording them as long as the at-
tached t imestamp is less than or equal to t. When a message arrives on the

channel with t imestamp strictly greater than t, CountMoneyi returns the

aThis construction makes some technical assumptions about the transformed algorithm
L(A): that the simulation is step by step, and that it produces steps of A and logical times in
a form that is identifiable by the CountMoney processes.

602 18. LOGICAL TIME

sum of the amounts of money in the recorded messages. (Such a message
must arrive, because Aj sends infinitely many messages to Ai.)

The balance computed by each process CountMoneyi (in the subroutine) is
the sum of the values it determines for process Ai and for all the incoming
channels.

Recall that all of this assumed a predetermined logical time t. Since there
is really no such predetermined t, the processes need some mechanism to
determine one. (Just choosing an arbitrary t does not work, because that
logical time might have already passed at some process before it begins
executing the subroutine.) For example, the processes might use a pre-
determined sequence tl, t2 , . . , of increasing logical times such that every
t C T is _~ ti for some i, and at tempt to complete the subroutines for all of
them (in parallel). By broadcasting their results, the processes can deter-
mine the first ti whose subroutine succeeds everywhere and use the results
of that subroutine.

We argue correctness for the subroutine, for any particular t. First, to see
that the general strategy yields the correct total amount of money, consider any
fixed fair execution of CountMoney. This execution simulates a fair execution c~
of A, together with a logical-time assignment ltime for a. Then Theorem 18.1
implies that there is another fair execution (~ of A that contains the same events,
that is indistinguishable from a to all processes Ai, and in which all events occur
in the order of their ltimes. What the general strategy does is to "cut" execution
a~ immediately after any events that have ltime -- t and to record the money that
is at all the processes and in all the channels, at this instant. Thus, the general
strategy gives an instantaneous global snapshot of the system during execution
(~, which must certainly yield the correct total amount of money in the banking
system.

It should be straightforward to see that the distributed algorithm in fact
correctly implements the general strategy.

E x a m p l e 18.3.1 E x e c u t i o n of the Coun tMoney a l g o r i t h m

Figure 18.4 shows a send/receive diagram for a fair execution c~ of
banking algorithm A, with associated logical times as assigned by
L(A), with the initial amounts of money at each process at the tops
of the respective time lines, and with the amounts of transferred
money labelling the message edges.

Now consider a fair execution of the CountMoney algorithm that
simulates execution ~. Suppose the value of t - 7.5 is used in this

18.3. A P P L I C A T I O N S 603

1

G
2

G

Ffl

3

0

Q

F i g u r e 18.4: Execution c~ of banking algorithm A.

execution. Figure 18.5 adds a dotted line to the previous diagram, in-
dicating (and connecting) the places where logical time 7.5 intersects
the process time lines.

In the execution of CountMoney, process 1 determines the value of
money for process A1 to be $ 1 0 - $ 1 + $5 = $14; process 2 determines
the value for A2 to be $20 + $ 1 - $3 = $18; and process 3 determines
the value for A3 to be $ 3 0 - $2 + $ 3 - $5 = $26. All the channels
are determined to be empty except for the channel from process 3
to process 2, which process 2 determines to contain $2. The total
amount determined is thus $14 + $18 + $26 + $2 = $60, which is the
correct total.

Figure 18.6 contains the send/receive diagram for the reordered
execution c~/, in which the events appear in logical-time order. Here,
the dotted line corresponding to t = 7.5 is horizontal and cuts exactly
one edge, the unique edge from process 3 to process 2. It is easy to

604 18. LOGICAL TIME

1 2 3

M

m

m

m

F i g u r e 18.5- Dotted line for t - 7.5.

see that the calculated amounts describe exactly the situation at the
processes and in the channels at time 7.5 in (~.

We remark that the CountMoney algorithm does not introduce any new de-
lays in the operation of A, in addition to those already imposed by L(A).

18.3 .2 G l o b a l S n a p s h o t s

The idea of the CountMoney algorithm can be generalized beyond just a bank-
ing system, to an arbitrary asynchronous send/receive system A. (As before, we
assume that each process Ai sends infinitely many messages to each of its neigh-
bors.) Suppose we want an instantaneous global snapshot of the system state
at some point during an execution of A. This might be useful, for instance, for
debugging, for establishing a backup version of the system state in case of fail-
ure, or for detecting certain global properties such as whether the algorithm has
terminated everywhere. It is possible to obtain an instantaneous global snapshot
by delaying all the processes and messages for as long as it takes to record all the

18.3. APPLICATIONS 605

m

?]

1 2 3

m m m m m m m m m m m m m u m m m m m m m m m m m m

N

M

M

m

M

F i g u r e 18.6" Reordered execution c~ I with horizontal line for t - 7.5.

needed information; however, this strategy is not practical in most distributed
systems of any realistic size.

But for some applications, a true instantaneous global snapshot may not be
needed; a system state that "looks like" an instantaneous global snapshot to all
processes may be good enough. We listed some examples of such applications in
the previous paragraph; others will be given later, in Chapter 19. In such a case,
the strategy used for determining the total amount of money in a banking system
can be adapted to provide an acceptable global snapshot of asynchronous send/
receive network system A. As before, A is first augmented with logical times.

Logica l T i m e S n a p s h o t algorithm-
As for CountMoney, the heart of the algorithm is a subroutine that uses a
predetermined logical time t E T, assumed to be known to all processes.
Assuming that t is known, the strategy is

1. Determine the state of each process of A after all events with logical
times less than or equal to t and before all events with logical times
greater than t.

606 18. L O G I C A L TIME

2. For each channel, determine the sequence of messages sent at logical

t imes less than or equal to t but received at logical t imes strictly

greater than t.

This information is determined using the same dis t r ibuted algori thm that

is used in CountMoney.

Any fair execution of Logical TimeSnapshot simulates a fair execution c~ of A,

together with a logical-time assignment ltime for c~. Then Theorem 18.1 implies

that the global state re turned is an instantaneous global snapshot of another

fair execution c~ ~ of A that contains the same events in ltime order and that is

indistinguishable from c~ to all processes. This should be sufficient, for example,

for establishing an acceptable backup version of the system state.

18.3.3 Simulat ing a Single State Machine

Logical time can also be used to allow a d is t r ibuted system to simulate a cen-

tral ized state machine, or, in other words, a single shared variable. Recall the

formal notion of a variable type from Section 9.4; it consists of a set V of

values, an initial value v0, sets of invocations and responses, and a function

f : invocations x V --+ responses x V. We show how to "implement" a shared

variable x of a given variable type in the asynchronous broadcast network model.

We consider a setting in which there are n user processes submit t ing invo-

cations to x and receiving responses from x, one user process Ui at each node

i of the network. We assume that each user process issues invocations sequen-

tially, that is, it waits until it has received a response for any previous invocation

before issuing a new invocation. We would like the users to obtain a view that

is consistent with there being a single copy of x to which all the operations are

applied. More precisely, the network as a whole (with send and receive actions

hidden) should be an atomic object of the given type, as defined in Section 13.1.

We impose no resiliency requirements here; we only require well-formedness,
a tomici ty and failure-free termination.

There are many possible solutions to this problem, some of which are dis-

cussed in Section 17.1. For instance, one process could mainta in a single copy of

x, performing all the operations on this one copy--see the SimpleSh VarSim algo-

r i thm. Here we consider a solution in which every process keeps a private copy

of x; all invocations are broadcast to all processes, who perform them on their

copies. The process originating an operat ion can determine the needed response

when it performs the operat ion on its local copy. In order for this s t rategy to

work cor rec t ly - - tha t is, to guarantee that all processes perform the operations

on their copies in the same order and that the points at which the operations

18.3. APPLICATIONS 607

appear to occur are within their respective invocation-response in tervals- -some
synchronizat ion is needed. We use the notion of logical time to obtain the needed
synchronization.

ReplicatedStateMachine algorithm:

The algori thm starts with a trivial asynchronous algori thm A. Each pro-
cess Ai simply receives invocations from user Ui and broadcasts them. (It
does not mat ter what processes do with these messages when they are
received.) In addition, Ai broadcasts dummy messages, if necessary, to
ensure that it broadcasts infinitely often. Then logical time is added to A
by a t ransformation, yielding L(A), as before.

The main algori thm uses L(A). Besides a local copy of x, each process i

has a local variable invocation-buffer in which it stores all the invocations
it has ever heard about, together with the logical times of their bcast events.
Process i places a local invocation in its invocation-buffer when it performs
the bcast for that invocation, and places a remote invocation (that is, one
occurring at another process) in its invocation-buffer when it performs the
receive for that invocation.

Process i also maintains a vector known-time, which keeps t rack of the
largest logical time it has heard about for each process, initially 0. Thus,

known-time(i)i is just the logical time of the most recent event at process
i, and known-time(j)i for any j ~ i is the logical time of the bcast event
for the last message received by i from j.

Process i is permi t ted to apply an invocation 7r in its invocation-buffer to
its copy of x when the following conditions are both true.

1. Invocation 7r has the smallest logical time of any invocation in invocation-
bufferi that has not yet been applied by process i to x.

2. For every j , known-time(j)i is at least as great as the logical t ime
o f 71-.

When process i applies an operation that was invoked locally to its copy
of x, it conveys the response from x to the user.

Lemma 18.3
ject.

The ReplicatedStateMachine algorithm implements an atomic ob-

P r o o f . Well-formedness is easy to see. We argue termination. Consider any
fair execution c~. Proper ty 1 of logical time implies that each invocation in c~ is
assigned a unique logical time. Proper ty 4 implies that there are only finitely

608 18. LOGICAL TIME

many invocations in c~ with logical times smaller than any particular t. Thus,
there is a uniquely defined sequence II of invocations in c~, arranged in the order
of the logical times of their bcast events.

The reliable broadcast ensures that each process eventually places each in-
vocation in its invocation-buffer. Since infinitely many events occur at each pro-
cess of A, Property 4 implies that the logical time at each process grows without
bound. The fact that each process broadcasts infinitely many times implies that
each component in each process's known-time vector also grows without bound.
Then we can argue, by induction on the positions of invocations in sequence II,
that every invocation eventually is applied to every copy of x. This implies that
a response is produced for every invocation, showing termination.

Now we argue atomicity. Consider any (finite or infinite) execution c~. As
before (see, e.g., the proof of Theorem 17.4), we may assume that there are no
incomplete operations in c~.

We first claim that each process applies operations to its local copy of x in
the order of their logical times, with no gaps. This is because when process i
applies an operation 7r with logical time t to x, it checks explicitly that it does
not know of any pending invocations with logical times smaller than t and that
its known-times for all processes are at least equal to t. Then the FIFO property
of the broadcast channel between each pair of processes implies that process i
will never hear of any other invocations with logical times smaller than t.

Now we define a serialization point for each operation of c~. Namely, for each
operation 7r originating at process i whose bcast event has logical time t, choose
the serialization point to be the earliest point at which all processes in the system
have reached logical time _> t. (Break ties by arranging the serialization points
in the order of logical times.) We know that such a point must be reached in
c~, because we have already argued that process i must apply operation 7r to its
local copy of x; however, it cannot do this until all its known-times are at least
t, which implies that all processes have reached logical time at least t.

Note that the serialization point of any operation 7r cannot be before 7r's
invocation, because of Proper ty 2 of logical time and the fact that t is the logical
time of 7r's bcast. On the other hand, the serialization point of 7r cannot be after
7r's response, because 7r's originating process does not respond to the user until
after all its known-times are at least t. Thus, the serialization points occur within
the operation intervals.

Since the serialization points occur in logical time order, which is the same
order as that in which the operations are performed on the local copies, the
"shrinking" property required for the atomicity condition holds. K]

It is not obvious that the ReplicatedStateMachine algorithm has any advan-

18.3. APPLICATIONS 609

tages over the simple centralized SimpleSh VarSim algorithm; after all, Replicated-
StateMachine essentially requires every process to perform the work done by one
process in the centralized algorithm. One advantage can be seen in the case where
the logical times at the different processes happen to remain closely synchronized.
In this case, the time to perform an operation in the SimpleSh VarSim algorithm
is approximately a two-way message delay. In ReplicatedStateMachine, on the
other hand, an operation 7r can be performed by the originating process i as soon
as it learns that all the other processes have reached the logical time assigned
to the bcast event of 7r. If the clocks are closely synchronized, this requires only
approximately a one-way message delay.

ReplicatedStateMachine can be used to implement all the shared variables in
a distributed implementation of a shared memory system. This approach is an
alternative to the implementation techniques suggested in Section 17.1.

Spec ia l h a n d l i n g of r e a d o p e r a t i o n s . Suppose that some of the operations
on the shared variable x being implemented are read operations (or, more gener-
ally, any operations that do not modify the value of the variable but only return
a response). Then ReplicatedStateMachine could be modified to perform these
operations locally, without using the invocation-buffer mechanism at all. This
modification yields weaker correctness guarantees than those of an atomic object,
but it may still be reasonable for many applications.

B a n k i n g d i s t r i b u t e d d a t a b a s e . The ReplicatedStateMachine algorithm can
be used in a setting where the shared variable x represents an entire banking
database. Typical operations for this case would be deposit, withdraw, add-
interest, and so on. The database might be replicated, say, at each branch of the
bank. For many operations in such a database, the order of the updates is im-
portant. For example, different results can be obtained if a withdraw operation
is invoked before a deposit rather than after, if the balance is low. Thus, consis-
tent order of application of operations, as ensured by the ReplicatedStateMachine
algorithm, is important.

It is often useful for the individual branches to be able to read information
from the local copy of the database, even when the information is not completely
up-to-date. In this case, the special handling of read operations described above
can be useful.

M u t u a l exc lu s ion . The mutual exclusion problem is defined in Chapter 10 for
the asynchronous shared memory model and in Chapter 20 for the asynchronous
network model. Briefly, users request exclusive use of a resource via try actions,
and the system grants it via crit actions. Users return the resource via exit

610 18. LOGICAL TIME

actions, and the system responds with rein. The system is supposed to guarantee
that at most one user has the resource at a time and that the resource continues
to be granted if there are requests. Here, we will also require lockout-freedom,
that is, that every request is eventually granted.

The ReplicatedStateMachine algorithm can be used to help solve the mutual
exclusion problem in a broadcast network. In this case, the shared variable x

is a FIFO queue of process indices, supporting operations add(i), first(i), and
remove(i). The add(i) operation adds the indicated index to the end of the

queue. The first(i) operation is a query that returns true if i is the first element
on the queue, but otherwise returns false. The remove(i) operation removes all
occurrences of index i from the queue. Let Bx be an atomic object for x, where

port i supports all the operations with argument i.
When user i requests access to the critical region via a tryi event, process i

invokes an add(i) operation on atomic object B~, which has the effect of adding i
to the end of the queue. Then process i repeatedly invokes the first(i) operation,
waiting for the answer true, which indicates that i has reached the first position
on the queue. When i receives the answer true, it allows user i to go to the

critical region with a criti event. When user i exits the critical region with an
exit4 event, process i invokes a remove(i) operation on atomic object B~. When
this operation returns, process i allows user i to go to the remainder region with a
rera operation. (This is essentially the QueueME algorithm from Section 10.9.2.)
This solves the mutual exclusion problem (with lockout-freedom), using any
implementation of atomic object B~, in particular, using ReplicatedStateMachine.

However, if ReplicatedStateMachine is used, a simple optimization is possible.
Namely, modify the add(i) operation so that it has a return value: either the index
of i's predecessor j on the queue, if there is one, or else null. If the return value
is null, then there is no predecessor and process i can immediately perform criti.
Otherwise, process i simply waits until it performs remove(j) for i's predecessor

j on its local copy of the queue (at which point it knows that user j has returned
the resource). Then it performs crit4. The exit4 is handled as before.

18.4 Transforming Real-Time Algorithms to
Logical-Time Algorithms*

Each of the algorithms we have described so far has been built upon an asynchro-
nous algorithm A, augmented with logical time. Another design strategy is to
start with an algorithm that uses a notion of "real time," and then to t ransform
it into one that uses logical time instead of real time.

Suppose that we begin with an asynchronous send/receive network system

18.4. REAL-TIME VS. LOGICAL-TIME ALGORITHMS* 611

A in which each process Ai has a local variable real-time with values in R >-~

initially 0. Suppose that all the processes' real-time variables are maintained by

a global RealTime I /O automaton, via tick(t) outputs that simultaneously set

all the processes' real-time variables to t. (The I /O automaton model permits

a single output action to synchronize with more than one input action.) The
only requirement on the Real Time automaton is that the times occurring as

arguments in its output events should be nondecreasing and unbounded in any
fair execution. 4 The processes Ai are not permit ted to modify the real-time
variables.

Then it is possible to t ransform each process Ai into a process Bi that works
without Real Time, using logical time instead. Bi does not have a real-time
variable but instead has a clock variable that it uses in the same way as Ai uses

real-time. The clock variables are maintained by the Bi using an implementation

of logical time for which the logical-time domain is R ->~ (or a subset of R->~
In order to describe what this t ransformation guarantees, we consider both

system A and its t ransformed version B, each composed with user automata Ui,
one per node i. Then we obtain

T h e o r e m 18.4 For every fair execution a of the B system (i.e., B plus user
automata), there is a fair execution a' of the A system (A plus Real Time au-
tomaton plus users) that is indistinguishable from a to each Ui.

That is, each fair execution of B looks like an execution of A to each indi-
vidual user.

Example 18.4.1 Banking system

It is possible to design an algorithm similar to CountMoney but using

real time, to count the total amount of money in a bank. Namely, each
process i records the value of its money variable just before the step
where it finds that its real-time variable exceeds t. Then it records all
incoming messages sent when the sender's real-time variable is less
than or equal to t, but received when process i's real-time variable

is greater than t.

The resulting algorithm can be t ransformed as above into an al-

gorithm that uses logical time.

4Since RealTime is just an ordinary I//O automaton, we cannot assume anything about the
"rate" at which its outputs occur. In Chapters 23-25, we consider a model in which such rate
assumptions can be expressed.

612 18. L 0 GICA L TIME

18.5 Bibl iographic Notes

The notion of logical time is due to Lamport, in his famous paper "Time, Clocks
and the Ordering of Events in a Distributed System" [176]. That paper also
contains the LamportTime algorithm transformation, as well as a short descrip-
tion of the key ideas of the ReplicatedStateMachine algorithm. Lamport later
extended the replicated state machine approach to tolerate a limited number of
failures [179]. Schneider [255] has written a survey of the uses of replicated state
machines to implement fault-tolerant services.

The Welch Time algorithm transformation is due to Welch [286]; the same
transformation is also studied by Neiger and Toueg [232] and is extended to a
partially synchronous model by Chaudhuri, Gawlick, and Lynch [74].

The CountMoney and LogicaI TimeSnapshot algorithms are closely related to
the consistent global snapshot algorithm of Chandy and Lamport [68].

Banking database examples such as those in this chapter are discussed ex-
tensively by Lynch, Merritt, Fekete, and Weihl in [207]; the focus there is on
atomic transactions for banking and other databases.

The "vector clocks" algorithm outlined in Exercise 18.17 is due to Mattern
[222], Liskov and Ladin [197], and Fidge [115]. It is used in the Isis system [52].
A survey of applications of vector clocks appears in [256].

18.6 Exercises

18.1. Prove Theorem 18.2.

18.2. Write "code" for the Welch Time algorithm transformation in the same
general style as the LamportTime code.

18.3. Describe an implementation of logical time for a send/receive network sys-
tem in which the logical time domain is R >~

18.4. During a Friday late-night work session, over pizza, several of the pro-
grammers at the Flaky Computer Corporation have invented four notions
of "illogical time" for asynchronous send/receive network systems. Each
of the four notions of illogical time results from dropping exactly one of
the four properties required for logical time. They think that these notions
might be useful for some applications. For each of their four notions,

(a) Describe an algorithm transformation that imposes that kind of illog-
ical time on executions of a given asynchronous network algorithm
A.

18.6. EXERCISES 613

(b) Discuss possible applications.

18.5. The CountMoney algorithm is formulated as a double algorithm transfor-
mation applied to the underlying banking system A, which may make it
difficult to see what is going on. For this exercise, you will combine the
various pieces into a single algorithm.

(a)

(b)

(c)

Write precondition-effect code for any specific banking system A of the
type allowed in Section 18.3.1. That is, you need to specify the initial
amounts of money at all the processes, plus some rules determining
when and to whom money is transferred, and how much is sent.

Write precondition-effect code for a modified version of your algorithm
A from part (a) that includes logical times. You may choose your
favorite algorithm for generating logical times.

Write precondition-effect code for a modification of your algorithm
from part (b) that uses the strategy of CountMoney to produce the
required balances. Be sure to include a mechanism for determining
an appropriate logical time t.

18.6. Reconsider the banking system example in Section 18.3.1. Now suppose
that the underlying banking system A allows deposits and withdrawals
(modelled as input actions at the user interface of the system) in addition
to transfers. If we apply the same CountMoney transformation as before,
what can be claimed about the output of the resulting system?

18.7. Adapt the Logical TimeSnapshot algorithm to broadcast systems rather
than send/receive systems. State carefully what your algorithm guaran-
tees.

18.8. In the CountMoney and Logical TimeSnapshot algorithms, the logical time
is piggybacked on each message. Develop an alternative algorithm that
does not piggyback logical time but instead sends a single extra marker
message on each channel to indicate the dividing point between the mes-
sages sent at logical times less than or equal to t and those sent at logical
times greater than t. Prove its correctness.

18.9. Give an alternative proof of Lemma 18.3 based on Exercise 13.21.

18.10. Suppose that "illogical time," in particular, the kind of logical time that
satisfies Properties 1, 2, and 4 but not Property 3 ~, is used in the Replicated-
StateMachine algorithm. What properties are guaranteed?

614 18. LOGICAL TIME

18.11. Develop the modified implementation of a shared variable described in Sec-
tion 18.3.3, which handles read operations locally. Show that it does not,
in general, implement an atomic object. State carefully what correctness
conditions it does satisfy.

18.12. The optimized mutual exclusion algorithm at the end of Section 18.3.3
is described in several pieces: a simple asynchronous algorithm A with
logical time imposed upon it, the ReplicatedStateMachine algorithm, and
a main algorithm that uses the replicated queue. Combine all these pieces
into a single algorithm. Write precondition-effect code for your algorithm
and sketch a correctness proof.

18.13. The ReplicatedStateMachine algorithm uses logical time to implement an
atomic object in the broadcast network model. How can it be modified to
work in the send/receive network model?

18.14. Give a careful proof of Theorem 18.4; this will require describing the trans-
formation precisely.

18.15. Design an algorithm based on logical time for simulating single-writer/
multi-reader shared memory algorithms in an asynchronous send/receive
network. This method should be an alternative to the two-phase locking
strategy described in Section 17.1.2. Each reader of a shared variable x
should keep a local copy of x. Each read and write operation on x should
be assigned a logical time, and the operations should be performed on
each local copy in the order of their logical times. All operations must be
guaranteed to terminate.

Give precondition-effect code, state and prove a correctness result, and
analyze the complexity.

18.16. Generalize your answer to Exercise 18.15 to multi-writer/multi-reader shared
memory algorithms.

18.17. Consider weakening the definition of logical time to weak logical time, by
allowing T to be a partially ordered set rather than a totally ordered set.
However, Properties 1-4 in the definition of logical time must still hold.
Thus, not all events are required to be related in the logical time order,
but events that depend on each other (events at the same node, or sends
and corresponding receives) must still be related.

(a) Give a version of Theorem 18.1 that holds for a weak logical-time
assignment. It should be stated in terms of an arbitrary total order
consistent with the given partial order. Prove your result.

18.6. EXERCISES 615

(b) Develop an algorithm transformation for producing a weak logical-
time assignment for an execution of a given asynchronous network

algorithm A. The times associated with events should only be related

in the underlying partial order T if there is a dependency between the
events. (Hint: An algorithm can be based on the set T of length n

vectors of nonnegative integers. We say that C <T C ~ provided that
C(i) <_ C'(i) for all i and C(i) < C'(i) for some i; that is, the vector

C ~ is at least as large as C in all components and strictly larger in

some component.

Each process i maintains a local clock that is a vector in T, initialized
at all 0s. When any event occurs at process i, clocki(i) is increased

by at least 1. When process i sends a message, it first increments

clocki(i), then attaches the resulting vector to the message as a times-

tamp. When process i receives a message, it first increments clocki(i),
then sets its clock vector to be the component-wise maximum of the

newly incremented clock vector and the vector t imestamp of the mes-
sage.)

Show that your t ransformation in fact produces a weak logical-time

assignment and that the times of events are only related by T if there

is a dependency between the events.

This Page Intentionally Left Blank

Chapter 19

Consis tent Global Snapshots
and Stable Property Detect ion

In this chapter, we present the last of our four methods for simplifying the pro-
gramming of asynchronous networks, namely, monitoring an asynchronous net-
work algorithm A while it runs. For instance, a monitoring algorithm might

�9 assist in debugging A, say by checking for violation of desired invariants

�9 produce backup versions of A's global state

�9 detect when A has terminated execution

�9 detect whether some of the processes of A are involved in a "deadlock,"
that is, a situation in which several processes are all waiting for each other
to do something

�9 compute some global quantity (e.g., the total amount of money) being
managed by A

We focus on two notions in this chapter: consistent global snapshots and
stable property detection. A global snapshot returns a global state of A, that is,
a collection of states for all processes and channels of A. The snapshot is said to
be "consistent" if it looks to the processes as if it were taken at the same instant
everywhere in the system. Such a snapshot is useful for all the tasks listed above.
A stable property of A is any property of the global state of A that, if it ever
becomes true, will remain true forever. Examples of stable properties are system
termination and deadlock.

Each monitoring algorithm is described as a transformed version B(A) of the
original algorithm A; more specifically, B(A) is based on the same underlying

618 19. GLOBAL SNAPSHOTS AND STABLE PROPERTIES

graph as A, and each process B(A)i is defined only in terms of the corresponding

process Ai. B(A)i is not expressed as a simple composition of some new I /O
automaton with Ai, because the new process B(A)i needs access to the state of

Ai. Rather, B(A)i is described as adding some new state components and actions
and making some modifications to old actions. We constrain these changes so

that they do not interfere much with the operation of A.

19.1 Termination-Detection for Diffusing
Algorithms

We begin by considering just the termination-detection problem, for an asynchro-

nous send/receive algorithm A of a particularly simple type known as a diffusing
algorithm.

19 .1 .1 The P r o b l e m

We assume that the underlying graph G is an arbitrary connected undirected

graph. We assume that in algorithm A, all processes' initial states are quiescent
(as defined in Section 8.1). That is, only input actions are enabled. We consider

A in an environment that only supplies a single input event to a single (arbitrary)
process. According to the I /O automaton definitions, the arrival of such an

input at a process can enable the process to perform locally controlled actions,

including sending messages to other processes. These messages may then awaken
the recipient processes, who may then send additional messages, and so on. The

algorithm A is said to be diffusing because all activity begins at the location

where the input occurs and "diffuses" through some portion of the network via
messages.

A global state of A is said to be quiescent provided that no process is en-

abled to perform any locally controlled action and there are no messages in the
channels. (This again coincides with the definition of quiescent in Section 8.1,
this time applied to the single I /O automaton representing the entire algorithm
A.) The termination-detection problem 1 for A is as follows: if, sometime after
an input occurs at some process Ai, algorithm A ever reaches a quiescent global

state, then eventually a special donei output should be performed at node i.
The actual termination detection, including the done output, is to be per-

formed by a monitoring algorithm B(A). B(A) should also be a send/receive
network algorithm, based on the same graph G as A. Each process automaton

lin this chapter, we use "termination" to mean quiescence; in most other places in the book,
we use it to mean that the system produces an answer.

19.1. TERMINATION-DETECTION FOR DIFFUSING ALGORITHMS 619

B(A)i of the monitoring algorithm B(A) should be defined in terms of the cor-

responding process automaton Ai. The changes we permit to Ai in order to get

B(A)i are as follows.

�9 B(A)i may contain new state components in addition to all the state com-

ponents of Ai.

The projection of the start states of B(A)i on the state components of Ai
must be exactly the start states of Ai.

�9 B(A)i may contain new input, output, and internal actions, in addition to

the actions of Ai.

The actions of Ai may have new information piggybacked on them in B(A)i,
for example, a send(m)i action may be transformed into a send(m,c)i
action. The actions of Ai retain their preconditions and remain in the
same classes of the task partition in B(A)i. They have the same effects

as before on the state components of Ai, but they may also affect the new

state components.

�9 The new input actions of B(A)i can change the values of the new state

components of B(A)i only.

The preconditions of the new locally controlled actions of B(A)i may in-

volve the entire state of B(A)i, including both old and new state compo-
nents. However, the new locally controlled actions may affect only the new

state components of B(A)i. They are grouped into new classes in the task

partition of B(A)i.

19.1.2 The DijkstraScholten Algorithm

We present the DijkstraScholten algorithm for termination detection for diffusing
algorithms. The idea of the algorithm is to augment the underlying algorithm
A with the construction and maintenance of a spanning tree of the graph nodes

currently involved in A. This tree is rooted at the source node, that is, the node
at which the input occurs. The construction of the spanning tree is similar to

the AsynchSpanningTree algorithm in Section 15.3, but it is more complicated

because it allows the tree to shrink and grow repeatedly, incorporating the same
node many times. (The same sorts of complications appeared in the termination

protocol for AsynchBFS in Section 15.4.)

620 19. GLOBAL SNAPSHOTS AND STABLE PROPERTIES

DijkstraScholten algorithm (informal):

The messages used by the algorithm are the messages of A plus an ack
message. The messages of A are treated like the search messages in the
AsynchSpanningTrce algorithm. Each process other than the source desig-
nates the neighbor from which it first receives an A message as its parent
in the spanning tree. Any subsequent A message is immediately acknowl-
edged; only the first remains unacknowledged (for now). Also, the source
process immediately acknowledges any A message it receives. Thus, as
A messages get sent around the network, a spanning tree of the nodes
involved in the protocol is constructed.

Now, we allow the spanning tree to "shrink," using a convergecast proce-
dure, in order to report termination back to the source process. Specifi-
cally, each process DijkstraScholten(A)i looks for a situation when both of
the following local conditions hold simultaneously:

1. The state of Ai is quiescent.

2. All its outgoing A messages have been acknowledged.

When it finds this, it "cleans up": a non-source process sends an acknowl-
edgment to its parent and deletes all information about this protocol, while
a source process reports that it is done.

A similar cleanup procedure to the one used here was described for the Asynch-
BcastAck algorithm in Section 15.4. But in the present case, after a process
cleans up, it may receive another A message, causing it to participate once
again in the spanning tree construction. In fact, this may happen any number
of times, depending on the message transmission pattern of the underlying al-
gorithm A. That is, the spanning tree in the DijkstraScholten(A) algorithm can
grow and shrink repeatedly and can grow in different ways at different times.

Example 19.1.1 Growing and shrinking spanning tree

Suppose the underlying graph G consists of nodes 1, 2, 3, and 4,
connected as in Figure 19.1, and consider the following scenario, de-
picted in that figure. Here we use the notation DS(A)i as shorthand
for the process DijkstraScholten(A)i.

(a) Process A1 receives an input, awakens, and sends messages
to its neighbors, A2 and A3.

(b) Processes DS(A)2 and DS(A)3 receive the messages from Ai
and set their parent pointers to point to node 1. Then A2 and A3
awaken and send messages to each other. Since each of DS(A)2 and

19.1. TERMINATION-DETECTION FOR DIFFUSING ALGORITHMS 621

(b) (a)

(c) (d)

(e)

Figure 19.1: An execution of DijkstraScholten(A). An arrow on an edge indicates
a message in transit; an arrow parallel to an edge indicates a parent
pointer.

DS(A)3 already has a parent, it responds with an acknowledgment.

Next, each of A2 and Aa sends a message to A4.

(c) A2's message reaches process DS(A)4 first, so DS(A)4 sets
its parent pointer to 2 and immediately acknowledges the message

from A3. Now processes A1, A2, A3, and A4 continue their work
for a while, sending messages to each other as needed; each message

622 19. GLOBAL SNAPSHOTS AND STABLE PROPERTIES

is immediately acknowledged. Next, A2 reaches a quiescent state.
DS(A)2 cannot yet clean up, because it still has not received an
acknowledgment for its initial message to A4.

(d) Now An reaches a quiescent state. Since DS(A)4 has no unac-
knowledged A messages, it sends an acknowledgment to its parent,
DS(A)2, and then cleans up, forgetting everything about its partici-
pation in the protocol. When DS(A)2 receives this acknowledgment,
A2 is still in a quiescent state and DS(A)2 has now received acknowl-
edgments for all its outgoing A messages; therefore, DS(A)2 sends
an acknowledgment to its parent, DS(A)I, and then cleans up. Next,
A3 sends messages to A2 and A4.

(e) When A2 and A4 receive these messages, they awaken just as
they did earlier, reset their parent pointers to point to 3, and continue
carrying out the work of algorithm A.

This execution can continue in this fashion indefinitely, with por-
tions of the spanning tree growing and shrinking as corresponding
portions of algorithm A quiesce. But if all of algorithm A ever be-
comes quiescent, then the tree eventually shrinks down to the source
node 1. If A1 reaches a quiescent state and DS(A)I has acknowl-
edgments for all its outgoing messages, then DS(A)I can announce
termination.

The code for process i in the DijkstraScholten(A) algorithm is as follows.
The deficit variable is used to keep track of the number of outstanding acknowl-
edgments.

DijkstraScholten(A)i a u t o m a t o n (fo rmal) :

Signa tu re :

As for Ai, plus:
Input: Internal:

receive("ack")j,i, j C nbrs cleanup~
Output:

send("ack")i,j, j C nbrs
donei

States:
As for Ai, plus:
status E {idle, source, non-source}, initially idle
parent C nbrs U {null}, initially null
for every j E nbrs:

send-buffer(j), a FIFO queue of ack messages, initially empty
deficit(j) C N, initially 0

19.1. T E R M I N A T I O N - D E T E C T I O N F O R D I F F U S I N G A L G O R I T H M S 623

Transi t ions:

Input of Ai ~ receive
Effect:

As for Ai, plus:
status := source

receive(m)j,i, m an A message
Effect:

As for Ai, plus:
if s t a t u s - idle then

status :-- non-source
parent := j

else add "ack" to send-buffer(j)

Locally controlled action of Ai ~ send
Precondition:

As for Ai.
Effect:

As for Ai.

send(m)i,j , m an A message
Precondition:

As for Ai.
Effect:

As for Ai, plus:
deficit(j) := deficit (j) + 1

send("ack")~,j
Precondition:

"ack" is first on send-buffer(j)
Effect:

remove first element of send-buffer(j)

receive("ack")j,i
Effect:

deficit(j) := deficit (j) - 1

cleanupi
Precondition:

status = non-source
state of Ai is quiescent
for all k E nbrs

deficit(k) = 0
Effect:

add "ack" to send-buffer(parent)
status := idle
parent := null

donei
Precondition:

status = source
state of A~ is quiescent
for all k E nbrs

deficit(k) = 0
Effect:

status := idle

Tasks:
As for Ai, plus:
{donei}
{ cleanupi }
for every j C nbrs:

{send("ack")i,j}

It shou ld be c lear t ha t any g lobal s t a t e of D i j k s t r a S c h o l t e n (A) p r o j e c t s to give

a g loba l s t a te of A, and tha t any fair e x e c u t i o n of D i j k s t r a S c h o l t e n (A) p r o j e c t s

to give a fair e x e c u t i o n of A. To see tha t D i j k s t r a S c h o l t e n (A) cor rec t ly de t ec t s

t e r m i n a t i o n of A, we first p rove a m u l t i p a r t i nva r i an t a s s e r t i o n l e m m a . T h e key

inva r i an t s are the las t two: the nex t to last says t ha t the p a r e n t p o in t e r s f o rm

a s p a n n i n g t r ee for the n o n - i d l e proces ses , whi le the last impl ies t ha t a d o n e

r e p o r t m e a n s t ha t A has b e c o m e qu iescen t .

624 19. G L O B A L S N A P S H O T S A N D S T A B L E P R O P E R T I E S

L e m m a 19.1 In any state of DijkstraScholten(A) after an execution containing
an input at node i, the following are true:

1. statusi E {source, idle} and parenti = null.

2. For every j 7~ i, statusj 6 {idle, non-source}, and if statusj = non-source,
then parentj 7~ null.

3. For every j , if statusj = idle, then the projected state of Aj is quiescent,
parentj = null, and deficit(k)j = 0 for every k.

~. For every j and k, deficit(k)j is the sum of the following four quantities"
the number of A messages in the channel from j to k, the number of acks
in send-buffer(j)k, the number of acks in the channel from k to j , plus 1
if parentk = j .

5. I f statusi = source, then the parent pointers form a directed tree rooted at
i and spanning exactly the set of nodes with status 7~ idle.

6. I f statusi = idle, then statusj = idle for all j and all channels are empty.

P r o o f . The proof is left as an exercise. O

T h e o r e m 19.2 The DijkstraScholten(A) algorithm detects termination for a
diffusing algorithm A.

P r o o f . Par ts 6 and 3 of Lemma 19.1 imply that if DijkstraScholten(A) an-

nounces terminat ion then in fact A has become quiescent. We must also show

the required liveness property: if A becomes quiescent, then eventually Dijkstra-
Scholten(A) announces terminat ion.

So consider, for the sake of contradict ion, a fair execution c~ of Dijkstra-
Scholten(A) in which algori thm A becomes quiescent and in which no done event

occurs. Then, after the point of quiescence, no further A messages are sent or

received; it follows that the tree formed by the parent pointers (as described in

Par t 5 of Lemma 19.1) cannot grow any further. Eventually, this tree must stop

shrinking, stabilizing to a fixed tree T. (This tree T must contain at least the

source node, because we are assuming that no done event is ever performed.)

Since there are no further A messages or changes to the tree, eventually there

are no further ack messages anywhere in the global state. Thereafter, the first

three terms in the sum for any deficit(k)j as described in Par t 4 of Lemma 19.1

must be 0, and the only way any deficit(k)j might be non-zero is if parentk = j.
But then any leaf node i of T is enabled to perform a cleanup, so it eventually

does so. But this means that T shrinks further, a contradiction. It follows that
eventually in c~, a done event must occur. E]

19.2. CONSISTENT GLOBAL SNAPSHOTS 625

C o m p l e x i t y ana ly s i s . Consider an execution of the DijkstraScholten(A) al-
gorithm containing a done event. The total number of messages sent in c~ is
2m, where m is the number of messages sent in the contained execution of A.
An upper bound on the time from when A quiesces until the done event is
O (m(t~ § d)), where t~ and d are defined as usual. Note that the communica-
tion and time complexity do not depend directly on the size of the network, but
rather on the number of A messages sent. If A only operates for a short time in
a small portion of the network, then it will normally send only a small number
of messages, so DijkstraScholten(A) only incurs correspondingly small costs. On
the other hand, if A sends a large number of messages then DijkstraScholten(A)
can be quite expensive.

Example 19.1.2 Breadth-first search

Recall the AsynchBFS algorithm from Section 15.4, in which pro-
cesses correct erroneous parent information until this information
stabilizes. As presented, the algorithm does not terminate, since the
processes have no way of knowing when the algorithm has become
quiescent.

To express A synchBFS as a diffusing algorithm, we make a tiny
change, letting process i0 be initially quiescent and awakening it with
a wakeup input action. Then we apply the DijkstraScholten algorithm
to obtain a terminating BFS algorithm. This is a systematic version
of the ad hoc termination strategy presented for A synchBFS.

19.2 Consis tent Global Snapshots

Now we turn to the problem of taking a consistent global snapshot of a running
asynchronous send/receive network algorithm A. Informally speaking, we say
that a snapshot is "consistent" if it looks to the processes as if it were taken at
the same instant everywhere in the system.

19 .2 .1 T h e P r o b l e m

Once again, we assume that the underlying graph G is an arbitrary connected
undirected graph. Now the underlying algorithm A is an arbitrary send/receive
network algorithm. The snapshot is to be taken by a monitoring algorithm B(A),
also a send/receive network algorithm based on graph G. Again, each process
automaton B(A)~ of the monitoring algorithm B(A) should be defined in terms
of the corresponding Ai.

626 19. GLOBAL SNAPSHOTS AND STABLE PROPERTIES

The types of changes we allow this time are a little more general than those
we allowed in Section 19.1.1, but they still are enough to ensure that any fair
execution of B(A) "contains" a fair execution of A. The difference is that now
we also allow B(A)i to "delay" a send(m)i,j action of Ai until after B(A)i places
another message ahead of rn in the channel from i to j.

We assume that each B(A)i has an input action snapi that signals it to begin
taking a snapshot of A. We require that in any fair execution of B(A) containing
at least one snap input event, eventually every B(A)i will perform a report4
output containing a state of Ai and states for all the channels of A incoming to

Ai.
The various states reported by all the B(A)i constitute a global state of A.

We require that this state satisfy a consistency property. Namely, let c~ be the
fair execution of A that is contained in the given fair execution of B(A). There
should be another fair execution c~ ~ of A such that all of the following conditions
hold:

1. c~' is indistinguishable from c~ to each process Ai.

2. c~' begins with the prefix Ctl of c~ occurring before the first snap event in
the given execution of B (A).

3. c~ ~ ends with the suffix c~2 of c~ occurring after the last report event in the
given execution of B (A).

4. The returned state is exactly the global state after a prefix of c~ ~ that in-
cludes all of c~1 and none of c~2.

Thus, as far as the processes can tell, the returned global state is extracted
instantaneously at some point in the execution of A. Moreover, this point is
somewhere between the beginning and the end of the execution of the snapshot
algorithm.

Example 19.2.1 Banking system

Let A be the banking system of Example 18.3.1. Figure 18.4 de-
picts an execution of A containing five transfers of money among the
three processes in the system. (Ignore the logical time labels in the
diagrams.) Suppose that some process of the monitoring algorithm
B(A) receives a snap input at the beginning of the execution. Then
one example of a global state that might be returned by a consistent
global snapshot algorithm is the one given in Figure 18.5. That is,
B(A)I , B(A)2, and B(A)3 return $14, $18, and $26 as the respec-
tive states of A1, A2, and A3. All channels are determined to be

19.2. CONSISTENT GLOBAL SNAPSHOTS 627

empty except for the channel from A3 to A2, which B(A)2 reports as
containing a single message with value $2. The needed alternative
execution c~' is depicted in Figure 18.6.

19.2.2 The ChandyLamport Algorithm

We have already described one solution to the consistent global snapshot problem-
the LogicalTimeSnapshot algorithm of Section 18.3.2. Now we present an alter-
native algorithm, the ChandyLamport global snapshot algorithm, which is very
much like LogicaITimeSnapshot but does not use an explicit logical time t. In-
stead (as suggested in Exercise 18.8) it uses new marker messages to indicate
the dividing points between the messages sent at times _< t and those sent at
times > t.

ChandyLamport algorithm (informal):

When a process ChandyLamport(A)i that has not previously been involved
in the snapshot algorithm receives a snapi input, it records the current
state of Ai. Then it immediately sends a marker message on each of
its outgoing channels; this marker indicates the boundary between the
messages that are sent out before the local state was recorded and the
messages sent out afterward. 2

Then ChandyLamport(A)i begins recording the messages arriving on each
incoming channel in order to obtain a state for that channel; it records
messages on the channel just until it encounters a marker. At this point,
ChandyLamport(A)i has recorded all the messages sent on that channel
before the neighbor at the other end recorded its local state. 3

There is one remaining situation to consider: suppose that process Chandy-
Lamport(A)i receives a marker message before it has recorded the state
of Ai. In this case, immediately upon receiving the first marker message,
ChandyLamport(A)i records the current state of Ai, sends out marker mes-
sages, and begins recording incoming messages. The channel upon which
it has just received the marker is recorded as empty.

The code appears below.

2For example, if A is a banking system as described in Example 19.2.1, then money sent
before the marker is not included in the recorded local s tate of the sender, but money sent
after the marker is included.

3In the banking example, this means tha t ChandyLamport(A)i has counted all the money
tha t was sent out by the neighbor before recording its local s tate and hence was not counted
by the neighbor.

628 19. GLOBAL S N A P S H O T S A N D S T A B L E P R O P E R T I E S

ChandyLamport(A)i automaton (formal)"

Signature:

As for Ai, plus:

Input :
snapi
receive("marker")j,i, j C nbrs

Output :
report(s, C)i, s E states(A~), C a mapping from nbrs to finite sequences of A messages
send("marker")i,j, j E nbrs

Internal:
internal-send(m)id, j C nbrs, m a message of A

States:
As for Ai, plus:
status C {start, snapping, reported}, initially start
snap-state, a state of Ai or null, initially null
for every j E nbrs:

channel-snapped(j), a Boolean, initially false
send-buffer(j), a F I F O queue of A messages and markers, initially empty
snap-channel(j), a F I F O queue of A messages, initially empty

Transitions:
snapi

Effect:
if status = start then

snap-state : - s tate of Ai
status := snapping
for all j E nbrs do

add "marker" to send-buffer(j)

Input of A i r receive
Effect:

As for Ai.

receive(m)j,i, m an A message
Effect:

As for Ai, plus:
if status = snapping

and channel-snapped(j) = false then
add m to snap-channel(j)

receive("marker") j, i
Effect:

if status = start then
snap-state := state of Ai
status := snapping
for all j E nbrs do

add "marker" to send-buffer(j)
channel-snapped(j) := true

Locally controlled action of Ai ~ send
Precondit ion:

As for Ai.
Effect:

As for Ai.

internal-send(m) i,j
Precondit ion:

As for send(m)i,j in Ai.

Effect:
add m to send-buffer(j)

19.2. C O N S I S T E N T G L O B A L S N A P S H O T S 629

send(m)i,j
Precondition:

m is first on send-buffer(j)
Effect"

remove first element of send-buffer(j)

report(s, C) i
Precondition:

status = snapping
for all j C nbrs

channel-snapped(j) = true
s = snap-state
for all j C nbrs

C (j) = snap-channel(j)
Effect:

status :-- reported

Tasks:
As for Ai, except:
internal-sends are in tasks corresponding to sends in Ai,
plus there are new tasks:

{report(s, C)i : s E states(Ai), C a mapping}
for every j C nbrs:

{send(m)i, j:m a message}

T h e o r e m 1 9 . 3

snapshot for A.

The ChandyLamport (A) algorithm determines a consistent global

P r o o f . F ix any fair execut ion of ChandyLamport (A) in which some process

receives a snap input . We first argue tha t every process eventua l ly per forms a re-

port outpu t . As soon as any snap input occurs at some process ChandyLamport (A) i ,

tha t process records the s ta te of Ai and sends out markers on all its channels. As

soon as any other process ChandyLampor t (A) j receives a marker on any channel,

it records the s ta te of Aj and sends out markers on all its channels, if it has not

previous ly done so. Because of the connec t iv i ty of the graph, markers thus even-

tua l ly p ropaga te to all processes , and all processes record their local s tates . Also,

every process ChandyLamport (A) i eventua l ly finishes collecting the messages on

all its incoming channels (when it has received a marker on each channel) . Then

each ChandyLamport (A) i eventua l ly per forms a report, as claimed.

Now we argue tha t the r e tu rned global s ta te is consis tent . T h a t is, we let (~

denote the conta ined fair execut ion of A (where the send events in c~ cor respond

to the internal-send events in the execut ion of ChandyLampor t (A)) , and we pro-

duce the requi red a l te rna t ive execut ion c~ ~ and its requi red prefix. Namely, let

c~1 be the por t ion of (~ before the first snap and c~2 the por t ion of c~ after the

last report. Execu t ion c~ ~ begins wi th c~1 and ends wi th c~2; the only reorder ing

involves the events of c~ be tween the first snap and the last report.

630 19. GLOBAL SNAPSHOTS AND STABLE PROPERTIES

Each event of (~ between the first snap and the last report occurs at some

process ChandyLamport(A)i. These events can be divided into two sets: S1- -
those that precede the event (snapi or receive(marker)j,i)of ChandyLamport(A)i
at which the state of Ai is recorded, and S2-- those that follow this event. The
reordering places all $1 events before all $2 events while preserving the order
of events of each Ai and the order of each send (derived from an internal-
send) with respect to the corresponding receive. The fact that such a reordering
is possible depends on the fact that there is no internal-send(m)i,j event that
follows the recording of the state at Ai and whose corresponding receive(m)i,j
event precedes the recording of the state of Aj. (If an internal-send(m)i,j follows
the recording of the state of A~, then m is placed in send-buffer(j)~ after the
marker. But this implies that the marker arrives at ChandyLamport(A)j before
m does, which means that the state of Aj is already recorded by the time m
arrives.) Reordering the events of c~ in this way and filling in states of each Ai
as in a yields the sequence a~.

Now consider the prefix a3 of a~ ending just after all the events in $1. We
claim that c~ ~ and its prefix c~3 satisfy all the needed properties; the key fact is
that the results returned by all the processes constitute exactly the global state
of A after a3. It should be obvious that the returned state of each Ai is exactly
the state of Ai after a3, because a3 is defined to include exactly the events of
Ai preceding the recording of the state of Ai. We must also check that the
channel recordings give exactly the messages that are in transi t in the channels
of A after c~3. But the messages in transi t from i to j after a3 are exactly
the messages whose internal-send(m)i,j events occur before the recording of the
state of Ai and whose receive(m)i,j events occur after the recording of the state
of Aj. These are exactly the messages that arrive at ChandyLamport(A)j from
ChandyLamport(A)i ahead of the marker and after ChandyLamport(A)j records
the state of Aj, which are exactly the messages recorded by ChandyLamport(A)j
for this channel. D

D i r e c t e d g r a p h s . It is easy to see that the ChandyLamport algorithm works
in strongly connected directed graphs as well as in connected undirected graphs.

E x a m p l e 19.2.2 Two-dol lar bank

Let A be a simple special case of the banking system of Example

18.3.1 in which the underlying graph G has only two nodes, 1 and 2,
and in which the total amount of money in the system is $2. Suppose
that each process begins with $1. We use the notation CL(A)i as
shorthand for the process ChandyLamport(A)i.

19.2. CONSISTENT GLOBAL SNAPSHOTS 631

1# 1#

1 2 1 2 1 1 2

(a) (b) (c)

1# 1 1

1 2 1 2 1 2

(d) (e) (f)

1 2 1 1 2

(g) (h)

F i g u r e 19.2: Execution of ChandyLamport(A), for the two-dollar bank.

Consider the fair execution of ChandyLamport(A) depicted in Fig-
ure 19.2. In this diagram, the ~ symbols denote markers.

(g) 8~apl occurs, causing CL(A)I to record the state of nx as
$1. Then CL(A)I sends a marker to CL(A)2 and starts recording
incoming messages.

(b) A 1 sends $1 to A2; the dollar enters the channel from CL(A)I
to CL(A)2, behind the marker.

(c) A2 sends $1 to A1.
(d) A1 receives the dollar and CL(A)I records it in snap-channel(2)l.
(e) CL(A)2 receives the marker from CL(A)I, records the state of

A2 as $0, sends a marker to CL(A)I, records the state of the incoming
channel as empty, and reports its results.

(f) CL(A)I receives the marker from CL(A)2, records the state of
the incoming channel as the sequence consisting of one message (the
$1 it received before the marker), and reports its results.

(g) A2 receives the dollar.
The global state returned by the algorithm is shown in (h). It

consists of $1 at A1, $1 in the channel from A2 to A1, and no money
at A2 or in the channel from A1 to A2. This yields the correct total,
$2.

Note that the global state returned by the snapshot algorithm does
not actually appear in the contained fair execution a of A. It does,
however, appear in an alternative fair execution a ~ of A in which

632 19. GLOBAL SNAPSHOTS AND STABLE PROPERTIES

l

1 2 1 2

record A

record A~
_

record A record A 2

0~ 0~ I

F i g u r e 19.3" Send/receive diagrams for a and a ~.

events occur in the following order: (a) A2 sends $1 to A1. (b) A1
sends $1 to A2. (c) A 1 receives $1. (d) A2 receives $1. Figure 19.3
shows send/receive diagrams for a and a ~. The diagram for a in-
cludes indications of where the states of A1 and A2 are recorded in
the execution of ChandyLamport(A). The diagram for a ~ shows how
these two recording points are aligned in the construction of a ~. The
state returned by the snapshot algorithm is the state represented by
the horizontal line in the second diagram.

C o m p l e x i t y ana lys i s . The ChandyLamport(A) algorithm uses O ([E[) mes-
sages, in addition to the messages of A. The time from the first snap event until
the last report event depends on the number of A messages that pile up in the
channels and send-buffers. If we ignore these pileups, we obtain a time bound
of only O (diam(g + d)), but it is probably not reasonable to ignore them. More
realistic time bounds can be obtained in terms of the number of A messages that
appear anywhere in the global state during the time of the snapshot.

19 .2 .3 A p p l i c a t i o n s

In this subsection, we give some applications for consistent global snapshots.

B a n k i n g s y s t e m . The ChandyLamport algori thm--or any other algorithm
that produces a consistent global snapshot- -can be used to count the total
amount of money in the banking system described in this chapter. This strategy

19.2. CONSISTENT GLOBAL SNAPSHOTS 633

can be generalized to allow the computation of other quantities
by the underlying algorithm A.

being managed

D i s t r i b u t e d d e b u g g i n g . A consistent global snapshot algorithm can be used
to help debug distributed algorithms. The designer of a distributed algorithm
A can (and should) describe key properties of A by invariant assertions about
the global state of A. A debugger can allow A to run, obtaining consistent
global snapshots from time to time and checking that the invariants are true for
each snapshot. Since each global state returned by the snapshot algorithm is
a reachable global state of A, the invariants ought to be true for those states.
The designer can carry out such checking before attempting detailed inductive
proofs for the invariants. For example, the AsynchSpanningTree algorithm of
Section 15.3 has two invariants, Assertions 15.3.1 and 15.3.2, which could be
checked in this way.

Some work is required to verify that the invariants are true of the returned
global state. For example, the global state information can be transmitted to a
single process, which can check the invariants locally. Or, a distributed algorithm
can be used, using the information returned by the snapshot algorithm as input
data. For example, Assertion 15.3.1 can be checked using a distributed algorithm
to verify that a set of given parent pointers comprise a directed spanning tree
rooted at a given node i0; we leave the development of such an algorithm for
an exercise. Assertion 15.3.2 can also be checked by a distributed algorithm. In
this case, the distributed algorithm is particularly simple because the invariant
is representable as the conjunction of a set of properties, each of which can be
verified locally. (The results of local verification can be convergecast to i0.)

An alternative debugging strategy is to use a centralized simulation of A
on a single processor. In this case, the invariants can be verified after every
simulated step of A (or from time to time), using the simulated state of A. No
global snapshot algorithm is needed in this case; the disadvantage is that the
simulation takes longer, since it is all carried out on a single processor.

S t ab l e p r o p e r t y d e t e c t i o n . A stable property P of an asynchronous send/
receive algorithm A is a property of global states of A that satisfies the following
condition: if P is true of any reachable state s of A, then P is true of all states
reachable from s. Informally speaking, this says that if P ever becomes true in
an execution of A, then P remains true from that point onward.

A simple strategy to determine whether or not a stable property P is true
of the global state of an algorithm A is to obtain a consistent global state using
a global snapshot algorithm and then to determine whether P is true or false
of the returned global state. Again, this determination can be made either by
collecting the information at a single process, which can determine P locally, or

634 19. GLOBAL SNAPSHOTS AND STABLE PROPERTIES

by a distributed algorithm using the information returned by the snapshot algo-
ri thm as input data. The correctness conditions for a consistent global snapshot
algorithm imply the following:

1. If P is true of the snapshot state, then P is also true of the global state of
A just after the last report of the snapshot algorithm.

2. If P is false for the snapshot state, then P is also false for the global state
of A just before the first snap of the snapshot algorithm.

The first of these facts is true because the state of A after the last report is
reachable from the snapshot state, while the second is true because the snapshot
state is reachable from the state of A before the first snap. The algorithm provides
no information about whether P is true of the global states of A that arise while
the snapshot algorithm is in progress.

Terminat ion detect ion. Now we return to the termination-detection problem.
This time, consider a send/receive algorithm A with no external inputs but
in which the start states are not necessarily quiescent. If A ever reaches a
quiescent global state (in which no process is enabled to perform any locally
controlled action and there are no messages in the channels), a termination-
detection algorithm should eventually output done.

Since A has no external inputs, quiescence is a stable property. So termination
can be detected using the general strategy for detecting stable properties: take
a global snapshot, then determine if the returned global state is quiescent. In
this case, once the snapshot has been performed, each process i can determine
whether its recorded state of Ai is quiescent and whether its recorded incoming
channel states are empty. The results (a bit for each process saying whether
or not its information indicates quiescence) can then be convergecast to some
distinguished process along a spanning tree. In fact, each process only needs to
convergecast a single bit, saying whether or not all the processes in its subtree
have reported quiescence.

If this strategy concludes that A has terminated, then this is guaranteed to
be the case. Moreover, if the snapshot is executed repeatedly, this strategy is
guaranteed eventually to detect termination.

E x a m p l e 19.2.3 Breadth-f irst search and shortest paths

The strategy just described can be used to detect termination for
the AsynchBFS and AsynchBellmanFord algorithms. The snapshot
can be initiated by the source node i0. If the answer is positive, that
is, that the underlying algorithm has terminated, then process i0 can

19.2. CONSISTENT GLOBAL SNAPSHOTS 635

broadcast a message to all the processes, telling them to output their
results. On the other hand, if the answer is negative, that is, that the
underlying algorithm still has not terminated, then process i0 must
continue to perform snapshots until one returns a positive answer.

E x a m p l e 19.2 .4 Leader e lec t ion

The asynchronous OptFloodMax leader-election algorithm of Sec-
tion 15.2 can be augmented with termination detection based on the
ChandyLamport snapshot algorithm to produce a terminating algo-
ri thm for leader election in an arbitrary connected undirected graph.
A snapshot can be initiated, for example, by any process whose
maximum known UID changes. Several snapshots may have to be
performed before termination is detected. Messages of the various
snapshots can be tagged with identifying numbers for the snapshots
in order to keep the snapshots separate.

It is interesting to compare the costs of this termination-detection strategy
with those of the DijkstraScholten algorithm, even though they work for some-
what different types of algorithms. Recall that the communication and time
complexity for DijkstraScholten(A) depend on the total number of A messages
sent, not on the size of the network. Thus, if A only operates for a short time in
a small portion of the network, then DijkstraScholten(A) incurs correspondingly
small costs. On the other hand, the snapshot strategy always involves all the pro-
cesses in the network, so its costs must depend on the network size. But in the
case where the snapshot only needs to be executed once (and there is no pileup
of A messages), the costs of the snapshot strategy do not depend on the total
number of A messages sent. Thus, if A operates for a long time, sending many
messages, the snapshot strategy should perform better than DijkstraScholten(A).

D e a d l o c k detect ion . We give only one version of the deadlock-detection prob-
lem; there are many variants. Consider a send/receive network algorithm A in
which each process Ai has local states that indicate that it is "waiting for" some
subset of its neighboring processes (say, to release resources). We assume that
when Ai is waiting for a nonempty set of neighbors, it is in a quiescent state;
in fact, it cannot perform any locally controlled steps until it has received a
message from each of the neighbors for which it is waiting (say, informing it
that a resource has been released). After Ai receives a message from any of the
processes for which it is waiting, it continues to wait for the remaining processes.
We assume further that A has no external inputs.

636 19. GLOBAL SNAPSHOTS AND STABLE PROPERTIES

A deadlock in a global state of A consists of a cycle of two or more processes,
each waiting for the next in the cycle, with no messages en route from any pro-
cess to its predecessor in the cycle. Deadlock is a stable property, because once
such a cyclic pattern is established, none of the processes in the cycle can ever
perform any more locally controlled steps. Thus, we can detect deadlock using
the general strategy for detecting stable properties: take a global snapshot, then
determine if there is a deadlock in the returned global state. This determination
can be made by collecting the information at a single process and carrying out
a sequential cycle-detection algorithm (say, using depth-first search). Alterna-
tively, this determination can be made by a distributed cycle-detection algorithm
operating on the snapshot results.

This strategy is guaranteed to only detect true deadlocks. Moreover, if the
snapshot is executed repeatedly, it is guaranteed eventually to detect any dead-
lock that occurs.

19.3 Bibliographic Notes

The DijkstraScholten algorithm was invented by Dijkstra and Scholten [92]. The
presentation in their paper is quite different from ours; it provides a "derivation"
of the algorithm along with a proof. A generalization of DijkstraScholten in
which activity is allowed to begin at multiple locations was studied by Francez
and Shavit. Other work on termination detection appears in a paper by Francez
[126]. The ChandyLamport consistent global snapshot algorithm and its use for
detecting stable properties are due to Chandy and Lamport [68]. The algorithm
is derived from Lamport 's earlier work on logical time [176]. Fischer, Griffeth,
and Lynch [118] designed another algorithm for consistent global snapshots, this
one tailored for transaction-based systems (as discussed in Exercise 19.8).

The restrictions we listed on the modifications to the underlying algorithm
A are derived from the definition of the superposition operation in the Unity
programming language, as designed by Chandy and Misra [69]. Some represen-
tative papers on distributed deadlock detection are those by Isloor and Marsland
[161], Menasce and Muntz [224], Gligor and Shattuck [138], Obermarck [234], Ho
and Ramamoorthy [157], Chandy, Misra, and Haas [70], and Bracha and Toueg
[57]. The approach of this chapter to deadlock detection is closest to that of
Bracha and Toueg [57]. Tay and Loke have designed a model that can be used
to understand some deadlock-detection algorithms [274].

19.4. EXERCISES 637

19.4 E x e r c i s e s

19.1. In the DijkstraScholten algorithm, the spanning tree of processes involved
in the algorithm can grow and shrink repeatedly, incorporating the same
process many times. This behavior does not arise in the version of A synch-
BcastAck with garbage collection--there, once a process has cleaned up its
state, it will never again need to participate in the algorithm. What causes
this difference in behavior?

19.2. Prove Lemma 19.1.

19.3. Give the best upper bounds you can for the communication and time com-
plexity of the terminating breadth-first search algorithm described in Sec-
tion 19.1, obtained by applying DijkstraScholten to A synchBFS.

19.4. Describe how to obtain a terminating shortest paths algorithm by using
DijkstraScholten together with the A synchBellmanFord algorithm of Sec-
tion 15.4. Give the best upper bounds you can for its communication and
time complexity.

19.5. Consider an algorithm A that begins in a quiescent global state (as does a
diffusing algorithm) but that is used with an environment that can submit
inputs at any number of locations (one per location). Design an algorithm
to detect when A reaches a quiescent global state. Now we say that termi-
nation is detected when done outputs are performed by all processes that
have received inputs from the environment.

19.6. Give more details for the proof of Theorem 19.3.

19.7. Example 19.2.1 describes an execution c~ of a banking system A, together
with a global state that is a correct result for a consistent global snapshot
algorithm.

(a) Describe a specific execution of ChandyLamport(A) that returns this
global snapshot. You may allow snap inputs to occur at any subset
of the processes, at any time.

(b) Generalize your result for part (a).

19.8. We consider a generalization of the banking system discussed in this chap-
ter. Suppose we are given a send/receive system A in which the processes
maintain a distributed database, with each process managing some of the
data items. The only activity performed by A involves transactions. Here,
we define a transaction to be simply a sequential program consisting of a

638 19. GLOBAL SNAPSHOTS AND STABLE PROPERTIES

series of operations on data items; atomicity for the entire transaction is
not required.

The problem is to design a new system B(A), as a transformation of
A, to determine a "reasonable" transaction-consistent snapshot of A. A
transaction-consistent snapshot consists of a state for each Ai that can
result after some set of transactions has run to completion. A snapshot
is considered reasonable if it includes all transactions that finish before
the snapshot algorithm begins, along with an arbitrary subset of the other
transactions that start before the snapshot ends.

The transformation B should not interfere unnecessarily with the operation
of A; for example, it is not allowed to stop all transactions while it is
obtaining the snapshot.

19.9. Prove an upper bound on the time complexity for ChandyLamport(A), in
terms of the number of A messages that appear in the global state during
the time of the snapshot.

19.10. Consider a connected undirected graph G with a distinguished node i0.
Design an asynchronous send/receive algorithm A with underlying graph
G to verify that a given, fixed set of parent pointers constitute a directed
spanning tree of a subgraph of G rooted at i0. More precisely, assume
that each process of A has a parent pointer whose value is either the index
of a neighboring process or else null. The output should be produced by
process i0. Give precondition-effect code for your algorithm, prove that it
is correct, and analyze its complexity.

19.11. Consider the AsynchBFS algorithm augmented with the ChandyLamport
snapshot algorithm to detect termination, as described in Example 19.2.3.

(a) Describe an explicit execution (for a graph G of your choice) in which
process i0 first initiates AsynchBFS and then initiates a snapshot, and
in which the state returned by the snapshot is not quiescent.

(b) Suppose that i0 initiates another snapshot each time the previous one
returns a negative answer. Is there an upper bound on the number of
snapshots that can be invoked before one must succeed in returning
a positive answer?

19.12. Comparison of the DijkstraScholten and snapshot approaches to termina-
tion is only meaningful for algorithms A to which both types of termination
strategy are applicable. Describe the largest class of algorithms you can
find to which both strategies can be applied.

19.4. E X E R C I S E S 639

19.13. Consider a collection of processes, each of which might be waiting for some
of its neighbors. That is, each process has a fixed local value wai t ing@r,

indicating the set of neighbors for which that process is waiting.

(a) Design (i.e., give precondition-effect code for) a distributed cycle-
detection algorithm for this collection of processes. Your algorithm
should determine whether or not there is a cycle of two or more pro-
cesses, each waiting for the next in the cycle, with no messages en
route from any process to its predecessor in the cycle.

(b) Prove that your algorithm is correct and analyze its complexity.

(c) Show how your algorithm can be used to detect deadlocks in an under-
lying asynchronous algorithm A, according to the problem description
in Section 19.2.3.

19.14. In another version of the deadlock problem, processes wait for sets of neigh-
bors as in Section 19.2.3, but now each waiting process only needs to hear
from any one of these neighbors rather than all of them. Define an ap-
propriate notion of deadlock for this version of the problem and design an
algorithm based on consistent global snapshots for detecting this new type
of deadlock.

19.15. Describe some other applications of consistent global snapshots for moni-
toring send/receive network algorithms.

This Page Intentionally Left Blank

Chapter 20

N e t w o r k R e s o u r c e A l l o c a t i o n

Having now finished Chapters 16-19, on general methods for programming asyn-
chronous networks, we now resume our study of specific problems in asynchro-
nous networks. In this chapter, we revisit the problem of mutual exclusion and
the more general problem of resource allocation, which we studied in Chapters
10 and 11 in the asynchronous shared memory setting. Next, in Chapter 21,
we consider consensus and other problems in asynchronous networks in which
some of the processes might fail. The final chapter on asynchronous computing
is Chapter 22, in which we study the problem of reliable communication over
unreliable channels.

20.1 M u t u a l E x c l u s i o n

We begin with the mutual exclusion problem.

20 .1 .1 T h e P r o b l e m

The problem statement is much the same as in Section 10.2. We assume that we
have n users, U1, . . . , U~, defined to be I /O automata preserving well-formedness,
just as in Section 10.2. Now we assume that the system A being used to solve the
problem is an asynchronous network system, with one process Pi corresponding

to each user Ui. We assume that the actions tryi, criti, exiti, and rerr~ are used
for communication between I /O automata Ui and Pi. In the case of a send/
receive network, the processes Pi communicate via reliable FIFO channels Ci,j,
as depicted in Figure 20.1. We will also consider broadcast systems, as well as
systems containing a combination of send/receive and broadcast channels. (Such
a combination can be regarded as a special case of a multicast channel--see
Section 14.3.2.)

642 20. N E T W O R K R E S O U R C E A L L O C A T I O N

ports processes

= D~i"

_~ crit /

= exit~

r e m i

F i g u r e 20.1" Interactions between components for the mutual exclusion problem. The
arrows inside the system oval represent send/receive channels.

The basic correctness conditions to be guaranteed by the system are the same

as the ones we defined in Section 10.2. Namely, we require that the combination

of system A and the users must satisfy the following properties:

W e l l - f o r m e d n e s s : In any execution, and for any i, the subsequence describing

the interaction between Ui and A is well-formed for Ui.

M u t u a l e x c l u s i o n : There is no reachable system state (i.e., a combination of

a global state for A and states for all the Ui) in which more than one user

is in the critical region C.

P r o g r e s s : At any point in a fair execution,

1. (Progress for the t rying region) If at least one user is in T and no

user is in C, then at some later point some user enters C.

20.1. MUTUAL EXCLUSION 643

2. (Progress for the exit region) If at least one user is in E, then at some
later point some user enters R.

We say that an asynchronous network system A solves the mutual exclusion
problem provided that it solves it for every collection of users.

In this chapter, we drop the restriction, made in Section 10.2, that a process
can perform locally controlled actions only when its user is in the trying region or
exit region. That restriction is workable in the shared memory setting, because
there the shared variables maintain information so that it is always available to
all the processes. However, in the network setting, there are no shared vari-
ables, so the processes need to do the work of maintaining this information and
communicating it to other processes whenever it is required.

We also use the same lockout-freedom condition as in Section 10.4, namely,

L o c k o u t - f r e e d o m : In any fair execution, the following hold:

1. (Lockout-freedom for the trying region) If all users always return the
resource, then any user that reaches T eventually enters C.

2. (Lockout-freedom for the exit region) Any user that reaches E even-
tually enters R.

In this chapter, we will sometimes analyze the communication and time com-
plexity for requests that operate "in isolation." We say that a request by a user
is isolated provided that, during the time from its try to its crit, all other users
remain in their remainder regions.

In the rest of this section, we present several mutual exclusion algorithms for
asynchronous networks.

2 0 . 1 . 2 S i m u l a t i n g S h a r e d M e m o r y

Chapter 10 contains many shared memory algorithms for mutual exclusion. Us-
ing the techniques of Chapter 17, we can transform these into algorithms for
the asynchronous network model. For instance, the Bakery algorithm of Sec-
tion 10.7 can be implemented reasonably efficiently in an asynchronous send/
receive network.

20.1.3 Circulating Token Algorithm

The simplest mutual exclusion algorithm for the asynchronous send/receive net-
work setting works when the network is a unidirectional ring.

644 20. NETWORK RESOURCE ALLOCATION

Circulating Token algorithm (informal):

A token representing control of the resource circulates continuously around

the ring. When process Pi receives the token, it checks whether or not there

is an outstanding request from user Ui. If there is no such request, Pi passes

the token to Pi+l. On the other hand, if there is an outstanding request, Pi
grants the resource to Ui and holds the token until Ui returns the resource.

When Ui returns the resource, Pi passes the token to Pi+l.

The formal code appears below.

CirculatingTokeni automaton (formal)"

Signature:

Input" Output :
tryi criti
exiti remi

receive("token")i_ 1,i send("token") i,i+ l

States:
token-status C {not-here, available, in-use, used}, initially available if i - 1, not-here otherwise
region E {R, T, C, E}, initially R

Transit ions:
tryi

Effect:
region "- T

criti
Precondit ion:

region = T
token-status - available

Effect:
region := C
token-status := in-use

exiti
Effect"

region "- E

r e m i

Precondit ion:
r e g i o n - E

Effect"
region "- R
token-status := used

receive("token") ~_ 1,~
Effect"

token-status := available

send("token")i,i+ 1
Precondit ion:

token-status = used or
(t o k e n - s t a t u s - available and r e g i o n - R)

Effect:
token-status :--- not-here

Tasks:
Each locally controlled action comprises a task by itself.

20.1. M U T U A L EXCLUSION 645

T h e o r e m 20.1 The Circulating Token algorithm solves the mutual exclusion
problem and guarantees lockout-freedom.

P r o o f Ske tch . Straightforward. Mutual exclusion is guaranteed, because
there is only one token, and only the user where the token is located can be

in C. Progress is guaranteed, because the token keeps circulating until it finds

a request. Lockout-freedom is guaranteed, because no process satisfies two con-
secutive requests without allowing the token to circulate around the ring in the

interim, thus giving every other process a chance. [:]

C o m p l e x i t y ana lys i s . First we consider the communication complexity of the

Circulating Token algorithm. It is not clear what we should measure, because
the messages are not naturally apportioned to particular requests. For example,

messages are sent even when there are no active requests. One thing we can say
is that the total number of messages sent between a tryi and its corresponding

crit4 is at most n. We can also give an amortized analysis for the "heavy load"
case, where there is always an active request at each node. (Formally, each remi
is immediately followed by a tryi). In this case, there are only a constant number
of messages per request.

For the time complexity, we assume as usual that t~ is an upper bound on

time for each process task and d is an upper bound on the delay for the oldest

message in any channel. We also assume that c is an upper bound on the time

any user spends in the critical region. Then the time from a tryi event until the
corresponding crit~ event is at most c(n - 1) + dn + 0 (~n). Note that this time

bound has a dn term, which can appear even in the case of a very light load, for
instance, an isolated request.

V i r t u a l r ings . The Circulating Token algorithm can be used in an arbitrary
send/receive network based on a strongly connected directed graph G, if the

processes are configured into a virtual ring. The consecutive processes on the
ring need not be neighbors in G--communicat ion between any pair of processes
can be simulated by a series of communications along a directed path in the

underlying network, because of the strong connectivity of G. The performance
of the resulting algorithm depends strongly on the graph G and the order in
which the processes are arranged in the r ing-- i t is important to minimize the
total length of the paths used in the simulation.

F a u l t - t o l e r a n c e . In practice, the Circulating Token algorithm can be made
resilient to some types of failures. For example, if a process fails cleanly, in
a way that is detectable to the other processes, then the other processes can

646 20. NETWORK RESOURCE ALLOCATION

reconfigure themselves into a new ring. For another example, if the token is
lost, again in a way that is detectable, a new token can be generated using a
leader-election protocol on the ring, for instance, one of those in Section 15.1.

In the asynchronous model, ordinary process stopping failures and message
losses cannot be detected, because there is no way processes can distinguish such
failures from situations in which the processes or messages are simply delayed.
Thus, in order to achieve fault-tolerance, it is necessary to assume a stronger
model that includes events that announce such failures. In practice, these events
are usually implemented by timeouts.

20.1.4 An Algorithm Based on Logical Time

In Section 18.3.3, we described another solution to the mutual exclusion problem
for an asynchronous network system, in particular, for a broadcast network sys-
tem. That solution used the ReplicatedStateMachine algorithm to implement an
atomic object representing a queue of requesting process indices. The Replicated-
StateMachine algorithm in turn used logical time. Thus, the algorithm was de-
scribed in several pieces.

In this section we present a similar algorithm, but to compare it more eas-
ily with the other algorithms in this chapter, we put the pieces together. For
simplicity, we do not handle local operations in a special way as described in
Section 18.3.3. We call the resulting algorithm the Logical TimeME algorithm.

LogicaITimeME algorithm (informal)"

This algorithm generates logical times for events using the LamportTime
strategy, based on local nonnegative integer clock values. A logical time is
a pair (c, i), where c C N and i is a process index; logical time pairs are
ordered lexicographically.

The algorithm uses both broadcast and send/receive communication, where
send/receive communication is allowed for all pairs of distinct processes.
In place of the separate invocation-buffer and queue, each process Pi main-
tains a single history data structure. For each j, history(j)i records all the
messages Pi has ever received from Pj, each with a nonnegative integer
c, which is the clock value associated with that message's bcast or send
event. The try and exit requests are broadcast, much as before. Instead of
broadcasting dummy messages, each process acknowledges each try mes-
sage with an ack message.

Pi can perform a criti when its latest try request has reached its history(i),
provided that every other request that Pi has heard of with a smaller logical
time has already been granted and provided that Pi has received a mes-

20.1. M U T U A L EXCLUSION 647

sage with greater logical time from every other process. (These latter two
properties together ensure that there is no current request with a smaller
logical time, and moreover, there never will be one.) Pi can perform a
remi as soon as its latest exit request has reached its history(i).

We let < denote lexicographic order on logical t ime pairs.

LogicalTimeMEi automaton (formal)-

S i g n a t u r e :

Input:
tryi
exit~
receive(m)j,i, m E ("try", "exit", "ack"}

• l < j < n ,

Output :
criti
r e 7Yti

send(m)i,y, m C { "ack"} • N, j ~ i
beast(re)i, m e { "try", "exit"} • N

States:
region E {R, T, C, E}, initially R
clock E N, initially 0
beast-buffer, a FIFO queue of { "try", "exit"}, initially empty
for every j, 1 _~ j _~ n:

history(j), a subset of { "try", "exit", "ack"} • N, initially 0
for every j :/: i:

send-buffer(j), a FIFO queue of { "ack"} • N, initially empty

Trans i t ions:

tryi
Effect:

clock := clock + 1
region := T
add "try" to beast-buffer

beast(m, c)i
Precondition:

m is first on beast-buffer
c = clock + 1

Effect:
clock := c
remove first element of beast-buffer

receive(m, c)j,i
Effect:

clock := max(clock, c) + 1
history(j) := his tory(j)U {(re, c)}
if m = "try" and j =/= i then

add "ack" to send-buffer(j)

send(m,c)i , j
Precondition:

m is first on send-buffer(j)
c = clock + 1

Effect:
clock := c
remove first element of send-buffer(j)

criti
Precondition:

region = T
("try", c) C history(i)
fl("exit", c') C history(i) with c' > c
for all j -~ i

if ("try", c') C history(j), (c', j) < (c, i)
then

3("exit", c") E history(j) with c" > c'
3(m, c') C h i s to ry (j)w i th (c, i) < (c ' , j)

Effect:
clock := clock + 1
region := C

648 20. N E T W O R K R E S O U R C E A L L O C A T I O N

exiti
Effect:

clock := clock + 1
region := E
add "exit" to bcast-buffer

remi
Precondition:

region- E
("exit", c)E history(i)
/~("try", c') E history(i)with c' > c

Effect"
clock "- clock + 1
region "- R

Tasks:
{ c~it~ }

{ beast(rn)i: m E { "try", "exit"} x IN}
for every j ~ i:

{send(m)i,j : m e { "aek"} • N}

T h e o r e m 20.2 The LogicaITimeME algorithm solves the mutual exclusion prob-
lem and guarantees lockout-freedom.

P r o o f . We give an operational argument. To see that the algorithm guarantees
mutual exclusion, we proceed by contradiction. Suppose that, in some reachable
system state, two processes, Pi and Pj, are in C at the same time. Assume
(without loss of generality) that the logical time ti of Pi's latest try message
is smaller than the logical time tj of Pj's latest try message. Then, in order to
perform critj and enter C, Pj had to see, in its history(i), a message from Pi with
logical time greater than tj and hence greater than ti. Then the FIFO property
of the communication channel from Pi to Pj implies that Pj must have seen Pi's
current try message when it performed critj. But then the precondition of critj
implies that Pj must have seen a subsequent exit message from Pi. This implies
that Pi must have already left C at the time Pj performed critj, a contradiction.

Next, we argue lockout-freedom, which implies progress. Lockout-freedom
for the trying region follows from the fact that requests are serviced in the order
of the logical times of their try messages. We argue that a try message with the
smallest logical time among those for current requests eventually receives a crit
response. Since there are only finitely many try messages that get assigned logical
times smaller than that of any particular try message, an inductive argument can
then be used to show that all requests are granted.

So suppose that Pi is in T and has the try message with the smallest logical
time, ti, among those for current requests. We argue that eventually the pre-
conditions for crit4 must become satisfied and must remain satisfied until criti

20.1. MUTUAL EXCLUSION 649

occurs. The fairness properties for the broadcast channel implies that eventu-
ally Pi receives its own try message and places it in history(i)i. Also, since try
messages receive corresponding acks and the clock variables are managed using
the LamportTime discipline, eventually Pi obtains a message from each of the
other processes with a logical time greater than ti. Finally, since Pi's request
is the current request with the smallest logical time, any request with a smaller
logical time must have already had a corresponding exit event. Then the fairness
properties of the broadcast channel imply that eventually Pi receives these exit
messages. In this way, all the preconditions for criti must eventually become
satisfied.

Lockout-freedom for the exit region is straightforward. [:]

C o m p l e x i t y ana ly s i s . For the communication complexity, we note that in
LogicalTimeME, unlike in Circulating Token, all messages are naturally appor-
tioned to particular requests. So we count the number of messages per request.
For every request, there is one try broadcast and one exit broadcast, for a total
of 2n individual messages, plus n - 1 ack messages sent in response to the try
messages. The total is therefore exactly 3 n - 1 messages per request.

For the time complexity, we consider first the case of an isolated request
by a user U/. In fact, we consider a "strongly isolated" request, for which we
also require that no residual messages arising from prior requests remain in the
system state when the tryi event occurs. In this case, the time from tryi to criti
is only at most 2d + O (t~), where d is an upper bound on the delivery of the
oldest (broadcast or point-to-point) message from any process i to any other
process j . In contrast, recall that the time complexity of the Circulating Token
algorithm has a dn term, even in the case of an isolated request.

We leave the general worst-case upper bound on the time from a tryi event
to the corresponding criti event for an exercise.

2 0 . 1 . 5 I m p r o v e m e n t s t o t h e L o g i c a l T i m e M E A l g o r i t h m

Now we describe a simple variation on the LogicalTimeME algorithm that is
designed to reduce the communication complexity. The algorithm, called the
RicartAgrawalaME algorithm after its designers, uses only 2 n - 1 messages per
request. It improves on Logical TimeME by acknowledging requests in a careful
manner that eliminates the need for exit messages. The algorithm uses both
broadcast and send/receive communication, where send/receive communicat ion
is allowed for all pairs of distinct processes.

650 20. N E T W O R K RESOURCE ALLOCATION

R icar tAgrawalaME a l g o r i t h m :

Logical times for events are generated as in Logical TimeME. The only mes-
sage that is broadcast is try, and the only message that is sent on a send/
receive channel is ok. Each message carries the clock value of its beast or
send event.

After a tryi input, Pi broadcasts try just as in Logical TimeME and can go
to C after it receives subsequent ok messages from all the other processes.
The interesting part of the algorithm is a rule for when a process Pi can
send an ok message to another process Pj. The idea is to use a priority
scheme. In response to a try message from Pj, Pi does the following:

1. If Pi is in E or R, or in T prior to broadcasting the try message for

its current request, then Pi replies with ok.

2. If Pi is in C, then Pi defers replying until it reaches E, and then
immediately sends any deferred oks.

3. If Pi is in T and its current request has already been broadcast, then
Pi compares the logical time ti of (the beast event of) its own request
to the logical time tj associated with the incoming try message of
Pj. If ti > tj, then Pi's own request is given lower priority and Pi
replies with an ok message. Otherwise, Pi's own request has higher
priority, so it defers replying until such time as it finishes its next
critical region. At that time, it immediately sends any deferred oks.
Pi can perform a remi at any time after it receives an exiti.

In other words, when there is a conflict, the RicartAgrawalaME algorithm
resolves it in favor of the "earlier" request, as determined by the logical times.

T h e o r e m 20.3 The RicartAgrawalaME algorithm solves the mutual exclusion
problem and guarantees lockout-freedom.

P r o o f . We give an operational proof. First, we prove mutual exclusion by
contradiction. Suppose that, in some reachable system state, two processes, Pi
and Pj, are in C at the same time. Assume (without loss of generality) that the
logical time ti of Pi's latest try message is smaller than the logical time tj of Pj's
latest try message. Then there must have been try messages and ok messages
sent from each of Pi and Pj to the other, prior to their entry into C. Moreover,
at each process, the receipt of the try from the other precedes its sending of

the corresponding ok. This still leaves several possible orderings of the various
events. See Figure 20.2 for some possibilities.

Now we claim that the receive event for Pj's latest try message occurs after
Pi broadcasts its own latest try message. If not, then properties of logical time

20.1. M U T U A L E X C L U S I O N 651

ok

i J i i J

j t j

F i g u r e 20.2" Some possible orders of events in the RicartAgrawalaME algorithm.

652 20. NETWORK RESOURCE ALLOCATION

imply that the logical time of this receive event is greater than t j and that the

logical time ti of the bcast event by Pi is greater than the logical time of this

receive event. Thus, ti > tj, a contradiction.

Therefore, at the time Pi receives Pj's try message, Pi is either in T or in
C. But in either of these cases, Pi's rules say that it should defer sending an
ok message until it finishes its own critical region. Thus, Pj could not enter C

before Pi leaves, a contradiction.
Now we prove progress, also by contradiction. Progress for the exit region is

immediate. Suppose that in fair execution a a point is reached at which some

user is in T and no user is in C and after which no user ever enters C. Then

(arguing as in the proof of Lemma 10.4), in some suffix Ct 1 of a, all the users are
either in R or T and no further region changes occur. Then there is some suffix

a2 of a l in which all processes in T have assigned logical times to their latest
requests and in which no messages are ever in transit . Among all the processes

in T in a2, let Pi be the process whose latest request has the smallest logical

time, say ti.
Since Pi is stuck forever in T, it must be that some other process Pj never

replies with an ok message to Pi's last try message. There are only two reasons

why Pj might not send the ok immediately upon receiving the try from Pi:

1. Pj is in C when it receives the try. In this case, since there are no processes

in C during a2, Pj must finish its critical region before the start of a2 and

must thereafter send the deferred ok message to Pi.

2. Pj is in T when it receives the try, with a logical time tj < ti assigned to its

request. In this case, since Pi's request has the smallest logical time among
the processes stuck in T in a2, it must be that Pj reaches and completes its

critical region after it receives the try from Pi and before the beginning of
a2. But once again, this means that Pj must send the deferred ok message

to Pi.

In either case, Pi receives all the needed ok messages and proceeds to C, a
contradiction.

We leave the lockout-freedom property for an exercise. D

C o m p l e x i t y a n a l y s i s . It is easy to see that exactly 2 n - 1 messages are sent

per request. The time complexity is left as an exercise.

A n o t h e r o p t i m i z a t i o n . It is possible to improve further on the Ricart-
AgrawalaME algorithm by giving a different interpretation to the ok messages.

Now when some process Pi sends an ok to some other process Pj, not only does

20.2. GENERAL RESOURCE ALLOCATION 653

it approve Pj's current request, but it also gives Pj process Pi's permission to

reenter C any number of t imes - -un t i l Pj sends an ok to Pi in response to a try
message from Pi. The rules for responding to a try message are the same as for

Rica rtA gra walaME.
This version of the a lgori thm performs part icular ly well in the si tuat ion where

a single user requests the resource repeatedly, without any intervening requests

by other users. In this case, the requesting user can go to its critical region

repeatedly, without any messages being sent after those for the first request.

20.2 G e n e r a l R e s o u r c e A l l o c a t i o n

We now consider more general resource-allocation problems in asynchronous

networks.

2 0 . 2 . 1 T h e P r o b l e m

The problem definition is much the same as in Section 11.1, using the notions

of ezplicit resource specification and ezclusion specification defined there. We

assume the same kinds of user au tomata as in Section 20.1.

The basic correctness conditions to be guaranteed by the system are the same

as those in Section 11.1. Namely, for a given exclusion specification g, we require

that the combination of the system and the users satisfy the following properties:

Well-formedness: In any execution, and for any i, the subsequence describing

the interaction between Ui and A is well-formed for Ui.

E x c l u s i o n : There is no reachable system state in which the set of users in their

critical regions is a set in g.

P r o g r e s s : At any point in a fair execution,

1. (Progress for the t rying region) If at least one user is in T and no

user is in C, then at some later point some user enters C.

2. (Progress for the exit region) If at least one user is in E, then at some

later point some user enters R.

We say that an asynchronous network system solves the general resource-
allocation problem provided that it solves it for every collection of users.

For explicit resource specifications, we also consider

Independent p r o g r e s s : At any point in a fair execution,

654 20. NETWORK RESOURCE ALLOCATION

1. (Independent progress for the trying region) If Ui is in T and all

conflicting users are in R, then at some later point either Ui enters C
or some conflicting user enters T.

2. (Independent progress for the exit region) If Ui is in E and all con-
flicting users are in R, then at some later point either Ui enters R or
some conflicting user enters T.

We also consider the same lockout-freedom condition as for mutual exclusion.
As we did for mutual exclusion, we drop the restriction that a process can
perform locally controlled actions only when its user is in the trying or exit
region.

For a given resource specification T4, we say that a request by a user is
isolated provided that , during the t ime from try to crit, all other users with
conflicting requests are in their remainder regions.

D r i n k i n g P h i l o s o p h e r s . A variant of the general resource-allocation prob-

lem tha t we will consider in Section 20.2.5 allows for the same user Ui to request
different resources at different times. This version of the problem is based on a
given resource specification 7~, and we assume that , for every i, the tryi action is

parameter ized by an arbi t rary subset of Ri, the set of resources specified for user
Ui. The exclusion condition is reinterpreted to refer to the actual resources that
have most recently been requested ra ther than the potential resource require-
ments described by 7~. Tha t is, we require that there be no reachable system

state in which two users whose most recent request sets intersect are simulta-
neously in their critical regions. The progress condition and lockout-freedom
condition are the same as before. The independent progress condition and the
definition of an isolated request arc reinterpreted to refer to the actual requests.

This version of the resource-allocation problem is sometimes known as the
Drinking Philosophers problem, and its resources arc sometimes called bottles.

2 0 . 2 . 2 C o l o r i n g A l g o r i t h m

The Coloring algori thm of Section 11.3.3 can be modified to solve the generalized
resource-allocation problem in an asynchronous send/receive network based on a
connected undirected graph G, for a given resource specification 7r One way to
do this is by using one of the simulations of shared memory algorithms described
in Chapter 17. However, a special-purpose simulation works more efficiently.

Coloring a l g o r i t h m :

We include a process to manage each resource, in addition to processes tha t

simulate the processes of the shared memory Coloring algorithm. Each
process Pi of the network algori thm simulates exactly one process of the

20.2. GENERAL RESOURCE ALLOCATION 655

shared memory algori thm plus some subset of the resource processes.

When user Ui performs tryi, process Pi collects the needed resources one at
a time, in increasing order according to color as before, this t ime by send-
ing messages to the appropria te resource processes. After sending each
message, Pi waits to receive a response. Each resource process maintains
a FIFO queue of requesting users, adding each newly received request to

the end of the queue. When the index i reaches the front of a resource

process's queue, the resource process sends a message back to Pi, which

then goes on to request its next resource. When Pi has obtained all its

needed resources, it performs criti. When exit4 occurs, Pi sends messages
to all the involved resource processes to tell the resource processes to re-

move index i from their queues. After sending out all these messages, and

without waiting for responses, Pi can perform remi.

This algori thm requires that each process Pi be able to communicate with
all processes Pj tha t manage resources assigned to i by the given resource spec-
ification 7~. As usual, this communicat ion can be performed directly if the

relevant nodes are all connected directly in the underlying graph G, or else can

be simulated by a pa th of edges in G.
The analysis of this version of the Coloring algori thm for networks is similar

to the analysis in Section 11.3.3 for shared memory. In this case, the t ime
bound depends on upper bounds on process step time, message-delivery time,
and critical region time, plus the number of colors used to color the resource
graph, and the maximum number of users for a single resource. However, as
before, the time bound is not directly dependent on the size of the underlying

graph G.

20.2.3 Algorithms Based on Logical Time

The RicartAgrawalaME algorithm can be generalized to solve the resource-
allocation problem for an arbi t rary resource specification TO. Now we assume
tha t we have a combination of multicast and send/receive communication. (Tech-
nically, this can be regarded as a special case of multicast communica t ion- -see
Section 14.3.2.) Multicast must be permi t ted from any process to the set of all
the others tha t share resources with it, and send/receive communicat ion must

be permi t ted between any two processes tha t share resources.

RicartAgrawalaRA algorithm:

Processes compute logical times using the LamportTime algorithm.

After a tryi input, process i multicasts a try message with an associated
clock value to all the processes with which it shares resources. Process

656 20. N E T W O R K RESOURCE ALLOCATION

i can go to C after it receives subsequent ok messages from all these
processes. Processes use the same rule for sending ok messages as in
RicartAgrawalaME, using the logical times to determine priority.

Process i can perform a remi at any time after it receives an exiti.

T h e o r e m 20.4 The RicartAgrawalaRA algorithm solves the general resource-
allocation problem for a given resource specification and guarantees lockout-
freedom and independent progress.

As for the RicartAgrawalaME algorithm, we can modify the
RicartAgrawalaRA algorithm so that the ok messages extend permission until it
is explicitly revoked.

20.2.4 Acyclic Digraph Algorithm

In the RicartAgrawalaRA algorithm, logical times are used to assign priorities
to conflicting requests, thereby breaking ties. Alternative strategies can be used
to break ties, for example, maintaining an acyclic digraph involving all the pro-
cesses.

For simplicity, we consider an explicit resource specification 74 satisfying the
following two restrictions:

1. Each resource is in the resource sets of exactly two users.

2. Each pair of users share at most one resource.

We leave the extensions to remove these restrictions for an exercise.
We assume a send/receive network based on a connected undirected graph G.

We assume that any two processes that share a resource are connected directly
by an edge in G. Also, just to make things simple, we assume that all the edges
in G are between processes that share resources.

AcyclicDigraphRA algorithm:
The algorithm is based on maintaining orientations of all the edges of
G in such a way that , at any time, the digraph H consisting of all the
oriented edges is acyclic. The orientation of each edge is recorded in local
orientation variables at the two cndpoint processes and is changed by
means of a change message sent from the process at the head of the directed
edge to the process at the tail of the edge. We must assume that the
digraph determined by the initial edge orientations is acyclic.

If process i is in the trying region and has all its incident edges oriented
inward, then it can perform a criti output. If process i is in the exit region,

20.2. GENERAL RESOURCE ALLOCATION 657

then it can perform rerni, set all its orientation variables to point outward,
and send a change message on each incident edge, all in one step. (The
change messages are placed simultaneously in local send-buffers directed
to all the neighbors.) Also, if process i is in the remainder region with all its
edges oriented inward, then process i can set all its orientation variables
to point outward and send a change message on each incident edge, again
in one step.

T h e o r e m 20.5 The AcyclicDigraphRA algorithm solves the resource-allocation
problem (with Restrictions 1 and 2 above) and guarantees lockout-freedom.

P r o o f Ske tch . We begin by giving a somewhat more careful definition of the
orientation of each edge in an arbitrary reachable state. Namely, we say that an
edge (i, j) is oriented from i to j provided that Pi's orientation variable for the
edge indicates "outward" and either Pj's orientation variable indicates "inward,"
or else there is a change message on the way from Pi to Pj (in the send-buffer(j)i
or in the channel from i to j). An invariant can be used to show that this rule
determines a unique orientation for each edge, in each reachable state.

Then we prove the invariant that when a process Pi is in the critical region,
then all its incident edges are oriented inward and no change messages are in
transit in either direction on any of those edges. This implies the exclusion
property.

Next we prove the key invariant that the digraph H is acyclic. We have
assumed that this is true initially. The only steps that can falsify this assertion
are those in which some edge orientations change. But every step that changes
edge orientation simultaneously changes the orientation for all the edges incident
on some particular node i in such a way that all the edges are directed outward
after the step. Because no edge is directed inward toward i after this step, there
can be no cycle after the step involving the newly directed edges. It follows that
no cycle can be created by the step.

Next we prove lockout-freedom, which implies progress. We consider only
lockout-freedom for the trying region; as usual, the condition for the exit region
is trivial. Since the graph is always acyclic, at any point in an execution, we
may define the height of a graph node i to be the maximum length of a directed
path starting at i in the digraph H. We first note that the height of a node never
increases until the node reaches height 0 (and gives the process at that node a
chance to enter the critical region). We then show that any node at height 0
eventually directs all its incoming edges away from itself. Using these facts, we
show that any node with height h > 0 eventually attains a smaller height, h',
which implies that any node with height h > 0 eventually attains height 0. This
gives the process at that node a chance to enter the critical region. E]

658 20. N E T W O R K RESOURCE ALLOCATION

Iden t i ca l p r o c e s s e s . An interesting feature of the AcyclicDigraphRA algo-
rithm is that the processes are "almost" identical: they do not use UIDs or
any other distinguishing information other than the initial orientations of all the
edges. In order to solve this problem in arbitrary graphs, arguments such as the
one for Theorem 11.2 imply that some method of breaking symmetry is needed.
Here, symmetry is broken by the condition that the digraph H is initially acyclic.

20 .2 .5 D r i n k i n g P h i l o s o p h e r s *

Now we describe a particular solution to the Drinking Philosophers problem
for a given resource specification ~ , in a send/receive network with reliable
FIFO channels based on a connected undirected graph G. This solution is
modular-- i t uses an arbitrary lockout-free algorithm that solves the general
resource-allocation problem for 7~. The architecture for this solution, which we
call ModularDP, is depicted in Figure 20.3. The communication between each
Ui and the corresponding Di uses try(B)i, criti, exit.i, and remi actions. Here,
B C_ Bi, where Bi is the set of bottles (resources) specified by ~ for i.

D.
!

f

General resource-allocation %

F i g u r e 20.3: Architecture for ModularDP.

20.2. GENERAL RESOURCE ALLOCATION 659

The communication between each Di and the general resource-allocation algo-

r i thm uses internal-tryi, internal-criti, internal-exiti, and internal-remi actions;

we rename these actions to avoid ambiguity.
A complete solution to the Drinking Philosophers problem in the given model

must include an implementation of the general resource-allocation module in
Figure 20.3 by a send/receive network algorithm A, based on the same underlying
graph G. Each process Pi in the complete solution is the composition of Di
and a corresponding process of A. Each channel Ci,j in the complete solution
must implement both the channel from Di to Dj in Figure 20.3 and also the
corresponding channel of A.

For simplicity, we again make one of the assumptions about T~ that we made

for A cyclicDigraphRA: each bottle is in the resource sets of exactly two users.
We also assume that any two processes that share a bottle are connected by an

edge in G.

M o d u l a r D P algorithm:
When Di receives try(B)i, it sends request messages for those bottles that
it needs but currently lacks. The recipient Dj of a request satisfies it if Uj
is in E or R. If Uj is in T or C, then Dj defers the request so that it can

satisfy it when Uj finishes its critical region.

In order to prevent two processes from deferring each other's requests
and thus blocking progress, a general resource-allocation module is used to
establish a priority between the processes. Thus, as soon as a process Di
in its trying region is able to do so, it invokes internal-tryi to try to gain
priority. When Di receives an internal-crit~ input while it is still in its
trying region-- tha t is, when it enters its internal critical region--it sends
demand messages for needed bottles that are still missing. The recipient
Dj of a demand always satisfies it if it has the bottle, unless Uj is actually
in the critical region using the bottle; in this case, Dj defers the demand
and satisfies it when Uj finishes its critical region.

Once Di is in its internal critical region, we can show that it eventually
receives all its needed bottles. When Di is in the trying region and has all
its bottles, it can enter its critical region. Once Di enters its critical region,
it can output internal-exiti, since it no longer needs the priority associated
with the internal critical region.

660 20. N E T W O R K RESOURCE A L L O C A T I O N

D i a u t o m a t o n :

S i g n a t u r e :

Input:
try(B) i, B C_ Bi
exit~
internal-criti
internal-remi
receive(m)j,i, m E { "request", "bottle", "demand"} • (Bi N By), j E nbrs

Output:
crit~
remi
internal-tryi
internal-exiti
send(m)i,j, m E { "request", "bottle", "demand"} • (B~ n Bj) , j E nbrs

S t a t e s :
region C {R, T, C, E}, initially R
internal-region E {R, T, C, E}, initially R
need C Bi, initially 0
bottles C_ Bi; initially arbitrary, subject to the global restriction that the bottle sets for

all processes part i t ion the set of all bottles of ~ .
deferred C_ Bi, initially 0
current, a Boolean, initially false
for every j E nbrs"

send-buffer(j), a FIFO queue of messages in { "request", "bottle", "demand"} • (Bi N Bj),
initially empty

Transitions:
try(B)i

Effect:
region := T
need :-- B
for all j E nbrs,

all b C (need N By) - bottles, do
add ("request", b) to send-buffer(j)

receive("request", b)j,i
Effect:

if region E {T, C} and b E need then
deferred := deferred U {b}

else
add ("bottle", b) to send-buffer(j)
bottles := bottles - {b}

send(m)i,j
Precondition"

m is first on send-buffer(j)
Effect:

remove first element of send-buffer(j)

internal-tryi
Precondition:

region = T
internal-region = R

Effect:
internal-region := T

internal-criti
Effect:

internal-region := C
if region-= T then

current :-- true
for all j E nbrs,

all b E (need N B y) - bottles, do
add ("demand", b) to send-buffer(j)

20.2. G E N E R A L R E S O U R C E A L L O C A T I O N 661

receive("demand", b) j,i
Effect:

if b C bottles and (region ~ C or b ~ need)
then

add ("bottle", b) to send-buffer(j)
bottles := bottles - {b}
deferred := deferred - {b}

receive("bottle", b)j,i
Effect:

bottles := bottles U {b}

criti
Precondition:

region = T
need C bottles

Effect:
region := C
current := false

internal-exiti
Precondition:

internal-region = C
current = false

Effect:
internal-region = E

internal-remi
Effect:

internal-region := R

exiti
Effect:

region := E
for all j E nbrs,

all b E deferred N Bj do
add ("bottle", b) to send-buffer(j)

bottles := bottles - deferred
deferred := 0

re mi
Precondition:

region = E
Effect:

region := R

Tasks :
{ criti }
{exiti}
{ internal-tryi }
{ internal-exiti }
for every j E nbrs:

{send(m)i,j : m E {"request", "bottle", "demand"} x (Bi N Bj)}

Two points abou t the code need explanat ion . Fi rs t , we can show tha t when

Di receives a ("request" , b) message, it ac tua l ly has the bot t le b. Thus , it is

not necessary for Di to check tha t b C bottles before sat isfying or deferr ing the

request . On the other hand, it is possible for Di to receive a (" d e m a n d " , b)

message when it does not have the bot t le b. So before sat isfying a d e m a n d , Di

checks tha t b C bottles.

Second, the flag curren t i keeps t rack of whether there is a cur rent in ternal

cri t ical region tha t is still be ing used to gran t p r ior i ty to the cur ren t reques t by

Ui. The curren t i flag is set to t rue when an in ternal-cr i t4 occurs while regioni =

662 20. N E T W O R K RESOURCE ALLOCATION

T. It is set to false when crit~ occurs. When currenti = false, Di can perform
internal-exit4, thus terminating the internal critical region.

T h e o r e m 20.6 The ModularDP algorithm, using any lockout-free solution to
the general resource-allocation problem, solves the Drinking Philosophers prob-
lem and guarantees lockout-freedom.

P r o o f Ske tch . Well-formedness is easy to see. The exclusion condition fol-
lows from the fact that the bottles sets and bottle messages explicitly represent
the bottles, plus the fact that a process must have all needed bottles in order to
perform a crit output. We argue lockout-freedom, which implies progress. For
this, we use the properties of the general resource-allocation module.

First, it is easy to see from the code that the environment of the resource-
allocation module preserves well-formedness for that module. Then the proper-
ties of the module imply that every execution of the system satisfies the well-
formedness and exclusion conditions for the module. Also, every fair execution
satisfies the lockout-freedom condition for the module.

C l a i m 20.7 In any fair execution of the ModularDP system, if every crit is
followed by a corresponding exit, then every internal-crit is followed by a corre-
sponding internal-exit.

P r o o f Ske tch . Suppose that an internal-criti occurs at some point in a fair
execution c~ and that internal-exiti never occurs thereafter; let O~1 be the suffix
of (~ starting immediately after the internal-crit~. Then it must be that current~
remains true throughout c~1, since if it ever became false, the precondition of
internal-exiti would be true and internal-exit~ would eventually occur. Also, by
the exclusion condition for the module, no neighbor of Di can be in its internal
critical region during c~1.

When the internal-criti event occurs, it must be that regioni = T, because
currenti is set to true. Therefore, as part of the internal-crit4 event, Di sends
demand messages for all its needed bottles. Consider any recipient Dj of such
a ("demand", b) message. If Dj has bottle b and is not actually using it (i.e., is
not in its critical region, with b E needj), then it sends ("bottle", b) to D~. On
the other hand, if Dj is using b, then, since every critj is followed by an exitj, Dj
eventually finishes the critical region and satisfies the deferred demand. Thus,
eventually, Di gets all the needed bottles. We claim that it must keep those
bottles until it performs crit~. This is because it does not receive a demand for
any of them during c~1; this can be proved using the fact that no neighbor of Di
is in its internal critical region during C~l. (Some invariants are needed here.)

20.2. GENERAL RESOURCE A L L O C A T I O N 663

Since Di gets all the needed bottles, Di eventually performs criti. But this

event causes current to be set to false, a contradiction. [3

Claim 20.7 allows us to prove the key claim.

C l a i m 20.8 In any fair execution of the ModularDP system, if every crit is
followed by a corresponding exit, then every try is followed by a corresponding
crit (i. e. , every request is granted).

P r o o f Ske tch . Suppose that tryi occurs at some point in a fair execution c~
and that crit4 never occurs thereafter; let c~1 be the suffix of c~ starting immedi-

ately after tryi.
If an internal-crit occurs in c~1, then Claim 20.7 implies that there is a sub-

sequent internal-exit. But because of the handling of the current flag, the only
way this could happen is if, in the interim, a crit4 occurs. This is a contradiction.

So we may assume that no internal-crit occurs in c~1.
If internal-region is ever equal to T during c~1, the lockout-freedom property

for the module implies that eventually an internal-crit must occur, a contradic-

tion. So we can assume that internal-region ~ T throughout c~1. If internal-
region is ever equal to R during c~1, then eventually an internal-tryi occurs,
leading to internal-region = T, again a contradiction. So we can assume that

internal-region ~ R throughout c~1. Using lockout-freedom for the module, we

can show that internal-region ~ E throughout c~1.

The only remaining possibility is that internal-region = C throughout c~1.

But since Ctl immediately follows a tryi event, it must be that current = false
throughout c~1. But then eventually an internal-exiti occurs, leading to internal-
region = E, a contradiction. [B

Claim 20.8 yields lockout-freedom for the trying region for the ModularDP
system; lockout-freedom for the exit region is easy.

C o m p l e x i t y ana lys i s . The complexity bounds for ModularDP depend on the
costs of the implementation of the general resource-allocation module. The Di
components of the algorithm send at most 3k messages per request, if k is the
maximum degree of any node in the underlying graph G.

For the time complexity, let t~ and d be as usual and let c be an upper bound

on the length of any critical region, for any Ui. Suppose that T1 and T2 are upper
bounds on the respective times a single process spends in its internal trying and
internal exit regions. (T1 will typically be a function of an upper bound on the
length of an internal critical region. An upper bound on the length of an internal

664 20. NETWORK RESOURCE ALLOCATION

critical region is c + 3d + O (g).) Then the time from a try to the corresponding
exit can be bounded by T1 + T2 + c + 3d + O (g).

For a "strongly isolated" request, that is, an isolated request in which any
residual messages from prior requests have already been delivered, the time
complexity is at most 2d + O (g).

20.3 Bibl iographic Note s

The Circulating Token algorithm is due to Le Lann [191]. His paper includes a
discussion of various forms of fault-tolerance for mutual exclusion algorithms,
including regeneration of a lost token using a leader-election algorithm. The
Logical TimeME algorithm is due to Lamport [176], and the RicartAgrawalaME
algorithm to Ricart and Agrawala [252]. The optimization at the end of Sec-
tion 20.1 is due to Carvalho and Roucairol [64]. Raynal's book [250] contains a
large collection of mutual exclusion algorithms, for both the asynchronous net-
work and asynchronous shared memory models.

The Drinking Philosophers problem was defined by Chandy and Misra [67].
Their paper also contains a general resource-allocation algorithm very similar
to the AcyclicDigraphRA algorithm, as well as a Drinking Philosophers solution
constructed by modifying their general resource-allocation algorithm. Welch and
Lynch [285] developed the ModularDP algorithm in the form presented here,
based on the ideas of Chandy and Misra. In particular, they made explicit the
modularity that was implicit in the Chandy-Misra algorithm.

Other recent work on resource-allocation problems in networks includes that
of Styer and Peterson [272], Choy and Singh [80], and Awerbuch and Saks [37].
These papers focus on obtaining improved running time and/or fault-tolerance.

20.4 Exerc i ses

20.1. Give precondition-effect code for an implementation of the Bakery mutual
exclusion algorithm in the asynchronous send/receive network setting. An-
alyze the complexity of your algorithm. (Note: Your implementation need
not be, but may be, obtained using a general transformation applied to the
original Bakery algorithm.)

20.2. Give precondition-effect code for an implementation of the PetersonNP mu-
tual exclusion algorithm in the asynchronous send/receive network setting.
Analyze the complexity of your algorithm.

20.3. Fill in the details of the proof of Theorem 20.1.

20.4. EXERCISES 665

20.4. Suppose that G is a connected undirected graph. Design an efficient send/
receive network algorithm based on G that causes all the processes in
the network to configure themselves into a virtual ring. More specifically,
assume that the processes have UIDs. Each process must output the UID
of its ring successor, plus the UIDs of all the nodes along a path to that
successor. Try to minimize the total length of all the paths.

20.5. Repeat Exercise 20.4, but for the case where G is a strongly connected
directed graph.

20.6. Give an invariant assertion proof for the mutual exclusion property of the
Logical TimeME algorithm. (Hint: The key invariant says that if a process
i is in C, then the logical time associated with its try message is less
than that of any other try message that does not have a subsequent ezit
message.)

20.7. Prove a general worst-case upper bound on the time between a tryi event
and the corresponding criti event, in the LogicalTimeME algorithm. Re-
member not to neglect possible channel pileups.

20.8. "Optimize" the Logical Time ME algorithm so that the history variables do
not keep all the messages that have ever been received. That is, condense
the information that is retained, while permitting each process to exhibit
the same behavior as before. Prove the correctness of your optimized algo-
r i thm using a simulation relation relating it to Logical TimeME.

20.9. Suppose that we modify the LogicalTimeME algorithm so that each process
increments its local clock when it receives a message but does not increase
it additionally to guarantee that the new clock value is larger then the
value in the received message. (This yields one of the notions of "illogical
time" described in Exercise 18.4.) Which correctness properties does the
modified algorithm retain? Prove your claims (both positive and negative).

20.10. Write precondition-effect code for the RicartAgrawalaME algorithm and
use it as the basis for a formal correctness proof. Use invariant assertions
in your proof of mutual exclusion.

20.11. Prove that the RicartAgrawalaME algorithm is lockout-free and prove an
upper bound on the time from any tryi event until the corresponding criti
event.

20.12. Write precondition-effect code for the improved version of the RicartAgra-
walaME algorithm in which ok messages convey permission to access the
critical region repeatedly. Prove its correctness.

666 20. NETWORK RESOURCE ALLOCATION

20.13. Analyze the communication and time complexity of the modified Coloring
algorithm described in Section 20.2.2.

20.14. Do the following for the RicartAgrawalaRA algorithm:

(a) Write precondition-effect code.

(b) Prove its correctness.

(c) Analyze its complexity.

(d) Construct an execution in which the time from a tryi event until the
corresponding criti event is as large as you can make it.

20.15. Write precondition-effect code for the improved version of the RicartAgra-
walaRA algorithm in which ok messages convey permission to access the
critical region repeatedly. Prove its correctness.

20.16. Do the following for the AcyclicDigraphRA algorithm:

(a) Write precondition-effect code.

(b) Give a careful proof of correctness.

(c) Determine whether it guarantees independent progress.

(d) Analyze its complexity.

(e) Construct an execution in which the time from a try event until the
corresponding crit event is as large as you can make it.

(f) Prove an upper bound on the time for an isolated request.

20.17. Explain how the Circulating Token algorithm can be regarded as a special
case of the AcyclicDigraphRA algorithm.

20.18. Generalize the AcyclicDigraphRA algorithm to remove the two given re-
strictions on the resource specification.

20.19. Give an efficient algorithm for a send/receive network based on a connected
undirected graph G, to orient all the edges to form an acyclic digraph H.
You may assume that the processes have UIDs.

20.20. State and prove an analogue of Theorem 11.2 for the asynchronous network
setting.

20.21. Define a notion of waiting chain similar to the one described in Section
11.3.1, but that makes sense for algorithms such as RicartAgrawalaRA and
AcyclicDigraphRA, in which processes do not explicitly acquire individual
resources. Use your definition to analyze the lengths of the waiting chains
for the resource-allocation algorithms in this chapter.

20.4. EXERCISES 667

20.22. The programmers at the Flaky Computer Corporation have decided to try
to improve the AcyclicDigraphRA algorithm. Namely, a process that is
in the remainder region with all edges oriented inward does not change
the orientation of the edges to point outward unless it receives an explicit
try message from a neighbor. A process Pi sends try messages to all its

neighbors when it receives a tryi input from user Ui.

What is wrong with this strategy?

20.23. Research Question: Design a send/receive network algorithm for the gen-
eral resource-allocation problem, based on a given resource specification
7~. Assume that any two processes that share a resource are connected by
an edge in the underlying graph G. Design your algorithm to achieve low
time complexity for a request that has a small number k of "overlapping"
conflicting requests. Try for a bound that is linear in k.

20.24. Research Question: Design a send/receive network algorithm for the gen-
eral resource-allocation problem, based on a given resource specification
7~. Assume that any two processes that share a resource are connected
by an edge in the underlying graph G. Design your algorithm so that it
guarantees lockout-freedom for any particular process i, even in the face
of stopping failures of processes whose distances from i in G are greater
than or equal to k. Try to minimize k.

20.25. Fill in all the details in the proof of Theorem 20.6. In particular, you will
need to prove some invariant assertions, including

A s s e r t i o n 20.4 .1 If b E bottlesi and a ("demand", b) message
is in transit from Dj to Di, then regionj = T, internal-regionj =
C, and currentj = true.

20.26. Prove the T1 + T2 + c + 3d + O (g) upper bound on the time complexity for
ModularDP.

20.27. Consider the ModularDP Drinking Philosophers algorithm using the Col-
oring algorithm (adapted for networks) to implement the general resource-
allocation module. State and prove an upper bound on the time a user

must wait for a request to be satisfied.

20.28. Generalize the ModularDP algorithm to remove the restriction on the re-
source specification.

This Page Intentionally Left Blank

Chapter 21

Asynchronous Network
Computing with Process
Failures

In this chapter, we consider what can and what cannot be computed in asyn-
chronous networks in the presence of process stopping failures. Here, we only
consider process failures and assume that communication is reliable.

We begin by showing that, for the purpose of obtaining computability results,
it does not matter whether we consider send/receive or broadcast systems.

Then we (re-)state the fundamental impossibility result for the problem of
distributed agreement in the asynchronous network model. This result says
that the agreement problem cannot be solved in asynchronous networks, even if
there is guaranteed to be no more than one process failure. In Chapter 12, we
discussed this problem and gave an analogous impossibility result for the asyn-
chronous shared memory setting. As we noted at the beginning of Chapter 12,
such impossibility results have practical implications for distributed applications
in which agreement is required. These include database systems requiring agree-
ment on whether transactions commit or abort, communication systems requiring
agreement on message delivery, and process control systems requiring agreement
on fault diagnoses. The impossibility results imply that no purely asynchronous
algorithm can work correctly.

In the rest of this chapter, we describe some ways around this fundamental
dii~culty: using randomization, strengthening the model with mechanisms for
failure detection, agreeing on a set of values rather than just one, and agreeing
approximately rather than exactly.

This chapter rests heavily on previous chapters, especially Chapters Y, 12,

670 21. A S Y N C H R O N O U S N E T W O R K S W I T H P R O C E S S FAILURES

and 17. In particular, many results about computability in asynchronous net-
works follow directly from analogous results about computability in asynchronous
read/write shared memory systems, by means of general transformations.

21.1 T h e N e t w o r k M o d e l

The model we assume throughout this chapter is an asynchronous broadcast
system with reliable broadcast channels and process stopping failures (modelled
with stop events). We could equally well have considered send/receive systems
with reliable FIFO send/receive channels between all pairs of distinct processes:
it turns out that the two models are the same from the point of view of com-
putability. It is not hard to see that the broadcast model is at least as powerful
as the send/receive model. The following theorem shows that it is not more
powerful.

T h e o r e m 21.1 I rA is any asynchronous broadcast system with a reliable broad-
cast channel, then there is an asynchronous send/receive system B with reliable
FIFO send/receive channels that has the same user interface as A and that "sire-
ulates" A, as follows. For every execution c~ of B, there is an execution c~ ~ of A
such that the following conditions hold:

1. c~ and c~ ~ are indistinguishable to U (the composition of the users Ui).

2. For each i, a stopi occurs in ~ exactly if it does in ~ .

Moreover, if c~ is fair, then c~ ~ is also fair.

P r o o f Sketch. System B has one process Qi for each process Pi of A. Each
Qi is responsible for simulating Pi, plus participating in the simulation of the
broadcast channel.

Qi simulates a bcast(m)i output of Pi by performing send(m, t)i,j outputs for
all j ~ i, where t is a local integer-valued tag, and then performing an internal
step simulating receive(m)i,i. The tag values used by Qi start with 1 and are
incremented with each successive bcast. If Qi receives a message (re, t) sent
by Qj, it helps in the simulation of Pj's broadcast by relaying the message--
specifically, it sends (m, t, j) to all processes other than i and j. If Qi receives
(m, t, j) from k, it continues helping by sending (m, t, j) to all processes other
than i, j , and k to which Qi has not already sent (m, t, j) .

Meanwhile, Qi collects tagged messages (m, t) originally broadcast by each
Pj, j ~ i; these are either received directly from Qj or via relays. At certain
times, Qi is allowed to perform an internal step simulating a receive(m)j,i event

21.2. IMPOSSIBILITY OF AGREEMENT IN THE PRESENCE OF FA ULTS671

of the A system. Specifically, Qi can do this when Qi has a message (re, t)
originally broadcast by Pj, Q~ has already relayed (m, t, j) to all processes other
than i and j, and Qi has already simulated receivej,i events for messages from
Pj with all tag values strictly less than t.

Some key facts for the proof are as follows. First, note that no process Qi
simulates a receive(m)j,i event for any j until after it has succeeded in sending
the corresponding (m, t) to all the other processes, and thus after it has been
guaranteed that all processes will eventually receive (m, t) from j. Second, note
that although a process Qi can receive messages originally broadcast by Pj out
of the order in which they were broadcast by Pj, the tags allow Qi to sort these
messages into the proper order. Third, note that if a message with tag t is sent by
any process Qi, then it must be that messages originating at Pi with all smaller
tag values have previously been sent to all processes. K]

Theorem 21.1 implies that it does not matter, from the point of view of
computability, whether we consider broadcast systems or send/receive systems.
Of course, the complexity is different--the total number of receive events might
be multiplied by approximately n in the simulation described above--but we
will not worry much about complexity in this chapter. We choose to consider
broadcast systems because they make the impossibility results appear slightly
stronger and because they make the algorithms easier to write.

21.2 Impossibi l i ty of Agreement in the Presence of
Faults

We use the definition of the agreement problem in Section 12.1. Although it was
formulated there for shared memory systems, it also makes sense for asynchro-
nous (broadcast or send/receive) network systems. We review it here.

The user interface of the system A consists of init(v)i input actions and
decide(v)i output actions, where v C V and 1 _< i _< n; A also has stopi input
actions. All the actions with subscript i are said to occur on port i. Each user
U~ has outputs init(v)~ and inputs decide(v)~, v E V. U~ is assumed to perform
at most one initi action in any execution.

A sequence of initi and decidei actions is well-formed for i provided that it
is some prefix of a sequence of the form initi(v), decidei(w). We consider the
following conditions on the combined system consisting of A and the users Ui"

Well-formedness: In any execution, and for any i, the interactions between Ui
and A are well-formed for i.

Agreement: In any execution, all decision values are identical.

672 21. ASYNCHRONOUS N E T W O R K S WITH PROCESS FAILURES

Validity: In any execution, if all init actions that occur contain the same value

v, then v is the only possible decision value.

Failure-free termination: In any fair failure-free execution in which init events

occur on all ports, a decide event occurs on each port.

We say that an asynchronous network system solves the agreement problem if
it guarantees well-formedness, agreement, validity, and failure-free termination
(for all collections of users). We also consider

f-failure termination, 0 < f <_ n: In any fair execution in which init events
occur on all ports, if there are stop events on at most f ports, then a decide
event occurs on every non-failing port.

Wait-free termination is defined to be the special case of f-failure termination

where f = n.
Of course, it is easy to solve the agreement problem in the asynchronous

broadcast model if there are no fault-tolerance requirements. For example, each
process could simply broadcast its initial value and apply some appropriate
agreed-upon function to the vector of initial values it receives. Since all pro-
cesses are guaranteed to receive the same vector of values, all will obtain the
same result.

The main impossibility result for broadcast systems (repeated from Sec-
tion 17.2.3) is

Theorem 21.2 There is no algorithm in the asynchronous broadcast model with
a reliable broadcast channel that solves the agreement problem and guarantees 1-

failure termination.

The proof given in Section 17.2.3 is based on a t ransformation from asynchro-
nous broadcast systems to asynchronous shared memory systems (Theorem 17.8)
and an impossibility result for the agreement problem in the asynchronous shared
memory model (Theorem 12.8). It is also possible to prove the impossibility
result directly, using a proof similar to that of Theorem 12.8. We leave this
alternative proof for an exercise.

21.3 A Randomized Algori thm

Theorem 21.2 says that the agreement problem cannot be solved in an asyn-
chronous network system, even for only a single stopping failure. However, the
problem is so fundamental to distr ibuted computing that it is important to find
ways around this inherent limitation. In order to obtain an algorithm, we must

21.3. A RANDOMIZED ALGORITHM 673

be willing either to weaken the correctness requirements, strengthen the model,
or both.

In this section, we do both. We show that the agreement problem can be
solved in a randomized asynchronous network. This model is stronger than the
ordinary asynchronous network model, because it allows the processes to make
random choices during the computation. On the other hand, the correctness con-
ditions are slightly weaker than before: although well-formedness, agreement,
and validity are still guaranteed, the termination condition is now probabilistic.
Namely, all the nonfaulty processes will decide by time t after the arrival of all
inputs, with probability at least p(t), where p is a particular monotone nonde-
creasing, unbounded function. This implies eventual termination with probabil-
ity 1.

In the subsequent sections, we consider other ways around the inherent limi-
tation expressed by Theorem 21.2, including the use of failure detectors, allowing
more than one decision value, and allowing approximate instead of exact agree-
ment.

The algorithm, by Ben-Or, works for n > 3 f and V = {0, 1}. Formally, it is
an instance of the probabilistic model described in Section 8.8.

B e n O r algorithm:
Each process Pi has local variables x and y, initially null. An init(v)i input
causes process Pi to set x := v. Pi executes a series of stages numbered
1, 2 , . . . , each stage consisting of two rounds. Pi begins stage 1 after it
receives its initial value in an init4 input. It continues performing the
algorithm forever, even after it decides.

At each stage s > 1, Pi does the following:

Round 1: Pi broadcasts ("first", s, v), where v is its current value of x, then
waits to obtain n - f messages of the form ("first", s, ,). If all of these
have the same value v, then Pi sets y := v; otherwise it sets y := null.

Round 2: Pi broadcasts ("second", s, v), where v is its current value of y,
then waits to obtain n - f messages of the form ("second", s, .) . There are
three cases: First, if all of these have the same value v r null, then Pi sets
x := v and performs a decide(v)i if it has not already done so. Second,
if at least n - 2f of these messages, but not all of the messages, have the
same value v ~ null, then Pi sets x := v (but does not decide). (The
assumption that n > 3f implies that there cannot be two different such
values v.) Otherwise, Pi sets x to either 0 or 1, choosing randomly with
equal probability.

674 21. A S Y N C H R O N O U S N E T W O R K S W I T H PROCESS FAIL URES

Notice the similari ty between the organization of the BenOr algori thm and

that of the TurpinCoan algor i thm in Section 6.3.3.

L e m m a 21.3 The BenOr algorithm guarantees well-formedness, agreement,
and validity.

P r o o f . Well-formedness is s t raightforward. For validity, suppose that all init
events that occur in an execution contain the same value v. Then it is easy to see

that any process that completes stage 1 must decide on v in that stage. This is

because the only value sent or received by any process in a ("first", 1, ,) message

is v, so the only value sent in a ("second", 1, ,) message is v.

For agreement, suppose that process Pi decides v at stage s and no process

decides at any smal ler-numbered stage. Then it must be that Pi receives n - f

("second", s, v) messages. This implies that any other process Pj that completes

stage s receives at least n - 2 f ("second", s, v) messages, since it hears from all

but at most f of the processes that Pi hears from. This means that Pj cannot

decide on a value different from v at stage s; moreover, Pj sets x := v at stage s.

Since this is t rue for all Pj that complete stage s, it follows (as in the argument

for validity) that any process that completes stage s + 1 must decide v at stage

s + l . [:]

Now we consider terminat ion. First , it is not hard to see that the a lgor i thm

continues to progress through successive stages; this fact does not depend on the

probabilit ies.

L e m m a 21.4 In every fair execution of the BenOr algorithm in which init
events occur on all ports, each nonfaulty process completes infinitely many stages.
Moreover, if ~ is an upper bound on the time for each process task, and d is an
upper bound on the delivery time for the oldest message in transit from each Pi
to ach pj, ach no fa lty co, pl t ach by O((d +
time after the last init event.

However, Lemma 21.4 does not imply that each nonfaulty process eventu-

ally decides. It turns out that this proper ty is not guaranteed by the BenOr
algori thm, but only holds probabilistically.

E x a m p l e 2 1 .3 .1 A n e x e c u t i o n w i t h no d e c i s i o n s

We describe a fair execution of the BenOr algori thm for n - 3 f + 1

in which no process ever decides. Every stage s proceeds in the same

way, as follows.

Some number m of the processes, f + 1 < m < 2f , star t with

x - 0, and the rest s tar t with x - 1. After round 1, all processes

21.3. A R A N D O M I Z E D A L G O R I T H M 675

have y - null, and at round 2, all processes choose their new values

of x randomly. Then some number m' of the random choices, f + 1 _<

m' _< 2f , tu rn out to be 0 and the rest 1, leading to a s i tuat ion where

m' of the processes begin stage s + 1 with x - 0 and the rest with
x - - 1 .

As in Section 11.4, we imagine that all the nondeterminis t ic choices in the

a lgor i thm--here , which action occurs next and when, and what is the resulting

s t a t e - - a r e under the control of an adversary. We constrain the adversary to

enforce the fairness conditions of all the process I / O au tomata and the broadcast

channel automaton. We also constrain it to observe the usual t ime restrictions:

an upper bound of g on time for tasks within processes and an upper bound of

d on the delivery time for the oldest message in t rans i t from each Pi to each

PN. Finally, we require that the adversary allow init events on all ports. We

assume that the adversary has complete knowledge of the past execution. Any

such adversary determines a probabil i ty d is t r ibut ion on the executions of the

algorithm.

L e m m a 21.5 For any adversary and any s >_ O, with probability at least 1 -
1 (1 - ~) s all nonfaulty processes decide within s + 1 stages.

P r o o f S k e t c h . The case s - 0 is trivial. Consider any stage s > 1. We argue

1 all nonfaulty processes choose the same value of that with probabil i ty at least ~ ,

x at the end of stage s (no mat ter how the random choices are resolved for other

stages). In this case, by the argument for agreement, all nonfaulty processes

decide by the end of stage s + 1.

For this stage s, consider any shortest finite execution c~ in which some non-

faulty process, say Pi, has received n - f ("first", s, ,) messages. (Thus, c~ ends

with the delivery of one of these messages.) If at least f + 1 of these messages

contain a part icular value v, then define v to be a good value after c~; there can

be either one or two good values. We claim that if there is only one good value

v after c~, then every ("second", s, ,) message that is sent in any extension of c~

must contain either value v or value null. This is because if Pi receives f + 1

copies of v, then every other process receives at least one copy of v and so cannot

send a ("second", s, ~) message. (Here we use the notat ion ~ to denote the value

1 - v.) Similarly, if there are two good values after c~, then every ("second", s, ,)
message that is sent in any extension of c~ must contain null.

It follows that if there is only one good value v, then v is the only value

that can be "forced" to be any process 's value of x at the end of stage s by a

nonrandom assignment, in any extension of c~. Similarly, if there are two good

values, then no value can be forced in this way. Since no process makes a random

676 21. ASYNCHRONOUS N E T W O R K S WITH PROCESS FAILURES

choice for stage s in c~, the determination of values that can be forced at stage s
is made before any random choices for stage s.

Thus, if there is exactly one good value, then with probability at least 1 , all
processes that choose their values of x randomly will choose the good value, thus
agreeing with those that choose nonrandomly. Similarly, if there are two good

1 all processes will (randomly) choose values, then with probability at least W,
the same value of x. In either case, with probability at least 1 all nonfaulty
processes end up with the same value of x at the end of stage s.

Now, the argument for each stage s only depends on the random choices
at stage s, and these are independent of the choices at other stages. So we can
combine the probabilities for different stages, to see that with probability at least

1 1 - (1 - W)~, all nonfaulty processes obtain the same value of x at the end of
, 1)~ all some stage s' 1 _< s' _< s. Therefore, with probability at least 1 - (1 - ~ ,

nonfaulty processes decide within s + 1 stages. D

Now define a function T from N + to R >-~ such that each nonfaulty process
completes each stage s by T(s) time after the last init event. By Lemma 21.4,
we can choose T(s) to be O(s(d + g)). Also, define p(t) to be 0 if t < T(1) and
1 - (l - w 1)s-1 if s _> 1 and T(s) _< t < T(s + 1). Lemmas 21.5 and 21.4 then
imply

L e m m a 21.6 For any adversary and any t > O, with probability p(t), all non-
faulty processes decide within time t after the last init event.

The main correctness result is

T h e o r e m 21.7 The BenOr algorithm guarantees well-formedness, agreement,
and validity. It also guarantees that, with probability 1, all nonfaulty processes
eventually decide.

P r o o f . By Lemmas 21.3, 21.6, and 21.4.
p(t) is unbounded.)

(Lemma 21.4 is needed to show that
K]

R a n d o m i z e d v e r s u s n o n r a n d o m i z e d p r o t o c o l s . One reason the BenOr
algorithm is significant is that it demonstrates an inherent difference between
the randomized and nonrandomized asynchronous network models. Namely, the
agreement problem cannot be solved at all in the presence of process failures in
the nonrandomized model, but can be solved easily (with probability 1) in the
randomized model. A similar contrast is shown by the LehmannRabin algorithm
in Section 11.4.

21.4. FAILURE D E T E C T O R S 677

Reducing the complexity. The BenOr algorithm is not practical, because
its probabilistic time bound is high. It is possible to improve the time complexity
by increasing the probability that different processes' random values at the same
stage are the same. However, this requires the use of cryptographic techniques,
which are outside the model given here.

21.4 Fai lure D e t e c t o r s

Another way to solve the agreement problem in fault-prone asynchronous net-
works is to strengthen the model by adding a new type of system component
known as a failure detector. A failure detector is a module that provides in-
formation to the processes in an asynchronous network about previous process
failures. There are different sorts of failure detectors, based on whether the in-
formation about stopping is always correct and on whether it is complete. The
simplest one is a perfect failure detector, which is guaranteed to report only fail-
ures that have actually happened and to eventually report all such failures to all
other non-failed processes.

Formally, we consider a system A that has the same structure as an asyn-
chronous network system, except that it has additional input actions inform-
stopped(j)i for each pair i and j of ports, i =/= j. A perfect failure detector for
system A is a single I /O automaton that has the actions stopi, 1 < i <_ n, as in-
puts, and the actions inform-stopped(j)i, 1 <_ i, j <_ n, i ~ j, as outputs. The idea
is that the failure detector learns about stopping failures that occur anywhere in
the network and informs the other processes about them. An inform-stopped(j)~
action is intended as an announcement at port i that process j has stopped.
Figure 21.1 shows the architecture for a simple three-process system. The fol-
lowing algorithm solves the agreement problem when used with a perfect failure
detector:

PevfectFDAgreement algorithm (informal)"

Each process Pi attempts to stabilize two pieces of data:

1. A vector val, indexed by { 1 , . . . , n } , with values in V U {null}. If
val(j) - v E V, it means that Pi has learned that Pj's initial value
is v.

2. A set stopped of process indices. If j E stopped, it means that Pi has
learned that Pj has stopped.

Process Pi continually broadcasts its current val and stopped data and
updates it upon receipt of new data from processes not in stopped. It

678 21. ASYNCHRONOUS N E T W O R K S WITH PROCESS FAIL URES

stop,

failure
detector

inform-stopped(i),

stop 2

inform-stopped(i) 2

[broadcast
channels

stop3

inform-stopped(i) 3

F i g u r e 21.1- Architecture for asynchronous broadcast system with a perfect failure
detector.

ignores messages from processes it has already placed in stopped. Pi also
keeps track of processes that "ratify" its data, that is, from which it re-
ceives the same (val, stopped) data that it already has. When Pi reaches a
point where its data has "stabilized," that is, when it has received ratifica-
tions for its current data from all non-stopped processes, then Pi decides
on the non-null value corresponding to the smallest index in its val vector.

The code follows. Let W denote the set of vectors indexed by { 1 , . . . , n},
of elements of V U {null}. We define a partial ordering on pairs (w, I), where
w C W and I C_ { 1 , . . . , n } . Namely, we write (w,I) _<d (w' , I ') and say that
(w', I') dominates (w, I), provided that both of the following hold:

1. For all k, if w(k) E V, then w (k) - w'(k).

21.4. FAILURE D E T E C T O R S 679

2. I C F .

This captures the idea that (w ~, I ~) contains at least all the information that
(w, I) does.

To avoid confusion, we do not explicitly describe the behavior of Pi after a
stopi event occurs. It is just as usua l - - the process stops.

PerfectFDAgreementi a u t o m a t o n (formal)"

Signature:

Input"
init(v)i , v E V
receive(w,I)j,~, w C W, I C { 1 , . . . , n } ,

l < _ j < _ n
inform-stopped(j) i , j r i

Output"
bcast(w,I) i , w E W, I _C { 1 , . . . , n }
decide(v) i , v E V

States:
val E W , initially identically null
stopped C {1 , . . . , n}, initially
ratified C {1 , . . . , n}, initially
decided, a Boolean, initially false

Transitions:
init(v)i

Effect"
val(i) := v
ratified "- {i }

in form- stopped(j) i
Effect"

stopped "- stopped U {j }
ratified " - {i}

bcast(w, I) i
Precondition:

w - vat
I - stopped
val (i) ~ null

Effect:
none

receive(w, I)j,i
Effect:

if j ~ stopped then
if (w, I) - (val, stopped) then

ratified "- ratified U {j}
else if (w, I) ~d (val, stopped) then

stopped := stopped U I
for a l lk , l _ < k < n , do

if val(k) - null then val(k) := w(k)
ratified := {i}

decide(v)i
Precondition:

ratified U stopped = {1 , . . . , n}
v = val(j) , where j is the smallest index

with ~(j) r ~uU
decided = false

Effect:
decided := true

Tasks:
{bcast(w,I)~ " w E W , I C_ {1 , . . . ,n}}
(decide(v)i " v C V}

680 21. ASYNCHRONOUS NETWORKS WITH PROCESS FAILURES

T h e o r e m 21.8 PerfectFDAgreement, when used with any perfect failure detec-
tor, solves the agreement problem and guarantees wait-free termination.

P r o o f . Well-formedness and validity are easy to see. For wait-free te rminat ion ,
consider a fair execution a in which init events occur on all ports and let i be any

non-failing port; we show that Pi eventually decides in a. Note that every time

Pi's data (vali, stoppedi) changes in a, it must be that the new pair dominates
the old pair. Since there are only finitely many possible pairs, eventually this

data reaches final values (wfi~al, Ifi~at). If P~ decides before this point, then we
are done, so suppose that it does not. Then we claim that eventually thereafter,

ratified~ CJ stopped~ = { 1 , . . . , n}, which is enough to imply that a decide~ event
occurs. To prove this claim, it is enough to show that every process j r i that

never fails eventually ratifies this pair (Wfinal , Ifinal).
So consider any j r i that never fails. Eventually, a message containing

(W]~nat, Ifi~al) is broadcast by Pi and received by Pj, after which Pj's pair always

dominates (wfi~al, Ifi~al). But Pj's pair can never strictly dominate (wfi~at, I]~nal),
since if it did, Pj would eventually succeed in communicating this new informa-

tion to Pi. So, eventually, Pj's pair becomes and remains equal to (wfi~al, I~al).
Then, eventually, a message containing (wfi~al, I~al) is broadcast by Pj and

received by Pi. This places j in ratifiedi, as needed.
Finally we argue agreement. Suppose that Pi is the first process that decides

and let w and I be the values of vali and stoppedi, respectively, when the decidei
event, 7r, occurs. Then all processes in I fail in a prior to 7r and so can never

decide. Let J = { 1 , . . . , n } - I; we argue that all processes in J that decide must
decide on the same value as Pi.

Each process j in J must be in ratifiedi when 7r occurs, so must have (w, I)
as its local data at some point tj before 7r. We claim that each process j in J

must keep val = w forever after point tj in a, which implies that if it decides, it

agrees with Pi.
So suppose that this is not the case and let j be the first process in J to

acquire a val vector containing information that is not in w (i.e., some element

of the vector is in V, whereas the corresponding element of w is null). Then this
acquisition must occur as a result of a receivek,j event occurring after point tj,
where the broadcasting process Pk has, at the time of the broadcast , a val vector
containing information not in w. Since Pj ignores all processes in I after point

tj, it must be that the broadcasting process Pk is in J . But this contradicts the
choice of j as the first process in J to acquire information not in w. D

C o m p l e x i t y . The communication complexity and time complexity of the Perfect-
FDAgreement algorithm are unbounded. This is not so terrible, because we are

21.4. k-AGREEMENT 681

only addressing computability issues in this chapter. However, it is possible to
devise similar protocols with bounded complexity. We leave this for an exercise.

21.5 k-Agreement

Now we consider weakening the problem statement. The k-agreement problem,
as described in Sections 7.1 and 12.5 for the synchronous network setting and
asynchronous shared memory setting, respectively, is a variation on the agree-
ment problem that can be solved in asynchronous networks with a limited num-
her (f < k) of faults. We use the same problem definition as in Section 12.5:
that is, this problem has the same well-formedness and termination conditions as
the ordinary agreement problem, and the agreement and validity conditions are
replaced by the following, where k is any integer, k _> 1.

Agreement" In any execution, there is a subset W of V, IWI - k, such that all
decision values are in W.

Va l id i ty : In any execution, any decision value for any process is the initial value
of some process.

The agreement condition is weaker than that for ordinary agreement in that it
permits k decision values rather than just 1. The validity condition is a slight
strengthening of the validity condition for ordinary agreement. There is a trivial
algorithm to solve the k-set agreement problem in an asynchronous broadcast
network, where f < k:

TrivialKAgreement a l g o r i t h m :

Processes P1, P2 , . . . Pk (only) broadcast their initial values. Every process
Pi decides on the first value it receives.

Theorem 21.9 TrivialKAgreement solves the k-agreement problem and guar-
antees f-failure termination, if f < k.

It is also not hard to devise a k-agreement algorithm that is similar to Perfect-
FDAgreement, based on stable vectors. We leave this for an exercise. Alterna-
tively, we can obtain k-agreement algorithms for the asynchronous network model
from algorithms for the asynchronous shared memory model, using Theorem 17.5
to translate from the shared memory model to the network model; however, this
approach has the disadvantage that it only works if n > 2f, whereas Trivial-
KAgreement and the algorithm based on stable vectors also work if n _< 2f.

It turns out that the k-agreement problem cannot be solved if the number of
failures is > k.

682 21. ASYNCHRONOUS NETWORKS WITH PROCESS FAILURES

Theorem 21.10 The k-agreement problem is not solvable with k-failure termi-
nation in the asynchronous broadcast model.

P r o o f . By Theorems 12.13 and 17.8. K]

21.6 Approximate Agreement

Again we weaken the problem statement. Another variation on the agreement
problem is the approximate agreement problem, as described in Sections 7.2 and
12.5 for the synchronous network setting and the asynchronous shared memory
setting, respectively. We use the same problem definition as in Section 12.5. That
is, the set V of values is the set of real numbers, and processes are permit ted

to send real-valued data in messages. Instead of having to agree exactly, as
in the agreement problem, the requirement is that they agree to within a small
positive tolerance e. The problem has the same well-formedness and termination
conditions as the ordinary agreement problem, and the agreement and validity
conditions are replaced by the following.

Agreement: In any execution, any two decision values are within c of each
other.

Va l id i t y : In any execution, any decision value is within the range of the initial
values.

An algorithm similar to the ConvergeApproxAgreement algorithm of Section
7.2 works for the asynchronous setting with stopping failures, provided that n >
3f . Each process Pi executes a series of stages, at each of which it waits to
hear from any n - f processes rather than from all n processes. (It cannot wait
to hear from all processes, because up to f processes might stop.) Because we
are now considering stopping failures only, it is not necessary for Pi to "reduce"
its multiset of values by discarding the extreme values. The mean and select
functions used in the following description, as well as some notions like the width
of a multiset of reals, are defined in Section 7.2.

A synchApproxAgreemen t algorithm:

We assume that n > 3f . Each Pi maintains a variable val containing
its latest estimate. This gets initialized to the value v that arrives in an

init(v)i input. At each stage, Pi does the following: First, it broadcasts
its val value, tagged with the stage number s. Then it collects the first
n - f values it receives for stage s into a multiset W. Finally, it sets val
to mean(select(W)).

21.6. A P P R O X I M A T E A G R E E M E N T 683

It should be obvious that the val chosen by any process at any stage s is in

the range of the vals chosen by all the processes at stage s - 1 (or the initial
val values, if s = 1). We claim that, at each stage, the width of the multiset of

vals is reduced by a factor of at least I n - / - 1] f zr- 1. Since n > 3f , this yields
L J

convergence.

L e m m a 21.11 Let v and v ~ be the values of vali and vali, chosen by two pro-
cesses Pi and Pi' at stage s of an execution of A synchApproxAgreement. Then

d
iv-v'l _ Lo ,II§

where d is the width of the range of the val values chosen at stage s - 1, if s >_ 2,
and d is the width of the initial values, if s = 1.

P r o o f . Analogous to that of Lemma 7.17. [-1

T e r m i n a t i o n . So far everything we have said about AsynchApproxAgreement
works if we just assume that n > 2f (rather than n > 3f) . But we do not yet
have a complete algorithm, because we have not said when processes actually

decide. We use the extra processes to help in achieving termination.

We cannot use the simple termination strategy that we used for Converge-
ApproxAgreement, because a process cannot wait to hear from all processes at
stage 1 and thus cannot always determine an upper bound on the range of the

multiset of initial values. However, we can modify this s trategy slightly by adding

a special initialization stage, stage 0, to the beginning of the algorithm. In stage

0, each process Pi broadcasts its val, collects a multiset of n - f vals, and chooses

the median of the multiset as its new val for use in stage 1. Since n > 3f , it is
easy to check that any val chosen by any process Pi at stage 0 is in the range of

the multiset collected by any process Pj at stage 0. Thus, each Pi can use the
range of the multiset it collects at stage 0 to compute a stage number by which
it is sure that the val values of any two processes at stage s are at most c apart .

The rest of this s trategy is as for ConvergeApproxAgreement.
The AsynchApproxAgreement algorithm is not optimal, in the sense that the

problem can actually be solved for any n > 2f. However, a more complicated

algorithm is needed. For example, an algorithm that works for n > 2 f can
be obtained from a shared memory approximate agreement algorithm A, based
on single-writer/mult i-reader shared registers, that guarantees wait-free termi-
nation. Theorem 12.14 asserts that such an algorithm A exists (and you can
find one in [24]). Then Theorem 17.5 can be used to infer the existence of an

684 21. ASYNCHRONOUS N E T W O R K S WITH PROCESS FAILURES

asynchronous network algorithm that solves the approximate agreement problem
and guarantees f-failure termination, for n > 2f. 1 On the other hand, it is not
hard to see that the approximate agreement problem cannot be solved if n < 2f.

T h e o r e m 21.12 The approximate agreement problem is not solvable with f -
failure termination in the asynchronous broadcast model if n < 2 f .

P r o o f Sketch. The proof is similar to that of Theorem 17.6. Briefly, we
suppose that such an algorithm exists and let G1 be the set 1 , . . . , n - f and
G2 be the set n - f + 1 , . . . , n. We consider a fair execution OZl in which all
processes begin with value Vl and all processes with indices in G2 fail right at
the start. By f-failure termination, all processes in G1 must eventually decide,
and the validity condition implies that they must decide Vl. Symmetrically, we
consider a second fair execution a2 in which all processes begin with v2, where

IVl --v2] > e, and all processes with indices in G 1 fail at the start. In a2, all
processes in G2 must eventually decide v2.

We then construct a finite execution a as in the proof of Theorem 17.6, by
combining Ctl and a2. In a, the processes in G1 decide Vl and those in G2 decide
v2, which contradicts the agreement condition. [2]

21.7 Computability in Asynchronous Networks*

The same construction that is used in the proofs of Theorems 17.6 and 21.12
can be used to show that many other problems of global coordination cannot be
solved in asynchronous networks if half of the processes might fail.

As we did in Section 12.5, we can consider the solvability of arbi t rary deci-
sion problems in asynchronous networks. Ordinary agreement, k-agreement, and
approximate agreement problems are all examples of decision problems, and we
have already given the main results about the computabili ty of these problems in
asynchronous networks. As for the read/wr i te shared memory model, we state a
theorem that gives some conditions that imply that a problem cannot be solved

with l-failure termination in the asynchronous network model.

T h e o r e m 21.13 Let D be a decision mapping whose decision problem is solv-
able with 1-failure termination in the asynchronous broadcast model. Then there
must be a decision mapping D' with D'(w) C D(w) for all w, such that both of
the following hold:

l In order to apply Theorem 17.5, we need for A to satisfy the "turn" restriction given in
Section 17.1.1. The shared memory approximate agreement algorithm can be constructed so as
to satisfy this condition.

21.8. B I B L I O G R A P H I C N O T E S 685

1. I f input vectors w and w ~ differ in exactly one position, then there exist
y C D'(w) and y' C D'(w') such that y and y' differ in at most one position.

2. For each w, the graph defined by D'(w) is connected.

Proof . By Theorems 12.15 and 17.8. K]

In general, impossibility results for computabiliy in the read/write shared
memory setting carry over to the network setting using Theorem 17.8. Al-
gorithms carry over also, using Theorem 17.5, but only under the restrictions
needed for Theorem 17.5, including the requirement that n > 2f.

21.8 Bibliographic Notes

Theorem 21.2, the impossibility of agreement in the presence of stopping failures,
was first proved by Fischer, Lynch, and Paterson [123]. Their original proof
was given directly in terms of the asynchronous broadcast model rather than
via a transformation. Loui and Abu-Amara [199] observed that Theorem 21.2
could be extended to the read/write shared memory model, using essentially the
same proof. Our proof of Theorem 12.8 follows the presentation of Loui and
Abu-Amara. The original proof by Fischer, Lynch, and Paterson, reorganized
somewhat according to suggestions by Bridgland and Watro [58] is outlined in
Exercises 21.2, 21.3, and 21.4.

The BenOr algorithm was invented by Ben-Or [46]. Later work by Rabin
[248] and by Feldman [114] produced other randomized algorithms with much
better (in fact, constant) time complexity. These use "secret sharing" techniques
to increase the probability that the random values chosen by different processes
at the same stage are the same.

The notion of a failure detector was defined and developed by Chandra and
Toueg [66] and by Chandra, Hadzilacos, and Toueg [65]. Those papers describe
not only the perfect failure detector discussed here but also many less perfect
variations, including failure detectors that falsely identify processes as faulty
and failure detectors that fail to notify all processes about failures. Such weaker
failure detectors can also be used to solve the agreement problem, and some
can be implemented in practical distributed systems using timeouts. Failure
detectors are also discussed by Hadzilacos and Toueg [143].

We have already discussed the origins of the k-agreement problem and the
approximate agreement problem in the Bibliographic Notes for Chapters 7 and
12. Attiya, Bar-Noy, Dolev, Koller, Peleg, and Reischuk [19, 20, 40] describe
some other interesting problems that are solvable in asynchronous networks with

686 21. A S Y N C H R O N O U S N E T W O R K S W I T H PROCESS FAILURES

failures, including a problem of process renaming and a problem of slotted ex-
clusion. Bridgland and Watro [58] describe a resource-allocation problem that
is solvable in asynchronous networks with failures. The idea of a stable vector
algorithm is due to Attiya et al. [20].

The proof of Theorem 21.12 is adapted from proofs by Bracha and Toueg [56]
and Attiya, Bar-Noy, Dolev, Peleg, and Reischuk [20]. Biran, Moran, and Zaks
[51] characterized the decision problems that can be solved in an asynchronous
network with l-failure termination, based on an earlier impossibility result by
Moran and Wolfstahl [230]. Theorem 21.13 is adapted from these two papers.

21.9 E x e r c i s e s

21.1. Prove Theorem 21.1.

21.2. Suppose V = {0, 1}. If A is an asynchronous broadcast system that solves
the agreement problem, then define O-valence, 1-valence, univalence and
bivalence for finite executions of A, and also define initializations of A, in
the same way as in Section 12.2.2.

(a) Give an example of such a system A in which there is a bivalent
initialization.

(b) Given an example of such a system A in which all initializations are
univalent.

(c) Prove that if A guarantees 1-failure termination, then there is a biva-
lent initialization.

21.3. Let V, A be as in Exercise 21.2. Define a decider execution c~ to be a
finite failure-free input-first execution satisfying the following conditions,
for some i:

(a) c~ is bivalent.

(b) There exists a 0-valent failure-free extension c~0 of c~ such that the
portion of c~0 after c~ consists of steps of process i only.

(c) There exists a 1-valent failure-free extension Ct 1 of Ct such that the
portion of c~i after c~ consists of steps of process i only.

That is, a single process i can operate on its own in two different ways (e.g.,
interleaving locally controlled and message-receiving steps in two different
ways, or else receiving two different sequences of messages), in such a way
as to resolve the final decision in two different ways.

21.9. EXERCISES 687

Prove that if A has a bivalent initialization, then A has a decider. Note that
we have assumed only that A solves the agreement problem; we have made
no fault-tolerance assumptions. (Hint: Consider the proof of Lemma 12.7.)

21.4. Use the results of Exercises 21.2 and 21.3 to prove Theorem 21.2.

21.5. Reconsider the agreement problem of this chapter, using the broadcast
model. This time consider a more constrained fault model than general
stopping failures, in which processes can only fail at the beginning of com-
putation. (That is, all stop events precede all other events.) Can the
agreement problem be solved in this model, guaranteeing

(a) 1-failure termination?

(b) f-failure termination, where n > 2f?

(c) wait-free termination?

In each case, give either an algorithm or an impossibility proof.

21.6. Design a variant of the BenOr algorithm in which all nonfaulty processes
eventually halt.

21.7. Design variants of the BenOr randomized agreement algorithm that work
for the following cases:

(a) The synchronous network model with stopping failures.

(b) The synchronous network model with Byzantine failures.

(c) The asynchronous network model with Byzantine failures. (As men-
tioned in Section 14.1.1, a Byzantine failure of a process Pi is modelled
by allowing Pi to be replaced by an arbitrary I /O automaton with the
same external interface.)

In each case, try to design the algorithm to work for as few processes as
possible, relative to the number f of tolerated failures.

21.8. Design a randomized asynchronous algorithm for agreement with stopping
failures, using an arbitrary value set V rather than just {0, 1}. Try to mini-
mize the number of processes. (Hint: Combine the ideas of the TurpinCoan
algorithm with those of the BenOr algorithm.)

21.9. Repeat Exercise 21.8 for the case of Byzantine failures.

688 21. ASYNCHRONOUS NETWORKS WITH PROCESS FAILURES

21.10. Devise an alternative protocol to PerfectFDAgreement that also uses a per-
fect failure detector to achieve wait-free agreement but that has "small"
communication and time complexity. Try to obtain the smallest communi-
cation and time complexity that you can.

21.11. Define an imperfect failure detector as follows. It has the same external
interface as a perfect failure detector, with the addition of an inform-not-
stopped(j)i action for each j and i, j ~- i. This is used to correct a previous
inform-stopped(j)i action, that is, to notify process Pi that Pj has in fact
not stopped, in spite of a previous erroneous notification. An imperfect fail-

ure detector can alternate inform-stopped(j)i and inform-not-stopped(j)i
events any number of times. However, in any fair execution a of the failure
detector, there can be only finitely many such events for any i and j , and
the final such event must contain the correct information--saying whether
or not stopj occurs in a.

Suppose that n > 2f. Devise an algorithm that solves the agreement
problem guaranteeing f-failure termination, using any imperfect failure
detector.

21.12. Prove that there is no algorithm to solve the agreement problem guaran-
teeing f-failure termination, using an arbi t rary imperfect failure detector

as defined in Exercise 21.11, in case n _< 2f.

21.13. Give precondition-effect code for a "stable vector" algorithm similar to
PerfectFDAgreement, to solve the k-agreement problem. Prove that it
works correctly, if f < k. (Hint: The state only contains the compo-
nents val, ratified, and decided but not the stopped component. A decision

can be made when I ratifiedl >_ n - f.)

21.14. Define a finite execution c~ of a k-agreement algorithm to be m-valent
if there are exactly m distinct decision values that appear in extensions
of a, and define an initialization as in Section 12.2.2. Prove (without
using Theorem 21.10) that any k-agreement algorithm in the asynchronous
broadcast model that guarantees k-failure termination must have a k +
1-valent initial execution. (Hint: Use ideas from Section 7.1, including
Sperner's Lemma.)

21.15. Give complete precondition-effect code for the AsynchApproxAgreement
algorithm, including the termination protocol. Prove correctness.

21.16. Modify the AsynchApproxAgreement algorithm and its proof to work for the
case of Byzantine failures. How many processes are needed? (Hint: Use

21.9. EXERCISES 689

ideas from the ConvergeApproxAgreement algorithm for the synchronous
Byzantine setting.)

21.17. Prove the most general impossibility result you can, using the construction
in the proof of Theorem 21.12.

21.18. Give a general characterization of the decision problems (as defined in
Section 12.5) that can be solved in asynchronous networks with l-failure
termination. (Warning: This is very hard.)

This Page Intentionally Left Blank

Chapter 22

D a t a Link P r o t o c o l s

In this chapter, we consider the problem of implementing reliable FIFO com-
munication using less reliable channels. This is one of the most fundamental
problems solved by communication networks. The "less reliable channels" we
consider include channels that exhibit failures such as the loss and duplication of
messages, as well as channels that reorder messages. We also consider process
crashes that lose process state information. We only consider the problem in the
very special case of a two-node network.

We begin by presenting two simple, well-known algorithms: Stenning's pro-
tocol and the Alternating Bit protocol. In Stenning's protocol, the process at
the sending end attaches (unbounded) integer tags to messages submitted by the
user; this protocol tolerates loss, duplication, and reordering of messages on the
channels. The Alternating Bit protocol, on the other hand, uses only bounded
tags and tolerates loss and duplication, but not reordering. We then consider
whether it is possible to tolerate reordering using bounded tags. Finally, we
consider the case of crashes that lose process state information (the contents of
volatile memory).

Throughout this chapter, we discuss messages at two levels: the level of the
users of the communication system and the level of the underlying channels. In
order to distinguish between these two types of messages, we call them high-
level and low-level messages, respectively. We generally let M and M ~ denote
the high-level and low-level message alphabets, respectively. Also, we usually
capitalize the actions at the user interface, for example, SEND and RECEIVE,
while we continue to use lowercase for the actions at the channel interface, for
example, send and receive.

The techniques that we use for modelling the algorithms in this chapter (using
I /O automata, composition, and simulation relations) are suitable for modelling
layered communication architectures such as the ISO hierarchy.

692 22. DATA LINK PROTOCOLS

22.1 T h e P r o b l e m

We consider the problem in an asynchronous send/receive network with an under-
lying graph G consisting of two nodes, 1 and 2, connected by a single undirected
edge. The problem is to implement reliable FIFO communication between users
U1 and U2 located at the two nodes. High-level messages submitted by U1 to the
process P1 located at node 1 are supposed to be delivered subsequently to U2.
Each message should be delivered exactly once, and the deliveries should occur
in the order in which the messages are submitted.

Formally, we let F denote the universal reliable FIFO send/receive channel
from i to 2 with alphabet M, as defined in Section 14.1.2 and Example 8.1.1; here,
we rename the external actions as SEND(m)~,2 and RECEIVE(m)1,2, rn E M.
Then the correctness requirement for a protocol is that it should "implement"
F, in the sense that each of its fair executions a, when projected on the external
actions of F, should yield a fair trace of F. More precisely, in terms of the
formal notation for I /O automata introduced in Chapter 8, the requirement is
that c~lext(F) c fairtraces(F).

Note that the universal reliable FIFO channel F is essentially an unbounded
queue, so any implementation of F will also need unbounded storage. An al-
ternative way of modelling the problem would be to use an explicit handshake
between U1 and the channel, by which the channel tells U1 when it may submit
the next high-level message. This would avoid the need for unbounded stor-
age. However, it would introduce the additional complication of modelling the
handshake protocol.

The two processes executing the code to implement F are modelled as I /O
automata. The channels connecting them in both directions are also I /O at-
tomata, but they are generally not reliable FIFO channels. In particular, they
may lose, duplicate, or reorder low-level messages.

We do not consider certain other types of unreliability, however, such as the
manufacture of spurious messages. Also, we impose some limitations on message
loss--we usually assume some liveness property that says, roughly speaking:

If infinitely many messages are sent, then infinitely many of them are
delivered.

There are basically two ways to formalize this proper ty--us ing the strong loss
limitation (SLL) and weak loss limitation (WLL) conditions defined in Sec-
tion 14.1.2. The difference is that the SLL condition specifies that the channel is
fair to each particular type of message. In this chapter, we use both conditions,
as needed. We also usually impose a finite limit on message duplication.

Formal descriptions of the allowed behavior for most of the channels we need

22.2. STENNING 'S PROTOCOL 693

in this chapter appear in Section 14.1.2. Some of these descriptions are them-
selves I /O automata (and use I /O automaton fairness to express the needed
liveness conditions). Others are axiomatic, in terms of a cause function from
receive events to send events. Still others consist of a combination of an au-
tomaton and some extra liveness constraints. In this chapter, we use all three
types of descriptions, as convenient.

The architecture we consider throughout this chapter is depicted in Fig-
ure 22.1. It consists of two process automata, P1 and P2, and two channel
automata, C1,2 and C2,1, one in each direction. The processes interact with
the users by means of SEND and RECEIVE actions and with the channels by
means of send and receive actions. In Section 22.5, we also introduce additional
actions to model process crashes.

q2
SEND 1, 2

C2,~
2,1

~ r e c e i P e

R E C E I V E 1, 2
,,,..-

F i g u r e 22.1. Architecture for data link protocols.

22.2 Stenning's Protocol

The simplest protocol for ensuring reliable FIFO message delivery in terms of
less reliable channels is due to Stenning. It tolerates all three types of channel
unreliability: (limited) loss, (finite) duplication, and reordering.

Stenning protocol (in formal) :

Process P1 places high-level messages submitted by user U1 in a buffer,
bufferl, tagging them with successive integers starting with 1. P1 repeat-
edly sends the first message in bufferl to P2 with its tag attached. Process
P2 accepts the first message tagged with 1 that it receives. Then P2 ac-
cepts each subsequent message exactly if its tag is one greater than the
tag of the message previously accepted. /)2 places the accepted messages
in buffer2 and delivers the messages in buffer2, in order, to U2.

P2 acknowledges a high-level message repeatedly by sending its tag back
to P1. When P1 receives an acknowledgment for its current tag, it moves
on to begin processing the next high-level message.

The following is the code for process P1 of the Stenning protocol.

694 22. DATA LINK P R O T O C O L S

Stenningl automaton (formal):

Signature:

Input: Output :

SEND(re)l,2, m e M send(m, k)1,2, m e M, k e N
receive(k)2,1, k C N

States:
buffer, a F IFO queue of elements of M, initially empty
tag C H, initially 1

Transitions:
SEND(m)1,2

Effect:

add m to buffer

send(m, k)1,2
Precondit ion:

m is first on buffer
k = tag

Effect:
none

receive(k)2,1
Effect:

if k - tag then
remove first element (if any) of buffer
tag := t a g + l

Tasks:
{8e/td(Trt,]~)1,2 : ?Tt E M ,]g E 1~}

The following is the code for process P2.

Stenning2 automaton (formal):

Signature:

Input: Output :

receive(m,k)l,2, m C M, k E N RECEIVE(re)l ,2, m C M
send(k)2,i, k E N

States:
buffer, a F IFO queue of elements of M, initially empty
tag E H, initially 0

22.2. S T E N N I N G 'S P R O T O C O L 695

Trans i t ions :

R E CEI VE(rn) I ,2
Precondition:

rn is first on buffer
Effect"

remove first element of buffer

receive(m, k) 1,2
Effect-

if k - tag+l then
add m to buffer
tag "- tag + l

send(k)2,1
Precondition"

k - tag
Effect:

none

Tasks:
{RECEIVE(m)I,2 " m E M}

The channels C1,2 and C2,1 in the Stenning protocol are any I /O automata
that satisfy the specification of a lossy reordering channel given in Example 14.1.2
(with suitable renaming of actions). That is, they allow limited loss, finite du-
plication, and reordering. The allowed channel behavior is specified in Exam-
ple 14.1.2 using a combination of a basic automaton and some additional liveness
properties. We want this form of specification here because it yields an explicit
state that we can use in invariant assertions and simulation relations. The com-

plete Stenning protocol is obtained by composing P1, P2, C1,2, and C2,1.
In order to prove the correctness of the Stenning protocol, we begin with some

invariants. But note the following technicality: since we need invariants that
mention the channel states, we must give them in terms of particular automata
for the channels. Thus, we state the invariants in terms of the basic I /O automata

A1,2 and A2,1 defined in Example 14.1.2. The in-transit variables are state
components of the A1,2 and A2,1 automata.

L e m m a 22.1 In every reachable state of the Stenning protocol using channels

A1,2 and A2,1, the following are true.

1. tag2 <_ tag I < tag 2 + 1.

2. I f (m, k) is in in-transitl,2, then k <_ tag 1.

3. I f (m, tag l) is in in-transit1,2, then rn is the first element of buffer1.

~. I f k is in in-transit2,1, then k < tag 2.

696 22. DATA LINK P R O T O C O L S

5. If tag2 -- tag 1, or if any message in in-transit1,2 or in-transit2,1 has its tag
value equal to tag1, then buffer1 is nonempty.

P r o o f . By a straightforward induction. Left as an exercise. D

Our goal is to show that the Stenning protocol, using any allowable channels,
guarantees reliable FIFO message delivery. We first give a technical lemma that
asserts correctness in terms of the channel specifications rather than in terms
of arbitrary allowable channels. This lemma implies the result for arbi t rary
allowable channels.

The statement of Lemma 22.2 is slightly heavy on notation, but it is not
really that complicated. The assumptions just say that c~ projects to give fair
executions of the node processes P1 and P2, as well as executions allowed by the
lossy reordering channel specifications. The conclusion says that c~ yields a fair
trace of F, that is, it exhibits reliable FIFO message delivery.

L e m m a 22.2 Let c~ be any execution of the Stenning protocol with A1,2 and
A2,1. Suppose that

1. c~[P1 and c~]P2 are fair.

2. c~]A1,2 and c~]A2,1 satisfy the liveness properties in Example 1~.1.2.

Then c~]ext(F) C fairtraces(F).

P r o o f Ske t ch . Let /3 - trace(a). It is not hard to see that /3 E traces(F),
which is another way of saying that the sequence of high-level messages in RE-
CEIVE events in/3 is a prefix of the sequence of high-level messages in SEND
events in/3. This can be proved using a (single-valued) simulation relation from
the Stenning protocol with A1,2 and A2,1 to F, and then invoking Theorem 8.13.
The proof of the simulation relation uses Lemma 22.1. Assumptions 1 and 2
in the statement of the theorem are not even needed in this part of the proof,
because they deal only with liveness. We leave this proof as an exercise.

It remains to show the fairness condition of F, that is, that any high-level
message that is submit ted to P1 eventually gets delivered by P2. (The corre-
spondence between sending and delivery events is uniquely determined by the
definition of F.) So suppose not; consider the first high-level message m that is
submit ted but not delivered and let k denote its associated tag. This message
can never be accepted by P2 for addition to its buffer, since, if it were, the fair-
ness properties of P2 would imply that the message would be delivered to/]2. So
it follows that tag2 remains < k - 1 forever.

22.3. ALTERNATING BIT PROTOCOL 697

We claim that this message m eventually reaches the front of bufferl. This
is obvious if it is the first message ever sent, that is, if k - 1. If k _> 1, then
the previous message must eventually get accepted by P2, since it is delivered
to U2. Thus, tag2 eventually reaches, and stays equal to, k - 1. But then the
fairness properties of P2 imply that P2 keeps sending k - 1 messages forever, and
the weak loss limitation (WLL) condition for A2,1 implies that eventually a copy
of k - 1 is received by P1. This means that the message with t a g - k - 1 gets
removed from bufferl, so m reaches the front.

Once this message m reaches the front of bufferl, it must stay there forever
(since it is never accepted by P2). Then the fairness of P1 implies that P1 keeps
sending (re, k) messages forever, and the WLL condition for A1,2 implies that
eventually a copy of (m, k) is received, and hence accepted, by P2. This is a
contradiction. K1

It is also possible to prove the fairness condition by means of an execution
correspondence, using Theorem 8.13 and a simulation from Stenning to F. We
leave this for an exercise.

Lemma 22.2 implies the main correctness result for the Stenning protocol,
given in the following theorem. It says that the Stenning protocol with lossy
reordering channels guarantees reliable FIFO message delivery.

T h e o r e m 22.3 The Stenning protocol, using any lossy reordering channels (ac-
cording to the specification in Example 1~. 1.2), implements F, in the following
sense: For every fair execution ~ (of the protocol plus the channels), (~]ext(F) e
fairtraces(F).

P r o o f Sketch. This follows from Lemma 22.2 and basic properties of I /O
automaton composition, in particular, Theorems 8.4 and 8.2. The proof is left
as an exercise. D

22.3 Alternating Bit Protocol

An interesting variation on the Stenning protocol is the Alternating Bit protocol,
which we abbreviate as ABP. The behavior of the ABP is very similar to that
of the Stenning protocol, but the ABP only uses {0, 1}-valued tags instead of
integer-valued tags. In fact, the ABP can be viewed as an optimized version of
Stenning, in which the integer-valued tags are simply replaced by their low-order
bits. Of course, this means that the ABP makes stronger requirements on its
underlying channels in order to work correctly.

698 22. DATA LINK PROTOCOLS

In addition to being interesting on its own, the ABP has for many years
served as a standard example for demonstrating the use of various protocol
verification techniques.

ABP (informal):

Process P1 places high-level messages submitted by U1 in buffer1, tagging
each with a binary value, 0 or 1, in an alternating fashion. P1 repeatedly
sends the first message in its buffer to P2, with its tag attached. P2
accepts the first message tagged with 1 that it receives. Then P2 accepts
each subsequent message exactly if its tag is different from the tag of the
message previously accepted. P2 places accepted messages in buffer2 and
delivers the messages in buffer2, in order, to U2.

P2 acknowledges a high-level message repeatedly by sending its tag back
to P1. When P1 receives an acknowledgment for its current tag, it moves
on to begin processing the next high-level message.

The code for process P1 follows.

ABPI automaton (formal):

S i g n a t u r e :

Input: Output :
SEND(re)l,2, m C M send(m, b)1,2, m C M, b E {0, 1}
receive(b)2,1, b E {0, 1}

S t a t e s :
buffer, a FIFO queue of elements of M, initially empty
tag C {0, 1}, initially 1.

T r a n s i t i o n s :

SEND(m)1,2
Effect:

add m to buffer

send(m, b)l,e
Precondition:

m is first on buffer
b = tag

Effect:
none

receive(b)2,1
Effect:

if b = tag then
remove first element (if any) of buffer
tag := tag + 1 mod 2

22.3. A L T E R N A T I N G B I T P R O T O C O L 699

Tasks:
{send(re, b)1,2: m E M,b C {0, 1}}

And now we give the code for process P2.

A B P 2 a u t o m a t o n (f o r m a l) :

Signature:

Input:
receive(m, b)1,2, m E M, b e {0, 1}

Output:
RECEIVE(m)1,2, m E M
send(b)2,1, b E {0, 1}

States:
buffer, a FIFO queue of elements of M, initially empty
tag E {0, 1}, initially 0.

Transit ions:
RECEIVE(m)1,2

Precondition:
m is first on buffer

Effect:
remove first element of buffer

receive(m, b)1,2
Effect:

if b # tag then
add m to buffer
tag := tag § 1 mod 2

send(b)2,1
Precondition:

b = tag
Effect:

none

Tasks:
{RECEIVE(m)~,: : m E M}
{send(b)2,1 : b C {0, 1} }

The A B P requires channels with s t ronger reliabil i ty condit ions than those we

assumed for the S tenn ing protocol: now we must assume that the channels do not

reorder low-level messages, though they can still lose and duplicate them. Thus,

the channels C1,2 and C2,1 are any I / O au to m a ta that satisfy the specification
of a lossy F I F O channel given in Example 14.1.1 (with suitable renaming of

actions). Tha t is, they allow l imited loss, finite duplicat ion, and no reordering.

As before, the allowed channel behavior is specified using a combinat ion of a

700 22. DATA LINK PROTOCOLS

basic automaton and some additional liveness properties. The complete ABP is

obtained by composing P1, P2, C1,2, and C2,1.
Our strategy for proving the correctness of ABP is to relate it to the Stenning

protocol using a simulation relation. In this simulation, we consider the Stenning
processes in combination with lossy FIFO channels rather than the more general
lossy reordering channels we considered in Section 22.2.

In the rest of this section, we let A1,2 and A2,1 denote the basic automata from
Example 14.1.1 with external interfaces appropriate to the ABP. We let A~, 2 and
A ~ denote the same automata but with external interfaces appropriate to the 2,1

Stenning protocol. Finally, we let P~ and P~ denote the processes Stenningl
and Stenning2, in order to distinguish them from the processes P1 and P2 of the
ABP.

A key to the simulation proof is a new invariant about the Stenning protocol
with channels A~, 2 and A ~ 2 ,1"

L e m m a 22.4 In every reachable state of the Stenning protocol using channels
A ~ and A ~ the following is true 1,2 2 ,1~

Let T be the sequence of integers consisting of the tags in queue2,1 (in order
from first to last on the queue), followed by tag2, followed by the tag cornpo-
nents of the elements of queue1,2, followed by tag1. Then the integers in T are
nondecreasing, and the difference between the first and last integer in T is at
most 1.

P r o o f . The proof is left as an exercise. D

Now we can relate the ABP and the Stenning protocol. Lemma 22.5 says that
for any execution c~ of the ABP with lossy FIFO channels, there is an execution
c~ ~ of the Stenning protocol with lossy FIFO channels, such that c~ and c~ ~ look
the same at the external interface.

L e m m a 22.5 Let c~ be any execution of ABP with A1,2 and A2,1. Suppose that

1. alP1 and c~]P2 are fair.

2. a[A~,2 and c~[A2,1 satisfy the liveness properties in Example 1~.1.1.

Then there exists c~ ~, an execution of the Stenning protocol with A~1,2 and A~,I,
such that

1. a[P~ and c~[P~ are fair.

2. ct[A~, 2 and c~lA' satisfy the liveness properties in Example 1~ 1 1 2,1 �9 �9 �9

22.3. A L T E R N A T I N G B I T P R O T O C O L 701

3. ~ lex t (F) = ~ ' l e x t (r) .

P r o o f Ske t ch . We first produce a simulation relation f from A B P with chan-
nels A1,2 and A2,1 to the Stenning protocol with the corresponding channels A ~ 1,2
and A ~ This relation expresses the fact that the binary tags in A B P are sim- 2,1"
ply the low-order bits of the integer tags in the Stenning protocol. Specifically~
if s and u are states of A B P and Stenning, respectively, then we define (s, u) c f
exactly if

1. s.buffer I = u.buffer I and s.buffer 2 = u.buffcr 2

2. s. tag1 - - u.tagl mod 2 and s.tag2 = u. tag2 mod 2

3. s. queue1,2 and u. queue1,2 contain the same number of elements. Moreover,

for any j , if (re, k) is the jth element of u.queuel,2, then (m , k mod 2) is

the jth element of s.queuel, 2.

4. s.queue2,1 and u.queue2,1 contain the same number of elements. Moreover,

for any j , if k is the jth element of u.queue2,1, then k rood 2 is the jth

element of s.queuc2,1.

It is straightforward to show that f is a simulation relation. Most of what
we must show follows immediately from the definition of f and the transitions
of A B P and Stenning. Lemma 22.4 is used in the proof of Condition 2 (the step
condition) of the definition of a simulation relation, for receive actions. In par-
ticular, for each receive step of A B P in which the message is accepted, we must
argue that the corresponding receive step of the Stenning protocol also causes
the message to be accepted. For example, consider an (s, receive(m,b)l,2, s')
step of A B P in which m is accepted by P2. The condition that causes m to be
accepted is that b ~ s.ta92. In the corresponding state u of the Stenning pro-
tocol, the simulation relation implies that the incoming low-level message has a
tag k that is different from u.tag2, modulo 2. But in order to show that m is
accepted in state u, we must show that k = tag 2 + 1. Lemma 22.4 can be used
to show that this must be the case.

Just producing a simulation relation is not enough to show the liveness prop-
erties, however. But, actually, it turns out that f is stronger than an ordinary
simulation relation: it maps each step of A B P to a step of the Stenning protocol
with the same type of action. In fact, the actions are identical, except where
the Stenning action contains an integer k and the corresponding A B P action
contains the low-order bit b.

Now fix a as in the hypothesis of the theorem. Then simulation f yields
a "corresponding" execution c~ ~ of the Storming system. This correspondence
guarantees that both of the following hold:

702 22. DATA LINK P R O T O C O L S

1. c~ and a ' have the same sequences of actions, with the one exception men-
tioned just above.

2. States in the same positions in a and c~' are related by f.

These conditions are sufficiently strong that they allow us to infer the needed
conditions for c~' from the conditions for c~. N

See Section 8.5.5 for another version of this execution correspondence idea,
and Section 10.9.4 and Chapter 16 for similar arguments involving execution
correspondence.

Lemma 22.5 implies the following technical lemma for the ABP. It says that
any fair execution of the A B P protocol whose channel behavior is allowed by the
specification of a lossy FIFO channel exhibits reliable FIFO message delivery.

L e m m a 22.6 Let c~ be any execution of the A B P protocol with A1,2 and A2,1.
Suppose that

1. c~]P1 and c~[P2 are fair.

2. c~[A1,2 and c~1A2,1 satisfy the liveness properties in Example 1~.1.1.

Then c~lext(F) E fairtraces(F).

P r o o f Ske t ch . By Lemmas 22.5 and 22.2. D

Lemma 22.6 in turn implies the main correctness result for the ABP, given in
the following theorem. It says that the A B P with lossy FIFO channels guarantees
reliable FIFO message delivery.

T h e o r e m 22.7 The ABP, using any lossy FIFO channels (according to the
specification in Example 1~.1.1), implements F, in the following sense: For ev-
ery fair execution c~ (of the protocol plus the channels), c~ I ext(F) 6 fairtraces(F).

P r o o f Ske t ch . By Lemma 22.6 and basic properties of composition, in par-
ticular, Theorems 8.4 and 8.2. The proof is left as an exercise. [:]

I n f in i t e d u p l i c a t i o n . Note that the A B P still works with slightly more gen-
eral channels that allow infinite duplication. These channels still do not reorder
messages, and losses are limited by the WLL condition. The only real difference

22.4. BOUNDED TAG PROTOCOLS TOLERATING REORDERING 703

between such channels and the lossy FIFO channels described above is that the
new channels can make infinitely many duplicates of the last message sent, in
the case where only finitely many messages are sent. The reason we did not
present Lemmas 22.5 and 22.6 and Theorem 22.7 in terms of these slightly more
general channels is that we wanted to use invariant assertions and simulations
in the proof, and these more general channels are easier to describe in terms of
axioms than in terms of automata.

22.4 Bounded Tag Protocols Tolerating Reordering

So far, we have seen that it is possible to achieve reliable FIFO communication
in the presence of limited loss, finite duplication, and arbitrary reordering of low-
level messages, using the Stenning protocol with unbounded tags. With bounded
tags, using the ABP, it is possible to tolerate limited loss and finite duplication,
but not reordering. In this section, we consider the question of whether it is
possible to design bounded tag protocols that tolerate reordering of low-level
messages.

Consider first what goes wrong when the ABP is used with channels that
can reorder low-level messages: process P2 can get fooled into accepting an old
high-level message m that happens to arrive tagged with the same bit as the one
currently expected. This behavior can cause duplicate delivery to U2 of the same
high-level message, violating the requirements for reliable communication.

For example, the send/receive diagram in Figure 22.2 depicts an execution
in which process P2 accepts a duplicate copy of m after it has already accepted
a later message m ~.

Thus, we see that the ABP does not work with channels that can reorder
low-level messages, but of course this does not imply that there cannot be other
bounded tag protocols that do tolerate reordering.

We give three results. First, in Section 22.4.1, we show the nonexistence of
bounded tag protocols that tolerate both reordering and duplication. Next, in
Section 22.4.2, we present a bounded tag protocol that tolerates loss and reorder-
ing, but not duplication. Unfortunately, this protocol has very high complexity.
Finally, in Section 22.4.3, we prove the nonexistence of "efficient" protocols that
tolerate loss and reordering. This implies that the high complexity of the protocol
in Section 22.4.2 is unavoidable.

Throughout this section, we formalize the notion of a "bounded tag" protocol
by simply assuming that the high-level message alphabet M and the low-level
message alphabet M ~ are both finite.

704 22. DATA LINK P R O T O C O L S

send (m", O)

P

accept m

accept m'

accept m

F i g u r e 22.2" P2 is fooled into accepting m.

22 .4 .1 I m p o s s i b i l i t y R e s u l t for R e o r d e r i n g a n d D u p l i c a t i o n

We show that there is no protocol that solves the reliable FIFO communication
problem using channels that can both reorder and duplicate low-level messages.
For convenience, we now base our formal statement on axiomatic specifications
of the allowed channel behavior.

We need some general terminology to describe the interaction between process
automata and channel trace properties. Namely, if P1 and P2 comprise a protocol,
and Q1,2 and Q2,1 are trace properties for the two channels between 81 and P2,
then we say that an execution a of P1 x P2 is consistent with Q1,2 provided that
(~[ext(Q1,2) E traces(Q1,2). We define consistency with Q2,1 analogously. Also,
we say that a finite execution a of P1 x P2 is finitely consistent with Q1,2 provided
that c~lext(Q1,2) is a finite prefix of a sequence in traces (Q1,2), and analogously
for Q2,1.

E x a m p l e 22.4.1 C o n s i s t e n c y a n d I / O a u t o m a t a

Consider the special case where A1,2 and A2,1 are any I /O automata
with the appropriate channel external interfaces, and traces(Q1,2) and

22.4. BOUNDED TAG PROTOCOLS TOLERATING REORDERING 705

traces(Q2,1) are defined to be exactly the fair traces of A1,2 and A2,1,
respectively.

Then the traces of the fair executions of P1 x P2 that are consistent
with Q1,2 and with Q2,1 are exactly the fair traces of the composition
P1 x P2 x A1,2 • A2,1. Similarly, the traces of the finite executions
of P1 x P2 that are finitely consistent with Q1,2 and with Q2,1 are
exactly the finite traces of the composition P1 x P2 x A1,2 • A2,1.

These facts can be shown using the compositionality results in
Chapter 8, in particular, Theorems 8.1, 8.3, 8.4, and 8.6.

For the result of this subsection, we fix Q1,2 to be the trace property with
inputs send(re)l,2, m E M', and outputs receive(re)l,2, rn E M', and whose traces
are exactly those containing no losses and only finite duplication. Arbitrary
reordering is allowed. (Formally, there is a cause function as in Section 14.1.2
that is onto, and finitely many to one.) Let Q2,1 be the analogous trace property,
for the opposite channel direction. Then we just say that executions are consistent
and finitely consistent, as a short way of saying that they are consistent or finitely
consistent with both Q1,2 and Q2,1.

The following theorem says that there is no bounded tag protocol that guaran-
tees reliable FIFO message delivery using channels that can reorder and duplicate
messages.

T h e o r e m 22.8 There is no bounded tag protocol (P1,P2) that implements F
using the reordering, duplicating channels Q1,2 and Q2,1 (in the sense that if c~
is a consistent fair execution of P1 x P2, then c~lext(F) c fairtraces(F)).

P r o o f . Suppose for the sake of contradiction that there is such an implemen-
tation, (P1, P2). We construct an execution with incorrect behavior.

First, we run the system as far as we can, until it is no longer possible for
process P1 to send any additional low-level messages with new values. For-
mally, we construct a finitely consistent execution C~l of/:'1 x/:'2, such that if an
event send(re)l,2 occurs in any finitely consistent extension of C~l, then an event
send(re)l,2 also occurs in C~l. This construction can be carried out by successive
extension, where we at tempt to send a new low-level message in each extension
until we can no longer do this; the finiteness of the low-level message alphabet
M ~ implies that this construction must eventually terminate. Suppose there are
n (user-interface) SEND events in Ct I .

Now let a2 be a fair, consistent extension of C t l that contains exactly one
additional SEND event, for a total of n + 1 SEND events in all. By the correctness
condition, all messages submitted by U1 in c~2 must eventually get delivered to

706 22. DATA LINK P R O T O C O L S

U2, so that there are exactly n + 1 R E C E I V E events in a2. Let c~3 be the finite
prefix of c~2 up to and including the last RECEIVE event.

Now we construct a finitely consistent execution c~4 with the following prop-
erties:

1. Ct 4 is an extension of Ct 1.

2. Ct4 is indistinguishable from c~1 to P1.

3. Ct4 is indistinguishable from aa to P2.

We construct Ct 4 by preventing all events involving P1 immediately after Ct 1 while
allowing all events of P2 to proceed exactly as in c~3. The additional events of
P2 might include receive events, send events, and internal events, as well as the
required R E C E I V E events. In showing that c~4 is a finitely consistent execution,
the only difficulty is the receive events: we must show that P2 can be permit ted
to receive the same low-level messages after Ct 1 aS it does in c~a, even though P1
does not send any additional low-level messages after C~l. But this is possible

because all low-level messages sent by P1 in c~3 after Ct 1 contain values that P1
has already sent in C~l. Thus, any low-level message that is received by P2 after
O~ 1 could just as well be considered to be a duplication of some low-level message
sent in C~l.

In c~4, there are exactly n SEND events and n + 1 RECEIVE events. To
complete the contradiction, we extend a4 to a fair, consistent execution without
introducing any new SEND events. The resulting execution has more RECEIVE
events than SEND events, contradicting the correctness conditions. [-1

Thus, if the channels permit finite duplication and arbi t rary reordering of

low-level messages, then even though no low-level messages can be lost, reliable
FIFO delivery of high-level messages is impossible.

2 2 . 4 . 2 A Bounded Tag Protocol Tolerating Loss and
Reordering

Although it is far from obvious, it turns out that it is possible to tolerate loss
and reordering of messages (though, of course, not duplication), using bounded
tags. We present an algorithm, the Probe algorithm, that accomplishes this. The
Probe algorithm is not a practical communication protocol; it is a counterexample
algorithm whose main purpose is to show that there can be no impossibility proof
for the task in question.

22.4. B O U N D E D T A G P R O T O C O L S T O L E R A T I N G R E O R D E R I N G 707

Layer 1 (~ } I,, 2

Layer 2

Layer 1
/2,1

Figure 22.3: Layered structure of the Probe protocol.

P r o b e a lgo r i t hm (informal):

This algorithm is most easily presented in two layers, combined using I/O
automaton composition. Layer 1 uses the given channels to implement in-
termediate channels, I1,2 and /2,1, that do not reorder messages, but can
lose or duplicate them. More precisely, each intermediate channel satisfies
an axiomatic specification in terms of a cause function as in Section 14.1.2.
In this case, the cause function is required not to reorder messages, but to
satisfy the WLL loss limitation condition. Infinite duplication is allowed.
Layer 2 uses the resulting FIFO channels to implement reliable FIFO com-
munication.

Layers 1 and 2 are combined as in Figure 22.3, with one instance of the
Layer 1 protocol used to implement each channel needed for the Layer 2
protocol. Process P1 of the complete algorithm is obtained by composing
process P1 of the Layer 2 protocol with the sending process in the Layer
1 implementation of I1,2 and the receiving process in the Layer 1 imple-
mentation of/2,1. Symmetrically, P2 of the complete algorithm is obtained
by composing process P2 of the Layer 2 protocol with the receiving pro-
cess in the Layer 1 implementation of I1,2 and the sending process in the
Layer 1 implementation of/2,1. Also, each channel in the complete algo-
rithm must be "multiplexed" to implement one channel of each Layer 1
implementation.

708 22. DATA LINK PROTOCOLS

Layer 2 is straightforward--for example, ABP can be used. (Note that the
channels I1,2 and/2,1 are slightly more general than the lossy FIFO channels
that we considered in Section 22.3 in that they allow infinite duplication;
however, a remark at the end of that section indicates that the ABP still
works with these more general channels.) Layer 1, which involves imple-
menting the intermediate channels in terms of the given channels (which
can lose and reorder messages but not duplicate them) is more dimcult.

Each Layer 1 implementation works as follows. Process P1 sends a low-
level message to P2 only in response to an explicit probe message from P2.
The low-level message that P1 sends always contains the value of the most
recent high-level message that it has received from U1, which it keeps track
of in latest. Thus, in this protocol, P1 does not remember all the messages
that are submitted by U1, but only the most recent one. (The justification
for this is that the intermediate channel being implemented is permitted
to lose some high-level messages, anyway.) To ensure that P1 only sends
messages in response to probes, P1 keeps a variable unanswered, which it
increments whenever it receives a probe and decrements whenever it sends
a low-level message.

Process /:)2 continually sends probes to P1, keeping track, in pending, of
the number of probes that it has ever sent. Meanwhile, /:'2 counts, in
count(m), the number of copies of each high-level message m received
since the last time it delivered a high-level message to U2 (or since the
beginning of the execution if no message has yet been delivered to /-?2).
Initially, and whenever it delivers a message to U2,/:)2 sets old to pending.
When count(m) exceeds old, P2 can output m.

The code for the Layer 1 protocol to implement I1,2 follows. Of course, the
code for /2,1 is symmetric. In this description, we use M for the high-level
message alphabet of the Layer 1 protocol.

Probe Layer 1, process PI:

Signature:
Input: Output:

SEND(m)1,2, m E M send(m)1,2, m e M
receive("pro be") 2,1

States :
latest C M (3 {null} , initially null
unanswered E N, initially 0

22.4. B O U N D E D T A G P R O T O C O L S T O L E R A T I N G R E O R D E R I N G 709

Transit ions:
SEND(m)1,2

Effect:
latest : - m

receive("probe ") 2,1
Effect:

unanswered := unanswered + 1

send(m)1,2
Precondition:

unanswered > 0
m : latest

Effect:
unanswered := unanswered- 1

Tasks:
{send(m)l,2 : m e M }

P r o b e L a y e r 1, p r o c e s s P 2 :

Signature:

Input: Output:
receive(m)1,2, m E M RECEIVE(m)~,2, m E M

send("probe ")2,1

States:
pending E N, initially 0
old C N, initially 0
for every m C M:

count(m) E N, initially 0

Transit ions:
RECEIVE(m)1,2

Precondition:
count(m) > old

Effect:
for all m' C M do

count(re') := 0
old : - pending

send("probe ")2,1
Precondition:

true
Effect:

pending := pending § 1

receive(re)i,2
Effect:

count(m) := coun t (m)+ 1

Tasks:
{RECEIVE(m)I ,2 : m E M}
{ send("probe")2,1 }

710 22. DATA LINK PROTOCOLS

The channels C1,2 and C2,1 used by the Layer 1 protocol do not duplicate
messages, but can reorder and lose messages. Formally, their specifications are
given in terms of a cause function, as in Section 14.1.2. In this case, the cause
function is required to be one-to-one but need not be onto or monotonic. How-
ever, message loss is limited by the WLL condition. Channels C1,2 and (72,1 are
any I /O automata (with the appropriate external interfaces) whose fair traces
satisfy this specification. The full Layer 1 protocol is obtained by composing P1,
P2, and the two channels.

The following lemma says that Layer 1 of the Probe protocol, with the given
nonduplicating channels, implements the intermediate channel I1,2.

L e m m a 22.9 Layer 1 of the Probe protocol, using any nonduplicating channels
(as defined by C1,2 and C2,1 above), implements the intermediate channel I1,2,
in the following sense: For every fair execution ct, ct[ext(I1,2) C traces(I1,2).

P r o o f Ske tch . We first show that I1,2 does not reorder messages. To see that
this is the case, note that when P2 performs any RECEIVE after the first one, it
checks that count(m) > old, where rn is the high-level message being delivered.
The management of the old variable, plus the facts that P1 only sends messages
in response to probes and that the channels do not duplicate messages, imply
that there were at most old low-level messages in transit from P1 to P2 at the
point of the preceding RECEIVE event. Therefore, at least one of the messages
containing m must have been sent by P1 since the preceding RECEIVE event.
This implies that rn must have been the value of latest1 at some point after the
preceding RECEIVE event. This implies that no reordering occurs.

It remains to show that I1,2 guarantees the WLL condit ion-- that if there
are infinitely many SEND events, then infinitely many of them must have cor-
responding RECEIVE events. So suppose that there are infinitely many SEND
events. The fact that P2 keeps sending probes, the fact that P1 keeps responding
to received probe messages, the liveness assumptions for the channels, and the
finiteness of the high-level message alphabet M all combine to imply that P2
performs infinitely many RECEIVE events. But as we argued in the previous
paragraph, any message that is delivered to U2 after the first one must in fact
have been the value of latest1 at some point after the previous RECEIVE event.
This is enough to imply that the RECEIVE events must correspond to infinitely
many different SEND events. D

Now we consider the complete Probe protocol. As described earlier, each
process is the composition of a Layer 2 process and two Layer 1 processes, as
depicted in Figure 22.3. Each channel is "multiplexed" to implement one channel
of each of the two Layer 1 protocols.

22.4. BOUNDED TAG P R O T O C O L S T O L E R A T I N G R E O R D E R I N G 711

The channels needed for the complete Probe protocol are similar to the chan-
nels C1,2 and 6'2,1 used for the Layer 1 implementations in that they cannot
duplicate messages but can reorder and lose messages. Formally, the channel
specifications are given in terms of a cause function, as in Section 14.1.2. As for
C1,2 and 6'2,1, the cause function is required to be one-to-one but need not be
onto or monotonic.

However, it turns out that we need a slightly stronger loss limitation condition
than the WLL condition used in channels C1,2 and C2,1. Namely, each channel
of the complete Probe protocol must satisfy the WLL condition for each of the
two channels it implements. We do something simpler and more conservat ive-
we require the SLL condition. (This actually guarantees SLL for each of the
two implemented channels.) See Exercise 14.7 for a description of the channel
multiplexing strategy.

Now the channels are any I /O automata (with the appropriate external inter-
faces) whose fair traces satisfy these new channel specifications. The full Probe
protocol is obtained by composing P1, P2, and the two channels.

The following theorem says that the full Probe protocol, with the given nondu-
plicating SLL channels, guarantees reliable FIFO delivery.

T h e o r e m 22.10 The Probe protocol, using any nonduplicating SLL channels
(as described above), implements the reliable FIFO channel F, in the following
S e T t S e :

fai l xt(F) c

Proof . This follows from the correctness of the implementations of Layer 1 (as
proved in Lemma 22.9) and Layer 2. Note that the SLL condition for each of
the given channels implies the weaker WLL conditions for each of the two Layer
1 channels it implements.

C o m p l e x i t y analys is . We do not attempt a formal complexity analysis of
the Probe protocol (nor for the other protocols in this chapter). However, notice
that the Probe protocol has a serious complexity problem: it can require more
and more low-level messages to deliver later and later high-level messages. More
specifically, in the Layer 1 protocol, once k low-level messages have been lost, it
requires at least k + 1 low-level messages to deliver each subsequent high-level
message, even if no further losses occur. In the following subsection, we consider
whether it is possible to avoid this cost.

712 22. DATA LINK P R O T O C O L S

2 2 . 4 . 3 N o n e x i s t e n c e o f E f f i c i e n t P r o t o c o l s T o l e r a t i n g L o s s and
Reordering

We have just described the Probe protocol, which implements reliable FIFO com-
munication using channels that can lose and reorder, but not duplicate, messages.
In this section, we show that any protocol that accomplishes this must incur the
sort of cost that the Probe protocol exhibits, requiring more and more low-level
messages to deliver later and later high-level messages.

As for our previous impossibility result, Theorem 22.8, we base our formal
statement on an axiomatic characterization of the trace properties defining the
allowed channel behavior. We use the general terminology introduced in Sec-
tion 22.4.1 to describe the interaction between process automata and channel
trace properties, in particular, the definition of an execution of P1 x P2 being
consistent with a trace property for either channel interface and the definition of
a finite execution c~ of P1 x P2 being finitely consistent with a trace property.

For this subsection, we fix Q1,2 to be the trace property with inputs send(m)1,2,
rn E M ~, and outputs receive(m)12, rn E M ~, and whose traces are exactly those
containing no duplication and whose losses are limited by the SLL condition. At-
bi t rary reordering is allowed. Let Q2,1 be the analogous trace property, for the
opposite channel direction. Then we just say that executions are consistent and
finitely consistent, without explicitly mentioning the channel trace properties.

The Probe protocol works (i.e., implements reliable FIFO communication)
using any channels satisfying these specifications. We show that any protocol that
does this must be costly, in terms of the number of low-level messages needed
to deliver later high-level messages. To do this, we need a precise definition of
cost.

First, we say that a finitely consistent execution c~ of P1 x P2 is complete if
the number of SEND events is equal to the number of R E C E I V E events in c~.
This means that the protocol has succeeded in delivering to U2 all the high-level
messages that have been submitted by U1.

The following definition expresses the idea that, in order to successfully de-
liver any high-level message, the protocol only needs in the best case to send a
bounded number of low-level messages. If c~ is a complete execution, k C N +, and
rn E M, then we say that an extension c~ ~ is a k-extension of c~ for rn provided
that the following conditions hold:

1. In the portion of c~ ~ after c~, the user-interface events are exactly the two

events SEND(m)1,2 and RECEIVE(m)1,2. (This means that exactly one
high-level message, m, is sent by user U1 and delivered successfully to
U2, in the portion of c~ ~ after c~. This condition implies that c~ ~ is also a
complete execution.)

22.4. BOUNDED TAG P R O T O C O L S T O L E R A T I N G R E O R D E R I N G 713

2. All low-level messages received by P2 in c~' after c~ are sent after c~. (That

is, no old low-level messages are received.)

3. The number of receive1,2 events in c~ t after c~ is less than or equal to k.

A protocol is k-message-bounded if for every complete execution c~ and every

m C M, there is a k-extension of c~ for m. A protocol is message-bounded if it
is k-message-bounded for some k C H +.

Thus, a message-bounded protocol satisfies only a very minimal requirement

on its cost: that in the best case, presumably where no further low-level messages

are lost, the number of low-level messages needed to deliver a high-level message

should not grow without bound. But even though this requirement is so weak,

we can still show that there is no message-bounded protocol that implements

reliable F IFO communicat ion using channels that can lose and reorder messages.

T h e o r e m 22 .11 There is no message-bounded, bounded tag protocol (P1,P2)

that implements F using the lossy, reordering channels Q1,2 and Q2,1 (in the
sense that if c~ is a consistent fair execution of P1 x P2, then c~lext(F) E
fairtraces(F)).

P r o o f . Assume for the sake of contradict ion that there is such a protocol,

(P~, P2), and fix k such that (P1, P2) is k-message-bounded.

Suppose that we could produce a mult iset T of elements of M' , a complete

execution c~ of P1 x P2, and a k-extension c~' of c~ (for any m) satisfying both of
the following conditions:

1. All the messages in T are "in t ransi t" (i.e., they have been sent but not

received) from P1 to P2 after the execution c~. 1

2. The multiset of low-level messages received by P2 in the port ion of c~' after
c~ is a submult iset of T.

In this case, we could derive a contradict ion as follows. Using a construct ion

similar to the one in the proof of Theorem 22.8, we produce an alternative finitely

consistent execution Ctl such that all of the following hold:

1. OZl is an extension of c~.

2. o~1 is indistinguishable from c~ to P1.

3. Ct 1 is indistinguishable from c~ ~ to P2.

1The multiset of messages that are sent but not received is uniquely determined by the
execution c~.

714 22. DATA L I N K P R O T O C O L S

We do this by preventing all events involving P1 immediately after c~ while al-

lowing all events of P2 to proceed exactly as in c~'. We can do this, because the

addit ional receive events of P2 can be generated by the low-level messages that

are already in t ransi t from P1 to P2 after c~. Then a contradict ion is reached

as in the proof of Theorem 22.8, by generating a fair, consistent execution with

more R E C E I V E events than SEND events.

Thus, it would be enough to manufacture this bad situation. The following

key claim says that if a mult iset T of low-level messages is in t ransi t from P1 to

P2, then either the bad si tuat ion already exists, or else we can increase T to a

larger multiset T'.

C l a i m 22 .12 Suppose c~ is a complete execution and T is a multiset of low-level

messages in transit from P1 to P2 after c~, where T contains at most k copies of
any element. Then at least one of the following conditions holds:

o There is a k-extension c~' of c~ (for some m) such that the multiset of
low-level messages received by P2 in c~' after c~ is a submultiset of T.

. There is a complete extension c~ I of c~ and a new multiset T ~ of low-level

messages in transit from P1 to P2 after c~ ~, where T ~ contains at most k
copies of any element and T C T~. 2

First suppose that Claim 22.12 is true. We show that, in this case, it is

possible to manufacture the bad si tuat ion described earlier, which we already said

was enough to prove the theorem. For this, we define two sequences, a sequence

c~0, c~1,.., of complete executions, and a sequence To, T I , . . �9 of mult isets of low-

level messages, each with at most k copies of any element. Each c~i is an extension

of the previous one, and for each i, we have Ti C Ti+l. Moreover, for each i, the

multiset Ti is in t ransi t from P1 to P2 after c~i.

We begin with c~0 consisting simply of initial states for P1 and P2, and To

equal to the empty multiset. If Case 1 in Claim 22.12 holds, then we have

produced the bad si tuat ion and we are done. Otherwise, Case 2 of Claim 22.12

must hold. In this case, let c~1 = c~' and let T1 = T'. In general, if Case 1 holds

for c~i and Ti, then we are done; otherwise we can use Case 2 to define c~i+l and

~+1.
Now we claim that Case 1 must eventually hold. For, if not, Case 2 holds

for every i, and we produce two infinite sequences. In particular, we obtain an

infinite chain To C T1 C T2 C - . . . But since each Ti is defined to have at
most k copies of each element of M' , this chain cannot have more than k lM' I + 1

2This says that T is a proper submultiset of T', that is, that there is at least one more copy
of at least one element of M' in T' than there is in T.

22.5. TOLERATING CRASHES 715

terms. This is finite, because we have assumed that]M'] is finite.

must eventually hold, as claimed.

So it remains only to prove Claim 22.12.

So Case 1

P r o o f (o f C l a i m 22 .12) . Fix an a rb i t ra ry m E M and obtain a k-extension

c~ ~ of c~ for message m; this is possible because the protocol is assumed to be

k-message-bounded. If the multiset of low-level messages received by P2 in c~ ~

after c~ is a submult iset of T, then Case 1 is satisfied and we are done. So assume

that this is not the case. Then there is some p E M ~ for which the number of new

receive(p)1,2 events in c / a f t e r c~ is strictly greater than the number of copies of

p in T. Let T ' = T U {p} (using union of multisets). Since c~' is a k-extension,

the number of these new receive(p)1,2 events is at most k, which implies that the

number of copies of each element in T ~ is still at most k. We obtain a complete

extension of c~ that leaves T ~ in t ransi t .

We know that there is at least one send(p)1,2 event in ~' after c~, since all

low-level messages received by P2 after c~' are assumed to be sent after (~'. Let OL1

be the prefix of a ' ending with the first such send(p)1,2 event; then O~1 is a finitely

consistent extension of c~. Then the multiset T' of low-level messages is in t rans i t

after a l . If O~ 1 contains either both or neither of the new SEND(re)l,2 event and

the RECEIVE(re)l,2 event, then O~1 is complete and thus satisfies Case 2.

The remaining case is where O~1 contains only the SEND(m)1,2 event but not

the RECEIVE(m)1,2 event. In this case, we extend C~l to a finitely consistent

c~2 containing one addit ional RECEIVE(m)1,2 event, but in which no low-level

message from T' is received by P2. We can achieve this because of the following

basic fact: Any finitely consistent execution of P1 • P2 can be extended to a

fair, consistent execution in such a way that no new SEND1,2 events occur and

all new receive1,2 events are caused by new sendl,2 events. Applying this fact

to c~1, we obtain a fair, consistent extension c~3 of c~1, which, because of the

correctness conditions, must contain a RECEIVE(re)l,2 event corresponding to

the last SEND(re)l,2. The needed complete execution c~2 is the prefix of c~3

ending with this RECEIVE event. [5

The proof of Theorem 22.11 is now complete. D

22.5 Tolerating Crashes

The results presented so far in this chapter settle pre t ty much every quest ion

regarding the implementabi l i ty of reliable F IFO communicat ion using unreliable

channels, at least if the processes are assumed to be reliable. Wi th only two

716 22. DATA LINK PROTOCOLS

nodes, there is not much point in considering stopping failures or Byzantine

failures of processes. It is useful, however, to consider what happens when

processes can crash and later recover. If a process crash amounts simply to

stopping and a subsequent recovery involves simply resuming where the process

left off, then a process that crashes and recovers is formally no different from a

correct process that pauses for a while. However, if a process crash involves loss

of some or all of the information in the state, then new considerations arise.

In this section, we consider the reliable F IFO communicat ion problem in the

presence of processes that can crash, losing information, and later recover. The

processes in this setting model physical processors that have volatile memory,

or a combinat ion of stable and volatile memory. In a crash of such a processor,

all contents of volatile memory are lost. Recovery involves resuming from the

previous state of stable memory, together with some default state of volatile

memory. The first thing that is normally done when a processor recovers is that

a recovery protocol is run, using the information in stable memory to restore the

volatile memory to some sensible state. In the formal model, we t reat the whole

recovery protocol as a single recover step.

In Section 22.5.1, we show the impossibi l i ty of implementing, in the presence

of crashes, the same type of reliable F IFO communicat ion that we considered for

reliable processes. This motivates weakening the problem requirements for the

new setting. In Section 22.5.2, we give a second impossibi l i ty result, this t ime

for a much weaker problem statement . Finally, in Section 22.5.3, we present a

practical a lgor i thm that tolerates crashes as well as unreliable channels.

Throughou t this section, we assume that each process Pi has an addit ional

input action CRASHi and an addit ional ou tput action RECOVERi, this latter

considered to comprise a new task. The occurrence of a CRASHi is assumed to

enable a corresponding RECOVERi and to disable all other locally controlled

actions until a RECOVERi occurs. It follows that such a RECOVERi must

eventually occur, in any fair execution of Pi. We assume that, in the interval

between a CRASHi and the next RECOVERi, any inputs that occur (including

addit ional CRASHi events) have no effect on the state.

The new interfaces are depicted in Figure 22.4.

22.5.1 A Simple Impossibility Result

We consider the case where the RECO VERi action sets the entire state of process

Pi back to an a rb i t ra ry s tar t state. Thus, in this case, a CRASHi and subsequent
RECO VERi cause all state information to be lost. In such a model, it is not hard

to see that it is impossible to solve the reliable F IFO communicat ion problem,

even if the underlying channels themselves are reliable F IFO channels!

22.5. T O L E R A T I N G CRASHES 717

SEND 1,2

2,1

1,2

C2,1

~ " ceipe ~ ~v

CEIVE1, 2

F i g u r e 22.4" External interfaces of processes that crash.

T h e o r e m 22 .13 There is no protocol in the given crash failure model that irn-
plements F using reliable FIFO channels (in the sense that for every fair exe-
cution c~, a lex t (F) C fairtraces(F)).

P r o o f . Assume for the purpose of obtaining a contradict ion that there is such

a protocol. The basic idea of the proof is that after a crash of P2, the protocol is

unable to tell whether or not a high-level message has just been delivered to U2.

Let c~1 be any fair execution of the protocol in which a single SEND event

occurs but no CRASH event occurs. Then correctness implies that the SEND
event is followed by a later corresponding R E C E I V E event. Let c~2 be the prefix

of C~l ending just before this R E C E I V E event and let c~ be the prefix ending

just after the R E C E I V E event.

Now let c~3 be an extension of c~2 with a single CRASH2 event followed

immediate ly by a corresponding RECOVER2 event. Then c~3 can be extended

to a fair execution c~4 containing no further SEND events or crashes. Since

a4 must also satisfy the correctness conditions, Ct 4 must contain a R E C E I V E
event corresponding to the SEND event in a4, and this R E C E I V E must occur

sometime after the CRASH and R E C O V E R events.

Now we construct an alternative fair execution c~5. Execution c~5 star ts with

c~, then continues with CRASH2 and RECOVER2, and then finishes with the

port ion of Ct 4 that comes after the RECOVER. Then c~5 is also a fair execu-

tion. But a5 contains two R E C E I V E events and only one SEND event, which

contradicts the correctness conditions. Q

Notice that the proof of Theorem 22.13 still works in a s tronger model in

which the CRASH and R E C O V E R events always occur consecutively and in

which only finitely many crashes ever occur.

718 2 2 . DATA L I N K P R O T O C O L S

22.5.2 A Harder Impossibi l i ty Result

Theorem 22.13 suggests that the problem statement that we have been using
is too strong for the setting with crashes. The logical thing to do is to try to
weaken the problem statement in order to obtain a version that can be solved in
this setting. Unfortunately, it turns out that even when the problem statement
is weakened quite a lot, the problem still cannot be solved. In this section, we
present an impossibility result for a much weaker version of the problem. (Of
course, now the proof is harder.)

The crash model we use is the same as in Section 22.5.1--in particular, all
state information is lost when a process crashes.

We weaken the problem statement by requiring less at the external interface.
Namely, the channel to be implemented permits no duplication but does allow
reordering. For losses, we now only require that a message be delivered if its
SEND event has no following R E C O V E R event. That is, we allow loss of any
message whose SEND event precedes any R E C O V E R event. So if there are
infinitely many C R A S H and R E C O V E R events, no messages are required to be
delivered at all. But if there are only finitely many such events, any message
sent after the last R E C O V E R must be delivered. We use B to denote this
specification (formally, a trace property).

We also weaken the problem statement by assuming more about the channels
to be used in the implementation. Namely, we do not permit duplication or
reordering. All the channels can do is lose messages, with losses limited by the
SLL condition. We use Q1,2 and Q2,1 to denote the specifications for the two
channels. Now we say that an execution of a protocol is consistent or finitely

consistent to mean that it has these properties for both of the specific channels

Q1,2 and Q2,1.
For either of these channel specifications, Q1,2 or Q2,1, it makes sense to talk

about a sequence T of messages being "in transit" at some point in a finitely
consistent execution. This means that T is any subsequence of the sequence
of messages that have been sent since the sending of the last message that has
already been delivered (for some cause function). A consequence of this definition
is that any sequence T of messages in transi t is a possible sequence of messages
that might next be delivered by the channel, even if there are no further send
events.

The impossibility result is as follows. It says that there is no protocol using

lossy low-level channels that guarantees communication with no duplication and
with no losses after all crashes and recoveries have ceased.

T h e o r e m 22 .14 There is no protocol (P1, P2) in the given crash failure model

22.5. T O L E R A T I N G C R A S H E S 719

that implements B using the lossy channels Q1,2 and Q2,1 (in the sense that if
c~ is a fair, consistent execution of P1 x P2, then c~lext(B) E traces(B)) .

In the proof, we use the notat ion i to denote the opposite process to i, that

is, 1 - 2 and 2 - 1. Also, if c~ is any finitely consistent execution of P1 x P2 and

i C {1, 2}, then we define

�9 in(a, i) to be the sequence of low-level messages received by Pi during c~

�9 out(a, i) to be the sequence of low-level messages sent by Pi during c~

�9 state(a, i) to be the state of Pi after c~

P r o o f . Assume for the purpose of obtaining a contradict ion that there is such

a protocol. The key to the proof is the following claim. It says that for any

crash-free finitely consistent execution c~, it is possible, using crashes, to create

a s i tuat ion in which both processes have the same states that they have at the

end of c~, but in which one of the channels has in t rans i t the entire sequence of

low-level messages sent along that channel in a.

C l a i m 22 .15 Let c~ be any crash-flee finitely consistent execution. Let i C
{1, 2}. Suppose that either c~ contains no steps or the last step in c~ is a step
of Pi. Then there is a finitely consistent execution c~ ~ of P1 • P2 at the end of
which all of the following hold:

1. The state of Pi is state(c~, i) .

2. The state of Pi is state(c~, i) .

3. The sequence out(a, i) is in transit f rom Pi to ~ .

Execution c~ ~ may contain C R A S H and R E C O V E R events, but there are no
unmatched C R A S H events- - that is, each C R A S H has a following corresponding
R E C O V E R .

P r o o f (of C l a i m 22 .15) . The proof is by induction on the number of steps

in ~.

Basis" 0 steps. Then c~ ~ - a suffices.

Inductive step: k steps, k > 0.

If (~ contains no steps of ~ then a~ - (~ suffices, so assume that c~ contains at

least one step of ~ . Then let a l be the longest prefix of a that ends with a step
of P~. Note that a l is a proper prefix of a, because we have assumed that the

last step of c~ is a step of Pi. Note that state(c~, ~) - state(c~l,-~). Also, in(a, i)
is a subsequence of out(c~l, i).

720 22. DATA LINK PROTOCOLS

Then by inductive hypothesis, there is a finitely consistent execution c~ at
the end of which the following hold:

1. The state of P / i s state(c~l, i).
m

2. The state of ~ is state(c~l, i).

3. The sequence out(cA1, i) is in transit from P / t o Pi.

Moreover, ct~ does not contain any unmatched CRASH events. Since in(a, i)
is a subsequence of out(c~, i), it is also the case that the sequence in(a, i) is in
transit from ~ to Pi after c~.

Now we construct the needed execution c~ ~. Execution c~ ~ begins with c~.
The rest of c~ ~ involves Pi only (which is fine because ~ is already in the needed
final state). First, a CRASHi and a RECO VERi occur, returning Pi to its initial
state in c~. Then Pi runs on its own exactly as it does in c~, extracting low-level
messages from the incoming channel as needed. This is possible because the
sequence in(a, i) is in transit from P~/to Pi after c~. This brings the state of Pi
to state(a, i) and puts the needed low-level messages, those in out(a, i), in the
outgoing channel. Also, c~ ~ contains no unmatched CRASH events.

Figure 22.5 illustrates the change in system state that occurs when Pi is run
after c~. [~

Now we use Claim 22.15 to complete the proof of Theorem 22.14. Let c~ be
any crash-free finitely consistent execution containing exactly one SEND event
and its corresponding RECEIVE event and assume without loss of generality
that c~ ends with the RECEIVE event.

We construct an execution c~1 whose final process states are the same as those
in c~ but that has a SEND as its last external interface event. More precisely,
there are no following SEND, RECEIVE, CRASH, or RECOVER events, and
there are no unmatched CRASH events. First, Claim 22.15 yields a finitely
consistent execution c~ ~ that ends with the process states equal to state(a, 1)
and state(c~, 2), respectively, and with out(~, 2) in transit from P2 to P1, and
tha t has no unmatched CRASH events. Then we construct CA1 by extending
c~ ~ as in the inductive step of Claim 22.15, by crashing and recovering P1, then
running it on its own just as in c~. (Again, the needed input sequence in(a, 1)
is in transit in the incoming channel.) This allows P1 to reach state(a, 1) again.
Note that there is a SEND step, but no other user interface step, in the portion
of CA1 after c~ ~. This yields the claimed properties for c~1.

Now we can get a contradiction. Let c~2 be an extension of CA1 to & fair,
consistent execution that contains no further SEND, CRASH, or RECOVER
events, and in which every low-level message received after Ctl is sent after C~l.

2 2 . 5 . T O L E R A T I N G C R A S H E S 721

s t a t e (o~ z , i)

u t (c ~ , i

o u t (~ , i)

s t a t e (~ ~ , i)

II

s t a t e (~ , i)

s t a t e (r , i) s t a t e (r , i)

F i g u r e 22.5: Change in system state from c~ to c~ t.

(That is, all old low-level messages are lost.) By the correctness requirements,
there is at least one R E C E I V E event in the suffix, to correspond to the last S E N D

event in c~1. But note that the portion of c~2 after c~1 could also be attached after

c~, again yielding a fair consistent execution; this is because the two processes

are in the same states after c~ and c~1 and because all old low-level messages are
lost. But this violates correctness, since c~ already has an equal number of S E N D

and R E C E I V E events (one of each) and the suffix contains at least one more
R E C E I V E but no more S E N D s .

Theorem 22.14 says that it is impossible to solve even a very weak version of
the reliable FIFO message-delivery problem, if we have to contend with crashes

that lose all state information.

22 .5 .3 A P r a c t i c a l P r o t o c o l

In spite of the impossibility results given in the last two subsections, it is im-
portant in practice to have message-delivery protocols that guarantee some sort

722 22. DATA LINK PROTOCOLS

of reliable FIFO message delivery in spite of process crashes. In this section, we
describe one important protocol, the FivePacketHandshake protocol. This pro-
tocol is the standard method for setting up network connections, used in TCP,
ISO TP-4, and many other t ransport protocols. We use the word "packet" in
this subsection synonymously with "low-level message."

The FivePacketHandshake protocol satisfies the correctness specification B of
Section 22.5.2, which allows no duplication and requires that messages submitted
after the last RECOVER not be lost. In fact, it guarantees more, in that it does
not reorder messages. It tolerates not only process crashes, but also a wide range
of channel failures. The reason that this does not contradict the impossibility
result of Theorem 22.14 is that FivePacketHandshake depends on the ability
of the system to provide unique identifiers (UIDs) for messages, which can be
thought of (and modelled formally) as a kind of stable memory.

Why is it reasonable to model UIDs in terms of stable memory? The key
property of UIDs is that no UID is ever generated twice, even if there is an
intervening crash. In the formal model, we can express this abstractly by allowing
the protocol to remember, even after a crash, which UIDs have previously been
generated, and to check that it never generates any of them a second time. More
specifically, we can keep a component used in the protocol state, containing all
the UIDs that have ever been generated. When the protocol chooses a new UID,
it picks one that is not already in the used set. The used set is assumed to
survive crashes, that is, to reside in stable memory.

In reality, there are many different ways to generate UIDs--for example,
using a random number generator or a real-time clock. However, it turns out to
be simple and informative to model all these techniques formally by keeping the
used UIDs in stable memory.

We permit the underlying channels to lose, duplicate, and reorder messages.
However, we permit only finite duplication, and the losses are limited by the SLL
condition.

F i v e P a c k e t H a n d s h a k e p r o t o c o l (in formal)"

P1 maintains a buffer of high-level messages submitted by U1, as in Sten-
ning and A BP, and works on getting the messages to P2 one at a time.

This time, for each high-level message that P1 tries to send, there is an
initial two-way exchange of packets (low-level messages) between P1 and
P2 to establish a commonly accepted message identifier. In this exchange,
P1 first sends a new UID v to P2 in a ("needuid", v) packet. P2 pairs
this UID v with another new UID u and sends the pair (u, v) back to P1
in an ("accept", u, v) packet. P1 can recognize that this packet is recent

22.5. TOLERATING CRASHES 723

P1

Figure 22.6: The five packets of the FivePacketHandshake protocol.

because it contains Pl ' s latest UID v. /:'1 then chooses u as the UID for
the high-level message it is trying to send.

Now P1 sends the latest high-level message m to P2, paired with the new
UID u, in a ("send", m, u) packet. P2 can recognize that the packet is
recent because it contains P2's latest UID u. After accepting a message,
/:'2 sends an acknowledgment packet of the form ("ack", u).

The fifth packet, of the form ("cleanup", u), is used by P1 to tell/:'2 when
it should discard a current UID.

The five packets of the FivePacketHandshake protocol are illustrated in Fig-
ure 22.6.

The code follows. For convenience, we include a component used in each
process state containing all the UIDs that have ever been generated by that
process. The used components are the only components to survive crashes.

7 2 4 22. D A T A L I N K P R O T O C O L S

F i v e P a c k e t H a n d s h a k e ~ p r o c e s s P I "

Signature:

Input :
SEND(m)1,2, m C M
receive(p):,~, p E {("accept", u, v) : u, v UIDs} U {("ack", u) : u a UID}

CRASH1
Outpu t :

send(p)~,2, p C {("needuid",v) : v a UID} U { (" s e n d " , m , u) : m E M , u a UID}
U { ("cleanup", u) : u a UID}

RECOVER1
Internal :

choose(v)i, v a UID

States:
status E {idle, needuid, send, crashed}, ini t ial ly idle
buffer, a F I F O queue of M , init ial ly e m p t y
uid-v, a UID or null, init ial ly null
uid-u, a UID or null, init ial ly null
used, a set of UIDs, init ially e m p t y
send-buffer, a F I F O queue of packets , ini t ial ly e m p t y

Transit ions:
SEND(m)1,2

Effect:
if status ~ crashed then

add m to buffer

choose(v)1
Precondi t ion :

status = idle
buffer is n o n e m p t y
v ~ used

Effect:
uid-v := v
used := used U { v }
status := needuid

send("needuid", v)1,2
Precondi t ion :

status = needuid
v = uid-v

Effect:
none

receive("accept", u, v)2,1
Effect:

if status ~ crashed then
if status = needuid

and uid-v = v then

uid-u := u
status := send

else if uid-u ~ u then
add ("cleanup", u) to send-buffer

send("send", m , u)1,2
Precondi t ion :

status = send
m is first on buffer
u = uid-u

Effect:
none

22.5. T O L E R A T I N G C R A S H E S 7 2 5

receive("ack", U)2,1
Effect:

if status ~ crashed then
if status = send

and u = uid-u then

remove first e lement of buffer
uid-v := null
uid-u := null
status := idle

add ("cleanup", u) to send-buffer

send("cleanup", U)1,2
Precondi t ion :

status ~ crashed
("cleanup", u) is first on send-buffer

Effect:

remove first e lement of send-buffer

Tasks:
{send("needuid", v)l,2 : v a UID}

{send(" send" ,m ,u) l , 2 :m e M, u a UID}
{send("cleanup", u)1,2 : u a UID}
{RECOVER1 }
{choose(v)1 : v a UID}

CRASH1
Effect:

status := crashed

RECOVER1
Precondi t ion :

status = crashed
Effect:

buffer := e m p t y sequence
uid-v := null
uid-u := null
send-buffer := e m p t y sequence
status := idle

F i v e P a c k e t H a n d s h a k e , p r o c e s s P 2 "

Signature:

Input :

receive(p)1,2, p e {("needuid",v) : v a UID} U {("send" ,m,u) : m C M , u a UID}
U { ("cleanup", u) : u a UID}

CRASH2
Outpu t :

RECEIVE(m)1,2, m E M
send(p)2,1, p E {("accept", u, v) : u, v UIDs} U {("ack", u) : u a UID}
RECOVER1

States:
status C {idle, accept, rcvd, ack, crashed}, ini t ia l ly idle
buffer, a F I F O queue of M , ini t ia l ly e m p t y
uid-v, a UID or null, ini t ia l ly null
uid-u, a UID or null, ini t ial ly null
last, a UID or null, ini t ia l ly null
used, a set of UIDs, ini t ial ly e m p t y

send-buffer, a F I F O queue of packets , ini t ial ly e m p t y

7 2 6 22. D A T A L I N K P R O T O C O L S

T r a n s i t i o n s :

receive("needuid", v) 1,2
Effect :

if status = idle then

u := any U I D ~ used
used := used U {u}
uid-v := v

uid-u := u

status := accept

send("accept", u, v)2,1
P r e c o n d i t i o n :

status = accept
u = uid-u
v = uid-v

Effect :

none

receive("send", m , u)1,2
Effect :

if status 7s crashed t hen

if s t a t u s - accept
and u = uid-u t hen

a d d rn to buffer
last := u

status := rcvd
else if u # last t hen

a d d ("ack", u) to send-buffer

RECEIVE(m)1 ,2
P r e c o n d i t i o n :

status = rcvd
rn is first on buffer

Effect :

r emove first e l emen t of buffer
status := ack

send("ack", ~t)2,1
P r e c o n d i t i o n :

status # crashed
(status = ack and last = u)

or ("ack", u) is first on send-buffer
Effect:

if ("ack", u) is first on send-buffer t hen

r emove first e l emen t of send-buffer

receive("cleanup ", u) 1,2

Effect:

if status = accept and u = uid-u
or if status = ack and u = last t hen

uid-v := null
uid-u := null
last := null
status := idle

CRASH2
Effect:

status "- crashed

R E C O V E R 2
P r e c o n d i t i o n :

status = crashed
Effect:

buffer := e m p t y sequence

uid-v := null
uid-u := null
last := null
send-buffer := e m p t y sequence

status := idle

Tasks:
{ R E C E I V E (m) I , 2 : m C M }
{~nd("accept", ~, v),.~ : ~, v UIDs}
{ ~ n d ("ack", ~):.1 : ~ ~ UID}
{ R E C O V E R 2 }

T h i s c o d e is s o m e w h a t t r i c k y . F o r e x a m p l e , t h e r e a r e t w o s i t u a t i o n s i n w h i c h

P1 a d d s a c l e a n u p p a c k e t t o i t s s e n d - b u f f e r . O n e is t h e " n o r m a l " s i t u a t i o n

22.5. T O L E R A T I N G C R A S H E S 727

described above, in which P1 has just received an ack packet from P2. The
other is when P1 has just received an ("accept", u, v) packet for a UID u that is
not P l ' s current u/d-u; it is possible in this case that P2 still has u as its current
uid-u and that a cleanup packet may be needed to dislodge it.

Likewise, there are two situations in which P2 generates an ack packet. One
is the "normal" situation in which P2 is in ack mode, while the other is when
P2 has just received a ("send", m, u) packet for some "old" u. In this latter
situation, it is possible that P1 still has status = send and uid-u = u and that an
ack packet may be needed to dislodge u.

The following theorem says that the FivePacketHandshake protocol guar-
antees the specification B, using very weak channel assumptions. Namely, the
channels are allowed to lose, reorder, and duplicate messages, subject only to the
SLL condition and the finiteness restriction on duplication.

T h e o r e m 22.16 The FivePacketHandshake protocol, using any finitely dupli-
cating SLL channels, implements the specification B, in the following sense: For
every fair execution c~, c~ l ext (B) C traces(B).

P r o o f Ske t ch . The safety proper t ies - - tha t the protocol does not reorder or
duplicate messages- -are fairly easy to see. The tricky part of the proof is the
liveness argument. It is not at all obvious that this algorithm continues to make
progress, delivering successive messages to/-72.

A key piece of the liveness argument deals with the situation where P1 has
status = needuid, while P2 has status = accept but uid-v equal to a value v
that is different from Pl ' s current value of uid-v. This situation implies that any
current needuid packet from P1 is ignored by P2. We must show that the value
v is eventually dislodged from P2, thereby allowing the current needuid packets
an opportuni ty to reach P2. So suppose that v is never dislodged. Then fairness
for P2 implies that /:'2 sends infinitely many ("accept", u, v) packets. Then the
channel liveness condition implies that infinitely many of these arrive at P1, and
the code of P1 implies that each of these causes a ("cleanup", u) packet to be
sent. Again by channel liveness, eventually one of these ("cleanup", u) packets
must arrive at P2. This causes v to become dislodged.

But things can get more complicated than this. Note that after v is dislodged,
it is possible for P2 to acquire another value of uid-v that is also not the current
value at P1. This can happen if/:'1 receives an old needuid packet. But then the
same argument as above shows that this value of uid-v is also dislodged. This
can happen any number of times, but since we have assumed that the channels
permit only finite duplication, it can happen only finitely many times before a
current needuid packet finally arrives at P2. [-7

728 22. DATA LINK PROTOCOLS

E v e n t u a l qu iescence . An important property of the FivePacketHandshake
protocol in practice is that in case there are only finitely many SEND, CRASH,
and RECO VER events, eventually both processes reach and remain in states that
are the same as their initial states, except for the used sets. Informally speaking,
the protocol eventually "forgets" everything that has happened so far. This
means that no memory needs to be reserved for the use of this protocol when
it is not actively processing messages from U1 to U2. In practice, this allows
the same pair of processes in a network to simulate the FivePacketHandshake
protocol in parallel for a very large number of distinct pairs (U1, U2) of users.
(The instances of the protocol are combined using I /O automaton composition
at each process.) If at any time only a small number of pairs (U1,/-/2) are actively
engaged in communication, then the total amount of required memory for all the
parallel executions of FivePacketHandshake is reasonably small.

F in i t e U I D sets . In practice, the number of available UIDs is very large, but
it is not infinite as we have been assuming. For example, UIDs can be chosen to
be successively increasing integers modulo n, for some very large number n. This
"finite version" of the protocol works correctly (and in fact, its correctness can be
proved via a simulation relation relating it to the ordinary FivePacketHandshake
protocol), provided that by the time the UIDs "wrap around" to reuse a value
u, any old packets carrying the same UID u have already been eliminated from
the system. It may be possible to assert this in a practical setting, because of
known limits on the message-delivery time, local processing time, and rate of
submission of high-level messages, or because of an explicit policy of discarding
old packets.

22.6 Bibliographic Notes

The ISO layered communication architecture is described in [54, 290, 273]. The
Stenning protocol is due to Stenning [270]. The ABP was first presented by
Bartlett, Scantlebury, and Wilkenson [42]. Besides being an interesting and
useful protocol on its own, the ABP has served as a test case for protocol ver-
ification techniques. Correctness proofs for the ABP appear, for example, in
[177, 59, 229, 38, 146, 260, 280].

The simple impossibility result for reordering and duplication is derived from
the work of Wang and Zuck [284]. The Probe protocol was developed by Afek,
Attiya, Fekete, Fischer, Lynch, Mansour, Wang, and Zuck [4], using ideas from
an earlier Probe protocol by Afek and Gafni [5]. An earlier protocol to solve
the same problem, but without the modularity presented here, was developed by

22.7. E X E R C I S E S 729

Attiya, Fischer, Wang, and Zuck [23]. Afek et al. [4] also proved the impossibility
result of Theorem 22.11. Mansour and Schieber [220], Wang and Zuck [284], and
Tempero and Ladner [278, 277] proved related impossibility results.

The nontrivial impossibility result for the setting with crashes, Theorem 22.14,
is due to Lynch, Mansour, and Fekete [206] and, independently, to Spinelli [268].
The two results are combined into a single paper [112]. Spinelli [268] also proved
a number of other results about the implementability of reliable communication.
Baratz and Segall [41] showed how to tolerate crashes using a very small amount
of stable data and also conjectured the impossibility result for the case without
stable data. Attiya, Dolev, and Welch [21] proved related impossibility results.

The FivePacke tHandshake protocol is one of a series designed by Belsnes
[44]; the protocols in the series guarantee stronger correctness conditions and
tolerate successively stronger types of faulty behavior on the part of the channels
as additional packets are added to the exchange. The FivePacke tHandshake pro-
tocol is the standard protocol for setting up network connections, used in TCP,
ISO TP-4, and many other transport protocols. A complete correctness proof
for a generalized version of this protocol, plus a proof of another protocol that
uses timing, has been carried out by Lampson, Lynch, and S0gaard-Andersen
[188, 190, 264].

22.7 E x e r c i s e s

22.1. Prove Lemma 22.1.

22.2. Show the existence of a simulation relation from the Stenn ing protocol
using channels A1,2 and A2,1 from Example 14.1.2 to F, the corresponding
universal reliable FIFO channel. Specifically, if s and u are states of the
Stenn ing protocol and F, respectively, then we define (s, u) E f exactly if
the following are true:

(a) If s . tagl = s. tag 2 then u.queue is obtained by first removing the first
element a of s .buf fer l , then appending the "reduced" buffer1 at the end
of s. buffer 2.

(b) Otherwise, u.queue is obtained by appending s .buf fer I at the end of

s. buffer 2.

Prove that f is a simulation relation.

22.3. Use the results of Exercise 22.2 to prove Lemma 22.2. In particular, use the
simulation and an execution correspondence to prove the fairness property.

3Lemma 22.1 implies that s.buffer 1 is nonempty in this case.

730 22. DATA LINK PROTOCOLS

22.4. Prove Theorem 22.3.

22.5. Consider the Stenning protocol with the channels that are like the ones
considered in Section 22.2 but that allow infinite duplication. That is,
the code for automaton A in Example 14.1.2 is modified by removing the
finiteness restriction on the effect of the send action.

(a) Show that the protocol no longer works correctly, in particular, that
it violates the fairness of the reliable FIFO channel it is supposed to
be implementing.

(b) Show how to strengthen the liveness conditions on the channels slightly
to restore the correctness of the Stenning protocol.

22.6. Prove Lemma 22.4.

22.7. Prove that f in the proof of Lemma 22.5 is a simulation relation.

22.8. Prove Theorem 22.7.

22.9. Design a generalized version of the ABP that uses tags that are integers
rood k, k >_ 2, instead of integers mod 2. Your new protocol should still use
the same (FIFO) channels as ABP and should still implement F. However,
in your new protocol, P1 should be able to send the first p messages at
the front of its buffer while waiting for an acknowledgment for the first
message. In terms of k, what is the largest value of p that you can achieve?

22.10. Show that the ABP still works if the channels are permit ted unlimited
duplication of messages. The channels still cannot reorder messages, and
the losses are limited by the WLL condition.

22.11. Is Theorem 22.8 still true if the channels are constrained to make at most
k duplicates of any low-level message, for some known bound k? We still
assume that the channels do not lose messages, but are allowed to reorder
them arbitrarily. Give either an impossibility proof or an algorithm.

22.12. Fill in the details of the proof of Lemma 22.9. In particular, give a care-
ful definition of the cause function and show that it satisfies the required
properties for the I1,2 specification.

22.13. Suppose that Layer 1 of the Probe protocol is modified by adding the line

"pending := pending- 1" to the effect of the receive(re)l,2 action. Is the
resulting protocol still correct? Prove that it is or give a counterexample.

22.7. EXERCISES 731

22.14. Prove the fact used in the proof of Claim 22.12, namely that any finitely

consistent execution of P1 x P2 can be extended to a fair, consistent execu-

tion in such a way that no new SEND1,2 events occur and all new receive1,2
events are caused by new send1,2 events.

22.15. Strengthen the result of Theorem 22.11 to include a lower bound on the

rate of growth of the best-case number of low-level messages needed to

deliver successive high-level messages.

22.16. Suppose that specification B of Section 22.5.2 is weakened so that some

messages sent after the last RECO VER are allowed to be lost. However, if
there are only finitely many CRASH and RECOVER events, then all mes-

sages after the first k that are sent after the RECOVER must be delivered.
As before, no duplication is permitted, but reordering is allowed.

Using the same channel specifications Q1,2 and Q2,1 that are used in Sec-
tion 22.5.2, either extend the impossibility result in Theorem 22.14 to this

weaker specification or devise an algorithm that solves the problem.

22.17. Research Question: Answer the same question as in Exercise 22.16, but this
time weaken the specification B some more, as follows. This time, if there

are only finitely many CRASH and RECOVER events, then, eventually,
all messages that are sent must be delivered.

22.18. Prove that the FivePacketHandshake protocol does not reorder or duplicate

messages.

22.19. Construct an execution of the FivePacketHandshake protocol in which the
second type of ack packet, produced when P2 receives an old send message,

is needed to dislodge a UID from P1.

22.20. Give a careful proof of the required liveness property of the FivePacket-
Handshake protocol. That is, prove that any message sent after the last

RECOVER event must eventually be delivered to U2.

22.21. Consider the FivePacketHandshake protocol in case there are only finitely
many SEND, CRASH, and RECOVER events. Prove that, in this case,

eventually both processes reach and remain in states that are the same as

their initial states, except for the used sets.

22.22. Design an efficient algorithm to implement reliable FIFO communication

between two users, in terms of a network based on an arbitrary undirected
graph. Assume that there is a process at each node of the graph, as usual,
and a reliable FIFO send/receive channel on each edge.

This Page Intentionally Left Blank

Part III

Partially Synchronous
Algorithms

The final part of this book consists of Chapters 23-25. These chapters con-
tain algorithms and lower bound results for the partially synchronous model, in
which system components have some information about timing, although not
complete information as they do in the synchronous model. Such partial infor-
mation can provide a realistic model of the timing knowledge that is available in
real distributed systems.

As usual, the first chapter, Chapter 23, contains our formal model. Then there
are only two algorithm chapters: Chapter 24 on mutual exclusion in partially
synchronous shared memory systems and Chapter 25 on consensus in partially
synchronous network systems. These chapters represent the beginnings of what
is likely to become an interesting new part of the theory of distributed algorithms.

This Page Intentionally Left Blank

Chapter 23

Modelling V: Partially
Synchronous System Models

The final three chapters of this book comprise a short introduction to the study of
partially synchronous, or timing-based, distributed algorithms. Recall that Part I
(Chapters 2-7) examined synchronous distributed algorithms, while Part II
(Chapters 8-22) dealt with asynchronous distributed algorithms. It turns out
that there is an interesting class of models and algorithms between these two
extremes, which we call partially synchronous. In a partially synchronous sys-
tern, the components have some information about time, although the information
might not be exact. For example, processes in a partially synchronous network
might have access to almost-synchronized clocks, or might know approximate
bounds on process step time or message-delivery time.

Partially synchronous models are probably more realistic than either com-
pletely synchronous or completely asynchronous models, since real systems
typically do use some timing information. However, the theory of partially syn-
chronous systems is not nearly so well developed as the theories of synchronous
and asynchronous systems. The ideas that we present here are only the beginning
of what we think will be a large amount of interesting research on the foundations
of timing-based computing.

In this chapter, we give an introduction to models and proof methods for
timing-based distributed algorithms. We begin in Section 23.1 by presenting
a timed automaton model that we call the MMT model after its discoverers,
Merritt, Modugno, and Tuttle. The MMT model is a simple variant of the I /O
automaton model that is adequate for modelling most timing-based algorithms.
In order to use certain basic proof methods-- in particular, the invariant and
simulation methods--wi th this model, we find it useful to be able to transform

736 23. MODELLING V: PARTIALLY SYNCHRONOUS MODELS

each MMT automaton into another type of au tomaton that we call a general
timed automaton (GTA). We present the GTA model in Section 23.2, along with
the transformation from MMT au tomata to GTAs. In Section 23.3, we discuss
verification techniques that can be used with these models.

In Chapters 24 and 25, we give preliminary results about mutual exclusion
and consensus in the partially synchronous setting.

23.1 M M T T i m e d A u t o m a t a

An MMT timed automaton model is obtained by simply replacing the fairness
conditions of the I /O au tomaton model with lower and upper bounds on time.
Notice that replacing the fairness conditions with just upper bounds would not
add any interesting power to the model, because upper bounds alone do not
restrict the set of executions that are produced by an I /O automaton. (In fact,
throughout the "asynchronous" chapters of the book, we have already been
associating upper bounds with tasks of an algorithm, in order to analyze time
complexity. The usefulness of this analysis depends on the fact that these bounds
do not restrict the algorithm's behavior.) However, introducing both lower and
upper bounds does give extra power, because this allows us to restrict the set
of executions. Indeed, for many timing-based algorithms, correctness depends
crucially on the restrictions on executions that are imposed by the time bounds.

23 .1 .1 B a s i c D e f i n i t i o n s

We start with an I /O au tomaton A having only finitely many tasks. A boundmap
b for A is a pair of mappings, lower and upper, that give lower and upper bounds
for all the tasks. For each task C, we require that lower(C) and upper(C) must
satisfy the conditions 0 < lower < co, 0 < upper(C) < oc, and lower(C) <
upper(C). That is, the lower bounds are not allowed to be oc, the upper bounds
are not allowed to be 0, and the lower bounds cannot be greater than the upper
bounds. An MMT automaton is an I /O automaton A together with a boundmap
for A.

Now we define how an MMT automaton executes. A timed execution of an
MMT automaton B - (A, b) is defined to be a finite sequence c~ - so, (7c1, t l) ,

Sl, (7c2, t2), . . . , (Tcr,tr), Sr or an infinite sequence ct -- So, (7cl,tl), Sl, (7c2, t2),
. . . , (Tr~,t~), s ~ , . . . , where the s's are states of the I /O au tomaton A, the 7o's
are actions of A, and the t 's are times in R >~ We require that the sequence
so, 7Cl, S l , . . . - - t h a t is, the sequence a with the times ignored--be an ordinary
execution of I /O au tomaton A. We also require that the successive times t~ in c~

23.1. M M T T I M E D A U T O M A T A 737

be nondecreasing and that they satisfy the lower and upper bound requirements

expressed by the boundmap b.

Wha t does it mean to satisfy the lower and upper bound requirements? To

say this formally, we define r to be an initial index for a task C provided that

C is enabled in s~ and one of the following is true:

1 . r --- 0 .

2. C is not enabled in 'dr_ 1.

3. 7 c r E C .

The initial indices represent the points at which we begin to measure the time

bounds. Then, for every initial index r for a task C, we require that the following

conditions hold. (We let to = 0.)

U p p e r b o u n d : If there exists k > r with tk > t~ + upper(C), then there exists

k ~ > r with tk, <_ t~ + upper(C) such that either 7rk, C C or C is not enabled
in sk,.

L o w e r b o u n d : There does not exist k > r with tk < t~ + lower(C) and 7rk C C.

The upper bound condition says that, from any initial index for a task C, if t ime

ever passes beyond the specified upper bound for C, then in the interim, either

an action in C must occur, or else C must become disabled. The lower bound

condition says that, from any initial index for C, no action in C can occur before

the specified lower bound.

We denote the set of t imed executions of B by texecs(B). A state is said to

be reachable in B if it is the final state of some finite t imed execution of B.

The upper and lower bound properties are safety properties. We are also

interested in one basic liveness property: we say that a t imed execution is ad-
missible provided that the following condition is satisfied:

A d m i s s i b i l i t y - If t imed execution a is an infinite sequence, then the t imes of

the actions approach oc. If a is a finite sequence, then in the final state of

a, if task C is enabled, then upper(C) = oc.

The admissibi l i ty condition says that t ime advances normally and that processing

does not stop if the au tomaton is scheduled to perform some more work. We

denote the set of admissible t imed executions of B by atexecs(B). In this book,

we will focus mainly on the admissible t imed executions.

Note that in an admissible t imed execution, an upper bound of oc for a

task C does not impose any requirement that actions in task C ever occur.

738 23. MODELLING V: P A R T I A L L Y S Y N C H R O N O U S MODELS

This is somewhat different from what we did in the asynchronous chapters:
In Section 8.6, we defined another notion of t imed execution which specified
that all tasks satisfied the fairness condition and, in addition, that some of
them satisfied upper time bounds. We used this combined notion in analyzing
time complexity. Now we are dropping the fairness conditions entirely and just
considering time bounds. It is possible to define a version of the MMT model
in which some tasks have time bounds and some have fairness conditions, but
we will not do this formally in this book. Instead, we will discuss the issue
of combining time bounds and fairness conditions informally, when it arises in
particular algorithms.

Some sort of admissibility condition is needed in any useful model for timing-
based computing, in order to rule out some rather strange behavior, such as an
automaton performing infinitely many outputs in a finite amount of time. 1 Al-
though such executions make some formal sense, they are meaningless in reality
and hard to think about. A good model for t imed systems should make it
possible to avoid thinking about this issue.

In order to describe the external behavior of MMT automata, we define timed
traces. The timed trace of a t imed execution c~ of B, denoted by ttrace(c~), is
the subsequence of a consisting of all the external actions, each paired with
its associated time. The admissible timed traces of B, which we denote by
attracts(B), are the timed traces of admissible t imed executions of B.

MMT au tomata can be used for describing many types of components in
timing-based systems. They are especially good for modelling computer sys-
tems at a low level, since the task structure and associated time bounds provide
natural ways of modelling physical system components and their speeds. How-
ever, they are somewhat less well suited for describing systems at a high level
or for providing correctness specifications. This is because their rather stylized
conventions about tasks and bounds do not always provide the best "language"
for expressing the desired behavior.

E x a m p l e 23.1.1 C h a n n e l M M T a u t o m a t o n

We define an MMT a u t o m a t o n Di,j -- (Ci,j , b) based on the universal
reliable FIFO send/receive channel automaton Ci,j of Example 8.1.1.
The boundmap b of Di,j imposes an upper bound of d, where d is
some fixed positive real, on the delivery time for the oldest message
in the channel. It does not impose any lower bound. Di,j is a formal
description of a channel we have used frequently in the chapters

1This behavior is sometimes called Zeno behavior, in reference to Zeno's paradox. In Zeno's
paradox, the runner Achilles takes infinitely many steps, each successively shorter, approaching
closer and closer to his goal (a tortoise) but never quite reaching it.

23.1. M M T TIMED A U T O M A T A 739

on asynchronous algorithms in order to carry out time performance
analysis.

Thus, if rec denotes the single task of Ci,j, then we define b to be
the pair (lower, upper), where lower(rec) = 0 and upper(rec) = d, for
some fixed d C R +. All of the following are admissible t imed traces

of Di,j :

(send(1)i,j, 0), (send(2)i,j, 0), (receive(1)i,j, d), (receive(2)i,j, 2d)

(send(1)i,j, 0), (send(2)i,j, 0), (receive(1)i,j, 0), (receive(2)i,j, O)

(send(1)i,j, 0), (receive(1)i,j, d), (send(2)i,j, d), (receive(2)i,j, 2d),
(send(3)i,j, 2d), (receive(3)i,j, 3d) , . . .

On the other hand, the following are not admissible t imed traces of

Di,j "

(send(1)i,j, 0), (send(2)i,j, 0), (receive(1)i,j, d)

(send(1)i,j, 0), (receive(1)i,j, 2d)

(send(1)i,j, 0), (receive(1)i,j, d), (send(2)i,j, d), (receive(2)i,j, d),
(send(3)i,j, d), (receive(3)i,j, d), . . .

The first of these three sequences fails to be an admissible t imed
trace because it is finite, yet the rec task is enabled at the end. In
general, any admissible timed execution that contains at least k send
inputs must also contain at least k corresponding receive outputs,
because the upper bound condition and the admissibility condition
together imply the usual fairness condition for the rec task. The sec-
ond sequence fails to be an admissible t imed trace because it violates
the upper bound condition. The third sequence fails because it vio-
lates the admissibility condi t ion-- i t does not allow time to increase
beyond d, even though an infinite amount of activity occurs.

E x a m p l e 23 .1 .2 T i m e o u t M M T a u t o m a t o n

We define an MMT automaton P2 that awaits the receipt of a message
from another process P1 and, if no such message arrives within a
certain amount of time, performs a timeout action. P2 measures the
elapsed time by counting a fixed number k _> 1 of its own steps,
which are assumed to observe known lower and upper bounds t~l and

~2, 0 ~ ~1 _~ ~2 ~ CX:). Its timeout is performed at most time t~ after
count reaches 0. Notice that we write the lower and upper bounds for
each task in the form of a closed interval--we will use this convention
frequently.

740 23. M O D E L L I N G V: P A R T I A L L Y S Y N C H R O N O U S M O D E L S

P2 a u t o m a t o n :

Signature:

Input:
receive(m) 1,2, m E M

Output:
timeout

Internal:
decrement

States:
count E N, initially k
status C {active, done, disabled}, initially active

Transitions:

decrement
Precondition:

status = active
count > 0

Effect:
count := c o u n t - 1

receive(m)1,2
Effect:

if status = active then
status := disabled

Tasks and bounds:
{ decrement }, bounds [el, g2]
{timeout}, bounds [0, g]

timeout
Precondition:

status -- active
count = 0

Effect:
status := done

In an admiss ible t imed execut ion, P2 s imply decreases its count

unti l coun t = 0 or unt i l a rece ive (m) occurs to disable the t imeout .

After count reaches 0, P2 per forms a t i m e o u t (provided t h a t no re-

ceive occurs previously) . It is not ha rd to see tha t , in any t imed

execut ion of /)2 , if a t i m e o u t occurs, t hen it occurs at some t ime in

the interval [kgl, kg2 + g]. Moreover , if a t i m e o u t occurs, t hen there

is no previous receive. Finally, in an admiss ib le t imed execut ion of

P2, if no receive occurs, t hen a t i m e o u t does in fact occur.

E x a m p l e 2 3 . 1 . 3 T w o - t a s k r a c e

We define a s imple M M T a u t o m a t o n Race with two tasks, m a i n and

in t (in te r rup t) . The m a i n t ask inc rements a counter coun t as long as

a Boolean f lag is false. T h e in t t a sk s imply sets f lag := t rue. W h e n

f lag = true, the m a i n t a sk dec remen t s count unti l it reaches 0, t h e n

23.1 . M M T T I M E D A U T O M A T A 741

repor ts complet ion. The m a i n task has associated bounds of ~1 and

~2, 0 % ~1 _~ ~2 % 00, while the i n t task jus t has an upper bound of t~.

R a c e a u t o m a t o n :

Signature:

Input: Internal:
none increment

Output: decrement
report set

States:
count E N, initially 0
flag, a Boolean, initially false
reported, a Boolean, initially false

Transitions:

increment set
Precondition: Precondition:

flag = false]tag = false
Effect: Effect:

count := count + 1 flag := true

decrement report
Precondition: Precondition:

flag = true flag = true
count > 0 count = 0

Effect: reported = false
count := c o u n t - 1 Effect:

reported := true

Tasks and bounds:
main = {increment , decrement, report}, bounds [t~l, t~2]
int = {set}, bounds [0, 6]

In every admiss ible t imed execut ion of Race , a r e p o r t eventual ly oc-

curs. In Section 23.3.3, we will sketch a proof that this r e p o r t must

occur by t ime t~ + t~2 + Lg, where L - t~2/t~l. (L can be regarded as a

measure of the t i m i n g u n c e r t a i n t y in the system.)

2 3 . 1 . 2 O p e r a t i o n s

We define compos i t ion and hiding operat ions for M M T automata , analogous to
those for I / O au tomata .

742 23. MODELLING V: P A R T I A L L Y SYNCHRONOUS MODELS

Composit ion. MMT automata can be composed in much the same way as
ordinary I /O automata, by identifying actions having the same name in differ-
ent automata. However, unlike what we did for I /O automata, we only define
composition for a finite collection of MMT automata. This is because an MMT
automaton is only allowed to have a finite number of tasks.

We define a finite collection of MMT au tomata to be compatible if their
underlying I /O au tomata are compatible, according to the definition of compat-
ibility in Section 8.2.1. Then the composition (A, b) - 1-I~EI(A~, b~) of a finite
compatible collection of MMT au tomata {(A~, b~)}~E~ is the MMT automaton
defined as follows:

�9 A - I I i E I Ai, that is, A is the composition of the underlying I / 0 au tomata
Ai for all the components.

�9 For each task C of A, b's lower and upper bounds for C are the same
as those of bi, where Ai is the unique component I /O automaton having
task C.

As for I /O automata , we sometimes use the infix operation symbol x to denote
composition. For instance, if I - {1 , . . . , n}, then we sometimes write I-IiEI Ai
a s A 1 x . - . x A n .

E x a m p l e 23.1 .4 C o m p o s i t i o n of M M T automata

We consider the composition of three MMT automata. The first is
a process P1 that might be alive or dead (which one is determined
nondeterministically by the initial state). If it is alive, it sends mes-
sages from a fixed message alphabet M periodically, with intervening
times at most t~ :> 0, on an outgoing channel.

P1 automaton:

Signature:

Input:
none

Output"
send(m) 1,2, m E M

States:
status E {alive, dead}, initially arbitrary

Transitions:

send(re)l,2
Precondition:

status = alive
Effect:

none

23.1. M M T TIMED A U T O M A T A 743

Tasks and b o u n d s :
{send(m)l,2 :m E M}, bounds [0,6]

The other two automata are channel D1,2, as defined in Example
23.1.1, and timeout process P2, as defined in Example 23.1.2. If
k~l ~ ~-~-d, then in any admissible timed execution, the composition
performs a timeout exactly if P1 is dead. Moreover, this timeout is
performed no later than time kt~2 + t~.

We close this subsection with three basic results analogous to Theorems 8.1-
8.3. These relate the admissible timed executions and admissible timed traces of
a composition to those of the component MMT automata. The first says that an
admissible timed execution or admissible timed trace of a composition projects
to yield admissible timed executions or admissible timed traces of the component
automata.

Let {(Ai, bi)}i~I be a compatible collection of MMT automata and let (A, b) -
l-Iici(Ai, bi). Let Bi denote the MMT automaton (Ai, bi) for each i and let B
denote (A, b). For any timed execution c~ = so, (Trl,tl), S l , . . . of B, let c~[Bi
be the sequence obtained by deleting each pair (Try, t~), s~ for which 7r~ is not
an action of Ai, and replacing each remaining s~ by (s~)i, that is, automaton
Ai's piece of the state s~. Also, for any timed trace/3 of B (or, more generally,
any sequence of actions paired with times), let /3[Bi be the subsequence of/3
consisting of all the pairs containing actions of Ai.

T h e o r e m 23.1 Let {Bi}icI be a compatible collection of M M T automata and
let B = l-IicI Bi.

1. I f a e atexecs (B) , then a l Bi e atexecs (Bi) for every i C I.

2. I f ~ e attraces (B), then/3[Bi e attraces (Bi) for every i e I.

P r o o f . The proof is left as an exercise. [-7

The other two are converses of Theorem 23.1. The next theorem says that,
under certain conditions, admissible timed executions of component MMT at-
tomata can be pasted together to form an admissible timed execution of the
composition.

T h e o r e m 23.2 Let {Bi}iCI be a compatible collection of M M T automata and
let B = l-IicI Bi. Suppose c~i is an admissible timed execution of Bi for every
i C I and suppose/3 is a sequence of (action, time) pairs, where all the actions

744 23. M O D E L L I N G V: P A R T I A L L Y S Y N C H R O N O U S M O D E L S

in/3 are in ext (A) , such that /3 Bi - ttrace (c~i) for every i C I. Then there is
an admissible t imed execution c~ of B such that/3 - ttrace(c~) and c~i - c~]Bi for
every i C I.

Proof . The proof is left as an exercise. D

The final theorem says that admissible timed traces of component MMT
automata can also be pasted together to form an admissible timed trace of the
composition.

T h e o r e m 23.3 Let {B i} ic I be a compatible collection of M M T automata and
let B - l-Ii~I Bi. Suppose /3 is a sequence of (action, t ime) pairs, where all
the actions in /3 are in ext(A) . I f /3]Bi C attraces(Bi) for every i E I, then
/3 E attraces (B) .

Proof . The proof is left as an exercise. K]

Hid ing . The hiding operation for MMT automata is defined in terms of the
hiding operation for ordinary I /O automata, as given in Section 8.2.2. Namely,
if B - (A , b) i s an MMT automaton and �9 c out(A) , then h i d e ~ (B) i s the
MMT automaton (h ide~(A) ,b) . As for I /O automata, this operation simply
reclassifies output actions as internal.

23.2 Genera l T i m e d A u t o m a t a

The timing restrictions in MMT automata are specified by means of upper and
lower bound conditions imposed on executions. An alternative approach is to
encode timing restrictions directly into the states and transitions of the automa-
ton. This approach has the advantage that it allows some important state-based
proof methods, such as the methods of invariant assertions and of simulation
relations, to be used to reason about correctness and timing properties of timed
systems.

In this section, we describe a second timed automaton model, which we call
the general t imed automaton (GTA) model. General timed automata have no
"external" timing restrictions--all their time constraints are explicitly encoded
into their states and transitions. As we will show, MMT automata can be viewed
as a special case of general timed automata, by encoding the timing restrictions.
There are GTAs that are not MMT automata, however; in fact, there are some
GTAs that exhibit behavior that cannot be exhibited by any MMT automaton.

23.2. GENERAL TIMED A U T O M A T A 745

23.2.1 Bas ic Def in i t ions

We assume a universal set of actions, including special time-passage actions v(t),
t C R +. The t ime-passage action u(t) denotes the passage of time by the amount
t. A timed signature S is a quadruple consisting of four disjoint sets of actions:
the input actions in(S), the output actions out(S), the internal actions int(S),
and the t ime-passage actions. We define

�9 the visible actions, vis(S), to be the input and output actions, i n (S)U
o t(s)

�9 the external actions, ext(S), to be the visible and time-passage actions,
vis(S) U {L, (t) ' t E R +}

�9 the discrete actions, disc(S), to be the visible and internal actions, vis(S)U
int(S)

�9 the locally controlled actions, local(S), to be the output and internal ac-
tions, out(S) U int(S)

�9 acts(S) to be all the actions of S

A GTA A consists of the following four components:

�9 sig(A), a t imed signature

�9 states (A), a set of states

�9 start(A), a nonempty subset of states(A) known as the start states or
initial states

�9 trans(A), a state transition relation,
acts (sig (A)) x states (A)

where trans(A) C states (A) x

Unlike I /O automata and MMT automata, GTAs do not have tasks(A) compo-
nents. As before, we use acts(A) as shorthand for acts(sig(A)), and similarly
in(A), and so on. There are two simple axioms that A is required to satisfy:

AI" If (s,L,(t), s') and (s', u(t ') , s") are in trans(A), then (s, u(t + t'), s") is in
trans(A).

A2" If (s, L,(t), s') E trans(A) and 0 < t' < t, then there is a state s" such that
(s, u(t ') , s") and (s", L,(t - t '), s') are in trans(A).

746 23. MODELLING V: PARTIALLY SYNCHRONOUS MODELS

Axiom A1 allows repeated time-passage steps to be combined into one step,

while Axiom A2 is a kind of converse to A1 that allows a time-passage step to
be split in two.

A timed execution fragment of a GTA, A, is defined to be either a finite

sequence ct - so, 711, 81, 7r2, . . . , 7 r r , 8 r or an infinite sequence a - so, 7i1, 81~ 7r2,

. . . , 7r~, s~, . . . , where the s's are states of A, the 7r's are actions (either input,

output, internal, or time-passage) of A, and (sk, 7rk+l, Sk+l) is a transition of A

for every k. Note that if the sequence is finite, it must end with a state. A timed

execution fragment beginning with a start state is called a timed execution.
If a is any timed execution fragment and 7r~ is any discrete action in a,

then we say that the time of occurrence of 7r~ is the sum of all the reals in the
time-passage actions preceding 7r~ in a. We define a timed execution fragment

to be admissible provided that the sum of all the reals in the time-passage

actions in a is oc. We denote the set of admissible timed executions of A by

atexecs(A). We will mainly consider the admissible timed executions, though

we will also sometimes consider the finite timed executions, that is, those that
are finite sequences. A state is said to be reachable in A if it is the final state of
a finite timed execution of A.

The timed trace of a timed execution fragment a is the sequence of visible

events in a, each paired with its time of occurrence. The admissible timed traces
of A, which we denote by attraces(A), are the timed traces of admissible timed

executions of A. Note that an admissible timed trace of A can be finite, even

though it is derived from an (infinite) admissible timed execution.

Because of Axioms A1 and A2, there is not much difference between timed
execution fragments that differ only by splitting and combining time-passage

steps. So we define an equivalence relation on timed execution fragments that

says that they are the same except for time-passage. Namely, we say that

one timed execution fragment a is a time-passage refinement of another timed
execution fragment a~ provided that a and c~ ~ are identical except for the fact

that , in a, some of the time-passage steps of c~ ~ are replaced with finite sequences

of time-passage steps, with the same initial and final states and the same total
amount of time-passage. We say that timed execution fragments a and a ~ are

time-passage equivalent if they have a common time-passage refinement.

Example 23.2.1 A general t imed a u t o m a t o n

We describe a general timed a u t o m a t o n D~,j that corresponds closely

to the MMT a u t o m a t o n Di,j of Example 23.1.1. In particular, it has

the same set of admissible timed t races. D~,j simply encodes the tim-

ing restriction of Did--the upper bound of d on the time to deliver
the oldest message in the channel-- into its states and transitions. It

23.2. G E N E R A L T I M E D A U T O M A T A 747

does this by keeping explicit track of the current time, in a variable

now, and by keeping track of the latest time at which the next message

delivery can occur, in a variable last. Note that the values of last

represent absolute times, not incremental times.

We describe D~,j using the same sort of precondition-effect nota-

tion that we have been using for other automata, only now we include

code for the time-passage actions as well as for the discrete actions.

When a send event occurs, the queue is modified as before, but

now, in addition, if there was no previously scheduled message de-

livery, the last variable is set to now + d to reflect the requirement

that the next message delivery must occur within time d. When a

receive occurs, the last bound is reset to now + d if the queue is still

nonempty after the event, to reflect the time requirement for the next
message delivery; on the other hand, if the queue is emptied, then

last is set to oc to reflect the fact that there is no scheduled message
delivery.

The code for the time-passage actions u(t) is writ ten in much the

same way as that for other actions. The effect of u(t) is simply to
increase the current time now by t. Note that r,(t) also includes a

nontrivial precondition" now + t < last. This says that time is not

allowed to pass beyond the scheduled deadline for the next message
delivery. This may at first seem somewhat s t range- -a f te r all, how

can a program or machine block the passage of time? But this style of
specification for time-passage actions is just a formal way of saying

that the automaton is guaranteed to perform some action before a

designated amount of time has elapsed.

!
Di, j a u t o m a t o n :

Timed Signature:

Input: Internal:
send(m)i,j, m E M none

Output: Time-passage:
~ i v ~ (~ n) ~ , j , m e M ~(t) , t �9 R +

States:
queue, a FIFO queue of elements of M, initially empty
now C R ->~ initially 0
last E R + t2 {~}, initially oc

748 23. M O D E L L I N G V: P A R T I A L L Y S Y N C H R O N O U S M O D E L S

Trans i t ions :

send(m)i,y
Effect:

add m to queue
if]queue I = 1 then

last := now + d

receive(m)~,j
Precondition:

m is first on queue
Effect:

remove first element of queue
if queue is nonempty then

last := now + d
else last := cx~

.(t)
Precondition:

now + t ~ last
Effect:

now : = n o w + t

It should not be hard to see tha t D~,j has the same set of ad-

missible t imed traces as Di, j . We leave it as an exercise to show

this.

Example 23.2.1 should give you an idea of how M M T a u t o m a t a can be

regarded as a special case of general t imed au tomata : the t ime requirements

specified by the b o u n d m a p b of an M M T a u t o m a t o n (A, b) can be encoded into

the s tates and t ransi t ions of a corresponding GTA. This can be done using last

s ta te components to keep t rack of the upper bound requirements , plus addi t ional

f i r s t s ta te components to keep t rack of the lower bound requirements . We give

the detai led const ruct ion in Section 23.2.2.

The GTA model is more general t han the M M T a u t o m a t o n model, however.

The next example contains another channel expressed as a GTA; it tu rns out

tha t this one cannot be expressed as an M M T au tomaton .

E x a m p l e 23 .2 .2 A n o n - M M T g e n e r a l t i m e d a u t o m a t o n

We describe another GTA, D~t,j, t ha t represents a reliable F IFO chan-

nel, but this t ime the t ime bound of d is required for every message

in the channel, not only the oldest. This time, the message-delivery

deadlines are stored along with the messages on the queue instead

of in separate last components . The handl ing of the deadlines is

similar, however.

23.2. GENERAL TIMED AUTOMATA 749

p! Dis a u t o m a t o n :

Timed Signature:

Input:
s e n d (r n) i , j , m C M

Output :
rece ive (m)~ , j , m E M

Internal:
none

Time-passage:
. (t) , t c R +

States:
queue, a F I F O queue of elements of M x R +, initially empty
n o w E R ->~ initially 0

Transitions:

send(rn) i , j

Effect:
add (rn, n o w + d) to queue

r e c e i v e (m) i , j

Precondit ion:
(rn, t) is first on queue, for some t

Effect:
remove first element of queue

. (t)
Precondit ion:

if queue is nonempty then
n o w + t <_ t ' , where t' is the t ime

in the first pair of queue

Effect"
n o w " - n o w + t

We claim (and leave it as an exercise to show) that there is no

MMT automaton with the same set of admissible timed traces as

D:~j. This could be interpreted to mean that D:~j is not physically

implementable. However, as we have seen in earlier chapters, D~j can
be a convenient abstraction for use in analyzing the time complexity
of algorithms when we do not want to bother considering the pileups

of messages in the channels.

The next example shows an anomaly: a GTA that has no admissible timed

executions. Although this is a strange situation, there is nothing in the gen-
eral model that prevents this. For the special case of MMT automata (and
consequently for the GTAs that correspond to MMT automata as described in

Section 23.2.2), this anomaly does not occur. (See Exercise 23.1.) Additional

restrictions can be added to the GTA model to rule out this situation, but since
we will mainly focus in this book on algorithms that can be expressed by MMT
automata, we do not describe these restrictions here.

750 23. MODELLING V: PARTIALLY SYNCHRONOUS MODELS

E x a m p l e 23 .2 .3 A g e n e r a l t i m e d a u t o m a t o n w i t h no a d m i s s i b l e t i m e d
e x e c u t i o n s

Consider a "process automaton" A that sends the same message m
infinitely many times. However, successive sending times are closer
and closer together, approaching a time limit of 1.

A a u t o m a t o n :

Timed Signature:

Input: Internal:
none none

Output : Time-passage:
s e n d (m) v (t) , t E R +

States:
n o w E R ->~ initially 0
las t E R ->~ U {cx~}, initially 0

Transitions:

s e n d (m) ~ (t)

Precondition: Precondition:
n o w = las t n o w + t < las t

Effect: Effect:
las t " - n o w + 1-now n o w "-- n o w + t

2

In fact, things can be even worse--the definition of a GTA even allows timed
automata that have no time-passage steps at all!

The GTA model is not the most general model possible for timing-based
computing. For example, it has no features for expressing liveness properties
(except for admissibility). Liveness considerations are somewhat less important
in the timed setting than they are in the untimed setting, since many liveness
conditions (e.g., a condition saying that something eventually happens) can be
replaced by corresponding upper time bound conditions (e.g., a condition saying
that the event happens within time t). However, sometimes it is useful to be
able to express both time bounds and livencss conditions for the same system.

The GTA model is also not general enough to provide detailed descriptions
of hybrid systems--systems composed of analog physical components as well as
discrete computer components. However, the model is sufficient for our purposes
in this book.

23.2. G E N E R A L T I M E D A U T O M A T A 751

23.2.2 Transforming M M T Automata into General T imed
Automata

We have spoken of the general timed automaton model as a generalization of the

MMT timed automaton model. However, this is not formally true, because of
the different ways in which they specify timing restrictions: the MMT automaton

model uses boundmaps, while the GTA model encodes the restrictions into the
states and transitions. In order to view the MMT model as a special case of

the GTA model, we need to do some work. In this section, we show how to
transform any MMT automaton (A, b) into a naturally corresponding general
timed automaton A~= gen(A, b).

The construction is similar to the one used in Example 23.2.1 to obtain D~,j
from Di,j. That is, it involves building time deadlines into the state and not
allowing time to pass beyond those deadlines while they are still in force. We

also add new constraints on non-time-passage actions to express the lower bound
conditions.

Specifically, the state of the underlying I /O automaton A is augmented with

a now component, plus f irst(C) and last(C) components for each task C. The

f irst(C) and last(C) components represent, respectively, the earliest and latest
times at which the next action in task C is allowed to occur. The now, first, and
last components all take on values that represent absolute times, not incremental

times. The time-passage actions u(t) are also added.

The first and last components get updated in the natural way by the various
steps, according to the lower and upper bounds specified by the boundmap b.
The time-passage actions u(t) have an explicit precondition saying that time

cannot pass beyond any of the last(C) values; this is because these represent
deadlines for the various tasks. Restrictions are also added on actions in any

task C, saying that the current time now must be at least as great as the lower

bound f irst(C).
In more detail, the timed signature of A' = gen(A,b) is the same as the

signature of A, with the addition of the time-passage actions u(t), t C R +. Each

state of A ~ consists of the following components:

basic C states (A), initially a start state of A
now C R >~ initially 0
for each task C of A:

first(C) C R >~ initially lower(C) if C is enabled in state basic, otherwise 0
last(C) E R + U {o c}, initially upper(C) if C is enabled in basic, otherwise cx~

The transitions are defined as follows.

If 7r E acts(A), then (s, 7r, s') E trans(A') exactly if all the following conditions hold:

752 23. M O D E L L I N G V: P A R T I A L L Y S Y N C H R O N O U S M O D E L S

1. (s.basic, 7r, s'.basic) E trans(A).

2. s'. now - s. now.

3. For each C C tasks (A) ,

(a) If 7r C C, then s.first(C) <_ s.now.
(b) If C is enabled in both s.basic and s'.basic and 7r ~ C, then s.first(C) -

s'.first(C) and s.last(C) - s'.last(C).
(c) If C is enabled in s'.basic and either C is not enabled in s.basic or 7r C C,

then s'.first(C) - s.now + lower(C) and s'.Iast(C) - s.now + upper(C).

(d) If C is not enabled in s'.basic, then s'.first(C) - 0 and s'.last(C) - oc.

If 7r - ~,(t), then (s, 7r, s') C trans(A') exactly if all the following conditions hold:

1. s' . basic - s. basic.

2. s'. now - s. now + t.

3. For each C E tasks (A),

(a) s'.now <_ s.last(C).

(b) s'.first(C) - s.first(C) and s'.last(C) - s.last(C).

T h e o r e m 2 3 . 4 I f (A , b) is a n y M M T t i m e d a u t o m a t o n , t h e n g e n (A , b) is a

g e n e r a l t i m e d a u t o m a t o n . M o r e o v e r , a t t r a c e s (A , b) - a t t r a c e s (g e n (A , b)).

L e m m a 23 .5 T h e f o l l o w i n g ho ld in a n y reachable s ta te o f g e n (A , b) a n d f o r a n y

task C o f A .

1. n o w <_ l a s t (C) .

2. I f C is enabled, t h e n l a s t (C) < n o w + u p p e r (C) .

J. <_ +

4. f i r s t (C) <_ l a s t (C) .

Omit t ing trivial components . If some of the t iming requ i rements specified

by b are t r i v i a l - - t h a t is, if some lower bounds are 0 or some upper bounds are

o o ~ t h e n it is possible to simplify the a u t o m a t o n g e n (A , b) jus t by omi t t i ng

men t ion of these componen t s . We will do this in our examples .

Example 23.2.4 Transformed M M T a u t o m a t o n

Let (A, b) be the compos i t ion M M T a u t o m a t o n descr ibed in Ex am p le

23.1.4, composed of P1, P2, and the channel D1,2. We give explicit
code for the t r ans fo rmed M M T a u t o m a t o n A ' - g e n (A , b). As jus t

discussed, we omit t r ivial bounds . Thus, the only bounds we need to

incorpora te are the uppe r bounds for all tasks, plus the lower b o u n d

23.2. G E N E R A L T I M E D A U T O M A T A 753

for the decrementing task of P2. We use the following names for the
tasks: send for the unique task of P1, rec for the unique task of the
channel D1,2, and dec and t imeout for the two tasks of P2.

A ~ a u t o m a t o n :

T i m e d Signature:

Input :
none

Ou tpu t :

send(re)l,2, m E M
receive(m) 1,2, m E M
t imeout

Internal :
decrement

Time-passage :

~(t), t c R +

States:
status1 E {alive, dead}, ini t ial ly a r b i t r a r y
queue, a F I F O queue of e lements of M, ini t ial ly e m p t y
count2 C H, ini t ia l ly k
status2 E {active, done, disabled}, ini t ial ly active

now C R >~ ini t ia l ly 0
last(send) E R + U {cx~}, initially/~ if status = alive, otherwise o~
last(rec) e R + U {oc}, ini t ial ly oc
first(dec) E R ->~ ini t ia l ly t~l
last(dec) e R + U { ~ } , ini t ia l ly t~2
last(t imeout) C R + t2 {oc}, ini t ial ly o~

Transitions:

send(m)1,2
Precondi t ion :

status1 = alive
Effect:

add m to queue
last(send) := now +
if]queue] - 1 then

last(rec) := now -}- d

receive(m)1,2
Precondi t ion :

rn is first on queuc
Effect:

remove first e lement of queue
if status2 -- active then

status2 := disabled
if queue is n o n e m p t y then

last(rec) := now + d
else last(rec):= ec

first(dec) := 0
last(dec) := ec
last(t imeout) := oc

754 23. M O D E L L I N G V: P A R T I A L L Y S Y N C H R O N O U S M O D E L S

dec remen t t imeou t
Precondition: Precondition:

s t a t u s 2 - act ive status2 - act ive
count2 > 0 count2 - 0
now > f i rs t (dec) Effect"

Effect: status2 " - done
count2 " - count2 - 1 l a s t (t imeou t) := oc
if count2 ~ 0 then

f i r s t (dec) " - now + ~1 v (t)
last(dec) " - now + ~2 Precondit ion:

else now + t ~_ l a s t (s end)

f i r s t (d e c) ' - 0 now + t ~_ last (rec)
l a s t (d e c) ' - oc now + t ~_ las t (dec)

last(t imeou t) " - now + ~ now + t ~_ last (t imeou t)
Effect"

now : = n o w + t

23.2.3 Operations

C o m p o s i t i o n . We define a composition operation for general t imed automata ,
generalizing the composition operation we have already defined for MMT au-
tomata. First, we define a finite collection {Si}icI of timed signatures to be
compatible if for all i, j C I, i % j, we have

1. int(Si) A acts(Sj) = 0

2. () n out (Sj) = 0

We say that a collection of GTAs is compatible if their t imed signatures are
compatible.

The composition S - l-lie1 Si of a finite compatible collection of t imed sig-
natures {Si}ieI is defined to be the t imed signature with

�9 o u t (S) - - U i ~ I o u t (S i)

�9 i n t (S) = U i c i i n t (S i)

�9 i n (S) - U i ~ i i n (S i) - U i ~ i o u t (S i)

The composition A - I-[icI Ai of a finite compatible collection of GTAs
(A i } i E I is defined as follows: 2

2The M notat ion in the definition of s t a r t (A) and s t a t e s (A) refers to the ordinary Cartesian
product , while the 1-[notat ion in the definition of s ig (A) refers to the composit ion of t imed
signatures just defined. Also, we are here using the notat ion si to denote the i th component
of the s tate vector s.

23.2. G E N E R A L T I M E D A U T O M A T A 755

�9 sig(A) = HicI sig(Ai)

�9 s tates(A) = YIi~I s tates(Ai)

�9 s tar t (A) = I-Ii~I s tart (Ai)

�9 trans(A) is the set of triples (s, 7~, s') such that, for all i C I, if 7r C acts(Ai) ,
! !

then (si, 7r, si) e trans(Ai); otherwise s i - s i

The transit ions of the composit ion are obtained by allowing all the components
that have a part icular action ~ in their signature to participate, simultaneously,
in steps involving ~, while all the other components do nothing. Note that this
implies that all the components participate in t ime-passage steps, with the same
amount of time passing for all of them. Again, we sometimes use the infix
operation symbol • to denote composition.

T h e o r e m 23.6 The composition of a compatible collection of general t imed au-
tomata is a general t imed automaton.

C o m p o s i t i o n v e r s u s gen. For a given compatible collection of MMT au-
tomata, it turns out that it does not mat ter whether we compose first and then
apply the gen t ransformation to the composition, or first apply the gen transfor-
mation to the components and then compose. The resulting GTAs are the same,
up to isomorphism (of the reachable portions of the machines).

Once again, we obtain projection and pasting theorems analogous to The-
orems 8.1-8.3. Let {Bi}i~x be a compatible collection of GTAs and let B =
1-[i~I Bi. For any t imed execution (~ = so, ~1 , s1 , . . . of B, let (~]Bi be the se-
quence obtained by deleting each pair ~ , s~ for which ~ is not an action of Bi,
and replacing each remaining s~ by (s~)i, that is, automaton Ai's piece of the
state s~. Also, for any t imed t race/3 of B (or, more generally, any sequence of
actions paired with times), let/31Bi be the subsequence of/3 consisting of all the
pairs containing actions of Bi.

T h e o r e m 23.7 Let {B i} ic I
tomata and let B = 1-[icI Bi.

be a compatible collection of general t imed au-

1. I f ~ C atexecs (B) , then a] Bi E atexecs (Bi) for every i E I.

2. I f /3 c at traces(B), then/31Bi E attraces (Bi) for every i E I.

P r o o f . The proof is left as an exercise. D

756 23. M O D E L L I N G V: P A R T I A L L Y S Y N C H R O N O U S M O D E L S

The first pasting theorem, Theorem 23.8, has a small technicality that is a
consequence of the fact that the GTA model allows consecutive time-passage
steps to appear in an execution. Namely, the admissible timed execution a that
is produced by "pasting together" individual admissible timed executions ai
might not project to give exactly the original ai's, but rather admissible timed
executions that are time-passage equivalent to the original ai's.

T h e o r e m 23.8 Let {Bi}iEI be a compatible collection of general timed au-
tomata and let B - l-IiEI Bi. Suppose ai is an admissible timed execution of
Bi for every i E I, and suppose /3 is a sequence of (action, time) pairs, with
all the actions in vis(B), such that ~lBi = ttrace(c~i) for every i E I. Then
there is an admissible timed execution a of B such that/3 = ttrace(a) and ai is
time-passage equivalent to alBi for every i E I.

Proof . The proof is left as an exercise. D

T h e o r e m 23.9 Let {Bi}iEI be a compatible collection of general timed au-
tomata and let B - l l iEI Bi. Suppose /3 is a sequence of (action, time) pairs,
where all the actions in/3 are in vis(A). I f /3lBi E attraces(Bi) for every i E I,
then/3 E attraces (B) .

Proof . The proof is left as an exercise. D

Hid ing . If A is a GTA and (I) c_ out(A), then hider is the GTA that is
identical to A, except that the actions in (I) are reclassified as internal.

23.3 Propert ies and Proof Methods

The correctness of timing-based algorithms and systems, as well as their
performance, often depends critically on timing assumptions. Unlike in the
asynchronous setting, drastic changes of behavior of timing-based algorithms
can result from small changes in timing assumptions. However, reasoning about
this timing-dependence can be extraordinarily difficult, even for extremely sim-
ple "algorithms" such as those in the examples in this chapter. Systematic proof
methods can be a great help in this setting.

In this section, we describe two important proof techniques for timing-based
algorithms: the method of invariant assertions and the method of simulation
relations. Since these methods have been used so successfully in the synchronous
and asynchronous settings, it is natural to try to adapt them for use in the
timing-based setting. We also define a notion of timed trace property, analogous
to the notion of trace property introduced in Section 8.5.2.

23.3. P R O P E R T I E S A N D P R O O F M E T H O D S 757

23.3 .1 Invar iant A s s e r t i o n s

We define an invariant assertion for a general timed automaton A to be any

property that is true of all reachable states of A.
This definition is formally the same as the one we used in the asynchronous

setting. But there is a difference: In an asynchronous system, the state typically
consists of ordinary data such as the values of local and shared variables and

sequences of messages in transit in channels. But in a timing-based system, the

state typically also contains t iming information such as the current time and
scheduled deadlines for future events. For example, if a message is in transit

in a channel, the state may contain information giving the range of future times

at which it might be delivered. This means that in the timed setting, invariant

assertions may involve timing information in addition to ordinary data.
Although the type of information included in the state is richer in the timed

setting, the proof method for invariants is the same as before--induction. This
time, the induction is on the number of steps in a timed execution leading to the

state in question.
Note that we present the method of invariant assertions in the context of

general timed automata. If we want to use this method for an MMT automaton,

we must first transform it into a GTA.

E x a m p l e 23.3.1 I n v a r i a n t for the t imeout sys tem

Consider the timeout system A ~ of Example 23.2.4, with the assump-
tion that k~l > ~ + d. It would be nice to prove that the system only

performs a t imeout in case the contained process P1 is actually dead.
The following invariant assertion can be used to prove this.

Assert ion 23.3.1 In any reachable state of A ~, if status1 =

alive, then count2 > O.

Unfortunately, as usual, Assertion 23.3.1 cannot be proved alone by
induction--auxiliary assertions are needed. In this case, we first

prove the following (by a trivial induction).

Assert ion 23.3.2 In any reachable state of A ~, if status2 -
done, then count2 = O.

Then we prove the following strengthened version of Assertion 23.3.1,
by a not-so-trivial induction. Notice that this assertion involves state-

ments about the first and last time components of the state.

Assert ion 23.3.3 In any reachable state of A ~, if statusl -
alive, then the following are true:

1. count2 > 0

758 23. M O D E L L I N G V: P A R T I A L L Y S Y N C H R O N O U S M O D E L S

2. Ei ther last(send) + d < f irst(dec) + (count2 - 1)~1,
queue is nonempty , or status2 = disabled.

3. I f queue is nonempty , then either last(rec) < f i rs t (dec)+
(c o u n t 2 - 1)gl or status2 = disabled.

Condition 1 is just a res ta tement of Assertion 23.3.1. Each of Con-
ditions 2 and 3 uses the expression f i r s t (d e c) + (c o u n t 2 - 1)gl in
an inequality. This expression describes the earliest t ime at which
count2 might reach 0, assuming tha t it is currently positive. Tha t is,
f irst(dec) is the earliest t ime for the next decrement, and there are
c o u n t 2 - 1 addit ional decrements required to get count2 down to 0,
with ~1 &S the min imum time for each. Condit ion 2 says tha t either
a message is scheduled to be sent, in sufficient t ime to arrive before
count2 reaches 0, or else a message is already in transit , or else one
has already arrived (thus disabling the t imeout) . Condit ion 3 says
tha t if a message is in transit , then either some message will arrive
before the count2 reaches 0 or else one has already arrived. Thus,
some claims about the t iming of events are concisely formulated as
invariants, using the f irst and last deadline components of the states.

Assertion 23.3.3 can be proved by induction on the number of
actions in a t imed execution. The argument is s traightforward (in
fact, boring), but we include it here because it provides a good model
for other such proofs.

Basis: Initially, count2 = k > 0, queue is empty, and f irst(dec)
gl. These imply Conditions 1 and 3. Moreover, if status1 = alive,
then last(send) = g. So

last(send) + d = g + d < k ~ l - - count2~l = f irst(dec) + (count2 - 1)~1

This shows Condition 2.
Inductive step: As usual, we carry out a case analysis based on

the different types of actions, only this time, the t ime-passage actions
u(t) must also be included in the analysis. Suppose tha t (s, 7c, s') C
t r a n s (X) and tha t s satisfies the invariant. Assume tha t s~.statusl
alive; then also s .s ta tus l = alive.

1. 77 = send(re)l ,2
�9 ,S t Then s. f irst(dec) - s ' . f irst(dec), s count2 - .count2 and

s.status2 - s~.status2. This step does not affect Condition 1
and it makes Condit ion 2 true. We consider Condit ion 3. If
s.queue is nonempty, then s.last(rec) = s' . last(rec), so Condi-
tion 3 for s implies Condit ion 3 for s'.

23.3. P R O P E R T I E S A N D P R O O F M E T H O D S 759

So suppose that s .queue is empty. Then by inductive hypothesis
(Condition 2), either s . l a s t (s e n d) + d < s . f i r s t (d e c) + (s . c o u n t 2 -

1)t~l or s .s ta tus2 - disabled. In the latter case we are done, so as-
sume the former. Then s ' . las t (rec) - s . n o w + d < s . l a s t (s e n d) +

d b y Lemma 23.5, < s . f i r s t (d e c) + (s . c o u n t 2 - 1) f l - s ' . f i r s t (dec)+

(s~.count2 - 1)t~l, which suffices.

2. 7 r - receive(m)1,2

By inductive hypothesis, s .count2 > 0. This s tatement is unaf-
fected by the step, so Condition 1 holds. Also, Assertion 23.3.2
implies that s . s ta tus2 5r done. Therefore, s~.status2 - disabled,

which implies Conditions 2 and 3.

3. 7 c - t imeou t

By inductive hypothesis, s .count2 > 0. So t imeou t is not en-
abled in s, which says that this case cannot arise.

4. 7 ~ - decremen t

For Condition 1, we argue by contradiction. If s~.count2 -

0, then s .count2 - 1, so by inductive hypothesis (Conditions
2 and 3), either s . l a s t (s e n d) + d < s . f i rs t (dec) , s . las t (rec) <

s . f i rs t (dec) , or s .s ta tus2 - disabled. By the precondition of
decrement , the last of these is impossible. So we have that

m i n (s . l a s t (s e n d) , s . l a s t (r e c)) < s . f i r s t (dec) <_ s .now.

But s . n o w <_ s . l a s t (s end) and s . n o w <_ s . las t (rec) , by Lemma
23.5; thus, s . n o w <_ rain (s . l a s t (s end) , s . las t (rec)) . This is a
contradiction.

For Conditions 2 and 3, it is enough to show that the value
of f i rs t (dec) + (count2 - 1)~1 is not decreased by this step.
This follows because the second term is decreased by exactly
gl, while the first term is increased by at least gl. (This is
because s . f i r s t (dec) ~ s . now and s ' . f i rs t (dec) - s. now + ~1.)

5. . (t)
This step does not affect any of the three conditions, because
only now is changed, and now is not mentioned anywhere.

23.3.2 T imed Trace Propert ies

Recall that many of the properties to be proved for asynchronous systems can be
naturally formulated as properties of their traces or fair traces. It turns out that,

760 23. M O D E L L I N G V: P A R T I A L L Y S Y N C H R O N O U S M O D E L S

analogously, many interesting properties of t imed systems can be formulated as
properties of their admissible t imed traces. Propert ies tha t can be specified in
this way include performance properties as well as ordinary correctness proper-
ties.

A timed trace property P is defined to consist of the following:

�9 sig(P), a t imed signature containing no internal actions

�9 ttraces(P), a set of sequences of (action,time) pairs; the t ime components
in each sequence must be monotone nondecreasing, and, if the sequence is
infinite, they must be unbounded

We will usually interpret the s ta tement tha t a GTA A satisfies a trace property
P to mean tha t i n (A) - in(P) , o u t (A) - out(P) and attraces(A) c_ ttraces(P).

E x a m p l e 23 .3 .2 T i m e d t r a c e p r o p e r t y

Let P be the t imed trace proper ty defined as follows. The signature
sig(P) is

Input: Internal:
receive(m)1,2, rn c M none

Output: Time-passage:
timeout ~,(t) , t C R +

The set ttraces(P) of t imed traces is exactly the set of sequences ,~
of (action,time) pairs tha t satisfy the monotonici ty and boundedness
conditions and are such that ,

1. If there is a (timeout, t) pair in 3, then]g~l __< t <]g~2 -n t- g.

2. If there is a tirneout pair in 3, then there is no preceding receive
pair.

3. If there is no receive pair in 3, then there is a timeout pair in

Then gen(P2), where P2 is the MMT au tomaton of Example
23.1.2, satisfies the t imed trace property P, in the sense tha t
attraces(gen(P2)) C ttraces(P).

23.3.3 S imulat ions

The simulation method can be used for reasoning about t iming-based systems as
well as synchronous and asynchronous systems. To do this, we define the notion
of a "timed simulation relation" between states of two general t imed au tomata .
The definition is very similar to the definition of a simulation relation for I /O
au toma ta in Section 8.5.5.

23.3. P R O P E R T I E S A N D P R O O F M E T H O D S 761

Let A and B be two general t imed au tomata with the same input and output

actions. Suppose that f is a binary relation over states(A) and states(B); we
use the notat ion u E f (s) as an alternative way of writ ing (s, u) E f . Then f is
a timed simulation relation from A to B provided that both of the following are
true:

1. If s E start(A), then f (s) N start(B) # O.

2. If s is a reachable state of A, u E f (s) is a reachable state of B, and
(s, :r, s') E trans(A), then there is a t imed execution fragment c~ star t ing

with u and ending with some u ~ E f (s ') , such that

(a) ttrace(c~) = ttrace(s, 7c, s').

(b) The total amount of t ime-passage in c~ is the same as the total amount

of t ime-passage in (s, 7r, s').

Thus, the s tar t condition is the same as for a simulation relation for I / O automata .
The step condition is a little d i f ferent - -now we require that the correspondence
preserve the t imed trace, that is, the sequence of visible actions, each paired with
its time of occurrence, plus the total amount of t ime-passage. Note that in the
step condition, 7r can be a t ime-passage action as well as a discrete action. If 7r
is a visible action, then c~ must consist of a 7r step, possibly with some preceding
and /o r following internal steps. If 7r is an internal action, then c~ must consist
of internal steps only. If 7r = L,(t), then c~ must consist of t ime-passage steps
interspersed with internal steps, with the total amount of t ime-passage equal
to t.

As before, since the states s and u in the step condition are assumed to be
reachable, invariant assertions about the states of A and B can be used in a

proof that f is a t imed simulation relation.
The following theorem gives the key proper ty of t imed simulation relations.

T h e o r e m 23 .10 If there is a timed simulation relation from A to B, then
attraces (A) C_ attraces (B) .

P r o o f . The proof is left as an exercise. D

In the rest of this section, we give examples to show how t imed simulations
can be used to prove propert ies of t imed systems. One interesting use of such

simulations is to prove time bounds for systems with t iming assumptions. This
can be done by formalizing the t iming specification as a GTA, B, with last and
first deadline components expressing the required t iming behavior (upper and
lower bounds, respectively). The implementat ion is also formalized as a GTA,

762 23. MODELLING V: PARTIALLY SYNCHRONOUS MODELS

A, with last and first components representing the timing assumptions. The
existence of a t imed simulation from A to B then implies that A satisfies the
timing requirements.

Since simulations can be used in the t imed setting to prove timing properties,
the simulation method is more powerful in the timed setting than it is in the
asynchronous setting. In the asynchronous setting, we are often interested in
liveness properties, whereas in the t imed setting, we are more often interested
in time bounds. Formal proofs of liveness conditions often use extra machinery
such as temporal logic in addition to simulations, but time bounds can be proved
just using simulations.

E x a m p l e 23 .3 .3 S i m u l a t i o n p r o o f o f t i m e b o u n d s for a t i m e o u t pro-
cess

We show that P2, the t imeout MMT automaton of Example 23.1.2,
must perform a timeout within the interval [kgl, kg2 + ~], if no mes-
sages are received. To simplify matters, we define a variant A of/='2
that does not even have a receive action in its signature. The code
for A is as follows.

A automaton"

Signature:

Input"
none

Output"
t imeout

Internal:
decrement

States:
count E N, initially k
status E {act ive , done} , initially active

Transit ions:

decrement
Precondition:

status = active

count > 0
Effect:

count := c o u n t - 1

Tasks and bounds:
d e c - (d e c r e m e n t } , bounds [el, g2]
t i m e o u t - { t i m e o u t } , bounds [0, g]

t imeout
Precondition:

status = active
count = 0

Effect:
status := done

23 .3 . P R O P E R T I E S A N D P R O O F M E T H O D S 763

T h e n the code for g e n (A) is as follows.

g e n (A) a u t o m a t o n :

T i m e d Signature:

Input: Internal:
none decrement

Output: Time-passage:
t imeout v(t), t E R +

States:
count E N, initially k
status E {act ive, done} , initially active

now E R >-~ initially 0
f irs t(dec) E R >-~ initially t~l
last(dec) E R + U {c~}, initially t~2
las t (t imeout) E R + U {oc}, initially cx~

Transit ions:

decrement t imeout
Precondition: Precondition:

status = active s tatus = active
count ~ 0 count = 0
now >_ f irst (dec) Effect"

Effect: status := done
count := c o u n t - 1 last(t imeout) " - oc
if count > 0 then

f irs t (dec) " - now + e~ , (t)
last(dec) " - now + ~2 Precondition:

else now + t ~ last (dec)

f i r s t (d e c) ' - 0 now + t ~ last(t imeout)

last(dec) " - oc Effect:
last(t imeout) " - now + ~ now " - now + t

A u t o m a t o n A s imply counts down from k to 0 and then per forms

a t i m e o u t . Informally, it is easy to see t h a t a single t i m e o u t occurs

wi th in the c la imed t ime interval [kt~l, k~2 + g]. To prove this formally,

we express these t iming r equ i r emen t s using a t r iv ia l high-level GTA.

This G T A is of the form g e n (B) , where B is the following t r ivia l

M M T a u t o m a t o n .

764 23. M O D E L L I N G V: P A R T I A L L Y S Y N C H R O N O U S M O D E L S

B a u t o m a t o n :

Signature:

Input" Output:
none timeout

States:
status C {active, done}, initially active

Transit ions:

timeout
Precondition:

status = active
Effect:

status := done

Tasks and bounds:
t imeout - {timeout}, bounds [kfl, k~2 -~- 5]

Now we produce a t imed simulation relation f from gen(A) to
g e n (B) , thereby showing tha t A satisfies the t iming requirements. If
s and u are states of gen(A) and g e n (B) , respectively, then we define
(s, u) C f provided tha t the following conditions hold:

1. s. now -- u. now.

2. s . s ta tus = u . s ta tus .

3. u. last (t imeou t) >_

s . las t (dec) + (s . coun t - 1). t~2 + t~ if s . coun t > 0,

s. last (t imeou t) otherwise.

4. u. f irs t (t imeou t) <_

s . f i rs t (dec) + (s . coun t - 1)-~1 if 8.count > 0,

s. f i rs t (t imeou t) otherwise.

The relationships involving the now and s tatus values are straight-
forward. The interesting relationships involve the last and f irst dead-
lines. The u . l a s t (t i m e o u t) value (in g e n (B)) is constrained to be at
least as large as a certain quant i ty tha t is calculated in terms of the
state (including deadline components) of gcn(A) . This quant i ty is a
calculated upper bound on the last t ime when a t imcou t action might
be performed by gen(A) . There are two cases: If count > 0, then this
t ime is bounded by the last t ime at which the first decremen t can

23.3. P R O P E R T I E S A N D P R O O F M E T H O D S 765

occur, plus the addit ional time required to do c o u n t - 1 addit ional
decrement steps followed by a t imeout step; since each of these count
steps can take at most time ~2 and the t imeout can take at most
time g, this addit ional time is at most (count - 1) �9 t~2 + g. On the
other hand, if c o u n t - 0, then this time is bounded by the last time
at which the tirneout can occur. The inequality expresses the fact
that this calculated bound on the actual time until t imeout is at most

equal to the upper bound to be proved.

The interpretat ion of the f irs t(t imeout) inequality is s y m m e t r i c ~
the values of f irs t(t imeout) should be no larger than a calculated
lower bound on the earliest time until a t imeout action is performed
by gen(A) .

In order to prove that f is a t imed simulation, we first prove an
easy invariant.

A s s e r t i o n 23 .3 .4 In any reachable state of gen(A), if count >
O, then status = active.

Then the proof proceeds in the usual way for simulations, verify-
ing the s tar t condition and the step condition. The inequalities are
t rea ted in just the same manner as any other type of relation between
the states. As in Example 23.3.1, we include some details as a model
for other such proofs; the rest of the details are left for an exercise.

For the s tar t condition, let s and u be the unique s tar t states
of gen(A) and gen(B), respectively. We must show that u E f (s) .
Conditions 1 and 2 of the definition of f are immediate. Consider
Condit ion 3. The definition of gen(B) implies that u. las t (t imeout) =
kg2 + g, and the definition of gen(A) implies that s.count > 0 and

s.last(dec) + (s.count - 1) . g2 + g = t~2 + (k - 1)g2 + g = kg2 + ~.
Therefore, u. las t (t imeout) = s.last(dec) + (s . c o u n t - 1). t~2 + t~, which

shows Condit ion 3. Condit ion 4 is analogous to Condition 3.

For the step condition, we suppose that (s, :r, s') E t rans(gen(A)) ,
s is reachable, and u is a reachable state in f (s) . We consider cases
based on types of actions, including t ime-passage actions.

For example, consider the case where 7r = decrement. By the
precondit ion of decrement, s .count > 0. The fact that u E f (s)
means that s .now = u.now; s.status = u.status; u . las t (t imeout) >_
s.last (dec) + (s . c o u n t - 1).t~2+t~; and u.first(t imeout) <_ s.first(dec) +
(s . c o u n t - 1). t~l. It suffices to show that u E f (s ') .

Conditions 1 and 2 carry over immediately. Suppose that s~.count
> 0. For Condition 3, note that the left side of the inequality,

766 23. M O D E L L I N G V: P A R T I A L L Y S Y N C H R O N O U S M O D E L S

last(t imeout), is not changed by this step, while the right side is not
increased. This latter property is true because last(dec) is increased
by at most g2, while the second term decreases by exactly g2 and the
third term is unchanged. (The reason why last(dec) is increased by at
most g2 is that s.now < s.last(dec) and s'.last(dec) - s .now + g2.)
This means that the inequality still holds after the step. Similar
arguments can be made for Condition 4 and for the case where
s ~. count - O.

Other arguments in the same style can be made for the other
types of actions. For the case where 7c - timeout, the interesting
thing to show is that the precondition f irst(t imeout) <_ now is sat-
isfied in state u. This inequality holds because the precondition of
7r in gen(A) implies that s . f irs t(t imeout) <_ s.now - u.now, and
Condition 4 implies that u. f irs t(t imeout) <_ s . f irst(t imeout) .

For the case where 7c is a time-passage action, the interesting
thing to show is the precondition u~.now <_ u. last(t imeout) . This in-
equality holds because the precondition of 7r in gen(A) implies that
u' .now - s ' .now < min (s . las t (dec) ,s . las t (t imeout)) , and Condition
3 implies that min (s.last(dec), s . last(t imeout)) <_ u. last(t imeout) .
Time-passage steps do not change anything mentioned in the defini-
tion of f except for now, so it is easy to see that they preserve all
the relationships in f.

Since f is a timed simulation, Theorem 23.10 implies that
attraces(gen(A)) c_ at traces(gen(B)) , and then Theorem 23.4 im-
plies that attraces(A) c_ attraces(B). This says that A satisfies the
timing requirements.

Of course, there are other ways to prove time bounds for timing-
based systems besides using timed simulations. For example, oper-
ational arguments based on the invariants in Exercise 23.13 can be
used to prove the upper bound of kg2 + g on the time until a t imeout
O c c u r s .

E x a m p l e 2 3 . 3 . 4 T w o - t a s k race

We outline a simulation proof that g + g2 + Lg is an upper bound
on the time until the Race automaton of Example 23.1.3 performs
a report output. Now the specification is gen(B~), where B t is an
MMT automaton similar to the specification automaton B of Exam-
ple 23.3.3.

23.3. P R O P E R T I E S A N D P R O O F M E T H O D S 767

B ~ a u t o m a t o n :

Signature:

Input: Output"
none report

States:
reported, a Boolean, initially false

Trans i t ions :

report
Precondition:

reported = false
Effect:

reported := true

Tasks and bounds:
r e p o r t - {report} , bounds [0, g + t~2 + Le]

Intuitively, the reason that t~ + t~2 + Lt~ is a correct upper bound is as
follows. With in time g, the int task sets the flag to true. During this
time, the largest value that count could reach is ~1" Then it takes

time at most ~t~2 - Lt~ for the main task to decrement count to 0,
and then an addit ional time at most f2 to perform a report.

Now we define a t imed simulation relation g from gen(Race) to
gen(B') . If s and u are states of gen(Race) and gen(B') , respectively,
then we define (s, u) C g provided that the following conditions hold:

1. 8. n o w -- u . n o w .

2. s. reported = u. reported.

3. u. last (report) >

s . last(int) + (s.count + 2)g2 + L(s . las t (in t) - s . f i rs t (main))

if s.flag - false and s . f i rs t (main) < s. last(int) .

s . las t (main) + (s.count)g2

otherwise.

The idea of the third condition is as follows. If flag = true, then
the time remaining until report is just the time for the main task to
do the remaining decrement steps, followed by the final report. The
same reasoning holds if flag is still false, but must become true before
there is t ime for another increment to occur, that is, if s . f i rs t (main) >

768 23. MODELLING V: P A R T I A L L Y S Y N C H R O N O U S MODELS

s.last(int). Otherwise, s.flag = false and s.first(main) < s.last(int),
which means that there is time for at least one more increment to
occur. Then the first case of the inequality for last(report) applies.

In this case, after the set, it might take as long as time (count +
1)g2 for the main task to count down from the current count and then
to report. But the current count could be increased before the set by
some additional increment events. The largest number of these that
might occur is 1 § [las t (in t) - first(main)]/gl. Multiplying this by
g2 gives the extra time required to decrement this additional count.

The proof that g is a t imed simulation relation follows the same
general outline as the proof in Example 23.3.3. We leave this as an
exercise.

23.4 Modelling Shared Memory and Network
Systems

We close this chapter by indicating how partially synchronous shared memory
systems and partially synchronous network systems can be modelled using MMT
automata and GTAs. These models will be used in Chapters 24 and 25.

2 3 . 4 . 1 S h a r e d Memory Systems

We model a partially synchrononous shared memory system as an MMT au-
tomaton (A,b). Here, we assume that I /O automaton A is an asynchronous
shared memory system, according to the definitions in Chapter 9; the only new
constraint is that A has only finitely many tasks. The boundmap b adds time
bounds for each task.

Most of the time, we will assume that each process has only one task and
that the boundmap assigns a lower bound of ~1 and an upper bound of t~2 to
each task, where 0 < gl ~ ~2 ~ OO. In this case, we will write L = g2/gl; aS
before, L is a measure of the timing uncertainty in the system.

2 3 . 4 . 2 Networks

In the partially synchronous setting, we will only consider send/receive networks,
not broadcast or multicast networks. We assume an underlying directed graph
G = (V, E). We model a partially synchronous send/receive network system as
a collection of process automata, one for each vertex, plus a collection of channel
automata , one for each edge.

23.5. BIBLIOGRAPHIC NOTES 769

The process automaton associated with each vertex i is an MMT automaton
Pi. Pi has input and output actions by which it communicates with the external
users, plus outputs of the form send(m)i,j, where m is a message and j is an
outgoing neighbor, and inputs of the form receive(m)j,i, where j is an incoming
neighbor. To model process stopping failures, we include a stopi input action.
The effect of this action is to permanently disable all tasks of Pi. We will usually
assume that each process Pi has time bounds of ~1 and t~2 for each of its (finitely
many) tasks, where 0 < ~1 _~ ~2 % OO.

The channel automaton associated with each directed edge (i, j) is a GTA
Ci,j. Its "visible interface" consists of inputs of the form send(m)i,j and outputs
of the form receive(m)i,j. Restrictions on the external behavior of a channel are
expressed by a timed trace property P; the channels defined by P are those
GTAs whose visible actions are the same as those of P and whose admissible
timed traces are in ttraces(P). There are two common cases:

1. Each Ci,j is the GTA D~,j with the appropriate timed signature described
in Example 23.2.1, that is, a reliable FIFO channel with an upper bound
of d on the delivery of the oldest message.

2. Each Ci,j is the GTA D~j with the appropriate timed signature described
in Example 23.2.2, that is, a reliable FIFO channel with an upper bound
of d on the delivery of every message.

Again, we will write L = ~2/~1 and use L as a measure of the timing uncertainty
in the system.

23.5 Bibliographic Notes

The MMT timed automaton model was designed by Merritt, Modugno, and
Tuttle [227]. Their model is somewhat more general than the one we use in
this book, in that they allow eventual upper bounds as well as real-valued upper
bounds. The variant of the model we use here is close to the one defined by
Lynch and Attiya [215]. The two-task race example was suggested by Pnueli
[243] as a test case for proof methods for timing-based systems.

The general timed automaton model is based on the timed automaton model
of Lynch and Vaandrager [210, 212, 211]; it is similar to the timed automaton
model of Alur and Dill [9]. Issues involving the existence of admissible timed
executions are studied by Gawlick, Segala, Sogaard-Andersen, and Lynch [136].
The transformation from MMT automata to general timed automata was devel-
oped by Lynch and Attiya [215]. The operations for GTAs are derived from [212];
that paper describes many other operations on GTAs besides composition and

770 23. MODELLING V: P A R T I A L L Y S Y N C H R O N O U S MODELS

hiding, including sequential composition and various forms of choice, interrupt,
and timeout.

Invariants that include time deadlines have been used by Tel [275], Lewis
[194], Shankar [259], Abadi and Lamport [1], Lynch [204], and others. The
simulation method of proving timing properties was first used by Lynch and
Attiya [215]. The simulation proofs of time bounds in Examples 23.3.3 and
23.3.4 are derived from [215], as well as from the survey papers [204, 205]. Other
types of simulations for GTAs are defined by Lynch and Vaandrager [210, 211].

Other timed simulation proofs have been carried out by Sogaard-Andersen,
Lampson, and Lynch [264, 190], Heitmeyer and Lynch [148], and Luchangco
[201]. Some preliminary work has been carried out by Luchangco, S6ylemez,
Garland, and Lynch, in using the assistance of an automatic theorem-prover in
checking and carrying out timed simulation proofs [202]. This work uses the
Larch Prover [134].

23.6 E x e r c i s e s

23.1. Let (A, b) be any MMT automaton and let c~ be any finite timed execution
of (A, b). Prove the following:

(b)

(c)

There is an (admissible) timed execution of (A, b) that starts with c~.

Let 3 be any finite sequence of input actions paired with times, in
which the times are nondecreasing and at least as great as the largest
time occurring in c~. Then there is an (admissible) timed execution c~'
of (A, b) such that c~ ~ starts with c~ and such that 3 is the subsequence
of inputs and associated times occurring in c~ ~ after a.

Let /3 be any infinite sequence of input actions paired with times,
in which the times are nondecreasing and unbounded and at least as
great as the largest time occurring in c~. Then there is an (admissible)
timed execution c~' of (A, b) such that c~' starts with a and such that
/3 is the subsequence of inputs and associated times occurring in c~ ~
after c~.

23.2. Suppose that the definition of an MMT automaton were weakened to allow
countably many tasks instead of only finitely many. Show that there exists
an automaton (A, b) satisfying this new definition that has no (admissible)
timed executions.

23.3. Describe carefully the behavior of the composed MMT automaton in Ex-
ample 23.1.4, in the case where kgl _< ~ + d.

23.6. E X E R C I S E S 771

23.4. Prove Theorems 23.1, 23.2, and 23.3.

23.5. Consider a t ime-bounded variant of the A synchBellmanFord algori thm of
Section 15.4, in which

�9 Each process automaton is the MMT automaton consisting of the
given I /O automaton and bounds [gl,t~2] for each task, where 0 <

t~x < t~2 < oc.

�9 Each channel is the appropriate MMT automaton Di,j, from Example
23.1.1.

Analyze the communication and time complexity of the resulting algorithm.

23.6. Prove that the GTA D~,j in Example 23.2.1 and the MMT automaton Di,j
in Example 23.1.1 have the same sets of admissible t imed traces.

23.7. Prove that there is no MMT automaton with the same set of admissible
t imed traces as the GTA D~',j in Example 23.2.2.

23.8. Give precondition-effect code for a GTA A with the following behavior. In
any admissible t imed execution, A performs exactly two outputs, a and b,
in that order, both by time 1. Moreover, A should, in various admissible
t imed executions, allow for a and b to occur at any time, subject to the
given limitations. Prove that there is no MMT automaton with the same
set of admissible t imed traces as A.

23.9. Give explicit precondition-effect code for the t ransformed automaton
gen(Race), where Race is the MMT automaton defined in Example 23.1.3.
The style of your code should be similar to the code in Example 23.2.4.

23.10. Prove Theorems 23.7, 23.8, and 23.9.

23.11. Show that the simpler restatement of Theorem 23.8, asserting that ai =
alBi rather than just that they are t ime-passage equivalent, is false.

23.12. Prove Theorem 23.10.

23.13. Prove the following mult ipart invariant of the system A' of Example 23.2.4.
If status1 = dead, then

(a) queue is empty.

(b) status2 r disabled.

(c) If count2 > 0, then last(dec)+ (count2 - 1)t~2 < kt~2.

772 23. MODELLING V: PARTIALLY SYNCHRONOUS MODELS

(d) If count2 = O, then last(timeout) < kg2 + g.

23.14. Prove Lemma 11.3, the time bound for the RightLeftDP algorithm, using
the simulation method of Section 23.3.3.

23.15. Fill in the details of the proof that f is a timed simulation relation, from
Example 23.3.3.

23.16. Prove that the relation g defined in Example 23.3.4 is a timed simulation
relation.

Chapter 24

Mutual Excl
Synchrony

USlOn with Partial

In this chapter, we visit the mutual exclusion problem for the third time, this
time in the partially synchronous shared memory setting. We present only very
basic results: simple timing-based algorithms and their analysis, and simple
impossibility results.

24.1 T h e P r o b l e m

The setting is very much the same as in Chapter 10--a shared memory system
with n ports, interacting with users U1, . . . , U~. The external interface, consist-
ing of tryi, crit~, exit~, and rem~ actions, is exactly the same as before. This
time, however, the users and the shared memory system are modelled as MMT
automata, as defined in Section 23.1, rather than as I /O automata. Figure 10.4
can still be used to represent the architecture we consider in this chapter.

As before, each user Ui is required to preserve well-formedness. We allow
arbitrary timing constraints for the users. Formally, each MMT automaton Ui is
of the form (Ai, bi), where Ai is any I /O automaton that was allowed in Section
10.2 and that has only finitely many tasks, and bi is an arbitrary boundmap.
Included among the allowable boundmaps is the trivial boundmap giving trivial
lower bounds of 0 and trivial upper bounds of ~ .

The rest of the system consists of a single MMT automaton B = (A,b)
representing the shared memory system. The underlying I /O automaton A is of
the form we considered in Chapter 10 for solving the mutual exclusion problem in
the asynchronous shared memory model. In particular, it consists of n processes,
one per port. We assume throughout this chapter that each process has just one

774 24. MUTUAL EXCLUSION WITH PARTIAL SYNCHRONY

task. The boundmap b assigns a lower bound of t~l and an upper bound of g~

to each task, where 0 < ~1 _~ ~2 < OO. As before, we write L = g2/t~l; L is a
measure of the timing uncertainty in the system.

We make three other restr ict ions in this chapter. First , we restr ict process
activity in the same way that we did in Chapter 10: the single task of each

process i in the shared memory system can only be enabled when Ui is in the
t rying or exit region. Second, we assume that the single task of process i is
in fact always enabled when Ui is in the t rying or exit region. (However, we
allow the possibili ty that the only action enabled might be a dummy action that
causes no state changes.) Third, we only consider shared memory systems with
r ead /wr i t e shared variables.

The correctness conditions we require are much the same as in Chapter 10.
Resta t ing them for t imed automata , we have

W e l l - f o r m e d n e s s : In any t imed execution of the combined system, and for any
i, the subsequence describing the interaction between Ui and B = (A, b) is
well-formed for i.

M u t u a l e x c l u s i o n : There is no reachable system state in which more than one
user is in the critical region C.

P r o g r e s s : At any point in an admissible timed execution, 1

1. (Progress for the t rying region) If at least one user is in T and no
user is in C, then at some later point some user enters C.

2. (Progress for the exit region) If at least one user is in E, then at some
later point some user enters R.

We say that B solves the mutual exclusion problem provided that it solves it (i.e.,
guarantees well-formedness, mutual exclusion, and progress) for every collection
of users. These correctness conditions could alternatively be formulated in terms
of a t imed trace proper ty P , as defined in Section 23.3.2.

24.2 A Single-Register Algorithm

In this section, we present a part ial ly synchronous mutual exclusion algori thm,
the FischerME algorithm, that uses only a single r ead /wr i t e register. This simple

algori thm already demonst ra tes that the part ial ly synchronous model is very dif-
ferent from the asynchronous model, because, as we showed in Theorem 10.33,

XAs in Section 23.1, this is defined to mean that time passes normally and that processing
does not stop if there is more work to be done.

24.2. A S I N G L E - R E G I S T E R A L G O R I T H M 775

any asynchronous read/wri te shared memory mutual exclusion algorithm re-
quires at least n shared registers.

The starting point for the algorithm is the following incorrect asynchronous
algorithm.

Incorrec tF i scherME algorithm (informal):
The algorithm uses a single read/wri te shared variable turn, writable and
readable by all processes. Each process i that wants to obtain the resource
repeatedly tests turn until it finds the value equal to 0. After it finds
turn = 0, process i sets turn equal to its own index i. Then it checks
that turn is still equal to i. If so, process i proceeds to the critical region;
otherwise, it goes back to the beginning, testing for turn = 0. When a
process i exits, it resets turn to 0.

aS

In the style used for shared memory programs in Chapter 10, this is written

Incorrec tF i scherME algorithm (formal)"

S h a r e d var iables :
t u r n C {0, 1 , . . . , n}, initially 0, wri table and readable by all processes

P r o c e s s i:

L .

** Remainder region **

t ry i

if t u r n ~ 0 then goto L
t u r n "-- i

if t u r n ~ i then goto L
cr i t i

** Crit ical region **

exi t i

t u r n "= 0

r emi

The IncorrectFischerME algorithm is incorrect in that it fails to guarantee
mutual exclusion. (We know that it must be incorrect, because otherwise it
would violate Theorem 10.33.)

776 24. M U T U A L E X C L U S I O N W I T H P A R T I A L S Y N C H R O N Y

1 2

test turn = 0

set turn : = 1

check turn = 1

crit

, test turn = 0

set turn : = 2

check turn = 2

crit

F i g u r e 24.1" Bad execution of the IncorrectFischerME algorithm.

E x a m p l e 24.2 .1 B a d e x e c u t i o n of I n c o r r e c t F i s c h e r M E

Consider an execution in which two processes, say 1 and 2, both
test t u r n and find t u r n = 0. Next, process 1 sets t u r n := 1 and
immediately checks and finds t u r n = 1. Then process 2 sets t u r n := 2
and immediately checks and finds t u rn = 2. Then both processes 1
and 2 proceed to the critical region. This execution is il lustrated in
Figure 24.1.

In order to avoid this bad interleaving of events, we can add a simple timing

restriction. Namely, any process i that sets t u r n := i can delay its check of
t u r n for longer than time g2, the assumed upper bound on process step time.
All other steps proceed at the normal rate, with some time in the interval [gl, g2]
between successive steps of the same process. This restriction prevents the bad
interleaving in Figure 24.1 as follows: Any process i that sets t u r n := i is made
to wait long enough before checking to ensure that any other process j that
tested t u r n before i set t u r n (and therefore might subsequently set t u r n to its
own index) has already set t u r n to its index. That is, there will be no processes
left at the point of setting turn , when i finally checks.

Here is the precondition-effect code. In this code, we assume that a l and
a2 are two positive reals with g2 < a l <_ a2. Note that this code has two
tasks for each process i, the main i task with bounds [gl, g2] and the checki task
with bounds [al,a2]. This is technically not permit ted by the model, which
only allows one task per process, with bounds [gl, g2]. However, we could easily
modify this algorithm by inserting a number k - 1 of explicit delay steps before
any check, where kgl > g2, and putting all the actions of each process in one task

2 4 . 2 . A S I N G L E - R E G I S T E R A L G O R I T H M 7 7 7

w i t h b o u n d s [~1, ~2]. T h e r e s u l t i n g v e r s i o n of t he a l g o r i t h m " b e h a v e s l ike" t h e

F i s c h e r M E a l g o r i t h m w i t h a l - ks a n d a2 - kt~2. W e o m i t t h e f o r m a l de t a i l s .

F i s c h e r M E a l g o r i t h m :

S h a r e d var iables :
turn C {0, 1 , . . . , n}, initially 0

A c t i o n s o f i:
Input: Internal:

try~ testi

exit~ seti

Output: checki
crit~ reseti

remi

S t a t e s o f i:
pc C {rein, test , set , check, leave-try, crit , reset, leave-exi t} , initially rein

T r a n s i t i o n s o f i:

tryi crit~
Effect: Precondition:

pc := test pc = leave-try

Effect:
test~ pc := crit

Precondition:
pc = test exit~

Effect: Effect:
if turn = 0 then pc := set pc := reset

seti reseti
Precondition: Precondition:

pc = set pc = reset

Effect: Effect:
turn := i turn := 0
pc := check pc := leave-exi t

checki remi
Precondition: Precondition:

pc = check pc = leave-exit
Effect: Effect:

if turn = i then pc := leave- try pc := rem

else pc := test

778 24. M U T U A L E X C L U S I O N W I T H P A R T I A L S Y N C H R O N Y

Tasks and b o u n d s :
maini = {testi, seti, criti, reseti, remi}, bounds [gl, g2]
check~ = {check~}, bounds [al,a2]

T h e o r e m 24.1 The FischerME algorithm with ~2 < al solves the mutual ex-
clusion problem.

Proof . We consider the FischerME algorithm together with any collection of
users. Well-formedness is easy to see. For the mutual exclusion property, we
wish to prove the following invariant of the combined system (algorithm plus
users).

A s s e r t i o n 24.2.1 In any reachable state, there do not exist i and
j , i ~ j , such that pci - - p c j - - crit.

As usual, proving this assertion by induction requires auxiliary invariants. Now,
however, we need auxiliary invariants that involve time information as well as
ordinary program variables.

Therefore, we transform the system into a general timed automaton (GTA),
as described in Section 23.2.2. This transformation encodes all timing con-
straints into the states and transitions of the system rather than expressing
them as "external" restrictions on timed executions. In particular, the state
includes components first(chccki) and last(main~), representing the first time
that the next checki action might occur and the last time that the next ac-
tion in main~ might occur, respectively. We consider Assertion 24.2.1 and the
other assertions below as properties of the state of the GTA obtained by this
transformation.

The key claim, which can be proved by induction, is the following. It says
that the earliest future time a successful checki can happen is after the setj of
any other process j that has already passed the test testy. This lemma is used
to rule out the bad interleaving in Example 24.2.1.

A s s e r t i o n 24.2.2 In any reachable state, if pci - check, t u r n - i,
and pcj = set, then first(checki) > las t (mainj) .

Assertion 24.2.2 can be proved by a simple induction on the number of steps
in a timed execution leading to the state in question. Here, the steps include
time-passage steps as well as ordinary input, output, and internal steps. See
Example 23.3.1 for a model of how such proofs proceed. For Assertion 24.2.2,
the interesting arguments are those involving steps of the form (s, 7r, s ~) where
7r is either ase t i or a successful testy, j ~ i. (Here, the indices i and j are the
ones that appear in the assertion.)

24.2. A S I N G L E - R E G I S T E R A L G O R I T H M 779

1. 7r = seti .

In this case, s~. f i rs t (checki) - s . n o w + al. Also, if s ~.pcj - set , then
s~ . l a s t (ma in j) <_ s . n o w + t~2, by Lemma 23.5. Since t~2 < al, the inequality
follows.

2. 7r = tes t j and s . t u r n = 0 (i.e., the test is successful).
In this case, s~. turn - 0, making the statement true vacuously.

Assertion 24.2.2 can be used to prove the following assertion. This one says
that if a process i is in the critical region (or just before it or just after it), then
t u rn = i and no other process can be about to set turn. Note that, unlike Asser-
tion 24.2.2, Assertion 24.2.3 does not mention any timing information. However,
timing information is used in its inductive proof.

A s s e r t i o n 24.2.3 In any reachable state, i f pci C { leave- t ry , crit , rese t } ,

then turn = i and, f o r all j , pcj ~ set .

The proof is again by induction. Now the interesting arguments are those
involving steps (s, 7r, s'), where 7r is either a successful checki, a setj or resetj ,

j r i, or a successful test j , j r i.

1. 7r = checki and s . t u r n = i (i.e., the check is successful).
Then s t. t u rn - i. Suppose that there is some j such that s ~.pcj - set . Then
also s .pcj - set . Then Assertion 24.2.2 implies that s . f i r s t (check i) >

s . l a s t (m a i n j) . But Lemma 23.5 says that s . n o w < s . l a s t (m a i n j) , so
s . f i r s t (check i) > s . n o w . This contradicts the timing constraints of the
GTA. It follows that there is no j such that s ~.pcj - set.

2. 7r = se t j , j r i.

Suppose that s~.pci C { leave- t ry , crit , rese t} . Then s .pc i E { leave- t ry , crit ,

rese t} . Then the inductive hypothesis implies that there is no j such that
s .pcj - set . But then 7r cannot be enabled in s, a contradiction.

3. 7r = rese t j , j r i.

Suppose that sl.PCi E { leave- t ry , crit , rese t} . Then s .pc i C { leave- t ry , crit ,

rese t} , and the inductive hypothesis implies that s . t u r n = i. But also,
the fact that ~r is enabled in s implies that s .pcj - reset , so the inductive
hypothesis implies that s . t u r n = j . This is a contradiction.

4. 7r = tes t j , j 7/= i, and s . t u r n = 0 (i.e., the test is successful).
Then the inductive hypothesis implies that s .pc i ~ { leave- t ry , crit , rese t} ,

s o sl.PCi ~ { leave- t ry , cri t , rese t} , which implies that the condition is true
vacuously.

780 24. M U T U A L E X C L U S I O N W I T H P A R T I A L S Y N C H R O N Y

The mutual exclusion property, Assertion 24.2.1, then follows immediately
from Assertion 24.2.3.

Finally, we consider the progress condition. For this, it is useful to have one
more invariant, this one proved by an easy induction.

A s s e r t i o n 24.2.4 In any reachable state, if turn - i, then pci E
{ check, leave-try, crit, reset}.

Using Assertion 24.2.4, we can argue progress operationally along the lines
of the proof of Lemma 10.4, the progress lemma for the DijkstraME algorithm.
That is, consider an admissible timed execution a that reaches a point where
there is at least one user in T and no user in C and suppose for the sake of
contradiction that, after this point, no user ever enters C. Then we can show
that eventually in a, no further region changes occur, every process is in T or
R, and some process is in T. Then we can argue (using Assertion 24.2.4) that
eventually turn acquires the index of a contender (i.e., a process in T). Then,
subsequently, turn must always be equal to some contender's index, although
it may change to the index of different contenders. However, eventually turn
stabilizes to a final (contender's) index, say i. Again using Assertion 24.2.4, we
argue that, subsequently, process i enters C.

This completes the proof of Theorem 24.1. D

Now we consider the time complexity of FischerME.

T h e o r e m 24.2 In any timed ezecution of the FischerME algorithm,

1. The time from any point when some process i is in the trying region until
some process is in the critical region is at most 2a2 + 5~2.

2. The time from any point when any process i is in the exit region until
process i is in the remainder region is at most 2~2.

P r o o f . The bound for the exit region is straightforward. For the trying region
bound, we could use an operational argument, but for variety, we give a proof
using a timed simulation, as described in Section 23.3.3. Notice that the proof of
progress for FischerME (in the proof of Theorem 24.1) is based on the execution
reaching certain "milestones"--for example, the "seizing" of the turn variable
by some contender and the "stabilizing" of the turn variable to some particular
contender's index. We incorporate these milestones, together with their time
bounds, into an "abstract mutual exclusion algorithm" B. We then show the
time bounds for FischerME using a simulation from FischerME to B. The
strategy is the same as in Section 23.3.3.

The abstract algorithm B is the following MMT automaton.

2 4 . 2 . A S I N G L E - R E G I S T E R A L G O R I T H M 781

B a u t o m a t o n :

Signa tu re :

Input:
tryi, l <_ i <_ n
exiti, 1 <_ i <_ n

Output:
criti , 1 <_ i <_ n
re mi , l < i ~ n

Internal:
seize
stabilize

States:
status, an element of {s tar t , seized, s tab} , initially s tar t
for every i, 1 < i _< n"

regioni, an element of { R , T , C , E } , initially R

Trans i t ions :
tryi

Effect"
regioni " - T

seize
Precondition:

3i, regioni -- T
Vi, regioni ~ C

s ta tus = s tar t
Effect:

s ta tus := seized

stabilize
Precondition:

s ta tus = seized
Effect:

s ta tus := stab

Tasks and bounds:
s e i z e - - { se i ze} , bounds [0, a2 + 3g~]
stab - { s tab i l i ze} , bounds [0, gz]
c r i t - {cr i t i " 1 <_ i <_ n} , bounds [0, as + gz]
for every i, 1 _< i _< n:

rem~ = {rem~} , 1 <_ i <_ n, bounds [0,292]

criti
Precondition:

regioni = T
s ta tus = stab

Effect:
regioni := C
s ta tus := s tar t

exiti
Effect"

regioni := E

r e m i

Precondition:
region i - E

Effect"
regioni := R

A l g o r i t h m B is v e r y a b s t r a c t - - i t j u s t e x p r e s s e s the w e l l - f o r m e d n e s s a n d m u -

t u a l e x c l u s i o n c o n d i t i o n s , p lus the g loba l m i l e s t o n e s in the t r y i n g r e g i o n (w i t h

782 24 . M U T U A L E X C L U S I O N W I T H P A R T I A L S Y N C H R O N Y

t ime bounds) , plus the t ime bounds for individual processes in the exit region.

Since the bounds for the miles tones add up to the t ime bound of [2a2 + 5t~2] that

we want to prove for the t ry ing region, it is not hard to see that B solves the

mutua l exclusion problem and has the required t ime bounds. We now present

a t imed s imulat ion f f rom the F i s c h e r M E sys tem (a lgor i thm plus users) to the

B sys tem (with the same users). Since f is a t imed simulat ion, this implies (in

view of Theorem 23.10) tha t the F i s c h e r M E a lgor i thm also observes the required

bounds.

Define (s, u) C f if the following hold. (We assume that all unbound uses of

process indices are implici t ly universal ly quantif ied.)

1. s. now = u. now .

2. All user states are identical in s and u.

3. u. region i

R if s.pc i - rein,

_ T if s.pc i E { tes t , set , check, leave- try} ,

C if s.pc i crit ,

E if s.pc i E {rese t , leave-exi t} .

s tar t

4. u . s t a t u s - seized

stab

if s . t u r n = 0 or 3i : s.pc i E {cr i t , rese t} ,

if s . t u r n 7s 0, fli: s.pc i C {cr i t , rese t} , and 3i: s.pc~

if s . t u r n r 0 and ~ i : s.pc~ C {cr i t , reset , se t} .

5. u . l a s t (se i ze) > s . l a s t (ma in~) + a2 + 262 if s.pc~

6. u . l a s t (s e i z e) >_ m i n i { g (i) } if s . t u r n = 0, where

= reset.

= set,

s . l a s t (check i) + 2t~2 if s.pci - check,

g(i) - s . l a s t (m a i n i) + 62 if s.pc i - test ,

s . l a s t (m a i n i) if s.pc i - set ,

ec otherwise.

7. u . la s t (s tab) >_ s . l a s t (ma in~) if s.pc i = set.

8. u. last (crit) >_ {
s . l a s t (check i) + 62

s . l a s t (m a i n i)

9. u . l a s t (r e m i) > ~ s . l a s t (m a i n i) + 62
- I. s . l a s t (m a i n i)

if s.pc i = check A s . t u r n = i,

if s.pc i = leave-try.

if s.pc i = reset ,

if s.pc i = leave-exit .

The n o w , user, and region correspondences are all s t ra ight forward . The s t a t u s

correspondence gives the na tura l definit ion of the s t a t u s of the compet i t ion in the

F i s c h e r M E algori thm: If t u r n = 0 or some process is in (or jus t after) the critical

region, then the compet i t ion has s ta tus s t a r t . If t u r n is equal to the index of a

compet ing process (i.e., is non-zero and is not equal to the index of a process

tha t is in or jus t after the critical region) and if some process is still able to

24.2. A S I N G L E - R E G I S T E R A L G O R I T H M 783

modify turn, then the competition has status seized. If turn is equal to the index
of a competitor and no process is still able to set turn, then the competition has
status stab.

The first inequality for last(seize) says that if some process is about to reset,

then the time until the turn variable is seized is at most an additional a2 + 2t~2
after the reset occurs. The second inequality for seize says that if turn = 0

(which implies that no process is at crit or reset), then the time until the turn
variable is seized is determined by the minimum of a set of possible times, each
corresponding to some candidate process that might set turn. For instance, if
pci = s e t - - t ha t is, if process i is about to set t u rn - - then the corresponding time
is just the latest time at which it can take its next step; however, if pci = t e s t - -
that is, if process i is about to test the variable-- then the corresponding time
is an additional t~2 after the test occurs. The interpretations for the remaining
inequalities are similar.

Then it is not hard to show that f is a timed simulation relation; the argument
follows the style of those in Examples 23.3.3 and 23.3.4. Assertions 24.2.3 and
24.2.4 are used in this proof; Assertion 24.2.3 is used in the set, crit, and reset

cases, while Assertion 24.2.4 is used in the time-passage case. In this simulation,
each external step of the FischerME system simulates a corresponding external
step of the B system. A set step that changes turn from 0 to a process index
simulates seize, and a set step that leaves no other processes at set simulates
stabilize. A set step that satisfies both of these conditions simulates both seize
and stabilize (in that order). Each other step simulates a trivial t imed execution
fragment with no actions. We leave the details for an exercise.

It follows from Theorem 23.10 that the admissible timed traces of the Fis-

cherME system are included among those of the B system. This implies the
needed time bounds. [--1

When the FischerME algorithm is modified to fit our model, including k - 1
explicit delay steps as we discussed just before the code, where]g~l) ~2, the time
bound for the trying region is 2kt~2 + 592. Choosing k to be as small as possible,
that is, k = [LJ + 1, where L = g2/~l , yields a time bound of 2Lg2 + 0 (s

S t r e t c h i n g . The time bound of 2Lg2+O (g2) illustrates how timing uncertainty
can "stretch" the time complexity of an algorithm. If L = 1, that is, if t~l =
t~2, then there is no timing uncertainty in the system. In this case, the time
bound is just O (t~2)--it depends only on the upper bound t~2 on the real time
between each process's steps. But if L is not equal to 1, the time bound increases
accordingly. In fact, the real time t~2 in the time bound is multiplied by the timing
uncertainty L.

784 24. M U T U A L EXCLUSION W I T H PARTIAL S Y N C H R O N Y

The term of Lg2 arises in the FischerME algorithm as follows. In order to
be sure that a certain amount of real time, say t, has elapsed, a process counts
its own steps. It must count enough steps so that even if the steps take the
smallest amount of time possible, gl, real time t must have elapsed; thus, the
number of steps must be at least t /gl. But these steps could in fact take the
largest amount of time possible, t~2, for a total real time of at least (t/gl)g2 = Lt.

Roughly speaking, it requires real t ime Lt for processes in a system with
timing uncertainty L to be sure that real time t has elapsed. In this sense,
the time complexity is "stretched" by a factor equal to the timing uncertainty.
This stretching phenomenon has already appeared in the t imeout example in
Example 23.1.4. There, the inequality k~l ~ ~ + d was required for the t imeout
to work correct ly-- the t imeout process essentially checks that real time greater
than g + d has elapsed. But then a timeout might occur as late as time kg2 + g >
L(e + d) + e.

M i x i n g t i m e b o u n d s a n d fa i rness . We can consider a variant of the Fis-
cherME algorithm in which the only time constraints are a lower bound on the
time from when a check action is enabled until it occurs, and an upper bound
on the time for a set action. Any enabled, locally controlled action other than a
check action is just required to occur eventually. It is not hard to see that this
variant still solves the mutual exclusion problem. This variant cannot be rep-
resented using the MMT model as we have presented it in this book; rather, it
requires a version of the model allowing time bounds for some tasks and fairness
conditions for others. Of course, no time bounds can be proved for this version
of the algorithm.

24.3 Resi l ience to Timing Failures

The correctness of the FischerME algorithm depends critically on timing re-
strictions. Even its most basic correctness condition, mutual exclusion, can fail
to hold in a t imed execution in which the important timing const ra in ts- - the
lower bound of al for check steps and the upper bound of g2 for set steps
are violated. It would be nice to improve this algorithm so that at least the
mutual exclusion condition is always satisfied, no mat ter what happens to the
timing. As a general design principle, it is desirable for timing-based algorithms
to guarantee their most crucial safety properties, regardless of t iming variations.

One idea for improving the FischerME algorithm in this way is to replace
its critical region by the trying, critical, and exit regions of a second algorithm
S. Algorithm S should always guarantee the mutual exclusion condition for its

24.3. RESILIENCE TO TIMING FAILURES 785

critical region, regardless of the timing of its steps. However, S should also not
impede the progress of the FischerME algorithm when the timing constraints
are satisfied. We could let S be any asynchronous algorithm that solves the
mutual exclusion problem (satisfying the well-formedness, mutual exclusion, and
progress conditions), but, unfortunately, Theorem 10.33 implies that such an
algorithm would require at least n shared registers. Fortunately, we do not need
such a strong progress condition for S; instead, we can use the following weaker
progress condition.

l - c o n c u r r e n t p r o g r e s s : In any admissible timed execution in which there is
never more than one user outside of R at once,

1. (l-concurrent progress for the trying region) If Ui is in T, then at
some later point it enters C.

2. (l-concurrent progress for the exit region) If Ui is in E, then at some
later point it enters R.

Here, of course, the users and regions are those of the second algorithm S.
An example of an asynchronous algorithm S with the needed conditions fol-

lows. Note that this algorithm uses only two shared registers.

S:

S h a r e d v a r i a b l e s :
x, a process index, initially arbi t rary, writable and readable by all processes
y E {0, 1}, initially 0, wri table and readable by all processes

P r o c e s s i:

** Remainder region **

M:
try i
x : = i
if y # 0 then goto M
y : - i
if x =/= i then goto M
criti

** Crit ical region **

exiti
y ' - - O
remi

786 24. MUTUAL EXCLUSION WITH PARTIAL SYNCHRONY

Theorem 24.3 Asynchronous shared memory algorithm S guarantees the well-
formedness, mutual exclusion, and l-concurrent-progress conditions.

P r o o f . Left for an exercise. It is similar to many of the other proofs of mutual
exclusion algorithms in this book. D

The combination of the FischerME algorithm and S can be described by the
following code.

FischerS algorithm:

S h a r e d var iables :
t u r n C {0, 1 , . . . , n}, initially 0, writable and readable by all processes
x, a process index, initially arbitrary, writable and readable by all processes
y C {0, 1}, initially 0, writable and readable by all processes

P r o c e s s i:

L:

M:

** Remainder region **

t r y i

if t u r n ~ 0 then goto L
t u r n " - i

if t u r n ~ i then goto L

x : - i

if y =/= 0 then goto M
y : = l
if x =/- i then goto M
cr i t i

** Critical region **

ex i t i

y : = 0

t u r n "-- 0

r e m i

The FischerS code can be regarded as denoting either an asynchronous algo-
r i thm or a partially synchronous algorithm. When it denotes an asynchronous
algorithm, we assume fairness conditions for all processes. We obtain

24.3. RESILIENCE TO TIMING FAILURES 787

T h e o r e m 24.4 The FischerS algorithm, regarded as an asynchronous algo-
rithm, guarantees the well-formedness and mutual exclusion conditions.

P r o o f . Well-formedness is easy, and mutual exclusion follows from the fact,
claimed in Theorem 24.3, that S guarantees mutual exclusion. [-1

We leave the determination of progress properties of FischerS for the exercises.
On the other hand, when the FischerS code denotes a partially synchronous

algorithm, we assume as for FischerME that there are two tasks for each process
i, one with bounds [al, a2] and the other with bounds [t~x, f2], where ~2 < al. The
first task includes only the step where process i checks the value of turn, and the
second task includes everything else.

T h e o r e m 24.5 The FischerS algorithm, regarded as a partially synchronous al-
gorithm, solves the mutual exclusion problem, that is, it guarantees well-formed-
hess, mutual exclusion, and progress.

P r o o f . The well-formedness and mutual exclusion conditions follow from The-
orem 24.4. The progress condition for the exit region is easy. We argue the
progress condition for the trying region. In this argument, R, T, C, and E de-
note the regions of the FischerS algorithm. We also define the FischerME trying
region to be the portion of T prior to label M, and define the S trying region
to be the rest of T. Likewise, we define the S exit region to be the portion of
E before the assignment y := 0 and the FischerME exit region to be the rest of
E. We also define the FischerME critical region to be the combination of the S
trying region, C, and the S exit region.

Suppose that at some point in an admissible timed execution, at least one
user is in T and no user is in C. If at any subsequent point, some process is
in the S trying region, then (using the fact that FischerME guarantees mutual
exclusion) the 1-concurrent-progress condition for S implies that eventually some
process enters C, as needed.

On the other hand, assume that no process ever subsequently reaches the
S trying region. Then the 1-concurrent-progress condition for S implies that
eventually the S exit region becomes empty. This means that the FischerME
critical region is empty, so the progress condition for the FischerME algorithm
implies that eventually some process enters the FischerME critical region. But
this means it enters the S trying region, which is a contradiction. W1

788 24. MUTUAL EXCLUSION WITH PARTIAL S Y N C H R O N Y

24.4 Impossibility Results

We finish this chapter with two impossibility results. The first is a lower bound
on the time required to solve the mutual exclusion problem in the partially syn-
chronous model. The second is an impossibility result for the case where time
bounds are required to hold eventually.

2 4 . 4 . 1 A L o w e r B o u n d o n t h e T i m e

The FischerME algorithm solves the mutual exclusion problem in the partially
synchronous shared memory model and achieves a worst-case time bound of
2L~2 + O (t~2) for progress in the trying region. It is possible to improve this to
obtain a time bound of Lg2 + O (g2). (We leave this improvement for an exercise.)
But is it possible to do better? That is, does there exist a faster algorithm that
solves the mutual exclusion problem in this model, still using only a constant
number of variables? We give a simple result for the special case of one variable;
the statement is closely related to that of Theorem 10.34.

T h e o r e m 24.6 There is no algorithm in the partially synchronous read/write
shared memory model that solves the mutual exclusion problem for two processes
using only one read/write shared variable, and that has an upper bound of L~2
on the time for progress in the trying region.

The proof of Theorem 24.6 uses an interesting argument involving "stretch-
ing" and "shrinking" timed executions, while still observing the timing con-
straints. It is based closely on the proof of Theorem 10.34.

P r o o f . Suppose for the sake of contradiction that there is such an algorithm,
A, using a single shared register x. We construct a timed execution of A that
violates mutual exclusion.

Consider an admissible timed execution O~ 1 of A in which process 1 runs
alone, taking steps at the slowest possible ra te - - tha t is, with time ~2 between
its successive steps. By the time bound assumption, process 1 must reach C by
time Lg2 in a l . As in the arguments in Section 10.8, process 1 must write to the
shared variable before entering C. Let a2 be the prefix of O~1 ending just before
process 1 writes to x for the first time.

Similarly, consider a slow admissible timed execution a3 involving process
2 alone, starting from the same start state as a l, in which process 2 reaches C
by time Lg2. Let a4 be the prefix of a3 ending when process 2 enters C. Let
a5 be an alternative finite timed execution of A that is just like O~4 except that
everything is sped up ("shrunk") by a factor of L = t~2/~l. Then in a5, process
2 enters C by time g2.

24.4. I M P O S S I B I L I T Y R E S U L T S 789

The counterexample t imed execution c~ begins with c~2, thus bringing process

1 to the point of writing x. At this point, we allow process 1 to pause. Now

we allow process 2 to take steps, executing as in the fast t imed execution a5.
(Since process 1 does not write to x in c~2, process 2 cannot tell that process 1 is
active and so can execute as if it were alone.) Thus, within time g2 after process

2 begins operating, it reaches C. We allow process 1 to pause for time exactly

t~2, which is enough time to allow process 2 to reach C. Next, we resume process
1, allowing it to continue as in a l . The first thing it does is write x, thereby

overwriting anything process 2 might have writ ten there on its way to C. This
eliminates all evidence of process 2's execution, thus allowing process 1 to run

just as it does in a l , eventually reaching C. But this puts both processes in C

simultaneously, which contradicts the mutual exclusion requirement. [::]

It is possible to extend the lower bound in Theorem 24.6 to cases where there

are more shared variables, but the results that are currently known for these

cases are not very tight. The methods of Section 10.8 yield some partial results.

24.4.2 Imposs ib i l i ty Resul t for Eventual Time Bounds*

The FischerS algorithm solves the mutual exclusion problem (including the prog-
ress condition) if it runs partially synchronously, and it guarantees at least the

mutual exclusion property if it runs asynchronously. Is it possible to guaran-

tee progress under weaker conditions, for example, if the algorithm runs asyn-
chronously for a while, but eventually starts to satisfy its timing constraints? It

is not hard to see that the FischerS algorithm does not make this guarantee; we

leave this for an exercise. We show that in fact no algorithm does so.

T h e o r e m 24 .7 There is no asynchronous algorithm A for n > 2 processes that

does all of the following:

1. Guarantees well-formedness and mutual exclusion when run asynchronously

2. Guarantees progress when run in such a way that each process's step bounds
are eventually in the range [gl, ~2] 2

3. Uses fewer than n shared read/write registers

P r o o f S k e t c h . The proof follows that of Theorem 10.33 very closely. In par-
ticular, the main lemma is analogous to Lemma 10.37--i t asserts the existence

2Formally, we would define an eventually timed execution of an MMT automaton and state
this condition in terms of eventually timed executions. We omit the formal treatment.

790 24. M U T U A L E X C L U S I O N W I T H P A R T I A L S Y N C H R O N Y

of a k-reachable system state in which k distinct variables are "covered" by k
processes. No timing restrictions appear in the statement of this lemma.

The main lemma is proved by induction using the same construction as in
the proof of Lemma 10.37. The only difference is that wherever the earlier proof
used the general progress condition, we must now make do with the weaker
"eventually time-bounded" progress condition. Now, whenever we want to force
processes to make progress, we simply begin running them in such a way that
their timing constraints are satisfied from that point on.

There is one slightly tricky aspect of the construction: When we splice the
computation of process k § 1 into the main computation involving processes
1 , . . . , k, we must "shrink" the computation of k + 1 to fit it in before the other
processes take their next steps, and then must allow process k § 1 to pause
sufficiently long to allow the other processes to finish their computation. These
timing adjustments may cause timing constraints to be violated. But that is not
a problem--the lemma does not require that the execution constructed satisfy
any particular timing constraints. K1

24.5 Bibliographic Notes

The FischerME algorithm was designed by Fischer [116]. This algorithm has
been used recently as a test case for demonstrating the power of formal methods
for reasoning about timing-based systems. The proof that FischerME satisfies
the mutual exclusion property is derived from proofs by Abadi and Lamport
[1] and Luchangco [201]. The proof of the time bound for FischerME is due to
Luchangco and Lynch [201, 204, 205]. Proof of an improved time bound also
appears in [201]. All the proofs for the FischerME algorithm have been checked
by computer using the Larch theorem prover [202]. A sketch of a time bound
proof for the DijkstraME algorithm appears in [204].

The FischerS algorithm is due to Lynch and Shavit [209], as are the impos-
sibility results in Section 24.4. Alur and Taubenfeld [10] have obtained partially
synchronous mutual exclusion algorithms with good time complexity in the face
of a limited number of concurrent requests; their model and measure are some-
what different from the one used here. Attiya and Lynch [25] have some upper
and lower bound results for the time complexity of mutual exclusion in partially
synchronous networks. Their problem is different from the one considered here
in that the system is not given explicit notification of when critical regions are
completed.

24.6. EXERCISES 791

24.6 E x e r c i s e s

24.1. Prove Assertion 24.2.4.

24.2. Fill in the details of the operational proof of progress for Theorem 24.1.

24.3. Show that the FischerME algorithm permits a process to be locked out.

24.4. Does the IncorrectFischerME algorithm satisfy the progress condition?
Give a proof or a counterexample.

24.5. Fill in the details of the simulation argument in the proof of Theorem 24.2.

24.6. Prove an improved time bound of 2a2 + 5s -- a l for the FischerME algo-
rithm.

24.7. Describe a timed execution of the FischerME algorithm that takes as long
a time as possible from when some process is in T until some process is in

C. How does the coeffecient of 2 before the a2 arise?

24.8. Devise an alternative mutual exclusion algorithm for the partially syn-
chronous shared memory model, using one read/wri te shared variable.

This one should have a time bound that is of the form Lg2 + 0 (g2), without

the coefficient of 2 before the Lg2 term.

24.9. Let P be an MMT automaton with no input actions and only the single

output action a. Suppose that P has only a single task, with associated

bounds [gl,g2], where 0 < gl < g2 < oc, and that this task is always
enabled. Suppose that, in every admissible timed execution, P performs

exactly one output of a, at a real time that is greater than or equal to d.
Prove that there is some admissible timed execution of P in which a is

output at a real time greater than or equal to Ld, where L = g2/gl.

24.10. Reconsider the DijkstraME algorithm of Section 10.3. Prove a time bound
of (3n + 11)g for the time from when some process is in the trying region
until some process is in the critical region, assuming that g is an upper
bound on process step time. Do this by regarding this algorithm as an
MMT automaton and using a timed simulation similar to the one in the

proof of Theorem 24.2.

24.11. Prove Theorem 24.3. (Hint: Let I1 be the set of processes i such that x = i
and i is about to set y. Le t /2 be the set of processes i such that x = i and
i is about to test x. Let /3 be the set of processes that are either in, just
before, or just after C. The following invariants may be useful:

792 24. MUTUA L EXCLUSION W I T H PARTIAL S Y N C H R O N Y

(a) Ill U/2 U/31 ~ 1.

(b) If I/2 U/31 > 0, then y = 1.

(c) If all processes are in R, then y = 0.)

24.12. Show that algorithm S does not guarantee progress (in the presence of
concurrent requests). Do this by giving an explicit execution in which the
progress condition is violated.

24.13. Does the FischerS algorithm, regarded as an asynchronous algorithm, sat-
isfy the l-concurrent-progress condition? Prove or give a counterexample.

24.14. Give an explicit execution of the FischerS algorithm regarded as an asyn-
chronous algorithm, in which the progress condition is violated.

24.15. Give another algorithm that has all the correctness properties we claimed
for the FischerS algorithm (i.e., it guarantees well-formedness and mutual
exclusion when run asynchronously and progress when run partially syn-
chronously), but that only uses two read/wri te shared variables instead of
three.

24.16. Prove that there is no algorithm that has all the correctness properties
we claimed for the FischerS algorithm but that only uses one read/wri te
shared variable instead of three.

24.17. Research Question: Consider the k-concurrent-progress condition, defined
in Exercise 10.32. Design an algorithm that satisfies the well-formedness,
mutual exclusion, and k-concurrent-progress conditions when run asyn-
chronously and also satisfies the progress condition when run partially
synchronously. Try to minimize the number of shared registers.

24.18. Research Question: Design a timing-based algorithm that solves the mu-
tual exclusion problem (guaranteeing well-formedness, mutual exclusion,
and progress). Moreover, it should satisfy all of the following time bound
requirements:

(a) The worst-case time from when some user is in T until some user is
in C is O (Lg2).

(b) The worst-case time from when some user i is in T and all other users
are in R until either user i enters C or some other user enters T is
o

(c) The worst-case time from when any user is in E until that user reaches

R is O (g2).

24.6. EXERCISES 793

Also try to generalize your result by designing another algorithm for the
same problem, but this time generalizing the second requirement to one
that asserts a good upper bound for progress in the trying region, in the
case where there are at most k users concurrently outside of R. (Here, k
is fixed, 1 _< k _< n.)

24.19. Obtain a lower bound on the time for progress in the trying region in
the partially synchronous model, for the case of two shared read/wr i te
variables. (Hint: Consider the proofs in Section 10.8. The lower bound
will be of the form cL~2, where c is a small constant.)

24.20. Research Question: For every k, 1 _< k _< n, obtain tight upper and lower
bounds on the worst-case time for progress, for mutual exclusion algo-
r i thms in the partially synchronous read/wr i te shared memory model with
k shared variables.

24.21. Give a part icular execution that demonstrates that the FischerS algori thm
does not satisfy the requirements listed in the statement of Theorem 24.7.

24.22. Give a more detailed proof of Theorem 24.7.

24.23. Consider the solvability of the mutual exclusion problem in the unknown
time bound model. In this model, we assume lower and upper time bounds
~1 and t~2 on process step times, but these bounds are "unknown" to the
processes. (That is, they can be different in different executions, though
each execution observes fixed bounds throughout.)

Prove an analogue to Theorem 24.7 for the unknown time bound model.

24.24. Research Question: Develop a theory of partially synchronous algorithms
for more general resource-allocation problems.

This Page Intentionally Left Blank

Chapter 25

Consensus
Synchrony

with Partial

In this, the final chapter, we visit consensus problems for the fourth time, this
time in the partially synchronous network setting. We consider only stopping
failures. It turns out that the results for consensus in the partially synchronous
setting are quite different from those in either the synchronous or asynchronous
setting. We first present a basic algorithm and a basic lower bound, both derived
from corresponding results for the synchronous setting; there is a gap in time
complexity between these two results, based on the timing uncertainty. Then
we give a more difficult algorithm and a more difficult lower bound result that
mostly close this gap. We finish with some results for weaker timing models and
a look ahead to some possible future work.

25.1 T h e P r o b l e m

We define the agreement problem in much the same way as we did in Sections 12.1
and 21.2. Namely, the external interface of the system A consists of init(v)i input
actions and decide(v)i output actions, where 1 <_ i _< n and v E V, plus stopi
input actions. Each user U~ has init(v)i outputs and decide(v)i inputs, v E V.
Now Ui is an MMT automaton that performs at most one initi action in any
timed execution.

A sequence of initi and decidei actions is well-formed for i provided that it
is some prefix of a sequence of the form init(v)~, decide(w)i. We consider the
following conditions on the combined system consisting of A and the users Ui"

Wel l - formedness : In any timed execution of the combined system, and for any
port i, the interactions between Ui and A are well-formed for i.

796 25. CONSENSUS WITH PARTIAL S Y N C H R O N Y

A g r e e m e n t " In any timed execution, all decision values are identical.

Va l id i t y : In any timed execution, if all init actions that occur contain the same
value v, then v is the only possible decision value.

Failure-free t e r m i n a t i o n : In any admissible failure-free t imed execution in
which init events occur on all ports, a decide event occurs on each port.

f - f a i l u r e t e r m i n a t i o n , 0 _< f _< n" In any admissible t imed execution in
which init events occur on all ports, if there are stop events on at most f
ports, then a decide event occurs on every non-failing port.

Wait-free termination is defined to be the special case of f-fai lure termination

where f = n.
We assume that A is a partially synchronous send/receive network system,

as described in Section 23.4.2. Each process Pi is an MMT automaton with time

bounds of ~1 and t~2 for each of its (finitely many) tasks, where 0 < ~1 _~ ~2 % CX~;
let L - t~2/t~l. The processes are subject to stopping failures. Channels are
assumed to be of the second type defined in Section 23.4.2, that is, reliable FIFO
channels with an upper bound of d on the delivery time for every message.

We say that A solves the agreement problem if it guarantees well-formedness,
agreement, validity, and failure-free termination for every collection of users. We
consider algorithms that guarantee f-failure termination for various values of
f . The question we consider is how much time it takes after the arrival of all
inputs for all nonfaulty processes to decide. We focus here on the role of L, the
uncertainty parameter, in this time complexity.

Throughout this chapter, we consider a special case of the problem. Namely,
we assume that V = {0, 1} and that the network graph is completely connected.
We assume that ~1 and g2 are much smaller than d, in fact, we assume that even
rig2 and L/~2 are small relative to d.

We need one more technical assumption: each process task of a non-failed
process is always enabled (though the only action of the task that is enabled
might be a dummy action that causes no state changes). This assumption allows
us to consider simple patterns of step times in our lower bound proofs.

25.2 A Fai lure D e t e c t o r

A useful building block for the algorithms in this chapter is a "perfect failure
detector" F. We defined failure detectors for the asynchronous setting in Sec-
tion 21.4. Recall that a failure detector has stopi actions as inputs and inform-
stopped(j)i actions as outputs, j ~= i. An inform-stopped(j)i action is intended

25.2. A FAILURE D E T E C T O R 797

as an announcement, at location i, that process j has stopped. A perfect fail-
ure detector is guaranteed to report only failures that have actually happened
and to eventually report all such failures to all other non-failed processes. The
only difference here from Section 21.4 is that we no longer assume that a failure
detector is an I /O automaton but, rather, that it is a general timed automaton
(GTA).

We give a partially synchronous network system (in the model assumed in
this chapter) that implements a perfect failure detector. The idea is similar to
that used in the timeout MMT automaton of Example 23.1.2.

P S y n c h F D a l g o r i t h m :

Each process Pi continually sends messages to all the other processes Pj,
using one task per process. If a process P/ performs a sufficiently large
number m of steps without receiving a message from Pj, it records that Pj
has stopped and outputs inform-stopped(j)i.

The number m of steps is taken to be the smallest integer that is strictly
greater than (d + g2)/gl + 1.

T h e o r e m 25.1 PSynchFD is a perfect failure detector.

P r o o f . It should be obvious that all failures are eventually detected by all other
non-failed processes. We must argue that only actual failures are detected. So
suppose that Pi outputs inform-stopped(j)i. Then prior to this, Pi performs more
than (d + g2)/gl + 1 steps without receiving a message from Pj. This implies
that time strictly greater than d + g2 passes without Pi receiving any messages
from Pj. But since the time between Pi's successive sends to Pj is at most g2,
and each message takes at most time d to arrive, the time between successive
receive events must be at most d + g2. Thus, it must be that Pj has stopped. [-7

We will also need two timing properties of PSynchFD. The first says that
a failure notification can only occur after more than time d has elapsed since a
failure. The second provides an upper bound on the time until failure notification
occurs.

T h e o r e m 25.2

1. In any timed execution of PSynchFD containing both a stopj event and an
inform-stopped(j)i event, the time from the stopj event until the inform-
stopped(j)i event is strictly greater than d.

2. In any admissible timed execution of PSynchFD in which a stopj event
occurs, within time Ld+ d+ 0 (Lg2) after the stopj event, either an inform-
stopped(j)i event or a stopi event occurs.

798 25. CONSENSUS WITH PARTIAL SYNCHRONY

P r o o f .

o

.

As in the proof of Theorem 25.1, at the point when the inform-stopped(j)~
occurs, no message has been received by Pi from Pj for some amount of
time a > d + g2. Suppose that the inform-stopped(j)i event occurs at time

t. Then no message from Pj arrives at Pi in the time interval (t - a, t).
Then it must be that no message is sent by Pj to Pi during the time interval

(t - a, t - a + g2], for otherwise it would arrive at Pi in the time interval

(t - a, t - a § g2 § d], which is included in the interval (t - a, t). But this
means that Pj must stop by time t - a + g2 < t - d, as needed.

Consider an admissible timed execution of PSynchFD in which a stopj
occurs, say at time t. Then no message is sent from Pj to Pi after time t,

so no message is received by Pi from Pj after time t + d. After receiving

the last message, the time for Pi to count m steps is at most rag2. Since

m is just greater than (d + g2)/gl + 1, rag2 = Ld + 0 (Lg2). So if Pi does
not fail in the meantime, the total time from stopj to inform-stopped(j)~ is

Ld + d + 0 (Lg2), as needed.

[5]

Par t 1 of Theorem 25.2 has an important consequence. It implies that when
any process Pi times out another process Pj, it knows that all messages that
were sent by Pj prior to its failure have already arrived at their destinations.

Since we are assuming that Lg2 is small relative to d, we can think of the

time bound for failure notification as approximately Ld + d.

25.3 B a s i c R e s u l t s

We begin by considering what we know about the agreement problem from re-

sults in earlier chapters and at tempting to extend the results to the partially
synchronous setting. The main relevant results turn out to be the matching

upper and lower bounds of f + 1 rounds, for agreement with f failures, in the
synchronous model. These appear in Sections 6.2 and 6.7, respectively.

25.3.1 Upper Bound

Section 6.2 contains several algorithms that solve the agreement problem in the

synchronous network model with stopping failures. Most of the algorithms that
tolerate f stopping failures require exactly f + 1 rounds. It is possible to trans-
form any of these algorithms to run in the partially synchronous setting. The

transformation works as follows.

25.3. BASIC RESULTS 799

Let A be any synchronous network algorithm for a complete graph network.
Recall that the conventions of the synchronous model imply that inputs appear in
the initial states and outputs are written to write-once local variables. In terms
of A, we describe an algorithm A ~ for the partially synchronous network model.

A ~ a l g o r i t h m :

Each process Pi is the composition of two MMT automata: Qi, which is
node i's portion of the PSynchFD algorithm, plus a main automaton Ri. Ri
has the inform-stoppedi actions as inputs. Ri maintains a variable stopped,
in which it records the set of processes j for which it has received inform-
stopped(j)i inputs, that is, those that it has learned have failed. Ri also
maintains a variable containing the simulated state of process i of A.

In order to simulate each round r, process Ri first determines and sends out
all its round r messages from algorithm A (using one task per destination
process). This determination is made using the msgsi function of A. Next
Ri waits, for each j ~ i, until it has either received a round r message
from R i or sees that j C stopped. Then Ri determines the new simulated
state of A from the old state, using the received messages (and using a
null message for any process from which Ri has not received a round r
message).

Now fix f and suppose that A is any f-fault-tolerant, f + 1-round algorithm
that solves the agreement problem in the synchronous network model. We con-
struct a partially synchronous version A ~ of A as above. This is almost, but not
quite, what we n e e d ~ t h e difference is just that A ~ uses different input /ou tpu t
conventions from the ones that we use in this chapter. So we modify A ~ to ob-
tain an algorithm B as follows: First, in B, Ri does not begin the simulation
of A until it receives an init(v)i input. At that time, it places the value v in
its simulated input variable and begins the simulation of round 1. (However, Qi
begins its timeout activity right at the start of the timed execution.) Second, in
B, when Ri simulates the write of value v to its output variable, it immediately
thereafter performs a decide(v)i output action.

T h e o r e m 25.3 B solves the agreement problem in the partially synchronous
network model, and guarantees f-failure termination. Moreover, in any admis-
sible timed execution in which inputs arrive on all ports and at most f failures
occur, the time from the last init event until all nonfaulty processes have decided
is at most f (Ld + d) + d + 0 (f L~2).

P r o o f . It should be easy to see that B simulates A correctly, which implies
that B solves the agreement problem. For the time bound, we give an operational

800 25. CONSENSUS W I T H P A R T I A L S Y N C H R O N Y

argument. Fix an admissible t imed execution a of/3. Let S be an upper bound
for the PSynchFD algorithm, where S = Ld + d + 0 (Lg2). Such an S exists,
by Theorem 25.2. We define a series of time milestones, T(0) ,T(1) , T(2),
The milestone T(r) will be shown to be an upper bound on the time for all
not-yet-failed processes to complete the simulation of round r.

First, define T(0) to be the time at which the last init occurs in a. Second,
define

_ f r (o) + + s,
T(1)

T(O) + e2 + d,
if some process fails by time T(0) + ~2,
otherwise.

Finally, for r _> 2, define

/ T(r - 1) + ~2 + S,

T(r - 1) q-- g2 + d,

if some process fails in the time interval
(T(r - 2) + t~2, T(r - 1) + e2],
otherwise.

Because S is an upper bound for the time to detect failures, it is easy to see that

C l a i m 25.4 Let r > 0 and let j be any process index. I f process j fails by
time T(r) + ~2, then j is detected as failed by all not-yet-failed processes by time
T(r + 1).

Now we can show the key claim.

C l a i m 25.5 For all r > O, T(r) is an upper bound on the time for all not-yet-
failed processes to complete their simulation of r rounds of A.

P r o o f (of C l a i m 25.5) . By induction on r.
Basis: r - O . This is trivial.
Inductive step: r >_ 1. I fa process j fails by time T (r - 1) + g 2 , then Claim 25.4

implies that it is t imed out by all not-yet-failed processes by time T(r) . On the
other hand, if process j does not fail by time T(r - 1) + g2, then it succeeds in
sending out all its round r messages by time T(r - 1) + ~2. These all arrive at
their destinations by time T(r - 1) + ~2 + d <_ T(r) . Thus, all processes complete
round r by time T(r) . V]

Now we show the required time bound, thereby completing the proof of Theo-
rem 25.3. B y Claim 25.5, T (f + 1) is an upper bound on the time for all nonfaulty
processes to complete their simulation of f + 1 rounds, so T (f + 1) + O (g2) is
an upper bound on the time for all nonfaulty processes to perform their decide

25.3. BASIC RESULTS 801

output actions. But the definition of the milestones and the fact that there are
at most f failures imply that

T (f + 1) _< T(0) + f(g2 + S) + (g2 + d).

Plugging in the bound for S yields

T (f + 1) _< T(0) + f (Ld + d) + d + 0 (fLg2).

This implies the needed bound. D

25.3 .2 Lower B o u n d

In Theorem 6.33, we showed a lower bound of f + 1 on the number of rounds
required to solve the agreement problem in the synchronous network model with
f faulty processes. With a little work, we can extend this bound to the partially
synchronous model, giving a lower bound of (f + 1)d time. Note that there is
no mention in this bound of the timing uncertainty L.

T h e o r e m 25.6 Suppose that n >_ f + 2. Then there is no n-process agreement
algorithm for the partially synchronous network model that guarantees f-failure
termination, in which all nonfaulty processes always decide strictly before time
(f + 1)d.

P r o o f Ske tch . Suppose for the sake of contradiction that there is such an
algorithm A. We transform A into an f - round synchronous algorithm A ~, thus
contradicting Theorem 6.33.

Algorithm A must, of course, work correctly when we restrict at tention to a
special case of the partially synchronous model, in which we only consider t imed
executions satisfying certain interleaving and timing constraints:

1. All inputs arrive right at the beginning, at t ime 0.

2. All tasks proceed as slowly as possible, subject to the g2 upper bound;
therefore, all locally controlled steps of the processes occur at times that
are integer multiples of g2.1 Moreover, for each process, the task steps
occur in a prespecified order.

3. For every r E N, all messages sent at times in the interval [rd, (r + 1)d)
are delivered at exactly time (r + 1)d. Moreover, messages delivered to a
single process i at the same time are delivered in order of sender indices.

1 Recall that we have assumed that each task always has a step enabled.

802 25. CONSENSUS WITH PARTIAL S Y N C H R O N Y

4. At a t ime tha t is a multiple of both g2 and d, all the message deliveries
occur prior to all the locally controlled process steps.

Call the part ial ly synchronous model with these restrictions the strongly timed
model. We regard A as an algori thm for the strongly t imed model. Wi thou t loss
of generality, we may assume that A is "deterministic," in the sense tha t each
process task has at most one locally controlled action enabled in any state, and
tha t for each state and each action, there is at most one possible new state. Also,
since all messages are delivered at t imes tha t are multiples of d and processes
decide strictly before t ime (f + 1)d, we may assume without loss of generality
tha t the processes decide at their first step after the t ime fd message del iver ies .

It turns out tha t the behavior of algori thm A in the strongly t imed model
is very close to the behavior of an f - round synchronous network algorithm. In
particular, for every r ~_ 1, since no messages arrive between times (r - 1)d and
rd, the messages sent in the interval [(r - 1)d, rd) are all determined by the
process states just after the t ime (r - 1)d message deliveries. So we might t ry to
regard all these messages as the round r messages of a synchronous algorithm.

However, there is one significant technical difference. In the synchronous
model, if a process i fails at round r, then for each j :/: i, process i either
succeeds in sending all or none of its round r information to process j . If it
succeeds in sending all its round r information to j and none to j~, then this
corresponds to sending all of its messages in the interval [(r - 1)d, rd) to j , but
none of messages in the interval [(r - 1)d, rd) to j ' , in algori thm A. But this is
not a possible behavior in the strongly t imed model, if i sends several messages
to each of j and j~ in tha t interval.

In order to t ransform A into a synchronous algorithm, it is helpful to gener-
alize the synchronous model slightly. Namely, instead of allowing each process
i, at each round r, to send only one message to each other process, we allow it
to send a finite sequence of messages, each to an arbitrary, specified destination.
We allow a failure of i to interrupt this sequence after any prefix. It is not hard
to see tha t the proof of Theorem 6.33 extends to this slightly generalized model.
It is only necessary to include extra steps in the chain constructed in the proof
of Theorem 6.33 for adding and removing the messages in the sequences one at
a time.

Now it is possible to t ransform the given agreement algori thm A into an
agreement algori thm A ~ in this stronger synchronous model, in such a way tha t
every execution of A ~ corresponds to a t imed execution of A. The sequence of
messages process i sends at round r of A ~ consists of all the messages it sends
in the interval [(r - 1)d, rd) of A, in the order of its steps in A. Now the
behavior caused by a failure in A ~ does correspond to possible behavior of A.

25.4. AN EFFICIENT ALGORITHM 803

The resulting algorithm A' is an f-round agreement algorithm for the stronger
synchronous model, for n _> f + 2. This is a contradiction to Theorem 6.33. 5

An alternative way of proving Theorem 25.6 is to carry out a new chain
argument similar to the one in the proof of Theorem 6.33, but directly in terms
of the strongly timed model. Again, extra steps must be included in the chain
for adding and removing messages sent "in the middle" of rounds.

25.4 An Efficient Algorithm

The two results described in Section 25.3 leave an interesting gap in time com-
plexity. The upper bound is approximately f L d + (f + 1)d, while the lower bound
is (f + 1)d. The most notable difference is the fact that the timing uncertainty
L appears in the upper bound but not in the lower bound. We would like to
understand how the inherent complexity of this problem depends on the timing
uncertainty.

The practical importance of understanding the impact of L on the time com-
plexity depends on the size of L. If each process Pi of an algorithm A is run
on a dedicated processor, so that the speed of Pi's steps is governed by a highly
accurate processor clock, then L will typically be very small and the dependency
of A's complexity on L will n o t matter much. On the other hand, if process
speeds are determined by other factors such as process swapping, then L could
be quite large and this dependency could be important. In any case, the question
is interesting theoretically.

Initially, you might guess that it is possible to improve the lower bound result
of Theorem 25.6 to incorporate a multiplicative factor of L. But this cannot be
done: it turns out that there is a clever algorithm that runs in time approximately
Ld + (2f + 2)d. This means, roughly speaking, that only one message delivery
is "stretched" by the timing uncertainty L. There is also a more difficult lower
bound proof that yields a lower bound of Ld + (f - 1)d. We present the algorithm
in this section and the lower bound in Section 25.5.

25 .4 .1 T h e A l g o r i t h m

We describe a partially synchronous algorithm, PSynchAgreement, which guar-
antees wait-free termination and which has a time bound of Ld + (2f + 2)d +
O (ft~2 + Lt~2) when there are at most f failures. PSynchAgreement has a very
simple description, but its behavior is rather tricky to understand. We suggest
that before reading about this algorithm, you try to design a solution of your
o w n .

804 25. CONSENSUS WITH PARTIAL SYNCHRONY

In the PSynchAgreement algorithm, we specify that a process should send
certain messages to "all processes"; this includes sending to the sender itself.
The model does not actually permit this, but as usual, this can be simulated
using internal steps.

PSynchAgreement algorithm:
The algorithm uses the PSynchFD failure detector just as algorithm B
in Section 25.3.1 does. That is, each process Pi of PSynchAgreement is
the composition of two MMT automata: Qi, which is node i's portion of

the PSynchFD algorithm, plus a main automaton Ri. Ri has the inform-
stoppedi actions as inputs. Ri maintains a variable stopped, in which it

records the set of processes j for which it has received inform-stopped(j)i
inpu t s - - tha t is, those that it has learned have failed.

The algorithm proceeds in "rounds," numbered O, 1, At each round,
each Ri tries to reach a decision; however, it is only allowed to decide 0 at
an even-numbered round and 1 at an odd-numbered round. Ri only begins
its round 0 after it receives its input. Ri maintains a variable decided, to
keep track of processes from which it has received a decided message.

Round O: If Ri's input is 1, then Ri does the following, in order:
send goto(1) to all processes
go to round 1

If Ri's input is O, then Ri does the following, in order:
send goto(2) to all processes

output decide(O)i
send decided to all processes

Round r > O: Ri waits until a point where either it has re-
ceived a goto(r + 1) message or else it has received a goto(r)
message from every process that is not in stopped U decided. At
that point, if Ri has received a goto(r + 1) message, then it does
the following, in order:

send goto(r + 1) to all processes
go to round r 4- 1

Otherwise- - tha t is, if Ri has not received any goto(r + 1) mes-
sage but has received a goto(r) message from every process that
is not in stopped U decided--Ri does the following, in order:

send goto(r + 2) to all processes
output decide(r mod 2)i
send decided to all processes

25.4. A N E F F I C I E N T A L G O R I T H M 805

Thus, Ri starts off by examining its initial value. If the initial value is 1, Ri
advances to round 1, after telling the other processes to do the same. On
the other hand, if its initial value is 0, then Ri actually decides on 0, once
it has told the other processes to advance to round 2. This is to prevent
the others from deciding (in a conflicting way) at round 1. (Note that the

algorithm favors a decision of 0 at the beginning.)

At any later round r, if Ri is told to advance to round r + 1, then it does so,
after telling the other processes to do the same. On the other hand, if Ri

has not been told to advance to round r + 1 and it hears that every process

that has not failed or decided has reached round r, then it can decide on
r mod 2.

2 5 . 4 . 2 S a f e t y P r o p e r t i e s

We first show the safety properties: well-formedness, agreement, and validity.
These are based on two lemmas. We say that a process i tries to decide at a
round r _> 0 provided that it sends at least one goto(r + 2) message in preparat ion
for a decide event at round r.

L e m m a 25.7 In any t imed execution of PSynchAgreement and for any r >_ O,

the following are true:

1. I f any process sends a goto(r + 2) message, then some process tries to
decide at round r.

2. I f any process reaches round r + 2, then some process tries to decide at
round r.

P r o o f . The first goto(r + 2) message must be generated in this way. A process
advances to round r + 2 only after receiving a goto(r + 2) message. [~

L e m m a 25.8 In any t imed execution of PSynchAgreement and for any r >_ 0,
i f a process i decides at round r, then the following are true:

1. Ri sends no goto(r + 1) messages.

2. Ri sends a goto(r + 2) message to every process.

3. No process tries to decide at round r + 1.

P r o o f . The first two parts should be clear from the algorithm description. For
the third part, suppose for the sake of contradiction that Rj tries to decide at

806 25. CONSENSUS WITH PARTIAL SYNCHRONY

round r + 1. This means that at some point in round r 4- 1, process /i[j has

not received a goto(r + 2) message but has received a goto(r + 1) message from

every process that is not in stoppedj U decidedj. Since Ri sends no goto(r + 1)

messages, it must be that at the designated point, i E stoppedj U decidedj.
If i C stoppedj at this point, then Theorem 25.2 implies that Rj must have

already received all messages sent by Ri before Ri failed. But by Par t 2, this

includes a goto(r + 2) message, which is a contradiction.

On the other hand, if i E decidedj at this point, then Rj must have received

a decided message from Ri. But Ri sends such a message only after it has sent

its goto(r + 2) message to Rj. Then the F IFO proper ty of the channels implies

that Rj must have already received the goto(r + 2) message at the designated

point, which is again a contradiction. D

Now we can show the safety properties.

T h e o r e m 25 .9 The PSynchAgreement algorithm guarantees well-formedness,
agreement, and validity.

P r o o f . Well-formedness is s t raightforward. For validity, if all processes s tar t

with 0, then no process can ever leave round 0. Since 1 can only be decided

at odd-numbered rounds, no process can decide 1. On the other hand, if all

processes s tar t with 1, then no process tries to decide 0 at round 0. Then

Lemma 25.7 implies that no process reaches round 2. It follows that no process

decides 0.

For agreement, suppose that Ri decides at round r and no process decides

at any earlier round. Then by Lemma 25.8, no process tries to decide at round

r + 1. Then by Lemma 25.7, no process can reach round r + 3. So the only

possible rounds at which processes may decide are r and r + 2. Since these have

the same parity, all the decisions must be the same. D

25.4.3 L i v e n e s s a n d Complexity

Now we prove wait-free terminat ion, as well as the time bound. We begin with

a liveness claim for admissible t imed executions.

L e m m a 25 .10 In any admissible timed execution of PSynchAgreement, each
process continues to advance from round to round until it either fails or decides.

P r o o f . If not, then let r be the first round at which some process gets stuck;

note that r must be at least 1. Let i be the index of any process that gets stuck at

round r. For any other process Rj that ever fails, Ri must eventually detect the

25.4. A N E F F I C I E N T A L G O R I T H M 807

failure and place j in stoppecli. Also, for any other process/i~j that ever decides

but never fails, Ri must eventually discover that j has decided and place j in

decided4. Let I be the set of remaining processes- - tha t is, all processes except

those that ever fail or decide.
Then all processes in I must eventually reach round r, because r is the first

round at which any process gets stuck. Since r > 1, this implies that each process

Rj, j C I, must send a goto(r) message to R~, which R~ eventually receives. But

then Ri's condition for deciding is satisfied, so Ri must either decide or advance

to round r + 1. This contradicts the assumption that Ri gets stuck at round r.
C?

Now we define a notion that is useful for the liveness and complexity proofs

and prove some of its properties. In a given admissible t imed execution of

PSynchAgreement, we define a round r to be quiet if there is some process
that never receives a goto(r + 1) message from any other process. Combining

this new definition with some of the earlier lemmas, we get

L e m m a 25.11 In any admissible timed execution of PSynchAgreement and for

any r > O, the following are true:

1. I f no process tries to decide at round r, then round r + 1 is quiet.

2. I f some process decides at round r, then round r + 2 is quiet.

P r o o f . Par t 1 follows immediately from Lemma 25.7. For Par t 2, if some

process decides at round r, then Lemma 25.8 implies that no process tries to
decide at round r § 1, and then Par t 1 implies that r § 2 is quiet. [21

The reason that the notion of a quiet round is important is that no process

can ever advance past a quiet round:

L e m m a 25 .12 In any admissible timed execution of PSynchAgreement, if round
r is quiet, then no process ever advances to round r + 1.

P r o o f . If a process Ri advances to round r + 1, it first sends a goto(r + 1)
message to all processes. These are eventually received, which means that round
r is not quiet. F]

Now we show that a quiet round must occur.

L e m m a 25 .13 In any admissible timed execution of PSynchAgreement in
which there are at most f failures, there is a quiet round numbered at most

S+2.

808 25. CONSENSUS W I T H PARTIAL S Y N C H R O N Y

P r o o f . If any process decides by round f , this follows from Lemma 25.11. So
suppose that no process decides by round f . Since there are at most f failures,
there must be some round r, 0 _< r _< f , in which no process fails.

We claim that no process tries to decide at round r. Suppose for the sake of
contradiction that some process i does try. Then, since process i does not fail
at round r, admissibility implies that process i must actually decide at round r.
But this contradicts the assumption that no process decides by round f .

Since no process tries to decide at round r, Lemma 25.11 implies that round
r + 1 is quiet. [:]

We can now prove wait-free termination.

T h e o r e m 25.14 The PSynchAgreement algorithm guarantees wait-free termi-
nation.

P r o o f . Consider an admissible timed execution in which init events occur on
all ports. Let i be any non-failing port. We argue that Ri eventually decides.

By Lemma 25.10, Ri continues to advance from round to round until it
decides. But Lemma 25.13 implies that there is some quiet round r, and then
Lemma 25.12 implies that Ri cannot advance to round r + 1. This implies that
Ri must decide. IN

Finally, we prove the complexity bound.
number of failures, 0 < f < n.

At this point, we fix f to be any

T h e o r e m 25.15 In any admissible timed execution of PSynchAgreement in
which inputs arrive on all ports and there are at most f failures, the time
from the last init event until all nonfaulty processes have decided is at most

Ld + (2f + 2)d + 0 (fg2 + Lg2).

P r o o f Ske tch . The proofs of Theorem 25.14 and its supporting lemmas show
that the execution must consist of a series of non-quiet rounds, numbered up to
at most f + 1, followed by a single quiet round, say round r. All processes that
do not fail must decide without advancing past round r.

Let S be an upper bound for the PSynchFD algorithm, where S - Ld + d +
O (Lt~2). Define a series of time milestones, T ' , T (O) , T (1) , . . . ,T(r) . T' is the
time at which the last init occurs. For each k, 0 <<_ k < r, T(k) is the earliest time
at which every process has either failed, decided, or advanced to the next round,
k + 1. Thus, all nonfaulty processes decide by time T(r). It is not hard to see
that T (0) - T', the time for round 0, is O (t~2). Also, for k _> 1, T (k) - T (k - 1),
the time for round k is at most S + O (t~2), that is, slightly more than the time
required to detect a failure. Thus, T(k) - T(k - 1) _< Ld + d + 0 (Le2).

25.4. AN EFFICIENT ALGORITHM 809

Rj sends original goto (k+ 1)

end of round k - 1

end of round k

F i g u r e 25.1" goto(k + 1) messages relayed from Rj to Ri.

A more interesting fact is that the time T(k) - T (k - 1) for any non-quiet
round k, 1 <_ k <_ r - 1, does not depend on the timing uncertainty L. To see this,
we consider any particular process Ri. Since round k is not quiet, Ri receives a
goto(k + 1) message; we bound the time by which this happens.

This message must have originated, possibly via a series of relays, from some
original goto(k + 1) message sent by a process Rj trying to decide at round k - 1.
See Figure 25.1.

C l a i m 25.16 Let fk denote the number of processes that fail in the middle of
sending goto(k + 1) messages. Then the total time that elapses from the sending
of the original goto(k + 1) message by Rj until the receipt of the goto(k + 1)
message by Ri is at most (f k + 1)d + O (fkg2).

P r o o f . Rj sends its goto(k + 1) message as part of an at tempt to send such
messages to all processes, including Ri. If Rj does not fail in the middle of
this at tempt, then Rj succeeds in sending this message to Ri, and Ri receives
it within time d of when Rj sends it. Even if Rj does fail in the middle of this
at tempt, all the messages it succeeds in sending arrive within time d of when
they are sent.

Likewise, each process Rj, involved in relaying the message from Rj to Ri
sends its goto(k + 1) message as part of an at tempt to send such messages to all
processes, including Ri. Again, if Rj, does not fail in the middle of this at tempt,
then Rj, succeeds in sending the message to Ri, and Ri receives it within time d

810 25. CONSENSUS WITH PARTIAL SYNCHRONY

of when _Rj, sends it. Even if/i~j, does fail in the middle of this a t tempt , all the
messages it succeeds in sending arrive within time d of when they are sent.

It follows that the total time from when the original goto(k + 1) message is
sent by Rj until i receives some goto(k+ 1) message is at most (fk + 1)d+O (fk~2).
(The g2 accounts for the time from when a relay process receives a got o(k + 1)
message until it sends its own goto(k + 1) messages.) [-7

Since the original goto(k + 1) message is sent by Rj while it is in round k - 1,
it follows that it is sent by time T (k - 1). Since all processes receive goto(k + 1)
messages within time (fk + 1)d + 0 (fkg2), it follows that each will either advance
to round k + 1, fail, or decide by time T(k 1) + (fk + 1)d + O (fkt~2) + O (/~2) -
T (k - 1)4-(fk + 1)(d + O (t~2)). This implies that T (k) - T (k - 1) _< (fk + 1)(d 4-
O (t~2)). As we said earlier, this does not depend on the t iming uncertainty L.

Since T (0) - T' is O (/~2), T (k) - T(k 1) < (fk + 1)(d + O (t~2)) for all k,
1 < k _< r - 1, and T (r) - T (r - 1) G Ld + d + 0 (Lt~2), it follows that

r - 1 T (r) - T ' <_ Ek=l(fk + 1)(d + O (f2)) + L d + d + 0 (L 2) .

Since E r-1 k=lfk G f and r _< f + 2, we obtain

T(r) - T' <_ Ld + (2f + 2)d + 0 (ft~2 + Lt~2).

This is the needed complexity bound.

25.5 A Lower Bound Involving the Timing
Uncertainty*

In Section 25.4, we presented a partially synchronous agreement algorithm,
PSynchAgreement, which works in time approximately Ld + (2f + 2)d. The
PSynchAgreement algorithm goes a long way toward closing the complexity gap
between the simple upper bound of approximately fLd + (f + 1)d and the sim-
ple lower bound of (f + 1)d proved in Section 25.3. In particular, the PSynch-
Agreement algorithm demonstrates that there is no hope of proving a lower
bound containing a term of fLd. In this section, we prove a lower bound that
does depend on L, specifically, Ld + (f - 1)d. This still leaves a gap between
the upper and lower bounds, though at least the form of the dependency of the
time complexity on the t iming uncertainty L is clear.

T h e o r e m 25.17 Suppose that n >_ f + 1. Then there is no n-process agree-
meat algorithm for the partially synchronous model that guarantees f-failure
termination, in which all nonfaulty processes always decide strictly before time
Ld + (f - 1)d.

25.5. A L O W E R B O U N D I N V O L V I N G T H E T I M I N G U N C E R T A I N T Y * 8 1 1

The proof of Theorem 25.17 is quite interesting, because it uses a combina-
tion of several techniques from earlier chapters, including chain arguments as
in Chapter 6, arguments based on reachability of various decision values as in
Chapter 12, and arguments about stretching and shrinking timed executions as

in Chapter 24.
Throughout the rest of this section we suppose for the sake of contradiction

that A is an n-process agreement algorithm for the partially synchronous network
model that guarantees f-failure termination, and in which all nonfaulty processes
always decide strictly before time Ld + (f - 1)d. Without loss of generality, we
assume that A is "deterministic," as we did in the proof of Theorem 25.6. We
prove a series of lemmas leading to the conclusion that A cannot exist.

First, in Lemma 25.18, we show that a certain "bad combination" of t imed
executions cannot occur if algorithm A is correct. This bad combination in-
volves a "0-valent" timed execution c~0 and a "l-valent" timed execution OZl,
both reaching time at least (f - 1)d, together having few failures, and distin-
guishable to at most one non-failed process. Lemma 25.18 is proved using a
stretching and shrinking argument. Second, in Lemma 25.19, we show that a re-
lated combination does in fact exis t - -one with the same conditions, except that

we only require that 0 be reachable from c~0 and that 1 be reachable from c~1,
rather than requiring 0-valence and l-valence. Lemma 25.19 is proved using a
chain argument. Third, in Lemma 25.20, we produce a single "bivalent" t imed
execution a reaching time at least (f - 1)d and having few failures. Lemma 25.20
follows immediately from Lemmas 25.18 and 25.19. Fourth, in Lemma 25.21, we
strengthen Lemma 25.20 to include a "maximality" property, which yields two
immediate extensions of c~, a 0-valent extension c~0 and a l-valent extension C~l.
But this c~0 and Ct 1 comprise a "bad combination," yielding a contradiction.

Now we give the details. We begin by distinguishing among all the timed
executions of A a subset that we call the "synchronous" timed executions. A
synchronous infinite timed execution is one for which there is an infinite sequence

of times to - 0 , t l , t 2 , . . , where ~1 ~ t k + l - - tk <_ ~2 for k _> 0, satisfying the
following constraints"

1. All inputs arrive right at the beginning, at time to.

2. All the tasks of non-failed processes take steps exactly at times t l, t 2 , . . . ;
we call these the active times. 2 Moreover, for each process, the task steps

occur in a prespecified order.

3. Messages delivered to a single process i at the same time are delivered in

order of sender indices.

2Recall once again that we have assumed that each task always has a step enabled.

812 25. CONSENSUS W I T H PARTIAL S Y N C H R O N Y

4. At each active time, any message deliveries occur prior to all the locally

controlled process steps.

These conditions are somewhat similar to those used in the proof sketch for

Theorem 25.6. A synchronous infinite t imed execution can be divided up into

infinitely many "blocks" B0, B1, B 2 , . . . , where each Bk includes all the input

and message delivery steps at t ime tk but no locally controlled process steps at

t ime tk. Thus, block B0 includes only the input events, whereas each block Bk,
k _> 1, s tar ts with the locally controlled steps at t ime tk-1 and finishes with the

message delivery steps at t ime tk. A synchronous finite t imed execution is a

prefix of a synchronous infinite t imed execution consisting of some finite number

of complete blocks.

If c~ and c~ ~ are synchronous t imed executions, where c~ is a finite prefix of

c~ ~, we say that c~ is a k-block prefix of c~ ~, k > 0, if it consists of exactly the

complete blocks B0, B 1 , . . . , Bk of c~ ~. (In part icular , a 0-block prefix contains

one block, B0.) If c~ is a k-block prefix of c~ ~ for some k > 0, we say that c~ is a

block prefix of c~ ~, and that c~ ~ is a block extension of c~.

We will be especially interested in certain part icular kinds of block extensions.

Namely, if c~ is a synchronous finite execution, c~ ~ is a synchronous (finite or

infinite) execution, and c~ is a k-block prefix of c~ ~, k > 0, then we say that c~ ~ is

1. A fast extension of c~ if all steps in c~ ~ after c~ take the min imum time ~1,

that is, ti+l - t i - ~ 1 for all i > k.

2. A slow extension of c~ if all steps in c~ ~ after c~ take the max imum time g2,

that is, ti+l - ti - ~2 for all i _> k.

3. A failure-free extension of c~ if there are no stop events in c~ ~ after c~.

4. An fff-extension of c~ if it is a fast, failure-free extension of c~.

We emphasize that all of these types of extensions are block extensions, by

complete blocks only. Note that the designation "fast" or "slow" refers only to

process step time, not message-delivery time, which can still be any number in

[0,d].
Now we define some notions that are similar to notions used in the impossi-

bility results for agreement in the asynchronous model in Chapter 12. We say

that a value v c {0, 1 } is fff-reachable from a synchronous finite t imed execution

c~ if there is some fff-extension c~ ~ of c~ in which some process decides v. (This

decision might occur either in c~ or in the port ion of c~ ~ after c~.) We define a syn-
chronous finite t imed execution c~ to be 0-valent if only the value 0 is fff-reachable

from c~, 1-valent if only 1 is fff-reachable, and bivalent if both are fff-reachable.

T imed execution c~ is univalent if it is either 0-valent or 1-valent.

25.5. A L O W E R B O U N D I N V O L V I N G T H E T I M I N G U N C E R T A I N T Y * 8 1 3

We need one more no t ion - -a notion of "indistinguishability" of two syn-
chronous finite t imed executions to a part icular process i. Similar notions have

been used in the synchronous and asynchronous chapters of this book. Here,

the notion we need is a bit more complicated than before, because it takes into
account messages that are in t ransi t to i at the end of the executions. Namely, if

c~ and c~' are two synchronous finite t imed executions with the same active times,
then we say that c~ and c~' are indistinguishable to i if the following conditions
hold.

1. The projections of c~ and c~' on i, that is, c~]Pi and c~']Pi, are time-passage
equivalent. 3

2. The same messages are sent to Pi in c~ and c~', by the same processes, in
the same order, and at the same times.

The following lemma describes a certain bad combination of t imed executions
that cannot occur if the algorithm A is correct.

L e m m a 25 .18 There do not exist two k-block synchronous timed executions,

c~o and c~i, such that all of the following hold:

1. c~o and c~i have the same active times, t l , . . . , tk, where tk >_ (f - 1)d.

2. c~o is O-valent.

3. Ctl is 1-valent.

4. IF[<_ f - 1, where F is the set of processes that fail in either c~o or c~i.

5. c~o and 0~1 are distinguishable to at most one process not in F.

Figure 25.2 depicts this bad combination.

P r o o f . Suppose for the sake of contradiction that such c~0 and Ct 1 exist. We

will construct slow extensions ~0 and/31, of c~0 and C~l, respectively, both leading
to the same decision, say 0. Then we will speed up/31 and remove some of the
failures to obtain an fff-extension/3[, also with decision 0. This will contradict

the 1-valence of C~l.
In more detail, let G be F together with the process, if any, to which the two

timed executions c~0 and c~1 are distinguishable; thus,]G] _< f . We produce the
slow extensions/30 and/31, of c~0 and c~i, respectively, as follows.

3The projection operation I is defined in Section 23.2.3 and the notion of time-passage equiv-
alence is defined in Section 23.2.1.

814 25. CONSENSUS WITH PARTIAL S Y N C H R O N Y

time > (f - 1) d

So distinguishable to at most o~
one nonfaulty process

O-valent 1 -valent

< f - 1
failures

F i g u r e 25.2" Bad combination of timed executions for Lemrna 25.18.

First , at time tk, we provide stop events for all processes in G that have not
yet failed. Then we extend c~0 and Ct 1 in the same way, with slow extensions
having no addit ional failures. It is possible to extend them in the same way,

because a0 and Ctl are indistinguishable to all processes except those in G. By
the assumed upper bound for A, all nonfaulty processes must decide in/30 and
/31 strictly before time Ld + (f - 1)d <_ tk + Ld. Thus, strictly less than Ld
time passes in the new parts of the two t imed executions before decisions occur.
Moreover, since c~0 and Ctl are extended in the same way, the same decision
is reached in/30 and /31. Suppose without loss of generali ty that this common
decision is 0. See Figure 25.3.

O~ o

time < Ld

F i g u r e 25.3" Extensions fl0 and fll in the proof of Lemma 25.18.

Now consider extending c~1 to an alternative synchronous t imed execution

/3~; unlike/31,/3~ will be an fff-extension of Ctl. T imed execution/3~ is the same
as/31, except that the port ion after c~1 is "sped up" by a factor of L to become
fast. Moreover, no processes fail in /3~ after a l ; however, any messages sent
by processes in G in/3~ after Ct I take the max imum amount d of time to arrive.

25.5. A L O W E R B O U N D I N V O L V I N G T H E T I M I N G U N C E R T A I N T Y * 8 1 5

Thus, ~ behaves, prior to time tk + d, exactly like a sped-up version of/~1. (Note
that once the messages sent by the processes in G arrive, things can look quite
different in ~ and ~ , but this does not matter.) Then, since all processes not
in G decide 0 in/31 strictly before time tk + Ld, they will decide 0 in/3~ strictly
before time tk + d. See Figure 25.4.

O~ 1

New messages
take time d

) time < d

F i g u r e 25.4: Extension/3~ in the proof of Lemma 25.18.

But since ~ is an fff-extension of C t l , this contradicts the 1-valence of Ct 1. [--]

We will get a contradiction by showing that a bad combination of timed
executions of the sort described in Lemma 25.18 must in fact occur. First we
get a related combination.

L e m m a 25.19 For some k, there exist two k-block synchronous t imed ezecu-

tions, ao and a l , such that all of the following hold:

1. ao and Ctl have the same active times, t l , . . . , tk, where tk >_ (f - 1)d.

2. 0 is fff-reachable f rom ao.

3. 1 is fff-reachable f rom Ctl.

~. IF] <_ f - 1, where F is the set of processes that fail in either ao or o~ 1.

5. ao and Ctl are distinguishable to at most one process not in F.

Notice that the only difference between these conditions and those in the bad
combination is that Conditions 2 and 3 only require that 0 and 1 be fff-reachable
rather than requiring that a0 be 0-valent and c~1 be 1-valent. See Figure 25.5.

P r o o f Ske tch . This can be proved using a chain argument similar to the one
in the proof of Theorem 6.33. The proof is left as an exercise. E]

816 25. C O N S E N S U S W I T H P A R T I A L S Y N C H R O N Y

O~ o

time > (f - 1) d

distinguishable to at most
one nonfaulty process

< f - 1 O~ 1

failures

F i g u r e 25.5" Timed executions c~0 and Ot I for Lemma 25.19.

Combining Lemmas 25.18 and 25.19 immediately yields

L e m m a 25.20 There exists a synchronous finite t imed execution c~ such that

all of the following hold:

1. The final active t ime t k of c~ is at least (f - 1)d.

2. c~ is bivalent.

3. A t most f - 1 processes fail in c~.

See Figure 25.6.

o~

time >_ (f -

5 f - 1
failures

F i g u r e 25.6: Timed execution c~ for Lemma 25.20.

P r o o f . Let c~0 and O~ 1 be the two synchronous timed executions whose existence

is asserted by Lemma 25.19. By Lemma 25.18, it cannot be the case that c~0 is

0-valent and also C~l is l-valent. Therefore, at least one of c~0 and O~ 1 must be
bivalent, which means that it satisfies all the required conditions. [3

Now we strengthen Lemma 25.20 to include a "maximality" property.

25.5. A L O W E R B O U N D I N V O L V I N G T H E T I M I N G U N C E R T A I N T Y * 8 1 7

L e m m a 25.21 There exists a synchronous finite timed execution c~ such that
all of the following hold:

1. The final active time tk of c~ is at least (f - 1)d.

2. c~ is bivalent.

3. At most f - 1 processes fail in c~.

~. There are two ff f-extensions of c~, /3o and/~1, each by a single block, such
that

(a) ~o is O-valent.

(b)]31 is 1-valent.

(c) /3o and ~1 are distinguishable to at most one process.

See Figure 25.7. (Note the similarity between the configuration whose existence

is asserted here and the notion of a decider in the proof of Theorem 12.6.)

< _ f - 1
failures

time >_ (f - l) d

O-valent 1 -valent

F i g u r e 25.7: c~, ~o, and /~1 for Lemma 25.21.

P r o o f S k e t c h . Let c~ be the synchronous finite t imed execution whose exis-
tence is asserted by Lemma 25.20. Then we extend c~ by executing the following
"program":

while there exists a proper bivalent fff-extension of c~ do
c~ : - any such extension

We know that this program eventually terminates, because decisions are required

in all failure-free extensions of c~ before time Ld + (f - 1)d. Consider the final c~
that results from this program.

We claim that this c~ has all the properties we need. It satisfies the needed
time bound, bivalence, and failure conditions. Moreover, because it is bivalent

818 25. CONSENSUS W I T H P A R T I A L S Y N C H R O N Y

but cannot be extended to a longer bivalent t imed execution, there must be two

fff-extensions of a, 7o and 71, each by a single block, such that

1. 7o is O-valent.

2. ~1 is 1-valent.

This is not quite what we need, however, because it might be that 7o and 71 are
distinguishable to more than one process.

So we carry out one more chain construction between 70 and 71 to produce the
needed 30 and/31. Starting from ~0, at each step in the chain we simply modify
all the message deliveries to one of the processes Pi so that they are the same as
in 71. Each two consecutive timed executions in the chain are distinguishable to
only one process. Since all of these timed executions must be univalent, there

are two consecutive executions in the chain, /3o and/31, such that 30 is 0-valent
and/~1 is 1-valent. These give all the required properties. V1

Now we can obtain the contradiction.

L e m m a 25.22 A does not exist.

P r o o f . The two synchronous timed executions /30 and /~1 whose existence is
asserted by Lemma 25.21 satisfy all the requirements for a bad combination listed
in the statement of Lemma 25.18. This is a contradiction. K1

This proves Theorem 25.17.

25.6 Other R e s u l t s *

In this section, we consider what happens to the results about the agreement
problem if we weaken the timing model in several ways. Our t reatment here is
informal.

25.6.1 Synchronous Processes, Asynchronous Channels*

Suppose that we weaken the model to use reliable FIFO channels, as defined in
Chapter 14, with no upper bound on message-delivery time but only a guarantee
of eventual delivery. However, the processes still observe the [t~l, g2] bounds. In
this case, it is not hard to see that the agreement problem cannot be solved for
even one stopping failure. This is so even if gl = t~2, that is, if the process step
times are completely predictable.

25.6. OTHER RESULTS* 819

Theorem 25.23 There is no algorithm in the model with synchronous processes
and asynchronous channels that solves the agreement problem and guarantees 1-
failure termination.

P r o o f Ske t ch . Suppose for the sake of contradiction that A is such an algo-
rithm. Then A can be "simulated" in the asynchronous model, using an imple-
mentation of logical time as defined in Chapter 18. In this way, an algorithm for
agreement in the asynchronous network model, guaranteeing l-failure termina-
tion, can be produced, contradicting Theorem 21.2. We leave the details for an
exercise, ff]

25.6.2 Asynchronous Processes , Synchronous Channels*

Now suppose we weaken the partially synchronous model, this time keeping the
upper bound of d on delivery of all messages, but imposing only fairness, and no
time bounds, on the processes. Again, it is not hard to see that the agreement
problem cannot be solved for even one stopping failure.

Theorem 25.24 There is no algorithm in the model with asynchronous pro-
cesses and d-bounded channels that solves the agreement problem and guarantees
l-failure termination.

P r o o f . Suppose for the sake of contradiction that A is such an algorithm. Run
the same algorithm A in the asynchronous model. Then any fair execution c~ of
A in the asynchronous model can be "timed" in such a way that all the messages
observe the upper bound of d. This means that the execution satisfies all of
the conditions required for the agreement problem with l-failure termination.
Since none of these conditions depends on the times, the same conditions hold
for the given fair execution c~. Since this works for any fair execution c~ of A,
it follows that A solves the agreement problem with l-failure termination in the
asynchronous model. Once again, this contradicts Theorem 21.2. F1

25.6.3 Eventual Time Bounds*

For the final result of the book, we consider the case of eventual time bounds, as
we did in Section 24.4.2. That is, we consider the model where the algorithm runs
asynchronously for a while, but eventually starts to satisfy its timing constraints.
It turns out that the agreement problem is solvable in this model. However,
unlike in the partially synchronous model, where the time bounds always hold,
a solution requires n > 2f. Using an argument similar to that in the proof of
Theorem 17.6, it is not hard to show that the problem is not solvable in this

model if n < 2f. We leave this for an exercise.

820 25. CONSENSUS W I T H PARTIAL S Y N C H R O N Y

T h e o r e m 25 .25 The agreement problem is solvable, with f-failure termination,
in the model where process task time bounds of [~1, ~2] and bounds of d for all
messages hold eventually, provided that n > 2 f .

Designing a solution to this problem in this model is not easy. Strategies

like the one used in the PSynchAgreement protocol, based on t iming out failed

processes, do not work, because before the time bounds hold, processes can

conclude incorrectly that other processes have failed. We sketch an algori thm

based on a different strategy.

The heart of the a lgori thm is an a lgori thm A for a variant of the synchronous
model of Chapter 2 in which, in addit ion to up to f process failures, there may

be some loss of messages. We assume that any messages may be lost, but that

messages can only be lost for a finite number of rounds. After some point, all

messages are guaranteed to be delivered. The processes do not know when this

point is, however.

Algori thm A works as follows. We assume again that processes send messages

to themselves as well as to the other processes.

A algorithm:

The rounds are organized into "stages" 1, 2 , . . . where each stage s con-

sists of the four consecutive rounds 4 s - 3, 4s - 2, 4s - 1, and 4s. Stage

s is "owned" by a process, owner(s); this is the process whose index is

equivalent to s, modulo n.

At various times, a process may lock a value v C {0, 1}, together with an

associated stage number s. If process i locks (v, s), it means that process

i thinks that owner(s) might decide v at stage s. Process i continues to

hold some lock for v as long as it continues to think that owner(s) might

decide v at stage s. A value v is acceptable to i if i does not have a lock

on ~. Initially, no value is locked.

The processing during any part icular stage s with owner i is as follows.

Round ~s - 3: All processes send all their acceptable values to process i.

Process i then a t tempts to choose a value to propose. In order for process i

to propose v, it must hear that at least n - f processes (possibly including

itself) find value v acceptable at stage s. There might be more than one

value that is suitable for i to propose; in this case, i chooses its own initial

value.

Round gs - 2: If process i has determined a value v to propose, then it

sends a ("lock", v) message to all processes. Any process that receives such

a message locks (v, s) and releases any earlier lock on the same value v.

25.6. O T H E R R E S U L T S * 821

Round ~s - 1: Any process that received a ("lock", v) message at round

4s - 2 sends an ack message to process i. If process i receives acks f rom

at least f + 1 processes, then process i decides on its p roposed value v.

Round ~s: Every process sends messages conta ining all its current locks

to every other process. Any process i that has a lock on some (v, s ~) and

receives a message (~, s"), s" > s ~, that is, a newer lock for the opposi te

value, releases the earlier lock.

L e m m a 2 5 . 2 6 Algorithm A, for n > 2f , solves the agreement problem and

guarantees f- failure termination.

P r o o f . Fi rs t note that

C l a i m 2 5 . 2 7 For each stage s, there is at most one value v that is proposed at

stage s, and so at most one v for which any process ever holds a lock on (v, s).

Then an easy induct ion on the number of rounds (using the fact tha t a process

favors its own initial value) implies

C l a i m 2 5 . 2 8 I f all processes begin with initial value v, then ~ is never proposed
or locked.

Since a process only decides on a value it has proposed , val idi ty follows. Then

we show

C l a i m 2 5 . 2 9 I f process i decides on value v at stage s, then at the end of every

stage > s, at least f + 1 processes have locks on v with associated stage numbers

P r o o f . The a lgor i thm ensures tha t at least f + 1 processes lock (v, s) at round

4 s - 2. We claim that none of these processes ever releases a lock on v wi thout

immedia te ly acquir ing another lock on the same value v.

Suppose for the sake of cont rad ic t ion that one of these processes, say process

i, does release a lock on v wi thout immedia te ly acquir ing another lock on v.

Then process i mus t release the lock because it learns about a lock on (~, s ~) for

some s ~ > s, which means that owner(s ~) proposes ~ at stage s ~. Fix s ~ to be the

first stage > s at which ~ is proposed.
But then jus t pr ior to stage s ~, there mus t still be at least f + 1 locks on v,

which would prevent owner(s ~) from obta in ing approval for ~ at round 4s ~ - 3

f rom the required n - f processes. This is a contradic t ion. D

822 25. CONSENSUS WITH PARTIAL S Y N C H R O N Y

Now we resume the proof of Lemma 25.26. We show agreement. Suppose
that process i decides v at stage s. Then no process can decide ~ at the same
stage. Moreover, by Claim 25.29, there are always at least f + 1 locks on v from
stage s onward. This prevents any process from obtaining approval for ~ from
the n - f processes that would be required for it to propose ~. So ~ never gets
proposed, and no process ever decides ~.

To see termination, consider what happens after we reach the assumed point
after which all messages are delivered reliably. After any subsequent stage s,
it is not hard to see that there can be at most one locked value among all the
non-failed processes in the system. This is because of Claim 25.27 and the lock-
release rule at round 4s. Once this is so, the owner of any stage will succeed in
obtaining all the necessary approval and acknowledgments to allow it to decide
(if it does not fail). K]

P r o o f S k e t c h (of T h e o r e m 25.25) . We give only the general idea for the
construction of an algorithm B for the model with eventual time bounds. Each
process Pi of B maintains a nonnegative integer-valued local variable clock, ini-
tially 0. Each clock variable is monotonically nondecreasing. Let C - max{ clocki �9
1 < i _< n}. Then C can be regarded as a sort of "global clock" maintained by
the system. By a protocol involving repeated sending and updating of clock val-
ues (which we omit here), the processes can ensure that, starting soon after the
point p when the time bounds begin to be satisfied:

1. The rate of growth of C with respect to real time is bounded from
and from above, by known constant bounds.

below

2. Each clock is within a known (additive) constant of C.

Thus, the processes eventually achieve rather synchronized clocks.
In addition to maintaining its clock, each process Pi of B also simulates its

counterpart in algorithm A, using its local clock to determine what round to
simulate. A fairly large (but predictable) number of clock values are devoted
to the simulation of each round r - - enough to ensure that after point p in the
execution, any message sent by a process Pi at the beginning of Pi's simulated
round r is in fact delivered to every process Pj before the end of Pj's simulated
round r.

Note that prior to point p, some Pi might not finish its simulation of some
round r before its clock advances too far. In this case, there is no harm if Pi
simply omits sending the extra messages--af ter all, in A, they might be lost,
anyhow. However, Pi must simulate the state transition for round r. It can do
this at the first step after its simulation of round r is interrupted.

25.7. POSTSCRIPT 823

In this way, B simulates algorithm A and achieves the same correctness
conditions. [--]

25.7 Postscript

In this chapter and the previous one, we have presented a few basic results
for two fundamental problems of distributed computing~mutual exclusion and
consensus--in partially synchronous models. These few results already demon-
strate that the theory for partially synchronous distributed computing is quite
different from that for either synchronous or asynchronous distributed comput-
ing.

However, much work remains to be done in this area. There are many other
problems of interest in distributed computing that can be considered in the par-
tially synchronous setting. These include many problems described in this book,
for example, problems of network searching, construction of spanning trees, re-
source allocation, snapshots, and stable property detection. They also include
many other problems that arise in real communication systems, distributed op-
erating systems, and real-time process control systems.

It would also be useful to have general characterization results describing ex-
actly what can be computed in partially synchronous systems, and with what time
complexity. Transformation results relating the power of partially synchronous
models to that of the synchronous and asynchronous models would also be good
to have.

25.8 Bibliographic Notes

Most of the constructions and results in the chapter, including the PSynchFD
failure detector, the simple upper and lower bound results in Theorems 25.3 and
25.6, and the more difficult upper and lower bound results in Theorems 25.15
and 25.17, were proved by Attiya, Dwork, Lynch, and Stockmeyer [22]. Ponzio
[247, 245] extended the algorithm of Section 25.4.1 to the stronger "sending-
omission" failure model and gave a less efficient algorithm for the case of Byzan-
tine failures. Berman and Bharali [48] improved the complexity of Ponzio's
sending-omission algorithm. Ponzio also obtained good upper and lower bounds
on the time complexity for failure detection, in a two-node system [246]. The
impossibility result for synchronous processes and asynchronous channels, The-
orem 25.23, was proved first by Dolev, Dwork, and Stockmeyer [95]. The proof
sketched here, based on Welch Time, is due to Welch [287].

824 25. CONSENSUS WITH PARTIAL SYNCHRONY

Theorem 25.25, for the model with eventual time bounds, was proved by
Dwork, Lynch, and Stockmeyer [104]. That paper also contains a similar result
for the unknown time bound model, as well as results for other failure models.
Lamport 's Paxos algorithm [183] is very similar to the algorithms in [104].

Other results in the partially synchronous model include upper and lower
bounds by Attiya and Mavronicolas [17] on the time to solve the session problem
of Section 16.6; bounds by Wang and Zuck [284] on the size of the low-level
message alphabet needed for reliable high-level message transmission; and trade-
off upper and lower bounds by Kleinberg, Attiya, and Lynch [167] on the time for
message delivery and the time for system quiescence, in connection management
protocols.

25.9 E x e r c i s e s

25.1. Give precondition-effect code for process Pi in the PSynchFD algorithm.

25.2. Suppose that instead of using channels that guarantee delivery of all mes-
sages in time d, we instead use channels that only guarantee delivery of the
oldest message within time d.

(a) Modify the PSynchFD algorithm for use with such a model, trying to
minimize the resulting time complexity.

(b) Prove a lower bound on the time complexity of failure detectors for
this setting.

25.3. Research Question: Design the most efficient algorithm you can for simulat-
ing synchronous network algorithms with stopping failures in the partially
synchronous model. Can you achieve an upper bound of Ld + rd (plus
low-order terms) on the time required to simulate r rounds?

25.4. The following alternative strategy can be used to solve the agreement prob-
lem in a partially synchronous network, in the special case where all inputs
are assumed to arrive at time 0.

The processes simulate the EIGStop algorithm of Section 6.2.3 by relaying
the information they receive as soon as they receive it, recording the values
in their EIG trees just as before. Each process must determine when it
has finished recording values in its tree. It does this by ensuring that time
at least (f + 1)(d + ~) has elapsed.

Give detailed code for such an algorithm, prove that it works correctly, and
analyze its time complexity.

25.9. EXERCISES 825

25.5. Prove the analogue of Theorem 6.33 for the generalized synchronous model
defined and used in the proof of Theorem 25.6. (Hint: The proof is very
similar to that of Theorem 6.33.)

25.6. Fill in the details in the proof of Theorem 25.15. In particular, prove that
T(0) - T', the time for round 0, is O (g2) and for k _> 1, T (k) - T (k - 1),
the time for round k, is at most S + O (g2).

25.7. For an arbi t rary f , 0 < f < n, describe a part icular admissible t imed
execution of PSynchAgreement in which inputs arrive on all ports and
there are at most f failures, and in which the time until every process fails
or decides is as long as you can manage.

25.8. Suppose that instead of using channels that guarantee delivery of all mes-
sages in time d, we instead use channels that only guarantee delivery of the
oldest message within time d. Modify the PSynchAgreement algorithm for
use with such a model, trying to minimize the resulting time complexity.

25.9. Research Question: Design a more efficient agreement algorithm than
PSynchAgreement for the partially synchronous model. Can you achieve
an upper bound of Ld + fd (plus lower-order terms) on the time?

25.10. Prove Lemma 25.19. (Hint: Use a chain argument similar to the one
in the proof of Theorem 6.33. Base it on a subset of the synchronous
t imed executions that satisfy the t iming constraint that for every r C H, all
messages sent at times in the interval [rd, (r + 1)d) are delivered at exactly
time (r + 1)d. The t imed executions in this subset are similar to executions
in the synchronous model, and the same sort of chain argument can be
used.)

25.11. Research Question: Prove a better lower bound than the one in Theorem
25.17 for the time to reach agreement in the partially synchronous model.
Can you achieve a lower bound of Ld + fd? Can you do better?

25.12. Research Question: Obtain the best upper and lower bounds you can for
the problem of Byzantine agreement in the partially synchronous model.

25.13. Research Question: Consider the problem of k-agreement, as defined in
Section 21.5, in the partially synchronous network model with f stopping
failures. Obtain good upper and lower bounds on the time for all nonfaulty
processes to decide. Can you achieve bounds of approximately Ld + [kd?
(This bound is suggested by the FloodMin algori thm and Theorem 7.14 for
the synchronous network setting.)

826 25. CONSENSUS WITH PARTIAL SYNCHRONY

25.14. Prove Theorem 25.23, the impossibility result for the agreement problem
in a send/receive network with synchronous processes and asynchronous
channels. (Hint: Show how to simulate an algorithm for this model using
the asynchronous model, using the Welch Time implementation of logical
time. The clock values used by the Welch Time algorithm can be main-
tained by counting steps.)

25.15. Prove that the agreement problem cannot be solved in the model in which
time bounds eventually hold, if n _< 2f.

25.16. Complete the proof of Theorem 25.25. That is,

(a) Define the clock management strategy precisely.

(b) State carefully the needed claims about the degree of synchronization
and the rate of growth.

(c) Complete the description of algorithm B by describing precisely the
simulation based on the clock.

(d) Prove that B guarantees the correctness conditions for the agreement
problem, with f-failure termination.

25.17. Analyze the time complexity of the algorithm B you constructed for Exer-
cise 25.16.

25.18. Consider the solvability of the agreement problem in the unknown time
bound model. In this model, we assume lower and upper time bounds gz
and g2 on process step times, 0 < g l _~ g2 < OO, and an upper bound of d
on delivery time for each message, but these bounds are "unknown" to the
processes. (That is, they can be different in different executions, though
each execution observes fixed bounds throughout.)

Prove an analogue to Theorem 25.25 for the unknown time bound model.

25.19. Research Question: Redo the proofs of the time bound results for PSynchFD
and PSynchAgreement using the simulation methods of Section 23.3.3.

25.20. Obtain good upper and lower bounds for the time complexity of the session
problem of Section 16.6, in the partially synchronous network model.

25.21. Obtain good upper and lower bounds for the time complexity of the problem
of implementing a snapshot atomic object, as defined in Section 13.3, in the
partially synchronous shared memory model. (Be sure to describe carefully
what you are measuring.)

25.9. EXERCISES 827

25.22. Research Question: Obtain upper and lower bounds for the time complexity
of other problems of interest in distributed computing, in the partially
synchronous setting. Look beyond the problems mentioned in this book to
others that arise in actual communication systems, distributed operating
systems, and real-time process control systems. You may also want to look
beyond the specific formulation of the partially synchronous setting used
in this book.

25.23. Research Question: Obtain general characterization results describing ex-
actly what can be computed in partially synchronous systems, and with
what time complexity, and transformation results relating the power of
partially synchronous models to that of the synchronous and asynchronous
models.

This Page Intentionally Left Blank

Bibliography

[1] Martin Abadi and Leslie Lamport. An old-fashioned recipe for real time.
In J. W. de Bakker et al., editors, Real-Time: Theory in Practice (REX
Workshop, Mook, The Netherlands, June 1991), volume 600 of Lecture
Notes in Computer Science, pages 1-27. Springer-Verlag, New York, 1992.

[2] Karl Abrahamson. On achieving consensus using a shared memory. In
Proceedings of the Seventh Annual A CM Symposium on Principles of Dis-
tributed Computing, pages 291-302, Toronto, Ontario, Canada, August
1988.

[3] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and
Nir Shavit. Atomic snapshots of shared memory. Journal of the A CM,
40(4):873-890, September 1993.

[4] Yehuda Afek, Hagit Attiya, Alan Fekete, Michael Fischer, Nancy Lynch,
Yishay Mansour, Da-Wei Wang, and Lenore Zuck. Reliable communication
over unreliable channels. Journal of the A CM, 41(6):1267-1297, November
1994.

[5] Yehuda Afek and Eli Gafni. End-to-end communication in unreliable net-
works. In Proceedings of the Seventh Annual A CM Symposium on Princi-
ples of Distributed Computing, pages 131-148, Toronto, Ontario, Canada,
August 1988. ACM, New York.

[6] Yehuda Afek and Eli Gafni. Time and message bounds for election in syn-
chronous and asynchronous complete networks. SIAM Journal on Com-
puting, 20(2):376-394, April 1991.

[7] Gul A. Agha. Actors: A Model of Concurrent Computation in Distributed
Systems. MIT Press, Cambridge, 1986.

[8] Bowen Alpern and Fred B. Schneider. Defining liveness.
Processing Letters, 21(4):181-185, October 1985.

Information

830 BIBLIOGRAPHY

[9] Rajeev Alur and David L. Dill. A theory of timed automata.
Computer Science, 126(2):183-235, April 1994.

Theoretical

[10] Rajeev Alur and Gadi Taubenfeld. Results about fast mutual exclusion. In
Proceedings of the Real-Time Systems Symposium, pages 12-21, Phoenix,
December 1992. IEEE, Los Alamitos, Calif.

[11] James H. Anderson. Composite registers.
6(3):141-154, April 1993.

Distributed Computing,

[12] James H. Anderson. Multi-writer composite registers.
puting, 7(4):175-195, May 1994.

Distributed Com-

[13] Dana Angluin. Local and global properties in networks of processors. In
Proceedings of the 12th Annual A CM Symposium on Theory of Computing,
pages 82-93, Los Angeles, April 1980.

[14] Eshrat Arjomandi, Michael J. Fischer, and Nancy A. Lynch. Efficiency
of synchronous versus asynchronous distributed systems. Journal of the
A CM, 30(3):449-456, July 1983.

[15] E. A. Ashcroft. Proving assertions about parallel programs.
Computer and System Sciences, 10(1):110-135, February 1975.

Journal of

[16] James Aspnes and Maurice Herlihy. Fast randomized consensus using
shared memory. Journal of Algorithms, 11(3):441-461, September 1990.

[17] H. Attiya and M. Mavronicolas. Efficiency of semisynchronous versus asyn-
chronous networks. Mathematical Systems Theory, 27(6):547-571, Novem-
ber/December 1994.

[18] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly
in message-passing systems. Journal of the A CM, 42(1):124-142, January
1995.

[19] Hagit Attiya, Amotz Bar-Noy, Danny Dolev, Daphne Koller, David Peleg,
and Riidiger Reischuk. Achievable cases in an asynchronous environment.
In 28th Annual Symposium on Foundations of Computer Science, pages
337-346. IEEE, Los Alamitos, Calif., October 1987.

[20] Hagit Attiya, Amotz Bar-Noy, Danny Dolev, David Peleg, and Riidiger
Reischuk. Renaming in an asynchronous environment. Journal of the
A CM, 37(3):524-548, July 1990.

BIBLIOGRAPHY 831

[21] Hagit Attiya, Shlomi Dolev, and Jennifer L. Welch. Connection manage-
ment without retaining information. In Proceedings of the 28th Annual
Hawaii International Conference on System Sciences, volume II (Software
Technology), pages 622-631, Wailea, Hawaii, January 1995. IEEE, Los
Alamitos, Calif.

[22] Hagit Attiya, Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer.
Bounds on the time to reach agreement in the presence of timing uncer-
tainty. Journal of the ACM, 41(1):122-152, January 1994.

[23] Hagit Attiya, Michael Fischer, Da-Wei Wang, and Lenore Zuck. Reliable
communication using unreliable channels. Manuscript, 1989.

[24] Hagit Attiya, Nancy Lynch, and Nir Shavit. Are wait-free algorithms fast?
Journal of the ACM, 41(4):725-763, July 1994.

[25] Hagit Attiya and Nancy A. Lynch. Timebounds for real-time process con-
trol in the presence of timing uncertainty. Information and Computation,
110(1):183-232, April 1994.

[26] Hagit Attiya and Ophir Rachman. Atomic snapshots in O(n log n) opera-
tions. In Proceedings of the 12th Annual A CM Symposium on Principles
of Distributed Computing, pages 29-40, Ithaca, N.Y., August 1993.

[27] Hagit Attiya, Marc Snir, and Manfred K. Warmuth. Computing in an
anonymous ring. Journal of the A CM, 35(4):845-875, October 1988.

[28] Hagit Attiya and Jennifer L. Welch. Sequential consistency versus lin-
earizability. A CM Transactions on Computer Systems, 12(2):91-122, May
1994.

[29] Baruch Awerbuch. Complexity of network synchronization. Journal of the
A CM, 32(4):804-823, October 1985.

[30] Baruch Awerbuch. Reducing complexities of the distributed max-flow and
breadth-first search algorithms by means of network synchronization. Net-
works, 15(4):425-437, winter 1985.

[31] Baruch Awerbuch. Optimal distributed algorithms for minimum weight
spanning tree, counting, leader election and related problems. In Proceed-
ings of the 19th Annual A CM Symposium on Theory of Computing, pages
230-240, New York, May 1987.

832 BIBLIOGRAPHY

[32] Baruch Awerbuch, Bonnie Berger, Lenore Cowen, and David Peleg. Near-
linear cost sequential and distributed constructions of sparse neighborhood
covers. In 3~th Annual Symposium on Foundations of Computer Science,
pages 638-647, Palo Alto, Calif., November 1993. IEEE, Los Alamitos,
Calif.

[33] Baruch Awerbuch and Robert G. Gallager. Distributed BFS algorithms.
In 26th Annual Symposium on Foundations of Computer Science, pages
250-256, Portland, Ore., October 1985. IEEE, Los Alamitos, Calif.

[34] Baruch Awerbuch, Oded Goldreich, David Peleg, and Ronen Vainish. A
tradeoff between information and communication in broadcast protocols.
Journal of the A CM, 37(2):238-256, April 1990.

[35] Baruch Awerbuch and David Peleg. Sparse partitions. In 31st Annual
Symposium on Foundations of Computer Science, volume II, pages 503-
513, St. Louis, October 1990. IEEE, Los Alamitos, Calif.

[36] Baruch Awerbuch and David Peleg. Routing with polynomial
communication-space trade-off. SIAM Journal of Discrete Mathematics,
5(2):151-162, 1992.

[37] Baruch Awerbuch and Michael Saks. A Dining Philosophers algorithm with
polynomial response time. In 31st Annual Symposium on Foundations of
Computer Science, volume I, pages 65-74, St. Louis, October 1990. IEEE,
Los Alamitos, Calif.

[38] J. C. M. Baeten and W. P. Weijland. Process Algebra. Cambridge Tracts
in Theoretical Computer Science 18. Cambridge University Press, Cam-
bridge, U.K., 1990.

[39] Amotz Bar-Noy, Danny Dolev, Cynthia Dwork, and H. Raymond Strong.
Shifting gears: Changing algorithms on the fly to expedite Byzantine agree-
ment. In Proceedings of the Sixth Annual A CM Symposium on Princi-
ples of Distributed Computing, pages 42-51, Vancouver, British Columbia,
Canada, August 1987.

[40] Amotz Bar-Noy, Danny Dolev, Daphne Koller, and David Peleg. Fault-
tolerant critical section management in asynchronous environments. In-
formation and Computation, 95(1):1-20, November 1991.

[41] Alan E. Baratz and Adrian Segall. Reliable link initialization procedures.
IEEE Transactions on Communications, 36(2):144-152, February 1988.

BIBLIOGRAPHY 833

[42] K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson. A note on reliable
full-duplex transmission over half-duplex links. Communications of the
A CM, 12(5):260-261, May 1969.

[43] Richard Bellman. On a routing problem. Quarterly of Applied Mathemat-
ics, 16(1):87-90, 1958.

[44] Dag Belsnes. Single-message communication. IEEE Transactions on Com-
munications, COM-24(2):190-194, February 1976.

[45] M. Ben-Ari. Principles of concurrent programming. Prentice Hall, Engle-
wood Cliffs, N.J., 1982.

[46] Michael Ben-Or. Another advantage of free choice: Completely asynchro-
nous agreement protocols. In Proceedings of the Second Annual A CM
Symposium on Principles of Distributed Computing, pages 27-30, Mon-
treal, Quebec, Canada, August 1983.

[47] Claude Berge. Graphs and Hypergraph. North-Holland, Amsterdam, 1973.

[48] Piotr Berman and Anupam A. Bharali. Distributed consensus in semi-
synchronous systems. In Proceedings of the Sixth International Parallel
Processing Symposium, pages 632-635, Beverly Hills, March 1992. IEEE,
Los Alamitos, Calif.

[49] Piotr Berman and Juan A. Garay. Cloture voting: n/4-resilient distributed
consensus in t + 1 rounds. Mathematical Systems Theory--An Interna-
tional Journal on Mathematical Computing Theory, 26(1):3-20, 1993. Spe-
cial issue on Fault-Tolerant Distributed Algorithms.

[50] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
and Recovery in Database Systems. Addison-Wesley,

Concurrency Control
Reading, Mass., 1987.

[51] Ofer Biran, Shlomo Moran, and Shmuel Zaks. A combinatorial characteri-
zation of the distributed 1-solvable tasks. Journal of Algorithms, 11(3):420-
440, September 1990.

[52] Kenneth P. Birman and Thomas A. Joseph. Reliable communication in the
presence of failures. A CM Transactions on Computer Systems, 5(1):47-76,
February 1987.

[53] Bard Bloom. Constructing two-writer atomic registers. IEEE Transactions
on Communications, 37(12):1506-1514, December 1988.

834 BIBLIOGRAPHY

[54] Gregor Bochmann and Jan Gecsei. A unified method for the specification
and verification of protocols. In B. Gilchrist, editor, Information Process-
ing 77 (Toronto, August 1977), volume 7 of Proceedings of IFIP Congress,
pages 229-234. North-Holland, Amsterdam, 1977.

[55] Elizabeth Borowsky and Eli Gafni. Generalized FLP impossibility result
for t-resilient asynchronous computations. In Proceedings of the 25th An-
nual A CM Symposium on Theory of Computing, pages 91-100, San Diego,
May 1993.

[56] Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast
protocols. Journal of the A CM, 32(4):824-840, October 1985.

[57] Gabriel Bracha and Sam Toueg. Distributed deadlock detection.
tributed Computing, 2(3):127-138, December 1987.

Dis-

[58] Michael F. Bridgland and Ronald J. Watro. Fault-tolerant decision making
in totally asynchronous distributed systems. In Proceedings of the Sixth
Annual A CM Symposium on Principles of Distributed Computing, pages
52-63, Vancouver, British Columbia, Canada, August 1987.

[59] Manfred Broy. Functional specification of time sensitive communicating
systems. In W. P. de Roever, J. W. de Bakker, and G. Rozenberg, editors,
Stepwise Refinement of Distributed Systems: Models, Formalisms, Cor-
rectness (REX Workshop, Mook, The Netherlands, May/June 1989), vol-
ume 430 of Lecture Notes in Computer Science, pages 153-179. Springer-
Verlag, New York, 1990.

[60] James E. Burns. Mutual exclusion with linear waiting using binary shared
variables. ACM SIGACT News, 10(2):42-47, summer 1978.

[61] James E. Burns. A formal model for message passing systems. Tech-
nical Report TR-91, Computer Science Department, Indiana University,
Bloomington, September 1980.

[62] James E. Burns, Paul Jackson, Nancy A. Lynch, Michael J. Fischer, and
Gary L. Peterson. Data requirements for implementation of N-process
mutual exclusion using a single shared variable. Journal of the A CM,
29(1):183-205, January 1982.

[63] James E. Burns and Nancy A. Lynch. Bounds on shared memory for mu-
tual exclusion. Information and Computation, 107(2):171-184, December
1993.

BIBLIOGRAPHY 835

[64] O. S. F. Carvalho and G. Roucairol. On mutual exclusion in computer
networks. Communications of the A CM, 26(2):146-148, February 1983.

[65] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest
failure detector for solving consensus. Journal of the A CM, 43(4):685-722,
July 1996.

[66] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for
asynchronous systems. Journal of the A CM, 43(2):225-267, March 1996.

[67] K. M. Chandy and J. Misra. The Drinking Philosophers problem. ACM
Transactions on Programming Languages and Systems, 6(4):632-646, Oc-
tober 1984.

[68] K. Mani Chandy and Leslie Lamport. Distributed snapshots: Determining
global states of distributed systems. A CM Transactions on Computer
Systems, 3(1):63-75, February 1985.

[69] K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Foun-
dation. Addison-Wesley, Reading, Mass., 1988.

[70] K. Mani Chandy, Jayadev Misra, and Laura M. Haas. Distributed dead-
lock detection. A CM Transactions on Computer Systems, 1(2):144-156,
May 1983.

[71] Ernest Chang and Rosemary Roberts. An improved algorithm for decen-
tralized extrema-finding in circular configurations of processes. Commu-
nications of the A CM, 22(5):281-283, May 1979.

[72] Ernest J. H. Chang. Echo algorithms: Depth parallel operations on general
graphs. IEEE Transactions on Software Engineering, SE-8(4):391-401,
July 1982.

[73] Soma Chaudhuri. More choices allow more faults: Set consensus prob-
lems in totally asynchronous systems. Information and Computation,
105(1):132-158, July 1993.

[74] Soma Chaudhuri, Rainer Gawlick, and Nancy Lynch. Designing algorithms
for distributed systems with partially synchronized clocks. In Proceedings

836 BIBLIOGRAPHY

of the 12th Annual A CM Symposium on Principles of Distributed Com-
puting, pages 121-132, Ithaca, N.Y., August 1993.

[75] Soma Chaudhuri, Maurice Herlihy, Nancy A. Lynch, and Mark R. Tut-
tle. Tight bounds for k-set agreement. Technical Report 95/4, Digital
Equipment Corporation, Cambridge Research Lab, Cambridge, Mass. To
appear.

[76] Soma Chaudhuri, Maurice Herlihy, Nancy A. Lynch, and Mark R. Tut-
tle. A tight lower bound for k-set agreement. In 3dth Annual Symposium
on Foundations of Computer Science, pages 206-215, Palo Alto, Calif.,
November 1993. IEEE, Los Alamitos, Calif.

[77] Soma Chaudhuri, Maurice Herlihy, Nancy A. Lynch, and Mark R. Tuttle.
A tight lower bound for processor coordination. In Donald S. Fussell and
Miroslaw Malek, editors, Responsive Computer Systems: Steps Toward
Fault-Tolerant Real-Time Systems, chapter 1, pages 1-18. Kluwer Aca-
demic, Boston, 1995. (Selected papers from Second International Work-
shop on Responsive Computer Systems, Lincoln, N.H., September 1993.)

[78] Benny Chor, Amos Israeli, and Ming Li. On processor coordination using
asynchronous hardware. In Proceedings of the Sixth Annual A CM Sym-
posium on Principles of Distributed Computing, pages 86-97, Vancouver,
British Columbia, Canada, 1987.

[79] Ching-Tsun Chou and Eli Gafni. Understanding and verifying distributed
algorithms using stratified decomposition. In Proceedings of the Seventh
Annual A CM Symposium on Principles of Distributed Computing, pages
44-65, Toronto, Ontario, Canada, August 1988.

[80] Manhoi Choy and Ambuj K. Singh. Efficient fault tolerant algorithms for
resource allocation in distributed systems. In Proceedings of the 2~th An-
nual A CM Symposium on Theory of Computing, pages 593-602, Victoria,
British Columbia, Canada, May 1992.

[81] William Douglas Clinger. Foundations of Actor Semantics. Ph.D. the-
sis, Department of Mathematics, Massachusetts Institute of Technology,
Cambridge, June 1981. University Microfilms, Ann Arbor, Mich.

[82] Brian A. Coan. Achieving Consensus in Fault-Tolerant Distributed Com-
puter Systems: Protocols, Lower Bounds, and Simulations. Ph.D. the-
sis, Department of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, Cambridge, June 1987.

BIBLIOGRAPHY 837

[83] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Intro-
duction to Algorithms. MIT Press/McGraw-Hill, Cambridge, Mass./New
York, 1990.

[84] Armin B. Cremers and Thomas N. Hibbard. Mutual exclusion of N proces-
sors using an O(N)-valued message variable. In G. Ausiello and C. BShm,
editors, Automata, Languages and Programming: Fifth Colloquium (5th
ICALP, Udine, Italy, July 1978), volume 62 of Lecture Notes in Computer
Science, pages 165-176. Springer-Verlag, New York, 1978.

[85] Armin B. Cremers and Thomas N. Hibbard. Arbitration and queueing un-
der limited shared storage requirements. Technical Report 83, Department
of Informatics, University of Dortmund, March 1979.

[86] N. G. de Bruijn. Additional comments on a problem in concurrent pro-
gramming control. Communications of the A CM, 10(3):137-138, March
1967.

[87] W. P. de Roever and F. A. Stomp. A correctness proof of a distributed
minimum-weight spanning tree algorithm. In Proceedings of the Seventh
International Conference on Distributed Computing Systems, pages 440-
447, Berlin, September 1987. IEEE, Los Alamitos, Calif.

[88] Richard A. DeMillo, Nancy A. Lynch, and Michael J. Merritt. Crypto-
graphic protocols. In Proceedings of the l~th Annual A CM Symposium on
Theory of Computing, pages 383-400, San Francisco, May 1982.

[89] Harish Devarajan. A correctness proof for a network synchronizer. Mas-
ter's thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, May 1993. Technical
Report MIT/LCS/TR-588.

[90] E. W. Dijkstra. Solution of a problem in concurrent programming control.
Communications of the A CM, 8(9):569, September 1965.

[91] E. W. Dijkstra. Hierarchical ordering of sequential processes. Acta Infor-
matica, 1(2):115-138, 1971.

[92] Edsger W. Dijkstra and C. S. Scholten. Termination detection for diffusing
computations. Information Processing Letters, 11(1):1-4, August 1980.

[93] D. Dolev and H. R. Strong. Authenticated algorithms for Byzantine agree-
ment. SIAM Journal of Computing, 12(4):656-666, November 1983.

838 BIBLIOGRAPHY

[94] Danny Dolev. The Byzantine generals strike again. Journal of Algorithms,
3(1):14-30, March 1982.

[95] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the minimal syn-
chronism needed for distributed consensus. Journal of the A CM, 34(1):77-
97, January 1987.

[96] Danny Dolev, Michael J. Fischer, Rob Fowler, Nancy A. Lynch, and
H. Raymond Strong. An efficient algorithm for Byzantine agreement with-
out authentication. Information and Control, 52(3):257-274, March 1982.

[97] Danny Dolev, Maria Klawe, and Michael Rodeh. An O(n log n) unidirec-
tional distributed algorithm for extrema finding in a circle. Journal of
Algorithms, 3(3):245-260, September 1982.

[98] Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and
William E. Weihl. Reaching approximate agreement in the presence of
faults. Journal of the ACM, 33(3):499-516, July 1986.

[99] Danny Dolev, Rudiger Reischuk, and H. Raymond Strong. Early stopping
in Byzantine agreement. Journal of the A CM, 37(4):720-741, October
1990.

[100] Danny Dolev and Nir Shavit. Bounded concurrent time-stamp systems
are constructible. In Proceedings of the 21st Annual A CM Symposium on
Theory of Computing, pages 454-466, Seattle, May 1989. To appear in
SIAM Journal of Computing.

[101] Danny Dolev and H. Raymond Strong. Polynomial algorithms for multiple
processor agreement. In Proceedings of the l~th Annual ACM Symposium
on Theory of Computing, pages 401-407, San Francisco, May 1982.

[102] Cynthia Dwork, Maurice Herlihy, Serge A. Plotkin, and Orli Waarts. Time-
lapse snapshots. In D. Dolev, Z. Galil, and M. Rodeh, editors, Theory
of Computing and Systems (ISTCS '92, Israel Symposium, Haifa, May
1992), volume 601 of Lecture Notes in Computer Science, pages 154-170.
Springer-Verlag, New York, 1992.

[103] Cynthia Dwork, Maurice P. Herlihy, and Orli Waarts. Contention in shared
memory algorithms. In Proceedings of the 25th Annual A CM Symposium
on Theory of Computing, pages 174-183, San Diego, May 1993. Expanded
version in Technical Report CRL 93/12, Digital Equipment Corporation,
Cambridge Research Lab, Cambridge, Mass.

BIBLIOGRAPHY 839

[104] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the
presence of partial synchrony. Journal of the A CM, 35(2):288-323, April
1988.

[105] Cynthia Dwork and Yoram Moses. Knowledge and common knowledge in
a Byzantine environment: Crash failures. Information and Computation,
88(2):156-186, October 1990.

[106] Cynthia Dwork and Dale Skeen. The inherent cost of nonblocking commit-
ment. In Proceedings of the Second Annual A CM Symposium on Principles
of Distributed Computing, pages 1-11, Montreal, Quebec, Canada, August
1983.

[107] Cynthia Dwork and Orli Waarts. Simple and efficient bounded concurrent
timestamping and the traceable use abstraction. In Proceedings of the
2~th Annual A CM Symposium on Theory of Computing, pages 655-666,
Victoria, British Columbia, Canada, May 1992. Preliminary. Final version
to appear in Journal of the A CM.

[108] Murray A. Eisenberg and Michael R. McGuire. Further comments on
Dijkstra's concurrent programming control problem. Communications of
the ACM, 15(11):999, November 1972.

[109] A. Fekete, N. Lynch, and L. Shrira. A modular proof of correctness for a
network synchronizer. In J. van Leeuwen, editor, Distributed Algorithms
(2nd International Workshop, Amsterdam, July 1987), volume 312 of Lec-
ture Notes in Computer Science, pages 219-256. Springer-Verlag, New
York, 1988.

[110] A. D. Fekete. Asymptotically optimal algorithms for approximate agree-
ment. Distributed Computing, 4(1):9-29, March 1990.

[111] A. D. Fekete. Asynchronous approximate agreement. Information and
Computation, 115(1):95-124, November 15, 1994.

[112] Alan Fekete, Nancy Lynch, Yishay Mansour, and John Spinelli. The im-
possibility of implementing reliable communication in the face of crashes.
Journal of the ACM, 40(5):1087-1107, November 1993.

[113] Paul Feldman and Silvio Micali. An optimal probabilistic protocol for syn-
chronous Byzantine agreement. To appear in SIAM Journal on Computing.
Preliminary version appeared as Technical Report MIT/LCS/TM-425.b,
Laboratory for Computer Science, Massachusetts Institute of Technology,
Cambridge, December 1992.

840 BIBLIOGRAPHY

[114] Paul Neil Feldman. Optimal Algorithms for Byzantine Agreement. Ph.D.
thesis, Department of Mathematics, Massachusetts Institute of Technology,
Cambridge, June 1988.

[115] Colin J. Fidge. Timestamps in message-passing systems that preserve the
partial ordering. In Proceedings of the 11th Australian Computer Science
Conference, pages 56-66, Brisbane, Australia, February 1988.

[116] Michael Fischer. Re: Where are you? E-mail message to Leslie Lam-
port. Arpanet message number 8506252257.AA07636@YALE-BULLDOG
.YALE.ARPA (47 lines), June 25, 1985.

[117] Michael J. Fischer. The consensus problem in unreliable distributed sys-
tems (a brief survey). Research Report YALEU/DCS/RR-273, Yale Uni-
versity, Department of Computer Science, New Haven, Conn., June 1983.

[118] Michael J. Fischer, Nancy D. Griffeth, and Nancy A. Lynch. Global states
of a distributed system. IEEE Transactions on Software Engineering, SE-
8(3):198-202, May 1982.

[119] Michael J. Fischer and Nancy A. Lynch. A lower bound for the time to
assure interactive consistency. Information Processing Letters, 14(4):183-
186, June 1982.

[120] Michael J. Fischer, Nancy A. Lynch, James E. Burns, and Allan Borodin.
Resource allocation with immunity to limited process failure. In 20th
Annual Symposium on Foundations of Computer Science, pages 234-254,
San Juan, Puerto Rico, October 1979. IEEE, Los Alamitos, Calif.

[121] Michael J. Fischer, Nancy A. Lynch, James E. Burns, and Allan Borodin.
Distributed FIFO allocation of identical resources using small shared space.
A CM Transactions on Programming Languages and Systems, 11 (1):90-
114, January 1989.

[122] Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy impossi-
bility proofs for distributed consensus problems. Distributed Computing,
1(1):26-39, January 1986.

[123] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibil-
ity of distributed consensus with one faulty process. Journal of the A CM,
32(2):374-382, April 1985.

BIBLIOGRAPHY 841

[124] Robert W. Floyd. Assigning meanings to programs. In Mathematical
Aspects of Computer Science (New York, April 1966), volume 19 of Pro-
ceedings of the Symposia in Applied Mathematics, pages 19-32. American
Mathematical Society, Providence, 1967.

[125] L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks. Princeton Uni-
versity Press, Princeton, N.J., 1962.

[126] Nissim Francez. Distributed termination. A CM Transactions on Program-
ming Languages and Systems, 2(1):42-55, January 1980.

[127] Greg N. Frederickson and Nancy A. Lynch. Electing a leader in a syn-
chronous ring. Journal of the ACM, 34(1):98-115, January 1987.

[128] Harold N. Gabow. Scaling algorithms for network problems.
Computer and System Sciences, 31(2):148-168, October 1985.

Journal of

[129] Eli Gafni. Personal communication, April 1994.

[130] R. G. Gallager, P. A. Humblet, and P. M. Spira. A distributed algorithm
for minimum-weight spanning trees. A CM Transactions on Programming
Languages and Systems, 5(1):66-77, January 1983.

[131] Robert G. Gallager. Distributed minimum hop algorithms. Technical
Report LIDS-P-1175, Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology, Cambridge, January 1982.

[132] Juan A. Garay, Shay Kutten, and David Peleg. A sub-linear time dis-
tributed algorithm for minimum-weight spanning trees. In 3~th Annual
Symposium on Foundations of Computer Science, pages 659-668, Palo
Alto, Calif., November 1993. IEEE, Los Alamitos, Calif.

[133] Juan A. Garay and Yoram Moses. Fully polynomial Byzantine agreement
in t + 1 rounds. In Proceedings of the 25th Annual A CM Symposium on
Theory of Computing, pages 31-41, San Diego, May 1993.

[134] Stephen J. Garland and John V. Guttag. A guide to LP, the Larch Prover.
Research Report 82, Digital Systems Research Center, Palo Alto, Calif.,
December 1991.

[135] Rainer Gawlick, Nancy Lynch, and Nir Shavit. Concurrent time-stamping
made simple. In D. Dolev, Z. Galil, and M. Rodeh, editors, Theory of Com-
puting and Systems (ISTCS '92, Israel Symposium, Haifa, May 1992), vol-
ume 601 of Lecture Notes in Computer Science, pages 171-185. Springer-
Verlag, New York, 1992.

842 BIBLIOGRAPHY

[136] Rainer Gawlick, Roberto Segala, Jorgen Sogaard-Andersen, and Nancy
Lynch. Liveness in timed and untimed systems. In Serge Abiteboul and
Eli Shamir, editors, Automata, Languages and Programming (21st Inter-
national Colloquium, ICALP '94, Jerusalem, July 1994), volume 820 of
Lecture Notes in Computer Science, pages 166-177. Springer-Verlag, New
York, 1994.

[137] David K. Gifford. Weighted voting for replicated data. In Proceedings of
the Seventh Symposium on Operating Systems Principles, pages 150-162,
Pacific Grove, Calif., December 1979. ACM, New York.

[138] Virgil D. Gligor and Susan H. Shattuck. On deadlock detention in
distributed systems. IEEE Transactions on Software Engineering, SE-
6(5):435-440, September 1980.

[139] Kenneth Goldman and Kathy Yelick. A unified model for shared-memory
and message-passing systems. Technical Report WUCS-93-35, Washing-
ton University, St. Louis, June 1993.

[140] Kenneth J. Goldman and Nancy Lynch. Quorum consensus in nested
transaction systems. A CM Transactions on Database Systems, 19(4):537-
585, December 1994.

[141] Kenneth J. Goldman and Nancy A. Lynch. Modelling shared state in a
shared action model. In Proceedings of the Fifth Annual IEEE Symposium
on Logic in Computer Science, pages 450-463, Philadelphia, June 1990.

[142] J. N. Gray. Notes on data base operating systems. In R. Bayer, R. M.
Graham, and G. Seegmiiller, editors, Operating Systems: An Advanced
Course, volume 60 of Lecture Notes in Computer Science, chapter 3.F,
page 465. Springer-Verlag, New York, 1978.

[143] Vassos Hadzilacos and Sam Toueg. Fault-tolerant broadcasts and related
problems. In Sape Mullender, editor, Distributed Systems, second edition,
chapter 5, pages 97-145. ACM Press/Addison-Wesley, New York/Reading,
Mass., 1993.

[144] S. Haldar and K. Vidyasankar. Constructing l-writer multireader mul-
tivalued atomic variables from regular variables. Journal of the A CM,
42(1):186-203, January 1995.

[145] Joseph Y. Halpern, Yoram Moses, and Orli Waarts. A characterization of
eventual byzantine agreement. In Proceedings of the Ninth Annual A CM

BIBLIOGRAPHY 843

Symposium on Principles of Distributed Computing, pages 333-346, Que-
bec City, Quebec, Canada, August 1990.

[146] Joseph Y. Halpern and Lenore D. Zuck. A little knowledge goes a long
way: Knowledge-based proofs for a family of protocols. Journal of the
A CM, 39(3):449-478, July 1992.

[147] Frank Harary. Graph Theory. Addison-Wesley, Reading, Mass., 1972.

[148] Constance Heitmeyer and Nancy Lynch. The generalized railroad crossing:
A case study in formal verification of real-time systems. Technical Memo
MIT/LCS/TM-511, Laboratory for Computer Science, Massachusetts In-
stitute of Technology, Cambridge, November 1994. Abbreviated version
in Proceedings of the Real-Time Systems Symposium, pages 120"131, San
Juan, Puerto Rico, December 1994. IEEE, Los Alamitos, Calif. Later ver-
sion to appear in C. Heitmeyer and D. Mandrioli, editors Formal Methods
for Real-time Computing, chapter 4, Trends in Software series, John Wiley
& Sons, New York.

[149] Maurice Herlihy. A quorum-consensus replication method for abstract data
types. ACM Transactions on Computer Systems, 4(1):32-53, February
1986.

[150] Maurice Herlihy. Wait-free synchronization. A CM Transactions on Pro-
gramming Languages and Systems, 13(1):124-149, January 1991.

[151] Maurice Herlihy and Nir Shavit. A simple constructive computatability
theorem for wait-free computation. In Proceedings of the 26th Annual A CM
Symposium on Theory of Computing, pages 243-262, Montreal, Quebec,
Canada, May 1994.

[152] Maurice P. Herlihy and Nir Shavit. The asynchronous computability theo-
rem for t-resilient tasks. In Proceedings of the 25th Annual A CM Sympo-
sium on Theory of Computing, pages 111-120, San Diego, May 1993.

[153] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness
condition for concurrent objects. A CM Transactions on Programming Lan-
guages and Systems, 12(3):463-492, July 1990.

[154] Maurice Peter Herlihy. Replication Methods for Abstract Data Types.
Ph.D. thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, May 1984. Technical
Report MIT/LCS/TR-319.

844 BIBLIOGRAPHY

[155] Lisa Higham and Teresa Przytycka. A simple, efficient algorithm for max-
imum finding on rings. In Andr~ Schiper, editor, Distributed Algorithms
(7th International Workshop, WDAG '93, Lausanne, Switzerland, Septem-
ber 1993), volume 725 of Lecture Notes in Computer Science, pages 249-
263. Springer-Verlag, New York, 1993.

[156] D. S. Hirschberg and J. B. Sinclair. Decentralized extrema-finding in circu-
lar configurations of processes. Communications of the A CM, 23(11):627-
628, November 1980.

[157] Gary S. Ho and C. V. Ramamoorthy. Protocols for deadlock detection in
distributed database systems. IEEE Transactions on Software Engineer-
ing, SE-8(6):554-557, November 1982.

[158] C. A. R. Hoare. Proof of correctness of data representations. A cta Infor-
matica, 1(4):271-281, 1972.

[159] C. A. R. Hoare. Communicating Sequential Processes.
ternational, United Kingdom, 1985.

Prentice-Hall In-

[160] Pierre A. Humblet. A distributed algorithm for minimum weight directed
spanning trees. IEEE Transactions on Communications, COM-31(6):756-
762, June 1983.

[161] Sreekaanth S. Isloor and T. Anthony Marsland. An effective "on-line" dead-
lock detection technique for distributed database management systems. In
Proceedings of COMPSAC 78: IEEE Computer Society's Second Inter-
national Computer Software and Applications Conference, pages 283-288,
Chicago, November 1978.

[162] Amos Israeli and Ming Li. Bounded time-stamps. Distributed Computing,
6(4):205-209, July 1993.

[163] Amos Israeli and Meir Pinhasov. A concurrent time-stamp scheme which is
linear in time and space. In A. Segall and S. Zaks, editors, Distributed Algo-
rithms: Sixth International Workshop (WDAG '92, Haifa, Israel, Novem-
ber 1992), volume 647 of Lecture Notes in Computer Science, pages 95-109.
Springer-Verlag, New York, 1992.

[164] Wil Janssen and Job Zwiers. From sequential layers to distributed pro-
cesses: Deriving a distributed minimum weight spanning tree algorithm.
In Proceedings of the 11th Annual A CM Symposium on Principles of Dis-
tributed Computing, pages 215-227, Vancouver, British Columbia, Canada,
August 1992.

BIBLIOGRAPHY 845

[165] Bengt Jonsson. Compositional specification and verification of distributed
systems. A CM Transactions on Programming Languages and Systems,
16(2):259-303, March 1994.

[166] Richard M. Karp and Vijaya Ramachandran. Parallel algorithms for
shared-memory machines. In Jan Van Leeuwen, editor, Algorithms and
Complexity, volume A of Handbook of Theoretical Computer Science, chap-
ter 17, pages 869-942. Elsevier/MIT Press, New York/Cambridge, 1990.

[167] Jon Kleinberg, Hagit Attiya, and Nancy Lynch. Trade-offs between mes-
sage delivery and quiesce times in connection management protocols. In
Proceedings of ISTCS 1995: The Third Israel Symposium on Theory of
Computing and Systems, pages 258-267, Tel Aviv, January 1995. IEEE,
Los Alamitos, Calif.

[168] Donald E. Knuth. Additional comments on a problem in concurrent pro-
gramming control. Communications of the ACM, 9(5):321-322, May 1966.

[169] Donald E. Knuth. Fundamental Algorithms, volume 1 of The Art of Com-
puter Programming, second edition. Addison-Wesley, Reading, Mass.,
1973.

[170] D~nes KSnig. Sur les correspondances multivoques des ensembles. Funda-
menta Mathematicae, 8:114-134, 1926.

[171] Clyde P. Kruskal, Larry Rudolph, and Marc Snir. Efficient synchronization
on multiprocessors with shared memory. In Proceedings of the Fifth Annual
ACM Symposium on Principles of Distributed Computing, pages 218-228,
Calgary, Alberta, Canada, August 1986.

[172] Jaynarayan H. Lala. A Byzantine resilient fault-tolerant computer for
nuclear power plant applications. In FTCS: 16th Annual International
Symposium on Fault-Tolerant Computing Systems, pages 338-343, Vienna,
July 1986. IEEE, Los Alamitos, Calif.

[173] Jaynarayan H. Lala, Richard. E. Harper, and Linda S. Alger. A design
approach for ultrareliable real-time systems. Computer, 24(5):12-22, May
1991. Issue on Real-time Systems.

[174] Leslie Lamport. A new solution of Dijkstra's concurrent programming
problem. Communications of the A CM, 17(8):453-455, August 1974.

[175] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE
Transactions on Software Engineering, SE-3(2):125-143, March 1977.

846 BIBLIOGRAPHY

[176] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558-565, July 1978.

[177] Leslie Lamport. Specifying concurrent program modules. A CM Transac-
tions on Programming Languages and Systems, 5(2)'190-222, April 1983.

[178] Leslie Lamport. The weak Byzantine generals problem. Journal of the
A CM, 30(3):669-676, July 1983.

[179] Leslie Lamport. Using time instead of timeout for fault-tolerant distributed
systems. A CM Transactions on Programming Languages and Systems,
6(2):254-280, April 1984.

[180] Leslie Lamport. The mutual exclusion problem. Part II: Statement and
solutions. Journal of the A CM, 33(2):327-348, April 1986.

[181] Leslie Lamport. On interprocess communication, Part I: Basic formalism.
Distributed Computing, 1(2):77-85, April 1986.

[182] Leslie Lamport. On interprocess communication, Part II: Algorithms. Dis-
tributed Computing, 1(2):86-101, April 1986.

[183] Leslie Lamport. The part-time parliament. Research Report 49, Digital
Systems Research Center, Palo Alto, Calif., September 1989.

[184] Leslie Lamport. The temporal logic of actions. ACM Transactions on
Programming Languages and Systems, 16(3):872-923, May 1994.

[185] Leslie Lamport and Nancy Lynch. Distributed computing: Models and
methods. In Jan Van Leeuwen, editor, Formal Models and Semantics,
volume B of Handbook of Theoretical Computer Science, chapter 18, pages
1157-1199. Elsevier/MIT Press, New York/Cambridge, 1990.

[186] Leslie Lamport and Fred B. Schneider. Pretending atomicity. Research
Report 44, Digital Equipment Corporation, Systems Research Center, Palo
Alto, Calif., May 1989.

[187] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine gen-
erals problem. A CM Transactions on Programming Languages and Sys-
tems, 4(3):382-401, July 1982.

[188] Butler Lampson, Nancy Lynch, and Jorgen Sogaard-Andersen. At-most-
once message delivery: A case study in algorithm verification. In W. R.
Cleaveland, editor, CONCUR '92 (Third International Conference on Con-
currency Theory, Stony Brook, N.Y., August 1992), volume 630 of Lecture

BIBLIOGRAPHY 847

Notes in Computer Science, pages 317-324. Springer-Verlag, New York,
1992.

[189] Butler Lampson, William Weihl, and Umesh Maheshwari. Principles of
Computer Systems: Lecture Notes for 6.826, Fall 1992. Research Sem-
inar Series MIT/LCS/RSS 22, Laboratory for Computer Science, Mas-
sachusetts Institute of Technology, Cambridge, July 1993.

[190] Butler W. Lampson, Nancy A. Lynch, and Jorgen F. Sogaard-Andersen.
Correctness of at-most-once message delivery protocols. In Richard L.

. .

Tenney, Paul D. Amer, and M. Umit Uyan, editors, Formal Description
Techniques VI (Proceedings of the IFIP TC6/WG6.1 Sixth International
Conference on Formal Description Techniques, FORTE '93, Boston, Octo-
ber, 1993) IFIP Transactions C, pages 385-400. North-Holland, Amster-
dam, 1994.

[191] G~rard Le Lann. Distributed systems--towards a formal approach. In
Bruce Gilchrist, editor, Information Processing 77 (Toronto, August 1977),
volume 7 of Proceedings of IFIP Congress, pages 155-160. North-Holland,
Amsterdam, 1977.

[192] Daniel Lehmann and Michael O. Rabin. On the advantages of free choice:
A symmetric and fully distributed solution to the Dining Philosophers
problem. In Proceedings of Eighth Annual A CM Symposium on Principles
of Programming Languages, pages 133-138, Williamsburg, Va., January
1981.

[193] F. Thomson Leighton. Introduction to Parallel Algorithms and Architec-
tures: Arrays, Trees, Hypercubes. Morgan Kaufmann, San Mateo, Calif.,
1992.

[194] Harry R. Lewis. Finite-state analysis of asynchronous circuits with
bounded temporal uncertainty. Technical Report TR-15-89, Center for
Research in Computing Technology, Aiken Computation Laboratory, Har-
vard University, Cambridge, Mass., 1989.

[195] Harry R. Lewis and Christos H. Papadimitriou. Elements of the Theory
of Computation. Prentice Hall, Englewood Cliffs, N.J., 1981.

[196] Ming Li and Paul M. B. Vit~inyi. How to share concurrent wait-free vari-
ables. Journal of the A CM, 43(4):723-746, July 1996.

848 BIBLIOGRAPHY

[197] Barbara Liskov and Rivka Ladin. Highly-available distributed services and
fault-tolerant distributed garbage collection. In Proceedings of the Fifth
Annual A CM Symposium on Principles of Distributed Computing, pages
29-39, Calgary, Alberta, Canada, August 1986.

[198] Barbara Liskov, Alan Snyder, Russell Atkinson, and Craig Schaffert. Ab-
straction mechanisms in CLU. Communications of the A CM, 20(8):564-
576, August 1977.

[199] Michael C. Loui and Hosame H. Abu-Amara. Memory requirements
for agreement among unreliable asynchronous processes. In Franco P.
Preparata, editor, Parallel and Distributed Computing, volume 4 of Ad-
vances in Computing Research, pages 163-183. JAI Press, Greenwich,
Conn., 1987.

[200] Michael Luby. A simple parallel algorithm for the maximal independent
set problem. SIAM Journal of Computing, 15(4):1036-1053, November
1986.

[201] Victor Luchangco. Using simulation techniques to prove timing proper-
ties. Master's thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, Cambridge, June 1995.

[202] Victor Luchangco, Ekrem SSylemez, Stephen Garland, and Nancy Lynch.
Verifying timing properties of concurrent algorithms. In Dieter Hogrefe
and Stefan Leue, editors, Formal Description Techniques VII: Proceedings
of the 7th IFIP WG6.1 International Conference on Formal Description
Techniques (FORTE '94, Berne, Switzerland, October 1994), pages 259-
273. Chapman and Hall, New York, 1995.

[203] N. Lynch. Concurrency control for resilient nested transactions. In Pro-
ceedings of the Second A CM SIGA CT-SIGMOD Symposium on Principles
of Database Systems, pages 166-181, Atlanta, March 1983.

[204] Nancy Lynch. Simulation techniques for proving properties of real-time
systems. In W. P. de Roever, J. W. de Bakker, and G. Rozenberg,
editors, A Decade of Concurrency: Reflections and Perspectives (REX
School/Symposium, Noordwijkerhout, The Netherlands, June 1993), vol-
ume 803 of Lecture Notes in Computer Science, pages 375-424. Springer-
Verlag, New York, 1994.

BIBLIOGRAPHY 849

[205] Nancy Lynch. Simulation techniques for proving properties of real-time
systems. In Sang H. Son, editor, Advances in Real-Time Systems, chap-
ter 13, pages 299-332. Prentice Hall, Englewood Cliffs, N.J., 1995.

[206] Nancy Lynch, Yishay Mansour, and Alan Fekete. The data link layer: Two
impossibility results. In Proceedings of the Seventh Annual A CM Sympo-
sium on Principles of Distributed Computing, pages 149-170, Toronto,
Ontario, Canada, August 1988.

[207] Nancy Lynch, Michael Merritt, William Weihl, and Alan Fekete. Atomic
Transactions. Morgan Kaufmann, San Mateo, Calif., 1994.

[208] Nancy Lynch, Isaac Saias, and Roberto Segala. Proving time bounds for
randomized distributed algorithms. In Proceedings of the 13th Annual
A CM Symposium on Principles of Distributed Computing, pages 314-323,
Los Angeles, August 1994.

[209] Nancy Lynch and Nir Shavit. Timing-based mutual exclusion. In Proceed-
ings of the Real-Time Systems Symposium, pages 2-11, Phoenix, Decem-
ber 1992. IEEE, Los Alamitos, Calif.

[210] Nancy Lynch and Frits Vaandrager. Forward and backward simulations for
timing-based systems. In J. W. de Bakker et al., editors, Real-Time: The-
ory in Practice (REX Workshop, Mook, The Netherlands, June 1991), vol-
ume 600 of Lecture Notes in Computer Science, pages 397-446. Springer-
Verlag, New York, 1992.

[211} Nancy Lynch and Frits Vaandrager. Forward and backward simulations--
Part II: Timing-based systems. Information and Computation, 128(1):
1-25, July 1996.

[212] Nancy Lynch and Frits Vaandrager. Action transducers and timed au-
tomata. Technical Memo ~IIT/LCS/TM-480.b, Laboratory for Computer
Science, Massachusetts Institute of Technology, Cambridge, October 1994.

[213] Nancy A. Lynch. Upper bounds for static resource allocation in a dis-
tributed system. Journal of Computer and System Sciences, 23(2):254-
278, October 1981.

[214] Nancy A. Lynch. Multivalued possibilities mappings. In W. P. de Roever,
J. W. de Bakker, and G. Rozenberg, editors, Stepwise Refinement of
Distributed Systems: Models, Formalisms, Correctness (REX Workshop,

850 BIBLIOGRAPHY

Mook, The Netherlands, May/June 1989), volume 430 of Lecture Notes in
Computer Science, pages 519-543. Springer-Verlag, New York, 1990.

[215] Nancy A. Lynch and Hagit Attiya. Using mappings to prove timing prop-
erties. Distributed Computing, 6(2):121-139, September 1992.

[216] Nancy A. Lynch and Michael J. Fischer. On describing the behavior and
implementation of distributed systems. Theoretical Computer Science,
13(1):17-43, 1981. Special issue on Semantics of Concurrent Computa-
tion.

[217] Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for
distributed algorithms. Master's thesis, Department of Electrical Engineer-
ing and Computer Science, Massachusetts Institute of Technology, Cam-
bridge, April 1987. Technical Report MIT/LCS/TR-387. Abbreviated ver-
sion in Proceedings of the Sixth Annual A CM Symposium on Principles
of Distributed Computing, pages 137-151, Vancouver, British Columbia,
Canada, August, 1987.

[218] Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output
automata. CWI-Quarterly, 2(3):219-246, September 1989. Centrum voor
Wiskunde en Informatica, Amsterdam. Technical Memo MIT/LCS/TM-
373, Laboratory for Computer Science, Massachusetts Institute of Tech-
nology, Cambridge, November 1988.

[219] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Con-
current Systems: Specification. Springer-Verlag, New York, 1992.

[220] Yishay Mansour and Baruch Schieber. The intractability of bounded pro-
tocols for on-line sequence transmission over non-FIFO channels. Journal
of the ACM, 39(4):783-799, October 1992.

[221] John C. Martin. Introduction to Languages and the Theory of Computa-
tion. McGraw-Hill, New York, 1991.

[222] Friedemann Mattern. Virtual time and global states of distributed systems.
In Michel Cosnard et al., editors, Parallel and Distributed Algorithms: Pro-
ceedings of the International Workshop on Parallel and Distributed Algo-
rithrns (Chateau de Bonas, Gers, France, October, 1988), pages 215-226.
North-Holland, Amsterdam, 1989.

[223] John M. McQuillan, Gilbert Falk, and Ira Richer. A review of the develop-
ment and performance of the ARPANET routing algorithm. IEEE Trans-
actions on Communications, COM-26(12):1802-1811, December 1978.

BIBLIOGRAPHY 851

[224] Daniel A. Menasce and Richard R. Muntz. Locking and deadlock detection
in distributed data bases. IEEE Transactions on Software Engineering,
SE-5(3):195-202, May 1979.

[225] Karl Menger. Zur allgemeinen Kurventheorie. Fundamenta Mathematicae,
10:96-115, 1927.

[226] Michael Merritt, 1985. Unpublished Notes.

[227] Michael Merritt, Francesmary Modugno, and Mark R. Tuttle. Time con-
strained automata. In J. C. M. Baetcn and J. F. Goote, editors, CONCUR
'91: 2nd International Conference on Concurrency Theory (Amsterdam,
August 1991), volume 527 of Lecture Notes in Computer Science, pages
408-423. Springer-Verlag, New York, 1991.

[228] Robin Milner. An algebraic definition of simulation between programs. In
2rid International Joint Conference on Artificial Intelligence, pages 481-
489, Imperial College, London, September 1971. British Computer Society,
London.

[229] Robin Milner. Communication and Concurrency. Prentice-Hall Interna-
tional, United Kingdom, 1989.

[230] Shlomo Moran and Yaron Wolfstahl.
for asynchronous complete networks.
26(3):145-151, November 1987.

Extended impossibility results
Information Processing Letters,

[231] Yoram Moses and Orli Waarts. Coordinated traversal: (t + 1)-
round Byzantine agreement in polynomial time. Journal of Algorithms,
17(1):110-156, July 1994.

[232] Gil Neiger and Sam Toueg. Simulating synchronized clocks and common
knowledge in distributed systems. Journal of the A CM, 40(2):334-367,
April 1993.

[233] Tobias Nipkow. Formal verification of data type refinement: Theory and
practice. In W. P. de Roever, J. W. de Bakker, and G. Rozenberg, editors,
Stepwise Refinement of Distributed Systems: Models, Formalisms, Cor-
rectness (REX Workshop, Mook, The Netherlands, May/June 1989), vol-
ume 430 of Lecture Notes in Computer Science, pages 561-591. Springer-
Verlag, New York, 1990.

[234] Ron Obermarck. Distributed deadlock detection algorithm. ACM Trans-
actions on Database Systems, 7(2):187-208, June 1982.

852 BIBLIOGRAPHY

[235] Susan Owicki and David Gries. An axiomatic proof technique for parallel
programs, I. Acta Informatica, 6(4):319-340, 1976.

[236] David Park. Concurrency and automata on infinite sequences. In Peter
Deussen, editor, Theoretical Computer Science (5th GI Conference, Karl-
sruhe, Germany, March 1981), volume 104 of Lecture Notes in Computer
Science, pages 167-183. Springer-Verlag, New York, 1981.

[237] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence
of faults. Journal of the A CM, 27(2):228-234, April 1980.

[238] G. L. Peterson. Myths about the mutual exclusion problem. Information
Processing Letters, 12(3):115-116, June 1981.

[239] Gary L. Peterson. An O(nlogn) unidirectional distributed algorithm for
the circular extrema problem. A CM Transactions on Programming Lan-
guages and Systems, 4(4):758-762, October 1982.

[240] Gary L. Peterson. Concurrent reading while writing. A CM Transactions
on Programming Languages and Systems, 5(1):46-55, 1983.

[241] Gary L. Peterson and James E. Burns. Concurrent reading while writing
II: The multi-writer case. In 28th Annual Symposium on Foundations of
Computer Science, pages 383-392, Los Angeles, October 1987. IEEE, Los
Alamitos, Calif.

[242] Gary L. Peterson and Michael J. Fischer. Economical solutions for the
critical section problem in a distributed system. In Proceedings of the
Ninth Annual A CM Symposium on Theory of Computing, pages 91-97,
Boulder, Colo., May 1977.

[243] Amir Pnueli. Personal communication, 1988.

[244] Amir Pnueli and Lenore Zuck. Verification of multiprocess probabilistic
protocols. Distributed Computing, 1(1):53-72, January 1986.

[245] Stephen Ponzio. Consensus in the presence of timing uncertainty: Omis-
sion and Byzantine failures. In Proceedings of the lOth Annual A CM Sym-
posium on Principles of Distributed Computing, pages 125-138, Montreal,
Quebec, Canada, August 1991.

[246] Stephen Ponzio. Bounds on the time to detect failures using bounded-
capacity message links. In Proceedings of the Real-time Systems Sympo-
sium, pages 236-245, Phoenix, December 1992. IEEE, Los Alamitos, Calif.

BIBLIOGRAPHY 853

[247] Stephen J. Ponzio. The real-time cost of timing uncertainty: Consensus
and failure detection. Master's thesis, Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Technology, Cambridge,
June 1991. Technical Report MIT/LCS/TR-518.

[248] Michael O. Rabin. Randomized Byzantine generals. In 2~th Annual
Symposium on Foundations of Computer Science, pages 403-409, Tucson,
November 1983. IEEE, Los Alamitos, Calif.

[249] M. Raynal.
1986.

Algorithms for Mutual Exclusion. MIT Press, Cambridge,

[250] Michel Raynal. Networks and Distributed Computation: Concepts, Tools,
and Algorithms. MIT Press, Cambridge, 1988.

[251] Michel Raynal and Jean-Michel Helary. Synchronization and Control of
Distributed Systems and Programs. John Wiley & Sons, Ltd., Chichester,
U.K., 1990.

[252] Glenn Ricart and Ashok K. Agrawala. An optimal algorithm for mutual
exclusion in computer networks. Communications of the A CM, 24(1):9-17,
January 1981. Corrigendum in Communications of the A CM, 24(9):578,
September 1981.

[253] Michael Saks and Fotios Zaharoglou. Wait-free k-set agreement is impossi-
ble: The topology of public knowledge. In Proceedings of the 25th Annual
ACM Symposium on the Theory of Computing, pages 101-110, San Diego,
May 1993.

[254] Russell Schaffer. On the correctness of atomic multi-writer registers. Tech-
nical Memo MIT/LCS/TM-364, Laboratory for Computer Science, Mas-
sachusetts Institute of Technology, Cambridge, June 1988.

[255] Fred B. Schneider.
machine approach.
1990.

Implementing fault-tolerant services using the state
A CM Computing Surveys, 22(4):299-319, December

[256] Reinhard Schwarz and Friedemann Mattern. Detecting causal relation-
ships in distributed computations: In search of the holy grail. Distributed
Computing, 7(3):149-174, March 1994.

[257] Roberto Segala and Nancy Lynch. Probabilistic simulations for probabilis-
tic processes. Nordic Journal of Computing, 2(2):250-273, August 1995.
Special issue on selected papers from CONCUR'94.

854 BIBLIOGRAPHY

[258] Adrian Segall. Distributed network protocols. IEEE Transactions on In-
formation Theory, IT-29(1):23-35, January 1983.

[259] A. Udaya Shankar. A simple assertional proof system for real-time sys-
terns. In Proceedings of the Real-Time Systems Symposium, pages 167-176,
Phoenix, December 1992. IEEE, Los Alamitos, Calif.

[260] A. Udaya Shankar and Simon S. Lam. A stepwise refinement heuristic for
protocol construction. A CM Transactions on Programming Languages and
Systems, 14(3):417-461, July 1992.

[261] Nit Shavit. Concurrent Time Stamping. Ph.D. thesis, Department of
Computer Science, Hebrew University, Jerusalem, Israel, January 1990.

[262] Abraham Silberschatz, James L. Peterson, and Peter B. Galvin. Operating
System Concepts, third edition. Addison-Wesley, Reading, Mass., 1992.

[263] Ambuj K. Singh, James H. Anderson, and Mohamed G. Gouda. The elusive
atomic register. Journal of the ACM, 41(2):311-339, March 1994.

[264] Jorgen Sogaard-Andersen. Correctness of Protocols in Distributed Systems.
Ph.D. thesis, Department of Computer Science, Technical University of
Denmark, Lyngby, December 1993. ID-TR: 1993-131.

[265] Jorgen F. Sogaard-Andersen, Stephen J. Garland, John V. Guttag,
Nancy A. Lynch, and Anna Pogosyants. Computer-assisted simulation
proofs. In Costas Courcoubetis, editor, Computer-Aided Verification (5th
International Conference, CAV '93, Elounda, Greece, June/July 1993), vol-
ume 697 of Lecture Notes in Computer Science, pages 305-319. Springer-
Verlag, New York, 1993.

[266] Edwin H. Spanier. Algebraic Topology. McGraw-Hill, New York, 1966.

[267] E. Sperner. Neuer beweis f/ir die invarianz der dimensionszahl und des
gebietes. A bhandlungen A us Dem Mathematischen Seminar Der Hambur-
gischen Universit5t, 6:265-272, 1928.

[268] John M. Spinelli. Reliable communication on data links. Technical Re-
port LIDS-P-1844, Laboratory for Information and Decision Systems, Mas-
sachusetts Institute of Technology, Cambridge, December 1988.

[269] T. K. Srikanth and Sam Toueg. Simulating authenticated broadcasts to
derive simple fault-tolerant algorithms. Distributed Computing, 2(2):80-
94, August 1987.

BIBLIOGRAPHY 855

[270] N. V. Stenning. A data transfer protocol.
110, September 1976.

Computer Networks, 1(2):99-

[271] Tom Stoppard. Rosencrantz ~ Guildenstern Are Dead. Grove Press, New
York, 1968.

[272] Eugene Styer and Gary L. Peterson. Improved algorithms for distributed
resource allocation. In Proceedings of the Seventh Annual A CM Symposium
on Principles of Distributed Computing, pages 105-116, Toronto, Ontario,
Canada, August 1988.

[273] Andrew S. Tanenbaum. Computer Networks, second edition. Prentice Hall,
Englewood Cliffs, N.J., 1988.

[274] Y. C. Tay and W. Tim Loke. On deadlocks of exclusive AND-requests for
resources. Distributed Computing, 9(2):77-94, October 1995.

[275] Gerard Tel. Assertional verification of a timer based protocol. In Timo
Lepist5 and Arto Salomaa, editors, Automata, Languages and Program-
ming (15th International Colloquium, ICALP '88, Tempere, Finland, July
1988), volume 317 of Lecture Notes in Computer Science, pages 600-614.
Springer-Verlag, New York, 1988.

[276] Gerard Tel. Introduction to Distributed Algorithms. Cambridge University
Press, Cambridge, U.K., 1994.

[277] Ewan Tempero and Richard Ladner. Recoverable sequence transmission
protocols. Journal of the A CM, 42(5):1059-1090, September 1995.

[278] Ewan Tempero and Richard E. Ladner. Tight bounds for weakly-bounded
protocols. In Proceedings of the Ninth Annual A CM Symposium on Prin-
ciples of Distributed Computing, pages 205-218, Quebec City, Quebec,
Canada, August 1990.

[279] Russell Turpin and Brian A. Coan. Extending binary Byzantine agree-
ment to multivalued Byzantine agreement. Information Processing Letters,
18(2):73-76, February 1984.

[280] Jan L. A. van de Snepscheut. The sliding-window protocol revisited. For-
mal Aspects of Computing, 7(1):3-17, 1995.

[281] George Varghese and Nancy A. Lynch. A tradeoff between safety and
liveness for randomized coordinated attack protocols. In Proceedings of
the 11th Annual A CM Symposium on Principles of Distributed Computing,
pages 241-250, Vancouver, British Columbia, Canada, August 1992.

856 BIBLIOGRAPHY

[282] Paul M. B. Vits Distributed elections in an Archimedean ring of pro-
cessors. In Proceedings of the 16th Annual A CM Symposium on Theory of
Computing, pages 542-547, Washington, D.C., April/May 1984.

[283] Paul M. B. Vit~nyi and Baruch Awerbuch. Atomic shared register access
by asynchronous hardware. In 27th Annual Symposium on Foundations
of Computer Science, pages 233-243, Toronto, Ontario, Canada, October
1986. IEEE, Los Alamitos, Calif. Corrigendum in 28th Annual Symposium
on Foundations of Computer Science, page 487, Los Angeles, October
1987.

[284] Da-Wei Wang and Lenore D. Zuck. Tight bounds for the sequence trans-
mission problem. In Proceedings of the Eighth Annual A CM Symposium
on Principles of Distributed Computing, pages 73-83, Edmonton, Alberta,
Canada, August 1989.

[285] Jennifer Welch and Nancy Lynch. A modular Drinking Philosophers algo-
rithm. Distributed Computing, 6(4):233-244, July 1993.

[286] Jennifer Lundelius Welch. Simulating synchronous processors. Information
and Computation, 74(2):159-171, August 1987.

[287] Jennifer Lundelius Welch. Topics in Distributed Computing: The Impact
of Partial Synchrony, and Modular Decomposition of Algorithms. Ph.D.
thesis, Department of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, Cambridge, March 1988.

[288] Jennifer Lundelius Welch, Leslie Lamport, and Nancy Lynch. A lattice-
structured proof technique applied to a minimum spanning tree algorithm.
In Proceedings of the Seventh Annual A CM Symposium on Principles of
Distributed Computing, pages 28-43, Toronto, Ontario, Canada, August
1988.

[289] John H. Wensley et al. SIFT: Design and analysis of a fault-tolerant
computer for aircraft control. Proceedings of the IEEE, 66(10):1240-1255,
October 1978.

[290] Hubert Zimmerman. OSI reference model--the ISO model of architecture
for open systems interconnection. IEEE Transactions on Communications,
COM-28(4):425-432, April 1980.

Index

Italicized page numbers indicate places where terms are defined or introduced.

~, 148
, 206

<~, 88, 88, 190
t

--+, 358
p

i
,-.., 21, 84, 148, 24~, 300
- -~ , 464, 468, 536
~, 148
{, 14, 211

Abadi, M., 770, 790
ABD, 575-580, 580, 587
ABDObject , 575, 576, 577, 575-580, 588
abort, 182, 371,669
ABP, 698, 699, 697-703, 708, 722, 728,

730
Abrahamson, K., 392
abstraction, 6
Abu-Amara, H., 391,685
accepting state, 19
action, 201, 256, 7~5
active process, 10~,, 162
active round, ~0, 40-44
acts, 201, 202, 7~5
AcyclicDigraphRA, 656, 656-659, 664, 666,

667
add, 170
admissible timed execution, 737, 774
admissible timed execution fragment, 7~6
admissible timed trace, 738, 7~6
adversary, 23, 87, 87-97, 144, 230, 358,

358, 675
Afek, Y., 76, 230, 449, 471,524, 728, 729
affects, 190
agent, 260
Agrawala, A., 664
agreement, 686-688

approximate, see approximate agree-
ment

agreement condition, 81, 83, 85-87, 97,
100, 101, 160, 162, 177, 182,374,
390, 671,681,682, 796

agreement problem, 99-162, 177, 192, 374,
371-395, 586, 669, 672, 671-681,
684-685, 688, 796, 795-827

aircraft, xix, 8, 81, 100, 152
airline reservation system, xix
algebraic topology, 165-177, 192, 392
algorithm

asynchronous, see asynchronous
algorithm

asynchronous network, see asynchro-
nous network algorithm

asynchronous shared memory, see
asynchronous shared memory
algorithm

comparison-based, see comparison-
based algorithm

counterexample, see counterexample
algorithm

partially synchronous, see partially
synchronous algorithm

partially synchronous network, see
partially synchronous network
algorithm

partially synchronous shared memory,
see partially synchronous shared
memory algorithm

randomized, see randomized algo-
rithm

synchronous network, see synchronous
network algorithm

algorithm transformation, 6, 11, 531-563,

858 I N D E X

565-589, 596-600, 611,614, 617,
643, 664, 670, 672, 685, 798-801

Alpern, B., 230
Alpha, 5~6, 546-549, 551-555, 560, 561
Alternating Bit protocol, 12, 462, 691
altimeter, 8, 81, 100
Alur, R., 769, 790
Anderson, J., 449, 450
Angluin, D., 46
approximate agreement, 9, 125, 161, 177,

177-182, 192-194, 390, 390-392,
394, 395, 669, 673, 682, 682-685

Arjomandi, E., 560
ARPANET, 506
Ashcroft, E., 23
Aspnes, J., 392
assertion

invariant, see invariant assertion
AsynchApproxAgreement, 682, 682-684,

688
AsynchBcastAck, ~99, 499-500, 503, 504,

526, 527, 555, 620, 637
AsynchBellmanFord, 506, 506-509, 524,

528, 554, 634, 637, 771
AsynchBFS, 502, 502-508, 524, 527, 619,

625, 634, 637, 638
AsynchLCR, ~77, 476-482, 523-525
asynchronous algorithm, 197, 255-454,

731,735, 792
network, see asynchronous network

algorithm
shared memory, see asynchronous

shared memory algorithm
asynchronous model, xx, 5, 7, 196-234,

735, 795, 823, 827
network, see asynchronous network

model
shared memory, see asynchronous

shared memory model
asynchronous network algorithm, xxii,

10-12, 197, 455, 475-731
asynchronous network model, 7, 51, 178,

199, 255, 327, 367, 371,391,392,
455-473, 475

asynchronous shared memory algorithm,
9-10, 197, 203, 235, 255-454,
643, 654, 672, 685

asynchronous shared memory model, 7, 11,
199, 235-253, 256-259, 372,455,

475, 531, 556, 565-589, 609, 641,
664, 669, 670, 681,682, 684

asynchronous shared memory system,
237-253

asynchronous system, 2
AsynchSpanningTree, ~96, 496-499, 501,

502, 527, 619, 620, 633
atexecs, 737, 7~6
atomic object, 10, 235, ~06, 397-454, 568,

574, 575,587, 606, 607, 613, 614,
646

atomic transaction, 81, 82, 573, 586
Atomic Transactions, 13, 230, 231, 573,

586, 612
atomicity condition, 404
atomicity property, ~02
Attiya, H., 47, 192, 392,449, 450,471,560,

575,587, 685,686, 728, 729, 769,
770, 790, 823, 824

attraces, 738, 7,~6
augmented run, 169
authenticated Byzantine failure model,

108, 115, 115-116, 129, 152, 153,
155, 156

automaton state, 256
automaton transformation, 735, 751-754,

769
Awerbuch, B., 367, 450, 524, 560, 664
axiomatic specification, 459, 693, 707

backup, 604, 617
Bakery, 296, 296-300, 302, 326, 330, 332,

433, 452, 453, 572, 588, 643, 664
banking system, xix, 530, 600-604, 609,

611-613, 626-627, 630, 632-633,
637

Bar-Noy, A., 152, 575, 587, 685, 686
Baratz, A., 729
Bartlett, K., 728
Bellman, R., 62, 76, 524
BellmanFord, 62, 62-63, 76, 79, 506-508,

554, 555
Belsnes, D., 729
Ben-Ari, M., 327
Ben-Or, M., 673, 685
BenOr, 673, 673-677, 685, 687
Berman, P., 152
Bermuda Triangle, 168, 165-177, 193
Bernstein, P., 13, 192, 586

I N D E X 859

Beta, 5~7, 546-549, 551,553, 554, 560, 561
BFS, see breadth-first search
Bharali, A., 823
binary Byzantine agreement, 123-125
Biran, O., 392, 686
bit-reversal ring, 42, d2, 49
bivalence, 377, 686
blocking commit algorithm, 183, 183,

184-185, 190
Bloom, ~1 , 440-447, 450, 453, 454
Bloom, B., 230, 450
Borodin, A., 326, 327
Borowsky, E., 392
bottle, 65~
bounded bypass condition, 277, 311-319,

326
bounded tag, 428-434, 691,703-715
BoundedSnapshot, ~30, 428-434, 449, 452
boundmap, 736
Bracha, G., 587, 636, 686
breadth-first search, 8, 11, 51, 57, 57-61,

77-78, 475, 496, 501-506, 527,
528, 554, 560, 625,634-635,637,
638

breadth-first spanning tree, 57, 57, 58, 62,
496

Bridgland, M., 685, 686
broadcast, 1, 11, 57-58, 60-61, 63, 78, 457,

470, 475, 496, 498-500, 524, 526,
527, 555

broadcast channel, 466-468, 471
broadcast network, 641,646
broadcast system, 457, ~68, 466-469, 580'

585, 591,594-595, 598, 606-610,
612-614, 669-689

BufferMainME, 316, 316-320, 326, 332,
333

Burns, J., 326, 327, 450, 524
BurnsME, 29~, 294-296, 302, 326, 329,

330
busy-waiting, 572
Byzantine agreement, 23, 101, 100-102,

116-161, 178
binary, see binary Byzantine agree-

ment
Byzantine failure, 2, 9, 20, 99-102, 116-

160, 177-182,371,458, 687, 688,
716, 823, 825

Byzantine Firing Squad, 159

Byzantine generals, 99, 152
ByzApproxAgreement, 178, 178

c-connected graph, 135
c-symmetric ring, ~{2, 42-44, 47, 49
caching, 572
canonical wait-free atomic object, 398,

408-411,449, 451,452
Carvalho, 0., 664
cause, ~60, 471, 693
chain argument, 145-151, 160, 165, 194,

378, 825
Chandra, T., 685
Chandy, K. M., 13, 367, 449, 612, 636, 664
ChandyLamport, 62?, 627-632,635-638
Chang, E., 27, 47, 523, 524
change, 170
channel, 18, 457, 476
channel failure, 19
channel I/O automaton, 201, 20~, 204-205
channel MMT automaton, 738, 738-739
channel multiplexing, ~{72, 545, 568, 707,

710, 711
Chaudhuri, S., 192, 392, 612
child pointer, 59, 58-60, 498
Chor, B., 392
Chou, C. T., 524
Choy, M., 367, 664
CirculatingToken, 6~3, 64~, 643-646, 649,

664, 666
Clock, 213
clock, 8, 735

real-time, see real-time clock
clock synchronization, 178
closed automaton, 202, 222
CLU, 23
cluster decomposition, 548, 560, 562
ClusterForest, 550, 550-551
ClusterSynch, 5~9, 549-552, 561
Coan, B., 152
Coloring, 351, 349-354, 367-369, 65~,

654-655, 666, 667
coloring, 4~5, 350
commit, 9, 81, 82, 85, 93, 95, 161, 182,

182-192, 194-195,371,669
common node, 121, 156
common set of nodes, 121
communication, xix, 2, 823, 827

860 I N D E X

interprocess, see interprocess commu-
nication

reliable, see reliable communication
communication complexity, 21, 21, ~66,

469
communication failure, 2, 3, 9, 12, 19,

81-97, 182, 183, 691-731
communication pattern, 87, 87, 89, 92, 143,

1~3, 168, 190
good, see good communication

pattern
compare-and-swap operation, 2~8, 388, 393
comparison-based algorithm, 27-35, 39,

38-45, 47, 476-486
compatible

general timed automata, 75~{
I/O automata, 208, 232
MMT automata, 7~2
signatures, 207
timed signatures, 75~
trace properties, 217
variable types, 2~9, 411

complete finitely consistent execution, 712
complexity

communication, see communication
complexity

time, see time complexity
complexity measure, 21-22
composition, 6

atomic objects, 398, 411,451
general timed automata, 75~, 754-756,

769
I/O automata, 199, 208, 206-211,

231,237, 238
I/O automaton, 464, 487, 521
MMT automata, 7~2, 741-744, 770
parallel, see parallel composition
signatures, 208
timed signatures, 754
trace properties, 218
variable types, 2~{9, 411

compositional reasoning, 221-224
computer-assisted verification, 231,770
concurrency control, 2, 230, 573, 586
conflicting users, 336
congestion, 22, 32
conn, 135
connected graph, 391,395
connection management, 824

connectivity, 135
consensus, xix, xxii, 2, 4, 8-10, 12, 13, 15,

31, 81-195, 235, 371-395, 413,
641, 733, 736, 795-827

consistent, 705, 712
consistent broadcast, 125, 125-129, 152,

157
consistent global snapshot, 12, 449, 496,

612, 617, 626, 625-639
consistent with, 704, 712
ConsistentBroadcast, 126, 126-127, 152,

157
ConvergeApproxAgreement, 179, 178-182,

193, 194, 682, 683, 689
convergecast, 11, 60, 70, 79, 475, 496,

498-501,503-504, 524, 526, 527,
555, 620, 633, 637

coordinated attack, 82, 83, 81-97, 99, 161,
183

corresponding executions, 228, 325, 540,
697, 701

corresponding messages, ~0
corresponding states, 40, ~{0
counterexample algorithm, 36, 36, 315, 706
CountMoney, 601, 600-606, 611-613
cover, 303
crash, 691,693, 715-728, 731
Cremers, A., 326, 327
critical region, 9, 255, 259, 336

data abstraction, 23
data link, 12, 228, 455, 691-731
database, 192, 207, 230, 231,259, 371,609,

612, 637, 669
de Bruijn, J., 326
de Roever, W., 524
deadlock, 12, 344, 349, 617, 636
deadlock detection, 2, 617, 635, 635-636,

639
debugging, 604, 617, 633
dec, 151
decider, 378, 383, 393, 686
decision mapping, 389
decision problem, 389, 389-391,394, 395,

684, 689
default value, 90, 103, 179
Dekker, T., 265, 326
DeMillo, R., 153
depends on, ~65, ~68, 536, 592, 593

I N D E X 861

deterministic automaton, 233, 376
Devarajan, H., 560
diam, 17, 4~ 57, 495
diameter, 17, 52, 61, 78, 495
diffusing algorithm, 618, 618-625
diffusing computation, 524
digital signature, 115, 129
Dijkstra, E., 9, 65, 255, 265, 326, 367, 524,

636
DijkstraME, 265, 267, 265-276, 279, 283,

295, 302, 326-328, 780, 790, 791
DijkstraScholten, 619, 622, 619-625,

635-638
Dill, D., 769
Dining Philosophers, 10, 12, 335, 3~0,

339-349, 354-367
directed graph, 17
directed spanning tree, 57
disc, 7~ 5
discrete action, 7~5
disjoint lines, ~88
distance, 17, ~ 57
distributed consensus, see consensus
distributed database, 81, 82, 85, 93, 95,

182
distributed information processing, xix, 1
Dolev, D., 47, 152, 153, 192, 392, 449, 450,

523, 575, 587, 685, 686, 823
Dolev, S., 729
Draper Laboratories, 153
Drinking Philosophers, 367, 65~, 654,

658-664
dummy step, 376
duplication

message, see message duplication
Dwork, C., 152, 153, 192, 252, 450, 823,

824
dynamic component creation, 207
dynamic process creation, 230

early stopping, 152, 157
EIG, see exponential information gathering
EIG tree, 108, 108-116, 119, 152, 156
EIGByz, 120, 119-123, 129, 152, 156
EIGStop, 110, 109-115, 119, 120, 152,

154-156, 824
Eisenberg, M., 326
enabled action, 202
enabled task, 203

environment, 241-243
environment node, 19
environment process, 19
event, 212
eventual time bound, 789, 819-823
exclusion condition, 338, 653, 654
exclusion specification, 336, 336-338, 367,

653
exec, 1 ~ , 169, 358
execs, 206
execution

asynchronous shared memory system,
258

I/O automaton, 199, 206, 206
randomized synchronous system, 22,

22
synchronous system, 18, 20, 20-21
variable type, 2~9, 398

execution correspondence, 702
execution fragment

I/O automaton, 206
Executive, 319, 319-320, 333
exit protocol, 259
exit region, 259
explicit resource specification, 336, 336-

337, 349, 367, 653, 667
exponential information gathering, 103,

108-116, 119-123
ext, 201, 7~5
extension, 377
external action, 201, 7~5
external interface, 201
external signature, 201, 260
extsig, 201

f-failure termination condition, 375, 407,
672, 796

f-simulation, 567, 583
failure, xix, 2, 5, 6, 9, 10, 12, 19-20,

81-195, 251, 255, 371-454, 458,
461-464, 575-586, 669-689,
691-731, 769, 795-827 '

Byzantine, see Byzantine failure
channel, see channel failure
communication, see communication

failure
link, see link failure
process, see process failure
processor, see processor failure
stopping, see stopping failure

862 INDEX

transient, see transient failure
failure detector, 12, 669, 673, 677-681,

685, 796-798, 823
failure-free execution, 373, ~06
failure-free/-run, 169
failure-free run, 1~8
failure-free termination condition, 374,

406, 672, 796
fair execution fragment, 212, 232
fair trace, 212
fairexecs, 212
fairness, 199, 203, 212-215, 240, 255,

258-259, 261-262, 738, 784
fairtraces, 212
fault diagnosis, 9, 81, 100, 153, 371,669
fault-tolerance, 397, 407, 471, 531, 553,

575, 645, 672, 784-790
fault-tolerant multiprocessor, 100, 153
faulty process, 1~3
Fekete, A., 13, 192, 230, 471, 560, 573,

586, 612, 728, 729
Feldman, P., 685
fetch-and-add operation, 2~9, 388, 394
if, 148
Fidge, C., 612
FIFO after a wait-free doorway, 296, 300
financial database, 565
finite duplication, 462, 693, 695, 699, 722
finite nondeterminism, 451
finite-state automaton, 19, 23
finitely consistent, 704, 712
first, 751
Fischer, M., 23, 152, 153, 251, 326, 327,

391,471,560, 587, 636, 685, 728,
729, 790

FischerME, 777, 774-788, 790, 791
FischerS, 786, 784-787, 789, 790, 792, 793
FivePacketHandshake, 722, 724, 725,

721-729, 731
fixed-connection network, 2
Flaky Computer Corporation, 157, 331,

369, 562, 612, 667
Flatten, 17~
FloodMax, 52, 52-56, 58, 61, 76, 77, 495,

531,554
FloodMin, 163, 162-164, 192, 825
FloodSet, 103, 103-108, 152-155, 224, 562
Floyd, R., 23
FLP, 391,685

Ford, L., 62, 76, 524
forest, 63
ForestSynch, 549-550, 550, 551, 552, 561
formal framework, 4
formal model, 6-8
Fowler, R., 152
Francez, N., 636
Frederickson, G., 47
FrontEnd, 5~2, 541-547, 550, 552, 553

Gabow, H., 524
Gafni, E., 76, 392,449, 524, 728
Gallager, R., 66, 76, 509, 524
Gamma, 546, 5~8, 548-554, 560-562
Garay, J., 152, 524
garbage collection, 500, 526, 637
Garland, S., 231, 770
Gawlick, R., 450, 612, 769
general timed automaton, 736, 745, 744-

772
GHS, 66, 511, 509-524, 528, 529
Gifford, D., 586
Gligor, V., 636
global computation, 60-61, 78
global information system, xix
global process labelling, 174
global snapshot, 2, 4, 604-606, 617

consistent, see consistent global
snapshot

global synchronizer, 533-535, 560
GlobSynch, 53~, 533-536, 540, 545-547,

552, 560-562
Goldman, K., 326, 449, 586
Goldreich, O., 524
good communication pattern, 87, 87, 89,

92, 143, 168
Goodman, N., 13, 192, 586
Gouda, M., 450
granularity, 216
Gray, J., 95
grid point, 166, 168
Gries, D., 231
Griffeth, N., 636
GTA, see general timed automaton
Guttag, J., 231

Haas, L., 636
Hadzilacos, V., 13, 192, 471,586, 685
Haldar, S., 450

I N D E X 863

Halpern, J., 152
halting, 19, 30-31, 47, 181
halting state, 19
handshake, 428-430, 449
Heitmeyer, C., 770
Helary, J. M., 13
Herlihy, M., 192, 252, 391, 392, 449, 450,

586
hexagon network, 130, 158
Hibbard, T., 326, 327
hiding

general timed automata, 756, 770
I/O automata, 206, 209, 212, 212, 568
MMT automata, 741, 7~d, 744
signatures, 212

hierarchical construction of atomic objects,
398, 417-418, 449

hierarchical proof, 224-228
hierarchical resource allocation, 3~9
high-level fairness, 276, 276
high-level message, 691
high-level-fairness, 278, 339, 368
Higham, L., 47, 523
Hirschberg, D., 32, 47, 523
history variable, 231
Ho, G., 636
Hoare, C.A.R., 23
hop count, 33
HS, 32, 33, 31-35, 37, 38, 47, 48, 482, 485,

486, 523, 525, 553
Humblet, P., 66, 76, 509, 524
hybrid algorithm, 573
hybrid system, 750
HybridBFS, 505, 505-506, 527

/-failure termination condition, 407
/-simulation, 566, 583
I/O automaton, 201, 199-234, 237, 251,

260, 372, 458, 476, 611,735, 736
I/O automaton model, xxiii, 7
idle system state, 300
illogical time, 612, 613, 665
imperfect failure detector, 688
impossibility result, 27, 43, 45, 71, 84, 93,

130, 133, 136, 141, 145,147, 148,
177, 190, 302,303, 314, 320, 342,
383, 386, 388, 390, 420, 486, 487,
557, 580, 586, 672,682,684, 705,

713, 717, 718, 788, 789, 801,810,
819

in, 201, 7~5
in transit, 713, 718
in- nbrs, ~ 5 7
incomplete operation, ~01, 419, 427, 431,

435,438,443, 450, 573, 574, 579
IncorrectFischerME, 775, 775-776, 791
independence of activities, 2
independent progress condition, 338, 368,

653, 654
independent set, 71, 71
indistinguishable executions, 21, 84, 229,

229,380, 415,465,469, 535,567,
593, 626, 670, 706

indistinguishable states, 2~{~{, 244, 300
infinite duplication, 702, 708
Infinite TicketME, 322, 322-521
information flow, 88
information level, 88, 89, 92, 94
information processing

distributed, see distributed informa-
tion processing

initial, 239
initial index, 737
initial state, 18, 202, 7~ 5
initial value, 239
initialization, 376, 392, 686
in-nbrs, 17
input, 20, 20
input action, 200, 201, 201, 256, 745
input transition, 202
input variable, 20
input-enabled automaton, 202, 202-203,

217, 232, 257
input-first execution, 376
input/output automaton, 237, see I/O

automaton
input/output automaton model, 197, see

I/O automaton model
instantaneous global snapshot, 602, 604,

6O5
int, 201, 745
IntegerBloom, ~42, 442-447, 453, 579
interfering variable type, 39~
internal action, 200, 201, 201, 256, 7~5
interprocess communication, xx, 1, 5, 6
invariant, see invariant assertion
invariant assertion, 7, 10, 21, 23, 216,

864 I N D E X

216-217, 219, 230, 256, 478, 521,
617, 633, 735, 757, 756-759, 770

invocation, 244
IPC, see interprocess communication
Isabelle, 231
Isis, 612
Isloor, S., 636
ISO, 691,722, 728, 729
isolated request, 6~3, 645, 649, 654, 654
Israeli, A., 392,450, 587

Jackson, P., 326
Janssen, W., 524
join, 488
Jonsson, B., 23, 231

k-agreement, 9, 102, 162, 161-177, 192-
193, 390, 390-392,394, 669, 673,
681-682, 684-685, 825

k-concurrent-progress condition, 332, 792
k-exclusion, 327, 329, 331,337
k-extension, 712
k-message-bounded, 713, 731
k-neighborhood, 40, 40
Karp, R., 13
Klawe, M., 47, 523
Kleinberg, J., 824
knowledge, 88, 358, 487
Knuth, D., 326, 449
Koller, D., 685
KSnig, D., 449
KSnig's Lemma, 404, 405, ~05, 406, 449
Kruskal, J., 65
Kutten, S., 524

/-run, 169, 193
Ladin, R., 612
Ladner, R., 729
Lamport, L., 13, 23, 99, 152, 153, 230, 231,

326, 449, 524, 597, 612,636, 664,
770, 790, 824

LamportTime, 597, 597-600, 612, 649, 655
Lampson, B., 729, 770
Larch Prover, 231, 770
last, 751
LayeredBFS, 504, 504-506, 524, 527, 554
LCR, 28, 27-32, 35, 37, 38, 46-48, 54,

476-482, 553
Le Lann, G., 27, 46, 664

leader election, 4, 8, 11, 15, 25, 25-49, 51-
57, 61, 70, 77-79, 342, 475-496,
500-501,523-527, 531,553-554,
563, 635

Lehmann, D., 367
LehmannRabin, 355, 354-367, 369, 587,

676
Leighton, F.T., 13
LeLann, G., 523
level, 96, 510, 522
level~, 88
Lewis, H., 23, 770
Li, M., 392, 450, 587
limit-closure, 218
line graph, 526, 529
line of processes, ~{87
linearizable object, 397, 449
link, 18
link failure, 9, 12, 15, 19, 81-97, 182, 183,

461-464, 691-731
Liskov, B., 23, 612
LISP, 45
live, 17~
liveness, 5, 7, 197, 406-407, 459
liveness property, 219, 218-221, 230, 234,

253, 262
local, 201, 7~5
local area network, 1, 8, 25
local process labelling, 173
local synchronizer, 535-537, 560, 561,594
locality restriction, 239
locally controlled action, 201, 7~5
lockout, 263, 276, 369, 791
lockout-freedom condition, 277, 319-322,

326, 328, 610, 643, 654
LocSynch, 535, 535-537, 539, 541,545, 560
logical time, 11, 455, 475, 566, 591-615,

646-653, 655-656
logical-time assignment, 592, 59~
LogicaITimeME, 646, 647, 646-650, 664,

665
LogicalTimeSnapshot, 605, 605-606, 612,

613, 627
Loke, W. T., 636
loss

message, see message loss
lossy FIFO send/receive channel, 462,

462-463, 699

I N D E X 865

lossy reordering send/receive channel, ~63,
463-464, 695, 700

Loui, M., 391,685
low-level fairness, 276
low-level message, 691
lower, 736
Luby, M., 71, 74, 76
LubyMIS, 73, 71-76, 530, 555, 562
Luchangco, V., 770, 790
Lynch, N., 13, 23, 47, 95, 152, 153, 192,

230, 231,251,252,326, 327, 367,
391,392,450, 471,524, 560, 573,
586, 587, 612,636, 664, 685,728,
729, 769, 770, 790, 823, 824

majority voting, 116
Majori ty Voting, 57~, 573-575, 577, 580,

586
Majori ty VotingObject, 573, 573-575, 587,

588
Manna, Z., 230, 327
Mansour, Y., 471,728, 729
Marsland, T., 636
Martin, J., 23
matrix computation, 556
Mattern, F., 612
Mavronicolas, M., 560, 824
maximal independent set, 8, 51, 71, 71-76,

80, 530, 555, 562
maximum flow, 560
McGuire, M., 326
mean, 179, 682
Menasce, D., 636
Menger, K., 153
Menger's Theorem, 135, 136, 153
merge, 172, 193
Merritt, M., 13, 153, 230, 449, 573, 586,

612, 735, 769
message bounded, 713
message duplication, 2, 457, 460, 461,

691-693, 704-706
message loss, 2, 457, ~60, 461, 646,

691-693, 695, 699, 706-715
message passing, xx, 6
message reordering, 460, 691-693, 695,

703-715
message-generation function, 18
milestone, 780
Milner, R., 23

minimum spanning tree, 8, 11, 51, 63,
63-70, 79, 475, 509, 509-524,
528-529, 531, 563

MIS, see maximal independent set
Misra, J., 13, 367, 636, 664
mixed specification strategy, 459
MMT automaton, 736, 735-744, 769-771
model

asynchronous, see asynchronous
model

asynchronous network, see asynchro-
nous network model

asynchronous shared memory, see
asynchronous shared memory
model

formal, see formal model
partially synchronous, see partially

synchronous model
partially synchronous network, see

partially synchronous network
model

partially synchronous shared memory,
see partially synchronous shared
memory model

randomized, see randomized model
shared memory, see shared memory

model
synchronous, see synchronous model
synchronous network, see synchronous

network model
modified VariableSpeeds, 37, 37-38
Modugno, F., 735, 769
modular decomposition, 532
ModularDP, 659, 660, 658-664, 667
modularity, 6
monotone Boolean formula, 367
Moran, S., 392, 686
Moses, Y., 152, 153
move, 170
msgs, 18, 22, 101
MST, see minimum spanning tree
multi-copy replicated data scheme, 567,

572-575
multicast, 457, 655
multicast channel, 469-471,641
multicast system, 457, ~71, 469-471
multiprocessor, 1,397, 454

fault-tolerant, see fault-tolerant
multiprocessor

866 INDEX

shared memory, see shared memory
multiprocessor

Muntz, R., 636
mutual exclusion, 4, 9-10, 12, 13, 228, 235,

261, 255-333, 335, 372,433, 451,
453, 521, 588, 609-610, 614, 6~43,
641-653, 664-665, 733, 736, 774,
773-793, 823

mutual exclusion condition, 261,642, 774
MWOE, 66, 510

N', 230
N, 1~,
iN + , ld
n-subset, ~ 5
Neiger, G., 612
network

local area, see local area network
Nipk0w, T., 231
non-blocking commit algorithm, 183, 183,

185-189
non-blocking condition, 183
non-leader, 30, 47, 52, 525
nondeterminism, 3, 257
nondeterministic version, 230
normal form algorithm, 4~5
now, 751
nuclear power plant, xix, 153
null, 18
null message, 18, 28, 33, 35-37, 40, 45,

106, 115, 159, 185

Obermarck, R., 636
object, 2, 4
1-concurrent-progress condition, 785, 786,

792
l-valence, 377, 686
operating system, 9, 255,823, 827
operational proof, 269
OptEIGStop, 11~, 155
OptFloodMax, 54, 54-57, 76-78, 495, 526,

554, 635
OptFloodSet, 105, 105-108, 115, 129, 152,

154, 155, 224, 322
optimistic algorithm, 573
optimization, 47, 54, 56, 105, 114, 495,

614, 649, 652, 665, 697
order-equivalent sequences, 39, 40, 42
orientation, 25

out, 201, 7~5
out-nbrs, 17, ~57
output, 20, 20
output action, 200, 201, 201, 256, 7d5
output transition, 202
output variable, 20
Owicki, S., 231

packet, 722
Papadimitriou, C., 23
parallel composition, 7
parallel random access machine, 2, 3
Park, D., 23, 231
partial order proof, 536
partially synchronous algorithm, 12-13,

733, 773-827
partially synchronous model, xx, 5, 7-8,

612, 732-772
partially synchronous network model,

768-769
partially synchronous network system, 733
partially synchronous shared memory

model, 768
partially synchronous shared memory

system, 733
partially synchronous system, 2, 560
pasting, 211,214, 232, 743, 756, 771
Paterson, M., 391, 587, 685
path covering, 121
patt, 190
Paxos, 824
Pease, M., 99, 152
Peleg, D., 524, 587, 685, 686
perfect failure detector, 677, 677, 685, 688,

796
PerfectFDAgreement, 67?, 679, 677-681,

688
Peterson, G., 47, 278, 326, 449, 450, 523,

664
Peterson, J., 327
Peterson2P, 279, 280, 278-328
PetersonLeader, ~82, ~83, 482-486, 523,

525
PetersonNP, 28~, 285, 283-289, 291, 292,

326, 328, 329, 587, 664
Pigeonhole Principle, 45, 321
piggybacking, 58, 90, 498, 613, 619
pileup, 466
Pinchasov, M., 450

I N D E X 867

Pinter, S., 192, 392
Plotkin, S., 450
Pnueli, A., 230, 327, 367, 769
Pogosyants, A., 231
point-to-point, 1,457, 470
PolyByz, 127, 127-129, 152, 157
polynomial communication, 123, 125-129,

152, 153, 157, 158
Ponzio, S., 823
port, 237, 239, 372, 399, 566, 67.1,773, 795
possibilities mapping, 231
PRAM, see parallel random access machine
precondition-effect code, 203
prefix-closure, 218
preserving a safety property, 222, 222-224,

231,234, 261,374
Prim, R., 65
probabilistic condition, 22-23, 49, 71,

74-76, 85-87, 92, 94-96, 230,
372,674

probabilistic I/O automaton, 229, 251,357
probabilistic shared memory model, 251-

252
probabilistic time bound, 357
probability distribution, 22, 72, 87, 358,

675
Probe, 706, 708, 709, 706-712,728, 730
process, 17, 18, 202, 256, 457-458, 466-

467, 469-470, 476
process automaton, 200, 205, 205-206
process control

real-time, see real-time process
control

process failure, 19, 99-195, 371-454, 566,
575-586, 641, 645, 669-689,
795-827

processor, 17, 716
processor failure, 2, 3, 9, 15
product trace property, 218, 221,472
program counter, 267
programming language, 29
progress condition, 261,328, 338, 642,653,

654, 774, 791,792
progress function, 219
projection, 211,214, 232, 743, 755, 771
propagation, 438, 453
prune, 93, 93, 97
Przytycka, T., 47, 523

PSynchAgreement, 80~,, 803-810, 820, 825,
826

PSynchFD, 797, 797-800, 804, 808, 823,
824, 826

QueueME, 311, 311-314, 322, 332, 610
quiescent state, 19, 202, 618

R >-~ 1~
R +, 14
Rabin, M., 367, 685
Race, %41, 740-741, 766-769
Rachman, O., 449
Ramachandran, V., 13
Ramamoorthy, C., 636
Ramsey's Theorem, 45, ~{5, 46, 47
rand, 22, 73, 91
RandomAttack, 90, 90-93, 96, 97
randomization, 22-23, 229-230, 251
randomized algorithm, xx, 12, 49, 71-76,

85, 88-93, 95, 344, 354-367, 369,
530, 587, 669, 672-677, 685

randomized model, 22-23, 229-230, 251
range, 179
Raynal, M., 13, 327, 560, 664
reachable state, 206, 737, %16
read quorum, 588
read-modify-write atomic object, 420-421,

449
read-modify-write shared memory model,

10, 309-326
read-modify-write shared variable, 247,

247-248, 258, 387-388, 393
read/increment atomic object, 407-408
read/update/snap atomic object, 453
read/update/snap shared memory model,

453
read/update/snap variable type, 433
read/write atomic object, 399, 402-404,

421,434-450, 573, 575,580
read/write locking, 573, 575, 587, 588
read/write register, 2~5, 245-247, 253,

258, 264, 376-387
read/write shared memory model, 10, 670,

684
read/write shared variable, 2~5, 245-247,

253, 258, 264, 376-387, 571-575
real time, 591, 592, 610-611,614
real-time clock, 11

868 I N D E X

real-time process control, xix, 1,823, 827
RealTime, 611
recovery, 183, 192, 716
recovery protocol, 716
recurrence, 288-289, 292-293, 352-353,

800
reduce, 178, 193
refinement mapping, 231
region designation, 267
register, 2~5, 245-247, 253, 264, 376-387
regular communication pattern, 1~8
regular execution, 1~8
regular run, 1~8, 160
Reischuk, R., 152, 587, 685, 686
relaxation, 62
reliable broadcast channel, ~{67, 467-469,

586, 670
reliable communication, 4, 641,691-731
reliable FIFO send/receive channel, ~59,

459-460, 471,475, 476, 535, 538,
557, 568, 670

reliable multicast channel, ~70, 470
reliable reordering send/receive channel,

60, 460-461,472
remainder region, 259
remote procedure call, 1
remove, 170
renaming, 686
reordering

message, see message reordering
replicated state machine, 606-610, 612,646
ReplicatedStateMachine, 607, 606-610,

612-614, 646
resource, 336
resource allocation, xix, 2, 4, 10, 12, 31,

161, 202, 235, 255, 259, 338,
335-369, 455, 635, 641-667, 686,
793, 823

resource graph, 350
response, 2~{
restricting process activity, 263, 339, 643
Ricart, G., 664
RicartAgrawalaME, 6~9, 649-653, 655,

656, 664, 665
RicartAgrawalaRA, 655-656, 666
RightLeftDP, 346, 344-354, 367, 368, 572,

772
rigor, 4
ring, ~ 88

ring network, 8, 10, 25-49, 51, 54, 339-349,
354-367, 475-495, 643-646

RMWAgreement, 388, 387-388, 412,420
RMWfromRW, ~20, 451
Roberts, R., 27, 47, 523
Rodeh, M., 47, 523
Roucairol, G., 664
run, 1~{
runtime monitoring, 12, 455,475, 617, 618

S-expression, 45-46
safe register, 296, 330
safe synchronizer, 541-545, 560, 561
SafeSynch, 521, 541, 544, 544-547, 549-

551,561
safety property, 218, 218-224, 230, 233,

234, 253, 262, 404, 410
Saias, I., 252, 367
Saks, M., 367, 392, 664
Scantlebury, R., 728
Schaffer, R., 450
schedule module, 230
Schieber, B., 729
Schneider, F., 230, 449, 612
Scholten, C., 524, 636
scientific computing, xix, 1
scientific programming, 565
search, 4, 823
Segala, R., 231,252, 367, 769
Segall, A., 524, 729
select, 179, 193, 682
semaphore, 367
send/receive channel, 458-464
send/receive diagram, 593, 594
send/receive network, 641
send/receive system, ~{64, 457-466, 583-

585, 591-594, 597-600, 610,
669-671,686

sending omission failure, 823
seq, 170, 193
serialization point, ~02, 573
session, 556
session problem, 556, 556-559, 563, 824,

826
Shankar, A. U., 770
shared memory, xx, 6
shared memory model, 6
shared memory multiprocessor, 1
shared variable, 237-253, 256

I N D E X 869

shared variable type, 244-250
Shattuck, S., 636
Shavit, N., 192, 327, 392, 449, 450, 636,

790
shortest paths, 8, 11, 51, 61-63, 79, 475,

501,506-509, 524, 528, 554-555,
634-635, 637

shortest paths tree, 61, 62, 62
Shostak, R., 99, 152
shrinking, 402, 788
Shrira, L., 560
SIFT, 152
sig, 201, 217, 7~5
signature, 201, 201
Silberschatz, A., 327
silent process, 168
silent state, ~89, 526
simple synchronizer, 560, 561
SimpleBcastSim, 585, 585
SimpleMST, 522-524, 529, 531,532
SimpleShVarSim, 567, 568, 567-572, 574,

576, 580, 587, 588, 606, 609
SimpleSRSim, 583, 58~, 583-585, 589
SimpleSynch, 521, 537, 537-541,545, 547,

555, 560, 561
simplex, 166, 166
simulation, see simulation relation
simulation proof, 21, 23, 55-56, 106-108,

115, 155, 224-228, 231,234, 256,
322-326, 445-447, 450, 521,536,
539, 545, 700, 729, 735, 756,
760-768, 770, 780, 791

simulation relation, 7, 10, 21, 56, 106, 115,
155, 224, 231,323, 442,445,472,
521,522,539, 545,696, 700, 701,
729, 730, 756

Sinclair, J., 32, 47, 523
Singh, A., 367, 450, 664
single-copy replicated data scheme, 567-

572
single-failure termination condition, 375,

383-387, 391,395, 684
Skeen, D., 192
SLL, see strong loss limitation
slotted exclusion, 686
snapshot, 823

consistent global, see consistent
global snapshot

global, see global snapshot

snapshot atomic object, 10, 421-434, 449,
452, 589, 826

snapshot shared memory model, 447-450,
452,454

snapshot variable type, 422
SnapshotRegister, 4~8, 447-450, 454
Snir, M., 47
S~gaard-Andersen, J., 231, 729, 769, 770
sorting, 79, 529
source node, 57, 496, 502, 619
source process, 63
SSylemez, E., 770
spanning forest, 63
spanning tree, 4, 63, 70, 79, 475, 496-524,

526, 561,619, 638, 823
breadth-first, see breadth-first span-

ning tree
directed, see directed spanning tree
minimum, see minimum spanning

tree
Sperner, E., 192
Sperner coloring, 168, 176, 193
Sperner's Lemma, 168, 176, 176-177, 192
Spinelli, J., 471,729
Spira, P., 66, 76, 509, 524
splicing execution fragments, 303-308, 321,

322
splicing timed execution fragments, 788-

789
Srikanth, T., 152
stable memory, 716
stable property, 12, 617, 633, 633-639, 823
stable vector algorithm, 677, 681,686, 688
Stark, E., 192, 392
start, 18, 202, 239, 256, 7~5
start state, 18, 20, 202, 239, 7~5
starvation, 276
state, 18, 201, 239, 745
state transition relation, 202, 7~5
state-transition function, 18
states, 18, 201, 239, 256, 7~5
Stenning, 228, 463, 693, 694, 693-697,

699-703, 722, 728-730
Stenning, N., 691, 728
Stenning's protocol, 691
step, 202
Stockmeyer, L., 823, 824
Stomp, F., 524
stop, 251, 372, 399, 458, 566

870 I N D E X

stopping agreement, 101, 100-116, 142-
162, 165, 183, 185, 189, 195

stopping failure, 2, 9, 12, 19, 99-116, 125,
142-160, 162-177, 182-192, 194,
251, 251,371-395, 397-454, 458,
~58, 566, 575-586, 646, 669-689,
716, 769, 795-827

stretching, 783, 788
strong connectivity, 51
strong loss limitation condition, 461, 472,

692, 711,712, 722
strong termination condition, 183
Strong, R., 152, 153
strongly connected digraph, 526, 528, 592,

630, 665
strongly isolated request, 6~9, 664
STtoLeader, 501, 501,520, 523
Styer, E., 664
submarine, 153
successive refinement, 22~
superposition, 636
supervisor, 316, 319, 332
swap operation, 2~8, 388, 394
symmetry, 31, 39-44, 76, 341-344, 658,

666
SynchBFS, 58, 58-62, 76-78, 496, 498,

502, 554, 562
SynchGHS, 66, 66-70, 76, 79, 509-522, 528
synchronization, xix, 2, 4
synchronizer, 11, 455, 475, 496, 521,

531-563, 565
global, see global synchronizer
local, see local synchronizer
safe, see safe synchronizer
simple, see simple synchronizer

synchronous algorithm, 255,496, 735
synchronous model, xx, 5, 7, 15-23, 733,

735, 795, 823, 827
network, see synchronous network

model
synchronous network algorithm, 8-9, 15,

25-195, 496, 522, 523, 824
synchronous network model, 7-8, 11, 15-

23, 51, 239, 322, 371, 390, 457,
475,495, 506, 509, 531-563, 565,
681,682

synchronous network system, 17-19
synchronous system, 2, 258
system

asynchronous, see asynchronous
system

partially synchronous, see partially
synchronous system

synchronous, see synchronous system
synchronous network, see synchronous

network system

task, 203, 203, 212,240
task partition, 202, 203
tasks, 202, 745
Taubenfeld, G., 790
Tay, Y. C., 636
TCP, 722, 729
Tel, G., 770
telecommunications, xix, 1
telephone system, xix
Tempero, E., 729
temporal logic, 219, 230, 231,327, 333
Temporal Logic of Actions, 231
temporary variable, 266, 267
termination, 12, 181, 503, 524, 562, 617 ,

683
termination condition, 83, 88, 101, 162,

177, 183
termination detection, 496, 524, 604,

617-625, 63~{, 634-638
termination protocol, 188, 194
test-and-set operation, 248, 388, 394
texecs, 737
thread of control, 203
ThreePhaseCommit, 183, 186, 188, 185-

189, 192, 194
TicketME, 228, 313, 313-314, 322-326,

332, 536
time bound condition, 277
time complexity, 21, 21, 228, 250, 256,

466, ~69
time of occurrence, 7~6
time-passage action, 745, 7~5, 751
time-passage equivalent, 7~6, 756, 771
time-passage refinement, 7~6
timed execution, 557, 736, 7~6

I/O automaton, 229
timed execution fragment, 7~6
timed signature, 7~5
timed simulation relation, 760, "/61, 764,

767, 771, 772, 780, 782
timed trace, 738, 7~6

I N D E X 871

timed trace property, 756, 760, 759-760,
774

timeout, 8, 12, 685
timeout MMT automaton, 739-740, 762
TimeSlice, 35, 35-38, 47, 48
timestamp-based algorithm, 573
timing anomaly, ~98, 500, 527
timing failure, 784-790
timing model, xx
timing uncertainty, 7~1,768, 769, 774, 791,

795. 803, 810
timing-based algorithm, 735
tiny simplex, 16
TLA, see Temporal Logic of Actions
toggle bit, 428, 430, 452
token, 8, 25, 32, 35-37, 48, 169, 169,

643-646
token ring, 8, 25, 47
topological sort, 351
topology

algebraic, see algebraic topology
Toueg, S., 13, 152,471,587, 612, 636, 685,

686
Tournament, 290, 289-294, 326, 329
tournament tree, 289
trace, 206, 249, 399
trace, 206
trace liveness property, 219
trace property, 216, 216-756
trace safety property, 218
traces, 206, 217
trade-off, 152, 505, 824
Trans, 413, 411-418, 420-421, 451, 568,

571
trans, 18, 22, 101, 202, 256, 7~5
transaction, 637

atomic, see atomic transaction
transaction-consistent snapshot, 638
transformation, 31

algorithm, see algorithm transforma-
tion

automaton, see automaton transfor-
mation

transient failure, 2
transition, 202
transition function

state, see state-transition function
transition relation

state, see state-transition relation

transitive closure, 556, 562
triangulation, 166, 168
triple-modular redundancy, 116
TrivialKAgreement, 681, 681
TrivialME, 310, 310-311
Tromp, J., 450
trying protocol, 259
trying region, 259
ttrace, 738
TurpinCoan, 123, 123-125, 152, 156, 157,

674, 687
Tuttle, M., 23, 192, 230, 231,735, 769
two-phase locking, 573, 587, 588, 614
two-task race, 740-741, 766, 769, 771
TwoPhaseCommit, 184, 183-185, 189, 192

UID, see unique identifier
UnboundedSnapshot, ~25, 423-428, 440,

449, 452
uncertainty, 2-3, 5, 8, 9, 11, 12,255
undersea vehicle, 153
undirected graph, 19
unique identifier, 8, 26, 27, 52, 344, 476
Unity, 636
univalence, 377, 686
universal reliable broadcast channel, 468,

591,594
universal reliable FIFO send/receive

channel, 459, 471,472, 478, 486,
557, 591,592, 692, 738

universal reliable multicast channel, 4 70
unknown time bound, 793, 824, 826
unreliable channel, 691-731
upper, 228, 736
user automaton, 241, 2~1, 259, 331, 372,

399, 464, 532, 641, 670, 773, 795
user interface, 458

Vaandrager, F., 7691 770
Vainish, R., 524
validity condition, 81, 83, 85, 86, 88, 92,

96, 97, 100-102, 116, 139, 151,
153, 160, 162, 177, 183, 374, 389,
390, 672, 681,682, 796

value, 239
values, 239
Varghese, G., 95
variable start times, 19, 21, 31, 35, 47, 48,

159

872 I N D E X

variable type, 2~, 244-606
VariablcSpeeds, 36, 35-38, 47, 48
vector clock, 612, 614
Vidyasankar, K., 450
virtual ring, 645, 665
vis, 7~ 5
visible action, 7~5
Vitanyi, P., 47, 450
VitanyiAwerbuch, ~{36, 436-440, 448, 450,

453, 575, 577, 579
volatile memory, 691,716, 716

Waarts, O., 152, 252, 450
wait-free termination condition, 374,

378-383, 392, 397, 407, 672, 796
wait-freedom, 10, 374
wait-freedom condition, 300
waiting chain, 3~, 344-346, 666
wakeup, 481
wakeup message, 19, 21
Wang, D. W., 471,728, 729, 824
Warmuth, M., 47
Watro, R., 685, 686
weak Byzantine agreement, 139, 139-142,

153, 159
weak connectivity, 68
weak logical time, 614
weak loss limitation condition, ~62, 463,

464, 692, 702, 707, 710, 711,730
weak termination condition, 183
weather prediction system, xix
weight, 63, 502
weight, 61, 6~, 502
Weihl, W., 13, 192, 230, 392, 573, 586, 612
Welch, J., 450, 524, 598, 612,664, 729, 823
Welch Time, 599, 598-600, 612, 826
well-formedness, 260, 338, 373, ~01, 641,

671, 773, 795
well-formedness condition, 261, 338, 374,

401,533, 642, 653, 671, 774, 795
width, 179, 682
Wilkenson, P., 728
Wing, J., 449
WLL, see weak loss limitation
Wolfstahl, Y., 392, 686
write quorum, 588
write-once variable, 20
WrongDP, 3~2, 342-344

Yelick, K., 449

Zaharoglou, F., 392
Zaks, S., 392, 686
Zeno behavior, 738
0-valence, 376, 686
Zuck, L., 367, 471,728, 729, 824
Zwiers, J., 524

Related Titles from Morgan Kaufmann

Atomic Transactions
Nancy Lynch, Michael Merritt, William Weihl, and Alan Fekete
This book develops a theory for transactions that provides practical solutions for
systems developers, focusing on the interface between the user and the database.
The authors present a formal approach to system design that is as relevant to
practitioners as it is elegant.
1993; 500 pages; cloth; ISBN 1-55860-104-X

Transaction Processing: Concepts and Techniques
Jim Gray and Andreas Reuter
Using transactions as a unifying conceptual framework~ the authors show how
to build high-performance distributed systems and high-availability applications
with finite budgets and risk.
1993; 1070 pages; cloth; ISBN 1-55860-190-2

Distributed Object Management
Edited by M. Tamer Ozsu, Umeshwar Dayal, and Patrick Valduriez
A groundbreaking collection of articles focusing on the use of object-oriented
technologies in distributed computer systems. Product developers, researchers,
and database technology watchers will find this an indispensable guide to a
rapidly growing field.
1993; 441 pages; cloth; ISBN 1-55860-256-9

Active Database Systems: Triggers and Rules for Advanced Database Processing
Edited by Jennifer Widom and Stefano Ceri
This significant collection focuses on the most prominent research projects in
active database systems. A comprehensive introduction to the core topics of the
fields includes the motivation and history as well as a broader survey of research
topics and information on forthcoming standards.
1995; 332 pages; cloth; ISBN 1-55860-304-2

This Page Intentionally Left Blank

	Front Cover
	Distributed Algorithms
	Copyright Page
	Contents
	Preface
	Chapter 1. Introduction
	1.1 The Subject Matter
	1.2 Our Viewpoint
	1.3 Overview of Chapters 2-25
	1.4 Bibliographic Notes
	1.5 Notation

	Part I: Synchronous Network Algorithms
	Chapter 2. Modelling I: Synchronous Network Model
	2.1 Synchronous Network Systems
	2.2 Failures
	2.3 Inputs and Outputs
	2.4 Executions
	2.5 Proof Methods
	2.6 Complexity Measures
	2.7 Randomization
	2.8 Bibliographic Notes

	Chapter 3. Leader Election in a Synchronous Ring
	3.1 The Problem
	3.2 Impossibility Result for Identical Processes
	3.3 A Basic Algorithm
	3.4 An Algorithm with O (n log n) Communication Complexity
	3.5 Non-Comparison-Based Algorithms
	3.6 Lower Bound for Comparison-Based Algorithms
	3.7 Lower Bound for Non-Comparison-Based Algorithms
	3.8 Bibliographic Notes
	3.9 Exercises

	Chapter 4. Algorithms in General Synchronous Networks
	4.1 Leader Election in a General Network
	4.2 Breadth-First Search
	4.3 Shortest Paths
	4.4 Minimum Spanning Tree
	4.5 Maximal Independent Set
	4.6 Bibliographic Notes
	4.7 Exercises

	Chapter 5. Distributed Consensus with Link Failures
	5.1 The Coordinated Attack Problem—Deterministic Version
	5.2 The Coordinated Attack Problem—Randomized Version
	5.3 Bibliographic Notes
	5.4 Exercises

	Chapter 6. Distributed Consensus with Process Failures
	6.1 The Problem
	6.2 Algorithms for Stopping Failures
	6.3 Algorithms for Byzantine Failures
	6.4 Number of Processes for Byzantine Agreement
	6.5 Byzantine Agreement in General Graphs
	6.6 Weak Byzantine Agreement
	6.7 Number of Rounds with Stopping Failures
	6.8 Bibliographic Notes
	6.9 Exercises

	Chapter 7. More Consensus Problems
	7.1 k-Agreement
	7.2 Approximate Agreement
	7.3 The Commit Problem
	7.4 Bibliographic Notes
	7.5 Exercises

	Part II: Asynchronous Algorithms
	Chapter 8. Modelling II: Asynchronous System Model
	8.1 I/O Automata
	8.2 Operations on Automata
	8.3 Fairness
	8.4 Inputs and Outputs for Problems
	8.5 Properties and Proof Methods
	8.6 Complexity Measures
	8.7 Indistinguishable Executions
	8.8 Randomization
	8.9 Bibliographic Notes
	8.10 Exercises

	Part IIA: Asynchronous Shared Memory Algorithms
	Chapter 9. Modelling III: Asynchronous Shared Memory Model
	9.1 Shared Memory Systems
	9.2 Environment Model
	9.3 Indistinguishable States
	9.4 Shared Variable Types
	9.5 Complexity Measures
	9.6 Failures
	9.7 Randomization
	9.8 Bibliographic Notes
	9.9 Exercises

	Chapter 10. Mutual Exclusion
	10.1 Asynchronous Shared Memory Model
	10.2 The Problem
	10.3 Dijkstra's Mutual Exclusion Algorithm
	10.4 Stronger Conditions for Mutual Exclusion Algorithms
	10.5 Lockout-Free Mutual Exclusion Algorithms
	10.6 An Algorithm Using Single-Writer Shared Registers
	10.7 The Bakery Algorithm
	10.8 Lower Bound on the Number of Registers
	10.9 Mutual Exclusion Using Read-Modify-Write Shared Variables
	10.10 Bibliographic Notes
	10.11 Exercises

	Chapter 11. Resource Allocation
	11.1 The Problem
	11.2 Nonexistence of Symmetric Dining Philosophers Algorithms
	11.3 Right-Left Dining Philosophers Algorithm
	11.4 Randomized Dining Philosophers Algorithm
	11.5 Bibliographic Notes
	11.6 Exercises

	Chapter 12. Consensus
	12.1 The Problem
	12.2 Agreement Using Read/Write Shared Memory
	12.3 Agreement Using Read-Modify-Write Shared Memory
	12.4 Other Types of Shared Memory
	12.5 Computability in Asynchronous Shared Memory Systems
	12.6 Bibliographic Notes
	12.7 Exercises

	Chapter 13. Atomic Objects
	13.1 Definitions and Basic Results
	13.2 Implementing Read-Modify-Write Atomic Objects in Terms of Read/Write Variables
	13.3 Atomic Snapshots of Shared Memory
	13.4 Read/Write Atomic Objects
	13.5 Bibliographic Notes
	13.6 Exercises

	Part IIB: Asynchronous Network Algorithms
	Chapter 14. Modelling IV: Asynchronous Network Model
	14.1 Send/Receive Systems
	14.2 Broadcast Systems
	14.3 Multicast Systems
	14.4 Bibliographic Notes
	14.5 Exercises

	Chapter 15. Basic Asynchronous Network Algorithms
	15.1 Leader Election in a Ring
	15.2 Leader Election in an Arbitrary Network
	15.3 Spanning Tree Construction, Broadcast and Convergecast
	15.4 Breadth-First Search and Shortest Paths
	15.5 Minimum Spanning Tree
	15.6 Bibliographic Notes
	15.7 Exercises

	Chapter 16. Synchronizers
	16.1 The Problem
	16.2 The Local Synchronizer
	16.3 The Safe Synchronizer
	16.4 Safe Synchronizer Implementations
	16.5 Applications
	16.6 Lower Bound on Time
	16.7 Bibliographic Notes
	16.8 Exercises

	Chapter 17. Shared Memory versus Networks
	17.1 Transformations from the Shared Memory Model to the Network Model
	17.2 Transformations from the Network Model to the Shared Memory Model
	17.3 Bibliographic Notes
	17.4 Exercises

	Chapter 18. Logical Time
	18.1 Logical Time for Asynchronous Networks
	18.2 Adding Logical Time to Asynchronous Algorithms
	18.3 Applications
	18.4 Transforming Real-Time Algorithms to Logical-Time Algorithms
	18.5 Bibliographic Notes
	18.6 Exercises

	Chapter 19. Consistent Global Snapshots and Stable Property Detection
	19.1 Termination-Detection for Diffusing Algorithms
	19.2 Consistent Global Snapshots
	19.3 Bibliographic Notes
	19.4 Exercises

	Chapter 20. Network Resource Allocation
	20.1 Mutual Exclusion
	20.2 General Resource Allocation
	20.3 Bibliographic Notes
	20.4 Exercises

	Chapter 21. Asynchronous Network Computing with Process Failures
	21.1 The Network Model
	21.2 Impossibility of Agreement in the Presence of Faults
	21.3 A Randomized Algorithm
	21.4 Failure Detectors
	21.5 k-Agreement
	21.6 Approximate Agreement
	21.7 Computability in Asynchronous Networks
	21.8 Bibliographic Notes
	21.9 Exercises

	Chapter 22. Data Link Protocols
	22.1 The Problem
	22.2 Stenning's Protocol
	22.3 Alternating Bit Protocol
	22.4 Bounded Tag Protocols Tolerating Reordering
	22.5 Tolerating Crashes
	22.6 Bibliographic Notes
	22.7 Exercises

	Part III: Partially Synchronous Algorithms
	Chapter 23. Modelling V: Partially Synchronous System Models
	23.1 MMT Timed Automata
	23.2 General Timed Automata
	23.3 Properties and Proof Methods
	23.4 Modelling Shared Memory and Network Systems
	23.5 Bibliographic Notes
	23.6 Exercises

	Chapter 24. Mutual Exclusion with Partial Synchrony
	24.1 The Problem
	24.2 A Single-Register Algorithm
	24.3 Resilience to Timing Failures
	24.4 Impossibility Results
	24.5 Bibliographic Notes
	24.6 Exercises

	Chapter 25. Consensus with Partial Synchrony
	25.1 The Problem
	25.2 A Failure Detector
	25.3 Basic Results
	25.4 An Efficient Algorithm
	25.5 A Lower Bound Involving the Timing Uncertainty
	25.6 Other Results
	25.7 Postscript
	25.8 Bibliographic Notes
	25.9 Exercises

	Bibliography
	Index
	Related Titles from Morgan Kaufmann

