

Table of Contents
Cover
Title Page
Copyright
Dedication
About the Authors
About the Technical Editor
Acknowledgments
Introduction

Who Should Read This Book
How This Book Is Organized
Minimum Requirements
Where to Go from Here

Part I: The Linux Command Line
CHAPTER 1: Starting with Linux Shells

Investigating Linux
Examining Linux Distributions
Summary

CHAPTER 2: Getting to the Shell
Reaching the Command Line
Accessing CLI via a Linux Console Terminal
Accessing CLI via Graphical Terminal Emulation
Using the GNOME Terminal Emulator
Using the Konsole Terminal Emulator
Using the xterm Terminal Emulator
Summary

CHAPTER 3: Basic Bash Shell Commands

file:///tmp/calibre_4.99.4_tmp_ycx25jxr/6ly0tgwt_pdf_out/OPS/cover.xhtml

Starting the Shell
Using the Shell Prompt
Interacting with the Bash Manual
Navigating the Filesystem
Listing Files and Directories
Handling Files
Managing Directories
Viewing File Contents
Summary

CHAPTER 4: More Bash Shell Commands
Monitoring Programs
Monitoring Disk Space
Working with Data Files
Summary

CHAPTER 5: Understanding the Shell
Investigating Shell Types
Exploring Parent and Child Shell Relationships
Understanding External and Built-In Commands
Summary

CHAPTER 6: Using Linux Environment Variables
Exploring Environment Variables
Setting User-Defined Variables
Removing Environment Variables
Uncovering Default Shell Environment Variables
Setting the PATH Environment Variable
Locating System Environment Variables
Learning about Variable Arrays
Summary

CHAPTER 7: Understanding Linux File Permissions

Exploring Linux Security
Using Linux Groups
Decoding File Permissions
Changing Security Settings
Sharing Files
Access Control Lists
Summary

CHAPTER 8: Managing Filesystems
Exploring Linux Filesystems
Working with Filesystems
Managing Logical Volumes
Summary

CHAPTER 9: Installing Software
Exploring Package Management
Inspecting the Debian-Based Systems
The Red Hat–Based Systems
Managing Software Using Containers
Installing from Source Code
Summary

CHAPTER 10: Working with Editors
Visiting the vim Editor
Navigating the nano Editor
Exploring the Emacs Editor
Exploring the KDE Family of Editors
Exploring the GNOME Editor
Summary

Part II: Shell Scripting Basics
CHAPTER 11: Basic Script Building

Using Multiple Commands

Creating a Script File
Displaying Messages
Using Variables
Redirecting Input and Output
Employing Pipes
Performing Math
Exiting the Script
Working through a Practical Example
Summary

CHAPTER 12: Using Structured Commands
Working with the if-then Statement
Exploring the if-then-else Statement
Nesting ifs
Trying the test Command
Considering Compound Testing
Working with Advanced if-then Features
Considering the case Command
Working through a Practical Example
Summary

CHAPTER 13: More Structured Commands
Looking at the for Command
Trying the C-Style for Command
Exploring the while Command
Using the until Command
Nesting Loops
Looping on File Data
Controlling the Loop
Processing the Output of a Loop
Working through a Few Practical Examples

Summary
CHAPTER 14: Handling User Input

Passing Parameters
Using Special Parameter Variables
Being Shifty
Working with Options
Standardizing Options
Getting User Input
Working through a Practical Example
Summary

CHAPTER 15: Presenting Data
Understanding Input and Output
Redirecting Output in Scripts
Redirecting Input in Scripts
Creating Your Own Redirection
Listing Open File Descriptors
Suppressing Command Output
Using Temporary Files
Logging Messages
Working through a Practical Example
Summary

CHAPTER 16: Script Control
Handling Signals
Running Scripts in Background Mode
Running Scripts without a Hang-up
Controlling the Job
Being Nice
Running like Clockwork
Working through a Practical Example

Summary
Part III: Advanced Shell Scripting

CHAPTER 17: Creating Functions
Exploring Basic Script Functions
Returning a Value from a Function
Using Variables in Functions
Investigating Array Variables and Functions
Considering Function Recursion
Creating a Library
Using Functions on the Command Line
Working Through a Practical Example
Summary

CHAPTER 18: Writing Scripts for Graphical Desktops
Creating Text Menus
Doing Windows
Getting Graphic
Working Through a Practical Example
Summary

CHAPTER 19: Introducing sed and gawk
Manipulating Text
Looking at the sed Editor Basic Commands
Working Through a Practical Example
Summary

CHAPTER 20: Regular Expressions
Exploring Regular Expressions
Defining BRE Patterns
Trying Out Extended Regular Expressions
Working Through Some Practical Examples
Summary

CHAPTER 21: Advanced sed
Looking at Multiline Commands
Holding Space
Negating a Command
Changing the Flow
Replacing via a Pattern
Placing sed Commands in Scripts
Creating sed Utilities
Working Through a Practical Example
Summary

CHAPTER 22: Advanced gawk
Using Variables
Working with Arrays
Considering Patterns
Structured Commands
Printing with Formats
Using Built‐in Functions
Trying Out User‐Defined Functions
Working Through a Practical Example
Summary

CHAPTER 23: Working with Alternative Shells
Considering the Dash Shell
Looking at the Dash Shell Features
Scripting in Dash
Exploring the zsh Shell
Viewing Parts of the zsh Shell
Scripting with zsh
Working Through a Practical Example
Summary

Part IV: Creating and Managing Practical Scripts
CHAPTER 24: Writing Simple Script Utilities

Performing Backups
Managing Account Deletion
Monitoring Your System
Summary

CHAPTER 25: Getting Organized
Understanding Version Control
Setting Up Your Git Environment
Committing with Git
Summary

APPENDIX A: Quick Guide to Bash Commands
Reviewing Built‐In Commands
Looking at Common Bash Commands
Assessing Environment Variables

APPENDIX B: Quick Guide to sed and gawk
The sed Editor
The gawk Program

Index
End User License Agreement

List of Tables
Chapter 1

TABLE 1-1 The SysVinit Runlevels

TABLE 1-2 Linux Filesystems

TABLE 1-3 Linux Shells

TABLE 1-4 Other Linux Graphical Desktops

TABLE 1-5 Core Linux Distributions

TABLE 1-6 Specialized Linux Distributions

Chapter 2

TABLE 2-1 Graphical Interface Elements

TABLE 2-2 setterm Options for Foreground and Background
Appearance

TABLE 2-3 Popular Graphical Terminal Emulator Packages

TABLE 2-4 The File Menu

TABLE 2-5 The Edit Menu

TABLE 2-6 The View Menu

TABLE 2-7 The Search Menu

TABLE 2-8 The Terminal Menu

TABLE 2-9 The Tabs Menu

TABLE 2-10 The File Menu

TABLE 2-11 The Edit Menu

TABLE 2-12 The View Menu

TABLE 2-13 The Bookmarks Menu

TABLE 2-14 The Settings Menu

TABLE 2-15 The Help Menu

TABLE 2-16 xterm Command-Line Parameters

TABLE 2-17 xterm +/– Command-Line Parameters

Chapter 3

TABLE 3-1 The Linux Man Page Conventional Section Names

TABLE 3-2 The Linux Man Page Section Areas

TABLE 3-3 Common Linux Directory Names

Chapter 4

TABLE 4-1 The ps Command Unix Parameters

TABLE 4-2 The ps Command BSD Parameters

TABLE 4-3 The ps Command GNU Parameters

TABLE 4-4 Linux Process Signals

TABLE 4-5 The mount Command Parameters

TABLE 4-6 The sort Command Parameters

TABLE 4-7 Linux File Compression Utilities

TABLE 4-8 The tar Command Functions

TABLE 4-9 The tar Command Options

Chapter 5

TABLE 5-1 The bash Command-Line Options

Chapter 6

TABLE 6-1 The Bash Shell Bourne Variables

TABLE 6-2 The Bash Shell Environment Variables

Chapter 7

TABLE 7-1 The useradd Command-Line Parameters

TABLE 7-2 The useradd Change Default Values Parameters

TABLE 7-3 User Account Modification Utilities

TABLE 7-4 The chage Command Parameters

TABLE 7-5 Linux File Permission Codes

TABLE 7-6 The chmod SUID, SGID, and Sticky Bit Octal Values

Chapter 8

TABLE 8-1 Journaling Filesystem Methods

TABLE 8-2 Common fdisk Commands

TABLE 8-3 Common gdisk Commands

TABLE 8-4 Command-Line Programs to Create Filesystems

TABLE 8-5 The fsck Commonly Used Command-Line Options

TABLE 8-6 The Growing and Shrinking LVM Commands

Chapter 10

TABLE 10-1 vim Editing Commands

TABLE 10-2 nano Control Commands

TABLE 10-3 The KWrite Edit Menu Items

TABLE 10-4 The KWrite Tools

TABLE 10-5 The GNOME Desktop gedit Plugins

Chapter 11

TABLE 11-1 The expr Command Operators

TABLE 11-2 Linux Exit Status Codes

Chapter 12

TABLE 12-1 The test Numeric Comparisons

TABLE 12-2 The test String Comparisons

TABLE 12-3 The test File Comparisons

TABLE 12-4 The Double Parentheses Command Symbols

Chapter 14

TABLE 14-1 Common Linux Command-Line Options

Chapter 15

TABLE 15-1 Linux Standard File Descriptors

TABLE 15-2 Default lsof Output

Chapter 16

TABLE 16-1 Linux Signals

TABLE 16-2 The jobs Command Parameters

Chapter 17

TABLE 17.1 The shtool Library Functions

Chapter 18

TABLE 18.1 The dialog Widgets

TABLE 18.2 The dialog Command Options

TABLE 18.3 kdialog Window Options

TABLE 18.4 The zenity Window Widgets

Chapter 19

TABLE 19.1 The sed Command Options

TABLE 19.2 The gawk Options

Chapter 20

TABLE 20.1 BRE Special Character Classes

Chapter 21

TABLE 21.1 The sed Editor Hold Space Commands

Chapter 22

TABLE 22.1 The gawk Data Field and Record Variables

TABLE 22.2 More gawk Built‐in Variables

TABLE 22.3 Format Specifier Control Letters

TABLE 22.4 The gawk Mathematical Functions

TABLE 22.5 The gawk String Functions

TABLE 22.6 The gawk Time Functions

Chapter 23

TABLE 23.1 The Dash Command-Line Parameters

TABLE 23.2 The Dash Shell Built-in Commands

TABLE 23.3 The zsh Shell Command-Line Parameters

TABLE 23.4 The zsh Core Built-in Commands

TABLE 23.5 The zsh Modules

Appendix A

TABLE A.1 Bash Built‐In Commands

TABLE A.2 The Bash Shell External Commands

TABLE A.3 Bash Shell Environment Variables

Appendix B

TABLE B.1 The sed Command Options

TABLE B.2 The gawk Options

TABLE B.3 The gawk Data Field and Record Variables

TABLE B.4 More gawk Built‐In Variables

List of Illustrations
Chapter 1

FIGURE 1-1 The Linux system

FIGURE 1-2 The Linux system memory map

FIGURE 1-3 The KDE Plasma desktop on an openSUSE Linux
system

FIGURE 1-4 A GNOME 3 desktop on an Ubuntu Linux system

FIGURE 1-5 The Cinnamon desktop from Linux Mint

FIGURE 1-6 The Xfce desktop as seen in the MX Linux
distribution

Chapter 2

FIGURE 2-1 A simple terminal emulator running on a Linux
desktop

FIGURE 2-2 Linux virtual console login screen

FIGURE 2-3 Linux virtual console with inversescreen being
turned on

FIGURE 2-4 Finding GNOME Terminal in GNOME Shell

FIGURE 2-5 GNOME Terminal on CentOS

FIGURE 2-6 GNOME Terminal on Ubuntu

FIGURE 2-7 GNOME Terminal icon in the Favorites bar

FIGURE 2-8 Reaching the Keyboard Shortcuts window

FIGURE 2-9 Creating a keyboard shortcut

FIGURE 2-10 The Konsole terminal emulator

FIGURE 2-11 The xterm terminal

Chapter 3

FIGURE 3-1 Manual pages for the hostname command

FIGURE 3-2 A Linux virtual directory file path

FIGURE 3-3 The Linux file structure

FIGURE 3-4 Using the more command to display a text file

Chapter 4

FIGURE 4-1 The output of the top command while it is running

Chapter 5

FIGURE 5-1 Parent and child Bash shell processes

FIGURE 5-2 Subshell nesting

FIGURE 5-3 External command forking

Chapter 7

FIGURE 7-1 The Linux file permissions

Chapter 10

FIGURE 10-1 The vim main window

FIGURE 10-2 The nano editor window

FIGURE 10-3 Editing a file using the Emacs editor in console
mode

FIGURE 10-4 The Emacs file browser

FIGURE 10-5 The Emacs graphical window

FIGURE 10-6 The default KWrite window editing a shell script
program

FIGURE 10-7 The KWrite Find section

FIGURE 10-8 The KWrite Tool Mode Script submenu

FIGURE 10-9 The KWrite Configure Editor dialog box

FIGURE 10-10 The main Kate editing window

FIGURE 10-11 The Kate Documents List

FIGURE 10-12 The Kate Plugin Manager

FIGURE 10-13 The Kate built-in terminal window

FIGURE 10-14 The Kate configuration dialog box

FIGURE 10-15 The gedit main editor window

FIGURE 10-16 The gedit menu system

FIGURE 10-17 The gedit Side Panel

FIGURE 10-18 The gedit Side Panel's file manager

FIGURE 10-19 The gedit Plugins tab

FIGURE 10-20 The gedit Plugins tab after installation

FIGURE 10-21 The gedit Embedded Terminal plugin

Chapter 11

FIGURE 11-1 Using piping to send data to the more command

FIGURE 11-2 Using the more command with the ls command

Chapter 18

FIGURE 18-1 Displaying a menu from a shell script

FIGURE 18-2 Using the msgbox widget in the dialog command

FIGURE 18-3 Using the yesno widget in the dialog command

FIGURE 18-4 The inputbox widget

FIGURE 18-5 The textbox widget

FIGURE 18-6 The menu widget with menu items

FIGURE 18-7 The fselect widget

FIGURE 18-8 The meminfo command output displayed using the
textbox dialog op...

FIGURE 18-9 A kdialog checklist dialog window

FIGURE 18-10 The sys admin menu script using kdialog

FIGURE 18-11 The zenity calendar dialog window

FIGURE 18-12 The zenity file selection dialog window

FIGURE 18-13 The system admin menu using zenity

FIGURE 18-14 The dialog form feature

Chapter 20

FIGURE 20-1 Matching data against a regular expression pattern

Chapter 21

FIGURE 21-1 Reversing the order of a text file using the hold
space

Chapter 24

FIGURE 24.1 Creating an archive directory hierarchy

Chapter 25

FIGURE 25-1 Conceptual depiction of the Git environment

FIGURE 25-2 MWGuard remote repository

Linux® Command Line and
Shell Scripting BIBLE

Richard Blum

Christine Bresnahan

Linux® Command Line and Shell Scripting Bible
Copyright © 2021 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada and the United Kingdom
ISBN: 978-1-119-70091-3
ISBN: 978-1-119-70094-4 (ebk)
ISBN: 978-1-119-70093-7 (ebk)

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the
prior written permission of the Publisher, or authorization through payment of the appropriate per-
copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-
8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-
6011, fax (201) 748-6008, or online at www.wiley.com/go/permissions.
LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE
AUTHOR MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND
SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION
WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE
AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY
SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE
PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER
PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE
SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT.
NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES
ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEB SITE IS
REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE
PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE
MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND
WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care
Department within the United States at (877) 762-2974, outside the United States at (317) 572-3993
or fax (317) 572-4002.
Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-
demand. If this book refers to media such as a CD or DVD that is not included in the version you
purchased, you may download this material at booksupport.wiley.com. For more information about
Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2020949805
Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley &
Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without
written permission. Linux is a registered trademark of Linus Torvalds. All other trademarks are the

http://www.wiley.com/go/permissions
http://booksupport.wiley.com/
http://www.wiley.com/

property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or
vendor mentioned in this book.

www.EBooksWorld.ir

To the Lord God Almighty, “in whom are hidden all the treasures of
wisdom and knowledge.”

— Colossians 2:3

About the Authors
Richard Blum has worked in the IT industry for more than 30 years as
both a systems and a network administrator. During that time, he's had the
opportunity to work with lots of different computer products, including
Windows, NetWare, Cisco, Avaya, different flavors of UNIX, and of
course, Linux. Over the years he's also volunteered for several nonprofit
organizations to help support small networks that had little financial
support. Rich is the author of many Linux-based books for total Linux
geeks and teaches online courses in Linux and web programming. When
he's not busy being a computer nerd, Rich enjoys playing piano and bass
guitar and spending time with his wife, Barbara, and their two daughters,
Katie Jane and Jessica.

Christine Bresnahan started working with computers more than 30 years
ago in the IT industry as a systems administrator. Christine is an adjunct
professor at Ivy Tech Community College, where she teaches Linux
certification and Python programming classes. She also writes books and
produces instructional resources for the classroom. During her downtime,
Christine enjoys spending time with her husband and family, hiking, and
gardening.

About the Technical Editor
Jason W. Eckert is an experienced technical trainer, consultant, and best-
selling author in the technology industry. With 45 industry certifications, 25
published textbooks, and over 30 years of technology and programming
experience, Jason brings his expertise to every class that he teaches at triOS
College. For more information about him, visit jasoneckert.net.

http://jasoneckert.net/

Acknowledgments
First, all glory and praise go to God, who through His Son, Jesus Christ,
makes all things possible and gives us the gift of eternal life.

Many thanks go to the fantastic team of people at John Wiley & Sons for
their outstanding work on this project. Thanks to Kenyon Brown, the
acquisitions editor, for offering us the opportunity to work on this book.
Also thanks to Patrick Walsh, the project editor, for keeping things on track
and making this book more presentable. Thanks, Pat, for all your hard work
and diligence. The technical editor, Jason Eckert, did a wonderful job of
double-checking all the work in the book, plus making suggestions to
improve the content. Thanks to Saravanan Dakshinamurthy and his team for
their endless patience and diligence to make our work readable. We would
also like to thank Carole Jelen at Waterside Productions, Inc., for arranging
this opportunity for us, and for helping us out in our writing careers.

Christine would like to thank her husband, Timothy, for his encouragement,
patience, and willingness to listen, even when he has no idea what she is
talking about. Rich would like to thank his wife, Barbara, for the life-
sustaining baked goods she readily prepared to help him keep up his energy
while writing!

Introduction
Welcome to the fourth edition of Linux Command Line and Shell Scripting
Bible. Like all books in the Bible series, you can expect to find both hands-
on tutorials and real-world information, as well as reference and
background information that provides a context for what you are learning.
This book is a fairly comprehensive resource on the Linux command line
and shell commands. By the time you have completed Linux Command
Line and Shell Scripting Bible, you will be well prepared to write your own
shell scripts that can automate practically any task on your Linux system.

Who Should Read This Book
If you're a systems administrator in a Linux environment, you'll benefit
greatly by knowing how to write shell scripts. The book doesn't walk you
through the process of setting up a Linux system, but after you have it
running, you'll want to start automating some of the routine administrative
tasks. That's where shell scripting comes in, and that's where this book
helps you out. This book demonstrates how to automate any administrative
task using shell scripts, from monitoring system statistics and data files to
generating reports for your boss.

If you're a home Linux enthusiast, you'll also benefit from Linux Command
Line and Shell Scripting Bible. Nowadays, it's easy to get lost in the
graphical world of prebuilt widgets. Most desktop Linux distributions try
their best to hide the Linux system from the typical user. However,
sometimes you must know what's going on under the hood. This book
shows you how to access the Linux command-line prompt and what to do
when you get there. Often, performing simple tasks, such as file
management, can be done more quickly from the command line than from a
fancy graphical interface. You can use a wealth of commands from the
command line, and this book shows you how to use them.

How This Book Is Organized
This book leads you through the basics of the Linux command line and into
more complicated topics, such as creating your own shell scripts. The book
is divided into four parts, each one building on the previous parts.

Part I assumes that you either have a Linux system running or are looking
into getting a Linux system. Chapter 1, “Starting with Linux Shells,”
describes the parts of a total Linux system and shows how the shell fits in.
After describing the basics of the Linux system, this part continues with the
following:

Using a terminal emulation package to access the shell (Chapter 2)

Introducing the basic shell commands (Chapter 3)

Using more advanced shell commands to peek at system information
(Chapter 4)

Understanding what the shell is used for (Chapter 5)

Working with shell variables to manipulate data (Chapter 6)

Understanding the Linux filesystem and security (Chapter 7)

Working with Linux filesystems from the command line (Chapter 8)

Installing and updating software from the command line (Chapter 9)

Using the Linux editors to start writing shell scripts (Chapter 10)

In Part II, you begin writing shell scripts. As you go through the chapters,
you'll do the following:

Learn how to create and run shell scripts (Chapter 11)

Alter the program flow in a shell script (Chapter 12)

Iterate through code sections (Chapter 13)

Handle data from the user in your scripts (Chapter 14)

See different methods for storing and displaying data from your script
(Chapter 15)

Control how and when your shell scripts run on the system (Chapter
16)

Part III dives into more advanced areas of shell script programming,
including these things:

Creating your own functions to use in all your scripts (Chapter 17)

Utilizing the Linux graphical desktop for interacting with your script
users (Chapter 18)

Using advanced Linux commands to filter and parse data files
(Chapter 19)

Using regular expressions to define data (Chapter 20)

Learning advanced methods of manipulating data in your scripts
(Chapter 21)

Working with advanced features of scripting to generate reports from
raw data (Chapter 22)

Modifying your shell scripts to run in other Linux shells (Chapter 23)

The last section of the book, Part IV, demonstrates how to use shell scripts
in real-world environments. In this part, you will learn these things:

How to put all the scripting features together to write your own scripts
(Chapter 24)

How to organize and track your script versions using the popular git
software (Chapter 25)

Conventions and features
You will find many different organizational and typographical features
throughout this book designed to help you get the most out of the
information.

Tips and warnings
Whenever the authors want to bring something important to your attention,
the information appears in a Warning.

WARNING

This information is important and is set off in a separate paragraph
with a special icon. Warnings provide information about things to
watch out for, whether simply inconvenient or potentially
hazardous to your data or systems.

For additional items of interest that relate to the chapter text, the authors use
Tip.

TIP

Tips provide additional, ancillary information that is helpful, but
somewhat outside of the current presentation of information.

Minimum Requirements
Linux Command Line and Shell Scripting Bible doesn't focus on any
specific Linux distribution, so you can follow along in the book using any
Linux system you have available. The bulk of the book references the Bash
shell, which is the default shell for most Linux systems.

Where to Go from Here
After you've finished reading Linux Command Line and Shell Scripting
Bible, you're well on your way to incorporating Linux commands in your
daily Linux work. In the ever-changing world of Linux, it's always a good
idea to stay in touch with new developments. Often, Linux distributions
change, adding new features and removing older ones. To keep your
knowledge of Linux fresh, always stay well informed. Find a good Linux
forum site and monitor what's happening in the Linux world. Many popular
Linux news sites, such as Slashdot and DistroWatch, provide up-to-the-
minute information about new advances in Linux.

Part I
The Linux Command Line
IN THIS PART

Chapter 1 Starting with Linux Shells

Chapter 2 Getting to the Shell

Chapter 3 Basic Bash Shell Commands

Chapter 4 More Bash Shell Commands

Chapter 5 Understanding the Shell

Chapter 6 Using Linux Environment Variables

Chapter 7 Understanding Linux File Permissions

Chapter 8 Managing Filesystems

Chapter 9 Installing Software

Chapter 10 Working with Editors

CHAPTER 1
Starting with Linux Shells
IN THIS CHAPTER

Investigating Linux

Understanding parts of the Linux kernel

Exploring the Linux desktop

Examining Linux distributions

Before you can dive into working with the Linux command line and shells,
it's a good idea to first understand what Linux is, where it came from, and
how it works. This chapter walks you through what Linux is and explains
where the shell and command line fit in the overall Linux picture.

Investigating Linux
If you've never worked with Linux before, you may be confused as to why
there are so many different versions of it available. We're sure that you've
heard various terms such as distribution, LiveDVD, and GNU when looking
at Linux packages and been confused. Wading through the world of Linux
for the first time can be a tricky experience. This chapter takes some of the
mystery out of the Linux system before you start working on commands
and scripts.

For starters, four main parts make up a Linux system:

The Linux kernel

The GNU utilities

A graphical desktop environment

Application software

Each of these four parts has a specific job in the Linux system. Each one of
the parts by itself isn't very useful. Figure 1-1 shows a basic diagram of
how the parts fit together to create the overall Linux system.

FIGURE 1-1 The Linux system

This section describes these four main parts in detail and gives you an
overview of how they work together to create a complete Linux system.

Looking into the Linux kernel
The core of the Linux system is the kernel. The kernel controls all the
hardware and software on the computer system, allocating hardware when
necessary and executing software when required.

If you've been following the Linux world at all, no doubt you've heard the
name Linus Torvalds. Linus is the person responsible for creating the first
Linux kernel software while he was a student at the University of Helsinki.

He intended it to be a copy of the Unix system, at the time a popular
operating system used at many universities.

After developing the Linux kernel, Linus released it to the Internet
community and solicited suggestions for improving it. This simple process
started a revolution in the world of computer operating systems. Soon Linus
was receiving suggestions from students as well as professional
programmers from around the world.

Allowing anyone to change programming code in the kernel would result in
complete chaos. To simplify things, Linus acted as a central point for all
improvement suggestions. It was ultimately Linus's decision whether or not
to incorporate suggested code in the kernel. This same concept is still in
place with the Linux kernel code, except that instead of just Linus
controlling the kernel code, a team of developers has taken on the task.

The kernel is primarily responsible for four main functions:

System memory management

Software program management

Hardware management

Filesystem management

The following sections explore each of these functions in more detail.

System memory management
One of the primary functions of the operating system kernel is memory
management. Not only does the kernel manage the physical memory
available on the server, but it can also create and manage virtual memory, or
memory that does not actually exist.

It does this by using space on the hard disk, called the swap space. The
kernel swaps the contents of virtual memory locations back and forth from
the swap space to the actual physical memory. This allows the system to
think there is more memory available than what physically exists (shown in
Figure 1-2).

FIGURE 1-2 The Linux system memory map

The memory locations are grouped into blocks called pages. The kernel
locates each page of memory in either the physical memory or the swap
space. The kernel then maintains a table of the memory pages that indicates
which pages are in physical memory and which pages are swapped out to
disk.

The kernel keeps track of which memory pages are in use and automatically
copies memory pages that have not been accessed for a period of time to the
swap space area (called swapping out), even if other memory is available.
When a program wants to access a memory page that has been swapped
out, the kernel must make room for it in physical memory by swapping out
a different memory page, and swap in the required page from the swap
space. Obviously, this process takes time and can slow down a running

process. The process of swapping out memory pages for running
applications continues for as long as the Linux system is running.

Software program management
The Linux operating system calls a running program a process. A process
can run in the foreground, displaying output on a display, or it can run in the
background, behind the scenes. The kernel controls how the Linux system
manages all the processes running on the system.

The kernel creates the first process, called the init process, to start all other
processes on the system. When the kernel starts, it loads the init process
into virtual memory. As the kernel starts each additional process, it gives
the process a unique area in virtual memory to store the data and code that
the process uses.

A few different types of init process implementations are available in
Linux, but these days the two most popular are:

SysVinit: The SysVinit (SysV) initialization method, the original
method used by Linux, was based on the Unix System V initialization
method. Though it is not used by many Linux distributions these days,
you still may find it around in older Linux distributions.

Systemd: The systemd initialization method, created in 2010, has
become the most popular initialization and process management
system used by Linux distributions.

The SysVinit initialization method used a concept called runlevels to
determine what processes to start. The runlevel defines the state of the
running Linux system and what processes should run in each state. Table 1-
1 shows the different runlevels associated with the SysVinit initialization
method.

TABLE 1-1 The SysVinit Runlevels

Runlevel Description
0 Shut down the system
1 Single-user mode used for system maintenance
2 Multi-user mode without networking services enabled
3 Multi-user mode with networking services enabled
4 Custom
5 Multi-user mode with GUI available
6 Reboot the system

The /etc/inittab file defines the default runlevel for a system. The
processes that start for specific runlevels are defined in subdirectories of the
/etc/rc.d directory. You can view the current runlevel at any time using
the runlevel command:

$ runlevel
N 5
$

The systemd initialization method became popular because it has the ability
to start processes based on different events:

When the system boots

When a particular hardware device is connected

When a service is started

When a network connection is established

When a timer has expired

The systemd method determines what processes to run by linking events to
unit files. Each unit file defines the programs to start when the specified
event occurs. The systemctl program allows you to start, stop, and list the
unit files currently running on the system.

The systemd method groups unit files together into targets. A target defines
a specific running state of the Linux system, similar to the SysVinit runlevel

concept. At system startup, the default.target unit defines all the unit
files to start. You can view the current default target using the systemctl
command:

$ systemctl get-default
graphical.target
$

The graphical.target unit file defines the processes to start when a multi-
user graphical environment is running, similar to the old SysVinit runlevel
5.

NOTE

In Chapter 4, “More Bash Shell Commands,” you'll see how to use
the ps command to view the processes currently running on the
Linux system.

Hardware management
Still another responsibility for the kernel is hardware management. Any
device that the Linux system must communicate with needs driver code
inserted inside the kernel code. The driver code allows the kernel to pass
data back and forth to the device, acting as an intermediary between
applications and the hardware. Two methods are used for inserting device
driver code in the Linux kernel:

Drivers compiled in the kernel

Driver modules added to the kernel

Previously, the only way to insert device driver code was to recompile the
kernel. Each time you added a new device to the system, you had to
recompile the kernel code. This process became even more inefficient as
Linux kernels supported more hardware. Fortunately, Linux developers
devised a better method to insert driver code into the running kernel.

Programmers developed the concept of kernel modules to allow you to
insert driver code into a running kernel without having to recompile the

kernel. Also, a kernel module could be removed from the kernel when the
device was finished being used. This greatly simplified and expanded using
hardware with Linux.

The Linux system identifies hardware devices as special files, called device
files. There are three classifications of device files:

Character

Block

Network

Character device files are for devices that can handle data only one
character at a time. Most types of modems and terminals are created as
character files. Block files are for devices that can handle data in large
blocks at a time, such as disk drives.

The network file types are used for devices that use packets to send and
receive data. This includes network cards and a special loopback device that
allows the Linux system to communicate with itself using common network
programming protocols.

Linux creates special files, called nodes, for each device on the system. All
communication with the device is performed through the device node. Each
node has a unique number pair that identifies it to the Linux kernel. The
number pair includes a major and a minor device number. Similar devices
are grouped into the same major device number. The minor device number
is used to identify a specific device within the major device group.

Filesystem management
Unlike some other operating systems, the Linux kernel can support different
types of filesystems to read and write data to and from hard drives. Besides
having over a dozen filesystems of its own, Linux can read and write to and
from filesystems used by other operating systems, such as Microsoft
Windows. The kernel must be compiled with support for all types of
filesystems that the system will use. Table 1-2 lists the standard filesystems
that a Linux system can use to read and write data.

TABLE 1-2 Linux Filesystems

Filesystem Description
ext Linux extended filesystem — the original Linux filesystem
ext2 Second extended filesystem; provided advanced features over

ext
ext3 Third extended filesystem; supports journaling
ext4 Fourth extended filesystem; supports advanced journaling
btrfs A newer, high-performance filesystem that supports journaling

and large files
exfat The extended Windows filesystem, used mainly for SD cards

and USB sticks
hpfs OS/2 high-performance filesystem
jfs IBM's journaling filesystem
iso9660 ISO 9660 filesystem (CD-ROMs)
minix MINIX filesystem
msdos Microsoft FAT16
ncp NetWare filesystem
nfs Network File System
ntfs Support for Microsoft NT filesystem
proc Access to system information
smb Samba SMB filesystem for network access
sysv Older Unix filesystem
ufs BSD filesystem
umsdos Unix-like filesystem that resides on top of msdos
vfat Windows 95 filesystem (FAT32)
XFS High-performance 64-bit journaling filesystem

Any hard drive that a Linux server accesses must be formatted using one of
the filesystem types listed in Table 1-2.

The Linux kernel interfaces with each filesystem using the Virtual File
System (VFS). This provides a standard interface for the kernel to
communicate with any type of filesystem. VFS caches information in
memory as each filesystem is mounted and used.

The GNU utilities
Besides having a kernel to control hardware devices, a computer operating
system needs utilities to perform standard functions, such as controlling
files and programs. Although Linus created the Linux system kernel, he had
no system utilities to run on it. Fortunately for him, at the same time he was
working, a group of people were working together on the Internet trying to
develop a standard set of computer system utilities that mimicked the
popular Unix operating system.

The GNU organization (GNU stands for GNU's Not Unix) developed a
complete set of Unix utilities but had no kernel system to run them on.
These utilities were developed under a software philosophy called open
source software (OSS).

The concept of OSS allows programmers to develop software and then
release it to the world with no licensing fees attached. Anyone can use,
modify, or incorporate the software into their own system without having to
pay a license fee. Uniting Linus's Linux kernel with the GNU operating
system utilities created a complete, functional, free operating system.

Although the bundling of the Linux kernel and GNU utilities is often just
called Linux, you will see some Linux purists on the Internet refer to it as
the GNU/Linux system to give credit to the GNU organization for its
contributions to the cause.

The core GNU utilities
The GNU project was mainly designed for Unix system administrators to
have a Unix-like environment available. This focus resulted in the project
porting many common Unix system command-line utilities. The core
bundle of utilities supplied for Linux systems is called the coreutils
package.

The GNU coreutils package consists of three parts:

Utilities for handling files

Utilities for manipulating text

Utilities for managing processes

Each of these three main groups of utilities contains several utility programs
that are invaluable to the Linux system administrator and programmer. This
book covers each of the utilities contained in the GNU coreutils package in
detail.

The shell
The GNU/Linux shell is a special interactive utility. It provides a way for
users to start programs, manage files on the filesystem, and manage
processes running on the Linux system. The core of the shell is the
command prompt. The command prompt is the interactive part of the shell.
It allows you to enter text commands, and then it interprets the commands
and executes them in the kernel.

The shell contains a set of internal commands that you use to control tasks
such as copying files, moving files, renaming files, displaying the programs
currently running on the system, and stopping programs running on the
system. Besides the internal commands, the shell allows you to enter the
name of a program at the command prompt. The shell passes the program
name off to the kernel to start it.

You can also group shell commands into files to execute as a program.
Those files are called shell scripts. Any command that you can execute
from the command line can be placed in a shell script and run as a group of
commands. This provides great flexibility in creating utilities for commonly
run commands or processes that require several commands grouped
together.

Quite a few Linux shells are available to use on a Linux system. Different
shells have different characteristics, some being more useful for creating
scripts and some being more useful for managing processes. The default
shell used in all Linux distributions is the Bash shell. The Bash shell was
developed by the GNU project as a replacement for the standard Unix shell,
called the Bourne shell (after its creator). The Bash shell name is a play on
this wording, referred to as the “Bourne again shell.”

In addition to the Bash shell, we will cover several other popular shells in
this book. Table 1-3 lists the different shells we will examine.

TABLE 1-3 Linux Shells

Shell Description
ash A simple, lightweight shell that runs in low-memory environments

but has full compatibility with the Bash shell
korn A programming shell compatible with the Bourne shell but

supporting advanced programming features like associative arrays
and floating-point arithmetic

tcsh A shell that incorporates elements from the C programming
language into shell scripts

zsh An advanced shell that incorporates features from Bash, tcsh, and
korn, providing advanced programming features, shared history
files, and themed prompts

Most Linux distributions include more than one shell, although usually they
pick one of them to be the default. If your Linux distribution includes
multiple shells, feel free to experiment with different shells and see which
one fits your needs.

The Linux desktop environment
In the early days of Linux (the early 1990s), all that was available was a
simple text interface to the Linux operating system. This text interface
allowed administrators to start programs, control program operations, and
move files around on the system.

With the popularity of Microsoft Windows, computer users expected more
than the old text interface to work with. This spurred more development in
the OSS community, and the Linux graphical desktops emerged.

Linux is famous for being able to do things in more than one way, and no
place is this more relevant than in graphical desktops. In Linux you can
choose from a plethora of graphical desktops. The following sections
describe a few popular ones.

The X Window software

Two basic elements control your video environment — the video card in
your PC and your monitor. To display fancy graphics on your computer, the
Linux software needs to know how to talk to both of them. The X Window
software is the core element in presenting graphics.

The X Window software is a low-level program that works directly with the
video card and monitor in the PC and controls how Linux applications can
present fancy windows and graphics on your computer.

Linux isn't the only operating system that uses X Window; versions have
been written for many different operating systems. In the Linux world, a
few software packages can implement it. Two X Window packages are
most commonly used in Linux:

X.org

Wayland

The X.org package is the older of the two, based on the original Unix X
Window System version 11 (often called X11). More Linux distributions
are migrating to the newer Wayland software, which is more secure and
easier to maintain.

When you first install a Linux distribution, it attempts to detect your video
card and monitor, and it then creates an X Window configuration file that
contains the required information. During installation you may notice a time
when the installation program scans your monitor for supported video
modes. Sometimes this causes your monitor to go blank for a few seconds.
Because lots of different types of video cards and monitors are out there,
this process can take a little while to complete.

The core X Window software produces a graphical display environment but
nothing else. Although this is fine for running individual applications, it is
not too useful for day-to-day computer use. There is no desktop
environment allowing users to manipulate files or launch programs. To do
that, you need a desktop environment on top of the X Window system
software.

The KDE Plasma desktop

http://x.org/
http://x.org/

The K Desktop Environment (KDE) was first released in 1996 as an open
source project to produce a graphical desktop similar to the Microsoft
Windows environment. The KDE desktop incorporates all the features you
are probably familiar with if you are a Windows user. Figure 1-3 shows the
current version, called KDE Plasma, running in the openSUSE Linux
distribution.

The KDE Plasma desktop allows you to place both application and file
icons in a special area on the desktop. If you single-click an application
icon, the Linux system starts the application. If you single-click a file icon,
the KDE desktop attempts to determine what application to start to handle
the file.

FIGURE 1-3 The KDE Plasma desktop on an openSUSE Linux system

The bar at the bottom of the desktop is called the Panel. The Panel consists
of four parts:

The K menu: Much like the Windows Start menu, the K menu
contains links to start installed applications.

Program shortcuts: These are quick links to start applications directly
from the Panel.

The taskbar: The taskbar shows icons for applications currently
running on the desktop.

Applets: These are small applications that have an icon in the Panel
that can often change depending on information from the application.

All of the Panel features are similar to what you would find in Windows. In
addition to the desktop features, the KDE project has produced a wide
assortment of applications that run in the KDE environment.

The GNOME desktop
The GNU Network Object Model Environment (GNOME) is another
popular Linux desktop environment. First released in 1999, GNOME has
become the default desktop environment for many Linux distributions (the
most popular being Red Hat Linux).

NOTE

The GNOME desktop underwent a radical change with version 3,
released in 2011. It departed from the standard look and feel of
most desktops using standard menu bars and taskbars to make the
interface more user-friendly across multiple platforms, such as
tablets and mobile phones. This change led to controversy (see the
“Other desktops” section), but slowly many Linux enthusiasts
accepted the new look and feel of the GNOME 3 desktop.

Figure 1-4 shows the standard GNOME desktop used in the Ubuntu Linux
distribution.

FIGURE 1-4 A GNOME 3 desktop on an Ubuntu Linux system

The GNOME 3 desktop cleans up the desktop interface by reducing the
available menus to just three:

Activities: Displays favorites, as well as any running application icons

Calendar: Shows the current date/time, along with any system
notification messages

System: Shows network connections, system settings, and options to
restart the system

The GNOME 3 desktop was designed to work on multiple types of devices,
so you won't find a lot of menus. To launch applications, you must search
for them using the Activities Overview, which is a search feature on the
Activities menu.

Not to be outdone by KDE, the GNOME developers have also produced a
host of graphical applications that integrate with the GNOME desktop.

Other desktops

One of the main features of Linux is choice, and nowhere is that more
evident than in the graphical desktop world. There are a plethora of
different types of graphical desktops available in the Linux world. If you're
not happy with the default desktop in your Linux distribution, it usually
doesn't take much effort to change it to something else!

When the GNOME desktop project radically changed its interface in
version 3, many Linux developers who preferred the look and feel of
GNOME version 2 created spin-off versions based on GNOME 2. Of these,
two became somewhat popular:

Cinnamon: The Cinnamon desktop was developed in 2011 by the
Linux Mint distribution in an attempt to continue development of the
original GNOME 2 desktop. It's now available as an option in several
Linux distributions, including Ubuntu Fedora and openSUSE.

MATE: The MATE desktop was also developed in 2011 by an Arch
Linux user who disliked the switch to GNOME 3. It incorporates a few
features of GNOME 3 (such as replacing the taskbar) but maintains the
overall look and feel of GNOME 2.

Figure 1-5 shows the Cinnamon desktop as it appears in the Linux Mint
distribution.

The downside to these fancy graphical desktop environments is that they
require a fair amount of system resources to operate properly. In the early
days of Linux, a hallmark and selling feature of Linux was its ability to
operate on older, less powerful PCs that the newer Microsoft desktop
products couldn't run on. However, with the popularity of KDE Plasma and
GNOME 3 desktops, this has changed, since it takes just as much memory
to run a KDE Plasma or GNOME 3 desktop as it does to run the latest
Microsoft desktop environment.

If you have an older PC, don't be discouraged. The Linux developers have
banded together to take Linux back to its roots. They've created several low
memory–oriented graphical desktop applications that provide basic features
that run perfectly fine on older PCs.

Although these graphical desktops don't have all that many applications
designed around them, they still run many basic graphical applications that

support features such as word processing, spreadsheets, databases, drawing,
and, of course, multimedia support.

Table 1-4 shows some of the smaller Linux graphical desktop environments
that can be used on lower-powered PCs and laptops.

FIGURE 1-5 The Cinnamon desktop from Linux Mint

TABLE 1-4 Other Linux Graphical Desktops

Desktop Description
Fluxbox A bare-bones desktop that doesn't include a Panel, only a pop-up

menu to launch applications
Xfce A desktop that's similar to the GNOME 2 desktop but with less

graphics for low-memory environments
JWM Joe's Window Manager, a very lightweight desktop ideal for low-

memory and low–disk space environments
fvwm Supports some advanced desktop features such as virtual

desktops and Panels, but runs in low-memory environments
fvwm95 Derived from fvwm but made to look like a Windows 95 desktop

These graphical desktop environments are not as fancy as the KDE Plasma
and GNOME 3 desktops, but they provide basic graphical functionality just
fine. Figure 1-6 shows what the Xfce desktop used in the MX Linux
distribution looks like.

FIGURE 1-6 The Xfce desktop as seen in the MX Linux distribution

If you are using an older PC, try a Linux distribution that uses one of these
desktops and see what happens. You may be pleasantly surprised.

Examining Linux Distributions
Now that you have seen the four main components required for a complete
Linux system, you may be wondering how you are going to get them all
together to make a Linux system. Fortunately, there are people who have
already done that for you.

A complete Linux system package is called a distribution. Numerous Linux
distributions are available to meet just about any computing requirement
you could have. Most distributions are customized for a specific user group,
such as business users, multimedia enthusiasts, software developers, or
average home users. Each customized distribution includes the software
packages required to support specialized functions, such as audio- and
video-editing software for multimedia enthusiasts, or compilers and
integrated development environments (IDEs) for software developers.

The different Linux distributions are often divided into two categories:

Full-core Linux distributions

Specialized distributions

The following sections describe these types of Linux distributions and show
examples in each category.

Core Linux distributions
A core Linux distribution contains a kernel, one or more graphical desktop
environments, and just about every Linux application that is available,
precompiled for the kernel. It provides one-stop shopping for a complete
Linux installation. Table 1-5 shows some popular core Linux distributions.

TABLE 1-5 Core Linux Distributions

Distribution Description
Slackware One of the original Linux distribution sets; popular with

Linux geeks
Red Hat
Enterprise

A commercial business distribution used mainly for Internet
servers

Gentoo A distribution designed for advanced Linux users,
containing only Linux source code

openSUSE Different distributions for business and home use
Debian Popular with Linux experts and commercial Linux products

In the early days of Linux, a distribution was released as a set of floppy
disks. You had to download groups of files and then copy them onto disks.
It would usually take 20 or more disks to make an entire distribution!
Needless to say, this was a painful experience.

Nowadays, Linux distributions are released as an ISO image file. The ISO
image file is a complete disk image of a DVD as a single file. You use a
software application to either burn the ISO image file onto a DVD or create
a bootable USB stick. You then just boot your workstation from the DVD or
USB stick to install Linux. This makes installing Linux much easier.

However, beginners still often run into problems when they install one of
the core Linux distributions. To cover just about any situation in which
someone might want to use Linux, a single distribution has to include lots
of application software. They include everything from high-end Internet
database servers to common games.

Although having lots of options available in a distribution is great for Linux
geeks, it can become a nightmare for beginning Linux users. Most core
distributions ask a series of questions during the installation process to
determine which applications to load by default, what hardware is
connected to the PC, and how to configure the hardware. Beginners often
find these questions confusing. As a result, they often either load way too
many programs on their computer or don't load enough and later discover
that their computer won't do what they want it to.

Fortunately for beginners, there's a much simpler way to install Linux.

Specialized Linux distributions
A new subgroup of Linux distributions has started to appear. These are
typically based on one of the main distributions but contain only a subset of
applications that would make sense for a specific area of use.

In addition to providing specialized software (such as only office products
for business users), customized Linux distributions attempt to help
beginning Linux users by autodetecting and autoconfiguring common
hardware devices. This makes installing Linux a much more enjoyable
process.

Table 1-6 shows some of the specialized Linux distributions available and
what they specialize in.

TABLE 1-6 Specialized Linux Distributions

Distribution Description
Fedora A free distribution built from the Red Hat Enterprise Linux

source code
Ubuntu A free distribution for school and home use
MX Linux A free distribution for home use
Linux Mint A free distribution for home entertainment use
Puppy Linux A free small distribution that runs well on older PCs

That's just a small sampling of specialized Linux distributions. There are
literally hundreds of specialized Linux distributions, and more are popping
up all the time on the Internet. No matter your specialty, you'll probably
find a Linux distribution made for you.

Many of the specialized Linux distributions are based on the Debian Linux
distribution. They use the same installation files as Debian but package only
a small fraction of a full-blown Debian system.

NOTE

Most Linux distributions also have a LiveDVD version available.
The LiveDVD version is a self-contained ISO image file that you
can burn onto a DVD (or USB stick) to boot up a running Linux
system directly, without having to install it on your hard drive.
Depending on the distribution, the LiveDVD contains either a small
subset of applications or, in the case of specialized distributions, the
entire system. The benefit of the LiveDVD is that you can test it
with your system hardware before going through the trouble of
installing the system.

Summary
This chapter discussed the Linux system and the basics of how it works.
The Linux kernel is the core of the system, controlling how memory,
programs, and hardware all interact with one another. The GNU utilities are
also an important piece in the Linux system. The Linux shell, which is the
main focus of this book, is part of the GNU core utilities. The chapter also
discussed the final piece of a Linux system, the Linux desktop environment.
Things have changed over the years, and Linux now supports several
graphical desktop environments.

The chapter also discussed the various Linux distributions. A Linux
distribution bundles the various parts of a Linux system into a simple
package that you can easily install on your PC. The Linux distribution
world consists of full-blown Linux distributions that include just about
every application imaginable, as well as specialized Linux distributions that
only include applications focused on a special function. The Linux
LiveDVD craze has created another group of Linux distributions that allow
you to easily test-drive Linux without even having to install it on your hard
drive.

In the next chapter, we look at what you need to start your command-line
and shell scripting experience. You'll see what you have to do to get to the

Linux shell utility from your fancy graphical desktop environment. These
days, that's not always an easy thing.

CHAPTER 2
Getting to the Shell
IN THIS CHAPTER

Accessing the command line

Reaching CLI via a Linux console terminal

Reaching CLI via a graphical terminal emulator

Using the GNOME terminal emulator

Using the Konsole terminal emulator

Using the xterm terminal emulator

In the old days of Linux, system administrators, programmers, and system
users all sat at something called a Linux console terminal entering shell
commands and viewing text output. These days, with graphical desktop
environments, it's getting harder to find a shell prompt on the system in
order to enter shell commands. This chapter discusses what is required to
reach a command-line environment. And it walks you through a few
terminal emulation packages you may run into in the various Linux
distributions.

Reaching the Command Line
Before the days of graphical desktops, the only way to interact with a Unix
system was through a text command-line interface (CLI) provided by the
shell. The CLI allowed text input only and could display only text and
rudimentary graphics output.

Because of these restrictions, output devices were not very fancy. Often,
you needed only a simple dumb terminal to interact with the Unix system.
A dumb terminal was usually nothing more than a monitor and keyboard
connected to the Unix system via a communication cable (usually a

multiwire serial cable). This simple combination provided an easy way to
enter text data into the Unix system and view text results.

As you well know, things are significantly different in today's Linux
environment. Just about every Linux desktop distribution uses some type of
graphical desktop environment. However, to enter shell commands, you still
need a text display to access the shell's CLI. The problem now is getting to
one. Sometimes finding a way to get a CLI in a Linux distribution is not an
easy task.

Console terminals
One way to get to a CLI is to access the Linux system via text mode. This
provides nothing more than a simple shell CLI on the monitor, just like the
days before graphical desktops. This mode is called the Linux console
because it emulates the old days of a hard-wired console terminal and is a
direct interface to the Linux system.

When the Linux system starts, it automatically creates several virtual
consoles. A virtual console is a terminal session that runs in Linux system
memory. Instead of having several dumb terminals connected to the
computer, most Linux distributions start five or six (or sometimes even
more) virtual consoles that you can access from a single computer keyboard
and monitor.

Graphical terminals
The alternative to using a virtual console terminal is to use a terminal
emulation package from within the Linux graphical desktop environment.
A terminal emulation package simulates working on a console terminal but
within a desktop graphical window. Figure 2-1 shows an example of a
terminal emulator running in a Linux graphical desktop environment.

FIGURE 2-1 A simple terminal emulator running on a Linux desktop

Graphical terminal emulation is responsible only for a portion of the Linux
graphical experience. As a whole, the experience is accomplished through
several components, including graphical terminal emulation software
(called a client). Table 2-1 shows the different components in the Linux
graphical desktop environment.

TABLE 2-1 Graphical Interface Elements

Name Examples Description
Client Graphical terminal emulator,

desktop environment (GNOME
Shell, KDE Plasma), network
browser

An application that requests
graphical services

Display
Server

Wayland, X Window System Element that manages the
display (screen) and the input
devices (keyboard, mouse,
touch screen)

Window
Manager

Mutter, Metacity, Kwin Element that adds borders to
windows and provides features
to move and manage windows

Widgets
Library

Plasmoids, Cinnamon Spices Element that adds menus and
appearance items for desktop
environment clients

For dealing with the command line from the desktop, the focus is on the
graphical terminal emulator. You can think of graphical terminal emulators
as CLI terminals in the graphical user interface (GUI) and virtual console
terminals as CLI terminals outside the GUI. Understanding the various
terminals and their features can enhance your command-line experience.

Accessing CLI via a Linux Console Terminal
In the early days of Linux, when you booted up your system you would see
a login prompt on your monitor, and that's all. As mentioned earlier, this is
called the Linux console. It was the only place you could enter commands
for the system.

Even though several virtual consoles are created at boot time, many Linux
desktop distributions switch to a graphical environment after the boot
sequence completes. This provides the user with a graphical login and
desktop experience. For these systems, accessing a virtual console is done
manually.

On most Linux distributions, you can access one of the Linux virtual
consoles using a simple keystroke combination. Usually, you must hold
down the Ctrl+Alt key combination and then press a function key (F1
through F7) for the virtual console you want to use. Function key F2
produces virtual console 2, key F3 produces virtual console 3, key F4
produces virtual console 4, and so on.

NOTE

Linux distributions typically use the Ctrl+Alt key combination with
F1, F7, or F8 to reach the graphical interface. Ubuntu and CentOS
both use F1. However, it is best to test and see where your
distribution puts the graphical interface, especially on older
distribution versions.

Text mode virtual consoles use the whole screen and start with the text
login screen displayed. An example of a text login screen from a virtual
console is shown in Figure 2-2.

Notice in Figure 2-2 the word tty2 at the end of the first text line. The 2 in
tty2 indicates that it is virtual console 2 and was reached by pressing the
Ctrl+Alt+F2 key sequence. tty stands for teletypewriter. Teletypewriter is
an old term, indicating a machine used for sending messages.

FIGURE 2-2 Linux virtual console login screen

NOTE

Not all Linux distributions show the virtual console's tty number at
the login screen. If you are logged into a virtual console, you can
enter the command tty and press Enter to see what virtual console
you are currently using. Entering commands is covered in Chapter
3, “Basic Bash Shell Commands.”

You log into a console terminal by entering your user ID after the login:
prompt and typing your password after the Password: prompt. If you have
never logged in this way before, be aware that typing your password is a
different experience than it is in a graphical environment. In a graphical
environment, you may see dots or asterisks indicating the password

characters as you type. However, at the virtual console, nothing is displayed
when you type your password.

NOTE

Keep in mind that, within the Linux virtual console, you do not
have the ability to run any graphical programs.

After logging into a virtual console, you are taken to the Linux CLI, and
you can switch to another virtual console without losing your current active
session. You can switch between all the virtual consoles, with multiple
active sessions running. This feature provides a great deal of flexibility
while you work at the CLI.

Additional flexibility deals with the virtual console's appearance. Even
though it is a text mode console terminal, you can modify the text and
background colors.

For example, it may be easier on your eyes to set the background of the
terminal to white and the text to black. After you have logged in, you can
accomplish this modification in a couple of ways. One way is to type in the
command setterm --inversescreen on and press the Enter key, as shown
in Figure 2-3. Notice in the figure that the -- inversescreen feature is
being turned on using the option on . You can also turn it off using the off
option.

FIGURE 2-3 Linux virtual console with inversescreen being turned on

Another way is to type two commands, one after the other. Type setterm -
-background white and press Enter, and then type setterm --foreground
black and press Enter. Be careful because, when you change your terminal
background first, it may be hard to see the commands you are typing.

With the commands in the preceding paragraph, you are not turning features
on and off, as with --inversescreen . Instead, you have a choice of eight
colors. The choices are black , red , green , yellow , blue , magenta , cyan
, and white (which looks gray on some distributions). You can get rather
creative with your plain text mode console terminals. Table 2-2 shows some
options you can use with the setterm command to help improve your
console terminal's readability or appearance.

TABLE 2-2 setterm Options for Foreground and Background
Appearance

Option Parameter Choices Description
--background black , red , green ,

yellow , blue ,
magenta , cyan , or
white

Changes the terminal's background
color to the one specified

--foreground black , red , green ,
yellow , blue ,
magenta , cyan , or
white

Changes the terminal's foreground
color, specifically text, to the one
specified

--

inversescreen

on or off Switches the background color to
the foreground color and the
foreground color to the background
color

--reset None Changes the terminal appearance
back to its default setting and clears
the screen

--store None Sets the current terminal's
foreground and background colors
as the values to be used for --reset

Virtual console terminals are great for accessing the CLI outside the GUI.
However, sometimes, you need to access the CLI and run graphical
programs. Using a terminal emulation package solves this problem and is a
popular way to access the shell CLI from within the GUI. The following
sections describe common software packages that provide graphical
terminal emulation.

Accessing CLI via Graphical Terminal
Emulation
The graphical desktop environment offers a great deal more variety for CLI
access than the virtual console terminal does. Many terminal emulator
applications are available for the graphical environment. Each package

provides its own unique set of features and options. Some popular graphical
terminal emulator applications are shown in Table 2-3 along with their
websites.

TABLE 2-3 Popular Graphical Terminal Emulator Packages

Name Website
Alacritty github.com/alacritty/alacritty

cool-retro-term github.com/Swordfish90/cool-retro-term

GNOME Terminal wiki.gnome.org/Apps/Terminal

Guake guake-project.org

Konsole konsole.kde.org

kitty sw.kovidgoyal.net/kitty

rxvt-unicode software.schmorp.de/pkg/rxvt-unicode.html

Sakura pleyades.net/david/projects/sakura

st st.suckless.org

Terminator gnometerminator.blogspot.com

Terminology enlightenment.org/about-terminology.md

Termite github.com/thestinger/termite

Tilda github.com/lanoxx/tilda

xterm invisible-island.net/xterm

Xfce4-terminal docs.xfce.org/apps/terminal/start

Yakuake kde.org/applications/system/org.kde.yakuake

Although many graphical terminal emulator applications are available, the
focus in this chapter is on three. Installed in different Linux distributions by
default, they are GNOME Terminal, Konsole Terminal, and xterm.

Using the GNOME Terminal Emulator
GNOME Terminal is the GNOME Shell desktop environment's default
terminal emulator. Many distributions, such as Red Hat Enterprise Linux
(RHEL), CentOS, and Ubuntu, use the GNOME Shell desktop environment

http://github.com/alacritty/alacritty
http://github.com/Swordfish90/cool-retro-term
http://wiki.gnome.org/Apps/Terminal
http://guake-project.org/
http://konsole.kde.org/
http://sw.kovidgoyal.net/kitty
http://software.schmorp.de/pkg/rxvt-unicode.html
http://pleyades.net/david/projects/sakura
http://st.suckless.org/
http://gnometerminator.blogspot.com/
http://enlightenment.org/about-terminology.md
http://github.com/thestinger/termite
http://github.com/lanoxx/tilda
http://invisible-island.net/xterm
http://docs.xfce.org/apps/terminal/start
http://kde.org/applications/system/org.kde.yakuake

by default, and therefore use GNOME Terminal by default. It is fairly easy
to use and a good terminal emulator for individuals who are new to Linux.
This section walks you through the various parts of accessing, configuring,
and using GNOME Terminal.

Accessing GNOME Terminal
In the GNOME Shell desktop environment, accessing the GNOME
Terminal is fairly straightforward. Click on the Activities icon in the upper-
right corner of the desktop window. When the search bar appears, click
within the bar to access it and type terminal. The results of these actions
are shown in Figure 2-4.

FIGURE 2-4 Finding GNOME Terminal in GNOME Shell

Notice in the previous figure that the GNOME Terminal application icon is
named Terminal. Click the icon to open the terminal emulator. An open
GNOME Terminal application on a CentOS distribution is shown in Figure
2-5.

FIGURE 2-5 GNOME Terminal on CentOS

When you are done using the terminal emulator application, you close it
just like other desktop windows: by clicking the x in the window's upper-
right corner.

The GNOME Terminal application's appearance may vary between Linux
distributions. For example, in Figure 2-6, GNOME Terminal is shown on an
Ubuntu GNOME Shell desktop environment.

FIGURE 2-6 GNOME Terminal on Ubuntu

Notice that the appearance of the GNOME Terminal application in Figure
2-6 is different compared to Figure 2-5. This is typically due to the
application's default configuration (covered later in this chapter) and the
various features a Linux distribution has in its GUI windows.

TIP

If you are using a different desktop environment than GNOME
Shell (and have GNOME Terminal installed), be aware that you
may not have a search feature. In these cases, use the environment's
menu system to look for GNOME Terminal. It is typically named
Terminal.

On many distributions, the first time you launch the GNOME Terminal
application, its terminal emulator icon will appear in your GNOME Shell
Favorites bar. Hovering over the icon with your mouse will show the
terminal emulator's name, as shown in Figure 2-7.

FIGURE 2-7 GNOME Terminal icon in the Favorites bar

If for some reason the icon does not show up in your Favorites bar, you can
set up a keyboard shortcut to launch it. This approach is handy for those
who don't care for using a mouse, and it allows faster access to the CLI.

TIP

GNOME Shell on the Ubuntu distribution already has a keystroke
shortcut for opening the GNOME terminal emulator: Ctrl+Alt+T.

To create a keyboard shortcut, you'll need to access the Keyboard Shortcuts
window within Keyboard Settings. To accomplish this quickly, click the
Activities icon in the upper-right corner of the GNOME Shell desktop
window. When the search bar appears, click within the bar to access it, and
type Keyboard Shortcuts. The results of these actions are shown in Figure
2-8.

FIGURE 2-8 Reaching the Keyboard Shortcuts window

Once you are in the Keyboard Shortcuts window, scroll down to reach the +
button, which is all the way at the bottom. Clicking this button opens a
dialog box, where you can name your new shortcut, provide the command
to open the application, and set the shortcut's keystrokes, as shown in
Figure 2-9.

It is important to use the correct command name in order to properly launch
the GNOME terminal emulator, so type gnome-terminal in the Command
field, as shown in Figure 2-9. When you are all done setting up your new

shortcut, click the Add button in the window. Now you can quickly launch
the GNOME Terminal by just using the keystroke combination you
specified.

Several configuration options are provided by menus and shortcut keys in
the application, which you can apply after you get the GNOME terminal
emulation started. Understanding these options can enhance your GNOME
Terminal CLI experience.

FIGURE 2-9 Creating a keyboard shortcut

The menu bar
The GNOME Terminal menu bar contains the configuration and
customization options you need to make your GNOME Terminal just the
way you want it. The following tables briefly describe the configuration
options in the menu bar and shortcut keys associated with them.

TIP

If the GNOME Terminal window does not display its menu bar,
right-click in the terminal emulator session area, and click Show
Menubar in the drop-down menu.

Table 2-4 shows the configuration options available within the GNOME
Terminal File menu system. The File menu item contains items to create
and manage your overall CLI terminal sessions.

TABLE 2-4 The File Menu

Name Shortcut
Key

Description

New Tab Shift+Ctrl+T Starts a new shell session in a new tab in the
existing GNOME Terminal window

New
Window

Shift+Ctrl+N Starts a new shell session in a new GNOME
Terminal window

Close
Tab

Shift+Ctrl+W Closes the current tab in the GNOME Terminal
window

Close
Window

Shift+Ctrl+Q Closes the current GNOME Terminal window

Notice that, as in a network browser, you can open new tabs within the
GNOME Terminal session to start a whole new CLI session. Each tab
session is considered to be an independent CLI session.

TIP

You don't always have to click through the menu to reach options in
the File menu. Some of the File menu selections are also available
by right-clicking in the terminal emulator session area.

The Edit menu contains items, shown in Table 2-5, for handling text within
the tabs. You can copy and paste text anywhere within the session window.

TABLE 2-5 The Edit Menu

Name Shortcut
Key

Description

Copy Shift+Ctrl+C Copies selected text to the GNOME clipboard
Copy as
HTML

None Copies selected text, along with its font and
color, to the GNOME clipboard

Paste Shift+Ctrl+V Pastes text from the GNOME clipboard into a
session

Select All None Selects output in the entire scrollback buffer
Preferences None Edits the current session profile

Copying and pasting commands in the terminal is useful if you are lacking
in keyboarding skills. Thus, the keyboard shortcuts for the GNOME
Terminal Copy and Paste functions are worth memorizing.

NOTE

As you read through these GNOME Terminal menu options, keep
in mind that your Linux distribution's GNOME Terminal may have
slightly different menu options available. This is because several
Linux distributions use older versions of GNOME Terminal. You
can find the version number by clicking Help in the menu bar and
selecting About from the drop-down menu.

The View menu, shown in Table 2-6, contains items for controlling how the
CLI session windows appear. These options can be helpful for individuals
with visual impairment.

TABLE 2-6 The View Menu

Name Shortcut
Key

Description

Show
Menubar

None Toggles on/off the menu bar display

Full Screen F11 Toggles on/off the terminal window filling the
entire desktop

Zoom In Ctrl++ Enlarges the font size in the window
incrementally

Normal
Size

Ctrl+0 Returns the font size to default

Zoom Out Ctrl+- Reduces the font size in the window
incrementally

Be aware that if you toggle off the menu bar display, the session's menu bar
disappears. However, you can easily get the menu bar to display again by
right-clicking in any terminal session window and selecting the Show
Menubar option.

The Search menu, shown in Table 2-7, contains items for conducting simple
searches within the terminal session. These searches are similar to ones you
may have conducted in a network browser or word processor.

TABLE 2-7 The Search Menu

Name Shortcut
Key

Description

Find Shift+Ctrl+F Opens Find window to provide designated text
search options

Find Next Shift+Ctrl+G Searches forward from current terminal session
location for designated text

Find
Previous

Shift+Ctrl+H Searches backward from current terminal session
location for designated text

Clear
Highlight

Shift+Ctrl+J Removes highlighting of found text

The Terminal menu, shown in Table 2-8, contains options for controlling
the terminal emulation session features. There are no shortcut keys to
access these items.

TABLE 2-8 The Terminal Menu

Name Description
Read-
Only

Toggles on/off the terminal session accepting keyboard strokes;
it does not enable/disable keyboard shortcuts

Reset Sends reset terminal session control code
Reset
and
Clear

Sends reset terminal session control code and clears terminal
session screen

80x24 Adjusts the current terminal window size to 80 columns wide by
24 rows high

80x43 Changes the current terminal window size to 80 columns wide
by 43 rows high

132x24 Adjusts the current terminal window size to 130 columns wide
by 24 rows high

130x43 Changes the current terminal window size to 130 columns wide
by 43 rows high

The Reset option is extremely useful. One day, you may accidentally cause
your terminal session to display random characters and symbols. When this
occurs, the text is unreadable. It is typically caused by displaying a nontext
file to the screen. You can quickly get the terminal session back to normal
by selecting Reset or Reset And Clear.

NOTE

Keep in mind that when you adjust your terminal's size, such as by
using the 80x24 setting in the Terminal menu, the actual size is
determined by factors such as the character font in use. It's a good
idea to play around with the different settings to find a size that
suits your taste.

The Tabs menu, shown in Table 2-9, provides items for controlling the
location of the tabs and selecting which tab is active. This menu displays
only when you have more than one tab session open.

TABLE 2-9 The Tabs Menu

Name Shortcut Key Description
Previous
Tab

Ctrl+Page Up Makes the previous tab in the list active

Next Tab Ctrl+Page
Down

Makes the next tab in the list active

Move
Terminal
Left

Shift+Ctrl+Page
Up

Shuffles the current tab in front of the
previous tab

Move
Terminal
Right

Shift+Ctrl+Page
Down

Shuffles the current tab in front of the next
tab

Detach
Terminal

None Removes the tab and starts a new GNOME
Terminal window using this tab session

Finally, the Help menu contains two menu options:

Contents provides a full GNOME Terminal manual so that you can
research individual GNOME Terminal items and features.

About shows you the current GNOME Terminal application version
that's running.

Besides the GNOME terminal emulator package, another commonly used
package is Konsole. In many ways, Konsole is similar to GNOME
Terminal. However, enough differences exist to warrant its own section.

Using the Konsole Terminal Emulator
The KDE project created its own terminal emulation package called
Konsole. The Konsole application incorporates basic terminal emulation
features, along with more advanced ones expected from a graphical
application. This section describes Konsole features and shows you how to
use them.

Accessing Konsole
The Konsole application is the default terminal emulator for the KDE
desktop environment, Plasma. You can easily access it via the KDE
environment's menu system. In other desktop environments, accessing
Konsole is typically done via search features.

In the KDE desktop environment (Plasma), you start the Konsole terminal
emulator by clicking the icon labeled Application Launcher in the lower-left
corner of the screen. Then click Applications ➪ System ➪ Terminal
(Konsole).

NOTE

You may see two or more terminal menu options within the Plasma
menu environment. If you do, the Terminal menu option with the
word Konsole beneath it is the Konsole terminal emulator
application.

In the GNOME Shell desktop environment, the Konsole application is
typically not installed by default. If Konsole has been installed, you can
access it via the GNOME Shell search feature. Click the Activities icon in
the upper-right corner of the desktop window. When the search bar appears,
click your mouse within the bar to access it, and type konsole. If the

terminal emulator is available on your system, you will see the Konsole
icon displayed.

NOTE

You may not have the Konsole terminal emulation package installed
on your system. If you would like to install it, see Chapter 9,
“Installing Software,” to learn how to install software via the
command line.

Click the Konsole icon with your mouse to open the terminal emulator. An
open Konsole application on an Ubuntu distribution is shown in Figure 2-
10.

FIGURE 2-10 The Konsole terminal emulator

Remember that, in most desktop environments, you can create a keyboard
shortcut to access applications such as Konsole. The command you need to
type for the shortcut in order to start up the Konsole terminal emulator is
konsole. Also, if the Konsole application is installed, you can start it from
another terminal emulator by typing konsole and pressing Enter.

TIP

In the Plasma desktop environment, the Konsole terminal emulator
application already has a default keyboard shortcut: Ctrl+Alt+T.

The Konsole terminal emulator, similar to GNOME Terminal, has several
configuration options provided by menus and shortcut keys. The following
section describes these various features.

The menu bar
The Konsole menu bar contains the configuration and customization
options you need to easily view and change features in your terminal
emulation session. The following tables briefly describe the menu options
and associated shortcut keys.

TIP

If the Konsole menu bar is not currently displayed, you can press
Ctrl+Shift+M to enable it.

The File menu, shown in Table 2-10, provides options for starting a new tab
in the current window or in a new window.

TABLE 2-10 The File Menu

Name Shortcut
Key

Description

New
Window

Ctrl+Shift+N Starts a new shell session in a new Konsole
Terminal window

New
Tab

Ctrl+Shift+T Starts a new shell session in a new tab in the
existing Konsole Terminal window

Clone
Tab

None Starts a new shell session in a new tab in the
existing Konsole Terminal window that attempts
to duplicate the current tab

Save
Output
As

Ctrl+Shift+S Saves the current tab's output in its scrollback
buffer as either a text or an HTML file

Print
Screen

Ctrl+Shift+P Prints the current tab's displayed text

Open
File
Manager

None Opens the default file browser application

Close
Session

Ctrl+Shift+W Closes the current tab session

Close
Window

Ctrl+Shift+Q Closes the current Konsole window

Notice that Konsole offers two handy options for saving information from
your shell session: Save Output As and Print Screen. The Print Screen
function allows you to print the displayed text to a system printer or save it
as a PDF file.

NOTE

As you read through these Konsole menu options, keep in mind that
your Linux distribution's Konsole application may have very
different menu options available. This is because some Linux
distributions have kept older versions of the Konsole terminal
emulation package.

The Edit menu, shown in Table 2-11, provides options for handling text in
the session. Also, managing tab names is in this options list.

TABLE 2-11 The Edit Menu

Name Shortcut
Key

Description

Copy Ctrl+Shift+C Copies selected text to the Konsole clipboard
Paste Ctrl+Shift+V Pastes text from the Konsole clipboard into a

session
Select
All

None Selects all the text in the current tab

Copy
Input To

None Starts/stops session input copies to chosen
additional sessions

Send
Signal

None Sends the selected signal from the drop-down
menu to the current tab's shell process or other
process

Rename
Tab

Ctrl+Alt+S Modifies session tab title bar setting

ZModem
Upload

Ctrl+Alt+U Starts the process of uploading a selected file, if
the ZMODEM file transfer protocol is supported

Find Ctrl+Shift+F Opens the Find window to provide scrollback
buffer text search options

Find
Next

F3 Finds the next text match in more recent
scrollback buffer history

Find
Previous

Shift+F3 Finds the next text match in older scrollback
buffer history

Konsole provides an excellent method for tracking what function is taking
place in each tab session. Using the Rename Tab option, you can name a tab
to match its current task. This helps in tracking which open tab session is
performing what job.

NOTE

Konsole retains a history, formally called a scrollback buffer, for
each tab. The history contains output text that has scrolled out of
the terminal viewing area. By default, the last 1,000 lines in the
scrollback buffer are retained. You can scroll back through the
scrollback buffer by simply using the scrollbar in the viewing area.
Also, you can scroll back line by line by pressing the Shift+Up
Arrow or scroll back a page (24 lines) at a time by pressing
Shift+Page Up.

The View menu, shown in Table 2-12, contains items for controlling
individual session views in the Konsole Terminal window. In addition,
options are available that aid in monitoring terminal session activity.

TABLE 2-12 The View Menu

Name Shortcut
Key

Description

Split View None Controls a multiple tab session display within
the current Konsole window

Detach
Current Tab

Ctrl+Shift+L Removes a tab session and starts a new
Konsole window using this tab session

Detach
Current
View

Ctrl+Shift+H Removes the current tab session's view and
starts a new Konsole window with it

Monitor for
Silence

Ctrl+Shift+I Toggles on/off a special message when no
activity is occurring in the tab session

Monitor for
Activity

Ctrl+Shift+A Toggles on/off a special message when
activity starts occurring in the tab session

Read-only None Toggles on/off the terminal session accepting
keyboard strokes; does not enable/disable
keyboard shortcuts

Enlarge Font Ctrl++ Enlarges the font size in the window
incrementally

Reset Font
Size

Ctrl+Alt+0 Returns the font size to default

Shrink Font Ctrl+- Reduces the font size in the window
incrementally

Set
Encoding

None Selects the character set used to send and
display characters

Clear
Scrollback

None Removes the text in the current session's
scrollback buffer

Clear
Scrollback
and Reset

Ctrl+Shift+K Removes the text in the current session's
scrollback buffer and resets the terminal
window

Full Screen
Mode

F11 Toggles on/off the terminal window filling
the entire monitor display area

The Monitor for Silence option is used for indicating tab silence. Tab
silence occurs when no new text appears in the current tab session for about
seven seconds. This allows you to switch to another tab while waiting for
the application's output to stop.

TIP

The Konsole application provides a simple menu when you right-
click in the active session area. Several menu items are available in
this easy-to-access menu.

The Bookmarks menu options, shown in Table 2-13, provide a way to
manage bookmarks set in the Konsole window. A bookmark enables you to
save your active session's directory location and then easily return there in
either the same session or a new session.

TABLE 2-13 The Bookmarks Menu

Name Shortcut
Key

Description

Add Bookmark Ctrl+Shift+B Creates a new bookmark at the current
directory location

Bookmark Tabs as
Folder

None Creates a new bookmark for all current
terminal tab sessions

New Bookmark
Folder

None Creates a new bookmark storage folder

Edit Bookmarks None Edits existing bookmarks

The Settings menu, shown in Table 2-14, allows you to customize and
manage your profiles. Profiles allow a user to automate the running of
commands, set up the session's appearance, configure the scrollback buffer,
and so on. Also, within the Settings menu you can add a little more
functionality to your shell sessions.

TABLE 2-14 The Settings Menu

Name Shortcut Key Description
Edit Current
Profile

None Opens the Edit Profile window to
provide profile configuration options

Switch Profile None Applies to the current tab a selected
profile

Manage Profiles None Opens the Manage Profiles window to
provide profile management options

Show Menubar Ctrl+Shift+M Toggles on/off menu bar display
Configure
Keyboard
Shortcuts

None Creates Konsole command keyboard
shortcuts

Configure
Notifications

None Creates custom Konsole notifications

Configure
Konsole

Ctrl+Shift+, Configures many Konsole features

Configure Notifications allows you to associate specific events that can
occur within a session with different actions, such as playing a sound. When
one of the events occurs, the defined action (or actions) is taken.

The Help menu, shown in Table 2-15, provides the full Konsole handbook
(if KDE handbooks were installed in your Linux distribution) and the
standard About Konsole dialog box.

TABLE 2-15 The Help Menu

Name Shortcut
Key

Description

Konsole
Handbook

None Contains the full Konsole Handbook

What's This? Shift+F1 Contains help messages for terminal widgets
Report Bug None Opens the Submit Bug Report form
Donate None Opens the KDE donation page within a web

browser
Switch
Application
Language

None Opens the Switch Application Language form

About Konsole None Displays information about the Konsole
application, including its current version

About KDE None Displays information about the KDE desktop
environment

Rather extensive documentation is provided to help you use the Konsole
terminal emulator package within the Help menu. The Bug Report form to
submit to the Konsole developers when you encounter a program bug is
handy.

The Konsole terminal emulator package is young compared to another
popular package, xterm. In the next section, we explore the “old-timer”
xterm.

Using the xterm Terminal Emulator
The oldest and most basic of terminal emulation packages is xterm. The
xterm package has been around since before the original days of X Window,
a historically popular display server, and it's still included by default in
some distributions, such as openSUSE.

xterm is a full terminal emulation package, but it doesn't require many
resources (such as memory) to operate. Because of this, the xterm package

is still popular in Linux distributions designed to run on older hardware.

Although it doesn't offer many fancy features, the xterm package does one
thing extremely well: it emulates older terminals, such as the Digital
Equipment Corporation (DEC) VT102, VT220, and Tektronix 4014
terminals. For the VT102 and VT220 terminals, xterm can even emulate the
VT series of color control codes, allowing you to use color in your scripts.

NOTE

The DEC VT102 and VT220 were dumb text terminals popular for
connecting to Unix systems in the 1980s and early 1990s. A
VT102/VT220 could display text and display rudimentary graphics
using block mode graphics. This style of terminal access is still used
in many business environments today, thus keeping VT102/VT220
emulation popular.

Figure 2-11 shows what the basic xterm display looks like running on a
CentOS distribution's GNOME Shell environment, where it had to be
manually installed. You can see that it is very basic.

FIGURE 2-11 The xterm terminal

The xterm terminal emulator can be tricky to find these days. Often, it is not
included in a desktop environment graphical menu arrangement.

Accessing xterm
In the KDE desktop environment (Plasma), you can access xterm by
clicking the Application Launcher icon in the lower-left corner of the
screen. Then click Applications ➪ System ➪ standard terminal emulator for
the X Window system (xterm).

Once the xterm package is installed, you can access it via the GNOME
Shell search feature. Click the Activities icon in the upper-right corner of
the desktop window. When the search bar appears, click within the bar to
access it and type xterm, and you'll see the Konsole icon displayed. Also,
remember that you can create your own keyboard shortcut to start up xterm.

The xterm package allows you to set individual features using command-
line parameters. The following sections discuss these features and how to
change them.

Command-line parameters
The list of xterm command-line parameters is extensive. You can control
lots of features to customize the terminal emulation features, such as
enabling or disabling individual VT emulations.

NOTE

xterm has a huge number of configuration options — so many that
they cannot all be covered here. Extensive documentation is
available via the Bash manual. Accessing the Bash manual is
covered in Chapter 3. In addition, the xterm development team
provides some excellent help on its website: invisible-
island.net/xterm.

You can invoke certain configuration options by adding a parameter to the
xterm command. For example, to have the xterm emulate a DEC VT100
terminal, at the CLI type the command xterm -ti vt100 and press Enter.
Table 2-16 shows some parameters you can include when invoking the
xterm terminal emulator software from the command line.

http://invisible-island.net/xterm

TABLE 2-16 xterm Command-Line Parameters

Parameter Description
-bg color Specifies the color to use for the terminal background
-fb font Sets the font to use for bold text
-fg color Specifies the color to use for the foreground text
-fn font Sets the font to use for text
-fw font Specifies the font to use for wide text
-lf filename Sets the filename to use for screen logging
-ms color Specifies the color used for the text cursor
- name Sets the name of the application that appears in the title bar
-ti terminal Specifies the terminal type to emulate

Some xterm command-line parameters use a plus sign (+) or minus sign (-)
to signify how a feature is set. A plus sign may turn a feature on, whereas a
minus sign turns it off. However, the opposite can be true as well. A plus
sign may disable a feature, whereas a minus sign enables it, such as when
using the bc parameter. Table 2-17 lists some of the more common features
you can set using the + / - command-line parameters.

TABLE 2-17 xterm +/– Command-Line Parameters

Parameter Description
ah Enables/disables highlighted text cursor
aw Enables/disables auto-line-wrap
bc Enables/disables text cursor blinking
cm Enables/disables recognition of ANSI color change control

codes
fullscreen Enables/disables full-screen mode
j Enables/disables jump scrolling
l Enables/disables logging screen data to a log file
mb Enables/disables margin bell
rv Enables/disables reverse video colors
t Enables/disables Tektronix mode

It is important to note that not all implementations of xterm support all
these command-line parameters. You can determine which parameters your
xterm implements by using the -help parameter when you start xterm on
your system.

NOTE

If xterm appeals to you but you'd like to use a more modern
terminal emulation application, consider trying the rxvt-unicode
package. It is available to install via most distributions’ standard
repositories (covered in Chapter 9), uses little RAM, and is very
fast. Find out more at software.schmorp.de/pkg/rxvt-
unicode.html.

Now that you have been introduced to three terminal emulator packages,
the big question is, which is the best terminal emulator to use? There is no
definite answer to that question. Which terminal emulator package you use
depends on your individual needs and desires. But it is great to have so
many choices.

http://software.schmorp.de/pkg/rxvt-unicode.html

Summary
To start learning Linux command-line commands, you need access to a
CLI. In the world of graphical interfaces, this can sometimes be
challenging. This chapter discussed various interfaces you should consider
to get to the Linux command line.

First, this chapter discussed the difference between accessing the CLI via a
virtual console terminal (a terminal outside the GUI) and a graphical
terminal emulation package (a terminal inside the GUI). We took a brief
look at the basic differences between these two access methods.

Next, we explored in detail accessing the CLI via a virtual console terminal,
including specifics on how to change console terminal configuration
options such as background color.

After looking at virtual console terminals, the chapter traveled through
accessing the CLI via a graphical terminal emulator. Primarily, we covered
three types of terminal emulators: GNOME Terminal, Konsole, and xterm.

This chapter also covered the GNOME Shell desktop project's GNOME
terminal emulation package. GNOME Terminal is typically installed by
default on the GNOME Shell desktop environment. It provides convenient
ways to set many terminal features through menu options and shortcut keys.

We also discussed the KDE desktop project's Konsole terminal emulation
package. The Konsole application is typically installed by default on the
KDE desktop environment (Plasma). It provides several nice features, such
as the ability to monitor a terminal for silence.

Finally, we explored the xterm terminal emulator package. xterm was the
first terminal emulator available for Linux. It can emulate older terminal
hardware such as the VT and Tektronix terminals.

In the next chapter, we'll start looking at the Linux command-line
commands. We'll walk you through the commands necessary to navigate
around the Linux filesystem and to create, delete, and manipulate files.

CHAPTER 3
Basic Bash Shell Commands
IN THIS CHAPTER

Interacting with the shell

Using the Bash manual

Traversing the filesystem

Listing files and directories

Managing files and directories

Viewing file contents

The default shell used in many Linux distributions is the GNU Bash shell.
This chapter describes the basic features available in the Bash shell, such as
the Bash manual, command-line completion, and how to display a file's
contents. We will walk you through how to work with Linux files and
directories using the basic commands provided by the Bash shell. If you're
already comfortable with the basics in the Linux environment, feel free to
skip this chapter and go to Chapter 4, “More Bash Shell Commands,” to see
more advanced commands.

Starting the Shell
The GNU Bash shell is a program that provides interactive access to the
Linux system. It runs as a regular program and is normally started whenever
a user logs into a terminal. The shell that the system starts depends on your
user ID configuration.

The /etc/passwd file contains a list of all the system user accounts, along
with basic configuration information about each user. Here's a sample entry
from an /etc/passwd file:

christine:x:1001:1001::/home/christine:/bin/bash

Every entry has seven data fields, separated by colons (:). The system uses
the data in these fields to assign specific features for the user. Most of these
entries are discussed in more detail in Chapter 7, “Understanding Linux File
Permissions.” For now, just pay attention to the last field, which specifies
the user's shell program.

NOTE

Though the focus is on the GNU Bash shell, additional shells are
reviewed in this book. Chapter 23, “Working with Alternative
Shells,” covers working with alternative shells, such as dash and
tcsh.

In the earlier /etc/passwd sample entry, the user christine has /bin/bash
set as their default shell program. This means when christine logs into the
Linux system, the GNU Bash shell program is automatically started.

Although the Bash shell program is automatically started at login, whether a
shell command-line interface (CLI) is presented depends on which login
method is used. If you use a virtual console terminal to log in, the CLI
prompt is automatically presented, and you can begin to type shell
commands. However, if you log into the Linux system via a graphical
desktop environment, you need to start a graphical terminal emulator to
access the shell CLI prompt.

Using the Shell Prompt
After you start a terminal emulation package or log into a Linux virtual
console, you get access to the shell CLI prompt. The prompt is your
gateway to the shell. This is the place where you enter shell commands.

The default prompt symbol for the Bash shell is the dollar sign ($). This
symbol indicates that the shell is waiting for you to enter text. Different
Linux distributions use different formats for the prompt. On this Ubuntu
Linux system, the shell prompt looks like this:

christine@UDesktop:~$

On the CentOS Linux system, it looks like this:

[christine@localhost ~]$

Besides acting as your access point to the shell, the prompt can provide
additional helpful information. In the two preceding examples, the current
user ID name, christine , is shown in the prompt. Also, the name of the
system is shown, UDesktop on the Ubuntu system and localhost on the
CentOS machine. You'll learn later in this chapter about additional items
shown in the prompt.

TIP

If you are new to the CLI, keep in mind that, after you type a shell
command at the prompt, you need to press the Enter key for the
shell to act upon your command.

The shell prompt is not static. It can be changed to suit your needs. Chapter
6, “Using Linux Environment Variables,” covers the shell CLI prompt
configuration.

Think of the shell CLI prompt as a helpmate, assisting you with your Linux
system, giving you helpful insights, and letting you know when the shell is
ready for new commands. Another helpful item in the shell is the Bash
manual.

Interacting with the Bash Manual
Most Linux distributions include an online manual for looking up
information on shell commands, as well as lots of other GNU utilities
included in the distribution. You should become familiar with the manual,
because it's invaluable for working with commands, especially when you're
trying to figure out various command-line parameters.

The man command provides access to the manual pages stored on the Linux
system. Entering the man command followed by a specific command name
provides that utility's manual entry. Figure 3-1 shows an example of looking

up the hostname command's manual pages. This page was reached by
typing the command man hostname .

FIGURE 3-1 Manual pages for the hostname command

Notice the hostname command's DESCRIPTION paragraph in Figure 3-1. It is
rather sparse and full of technical jargon. The Bash manual is not a step-by-
step guide but instead a quick reference.

TIP

If you are new to the Bash shell, you may find that the man pages
are not very helpful at first. However, get into the habit of using
them, especially to read the first paragraph or two of a command's
DESCRIPTION section. Eventually, you will learn the technical lingo,
and the man pages will become more helpful to you.

When you use the man command to view a command's manual, the
information is displayed with something called a pager. A pager is a utility
that allows you to view text a page (or a line) at a time. Thus, you can page
through the man pages by pressing the spacebar, or you can go line by line
using the Enter key. In addition, you can use the arrow keys to scroll
forward and backward through the man information (assuming that your
terminal emulation package supports the arrow key functions).

When you are finished with the man pages, press the Q key to quit. When
you leave the man pages, you receive a shell CLI prompt, indicating the
shell is waiting for your next command.

TIP

The Bash manual even has reference information on itself. Type
man man to see information concerning the man pages.

The manual page divides information about a command into separate
sections. Each section has a conventional naming standard, as shown in
Table 3-1.

TABLE 3-1 The Linux Man Page Conventional Section Names

Section Description
Name Displays command name and a short description
Synopsis Shows command syntax
Configuration Provides configuration information
Description Describes command generally
Options Describes command option(s)
Exit Status Defines command exit status indicator(s)
Return Value Describes command return value(s)
Errors Provides command error messages
Environment Describes environment variable(s) used
Files Defines files used by command
Versions Describes command version information
Conforming To Provides standards followed
Notes Describes additional helpful command material
Bugs Provides the location to report found bugs
Example Shows command use examples
Authors Provides information on command developers
Copyright Defines command code copyright status
See Also Refers to similar available commands

Not every command's man page has all the section names described in
Table 3-1. Also, some commands have section names that are not listed in
the conventional standard.

In a command's synopsis section, you can find out how the command
should be entered at the shell prompt. Many commands use a basic pattern:

COMMAND-NAME [OPTION]… [ARGUMENT]…

In the command's pattern structure,

COMMAND-NAME is the name of the command used to run the desired
program.

[OPTION] s are additional items added to modify the command's
behavior. There are typically many OPTIONs (also called switches) you
can add. The brackets ([]) indicate that OPTIONs are not required, and
the three dots (…) show that you can use more than one OPTION at a
time.

[ARGUMENT] is typically an item you pass to the command to let the
program know you want it to operate on that item. You can see that it
too is not required due to the brackets, and you can pass multiple
ARGUMENTs to the program.

TIP

If you want to use more than one command option, often you can
squish them together. For example, to use the options -a and -b ,
you type -ab.

Many commands were written by different individuals, so you'll find the
way to use them varies as well. Thus, the command's synopsis section
within its man page is a great place to find the proper syntax in order to get
things done with the command.

TIP

If you can't remember a command's name, you can search the man
pages using keywords. The syntax is man -k keyword. For example,
to find commands dealing with the terminals, you type man -k
terminal.

In addition to the conventionally named sections for a man page, there are
man page section areas. Each section area has an assigned number, starting
at 1 and going to 9; they are listed in Table 3-2.

TABLE 3-2 The Linux Man Page Section Areas

Section Number Area Contents
1 Executable programs or shell commands
2 System calls
3 Library calls
4 Special files
5 File formats and conventions
6 Games
7 Overviews, conventions, and miscellaneous
8 Super user and system administration commands
9 Kernel routines

Typically, the man utility provides the lowest numbered content area for the
command. For example, looking back to Figure 3-1 where the command
man hostname was entered, notice that in the upper-left and upper-right
display corners, the word HOSTNAME is followed by a number in parentheses,
(1) . This means the man pages displayed are coming from content area 1
(executable programs or shell commands).

NOTE

Your Linux system may include a few nonstandard section numbers
in its man pages. For example, 1p is the section covering Portable
Operating System Interface (POSIX) commands and 3n is for
network functions.

Occasionally, a command has the same name as a special file or overview
section in the man pages, and thus the name is listed in multiple section
content areas. For example, the man pages for hostname contain
information on the command as well as an overview section on system
hostnames. Typically by default, the man information for the lowest section
number is displayed. Such was the case in Figure 3-1, where the hostname
man pages from section 1 was automatically chosen. To get around the

default section search order, type man section# topicname. Thus, to see
the hostname overview man pages in section 7, type man 7 hostname .

You can also step through an introduction to the various section content
areas by typing man 1 intro to read about section 1, man 2 intro to read
about section 2, man 3 intro to read about section 3, and so on.

The man pages are not the only reference. There are also the information
pages called info pages. You can learn about the info pages by typing info
info .

Built-in commands, which are covered in Chapter 5, “Understanding the
Shell,” have their own special resource called the help pages. For more
information on using help pages, type help help . (See a pattern here?)

In addition, most commands accept the -h or --help option. For example,
you can type hostname --help to see a brief help screen.

Obviously, several helpful resources are available for reference. However,
many basic shell concepts still need detailed explanation. In the next
section, we cover navigating through the Linux filesystem.

Navigating the Filesystem
When you log into the system and reach the shell command prompt, you are
usually placed in your home directory. Often, you want to explore other
areas in the Linux system besides just your home directory. This section
describes how to do that using shell commands. To start, you need to take a
tour of just what the Linux filesystem looks like so you know where you are
going.

Looking at the Linux filesystem
If you're new to the Linux system, you may be confused by how it
references files and directories, especially if you're used to the way the
Microsoft Windows operating system does that. Before exploring the Linux
system, it helps to have an understanding of how it's laid out.

The first difference you'll notice is that Linux does not use drive letters in
pathnames. In the Windows world, the partitions on physical drives
installed on the computer determine the pathname of the file. Windows

assigns a letter to each physical disk drive partition, and each one contains
its own directory structure for accessing files stored on it.

For example, in Windows you may be used to seeing the file paths such as

C:\Users\Rich\Documents\test.doc

The Windows file path tells you exactly which physical disk partition
contains the file named test.doc . For example, if you saved test.doc on
a flash drive, designated by the letter E, the file path would be E:\test.doc
. This path indicates that the file is located at the root of the drive assigned
the letter E.

This is not the method used by Linux. Linux stores files within a single
directory structure, called a virtual directory. The virtual directory contains
file paths from all the storage devices installed on the computer, merged
into a single directory structure.

The Linux virtual directory structure contains a single base directory, called
the root. Directories and files beneath the root directory are listed based on
the directory path used to get to them, similar to the way Windows does it.

TIP

You'll notice that Linux uses a forward slash (/) instead of a
backward slash (\) to denote directories in file paths. The backslash
character in Linux denotes an escape character and causes all sorts
of problems when you use it in a file path. This may take some
getting used to if you're coming from a Windows environment.

In Linux, as depicted in Figure 3-2, you will see file paths similar to this:

/home/rich/Documents/test.doc

FIGURE 3-2 A Linux virtual directory file path

This indicates that the file test.doc is in the directory Documents , under
the directory rich , which is contained in the directory home . Notice that
the path doesn't provide any information as to which physical disk the file is
stored on.

The tricky part about the Linux virtual directory is how it incorporates each
storage device. The first hard drive installed in a Linux system is called the
root drive. The root drive contains the virtual directory core. Everything
else builds from there.

On the root drive, Linux can use special directories as mount points. Mount
points are directories in the virtual directory where you can assign
additional storage devices. Linux causes files and directories to appear
within these mount point directories, even though they are physically stored
on a different drive.

Often system files are physically stored on the root drive. User files are
typically stored on a separate drive or drives, as shown in Figure 3-3.

FIGURE 3-3 The Linux file structure

Figure 3-3 shows two hard drives on the computer. One hard drive (Disk 1)
is associated with the root of the virtual directory. Other hard drives can be
mounted anywhere in the virtual directory structure. In this example, the
second hard drive (Disk 2) is mounted at the location /home , which is
where the user directories are located.

The Linux filesystem structure originally evolved from the Unix file
structure. In a Linux filesystem, common directory names are used for
common functions. Table 3-3 lists some common Linux virtual top-level
directory names and their contents.

TABLE 3-3 Common Linux Directory Names

Directory Usage
/ Root of the virtual directory, where normally, no files are

placed
/bin Binary directory, where many GNU user-level utilities are

stored
/boot Boot directory, where boot files are stored
/dev Device directory, where Linux creates device nodes
/etc System configuration files directory
/home Home directory, where Linux creates user directories, which are

optional
/lib Library directory, where system and application library files are

stored
/libname Library directory(ies), where alternative format system and

application library files are stored, which is optional
/media Media directory, a common place for mount points used for

removable media
/mnt Mount directory, a common place used for temporarily

mounting filesystems
/opt Optional directory, where third-party software packages are

stored
/proc Process directory, where current kernel, system, and process

information is stored
/root Root user's home directory, which is optional
/run Run directory, where runtime data is held during system

operation
/sbin System binary directory, where many GNU admin-level utilities

are stored
/srv Service directory, where local services store their files
/sys System directory, where devices, drivers, and some kernel

feature information is stored

Directory Usage
/tmp Temporary directory, where temporary work files can be

created and destroyed
/usr User directory, a secondary directory hierarchy
/var Variable directory, for files that change frequently, such as log

files

On the CentOS Linux system, the root virtual directory typically has these
top-level directories within it:

bin dev home lib64 mnt proc run srv tmp var
boot etc lib media opt root sbin sys usr

The /usr directory deserves some special attention, because it is a
secondary directory grouping, containing read-only files that are sharable.
You'll often find user commands, source code files, games, and so on. Here
is an example of the /usr directory on a CentOS system:

bin games include lib lib64 libexec local sbin share src tmp

The common Linux directory names are based on the Filesystem Hierarchy
Standard (FHS). Many Linux distributions maintain compliance with FHS.
Therefore, you should be able to easily find files on any FHS-compliant
Linux systems.

NOTE

The FHS is occasionally updated. You may find that some Linux
distributions are still using an older FHS standard, whereas other
distributions only partially implement the current standard. To
keep up to date on the FHS standard, visit its official home at
refspecs.linuxfoundation.org/fhs.shtml.

When you log into your system and reach a shell CLI prompt, your session
starts in your home directory. Your home directory is a unique directory
assigned to your user account. When a user account is created, the system
normally assigns a unique directory for the account (see Chapter 7).

http://refspecs.linuxfoundation.org/fhs.shtml

You can move around the virtual directory using a graphical interface.
However, to move around the virtual directory from a CLI prompt, you
need to learn to use the cd command.

Traversing directories
You use the change directory command (cd) to move your shell session to
another directory in the Linux filesystem. The cd command syntax is pretty
simple: cd destination.

The cd command may take a single argument, destination, which
specifies the directory name you want to go to. If you don't specify a
destination on the cd command, it takes you to your home directory.

The destination argument can be expressed using two different methods.
One method is using an absolute directory reference. The other method uses
a relative directory reference.

The following sections describe each of these methods. The differences
between these two methods are important to understand as you traverse the
filesystem.

Using absolute directory references
You can reference a directory name within the virtual directory system
using an absolute directory reference. The absolute directory reference
defines exactly where the directory is in the virtual directory structure,
starting at the root. Think of the absolute directory reference as the full
name for a directory.

An absolute directory reference always begins with a forward slash (/),
indicating the virtual directory system's root. Thus, to reference user
binaries, contained within the usr directory's bin subdirectory, you would
use

/usr/bin

With the absolute directory reference, there's no doubt as to exactly where
you want to go. To move to a specific location in the filesystem using the
absolute directory reference, you just specify the full pathname in the cd
command:

[christine@localhost ~]$ cd /usr/bin
[christine@localhost bin]$

Notice in the preceding example that the prompt originally had a tilde (~) in
it. After the change to a new directory occurred, the tilde was replaced by
bin . This is where a CLI prompt can help you keep track of where you are
in the virtual directory structure. The tilde indicates that your shell session
is located in your home directory. After you move out of your home
directory, the partial directory reference is shown in the prompt (if the
prompt has been configured to do so).

NOTE

If your shell CLI prompt does not show your shell session's current
location, then it has not been configured to do so. Chapter 6
discusses CLI prompt configuration, if you desire modifications to
your CLI prompt.

If your prompt has not been configured to show the shell session's current
absolute directory location, then you can display the location via a shell
command. The pwd command displays the shell session's current directory
location, which is called the present working directory or current working
directory. An example of using the pwd command is shown here:

[christine@localhost bin]$ pwd
/usr/bin
[christine@localhost bin]$

TIP

It is a good habit to use the pwd command whenever you change to a
new present working directory. Because many shell commands
operate on the present working directory, you always want to make
sure you are in the correct directory before issuing a command.

You can move to any level within the entire Linux virtual directory
structure from any level using the absolute directory reference:

[christine@localhost bin]$ cd /var/log
[christine@localhost log]$ pwd
/var/log
[christine@localhost log]$

You can also quickly jump to your home directory from any level within the
Linux virtual directory structure:

[christine@localhost log]$ cd
[christine@localhost ~]$ pwd
/home/christine
[christine@localhost ~]$

However, if you're just working within your own home directory structure,
often using absolute directory references can get tedious. For example, if
you're already in the directory /home/christine , it seems somewhat
cumbersome to have to type the command

cd /home/christine/Documents

just to get to your Documents directory. Fortunately, there's a simpler
solution.

Using relative directory references
Relative directory references allow you to specify a destination directory
reference relative to your current location. A relative directory reference
doesn't start with a forward slash (/).

Instead, a relative directory reference starts with either a directory name (if
you're traversing to a directory under your current directory) or a special
character. For example, if you are in your home directory and want to move
to your Documents subdirectory, you can use the cd command along with a
relative directory reference:

[christine@localhost ~]$ pwd
/home/christine
[christine@localhost ~]$ cd Documents
[christine@localhost Documents]$ pwd
/home/christine/Documents
[christine@localhost Documents]$

In the preceding example, note that no forward slash (/) was used. Instead, a
relative directory reference was used and the present work directory was

changed from /home/christine to /home/christine/Documents , with
much less typing.

TIP

If you are new to the command line and the Linux directory
structure, it is recommended that you stick with absolute directory
references for a while. After you become more familiar with the
directory layout, switch to using relative directory references.

You can use a relative directory reference with the cd command in any
directory containing subdirectories. You can also use a special character to
indicate a relative directory location.

The two special characters used for relative directory references are:

The single dot (.) to represent the current directory

The double dot (..) to represent the parent directory

You can use the single dot, but it doesn't make sense to use it with the cd
command. Later in the chapter, you will see how another command uses the
single dot for relative directory references effectively.

The double-dot character is extremely handy when trying to traverse a
directory hierarchy. For example, if you are in the Documents directory
under your home directory and need to go to your Downloads directory, also
under your home directory, you can do this:

[christine@localhost Documents]$ pwd
/home/christine/Documents
[christine@localhost Documents]$ cd ../Downloads
[christine@localhost Downloads]$ pwd
/home/christine/Downloads
[christine@localhost Downloads]$

The double-dot character takes you back up one level to your home
directory; then the /Downloads portion of the command takes you back
down into the Downloads directory. You can use as many double-dot
characters as necessary to move around. For example, if you are in your

home directory (/home/christine) and want to go to the /etc directory,
you could type the following:

[christine@localhost ~]$ cd ../../etc
[christine@localhost etc]$ pwd
/etc
[christine@localhost etc]$

Of course, in a case like this, you actually have to do more typing rather
than just typing the absolute directory reference, /etc . Thus, use a relative
directory reference only if it makes sense to do so.

NOTE

It's helpful to have a long informative shell CLI prompt, as used in
this chapter section. However, for clarity purposes, a simple $
prompt is used in the rest of the book's examples.

Now that you know how to traverse the directory system and confirm your
present working directory, you can start to explore what's contained within
the various directories. The next section takes you through the process of
looking at files within the directory structure.

Listing Files and Directories
To see what files are available on the system, use the list command (ls).
This section describes the ls command and options available to format the
information it can display.

Displaying a basic listing
The ls command at its most basic form displays the files and directories
located in your current directory:

$ ls
Desktop Downloads my_script Public test_file
Documents Music Pictures Templates Videos
$

Notice that the ls command produces the listing in alphabetical order (in
columns rather than rows). If you're using a terminal emulator that supports
color, the ls command may also show different types of entries in different
colors. The LS_COLORS environment variable controls this feature.
(Environment variables are covered in Chapter 6. Different Linux
distributions set this environment variable depending on the capabilities of
the terminal emulator.

If you don't have a color terminal emulator, you can use the -F parameter
with the ls command to easily distinguish files from directories. Using the
-F parameter produces the following output:

$ ls -F
Desktop/ Downloads/ my_script* Public/ test_file
Documents/ Music/ Pictures/ Templates/ Videos/
$

The -F parameter flags the directories with a forward slash (/), to help
identify them in the listing. Similarly, it marks executable files (like the
my_script file in the preceding code) with an asterisk (*), to help you more
easily find files that can be run on the system.

The basic ls command can be somewhat misleading. It shows the files and
directories contained in the current directory, but not necessarily all of
them. Linux often uses hidden files to store configuration information. In
Linux, hidden files are files with filenames starting with a period (.). These
files don't appear in the default ls listing. Thus, they are called hidden files.

To display hidden files along with normal files and directories, use the -a
parameter. Here is an example of using the -a parameter with the ls
command:

$ ls -a
. .bash_profile Desktop .ICEauthority
my_script Templates
.. .bashrc Documents .local
Pictures test_file
.bash_history .cache Downloads .mozilla .pki
Videos
.bash_logout .config .esd_auth Music
Public
$

All the files beginning with a period, hidden files, are now shown. Notice
that four files begin with .bash. These are hidden files that are used by the
Bash shell environment and are covered in detail in Chapter 6.

The -R parameter is another option the ls command can use. Called the
recursive option, it shows files that are contained within subdirectories in
the current directory. If you have lots of subdirectories, this can be quite a
long listing. Here's a simple example of what the -R parameter produces.
The -F option was tacked on to help you see the file types:

$ ls -F -R
.:
Desktop/ Downloads/ my_script* Public/ test_file
Documents/ Music/ Pictures/ Templates/ Videos/

./Desktop:

./Documents:

./Downloads:

./Music:
ILoveLinux.mp3*

./Pictures:

./Public:

./Templates:

./Videos:
$

Notice that the -R parameter shows the contents of the current directory,
which are the files from a user's home directory shown in earlier examples.
It also shows each subdirectory in the user's home directory and their
contents. The only subdirectory containing a file is the Music subdirectory,
and it contains the executable file ILoveLinux.mp3.

TIP

Option parameters don't have to be entered separately as shown in
the previous example: ls -F -R . They can often be combined as
follows: ls -FR.

In the previous example, there were no subdirectories within subdirectories.
If there had been further subdirectories, the -R parameter would have
continued to traverse those as well. As you can imagine, for large directory
structures, this can become quite a long listing.

Displaying a long listing
In the basic listings, the ls command doesn't produce much information
about each file. For listing additional information, another popular
parameter is -l. The -l parameter produces a long listing format, providing
more information about each file in the directory:

$ ls -l
total 8
drwxr-xr-x. 2 christine christine 6 Feb 20 14:23 Desktop
drwxr-xr-x. 2 christine christine 6 Feb 20 14:23 Documents
drwxr-xr-x. 2 christine christine 6 Feb 20 14:23 Downloads
drwxr-xr-x. 2 christine christine 28 Feb 29 15:42 Music
-rwxrw-r--. 1 christine christine 74 Feb 29 15:49 my_script
drwxr-xr-x. 2 christine christine 6 Feb 20 14:23 Pictures
drwxr-xr-x. 2 christine christine 6 Feb 20 14:23 Public
drwxr-xr-x. 2 christine christine 6 Feb 20 14:23 Templates
-rw-rw-r--. 1 christine christine 74 Feb 29 15:50 test_file
drwxr-xr-x. 2 christine christine 6 Feb 20 14:23 Videos
$

The long listing format lists each file and directory on a single line. Along
with the filename, the listing shows additional useful information. The first
line in the output shows the total number of allocated blocks for the files
within the directory (8). After that, each line contains the following
information about each file (or directory):

The file type — such as directory (d), file (-), linked file (l), character
device (c), or block device (b)

The file permissions (see Chapter 7)

The number of file hard links (see the section “Linking Files” in this
chapter).

The file owner username

The file primary group name

The file byte size

The last time the file was modified

The filename or directory name

The -l parameter is a powerful tool to have. Armed with this parameter,
you can see most of the information you need for any file or directory.

TIP

If you want to view the long listing for only one file, simply tack on
the file's name to your ls -l command. However, if you want to see
such a listing for a directory, and not its contents, you'll not only
need to add its name to the command, but add the -d switch, as in:
ls -ld Directory-Name.

The ls command has lots of parameters that can come in handy as you do
file management. If you type man ls at the shell prompt, you see several
pages of available parameters for you to use to modify the ls command
output.

Don't forget that you can also combine many of the parameters. You can
often find a parameter combination that not only displays the desired
output, but is also easy to remember, such as ls -alF.

Filtering listing output
As you've seen in the examples, by default the ls command lists all the
non-hidden directory files. Sometimes, this can be overkill, especially when
you're just looking for information on a few files.

Fortunately, the ls command also provides a way for you to define a filter
on the command line. It uses the filter to determine which files or
directories it should display in the output.

Before using the filter command, let's create some files to play with via the
touch command (covered in the next section). If the file already exists, the
command won't hurt the file:

$ touch my_script my_scrapt my_file
$ touch fall fell fill full
$ ls
Desktop Downloads fell full my_file my_script
Public test_file
Documents fall fill Music my_scrapt Pictures
Templates Videos
$

The filter works as a simple text-matching string. Include the filter after any
command line parameters you want to use:

$ ls -l my_script
-rwxrw-r--. 1 christine christine 74 Feb 29 16:12 my_script
$

When you specify the name of a specific file as the filter, the ls command
only shows that file's information. Sometimes, you might not know the
exact filename you're looking for. The ls command also recognizes
standard wildcard characters and uses them to match patterns within the
filter:

A question mark (?) to represent one character

An asterisk (*) to represent any number of characters

The question mark can be used to replace exactly one character anywhere in
the filter string. For example:

$ ls -l my_scr?pt
-rw-rw-r--. 1 christine christine 0 Feb 29 16:12 my_scrapt
-rwxrw-r--. 1 christine christine 74 Feb 29 16:12 my_script
$

The filter my_scr?pt matched two files in the directory. Similarly, the
asterisk can be used to match zero or more characters:

$ ls -l my*
-rw-rw-r--. 1 christine christine 0 Feb 29 16:12 my_file
-rw-rw-r--. 1 christine christine 0 Feb 29 16:12 my_scrapt
-rwxrw-r--. 1 christine christine 74 Feb 29 16:12 my_script
$

Using the asterisk finds three different files, starting with the name my . As
with the question mark, you can place the asterisks anywhere in the filter:

$ ls -l my_s*t
-rw-rw-r--. 1 christine christine 0 Feb 29 16:12 my_scrapt
-rwxrw-r--. 1 christine christine 74 Feb 29 16:12 my_script
$

Using the asterisk and question mark in the filter is called file globbing. File
globbing is the process of pattern matching using wildcards. The wildcards
are officially called metacharacter wildcards. You can use more
metacharacter wildcards for file globbing than just the asterisk and question
mark. You can also use brackets:

$ touch my_scrypt
$ ls -l my_scr[ay]pt
-rw-rw-r--. 1 christine christine 0 Feb 29 16:12 my_scrapt
-rw-rw-r--. 1 christine christine 0 Feb 29 16:18 my_scrypt
$

In this example, we used the brackets along with two potential choices for a
single character in that position, a or y . The brackets represent a single
character position and give you multiple options for file globbing. You can
list choices of characters, as shown in the preceding example, and you can
specify a range of characters, such as an alphabetic range [a-i] :

$ ls f*ll
fall fell fill full
$ ls f[a-i]ll
fall fell fill
$

Also, you can specify what should not be included in the pattern match by
using the exclamation point (!):

$ ls -l f[!a]ll
-rw-rw-r--. 1 christine christine 0 Feb 29 16:12 fell
-rw-rw-r--. 1 christine christine 0 Feb 29 16:12 fill
-rw-rw-r--. 1 christine christine 0 Feb 29 16:12 full
$

File globbing is a powerful feature when searching for files. It can also be
used with other shell commands besides ls . You'll find out more about this
later in the chapter.

Handling Files
The shell provides many file manipulation commands on the Linux
filesystem. This section walks you through the basic shell commands you
need to handle files.

Creating files
Every once in a while you run into a situation where you need to create an
empty file. For example, sometimes applications expect a log file to be
present before they can write to it. In these situations, you can use the touch
command to easily create an empty file:

$ touch test_one
$ ls -l test_one
-rw-rw-r--. 1 christine christine 0 Feb 29 17:24 test_one
$

The touch command creates the new file you specify and assigns your
username as the file owner. Notice in the preceding example that the file
size is zero because the touch command just created an empty file.

The touch command can also be used to change the modification time. This
is done without changing the file contents:

$ ls -l test_one
-rw-rw-r--. 1 christine christine 0 Feb 29 17:24 test_one
$ touch test_one
$ ls -l test_one
-rw-rw-r--. 1 christine christine 0 Feb 29 17:26 test_one
$

The modification time of test_one is now updated to 17:26 from the
original time, 17:24.

Creating empty files and altering file time stamps is not something you will
do on a Linux system daily. However, copying files is an action you will do
often while using the shell.

Copying files
Copying files and directories from one location in the filesystem to another
is a common practice for system administrators. The cp command provides
this feature.

In its most basic form, the cp command uses two parameters — the source
object and the destination object: cp source destination.

When both the source and destination parameters are filenames, the cp
command copies the source file to a new destination file. The new file acts
like a brand-new file, with an updated modification time:

$ cp test_one test_two
$ ls -l test_one test_two
-rw-rw-r--. 1 christine christine 0 Feb 29 17:26 test_one
-rw-rw-r--. 1 christine christine 0 Feb 29 17:46 test_two
$

The new file test_two shows a different modification time than the
test_one file. If the destination file already exists, the cp command may
not prompt you to this fact. It is best to add the -i option to force the shell
to ask whether you want to overwrite a file:

$ ls -l test_one test_two
-rw-rw-r--. 1 christine christine 0 Feb 29 17:26 test_one
-rw-rw-r--. 1 christine christine 0 Feb 29 17:46 test_two
$
$ cp -i test_one test_two
cp: overwrite 'test_two'? n
$

If you don't answer y , the file copy does not proceed. You can also copy a
file into a preexisting directory:

$ cp -i test_one /home/christine/Documents/
$
$ ls -l /home/christine/Documents/
total 0
-rw-rw-r--. 1 christine christine 0 Feb 29 17:48 test_one
$

The new file is now under the Documents directory, using the same filename
as the original.

NOTE

The preceding example uses a trailing forward slash (/) on the
destination directory name. Using the slash indicates Documents is a
directory and not a file. This is helpful for clarity purposes and is
important when copying single files. If the forward slash is not used
and the subdirectory /home/christine/Documents does not exist, a
file named Documents is created within the current directory and no
error message is displayed. That is problematic, so use a trailing
forward slash on your destination directory names.

This last example used an absolute directory reference, but you can just as
easily use a relative directory reference:

$ cp -i test_two Documents/
$ ls -l Documents/
total 0
-rw-rw-r--. 1 christine christine 0 Feb 29 17:48 test_one
-rw-rw-r--. 1 christine christine 0 Feb 29 17:51 test_two
$

Earlier in this chapter, you read about the special symbols that can be used
in relative directory references. One of them, the single dot (.), is great to
use with the cp command. Remember that the single dot represents your
current working directory. If you need to copy a file with a long source
object name to your current working directory, the single dot can simplify
the task:

$ cp /etc/NetworkManager/NetworkManager.conf .
$ ls *.conf
NetworkManager.conf
$

It's hard to see that single dot! If you look closely, you'll see it at the end of
the first example code line. Using the single dot symbol is much easier than
typing a full destination object name when you have long source object
names.

The -R parameter is a powerful cp command option. It allows you to
recursively copy the contents of an entire directory in one command:

$ ls -l Documents/
total 0
-rw-rw-r--. 1 christine christine 0 Feb 29 17:48 test_one
-rw-rw-r--. 1 christine christine 0 Feb 29 17:51 test_two
$
$ cp -R Documents/ NewDocuments/
$ ls -l NewDocuments/
total 0
-rw-rw-r--. 1 christine christine 0 Feb 29 17:55 test_one
-rw-rw-r--. 1 christine christine 0 Feb 29 17:55 test_two
$

The directory NewDocuments did not exist prior to the cp -R command. It
was created with the cp -R command, and the entire Documents directory's
contents were copied into it. Notice that all the files in the new
NewDocuments directory have new dates associated with them. Now
NewDocuments is a complete copy of the Documents directory.

TIP

There are many more cp command parameters than those
described here. Remember that you can see all the different
parameters available for the cp command by typing man cp.

You can also use wildcard metacharacters in your cp commands:

$ ls
Desktop fall full my_scrapt NetworkManager.conf
Public test_one
Documents fell Music my_script NewDocuments
Templates test_two
Downloads fill my_file my_scrypt Pictures
test_file Videos
$
$ cp my* NewDocuments/
$ ls NewDocuments/
my_file my_scrapt my_script my_scrypt test_one test_two
$

This command copied any files that started with my to NewDocuments . Now
the directory contains six files instead of just two.

When copying files, another shell feature can help you besides the single
dot and wildcard metacharacters. It is called command-line completion.

Using command-line completion
When working at the command line, you can easily mistype a command,
directory name, or filename. In fact, the longer a directory reference or
filename, the greater the chance you will mistype it.

This is where command-line completion (also called tab completion) can be
a lifesaver. Tab completion allows you to start typing a filename or
directory name, and then press the tab key to have the shell complete it for
you:

$ touch really_ridiculously_long_file_name
$
$ cp really_ridiculously_long_file_name NewDocuments/
$ ls NewDocuments/
my_file my_script really_ridiculously_long_file_name
test_two
my_scrapt my_scrypt test_one
$

After creating a file with a very long name in the preceding example, we
typed the command cp really and pressed the Tab key, and the shell
autocompleted the rest of the filename for us! Of course, the destination
directory had to be typed, but still tab completion saved the command from
several potential typographical errors.

The trick to using command-line completion is to give the shell enough
filename characters so it can distinguish the desired file from other files.
For example, if another filename started with really , pressing the Tab key
would not autocomplete the filename. Instead, you would hear a beep. If
this happens, you can press the Tab key again, and the shell shows you all
the filenames starting with really . This feature allows you to see what
needs to be typed for tab completion to work properly.

Linking files
Linking files is a great option available in the Linux filesystem. If you need
to maintain two (or more) copies of the same file on the system, instead of
having separate physical copies, you can use one physical copy and

multiple virtual copies, called links. A link is a placeholder in a directory
that points to the real location of the file. Two types of file links are
available in Linux:

A symbolic link

A hard link

A symbolic link, also called a soft link, is simply a physical file that points
to another file somewhere in the virtual directory structure. The two
symbolically linked together files do not share the same contents.

To create a symbolic link, the original file must already exist. We then use
the ln command with the -s option to create the symbolic link:

$ ls -l test_file
-rw-rw-r--. 1 christine christine 74 Feb 29 15:50 test_file
$
$ ln -s test_file slink_test_file
$
$ ls -l *test_file
lrwxrwxrwx. 1 christine christine 9 Mar 4 09:46
slink_test_file -> test_file
-rw-rw-r--. 1 christine christine 74 Feb 29 15:50 test_file
$

In the preceding example, notice that the name of the symbolic link,
slink_test_file , is listed second in the ln command. The —> symbol
displayed after the symbolic link file's name in its long listing (ls -l)
shows that it is symbolically linked to the file test_file.

Also note the symbolic link's file size versus the data file's file size. The
symbolic link, slink_test_file , is only 9 bytes, whereas the test_file is
74 bytes. This is because slink_test_file is only pointing to test_file .
They do not share contents and are two physically separate files.

Another way to tell that these linked files are separate physical files is by
viewing their inode numbers. The inode number of a file or directory is a
unique identification number that the kernel assigns to each object in the
filesystem. To view a file or directory's inode number, add the -i parameter
to the ls command:

$ ls -i *test_file
1415020 slink_test_file 1415523 test_file
$

The example shows that the test file's inode number is 1415523 , whereas
the slink_test_file inode number is different (it is 1415020). Thus, they
are different files.

A hard link creates a separate virtual file that contains information about the
original file and where to locate it. However, the two files are actually the
same physical file. To create a hard link, again the original file must
preexist, except that this time no parameter is needed on the ln command:

$ ls -l *test_one
-rw-rw-r--. 1 christine christine 0 Feb 29 17:26 test_one
$
$ ln test_one hlink_test_one
$
$ ls -li *test_one
1415016 -rw-rw-r--. 2 christine christine 0 Feb 29 17:26
hlink_test_one
1415016 -rw-rw-r--. 2 christine christine 0 Feb 29 17:26
test_one
$

In the preceding example, after creating the hard link file, we used the ls -
li command to show both the inode numbers and a long listing for the
*test_one . Notice that both files, which are hard-linked together, share the
same inode number. This is because they are physically the same file. Their
file size is exactly the same as well.

NOTE

You can only create a hard link between files on the same physical
medium. To create a link between files under separate physical
mediums, you must use a symbolic link.

You may find symbolic and hard links difficult concepts. Fortunately,
renaming files, the topic of our next section, is a great deal easier to
understand.

Renaming files
In the Linux world, renaming files is called moving files. The mv command
is available to move both files and directories to another location or a new
name:

$ ls -li f?ll
1414976 -rw-rw-r--. 1 christine christine 0 Feb 29 16:12
fall
1415004 -rw-rw-r--. 1 christine christine 0 Feb 29 16:12
fell
1415005 -rw-rw-r--. 1 christine christine 0 Feb 29 16:12
fill
1415011 -rw-rw-r--. 1 christine christine 0 Feb 29 16:12
full
$
$ mv fall fzll
$
$ ls -li f?ll
1415004 -rw-rw-r--. 1 christine christine 0 Feb 29 16:12
fell
1415005 -rw-rw-r--. 1 christine christine 0 Feb 29 16:12
fill
1415011 -rw-rw-r--. 1 christine christine 0 Feb 29 16:12
full
1414976 -rw-rw-r--. 1 christine christine 0 Feb 29 16:12
fzll
$

Notice that moving the file changed the name from fall to fzll but it kept
the same inode number and time stamp value. This is because mv affects
only a file's name.

You can also use mv to change a file's location:

$ ls -li /home/christine/fzll
1414976 -rw-rw-r--. 1 christine christine 0 Feb 29 16:12
/home/christine/fzll
$
$ ls -li /home/christine/NewDocuments/fzll
ls: cannot access '/home/christine/NewDocuments/fzll': No
such file or directory
$
$ mv /home/christine/fzll /home/christine/NewDocuments/
$
$ ls -li /home/christine/NewDocuments/fzll
1414976 -rw-rw-r--. 1 christine christine 0 Feb 29 16:12

/home/christine/NewDocuments/fzll
$
$ ls -li /home/christine/fzll
ls: cannot access '/home/christine/fzll': No such file or
directory
$

In the preceding example, we moved the file fzll from /home/christine
to /home/christine/NewDocuments using the mv command. Again, there
were no changes to the file's inode number or time stamp value.

TIP

Like the cp command, you can use the -i option on the mv
command. Thus, you are asked before the command attempts to
overwrite any preexisting files.

The only change was to the file's location. The fzll file no longer exists in
/home/christine , because a copy of it was not left in its original location,
as the cp command would have done.

You can use the mv command to move a file's location and rename it, all in
one easy step:

$ ls -li NewDocuments/fzll
1414976 -rw-rw-r--. 1 christine christine 0 Feb 29 16:12
NewDocuments/fzll
$
$ mv /home/christine/NewDocuments/fzll /home/christine/fall
$
$ ls -li /home/christine/fall
1414976 -rw-rw-r--. 1 christine christine 0 Feb 29 16:12
/home/christine/fall
$
$ ls -li /home/christine/NewDocuments/fzll
ls: cannot access '/home/christine/NewDocuments/fzll': No
such file or directory
$

For this example, we moved the file fzll from a subdirectory,
NewDocuments , to the home directory, /home/christine , and renamed it

fall . Neither the timestamp value nor the inode number changed. Only the
location and name were altered.

You can also use the mv command to move entire directories and their
contents:

$ ls NewDocuments
my_file my_script really_ridiculously_long_file_name
test_two
my_scrapt my_scrypt test_one
$
$ mv NewDocuments OldDocuments
$
$ ls NewDocuments
ls: cannot access 'NewDocuments': No such file or directory
$
$ ls OldDocuments
my_file my_script really_ridiculously_long_file_name
test_two
my_scrapt my_scrypt test_one
$

The directory's entire contents are unchanged. The only thing that changes
is the name of the directory.

Once you know how to rename…err…move files with the mv command,
you realize how simple it is to accomplish. Another easy, but potentially
dangerous, task is deleting files.

Deleting files
Most likely at some point you'll want to be able to delete existing files.
Whether it's to clean up a filesystem or to remove temporary work data, you
always have opportunities to delete files.

In the Linux world, deleting is called removing. The command to remove
files in the Bash shell is rm . The basic form of the rm command is simple:

$ rm -i fall
rm: remove regular empty file 'fall'? y
$ ls fall
ls: cannot access 'fall': No such file or directory
$

Notice that the -i command parameter prompts you to make sure that
you're serious about removing the file. The shell has no recycle bin or
trashcan. After you remove a file, it's gone forever. Therefore, a good habit
is to always tack on the -i parameter to the rm command.

You can also use wildcard metacharacters to remove groups of files.
However, again, use that -i option to protect yourself:

$ rm -i f?ll
rm: remove regular empty file 'fell'? y
rm: remove regular empty file 'fill'? y
rm: remove regular empty file 'full'? y
$ ls f?ll
ls: cannot access 'f?ll': No such file or directory
$

One other feature of the rm command, if you're removing lots of files and
don't want to be bothered with the prompt, is to use the -f parameter to
force the removal. Just be careful!

Managing Directories
Linux has a few commands that work for both files and directories (such as
the cp command) and some that work only for directories. To create a new
directory, you need to use a specific command, which is covered in this
section. Removing directories can get interesting, so that is covered in this
section as well.

Creating directories
Creating a new directory in Linux is easy — just use the mkdir command:

$ mkdir New_Dir
$ ls -ld New_Dir
drwxrwxr-x. 2 christine christine 6 Mar 6 14:40 New_Dir
$

The system creates a new directory named New_Dir . Notice in the new
directory's long listing that the directory's record begins with a d . This
indicates that New_Dir is a directory.

Occasionally, you may need to create directories and subdirectories in
“bulk.” To do this, add the -p option to the mkdir command as shown here:

$ mkdir -p New_Dir/SubDir/UnderDir
$ ls -R New_Dir
New_Dir:
SubDir

New_Dir/SubDir:
UnderDir

New_Dir/SubDir/UnderDir:
$

The -p option on the mkdir command makes any missing parent directories
as needed. A parent directory is a directory that contains other directories at
the next level down the directory tree.

Of course, after you make something, you need to know how to delete it.
This is especially useful if you created a directory in the wrong location.

Deleting directories
Removing directories can be tricky, and for good reason. There are lots of
opportunities for bad things to happen when you start deleting directories.
The shell tries to protect us from accidental catastrophes as much as
possible.

The basic command for removing a directory is rmdir :

$ mkdir Wrong_Dir
$ touch Wrong_Dir/newfile
$
$ rmdir Wrong_Dir/
rmdir: failed to remove 'Wrong_Dir/': Directory not empty
$

By default, the rmdir command works only for removing empty directories.
Because we created a file, newfile , in the Wrong_Dir directory, the rmdir
command refuses to remove it.

To use rmdir to remove this directory, we must remove the file first. Then
we can use the rmdir command on the now empty directory:

$ rm -i Wrong_Dir/newfile
rm: remove regular empty file 'Wrong_Dir/newfile'? y
$ rmdir Wrong_Dir/
$ ls Wrong_Dir

ls: cannot access 'Wrong_Dir': No such file or directory
$

The rmdir has no -i option to ask if you want to remove the directory. This
is one reason it is helpful that rmdir removes only empty directories.

You can also use the rm command on entire nonempty directories. Using the
-r option allows the command to descend into the directory, remove the
files, and then remove the directory itself:

$ mkdir TestDir
$ touch TestDir/fileone TestDir/filetwo
$ ls TestDir
fileone filetwo
$ rm -ir TestDir
rm: descend into directory 'TestDir'? y
rm: remove regular empty file 'TestDir/fileone'? y
rm: remove regular empty file 'TestDir/filetwo'? y
rm: remove directory 'TestDir'? y
$ ls TestDir
ls: cannot access 'TestDir': No such file or directory
$

This also works for descending into multiple subdirectories and is
especially useful when you have lots of directories and files to delete:

$ touch New_Dir/testfile
$ ls -FR New_Dir
New_Dir:
SubDir/ testfile

New_Dir/SubDir:
UnderDir/

New_Dir/SubDir/UnderDir:
$
$ rm -iR New_Dir
rm: descend into directory 'New_Dir'? y
rm: descend into directory 'New_Dir/SubDir'? y
rm: remove directory 'New_Dir/SubDir/UnderDir'? y
rm: remove directory 'New_Dir/SubDir'? y
rm: remove regular empty file 'New_Dir/testfile'? y
rm: remove directory 'New_Dir'? y
$

Although this works, it's somewhat awkward. Notice that you still must
verify each and every file that gets removed. For a directory with lots of

files and subdirectories, this can become tedious.

NOTE

For the rm command, the -r parameter and the -R parameter work
exactly the same — it recursively traverses through the directory
removing files. It is unusual for a shell command to have different
cased parameters with the same function.

The ultimate solution for quickly deleting a directory tree is the rm -rf
command. It gives no warnings and no messages, and it just deletes the
directory specified and all its contents. This, of course, is an extremely
dangerous tool to have. Use it sparingly, and only after triple checking to
make sure that you're doing exactly what you want to do!

In the last few sections, we looked at managing both files and directories.
So far we've covered everything you need to know about files, except for
how to peek inside them.

Viewing File Contents
You can use several commands for looking inside files without having to
pull out a text editor utility (see Chapter 10, “Working with Editors”). This
section demonstrates a few of those commands.

Viewing the file type
Before you go charging off trying to display a file, you need to get a handle
on what type of file it is. If you attempt to display a binary file, you may get
lots of gibberish on your screen and possibly even lock up your terminal
emulator.

The file command is a handy little utility to have around. It can peek
inside a file and determine just what kind of file it is:

$ file .bashrc
.bashrc: ASCII text
$

The file in the preceding example is a text file. The file command
determined not only that the file contains text but also the character code
format of the text file, ASCII.

This following example shows a file that is simply a directory. Thus, the
file command gives you another method to distinguish a directory:

$ file Documents
Documents/: directory
$

This third file command example shows a file that is a symbolic link. Note
that the file command even tells you to which file it is symbolically
linked:

$ file slink_test_file
slink_test_file: symbolic link to test_file
$

The following example shows what the file command returns for a script
file. Although the file is ASCII text , because it's a script file, you can
execute (run) it on the system:

$ file my_script
my_script: Bourne-Again shell script, ASCII text executable
$

The final example is a binary executable program. The file command
determines the platform that the program was compiled for and what types
of libraries it requires. This is an especially handy feature if you have a
binary executable program from an unknown source:

$ file /usr/bin/ls
/usr/bin/ls: ELF 64-bit LSB shared object, x86-64, version 1
(SYSV),
dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2,
for GNU/Linux 3.2.0,[...]
$

Now that you know a quick method for viewing a file's type, you can start
displaying and viewing files.

Viewing the whole file

If you have a large text file on your hands, you may want to be able to see
what's inside it. Linux has three different commands that can help you here.

Using the cat command
The cat command is a handy tool for displaying all the data inside a text
file:

$ cat test_file
Hello World
Hello World again
Hello World a third time
How are you World?

$

Nothing too exciting, just the contents of the text file. However, the cat
command has a few parameters that can help you out.

The -n parameter numbers all the lines for you:

$ cat -n test_file
 1 Hello World
 2 Hello World again
 3 Hello World a third time
 4 How are you World?
 5
$

That feature will come in handy when you're examining scripts. If you just
want to number the lines that have text in them, the -b parameter is for you:

$ cat -b test_file
 1 Hello World
 2 Hello World again
 3 Hello World a third time
 4 How are you World?

$

For large files, the cat command can be somewhat annoying. The text in
the file just quickly scrolls off the display without stopping. Fortunately, we
have a simple way to solve this problem.

Using the more command

The main drawback of the cat command is that you can't control what's
happening after you start it. To solve that problem, developers created the
more command. The more command displays a text file but stops after it
displays each page of data. We typed the command more /etc/profile to
produce the sample more screen shown in Figure 3-4.

FIGURE 3-4 Using the more command to display a text file

Notice at the bottom of the screen in Figure 3-4 that the more command
displays a tag showing that you're still in the more application and how far
along (29%) in the text file you are. This is the prompt for the more
command.

TIP

If you're following along with the examples, and your Linux system
does not have the /etc/profile file or it's rather short, try using
more on the /etc/passwd file instead. Type more /etc/passwd and
press Enter at your shell prompt.

The more command is a pager utility. Earlier in this chapter we discussed
that a pager utility displays selected Bash manual pages when you use the
man command. Similarly to navigating through the man pages, you can use
more to navigate through a text file by pressing the spacebar, or you can go
forward line by line using the Enter key. When you are finished navigating
through the file using more , type q to quit.

The more command allows some rudimentary movement through the text
file. For more advanced features, try the less command.

Using the less command
From its name, it sounds like it shouldn't be as advanced as the more
command. However, the less command name is actually a play on words
and is an advanced version of the more command (the less command name
comes from the phrase “less is more”). It provides several very handy
features for scrolling both forward and backward through a text file, as well
as some pretty advanced searching capabilities.

The less command can also display a file's contents before it finishes
reading the entire file. The cat and more commands cannot do this.

The less command operates much the same as the more command,
displaying one screen of text from a file at a time. It supports the same
command set as the more command, plus many more options.

TIP

To see all the options available for the less command, view its man
pages by typing man less. You can do the same for the more
command to see the reference material concerning its various
options.

One set of features is that the less command recognizes the up and down
arrow keys as well as the Page Up and Page Down keys (assuming that
you're using a properly defined terminal). This gives you full control when
viewing a file.

NOTE

The less utility is typically the pager service used for the man
pages. Thus, the more you learn about less , the easier it will be for
you to navigate through various commands' man pages.

Viewing parts of a file
Often the data you want to view is located either right at the top or buried at
the bottom of a text file. If the information is at the top of a large file, you
still need to wait for the cat or more command to load the entire file before
you can view it. If the information is located at the bottom of a file (such as
a log file), you need to wade through thousands of lines of text just to get to
the last few entries. Fortunately, Linux has specialized commands to solve
both of these problems.

Using the tail command
The tail command displays the last lines in a file (the file's “tail”). By
default, it shows the last 10 lines in the file.

For these examples, we created a text file containing 15 text lines. It is
displayed here in its entirety using the cat command:

$ cat log_file
line1
line2
line3
line4
Hello World - line5
line6
line7
line8
line9
Hello again World - line10
line11
line12
line13
line14
Last Line - line15
$

Now that you have seen the entire text file, you can see the effect of using
tail to view the file's last 10 lines:

$ tail log_file
line6
line7
line8
line9
Hello again World - line10
line11
line12
line13
line14
Last Line - line15
$

You can change the number of lines shown using tail by including the -n
parameter. In this example, only the last two lines of the file are displayed,
by adding -n 2 to the tail command:

$ tail -n 2 log_file
line14
Last Line - line15
$

The -f parameter is a pretty cool feature of the tail command. It allows
you to peek inside a file as the file is being used by other processes. The
tail command stays active and continues to display new lines as they
appear in the text file. This is a great way to monitor the system log files in
real-time mode.

Using the head command
The head command does what you'd expect; it displays a file's first group of
lines (the file's “head”). By default, it displays the first 10 lines of text:

$ head log_file
line1
line2
line3
line4
Hello World - line5
line6
line7
line8

line9
Hello again World - line10
$

Similar to the tail command, the head command supports the -n parameter
so that you can alter what's displayed. Both commands also allow you to
simply type a dash along with the number of lines to display, as shown here:

$ head -3 log_file
line1
line2
line3
$

Usually the beginning of a file doesn't change, so the head command
doesn't support the -f parameter feature as the tail command does. The
head command is a handy way to just peek at the beginning of a file.

Summary
This chapter covered the basics of working with the Linux filesystem from
a shell prompt. We began with a discussion of the Bash shell and showed
you how to interact with the shell. The CLI uses a prompt string to indicate
when it's ready for you to enter commands.

The shell provides a wealth of utilities you can use to create and manipulate
files. Before you start playing with files, you should understand how Linux
stores them. This chapter discussed the basics of the Linux virtual directory
and showed you how Linux references storage media devices. After
describing the Linux filesystem, we walked you through using the cd
command to move around the virtual directory.

After showing you how to get to a directory, we demonstrated how to use
the ls command to list the files and subdirectories. Lots of parameters can
customize the output of the ls command. You can obtain information on
both files and directories by using this command.

The touch command is useful for creating empty files and for changing the
access or modification times on an existing file. We also discussed using the
cp command to copy existing files from one location to another. We walked
you through the process of linking files instead of copying them, providing

an easy way to have the same file in two locations without making a
separate copy. The ln command provides this linking ability.

Next, you learned how to rename files (called moving) in Linux using the
mv command and how to delete files (called removing) using the rm
command. We also showed you how to perform the same tasks with
directories, using the mkdir and rmdir commands.

Finally, this chapter closed with a discussion on viewing the contents of
files. The cat , more , and less commands provide easy methods for
viewing the entire contents of a file, whereas the tail and head commands
are great for peeking inside a file to just see a small portion of it.

The next chapter continues the discussion on Bash shell commands. We'll
look at more advanced administrator commands that come in handy as you
administer your Linux system.

CHAPTER 4
More Bash Shell Commands
IN THIS CHAPTER

Managing processes

Getting disk statistics

Mounting new disks

Sorting data

Archiving data

Chapter 3, “Basic Bash Shell Commands,” covered the basics of
rummaging through the Linux filesystem and working with the files and
directories. File and directory management is a major feature of the Linux
shell; however, we should look at some more things before we start our
script programming. This chapter digs into the Linux system management
commands, showing you how to peek inside your Linux system using
command-line commands. After that, it shows you a few handy commands
that you can use to work with data files on the system.

Monitoring Programs
One of the toughest jobs of being a Linux system administrator is keeping
track of what's running on the system — especially now, when graphical
desktops take a handful of programs just to produce a single desktop. There
are always a lot of programs running on the system.

Fortunately, a few command-line tools are available that can help make life
easier for you. This section covers a few of the basic tools you'll need to
know to manage programs on your Linux system.

Peeking at the processes

When a program runs on the system, it's referred to as a process. To
examine these processes, you must become familiar with the ps command,
the Swiss Army knife of utilities. It can produce lots of information about
all the programs running on your system.

Unfortunately, with this robustness comes complexity — in the form of
numerous parameters — making the ps command probably one of the most
difficult commands to master. Most system administrators find a subset of
these parameters that provide the information they want and then stick with
using only those.

That said, however, the basic ps command doesn't provide all that much
information:

 $ ps
 PID TTY TIME CMD
 3081 pts/0 00:00:00 bash
 3209 pts/0 00:00:00 ps
 $

Not too exciting. By default the ps command shows only the processes that
belong to the current user and that are running on the current terminal. In
this case, we only had our Bash shell running (remember, the shell is just
another program running on the system) and, of course, the ps command
itself.

The basic output shows the process ID (PID) of the programs, the terminal
(TTY) that they are running from, and the CPU time the process has used.

NOTE

The tricky feature of the ps command (and the part that makes it so
complicated) is that at one time there were two versions of it. Each
version had its own set of command-line parameters controlling
what information it displayed and how. Recently, Linux developers
have combined the two ps command formats into a single ps
program (and of course added their own touches).

The GNU ps command that's used in Linux systems supports three different
types of command-line parameters:

Unix-style parameters, which are preceded by a dash

BSD-style parameters, which are not preceded by a dash

GNU long parameters, which are preceded by a double dash

The following sections examine the three different parameter types and
show examples of how they work.

Unix-style parameters
The Unix-style parameters originated with the original ps command that ran
on the AT&T Unix systems invented by Bell Labs. These parameters are
shown in Table 4-1.

TABLE 4-1 The ps Command Unix Parameters

Parameter Description
-A Show all processes.
-N Show the opposite of the specified parameters.
-a Show all processes except session headers and processes

without a terminal.
-d Show all processes except session headers.
-e Show all processes.
-C

cmslist

Show processes contained in the list cmdlist.

-G

grplist

Show processes with a group ID listed in grplist.

-U

userlist

Show processes owned by a user ID listed in userlist.

-g grplist Show processes by session or by group ID contained in
grplist.

-p pidlist Show processes with PIDs in the list pidlist.
-s

sesslist

Show processes with a session ID in the list sesslist.

-t ttylist Show processes with a terminal ID in the list ttylist.
-u

userlist

Show processes by an effective user ID in the list userlist.

-F Use extra full output.
-O format Display specific columns in the list format, along with the

default columns.
-M Display security information about the process.
-c Show additional scheduler information about the process.
-f Display a full format listing.
-j Show job information.
-l Display a long listing.

Parameter Description
-o format Display only specific columns listed in format.
-y Don't show process flags.
-Z Display the security context information.
-H Display processes in a hierarchical format (showing parent

processes).
-n

namelist

Define the values to display in the WCHAN output column.

-w Use wide output format, for unlimited width displays.
-L Show process threads.
-V Display the version of ps .

That's a lot of parameters, and remember, there are still more! The key to
using the ps command is not to memorize all the available parameters but
only those you find most useful. Most Linux system administrators have
their own sets of commonly used parameters that they remember for
extracting pertinent information. For example, if you need to see everything
running on the system, use the -ef parameter combination (the ps
command lets you combine parameters like this):

$ ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 12:14 ? 00:00:02
/sbin/init splash
root 2 0 0 12:14 ? 00:00:00
[kthreadd]
root 3 2 0 12:14 ? 00:00:00 [rcu_gp]
root 4 2 0 12:14 ? 00:00:00
[rcu_par_gp]
root 5 2 0 12:14 ? 00:00:00
[kworker/0:0-events]
root 6 2 0 12:14 ? 00:00:00
[kworker/0:0H-kblockd]
root 7 2 0 12:14 ? 00:00:00
[kworker/0:1-events]
...
rich 2209 1438 0 12:17 ? 00:00:01
/usr/libexec/gnome-terminal-
rich 2221 2209 0 12:17 pts/0 00:00:00 bash

rich 2325 2221 0 12:20 pts/0 00:00:00 ps -ef
$

Quite a few lines have been cut from the output to save space, but as you
can see, lots of processes run on a Linux system. This example uses two
parameters: the -e parameter, which shows all of the processes running on
the system, and the -f parameter, which expands the output to show a few
useful columns of information:

UID: The user responsible for launching the process

PID: The process ID of the process

PPID: The PID of the parent process (if a process is started by another
process)

C: Processor utilization over the lifetime of the process

STIME: The system time when the process started

TTY: The terminal device from which the process was launched

TIME: The cumulative CPU time required to run the process

CMD: The name of the program that was started

This produces a reasonable amount of information, which is what many
system administrators would like to see. For even more information, you
can use the -l parameter, which produces the long format output:

 $ ps -l
 F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY
TIME CMD
 0 S 500 3081 3080 0 80 0 - 1173 do_wai pts/0
00:00:00 bash
 0 R 500 4463 3081 1 80 0 - 1116 - pts/0
00:00:00 ps
 $

Notice the extra columns that appear when you use the -l parameter:

F: System flags assigned to the process by the kernel

S: The state of the process (O = running on processor; S = sleeping; R =
runnable, waiting to run; Z = zombie, process terminated but parent not
available; T = process stopped)

PRI: The priority of the process (higher numbers mean lower priority)

NI: The nice value, used for determining priorities

ADDR: The memory address of the process

SZ: Approximate amount of swap space required if the process was
swapped out

WCHAN: Address of the kernel function where the process is sleeping

BSD-style parameters
Now that you've seen the Unix parameters, let's take a look at the BSD-style
parameters. The Berkeley Software Distribution (BSD) was a version of
Unix developed at (of course) the University of California, Berkeley. It had
many subtle differences from the AT&T Unix system, thus sparking many
Unix wars over the years. The BSD version of the ps command parameters
are shown in Table 4-2.

TABLE 4-2 The ps Command BSD Parameters

Parameter Description
T Show all processes associated with this terminal.
a Show all processes associated with any terminal.
g Show all processes, including session headers.
r Show only running processes.
x Show all processes, even those without a terminal device

assigned.
U userlist Show processes owned by a user ID listed in userlist.
p pidlist Show processes with a PID listed in pidlist.
t ttylist Show processes associated with a terminal listed in ttylist.
O format List specific columns in format to display along with the

standard columns.
X Display data in the register format.
Z Include security information in the output.
j Show job information.
l Use the long format.
o format Display only columns specified in format.
s Use the signal format.
u Use the user-oriented format.
v Use the virtual memory format.
N namelist Define the values to use in the WCHAN column.
O order Define the order in which to display the information columns.
S Sum numerical information, such as CPU and memory usage,

for child processes into the parent process.
c Display the true command name (the name of the program

used to start the process).
e Display any environment variables used by the command.

Parameter Description
f Display processes in a hierarchical format, showing which

processes started which processes.
h Don't display the header information.
k sort Define the column(s) to use for sorting the output.
n Use numeric values for user and group IDs, along with WCHAN

information.
w Produce wide output for wider terminals.
H Display threads as if they were processes.
m Display threads after their processes.
L List all format specifiers.
V Display the version of ps .

As you can see, a lot of overlap exists between the Unix and BSD types of
parameters. Most of the information you can get from one you can also get
from the other. Most of the time, you choose a parameter type based on
which format you're more comfortable with (for example, if you were used
to a BSD environment before using Linux).

When you use the BSD-style parameters, the ps command automatically
changes the output to simulate the BSD format. Here's an example using the
l parameter:

$ ps l
$ ps l
F UID PID PPID PRI NI VSZ RSS WCHAN STAT TTY
TIME COMMAND
4 1000 1491 1415 20 0 163992 6580 poll_s Ssl+
tty2 0:00 /usr/li
4 1000 1496 1491 20 0 225176 58712 ep_pol Sl+
tty2 0:05 /usr/li
0 1000 1538 1491 20 0 192844 15768 poll_s Sl+
tty2 0:00 /usr/li
0 1000 2221 2209 20 0 10608 4740 do_wai Ss
pts/0 0:00 bash
0 1000 2410 2221 20 0 11396 1156 - R+
pts/0 0:00 ps l
$

Notice that while many of the output columns are the same as when we
used the Unix-style parameters, there are a few different ones:

VSZ: The size in kilobytes of the process in memory

RSS: The physical memory that a process has used that isn't swapped
out

STAT: A multicharacter state code representing the current process
state

Many system administrators like the BSD-style l parameter because it
produces a more detailed state code for processes (the STAT column). The
multicharacter code defines exactly what's happening with the process more
precisely than the single-character Unix-style output.

The first character uses the same values as the Unix-style S output column,
showing when a process is sleeping, running, or waiting. The following
characters further define the process's status:

<: The process is running at high priority.

N: The process is running at low priority.

L: The process has pages locked in memory.

s: The process is a session leader.

l: The process is multithreaded.

+: The process is running in the foreground.

From the simple example shown previously, you can see that the bash
command is sleeping, but it is a session leader (it's the main process in my
session), whereas the ps command is running in the foreground on the
system.

The GNU long parameters
Finally, the GNU developers put their own touches on the new, improved ps
command by adding a few more options to the parameter mix. Some of the
GNU long parameters copy existing Unix- or BSD-style parameters,

whereas others provide new features. Table 4-3 lists the available GNU long
parameters.

TABLE 4-3 The ps Command GNU Parameters

Parameter Description
--deselect Show all processes except those listed in the command

line.
--Group

grplist

Show processes whose group ID is listed in grplist.

--User

userlist

Show processes whose user ID is listed in userlist.

--group

grplist

Show processes whose effective group ID is listed in
grplist.

--pid

pidlist

Show processes whose process ID is listed in pidlist.

--ppid

pidlist

Show processes whose parent process ID is listed in
pidlist.

--sid sidlist Show processes whose session ID is listed in sidlist.
--tty ttylist Show processes whose terminal device ID is listed in

ttylist.
--user

userlist

Show processes whose effective user ID is listed in
userlist.

--format

format

Display only columns specified in the format .

--context Display additional security information.
--cols n Set screen width to n columns.
--columns n Set screen width to n columns.
--cumulative Include stopped child process information.
--forest Display processes in a hierarchical listing showing parent

processes.
--headers Repeat column headers on each page of output.
--no-headers Don't display column headers.
--lines n Set the screen height to n lines.
--rows n Set the screen height to n rows.

Parameter Description
--sort order Define the column(s) to use for sorting the output.
--width n Set the screen width to n columns.
--help Display the help information.
--info Display debugging information.
--version Display the version of the ps program.

You can combine GNU long parameters with either Unix- or BSD-style
parameters to customize your display. One cool feature of GNU long
parameters that we really like is the --forest parameter. It displays the
hierarchical process information but uses ASCII characters to draw cute
charts:

 1981 ? 00:00:00 sshd
 3078 ? 00:00:00 _ sshd
 3080 ? 00:00:00 _ sshd
 3081 pts/0 00:00:00 _ bash
 16676 pts/0 00:00:00 _ ps

This format makes tracing child and parent processes a snap!

Real-time process monitoring
The ps command is great for gleaning information about processes running
on the system, but it has one drawback. The ps command can display
information for only a specific point in time. If you're trying to find trends
about processes that are frequently swapped in and out of memory, it's hard
to do that with the ps command.

Instead, the top command can solve this problem. The top command
displays process information similarly to the ps command, but it does so in
real-time mode. Figure 4-1 is a snapshot of the top command in action.

FIGURE 4-1 The output of the top command while it is running

The first section of the output shows general system information. The first
line shows the current time, how long the system has been up, the number
of users logged in, and the load average on the system.

The load average appears as three numbers, the 1-minute, 5-minute, and 15-
minute load averages. The higher the values, the more load the system is
experiencing. It's not uncommon for the 1-minute load value to be high for
short bursts of activity. If the 15-minute load value is high, your system
may be in trouble.

NOTE

The trick in Linux system administration is defining what exactly a
high load average value is. This value depends on what's normally
running on your system and the hardware configuration. What's
high for one system might be normal for another. The best practice
is to note the load levels of your system under normal conditions,
which will make it easier to detect when your system is under load.

The second line shows general process information (called tasks in top):
how many processes are running, sleeping, stopped, and zombie (have
finished but their parent process hasn't responded).

The next line shows general CPU information. The top display breaks
down the CPU utilization into several categories depending on the owner of
the process (user versus system processes) and the state of the processes
(running, idle, or waiting).

Following that, there are two lines that detail the status of the system
memory. The first line shows the status of the physical memory in the
system, how much total memory there is, how much is currently being used,
and how much is free. The second memory line shows the status of the
swap memory area in the system (if any is installed), with the same
information.

Finally, the next section shows a detailed list of the currently running
processes, with some information columns that should look familiar from
the ps command output:

PID: The process ID of the process

USER: The username of the owner of the process

PR: The priority of the process

NI: The nice value of the process

VIRT: The total amount of virtual memory used by the process

RES: The amount of physical memory the process is using

SHR: The amount of memory the process is sharing with other
processes

S: The process status (D = interruptible sleep, R = running, S =
sleeping, T = traced or stopped, or Z = zombie)

%CPU: The share of CPU time that the process is using

%MEM: The share of available physical memory the process is using

TIME+: The total CPU time the process has used since starting

COMMAND: The command-line name of the process (program
started)

By default, when you start top it sorts the processes based on the %CPU
value. You can change the sort order by using one of several interactive
commands while top is running. Each interactive command is a single
character you can press while top is running that changes the behavior of
the program. Pressing F allows you to select the field to use to sort the
output, and pressing d allows you to change the polling interval. Press q to
exit the top display. You have lots of control over the output of the top
command. Using this tool, you can often find offending processes that have
taken over your system. Of course, once you find one, the next job is to stop
it, which brings us to the next topic.

Stopping processes
A crucial part of being a system administrator is knowing when and how to
stop a process. Sometimes a process gets hung up and just needs a gentle
nudge to either get going again or stop. Other times, a process runs away
with the CPU and refuses to give it up. In both cases, you need a command
that will allow you to control a process. Linux follows the Unix method of
interprocess communication.

In Linux, processes communicate with each other using signals. A process
signal is a predefined message that processes recognize and may choose to
ignore or act on. The developers program how a process handles signals.
Most well-written applications have the ability to receive and act on the
standard Unix process signals. These signals are shown in Table 4-4.

TABLE 4-4 Linux Process Signals

Signal Name Description
1 HUP Hang up.
2 INT Interrupt.
3 QUIT Stop running.
9 KILL Unconditionally terminate.
11 SEGV Segment violation.
15 TERM Terminate if possible.
17 STOP Stop unconditionally but don't terminate.
18 TSTP Stop or pause but continue to run in background.
19 CONT Resume execution after STOP or TSTP .

A few different commands are available in Linux that allow you to send
process signals to running processes. This section discusses the two most
common ones: kill and pkill.

The kill command
The kill command allows you to send signals to processes based on their
PIDs. By default, the kill command sends a TERM signal to all the PIDs
listed on the command line. Unfortunately, you can use only the process
PID instead of its command name, making the kill command difficult to
use sometimes.

To send a process signal, you must either be the owner of the process or be
logged in as the root user:

 $ kill 3940
 -bash: kill: (3940) - Operation not permitted
 $

The TERM signal tells the process to stop running. Unfortunately, if you have
a runaway process, most likely it will ignore the request. When you need to
get forceful, the -s parameter allows you to specify other signals (using
either their name or their signal number).

As you can see from the following example, no output is associated with
the kill command:

 # kill -s HUP 3940
 #

To see if the command was effective, you'll have to perform another ps or
top command to see if the offending process stopped.

The pkill command
The pkill command is a powerful way to stop processes by using their
names rather than the PID numbers. The pkill command allows you to use
wildcard characters as well, making it a very useful tool when you've got a
system that's gone awry:

pkill http*
#

This example will kill all the processes that start with http , such as the
httpd services for the Apache Web Server.

CAUTION

Be extremely careful using the pkill command when logged in as
the root user. It's easy to get carried away with wildcard characters
and accidentally stop important system processes. This could lead
to a damaged filesystem.

Monitoring Disk Space
Another important task of the system administrator is to keep track of the
disk usage on the system. Whether you're running a simple Linux desktop
or a large Linux server, you'll need to know how much space you have for
your applications.

A few command-line commands are available that can help you manage the
media environment on your Linux system. This section describes the core
commands you'll likely run into during your system administration duties.

Mounting media
As discussed in Chapter 3, the Linux filesystem combines all media disks
into a single virtual directory. Before you can use a new media disk on your
system, you need to place it in the virtual directory. This task is called
mounting.

In today's graphical desktop world, most Linux distributions have the
ability to automatically mount specific types of removable media. A
removable media device is a medium that (obviously) can be easily
removed from the PC, such as DVDs and USB memory sticks.

If you're not using a distribution that automatically mounts and unmounts
removable media, you'll have to do it yourself. This section describes the
Linux command-line commands that help you manage your removable
media devices.

The mount command
Oddly enough, the command used to mount media is called mount . By
default, the mount command displays a list of media devices currently
mounted on the system. However, the newer version of the kernel mounts
lots of virtual filesystems for management purposes, besides your standard
storage devices. This can make the default output of the mount command
very cluttered and confusing. If you know the filesystem type used for your
drive partitions, you can filter that out using

$ mount -t ext4
/dev/sda5 on / type ext4 (rw,relatime,errors=remount-ro)
$ mount -t vfat
/dev/sda2 on /boot/efi type vfat
(rw,relatime,fmask=0077,dmask=0077,codepage=437,iocharset=is
o88591,
shortname=mixed,errors=remount-ro)
/dev/sdb1 on /media/rich/54A1-7D7D type vfat
(rw,nosuid,nodev,relatime,uid=1000,gid=1000,fmask=0022,dmask
=0022,codepage=437,
iocharset=iso8859-1,shortname=mixed,showexec,utf8,flush,
errors=remountro,uhelper=udisks2)
$

The mount command provides four pieces of information:

The device filename of the media

The mount point in the virtual directory where the media is mounted

The filesystem type

The access status of the mounted media

The last entry in the preceding example is a USB memory stick that the
GNOME desktop automatically mounted at the /media/rich/54A1-7D7D
mount point. The vfat filesystem type shows that it was formatted for a
Microsoft Windows PC.

To manually mount a media device in the virtual directory, you'll need to be
logged in as the root user, or use the sudo command to run the command as
the root user. The following is the basic command for manually mounting a
media device:

 mount -t type device directory

The type parameter defines the filesystem type the disk was formatted
under. Linux recognizes numerous filesystem types. If you share removable
media devices with your Windows PCs, the types you're most likely to run
into are:

vfat: Windows FAT32 filesystem with support for long filenames

ntfs: Windows advanced filesystem used in Windows NT and later
operating systems

exfat: Windows filesystem optimized for removable media

iso9660: The standard CD-ROM and DVD filesystem

Most USB memory sticks are formatted using the vfat filesystem. If you
need to mount a data CD or DVD, you'll have to use the iso9660 filesystem
type.

The next two parameters define the location of the device file for the media
device and the location in the virtual directory for the mount point. For
example, to manually mount the USB memory stick at device /dev/sdb1 at
location /media/disk , you'd use the following command:

 mount -t vfat /dev/sdb1 /media/disk

Once a media device is mounted in the virtual directory, the root user will
have full access to the device, but access by other users will be restricted.
You can control who has access to the device using directory permissions
(discussed in Chapter 7, “Understanding Linux File Permissions”).

In case you need to use some of the more exotic features of the mount
command, the available parameters are shown in Table 4-5.

TABLE 4-5 The mount Command Parameters

Parameter Description
-a Mount all filesystems specified in the /etc/fstab file.
-f Causes the mount command to simulate mounting a device but

not actually mount it.
-F When used with the -a parameter, mounts all filesystems at

the same time.
-v Verbose mode; explains all the steps required to mount the

device.
-i Don't use any filesystem helper files under

/sbin/mount.filesystem .
-l Add the filesystem labels automatically for ext2, ext3, ext4, or

XFS filesystems.
-n Mount the device without registering it in the /etc/mtab

mounted device file.
-p num For encrypted mounting, read the passphrase from the file

descriptor num.
-s Ignore mount options not supported by the filesystem.
-r Mount the device as read-only.
-w Mount the device as read-write (the default).
-L label Mount the device with the specified label.
-U uuid Mount the device with the specified uuid.
-O When used with the -a parameter, limits the set of filesystems

applied.
-o Add specific options to the filesystem.

The -o option allows you to mount the filesystem with a comma-separated
list of additional options. The popular options to use are as follows:

ro : Mount as read-only.

rw : Mount as read-write.

user : Allow an ordinary user to mount the filesystem.

check=none : Mount the filesystem without performing an integrity
check.

loop : Mount a file.

The umount command
To remove a removable media device, you should never just remove it from
the system. Instead, you should always unmount it first.

TIP

Linux doesn't allow you to eject a mounted CD or DVD. If you ever
have trouble removing a CD or DVD from the drive, most likely it
means it is still mounted in the virtual directory. Unmount it first,
and then try to eject it.

The command used to unmount devices is umount (yes, there's no “n” in the
command, which gets confusing sometimes). The format for the umount
command is pretty simple:

 umount [directory | device]

The umount command gives you the choice of defining the media device by
either its device location or its mounted directory name. If any program has
a file open on a device, the system won't let you unmount it.

 # umount /home/rich/mnt
 umount: /home/rich/mnt: device is busy
 umount: /home/rich/mnt: device is busy
 # cd /home/rich
 # umount /home/rich/mnt
 # ls -l mnt

 total 0
 #

In this example, the command prompt was still in a directory within the
filesystem structure, so the umount command couldn't unmount the image
file. Once the command prompt was moved out of the image file filesystem,
the umount command was able to successfully unmount the image file.

Using the df command
Sometimes you need to see how much disk space is available on an
individual device. The df command allows you to easily see what's
happening on all the mounted disks:

$ df -t ext4 -t vfat
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda5 19475088 7326256 11136508 40% /
/dev/sda2 524272 4 524268 1% /boot/efi
/dev/sdb1 983552 247264 736288 26%
/media/rich/54A1-7D7D
$

The df command shows each mounted filesystem that contains data.
Similar to the mount command, the df command shows any of the virtual
filesystems mounted by the kernel, so we've filtered those out from the
listing by specifying the filesystem type using the -t options. The command
displays the following:

The device location of the device

How many 1024-byte blocks of data it can hold

How many 1024-byte blocks are used

How many 1024-byte blocks are available

The amount of used space as a percentage

The mount point where the device is mounted

A few different command-line parameters are available with the df
command, most of which you'll never use. One popular parameter is -h ,
which shows the disk space in human-readable form, usually as an M for
megabytes or a G for gigabytes:

$ df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda5 19G 7.0G 11G 40% /
/dev/sda2 512M 4.0K 512M 1% /boot/efi
/dev/sdb1 961M 242M 720M 26% /media/rich/54A1-7D7D
$

Now instead of having to decode those ugly block numbers, all of the disk
sizes are shown using “normal” sizes. The df command is invaluable in
troubleshooting disk space problems on the system.

NOTE

Remember that the Linux system always has processes that handle
files running in the background. The values from the df command
reflect what the Linux system thinks are the current values at that
point in time. It's possible that you have a process running that has
created or deleted a file but has not released the file yet. This value
is not included in the free space calculation.

Using the du command
With the df command, it is easy to see when a disk is running out of space.
The next problem for the system administrator is to know what to do when
that happens.

Another useful command to help you out is the du command. The du
command shows the disk usage for a specific directory (by default, the
current directory). This is a quick way to determine if you have any obvious
disk hogs on the system.

By default, the du command displays all the files, directories, and
subdirectories under the current directory, and it shows how many disk
blocks each file or directory takes. For a standard-sized directory, this can
be quite a listing. Here's a partial listing of using the du command:

 $ du
 484 ./.gstreamer-0.10
 8 ./Templates
 8 ./Download

 8 ./.ccache/7/0
 24 ./.ccache/7
 368 ./.ccache/a/d
 384 ./.ccache/a
 424 ./.ccache
 8 ./Public
 8 ./.gphpedit/plugins
 32 ./.gphpedit
 72 ./.gconfd
 128 ./.nautilus/metafiles
 384 ./.nautilus
 8 ./Videos
 8 ./Music
 16 ./.config/gtk-2.0
 40 ./.config
 8 ./Documents

The number at the left of each line is the number of disk blocks that each
file or directory takes. Notice that the listing starts at the bottom of a
directory and works its way up through the files and subdirectories
contained within the directory.

The du command by itself can be somewhat useless. It's nice to be able to
see how much disk space each individual file and directory takes up, but it
can be meaningless when you have to wade through pages and pages of
information before you find what you're looking for.

You can use the following command-line parameters with the du command
to make things a little more legible:

-c : Produce a grand total of all the files listed.

-h : Print sizes in human-readable form, using K for kilobyte, M for
megabyte, and G for gigabyte.

-s : Summarize each argument.

The next step for the system administrator is to use some file-handling
commands for manipulating large amounts of data. That's exactly what the
next section covers.

Working with Data Files

When you have a large amount of data, it's often difficult to handle the
information and make it useful. As you saw with the du command in the
previous section, it's easy to get data overload when working with system
commands.

The Linux system provides several command-line tools to help you manage
large amounts of data. This section covers the basic commands that every
system administrator — as well as any everyday Linux user — should
know to make their lives easier.

Sorting data
One popular function that comes in handy when working with large
amounts of data is the sort command. The sort command does what it
says — it sorts data.

By default, the sort command sorts the data lines in a text file using
standard sorting rules for the language you specify as the default for the
session:

 $ cat file1
 one
 two
 three
 four
 five
 $ sort file1
 five
 four
 one
 three
 two
 $

Pretty simple. However, things aren't always as easy as they appear. Take a
look at this example:

 $ cat file2
 1
 2
 100
 45
 3
 10

 145
 75
 $ sort file2
 1
 10
 100
 145
 2
 3
 45
 75
 $

If you were expecting the numbers to sort in numerical order, you were
disappointed. By default, the sort command interprets numbers as
characters and performs a standard character sort, producing output that
might not be what you want. To solve this problem, use the -n parameter,
which tells the sort command to recognize numbers as numbers instead of
characters and to sort them based on their numerical values:

 $ sort -n file2
 1
 2
 3
 10
 45
 75
 100
 145
 $

Now, that's much better! Another parameter that's commonly used is -M ,
the month sort. Linux log files usually contain a time stamp at the
beginning of the line to indicate when the event occurred:

 Apr 13 07:10:09 testbox smartd[2718]: Device: /dev/sda,
opened

If you sort a file that uses time stamp dates using the default sort, you'll get
something like this:

 $ sort file3
 Apr
 Aug
 Dec
 Feb

 Jan
 Jul
 Jun
 Mar
 May
 Nov
 Oct
 Sep
 $

Not exactly what you wanted. If you use the -M parameter, the sort
command recognizes the three-character-month nomenclature and sorts
appropriately:

 $ sort -M file3
 Jan
 Feb
 Mar
 Apr
 May
 Jun
 Jul
 Aug
 Sep
 Oct
 Nov
 Dec
 $

Table 4-6 shows other handy sort parameters you can use.

TABLE 4-6 The sort Command Parameters

Single
Dash

Double Dash Description

-b --ignore-

leading-blanks

Ignore leading blanks when sorting.

-C --check=quiet Don't sort, but don't report if data is out of sort
order.

-c --check Don't sort, but check if the input data is already
sorted. Report if not sorted.

-d --dictionary-

order

Consider only blanks and alphanumeric
characters; don't consider special characters.

-f --ignore-case By default, sort orders capitalized letters first.
This parameter ignores case.

-g --general-

numeric-sort

Use general numerical value to sort.

-i --ignore-

nonprinting

Ignore nonprintable characters in the sort.

-k --

key=POS1[,POS2]

Sort based on position POS1 and end at POS2 if
specified.

-M --month-sort Sort by month order using three-character
month names.

-m --merge Merge two already sorted data files.
-n --numeric-sort Sort by string numerical value.
-o --output=file Write results to file specified.
-R --random-sort Sort by a random hash of keys.

--random-

source=FILE

Specify the file for random bytes used by the -R
parameter.

-r --reverse Reverse the sort order (descending instead of
ascending).

-S --buffer-

size=SIZE

Specify the amount of memory to use.

Single
Dash

Double Dash Description

-s --stable Disable last-resort comparison.
-T --temporary-

direction=DIR

Specify a location to store temporary working
files.

-t --field-

separator=SEP

Specify the character used to distinguish key
positions.

-u --unique With the -c parameter, check for strict ordering;
without the -c parameter, output only the first
occurrence of two similar lines.

-z --zero-

terminated

End all lines with a NULL character instead of a
new line.

The -k and -t parameters are handy when sorting data that uses fields, such
as the /etc/passwd file. Use the -t parameter to specify the field separator
character, and use the -k parameter to specify which field to sort on. For
example, to sort the password file based on numerical user ID, just do this:

 $ sort -t ':' -k 3 -n /etc/passwd
 root:x:0:0:root:/root:/bin/bash
 bin:x:1:1:bin:/bin:/sbin/nologin
 daemon:x:2:2:daemon:/sbin:/sbin/nologin
 adm:x:3:4:adm:/var/adm:/sbin/nologin
 lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
 sync:x:5:0:sync:/sbin:/bin/sync
 shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
 halt:x:7:0:halt:/sbin:/sbin/halt
 mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
 news:x:9:13:news:/etc/news:
 uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin
 operator:x:11:0:operator:/root:/sbin/nologin
 games:x:12:100:games:/usr/games:/sbin/nologin
 gopher:x:13:30:gopher:/var/gopher:/sbin/nologin
 ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin

Now the data is perfectly sorted based on the third field, which is the
numerical user ID value.

The -n parameter is great for sorting numerical outputs, such as the output
of the du command:

 $ du -sh * | sort -nr
 1008k mrtg-2.9.29.tar.gz
 972k bldg1
 888k fbs2.pdf
 760k Printtest
 680k rsync-2.6.6.tar.gz
 660k code
 516k fig1001.tiff
 496k test
 496k php-common-4.0.4pl1-6mdk.i586.rpm
 448k MesaGLUT-6.5.1.tar.gz
 400k plp

Notice that the -r option also sorts the values in descending order so that
you can easily see what files are taking up the most space in your directory.

NOTE

The pipe command (|) used in this example redirects the output of
the du command to the sort command. That's discussed in more
detail in Chapter 11, “Basic Script Building.”

Searching for data
Often in a large file, you have to look for a specific line of data buried
somewhere in the middle of the file. Instead of manually scrolling through
the entire file, you can let the grep command search for you. The
command-line format for the grep command is

 grep [options] pattern [file]

The grep command searches either the input or the file you specify for lines
that contain characters that match the specified pattern. The output from
grep is the lines that contain the matching pattern.

Here are two simple examples of using the grep command with the file1
file used in the “Sorting Data” section:

 $ grep three file1
 three
 $ grep t file1
 two

 three
 $

The first example searches the file file1 for text matching the pattern
three. The grep command produces the line that contains the matching
pattern. The next example searches the file file1 for the text matching the
pattern t. In this case, two lines matched the specified pattern, and both are
displayed.

Because of the popularity of the grep command, it has undergone lots of
development changes over its lifetime. Many features have been added to
the grep command. If you look over the man pages for the grep command,
you'll see how versatile it is.

If you want to reverse the search (output lines that don't match the pattern),
use the -v parameter:

 $ grep -v t file1
 one
 four
 five
 $

If you need to find the line numbers where the matching patterns are found,
use the -n parameter:

 $ grep -n t file1
 2:two
 3:three
 $

If you just need to see a count of how many lines contain the matching
pattern, use the -c parameter:

 $ grep -c t file1
 2
 $

If you need to specify more than one matching pattern, use the -e parameter
to specify each individual pattern:

 $ grep -e t -e f file1
 two
 three
 four

 five
 $

This example outputs lines that contain either the string t or the string f.

By default, the grep command uses basic Unix-style regular expressions to
match patterns. A Unix-style regular expression uses special characters to
define how to look for matching patterns. For a more detailed explanation
of regular expressions, see Chapter 20, “Regular Expressions.”

Here's a simple example of using a regular expression in a grep search:

 $ grep [tf] file1
 two
 three
 four
 five
 $

The square brackets in the regular expression indicate that grep should look
for matches that contain either a t or an f character. Without the regular
expression, grep would search for text that would match the string tf.

The egrep command is an offshoot of grep , which allows you to specify
POSIX extended regular expressions, which contain more characters for
specifying the matching pattern (again, see Chapter 20 for more details).
The fgrep command is another version that allows you to specify matching
patterns as a list of fixed-string values, separated by newline characters.
This allows you to place a list of strings in a file and then use that list in the
fgrep command to search for the strings in a larger file.

Compressing data
If you've done any work in the Microsoft Windows world, no doubt you've
used zip files. It became such a popular feature that Microsoft eventually
incorporated it into the Windows operating system starting with XP. The zip
utility allows you to easily compress large files (both text and executable)
into smaller files that take up less space.

Linux contains several file compression utilities. Although this may sound
great, it often leads to confusion and chaos when trying to download files.
Table 4-7 lists the file compression utilities available for Linux.

TABLE 4-7 Linux File Compression Utilities

Utility File
Extension

Description

bzip2 .bz2 Uses the Burrows–Wheeler block sorting text
compression algorithm and Huffman coding

compress .Z Original Unix file compression utility; starting to
fade away into obscurity

gzip .gz The GNU Project's compression utility; uses
Lempel–Ziv-Welch coding

xz .xz A general-purpose compression utility gaining in
popularity

zip .zip The Unix version of the PKZIP program for
Windows

The compress file compression utility is not often found on Linux systems.
If you download a file with a .Z extension, you can usually install the
compress package (called ncompress in many Linux distributions) using the
software installation methods discussed in Chapter 9, “Installing Software,”
and then uncompress the file with the uncompress command. The gzip
utility is the most popular compression tool used in Linux.

The gzip package is a creation of the GNU Project in their attempt to create
a free version of the original Unix compress utility. This package includes
these files:

gzip for compressing files

gzcat for displaying the contents of compressed text files

gunzip for uncompressing files

These utilities work the same way as the bzip2 utilities:

 $ gzip myprog
 $ ls -l my*
-rwxrwxr-x 1 rich rich 2197 2007-09-13 11:29 myprog.gz
 $

The gzip command compresses the file you specify on the command line.
You can also specify more than one filename or even use wildcard
characters to compress multiple files at once:

 $ gzip my*
$ ls -l my*
-rwxr--r-- 1 rich rich 103 Sep 6 13:43
myprog.c.gz
 -rwxr-xr-x 1 rich rich 5178 Sep 6 13:43
myprog.gz
 -rwxr--r-- 1 rich rich 59 Sep 6 13:46
myscript.gz
 -rwxr--r-- 1 rich rich 60 Sep 6 13:44
myscript2.gz
 $

The gzip command compresses every file in the directory that matches the
wildcard pattern.

Archiving data
Although the zip command works great for compressing and archiving data
into a single file, it's not the standard utility used in the Unix and Linux
worlds. By far the most popular archiving tool used in Unix and Linux is
the tar command.

The tar command was originally used to write files to a tape device for
archiving. However, it can also write the output to a file, which has become
a popular way to archive data in Linux.

Here is the format of the tar command:

 tar function [options] object1 object2 ...

The function parameter defines what the tar command should do, as shown
in Table 4-8.

TABLE 4-8 The tar Command Functions

Function Long Name Description
-A --

concatenate

Append an existing tar archive file to another
existing tar archive file.

-c --create Create a new tar archive file.
-d --diff Check the differences between a tar archive file

and the filesystem.
--delete Delete from an existing tar archive file.

-r --append Append files to the end of an existing tar archive
file.

-t --list List the contents of an existing tar archive file.
-u --update Append files to an existing tar archive file that are

newer than a file with the same name in the
existing archive.

-x --extract Extract files from an existing archive file.

Each function uses options to define a specific behavior for the tar archive
file. Table 4-9 lists the common options that you can use with the tar
command.

TABLE 4-9 The tar Command Options

Option Description
-C dir Change to the specified directory.
-f file Output results to file (or device) file.
-j Redirect output to the bzip2 command for compression.
-J Redirect output to the xz command for compression.
-p Preserve all file permissions.
-v List files as they are processed.
-z Redirect the output to the gzip command for compression.
-Z Redirect the output to the compress command for compression.

These options are usually combined to create the following scenarios. First,
you'll want to create an archive file using this command:

 tar -cvf test.tar test/ test2/

This command creates an archive file called test.tar containing the
contents of both the test directory and the test2 directory. Next, the
command

 tar -tf test.tar

lists (but doesn't extract) the contents of the tar file test.tar . Finally, the
command

 tar -xvf test.tar

extracts the contents of the tar file test.tar . If the tar file was created
from a directory structure, the entire directory structure is re-created starting
at the current directory.

As you can see, using the tar command is a simple way to create archive
files of entire directory structures. This is a common method for distributing
source code files for open source applications in the Linux world.

TIP

If you download open source software, often you'll see filenames
that end in .tgz. These are gzipped tar files, and they can be
extracted using the command tar -zxvf filename.tgz.

Summary
This chapter discussed some of the more advanced bash commands used by
Linux system administrators and programmers. The ps and top commands
are vital in determining the status of the system, allowing you to see what
applications are running and how many resources they are consuming.

In this day of removable media, another popular topic for system
administrators is mounting storage devices. The mount command allows

you to mount a physical storage device into the Linux virtual directory
structure. To remove the device, you use the umount command.

Finally, we discussed various utilities used for handling data. The sort
utility easily sorts large data files to help you organize data, and the grep
utility allows you to quickly scan through large data files looking for
specific information. A few file compression utilities are available in Linux,
including gzip and zip . Each one allows you to compress large files to
help save space on your filesystem. The Linux tar utility is a popular way
to archive directory structures into a single file that can easily be ported to
another system.

The next chapter discusses Linux environment variables. Environment
variables allow you to access information about the system from your
scripts, as well as provide a convenient way to store data within your
scripts.

CHAPTER 5
Understanding the Shell
IN THIS CHAPTER

Investigating shell types

Understanding the parent/child shell relationship

Using subshells creatively

Investigating built-in shell commands

Now that you know a few shell basics, such as reaching the shell and
rudimentary commands, it's time to explore the actual shell process. To
understand it, you need to know how it operates in different circumstances.

A shell is not just a CLI. It is a complicated interactive running program.
Entering commands and using the shell to run scripts can raise some
interesting and confusing issues. Understanding the shell process and its
relationships helps you resolve these issues or avoid them altogether.

This chapter takes you through learning about the shell process and how it
operates in various situations. We'll explore how subshells are created as
well as the relationship to their parent shell. The different commands that
create child processes are examined along with those that don't (built-in
commands). We also cover some shell tips and tricks you can try to make
your CLI experience more productive.

Investigating Shell Types
The shell program that the system starts, when you log into the system,
depends on your user ID configuration. In the /etc/passwd file, the user ID
has its default shell program listed in field #7 of its entry. This default shell
program is started when the user either logs into a virtual console terminal
or starts a terminal emulator in the GUI.

In the following example, the user christine has the GNU Bash shell as
their default shell program:

$ cat /etc/passwd
[...]
christine:x:1001:1001::/home/christine:/bin/bash
$

The Bash shell program (bash) typically resides in the /usr/bin directory
on modern Linux systems. However, on your Linux system you may find it
in the /bin directory. The which bash command can help here by providing
the directory and filename to use for the Bash shell:

$ which bash
/usr/bin/bash
$

A long listing reveals that the bash file (the Bash shell) is an executable
program via the trailing asterisk (*) on the file's name:

$ ls -lF /usr/bin/bash
-rwxr-xr-x. 1 root root 1219248 Nov 8 11:30 /usr/bin/bash*
$

NOTE

Typically on modern Linux systems, the /bin directory is
symbolically linked to the /usr/bin/ directory, which is why the
user christine has /bin/bash listed as their default shell program,
but the Bash shell program actually resides in the /usr/bin/
directory. Symbolic (soft) links were covered in Chapter 3, “Basic
Bash Shell Commands.”

Several other shell programs are on this particular Linux system. They
include tcsh, which is based on the original C shell:

$ which tcsh
/usr/bin/tcsh
$ ls -lF /usr/bin/tcsh
-rwxr-xr-x. 1 root root 465200 May 14 2019 /usr/bin/tcsh*
$

Another shell on this system is zsh, which is a more elaborate version of the
Bash shell. It also has a few tcsh features as well as other elements:

$ which zsh
/usr/bin/zsh
$ ls -lF /usr/bin/zsh
-rwxr-xr-x. 1 root root 879872 May 11 2019 /usr/bin/zsh*
$

TIP

If you don't find some of these shells on your Linux system, you
may be able to install them. Chapter 9, “Installing Software,” can
help you accomplish this task.

A soft link (see Chapter 3) of the C shell points to the tcsh shell:

$ which csh
/usr/bin/csh
$ ls -lF /usr/bin/csh
lrwxrwxrwx. 1 root root 4 May 14 2019 /usr/bin/csh -> tcsh*
$

On Debian-based Linux systems, such as Ubuntu, you often find dash ,
which is a version of the Ash shell:

$ which dash
/usr/bin/dash
$ ls -lF /usr/bin/dash
-rwxr-xr-x 1 root root 129816 Jul 18 2019 /usr/bin/dash*
$

NOTE

A brief description of various shells was included in Chapter 1,
“Starting with Linux Shells.” You may be interested in learning
even more about shells other than the GNU Bash shell. Additional
alternative shell information is in Chapter 23, “Working with
Alternative Shells.”

On most Linux systems, you'll find the various installed shells that can be
used as the user's default shell within the /etc/shells file, as shown here:

$ cat /etc/shells
/bin/sh
/bin/bash
/usr/bin/sh
/usr/bin/bash
/bin/csh
/bin/tcsh
/usr/bin/csh
/usr/bin/tcsh
/usr/bin/zsh
/bin/zsh
$

NOTE

On many Linux distributions, you'll find that it appears as if a shell
file exists in two places — /bin and /usr/bin . This is because on
modern Linux systems, these two directories are often symbolically
linked together, with /bin pointing to /usr/bin . And you can use
either directory to access the shell. Symbolic links, also called soft
links, were covered in Chapter 3.

A user can set any of these different shell programs on this system as their
shell. However, due to its popularity, it is rare to use any other shell instead
of Bash as an account's default interactive shell. The default interactive
shell, also called a login shell, starts whenever a user logs into a virtual
console terminal or starts a terminal emulator in the GUI.

Another shell, sh , is the default system shell. The default system shell is
used for system shell scripts, such as those needed at startup.

Often, you see a distribution with its default system shell (sh) pointing to
the Bash shell using a soft link. An example of this is shown here on a
CentOS distribution:

$ which sh
/usr/bin/sh
$ ls -l /usr/bin/sh

lrwxrwxrwx. 1 root root 4 Nov 8 11:30 /usr/bin/sh -> bash
$

However, be aware that on some distributions, the default system shell is
linked differently, such as on this Ubuntu distribution:

$ which sh
/usr/bin/sh
$ ls -l /usr/bin/sh
lrwxrwxrwx 1 root root 4 Mar 10 18:43 /usr/bin/sh -> dash
$

In this case, the default system shell, /usr/bin/sh , points to the Dash shell,
instead of the Bash shell.

TIP

For Bash shell scripts, these two different shells, default interactive
shell and default system shell, can cause problems. Be sure to read
about the important syntax needed for a Bash shell script's first line
in Chapter 11, “Basic Script Building,” to avoid these issues.

You are not forced to stick with your default interactive shell. You can start
any shell available on your distribution simply by typing its name.
However, there's no fanfare or message displayed to indicate what shell you
are currently using. But help is available from the $0 variable. The
command echo $0 will display the name of your current shell, providing
the needed reference.

NOTE

The echo $0 command shows the current shell in use only when
issued at a shell prompt. If used in a shell script, it will display the
script's name instead. This is covered in Chapter 14, “Handling
User Input.”

With our handy $0 variable, we'll display the shell we are currently using,
start the Dash shell by typing the command dash, and show the new shell's

name via echo $0 again:

$ echo $0
-bash
$
$ dash
$
$ echo $0
dash
$

NOTE

In the previous example, notice the dash (-) in front of the bash
response from the first echo $0 command. This indicates that this
shell is the user's login shell.

The $ prompt is a CLI prompt for the Dash shell. You can leave the Dash
shell program (and the Bash shell for that matter) by typing the command
exit :

$ echo $0
dash
$ exit
$ echo $0
-bash
$

Jumping back and forth through the various shells seems simple, but there
is more to the action happening behind the scenes. To understand this
process, the next section explores the relationship between a login shell
program and a newly started shell program.

Exploring Parent and Child Shell
Relationships
The default interactive shell (login shell) that starts when a user logs into a
virtual console terminal or starts a terminal emulator in the GUI is a parent
shell. As you have read so far in this book, a parent shell process provides a
CLI prompt and waits for commands to be entered.

When the bash command (or other shell program name) is entered at the
CLI prompt, a new shell program is created. This is a child shell. A child
shell also has a CLI prompt and waits for commands to be entered.

Because you do not see any relevant messages when you type bash and
spawn a child shell, another command can help bring clarity. The ps
command was covered in Chapter 4, “More Bash Shell Commands.” Using
this with the -f option before and after entering a child shell is useful:

$ ps -f
UID PID PPID C STIME TTY TIME CMD
christi+ 6160 6156 0 11:01 pts/1 00:00:00 -bash
christi+ 7141 6160 0 12:51 pts/1 00:00:00 ps -f
$
$ bash
$
$ ps -f
UID PID PPID C STIME TTY TIME CMD
christi+ 6160 6156 0 11:01 pts/1 00:00:00 -bash
christi+ 7142 6160 0 12:52 pts/1 00:00:00 bash
christi+ 7164 7142 0 12:52 pts/1 00:00:00 ps -f
$

The first use of ps -f shows two processes. One process has a process ID
of 6160 (second column) and is running the Bash shell program (last
column). The second process (process ID 7141) is the actual ps -f
command running.

NOTE

A process is a running program. The Bash shell is a program, and
when it runs, it is a process. A running shell is simply one type of
process. Therefore, when reading about running a Bash shell, you
often see the word “shell” and the word “process” used
interchangeably.

In the previous example, after the command bash is entered, a child shell is
created. The second ps -f is executed from within the child shell. From
this display, you can see that two Bash shell programs are running. The first
Bash shell program, the parent shell process, has the original process ID

(PID) of 6160. The second Bash shell program, the child shell process, has
a PID of 7142. Note that the child shell has a parent process ID (PPID) of
6160, denoting that the parent shell process is its parent. Figure 5-1
diagrams this relationship.

FIGURE 5-1 Parent and child Bash shell processes

When a child shell process is spawned, only some of the parent's
environment is copied to the child's shell environment. This can cause
problems with items such as variables. How to prevent such problems is
covered in Chapter 6, “Using Linux Environment Variables.”

A child shell is also called a subshell. A subshell can be created from a
parent shell, and a subshell can be created from another subshell:

$ ps -f
UID PID PPID C STIME TTY TIME CMD
christi+ 7650 7649 0 16:01 pts/0 00:00:00 -bash
christi+ 7686 7650 0 16:02 pts/0 00:00:00 ps -f
$
$ bash
$ bash
$ bash
$
$ ps --forest
 PID TTY TIME CMD
 7650 pts/0 00:00:00 bash
 7687 pts/0 00:00:00 _ bash
 7709 pts/0 00:00:00 _ bash
 7731 pts/0 00:00:00 _ bash

 7753 pts/0 00:00:00 _ ps
$

In the preceding example, the bash command was entered three times.
Effectively, this created three subshells. The ps --forest command shows
the nesting of these subshells. Figure 5-2 also shows this subshell nesting.

The ps -f command can be useful in subshell nesting, because it displays
who is whose parent via the PPID column:

$ ps -f
UID PID PPID C STIME TTY TIME CMD
christi+ 7650 7649 0 16:01 pts/0 00:00:00 -bash
christi+ 7687 7650 0 16:02 pts/0 00:00:00 bash
christi+ 7709 7687 0 16:02 pts/0 00:00:00 bash
christi+ 7731 7709 0 16:02 pts/0 00:00:00 bash
christi+ 7781 7731 0 16:04 pts/0 00:00:00 ps -f
$

The Bash shell program can use command-line options to modify the shell's
start. Table 5-1 lists a few of these available switches to use with the bash
command.

FIGURE 5-2 Subshell nesting

TABLE 5-1 The bash Command-Line Options

Option Description
-c string Reads commands from string and processes them
-i Starts an interactive shell, allowing input from the user
-l Acts as if invoked as a login shell
-r Starts a restricted shell, limiting the user to the default directory
-s Reads commands from the standard input

You can find more help on the bash command and even more command-
line parameters by typing man bash . The bash --help command provides
additional assistance as well.

TIP

If you'd like to see the version of the Bash shell, just type bash --
version at the command line. This won't create a subshell, but
instead displays the current version of your system's GNU Bash
shell program.

You can gracefully exit out of each subshell by entering the exit command:

$ ps -f
UID PID PPID C STIME TTY TIME CMD
christi+ 7650 7649 0 16:01 pts/0 00:00:00 -bash
christi+ 7687 7650 0 16:02 pts/0 00:00:00 bash
christi+ 7709 7687 0 16:02 pts/0 00:00:00 bash
christi+ 7731 7709 0 16:02 pts/0 00:00:00 bash
christi+ 8080 7731 0 16:35 pts/0 00:00:00 ps -f
$
$ exit
exit
$
$ ps --forest
 PID TTY TIME CMD
 7650 pts/0 00:00:00 bash
 7687 pts/0 00:00:00 _ bash
 7709 pts/0 00:00:00 _ bash
 8081 pts/0 00:00:00 _ ps

$
$ exit
exit
$ exit
exit
$
$ ps --forest
 PID TTY TIME CMD
 7650 pts/0 00:00:00 bash
 8082 pts/0 00:00:00 _ ps
$

Not only does the exit command allow you to leave child subshells, but
you can log out of your current virtual console terminal or terminal
emulation software as well. Just type exit in the parent shell, and you
gracefully exit the CLI.

Also, a subshell is sometimes created when you run a shell script. You learn
more about that topic in Chapter 11. Next we'll cover how a subshell is
spawned using a process list.

Looking at process lists
On a single line, you can designate a list of commands to be run one after
another. This is done by entering a command list using a semicolon (;)
between the commands:

$ pwd ; ls test* ; cd /etc ; pwd ; cd ; pwd ; ls my*
/home/christine
test_file test_one test_two
/etc
/home/christine
my_file my_scrapt my_script my_scrypt
$

In the preceding example, the commands all executed one after another
with no problems. However, while using commands in this manner is called
a list, it is not a process list. For a command list to be considered a process
list, the commands must be encased in parentheses:

$ (pwd ; ls test* ; cd /etc ; pwd ; cd ; pwd ; ls my*)
/home/christine
test_file test_one test_two
/etc
/home/christine

my_file my_scrapt my_script my_scrypt
$

Though the parentheses addition may not appear to be a big difference, they
do cause a very different effect. Adding parentheses and turning the
command list into a process list created a subshell to execute the
commands.

NOTE

A process list is a command grouping type. Another command
grouping type puts the commands between curly brackets and ends
the command list with a semicolon (;). The syntax is as follows: {
command; } . Using curly brackets for command grouping does not
create a subshell as a process list does.

To indicate if a subshell was spawned, a command using an environment
variable is needed here. (Environment variables are covered in detail in
Chapter 6). The command needed is echo $BASH_SUBSHELL . If it returns 0,
then there is no subshell. If it returns 1 or more, a subshell was created.

First, the example using just a command list is executed with the echo
$BASH_SUBSHELL tacked onto the end:

$ pwd ; ls test* ; cd /etc ; pwd ; cd ; pwd ; ls my* ; echo
$BASH_SUBSHELL
/home/christine
test_file test_one test_two
/etc
/home/christine
my_file my_scrapt my_script my_scrypt
0
$

At the very end of the commands' output, you can see the number zero (0)
is displayed. This indicates a subshell was not created to execute these
commands.

The results are different using a process list. The list is executed with echo
$BASH_SUBSHELL tacked onto the end:

$ (pwd ; ls test* ; cd /etc ; pwd ; cd ; pwd ; ls my* ; echo
$BASH_SUBSHELL)
/home/christine
test_file test_one test_two
/etc
/home/christine
my_file my_scrapt my_script my_scrypt
1
$

In this case, the number one (1) displayed at the output's end. This indicates
a subshell was indeed created and used for executing these commands.

Thus, a process list is a command grouping enclosed with parentheses,
which creates a subshell to execute the command(s). You can even create a
grandchild subshell by embedding parentheses within a process list:

$ (pwd ; echo $BASH_SUBSHELL)
/home/christine
1
$ (pwd ; (echo $BASH_SUBSHELL))
/home/christine
2
$

Notice in the first process list, the number one (1) is displayed, indicating a
child subshell as you would expect. However, in the example's second
process list, additional parentheses were included around the echo
$BASH_SUBSHELL command. These additional parentheses caused a
grandchild subshell to be created for the command's execution. Thus, a
number two (2) was displayed, indicating a subshell within a subshell.

Subshells are often used for multiprocessing in shell scripts. However,
entering a subshell is an expensive method. (In this situation, expensive
means that more resources, such as memory and processing power, are
consumed.) It can also significantly slow down completion of the task.
Subshell issues exist also for an interactive CLI shell session, which is not
truly multiprocessing, because the terminal gets tied up with the subshell's
I/O.

Creatively using subshells
At the interactive shell CLI, you have more productive ways to use
subshells. Process lists, co-processes, and pipes (covered in Chapter 11) all

use subshells. Each can be used effectively within the interactive shell.

One productive subshell method in the interactive shell uses background
mode. Before we discuss how to use background mode and subshells
together, you need to understand background mode.

Investigating background mode
Running a command in background mode allows the command to be
processed and frees up your CLI for other use. A classic command to
demonstrate background mode is the sleep command.

The sleep command accepts as a parameter the number of seconds you
want the process to wait (sleep). This command is often used to introduce
pauses in shell scripts. The command sleep 10 causes the session to pause
for 10 seconds and then return a shell CLI prompt:

$ sleep 10
$

To put a command into background mode, the & character is tacked onto its
end. Putting the sleep command into background mode allows a little
investigation with the ps command:

$ sleep 3000&
[1] 2542
$
$ ps -f
UID PID PPID C STIME TTY TIME CMD
christi+ 2356 2352 0 13:27 pts/0 00:00:00 -bash
christi+ 2542 2356 0 13:44 pts/0 00:00:00 sleep 3000
christi+ 2543 2356 0 13:44 pts/0 00:00:00 ps -f
$

The sleep command was told to sleep for 3000 seconds (50 minutes) in the
background (&). When it was put into the background, two informational
items were displayed before the shell CLI prompt was returned. The first
informational item is the background job's number (1) displayed in
brackets. The second item is the background job's process ID (2542).

The ps command was used to display the various processes. Notice that the
sleep 3000 command is listed. Also note that its PID in the second column
is the same PID displayed when the command went into the background,
2542.

In addition to the ps command, you can use the jobs command to display
background job information. The jobs command displays your processes
(jobs) currently running in background mode:

$ jobs
[1]+ Running sleep 3000 &
$

The jobs command shows the job number (1) in brackets. It also displays
the job's current status (Running) as well as the command itself (sleep
3000 &).

You can see even more information by using the -l (lowercase L)
parameter on the jobs command. The -l parameter displays the command's
PID in addition to the other information:

$ jobs -l
[1]+ 2542 Running sleep 3000 &
$

TIP

When you have more than one background process running, there
is some additional helpful information to show which background
job was started last. The most recently started job has a plus sign
(+) next to its job number in the jobs command's display. And the
second newest process will have a minus sign (-) to provide you with
additional information.

When the background job is finished, its completion status is displayed the
next time you press the Enter key at the command line:

$
[1]+ Done sleep 3000
$

Background mode is very handy. And it provides a method for creating
useful subshells at the CLI.

Putting process lists into the background

By placing process lists into the background, you can do large amounts of
multiprocessing within a subshell. A side benefit is that your terminal is not
tied up with the subshell's I/O.

As stated earlier, a process list is a command or series of commands
executed within a subshell. Using a process list including sleep commands
and displaying the BASH_SUBSHELL variable operates as you would expect:

$ (sleep 2 ; echo $BASH_SUBSHELL ; sleep 2)
1
$

In the preceding example, a two-second pause occurs, the number one (1) is
displayed indicating a single subshell level (child shell), and then another
two-second pause occurs before the prompt returns. Nothing too dramatic
here.

Putting the same process list into background mode can cause a slightly
different effect with command output:

$ (sleep 2 ; echo $BASH_SUBSHELL ; sleep 2)&
[1] 2553
$ 1

[1]+ Done (sleep 2; echo
$BASH_SUBSHELL; sleep 2)
$

Putting the process list into the background causes a job number and
process ID to appear, and the prompt returns. However, the odd event is that
the displayed number one (1), indicating a single-level subshell, is
displayed next to the prompt! Don't let this confuse you. Simply press the
Enter key, and you get another prompt back.

Using a process list in background mode is one creative method for using
subshells at the CLI. This allows you to be more productive with fewer
keystrokes.

Of course, the process list of sleep and echo commands are just for
example purposes. Creating backup files with tar (see Chapter 4) is a more
practical example of using background process lists effectively:

$ (tar -cf Doc.tar Documents ; tar -cf Music.tar Music)&
[1] 2567

$
$ ls *.tar
Doc.tar Music.tar
[1]+ Done (tar -cf Doc.tar Documents;
 tar -cf Music.tar Music)
$

Putting a process list in background mode is not the only way to use
subshells creatively at the CLI. Co-processing is another method.

Looking at co-processing
Co-processing does two things at the same time. It spawns a subshell in
background mode and it executes a command within that subshell.

To perform co-processing, the coproc command is used along with the
command to be executed in the subshell:

$ coproc sleep 10
[1] 2689
$

Co-processing performs almost identically to putting a command in
background mode, except for the fact that it creates a subshell. You'll notice
that when the coproc command and its parameters were entered, a
background job was started. The background job number (1) and process ID
(2689) were displayed on the screen.

The jobs command allows you to display the co-processing status:

$ jobs
[1]+ Running coproc COPROC sleep 10 &
$

From the preceding example, you can see that the background command
executing in the subshell is coproc COPROC sleep 10 . COPROC is a name
given to the process by the coproc command. You can set the name
yourself by using extended syntax for the command:

$ coproc My_Job { sleep 10; }
[1] 2706
$
$ jobs
[1]+ Running coproc My_Job { sleep 10; } &
$

By using the extended syntax, the co-processing name was set to My_Job .
Be careful here, because the extended syntax is a little tricky. Make sure
you place a space after the first curly bracket ({) and before the start of your
command. Also, the command must end with a semicolon (;). And you
must put a space after the semicolon and before the closing curly bracket
(}).

NOTE

Co-processing allows you to get very fancy and send/receive
information to the process running in the subshell. The only time
you need to name a co-process is when you have multiple co-
processes running and you need to communicate with them all.
Otherwise, just let the coproc command set the name to the default,
COPROC.

You can be really clever and combine co-processing with process lists,
creating nested subshells. Just type your process list and put the command
coproc in front of it:

$ coproc (sleep 10; sleep 2)
[1] 2750
$
$ jobs
[1]+ Running coproc COPROC (sleep 10;
sleep 2) &
$
$ ps --forest
 PID TTY TIME CMD
 2367 pts/0 00:00:00 bash
 2750 pts/0 00:00:00 _ bash
 2751 pts/0 00:00:00 | _ sleep
 2752 pts/0 00:00:00 _ ps
$

Just remember that spawning a subshell can be expensive and slow.
Creating nested subshells is even more so!

Using subshells can provide flexibility as well as convenience.
Understanding their behavior is important in order to reach these goals.

Command actions are also important to understand. In the next section, the
behavior differences between built-in and external commands are explored.

Understanding External and Built-In
Commands
While learning about the GNU Bash shell, you likely have heard the term
built-in command. It is important to understand both shell built-in and non–
built-in (external) commands. Built-in commands and non–built-in
commands operate very differently.

Looking at external commands
An external command, sometimes called a filesystem command, is a
program that exists outside of the Bash shell. In other words, it is not built
into the shell program. An external command program is typically located
in /bin , /usr/bin , /sbin , or /usr/sbin directories.

The ps command is an external command. You can find its filename by
using both the which and the type commands:

$ which ps
/usr/bin/ps
$
$ type ps
ps is /usr/bin/ps
$
$ ls -l /usr/bin/ps
-rwxr-xr-x. 1 root root 142216 May 11 2019 /usr/bin/ps
$

Whenever an external command is executed, a child process is created. This
action is termed forking. Conveniently, the external command ps displays
its current parent as well as its own forked child processes:

$ ps -f
UID PID PPID C STIME TTY TIME CMD
christi+ 2367 2363 0 10:47 pts/0 00:00:00 -bash
christi+ 4242 2367 0 13:48 pts/0 00:00:00 ps -f
$

Because it is an external command, when the ps command executes, a child
process is created. In this case, the ps command's PID is 4242 and the
parent PID is 2367 . The Bash shell process, which in this case is the parent
process, has a PID of 2367 . Figure 5-3 illustrates the forking that occurs
when an external command is executed.

FIGURE 5-3 External command forking

Whenever a process must fork, it takes time and effort to set up the new
child process's environment. Thus, external commands can be a little
expensive.

NOTE

If you fork a child process or create a subshell, you can still
communicate with it via signaling, which is extremely helpful in
both the command line and in writing shell scripts. Signaling allows
process communication via signals. Signals and signaling are
covered in Chapter 16, “Script Control.”

When using a built-in command, no forking is required. Therefore, built-in
commands are less expensive.

Looking at built-in commands

Built-in commands are different in that they do not need a child process to
execute. They were compiled into the shell, and thus are part of the shell's
toolkit. No external program file exists to run them.

Both the cd and exit commands are built into the Bash shell. You can tell a
command is built-in by using the type command:

$ type cd
cd is a shell builtin
$
$ type exit
exit is a shell builtin
$

Because they do not need to fork a child process to execute or open a
program file, built-in commands are faster and more efficient. A list of
GNU Bash shell built-in commands is provided in Appendix A.

Be aware that some commands have multiple flavors. For example, both
echo and pwd have a built-in command flavor as well as an external
command flavor. These flavors are slightly different. To see multiple flavors
for commands, use the -a option on the type command:

$ type -a echo
echo is a shell builtin
echo is /usr/bin/echo
$
$ which echo
/usr/bin/echo
$
$ type -a pwd
pwd is a shell builtin
pwd is /usr/bin/pwd
$
$ which pwd
/usr/bin/pwd
$

Using the type -a command shows both types (built-in and external) for
each of the two commands. Note that the which command shows only the
external command file.

TIP

To use the external command for a command that has multiple
flavors, directly reference the file. For example, to use the pwd
external command, type /usr/bin/pwd.

Using the history command
The Bash shell keeps track of the most recent commands you have used.
You can recall these commands and even reuse them. A helpful built-in
command that lets you explore and manage these previously issued
commands is the history command.

To see a list of recently used commands, type the history command with
no options:

$ history
 1 ps -f
 2 pwd
 3 ls
 4 coproc (sleep 10; sleep 2)
 5 jobs
 6 ps --forest
 7 ls
 8 ps -f
 9 pwd
 10 ls -l /usr/bin/ps
 11 history
 12 cd /etc
 13 pwd
 14 ls
 15 cd
 16 type -a pwd
 17 which pwd
 18 type -a echo
 19 which echo
 20 ls
[...]
$

In this example, the listing is snipped and only the first 20 commands are
shown. Typically, the last 1,000 commands are kept in history. That's a lot

of commands!

TIP

You can set the number of commands to keep in the Bash history.
To do so, you need to modify an environment variable called
HISTSIZE (see Chapter 6).

You can recall and reuse the last command in your history list. This can
save time and typing. To recall and reuse your last command, type !! and
press the Enter key:

$ ps --forest
 PID TTY TIME CMD
 2367 pts/0 00:00:00 bash
 5240 pts/0 00:00:00 _ ps
$
$!!
ps --forest
 PID TTY TIME CMD
 2367 pts/0 00:00:00 bash
 5241 pts/0 00:00:00 _ ps
$

When !! was entered, the Bash shell first displayed the command it was
recalling from the shell's history. And after the command was displayed, it
was executed.

Command history is kept in the hidden .bash_history file, which is
located in each user's home directory:

$ pwd
/home/christine
$
$ ls .bash_history
.bash_history
$

Be aware that during your CLI session, the bash command history is stored
in memory. It is only written out into the history file when the shell is
exited:

$ history
 1 ps -f
 2 pwd
[...]
 38 exit
 39 history
 40 ps --forest
 41 ps --forest
 42 pwd
 43 ls .bash_history
 44 history
$
$ cat .bash_history
ps -f
pwd
[...]
ls
history
exit
$

Notice that when the history command is run, the last commands
displayed do not match final commands in the .bash_history file. There
were six additional commands issued, which are not recorded in the history
file.

You can force the command history to be written to the .bash_history file
without leaving a shell session. In order to impose this write, use the -a
option on the history command:

$ history -a
$
$ history
 1 ps -f
 2 pwd
[...]
 38 exit
 39 history
 40 ps --forest
 41 ps --forest
 42 pwd
 43 ls .bash_history
 44 history
 45 cat .bash_history
 46 history -a
 47 history
$

$ cat .bash_history
ps -f
pwd
[...]
exit
history
ps --forest
ps --forest
pwd
ls .bash_history
history
cat .bash_history
history -a
$

Notice that contents from both the history command and the
.bash_history file match, except for the very last command listed (the
history command), because it came after the history -a command was
issued.

NOTE

If you have multiple terminal sessions open, you can still append
.bash_history in each open session using the history -a command.
However, the histories are not automatically updated for your other
open terminal sessions. This is because the .bash_history file is
read-only when a terminal session is first started. To force the
.bash_history file to be reread and a terminal session's history in
memory to be updated, use the history -n command.

You can recall any command from the history list. Just enter an exclamation
point and the command's number from the history list:

$ history
 1 ps -f
 2 pwd
[...]
 39 history
 40 cat .bash_history
 41 ps --forest
 42 pwd

 43 ps -f
 44 history
 45 cat .bash_history
 46 history -a
 47 history
 48 cat .bash_history
 49 history
$
$!42
pwd
/home/christine
$

Command number 42 was pulled from the history list. Notice that similar to
executing the last command in history, the Bash shell first displays the
command it is recalling from the shell's history. After the command is
displayed, it is executed.

TIP

If for some reason you need to clear out command history, it's
simple to do. Just type history -c and the contents of the current
history are wiped. Next enter history -a to also clear out the
.bash_history file.

Using Bash shell command history can be a great timesaver. You can do
even more with the built-in history command. Be sure to view the Bash
manual pages for history by typing man history .

Using command aliases
The alias command is another useful built-in shell command. A command
alias allows you to create an alias name for common commands (along with
their parameters) to help keep your typing to a minimum.

Most likely, your Linux distribution has already set some common
command aliases for you. To see a list of the active aliases, use the alias
command along with the -p parameter:

$ alias -p
[...]

alias l='ls -CF'
alias la='ls -A'
alias ll='ls -alF'
alias ls='ls --color=auto'
$

Notice that, on this Ubuntu Linux distribution, an alias is used to override
the standard ls command. It automatically provides the --color=auto
parameter, which will cause the ls command to use color coding (for
example, directories may be shown in blue), if the terminal supports
colorization. The LS_COLORS environment variable controls the color codes
used (environment variables are covered in Chapter 6).

TIP

When jumping between various distributions, be cautious using
color coding to help you determine which listed name is a directory
and which is a file. Because color codes are not standardized, it's
best to use the ls -F command to see the file's type code instead.

You can create your own aliases using the alias command:

$ alias li='ls -i'
$
$ li
34665652 Desktop 1415018 NetworkManager.conf
 1414976 Doc.tar 50350618 OldDocuments
34665653 Documents 1414981 Pictures
51693739 Downloads 16789591 Public
 1415016 hlink_test_one 1415019
really_ridiculously_long_file_name
 1415021 log_file 1415020 slink_test_file
51693757 Music 1415551 Templates
 1414978 Music.tar 1415523 test_file
 1415525 my_file 1415016 test_one
 1415524 my_scrapt 1415017 test_two
 1415519 my_script 16789592 Videos
 1415015 my_scrypt
$

After you define an alias value, you can use it at any time in your shell,
including in shell scripts. Be aware that because command aliases are built-

in commands, an alias is valid only for the shell process in which it is
defined:

$ alias li='ls -i'
$
$ bash
$ li
bash: li: command not found...
$
$ exit
exit
$
$ li
34665652 Desktop 1415018 NetworkManager.conf
 1414976 Doc.tar 50350618 OldDocuments
[...]
1415524 my_scrapt 1415017 test_two
 1415519 my_script 16789592 Videos
 1415015 my_scrypt
$

TIP

If needed, you can turn off an alias by typing unalias alias-name at
the command line. Keep in mind, if the alias wasn't set by you, it
will be turned back on the next time you log into the system. You
can modify your environment files to permanently disable an alias.
Environment files are covered in Chapter 6.

Fortunately, you can make an alias value permanent across subshells. The
next chapter covers how to do that, along with environment variables.

Summary
This chapter discussed the complicated interactive program, the GNU Bash
shell. We covered understanding the shell process and its relationships,
including how subshells are spawned and their relationship to the parent
shell. We also explored commands that create child processes and
commands that don't.

The default interactive shell is normally started whenever a user logs into a
terminal. The shell that the system starts depends on a user ID
configuration. Typically, it is /usr/bin/bash . The default system shell,
/usr/bin/sh , is used for system shell scripts, such as those needed at
startup.

A subshell or child shell can be spawned using the bash command. They
are also created when a process list or the coproc command is used. Using
subshells at the command line can allow for creative and productive use of
the CLI. Subshells can be nested, spawning grandchild shells and great-
grandchild shells. Creating a subshell is an expensive process because a
new environment for the shell must be created as well.

Finally, we looked at two different types of shell commands: built-in and
external commands. External commands create a child process with a new
environment, but a built-in command does not. This causes external
commands to be more expensive to use. Because a new environment is not
needed, built-in commands are more efficient and not affected by any
environment changes.

Shells, subshells, processes, and forked processes are all affected by
environment variables. How the variables affect and can be used within
these different contexts is explored in the next chapter.

CHAPTER 6
Using Linux Environment Variables
IN THIS CHAPTER

Looking at environment variables

Creating your own local variables

Removing variables

Exploring default shell environment variables

Setting the PATH environment variable

Locating environment files

Using variable arrays

Linux environment variables help define your Linux shell experience.
Many programs and scripts use environment variables to obtain system
information and store temporary data as well as configuration information.
Environment variables are set in lots of places on the Linux system, and it's
helpful to know their locations.

This chapter walks you through the world of Linux environment variables,
showing where they are, how to use them, and even how to create your
own. The chapter concludes with how to use variable arrays.

Exploring Environment Variables
The Bash shell uses a feature called environment variables to store
information about the shell session and the working environment (thus the
name environment variables). This feature also allows you to store data in
memory that can be easily accessed by any program or script running from
the shell. It is a handy way to store needed persistent data.

There are two environment variable types in the Bash shell:

Global variables

Local variables

This section describes each type of environment variable and shows how to
view and use them.

NOTE

Even though the Bash shell uses specific environment variables that
are consistent, different Linux distributions often add their own
environment variables. The environment variable examples you see
in this chapter may differ slightly from what's available on your
specific distribution. If you run into an environment variable not
covered here, check your Linux distribution's documentation.

Looking at global environment variables
Global environment variables are visible from the shell session and from
any spawned child subshells. Local variables are available only in the shell
that creates them. This fact makes global environment variables useful in
applications that create child subshells, which require parent shell
information.

The Linux system sets several global environment variables when you start
your Bash session. (For more details about what variables are started at that
time, see the “Locating System Environment Variables” section later in this
chapter.) The system environment variables almost always use all capital
letters to differentiate them from user-defined variables.

To view global environment variables, use the env or the printenv
command:

$ printenv
[...]
USER=christine
[...]
PWD=/home/christine
HOME=/home/christine

[...]
TERM=xterm
SHELL=/bin/bash
[...]
HISTSIZE=1000
[...]
$

So many global environment variables get set for the Bash shell that the
display had to be snipped. Not only are many set during the login process,
but how you log in can affect which ones are set as well.

To display an individual environment variable's value, you can use the
printenv command, but not the env command:

$ printenv HOME
/home/christine
$
$ env HOME
env: 'HOME': No such file or directory
$

You can also use the echo command to display a variable's value. When
referencing an environment variable in this case, you must place a dollar
sign ($) before the environment variable name:

$ echo $HOME
/home/christine
$

Using the dollar sign along with the variable name does more than just
display its current definition when used with the echo command. The dollar
sign before a variable name allows the variable to be passed as a parameter
to various other commands:

$ ls $HOME
Desktop Music NetworkManager.conf
Templates
Doc.tar Music.tar OldDocuments
test_file
Documents my_file Pictures
test_one
Downloads my_scrapt Public
test_two
hlink_test_one my_script
really_ridiculously_long_file_name Videos

log_file my_scrypt slink_test_file
$

As mentioned earlier, global environment variables are also available to any
process's subshells:

$ bash
$ ps -f
UID PID PPID C STIME TTY TIME CMD
christi+ 2770 2766 0 11:19 pts/0 00:00:00 -bash
christi+ 2981 2770 4 11:37 pts/0 00:00:00 bash
christi+ 3003 2981 0 11:37 pts/0 00:00:00 ps -f
$
$ echo $HOME
/home/christine
$ exit
exit
$

In this example, after spawning a subshell using the bash command, the
HOME environment variable's current value is shown. It is set to the exact
same value, /home/christine , as it was in the parent shell.

Looking at local environment variables
Local environment variables, as their name implies, can be seen only in the
local process in which they are defined. Even though they are local, they are
just as important as global environment variables. In fact, the Linux system
also defines standard local environment variables for you by default.
However, you can also define your own local variables. These, as you
would assume, are called user-defined local variables.

Trying to see the local variables list is a little tricky at the CLI.
Unfortunately, there isn't a command that displays only these variables. The
set command displays all variables defined for a specific process, including
both local and global environment variables as well as user-defined
variables:

$ set
BASH=/bin/bash
[...]
HOME=/home/christine
[...]
PWD=/home/christine

[...]
SHELL=/bin/bash
[...]
TERM=xterm
[...]
USER=christine
[...]
colors=/home/christine/.dircolors
my_variable='Hello World'
[...]
_command ()
{
[...]
$

All the global environment variables displayed using the env or printenv
command appear in the set command's output. The additional environment
variables are the local environment and user-defined variables. Also
included in the set command's output are local shell functions, such as the
_command function listed in the previous display. Shell functions are covered
in Chapter 17, “Creating Functions.”

NOTE

The differences between the commands env , printenv , and set are
subtle. The set command displays global and local environment
variables, user-defined variables, and local functions. It also sorts
the display alphabetically. The env and printenv are different from
set in that they do not sort the variables, nor do they include local
environment variables, local user-defined variables, or local shell
functions. Used in this context, env and printenv produce duplicate
listings. However, the env command has additional functionality
that printenv does not have, making it the slightly more powerful
command.

Setting User-Defined Variables
You can set your own variables directly from the Bash shell. This section
shows you how to create your own variables and reference them from an

interactive shell or shell script program.

Setting local user-defined variables
After you start a Bash shell (or spawn a shell script), you're allowed to
create local user-defined variables that are visible within your shell process.
You can assign either a numeric or a string value to an environment variable
by assigning the variable to a value using the equal sign:

$ my_variable=Hello
$ echo $my_variable
Hello
$

That was simple! Now, any time you need to reference the my_variable
user-defined variable's value, just reference it by the name $my_variable.

If you need to assign a string value that contains spaces, you must use a
single or double quotation mark to delineate the beginning and the end of
the string:

$ my_variable=Hello World
bash: World: command not found...
$
$ my_variable="Hello World"
$ echo $my_variable
Hello World
$

Without the quotation marks, the Bash shell assumes that the next word
(World) is another command to process. Notice that for the local variable
you defined, you used lowercase letters, whereas the system environment
variables you've seen so far have all used uppercase letters.

TIP

The standard Bash shell convention is for all environment variables
to use uppercase letters. If you are creating a local variable for
yourself and your own shell scripts, use lowercase letters. Variables
are case sensitive. By keeping your user-defined local variables
lowercase, you avoid the potential disaster of redefining a system
environment variable.

It's extremely important that you not use spaces between the variable name,
the equal sign, and the value. If you put any spaces in the assignment, the
Bash shell interprets the value as a separate command:

$ my_variable = "Hello World"
bash: my_variable: command not found...
$

After you set a local variable, it's available for use anywhere within your
shell process. However, if you spawn another shell, it's not available in the
child shell:

$ my_variable="Hello World"
$
$ bash
$ echo $my_variable

$ exit
exit
$ echo $my_variable
Hello World
$

In this example, a child shell was spawned via the bash command. The
user-defined my_variable was not available in the child shell. This is
demonstrated by the blank line returned after the echo $my_variable
command. After the child shell was exited and returned to the original shell,
the local variable was available.

Similarly, if you set a local variable in a child process, after you leave the
child process, the local variable is no longer available:

$ echo $my_child_variable

$ bash
$ my_child_variable="Hello Little World"
$ echo $my_child_variable
Hello Little World
$ exit
exit
$ echo $my_child_variable

$

The local variable set within the child shell doesn't exist after a return to the
parent shell. You can change this behavior by turning your local user-
defined variable into a global variable.

Setting global environment variables
Global environment variables are visible from any child processes created
by the parent process that sets the variable. The method used to create a
global environment variable is to first create a local variable and then
export it to the global environment.

This is done by using the export command and the variable name (minus
the dollar sign):

$ my_variable="I am Global now"
$
$ export my_variable
$
$ echo $my_variable
I am Global now
$ bash
$ echo $my_variable
I am Global now
$ exit
exit
$ echo $my_variable
I am Global now
$

After defining and exporting the local variable my_variable , a child shell
was started by the bash command. The child shell was able to properly
display the my_variable variable's value. The variable kept its value,
because the export command made it global.

TIP

To keep typing to a minimum, you can set the variable and export it
all in one command. Using the previous example, you would type
export my_variable="I am Global Now" and press Enter at the
command line.

Changing a global environment variable within a child shell does not affect
the variable's value in the parent shell:

$ export my_variable="I am Global now"
$ echo $my_variable
I am Global now
$
$ bash
$ echo $my_variable
I am Global now
$ my_variable="Null"
$ echo $my_variable
Null
$ exit
exit
$
$ echo $my_variable
I am Global now
$

After defining and exporting the variable my_variable , a subshell was
started by the bash command. The subshell properly displayed the value of
the my_variable global environment variable. The variable's value was
then changed by the child shell. However, the variable's value was modified
only within the child shell, and not in the parent's shell environment.

A child shell cannot even use the export command to change the parent
shell's global variable's value:

$ echo $my_variable
I am Global now
$
$ bash
$ export my_variable="Null"
$ echo $my_variable

Null
$ exit
exit
$
$ echo $my_variable
I am Global now
$

Even though the child shell redefined and exported the variable
my_variable , the parent shell's my_variable variable kept its original
value.

Removing Environment Variables
Of course, if you can create a new environment variable, it makes sense that
you can also remove an existing environment variable. You can do this with
the unset command. When referencing the environment variable in the
unset command, remember not to use the dollar sign:

$ my_variable="I am going to be removed"
$ echo $my_variable
I am going to be removed
$
$ unset my_variable
$ echo $my_variable

$

TIP

It can be confusing to remember when to use and when not to use
the dollar sign with environment variables. Just remember this: If
you are doing anything with the variable, use the dollar sign. If you
are doing anything to the variable, don’t use the dollar sign. The
exception to this rule is using printenv to display a variable's value.

When dealing with global environment variables, things get a little tricky. If
you're in a child process and unset a global environment variable, it applies
only to the child process. The global environment variable is still available
in the parent process:

$ export my_variable="I am Global now"
$ echo $my_variable
I am Global now
$
$ bash
$ echo $my_variable
I am Global now
$ unset my_variable
$ echo $my_variable

$ exit
exit
$ echo $my_variable
I am Global now
$

Just as with modifying a variable, you cannot unset it in a child shell and
have the variable be unset in the parent's shell.

Uncovering Default Shell Environment
Variables
The Bash shell uses specific environment variables by default to define the
system environment. You can always count on these variables being set or
available to be set on your Linux system. Because the Bash shell is a
derivative of the original Unix Bourne shell, it also includes environment
variables originally defined in that shell.

Table 6-1 shows the environment variables that the Bash shell provides that
are compatible with the original Unix Bourne shell.

TABLE 6-1 The Bash Shell Bourne Variables

Variable Description
CDPATH A colon-separated list of directories used as a search path for the

cd command
HOME The current user's home directory
IFS A list of characters that separate fields used by the shell to split

text strings
MAIL The filename for the current user's mailbox (the Bash shell

checks this file for new mail)
MAILPATH A colon-separated list of multiple filenames for the current

user's mailbox (the Bash shell checks each file in this list for
new mail)

OPTARG The value of the last option argument processed by the getopt
command

OPTIND The index value of the last option argument processed by the
getopt command

PATH A colon-separated list of directories where the shell looks for
commands

PS1 The primary shell command-line interface's prompt string
PS2 The secondary shell command-line interface's prompt string

Besides the default Bourne environment variables, the Bash shell also
provides several variables of its own, as shown in Table 6-2.

TABLE 6-2 The Bash Shell Environment Variables

Variable Description
BASH The full pathname to execute the current

instance of the Bash shell
BASH_ALIASES An associative array of currently set aliases
BASH_ARGC A variable array that contains the number of

parameters being passed to a subroutine or shell
script

BASH_ARCV A variable array that contains the parameters
being passed to a subroutine or shell script

BASH_ARCV0 A variable that contains the name of either the
shell or, if used within a script, the shell script's
name

BASH_CMDS An associative array of locations of commands
the shell has executed

BASH_COMMAND The shell command currently being or about to
be executed

BASH_COMPAT A value designating the shell's compatibility
level

BASH_ENV When set, each Bash script attempts to execute a
startup file defined by this variable before
running.

BASH_EXECUTION_STRING The command(s) passed using the bash
command's -c option

BASH_LINENO A variable array containing the source code line
number of the currently executing shell function

BASH_LOADABLE_PATH A colon-separated list of directories where the
shell looks for dynamically loadable built-ins

BASH_REMATCH A read-only variable array containing patterns
and their sub-patterns for positive matches using
the regular expression comparison operator, =~

Variable Description
BASH_SOURCE A variable array containing the source code

filename of the currently executing shell
function

BASH_SUBSHELL The current nesting level of a subshell
environment (the initial value is 0)

BASH_VERSINFO A variable array that contains the individual
major and minor version numbers of the current
instance of the Bash shell

BASH_VERSION The version number of the current instance of
the Bash shell

BASH_XTRACEFD If set to a valid file descriptor (0,1,2), trace
output generated from the 'set -x' debugging
option can be redirected. This is often used to
separate trace output into a file.

BASHOPTS A list of Bash shell options that are currently
enabled

BASHPID Process ID of the current Bash process
CHILD_MAX A setting that controls the number of exited

child status values for the shell to track
COLUMNS Contains the terminal width of the terminal used

for the current instance of the Bash shell
COMP_CWORD An index into the variable COMP_WORDS , which

contains the current cursor position
COMP_LINE The current command line
COMP_POINT The index of the current cursor position relative

to the beginning of the current command
COMP_KEY The final key used to invoke the current

completion of a shell function
COMP_TYPE An integer value representing the type of

completion attempted that caused a completion
shell function to be invoked

Variable Description
COMP_WORDBREAKS The Readline library word separator characters

for performing word completion
COMP_WORDS An array variable that contains the individual

words on the current command line
COMPREPLY An array variable that contains the possible

completion codes generated by a shell function
COPROC An array variable that holds an unnamed

coprocess's I/O file descriptors
DIRSTACK An array variable that contains the current

contents of the directory stack
EMACS Indicates the emacs shell buffer is executing and

line editing is disabled, when set to 't'
EPOCHREALTIME Contains the number of seconds since the Unix

Epoch (00:00:00 UTC on 1 January 1970) with
micro-seconds included

EPOCHSECONDS Contains the number of seconds since the Unix
Epoch (00:00:00 UTC on 1 January 1970)
without micro-seconds

ENV When set, executes the startup file defined
before a Bash shell script runs (it is used only
when the Bash shell has been invoked in POSIX
mode)

EUID The numeric effective user ID of the current user
EXECIGNORE A colon-separated list of filters that determine

executable files to ignore (such as shared library
files), when employing PATH in a search

FCEDIT The default editor used by the fc command
FIGNORE A colon-separated list of suffixes to ignore when

performing filename completion
FUNCNAME The name of the currently executing shell

function

Variable Description
FUNCNEST Sets the maximum allowed function nesting

level, when set to a number greater than 0 (if it
is exceeded, the current command aborts)

GLOBIGNORE A colon-separated list of patterns defining the
set of filenames to be ignored by filename
expansion

GROUPS A variable array containing the list of groups of
which the current user is a member

histchars Up to three characters, which control history
expansion

HISTCMD The history number of the current command
HISTCONTROL Controls what commands are entered in the shell

history list
HISTFILE The name of the file in which to save the shell

history list (.bash_history by default)
HISTFILESIZE The maximum number of lines to save in the

history file
HISTIGNORE A colon-separated list of patterns used to decide

which commands are ignored for the history file
HISTSIZE The maximum number of commands stored in

the history file
HISTTIMEFORMAT Used as a formatting string to print each

command's time stamp in Bash history, if set and
not null

HOSTFILE Contains the name of the file that should be read
when the shell needs to complete a hostname

HOSTNAME The name of the current host
HOSTTYPE A string describing the machine the Bash shell is

running on

Variable Description
IGNOREEOF The number of consecutive EOF characters the

shell must receive before exiting (if this value
doesn't exist, the default is 1)

INPUTRC The name of the Readline initialization file (the
default is .inputrc)

INSIDE_EMACS Set only when process is running in an Emacs
editor shell buffer and can disable line editing
(disablement of line editing also depends on the
value in the TERM variable)

LANG The locale category for the shell
LC_ALL Overrides the LANG variable, defining a locale

category
LC_COLLATE Sets the collation order used when sorting string

values
LC_CTYPE Determines the interpretation of characters used

in filename expansion and pattern matching
LC_MESSAGES Determines the locale setting used when

interpreting double-quoted strings preceded by a
dollar sign

LC_NUMERIC Determines the locale setting used when
formatting numbers

LC_TIME Determines the locale setting used when
formatting data and time

LINENO The line number in a script currently executing
LINES Defines the number of lines available on the

terminal
MACHTYPE A string defining the system type in cpu-

company-system format
MAILCHECK How often (in seconds) the shell should check

for new mail (the default is 60)

Variable Description
MAPFILE An array variable that holds read-in text from

the mapfile command when no array variable
name is given

OLDPWD The previous working directory used in the shell
OPTERR If set to 1, the Bash shell displays errors

generated by the getopts command.
OSTYPE A string defining the operating system the shell

is running on
PIPESTATUS A variable array containing a list of exit status

values from the processes in the foreground
process

POSIXLY_CORRECT If set, Bash starts in POSIX mode.
PPID The process ID (PID) of the Bash shell's parent

process
PROMPT_COMMAND If set, the command to execute before displaying

the primary prompt
PROMPT_DIRTRIM An integer used to indicate the number of

trailing directory names to display when using
the \w and \W prompt string escapes (the
directory names removed are replaced with one
set of ellipses)

PS0 If set, contents are displayed by the interactive
shell after the command is entered but before
command is executed.

PS3 The prompt to use for the select command
PS4 The prompt displayed before the command line

is echoed if the Bash -x parameter is used
PWD The current working directory
RANDOM Returns a random number between 0 and 32767

(assigning a value to this variable seeds the
pseudo-random number generator)

Variable Description
READLINE_LINE Readline buffer contents when using bind -x

command
READLINE_POINT Readline buffer content insertion point's current

position when using bind -x command
REPLY The default variable for the read command
SECONDS The number of seconds since the shell was

started (assigning a value resets the timer to the
value)

SHELL The full pathname to the Bash shell
SHELLOPTS A colon-separated list of enabled Bash shell

options
SHLVL Indicates the shell level, incremented by one

each time a new Bash shell is started
TIMEFORMAT A format specifying how the shell displays time

values
TMOUT The value of how long (in seconds) the select

and read commands should wait for input (the
default of 0 indicates to wait indefinitely)

TMPDIR Directory name where the Bash shell creates
temporary files for its use

UID The numeric real user ID of the current user

You may notice that not all default environment variables are shown when
the set command is used. When not in use, a default environment variable
is not required to contain a value.

NOTE

Whether or not a default environment variable is in use on your
system sometimes depends on the version of the Bash shell running.
For example, EPOCHREALTIME is only available on Bash shell version
5 and above. You can view your Bash shell's version number by
typing bash --version and pressing Enter at the CLI.

Setting the PATH Environment Variable
When you enter an external command (see Chapter 5, “Understanding the
Shell”) in the shell CLI, the shell must search the system to find the
program. The PATH environment variable defines the directories it searches
looking for commands and programs. On this Ubuntu Linux system, the
PATH environment variable looks like this:

$ echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:
/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
$

The directories in the PATH are separated by colons. And this shows that
there are nine directories where the shell looks for commands and
programs.

If a command's or program's location is not included in the PATH variable,
the shell cannot find it without an absolute directory reference. If the shell
cannot find the command or program, it produces an error message:

$ myprog
myprog: command not found
$

The problem is that sometimes applications place their executable programs
in directories that aren't in the PATH environment variable. The trick is to
ensure your PATH environment variable includes all the directories where
your applications reside.

NOTE

Some script builders use the env command as the first line in a Bash
shell script (covered in Chapter 11, “Basic Script Building”) as in
the following: #!/usr/bin/env bash . The advantage of this method
is that the env utility searches for the bash shell program within the
$PATH directories, making the script more portable to other Linux
distributions.

You can add new search directories to the existing PATH environment
variable without having to rebuild it from scratch. The individual directories
listed in the PATH are separated by colons. All you need to do is reference
the original PATH value, add a colon (:), and type in the new directory using
an absolute directory reference. On a CentOS Linux system, it looks
something like this:

$ ls /home/christine/Scripts/
myprog
$ echo $PATH
/home/christine/.local/bin:/home/christine/bin:/usr/local/bi
n:/usr/bin:/usr/local/sbin:/usr/sbin
$
$ PATH=$PATH:/home/christine/Scripts
$
$ myprog
The factorial of 5 is 120
$

By adding the directory to the PATH environment variable, you can now
execute your program from anywhere in the virtual directory structure:

$ cd /etc
$ myprog
The factorial of 5 is 120
$

TIP

If you want your program's location to be available to subshells, be
sure to export your modified PATH environment variable.

Changes to the PATH variable last only until you exit the system or the
system reboots. The changes are not persistent. In the next section, you see
how you can make changes to environment variables permanent.

Locating System Environment Variables
The Linux system uses environment variables for many purposes. You
know now how to modify system environment variables and create your
own variables. The trick is in how these environment variables are made
persistent.

When you start a Bash shell by logging into the Linux system, by default
Bash checks several files for commands. These files are called startup files
or environment files. Which startup files Bash processes depends on the
method you use to start the Bash shell. You can start a Bash shell in three
ways:

As a default login shell at login time

As an interactive shell that is started by spawning a subshell

As a noninteractive shell to run a script

The following sections describe the startup files the Bash shell executes in
each of these startup methods.

Understanding the login shell process
When you log into the Linux system, the Bash shell starts as a login shell.
The login shell typically looks for five different startup files to process
commands from:

/etc/profile

$HOME/.bash_profile

$HOME/.bashrc

$HOME/.bash_login

$HOME/.profile

The /etc/profile file is the main default startup file for the Bash shell on
the system. All users on the system execute this startup file when they log
in.

NOTE

Be aware that some Linux distributions use pluggable
authentication modules (PAM). In this case, before the Bash shell is
started, PAM files are processed, including ones that may contain
environment variables. PAM file examples include the
/etc/environment file and the $HOME/.pam_environment file. Find
more information about PAM at www.linux-pam.org.

The other four startup files are specific for each user, located in the home
($HOME) directory, and can be customized for an individual user's
requirements. Let's look more closely at these files.

Viewing the /etc/profile file
The /etc/profile file is the main default startup file for the Bash shell.
Whenever you log into the Linux system, Bash executes the commands in
the /etc/profile startup file first. Different Linux distributions place
different commands in this file. On this Ubuntu Linux system, the file looks
like this:

$ cat /etc/profile
/etc/profile: system-wide .profile file for the Bourne
shell (sh(1))
and Bourne compatible shells (bash(1), ksh(1), ash(1),
...).

if ["${PS1-}"]; then

http://www.linux-pam.org/

 if ["${BASH-}"] && "$BASH" != "/bin/sh"]; then
 # The file bash.bashrc already sets the default PS1.
 # PS1='\h:\w\$ '
 if [-f /etc/bash.bashrc]; then
 . /etc/bash.bashrc
 fi
 else
 if ["`id -u`" -eq 0]; then
 PS1='# '
 else
 PS1='$ '
 fi
 fi
fi

if [-d /etc/profile.d]; then
 for i in /etc/profile.d/*.sh; do
 if [-r $i]; then
 . $i
 fi
 done
 unset i
fi
$

Most of the commands and syntax you see in this file are covered in more
detail in Chapter 12, “Using Structure Commands,” and later chapters. Each
distribution's /etc/profile file has different settings and commands. For
example, notice that a file is mentioned in this Ubuntu distribution's
/etc/profile file, called /etc/bash.bashrc . It contains system
environment variables.

However, in this next CentOS distribution's /etc/profile file listed, no
/etc/bash.bashrc file is called. Also note that it sets and exports some
system environment variables (HISTSIZE ; HOSTNAME) within itself:

$ cat /etc/profile
/etc/profile

System wide environment and startup programs, for login
setup
Functions and aliases go in /etc/bashrc

It's NOT a good idea to change this file unless you know
what you
are doing. It's much better to create a custom.sh shell

script in
/etc/profile.d/ to make custom changes to your
environment, as this
will prevent the need for merging in future updates.

pathmunge () {
 case ":${PATH}:" in
 :"$1":)
 ;;
 *)
 if ["$2" = "after"] ; then
 PATH=$PATH:$1
 else
 PATH=$1:$PATH
 fi
 esac
}

if [-x /usr/bin/id]; then
 if [-z "$EUID"]; then
 # ksh workaround
 EUID=`id -u`
 UID=`id -ru`
 fi
 USER="`id -un`"
 LOGNAME=$USER
 MAIL="/var/spool/mail/$USER"
fi

Path manipulation
if ["$EUID" = "0"]; then
 pathmunge /usr/sbin
 pathmunge /usr/local/sbin
else
 pathmunge /usr/local/sbin after
 pathmunge /usr/sbin after
fi

HOSTNAME=`/usr/bin/hostname 2>/dev/null`
HISTSIZE=1000
if ["$HISTCONTROL" = "ignorespace"] ; then
 export HISTCONTROL=ignoreboth
else
 export HISTCONTROL=ignoredups
fi

export PATH USER LOGNAME MAIL HOSTNAME HISTSIZE HISTCONTROL

By default, we want umask to get set. This sets it for
login shell
Current threshold for system reserved uid/gids is 200
You could check uidgid reservation validity in
/usr/share/doc/setup-*/uidgid file
if [$UID -gt 199] && "`id -gn`" = "`id -un`"]; then
 umask 002
else
 umask 022
fi

for i in /etc/profile.d/*.sh /etc/profile.d/sh.local ; do
 if [-r "$i"]; then
 if ["${-#*i}" != "$-"]; then
 . "$i"
 else
 . "$i">/dev/null
 fi
 fi
done

unset i
unset -f pathmunge

if [-n "${BASH_VERSION-}"] ; then
 if [-f /etc/bashrc] ; then
 # Bash login shells run only /etc/profile
 # Bash non-login shells run only /etc/bashrc
 # Check for double sourcing is done in
/etc/bashrc.
 . /etc/bashrc
 fi
fi
$

Both distributions' /etc/profile files use a certain feature. It is a for
statement that iterates through any files located in the /etc/profile.d
directory. (for statements are discussed in detail in Chapter 13, “More
Structured Commands.”) This provides a place for the Linux system to
place application-specific and/or administrator-customized startup files that
are executed by the shell when you log in. On this Ubuntu Linux system,
the following files are in the /etc/profile.d directory:

$ ls /etc/profile.d
01-locale-fix.sh bash_completion.sh gawk.csh Z97-

byobu.sh
apps-bin-path.sh cedilla-portuguese.sh gawk.sh
$

You can see that this CentOS system has quite a few more files in
/etc/profile.d :

$ ls /etc/profile.d
bash_completion.sh colorxzgrep.csh flatpak.sh less.csh
vim.sh
colorgrep.csh colorxzgrep.sh gawk.csh less.sh
vte.sh
colorgrep.sh colorzgrep.csh gawk.sh
PackageKit.sh which2.csh
colorls.csh colorzgrep.sh lang.csh sh.local
which2.sh
colorls.sh csh.local lang.sh vim.csh
$

Notice that several files are related to specific applications on the system.
Most applications create two startup files — one for the Bash shell (using
the .sh extension) and one for the C shell (using the .csh extension).

Viewing the $HOME startup files
The remaining startup files are all used for the same function — to provide
a user-specific startup file for defining user-specific environment variables.
Most Linux distributions use only one or two of these four startup files:

$HOME/.bash_profile

$HOME/.bashrc

$HOME/.bash_login

$HOME/.profile

Notice that all four files start with a dot, making them hidden files (they
don't appear in a normal ls command listing). Because they are in the user's
$HOME directory, each user can edit the files and add their own environment
variables that are active for every Bash shell session they start.

NOTE

Environment files are one area where Linux distributions vary
greatly. Not every $HOME file listed in this section exists for every
user. For example, some users may have only the
$HOME/.bash_profile file. This is normal.

The first file found in the following ordered list is run, and the rest are
ignored:

$HOME/.bash_profile
$HOME/.bash_login
$HOME/.profile

Notice that $HOME/.bashrc is not in this list. This is because it is typically
run from one of the other files.

TIP

Remember that $HOME represents a user's home directory. Also, the
tilde (~) is used to represent a user's home directory.

This CentOS Linux system contains the following in the .bash_profile
file:

$ cat $HOME/.bash_profile
.bash_profile

Get the aliases and functions
if [-f ~/.bashrc]; then
 . ~/.bashrc
fi

User specific environment and startup programs
$

The .bash_profile startup file first checks to see if the startup file,
.bashrc , is present in the $ HOME directory. If it's there, the startup file
executes the commands in it.

Understanding the interactive shell process
If you start a Bash shell without logging into a system (if you just type bash
at a CLI prompt, for example), you start what's called an interactive shell.
The interactive shell, like the login shell, provides a CLI prompt for you to
enter commands.

If Bash is started as an interactive shell, it doesn't process the /etc/profile
file. Instead, it checks only for the .bashrc file in the user's $ HOME
directory.

On this Linux CentOS distribution, the file looks like this:

$ cat $HOME/.bashrc
.bashrc

Source global definitions
if [-f /etc/bashrc]; then
 . /etc/bashrc
fi

User specific environment
PATH="$HOME/.local/bin:$HOME/bin:$PATH"
export PATH
Uncomment the following line if you don't like systemctl's
auto-paging feature:
export SYSTEMD_PAGER=

User specific aliases and functions
$

The .bashrc file does two things. First, it checks for a common bashrc file
in the /etc directory. Second, it provides a place for the user to enter
personal command aliases (discussed in Chapter 5) and script functions
(described in Chapter 17).

Understanding the noninteractive shell process
The last type of shell is a noninteractive subshell. This is the shell where the
system can start to execute a shell script. This is different in that there isn't a
CLI prompt to worry about. However, you may want to run specific startup
commands each time you start a script on your system.

TIP

Scripts can be executed in different ways. Only some execution
methods start a subshell. You'll learn about the different shell
execution methods in Chapter 11.

To accommodate that situation, the Bash shell provides the BASH_ENV
environment variable. When the shell starts a noninteractive subshell
process, it checks this environment variable for the startup file name to
execute. If one is present, the shell executes the file's commands, which
typically include variables set for the shell scripts.

On this CentOS Linux distribution, this environment value is not set by
default. When a variable is not set, the printenv command simply returns
the CLI prompt:

$ printenv BASH_ENV
$

On this Ubuntu distribution, the BASH_ENV variable isn't set either.
Remember that, when a variable is not set, the echo command displays a
blank line and returns the CLI prompt:

$ echo $BASH_ENV

$

So if the BASH_ENV variable isn't set, how do the shell scripts get their
environment variables? Remember that some shell script execution methods
start a subshell, also called a child shell (see Chapter 5). A child shell
inherits its parent shell's exported variables.

For example, if the parent shell was a login shell and had variables set and
exported in the /etc/profile file, /etc/profile.d/*.sh files, and the
$HOME/.bashrc file, the child shell for the script inherits these exported
variables.

TIP

Any variables set, but not exported, by the parent shell are local
variables. Local variables are not inherited by a subshell.

For scripts that do not start a subshell, the variables are already available in
the current shell. Thus, even if BASH_ENV is not set, both the current shell's
local and global variables are present to be used.

Making environment variables persistent
Now that you know your way around the various shell process types and
their various environment files, locating the permanent environment
variables is much easier. You can also set your own permanent global or
local variables using these files.

For global environment variables (those variables needed by all the users on
a Linux system), it may be tempting to put new or modified variable
settings in /etc/profile , but this is a bad idea. The file could be changed
when your distribution is upgraded, and you would lose all the customized
variable settings.

It is a better idea to create a file ending with .sh in the /etc/profile.d/
directory. In that file, place all your new or modified global environment
variable settings.

On most distributions, the best place to store an individual user's persistent
Bash shell variables is in the $HOME/.bashrc file. This is true for all shell
process types. However, if the BASH_ENV variable is set, keep in mind that
unless it points to $HOME/.bashrc , you may need to store a user's variables
for noninteractive shell types elsewhere.

NOTE

User environment variables for graphical interface elements, such
as the GUI client, may need to be set in different configuration files
than where Bash shell environment variables are set.

Recall from Chapter 5 that the command alias settings are also not
persistent. You can also store your personal alias settings in the
$HOME/.bashrc startup file to make them permanent.

Learning about Variable Arrays
A really cool feature of environment variables is that they can be used as
arrays. An array is a variable that can hold multiple values. Values can be
referenced either individually or as a whole for the entire array.

To set multiple values for an environment variable, just list them in
parentheses, with values separated by spaces:

$ mytest=(zero one two three four)
$

Not much excitement there. If you try to display the array as a normal
environment variable, you'll be disappointed:

$ echo $mytest
zero
$

Only the first value in the array appears. To reference an individual array
element, you must use a numerical index value, which represents its place
in the array. The numeric value is enclosed in square brackets, and
everything after the dollar sign is encased by curly brackets:

$ echo ${mytest[2]}
two
$

TIP

Environment variable arrays start with an index value of 0. This
can be confusing.

To display an entire array variable, you use the asterisk wildcard character
as the index value:

$ echo ${mytest[*]}
zero one two three four
$

You can also change the value of an individual index position:

$ mytest[2]=seven
$ echo ${mytest[2]}
seven
$

You can even use the unset command to remove an individual value within
the array, but be careful, because this gets tricky. Consider this example:

$ unset mytest[2]
$ echo ${mytest[*]}
zero one three four
$
$ echo ${mytest[2]}

$ echo ${mytest[3]}
three
$

This example uses the unset command to remove the value at index value
2. When you display the array, it appears that the other index values just
dropped down one. However, if you specifically display the data at index
value 2, you see that that location is empty.

You can remove the entire array just by using the array name in the unset
command:

$ unset mytest
$ echo ${mytest[*]}

$

Sometimes variable arrays just complicate matters, so they're often not used
in shell script programming. They're not very portable to other shell
environments, which is a downside if you do lots of shell programming for
different shells. Some Bash system environment variables use arrays (such
as BASH_VERSINFO), but overall you probably won't run into them very
often.

Summary
This chapter examined the world of Linux environment variables. Global
environment variables can be accessed from any child shell spawned by the
parent shell in which they're defined. Local environment variables can be
accessed only from the process in which they're defined.

The Linux system uses both global and local environment variables to store
information about the system environment. You can access this information
from the shell command-line interface, as well as within shell scripts. The
Bash shell uses the system environment variables defined in the original
Unix Bourne shell, as well as lots of new environment variables. The PATH
environment variable defines the search pattern the Bash shell takes to find
an executable command. You can modify the PATH environment variable to
add your own directories.

You can also create global and local environment variables for your own
use. After you create an environment variable, it's accessible for the entire
duration of your shell session.

The Bash shell executes several startup files when it starts up. These startup
files can contain environment variable definitions to set standard
environment variables for each Bash session. When you log into the Linux
system, the Bash shell accesses the /etc/profile startup file and local
startup files for each user. Users can customize these files to include
environment variables and startup scripts for their own use.

Finally, we discussed the use of environment variable arrays. These
environment variables can contain multiple values in a single variable. You

can access the values either individually by referencing an index value or as
a whole by referencing the entire environment variable array name.

The next chapter dives into the world of Linux file permissions. This is
possibly the most difficult topic for novice Linux users. However, to write
good shell scripts, you need to understand how file permissions work and
be able to use them on your Linux system.

CHAPTER 7
Understanding Linux File Permissions
IN THIS CHAPTER

Understanding Linux security

Decoding the permissions

Working with Linux groups

No system is complete without some form of security. A mechanism must
be available to protect files from unauthorized viewing or modification. The
Linux system follows the Unix method of file permissions, allowing
individual users and groups access to files based on a set of security settings
for each file and directory. This chapter discusses how to use the Linux file
security system to protect data when necessary and share data when desired.

Exploring Linux Security
The core of the Linux security system is the user account. Each individual
who accesses a Linux system should have a unique user account assigned.
What permissions users have to objects on the system depends on the user
account they log in with.

User permissions are tracked using a user ID (often called a UID), which is
assigned to an account when it's created. The UID is a numerical value,
unique for each user. However, you don't log into a Linux system using
your UID. Instead, you use a login name. The login name is an
alphanumeric text string of eight characters or fewer that the user uses to
log into the system (along with an associated password).

The Linux system uses special files and utilities to track and manage user
accounts on the system. Before we can discuss file permissions, we need to
examine how Linux handles user accounts. This section describes the files
and utilities required for user accounts so that you can understand how to
use them when working with file permissions.

The /etc/passwd file
The Linux system uses a special file to match the login name to a
corresponding UID value. This file is the /etc/passwd file. The
/etc/passwd file contains several pieces of information about the user.
Here's what a typical /etc/passwd file looks like on a Linux system:

 $ cat /etc/passwd
 root:x:0:0:root:/root:/bin/bash
 bin:x:1:1:bin:/bin:/sbin/nologin
 daemon:x:2:2:daemon:/sbin:/sbin/nologin
 adm:x:3:4:adm:/var/adm:/sbin/nologin
 lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
 sync:x:5:0:sync:/sbin:/bin/sync
 shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
 halt:x:7:0:halt:/sbin:/sbin/halt
 ...
 rich:x:500:500:Rich Blum:/home/rich:/bin/bash
 mama:x:501:501:Mama:/home/mama:/bin/bash
 katie:x:502:502:katie:/home/katie:/bin/bash
 jessica:x:503:503:Jessica:/home/jessica:/bin/bash
 mysql:x:27:27:MySQL Server:/var/lib/mysql:/bin/bash
 $

The list can be very long, so we've truncated the file from our system. The
root user account is the administrator for the Linux system and is always
assigned UID 0. As you can see, the Linux system creates lots of user
accounts for various functions that aren't actual users. These are called
system accounts. A system account is a special account that services
running on the system use to gain access to resources on the system. All
services that run in background mode need to be logged into the Linux
system under a system user account.

Before security became a big issue, these services often just logged in using
the root user account. Unfortunately, if an unauthorized person broke into
one of these services, they instantly gained access to the system as the root
user. To prevent this, now just about every service that runs in the
background on a Linux server has its own user account to log in with. This
way, if a troublemaker does compromise a service, they still can't
necessarily get access to the whole system.

Linux reserves UIDs below 500 for system accounts. Some services even
require specific UIDs to work properly. When you create accounts for

normal users, most Linux systems assign the first available UID starting at
500 (although this is not necessarily true for all Linux distributions, such as
Ubuntu, which starts at 1000).

You probably noticed that the /etc/passwd file contains lots more than just
the login name and UID for the user. The fields of the /etc/passwd file
contain the following information:

The login username

The password for the user

The numerical UID of the user account

The numerical group ID (GID) of the user's primary group

A text description of the user account (called the comment field)

The location of the $HOME directory for the user

The default shell for the user

The password field in the /etc/passwd file is set to an x. This doesn't mean
that all the user accounts have the same password. In the old days of Linux,
the /etc/passwd file contained an encrypted version of the user's password.
However, since lots of programs need to access the /etc/passwd file for
user information, this became somewhat of a security problem. With the
advent of software that could easily decrypt encrypted passwords, the bad
folks had a field day trying to break user passwords stored in the
/etc/passwd file. Linux developers needed to rethink that policy.

Now, most Linux systems hold user passwords in a separate file (called the
shadow file, located at /etc/shadow). Only special programs (such as the
login program) are allowed access to this file.

As you can see, the /etc/passwd file is a standard text file. You can use any
text editor to manually perform user management functions (such as adding,
modifying, or removing user accounts) directly in the /etc/passwd file.
However, this is an extremely dangerous practice. If the /etc/passwd file
becomes corrupted, the system won't be able to read it, and it will prevent
anyone (even the root user) from logging in. Instead, it's safer to use the

standard Linux user management utilities to perform all user management
functions.

The /etc/shadow file
The /etc/shadow file provides more control over how the Linux system
manages passwords. Only the root user has access to the /etc/shadow file,
making it more secure than the /etc/passwd file.

The /etc/shadow file contains one record for each user account on the
system. A record looks like this:

 rich:1.FfcK0ns$f1UgiyHQ25wrB/hykCn020:11627:0:99999:7:::

Each /etc/shadow file record includes nine fields:

The login name corresponding to the login name in the /etc/passwd
file

The encrypted password

The day the password was last changed, depicted as the number of
days since January 1, 1970

The minimum number of days before the password can be changed

The number of days before the password must be changed

The number of days before password expiration that the user is warned
to change the password

The number of days after a password expires before the account will
be disabled

The date (stored as the number of days since January 1, 1970) since
the user account was disabled

A field reserved for future use

Using the shadow password system, the Linux system has much finer
control over user passwords. It can control how often a user must change
their password and when to disable the account if the password hasn't been
changed.

Adding a new user
The primary tool used to add new users to your Linux system is useradd .
This command provides an easy way to create a new user account and set
up the user's $HOME directory structure all at once. The useradd command
uses a combination of system default values and command-line parameters
to define a user account. To see the system default values used on your
Linux distribution, enter the useradd command with the -D parameter:

 # useradd -D
 GROUP=100
 HOME=/home
 INACTIVE=-1
 EXPIRE=
 SHELL=/bin/bash
 SKEL=/etc/skel
 CREATE_MAIL_SPOOL=yes
 #

NOTE

The default values for the useradd command are set using the
/etc/default/useradd file. Also, further security settings are
defined in the /etc/login.defs file. You can tweak these files to
change the default security behavior on your Linux system.

The -D parameter shows what defaults the useradd command uses if you
don't specify them in the command line when creating a new user account.
This example shows the following default values:

The new user will be added to a common group with group ID 100.

The new user will have a HOME account created in the directory /home/
loginname.

The account will not be disabled when the password expires.

The new account will not be set to expire at a set date.

The new account will use the bash shell as the default shell.

The system will copy the contents of the /etc/skel directory to the
user's $HOME directory.

The system will create a file in the mail directory for the user account
to receive mail.

The useradd command allows an administrator to create a default $HOME
directory configuration and then uses that as a template to create the new
user's $HOME directory. This allows you to place default files for the system
in every new user's $HOME directory automatically. In the Ubuntu Linux
system, the /etc/skel directory has the following files:

$ ls -al /etc/skel
total 32
drwxr-xr-x 2 root root 4096 2010-04-29 08:26 .
drwxr-xr-x 135 root root 12288 2010-09-23 18:49 ..
-rw-r--r-- 1 root root 220 2010-04-18 21:51 .bash_logout
-rw-r--r-- 1 root root 3103 2010-04-18 21:51 .bashrc
-rw-r--r-- 1 root root 179 2010-03-26 08:31
examples.desktop
-rw-r--r-- 1 root root 675 2010-04-18 21:51 .profile
$

You should recognize these files from Chapter 6, “Using Linux
Environment Variables.” These are the standard startup files for the Bash
shell environment. The system automatically copies these default files into
every user's $HOME directory you create.

You can test this by creating a new user account using the default system
parameters and then looking at the $HOME directory for the new user:

useradd -m test
ls -al /home/test
total 24
drwxr-xr-x 2 test test 4096 2010-09-23 19:01 .
drwxr-xr-x 4 root root 4096 2010-09-23 19:01 ..
-rw-r--r-- 1 test test 220 2010-04-18 21:51 .bash_logout
-rw-r--r-- 1 test test 3103 2010-04-18 21:51 .bashrc
-rw-r--r-- 1 test test 179 2010-03-26 08:31
examples.desktop
-rw-r--r-- 1 test test 675 2010-04-18 21:51 .profile
#

For many Linux distributions the useradd command doesn't create a $HOME
directory by default, but the –m command-line option tells it to create the

$HOME directory. You can change that behavior within the /etc/login.defs
file. As you can see in the example, the useradd command created the new
$HOME directory, using the files contained in the /etc/skel directory.

NOTE

To run the user account administration commands in this chapter,
you need to either be logged in as the special root user account or
use the sudo command to run the commands as the root user
account.

If you want to override a default value or behavior when creating a new
user, you can do that with command-line parameters. These are shown in
Table 7-1.

TABLE 7-1 The useradd Command-Line Parameters

Parameter Description
-c comment Add text to the new user's comment field.
-d home_dir Specify a different name for the home directory other than

the login name.
-e

expire_date

Specify a date, in YYYY-MM-DD format, when the
account will expire.

-f

inactive_days

Specify the number of days after a password expires when
the account will be disabled. A value of 0 disables the
account as soon as the password expires; a value of -1
disables this feature.

-g

initial_group

Specify the group name or GID of the user's login group.

-G group . .
.

Specify one or more supplementary groups the user
belongs to.

-k Copy the /etc/skel directory contents into the user's
$HOME directory (must use -m as well).

-m Create the user's $HOME directory.
-M Don't create a user's $HOME directory (used if the default

setting is to create one).
-n Create a new group using the same name as the user's

login name.
-r Create a system account.
-p passwd Specify a default password for the user account.
-s shell Specify the default login shell.
-u uid Specify a unique UID for the account.

As you can see, you can override all the system default values when
creating a new user account just by using command-line parameters.
However, if you find yourself having to override a value all the time, it's
easier to just change the system default value.

You can change the system default new user values by using the -D
parameter, along with a parameter representing the value you need to
change. These parameters are shown in Table 7-2.

TABLE 7-2 The useradd Change Default Values Parameters

Parameter Description
-b default_home Change the location where users' home directories are

created.
-e

expiration_date

Change the expiration date on new accounts.

-f inactive Change the number of days after a password has
expired before the account is disabled.

-g group Change the default group name or GID used.
-s shell Change the default login shell.

Changing the default values is a snap:

 # useradd -D -s /bin/tsch
 # useradd -D
 GROUP=100
 HOME=/home
 INACTIVE=-1
 EXPIRE=
 SHELL=/bin/tsch
 SKEL=/etc/skel
 CREATE_MAIL_SPOOL=yes
 #

Now, the useradd command will use the tsch shell as the default login shell
for all new user accounts you create.

Removing a user
If you want to remove a user from the system, the userdel command is
what you need. By default, the userdel command removes only the user
information from the /etc/passwd and /etc/shadow files. It doesn't remove
any files the account owns on the system.

If you use the -r parameter, userdel will remove the user's $HOME directory,
along with the user's mail directory. However, there may still be other files

owned by the deleted user account on the system. This can be a problem in
some environments.

Here's an example of using the userdel command to remove an existing
user account:

 # userdel -r test
 # ls -al /home/test
 ls: cannot access /home/test: No such file or directory
 #

After using the -r parameter, the user's old /home/test directory no longer
exists.

CAUTION

Be careful when using the -r parameter in an environment with lots
of users. You never know if a user had important files stored in
their $HOME directory that are used by someone else or another
program. Always check before removing a user's $HOME directory!

Modifying a user
Linux provides a few utilities for modifying the information for existing
user accounts. Table 7-3 shows these utilities.

TABLE 7-3 User Account Modification Utilities

Command Description
usermod Edits user account fields, and specifies primary and secondary

group membership
passwd Changes the password for an existing user
chpasswd Reads a file of login name and password pairs, and updates the

passwords
chage Changes the password's expiration date
chfn Changes the user account's comment information
chsh Changes the user account's default shell

Each utility provides a specific function for changing information about
user accounts. The following sections describe each of these utilities.

usermod
The usermod command is the most robust of the user account modification
utilities. It provides options for changing most of the fields in the
/etc/passwd file. To do that, you just need to use the command-line
parameter that corresponds to the value you want to change. The parameters
are mostly the same as the useradd parameters (such as -c to change the
comment field, -e to change the expiration date, and -g to change the
default login group). However, a few additional parameters might come in
handy:

-l to change the login name of the user account

-L to lock the account so the user can't log in

-p to change the password for the account

-U to unlock the account so that the user can log in

The -L parameter is especially handy. Use it to lock an account so that a
user can't log in without having to remove the account and the user's data.
To return the account to normal, just use the -U parameter.

passwd and chpasswd
A quick way to change just the password for a user is the passwd command:

 # passwd test
 Changing password for user test.
 New UNIX password:
 Retype new UNIX password:
 passwd: all authentication tokens updated successfully.
 #

If you just use the passwd command by itself, it will change your own
password. Any user in the system can change their own password, but only
the root user can change someone else's password.

The -e option is a handy way to force a user to change the password on the
next login. This allows you to set the user's password to a simple value and

then force them to change it to something harder that they can remember.

If you ever need to do a mass password change for lots of users on the
system, the chpasswd command can be a lifesaver. The chpasswd command
reads a list of login name and password pairs (colon-separated) from the
standard input, automatically encrypts the password, and sets it for the user
account. You can also use the redirection command to redirect a file of
username:password pairs into the command:

chpasswd < users.txt
#

chsh, chfn, and chage
The chsh , chfn , and chage utilities are used for specific account
modification functions. The chsh command allows you to quickly change
the default login shell for a user. You must use the full pathname for the
shell and not just the shell name:

 # chsh -s /bin/csh test
 Changing shell for test.
 Shell changed.
 #

The chfn command provides a standard method for storing information in
the comments field in the /etc/passwd file. Instead of just inserting random
text, such as names or nicknames, or even just leaving the comment field
blank, the chfn command uses specific information used in the Unix
finger command to store information in the comment field. The finger
command allows you to easily find information about people on your Linux
system:

 # finger rich
 Login: rich Name: Rich Blum
 Directory: /home/rich Shell: /bin/bash
 On since Thu Sep 20 18:03 (EDT) on pts/0 from 192.168.1.2
 No mail.
 No Plan.
 #

NOTE

Because of security concerns, most Linux distributions don't install
the finger command by default. Be aware that installing it may
open your system to attack vulnerabilities.

If you use the chfn command with no parameters, it queries you for the
appropriate values to enter in the comment field:

 # chfn test
 Changing finger information for test.
 Name []: Ima Test
 Office []: Director of Technology
 Office Phone []: (123)555-1234
 Home Phone []: (123)555-9876

 Finger information changed.
 # finger test
 Login: test Name: Ima Test
 Directory: /home/test Shell: /bin/csh
 Office: Director of Technology Office Phone:
(123)555-1234
 Home Phone: (123)555-9876
 Never logged in.
 No mail.
 No Plan.
 #

If you now check the entry in the /etc/passwd file, it looks like this:

 # grep test /etc/passwd
 test:x:504:504:Ima Test,Director of Technology,(123)555-
 1234,(123)555-9876:/home/test:/bin/csh
 #

All of the finger information is neatly stored away in the /etc/passwd file
entry.

Finally, the chage command helps you manage the password aging process
for user accounts. There are several parameters to set individual values, as
shown in Table 7-4.

TABLE 7-4 The chage Command Parameters

Parameter Description
-d Set the number of days since the password was last changed.
-E Set the date the password will expire.
-I Set the number of days of inactivity after the password expires

to lock the account.
-m Set the minimum number of days between password changes.
-M Set the maximum number of days the password is valid.
-W Set the number of days before the password expires that a

warning message appears.

The chage date values can be expressed using one of two methods:

A date in YYYY-MM-DD format

A numerical value representing the number of days since January 1,
1970

One neat feature of the chage command is that it allows you to set an
expiration date for an account. Using this feature, you can create temporary
user accounts that automatically expire on a set date, without your having to
remember to delete them! Expired accounts are similar to locked accounts.
The account still exists, but the user can't log in with it.

Using Linux Groups
User accounts are great for controlling security for individual users, but
they aren't so good at allowing groups of users to share resources. To
accomplish this, the Linux system uses another security concept, called
groups.

Group permissions allow multiple users to share a common set of
permissions for an object on the system, such as a file, directory, or device
(more on that later in the “Decoding File Permissions” section).

Linux distributions differ somewhat on how they handle default group
memberships. Some Linux distributions create just one group that contains

all the user accounts as members. You need to be careful if your Linux
distribution does this, because your files may be readable by all other users
on the system. Other distributions create a separate user account for each
user to provide a little more security.

Each group has a unique GID, which, like UIDs, is a unique numerical
value on the system. Along with the GID, each group has a unique group
name. There are a few group utilities you can use to create and manage your
own groups on the Linux system. This section discusses how group
information is stored and how to use the group utilities to create new groups
and modify existing groups.

The /etc/group file
Just like user accounts, group information is stored in a file on the system.
The /etc/group file contains information about each group used on the
system. Here are a few examples from a typical /etc/group file on a Linux
system:

 root:x:0:root
 bin:x:1:root,bin,daemon
 daemon:x:2:root,bin,daemon
 sys:x:3:root,bin,adm
 adm:x:4:root,adm,daemon
 rich:x:500:
 mama:x:501:
 katie:x:502:
 jessica:x:503:
 mysql:x:27:
 test:x:504:

Like UIDs, GIDs are assigned using a special format. Groups used for
system accounts are assigned GIDs below 500, and user groups are
assigned GIDs starting at 500. The /etc/group file uses four fields:

The group name

The group password

The GID

The list of user accounts that belong to the group

The group password allows a non-group member to temporarily become a
member of the group by using the password. This feature is not used all that
commonly, but it does exist.

Since the /etc/group file is a standard text file, you can manually edit the
file to add and modify group memberships. However, be careful that you
don't make any typos or you could corrupt the file and cause problems for
your system. Instead, it's safer to use the usermod command (discussed
earlier in the “Exploring Linux Security” section) to add a user account to a
group. Before you can add users to different groups, you must create the
groups.

NOTE

The list of user accounts is somewhat misleading. You'll notice that
there are several groups in the list that don't have any users listed.
This isn't because they don't have any members. When a user
account uses a group as the primary group in the /etc/passwd file,
the user account doesn't appear in the /etc/group file as a member.
This has caused confusion for more than one system administrator
over the years!

Creating new groups
The groupadd command allows you to create new groups on your system:

 # /usr/sbin/groupadd shared
 # tail /etc/group
 haldaemon:x:68:
 xfs:x:43:
 gdm:x:42:
 rich:x:500:
 mama:x:501:
 katie:x:502:
 jessica:x:503:
 mysql:x:27:
 test:x:504:
 shared:x:505:
 #

When you create a new group, no users are assigned to it by default. The
groupadd command doesn't provide an option for adding user accounts to
the group. Instead, to add new users, use the usermod command:

 # /usr/sbin/usermod -G shared rich
 # /usr/sbin/usermod -G shared test
 # tail /etc/group
 haldaemon:x:68:
 xfs:x:43:
 gdm:x:42:
 rich:x:500:
 mama:x:501:
 katie:x:502:
 jessica:x:503:
 mysql:x:27:
 test:x:504:
 shared:x:505:rich, test
 #

The shared group now has two members, test and rich. The -G parameter in
usermod appends the new group to the list of groups for the user account.

NOTE

If you change the user groups for an account that is currently
logged into the system, the user will have to log out, then back in for
the group changes to take effect.

CAUTION

Be careful when assigning groups for user accounts. If you use the -
g parameter, the group name you specify replaces the primary
group assigned to the user account in the /etc/passwd file. The -G
parameter adds the group to the list of groups the user belongs to,
keeping the primary group intact.

Modifying groups

As you can see from the /etc/group file, there isn't too much information
about a group for you to modify. The groupmod command allows you to
change the GID (using the -g parameter) or the group name (using the -n
parameter) of an existing group:

 # groupmod -n sharing shared
 # tail /etc/group
 haldaemon:x:68:
 xfs:x:43:
 gdm:x:42:
 rich:x:500:
 mama:x:501:
 katie:x:502:
 jessica:x:503:
 mysql:x:27:
 test:x:504:
 sharing:x:505:test,rich
 #

When changing the name of a group, the GID and group members remain
the same and only the group name changes. Because all security
permissions are based on the GID, you can change the name of a group as
often as you wish without adversely affecting file security.

Decoding File Permissions
Now that you know about users and groups, it's time to decode the cryptic
file permissions you've seen when using the ls command. This section
describes how to decipher the permissions and where they come from.

Using file permission symbols
As you'll recall from Chapter 3, “Basic Bash Shell Commands,” the ls
command allows you to see the file permissions for files, directories, and
devices on the Linux system:

 $ ls -l
 total 68
 -rw-rw-r-- 1 rich rich 50 2010-09-13 07:49 file1.gz
 -rw-rw-r-- 1 rich rich 23 2010-09-13 07:50 file2
 -rw-rw-r-- 1 rich rich 48 2010-09-13 07:56 file3
 -rw-rw-r-- 1 rich rich 34 2010-09-13 08:59 file4
 -rwxrwxr-x 1 rich rich 4882 2010-09-18 13:58 myprog

 -rw-rw-r-- 1 rich rich 237 2010-09-18 13:58 myprog.c
 drwxrwxr-x 2 rich rich 4096 2010-09-03 15:12 test1
 drwxrwxr-x 2 rich rich 4096 2010-09-03 15:12 test2
 $

The first field in the output listing is a code that describes the permissions
for the files and directories. The first character in the field defines the type
of the object:

- for files

d for directories

l for links

c for character devices

b for block devices

p for named pipes

s for network sockets

After that, there are three sets of three characters. Each set of three
characters defines an access permission triplet:

r for read permission for the object

w for write permission for the object

x for execute permission for the object

If a permission is denied, a dash appears in the location. The three sets
relate to the three levels of security for the object:

The owner of the object

The group that owns the object

Everyone else on the system

This is broken down in Figure 7-1.

FIGURE 7-1 The Linux file permissions

The easiest way to discuss this is to take an example and decode the file
permissions one by one:

 -rwxrwxr-x 1 rich rich 4882 2010-09-18 13:58 myprog

The file myprog has the following sets of permissions:

rwx for the file owner (set to the login name rich)

rwx for the file group owner (set to the group name rich)

r-x for everyone else on the system

These permissions indicate that the user login name rich can read, write,
and execute the file (considered full permissions). Likewise, members in
the group rich can also read, write, and execute the file. However, anyone
else not in the rich group can only read and execute the file; the w is
replaced with a dash, indicating that write permissions are not assigned to
this security level.

Default file permissions
You may be wondering about where these file permissions come from. The
answer is umask. The umask command sets the default permissions for any
file or directory you create:

 $ touch newfile
 $ ls -al newfile
 -rw-r--r-- 1 rich rich 0 Sep 20 19:16
newfile
 $

The touch command created the file using the default permissions assigned
to my user account. The umask command shows and sets the default
permissions:

 $ umask
 0022
 $

Unfortunately, the umask command setting isn't overtly clear, and trying to
understand exactly how it works makes things even muddier. The first digit
represents a special security feature assigned to the file. We'll talk more
about that later on in this chapter in the “Sharing Files” section.

The next three digits represent the octal values of the umask for a file or
directory. To understand how umask works, you first need to understand
octal mode security settings.

Octal mode security settings take the three rwx permission values and
convert them into a 3-bit binary value, represented by a single octal value.
In the binary representation, each position is a binary bit. Thus, if the read
permission is the only permission set, the value becomes r-- , relating to a
binary value of 100, indicating the octal value of 4. Table 7-5 shows the
possible combinations you'll run into.

TABLE 7-5 Linux File Permission Codes

Permissions Binary Octal Description
--- 000 0 No permissions
--x 001 1 Execute-only permission
-w- 010 2 Write-only permission
-wx 011 3 Write and execute permissions
r-- 100 4 Read-only permission
r-x 101 5 Read and execute permissions
rw- 110 6 Read and write permissions
rwx 111 7 Read, write, and execute permissions

Octal mode takes the octal permissions and lists three of them in order for
the three security levels (user, group, and everyone). Thus, the octal mode
value 664 represents read and write permissions for the user and group but
read-only permission for everyone else.

Now that you know about octal mode permissions, the umask value
becomes even more confusing. The octal mode shown for the default umask
on my Linux system is 0022, but the file I created had an octal mode
permission of 644. How did that happen?

The umask value is just that, a mask. It masks out the permissions you don't
want to give to the security level. Now we have to dive into some octal
arithmetic to figure out the rest of the story.

The umask value is subtracted from the full permission set for an object.
The full permission for a file is mode 666 (read/write permission for all),
but for a directory it's 777 (read/write/execute permission for all).

Thus, in the example, the file starts out with permissions 666, and the
umask of 022 is applied, leaving a file permission of 644.

The umask value is normally set in the /etc/profile startup file (see
Chapter 6). You can specify a different default umask setting using the
umask command:

 $ umask 026
 $ touch newfile2

 $ ls -l newfile2
 -rw-r----- 1 rich rich 0 Sep 20 19:46
newfile2
 $

When we set the umask value to 026, the default file permissions became
640, so the new file is now restricted to read-only for the group members,
and everyone else on the system has no permissions to the file.

The umask value also applies to making new directories:

 $ mkdir newdir
 $ ls -l
 drwxr-x--x 2 rich rich 4096 Sep 20 20:11
newdir/
 $

Because the default permissions for a directory are 777, the resulting
permissions from the umask are different from those of a new file. The 026
umask value is subtracted from 777, leaving the 751 directory permission
setting.

Changing Security Settings
If you've already created a file or directory and need to change the security
settings on it, a few different utilities for this purpose are available in Linux.
This section shows you how to change the existing permissions, the default
owner, and the default group settings for a file or directory.

Changing permissions
The chmod command allows you to change the security settings for files and
directories. The format of the chmod command is

 chmod options mode file

The mode parameter allows you to set the security settings using either octal
or symbolic mode. The octal mode settings are pretty straightforward; just
use the standard three-digit octal code you want the file to have:

 $ chmod 760 newfile
 $ ls -l newfile
 -rwxrw---- 1 rich rich 0 Sep 20 19:16

newfile
$

The octal file permissions are automatically applied to the file indicated.
The symbolic mode permissions are not so easy to implement.

Instead of using the normal string of three sets of three characters, the
chmod command takes a different approach. The following is the format for
specifying a permission in symbolic mode:

 [ugoa...][[+-=][rwxXstugo...]

Makes perfectly good sense, doesn't it? The first group of characters defines
to whom the new permissions apply:

u for the user

g for the group

o for others (everyone else)

a for all of the above

Next, a symbol is used to indicate whether you want to add the permission
to the existing permissions (+), subtract the permission from the existing
permissions (−), or set the permissions to the value (=).

Finally, the third symbol is the permission used for the setting. You may
notice that there are more than the normal rwx values here. The additional
settings are as follows:

X to assign execute permissions only if the object is a directory or if it
already had execute permissions

s to set the SUID or SGID on execution

t to set the sticky bit

u to set the permissions to the owner's permissions

g to set the permissions to the group's permissions

o to set the permissions to the others’ permissions

Using these permissions looks like this:

 $ chmod o+r newfile
 $ ls -l newfile
 -rwxrw-r-- 1 rich rich 0 Sep 20 19:16
newfile
$

The o+r entry adds the read permission to whatever permissions the
everyone security level already had.

 $ chmod u-x newfile
 $ ls -l newfile
 -rw-rw-r-- 1 rich rich 0 Sep 20 19:16
newfile
 $

The u-x entry removes the execute permission that the user already had.
Note that the settings for the ls command indicate if a file has execution
permissions by adding an asterisk to the filename.

The options parameters provide a few additional features to augment the
behavior of the chmod command. The -R parameter performs the file and
directory changes recursively. You can use wildcard characters for the
filename specified, changing the permissions on multiple files with just one
command.

Changing ownership
Sometimes you need to change the owner of a file, such as when someone
leaves an organization or a developer creates an application that needs to be
owned by a system account when it's in production. Linux provides two
commands for doing that. The chown command makes it easy to change the
owner of a file, and the chgrp command allows you to change the default
group of a file.

The format of the chown command is

 chown options owner[.group] file

You can specify either the login name or the numeric UID for the new
owner of the file:

 # chown dan newfile
 # ls -l newfile
 -rw-rw-r-- 1 dan rich 0 Sep 20 19:16

newfile
#

Simple. The chown command also allows you to change both the user and
group of a file:

 # chown dan.shared newfile
 # ls -l newfile
 -rw-rw-r-- 1 dan shared 0 Sep 20 19:16
newfile
#

If you really want to get tricky, you can just change the default group for a
file:

 # chown .rich newfile
 # ls -l newfile
 -rw-rw-r-- 1 dan rich 0 Sep 20 19:16
newfile
#

Finally, if your Linux system uses individual group names that match user
login names, you can change both with just one entry:

 # chown test. newfile
 # ls -l newfile
 -rw-rw-r-- 1 test test 0 Sep 20 19:16
newfile
#

The chown command uses a few different options parameters. The -R
parameter allows you to make changes recursively through subdirectories
and files, using a wildcard character. The -h parameter also changes the
ownership of any files that are symbolically linked to the file.

NOTE

Only the root user can change the owner of a file. Any user can
change the default group of a file, but the user must be a member of
the groups the file is changed from and to.

The chgrp command provides an easy way to change just the default group
for a file or directory:

 $ chgrp shared newfile
 $ ls -l newfile
 -rw-rw-r-- 1 rich shared 0 Sep 20 19:16
newfile
$

Now any member in the shared group can write to the file. This is one way
to share files on a Linux system. However, sharing files among a group of
people on the system can get tricky. The next section discusses how to do
this.

Sharing Files
As you've probably already figured out, creating groups is the way to share
access to files on the Linux system. However, for a complete file-sharing
environment, things are more complicated.

As you've already seen in the “Decoding File Permissions” section, when
you create a new file, Linux assigns the file permissions of the new file
using your default UID and GID. To allow others access to the file, you
need to either change the security permissions for the everyone security
group or assign the file a different default group that contains other users.

This can be a pain in a large environment if you want to create and share
documents among several people. Fortunately, there's a simple solution for
this problem.

Linux stores three additional bits of information for each file and directory:

The set user ID (SUID): When a file is executed by a user, the
program runs under the permissions of the file owner.

The set group ID (SGID): For a file, the program runs under the
permissions of the file group. For a directory, new files created in the
directory use the directory group as the default group.

The sticky bit: When applied to a directory, only file owners can
delete or rename the files in the directory.

The SGID bit is important for sharing files. By enabling the SGID bit, you
can force all new files created in a shared directory to be owned by the
directory's group and now the individual user's group.

The SGID is set using the chmod command. It's added to the beginning of
the standard three-digit octal value (making a four-digit octal value), or you
can use the symbol s in symbolic mode.

If you're using octal mode, you'll need to know the arrangement of the bits,
shown in Table 7-6.

TABLE 7-6 The chmod SUID, SGID, and Sticky Bit Octal Values

Binary Octal Description
000 0 All bits are cleared.
001 1 The sticky bit is set.
010 2 The SGID bit is set.
011 3 The SGID and sticky bits are set.
100 4 The SUID bit is set.
101 5 The SUID and sticky bits are set.
110 6 The SUID and SGID bits are set.
111 7 All bits are set.

So, to create a shared directory that always sets the directory group for all
new files, all you need to do is set the SGID bit for the directory:

 $ mkdir testdir
 $ ls -l
 drwxrwxr-x 2 rich rich 4096 Sep 20 23:12
testdir/
 $ chgrp shared testdir
 $ chmod g+s testdir
 $ ls -l
 drwxrwsr-x 2 rich shared 4096 Sep 20 23:12
testdir/
 $ umask 002
 $ cd testdir
 $ touch testfile
 $ ls -l
 total 0
 -rw-rw-r-- 1 rich shared 0 Sep 20 23:13
testfile
 $

The first step is to create a directory that you want to share using the mkdir
command. Next, the chgrp command is used to change the default group
for the directory to a group that contains the members who need to share
files. Finally, the SGID bit is set for the directory to ensure that any files
created in the directory use the shared group name as the default group.

For this environment to work properly, all of the group members need to
have their umask values set to make files writable by group members. In the
preceding example, the umask is changed to 002 so that the files are writable
by the group.

After all that's done, any member of the group can go to the shared
directory and create a new file. As expected, the new file uses the default
group of the directory, not the user account's default group. Now any user in
the shared group can access this file.

Access Control Lists
The basic Linux method of permissions has one drawback in that it's
somewhat limited. You can assign permissions for a file or directory only to
a single group or user account. In a complex business environment with
different groups of people needing different permissions to files and
directories, that doesn't work.

Linux developers have devised a more advanced method of file and
directory security called an access control list (ACL). The ACL allows you
to specify a list of multiple user or groups, and the permissions that are
assigned to them. Just like the basic security method, ACL permissions use
the same read, write, and execute permission bits but can now be assigned
to multiple users and groups.

To use the ACL feature in Linux, you use the setfacl and getfacl
commands. The getfacl command allows you to view the ACLs assigned
to a file or directory:

$ touch test
$ ls -l
total 0
-rw-r----- 1 rich rich 0 Apr 19 17:33 test
$ getfacl test
file: test

owner: rich
group: rich
user::rw-
group::r--
other::---
$

If you've only assigned basic security permissions to the file, those still
appear in the getfacl output, as shown in this example.

To assign permissions for additional users or groups, you use the setfacl
command:

setfacl [options] rule filenames

The setfacl command allows you to modify the permissions assigned to a
file or directory using the -m option, or remove specific permissions using
the -x option. You define the rule with three formats:

u[ser]:uid:perms
g[roup]:gid:perms
o[ther]::perms

To assign permissions for additional user accounts, use the user format; for
additional groups, use the group format; and for others, use the other
format. For the uid or gid values, you can use either the numerical user ID
or group ID, or the names. Here's an example:

$ setfacl -m g:sales:rw test
$ ls -l
total 0
-rw-rw----+ 1 rich rich 0 Apr 19 17:33 test
$

This example adds read and write permissions for the sales group to the
test file. Notice that there's no output from the setfacl command. When
you list the file, only the standard owner, group, and other permissions are
shown, but note that there's a plus sign (+) added to the permissions list.
This indicates that the file has additional ACLs applied to it. To view the
additional ACLs, use the getfacl command again:

$ getfacl test
file: test
owner: rich
group: rich

user::rw-
group::r--
group:sales:rw-
mask::rw-
other::---
$

The getfacl output now shows that there are permissions assigned to two
groups. The default file group (rich) is assigned read permissions, but now
the sales group has read and write permissions to the file. To remove the
permissions, use the -x option:

$ setfacl -x g:sales test
$ getfacl test
file: test
owner: rich
group: rich
user::rw-
group::r--
mask::r--
other::---

$

Linux also allows you to set a default ACL on a directory that is
automatically inherited by any file created in the directory. This feature is
called inheritance.

To create a default ACL on a directory, start the rule with d: followed by
the normal rule definition. That looks like this:

$ sudo setfacl -m d:g:sales:rw /sales

This example assigns the read and write permissions to the sales group for
the /sales directory. Now all files created in that folder will automatically
be assigned read and write permissions for the sales group.

Summary
This chapter discussed the command-line commands you need to know to
manage the Linux security on your system. Linux uses a system of user IDs
and group IDs to protect access to files, directories, and devices. Linux
stores information about user accounts in the /etc/passwd file and
information about groups in the /etc/group file. Each user is assigned a

unique numeric user ID, along with a text login name to identify the user in
the system. Groups are also assigned unique numerical group IDs, and text
group names. A group can contain one or more users allowed shared access
to system resources.

Several commands are available for managing user accounts and groups.
The useradd command allows you to create new user accounts, and the
groupadd command allows you to create new group accounts. To modify an
existing user account, use the usermod command. Similarly, the groupmod
command is used to modify group account information.

Linux uses a complicated system of bits to determine access permissions for
files and directories. Each file contains three security levels of protection:
the file's owner, a default group that has access to the file, and a level for
everyone else on the system. Each security level is defined by three access
bits: read, write, and execute. The combination of three bits is often referred
to by the symbols rwx , for read, write, and execute. If a permission is
denied, its symbol is replaced with a dash (such as r-- for read-only
permission).

The symbolic permissions are often referred to as octal values, with the
three bits combined into one octal value and three octal values representing
the three security levels. The umask command is used to set the default
security settings for files and directories created on the system. The system
administrator normally sets a default umask value in the /etc/profile file,
but you can use the umask command to change your umask value at any
time.

The chmod command is used to change security settings for files and
directories. Only the file's owner can change permissions for a file or
directory. However, the root user can change the security settings for any
file or directory on the system. The chown and chgrp commands can be
used to change the default owner and group of the file.

The chapter also discussed how to use the set GID bit to create a shared
directory. The SGID bit forces any new files or directories created in a
directory to use the default group name of the parent directory, not that of
the user who created them. This provides an easy way to share files
between users on the system.

Finally, the chapter provided a primer on using the Linux ACL feature to
assign more detailed and advanced permissions to files and directories. The
getfacl and setfacl commands provide access to this feature.

Now that you're up to speed with file permissions, it's time to take a closer
look at how to work with the actual filesystem in Linux. The next chapter
shows you how to create new partitions in Linux from the command line
and then how to format the new partitions so that they can be used in the
Linux virtual directory.

CHAPTER 8
Managing Filesystems
IN THIS CHAPTER

Understanding filesystem basics

Exploring journaling and volume-managing filesystems

Managing filesystems

Investigating the logical volume layout

Using the Linux Logical Volume Manager

When you're working with your Linux system, one of the decisions you'll
need to make is what filesystem to use for the storage devices. Most Linux
distributions provide a default filesystem for you at installation time, and
most beginning Linux users just use it without giving the topic another
thought.

Although using the default filesystem isn't necessarily a bad thing,
sometimes it helps to know the other options available to you. This chapter
discusses the different filesystem options you have available in the Linux
world and shows you how to create and manage them from the Linux
command line.

Exploring Linux Filesystems
Chapter 3, “Basic Bash Shell Commands,” discussed how Linux uses a
filesystem to store files and folders on a storage device. The filesystem
provides a way for Linux to bridge the gap between the ones and zeroes
stored in the hard drive and the files and folders you work with in your
applications.

Linux supports several types of filesystems to manage files and folders.
Each filesystem implements the virtual directory structure on storage
devices using slightly different features. This section walks you through the

strengths and weaknesses of common filesystems used in the Linux
environment as well as some history regarding them.

Exploring the Linux filesystem evolution
The original Linux system used a simple filesystem that mimicked the
functionality of the Unix filesystem. This section discusses its
improvements through time.

Looking at the ext filesystem
The original filesystem introduced with the Linux operating system was
called the extended filesystem (or just ext for short). It provided a basic
Unix-like filesystem for Linux, using virtual directories to handle physical
devices and storing data in fixed-length blocks on the physical devices.

The ext filesystem used a system called inodes to track information about
the files stored in the virtual directory. The inode system created a separate
table on each physical device, called the inode table, to store file
information. Each stored file in the virtual directory had an entry in the
inode table. The extended part of the name comes from the additional data
that it tracked on each file, which consisted of these items:

The filename

The file size

The owner of the file

The group the file belongs to

Access permissions for the file

Pointers to each disk block that contains data from the file

Linux referenced each inode in the inode table using a unique number
(called the inode number), assigned by the filesystem as data files were
created. The filesystem used the inode number to identify the file rather
than having to use the full filename and path.

Looking at the ext2 filesystem

The original ext filesystem had quite a few limitations, such as restraining
files to only 2 GB in size. Not too long after Linux was first introduced, the
ext filesystem was upgraded to create the second extended filesystem,
called ext2.

The ext2 filesystem maintained the same ext filesystem structure but
expanded its abilities:

Created, modified, and last accessed time values for files were added
to the inode table.

The maximum file size allowed was increased to 2 TB, and then later
to 32 TB.

Disk blocks were allocated in groups when a file was saved.

The ext2 filesystem too had limitations. If something happened to the
system between a file being stored and the inode table being updated, a
potential result was losing the file's data location on the disk. The ext2
filesystem was notorious for experiencing these corruptions due to system
crashes and power outages. And it wasn't long before developers were
exploring a different avenue of Linux filesystems.

Digging into journaling filesystems
Journaling filesystems provide a new level of safety to the Linux system.
Instead of writing data directly to the storage device and then updating the
inode table, journaling filesystems write file changes into a temporary file
(called the journal) first. After data is successfully written to the storage
device and the inode table, the journal entry is deleted.

If the system should crash or suffer a power outage before the data can be
written to the storage device, the journaling filesystem reads through the
journal file and processes any uncommitted data.

Linux commonly uses three different methods of journaling, each with
different levels of protection. These are shown in Table 8-1.

TABLE 8-1 Journaling Filesystem Methods

Method Description
Data
mode

Both inode and file data are journaled. Low risk of losing data,
but poor performance

Ordered
mode

Only inode data is written to the journal, but not removed until
file data is successfully written. Good compromise between
performance and safety

Writeback
mode

Only inode data is written to the journal; no control over when
the file data is written. Higher risk of losing data but still better
than not using journaling

The data mode journaling method is by far the safest for protecting data, but
it is also the slowest. All the data written to a storage device must be written
twice, once to the journal and again to the actual storage device. This can
cause poor performance, especially for systems that do lots of data writing.

Over the years, a few different journaling filesystems have appeared in
Linux. The following sections briefly describe the popular Linux journaling
filesystems available.

Looking at the ext3 filesystem
The ext3 filesystem is a descendant of ext2 that supports files up to 2 TB,
with a total file system size of 32 TB. By default, it uses the ordered mode
method of journaling, but the other modes are available via command-line
options. It doesn't provide any recovery from accidental file deletion or
allow data compression by default.

Looking at the ext4 filesystem
A still popular descendant of ext3, the ext4 filesystem supports files up to
16 tebibytes (TiB), with a total file system size of 1 exbibyte (EiB). By
default, it uses the ordered mode method of journaling, but the other modes
are available via command-line options. It supports encryption,
compression, and unlimited subdirectories within a single directory. Old
ext2 and ext3 filesystems can be mounted as if they were ext4 to improve
their performance.

Looking at the JFS filesystem
Possibly one of the oldest journaling filesystems around, the Journaled File
System (JFS) was developed by IBM in 1990 for its AIX (Advanced
Interactive Executive) flavor of Unix. However, it wasn't until its second
version that it was ported to the Linux environment.

NOTE

The official IBM name of the second version of the JFS filesystem is
JFS2, but most Linux systems refer to it as just JFS.

The JFS filesystem uses the ordered journaling method, storing only the
inode table data in the journal and not removing it until the actual file data
is written to the storage device.

Looking at ReiserFS
In 2001, Hans Reiser created the first journaling filesystem for Linux,
called ReiserFS, which provides features now found in both ext3 and ext4.
Linux has dropped support for the most recent version, Reiser4.

Looking at XFS
The X File System (XFS) was created by Silicon Graphics for their (now
defunct) advanced graphical workstations. The filesystem provided some
advanced high-performance features that make it still popular in Linux.

The XFS filesystem uses the writeback mode of journaling, which provides
high performance but does introduce an amount of risk because the actual
data isn't stored in the journal file.

Understanding the volume-managing filesystems
With journaling, you must choose between safety and performance.
Although data mode journaling provides the highest safety, performance
suffers because both inode and data are journaled. With writeback mode
journaling, performance is acceptable but safety is compromised.

For filesystems, an alternative to journaling is a technique called copy-on-
write (COW). COW offers both safety and performance via snapshots. For
modifying data, a clone or writable snapshot is used. Instead of writing
modified data over current data, the modified data is put in a new filesystem
location.

NOTE

A true COW system modifies the old data only when the data
modification is completed. If old data is never overwritten, the
proper term to call this action is a redirect-on-write (ROW).
However, typically ROWs are simply called COWs.

Though disk sizes have grown significantly over the years, the need for
more space is constant. Storage pools, which are created from one or more
disks or disk partitions, provide the ability to create what appears to be a
single disk, called a volume. Using these storage pools allows volumes to be
grown as needed, providing flexibility and a lot less downtime.

Filesystems with COW, snapshot, and volume-management features are
gaining in popularity. Two of the most popular, Btrfs and ZFS, are briefly
reviewed in the following sections as well as a newcomer, Stratis.

Looking at the ZFS filesystem
The ZFS filesystem was initially released in 2005 by Sun Microsystems for
the OpenSolaris operating system. It began being ported to Linux in 2008
and was finally available for Linux production use in 2012.

ZFS is a stable filesystem that competes well against Resier4, Btrfs, and
ext4. It boasts data integrity verification along with automatic repair,
provides a maximum file size of 16 exabytes, and has a 256 quadrillion
Zettabytes maximum storage size. That's one large filesystem!

Unfortunately, its biggest detractor is that ZFS does not have a GNU
General Public License (GPL) and thus cannot be included in the Linux
kernel. Fortunately, most Linux distributions provide a way for it to be
installed.

Looking at the Btrfs filesystem
The Btrfs filesystem (typically pronounced butter-fs) is also called the B-
tree filesystem. Oracle started development on Btrfs in 2007. It was based
on many of Reiser4's features but offered improvements in reliability. Over
time, additional developers joined in and helped Btrfs quickly rise toward
the top of the popular filesystems list. This popularity is due to stability and
ease of use, as well as the ability to dynamically resize a mounted
filesystem.

While the openSUSE Linux distribution established Btrfs as its default
filesystem, in 2017 Red Hat deprecated it, meaning that it would no longer
support the filesystem (as of RHEL version 8 and beyond). Unfortunately,
for those organizations who are married to RHEL, it means that Btrfs is not
the filesystem of choice.

Looking at the Stratis filesystem
When Red Hat deprecated Btrfs, the decision was made to create a new
filesystem, Stratis. But you cannot accurately call Stratis a filesystem using
the standard definition. Instead, it provides more of a management
perspective. The storage pools it maintains are made up of one or more XFS
filesystems. And it also offers COW functionality like the more traditional
volume-management filesystems, such as ZFS and Btrfs. The terms “ease
of use” and “advanced storage features” are often used to describe it, but at
this point, it's too early to tell how close to those concepts Stratis performs.

NOTE

XFS in recent years has been improving its COW offerings. For
example, it now has an always_cow mode, which causes XFS to not
overwrite original data when it is modified.

Stratis was first offered for inspection in Fedora 29 (released in 2018), and
it is considered to be a technological preview feature in RHEL v8. This
means that Stratis is not yet intended for use in a production environment.
You've been warned.

Working with Filesystems
Linux provides a few utilities that make it easier to work with filesystems
from the command line. You can add new filesystems or change existing
filesystems from the comfort of your own keyboard. This section walks you
through the commands for managing filesystems from a command-line
environment.

Creating partitions
To start out, you need to create a partition on the storage device to contain
the filesystem. The partition can be an entire disk or a subset of a disk that
will contain a portion of the virtual directory.

Several utilities are available that can help you organize and manage
partitions. The three CLI programs we'll focus on in this section are:

fdisk

gdisk

GNU parted

Sometimes, the hardest part of creating a new disk partition is trying to find
the physical disk on your Linux system. Linux uses a standard format for
assigning device names to hard drives, and you need to be familiar with the
format before partitioning a drive:

SATA drives and SCSI drives: Linux uses /dev/sd x, where x is a
letter based on the order in which the drive is detected (a for the first
drive, b for the second, and so on)

SSD NVMe drives: The device name format is /dev/nvme N n #, where
N is a number based on the order in which the drive is detected, starting
at 0 . And the # is the number assigned to the drive's namespace
structure, starting at 1 .

IDE drives: Linux uses /dev/hd x, where x is a letter based on the
order in which the drive is detected (a for the first drive, b for the
second, and so on).

Once you have the correct drive name, you can consider which partitioning
tool to use. The following sections take a look at three choices.

Looking at the fdisk utility
The fdisk utility is an older but powerful tool for creating and managing
partitions on any drive. However, fdisk handles only disks up to 2 TB in
size. If you have a disk larger than that, you can use either the gdisk or the
GNU parted utility instead.

TIP

If this is the first time you're partitioning the storage device, fdisk
gives you a warning that a partition table is not on the device.

The fdisk command is an interactive program that allows you to enter
commands to walk through the steps of partitioning a hard drive. To start
the fdisk utility, you need to specify the device name of the storage device
you want to partition, and you need to have super user privileges (be logged
in as the root user or use the sudo command).

whoami
root
fdisk /dev/sda

Welcome to fdisk (util-linux 2.32.1).
Changes will remain in memory only, until you decide to
write them.
Be careful before using the write command.

Command (m for help):

The fdisk program uses its own command line that allows you to submit
commands to work with the drive partitions. Table 8-2 shows the common
commands you have available with which to work.

TABLE 8-2 Common fdisk Commands

Command Description
a Toggle a bootable flag.
b Edit bad disk label.
c Toggle the DOS compatibility flag.
d Delete a partition.
g Create a new empty GPT partition table.
G Create an IRIX (SGI) partition table.
l List known partition types.
m Print this menu.
n Add a new partition.
o Create a new empty DOS partition table.
p Print the partition table.
q Quit without saving changes.
s Create a new empty Sun disk label.
t Change a partition's system ID.
u Change display/entry units.
v Verify the partition table.
w Write table to disk and exit.
x Extra functionality (experts only).

The p command displays the current partition scheme on the selected drive:

Command (m for help): p
Disk /dev/sda: 20 GiB, 21474836480 bytes, 41943040 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x8a136eb4

Device Boot Start End Sectors Size Id Type
/dev/sda1 * 2048 2099199 2097152 1G 83 Linux
/dev/sda2 2099200 41943039 39843840 19G 8e Linux LVM

Command (m for help):

In this example, the /dev/sda drive is sectioned into two partitions, sda1
and sda2 . The first partition is allocated about 1 GB of space (shown in the
Size column), while the second is allocated a little over 19 GB of space.

The fdisk command is somewhat rudimentary in that it doesn't allow you
to alter the size of an existing partition; all you can do is delete the existing
partition and rebuild it from scratch.

TIP

Some distributions and older distribution versions do not
automatically inform your Linux system of a new partition after it
is made. In this case, you need to use either the partprobe or the
hdparm command (see their man pages), or reboot your system so
that it reads the updated partition table.

If you make any changes to the drive partitions, you must exit using the w
command to write the changes to the drive. To quit without making any
modifications, use the q command:

Command (m for help): q
#

The following example makes a new partition on the /dev/sdb drive to use
in the “Creating a Filesystem” section later in this chapter:

$ sudo fdisk /dev/sdb
[sudo] password for christine:
[...]
Command (m for help): n
Partition type
 p primary (0 primary, 0 extended, 4 free)
 e extended (container for logical partitions)
Select (default p): p
Partition number (1-4, default 1): 1
First sector (2048-4194303, default 2048):
Last sector, +sectors or +size{K,M,G,T,P} (2048-4194303,
default 4194303):

Created a new partition 1 of type 'Linux' and of size 2 GiB.

Command (m for help): w
The partition table has been altered.
Calling ioctl() to re-read partition table.
Syncing disks.

$

Now a new disk partition, /dev/sdb1 , is ready for formatting. Be aware
when creating a new disk partition with fdisk , you don't have to type in
any information. Instead, just press Enter to accept the displayed defaults.

Working with gdisk
If you're working with drives that use the GUID Partition Table (GPT)
indexing method, you can use the gdisk program:

$ sudo gdisk /dev/sda
[sudo] password for christine:
GPT fdisk (gdisk) version 1.0.3

Partition table scan:
 MBR: MBR only
 BSD: not present
 APM: not present
 GPT: not present

**

Found invalid GPT and valid MBR; converting MBR to GPT
format
in memory. THIS OPERATION IS POTENTIALLY DESTRUCTIVE! Exit
by
typing 'q' if you don't want to convert your MBR partitions
to GPT format!
**

[...]
Command (? for help): q
$

The gdisk program identifies the type of formatting used on the drive. If
the drive doesn't currently use the GPT method, gdisk offers you the option
to convert it to a GPT drive.

WARNING

Be careful with converting the drive method specified for your
drive. The method you select must be compatible with the system
firmware (BIOS or UEFI). If not, your drive will not be able to
boot.

The gdisk program also uses its own command prompt, allowing you to
enter commands to manipulate the drive layout, as shown in Table 8-3.

TABLE 8-3 Common gdisk Commands

Command Description
b Back up GPT data to a file.
c Change a partition's name.
d Delete a partition.
i Show detailed information on a partition.
l List known partition types.
n Add a new partition.
o Create a new empty GUID partition table (GPT).
p Print the partition table.
q Quit without saving changes.
r Recovery and transformation options (experts only).
s Sort partitions.
t Change a partition's type code.
v Verify disk.
w Write table to disk and exit.
x Extra functionality (experts only).
? Print this menu.

You'll notice that many of the gdisk commands are similar to those in the
fdisk program, making it easier to switch between the two programs.

The GNU parted command
The GNU parted program provides yet another command-line interface for
working with drive partitions. Unlike the fdisk and gdisk programs, the
commands within this utility are more word-like:

$ sudo parted
GNU Parted 3.2
Using /dev/sda
Welcome to GNU Parted! Type 'help' to view a list of
commands.
(parted) print
Model: ATA VBOX HARDDISK (scsi)
Disk /dev/sda: 21.5GB
Sector size (logical/physical): 512B/512B
Partition Table: msdos
Disk Flags:

Number Start End Size Type File system Flags
 1 1049kB 1075MB 1074MB primary ext4 boot
 2 1075MB 21.5GB 20.4GB primary lvm

(parted) quit
$

One of the selling features of the parted program is that it allows you to
modify existing partition sizes, so you can easily shrink or grow partitions
on the drive.

Creating a filesystem
Before you can store data on the partition, you must format it with a
filesystem so that Linux can use it. Each filesystem type uses its own
command-line program to format partitions. Table 8-4 lists the utilities used
for the filesystems discussed in this chapter.

TABLE 8-4 Command-Line Programs to Create Filesystems

Utility Purpose
mkefs Creates an ext filesystem.
mke2fs Creates an ext2 filesystem.
mkfs.ext3 Creates an ext3 filesystem.
mkfs.ext4 Creates an ext4 filesystem.
mkreiserfs Creates a ReiserFS filesystem.
jfs_mkfs Creates a JFS filesystem.
mkfs.xfs Creates an XFS filesystem.
mkfs.zfs Creates a ZFS filesystem.
mkfs.btrfs Creates a Btrfs filesystem.

Not all filesystem utilities are installed by default. To determine whether
you have a particular filesystem utility, use the type command:

$ type mkfs.ext4
mkfs.ext4 is /usr/sbin/mkfs.ext4
$
$ type mkfs.btrfs
-bash: type: mkfs.btrfs: not found
$

The preceding example shows that the mkfs.ext4 utility is available.
However, the Btrfs utility is not.

TIP

Check if the Linux distribution you are using supports the
filesystem you wish to create. If it is supported, and its filesystem
utilities are not currently furnished, you can install the needed
software and utilities. See Chapter 9, “Installing Software,” for
more details.

All the filesystem commands allow you to create a default filesystem with
just the simple command with no options, but you'll need to have super user

privileges:

$ sudo mkfs.ext4 /dev/sdb1
[sudo] password for christine:
mke2fs 1.44.6 (5-Mar-2019)
Creating filesystem with 524032 4k blocks and 131072 inodes
[...]
Creating journal (8192 blocks): done
Writing superblocks and filesystem accounting information:
done
$

The new filesystem uses the ext4 filesystem type, which is a journaling
filesystem in Linux. Notice that part of the creation process was to create
the new journal.

TIP

Each filesystem utility command has lots of command-line options
that allow you to customize just how the filesystem is created in the
partition. To see all the command-line options available, use the man
command (see Chapter 3) to display the manual pages for the
filesystem command you wish to use.

After you create the filesystem for a partition, the next step is to mount it on
a virtual directory mount point so that you can store data there. You can
mount the new filesystem anywhere in your virtual directory where you
need the extra space.

$ mkdir /home/christine/part
$
$ sudo mount -t ext4 /dev/sdb1 /home/christine/part
[sudo] password for christine:
$
$ lsblk -f /dev/sdb
NAME FSTYPE LABEL UUID MOUNTPOINT
sdb
⌙sdb1 ext4 a8d1d[...] /home/christine/part
$

The mkdir command (Chapter 3) creates the mount point in the virtual
directory, and the mount command adds the new hard drive partition to the

mount point. The -t option on the mount command indicates what
filesystem type, ext4 , you are mounting. And the lsblk -f command
allows you to see the newly formatted and mounted partition.

WARNING

This method of mounting a filesystem only temporarily mounts the
filesystem. When you reboot your Linux system, the filesystem
doesn't automatically mount. To force Linux to automatically
mount the new filesystem at boot time, add the new filesystem to the
/etc/fstab file.

Now that the filesystem is mounted within the virtual directory system, it
can start to be used on a regular basis. Unfortunately, with regular use
comes the potential for serious problems, such as filesystem corruption. The
next section looks at how to deal with these issues.

Checking and repairing a filesystem
Even with modern filesystems, things can go wrong if power is
unexpectedly lost or if a wayward application locks up the system while file
access is in progress. Fortunately, some command-line tools are available to
help you attempt to restore the filesystem back to order.

Each filesystem has its own recovery command for interacting with the
filesystem. That has the potential of getting ugly, because more and more
filesystems are available in the Linux environment, making for lots of
individual commands you have to know. Fortunately, a common front-end
program can determine the filesystem on the storage device and use the
appropriate filesystem recovery command based on the filesystem being
recovered.

The fsck command is used to check and repair most Linux filesystem types,
including ones discussed earlier in this chapter. The format of the command
is

fsck options filesystem

You can list multiple filesystem entries on the command line to check.
Filesystems are referenced using several methods, such as the device name
or its mount point in the virtual directory. However, the device must be
unmounted before you use fsck on it.

TIP

Although journaling filesystems users do need the fsck command, it
is arguable as to whether filesystems that employ COW do. In fact,
the ZFS filesystem does not even have an interface to the fsck
utility. The fsck.xfs and fsck.btrfs commands are nothing but
stubs, and do nothing. For COW filesystems, check the man pages
for their individual filesystem repair tool(s), if you need advanced
repair options.

The fsck command uses the /etc/fstab file to automatically determine the
filesystem on a storage device that's normally mounted on the system. If the
storage device isn't normally mounted (e.g., if you just created a filesystem
on a new storage device), you need to use the -t command-line option to
specify the filesystem type. Table 8-5 lists the other commonly used
command-line options available.

TABLE 8-5 The fsck Commonly Used Command-Line Options

Option Description
-a Automatically repairs the filesystem if errors are detected.
-A Checks all the filesystems listed in the /etc/fstab file.
-N Doesn't run the check; only displays what checks would be

performed.
-r Prompts to fix if errors found.
-R Skips the root filesystem if using the -A option.
-t Specifies the filesystem type to check.
-V Produces verbose output during the checks.
-y Automatically repairs the filesystem if errors detected.

You may notice that some of the command-line options are redundant.
That's part of the problem of trying to implement a common front end for
multiple commands. Some of the individual filesystem repair commands
have additional options that can be used.

TIP

You run the fsck command only on unmounted filesystems. For
most filesystems, just unmount the filesystem to check it, and then
remount it when you're finished. However, because the root
filesystem contains all the core Linux commands and log files, you
can't unmount it on a running system.

This is a time when having a Linux Live CD, DVD, or USB comes in
handy! Just boot your system with the Linux Live media, and then
run the fsck command on the root filesystem.

This chapter has showed you how to handle filesystems contained in
physical storage devices. Linux also provides a few ways to create logical
storage devices for filesystems. The next section examines how you can use
a logical storage device for your filesystems.

Managing Logical Volumes
Data has a habit of increasing. If you create your filesystems using standard
partitions on hard drives, trying to add space to an existing filesystem can
be somewhat of a painful experience. If no more space is available on that
hard drive, you're stuck having to get a larger hard drive and manually
moving the existing filesystem to the new drive.

What would come in handy is a way to dynamically add more space to an
existing filesystem by just adding a partition from another hard drive to the
existing filesystem. The Linux Logical Volume Management or Manager
(LVM) allows you to do just that. It provides an easy way for you to
manipulate disk space on a Linux system without having to rebuild entire
filesystems. This section covers logical volumes and various terms, and
offers practical steps for setting them up.

Exploring LVM layout
LVM allows multiple partitions to be grouped together and used as a single
partition for formatting, mounting on the Linux virtual directory structure,
storing data, and so on. You can also add partitions to a logical volume as
your data needs grow.

LVM has three primary parts, covered in the next few sections. Each part
plays an important role in creating and maintaining logical volumes.

Physical volume
A physical volume (PV) is created using the LVM's pvcreate command.
This utility designates an unused disk partition (or whole drive) to be used
by LVM. The LVM structures, a volume label, and metadata are added to
the partition during this process.

Volume group
A volume group (VG) is created using the LVM's vgcreate command,
which adds PVs to a storage pool. This storage pool is used in turn to build
various logical volumes.

You can have multiple volume groups. When you use the command to add a
PV(s) to a VG, volume group metadata is added to the PV during this
process.

A disk's partition, designated as a PV, can only belong to a single VG.
However, a disk's other partitions, also designated as PVs, can belong to
other VGs.

Logical volume
A logical volume (LV) is created using the LVM's lvcreate command. This
is the final object in logical volume creation. An LV consists of storage
space chunks from a VG pool. It can be formatted with a filesystem,
mounted, and used just like a typical disk partition.

While you can have multiple VGs, each LV is created from only one
designated VG. However, you can have multiple LVs sharing a single VG.
You can resize (grow or reduce) an LV using the appropriate LVM

commands. This feature adds a great deal of flexibility to your data storage
management.

There are many ways to divide up and manage your data storage media
using LVM. Next, we'll dive into the details of creating and managing these
volumes.

Understanding the LVM in Linux
The lvm utility is an interactive utility for creating and managing LVs. If not
installed, you can install it via the lvm2 package (see Chapter 9). You do not
need to enter the lvm utility to access the various LVM tools. Instead, you
can access the tools directly at the CLI, as covered in this section.

NOTE

The 2 in lvm2 or LVM2 refers to version 2 of LVM. It adds some
additional features and an improved design over LVM version 1
(lvm1). We're using LVM2 in this chapter.

To set up a logical volume for the first time:

1. Create physical volumes.

2. Create a volume group.

3. Create a logical volume.

4. Format the logical volume.

5. Mount the logical volume.

Important considerations are involved in the first three steps of setting up
your logical volume. Each decision you make in the early steps will
determine how flexible and easy it is to manage your LVs.

Create the PVs
Before designating drives as PVs, ensure that they are partitioned and
currently unused. You designate the partitions as a PV using the pvcreate

command along with super user privileges:

$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
[...]
sdb 8:16 0 2G 0 disk
⌙sdb1 8:17 0 2G 0 part
sdc 8:32 0 1G 0 disk
⌙sdc1 8:33 0 1023M 0 part
sdd 8:48 0 1G 0 disk
⌙sdd1 8:49 0 1023M 0 part
sde 8:64 0 1G 0 disk
⌙sde1 8:65 0 1023M 0 part
sr0 11:0 1 1024M 0 rom
$
$ sudo pvcreate /dev/sdc1 /dev/sdd1 /dev/sde1
[sudo] password for christine:
 Physical volume "/dev/sdc1" successfully created.
 Physical volume "/dev/sdd1" successfully created.
 Physical volume "/dev/sde1" successfully created.
$

It's wise to set up more than one PV. The whole point of LVM is having
additional storage media to add on the fly to your LVs. Once you have PVs
set up, create a VG.

Create a VG
Any PV can be added to a volume group. The command to use is vgcreate.

TIP

You can designate more than one PV during the VG creation
process. If you need to add PVs to a VG at a later time, use the
vgextend command.

Common practice names the first VG vg00 , and the next one vg01 , and so
on. However, it's your choice what to name your volume group. Because
many distributions set up LVM during installation for the virtual directory
structure's root (/), it's a good idea to check for any current VGs on your
system using the vgdisplay command:

$ sudo vgdisplay
 --- Volume group ---
 VG Name cl
 System ID
 Format lvm2
[...]
$

Notice in the preceding example that a VG named c1 is already set up.
Thus, we're safe to use the vg00 name for our first volume group:

$ sudo vgcreate vg00 /dev/sdc1 /dev/sdd1
 Volume group "vg00" successfully created
$

In the preceding example, only two of our PVs were used to create VG
vg00 : /dev/sdc1 and /dev/sdd1 . Now that our VG storage pool contains
at least one PV, we can create an LV.

Create an LV
To create a logical volume, use the lvcreate command. The resulting
storage volume's size is set using the -L option, which uses space from the
designated VG storage pool:

$ sudo lvcreate -L 1g -v vg00
[sudo] password for christine:
 Archiving volume group "vg00" metadata (seqno 1).
 Creating logical volume lvol0
[...]
 Logical volume "lvol0" created.
$

Notice that the first LV from this VG's default name is lvol0 . Its full
device pathname is /dev/vg00/lvol0.

NOTE

If for some reason a VG does not have enough partition space to
give to the LV for the designated size, the lvcreate command will
not make the LV. Instead, you will receive an insufficient free
space error message.

Once the LV is created, use the lvdisplay command to show its
information. Notice that the full pathname is used to designate the logical
volume to the command:

$ sudo lvdisplay /dev/vg00/lvol0
[sudo] password for christine:
 --- Logical volume ---
 LV Path /dev/vg00/lvol0
 LV Name lvol0
 VG Name vg00
[...]
 LV Size 1.00 GiB
[...]
$

Besides the lvdisplay command, you can use the lvs and the lvscan
commands to display information on all your systems' LVs. It's nice to have
options.

Using the Linux LVM
Once your LV is created, treat it as if it is a regular partition. Of course, it is
different in that you can grow or shrink this partition on the fly as needed.
But before you can do any of that, you'll need to attach your LV to the
virtual directory structure.

Format and mount an LV
With your LV, there is nothing special you have to do in order to make a
filesystem on it and then mount it to the virtual directory structure:

$ sudo mkfs.ext4 /dev/vg00/lvol0
[sudo] password for christine:
[...]
Writing inode tables: done
Creating journal (8192 blocks): done
Writing superblocks and filesystem accounting information:
done

$ mkdir my_LV
$ sudo mount -t ext4 /dev/vg00/lvol0 my_LV
$ ls my_LV
lost+found
$

Now that all the various LVM parts are created and the LV is attached to
your virtual directory structure, you can use it as needed. Keep in mind that
you'll want to add a record to the /etc/fstab file so that your new LV is
mounted automatically when the system boots.

Growing or shrinking your VGs and LVs
The time comes when you need to increase a VG's or LV's size. It may be
due to increasing data on the volume, or it could be a new application being
installed. However, you may want to shrink a VG or LV. If you don't have
access to a fancy graphical interface for handling these activities on your
Linux LVM environment, all is not lost. Table 8-6 lists the common
commands that are available to accomplish these tasks.

TABLE 8-6 The Growing and Shrinking LVM Commands

Command Function
vgextend Adds physical volumes to a volume group.
vgreduce Removes physical volumes from a volume group.
lvextend Increases the size of a logical volume.
lvreduce Decreases the size of a logical volume.

Using these command-line programs, you have more control over your
Linux LVM environment. Be sure to consult their man pages for additional
details.

TIP

To see all the various LVM commands available, type lvm help at
the CLI and press Enter.

Using the various command-line programs we covered, you have full
control over your Linux LVM environment. And you gain the added
flexibility LVM provides.

Summary

Working with storage devices in Linux requires that you know a bit about
filesystems. Knowing how to create and work with filesystems from the
command line can come in handy as you work on Linux systems. This
chapter discussed how to handle filesystems from the Linux command line.

Before you can install a filesystem on a storage device, you must first
prepare the drive. The fdisk , gdisk , and parted commands are used to
partition storage devices to get them ready for the filesystem. When you
partition the storage device, you must define what type of filesystem will be
used on it.

After you partition a storage device, you can use one of several filesystems
for the partition. Popular Linux filesystems include journaling or volume-
managing features, making them less prone to errors and problems.

One limiting factor in creating filesystems directly on a storage device
partition is that you can't easily change the size of the filesystem if you run
out of disk space. However, Linux supports logical volume management, a
method of creating virtual partitions across multiple storage devices, which
allows you to easily expand an existing filesystem without having to
completely rebuild it.

Now that you've seen the core Linux command-line commands, it's close to
the time to start creating some shell script programs. However, before you
start coding, we need to discuss another element: installing software. If you
plan to write shell scripts, you need an environment in which to create your
masterpieces. The next chapter discusses how to install and manage
software packages from the command line in different Linux environments.

CHAPTER 9
Installing Software
IN THIS CHAPTER

Installing software

Using Debian packages

Working with Red Hat packages

Exploring application containers

Revisiting tarballs

In the old days of Linux, installing software could be a painful experience. Fortunately, the Linux
developers have made life a little easier for us by bundling software into prebuilt packages that are
much easier to install. However, there's still a little work on our part to get the software packages
installed, especially if you want to do so from the command line. This chapter takes a look at the
various package management systems available in Linux and the command-line tools used for
software installation, management, and removal.

Exploring Package Management
Before diving into the world of Linux software package management, this chapter goes through a
few of the basics. Each of the major Linux distributions utilizes some form of package
management system to control installing software applications and libraries. A package
management system uses a database that keeps track of the following:

What software packages are installed on the Linux system

What files have been installed for each package

Versions of each of the software packages installed

Software packages are stored on servers, called repositories, and are accessed across the Internet
via package management system utilities running on your local Linux system. You can use these
utilities to search for new software packages or even updates to software packages already
installed on the system.

A software package will often have dependencies, or other packages that must be installed first for
the software to run properly. The package management system utilities will detect these
dependencies and offer to install any additionally needed software packages before installing the
desired package.

The downside to a package management system is that there isn't a single standard utility. Whereas
all the Bash shell commands discussed so far in this book will work no matter which Linux
distribution you use, this is not true with software package management.

The package management system utilities and their associated commands are vastly different
between the various Linux distributions. The two primary package management system base

utilities commonly used in the Linux world are dpkg and rpm.

Debian-based distributions such as Ubuntu and Linux Mint use, at the base of their package
management system utilities, the dpkg command. This command interacts directly with the
package management system on the Linux system and is used for installing, managing, and
removing software packages.

The Red Hat–based distributions, such as Fedora, CentOS, and openSUSE, use the rpm command
at the base of their package management system. Similar to the dpkg command, the rpm command
can list installed packages, install new packages, and remove existing software.

Note that these two commands are the core of their respective package management system, not
the entire package management system itself. Many Linux distributions that use the dpkg or rpm
methods have built additional specialty package management system utilities upon these base
commands to make your life much easier. The following sections walk through various package
management system utility commands you'll run into in the popular Linux distributions.

Inspecting the Debian-Based Systems
The dpkg command is at the core of the Debian-based family of package management system
tools. It provides options to install, update, and remove DEB package files on your Linux system.

The dpkg command assumes you have the DEB package file either downloaded onto your local
Linux system or available as a URL. More often than not, that isn't the case. Usually you'll want to
install an application package from the repository for your Linux distribution. To do that, you'll use
the Advanced Package Tool (APT) suite of tools:

apt-cache

apt-get

apt

The apt command is essentially a front end for both the apt-cache and apt-get commands. The
nice thing about APT is that you don't need to remember which tool to use when—it covers
everything you need to do with package management. The basic format for the apt command is

apt [options] command

The command defines the action for apt to take. If needed, you can specify one or more options to
fine-tune what happens. This section looks at how to use the APT command-line tool to work with
the software packages on your Linux system.

Managing packages with apt
A common task faced by Linux system administrators is to determine what packages are already
installed on the system. The apt list command displays all the packages available in the
repository, but by adding the --installed option you can limit the output to only those packages
already installed on your system:

$ apt --installed list
Listing... Done
accountsservice/focal,now 0.6.55-0ubuntu11 amd64 [installed,automatic]
acl/focal,now 2.2.53-6 amd64 [installed,automatic]

acpi-support/focal,now 0.143 amd64 [installed,automatic]
acpid/focal,now 1:2.0.32-1ubuntu1 amd64 [installed,automatic]
adduser/focal,focal,now 3.118ubuntu2 all [installed,automatic]
adwaita-icon-theme/focal,focal,now 3.36.0-1ubuntu1 all [installed,automatic]
aisleriot/focal,now 1:3.22.9-1 amd64 [installed,automatic]
alsa-base/focal,focal,now 1.0.25+dfsg-0ubuntu5 all [installed,automatic]
alsa-topology-conf/focal,focal,now 1.2.2-1 all [installed,automatic]
alsa-ucm-conf/focal,focal,now 1.2.2-1 all [installed,automatic]
...
$

As you can guess, the list of installed packages will be very long, so we've abbreviated the output
to show just a sample of what the output looks like. Next to the package name is additional
information about the package, such as the version name, and whether the package is installed and
flagged for automatic upgrades.

If you already know the packages on your system and want to quickly display detailed information
about a particular package, use the show command:

apt show package_name

Here's an example of displaying the details of the package zsh :

$ apt show zsh
Package: zsh
Version: 5.8-3ubuntu1
Priority: optional
Section: shells
Origin: Ubuntu
Maintainer: Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
Original-Maintainer: Debian Zsh Maintainers <pkg-zsh-
devel@lists.alioth.debian.org>
Bugs: https://bugs.launchpad.net/ubuntu/+filebug
Installed-Size: 2,390 kB
Depends: zsh-common (= 5.8-3ubuntu1), libc6 (>= 2.29), libcap2 (>= 1:2.10),
libtinfo6 (>= 6)
Recommends: libgdbm6 (>= 1.16), libncursesw6 (>= 6), libpcre3
Suggests: zsh-doc
Homepage: https://www.zsh.org/
Download-Size: 707 kB
APT-Sources: http://us.archive.ubuntu.com/ubuntu focal/main amd64 Packages
Description: shell with lots of features
 Zsh is a UNIX command interpreter (shell) usable as an
 interactive login shell and as a shell script command
 processor. Of the standard shells, zsh most closely resembles
 ksh but includes many enhancements. Zsh has command-line editing,
 built-in spelling correction, programmable command completion,
 shell functions (with autoloading), a history mechanism, and a
 host of other features.

$

NOTE

The apt show command does not indicate that the package is installed on the system. It
shows only detailed package information from the software repository.

One detail you cannot get with apt is a listing of all the files associated with a particular software
package. To get this list, you will need to go to the dpkg command itself:

dpkg -L package_name

Here's an example of using dpkg to list all the files installed as part of the acl package:

$ dpkg -L acl
/.
/bin
/bin/chacl
/bin/getfacl
/bin/setfacl
/usr
/usr/share
/usr/share/doc
/usr/share/doc/acl
/usr/share/doc/acl/copyright
/usr/share/man
/usr/share/man/man1
/usr/share/man/man1/chacl.1.gz
/usr/share/man/man1/getfacl.1.gz
/usr/share/man/man1/setfacl.1.gz
/usr/share/man/man5
/usr/share/man/man5/acl.5.gz
/usr/share/doc/acl/changelog.Debian.gz
$

You can also do the reverse — find what package a particular file belongs to:

dpkg --search absolute_file_name

Note that you need to use an absolute file reference for this to work:

$ dpkg --search /bin/getfacl
acl: /bin/getfacl
$

The output shows the getfacl file was installed as part of the acl package.

Installing software packages with apt
Now that you know more about listing software package information on your system, this section
walks you through a software package installation. First, you'll want to determine the package
name to install. How do you find a particular software package? Use apt with the search
command:

apt search package_name

The beauty of the search command is that you do not need to insert wildcards around
package_name. Wildcards are implied. By default, the search command displays packages that
contain the search term in either the package name or the package description, which can be
misleading at times. If you want to limit the output to only package names, include the --names-
only option:

$ apt --names-only search zsh
Sorting... Done
Full Text Search... Done
fizsh/focal,focal 1.0.9-1 all
 Friendly Interactive ZSHell

zsh/focal 5.8-3ubuntu1 amd64
 shell with lots of features

zsh-antigen/focal,focal 2.2.3-2 all
 manage your zsh plugins

zsh-autosuggestions/focal,focal 0.6.4-1 all
 Fish-like fast/unobtrusive autosuggestions for zsh

zsh-common/focal,focal 5.8-3ubuntu1 all
 architecture independent files for Zsh

zsh-dev/focal 5.8-3ubuntu1 amd64
 shell with lots of features (development files)

zsh-doc/focal,focal 5.8-3ubuntu1 all
 zsh documentation - info/HTML format

zsh-static/focal 5.8-3ubuntu1 amd64
 shell with lots of features (static link)

zsh-syntax-highlighting/focal,focal 0.6.0-3 all
 Fish shell like syntax highlighting for zsh

zsh-theme-powerlevel9k/focal,focal 0.6.7-2 all
 powerlevel9k is a theme for zsh which uses powerline fonts

zshdb/focal,focal 1.1.2-1 all
 debugger for Z-Shell scripts

$

Once you find the package you'd like to install, installing it using apt is as easy as this:

apt install package_name

The output will show basic information about the package and ask if you want to proceed with the
installation:

$ sudo apt install zsh
[sudo] password for rich:
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
 zsh-common
Suggested packages:
 zsh-doc
The following NEW packages will be installed:
 zsh zsh-common
0 upgraded, 2 newly installed, 0 to remove and 56 not upgraded.
Need to get 4,450 kB of archives.
After this operation, 18.0 MB of additional disk space will be used.
Do you want to continue? [Y/n] y
Get:1 http://us.archive.ubuntu.com/ubuntu focal/main amd64 zsh-common all 5.8-
3ubuntu1 [3,744 kB]
Get:2 http://us.archive.ubuntu.com/ubuntu focal/main amd64 zsh amd64 5.8-
3ubuntu1 [707 kB]
Fetched 4,450 kB in 4s (1,039 kB/s)
Selecting previously unselected package zsh-common.
(Reading database ... 179515 files and directories currently installed.)

Preparing to unpack .../zsh-common_5.8-3ubuntu1_all.deb ...
Unpacking zsh-common (5.8-3ubuntu1) ...
Selecting previously unselected package zsh.
Preparing to unpack .../zsh_5.8-3ubuntu1_amd64.deb ...
Unpacking zsh (5.8-3ubuntu1) ...
Setting up zsh-common (5.8-3ubuntu1) ...
Setting up zsh (5.8-3ubuntu1) ...
Processing triggers for man-db (2.9.1-1) ...
$

NOTE

Before the apt command in the preceding listing, the sudo command is used. The sudo
command allows you to run a command as the root user. You can use the sudo command
to run administrative tasks, such as installing software.

To check if the installation processed properly, just use the list command with the --installed
option again. You should see the package appear, indicating that it is installed.

Notice that when installing the requested package, apt asked to install other packages as well. This
is because apt automatically resolves any necessary package dependencies for us and installs the
needed additional library and software packages. This is a wonderful feature included in many
package management systems.

Upgrading software with apt
While apt helps protect you from problems installing software, trying to coordinate a multiple-
package update with dependencies can get tricky. To safely upgrade all the software packages on a
system with any new versions in the repository, use the upgrade command:

apt upgrade

Notice that this command doesn't take any software package names as an argument. That's because
the upgrade option will upgrade all the installed packages to the most recent version available in
the repository, which is safer for system stabilization.

Here's a sample output from running the apt upgrade command:

$
$ sudo apt upgrade
Reading package lists... Done
Building dependency tree
Reading state information... Done
Calculating upgrade... Done
The following NEW packages will be installed:
 binutils binutils-common binutils-x86-64-linux-gnu build-essential dpkg-dev
 fakeroot g++ g++-9 gcc gcc-9 libalgorithm-diff-perl
 libalgorithm-diff-xs-perl libalgorithm-merge-perl libasan5 libatomic1
 libbinutils libc-dev-bin libc6-dev libcrypt-dev libctf-nobfd0 libctf0
 libfakeroot libgcc-9-dev libitm1 liblsan0 libquadmath0 libstdc++-9-dev
 libtsan0 libubsan1 linux-libc-dev make manpages-dev
The following packages will be upgraded:
 chromium-codecs-ffmpeg-extra eog file-roller fonts-opensymbol gedit
 gedit-common gir1.2-gnomedesktop-3.0 glib-networking glib-networking-common
 glib-networking-services gnome-control-center gnome-control-center-data
 gnome-control-center-faces gnome-desktop3-data gnome-initial-setup

 libgnome-desktop-3-19 libjuh-java libjurt-java libnautilus-extension1a
 libnetplan0 libreoffice-base-core libreoffice-calc libreoffice-common
 libreoffice-core libreoffice-draw libreoffice-gnome libreoffice-gtk3
 libreoffice-help-common libreoffice-help-en-us libreoffice-impress
 libreoffice-math libreoffice-ogltrans libreoffice-pdfimport
 libreoffice-style-breeze libreoffice-style-colibre
 libreoffice-style-elementary libreoffice-style-tango libreoffice-writer
 libridl-java libuno-cppu3 libuno-cppuhelpergcc3-3 libuno-purpenvhelpergcc3-3
 libuno-sal3 libuno-salhelpergcc3-3 libunoloader-java nautilus nautilus-data
 netplan.io python3-distupgrade python3-uno thermald ubuntu-drivers-common
 ubuntu-release-upgrader-core ubuntu-release-upgrader-gtk uno-libs-private
 ure
56 upgraded, 32 newly installed, 0 to remove and 0 not upgraded.
Need to get 133 MB of archives.
After this operation, 143 MB of additional disk space will be used.
Do you want to continue? [Y/n]

In the output, notice that apt lists the packages that will be upgraded, but also any new packages
that are required to be installed because of upgrades.

The upgrade command won't remove any packages as part of the upgrade process. If a package
needs to be removed as part of an upgrade, use the command

apt full-upgrade

Although this may seem like an odd thing, sometimes it's required to remove packages to keep
things synchronized between distribution upgrades.

NOTE

Obviously, running apt 's upgrade option is something you should do on a regular basis
to keep your system up to date. However, it is especially important to run it after a fresh
distribution installation. Usually there are lots of security patches and updates that have
been released since the last full release of a distribution.

Uninstalling software with apt
Getting rid of software packages with apt is as easy as installing and upgrading them. The only
real choice you have to make is whether or not to keep the software's data and configuration files
around afterward.

To remove a software package, but not the data and configuration files, use apt 's remove
command. To remove a software package and the related data and configuration files, use the
purge option:

$ sudo apt purge zsh
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following package was automatically installed and is no longer required:
 zsh-common
Use 'sudo apt autoremove' to remove it.
The following packages will be REMOVED:
 zsh*
0 upgraded, 0 newly installed, 1 to remove and 56 not upgraded.

After this operation, 2,390 kB disk space will be freed.
Do you want to continue? [Y/n] y
(Reading database ... 180985 files and directories currently installed.)
Removing zsh (5.8-3ubuntu1) ...
Processing triggers for man-db (2.9.1-1) ...
(Reading database ... 180928 files and directories currently installed.)
Purging configuration files for zsh (5.8-3ubuntu1) ...
$

Notice, though, as part of the purge output apt warns us that the zsh-common package that was
installed as a dependency wasn't removed automatically, just in case it might be required for some
other package. If you're sure the dependency package isn't required by anything else, you can
remove it using the autoremove command:

$ sudo apt autoremove
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages will be REMOVED:
 zsh-common
0 upgraded, 0 newly installed, 1 to remove and 56 not upgraded.
After this operation, 15.6 MB disk space will be freed.
Do you want to continue? [Y/n] y
(Reading database ... 180928 files and directories currently installed.)
Removing zsh-common (5.8-3ubuntu1) ...
Processing triggers for man-db (2.9.1-1) ...
$

The autoremove command will check for all packages that are marked as dependencies and no
longer required.

The apt repositories
The default software repository locations for apt are set up for you when you install your Linux
distribution. The repository locations are stored in the file /etc/apt/sources.list.

In many cases, you will never need to add/remove a software repository, so you won't need to
touch this file. However, apt will only pull software from these repositories. Also, when searching
for software to install or update, apt will only check these repositories. If you need to include
some additional software repositories for your package management system, this is the place to do
it.

TIP

The Linux distribution developers work hard to make sure package versions added to
the repositories don't conflict with one another. Usually it's safest to upgrade or install a
software package from the repository. Even if a newer version is available elsewhere,
you may want to hold off installing it until that version is available in your Linux
distribution's repository.

The following is an example of a sources.list file from an Ubuntu system:

$ cat /etc/apt/sources.list
#deb cdrom:[Ubuntu 20.04 LTS _Focal Fossa_ - Release amd64 (20200423)]/ focal
main restricted

See http://help.ubuntu.com/community/UpgradeNotes for how to upgrade to
newer versions of the distribution.
deb http://us.archive.ubuntu.com/ubuntu/ focal main restricted
deb-src http://us.archive.ubuntu.com/ubuntu/ focal main restricted

Major bug fix updates produced after the final release of the
distribution.
deb http://us.archive.ubuntu.com/ubuntu/ focal-updates main restricted
deb-src http://us.archive.ubuntu.com/ubuntu/ focal-updates main restricted

N.B. software from this repository is ENTIRELY UNSUPPORTED by the Ubuntu
team. Also, please note that software in universe WILL NOT receive any
review or updates from the Ubuntu security team.
deb http://us.archive.ubuntu.com/ubuntu/ focal universe
deb-src http://us.archive.ubuntu.com/ubuntu/ focal universe
deb http://us.archive.ubuntu.com/ubuntu/ focal-updates universe
deb-src http://us.archive.ubuntu.com/ubuntu/ focal-updates universe

N.B. software from this repository is ENTIRELY UNSUPPORTED by the Ubuntu
team, and may not be under a free licence. Please satisfy yourself as to
your rights to use the software. Also, please note that software in
multiverse WILL NOT receive any review or updates from the Ubuntu
security team.
deb http://us.archive.ubuntu.com/ubuntu/ focal multiverse
deb-src http://us.archive.ubuntu.com/ubuntu/ focal multiverse
deb http://us.archive.ubuntu.com/ubuntu/ focal-updates multiverse
deb-src http://us.archive.ubuntu.com/ubuntu/ focal-updates multiverse

N.B. software from this repository may not have been tested as
extensively as that contained in the main release, although it includes
newer versions of some applications which may provide useful features.
Also, please note that software in backports WILL NOT receive any review
or updates from the Ubuntu security team.
deb http://us.archive.ubuntu.com/ubuntu/ focal-backports main restricted
universe multiverse
deb-src http://us.archive.ubuntu.com/ubuntu/ focal-backports main restricted
universe multiverse

Uncomment the following two lines to add software from Canonical's
'partner' repository.
This software is not part of Ubuntu, but is offered by Canonical and the
respective vendors as a service to Ubuntu users.
deb http://archive.canonical.com/ubuntu focal partner
deb-src http://archive.canonical.com/ubuntu focal partner

deb http://security.ubuntu.com/ubuntu focal-security main restricted
deb-src http://security.ubuntu.com/ubuntu focal-security main restricted
deb http://security.ubuntu.com/ubuntu focal-security universe
deb-src http://security.ubuntu.com/ubuntu focal-security universe
deb http://security.ubuntu.com/ubuntu focal-security multiverse
deb-src http://security.ubuntu.com/ubuntu focal-security multiverse

This system was installed using small removable media
(e.g. netinst, live or single CD). The matching "deb cdrom"
entries were disabled at the end of the installation process.
For information about how to configure apt package sources,
see the sources.list(5) manual.
$

First, notice that the file is full of helpful comments and warnings. The repository sources
specified use the following structure:

deb (or deb-src) address distribution_name package_type_list

The deb or deb-src value indicates the software package type. The deb value indicates it is a
source of compiled programs, whereas the deb-src value indicates it is a source of source code.

The address entry is the software repository's web address. The distribution_name entry is the
name of this particular software repository's distribution version. In the example, the distribution
name is focal . This does not necessarily mean that the distribution you are running is Ubuntu's
Focal Fossa; it just means the Linux distribution is using the Ubuntu Focal Fossa software
repositories. For example, in Linux Mint's sources.list file, you will see a mix of Linux Mint
and Ubuntu software repositories.

Finally, the package_type_list entry may be more than one word and indicates what type of
packages the repository has in it. For example, you may see values such as main , restricted ,
universe , or partner.

When you need to add a software repository to your sources file, you can try to wing it yourself,
but that more than likely will cause problems. Often, software repository sites or various package
developer sites will have an exact line of text that you can copy from their website and paste into
your sources.list file. It's best to choose the safer route and just copy/paste.

The front-end interface, apt , provides intelligent command-line options for working with the
Debian-based dpkg utility. Now it's time to take a look at the Red Hat–based distributions' rpm
utility and its various front-end interfaces.

The Red Hat–Based Systems
Like the Debian-based distributions, the Red Hat–based systems have several different front-end
tools available. The common ones are:

yum : Used in Red Hat, CentOS, and Fedora

zypper : Used in openSUSE

dnf : An updated version of yum with some additional features

These front ends are all based on the rpm command-line tool. The following section discusses how
to manage software packages using these various rpm -based tools. The focus will be on dnf , but
the other packages use similar commands and formats.

Listing installed packages
To find out what is currently installed on your system, at the shell prompt type the following
command:

dnf list installed

The information will probably whiz by you on the display screen, so it's best to redirect the
installed software listing into a file. You can then use the more or less command (or a GUI editor)
to look at the list in a controlled manner.

dnf list installed> installed_software

To find out detailed information for a particular software package, dnf really shines. Not only will
it give you a very verbose description of the package, but with another simple command, you can
see whether the package is installed:

$ dnf list xterm
Last metadata expiration check: 0:05:17 ago on Sat 16 May 2020 12:10:24 PM EDT.
Available Packages
xterm.x86_64 351-1.fc31
updates

$ dnf list installed xterm
Error: No matching Packages to list

$ dnf list installed bash
Installed Packages
Bash.x86_64 5.0.11-1.fc31
@updates
$

Finally, if you need to find out what software package provides a particular file on your filesystem,
the versatile dnf can do that, too! Just enter the command

dnf provides file_name

Here's an example of trying to find what software provided the file /usr/bin/gzip :

$ dnf provides /usr/bin/gzip
Last metadata expiration check: 0:12:06 ago on Sat 16 May 2020 12:10:24 PM EDT.
gzip-1.10-1.fc31.x86_64 : The GNU data compression program
Repo : @System
Matched from:
Filename : /usr/bin/gzip

gzip-1.10-1.fc31.x86_64 : The GNU data compression program
Repo : fedora
Matched from:
Filename : /usr/bin/gzip

$

dnf checked two separate repositories: the local system and the default fedora repository.

Installing software with dnf
Installation of a software package using dnf is incredibly easy. The following is the basic
command for installing a software package, all its needed libraries, and package dependencies
from a repository:

dnf install package_name

Here's an example of installing the zsh package, which provides an alternative command-line
shell:

$ sudo dnf install zsh
[sudo] password for rich:
Last metadata expiration check: 0:19:45 ago on Sat 16 May 2020 12:05:01 PM EDT.
Dependencies resolved.
===
=
 Package Architecture Version Repository Size

===
=
Installing:
 zsh x86_64 5.7.1-6.fc31 updates 2.9 M

Transaction Summary
===
=
Install 1 Package

Total download size: 2.9 M
Installed size: 7.4 M
Is this ok [y/N]:
Downloading Packages:
zsh-5.7.1-6.fc31.x86_64.rpm 1.5 MB/s | 2.9 MB 00:01

-
Total 1.0 MB/s | 2.9 MB 00:02
Running transaction check
Transaction check succeeded.
Running transaction test
Transaction test succeeded.
Running transaction
 Preparing : 1/1
 Installing : zsh-5.7.1-6.fc31.x86_64 1/1
 Running scriptlet: zsh-5.7.1-6.fc31.x86_64 1/1
 Verifying : zsh-5.7.1-6.fc31.x86_64 1/1

Installed:
 zsh-5.7.1-6.fc31.x86_64

Complete!
$

NOTE

Before the dnf command in the preceding listing, the sudo command is used. This
command allows you to switch to the root user to run the command. You should only
switch to root user temporarily in order to run administrative tasks, such as installing
and updating software.

You can begin to see that one of dnf 's strengths is that it uses very logical and user-friendly
commands.

Upgrading software with dnf
In most Linux distributions, when you're working away in the GUI, you get those nice little
notification icons telling you a software upgrade to a new version is needed. Here at the command
line, it takes a little more work.

To see the list of all the available upgrades for your installed packages, type the following
command:

dnf list upgrades

It's always nice to get no response to this command because it means you have nothing to upgrade!
However, if you do discover that a particular software package needs upgrading, then type in the

following command:

dnf upgrade package_name

If you'd like to upgrade all the packages listed in the upgrade list, just enter the following
command:

dnf upgrade

NOTE

One nice extra feature in dnf is the upgrade-minimal command. It upgrades a package
to the latest bug fix or security patch version instead of the latest and greatest version.

Uninstalling software with dnf
The dnf tool also provides an easy way to uninstall software you no longer want on your system:

dnf remove package_name

Unfortunately, as of this writing there isn't an option or command to remove the application files
but keep any configuration or data files.

While life is considerably easier with package management system packages, it's not always
problem free. Occasionally things do go wrong. Fortunately, there's help.

Dealing with broken dependencies
Sometimes as multiple software packages get loaded, a software dependency for one package can
get overwritten by the installation of another package. This is called a broken dependency.

If this should happen on your system, first try the following command:

dnf clean all

Then try to use the upgrade option in the dnf command. Sometimes, just cleaning up any
misplaced files can help.

If that doesn't solve the problem, try the following command:

dnf repoquery --deplist package_name

This command displays all the package's library dependencies and what software package provides
them. Once you know the libraries required for a package, you can then install them. Here's an
example of determining the dependencies for the xterm package:

dnf repoquery --deplist xterm

#

NOTE

The yum tool's upgrade command includes support for the --skip-broken option that
skips over broken packages but tries to continue upgrading other packages. The dnf tool
does this automatically.

RPM repositories
Just like the apt systems, dnf has its software repositories set up at installation. For most purposes,
these preinstalled repositories will work just fine for your needs. But if and when the time comes
that you need to install software from a different repository, here are some things you will need to
know.

TIP

A wise system administrator sticks with approved repositories. An approved repository
is one that is sanctioned by the distribution's official site. If you start adding
unapproved repositories, you lose the guarantee of stability. And you will be heading
into broken dependencies territory.

To see what repositories you are currently pulling software from, type the following command:

dnf repolist

If you don't find a repository you need software from, then you will need to do a little
configuration file editing. There are two places where the dnf repository definitions can be
located:

In the /etc/dnf/dnf.conf configuration file

As separate files in the /etc/yum.repos.d directory

Good repository sites such as rpmfusion.org will lay out all the steps necessary to use them.
Sometimes these repository sites will offer an RPM file that you can download and install. The
installation of the RPM file will do all the repository setup work for you. Now that's convenient!

Managing Software Using Containers
Although package management systems have certainly made software installation in the Linux
world much easier, they do have their drawbacks. To start with, as you've already seen in this
chapter, there are multiple competing package management systems. So for application developers
to distribute an application that can be installed in all Linux distributions, they must create
multiple versions to distribute.

But there's even more complexity than that. Every application has some type of library functions
that it depends on to run. When developers create a Linux application, they must take into
consideration what library files are available in most Linux distributions, and not only that, but

http://rpmfusion.org/

also what versions of the library files. Although package management systems can track
dependencies, as you can guess, this can quickly turn into a nightmare for software developers
trying to get their applications working in most Linux distributions.

With cloud computing came a new paradigm in how applications can be packaged: application
containers. An application container creates an environment where all the files required for an
application to run are bundled together, including runtime library files. The developer can then
release the application container as a single package and be guaranteed that it'll run just fine on
any Linux system.

Though still relatively new, several competing application container standards are starting to
emerge. The following sections take a look at two of the more popular ones: snap and flatpak.

Using snap containers
Canonical, the creators of the Ubuntu Linux distribution, have developed an application container
format called snap. The snap packaging system bundles all the files required for an application
into a single snap distribution file. The snapd application runs in the background, and you use the
snap command-line tool to query the snap database to display installed snap packages, as well as
to install, upgrade, and remove snap packages.

To check whether snap is running on your system, use the snap version command:

$ snap version
snap 2.44.3+20.04
snapd 2.44.3+20.04
series 16
ubuntu 20.04
kernel 5.4.0-31-generic
$

If snap is running, you can see a list of the currently installed snap applications by using the snap
list command:

$ snap list
Name Version Rev Tracking Publisher
Notes
core 16-2.44.3 9066 latest/stable canonical✓
core
core18 20200427 1754 latest/stable canonical✓
base
gimp 2.10.18 273 latest/stable snapcrafters
-
gnome-3-28-1804 3.28.0-16-g27c9498.27c9 116 latest/stable canonical✓
-
gnome-3-34-1804 0+git.3009fc7 33 latest/stable/...
canonical✓ -
gtk-common-themes 0.1-36-gc75f853 1506 latest/stable/...
canonical✓ -
gtk2-common-themes 0.1 9 latest/stable canonical✓
-
snap-store 3.36.0-74-ga164ec9 433 latest/stable/...
canonical✓ -
snapd 2.44.3 7264 latest/stable canonical✓
snapd
$

To search the snap repository for new applications, use the snap find command:

$ snap find solitaire
Name Version Publisher Notes Summary
solitaire 1.0 1bsyl - usual Solitaire card game,
 as known as Patience or Klondike
kmahjongg 20.04.1 kde✓ - Mahjong Solitaire
kshisen 19.08.0 kde✓ - Shisen-Sho Mahjongg-like
TileGame
kpat 20.04.0 kde✓ - Solitaire card game
freecell-solitaire 1.0 1bsyl - FreeCell Solitaire, card
game
open-solitaire-classic 0.9.2 metasmug - Open-source implementation
of the
classic solitaire game
spider-solitaire 1.0 1bsyl - Spider Solitaire card game
solvitaire master popey - solitaire (klondike &
spider) in your terminal
gnome-mahjongg 3.34.0 ken-vandine - Match tiles and clear the
board

$

To view more information about a snap application (snap for short), use the snap info command:

$ snap info solitaire
name: solitaire
summary: usual Solitaire card game, as known as Patience or Klondike
publisher: Sylvain Becker (1bsyl)
store-url: https://snapcraft.io/solitaire
contact: sylvain.becker@gmail.com
license: Proprietary
description: |
 This is the usual Solitaire card game. Also known as Patience or Klondike.
snap-id: 0rnkesZh4jFy9oovDTvL661qVTW4iDdE
channels:
 latest/stable: 1.0 2017-05-17 (2) 11MB -
 latest/candidate: 1.0 2017-05-17 (2) 11MB -
 latest/beta: 1.0 2017-05-17 (2) 11MB -
 latest/edge: 1.0 2017-05-17 (2) 11MB -
$

To install a new snap, use the snap install command:

$ sudo snap install solitaire
[sudo] password for rich:
solitaire 1.0 from Sylvain Becker (1bsyl) installed
$

Notice that you must have root user privileges to install snap. In Ubuntu, that means using the
sudo command.

NOTE

When you install a snap, the snapd program mounts it as a drive. You can see the new
snap mount by using the mount command.

If you need to remove a snap, just use the snap remove command:

$ sudo snap remove solitaire
solitaire removed
$

As the snap is removed, you'll see some messages about the progress of the removal.

NOTE

Instead of removing a snap, you can just disable it without removing it. Just use the snap
disable command. To reenable the snap, use the snap enable command.

Using flatpak containers
The flatpak application container format was created as an independent open source project with
no direct ties to any specific Linux distribution. That said, battle lines have already been drawn,
with Red Hat, CentOS, and Fedora oriented toward using flatpak instead of Canonical's snap
container format.

If you're using a Linux distribution that supports flatpak, you can list the installed application
containers using the flatpak list command:

$ flatpak list
Name Application ID Version Branch
Installation
Platform org.fedoraproject.Platform f32 system
$

To find an application in the flatpak repository, you use the flatpak search command:

$ flatpak search solitaire
Name Description Application ID Version Branch
Remotes
Aisleriot Solitaire org.gnome.Aisleriot stable fedora
GNOME Mahjongg org.gnome.Mahjongg 3.32.0 stable
fedora
$

We edited out some of the information in the output to help simplify things. When working with a
container you must use its Application ID value and not its name. To install the application, use the
flatpak install command:

$ sudo flatpak install org.gnome.Aisleriot
Looking for matches...
Found similar ref(s) for 'org.gnome.Aisleriot' in remote 'fedora' (system).
Use this remote? [Y/n]: y

org.gnome.Aisleriot permissions:
 ipc pulseaudio wayland x11 dri file access [1]
dbus
access [2]

 [1] xdg-run/dconf, ~/.config/dconf:ro
 [2] ca.desrt.dconf, org.gnome.GConf

 ID Arch Branch Remote Download
 1. [✓] org.gnome.Aisleriot x86_64 stable fedora 8.4MB /

8.4MB

Installation complete.
$

To check if the installation went well, you can use the flatpak list command again:

$ flatpak list
Name Application ID Version Branch
Installation
Platform org.fedoraproject.Platform f32 system
Aisleriot Solitaire org.gnome.Aisleriot stable system
$

And finally, to remove an application container, use the flatpak uninstall command:

$ sudo flatpak uninstall org.gnome.Aisleriot

 ID Arch Branch
 1. [-] org.gnome.Aisleriot x86_64 stable

Uninstall complete.
$

Using application containers is similar to using package management systems, but what goes on
behind the scenes is fundamentally different. However, the end result is that you have an
application installed on your Linux system that can be easily maintained and upgraded.

Installing from Source Code
Before package management systems and application containers, open source application
developers had to distribute their software as source code and allow users to compile the
applications on their own systems. Source code packages were commonly released as tarballs.
Chapter 4, “More Bash Shell Commands,” discussed tarball packages — how to create them using
the tar command-line command and how to unpack them.

If you develop or work with open source software source code much, there's a good chance you
will still find software packed up as a tarball. This section walks you through the process of
unpacking and installing a tarball software package.

For this example, the software package sysstat will be used. The sysstat utility is a very nice
software package that provides a variety of system monitoring tools.

First, you will need to download the sysstat tarball to your Linux system. While you can often
find the sysstat package available on different Linux sites, it's usually best to go straight to the
source of the program. In this case, it's the website sebastien.godard.pagesperso-orange.fr.

When you click the Download link, you'll go to the page that contains the files for downloading.
The current version as of this writing is 12.3.3, and the distribution filename is sysstat-
12.3.3.tar.xz.

Click the link to download the file to your Linux system. Once you have downloaded the file, you
can unpack it.

To unpack a software tarball, use the standard tar command:

http://sebastien.godard.pagesperso-orange.fr/

$ tar -Jxvf sysstat-12.3.3.tar.xz
sysstat-12.3.3/
sysstat-12.3.3/pcp_stats.h
sysstat-12.3.3/rd_sensors.h
sysstat-12.3.3/xml/
sysstat-12.3.3/xml/sysstat.xsd
sysstat-12.3.3/xml/sysstat-3.9.dtd
sysstat-12.3.3/sa.h
sysstat-12.3.3/man/
sysstat-12.3.3/man/sadf.in
sysstat-12.3.3/man/mpstat.1
...
sysstat-12.3.3/pcp_stats.c
sysstat-12.3.3/pr_stats.h
sysstat-12.3.3/rd_stats.c
sysstat-12.3.3/pr_stats.c
sysstat-12.3.3/.travis.yml
sysstat-12.3.3/configure
$

Now that the tarball is unpacked and the files have neatly put themselves into a directory called
sysstat-12.3.3 , you can dive down into that directory and continue.

First, use the cd command to get into the new directory and then list the contents of the directory:

$ cd sysstat-12.3.3
$ ls
activity.c images pr_stats.h sar.c
BUG_REPORT INSTALL raw_stats.c sa_wrap.c
build ioconf.c raw_stats.h svg_stats.c
CHANGES ioconf.h rd_sensors.c svg_stats.h
cifsiostat.c iostat.c rd_sensors.h sysconfig.in
cifsiostat.h iostat.h rd_stats.c sysstat-12.3.3.lsm
common.c json_stats.c rd_stats.h sysstat-12.3.3.spec
common.h json_stats.h README.md sysstat.in
configure Makefile.in rndr_stats.c sysstat.ioconf
configure.in man rndr_stats.h sysstat.service.in
contrib mpstat.c sa1.in sysstat.sysconfig.in
COPYING mpstat.h sa2.in systest.c
count.c nls sa_common.c systest.h
count.h pcp_def_metrics.c sa_conv.c tapestat.c
CREDITS pcp_def_metrics.h sa_conv.h tapestat.h
cron pcp_stats.c sadc.c tests
do_test pcp_stats.h sadf.c version.in
FAQ.md pidstat.c sadf.h xml
format.c pidstat.h sadf_misc.c xml:stats.c
iconfig pr_stats.c sa.h xml:stats.h
$

In the directory listing, you should typically see a README or an INSTALL file. It is very important to
read this file. In the file will be the instructions you will need to finish the software's installation.

Following the advice contained in the INSTALL file, the next step is to run the configure utility for
your system. This checks your Linux system to ensure it has the proper library dependencies, in
addition to the proper compiler to compile the source code:

$./configure
.
Check programs:
.
checking for gcc... gcc

checking whether the C compiler works... yes
checking for C compiler default output file name... a.out
checking for suffix of executables...
checking whether we are cross compiling... no
checking for suffix of object files... o
checking whether we are using the GNU C compiler... yes
checking whether gcc accepts -g... yes
...
config.status: creating man/cifsiostat.1
config.status: creating tests/variables
config.status: creating Makefile

 Sysstat version: 12.3.3
 Installation prefix: /usr/local
 rc directory: /etc
 Init directory: /etc/init.d
 Systemd unit dir: /lib/systemd/system
 Configuration file: /etc/sysconfig/sysstat
 Man pages directory: ${datarootdir}/man
 Compiler: gcc
 Compiler flags: -g -O2

$

If anything does go wrong, the configure step will display an error message explaining what's
missing.

NOTE

Most Linux utility programs are written using the C or C++ programming language. To
compile them on your system, you will need the gcc package installed, as well as the make
package. Most Linux desktop distributions don't install these by default. If the
configure program shows an error that these parts are missing, consult your specific
Linux distribution docs on what packages you need to install.

The next stage is to build the various binary files using the make command. The make command
compiles the source code and then the linker to create the final executable files for the package. As
with the configure command, the make command produces lots of output as it goes through the
steps of compiling and linking all the source code files:

$ make
gcc -o sadc.o -c -g -O2 -Wall -Wstrict-prototypes -pipe -O2
 -DSA_DIR=\"/var/log/sa\" -DSADC_PATH=\"/usr/local/lib/sa/sadc\"
 -DHAVE_SYS_SYSMACROS_H -DHAVE_LINUX_SCHED_H -DHAVE_SYS_PARAM_H sadc.c
gcc -o act_sadc.o -c -g -O2 -Wall -Wstrict-prototypes -pipe -O2 -DSOURCE_SADC
 -DSA_DIR=\"/var/log/sa\" -DSADC_PATH=\"/usr/local/lib/sa/sadc\"
 -DHAVE_SYS_SYSMACROS_H -DHAVE_LINUX_SCHED_H -DHAVE_SYS_PARAM_H activity.c
gcc -o sa_wrap.o -c -g -O2 -Wall -Wstrict-prototypes -pipe -O2 -DSOURCE_SADC
 -DSA_DIR=\"/var/log/sa\" -DSADC_PATH=\"/usr/local/lib/sa/sadc\"
 -DHAVE_SYS_SYSMACROS_H -DHAVE_LINUX_SCHED_H -DHAVE_SYS_PARAM_H sa_wrap.c
gcc -o sa_common_sadc.o -c -g -O2 -Wall -Wstrict-prototypes -pipe -O2 -
DSOURCE_SADC
 -DSA_DIR=\"/var/log/sa\" -DSADC_PATH=\"/usr/local/lib/sa/sadc\"
-DHAVE_SYS_SYSMACROS_H -DHAVE_LINUX_SCHED_H -DHAVE_SYS_PARAM_H sa_common.c
...
$

When make is finished, you'll have the actual sysstat software program available in the directory!
However, it's somewhat inconvenient to have to run it from that directory. Instead, you'll want to
install it in a common location on your Linux system. To do that, you'll need to log in as the root
user account (or use the sudo command if your Linux distribution prefers), and then use the
install option of the make command:

make install
mkdir -p /usr/local/share/man/man1
mkdir -p /usr/local/share/man/man5
mkdir -p /usr/local/share/man/man8
rm -f /usr/local/share/man/man8/sa1.8*
install -m 644 -g man man/sa1.8 /usr/local/share/man/man8
rm -f /usr/local/share/man/man8/sa2.8*
install -m 644 -g man man/sa2.8 /usr/local/share/man/man8
rm -f /usr/local/share/man/man8/sadc.8*
...
install -m 644 -g man man/sadc.8 /usr/local/share/man/man8
install -m 644 FAQ /usr/local/share/doc/sysstat-12.3.3
install -m 644 *.lsm /usr/local/share/doc/sysstat-12.3.3
#

Now the sysstat package is installed on the system! Though not quite as easy as installing a
software package via a package management system, installing software using tarballs is not that
difficult.

Summary
This chapter discussed how to work with a software package management system to install,
update, or remove software from the command line. Most of the Linux distributions use fancy GUI
tools for software package management, but you can also perform package management from the
command line.

The Debian-based Linux distributions use the dpkg utility to interface with the package
management system from the command line, and the apt-cache and apt-get utilities to interface
with a common repository to easily download and install new software. A front end to these
utilities is apt . It provides simple command-line options for working with software packages in
the dpkg format.

The Red Hat–based Linux distributions are based on the rpm utility but use different front-end
tools at the command line. Red Hat, CentOS, and Fedora use dnf for installing and managing
software packages. The openSUSE distribution uses zypper for managing software.

Application containers are a relatively new player in software package management. An
application container bundles all the files necessary for an application to run in one installable
package. This means the application doesn't rely on any external dependencies such as library
files, and the container bundle can be installed in any Linux distribution and run. Currently the two
most popular container packages are snap, common in the Ubuntu Linux distribution, and flatpak,
used in Red Hat Linux environments.

The chapter closed with a discussion on how to install software packages that are only distributed
in source code tarballs. The tar command allows you to unpack the source code files from the
tarball, and then configure and make allow you to build the final executable program from the
source code.

The next chapter takes a look at the various editors available in Linux distributions. As you get
ready to start working on shell scripts, it will come in handy to know what editors are available to
use.

CHAPTER 10
Working with Editors
IN THIS CHAPTER

Working with the vim editor

Exploring nano

Understanding Emacs

Getting comfortable with KWrite

Looking at Kate

Using the GNOME editor

Before you start your shell scripting career, it's wise to gain proficiency
using at least one text editor in Linux. Using features such as searching,
cutting, and pasting allows you to develop your shell scripts more quickly.

You have the choice of several editors. Many individuals find a particular
editor whose functionality they love and use that one exclusively. This
chapter provides a brief sampling of a few of the text editors you can
employ in the Linux world.

Visiting the vim Editor
The vi editor was one of the early editors used on Unix systems. It uses the
console graphics mode to emulate a text-editing window, allowing you to
see the lines of your file; move around within the file; and insert, edit, and
replace text.

Although it is quite possibly the most complicated editor in the world (at
least in the opinion of those who don’t like it), vi provides many features
that have made it a staple for programmers and system administrators for
decades.

When the GNU Project ported the vi editor to the open source world, they
chose to make some improvements to it. Because it extended the original vi
editor found in the Unix world, the developers also renamed it “vi
improved” or vim.

This section walks you through the basics of using the vim editor to edit
your text shell script files.

Checking your vim package
Before you begin your exploration of the vim editor, it's a good idea to
understand what vim package your Linux system has installed. On some
distributions, you will have the full vim package installed and an alias for
the vi command, as shown on this CentOS distribution:

$ alias vi
alias vi='vim'
$
$ which vim
/usr/bin/vim
$
$ ls -l /usr/bin/vim
-rwxr-xr-x. 1 root root 3522560 Nov 11 14:08 /usr/bin/vim
$

Notice that the program file's long listing does not show any linked files
(see Chapter 3, “Basic Bash Shell Commands,” for more information on
linked files). If the vim program is linked, it may be linked to a less than
full-featured editor. Thus, it's a good idea to check for linked files.

On other distributions, you will find various flavors of the vim editor.
Notice on this Ubuntu distribution that not only is there no alias for the vi
command, but the /usr/bin/vi program file belongs to a series of file
links:

$ alias vi
-bash: alias: vi: not found
$
$ which vi
/usr/bin/vi
$
$ ls -l /usr/bin/vi
lrwxrwxrwx 1 root root 20 Apr 23 14:33 /usr/bin/vi ->
 /etc/alternatives/vi

$
$ ls -l /etc/alternatives/vi
lrwxrwxrwx 1 root root 17 Apr 23 14:33 /etc/alternatives/vi
->
 /usr/bin/vim.tiny
$
$ readlink -f /usr/bin/vi
/usr/bin/vim.tiny
$

Thus, when the vi command is entered, the /usr/bin/vim.tiny program is
executed. The vim.tiny program provides only a few vim editor features. If
you are serious about trying out the vim editor and are using a distribution
that uses a vim alternative, such as vim.tiny , consider installing the basic
vim package for more vim features.

NOTE

Notice in the preceding example that, instead of having to use the ls
-l command multiple times to find a series of linked files' final
object, you can use the readlink -f command. It immediately
produces the linked file series' final object.

Software package management was covered in detail in Chapter 9,
“Installing Software.” Installing the basic vim package on this Ubuntu
distribution is fairly straightforward:

$ sudo apt install vim
[sudo] password for christine:
[...]
The following additional packages will be installed:
 vim-runtime
Suggested packages:
 ctags vim-doc vim-scripts
The following NEW packages will be installed:
 vim vim-runtime
[...]
Do you want to continue? [Y/n] Y
[...]
Setting up vim (2:8.1.2269-1ubuntu5) ...
[...]
Processing triggers for man-db (2.9.1-1) ...

$
$ readlink -f /usr/bin/vi
/usr/bin/vim.basic
$

The basic vim editor is now installed on this Ubuntu distribution, and the
/usr/bin/vi program file's link was automatically changed to point to
/usr/bin/vim.basic . Thus, when the vi command is entered on this
Ubuntu system, the basic vim editor is used instead of tiny vim.

Exploring vim basics
The vim editor works with data in a memory buffer. To start the vim editor,
just type the vim command (or vi if there's an alias or linked file) and the
name of the file you want to edit:

$ vi myprog.c

If you start vim without a filename, or if the file doesn't exist, vim opens a
new buffer area for editing. If you specify an existing file on the command
line, vim reads the entire file's contents into a buffer area, where it is ready
for editing, as shown in Figure 10-1.

FIGURE 10-1 The vim main window

The vim editor detects the terminal type for the session (see Chapter 2,
“Getting to the Shell”) and uses a full-screen mode to consume the entire
console window for the editor area.

The initial vim edit window shows the contents of the file (if there are any)
along with a message line at the bottom of the window. If the file contents
don't take up the entire screen, vim places a tilde (~) on lines that are not
part of the file (as shown in Figure 10-1).

The message line at the bottom indicates information about the edited file,
depending on the file's status, and the default settings in your vim
installation. If the file is new, the message [New File] appears.

The vim editor has three modes of operation:

Command mode

Ex mode

Insert mode

When you first open a file (or start a new file) for editing, the vim editor
enters command mode (sometimes called normal mode). In command
mode, the vim editor interprets keystrokes as commands (more on those
later).

In insert mode, vim places the letter, number, or symbol of the keys you
type at the current cursor location in the buffer. To enter insert mode, enter
i . To get out of insert mode and go back into command mode, press the
Esc key on your keyboard.

In command mode, you can move the cursor around the text area by using
the arrow keys (as long as your terminal type is detected properly by vim).
If you happen to be on an unusual terminal connection that doesn't have the
arrow keys defined, all hope is not lost. The vim editor include commands
for moving the cursor:

h to move left one character

j to move down one line (the next line in the text)

k to move up one line (the previous line in the text)

l to move right one character

Moving around within large text files line by line can get tedious.
Fortunately, vim provides a few commands to help speed things along:

Press PageDown (or Ctrl+F) to move forward one screen of data.

Press PageUp (or Ctrl+B) to move backward one screen of data.

Enter G to move to the last line in the buffer.

Enter num G to move to the line number num in the buffer.

Enter gg to move to the first line in the buffer.

The vim editor has a special feature within command mode called Ex mode.
This mode provides an interactive command line where you can enter
additional commands to control the actions in vim. To get to Ex mode, press

the colon key (:) in command mode. The cursor moves to the message line,
and a colon (:) appears, waiting for you to enter a command.

Within the Ex mode are several commands for saving the buffer to the file
and exiting vim:

q to quit if no changes have been made to the buffer data

q! to quit and discard any changes made to the buffer data

w filename to save the file under a different filename

wq to save the buffer data to the file and quit

After seeing just a few basic vim commands, you might understand why
some people loathe the vim editor. To use vim to its fullest, you must know
plenty of obscure commands. However, after you get a few of the basic vim
commands down, you can quickly edit files directly from the command
line, no matter what type of environment you're in. Due to its enormous
functionality and despite its steep learning curve, the vim editor maintains
its popularity. It is still considered one of the top 10 text editors.

Editing data
While in command mode, the vim editor provides several commands for
editing the data in the buffer. Table 10-1 lists some common editing
commands for vim.

TABLE 10-1 vim Editing Commands

Command Description
x Deletes the character at the current cursor position.
dd Deletes the line at the current cursor position.
dw Deletes the word at the current cursor position.
d$ Deletes to the end of the line from the current cursor position.
J Deletes the line break at the end of the line at the current

cursor position (joins lines).
u Undoes the previous edit command.
a Appends data after the current cursor position.
A Appends data to the end of the line at the current cursor

position.
r char Replaces a single character at the current cursor position with

char.

R text Overwrites the data at the current cursor position with text ,
until you press Esc.

Some of the editing commands also allow you to use a numeric modifier to
indicate how many times to perform the command. For example, the
command 2x deletes two characters, starting from the current cursor
position, and the command 5dd deletes five lines, starting at the line from
the current cursor position.

NOTE

Be careful when trying to use the keyboard Backspace or Delete key
while in the vim editor's command mode. The vim editor usually
recognizes the Delete key only as the functionality of the x
command, deleting the character at the current cursor location.
Usually, the vim editor doesn't recognize the Backspace key in
command mode as a deleting action, but instead as a method to
move the cursor back one space.

Copying and pasting
A standard editor feature is the ability to cut or copy data and paste it
elsewhere in the document. The vim editor provides a way to do this.

Cutting and pasting is relatively easy. You've already seen the commands in
Table 10-1 that can remove data from the buffer. However, when vim
removes data, it actually keeps it stored in a separate area. While in
command mode, that data is retrievable by using the p command.

For example, use the dd command to delete a line of text, move the cursor
to the buffer location where you want to place it, and then use the p
command. The p command inserts the text after the line at the current
cursor position. You can do this with any command that removes text while
in command mode.

Copying text is a little bit trickier. The copy command in vim is y (for
yank). You can use the same second character with y as with the d
command (yw to yank a word, y$ to yank to the end of a line). After you
yank the text, move the cursor to the location where you want to place the
text and use the p command. The yanked text now appears at that location.

Yanking is tricky in that you can't see what happened because you're not
affecting the text that you yank. You never know for sure what you yanked
until you paste it somewhere. But there's another feature in vim that helps
you out with yanking.

While in command mode, the visual mode highlights text as you move the
cursor. You use visual mode to select text to yank for pasting. To enter
visual mode, move the cursor to the location where you want to start
yanking, and press v . Notice that the text at the cursor position is now
highlighted. Next, move the cursor to cover the text you want to yank (you
can even move down lines to yank more than one line of text). As you
move the cursor, vim highlights the text in the yank area. After you've
covered the text you want to copy, enter y to activate the yank command.
Now that you have the text in the register, just move the cursor to where
you want to paste and use the p command.

Searching and substituting

You can easily search for data in the buffer using the vim search command.
To enter a search string, press the forward slash (/) key. The cursor goes to
the message line, and vim displays a forward slash. Enter the text you want
to find, and press the Enter key. The vim editor responds with one of three
actions:

If the word appears after the current cursor location, it jumps to the
first location where the text appears.

If the word doesn't appear after the current cursor location, it wraps
around the end of the file to the first location in the file where the text
appears (and indicates this with a message).

It produces an error message stating that the text was not found in the
file.

If the word appears, to continue searching for the same word, press the
forward slash character and then press the Enter key, or you can use n ,
which stands for next.

NOTE

Are you more familiar with writing scripts and programs on a
Microsoft Windows platform with an integrated development
environment (IDE)? If so, Microsoft's Visual Studio Code is
available on Linux. (We'll wait a minute for you to reread that last
sentence.) Yes, Microsoft offers Visual Studio for Linux. Find
information for installing it on your particular Linux distribution
at code.visualstudio.com/docs/setup/linux. If desired, you can
add the VSCodeVim plugin to Visual Studio, and have all the vim
commands at your fingertips.

The substitute command, performed within Ex mode, allows you to quickly
replace (substitute) one word for another in the text. To get to the substitute
command, you must be in command-line mode. The format for the
substitute command is :s/ old / new / . The vim editor jumps to the first
occurrence of the text old and replaces it with the text new . You can make a

http://code.visualstudio.com/docs/setup/linux

few modifications to the substitute command to replace more than one
occurrence of the text:

:s/ old / new /g to replace all occurrences of old in a line

: n , ms / old / new /g to replace all occurrences of old between line
numbers n and m

:%s/ old / new /g to replace all occurrences of old in the entire file

:%s/ old / new /gc to replace all occurrences of old in the entire file,
but prompt for each occurrence

As you can see, for a console mode text editor, vim contains quite a few
advanced features. Because nearly every Linux distribution includes it, it's a
good idea to at least know the basics of the vim editor so that you can
always edit scripts, no matter where you are or what you have available.

Navigating the nano Editor
In contrast to vim, which is a complicated editor with powerful features,
nano is a simple editor. For individuals who need a simple console mode
text editor that is easy to navigate, nano is the tool to use. It's also a great
text editor for those who are just starting on their Linux command-line
adventure.

The nano text editor is a clone of the Unix systems' Pico editor. Although
Pico also is a light and simple text editor, it is not licensed under the GPL.
Not only is the nano text editor licensed under the GPL, it is also part of the
GNU project.

The nano text editor is installed on most Linux distributions by default.
Everything about the nano text editor is easy. To open a file at the command
line with nano, enter

$ nano myprog.c

If you start nano without a filename, or if the file doesn't exist, nano simply
opens a new buffer area for editing. If you specify an existing file on the

command line, nano reads the entire contents of the file into a buffer area,
where it is ready for editing, as shown in Figure 10-2.

FIGURE 10-2 The nano editor window

Notice that at the bottom of the nano editor window, various commands
with brief descriptions are shown. These commands are the nano control
commands. The caret (^) symbol shown represents the Ctrl key. Therefore,
^X stands for the keyboard sequence Ctrl+X.

TIP

Though the nano control commands list capital letters in the
keyboard sequences, you can use either lowercase or uppercase
characters for control commands.

Having most of the basic commands listed right in front of you is great —
no need to memorize what control command does what. Table 10-2 presents
the various nano control commands.

TABLE 10-2 nano Control Commands

Command Description
Ctrl+C Displays the cursor's position within the text editing buffer.
Ctrl+G Displays nano's main help window.
Ctrl+J Justifies the current text paragraph.
Ctrl+K Cuts the text line and stores it in cut buffer.
Ctrl+O Writes out the current text editing buffer to a file.
Ctrl+R Reads a file into the current text editing buffer.
Ctrl+T Starts the available spell checker.
Ctrl+U Pastes text stored in cut buffer and places in current line.
Ctrl+V Scrolls text editing buffer to next page.
Ctrl+W Searches for word or phrases within text editing buffer.
Ctrl+X Closes the current text editing buffer, exits nano, and returns

to the shell.
Ctrl+Y Scrolls text editing buffer to previous page.

The control commands listed in Table 10-2 are really all you need.
However, if you desire more powerful control features than those listed,
nano has them. To see more control commands, press Ctrl+G in the nano
text editor to display its main help window containing additional control
commands.

NOTE

Some of these additional commands available in nano are called
Meta-key sequences. In the nano documentation, they are denoted
by the letter M. For example, you'll find the key sequence to undo
the last task denoted as M-U in the nano help system. But don't press
the M key to accomplish this. Instead, M represents either the Esc,
Alt, or Meta key, depending on your keyboard's configuration.
Thus, you might press the Alt+U key combination to undo the last
task within nano.

Even more features are available through command-line options to control
the nano editor. Creating a backup file before editing is one nice selection.
Type man nano to see these additional command-line options for starting
nano.

The vim and nano text editors offer a choice between powerful and simple
console mode text editors. However, neither offers the ability to use
graphical features for editing. Some text editors can operate in both worlds,
as explored in the next section.

Exploring the Emacs Editor
The Emacs editor was an extremely popular editor for Digital Equipment
Corporation (DEC) computers in the late 1970s. Developers liked it so
much that they ported it to the Unix environment, and then to the Linux
environment, where its official name is GNU Emacs. Though currently not
as popular as vim, it still has its place in the world.

The Emacs editor started out life as a console editor, much like vim, but
was migrated to the graphical world. The original console mode editor is
still available, but it can use a graphical window to allow editing text in a
graphical environment. Typically, when you start the Emacs editor from a
command line, if the editor determines you have an available graphical
session, it starts in graphical mode. If you don't, it starts in console mode.

This section describes both the console mode and graphical mode Emacs
editors so that you'll know how to use either one if you want (or need) to.

Checking your Emacs package
Many distributions do not come with the Emacs editor installed by default.
You can check your Red Hat–based distribution by using the which and/or
dnf list (use yum list on older versions of Red Hat-based distributions)
command, as shown on this CentOS distribution:

$ which emacs
/usr/bin/which: no emacs in (/home/christine/.local/bin:
/home/christine/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:
/usr/sbin)
$
$ dnf list emacs
[...]
Available Packages
emacs.x86_64[...]
$

The emacs editor package is not currently installed on this CentOS
distribution. However, it is available to be installed. (For a more thorough
discussion on displaying installed software, see Chapter 9.)

For a Debian-based distribution, check for the Emacs editor package by
using the which and/or apt show command, as shown on this Ubuntu
distribution:

$ which emacs
$
$ apt show emacs
Package: emacs
[...]
Description: GNU Emacs editor (metapackage)
 GNU Emacs is the extensible self-documenting text editor.
 This is a metapackage that will always depend on the latest
 recommended Emacs variant (currently emacs-gtk).

$

The which command operates a little differently here. When it does not find
the installed command, it simply returns the Bash shell prompt. The emacs

editor package for this Ubuntu distribution is available to be installed. The
following shows the Emacs editor being installed on Ubuntu:

$ sudo apt install emacs
[sudo] password for christine:
Reading package lists... Done
[...]
Do you want to continue? [Y/n] Y
[...]
$
$ which emacs
/usr/bin/emacs
$

Now when the which command is used, it points to the emacs program file.
The Emacs editor is ready for use on this Ubuntu distribution.

For the CentOS distribution, install the Emacs editor using the dnf install
or yum install command:

$ sudo yum install emacs
[sudo] password for christine:
[...]
Dependencies resolved.
[...]
Is this ok [y/N]: Y
Downloading Packages:
[...]
Complete!
$
$ which emacs
/usr/bin/emacs
$

With the Emacs editor successfully installed on your Linux distribution,
you can begin to explore its different features, starting with using it on the
console.

Using Emacs on the console
The console mode version of Emacs is another editor that uses lots of key
commands to perform editing functions. The Emacs editor uses key
combinations involving the Ctrl key and the Meta key. In most terminal
emulator packages, the Meta key is mapped to the Alt key.

The official Emacs documents abbreviate the Ctrl key as C- and the Meta
key as M-. Thus, the Ctrl+X key combination is shown in the document as
C-x. This chapter section uses the Emacs' documentation format.

Exploring the basics of Emacs
To edit a file using Emacs, from the command line, enter

$ emacs myprog.c

The Emacs console mode window appears and loads the file into the active
buffer, as shown in Figure 10-3.

FIGURE 10-3 Editing a file using the Emacs editor in console mode

You'll notice that the top of the console mode window shows a typical menu
bar. Unfortunately, you can't use the menu bar in console mode, only in
graphical mode.

NOTE

If you run Emacs in a graphical desktop environment, some
commands in this section work differently than described. To use
Emac's console mode in a graphical desktop environment, use the
emacs - nw command. If you want to use Emacs's graphical features,
see the section “Using Emacs in a GUI.”

Unlike the vim editor, where you move into and out of insert mode and
switch between entering commands and inserting text, the Emacs editor has
only one mode. If you type a printable character, Emacs inserts it at the
current cursor position. If you type a command, Emacs executes the
command.

To move the cursor around the buffer area, you can use the arrow keys and
the PageUp and PageDown keys, assuming that Emacs detected your
terminal emulator correctly. If not, these commands move the cursor
around:

C-p moves up one line (the previous line in the text).

C-b moves left (back) one character.

C-f moves right (forward) one character.

C-n moves down one line (the next line in the text).

The following commands make longer jumps within the text:

M-f moves right (forward) to the next word.

M-b moves left (backward) to the previous word.

C-a moves to the beginning of the current line.

C-e moves to the end of the current line.

M-a moves to the beginning of the current sentence.

M-e moves to the end of the current sentence.

M-v moves back one screen of data.

C-v moves forward one screen of data.

M-< moves to the first line of the text.

M-> moves to the last line of the text.

You should know these commands for saving the editor buffer back into the
file and exiting Emacs:

C-x C-s saves the current buffer contents to the file.

C-z exits Emacs but keeps it running in your session so you can come
back to it.

C-x C-c exits Emacs and stops the program.

You'll notice that two of these features require two key combinations. The
C-x command is called the extend command. This provides yet another
whole set of commands to work with.

Editing data
The Emacs editor is pretty robust about inserting and deleting text in the
buffer. To insert text, just move the cursor to the location where you want to
insert the text and start typing.

To delete text, Emacs uses the Backspace key to delete the character before
the current cursor position and the Delete key to delete the character at the
current cursor location.

The Emacs editor also has commands for cutting text. The Emacs
documentation calls this killing text, but we'll stick with the friendlier
cutting terminology.

The difference between deleting text and cutting text is that when you cut
text, Emacs places it in a temporary area where you can retrieve it (see the
next section, “Copying and Pasting”). Deleted text is gone forever.

These commands are for cutting text in the buffer:

M-Backspace cuts the word before the current cursor position.

M-d cuts the word after the current cursor position.

C-k cuts from the current cursor position to the end of the line.

M-k cuts from the current cursor position to the end of the sentence.

TIP

If you happen to make a mistake when cutting text, the C-/
command undoes the cut command and returns the data to the
state it was in before you cut it.

The Emacs editor also includes a fancy way of mass-cutting text. Just move
the cursor to the start of the area you want to cut, and press either the C-@
or C-spacebar keys. Then move the cursor to the end of the area you want
to cut, and enter C-w . All the text between the two locations is cut.

Copying and pasting
You've seen how to cut data from the Emacs buffer area; now it's time to
see how to paste it somewhere else. Unfortunately, if you use the vim
editor, this process may confuse you when you use the Emacs editor.

In an unfortunate coincidence, pasting data in Emacs is called yanking. In
the vim editor, copying is called yanking, which is what makes this a
difficult thing to remember if you happen to use both editors.

After you cut data using one of the cut commands, move the cursor to the
location where you want to paste the data, and use the C-y command. This
yanks the text out of the temporary area and pastes it at the current cursor
position. The C-y command yanks the text from the last cut command. If
you've performed multiple cut commands, you can cycle through them
using the M-y command.

To copy text, just yank it back into the same location you cut it from and
then move to the new location and use the C-y command again. You can
yank text back as many times as you desire.

Searching and replacing

Searching for text in the Emacs editor is done by using the C-s and C-r
commands. The C-s command performs a forward search in the buffer area
from the current cursor position to the end of the buffer, whereas the C-r
command performs a backward search in the buffer area from the current
cursor position to the start of the buffer.

When you enter either the C-s or the C-r command, a prompt appears in the
bottom line, querying you for the text to search. You can perform two types
of searches in Emacs.

In an incremental search, the Emacs editor performs the text search in real-
time mode as you type the word. When you type the first letter, it highlights
all the occurrences of that letter in the buffer. When you type the second
letter, it highlights all the occurrences of the two-letter combination in the
text and so on until you complete the text you're searching for.

In a non-incremental search, press the Enter key after the C-s or C-r
command. This locks the search query into the bottom line area and allows
you to type the search text in full before searching.

To replace an existing text string with a new text string, you must use the M-
x command. This command requires a text command, along with
parameters.

The text command is replace-string . After typing the command, press
the Enter key, and Emacs queries you for the existing text string. After
entering that, press the Enter key again and Emacs queries you for the new
replacement text string.

Using buffers in Emacs
The Emacs editor allows you to edit multiple files at the same time by
having multiple buffer areas. You can load files into a buffer and switch
between buffers while editing.

To load a new file into a buffer while you're in Emacs, use the C-x C-f
commands. This is the Emacs find-file mode, called Dired. It takes you to
the bottom line in the window and allows you to enter the name of the file
you want to start to edit. If you don't know the name or location of the file,
just press the Enter key. This brings up a file browser in the edit window, as
shown in Figure 10-4.

FIGURE 10-4 The Emacs file browser

From here, you can browse to the file you want to edit. To traverse up a
directory level, go to the double dot entry and press the Enter key. To
traverse down a directory, go to the directory entry and press Enter. When
you've found the file you want to edit, press Enter and Emacs loads it into a
new buffer area.

TIP

When you start the file browser in the edit window, you may decide
you don't want to open a file. In this case, enter q to quit the file
browser window.

You can list the active buffer areas by entering the C-x C-b extended
command combination. The Emacs editor splits the editor window and

displays a list of buffers in the bottom window. Emacs provides two buffers
in addition to your main editing buffer:

A scratch area called scratch

A message area called Messages

The scratch area allows you to enter LISP programming commands as well
as enter notes to yourself. The messages area shows messages generated by
Emacs while operating. If any errors occur while using Emacs, they appear
in the messages area.

You can switch to a different buffer area in the window in two ways:

Use C-x C-b to open the buffer listing window. Use C-x b and then
type *Buffer List* to switch to that window. Use the arrow keys to
move the cursor to the buffer area you want and press the Enter key.

Use C-x b to type in the name of the buffer area you want to switch to.

When you select the option to switch to the buffer listing window, Emacs
opens the buffer area in a new window area. The Emacs editor allows you
to have multiple windows open in a single session. The following section
discusses how to manage multiple windows in Emacs.

Using windows in console mode Emacs
The console mode Emacs editor was developed many years before the idea
of graphical windows appeared. However, it was advanced for its time in
that it could support multiple editing windows within the main Emacs
window.

You can split the Emacs editing window into multiple windows by using
one of two commands:

C-x 2 splits the window horizontally into two windows.

C-x 3 splits the window vertically into two windows.

To move from one window to another, use the C-x o command. Notice that
when you create a new window, Emacs uses the buffer area from the

original window in the new window. After you move into the new window,
you can use the C-x C-f command to load a new file or use one of the
commands to switch to a different buffer area in the new window.

To close a window, move to it and use the C-x 0 (that's a zero) command. If
you want to close all the windows except the one you're in, use the C-x 1
(that's a numerical one) command.

Using Emacs in a GUI
If you use Emacs from a GUI environment (such as in the GNOME Shell
desktop), it starts in graphical mode, as shown in Figure 10-5.

FIGURE 10-5 The Emacs graphical window

If you've already used Emacs in console mode, you should be fairly familiar
with the graphical mode. All the key commands are available as menu bar
items. The Emacs menu bar contains the following items:

File allows you to open files in the window, create new windows,
close windows, save buffers, and print buffers.

Edit allows you to cut and copy selected text to the clipboard, paste
clipboard data to the current cursor position, search for text, and
replace text.

Options provides settings for many more Emacs features, such as
highlighting, word wrap, cursor type, and setting fonts.

Buffers lists the current buffers available and allows you to easily
switch between buffer areas.

Tools provides access to the advanced features in Emacs, such as the
command-line interface access, spell checking, comparing text
between files (called diff), sending an email message, calendar, and the
calculator.

C allows advanced settings for highlighting C program syntax,
compiling, running, and debugging the code.

Help provides the Emacs manual online for access to help on specific
Emacs functions.

The graphical Emacs window is an example of an older console application
that made the migration to the graphical world. Now that many Linux
distributions provide graphical desktops (even on servers that don't need
them), graphical editors are becoming more commonplace. Popular Linux
desktop environments (such as KDE Plasma and GNOME Shell) have also
provided graphical text editors specifically for their environments, which
are covered in the rest of this chapter.

Exploring the KDE Family of Editors
If you're using a Linux distribution that uses the KDE Plasma desktop
environment, you have a couple of options when it comes to text editors.
The KDE project officially supports two popular text editors:

KWrite: A single-screen text-editing package

Kate: A full-featured, multiwindow text-editing package

Both of these editors are graphical text editors that contain many advanced
features. The Kate editor also provides extra niceties not often found in
standard text editors. This section describes each of the editors and shows
some of the features you can use to help with your shell script editing.

Looking at the KWrite editor
The basic editor for the KDE Plasma environment is KWrite. It provides
simple word processing–style text editing, along with support for code
syntax highlighting and editing. The default KWrite editing window is
shown in Figure 10-6.

FIGURE 10-6 The default KWrite window editing a shell script program

You can't tell from Figure 10-6, but the KWrite editor recognizes several
types of programming languages and uses color coding to distinguish
constants, functions, and comments. The KWrite editing window provides
full cut and paste capabilities, using the mouse and the arrow keys. As with

a word processor, you can highlight and cut (or copy) text anywhere in the
buffer area and paste it at any other place.

TIP

Typically, KWrite is no longer installed by default on the KDE
desktop environment. However, you can easily install it (see
Chapter 9) on Plasma or other desktop environments, where
available. The package name is kwrite.

To edit a file using KWrite, you can either select KWrite from the KDE
menu system on your desktop (some Linux distributions even create a Panel
icon for it) or start it from the command-line prompt:

$ kwrite factorial.sh

The kwrite command has several command-line parameters you can use to
customize how it starts. Here are few of the more practical ones:

--stdin causes KWrite to read data from the standard input device
instead of a file.

--encoding specifies a character encoding type to use for the file.

--line specifies a line number in the file to start at in the editor
window.

--column specifies a column number in the file to start at in the editor
window.

The KWrite editor provides both a menu bar and a toolbar at the top of the
edit window, allowing you to select features and change the configuration
settings of the KWrite editor.

The menu bar contains these items:

File loads, saves, prints, and exports text from files.

Edit manipulates text in the buffer area.

View manages how the text appears in the editor window.

Bookmarks handle pointers to return to specific locations in the text;
this option may need to be enabled in the configurations.

Tools contains specialized features to manipulate the text.

Settings configures the way the editor handles text.

Help gives you information about the editor and commands.

The Edit menu bar item provides commands for all your text-editing needs.
Instead of having to remember cryptic key commands (which by the way,
KWrite also supports), you can just select items in the Edit menu bar, as
shown in Table 10-3.

TABLE 10-3 The KWrite Edit Menu Items

Item Description
Undo Reverses the last action or operation.
Redo Reverses the last undo action.
Cut Deletes the selected text and places it in the clipboard.
Copy Copies the selected text to the clipboard.
Paste Inserts the current contents of the clipboard at the current

cursor position.
Clipboard
History

Displays portions of text recently copied to the clipboard from
which you can select to paste.

Copy As
HTML

Copies the selected text as HTML.

Select All Selects all text in the editor.
Deselect Deselects any text that is currently selected.
Block
Selection
Mode

Toggles on/off block selection mode which allows vertical text
selection.

Input
Modes

Toggles between a normal and a vi-like editing mode.

Overwrite
Mode

Toggles insert mode to overwrite mode, replacing text with new
typed text instead of just inserting the new text.

Find Produces the Find Text dialog box, which allows you to
customize a text search.

Find
Variants

Provides a submenu of various text searches — Find Next, Find
Previous, Find Selected, and Find Selected Backwards.

Replace Produces the Replace With dialog box, which allows you to
customize a text search and replace.

Go To Provides a submenu of various Go To choices — Move To
Matching Bracket, Select To Matching Bracket, Move To
Previous Modified Line, Move To Next Modified Line, Go To
Line.

The Find feature has two modes. Normal mode performs simple text
searches and power searches. Replace mode lets you do advanced searching
and replacing if necessary. You toggle between the two modes using the
icon on the lower-right side of the window, as shown in Figure 10-7.

FIGURE 10-7 The KWrite Find section

The Find power mode allows you to search not only with words, but with a
regular expression (discussed in Chapter 20, “Regular Expressions”) for the
search. You can use some other options to customize the search as well,
indicating, for example, whether or not to perform a case-sensitive search or
to look only for whole words instead of finding the text within words.

The Tools menu bar item provides several handy features for working with
the text in the buffer area. Table 10-4 describes the tools available in
KWrite.

TABLE 10-4 The KWrite Tools

Tool Description
Read Only
Mode

Locks the text so that no changes can be made while in the
editor.

Mode Sets the file type arrangement for the text from a submenu
selection.

Highlighting Selects the text highlighting plan from a submenu selection.
Indentation Sets the indentation style for the text from a submenu

selection.
Encoding Chooses the character set encoding used by the text.
End of Line Switches the End of Line characters between Unix,

Windows/DOS, and Macintosh.
Add Byte
Order Mark

Toggles on/off setting a byte order mark (BOM) at the start
of the text.

Scripts Selects scripted actions from a submenu for quickly
accomplishing such items as editing.

Invoke Code
Completion

Displays a tooltip suggesting the code text to use at the
cursor's location; autocompletion using the tip is selected by
pressing Enter.

Word
Completion

Performs autocompletion of the current typed text from a
submenu selection.

Spelling Starts and/or controls the spell-check program for the text.
Clean
Indentation

Returns all paragraph indentation to the original settings.

Align Forces the current line or the selected lines to return to the
default indentation settings.

Toggle
Comment

Turns the text line into a comment line using syntax based on
the current mode selected.

Uppercase Sets the selected text, or the character at the current cursor
position, to uppercase.

Tool Description
Lowercase Sets the selected text, or the character at the current cursor

position, to lowercase.
Capitalize Capitalizes the first letter of the selected text or the word at

the current cursor position.
Join Lines Combines the selected lines, or the line at the current cursor

position and the next line, into one line.
Apply Word
Wrap

Enables word wrapping in the text. If a line extends past the
editor window edge, the line continues on the next line.

There are lots of tools for this simple text editor! The Mode and Indentation
tools are particularly nice to help you along if you are writing a script or
program. The Mode's Script submenu is displayed in Figure 10-8.

FIGURE 10-8 The KWrite Tool Mode Script submenu

The Settings menu includes the Configure Editor dialog box, shown in
Figure 10-9.

The Configuration dialog box uses icons on the left side for you to select
the feature in KWrite to configure. When you select an icon, the right side
of the dialog box shows the configuration settings for the feature.

The Appearance feature allows you to set several features that control how
the text appears in the text editor window. You can enable word wrap, line
count (great for programmers), and word count from here. With the Fonts &
Colors feature, you can customize the complete color scheme for the editor,
determining what colors to make each category of text in the program code.
There are also several customizations you can choose, such as encoding and
mode, so you don't have to set them via the menu system each time you
open a file.

FIGURE 10-9 The KWrite Configure Editor dialog box

Looking at the Kate editor
The Kate editor is the flagship editor for the KDE Project. It uses the same
core text editor as the KWrite application (so most of those features are the
same), but it incorporates lots of other features into a single package,
including a multiple document interface (MDI).

TIP

If you find that the Kate editor has not been installed with your
KDE desktop environment, you can easily install it (see Chapter 9).
The package name that contains Kate is kate or kdesdk .

When you start the Kate editor from the Plasma menu system, you see the
main Kate editor window, shown in Figure 10-10.

You'll notice the window looks very similar to the KWrite editing window
shown previously in Figure 10-6. However, there are differences. For
example, the left side frame shows the Documents icon. Clicking this icon
opens a new interface called the Documents List, shown in Figure 10-11,
which allows switching between open documents, creating new documents,
and exploring other files to open.

FIGURE 10-10 The main Kate editing window

FIGURE 10-11 The Kate Documents List

Kate also supports several external plugin applications, which can be
activated in the Plugin Manager window, shown in Figure 10-12. You reach
this feature by choosing Settings ➪ Configure ➪ Kate ➪ Plugins. In this
window, you can select various plugins to make your shell scripting
environment more productive.

FIGURE 10-12 The Kate Plugin Manager

One great feature of the Kate editor is the built-in terminal plugin
(Terminal tool view), which provides a terminal window, shown in
Figure 10-13. The terminal icon at the bottom text editor's window starts the
built-in terminal emulator in Kate (using the KDE Konsole terminal
emulator is covered in Chapter 2, “Getting to the Shell”).

TIP

If you don't see the terminal icon at the bottom of the Kate window,
most likely you have not activated the Terminal tool view plugin.
Once you have reached the Plugin Manager window (described
earlier) and have selected the Terminal tool view plugin, be sure to
click the Apply icon to activate this feature.

This terminal emulator feature horizontally splits the current editing
window, creating a new window with Konsole running in it. You can now
enter command-line commands, start programs, or check on system settings
without having to leave the editor! To close the terminal window, just type
exit at the command prompt.

FIGURE 10-13 The Kate built-in terminal window

As you can tell from the terminal feature, Kate also supports multiple
windows. The Window menu bar item (View) provides options to perform
these tasks, such as the following:

Create a new Kate window using the current session.

Split the current window vertically to create a new window.

Split the current window horizontally to create a new window.

Close the current window.

The View menu also allows you to control the editor window's functionality
such as displaying various tools, changing the font size, and showing
nonprintable characters. Kate is rich in features.

NOTE

The Kate editor handles files in sessions. You can have multiple files
open in a session, and you can have multiple sessions saved through
the Sessions menu. When you start Kate, you can recall saved
sessions. This allows you to easily manage files from multiple
projects by using separate workspaces for each project.

To set the configuration settings in Kate, select Settings ➪ Configure Kate.
The Configuration dialog box, shown in Figure 10-14, appears. The
Application settings area allows you to configure settings for the Kate
items, such as controlling sessions (shown in Figure 10-14), the documents
list, and the filesystem browser.

FIGURE 10-14 The Kate configuration dialog box

Kate and Kwrite work well side by side. Kate is a rich MDI editor that acts
as an IDE, making it useful for creating and editing shell scripts. KWrite, on
the other hand, launches quickly while providing nearly as much power as
Kate so that you can make fast fixes to your scripts. Both editors have their
place in the world.

Exploring the GNOME Editor
If you're working on a Linux system with the GNOME Shell desktop
environment, there's a graphical text editor that you can use as well. The
gedit text editor is a basic text editor, with a few advanced features thrown
in just for fun. This section walks you through the features of gedit and
demonstrates how to use it for your shell script programming.

Starting gedit
In the GNOME Shell desktop environment, accessing gedit is fairly
straightforward. Click the Activities icon in the upper-right corner of the
desktop window. When the search bar appears, click within the bar to
access it, type gedit or text editor, and then click Text Editor.

TIP

If gedit is not installed by default on your desktop environment, you
can easily install it (see Chapter 9). The package name is gedit .
You should install the gedit plugins as well, because they provide
powerful and advanced features. Their package name, as you might
have already guessed, is gedit-plugins.

If desired, you can start gedit from the command-line prompt in a GUI
terminal emulator:

$ gedit factorial.sh myprog.c

When you start gedit with multiple files, it loads all the files into separate
buffers and displays each one as a tabbed window within the main editor
window, as shown in Figure 10-15.

FIGURE 10-15 The gedit main editor window

In Figure 10-15, the left frame in the gedit main editor window shows the
documents you're currently editing. The right side shows the tabbed
window that contains the buffer text of the second file. If you hover your
mouse pointer over each tab, a dialog box appears, showing the full
pathname of the file, the MIME type, and the character set encoding it uses.

TIP

You can quickly jump between the gedit tabs by clicking on the tab.
If you prefer shortcut keys, pressing Ctrl+Alt+PageDown will put
you into the tab buffer on the right. Pressing Ctrl+Alt+PageUp will
take you to the left.

Understanding basic gedit features
Modern versions of gedit don't use a menu bar. Instead, they use a menu
system accessible through a collapsed menu icon (also called a hamburger
button) in the title bar that allows you to control files, manage your editing
session, configure settings, and so on, as shown in Figure 10-16.

FIGURE 10-16 The gedit menu system

These menu items available are:

New Window opens a new editing window instead of a tab.

Save As saves the current buffered file to a new filename.

Save All saves all the tabs' contents to disk.

Find opens the Find Text dialog box, which allows you to customize a
text search, and highlights the found text.

Find and Replace displays the Find/Replace pop-up window, which
allows you to customize a text search and replace.

Clear Highlight removes the highlighting of found text.

Go to Line opens the Go to Line dialog box, which moves the cursor
to the entered line number of the text.

View opens a submenu allowing the selection of displaying a
Documents List/File Manager (Side Panel), Embedded Terminal
(Bottom Panel), and syntax highlighting (Highlight Mode).

Tools displays a submenu allowing the activation of a spell checker
(Check Spelling), changing the spell checker's language (Set
Language), highlights of misspellings (Highlight Misspelled Words),
displaying text stats (Document Statistics), and selecting a particular
date and time format for insertion (Insert Date And Time)

Preferences opens a pop-up window providing customization of the
gedit editor's operation, including such choices as displaying the line
numbers, tab stops, text fonts and colors, and activated gedit plugins.

Keyboard Shortcuts displays a brief list of available gedit keyboard
shortcuts.

Help provides access to the full gedit manual.

About Text Editor shows information concerning the gedit version,
description, website, and so on.

One item not on the menu is a basic save feature that lets you save the text
in the current tab buffer with its original filename. That's because gedit
conveniently provides a Save icon on the title bar (see Figure 10-16). Just a
click on the icon and the file is saved. If you prefer to use the keyboard
instead, the Ctrl+S shortcut provides the same function.

NOTE

Your Linux desktop environment may have an older or newer
version of gedit than the one shown in these figures. In this case,
your gedit text editor could have diverse options or even the same
options, but they are available in slightly different menu locations.
Consult your distribution's gedit Help menu for more assistance.

The Side Panel in gedit provides functionality similar to the Documents List
in Kate. Access this feature by clicking the menu hamburger icon and then
choosing View. When the View submenu appears, click the box next to Side
Panel. These actions result in something similar to Figure 10-17.

FIGURE 10-17 The gedit Side Panel

The gedit Side Panel provides quick switching between open documents.
You can also switch to a file manager by clicking Documents and selecting
File Browser, as shown in Figure 10-18.

Within the File Browser pane, you can look through various folders and
find other files to edit. If desired, switch back to Documents by clicking
File Browser and selecting Documents.

FIGURE 10-18 The gedit Side Panel's file manager

TIP

Instead of using the mouse and the gedit menu system, quickly open
or close the Side Panel by pressing the F9 key.

The File Browser is a gedit plugin. If for some reason you cannot reach the
File Browser from the Side Panel, it may not be enabled or possibly not
installed. You can always open files using the Ctrl+O keyboard shortcut,
but the File Browser is a useful plugin. We cover more about the managing
gedit plugins next.

Managing plugins
The Plugins tab within the gedit Preferences window (shown in Figure 10-
19) provides control over the plugins used in gedit. Plugins are separate
programs that can interface with gedit to provide additional functionality.

FIGURE 10-19 The gedit Plugins tab

Typically only basic gedit plugins are installed by default. Table 10-5
describes the basic plugins that are currently available in the GNOME
desktop's gedit application.

If desired, you can get additional useful features, such as an embedded
terminal, by installing the plugins metapackage (see Chapter 9), as shown
here on Ubuntu:

$ sudo apt install gedit-plugins
[sudo] password for christine:
[...]
0 upgraded, 29 newly installed, 0 to remove and 77 not
upgraded.
Need to get 2,558 kB of archives.
After this operation, 13.6 MB of additional disk space will
be used.
Do you want to continue? [Y/n] Y
[...]
Setting up gedit-plugins (3.36.2-1) ...
$

Once you have the additional plugins installed on your system, you'll see
many additional choices on the Plugins tab within the gedit Preferences
window, as shown in Figure 10-20.

TABLE 10-5 The GNOME Desktop gedit Plugins

Plugin Description
Document
Statistics

Reports the number of words, lines, characters, and non-space
characters.

External
Tools

Provides a shell environment in the editor to execute
commands and scripts.

File
Browser
Panel

Provides a simple file browser to make selecting files for
editing easier.

Insert
Date/Time

Inserts the current date and time in several formats at the
current cursor position.

Modelines Provides Emacs, Kate, and vim-style message lines at the
bottom of the editor window.

Python
Console

Provides an interactive console at the bottom of the editor
window for entering commands using the Python programming
language.

Quick
Highlight

Highlights all the matching text of a selection.

Quick
Open

Opens files directly in the gedit edit window.

Snippets Allows you to store often-used pieces of text for easy retrieval
anywhere in the text.

Sort Quickly sorts the entire file or selected text.
Spell
Checker

Provides dictionary spell checking for the text file.

FIGURE 10-20 The gedit Plugins tab after installation

Plugins that are enabled show a check mark in the check box next to their
name. Enabling a plugin does not start it. If you want to use, for example,
the Embedded Terminal, you must enable it in the Preferences tab first.
After that, you can access the plugin by clicking the menu hamburger icon
and choosing View, and when the View submenu appears, clicking the box
next to Bottom Panel to open the Embedded Terminal, as shown in Figure
10-21.

FIGURE 10-21 The gedit Embedded Terminal plugin

This chapter has covered just a few of the text editors available on Linux. If
you find that the text editors described here don't meet your needs, you have
options. Many more Linux editors are available, such as Geany, Sublime
Text, Atom, Visual Studio Code, and Brackets, to name a few. All these
editors can help you as you begin your Bash shell script writing journey.

Summary
When it comes to creating shell scripts, you need some type of text editor.
Several popular text editors are available for the Linux environment. The
most popular editor in the Unix world, vi, has been ported to the Linux
world as the vim editor. The vim editor provides simple text editing from
the console, using a rudimentary full-screen graphical mode. The vim editor

provides many advanced editor features, such as text searching and
replacement.

Another editor that has been ported from the Unix world to Linux is the
nano text editor. The vim editor can be rather complex, but the nano editor
offers simplicity. The nano editor allows quick text editing in console mode.

Another popular Unix editor — Emacs — has also made its way to the
Linux world. The Linux version of Emacs has both a console and a
graphical mode, making it the bridge between the old world and the new.
The Emacs editor provides multiple buffer areas, allowing you to edit
multiple files simultaneously.

The KDE Project created two editors for use in the KDE Plasma desktop.
The KWrite editor is a simple editor that provides basic text-editing
features, along with a few advanced features, such as syntax highlighting
for programming code and line numbering. The Kate editor provides more
advanced features for programmers. One great feature in Kate is a built-in
terminal window. You can open a command-line interface session directly
in the Kate editor without having to open a separate terminal emulator
window. The Kate editor also allows you to open multiple files, providing
different windows for each opened file.

The GNOME Project also provides a graphical text editor for programmers.
The gedit editor provides some advanced features such as code syntax
highlighting and line numbering, but it was designed to be a bare-bones
editor. To spruce up the gedit editor, developers created plugins, which
expand the features available in gedit. Plugins include a spell-checker, a
terminal emulator, and a file browser.

This wraps up the background chapters on working with the command line
in Linux. The next part of the book dives into the shell scripting world. The
next chapter starts off by showing you how to create a shell script file and
how to run it on your Linux system. It also shows you the basics of shell
scripts, allowing you to create simple programs by stringing multiple
commands together into a script you can run.

Part II
Shell Scripting Basics
IN THIS PART

Chapter 11 Basic Script Building

Chapter 12 Using Structured Commands

Chapter 13 More Structured Commands

Chapter 14 Handling User Input

Chapter 15 Presenting Data

Chapter 16 Script Control

CHAPTER 11
Basic Script Building
IN THIS CHAPTER

Using multiple commands

Creating a script file

Displaying messages

Using variables

Redirecting input and output

Pipes

Performing math

Exiting the script

Now that we've covered the basics of the Linux system and the command
line, it's time to start coding. This chapter discusses the basics of writing
shell scripts. You'll need to know these basic concepts before you can start
writing your own shell script masterpieces.

Using Multiple Commands
So far you've seen how to use the command-line interface (CLI) prompt of
the shell to enter commands and view the command results. The key to
shell scripts is the ability to enter multiple commands and process the
results from each command, even possibly passing the results of one
command to another. The shell allows you to chain commands together into
a single step.

If you want to run two commands together, you can enter them on the same
prompt line, separated with a semicolon:

$ date ; who
Mon Jun 01 15:36:09 EST 2020

Christine tty2 2020-06-01 15:26
Samantha tty3 2020-06-01 15:26
Timothy tty1 2020-06-01 15:26
user tty7 2020-06-01 14:03 (:0)
user pts/0 2020-06-01 15:21 (:0.0)

$

Congratulations, you just wrote a shell script! This simple script uses just
two Bash shell commands. The date command runs first, displaying the
current date and time, followed by the output of the who command, showing
who is currently logged on to the system. Using this technique, you can
string together as many commands as you wish, up to the maximum
command-line character count of 255 characters.

Although using this technique is fine for small scripts, it has a major
drawback in that you have to enter the entire command at the command
prompt every time you want to run it. Instead of having to manually enter
the commands on a command line, you can combine them into a simple text
file. When you need to run the commands, just simply run the text file.

Creating a Script File
To place shell commands in a text file, first you'll need to use a text editor
(see Chapter 10, “Working with Editors”) to create a file, and then enter the
commands into the file.

When creating a shell script file, you should specify the shell you are using
in the first line of the file. The format for this is

#!/bin/bash

In a normal shell script line, the pound sign (#) is used as a comment line. A
comment line in a shell script isn't processed by the shell. However, the first
line of a shell script file is a special case, and the pound sign followed by
the exclamation point tells the shell what shell to run the script under (yes,
you can be using a Bash shell and run your script using another shell).

After indicating the shell, commands are entered onto each line of the file,
followed by a carriage return. As mentioned, comments can be added by
using the pound sign. An example looks like this:

#!/bin/bash
This script displays the date and who's logged on
date
who

And that's all there is to it. You can use the semicolon and put both
commands on the same line if you want to, but in a shell script, you can list
commands on separate lines. The shell will process commands in the order
in which they appear in the file.

Also notice that another line was included that starts with the pound symbol
and adds a comment. Lines that start with the pound symbol (other than the
first #! line) aren't interpreted by the shell. This is a great way to leave
comments for yourself about what's happening in the script so that when
you come back to it two years later you can easily remember what you did.

Save this script in a file called test1 , and you are almost ready. There are
still a couple of things to do before you can run your new shell script file.

If you try running the file now, you'll be somewhat disappointed to see this:

$ test1
bash: test1: command not found
$

The first hurdle to jump is getting the Bash shell to find your script file. If
you remember from Chapter 6, “Using Linux Environment Variables,” the
shell uses an environment variable called PATH to find commands. A quick
look at the PATH environment variable demonstrates our problem:

$ echo $PATH
/usr/kerberos/sbin:/usr/kerberos/bin:/usr/local/bin:/usr/bin
:/bin:/usr/local/sbin:/usr/sbin:/sbin:/home/user/bin $

The PATH environment variable is set to look for commands only in a
handful of directories. To get the shell to find the test1 script, we need to
do one of two things:

Add the directory where our shell script file is located to the PATH
environment variable.

Use an absolute or relative file path to reference our shell script file in
the prompt.

TIP

Some Linux distributions add the $HOME/bin directory to the PATH
environment variable. This creates a place in every user's $HOME
directory to place files where the shell can find them to execute.

For this example, we'll use the second method to tell the shell exactly where
the script file is located. Remember that to reference a file in the current
directory, you can use the single dot operator in the shell:

$./test1
bash: ./test1: Permission denied
$

Now the shell found the shell script file just fine, but there's another
problem. The shell indicated that you don't have permission to execute the
file. A quick look at the file permissions should show what's going on here:

$ ls -l test1
-rw-r--r-- 1 user user 73 Jun 02 15:36
test1
$

When the new test1 file was created, the umask value determined the
default permission settings for the new file. Because the umask variable is
set to 022 (see Chapter 7, “Understanding Linux File Permissions”), the
system created the file with only read/write permissions for the file's owner.

The next step is to give the file owner permission to execute the file, using
the chmod command (see Chapter 7):

$ chmod u+x test1
$./test1
Mon Jun 01 15:38:19 EST 2020
Christine tty2 2020-06-01 15:26
Samantha tty3 2020-06-01 15:26
Timothy tty1 2020-06-01 15:26
user tty7 2020-06-01 14:03 (:0)
user pts/0 2020-06-01 15:21 (:0.0) $

Success! Now all the pieces are in the right places to execute the new shell
script file.

Displaying Messages
Most shell commands produce their own output, which is displayed on the
console monitor where the script is running. Many times, however, you will
want to add your own text messages to help the script user know what is
happening within the script. You can do this with the echo command. The
echo command can display a simple text string if you add the string
following the command:

$ echo This is a test
This is a test
$

Notice that by default you don't need to use quotes to delineate the string
you're displaying. However, sometimes this can get tricky if you are using
quotes within your string:

$ echo Let's see if this'll work
Lets see if thisll work
$

The echo command uses either double or single quotes to delineate text
strings. If you use them within your string, you need to use one type of
quote within the text and the other type to delineate the string:

$ echo "This is a test to see if you're paying attention"
This is a test to see if you're paying attention
$ echo 'Rich says "scripting is easy".'
Rich says "scripting is easy".
$

Now all of the quotation marks appear properly in the output.

You can add echo statements anywhere in your shell scripts where you need
to display additional information:

$ cat test1
#!/bin/bash
This script displays the date and who's logged on
echo The time and date are:
date
echo "Let's see who's logged into the system:"
who
$

When you run this script, it produces the following output:

$./test1
The time and date are:
Mon Jun 01 15:41:13 EST 2020
Let's see who's logged into the system:
Christine tty2 2020-06-01 15:26
Samantha tty3 2020-06-01 15:26
Timothy tty1 2020-06-01 15:26
user tty7 2020-06-01 14:03 (:0)
user pts/0 2020-06-01 15:21 (:0.0)
$

That's nice, but what if you want to echo a text string on the same line as a
command output? You can use the -n parameter for the echo statement to
do that. Just change the first echo statement line to this:

echo -n "The time and date are: "

You'll need to use quotes around the string to ensure that there's a space at
the end of the echoed string. The command output begins exactly where the
string output stops. The output will now look like this:

$./test1
The time and date are: Mon Jun 01 15:42:23 EST 2020
Let's see who's logged into the system:
Christine tty2 2020-06-01 15:26
Samantha tty3 2020-02-01 15:26
Timothy tty1 2020-06-01 15:26
user tty7 2020-06-01 14:03 (:0)
user pts/0 2020-06-01 15:21 (:0.0)
$

Perfect! The echo command is a crucial piece of shell scripts that interact
with users. You'll find yourself using it in many situations, especially when
you want to display the values of script variables. Let's look at that next.

Using Variables
Just running individual commands from the shell script is useful, but doing
so has its limitations. Often you'll want to incorporate other data in your
shell commands to process information. You can do this by using variables.
Variables allow you to temporarily store information within the shell script

for use with other commands in the script. This section shows how to use
variables in your shell scripts.

Environment variables
You've already seen one type of Linux variable in action. Chapter 6
described the environment variables available in the Linux system. You can
access these values from your shell scripts as well.

The shell maintains environment variables that track specific system
information, such as the name of the system, the name of the user logged
into the system, the user's system ID (called UID), the default home
directory of the user, and the search path used by the shell to find programs.
You can display a complete list of active environment variables available by
using the set command:

$ set
BASH=/bin/bash
...
HOME=/home/Samantha
HOSTNAME=localhost.localdomain
HOSTTYPE=i386
IFS=$' \t\n'
IMSETTINGS_INTEGRATE_DESKTOP=yes
IMSETTINGS_MODULE=none
LANG=en_US.utf8
LESSOPEN='|/usr/bin/lesspipe.sh %s'
LINES=24
LOGNAME=Samantha
...

You can tap into these environment variables from within your scripts by
using the environment variable's name preceded by a dollar sign. This is
demonstrated in the following script:

$ cat test2
#!/bin/bash
display user information from the system.
echo "User info for userid: $USER"
echo UID: $UID
echo HOME: $HOME
$

The $USER , $UID , and $HOME environment variables are used to display the
pertinent information about the logged-in user. The output should look
something like this:

$chmod u+x test2
$./test2
User info for userid: Samantha
UID: 1001
HOME: /home/Samantha
$ $

Notice that the environment variables in the echo commands are replaced
by their current values when the script is run. Also notice that we were able
to place the $USER system variable within the double quotation marks in the
first string and that the shell script was still able to figure out what we
meant. There is a drawback to using this method, however. Look at what
happens in this example:

$ echo "The cost of the item is $15"
The cost of the item is 5

That is obviously not what was intended. Whenever the script sees a dollar
sign within quotes, it assumes you're referencing a variable. In this example
the script attempted to display the variable $1 (which was not defined), and
then the number 5 . To display an actual dollar sign, you must precede it
with a backslash character:

$ echo "The cost of the item is \$15"
The cost of the item is $15

That's better. The backslash allowed the shell script to interpret the dollar
sign as an actual dollar sign, and not a variable. The next section shows
how to create your own variables in your scripts.

NOTE

You may also see variables referenced using the format ${variable}
. The extra braces around the variable name are often used to help
identify the variable name from the dollar sign.

User variables
In addition to the environment variables, a shell script allows you to set and
use your own variables within the script. Setting variables allows you to
temporarily store data and use it throughout the script, making the shell
script more like a real computer program.

User variables can be any text string of up to 20 letters, digits, or
underscore characters. User variables are case sensitive, so the variable
Var1 is different from the variable var1. This little rule often gets novice
script programmers in trouble.

Values are assigned to user variables using an equal sign. No spaces can
appear between the variable, the equal sign, and the value (another trouble
spot for novices). Here are a few examples of assigning values to user
variables:

var1=10
var2=-57
var3=testing
var4="still more testing"

The shell script stores all variable values as text strings; it's up to the
individual commands in the shell to determine the data type used for the
variable value. Variables defined within the shell script maintain their
values throughout the life of the shell script but are deleted when the shell
script completes.

Just like system variables, user variables can be referenced using the dollar
sign:

$ cat test3
#!/bin/bash
testing variables
days=10
guest="Katie"
echo "$guest checked in $days days ago"
days=5
guest="Jessica"
echo "$guest checked in $days days ago"
$

Running the script produces the following output:

$ chmod u+x test3
$./test3
Katie checked in 10 days ago
Jessica checked in 5 days ago
$

Each time the variable is referenced, it produces the value currently
assigned to it. It's important to remember that when referencing a variable
value you use the dollar sign, but when referencing the variable to assign a
value to it, you do not use the dollar sign. Here's an example of what we
mean:

$ cat test4
#!/bin/bash
assigning a variable value to another variable

value1=10
value2=$value1
echo The resulting value is $value2
$

When you use the value of the value1 variable in the assignment statement,
you must still use the dollar sign. This code produces the following output:

$ chmod u+x test4
$./test4
The resulting value is 10
$

If you forget the dollar sign, and make the value2 assignment line look like

value2=value1

you get the following output:

$./test4
The resulting value is value1
$

Without the dollar sign, the shell interprets the variable name as a normal
text string, which is most likely not what you wanted.

Command substitution
One of the most useful features of shell scripts is the ability to extract
information from the output of a command and assign it to a variable. Once

you assign the output to a variable, you can use that value anywhere in your
script. This comes in handy when you're processing data in your scripts.

There are two ways to assign the output of a command to a variable:

The backtick character

The $() format

Be careful with the backtick character — it is not the normal single
quotation mark character you are used to using for strings. Because it is not
used very often outside of shell scripts, you may not even know where to
find it on your keyboard. You should become familiar with it, because it's a
crucial component of many shell scripts. Hint: On a U.S. keyboard, it is
usually on the same key as the tilde symbol (~).

Command substitution allows you to assign the output of a shell command
to a variable. Though this doesn't seem like much, it is a major building
block in script programming.

You must either surround the entire command-line command with the
backtick characters:

testing=`date`

or use the $() format:

testing=$(date)

The shell runs the command within the command substitution characters
and assigns the output to the variable testing . Notice that there aren't any
spaces between the assignment equal sign and the command substitution
character. Here's an example of creating a variable using the output from a
normal shell command:

$ cat test5
#!/bin/bash
testing=$(date)
echo "The date and time are: " $testing
$

The variable testing receives the output from the date command, and it is
used in the echo statement to display it. Running the shell script produces
the following output:

$ chmod u+x test5
$./test5
The date and time are: Mon Jun 01 15:45:25 EDT 2020
$

That's not all that exciting in this example (you could just as easily put the
command in the echo statement), but once you capture the command output
in a variable, you can do anything with it.

Here's a popular example of how command substitution is employed to
capture the current date and use it to create a unique filename in a script:

#!/bin/bash
copy the /usr/bin directory listing to a log file
today=$(date +%y%m%d)
ls /usr/bin -al> log.$today

The today variable is assigned the output of a formatted date command.
This is a common technique used to extract date information for log
filenames. The +%y%m%d format instructs the date command to display the
date as a two-digit year, month, and day:

$ date +%y%m%d
200601
$

The script assigns the value to a variable, which is then used as part of a
filename. The file itself contains the redirected output (discussed later in the
“Redirecting Input and Output” section) of a directory listing. After running
the script, you should see a new file in your directory:

-rw-r--r-- 1 user user 769 Jun 01 16:15
log.200601

The log file appears in the directory using the value of the $today variable
as part of the filename. The contents of the log file are the directory listing
from the /usr/bin directory. If the script is run the next day, the log
filename will be log.200602 , thus creating a new file for the new day.

WARNING

Command substitution creates what's called a subshell to run the
enclosed command. A subshell is a separate child shell generated
from the shell that's running the script. Because of that, any
variables that you create in the script won't be available to
commands running in the subshell.

Subshells are also created if you run a command from the
command prompt using the ./ path, but they aren't created if you
just run the command without a path. However, if you use a built-in
shell command, that doesn't generate a subshell. Be careful when
running scripts from the command prompt!

Redirecting Input and Output
There are times when you'd like to save the output from a command instead
of just having it displayed on the monitor. The Bash shell provides a few
different operators that allow you to redirect the output of a command to an
alternative location (such as a file). Redirection can be used for input as
well as output, redirecting a file to a command for input. This section
describes what you need to do to use redirection in your shell scripts.

Output redirection
The most basic type of redirection is sending output from a command to a
file. The Bash shell uses the greater-than symbol (>) for this:

command> outputfile

Anything that would appear on the monitor from the command instead is
stored in the output file specified:

$ date> test6
$ ls -l test6
-rw-r--r-- 1 user user 29 Jun 01 16:56
test6
$ cat test6

Mon Jun 01 16:56:58 EDT 2020
$

The redirect operator created the file test6 (using the default umask
settings) and redirected the output from the date command to the test6
file. If the output file already exists, the redirect operator overwrites the
existing file with the new file data:

$ who> test6
$ cat test6
rich pts/0 Jun 01 16:55
$

Now the contents of the test6 file contain the output from the who
command.

Sometimes, instead of overwriting the file's contents, you may need to
append output from a command to an existing file — for example, if you're
creating a log file to document an action on the system. In this situation,
you can use the double greater-than symbol (>>) to append data:

$ date>> test6
$ cat test6
rich pts/0 Jun 01 16:55
Mon Jun 01 17:02:14 EDT 2020
$

The test6 file still contains the original data from the who command
processed earlier — plus now it contains the new output from the date
command.

Input redirection
Input redirection is the opposite of output redirection. Instead of taking the
output of a command and redirecting it to a file, input redirection takes the
content of a file and redirects it to a command.

The input redirection symbol is the less-than symbol (<):

command < inputfile

The easy way to remember this is that the command is always listed first in
the command line, and the redirection symbol “points” to the way the data

is flowing. The less-than symbol indicates that the data is flowing from the
input file to the command.

Here's an example of using input redirection with the wc command:

$ wc < test6
 2 11 60
$

The wc command provides a count of text in the data. By default, it
produces three values:

The number of lines in the text

The number of words in the text

The number of bytes in the text

By redirecting a text file to the wc command, you can get a quick count of
the lines, words, and bytes in the file. The example shows that there are 2
lines, 11 words, and 60 bytes in the test6 file.

There's another method of input redirection, called inline input redirection.
This method allows you to specify the data for input redirection on the
command line instead of in a file. This may seem somewhat odd at first, but
there are a few applications for this process (such as those shown in the
“Performing Math” section later).

The inline input redirection symbol is the double less-than symbol (<<).
Besides this symbol, you must specify a text marker that delineates the
beginning and end of the data used for input. You can use any string value
for the text marker, but it must be the same at the beginning of the data and
the end of the data:

command << marker
data
marker

When using inline input redirection on the command line, the shell will
prompt for data using the secondary prompt, defined in the PS2
environment variable (see Chapter 6). Here's how this looks when you use
it:

$ wc << EOF
> test string 1
> test string 2
> test string 3
> EOF
 3 9 42
$

The secondary prompt continues to prompt for more data until you enter the
string value for the text marker. The wc command performs the line, word,
and byte counts of the data supplied by the inline input redirection.

Employing Pipes
There are times when you need to send the output of one command to the
input of another command. This is possible using redirection, but somewhat
clunky:

$ rpm -qa> rpm.list
$ sort < rpm.list
abattis-cantarell-fonts-0.0.25-1.el7.noarch
abrt-2.1.11-52.el7.centos.x86_64
abrt-addon-ccpp-2.1.11-52.el7.centos.x86_64
abrt-addon-kerneloops-2.1.11-52.el7.centos.x86_64
abrt-addon-pstoreoops-2.1.11-52.el7.centos.x86_64
abrt-addon-python-2.1.11-52.el7.centos.x86_64
abrt-addon-vmcore-2.1.11-52.el7.centos.x86_64
abrt-addon-xorg-2.1.11-52.el7.centos.x86_64
abrt-cli-2.1.11-52.el7.centos.x86_64
abrt-console-notification-2.1.11-52.el7.centos.x86_64
...

The rpm command manages the software packages installed on systems
using the Red Hat Package Management system (RPM), such as the
CentOS system as shown. When used with the -qa parameters, it produces
a list of the existing packages installed, but not necessarily in any specific
order. If you're looking for a specific package, or group of packages, it can
be difficult to find it using the output of the rpm command.

Using the standard output redirection, the output was redirected from the
rpm command to a file called rpm.list . After the command finished, the
rpm.list file contained a list of all the installed software packages on this
system. Next, input redirection was used to send the contents of the

rpm.list file to the sort command to sort the package names
alphabetically.

That was useful, but again, a somewhat clunky way of producing the
information. Instead of redirecting the output of a command to a file, you
can redirect the output to another command. This process is called piping.

Like the command substitution backtick (`), the symbol for piping is not
used often outside of shell scripting. The symbol is two vertical lines, one
above the other. However, the pipe symbol often looks like a single vertical
line in print (|). On a U.S. keyboard, it is usually on the same key as the
backslash (\). The pipe is put between the commands to redirect the output
from one to the other:

command1 | command2

Don't think of piping as running two commands back to back. The Linux
system actually runs both commands at the same time, linking them
together internally in the system. As the first command produces output, it's
sent immediately to the second command. No intermediate files or buffer
areas are used to transfer the data.

Now, using piping you can easily pipe the output of the rpm command
directly to the sort command to produce your results:

$ rpm -qa | sort
abattis-cantarell-fonts-0.0.25-1.el7.noarch
abrt-2.1.11-52.el7.centos.x86_64
abrt-addon-ccpp-2.1.11-52.el7.centos.x86_64
abrt-addon-kerneloops-2.1.11-52.el7.centos.x86_64
abrt-addon-pstoreoops-2.1.11-52.el7.centos.x86_64
abrt-addon-python-2.1.11-52.el7.centos.x86_64
abrt-addon-vmcore-2.1.11-52.el7.centos.x86_64
abrt-addon-xorg-2.1.11-52.el7.centos.x86_64
abrt-cli-2.1.11-52.el7.centos.x86_64
abrt-console-notification-2.1.11-52.el7.centos.x86_64
...

Unless you're a (very) quick reader, you probably couldn't keep up with the
output generated by this command. Because the piping feature operates in
real time, as soon as the rpm command produces data, the sort command
gets busy sorting it. By the time the rpm command finishes outputting data,

the sort command already has the data sorted and starts displaying it on the
monitor.

There's no limit to the number of pipes you can use in a command. You can
continue piping the output of commands to other commands to refine your
operation.

In this case, because the output of the sort command zooms by so quickly,
you can use one of the text paging commands (such as less or more) to
force the output to stop at every screen of data:

$ rpm -qa | sort | more

This command sequence runs the rpm command, pipes the output to the
sort command, and then pipes that output to the more command to display
the data, stopping after every screen of information. This now lets you
pause and read what's on the display before continuing, as shown in Figure
11-1.

To get even fancier, you can use redirection along with piping to save your
output to a file:

$ rpm -qa | sort> rpm.list
$ more rpm.list
abrt-1.1.14-1.fc14.i686
abrt-addon-ccpp-1.1.14-1.fc14.i686
abrt-addon-kerneloops-1.1.14-1.fc14.i686
abrt-addon-python-1.1.14-1.fc14.i686
abrt-desktop-1.1.14-1.fc14.i686
abrt-gui-1.1.14-1.fc14.i686
abrt-libs-1.1.14-1.fc14.i686
abrt-plugin-bugzilla-1.1.14-1.fc14.i686
abrt-plugin-logger-1.1.14-1.fc14.i686
abrt-plugin-runapp-1.1.14-1.fc14.i686
acl-2.2.49-8.fc14.i686
...

FIGURE 11-1 Using piping to send data to the more command

As expected, the data in the rpm.list file is now sorted!

By far one of the most popular uses is piping the results of commands that
produce long output to the more command. This is especially common with
the ls command, as shown in Figure 11-2.

The ls -l command produces a long listing of all the files in the directory.
For directories with lots of files, this can be quite a listing. By piping the
output to the more command, you force the output to stop at the end of
every screen of data.

Performing Math
Another feature crucial to any programming language is the ability to
manipulate numbers. Unfortunately, for shell scripts this process is a bit

awkward. You have two ways to perform mathematical operations in your
shell scripts.

FIGURE 11-2 Using the more command with the ls command

The expr command
Originally, the Bourne shell provided a special command that was used for
processing mathematical equations. The expr command allowed the
processing of equations from the command line, but it is extremely clunky:

$ expr 1 + 5
6

The expr command recognizes a few different mathematical and string
operators, shown in Table 11-1.

The standard operators work fine in the expr command, but the problem
occurs when using them from a script or the command line. Many of the

expr command operators have other meanings in the shell (such as the
asterisk). Using them in the expr command produces odd results:

$ expr 5 * 2
expr: syntax error
$

TABLE 11-1 The expr Command Operators

Operator Description
ARG1 | ARG2 Return ARG1 if neither argument is null or 0; otherwise,

return ARG2 .
ARG1 & ARG2 Return ARG1 if neither argument is null or 0; otherwise,

return 0.
ARG1 < ARG2 Return 1 if ARG1 is less than ARG2 ; otherwise, return 0.
ARG1 <= ARG2 Return 1 if ARG1 is less than or equal to ARG2 ;

otherwise, return 0.
ARG1 = ARG2 Return 1 if ARG1 is equal to ARG2 ; otherwise, return 0.
ARG1 != ARG2 Return 1 if ARG1 is not equal to ARG2 ; otherwise, return

0.
ARG1 >= ARG2 Return 1 if ARG1 is greater than or equal to ARG2 ;

otherwise, return 0.
ARG1 > ARG2 Return 1 if ARG1 is greater than ARG2 ; otherwise, return

0.
ARG1 + ARG2 Return the arithmetic sum of ARG1 and ARG2 .
ARG1 - ARG2 Return the arithmetic difference of ARG1 and ARG2 .
ARG1 * ARG2 Return the arithmetic product of ARG1 and ARG2 .
ARG1 / ARG2 Return the arithmetic quotient of ARG1 divided by ARG2 .
ARG1 % ARG2 Return the arithmetic remainder of ARG1 divided by

ARG2 .
STRING : REGEXP Return the pattern match if REGEXP matches a pattern in

STRING .
match STRING

REGEXP

Return the pattern match if REGEXP matches a pattern in
STRING .

substr STRING

POS LENGTH

Return the substring LENGTH characters in length,
starting at position POS (starting at 1).

index STRING

CHARS

Return position in STRING where CHARS is found;
otherwise, return 0.

length STRING Return the numeric length of the string STRING .

Operator Description
+ TOKEN Interpret TOKEN as a string, even if it's a keyword.
(EXPRESSION) Return the value of EXPRESSION .

To solve this problem, you need to use the shell escape character (the
backslash) to identify any characters that may be misinterpreted by the shell
before being passed to the expr command:

$ expr 5 * 2
10
$

Now that's really starting to get ugly! Using the expr command in a shell
script is equally cumbersome:

$ cat test6
#!/bin/bash
An example of using the expr command
var1=10
var2=20
var3=$(expr $var2 / $var1)
echo The result is $var3

To assign the result of a mathematical equation to a variable, you have to
use command substitution to extract the output from the expr command:

$ chmod u+x test6
$./test6
The result is 2
$

Fortunately, the Bash shell has an improvement for processing
mathematical operators, as you will see in the next section.

Using brackets
The Bash shell includes the expr command to stay compatible with the
Bourne shell; however, it also provides a much easier way of performing
mathematical equations. In Bash, when assigning a mathematical value to a
variable, you can enclose the mathematical equation using a dollar sign and
square brackets ($[operation]):

$ var1=$[1 + 5]
$ echo $var1
6
$ var2=$[$var1 * 2]
$ echo $var2
12
$

Using brackets makes shell math much easier than with the expr command.
The same technique also works in shell scripts:

$ cat test7
#!/bin/bash
var1=100
var2=50
var3=45
var4=$[$var1 * ($var2 - $var3)]
echo The final result is $var4
$

Running this script produces the following output:

$ chmod u+x test7
$./test7
The final result is 500
$

Also, notice that when using the square brackets method for calculating
equations you don't need to worry about the multiplication symbol, or any
other characters, being misinterpreted by the shell. The shell knows that it's
not a wildcard character because it is within the square brackets.

There's one major limitation to performing math in the Bash shell script.
Take a look at this example:

$ cat test8
#!/bin/bash
var1=100
var2=45
var3=$[$var1 / $var2]
echo The final result is $var3
$

Now run it and see what happens:

$ chmod u+x test8
$./test8

The final result is 2
$

The Bash shell mathematical operators support only integer arithmetic. This
is a huge limitation if you're trying to do any sort of real-world
mathematical calculations.

NOTE

The z shell (zsh) provides full floating-point arithmetic operations.
If you require floating-point calculations in your shell scripts, you
might consider checking out the z shell (discussed in Chapter 23,
“Working with Alternative Shells”).

A floating-point solution
There are several solutions for overcoming the Bash integer limitation. The
most popular solution uses the built-in Bash calculator, called bc.

The basics of bc
The Bash calculator is actually a programming language that allows you to
enter floating-point expressions at a command line and then interprets the
expressions, calculates them, and returns the result. The Bash calculator
recognizes the following:

Numbers (both integer and floating point)

Variables (both simple variables and arrays)

Comments (lines starting with a pound sign or the C language /* */
pair)

Expressions

Programming statements (such as if-then statements)

Functions

You can access the Bash calculator from the shell prompt using the bc
command:

$ bc
bc 1.06.95
Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006 Free
Software Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type 'warranty'.
12 * 5.4
64.8
3.156 * (3 + 5)
25.248
quit
$

The example starts out by entering the expression 12 * 5.4 . The Bash
calculator returns the answer. Each subsequent expression entered into the
calculator is evaluated, and the result is displayed. To exit the Bash
calculator, you must enter quit .

The floating-point arithmetic is controlled by a built-in variable called
scale. You must set this value to the desired number of decimal places you
want in your answers or you won't get what you were looking for:

$ bc -q
3.44 / 5
0
scale=4
3.44 / 5
.6880
quit
$

The default value for the scale variable is 0. Before the scale value is set,
the Bash calculator provides the answer to zero decimal places. After you
set the scale variable value to 4, the Bash calculator displays the answer to
four decimal places. The -q command-line parameter suppresses the
lengthy welcome banner from the Bash calculator.

In addition to normal numbers, the Bash calculator understands variables:

$ bc -q
var1=10
var1 * 4
40
var2 = var1 / 5
print var2
2

quit
$

Once a variable value is defined, you can use the variable throughout the
Bash calculator session. The print statement allows you to print variables
and numbers.

Using bc in scripts
Now you may be wondering how the Bash calculator is going to help you
with floating-point arithmetic in your shell scripts. Do you remember your
friend the backtick character? Yes, you can use the command substitution
character to run a bc command and assign the output to a variable! The
basic format to use is this:

variable=$(echo "options; expression" | bc)

The first portion, options , allows you to set variables. If you need to set
more than one variable, separate them using the semicolon. The
expression parameter defines the mathematical expression to evaluate
using bc . Here's a quick example of doing this in a script:

$ cat test9
#!/bin/bash
var1=$(echo " scale=4; 3.44 / 5" | bc)
echo The answer is $var1
$

This example sets the scale variable to four decimal places and then
specifies a specific calculation for the expression. Running this script
produces the following output:

$ chmod u+x test9
$./test9
The answer is .6880
$

Now that's fancy! You aren't limited to just using numbers for the
expression value. You can also use variables defined in the shell script:

$ cat test10
#!/bin/bash
var1=100
var2=45
var3=$(echo "scale=4; $var1 / $var2" | bc)

echo The answer for this is $var3
$

The script defines two variables, which are used within the expression sent
to the bc command. Remember to use the dollar sign to signify the value for
the variables and not the variables themselves. The output of this script is as
follows:

$./test10
The answer for this is 2.2222
$

And of course, once a value is assigned to a variable, that variable can be
used in yet another calculation:

$ cat test11
#!/bin/bash
var1=20
var2=3.14159
var3=$(echo "scale=4; $var1 * $var1" | bc)
var4=$(echo "scale=4; $var3 * $var2" | bc)
echo The final result is $var4
$

This method works fine for short calculations, but sometimes you need to
get more involved with your numbers. If you have more than just a couple
of calculations, it gets confusing trying to list multiple expressions on the
same command line.

There's a solution to this problem. The bc command recognizes input
redirection, allowing you to redirect a file to the bc command for
processing. However, this also can get confusing, since you'd need to store
your expressions in a file.

The best method is to use inline input redirection, which allows you to
redirect data directly from the command line. In the shell script, you assign
the output to a variable:

variable=$(bc << EOF
options
statements
expressions
EOF
)

The EOF text string indicates the beginning and end of the inline redirection
data. Remember that the command substitution characters are still needed to
assign the output of the bc command to the variable.

Now you can place all of the individual Bash calculator elements on
separate lines in the script file. Here's an example of using this technique in
a script:

$ cat test12
#!/bin/bash

var1=10.46
var2=43.67
var3=33.2
var4=71

var5=$(bc << EOF
scale = 4
a1 = ($var1 * $var2)
b1 = ($var3 * $var4)
a1 + b1
EOF
)

echo The final answer for this mess is $var5
$

Placing each option and expression on a separate line in your script makes
things cleaner and easier to read and follow. The EOF string indicates the
start and end of the data to redirect to the bc command. Of course, you need
to use the command substitution characters to indicate the command to
assign to the variable.

You'll also notice in this example that you can assign variables within the
Bash calculator. It's important to remember that any variables created within
the Bash calculator are valid only within the Bash calculator and can't be
used in the shell script.

Exiting the Script
So far in our sample scripts, we terminated things pretty abruptly. When we
were done with our last command, we just ended the script. There's a more
elegant way of completing things available to us.

Every command that runs in the shell uses an exit status to indicate to the
shell that it's done processing. The exit status is an integer value between 0
and 255 that's passed by the command to the shell when the command
finishes running. You can capture this value and use it in your scripts.

Checking the exit status
Linux provides the $? special variable that holds the exit status value from
the last command that executed. You must view or use the $? variable
immediately after the command you want to check. It changes values to the
exit status of the last command executed by the shell:

$ date
Mon Jun 01 16:01:30 EDT 2020
$ echo $?
0
$

By convention, the exit status of a command that successfully completes is
0. If a command completes with an error, then a positive integer value is
placed in the exit status:

$ asdfg
-bash: asdfg: command not found
$ echo $?
127
$

The invalid command returns an exit status of 127. There's not much of a
standard convention to Linux error exit status codes. However, there are a
few guidelines you can use, as shown in Table 11-2.

TABLE 11-2 Linux Exit Status Codes

Code Description
0 Successful completion of the command
1 General unknown error
2 Misuse of shell command
126 The command can't execute
127 Command not found
128 Invalid exit argument
128+x Fatal error with Linux signal x
130 Command terminated with Ctrl+C
255 Exit status out of range

An exit status value of 126 indicates that the user didn't have the proper
permissions set to execute the command:

$./myprog.c
-bash: ./myprog.c: Permission denied
$ echo $?
126
$

Another common error you'll encounter occurs if you supply an invalid
parameter to a command:

$ date %t
date: invalid date '%t'
$ echo $?
1
$

This generates the general exit status code of 1, indicating that an unknown
error occurred in the command.

The exit command
By default, your shell script will exit with the exit status of the last
command in your script:

$./test6
The result is 2
$ echo $?
0
$

You can change that to return your own exit status code. The exit
command allows you to specify an exit status when your script ends:

$ cat test13
#!/bin/bash
testing the exit status
var1=10
var2=30
var3=$[$var1 + var2]
echo The answer is $var3
exit 5
$

When you check the exit status of the script, you'll get the value used as the
parameter of the exit command:

$ chmod u+x test13
$./test13
The answer is 40
$ echo $?
5
$

You can also use variables in the exit command parameter:

$ cat test14
#!/bin/bash
testing the exit status
var1=10
var2=30
var3=$[$var1 + var2]
exit $var3
$

When you run this command, it produces the following exit status:

$ chmod u+x test14
$./test14
$ echo $?
40
$

You should be careful with this feature, however — the exit status codes
can only go up to 255. Watch what happens in this example:

$ cat test14b
#!/bin/bash
testing the exit status
var1=10
var2=30
var3=$[$var1 * var2]
echo The value is $var3
exit $var3
$

Now when you run it, you get the following:

$./test14b
The value is 300
$ echo $?
44
$

The exit status code is reduced to fit in the 0 to 255 range. The shell does
this by using modulo arithmetic. The modulo of a value is the remainder
after a division. The resulting number is the remainder of the specified
number divided by 256. In the case of 300 (the result value), the remainder
is 44, which is what appears as the exit status code.

In the next chapter, you'll see how you can use the if-then statement to
check the error status returned by a command to see whether or not the
command was successful.

Working through a Practical Example
Now that you have the basics of shell scripting, we can try putting them
together to create a useful script. For this example, we'll work on creating a
shell script to calculate the number of days between two dates. For our
example, we'll allow the user to specify the dates in any format that's
recognized by the Linux date command.

First, we'll store the two specified dates in variables:

$date1="Jan 1, 2020"
$date2="May 1, 2020"

Performing date arithmetic is hard; you have to know which months have
28, 30, or 31 days, and you need to know what years are leap years.
However, we can get some help from the date command.

The date command allows us to specify a specific date using the -d option
(in any format), and then output the date in any other format that we define.
To do our calculations, we'll make use of a Linux feature called the epoch
time. The epoch time specifies the time as an integer value of the number of
seconds since midnight, January 1, 1970 (it's an old Unix standard). Thus,
to get the epoch time for January 1, 2020, you'd do this:

$date -d "Jan 1, 2020" +%s
1577854800
$

We'll use that method to get the epoch time for both dates, and then just
subtract the two values to get the number of seconds between the two dates.
From there, we can divide that value by the number of seconds in a day (60
seconds per minute, 60 minutes per hour, and 24 hours per day) to get the
difference between the two dates in days.

We'll use the command substitution feature to capture the output of the date
command in a variable:

$time1=$(date -d "$date1" +%s)

Once we have the epoch times for both dates, it's just a matter of using our
new friend the expr command to calculate the differences (we could use the
bc utility, but since we're working with integer values expr will work just
fine for us).

So, putting that all together gives us this script:

$ cat mydate.sh
#!/bin/bash
calculate the number of days between two dates
date1="Jan 1, 2020"
date2="May 1, 2020"

time1=$(date -d "$date1" +%s)
time2=$(date -d "$date2" +%s)

diff=$(expr $time2 - $time1)
secondsinday=$(expr 24 * 60 * 60)

days=$(expr $diff / $secondsinday)

echo "The difference between $date2 and $date1 is $days
days"
$

Then it's just a matter of assigning the correct permissions and running the
script:

$ chmod u+x mydate.sh
$./mydate.sh
The difference between May 1, 2020 and Jan 1, 2020 is 120
days
$

Now you can plug any dates into the variables (using just about any date
format you need) and you should get the proper results!

Summary
The Bash shell script allows you to string commands together into a script.
The most basic way to create a script is to separate multiple commands on
the command line using a semicolon. The shell executes each command in
order, displaying the output of each command on the monitor.

You can also create a shell script file, placing multiple commands in the file
for the shell to execute in order. The shell script file must define the shell
used to run the script. This is done in the first line of the script file, using
the #! symbol, followed by the full path of the shell.

Within the shell script you can reference environment variable values by
using a dollar sign in front of the variable. You can also define your own
variables for use within the script, and assign values and even the output of
a command by using the backtick character or the $() format. The variable
value can be used within the script by placing a dollar sign in front of the
variable name.

The Bash shell allows you to redirect both the input and output of a
command from the standard behavior. You can redirect the output of any
command from the monitor display to a file by using the greater-than
symbol, followed by the name of the file to capture the output. You can
append output data to an existing file by using two greater-than symbols.

The less-than symbol is used to redirect input to a command. You can
redirect input from a file to a command.

The Linux pipe command (the broken bar symbol) allows you to redirect
the output of a command directly to the input of another command. The
Linux system runs both commands at the same time, sending the output of
the first command to the input of the second command without using any
redirect files.

The Bash shell provides a couple of ways for you to perform mathematical
operations in your shell scripts. The expr command is a simple way to
perform integer math. In the Bash shell, you can also perform basic math
calculations by enclosing equations in square brackets, preceded by a dollar
sign. To perform floating-point arithmetic, you need to use the bc calculator
command, redirecting input from inline data and storing the output in a user
variable.

Finally, we discussed how to use the exit status in your shell script. Every
command that runs in the shell produces an exit status. The exit status is an
integer value between 0 and 255 that indicates whether or not the command
completed successfully, and if not, what the reason may have been. An exit
status of 0 indicates that the command completed successfully. You can use
the exit command in your shell script to declare a specific exit status upon
the completion of your script.

So far in your shell scripts, things have proceeded in an orderly fashion
from one command to the next. In the next chapter, you'll see how you can
use some logic flow control to alter which commands are executed within
the script.

CHAPTER 12
Using Structured Commands
IN THIS CHAPTER

Working with the if-then statement

Nesting if s

Understanding the test command

Testing compound conditions

Using double brackets and parentheses

Looking at case

In Chapter 11, “Basic Script Building,” the shell processed each individual
command in the order in which it appeared within a shell script. Although
this works out fine for sequential operations, many programs require some
sort of logic flow control between the commands in the script.

There is a whole command class that allows the shell to skip over script
sections based on tested conditions and alter the operation flow. These
commands are generally referred to as structured commands.

Quite a few structured commands are available in the Bash shell, so we'll
break them up into different chapters. In this chapter, we look at if - then
and case statements.

Working with the if-then Statement
The most basic type of structured command is the if-then statement. The
if-then statement has the following format:

if command
then
 commands
fi

If you're using if-then statements in other programming languages, this
format may be somewhat confusing. In other programming languages, the
object after the if statement is an equation that is evaluated for a TRUE or
FALSE value. That's not how the Bash shell if statement works.

The Bash shell if statement runs the command defined on the if line. If the
exit status of the command (see Chapter 11) is zero (the command
completed successfully), the commands listed under the then section are
executed. If the exit status of the command is anything else, the then
commands aren't executed, and the Bash shell moves on to the next
command in the script. The fi statement sets the if-then statement's end.

Here's a simple example to demonstrate this concept:

$ cat test1.sh
#!/bin/bash
testing the if statement
if pwd
then
 echo "It worked"
fi
$

This script uses the pwd command on the if line. If the command completes
successfully, the echo statement should display the text string. When we run
this script from the command line, we get these results:

$./test1.sh
/home/christine/scripts
It worked
$

The shell executed the pwd command listed on the if line. Because the exit
status was zero, it also executed the echo statement listed in the then
section.

Here's another example:

$ cat test2.sh
#!/bin/bash
testing an incorrect command
if IamNotaCommand
then
 echo "It worked"
fi

echo "We are outside the if statement"
$
$./test2.sh
./test2.sh: line 3: IamNotaCommand: command not found
We are outside the if statement
$

In this example, we deliberately used a nonexistent command,
IamNotaCommand , in the if statement line. Because this is an incorrect
command, it produces an exit status that's non-zero. Thus, the Bash shell
skips the echo statement in the then section. Also notice that the error
message generated from running the command in the if statement still
appears in the script's output. There may be times when you don't want an
error statement to appear. Chapter 15, “Presenting Data,” discusses how this
can be avoided.

NOTE

You might see an alternative form of the if-then statement used in
some scripts:

 if command; then
 commands
 fi

By putting a semicolon (;) at the end of the command to evaluate,
you can include the then statement on the same line, which looks
closer to how if-then statements are handled in some other
programming languages.

You are not limited to just one command in the then section. You can list
commands just as you do in the rest of the shell script. The Bash shell treats
the commands as a block, executing all of them when the command in the
if statement line returns a zero exit status or skipping all of them when the
command returns a non-zero exit status:

$ cat test3.sh
#!/bin/bash
testing multiple commands in the then block

testuser=christine

if grep $testuser /etc/passwd
then
 echo "This is my first command in the then block."
 echo "This is my second command in the then block."
 echo "I can even put in other commands besides echo:"
 ls /home/$testuser/*.sh
fi
echo "We are outside the if statement"
$

The if statement line uses the grep comment to search the /etc/passwd
file to see if a specific username is currently used on the system. If there's a
user with that logon name, the script displays some text and then lists the
Bash scripts in the user's $HOME directory:

$./test3.sh
christine:x:1001:1001::/home/christine:/bin/bash
This is my first command in the then block.
This is my second command in the then block.
I can even put in other commands besides echo:
/home/christine/factorial.sh
We are outside the if statement
$

However, if you set the testuser variable to a user that doesn't exist on the
system, nothing within the then code block executes:

$ cat test3.sh
#!/bin/bash
testing multiple commands in the then block

testuser=NoSuchUser

if grep $testuser /etc/passwd
then
 echo "This is my first command in the then block."
 echo "This is my second command in the then block."
 echo "I can even put in other commands besides echo:"
 ls /home/$testuser/*.sh
fi
echo "We are outside the if statement"
$
$./test3.sh
We are outside the if statement
$

It's not all that exciting. It would be nice if we could display a little message
saying that the username wasn't found on the system. Well, we can, using
another feature of the if-then statement.

Exploring the if-then-else Statement
In the if-then statement, you have only one option for whether a command
is successful. If the command returns a non-zero exit status code, the Bash
shell just moves on to the next command in the script. In this situation, it
would be nice to be able to execute an alternate set of commands. That's
exactly what the if-then-else statement is for.

The if-then-else statement provides another group of commands in the
statement:

if command
then
 commands
else
 commands
fi

When the command in the if statement line returns with a zero exit status
code, the commands listed in the then section are executed, just as in a
normal if-then statement. When the command in the if statement line
returns a non-zero exit status code, the Bash shell executes the commands
in the else section.

Now you can copy and modify the test script to include an else section:

$ cp test3.sh test4.sh
$
$ nano test4.sh
$
$ cat test4.sh
#!/bin/bash
testing the else section

testuser=NoSuchUser

if grep $testuser /etc/passwd
then
 echo "The script files in the home directory of

$testuser are:"
 ls /home/$testuser/*.sh
 echo
else
 echo "The user $testuser does not exist on this
system."
 echo
fi
echo "We are outside the if statement"
$
$./test4.sh
The user NoSuchUser does not exist on this system.

We are outside the if statement
$

That's more user-friendly. Just like the then section, the else section can
contain multiple commands. The fi statement delineates the end of the
else section.

Nesting ifs
Sometimes, you must check for several situations in your script code. For
these situations, you can nest the if-then statements.

To check if a logon name is not in the /etc/passwd file and yet a directory
for that user still exists, use a nested if-then statement. In this case, the
nested if-then statement is within the primary if-then-else statement's
else code block:

$ cat test5.sh
#!/bin/bash
testing nested ifs

testuser=NoSuchUser

if grep $testuser /etc/passwd
then
 echo "The user $testuser account exists on this
system."
 echo
else
 echo "The user $testuser does not exist on this
system."
 if ls -d /home/$testuser/

 then
 echo "However, $testuser has a directory."
 fi
fi
echo "We are outside the nested if statements."

$ ls -d /home/NoSuchUser/
/home/NoSuchUser/
$
$./test5.sh
The user NoSuchUser does not exist on this system.
/home/NoSuchUser/
However, NoSuchUser has a directory.
We are outside the nested if statements.
$

The script correctly finds that although the login name has been removed
from the /etc/passwd file, the user's directory is still on the system. The
problem with using this manner of nested if-then statements in a script is
that the code can get hard to read, and the logic flow becomes difficult to
follow.

NOTE

The ls command has some additional useful command options (and
option combinations) we use in this chapter:

-d shows only the directory information, not the directory's
contents.

-sh displays the file's size in a human-readable format.

-g shows the file's long listing minus the owner name.

-o displays the file's long listing minus the group name.

The ls command was first covered in Chapter 3, “Basic Bash Shell
Commands.”

Instead of having to write separate if-then statements, you can use an
alternative version of the else section called elif . The elif continues an
else section with another if-then statement:

if command1
then
 commands
elif command2
then
 more commands
fi

The elif statement line provides another command to evaluate, similar to
the original if statement line. If the exit status code from the elif
command is zero, Bash executes the commands in the second then
statement section. Using this method of nesting provides cleaner code with
an easier-to-follow logic flow:

$ cat test5.sh
#!/bin/bash
testing nested ifs - using elif

testuser=NoSuchUser

if grep $testuser /etc/passwd
then
 echo "The user $testuser account exists on this
system."
 echo
elif ls -d /home/$testuser/
 then
 echo "The user $testuser has a directory,"
 echo "even though $testuser doesn't have an
account."
fi
echo "We are outside the nested if statements."
$
$./test5.sh
/home/NoSuchUser/
The user NoSuchUser has a directory,
even though NoSuchUser doesn't have an account.
We are outside the nested if statements.
$

The problem with this script is that if the account is gone as well as the
directory, you get no notifications of these facts. You can fix this problem,
and even take the script a step further by having it check for both a
nonexistent user with a directory and a nonexistent user without a directory.
You accomplish this by adding an else statement within the nested elif :

$ cat test5.sh
#!/bin/bash
testing nested ifs - using elif and else

testuser=NoSuchUser

if grep $testuser /etc/passwd
then
 echo "The user $testuser account exists on this
system."
 echo
elif ls -d /home/$testuser/
 then
 echo "The user $testuser has a directory,"
 echo "even though $testuser doesn't have an
account."
 else
 echo "The user $testuser does not exist on this
system,"
 echo "and no directory exists for the $testuser."
fi
echo "We are outside the nested if statements."

$
$./test5.sh
/home/NoSuchUser/
The user NoSuchUser has a directory,
even though NoSuchUser doesn't have an account.
We are outside the nested if statements.
$

$ sudo rmdir /home/NoSuchUser/
[sudo] password for christine:
$
$./test5.sh
ls: cannot access '/home/NoSuchUser/': No such file or
directory
The user NoSuchUser does not exist on this system,
and no directory exists for the NoSuchUser.
We are outside the nested if statements.
$

Before the /home/NoSuchUser directory was removed and the test script
executed the elif statement, a zero exit status was returned. Thus, the
statements within the elif 's then code block were executed. After the
/home/NoSuchUser directory was removed, a non-zero exit status was

returned for the elif statement. This caused the statements in the else
block within the elif block to be executed.

NOTE

Keep in mind that, with an elif statement, any else statements
immediately following it are only for that elif code block. They are
not part of a preceding if-then statement code block.

You can continue to string elif statements together, creating one huge if-
then-elif conglomeration:

if command1
then
 command set 1
elif command2
then
 command set 2
elif command3
then
 command set 3
elif command4
then
 command set 4
fi

Each block of commands is executed depending on which command returns
the zero exit status code. Remember that the Bash shell executes the if
statements in order, and only the first one that returns a zero exit status
results in the then section being executed.

Even though the code looks cleaner with elif statements, it still can be
confusing to follow the script's logic. Later in the “Considering the case
Command” section, you'll see how to use the case command instead of
having to nest lots of if-then statements.

Trying the test Command
So far, all you've seen in the if statement line are normal shell commands.
You might be wondering if the Bash if-then statement has the ability to

evaluate any condition other than a command's exit status code.

The answer is no, it can't. However, a neat utility available in the Bash shell
helps you evaluate other things using the if-then statement.

The test command provides a way to test different conditions in an if-
then statement. If the condition listed in the test command evaluates to
TRUE , the test command exits with a zero exit status code. This makes the
if-then statement behave in much the same way that if-then statements
work in other programming languages. If the condition is false, the test
command exits with a non-zero exit status code, which causes the if-then
statement to exit.

The format of the test command is pretty simple:

test condition

The condition is a series of parameters and values that the test command
evaluates. When used in an if-then statement, the test command looks
like this:

if test condition
then
 commands
fi

If you leave out the condition portion of the test command statement, it
exits with a non-zero exit status code (false) and triggers any else block
statements:

$ cat test6.sh
#!/bin/bash
testing the test command

if test
then
 echo "No expression returns a True"
else
 echo "No expression returns a False"
fi
$
$./test6.sh
No expression returns a False
$

When you add in a condition, it is tested by the test command. For
example, using the test command, you can determine whether a variable
has content. A simple condition expression is needed to determine whether
a variable has content:

$ cat test6.sh
#!/bin/bash
testing if a variable has content

my_variable="Full"

if test $my_variable
then
 echo "The my_variable variable has content and returns
a True."
 echo "The my_variable variable content is:
$my_variable"
else
 echo "The my_variable variable doesn't have content,"
 echo "and returns a False."
fi
$
$./test6.sh
The my_variable variable has content and returns a True.
The my_variable variable content is: Full
$

The variable my_variable contains content (Full), so when the test
command checks the condition, the exit status returns a zero. This triggers
the statements in the then code block.

As you would suspect, the opposite occurs when the variable does not
contain content:

$ cat test6.sh
#!/bin/bash
testing if a variable has content

my_variable=""

if test $my_variable
then
 echo "The my_variable variable has content and returns
a True."
 echo "The my_variable variable content is:
$my_variable"

else
 echo "The my_variable variable doesn't have content,"
 echo "and returns a False."
fi
$
$./test6.sh
The my_variable variable doesn't have content,
and returns a False.
$

The Bash shell provides an alternative way of testing a condition without
declaring the test command in an if-then statement:

if [condition]
then
 commands
fi

The square brackets define the test condition. Be careful: you must have a
space after the first bracket and a space before the last bracket, or you'll get
an error message.

The test command and test conditions can evaluate three classes of
conditions:

Numeric comparisons

String comparisons

File comparisons

The next sections describe how to use each of these test classes in your if-
then statements.

Using numeric comparisons
The most common test evaluation method is to perform a comparison of
two numeric values. Table 12-1 shows the list of condition parameters used
for testing two values.

TABLE 12-1 The test Numeric Comparisons

Comparison Description
n1 -eq n2 Checks if n1 is equal to n2.
n1 -ge n2 Checks if n1 is greater than or equal to n2.
n1 -gt n2 Checks if n1 is greater than n2.
n1 -le n2 Checks if n1 is less than or equal to n2.
n1 -lt n2 Checks if n1 is less than n2.
n1 -ne n2 Checks if n1 is not equal to n2.

The numeric test conditions can be used to evaluate both numbers and
variables. Here's an example of doing that:

$ cat numeric_test.sh
#!/bin/bash
Using numeric test evaluations

value1=10
value2=11

if [$value1 -gt 5]
then
 echo "The test value $value1 is greater than 5."
fi

if [$value1 -eq $value2]
then
 echo "The values are equal."
else
 echo "The values are different."
fi
$

The first test condition:

if [$value1 -gt 5]

tests if the value of the variable value1 is greater than 5. The second test
condition:

if [$value1 -eq $value2]

tests if the value of the variable value1 is equal to the value of the variable
value2 . Both numeric test conditions evaluate as expected:

$./numeric_test.sh
The test value 10 is greater than 5
The values are different
$

WARNING

For test conditions, the only numbers the Bash shell can handle are
integers. Although you can use floating-point values for commands,
such as echo , they will not work properly in test conditions.

Using string comparisons
Test conditions also allow you to perform comparisons on string values.
Performing comparisons on strings can get tricky, as you'll see. Table 12-2
shows the comparison functions you can use to evaluate two string values.

TABLE 12-2 The test String Comparisons

Comparison Description
str1 = str2 Checks if str1 is the same as string str2.
str1 != str2 Checks if str1 is not the same as str2.
str1 < str2 Checks if str1 is less than str2.
str1 > str2 Checks if str1 is greater than str2.
-n str1 Checks if str1 has a length greater than zero.
-z str1 Checks if str1 has a length of zero.

The following sections describe the different string comparisons available.

Looking at string equality
The equal and not equal conditions are fairly self-explanatory with strings.
It's pretty easy to know whether two string values are the same or not:

$ cat string_test.sh
#!/bin/bash
Using string test evaluations

testuser=christine

if [$testuser = christine]
then
 echo "The testuser variable contains: christine"
else
 echo "The testuser variable contains: $testuser"
fi
$
$./string_test.sh
The testuser variable contains: christine
$

Also, using the not equals string comparison allows you to determine
whether or not two strings have the same value:

$ cat string_not_test.sh
#!/bin/bash
Using string test not equal evaluations

testuser=rich

if [$testuser != christine]
then
 echo "The testuser variable does NOT contain:
christine"
else
 echo "The testuser variable contains: christine"
fi
$
$./string_not_test.sh
The testuser variable does NOT contain: christine
$

Keep in mind that the test comparison takes all punctuation and
capitalization into account when comparing strings for equality.

Looking at string order
Trying to determine if one string is less than or greater than another is
where things start getting tricky. Two problems often plague shell

programmers when they're trying to use the greater-than or less-than
features of test conditions:

The greater-than and less-than symbols must be escaped, or the shell
uses them as redirection symbols, with the string values as filenames.

The greater-than and less-than order is not the same as that used with
the sort command.

The first item can result in a huge problem that often goes undetected when
programming your scripts. Here's an example of what sometimes happens
to novice shell script programmers:

$ cat bad_string_comparison.sh
#!/bin/bash
Misusing string comparisons

string1=soccer
string2=zorbfootball

if [$string1> $string2]
then
 echo "$string1 is greater than $string2"
else
 echo "$string1 is less than $string2"
fi
$
$./bad_string_comparison.sh
soccer is greater than zorbfootball
$
$ ls z*
zorbfootball
$

By just using the greater-than symbol itself in the script, no errors are
generated, but the results are wrong. The script interpreted the greater-than
symbol as an output redirection (see Chapter 15). Thus, it created a file
called zorbfootball . Because the redirection completed successfully, the
test condition returns a zero exit status code, which the if statement
evaluates as though things completed successfully!

To fix this problem, you need to properly escape the greater-than symbol
using the backslash (\):

$ cat good_string_comparison.sh
#!/bin/bash
Properly using string comparisons

string1=soccer
string2=zorbfootball

if [$string1 \> $string2]
then
 echo "$string1 is greater than $string2"
else
 echo "$string1 is less than $string2"
fi
$
$ rm -i zorbfootball
rm: remove regular empty file 'zorbfootball'? y
$
$./good_string_comparison.sh
soccer is less than zorbfootball
$
$ ls z*
ls: cannot access 'z*': No such file or directory
$

Now that answer is more along the lines of what you would expect from the
string comparison.

NOTE

The string soccer is less than the string zorbfootball , because test
comparisons use each character's Unicode numeric value.
Lowercase s equates to 115, whereas z is 122. Thus, s is less than z ,
and therefore, soccer is less than zorbfootball.

The second issue is a little more subtle, and you may not even run across it
unless you are working with uppercase and lowercase letters. The sort
command handles uppercase letters opposite to the way the test conditions
consider them:

$ cat SportsFile.txt
Soccer
soccer
$

$ sort SportsFile.txt
soccer
Soccer
$
$ cat sort_order_comparison.sh
#!/bin/bash
Testing string sort order

string1=Soccer
string2=soccer

if [$string1 \> $string2]
then
 echo "$string1 is greater than $string2"
else
 echo "$string1 is less than $string2"
fi
$
$
$./sort_order_comparison.sh
Soccer is less than soccer
$

Capitalized letters are treated as less than lowercase letters in test
comparisons. However, the sort command does the opposite. When you
put the same strings in a file and use the sort command, the lowercase
letters appear first. This is due to different ordering techniques.

Test comparisons use standard Unicode ordering, using each character's
Unicode numeric value to determine the sort order. The sort command uses
the sorting order defined for the system locale language settings. For the
English language, the locale settings specify that lowercase letters appear
before uppercase letters in sorted order.

NOTE

The test command and test expressions use the standard
mathematical comparison symbols for string comparisons and text
codes for numerical comparisons. This is a subtle feature that many
programmers manage to get reversed. If you use the mathematical
comparison symbols for numeric values, the shell interprets them as
string values and may not produce the correct results.

Looking at string size
The -n and -z comparisons are handy when you're trying to evaluate
whether a variable contains data:

$ cat variable_content_eval.sh
#!/bin/bash
Testing string length

string1=Soccer
string2=''

if [-n $string1]
then
 echo "The string '$string1' is NOT empty"
else
 echo "The string '$string1' IS empty"
fi

if [-z $string2]
then
 echo "The string '$string2' IS empty"
else
 echo "The string '$string2' is NOT empty"
fi

if [-z $string3]
then
 echo "The string '$string3' IS empty"
else
 echo "The string '$string3' is NOT empty"
fi
$

$./variable_content_eval.sh
The string 'Soccer' is NOT empty
The string '' IS empty
The string '' IS empty
$

This example creates two string variables. The string1 variable contains a
string, and the string2 variable is created as an empty string. The
following comparisons are made:

if [-n $string1]

The preceding code determines whether the string1 variable is non-zero in
length, which it is, so its then section is processed.

if [-z $string2]

This preceding code determines whether the string2 variable is zero in
length, which it is, so its then section is processed.

if [-z $string3]

The preceding code determines whether the string3 variable is zero in
length. This variable was never defined in the shell script, so it indicates
that the string length is still zero, even though it wasn't defined.

WARNING

Empty and uninitialized variables can have catastrophic effects on
your shell script tests. If you're not sure of the contents of a
variable, it's always best to test if the variable contains a value
using -n or -z before using it in a numeric or string comparison.

Using file comparisons
The last category of test comparisons includes quite possibly the most
powerful and most used comparisons in shell scripting. This category
allows you to test the status of files and directories on the Linux filesystem.
Table 12-3 lists these comparisons.

TABLE 12-3 The test File Comparisons

Comparison Description
-d file Checks if file exists and is a directory.
-e file Checks if file exists.
-f file Checks if file exists and is a file.
-r file Checks if file exists and is readable.
-s file Checks if file exists and is not empty.
-w file Checks if file exists and is writable.
-x file Checks if file exists and is executable.
-O file Checks if file exists and is owned by the current user.
-G file Checks if file exists and the default group is the same as

the current user.
file1 -nt
file2

Checks if file1 is newer than file2.

file1 -ot
file2

Checks if file1 is older than file2.

These conditions give you the ability to check filesystem files within shell
scripts. They are often used in scripts that access files. Because they're used
so often, let's look at each of these individually.

Checking directories
The -d test checks to see if a specified directory exists on the system. This
is usually a good thing to do if you're trying to write a file to a directory or
before you try to change to a directory location:

$ cat jump_point.sh
#!/bin/bash
Look before you leap

jump_directory=/home/Torfa

if [-d $jump_directory]
then
 echo "The $jump_directory directory exists."
 cd $jump_directory

 ls
else
 echo "The $jump_directory directory does NOT exist."
fi
$
$./jump_point.sh
The /home/Torfa directory does NOT exist.
$

The -d test condition checks to see if the jump_directory variable's
directory exists. If it does, it proceeds to use the cd command to change to
the current directory and performs a directory listing. If it does not, the
script emits a warning message and exits the script.

Checking whether an object exists
The -e comparison allows you to check if either a file or directory object
exists before you attempt to use it in your script:

$ cat update_file.sh
#!/bin/bash
Check if either a directory or file exists

location=$HOME
file_name="sentinel"

if [-d $location]
then
 echo "OK on the $location directory"
 echo "Now checking on the file, $file_name..."
 if [-e $location/$file_name]
 then
 echo "OK on the file, $file_name."
 echo "Updating file's contents."
 date>> $location/$file_name
 #
 else
 echo "File, $location/$file_name, does NOT exist."
 echo "Nothing to update."
 fi

else
 echo "Directory, $location, does NOT exist."
 echo "Nothing to update."
fi
$

$./update_file.sh
OK on the /home/christine directory
Now checking on the file, sentinel...
File, /home/christine/sentinel, does NOT exist.
Nothing to update.
$
$ touch /home/christine/sentinel
$
$./update_file.sh
OK on the /home/christine directory
Now checking on the file, sentinel...
OK on the file, sentinel.
Updating file's contents.
$

The first check uses the -e comparison to determine whether the user has a
$HOME directory. If so, the next -e comparison checks to determine whether
the sentinel file exists in the $HOME directory. If the file doesn't exist, the
shell script notes that the file is missing and that there is nothing to update.

To ensure that the update will work, the sentinel file was created and the
shell script was run a second time. This time when the conditions are tested,
both the $HOME and the sentinel file are found, and the current date and
time is appended to the file.

Checking for a file
The -e comparison works for both files and directories. To ensure that the
object specified is a file and not a directory, you must use the -f
comparison:

$ cat dir-or-file.sh
#!/bin/bash
Check if object exists and is a directory or a file

object_name=$HOME
echo
echo "The object being checked: $object_name"
echo

if [-e $object_name]
then
 echo "The object, $object_name, does exist,"
 #
 if [-f $object_name]
 then

 echo "and $object_name is a file."
 #
 else
 echo "and $object_name is a directory."
 fi

else
 echo "The object, $object_name, does NOT exist."
fi
$
$./dir-or-file.sh

The object being checked: /home/christine

The object, /home/christine, does exist,
and /home/christine is a directory.
$

First, this script uses the -e comparison to test whether $HOME exists. If it
does, it uses -f to test whether it's a file. If it isn't a file (which of course it
isn't), a message is displayed stating that it is a directory.

A slight modification to the variable object_name , replacing the directory
$HOME with a file, $HOME/sentinel , causes a different outcome:

$ nano dir-or-file.sh
$
$ cat dir-or-file.sh
#!/bin/bash
Check if object exists and is a directory or a file

object_name=$HOME/sentinel
echo
echo "The object being checked: $object_name"
echo

if [-e $object_name]
then
 echo "The object, $object_name, does exist,"
 #
 if [-f $object_name]
 then
 echo "and $object_name is a file."
 #
 else
 echo "and $object_name is a directory."
 fi

else
 echo "The object, $object_name, does NOT exist."
fi
$
$./dir-or-file.sh

The object being checked: /home/christine/sentinel

The object, /home/christine/sentinel, does exist,
and /home/christine/sentinel is a file.
$

Now when the script is run, the -f test on $HOME/sentinel exits with a zero
status, triggering the then statement, which in turn outputs the message and
/home/christine/sentinel is a file.

Checking for read access
Before trying to read data from a file, it's usually a good idea to test whether
you can read from the file first. You do this with the -r comparison:

$ cat can-I-read-it.sh
#!/bin/bash
Check if you can read a file

pwfile=/etc/shadow
echo
echo "Checking if you can read $pwfile..."

Check if file exists and is a file.

if [-f $pwfile]
then
 # File does exist. Check if can read it.
 #
 if [-r $pwfile]
 then
 echo "Displaying end of file..."
 tail $pwfile
 #
 else
 echo "Sorry, read access to $pwfile is denied."
 fi

else
 echo "Sorry, the $pwfile file does not exist."

fi
$
$./can-I-read-it.sh

Checking if you can read /etc/shadow...
Sorry, read access to /etc/shadow is denied.
$

The /etc/shadow file contains the encrypted passwords for system users, so
it's not readable by normal users on the system. The -r comparison
determined that read access to the file wasn't allowed, so the test command
failed and the Bash shell executed the else section of the if-then
statement.

Checking for empty files
You should use -s comparison to check whether a file is empty, especially
if you don't want to remove a non-empty file. Be careful because when the
-s comparison succeeds, it indicates that a file has data in it:

$ cat is-it-empty.sh
#!/bin/bash
Check if a file is empty

file_name=$HOME/sentinel
echo
echo "Checking if $file_name file is empty..."
echo

Check if file exists and is a file.

if [-f $file_name]
then
 # File does exist. Check if it is empty.
 #
 if [-s $file_name]
 then
 echo "The $file_name file exists and has data in
it."
 echo "Will not remove this file."
 #
 else
 echo "The $file_name file exits, but is empty."
 echo "Deleting empty file..."
 rm $file_name
 fi

else
 echo "The $file_name file does not exist."
fi
$
$ ls -sh $HOME/sentinel
4.0K /home/christine/sentinel
$

$./is-it-empty.sh

Checking if /home/christine/sentinel file is empty...

The /home/christine/sentinel file exists and has data in it.
Will not remove this file.
$

First, the -f comparison tests whether the file exists. If it does exist, the -s
comparison is triggered to determine whether the file is empty. An empty
file will be deleted. You can see from the ls -sh command that the
sentinel file is not empty (4.0 K), and therefore the script does not delete
it.

Checking whether you can write to a file
The -w comparison determines whether you have permission to write to a
file. The can-I-write-to-it.sh script is simply an update of the can-I-
read-it.sh script. Now instead of checking if you can read the item_name
file, this script checks to see whether you have permission to write to the
file:

$ cat can-I-write-to-it.sh
#!/bin/bash
Check if a file is writable

item_name=$HOME/sentinel
echo
echo "Checking if you can write to $item_name..."

Check if file exists and is a file.

if [-f $item_name]
then
 # File does exist. Check if can write to it.
 #

 if [-w $item_name]
 then
 echo "Writing current time to $item_name"
 date +%H%M>> $item_name
 #
 else
 echo "Sorry, write access to $item_name is
denied."
 fi

else
 echo "Sorry, the $item_name does not exist"
 echo "or is not a file."
fi
$
$ ls -o $HOME/sentinel
-rw-rw-r-- 1 christine 32 May 25 17:08
/home/christine/sentinel
$
$./can-I-write-to-it.sh

Checking if you can write to /home/christine/sentinel...
Writing current time to /home/christine/sentinel
$

The item_name variable is set to $HOME/sentinel , and this file allows user
write access (see Chapter 7, “Understanding Linux File Permissions,” for
more information on file permissions). Thus, when the script is run, the -w
test expression returns a non-zero exit status and the then code block is
executed, which writes a time stamp into the sentinel file.

When the sentinel file user's write access is removed via chmod , the -w test
expression returns a non-zero status, and a time stamp is not written to the
file:

$ chmod u-w $HOME/sentinel
$
$ ls -o $HOME/sentinel
-r--rw-r-- 1 christine 37 May 29 12:07
/home/christine/sentinel
$
$./can-I-write-to-it.sh

Checking if you can write to /home/christine/sentinel...
Sorry, write access to /home/christine/sentinel is denied.
$

The chmod command could be used again to grant the write permission back
for the user. This would make the write test expression return a zero exit
status and allow a write attempt to the file.

Checking whether you can run a file
The -x comparison is a handy way to determine whether you have execute
permission for a specific file. Although this may not be needed for most
commands, if you run lots of scripts from your shell scripts, it could be
useful:

$ cat can-I-run-it.sh
#!/bin/bash
Check if you can run a file

item_name=$HOME/scripts/can-I-write-to-it.sh
echo
echo "Checking if you can run $item_name..."

Check if file is executable.

if [-x $item_name]
then
 echo "You can run $item_name."
 echo "Running $item_name..."
 $item_name

else
 echo "Sorry, you cannot run $item_name."

fi
$
$./can-I-run-it.sh

Checking if you can run /home/christine/scripts/can-I-write-
to-it.sh...
You can run /home/christine/scripts/can-I-write-to-it.sh.
Running /home/christine/scripts/can-I-write-to-it.sh...
[...]
$
$ chmod u-x can-I-write-to-it.sh
$
$./can-I-run-it.sh

Checking if you can run /home/christine/scripts/can-I-write-
to-it.sh...

Sorry, you cannot run /home/christine/scripts/can-I-write-
to-it.sh.
$

This example shell script uses the -x comparison to test whether you have
permission to execute the can-I-write-to-it.sh script. If so, it runs the
script. After successfully running the can-I-write-to-it.sh script the first
time, the permissions were changed. This time, the -x comparison failed,
because the execute permission had been removed for the can-I-write-to-
it.sh script.

Checking ownership
The -O comparison allows you to easily test whether you're the owner of a
file:

$ cat do-I-own-it.sh
#!/bin/bash
Check if you own a file

if [-O /etc/passwd]
then
 echo "You are the owner of the /etc/passwd file."

else
 echo "Sorry, you are NOT /etc/passwd file's owner."

fi
$
$ whoami
christine
$
$ ls -o /etc/passwd
-rw-r--r-- 1 root 2842 Apr 23 15:25 /etc/passwd
$
$./do-I-own-it.sh
Sorry, you are NOT /etc/passwd file's owner.
$

The script uses the -O comparison to test whether the user running the script
is the owner of the /etc/passwd file. The script is run under a user account
other than root , so the test fails.

Checking default group membership

The -G comparison checks the group of a file, and it succeeds if it matches
the default group for the user. This can be somewhat confusing because the
-G comparison checks only the script user's default group and not all the
groups to which the user belongs. Here's an example:

$ cat check_default_group.sh
#!/bin/bash
Compare file and script user's default groups

if [-G $HOME/TestGroupFile]
then
 echo "You are in the same default group as"
 echo "the $HOME/TestGroupFile file's group."

else
 echo "Sorry, your default group and
$HOME/TestGroupFile"
 echo "file's group are different."

fi
$
$ touch $HOME/TestGroupFile
$
$ ls -g $HOME/TestGroupFile
-rw-rw-r-- 1 christine 0 May 29 13:58
/home/christine/TestGroupFile
$
$./check_default_group.sh
You are in the same default group as
the /home/christine/TestGroupFile file's group.
$
$ groups
christine adm cdrom sudo dip plugdev lpadmin lxd sambashare
$
$ chgrp adm $HOME/TestGroupFile
$
$ ls -g $HOME/TestGroupFile
-rw-rw-r-- 1 adm 0 May 29 13:58
/home/christine/TestGroupFile
$
$./check_default_group.sh
Sorry, your default group and /home/christine/TestGroupFile
file's group are different.
$

The first time the script is run, the $HOME/TestGroupFile file is in the
christine group and the -G comparison succeeds. Next, the group is
changed to the adm group, of which the user is also a member. However, the
-G comparison failed, because it compares only the user's default group, not
any additional group memberships.

Checking file date
The last set of comparisons deal with comparing the creation times of two
files. This comes in handy when writing scripts to install software.
Sometimes, you don't want to install a file that is older than a file already
installed on the system.

The -nt comparison determines whether a file is newer than another file. If
a file is newer, it has a more recent file creation time. The -ot comparison
determines whether a file is older than another file. If the file is older, it has
an older file creation time:

$ cat check_file_dates.sh
#!/bin/bash
Compare two file's creation dates/times

if [$HOME/Downloads/games.rpm -nt $HOME/software/games.rpm
]
then
 echo "The $HOME/Downloads/games.rpm file is newer"
 echo "than the $HOME/software/games.rpm file."

else
 echo "The $HOME/Downloads/games.rpm file is older"
 echo "than the $HOME/software/games.rpm file."

fi
$
$./check_file_dates.sh
The /home/christine/Downloads/games.rpm file is newer
than the /home/christine/software/games.rpm file.
$

Neither of these comparisons in the script checks whether the files exist
first. That's a problem. Try this test:

$ rm $HOME/Downloads/games.rpm
$
$./check_file_dates.sh

The /home/christine/Downloads/games.rpm file is older
than the /home/christine/software/games.rpm file.
$

This little example demonstrates that if one of the files doesn't exist, the -nt
comparison returns incorrect information. It's imperative to ensure that the
files exist before trying to use them in the -nt or -ot comparison.

Considering Compound Testing
The if-then statement allows you to use Boolean logic to combine tests.
You can use these two Boolean operators:

[condition1] && [condition2]

[condition1] || [condition2]

The first Boolean operation uses the AND Boolean operator to combine two
conditions. Both conditions must be met for the then section to execute.

NOTE

Boolean logic is a method that reduces potential returned values to
either TRUE or FALSE.

The second Boolean operation uses the OR Boolean operator to combine two
conditions. If either condition evaluates to a TRUE condition, the then
section is executed.

The following shows the AND Boolean operator in use:

$ cat AndBoolean.sh
#!/bin/bash
Testing an AND Boolean compound condition

if [-d $HOME] && [-w $HOME/newfile]
then
 echo "The file exists and you can write to it."

else
 echo "You cannot write to the file."

fi
$
$ ls -l $HOME/newfile
ls: cannot access '/home/christine/newfile': No such file or
directory
$
$./AndBoolean.sh
You cannot write to the file.
$
$ touch $HOME/newfile
$
$./AndBoolean.sh
The file exists and you can write to it.
$

Using the AND Boolean operator, both of the comparisons must be met. The
first comparison checks to see if the $HOME directory exists for the user. The
second comparison checks to see if there's a file called newfile in the user's
$HOME directory and if the user has write permissions for the file. If either of
these comparisons fails, the if statement fails and the shell executes the
else section. If both of the comparisons succeed, the if statement
succeeds, and the shell executes the then section.

Working with Advanced if-then Features
Three additions to the Bash shell provide advanced features that you can
use in if-then statements:

Single parentheses for running the command in a subshell

Double parentheses for mathematical expressions

Double square brackets for advanced string handling functions

The following sections describe each of these features in more detail.

Using single parentheses
Single parentheses allow you to use subshells in your if statement
comparisons. Subshells were covered in Chapter 5, “Understanding the
Shell.” This is the format of the single parentheses test command:

(command)

Before the Bash shell executes the command, it creates a subshell in which to
run the command. If the command completes its task successfully, the exit
status (covered in Chapter 11) is set to zero, and the commands listed under
the then section are executed. If the exit status of the command is anything
else, the then commands aren't executed. Here's a script to test using
subshells:

$ cat SingleParentheses.sh
#!/bin/bash
Testing a single parentheses condition

echo $BASH_SUBSHELL

if (echo $BASH_SUBSHELL)
then
 echo "The subshell command operated successfully."

else
 echo "The subshell command was NOT successful."

fi
$
$./SingleParentheses.sh
0
1
The subshell command operated successfully.
$

When the script runs the echo $BASH_SUBSHELL command the first time
(prior to the if statement), it completes the operation within the current
shell. The command displays a 0 , indicating there is no subshell in use.
(The $BASH_SUBSHELL environment variable was covered in Chapter 5.)
Within the if statement, the script performs the command in a subshell and
the echo $BASH_SUBSHELL command shows a 1 , indicating a subshell was
used. This subshell operation completes successfully, triggering the then
command.

WARNING

While you can use process lists (covered in Chapter 5) within the if
test statement, unexpected results may occur. If all the process
list's commands fail except the last command, the subshell will set
the exit status to zero, and the commands listed under the then
section will run.

Modifying the script slightly, here's an example of an unsuccessful
command run in a subshell:

$ cat SingleParentheses.sh
#!/bin/bash
Testing a single parentheses condition

#echo $BASH_SUBSHELL

if (cat /etc/PASSWORD)
then
 echo "The subshell command operated successfully."

else
 echo "The subshell command was NOT successful."

fi
$
$./SingleParentheses.sh
cat: /etc/PASSWORD: No such file or directory
The subshell command was NOT successful.
$

Because the subshell command contained an incorrect filename in its
operation, the exit status was not set to zero. Thus, the else command was
triggered instead of the then command.

Using double parentheses
The double parentheses command allows you to incorporate advanced
mathematical formulas in your comparisons. The test command allows for
only simple arithmetic operations in the comparison. The double
parentheses command provides more mathematical symbols, which

programmers who have used other programming languages may be familiar
with using. Here's the format of the double parentheses command:

((expression))

The expression term can be any mathematical assignment or comparison
expression. Besides the standard mathematical operators that the test
command uses, the additional operators shown in Table 12-4 are available
for use in the double parentheses command.

TABLE 12-4 The Double Parentheses Command Symbols

Symbol Description
val ++ Post-increment
val -- Post-decrement
++ val Pre-increment
-- val Pre-decrement
! Logical negation
~ Bitwise negation
** Exponentiation
<< Left bitwise shift
>> Right bitwise shift
& Bitwise Boolean AND
| Bitwise Boolean OR
&& Logical AND
|| Logical OR

You can use the double parentheses command in an if statement, as well as
in a normal command in the script for assigning values:

$ cat DoubleParentheses.sh
#!/bin/bash
Testing a double parentheses command

val1=10

if (($val1 ** 2> 90))

then
 ((val2 = $val1 ** 2))
 echo "The square of $val1 is $val2,"
 echo "which is greater than 90."

fi
$
$./DoubleParentheses.sh
The square of 10 is 100,
which is greater than 90.
$

Notice that you don't need to escape the greater-than symbol in the
expression within the double parentheses. This is yet another advanced
feature besides the double parentheses command.

Using double brackets
The double bracket command provides advanced features for string
comparisons. Here's the double bracket command format:

[[expression]]

The double bracketed expression uses the standard string comparison used
in the test evaluations. However, it provides an additional feature that the
test evaluations don't — pattern matching.

NOTE

Double brackets work fine in the Bash shell. Be aware, however,
that not all shells support double brackets.

In pattern matching, you can define a regular expression (discussed in detail
in Chapter 20, “Regular Expressions”) that's matched against the string
value:

$ cat DoubleBrackets.sh
#!/bin/bash
Using double brackets for pattern matching

if [[$BASH_VERSION == 5.*]]

then
 echo "You are using the Bash Shell version 5 series."
fi
$
$./DoubleBrackets.sh
You are using the Bash Shell version 5 series.
$

Notice in the preceding script that double equal signs (==) are used. These
double equal signs designate the string to the right (5.*) as a pattern, and
pattern matching rules are applied. The double bracket command matches
the $BASH_VERSION environment variable to see whether it starts with a 5.
string. If so, the comparison succeeds, and the shell executes the then
section commands.

Considering the case Command
Often, you'll find yourself trying to evaluate a variable's value, looking for a
specific value within a set of possible values. In this scenario, you end up
having to write a lengthy if-then-else statement, like this:

$ cat LongIf.sh
#!/bin/bash
Using a tedious and long if statement

if [$USER == "rich"]
then
 echo "Welcome $USER"
 echo "Please enjoy your visit."
elif [$USER == "barbara"]
then
 echo "Hi there, $USER"
 echo "We're glad you could join us."
elif [$USER == "christine"]
then
 echo "Welcome $USER"
 echo "Please enjoy your visit."
elif [$USER == "tim"]
then
 echo "Hi there, $USER"
 echo "We're glad you could join us."
elif [$USER = "testing"]
then
 echo "Please log out when done with test."

else
 echo "Sorry, you are not allowed here."
fi
$
$./LongIf.sh
Welcome christine
Please enjoy your visit.
$

The elif statements continue the if-then checking, looking for a specific
value for the single comparison variable.

Instead of having to write all the elif statements to continue checking the
same variable value, you can use the case command. The case command
checks multiple values of a single variable in a list-oriented format:

case variable in
pattern1 | pattern2) commands1;;
pattern3) commands2;;
*) default commands;;
esac

The case command compares the variable specified against the different
patterns. If the variable matches the pattern, the shell executes the
commands specified for the pattern. You can list more than one pattern on a
line, using the bar operator to separate the patterns. The asterisk symbol is
the catch-all for values that don't match any of the listed patterns. Here's an
example of converting the if-then-else program to using the case
command:

$ cat ShortCase.sh
#!/bin/bash
Using a short case statement

case $USER in
rich | christine)
 echo "Welcome $USER"
 echo "Please enjoy your visit.";;
barbara | tim)
 echo "Hi there, $USER"
 echo "We're glad you could join us.";;
testing)
 echo "Please log out when done with test.";;
*)
 echo "Sorry, you are not allowed here."
esac

$
$./ShortCase.sh
Welcome christine
Please enjoy your visit.
$

The case command provides a much cleaner way of specifying the various
options for each possible variable value.

Working through a Practical Example
In this section, we'll describe a script that puts the structure commands
we've covered in this chapter to a practical use — determining what
package managers are available on the current system. It also takes a guess
on which Linux distribution the current system is based, using the installed
package managers as a guide.

For its analysis, the script first checks for standard Red Hat–based package
managers (rpm, dnf , and flatpak). It uses the which command for each
package manager and uses single parentheses in the if condition statement.
If the package manager is found, a special Boolean variable for that
particular manager is set to TRUE (1), and if not found, it is set to FALSE (0),
as shown snipped here:

$ cat PackageMgrCheck.sh
#!/bin/bash
 [...]
if (which rpm &> /dev/null)
then
 item_rpm=1
 echo "You have the basic rpm utility."

else
 item_rpm=0

fi
[...]
if (which flatpak &> /dev/null)
then
 item_flatpak=1
 echo "You have the flatpak application container."

else
 item_flatpak=0

fi
[...]
$

There is special handling for dnf and yum (covered in Chapter 9, “Installing
Software”) in case you are running the script on an older Red Hat–based
distro that doesn't yet have the dnf utility. Notice that an elif statement is
employed to check for yum if dnf is not found:

$ cat PackageMgrCheck.sh
[...]
if (which dnf &> /dev/null)
then
 item_dnfyum=1
 echo "You have the dnf package manager."

elif (which yum &> /dev/null)
then
 item_dnfyum=1
 echo "You have the yum package manager."
else
 item_dnfyum=0

fi
[...]
$

NOTE

Output redirection is used after the which command within the
single parentheses. Building off what was covered in Chapter 10,
“Working with Editors,” regular (standard) output and any error
messages from the which command are redirected via the &>
symbols. They go to /dev/null , which is humorously called the
black hole, because things put into it never come out. This action
cleans up the script's output significantly but does not adversely
affect its integrity. Error redirection is covered more thoroughly in
Chapter 15.

After the script finishes its package manager analysis of the system, it
calculates a score (redhatscore). This score is used later to make a

hypothesis concerning this system's distribution base:

$ cat PackageMgrCheck.sh
[...]
redhatscore=$[$item_rpm + $item_dnfyum + $item_flatpak]
[...]
$

When the Red Hat package manager audit is completed, a Debian analysis
starts. It is very similar to the Red Hat assessment, except it covers Debian
package managers (dpkg , apt , snap), and determines a Debian score,
shown snipped here:

$ cat PackageMgrCheck.sh
[...]
if (which dpkg &> /dev/null)
then
 item_dpkg=1
 echo "You have the basic dpkg utility."

else
 item_dpkg=0

fi
[...]
debianscore=$[$item_dpkg + $item_aptaptget + $item_snap]
[...]
$

The two scores, redhatscore and debianscore , are compared, and a
distribution determination is declared:

$ cat PackageMgrCheck.sh
[...]
if [$debianscore -gt $redhatscore]
then
 echo "Most likely your Linux distribution is Debian-
based."
 #
elif [$redhatscore -gt $debianscore]
then
 echo "Most likely your Linux distribution is Red Hat-
based."
else
 echo "Unable to determine Linux distribution base."
fi

[...]
$

Here is the entire script for your perusal. As you read through, think of
different ways to accomplish these tasks using modified if - then
statements or even case structures. Getting your creative juices flowing is
all part of learning:

$ cat PackageMgrCheck.sh
#!/bin/bash
Checks system for popular package managers

#################### User Introduction
######################
echo
"##"
echo
echo " This script checks your Linux system for popular"
echo "package managers and application containers, lists"
echo "what's available, and makes an educated guess on your"
echo "distribution's base distro (Red Hat or Debian)."
echo
echo
"###"

##################### Red Hat Checks #######################

echo
echo "Checking for Red Hat-based package managers &"
echo "application containers..."

if (which rpm &> /dev/null)
then
 item_rpm=1
 echo "You have the basic rpm utility."

else
 item_rpm=0

fi

if (which dnf &> /dev/null)
then
 item_dnfyum=1
 echo "You have the dnf package manager."

elif (which yum &> /dev/null)

then
 item_dnfyum=1
 echo "You have the yum package manager."
else
 item_dnfyum=0

fi

if (which flatpak &> /dev/null)
then
 item_flatpak=1
 echo "You have the flatpak application container."

else
 item_flatpak=0

fi

redhatscore=$[$item_rpm + $item_dnfyum + $item_flatpak]

##################### Debian Checks #######################

echo
echo "Checking for Debian-based package managers &"
echo "application containers..."

if (which dpkg &> /dev/null)
then
 item_dpkg=1
 echo "You have the basic dpkg utility."

else
 item_dpkg=0

fi

if (which apt &> /dev/null)
then
 item_aptaptget=1
 echo "You have the apt package manager."

elif (which apt-get &> /dev/null)
then
 item_aptaptget=1
 echo "You have the apt-get/apt-cache package manager."

else
 item_aptaptget=0

fi

if (which snap &> /dev/null)
then
 item_snap=1
 echo "You have the snap application container."

else
 item_snap=0

fi

debianscore=$[$item_dpkg + $item_aptaptget + $item_snap]

##################### Determine Distro
#######################

echo
if [$debianscore -gt $redhatscore]
then
 echo "Most likely your Linux distribution is Debian-
based."
 #
elif [$redhatscore -gt $debianscore]
then
 echo "Most likely your Linux distribution is Red Hat-
based."
else
 echo "Unable to determine Linux distribution base."
fi

echo

##

exit
$

Here's the script in action on an Ubuntu system:

$./PackageMgrCheck.sh

 This script checks your Linux system for popular
package managers and application containers, lists

what's available, and makes an educated guess on your
distribution's base distro (Red Hat or Debian).

Checking for Red Hat-based package managers &
application containers...

Checking for Debian-based package managers &
application containers...
You have the basic dpkg utility.
You have the apt package manager.
You have the snap application container.

Most likely your Linux distribution is Debian-based.

$

Hopefully you are thinking of your own ways to accomplish this script's
tasks differently using the topics covered in this chapter. And possibly you
have some ideas for additional scripts.

Summary
Structured commands allow you to alter the normal flow of shell script
execution. The most basic structured command is the if-then statement.
This statement provides a command evaluation and performs other
commands based on the evaluated command's output.

You can expand the if-then statement to include a set of commands the
Bash shell executes if the specified command fails as well. The if-then-
else statement executes commands only if the command being evaluated
returns a non-zero exit status code.

You can also link if-then-else statements together, using the elif
statement. The elif is equivalent to using an else if statement, providing
for additional checking of whether the original command that was evaluated
failed.

In most scripts, instead of evaluating a command, you'll want to evaluate a
condition, such as a numeric value, the contents of a string, or the status of
a file or directory. The test command provides an easy way for you to
evaluate all these conditions. If the condition evaluates to a TRUE condition,

the test command produces a zero exit status code for the if-then
statement. If the condition evaluates to a FALSE condition, the test
command produces a non-zero exit status code for the if-then statement.

The square bracket is a special Bash command that is a synonym for the
test command. You can enclose a test condition in square brackets in the
if-then statement to test for numeric, string, and file conditions.

The double parentheses command provides advanced mathematical
evaluations using additional operators. The double square bracket command
allows you to perform advanced string pattern-matching evaluations.

Finally, we discussed the case command, which is a shorthand way of
performing multiple if-then-else commands, checking the value of a
single variable against a list of values.

The next chapter continues the discussion of structured commands by
examining the shell looping commands. The for and while commands let
you create loops that iterate through commands for a given period of time.

CHAPTER 13
More Structured Commands
IN THIS CHAPTER

Looping with the for statement

Iterating with the until statement

Using the while statement

Combining loops

Redirecting loop output

In the previous chapter, you saw how to manipulate the flow of a shell
script program by checking the output of commands and the values of
variables. In this chapter, we continue to look at structured commands that
control the flow of your shell scripts. You'll see how you can perform
repeating processes, commands that can loop through a set of commands
until an indicated condition has been met. This chapter discusses and
demonstrates the for , while , and until Bash shell looping commands.

Looking at the for Command
Iterating through a series of commands is a common programming practice.
Often, you need to repeat a set of commands until a specific condition has
been met, such as processing all the files in a directory, all the users on a
system, or all the lines in a text file.

The Bash shell provides the for command to allow you to create a loop that
iterates through a series of values. Each iteration performs a defined set of
commands using one of the values in the series. Here's the basic format of
the Bash shell for command:

 for var in list
 do

 commands
 done

You supply the series of values used in the iterations in the list parameter.
You can specify the values in the list in several ways.

In each iteration, the variable var contains the current value in the list. The
first iteration uses the first item in the list, the second iteration the second
item, and so on, until all the items in the list have been used.

The commands entered between the do and done statements can be one or
more standard Bash shell commands. Within the commands, the $var
variable contains the current list item value for the iteration.

NOTE

If you prefer, you can include the do statement on the same line as
the for statement, but you must separate it from the list items using
a semicolon: for var in list; do.

We mentioned that there are several ways to specify the values in the list.
The following sections show the various ways.

Reading values in a list
The most basic use of the for command is to iterate through a list of values
defined within the for command itself:

 $ cat test1
 #!/bin/bash
 # basic for command

 for test in Alabama Alaska Arizona Arkansas California
Colorado
 do
 echo The next state is $test
 done
 $./test1
 The next state is Alabama
 The next state is Alaska
 The next state is Arizona
 The next state is Arkansas

 The next state is California
 The next state is Colorado
 $

Each time the for command iterates through the list of values provided, it
assigns the $test variable the next value in the list. The $test variable can
be used just like any other script variable within the for command
statements. After the last iteration, the $test variable remains valid
throughout the remainder of the shell script. It retains the last iteration value
(unless you change its value):

 $ cat test1b
 #!/bin/bash
 # testing the for variable after the looping

 for test in Alabama Alaska Arizona Arkansas California
Colorado
 do
 echo "The next state is $test"
 done
 echo "The last state we visited was $test"
 test=Connecticut
 echo "Wait, now we're visiting $test"
 $./test1b
 The next state is Alabama
 The next state is Alaska
 The next state is Arizona
 The next state is Arkansas
 The next state is California
 The next state is Colorado
 The last state we visited was Colorado
 Wait, now we're visiting Connecticut
 $

The $test variable retained its value and allowed us to change the value
and use it outside of the for command loop, as any other variable would.

Reading complex values in a list
Things aren't always as easy as they seem with the for loop. There are
times when you run into data that causes problems. Here's a classic example
of what can cause problems for shell script programmers:

 $ cat badtest1
 #!/bin/bash

 # another example of how not to use the for command

 for test in I don't know if this'll work
 do
 echo "word:$test"
 done
 $./badtest1
 word:I
 word:dont know if thisll
 word:work
 $

Ouch, that hurts. The shell saw the single quotation marks within the list
values and attempted to use them to define a single data value, and it really
messed things up in the process.

You have two ways to solve this problem:

Use the escape character (the backslash) to escape the single quotation
mark.

Use double quotation marks to define the values that use single
quotation marks.

Neither solution is all that fantastic, but each one helps solve the problem:

 $ cat test2
 #!/bin/bash
 # solutions to the quote problem

 for test in I don\'t know if "this'll" work
 do
 echo "word:$test"
 done
 $./test2
 word:I
 word:don't
 word:know
 word:if
 word:this'll
 word:work
 $

In the first problem value, you added the backslash character to escape the
single quotation mark in the don't value. In the second problem value, you

enclosed the this'll value in double quotation marks. Both methods
worked fine to distinguish the value.

Another problem you may run into is multiword values. Remember that the
for loop assumes that each value is separated with a space. If you have data
values that contain spaces, you run into yet another problem:

 $ cat badtest2
 #!/bin/bash
 # another example of how not to use the for command

 for test in Nevada New Hampshire New Mexico New York North
Carolina
 do
 echo "Now going to $test"
 done
 $./badtest2
 Now going to Nevada
 Now going to New
 Now going to Hampshire
 Now going to New
 Now going to Mexico
 Now going to New
 Now going to York
 Now going to North
 Now going to Carolina
 $

Oops, that's not exactly what we wanted. The for command separates each
value from the others in the list with a space. If there are spaces in the
individual data values, you must accommodate them using double quotation
marks:

 $ cat test3
 #!/bin/bash
 # an example of how to properly define values

 for test in Nevada "New Hampshire" "New Mexico" "New York"
 do
 echo "Now going to $test"
 done
 $./test3
 Now going to Nevada
 Now going to New Hampshire
 Now going to New Mexico

 Now going to New York
 $

Now the for command can properly distinguish between the different
values. Also, notice that when you use double quotation marks around a
value, the shell doesn't include the quotation marks as part of the value.

Reading a list from a variable
Often what happens in a shell script is that you accumulate a list of values
stored in a variable and then need to iterate through the list. You can do this
using the for command as well:

 $ cat test4
 #!/bin/bash
 # using a variable to hold the list

 list="Alabama Alaska Arizona Arkansas Colorado"
 list=$list" Connecticut"

 for state in $list
 do
 echo "Have you ever visited $state?"
 done
 $./test4
 Have you ever visited Alabama?
 Have you ever visited Alaska?
 Have you ever visited Arizona?
 Have you ever visited Arkansas?
 Have you ever visited Colorado?
 Have you ever visited Connecticut?
 $

The $list variable contains the standard text list of values to use for the
iterations. Notice that the code also uses another assignment statement to
add (or concatenate) an item to the existing list contained in the $list
variable. This is a common method for adding text to the end of an existing
text string stored in a variable.

Reading values from a command
Another way to generate values for inclusion in the list is to use the output
of a command. You use command substitution to execute any command that

produces output and then use the output of the command in the for
command:

 $ cat test5
 #!/bin/bash
 # reading values from a file

 file="states.txt"

 for state in $(cat $file)
 do
 echo "Visit beautiful $state"
 done
 $ cat states.txt
 Alabama
 Alaska
 Arizona
 Arkansas
 Colorado
 Connecticut
 Delaware
 Florida
 Georgia
 $./test5
 Visit beautiful Alabama
 Visit beautiful Alaska
 Visit beautiful Arizona
 Visit beautiful Arkansas
 Visit beautiful Colorado
 Visit beautiful Connecticut
 Visit beautiful Delaware
 Visit beautiful Florida
 Visit beautiful Georgia
 $

This example uses the cat command in the command substitution to display
the contents of the file states.txt . Notice that the states.txt file
includes each state on a separate line, not separated by spaces. The for
command still iterates through the output of the cat command one line at a
time, assuming that each state is on a separate line. However, this doesn't
solve the problem of having spaces in data. If you list a state with a space in
it, the for command still takes each word as a separate value. There's a
reason for this, which we look at in the next section.

NOTE

The test5 code example assigned the filename to the variable using
just the filename without a path. This requires that the file be in the
same directory as the script. If this isn't the case, you need to use a
full pathname (either absolute or relative) to reference the file
location.

Changing the field separator
The cause of this problem is the special environment variable IFS , the
internal field separator. The IFS environment variable defines a list of
characters the Bash shell uses as field separators. By default, the Bash shell
considers the following characters as field separators:

A space

A tab

A newline

If the Bash shell sees any of these characters in the data, it assumes that
you're starting a new data field in the list. When working with data that can
contain spaces (such as filenames), this can be annoying, as you saw in the
previous script example.

To solve this problem, you can temporarily change the IFS environment
variable values in your shell script to restrict the characters the Bash shell
recognizes as field separators. For example, if you want to change the IFS
value to recognize only the newline character, you need to do this:

IFS=$'\n'

Adding this statement to your script tells the Bash shell to ignore spaces and
tabs in data values. Applying this technique to the previous script yields the
following:

$ cat test5b
 #!/bin/bash

 # reading values from a file

 file="states.txt"

 IFS=$'\n'
 for state in $(cat $file)
 do
 echo "Visit beautiful $state"
 done
 $./test5b
 Visit beautiful Alabama
 Visit beautiful Alaska
 Visit beautiful Arizona
 Visit beautiful Arkansas
 Visit beautiful Colorado
 Visit beautiful Connecticut
 Visit beautiful Delaware
 Visit beautiful Florida
 Visit beautiful Georgia
 Visit beautiful New York
 Visit beautiful New Hampshire
 Visit beautiful North Carolina
 $

Now the shell script can use values in the list that contain spaces.

WARNING

When working on long scripts, you may change the IFS value in one
place and then forget about it and assume the default value
elsewhere in the script. A safe practice to get into is to save the
original IFS value before changing it and then restore it when
you're finished.

This technique can be coded like this:

 IFS.OLD=$IFS
 IFS=$'\n'
 <use the new IFS value in code>
 IFS=$IFS.OLD

This ensures that the IFS value is returned to the default value for
future operations within the script.

Other excellent applications of the IFS environment variable are possible.
Suppose you want to iterate through values in a file that are separated by a
colon (such as in the /etc/passwd file). You just need to set the IFS value
to a colon:

 IFS=:

If you want to specify more than one IFS character, just string them
together on the assignment line:

 IFS=$'\n':;"

This assignment uses the newline, colon, semicolon, and double quotation
mark characters as field separators. There's no limit to how you can parse
your data using the IFS characters.

Reading a directory using wildcards
Finally, you can use the for command to automatically iterate through a
directory of files. To do this, you must use a wildcard character in the file or
pathname. This forces the shell to use file globbing. File globbing is the
process of producing filenames or pathnames that match a specified
wildcard character.

This feature is great for processing files in a directory when you don't know
all the filenames:

 $ cat test6
 #!/bin/bash
 # iterate through all the files in a directory

 for file in /home/rich/test/*
 do

 if [-d "$file"]
 then
 echo "$file is a directory"
 elif [-f "$file"]
 then
 echo "$file is a file"
 fi
 done
 $./test6
 /home/rich/test/dir1 is a directory
 /home/rich/test/myprog.c is a file

 /home/rich/test/myprog is a file
 /home/rich/test/myscript is a file
 /home/rich/test/newdir is a directory
 /home/rich/test/newfile is a file
 /home/rich/test/newfile2 is a file
 /home/rich/test/testdir is a directory
 /home/rich/test/testing is a file
 /home/rich/test/testprog is a file
 /home/rich/test/testprog.c is a file
 $

The for command iterates through the results of the /home/rich/test/*
listing. The code tests each entry using the test command (using the square
bracket method) to see if it's a directory, using the -d parameter, or a file,
using the -f parameter (see Chapter 11, “Basic Script Building”).

Notice in this example that we did something different in the if statement
tests:

 if [-d "$file"]

In Linux, it's perfectly legal to have directory and filenames that contain
spaces. To accommodate that, you should enclose the $file variable in
double quotation marks. If you don't, you'll get an error if you run into a
directory or filename that contains spaces:

 ./test6: line 6: [: too many arguments
 ./test6: line 9: [: too many arguments

The Bash shell interprets the additional words as arguments within the test
command, causing an error.

You can also combine both the directory search method and the list method
in the same for statement by listing a series of directory wildcards in the
for command:

 $ cat test7
 #!/bin/bash
 # iterating through multiple directories

 for file in /home/rich/.b* /home/rich/badtest
 do
 if [-d "$file"]
 then
 echo "$file is a directory"
 elif [-f "$file"]

 then
 echo "$file is a file"
 else
 echo "$file doesn't exist"
 fi
 done
 $./test7
 /home/rich/.backup.timestamp is a file
 /home/rich/.bash_history is a file
 /home/rich/.bash_logout is a file
 /home/rich/.bash_profile is a file
 /home/rich/.bashrc is a file
 /home/rich/badtest doesn't exist
 $

The for statement first uses file globbing to iterate through the list of files
that result from the wildcard character; then it iterates through the next file
in the list. You can combine any number of wildcard entries in the list to
iterate through.

WARNING

Notice that you can enter anything in the list data. Even if the file or
directory doesn't exist, the for statement attempts to process
whatever you place in the list. This can be a problem when you're
working with files and directories. You have no way of knowing if
you're trying to iterate through a nonexistent directory. It's always
a good idea to test each file or directory before trying to process it.

Trying the C-Style for Command
If you've done any programming using the C programming language, you're
probably surprised by the way the Bash shell uses the for command. In the
C language, a for loop normally defines a variable, which it then alters
automatically during each iteration. Typically, programmers use this
variable as a counter and either increment or decrement the counter by 1 in
each iteration. The Bash for command can also provide this functionality.
This section shows you how to use a C-style for command in a Bash shell
script.

The C language for command
The C language for command has a method for specifying a variable, a
condition that must remain true for the iterations to continue, and a method
for altering the variable for each iteration. When the specified condition
becomes false, the for loop stops. The condition equation is defined using
standard mathematical symbols. For example, consider the following C
language code:

 for (i = 0; i < 10; i++)
 {
 printf("The next number is %d\n", i);
 }

This code produces a simple iteration loop, where the variable i is used as a
counter. The first section assigns a default value to the variable. The middle
section defines the condition under which the loop will iterate. When the
defined condition becomes false, the for loop stops iterations. The last
section defines the iteration process. After each iteration, the expression
defined in the last section is executed. In this example, the i variable is
incremented by 1 after each iteration.

The Bash shell also supports a version of the for loop that looks similar to
the C-style for loop, although it does have some subtle differences,
including a couple of things that will confuse shell script programmers.
Here's the basic format of the C-style Bash for loop:

 for ((variable assignment ; condition ; iteration process
))

The format of the C-style for loop can be confusing for Bash shell script
programmers, because it uses C-style variable references instead of the
shell-style variable references. Here's what a C-style for command looks
like:

 for ((a = 1; a < 10; a++))

Notice that there are a couple of things that don't follow the standard Bash
shell for method:

The assignment of the variable value can contain spaces.

The variable in the condition isn't preceded with a dollar sign.

The equation for the iteration process doesn't use the expr command
format.

The shell developers created this format to more closely resemble the C-
style for command. Although this is great for C programmers, it can throw
even expert shell programmers into a tizzy. Be careful when using the C-
style for loop in your scripts.

Here's an example of using the C-style for command in a Bash shell
program:

 $ cat test8
 #!/bin/bash
 # testing the C-style for loop

 for ((i=1; i <= 10; i++))
 do
 echo "The next number is $i"
 done
 $./test8
 The next number is 1
 The next number is 2
 The next number is 3
 The next number is 4
 The next number is 5
 The next number is 6
 The next number is 7
 The next number is 8
 The next number is 9
 The next number is 10
 $

The for loop iterates through the commands using the variable defined in
the for loop (the letter i in this example). In each iteration, the $i variable
contains the value assigned in the for loop. After each iteration, the loop
iteration process is applied to the variable, which in this example
increments the variable by 1.

Using multiple variables
The C-style for command also allows you to use multiple variables for the
iteration. The loop handles each variable separately, allowing you to define

a different iteration process for each variable. Although you can have
multiple variables, you can define only one condition in the for loop:

 $ cat test9
 #!/bin/bash
 # multiple variables

 for ((a=1, b=10; a <= 10; a++, b--))
 do
 echo "$a - $b"
 done
 $./test9
 1 - 10
 2 - 9
 3 - 8
 4 - 7
 5 - 6
 6 - 5
 7 - 4
 8 - 3
 9 - 2
 10 - 1
 $

The a and b variables are each initialized with different values and different
iteration processes are defined. While the loop increases the a variable, it
decreases the b variable for each iteration.

Exploring the while Command
The while command is somewhat of a cross between the if-then statement
and the for loop. The while command allows you to define a command to
test and then loop through a set of commands for as long as the defined test
command returns a zero exit status. It tests the test command at the start of
each iteration. When the test command returns a non-zero exit status, the
while command stops executing the set of commands.

Basic while format
Here's the format of the while command:

 while test command
 do

 other commands
 done

The test command defined in the while command is the exact same format
as in if-then statements (see Chapter 11). As in the if-then statement,
you can use any normal Bash shell command, or you can use the test
command to test for conditions, such as variable values.

The key to the while command is that the exit status of the test command
specified must change, based on the commands run during the loop. If the
exit status never changes, the while loop will get stuck in an infinite loop.

The most common use of the test command is to use brackets to check a
value of a shell variable that's used in the loop commands:

 $ cat test10
 #!/bin/bash
 # while command test

 var1=10
 while [$var1 -gt 0]
 do
 echo $var1
 var1=$[$var1 - 1]
 done
 $./test10
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 $

The while command defines the test condition to check for each iteration:

 while [$var1 -gt 0]

As long as the test condition is true, the while command continues to loop
through the commands defined. Within the commands, the variable used in

the test condition must be modified, or you'll have an infinite loop. In this
example, we use shell arithmetic to decrease the variable value by 1:

 var1=$[$var1 - 1]

The while loop stops when the test condition is no longer true.

Using multiple test commands
The while command allows you to define multiple test commands on the
while statement line. Only the exit status of the last test command is used to
determine when the loop stops. This can cause some interesting results if
you're not careful. Here's an example of what we mean:

$ cat test11
 #!/bin/bash
 # testing a multicommand while loop

 var1=10

 while echo $var1
 [$var1 -ge 0]
 do
 echo "This is inside the loop"
 var1=$[$var1 - 1]
 done
 $./test11
 10
 This is inside the loop
 9
 This is inside the loop
 8
 This is inside the loop
 7
 This is inside the loop
 6
 This is inside the loop
 5
 This is inside the loop
 4
 This is inside the loop
 3
 This is inside the loop
 2
 This is inside the loop
 1

 This is inside the loop
 0
 This is inside the loop
 -1
 $

Pay close attention to what happened in this example. Two test commands
were defined in the while statement:

 while echo $var1
 [$var1 -ge 0]

The first test simply displays the current value of the var1 variable. The
second test uses brackets to determine the value of the var1 variable. Inside
the loop, an echo statement displays a simple message, indicating that the
loop was processed. Notice when you run the example how the output ends:

 This is inside the loop
 -1
 $

The while loop executed the echo statement when the var1 variable was
equal to 0 and then decreased the var1 variable value. The test commands
were then executed for the next iteration. The echo test command was
executed, displaying the value of the var1 variable, which is now less than
0. It's not until the shell executes the test command that the while loop
terminates.

This demonstrates that in a multicommand while statement, all the test
commands are executed in each iteration, including the last iteration when
the last test command fails. Be careful of this. Another thing to be careful of
is how you specify the multiple test commands. Note that each test
command is on a separate line!

Using the until Command
The until command works in exactly the opposite way from the while
command. The until command requires that you specify a test command
that normally produces a non-zero exit status. As long as the exit status of
the test command is non-zero, the Bash shell executes the commands listed

in the loop. When the test command returns a zero exit status, the loop
stops.

As you would expect, the format of the until command is

 until test commands
 do
 other commands
 done

Similar to the while command, you can have more than one test command
in the until command statement. Only the exit status of the last command
determines if the Bash shell executes the other commands defined.

The following is an example of using the until command:

 $ cat test12
 #!/bin/bash
 # using the until command

 var1=100

 until [$var1 -eq 0]
 do
 echo $var1
 var1=$[$var1 - 25]
 done
 $./test12
 100
 75
 50
 25
 $

This example tests the var1 variable to determine when the until loop
should stop. As soon as the value of the variable is equal to 0, the until
command stops the loop. The same caution we warned you about for the
while command applies when you use multiple test commands with the
until command:

 $ cat test13
 #!/bin/bash
 # using the until command

 var1=100

 until echo $var1
 [$var1 -eq 0]
 do
 echo Inside the loop: $var1
 var1=$[$var1 - 25]
 done
 $./test13
 100
 Inside the loop: 100
 75
 Inside the loop: 75
 50
 Inside the loop: 50
 25
 Inside the loop: 25
 0
 $

The shell executes the test commands specified and stops only when the last
command is true.

Nesting Loops
A loop statement can use any other type of command within the loop,
including other loop commands. This is called a nested loop. Care should
be taken when using nested loops, because you're performing an iteration
within an iteration, which multiplies the number of times commands are
being run. If you don't pay close attention to this, it can cause problems in
your scripts.

Here's a simple example of nesting a for loop inside another for loop:

 $ cat test14
 #!/bin/bash
 # nesting for loops

 for ((a = 1; a <= 3; a++))
 do
 echo "Starting loop $a:"
 for ((b = 1; b <= 3; b++))
 do
 echo " Inside loop: $b"
 done
 done
 $./test14

 Starting loop 1:
 Inside loop: 1
 Inside loop: 2
 Inside loop: 3
 Starting loop 2:
 Inside loop: 1
 Inside loop: 2
 Inside loop: 3
 Starting loop 3:
 Inside loop: 1
 Inside loop: 2
 Inside loop: 3
 $

The nested loop (also called the inner loop) iterates through its values for
each iteration of the outer loop. Notice that there's no difference between
the do and done commands for the two loops. The Bash shell knows when
the first done command is executed that it refers to the inner loop and not
the outer loop.

The same applies when you mix loop commands, such as placing a for
loop inside a while loop:

 $ cat test15
 #!/bin/bash
 # placing a for loop inside a while loop

 var1=5

 while [$var1 -ge 0]
 do
 echo "Outer loop: $var1"
 for ((var2 = 1; $var2 < 3; var2++))
 do
 var3=$[$var1 * $var2]
 echo " Inner loop: $var1 * $var2 = $var3"
 done
 var1=$[$var1 - 1]
 done
 $./test15
 Outer loop: 5
 Inner loop: 5 * 1 = 5
 Inner loop: 5 * 2 = 10
 Outer loop: 4
 Inner loop: 4 * 1 = 4
 Inner loop: 4 * 2 = 8
 Outer loop: 3

 Inner loop: 3 * 1 = 3
 Inner loop: 3 * 2 = 6
 Outer loop: 2
 Inner loop: 2 * 1 = 2
 Inner loop: 2 * 2 = 4
 Outer loop: 1
 Inner loop: 1 * 1 = 1
 Inner loop: 1 * 2 = 2
 Outer loop: 0
 Inner loop: 0 * 1 = 0
 Inner loop: 0 * 2 = 0
 $

Again, the shell distinguished between the do and done commands of the
inner for loop from the same commands in the outer while loop.

If you really want to test your brain, you can even combine until and
while loops:

 $ cat test16
 #!/bin/bash
 # using until and while loops

 var1=3

 until [$var1 -eq 0]
 do
 echo "Outer loop: $var1"
 var2=1
 while [$var2 -lt 5]
 do
 var3=$(echo "scale=4; $var1 / $var2" | bc)
 echo " Inner loop: $var1 / $var2 = $var3"
 var2=$[$var2 + 1]
 done
 var1=$[$var1 - 1]
 done
 $./test16
 Outer loop: 3
 Inner loop: 3 / 1 = 3.0000
 Inner loop: 3 / 2 = 1.5000
 Inner loop: 3 / 3 = 1.0000
 Inner loop: 3 / 4 = .7500
 Outer loop: 2
 Inner loop: 2 / 1 = 2.0000
 Inner loop: 2 / 2 = 1.0000
 Inner loop: 2 / 3 = .6666

 Inner loop: 2 / 4 = .5000
 Outer loop: 1
 Inner loop: 1 / 1 = 1.0000
 Inner loop: 1 / 2 = .5000
 Inner loop: 1 / 3 = .3333
 Inner loop: 1 / 4 = .2500
 $

The outer until loop starts with a value of 3 and continues until the value
equals 0. The inner while loop starts with a value of 1 and continues as
long as the value is less than 5. Each loop must change the value used in the
test condition, or the loop will get stuck infinitely.

Looping on File Data
Often, you must iterate through items stored inside a file. This requires
combining two of the techniques covered:

Using nested loops

Changing the IFS environment variable

By changing the IFS environment variable, you can force the for command
to handle each line in the file as a separate item for processing, even if the
data contains spaces. After you've extracted an individual line in the file,
you may have to loop again to extract data contained within it.

The classic example of this is processing data in the /etc/passwd file. This
requires that you iterate through the /etc/passwd file line by line and then
change the IFS variable value to a colon so that you can separate the
individual components in each line.

The following is an example of doing just that:

 #!/bin/bash
 # changing the IFS value

 IFS.OLD=$IFS
 IFS=$'\n'
 for entry in $(cat /etc/passwd)
 do
 echo "Values in $entry –"
 IFS=:

 for value in $entry
 do
 echo " $value"
 done
 done
 $

This script uses two different IFS values to parse the data. The first IFS
value parses the individual lines in the /etc/passwd file. The inner for loop
next changes the IFS value to the colon, which allows you to parse the
individual values within the /etc/passwd lines.

When you run this script, you get output something like this:

 Values in rich:x:501:501:Rich Blum:/home/rich:/bin/bash -
 rich
 x
 501
 501
 Rich Blum
 /home/rich
 /bin/bash
 Values in katie:x:502:502:Katie Blum:/home/katie:/bin/bash
-
 katie
 x
 502
 502
 Katie Blum
 /home/katie
 /bin/bash

The inner loop parses each individual value in the /etc/passwd entry. This
is also a great way to process comma-separated data, a common way to
import spreadsheet data.

Controlling the Loop
You might be tempted to think that after you start a loop, you're stuck until
the loop finishes all its iterations. This is not true. A couple of commands
help us control what happens inside a loop:

The break command

The continue command

Each command has a different use in controlling the operation of a loop.
The following sections describe how you can use these commands to
control the operation of your loops.

The break command
The break command is a simple way to escape a loop in progress. You can
use the break command to exit any type of loop, including while and until
loops.

You can use the break command in several situations. This section shows
each of these methods.

Breaking out of a single loop
When the shell executes a break command, it attempts to break out of the
loop that's currently processing:

 $ cat test17
 #!/bin/bash
 # breaking out of a for loop

 for var1 in 1 2 3 4 5 6 7 8 9 10
 do
 if [$var1 -eq 5]
 then
 break
 fi
 echo "Iteration number: $var1"
 done
 echo "The for loop is completed"
 $./test17
 Iteration number: 1
 Iteration number: 2
 Iteration number: 3
 Iteration number: 4
 The for loop is completed
 $

The for loop should normally have iterated through all the values specified
in the list. However, when the if-then condition was satisfied, the shell
executed the break command, which stopped the for loop.

This technique also works for while and until loops:

 $ cat test18
 #!/bin/bash
 # breaking out of a while loop

 var1=1

 while [$var1 -lt 10]
 do
 if [$var1 -eq 5]
 then
 break
 fi
 echo "Iteration: $var1"
 var1=$[$var1 + 1]
 done
 echo "The while loop is completed"
 $./test18
 Iteration: 1
 Iteration: 2
 Iteration: 3
 Iteration: 4
 The while loop is completed
 $

The while loop terminated when the if-then condition was met, executing
the break command.

Breaking out of an inner loop
When you're working with multiple loops, the break command
automatically terminates the innermost loop you're in:

 $ cat test19
 #!/bin/bash
 # breaking out of an inner loop

 for ((a = 1; a < 4; a++))
 do
 echo "Outer loop: $a"
 for ((b = 1; b < 100; b++))
 do
 if [$b -eq 5]
 then
 break
 fi

 echo " Inner loop: $b"
 done
 done
 $./test19
 Outer loop: 1
 Inner loop: 1
 Inner loop: 2
 Inner loop: 3
 Inner loop: 4
 Outer loop: 2
 Inner loop: 1
 Inner loop: 2
 Inner loop: 3
 Inner loop: 4
 Outer loop: 3
 Inner loop: 1
 Inner loop: 2
 Inner loop: 3
 Inner loop: 4
 $

The for statement in the inner loop specifies to iterate until the b variable is
equal to 100. However, the if-then statement in the inner loop specifies
that when the b variable value is equal to 5, the break command is
executed. Notice that even though the inner loop is terminated with the
break command, the outer loop continues working as specified.

Breaking out of an outer loop
There may be times when you're in an inner loop but need to stop the outer
loop. The break command includes a single command-line parameter
value:

 break n

where n indicates the level of the loop to break out of. By default, n is 1,
indicating to break out of the current loop. If you set n to a value of 2, the
break command stops the next level of the outer loop:

 $ cat test20
 #!/bin/bash
 # breaking out of an outer loop

 for ((a = 1; a < 4; a++))
 do
 echo "Outer loop: $a"

 for ((b = 1; b < 100; b++))
 do
 if [$b -gt 4]
 then
 break 2
 fi
 echo " Inner loop: $b"
 done
 done
 $./test20
 Outer loop: 1
 Inner loop: 1
 Inner loop: 2
 Inner loop: 3
 Inner loop: 4
 $

Now when the shell executes the break command, the outer loop stops.

The continue command
The continue command is a way to prematurely stop processing commands
inside of a loop but not terminate the loop completely. This allows you to
set conditions within a loop where the shell won't execute commands.
Here's a simple example of using the continue command in a for loop:

 $ cat test21
 #!/bin/bash
 # using the continue command

 for ((var1 = 1; var1 < 15; var1++))
 do
 if [$var1 -gt 5] && [$var1 -lt 10]
 then
 continue
 fi
 echo "Iteration number: $var1"
 done
 $./test21
 Iteration number: 1
 Iteration number: 2
 Iteration number: 3
 Iteration number: 4
 Iteration number: 5
 Iteration number: 10
 Iteration number: 11

 Iteration number: 12
 Iteration number: 13
 Iteration number: 14
 $

When the conditions of the if-then statement are met (the value is greater
than 5 and less than 10), the shell executes the continue command, which
skips the rest of the commands in the loop but keeps the loop going. When
the if-then condition is no longer met, things return to normal.

You can use the continue command in while and until loops, but be
extremely careful with what you're doing. Remember that when the shell
executes the continue command, it skips the remaining commands. If
you're incrementing your test condition variable in one of those conditions,
bad things happen:

 $ cat badtest3
 #!/bin/bash
 # improperly using the continue command in a while loop

 var1=0

 while echo "while iteration: $var1"
 [$var1 -lt 15]
 do
 if [$var1 -gt 5] && [$var1 -lt 10]
 then
 continue
 fi
 echo " Inside iteration number: $var1"
 var1=$[$var1 + 1]
 done
 $./badtest3 | more
 while iteration: 0
 Inside iteration number: 0
 while iteration: 1
 Inside iteration number: 1
 while iteration: 2
 Inside iteration number: 2
 while iteration: 3
 Inside iteration number: 3
 while iteration: 4
 Inside iteration number: 4
 while iteration: 5
 Inside iteration number: 5
 while iteration: 6

 while iteration: 6
 while iteration: 6
 while iteration: 6
 while iteration: 6
 while iteration: 6
 while iteration: 6
 while iteration: 6
 while iteration: 6
 while iteration: 6
 while iteration: 6
 $

You'll want to make sure you redirect the output of this script to the more
command so that you can stop things. Everything seems to be going just
fine until the if-then condition is met and the shell executes the continue
command. When the shell executes the continue command, it skips the
remaining commands in the while loop. Unfortunately, that's where the
$var1 counter variable that is tested in the while test command is
incremented. That means that the variable isn't incremented, as you can see
from the continually displaying output.

As with the break command, the continue command allows you to specify
what level of loop to continue with a command-line parameter:

 continue n

where n defines the loop level to continue. Here's an example of continuing
an outer for loop:

 $ cat test22
 #!/bin/bash
 # continuing an outer loop

 for ((a = 1; a <= 5; a++))
 do
 echo "Iteration $a:"
 for ((b = 1; b < 3; b++))
 do
 if [$a -gt 2] && [$a -lt 4]
 then
 continue 2
 fi
 var3=$[$a * $b]
 echo " The result of $a * $b is $var3"
 done
 done

 $./test22
 Iteration 1:
 The result of 1 * 1 is 1
 The result of 1 * 2 is 2
 Iteration 2:
 The result of 2 * 1 is 2
 The result of 2 * 2 is 4
 Iteration 3:
 Iteration 4:
 The result of 4 * 1 is 4
 The result of 4 * 2 is 8
 Iteration 5:
 The result of 5 * 1 is 5
 The result of 5 * 2 is 10
 $

The if-then statement

 if [$a -gt 2] && [$a -lt 4]
 then
 continue 2
 fi

uses the continue command to stop processing the commands inside the
loop but continue the outer loop. Notice in the script output that the
iteration for the value 3 doesn't process any inner loop statements because
the continue command stopped the processing, but it continues with the
outer loop processing.

Processing the Output of a Loop
Finally, you can either pipe or redirect the output of a loop within your shell
script. You do this by adding the processing command to the end of the
done command:

 for file in /home/rich/*
 do
 if [-d "$file"]
 then
 echo "$file is a directory"
 elif
 echo "$file is a file"
 fi
 done> output.txt

Instead of displaying the results on the monitor, the shell redirects the
results of the for command to the file output.txt.

Consider the following example of redirecting the output of a for command
to a file:

 $ cat test23
 #!/bin/bash
 # redirecting the for output to a file

 for ((a = 1; a < 10; a++))
 do
 echo "The number is $a"
 done> test23.txt
 echo "The command is finished."
 $./test23
 The command is finished.
 $ cat test23.txt
 The number is 1
 The number is 2
 The number is 3
 The number is 4
 The number is 5
 The number is 6
 The number is 7
 The number is 8
 The number is 9
 $

The shell creates the file test23.txt and redirects the output of the for
command only to the file. The shell displays the echo statement after the
for command as usual.

The same technique also works for piping the output of a loop to another
command:

 $ cat test24
 #!/bin/bash
 # piping a loop to another command

 for state in "North Dakota" Connecticut Illinois Alabama
Tennessee
 do
 echo "$state is the next place to go"
 done | sort
 echo "This completes our travels"
 $./test24

 Alabama is the next place to go
 Connecticut is the next place to go
 Illinois is the next place to go
 North Dakota is the next place to go
 Tennessee is the next place to go
 This completes our travels
 $

The state values aren't listed in any particular order in the for command
list. The output of the for command is piped to the sort command, which
changes the order of the for command output. Running the script indeed
shows that the output was properly sorted within the script.

Working through a Few Practical Examples
Now that you've seen how to use the different ways to create loops in shell
scripts, let's look at some practical examples of how to use them. Looping is
a common way to iterate through data on the system, whether it's files in
folders or data contained in a file. Here are a couple of examples that
demonstrate using simple loops to work with data.

Finding executable files
When you run a program from the command line, the Linux system
searches a series of folders looking for that file. Those folders are defined in
the PATH environment variable. If you want to find out what executable files
are available on your system for you to use, just scan all the folders in the
PATH environment variable. That may take some time to do manually, but
it's a breeze working out a small shell script to do that.

The first step is to create a for loop to iterate through the folders stored in
the PATH environment variable. When you do that, don't forget to set the IFS
separator character:

IFS=:
for folder in $PATH
do

Now that you have the individual folders in the $folder variable, you can
use another for loop to iterate through all the files inside that particular
folder:

for file in $folder/*
do

The last step is to check whether the individual files have the executable
permission set, which you can do using the if-then test feature:

if [-x $file]
then
 echo " $file"
fi

And there you have it! Putting all the pieces together into a script looks like
this:

$ cat test25
#!/bin/bash
finding files in the PATH

IFS=:
for folder in $PATH
do
 echo "$folder:"
 for file in $folder/*
 do
 if [-x $file]
 then
 echo " $file"
 fi
 done
done
$

When you run the code, you get a listing of the executable files that you can
use from the command line:

$./test25 | more
/usr/local/bin:
/usr/bin:
 /usr/bin/Mail
 /usr/bin/Thunar
 /usr/bin/X
 /usr/bin/Xorg
 /usr/bin/[
 /usr/bin/a2p
 /usr/bin/abiword
 /usr/bin/ac
 /usr/bin/activation-client

 /usr/bin/addr2line
...

The output shows all the executable files found in all the folders defined in
the PATH environment variable, which is quite a few!

Creating multiple user accounts
The goal of shell scripts is to make life easier for the system administrator.
If you happen to work in an environment with lots of users, one of the most
boring tasks can be creating new user accounts. Fortunately, you can use the
while loop to make your job a little easier.

Instead of having to manually enter useradd commands for every new user
account you need to create, you can place the new user accounts in a text
file and create a simple shell script to do that work for you. The format of
the text file we'll use looks like this:

loginname, name

The first entry is the login name you want to use for the new user account.
The second entry is the full name of the user. The two values are separated
by a comma, making this a comma-separated values (CSV) file format. This
is a very common file format used in spreadsheets, so you can easily create
the user account list in a spreadsheet program and save it in CSV format for
your shell script to read and process.

To read the file data, we're going to use a little shell scripting trick. We'll set
the IFS separator character to a comma as the test part of the while
statement. Then to read the individual lines, we'll use the read command.
That looks like this:

while IFS=',' read –r userid name

The read command does the work of moving on to the next line of text in
the CSV text file, so we don't need another loop to do that. The while
command exits when the read command returns a FALSE value, which
happens when it runs out of lines to read in the file. Tricky!

To feed the data from the file into the while command, you just use a
redirection symbol at the end of the while command.

Putting everything together results in this script:

$ cat test26
#!/bin/bash
process new user accounts

input="users.csv"
while IFS=',' read -r loginname name
do
 echo "adding $loginname"
 useradd -c "$name" -m $loginname
done < "$input"
$

The $input variable points to the data file and is used as the redirect data
for the while command. The users.csv file looks like this:

$ cat users.csv
rich,Richard Blum
christine,Christine Bresnahan
barbara,Barbara Blum
tim,Timothy Bresnahan
$

To run the program, you must be the root user account, because the
useradd command requires root privileges:

./test26
adding rich
adding christine
adding barbara
adding tim

Then, by taking a quick look at the /etc/passwd file, you can see that the
accounts have been created:

tail /etc/passwd
rich:x:1001:1001:Richard Blum:/home/rich:/bin/bash
christine:x:1002:1002:Christine
Bresnahan:/home/christine:/bin/bash
barbara:x:1003:1003:Barbara Blum:/home/barbara:/bin/bash
tim:x:1004:1004:Timothy Bresnahan:/home/tim:/bin/bash
#

Congratulations, you've saved yourself lots of time in adding user accounts!

Summary

Looping is an integral part of programming. The Bash shell provides three
looping commands that you can use in your scripts.

The for command allows you to iterate through a list of values — supplied
within the command line, contained in a variable, or obtained by using file
globbing — to extract file and directory names from a wildcard character.

The while command provides a method to loop based on the condition of a
command, using either ordinary commands or the test command, which
allows you to test conditions of variables. As long as the command (or
condition) produces a zero exit status, the while loop continues to iterate
through the specified set of commands.

The until command also provides a method to iterate through commands,
but it bases its iterations on a command (or condition) producing a non-zero
exit status. This feature allows you to set a condition that must be met
before the iteration stops.

You can combine loops in shell scripts, producing multiple layers of loops.
The Bash shell provides the continue and break commands, which allow
you to alter the flow of the normal loop process based on different values
within the loop.

The Bash shell also allows you to use standard command redirection and
piping to alter the output of a loop. You can use redirection to redirect the
output of a loop to a file or piping to redirect the output of a loop to another
command. This provides a wealth of features with which you can control
your shell script execution.

The next chapter explores how to interact with your shell script user. Often,
shell scripts aren't completely self-contained. They require some sort of
external data that must be supplied at the time you run them. The next
chapter discusses different methods with which you can provide real-time
data to your shell scripts for processing.

CHAPTER 14
Handling User Input
IN THIS CHAPTER

Passing parameters

Tracking parameters

Being shifty

Working with options

Standardizing options

Getting user input

So far you've seen how to write scripts that interact with data, variables, and
files on the Linux system. Sometimes, you need to write a script that has to
interact with the person running the script. The Bash shell provides a few
different methods for retrieving data from people, including command-line
parameters (data values added after the command), command-line options
(single-letter values that modify the behavior of the command), and the
capability to read input directly from the keyboard. This chapter discusses
how to incorporate these various methods into your Bash shell scripts to
obtain data from the person running your script.

Passing Parameters
The most basic method of passing data to your shell script is to use
command-line parameters. Command-line parameters allow you to add data
values to the command line when you execute the script:

$./addem 10 30

This example passes two command-line parameters (10 and 30) to the script
addem . The script handles the command-line parameters using special

variables. The following sections describe how to use command-line
parameters in your Bash shell scripts.

Reading parameters
The Bash shell assigns special variables, called positional parameters, to all
of the command-line parameters entered. This includes the name of the
script the shell is executing. The positional parameter variables are standard
numbers, with $0 being the script's name, $1 being the first parameter, $2
being the second parameter, and so on, up to $9 for the ninth parameter.

Here's a simple example of using one command-line parameter in a shell
script:

$ cat positional1.sh
#!/bin/bash
Using one command-line parameter

factorial=1
for ((number = 1; number <= $1; number++))
do
 factorial=$[$factorial * $number]
done
echo The factorial of $1 is $factorial
exit
$
$./positional1.sh 5
The factorial of 5 is 120
$

You can use the $1 variable just like any other variable in the shell script.
The shell script automatically assigns the value from the command-line
parameter to the variable, so you don't need to do anything special.

If you want to enter more command-line parameters for your script, each
parameter must be separated by a space on the command line. And the shell
assigns each parameter to the appropriate variable:

$ cat positional2.sh
#!/bin/bash
Using two command-line parameters

product=$[$1 * $2]
echo The first parameter is $1.
echo The second parameter is $2.

echo The product value is $product.
exit
$
$./positional2.sh 2 5
The first parameter is 2.
The second parameter is 5.
The product value is 10.
$

In the preceding example, the command-line parameters used were both
numerical values. You can also use text strings as parameters:

$ cat stringparam.sh
#!/bin/bash
Using one command-line string parameter

echo Hello $1, glad to meet you.
exit
$
$./stringparam.sh world
Hello world, glad to meet you.
$

The shell passes the string value entered into the command line to the
script. However, you'll have a problem if you try to do this with a text string
that contains spaces:

$./stringparam.sh big world
Hello big, glad to meet you.
$

Remember that the parameters are separated by spaces, so the shell
interpreted the space as just separating the two values. To include a space as
a parameter value, you must use quotation marks (either single or double
quotation marks):

$./stringparam.sh 'big world'
Hello big world, glad to meet you.
$
$./stringparam.sh "big world"
Hello big world, glad to meet you.
$

NOTE

The quotation marks used when you pass text strings as parameters
are not part of the data. They just delineate the beginning and the
end of the data.

If your script needs more than nine command-line parameters, you can
continue, but the variable names change slightly. After the ninth variable,
you must use braces around the variable number, such as ${10} . Here's an
example of doing that:

$ cat positional10.sh
#!/bin/bash
Handling lots of command-line parameters

product=$[${10} * ${11}]
echo The tenth parameter is ${10}.
echo The eleventh parameter is ${11}.
echo The product value is $product.
exit
$
$./positional10.sh 1 2 3 4 5 6 7 8 9 10 11 12
The tenth parameter is 10.
The eleventh parameter is 11.
The product value is 110.
$

This technique allows you to add as many command-line parameters to
your scripts as you could possibly need.

Reading the script name
You can use the $0 parameter to determine the script name the shell started
from the command line. This can come in handy if you're writing a utility
that has multiple functions or that produces log messages.

$ cat positional0.sh
#!/bin/bash
Handling the $0 command-line parameter

echo This script name is $0.
exit

$
$ bash positional0.sh
This script name is positional0.sh.
$

However, there is a potential problem. When using a different command to
run the shell script, the command becomes entangled with the script name
in the $0 parameter:

$./positional0.sh
This script name is ./positional0.sh.
$

An additional issue occurs when the actual string passed is the full script
path, and not just the script's name. In this case, the $0 variable gets set to
the full script path and name:

$ $HOME/scripts/positional0.sh
This script name is /home/christine/scripts/positional0.sh.
$

If you want to write a script that only uses the script's name, you'll have to
do a little work in order to strip off whatever path is used to run the script or
any entangled commands. Fortunately, there's a handy little command
available that does just that. The basename command returns just the script's
name without the path:

$ cat posbasename.sh
#!/bin/bash
Using basename with the $0 command-line parameter

name=$(basename $0)

echo This script name is $name.
exit
$
$./posbasename.sh
This script name is posbasename.sh.
$

Now that's much better. You can use this technique to write a script that
produces log messages identifying when it ran:

$ cat checksystem.sh
#!/bin/bash
Using the $0 command-line parameter in messages

scriptname=$(basename $0)

echo The $scriptname ran at $(date)>> $HOME/scripttrack.log
exit
$
$./checksystem.sh
$ cat $HOME/scripttrack.log
The checksystem.sh ran at Thu 04 Jun 2020 10:01:53 AM EDT
$

Having a script that identifies itself is useful for tracking down script
problems, auditing the system, and producing log messages.

Testing parameters
Be careful when using command-line parameters in your shell scripts. If the
script is run without the needed parameters, bad things can happen:

$./positional1.sh
./positional1.sh: line 5: ((: number <= : syntax error:
operand expected (error token is "<= ")
The factorial of is 1
$

When the script assumes there is data in a parameter variable and no data is
present, most likely you'll get an error message from your script. This is a
poor way to write scripts. Always check your parameters to make sure the
data is there before using it:

$ cat checkpositional1.sh
#!/bin/bash
Using one command-line parameter

if [-n "$1"]
then
 factorial=1
 for ((number = 1; number <= $1; number++))
 do
 factorial=$[$factorial * $number]
 done
 echo The factorial of $1 is $factorial
else
 echo "You did not provide a parameter."
fi
exit

$
$./checkpositional1.sh
You did not provide a parameter.
$
$./checkpositional1.sh 3
The factorial of 3 is 6
$

In this example, the -n test evaluation was used to check for data in the $1
command-line parameter. In the next section, you'll learn another way to
check command-line parameters.

Using Special Parameter Variables
A few special Bash shell variables track command-line parameters. This
section describes what they are and how to use them.

Counting parameters
As you saw in the last section, you should verify command-line parameters
before using them in your script. For scripts that use multiple command-line
parameters, this checking can get tedious.

Instead of testing each parameter, you can count how many parameters
were entered on the command line. The Bash shell provides a special
variable for this purpose.

The $# variable contains the number of command-line parameters included
when the script was run. You can use this special variable anywhere in the
script, just like a normal variable:

$ cat countparameters.sh
#!/bin/bash
Counting command-line parameters

if [$# -eq 1]
then
 fragment="parameter was"
else
 fragment="parameters were"
fi
echo $# $fragment supplied.
exit
$

$./countparameters.sh
0 parameters were supplied.
$
$./countparameters.sh Hello
1 parameter was supplied.
$
$./countparameters.sh Hello World
2 parameters were supplied.
$

$./countparameters.sh "Hello World"
1 parameter was supplied.
$

Now you have the ability to test the number of parameters present before
trying to use them:

$ cat addem.sh
#!/bin/bash
Adding command-line parameters

if [$# -ne 2]
then
 echo Usage: $(basename $0) parameter1 parameter2
else
 total=$[$1 + $2]
 echo $1 + $2 is $total
fi
exit
$
$./addem.sh
Usage: addem.sh parameter1 parameter2
$
$./addem.sh 17
Usage: addem.sh parameter1 parameter2
$
$./addem.sh 17 25
17 + 25 is 42
$

The if-then statement uses the -ne evaluation to perform a numeric test of
the command-line parameters supplied. If the correct number of parameters
isn't present, an error message displays showing the correct usage of the
script.

This variable also provides a cool way of grabbing the last parameter on the
command line without having to know how many parameters were used.

However, you need to use a little trick to get there.

If you think this through, you might think that because the $# variable
contains the value of the number of parameters, using the variable ${$#}
would represent the last command-line parameter variable. Try that and see
what happens:

$ cat badlastparamtest.sh
#!/bin/bash
Testing grabbing the last parameter

echo The number of parameters is $#
echo The last parameter is ${$#}
exit
$
$./badlastparamtest.sh one two three four
The number of parameters is 4
The last parameter is 2648
$

Obviously, something went wrong. It turns out that you can't use the dollar
sign within the braces. Instead, you must replace the dollar sign with an
exclamation mark. Odd, but it works:

$ cat goodlastparamtest.sh
#!/bin/bash
Testing grabbing the last parameter

echo The number of parameters is $#
echo The last parameter is ${!#}
exit
$
$./goodlastparamtest.sh one two three four
The number of parameters is 4
The last parameter is four
$
$./goodlastparamtest.sh
The number of parameters is 0
The last parameter is ./goodlastparamtest.sh
$

Perfect. It's important to notice that, when there weren't any parameters on
the command line, the $# value was 0, but the ${!#} variable returns the
script name used on the command line.

Grabbing all the data
In some situations you want to grab all the parameters provided on the
command line. Instead of having to mess with using the $# variable to
determine how many parameters are on the command line and having to
loop through them all, you can use a couple of other special variables.

The $* and $@ variables provide easy access to all your parameters. Both of
these variables include all the command-line parameters within a single
variable.

The $* variable takes all the parameters supplied on the command line as a
single word. The word contains each of the values as they appear on the
command line. Basically, instead of treating the parameters as multiple
objects, the $* variable treats them all as one parameter.

The $@ variable, on the other hand, takes all the parameters supplied on the
command line as separate words in the same string. It allows you to iterate
through the values, separating out each parameter supplied. This is most
often accomplished using a for loop.

It can easily get confusing trying to figure out how these two variables
operate. Let's look at the difference between the two:

$ cat grabbingallparams.sh
#!/bin/bash
Testing different methods for grabbing all the parameters

echo
echo "Using the \$* method: $*"
echo
echo "Using the \$@ method: $@"
echo
exit
$
$./grabbingallparams.sh alpha beta charlie delta

Using the $* method: alpha beta charlie delta

Using the $@ method: alpha beta charlie delta

$

Notice that on the surface, both variables produce the same output, showing
all the command-line parameters provided at once. The following example
demonstrates where the differences are:

$ cat grabdisplayallparams.sh
#!/bin/bash
Exploring different methods for grabbing all the
parameters

echo
echo "Using the \$* method: $*"
count=1
for param in "$*"
do
 echo "\$* Parameter #$count = $param"
 count=$[$count + 1]
done

echo
echo "Using the \$@ method: $@"
count=1
for param in "$@"
do
 echo "\$@ Parameter #$count = $param"
 count=$[$count + 1]
done
echo
exit
$
$./grabdisplayallparams.sh alpha beta charlie delta

Using the $* method: alpha beta charlie delta
$* Parameter #1 = alpha beta charlie delta

Using the $@ method: alpha beta charlie delta
$@ Parameter #1 = alpha
$@ Parameter #2 = beta
$@ Parameter #3 = charlie
$@ Parameter #4 = delta

$

Now we're getting somewhere. By using the for command to iterate
through the special variables, you can see how they each treat the
command-line parameters differently. The $* variable treated all the
parameters as a single parameter, whereas the $@ variable treated each

parameter separately. This is a great way to iterate through command-line
parameters.

Being Shifty
Another tool you have in your Bash shell tool belt is the shift command.
The Bash shell provides the shift command to help you manipulate
command-line parameters. The shift command literally shifts the
command-line parameters in their relative positions.

When you use the shift command, it moves each parameter variable one
position to the left by default. Thus, the value for variable $3 is moved to $2
, the value for variable $2 is moved to $1 , and the value for variable $1 is
discarded (note that the value for variable $0 , the program name, remains
unchanged).

This is another great way to iterate through command-line parameters. You
can just operate on the first parameter, shift the parameters over, and then
operate on the first parameter again.

Here's a short demonstration of how this works:

$ cat shiftparams.sh
#!/bin/bash
Shifting through the parameters

echo
echo "Using the shift method:"
count=1
while [-n "$1"]
do
 echo "Parameter #$count = $1"
 count=$[$count + 1]
 shift
done
echo
exit
$
$./shiftparams.sh alpha bravo charlie delta

Using the shift method:
Parameter #1 = alpha
Parameter #2 = bravo
Parameter #3 = charlie

Parameter #4 = delta

$

The script performs a while loop, testing the length of the first parameter's
value. When the first parameter's length is 0, the loop ends. After testing the
first parameter, the shift command is used to shift all the parameters one
position.

NOTE

Be careful when working with the shift command. When a
parameter is shifted out, its value is lost and can't be recovered.

Alternatively, you can perform a multiple location shift by providing a
parameter to the shift command. Just provide the number of places you
want to shift:

$ cat bigshiftparams.sh
#!/bin/bash
Shifting multiple positions through the parameters

echo
echo "The original parameters: $*"
echo "Now shifting 2..."
shift 2
echo "Here's the new first parameter: $1"
echo
exit
$
$./bigshiftparams.sh alpha bravo charlie delta

The original parameters: alpha bravo charlie delta
Now shifting 2...
Here's the new first parameter: charlie

$

By using values in the shift command, you can easily skip over parameters
you don't need in certain situations.

Working with Options
If you've been following along in the book, you've seen several Bash
commands that provide both parameters and options. Options are single
letters preceded by a dash that alter the behavior of a command. This
section shows three methods for working with options in your shell scripts.

Finding your options
On the surface, there's nothing all that special about command-line options.
They appear on the command line immediately after the script name, just
the same as command-line parameters. In fact, if you want, you can process
command-line options the same way you process command-line
parameters.

Processing simple options
In the shiftparams.sh script earlier, you saw how to use the shift
command to work your way down the command-line parameters provided
with the script program. You can use the same technique to process
command-line options.

As you extract each individual parameter, use the case statement (see
Chapter 12, “Using Structured Commands”) to determine when a parameter
is formatted as an option:

$ cat extractoptions.sh
#!/bin/bash
Extract command-line options

echo
while [-n "$1"]
do
 case "$1" in
 -a) echo "Found the -a option" ;;
 -b) echo "Found the -b option" ;;
 -c) echo "Found the -c option" ;;
 *) echo "$1 is not an option" ;;
 esac
 shift
done
echo
exit

$
$./extractoptions.sh -a -b -c -d

Found the -a option
Found the -b option
Found the -c option
-d is not an option

$

The case statement checks each parameter for valid options. When one is
found, the appropriate commands are run in the case statement.

This method works, no matter in what order the options are presented on
the command line:

$./extractoptions.sh -d -c -a

-d is not an option
Found the -c option
Found the -a option

$

The case statement processes each option as it finds it in the command-line
parameters. If any other parameters are included on the command line, you
can include commands in the catch-all part of the case statement to process
them.

Separating options from parameters
Often you'll run into situations where you'll want to use both options and
parameters for a shell script. The standard way to do this in Linux is to
separate the two with a special character code that tells the script when the
options are finished and when the normal parameters start.

For Linux, this special character is the double dash (--). The shell uses the
double dash to indicate the end of the option list. After seeing the double
dash, your script can safely process the remaining command-line
parameters as parameters and not options.

To check for the double dash, simply add another entry in the case
statement:

$ cat extractoptionsparams.sh
#!/bin/bash
Extract command-line options and parameters

echo
while [-n "$1"]
do
 case "$1" in
 -a) echo "Found the -a option" ;;
 -b) echo "Found the -b option" ;;
 -c) echo "Found the -c option" ;;
 --) shift
 break;;
 *) echo "$1 is not an option" ;;
 esac
 shift
done

echo
count=1
for param in $@
do
 echo "Parameter #$count: $param"
 count=$[$count + 1]
done
echo
exit
$

This script uses the break command to break out of the while loop when it
encounters the double dash. Because we're breaking out prematurely, we
need to ensure that we stick in another shift command to get the double
dash out of the parameter variables.

For the first test, try running the script using a normal set of options and
parameters:

$./extractoptionsparams.sh -a -b -c test1 test2 test3

Found the -a option
Found the -b option
Found the -c option
test1 is not an option
test2 is not an option
test3 is not an option

$

The results show that the script assumed that all the command-line
parameters were options when it processed them. Next, try the same thing,
only this time using the double dash to separate the options from the
parameters on the command line:

$./extractoptionsparams.sh -a -b -c -- test1 test2 test3

Found the -a option
Found the -b option
Found the -c option

Parameter #1: test1
Parameter #2: test2
Parameter #3: test3

$

When the script reaches the double dash, it stops processing options and
assumes that any remaining parameters are command-line parameters.

Processing options with values
Some options require an additional parameter value. In these situations, the
command line looks something like this:

$./testing.sh -a test1 -b -c -d test2

Your script must be able to detect when your command-line option requires
an additional parameter and be able to process it appropriately. Here's an
example of how to do that:

$ cat extractoptionsvalues.sh
#!/bin/bash
Extract command-line options and values

echo
while [-n "$1"]
do
 case "$1" in
 -a) echo "Found the -a option" ;;
 -b) param=$2
 echo "Found the -b option with parameter value
$param"
 shift;;
 -c) echo "Found the -c option" ;;
 --) shift

 break;;
 *) echo "$1 is not an option" ;;
 esac
 shift
done

echo
count=1
for param in $@
do
 echo "Parameter #$count: $param"
 count=$[$count + 1]
done
exit
$
$./extractoptionsvalues.sh -a -b BValue -d

Found the -a option
Found the -b option with parameter value BValue
-d is not an option
$

In this example, the case statement defines three options that it processes.
The -b option also requires an additional parameter value. Because the
parameter being processed is $1 , you know that the additional parameter
value is located in $2 (because all the parameters are shifted after they are
processed). Just extract the parameter value from the $2 variable. Of course,
because we used two parameter spots for this option, you also need to run
the shift command to shift one additional position.

Just as with the basic feature, this process works no matter what order you
place the options in (just remember to include the appropriate option
parameter with each option):

$./extractoptionsvalues.sh -c -d -b BValue -a

Found the -c option
-d is not an option
Found the -b option with parameter value BValue
Found the -a option
$

Now you have the basic ability to process command-line options in your
shell scripts, but there are limitations. For example, this doesn't work if you
try to combine multiple options in one parameter:

$./extractoptionsvalues.sh -ac

-ac is not an option
$

It is a common practice in Linux to combine options, and if your script is
going to be user-friendly, you'll want to offer this feature for your users as
well. Fortunately, there's another method for processing options that can
help you.

Using the getopt command
The getopt command is a great tool to have handy when processing
command-line options and parameters. It reorganizes the command-line
parameters to make parsing them in your script easier.

Looking at the command format
The getopt command can take a list of command-line options and
parameters, in any form, and automatically turn them into the proper
format. It uses the following command format:

getopt optstring parameters

The optstring is the key to the process. It defines the valid option letters
that can be used in the command line. It also defines which option letters
require a parameter value.

First, list each command-line option letter you're going to use in your script
in the optstring. Then place a colon after each option letter that requires a
parameter value. The getopt command parses the supplied parameters
based on the optstring you define.

WARNING

A more advanced version of the getopt command, called getopts
(notice it is plural), is available. The getopts command is covered
later in this chapter. Because of their nearly identical spelling, it's
easy to get these two commands confused. Be careful!

Here's a simple example of how getopt works:

$ getopt ab:cd -a -b BValue -cd test1 test2
 -a -b BValue -c -d -- test1 test2
$

The optstring defines four valid option letters: a , b , c , and d . A colon (:)
is placed after the letter b in order to require option b to have a parameter
value. When the getopt command runs, it examines the provided parameter
list (-a -b BValue -cd test2 test3) and parses it based on the supplied
optstring. Notice that it automatically separated the -cd options into two
options and inserted the double dash to separate the additional parameters
on the line.

If you specify a parameter option not in the optstring, by default the
getopt command produces an error message:

$ getopt ab:cd -a -b BValue -cde test1 test2
getopt: invalid option -- 'e'
 -a -b BValue -c -d -- test1 test2
$

If you prefer to just ignore the error messages, use getopt with the -q
option:

$ getopt -q ab:cd -a -b BValue -cde test1 test2
 -a -b 'BValue' -c -d -- 'test1' 'test2'
$

Note that the getopt command options must be listed before the
optstring. Now you should be ready to use this command in your scripts
to process command-line options.

Using getopt in your scripts
You can use the getopt command in your scripts to format any command-
line options or parameters entered for your script. It's a little tricky,
however, to use.

The trick is to replace the existing command-line options and parameters
with the formatted version produced by the getopt command. The way to
do that is to use the set command.

You saw the set command back in Chapter 6, “Using Linux Environment
Variables.” The set command works with the different variables in the
shell.

One of the set command options is the double dash (--). The double dash
instructs set to replace the command-line parameter variables with the
values on the set command's command line.

The trick then is to feed the original script's command-line parameters to
the getopt command and then feed the output of the getopt command to
the set command to replace the original command-line parameters with the
nicely formatted ones from getopt . It looks something like this:

set -- $(getopt -q ab:cd "$@")

Now the values of the original command-line parameter variables are
replaced with the output from the getopt command, which formats the
command-line parameters for us.

Using this technique, we can now write scripts that handle our command-
line parameters for us:

$ cat extractwithgetopt.sh
#!/bin/bash
Extract command-line options and values with getopt

set -- $(getopt -q ab:cd "$@")

echo
while [-n "$1"]
do
 case "$1" in
 -a) echo "Found the -a option" ;;
 -b) param=$2
 echo "Found the -b option with parameter value
$param"
 shift;;
 -c) echo "Found the -c option" ;;
 --) shift
 break;;
 *) echo "$1 is not an option" ;;
 esac
 shift
done

echo
count=1
for param in $@
do
 echo "Parameter #$count: $param"
 count=$[$count + 1]
done
exit
$

You'll notice that this is basically the same script as in
extractoptionsvalues.sh . The only thing that changed is the addition of
the getopt command to help format our command-line parameters.

Now when you run the script with complex options, things work much
better:

$./extractwithgetopt.sh -ac

Found the -a option
Found the -c option
$

And of course, all the original features work just fine as well:

$./extractwithgetopt.sh -c -d -b BValue -a test1 test2

Found the -c option
-d is not an option
Found the -b option with parameter value 'BValue'
Found the -a option

Parameter #1: 'test1'
Parameter #2: 'test2'
$

Now things are looking pretty fancy. However, there's still one small bug
that lurks in the getopt command. Check out this example:

$./extractwithgetopt.sh -c -d -b BValue -a "test1 test2"
test3

Found the -c option
-d is not an option
Found the -b option with parameter value 'BValue'
Found the -a option

Parameter #1: 'test1
Parameter #2: test2'
Parameter #3: 'test3'
$

The getopt command isn't good at dealing with parameter values with
spaces and quotation marks. It interpreted the space as the parameter
separator, instead of following the double quotation marks and combining
the two values into one parameter. Fortunately, this problem has another
solution.

Advancing to getopts
The getopts command (notice that it is plural) is built into the Bash shell.
It looks much like its getopt cousin but has some expanded features.

Unlike getopt , which produces one output for all the processed options
and parameters found in the command line, the getopts command works
on the existing shell parameter variables sequentially.

It processes the parameters it detects in the command line one at a time
each time it's called. When it runs out of parameters, it exits with an exit
status greater than zero. This makes it great for using in loops to parse all
the parameters on the command line.

Here's the format of the getopts command:

getopts optstring variable

The optstring value is similar to the one used in the getopt command.
Valid option letters are listed in the optstring, along with a colon if the
option letter requires a parameter value. To suppress error messages, start
the optstring with a colon. The getopts command places the current
parameter in the variable defined in the command line.

The getopts command uses two environment variables. The OPTARG
environment variable contains the value to be used if an option requires a
parameter value. The OPTIND environment variable contains the value of the
current location within the parameter list where getopts left off. This
allows you to continue processing other command-line parameters after
finishing the options.

Let's look at a simple example that uses the getopts command:

$ cat extractwithgetopts.sh
#!/bin/bash
Extract command-line options and values with getopts

echo
while getopts :ab:c opt
do
 case "$opt" in
 a) echo "Found the -a option" ;;
 b) echo "Found the -b option with parameter value
$OPTARG";;
 c) echo "Found the -c option" ;;
 *) echo "Unknown option: $opt" ;;
 esac
done
exit
$
$./extractwithgetopts.sh -ab BValue -c

Found the -a option
Found the -b option with parameter value BValue
Found the -c option
$

The while statement defines the getopts command, specifying what
command-line options for which to look, along with the variable name
(opt) to store them in for each iteration.

You'll notice something different about the case statement in this example.
When the getopts command parses the command-line options, it strips off
the leading dash, so you don't need leading dashes in the case definitions.

The getopts command offers several nice features. For starters, you can
include spaces in your parameter values:

$./extractwithgetopts.sh -b "BValue1 BValue2" -a

Found the -b option with parameter value BValue1 BValue2
Found the -a option
$

Another nice feature is that you can run the option letter and the parameter
value together without a space:

$./extractwithgetopts.sh -abBValue

Found the -a option

Found the -b option with parameter value BValue
$

The getopts command correctly parsed the BValue value from the -b
option. In addition, the getopts command bundles any undefined option it
finds in the command line into a single output, the question mark:

$./extractwithgetopts.sh -d

Unknown option: ?
$
$./extractwithgetopts.sh -ade

Found the -a option
Unknown option: ?
Unknown option: ?
$

Any option letter not defined in the optstring value is sent to your code as
a question mark.

The getopts command knows when to stop processing options and leave
the parameters for you to process. As getopts processes each option, it
increments the OPTIND environment variable by 1. When you've reached the
end of the getopts processing, you can use the OPTIND value with the shift
command to move to the parameters:

$ cat extractoptsparamswithgetopts.sh
#!/bin/bash
Extract command-line options and parameters with getopts

echo
while getopts :ab:cd opt
do
 case "$opt" in
 a) echo "Found the -a option" ;;
 b) echo "Found the -b option with parameter value
$OPTARG";;
 c) echo "Found the -c option" ;;
 d) echo "Found the -d option" ;;
 *) echo "Unknown option: $opt" ;;
 esac
done

shift $[$OPTIND - 1]

echo
count=1
for param in "$@"
do
 echo "Parameter $count: $param"
 count=$[$count + 1]
done
exit
$
$./extractoptsparamswithgetopts.sh -db BValue test1 test2

Found the -d option
Found the -b option with parameter value BValue

Parameter 1: test1
Parameter 2: test2
$

Now you have a full-featured command-line option and parameter
processing utility you can use in all your shell scripts!

Standardizing Options
When you create your shell script, obviously you're in control of what
happens. It's completely up to you as to which letter options you select to
use and how you select to use them.

However, a few letter options have achieved a somewhat standard meaning
in the Linux world. If you leverage these options in a shell script, your
scripts will be more user-friendly.

Table 14-1 shows some of the common meanings for command-line options
used in Linux.

You'll probably recognize most of these option meanings just from working
with the various bash commands throughout the book. Using the same
meaning for your options helps users interact with your script without
having to worry about determining what options to use when.

TABLE 14-1 Common Linux Command-Line Options

Option Description
-a Shows all objects.
-c Produces a count.
-d Specifies a directory.
-e Expands an object.
-f Specifies a file to read data from.
-h Displays a help message for the command.
-i Ignores text case.
-l Produces a long format version of the output.
-n Uses a non-interactive (batch) mode.
-o Specifies a file to which all output is redirected.
-q Runs in quiet mode.
-r Processes directories and files recursively.
-s Runs in silent mode.
-v Produces verbose output.
-x Excludes an object.
-y Answers yes to all questions.

Getting User Input
Although providing command-line options and parameters is a great way to
get data from your script users, sometimes your script needs to be more
interactive. You may need to ask a question while the script is running, and
wait for a response from the person running your script. The Bash shell
provides the read command just for this purpose.

Reading basics
The read command accepts input either from standard input (such as from
the keyboard) or from another file descriptor. After receiving the input, the

read command places the data into a variable. Here's the read command at
its simplest:

$ cat askname.sh
#!/bin/bash
Using the read command

echo -n "Enter your name: "
read name
echo "Hello $name, welcome to my script."
exit
$
$./askname.sh
Enter your name: Richard Blum
Hello Richard Blum, welcome to my script.
$

That's pretty simple. Notice that the echo command that produced the
prompt uses the -n option. This suppresses the newline character at the end
of the string, allowing the script user to enter data immediately after the
string, instead of on the next line. This gives your scripts a more form-like
appearance.

In fact, the read command includes the -p option, which allows you to
specify a prompt directly in the read command line:

$ cat askage.sh
#!/bin/bash
Using the read command with the -p option

read -p "Please enter your age: " age
days=$[$age * 365]
echo "That means you are over $days days old!"
exit
$
$./askage.sh
Please enter your age: 30
That means you are over 10950 days old!
$

You'll notice in the first example that when a name was entered, the read
command assigned both the first name and last name to the same variable.
The read command assigns all data entered at the prompt to a single
variable, or you can specify multiple variables. Each data value entered is

assigned to the next variable in the list. If the list of variables runs out
before the data does, the remaining data is assigned to the last variable:

$ cat askfirstlastname.sh
#!/bin/bash
Using the read command for multiple variables

read -p "Enter your first and last name: " first last
echo "Checking data for $last, $first..."
exit
$
$./askfirstlastname.sh
Enter your first and last name: Richard Blum
Checking data for Blum, Richard...
$

You can also specify no variables on the read command line. If you do that,
the read command places any data it receives in the special environment
variable REPLY :

$ cat asknamereply.sh
#!/bin/bash
Using the read command with REPLY variable

read -p "Enter your name: "
echo
echo "Hello $REPLY, welcome to my script."
exit
$
$./asknamereply.sh
Enter your name: Christine Bresnahan

Hello Christine Bresnahan, welcome to my script.
$

The REPLY environment variable contains all the data entered in the input,
and it can be used in the shell script like any other variable.

Timing Out
Be careful when using the read command. Your script may get stuck
waiting for the script user to enter data. If the script must go on regardless
of whether any data was entered, you can use the -t option to specify a
timer. The -t option specifies the number of seconds for the read command

to wait for input. When the timer expires, the read command returns a non-
zero exit status:

$ cat asknametimed.sh
#!/bin/bash
Using the read command with a timer

if read -t 5 -p "Enter your name: " name
then
 echo "Hello $name, welcome to my script."
else
 echo
 echo "Sorry, no longer waiting for name."
fi
exit
$
$./asknametimed.sh
Enter your name: Christine
Hello Christine, welcome to my script.
$
$./asknametimed.sh
Enter your name:
Sorry, no longer waiting for name.
$

Because the read command exits with a non-zero exit status if the timer
expires, it's easy to use the standard structured statements, such as an if-
then statement or a while loop, to track what happened. In this example,
when the timer expires, the if statement fails, and the shell executes the
commands in the else section.

Instead of timing the input, you can also set the read command to count the
input characters. When a preset number of characters has been entered, the
script automatically continues (the user does not have to press the Enter
key), assigning the entered data to the variable:

$ cat continueornot.sh
#!/bin/bash
Using the read command for one character

read -n 1 -p "Do you want to continue [Y/N]? " answer

case $answer in
Y | y) echo
 echo "Okay. Continue on...";;
N | n) echo

 echo "Okay. Goodbye"
 exit;;
esac
echo "This is the end of the script."
exit
$
$./continueornot.sh
Do you want to continue [Y/N]? Y
Okay. Continue on...
This is the end of the script.
$
$./continueornot.sh
Do you want to continue [Y/N]? n
Okay. Goodbye
$

This example uses the -n option with the value of 1 , instructing the read
command to accept only a single character before continuing. As soon as
you press the single character to answer, the read command accepts the
input and passes it to the variable. You don't need to press the Enter key.

Reading with no display
Sometimes you need input from the script user, but you don't want that
input to display on the monitor. The classic example is when entering
passwords, but there are plenty of other types of data that you need to hide.

The -s option prevents the data entered in the read command from being
displayed on the monitor; actually, the data is displayed, but the read
command sets the text color to the same as the background color. Here's an
example of using the -s option in a script:

$ cat askpassword.sh
#!/bin/bash
Hiding input data

read -s -p "Enter your password: " pass
echo
echo "Your password is $pass"
exit
$
$./askpassword.sh
Enter your password:
Your password is Day31Bright-Test
$

The data typed at the input prompt doesn't appear on the monitor but is
assigned to the variable for use in the script.

Reading from a file
Finally, you can also use the read command to read data stored in a file on
the Linux system. Each call to the read command reads a single line of text
from the file. When no more lines are left in the file, the read command
exits with a non-zero exit status.

The tricky part is getting the data from the file to the read command. The
most common method is to pipe (|) the result of the cat command of the
file directly to a while command that contains the read command. Here's
an example:

$ cat readfile.sh
#!/bin/bash
Using the read command to read a file

count=1
cat $HOME/scripts/test.txt | while read line
do
 echo "Line $count: $line"
 count=$[$count + 1]
done
echo "Finished processing the file."
exit
$
$ cat $HOME/scripts/test.txt
The quick brown dog jumps over the lazy fox.
This is a test. This is only a test.
O Romeo, Romeo! Wherefore art thou Romeo?
$
$./readfile.sh
Line 1: The quick brown dog jumps over the lazy fox.
Line 2: This is a test. This is only a test.
Line 3: O Romeo, Romeo! Wherefore art thou Romeo?
Finished processing the file.
$

The while command loop continues processing lines of the file with the
read command, until the read command exits with a non-zero exit status.

Working through a Practical Example

In this section is a practical script that handles user input from what we've
covered in this chapter, and employs the ping or ping6 command to test
connectivity to other local systems. The ping (or ping6) command is a
quick way to determine if a system is up and operating on the network. It's a
useful command and is often employed as a first check. If you have only
one system to check, just use the command directly. But if you have two or
three or possibly even hundreds of systems to check, a shell script can help.

This example script has two methods to select the systems to check —
through command-line options or via a file. Here's the script in action on an
Ubuntu system using the command-line options:

$./CheckSystems.sh -t IPv4 192.168.1.102 192.168.1.104

Checking system at 192.168.1.102...
[...]
--- 192.168.1.102 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss,[...]

Checking system at 192.168.1.104...
[...]
--- 192.168.1.104 ping statistics ---
3 packets transmitted, 0 received, +3 errors, 100% packet
loss,[...]

$

If the IP address parameters are accidentally not included, the script
produces a message for the user and exits:

$./CheckSystems.sh -t IPv4

IP Address(es) parameters are missing.

Exiting script...
$

In this example, the script asks for a filename (filled with IP addresses),
which is provided by the user, when no command-line options are entered:

$ cat /home/christine/scripts/addresses.txt
192.168.1.102
IPv4
192.168.1.103
IPv4

192.168.1.104
IPv4
$
$./CheckSystems.sh

Please enter the file name with an absolute directory
reference...

Enter name of file: /home/christine/scripts/addresses.txt
/home/christine/scripts/addresses.txt is a file, is
readable,
and is not empty.

Checking system at 192.168.1.102...
[...]
--- 192.168.1.102 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss,[...]

Checking system at 192.168.1.103...
[...]
Checking system at 192.168.1.104...
[...]
Finished processing the file. All systems checked.
$

And here is the script. Notice that getopts is used to grab the provided
command-line option, value, and parameter(s). But if none are entered, the
script instead asks the user for the file's name, which contains the systems'
IP addresses and types. The file is processed using the read command:

$ cat CheckSystems.sh
#!/bin/bash
Check systems on local network allowing for
a variety of input methods.

########### Determine Input Method ###################

Check for command-line options here using getopts.
If none, then go on to File Input Method

while getopts t: opt
do
 case "$opt" in
 t) # Found the -t option
 if [$OPTARG = "IPv4"]

 then
 pingcommand=$(which ping)
 #
 elif [$OPTARG = "IPv6"]
 then
 pingcommand=$(which ping6)
 #
 else
 echo "Usage: -t IPv4 or -t IPv6"
 echo "Exiting script..."
 exit
 fi
 ;;
 *) echo "Usage: -t IPv4 or -t IPv6"
 echo "Exiting script..."
 exit;;
 esac
 #
 shift $[$OPTIND - 1]
 #
 if [$# -eq 0]
 then
 echo
 echo "IP Address(es) parameters are missing."
 echo
 echo "Exiting script..."
 exit
 fi
 #
 for ipaddress in "$@"
 do
 echo
 echo "Checking system at $ipaddress..."
 echo
 $pingcommand -q -c 3 $ipaddress
 echo
 done
 exit
done

########### File Input Method ###################

echo
echo "Please enter the file name with an absolute directory
reference..."
echo
choice=0
while [$choice -eq 0]

do
 read -t 60 -p "Enter name of file: " filename
 if [-z $filename]
 then
 quitanswer=""
 read -t 10 -n 1 -p "Quit script [Y/n]? "
quitanswer
 #
 case $quitanswer in
 Y | y) echo
 echo "Quitting script..."
 exit;;
 N | n) echo
 echo "Please answer question: "
 choice=0;;
 *) echo
 echo "No response. Quitting script..."
 exit;;
 esac
 else
 choice=1
 fi
done

if [-s $filename] && [-r $filename]
 then
 echo "$filename is a file, is readable, and is not
empty."
 echo
 cat $filename | while read line
 do
 ipaddress=$line
 read line
 iptype=$line
 if [$iptype = "IPv4"]
 then
 pingcommand=$(which ping)
 else
 pingcommand=$(which ping6)
 fi
 echo "Checking system at $ipaddress..."
 $pingcommand -q -c 3 $ipaddress
 echo
 done
 echo "Finished processing the file. All systems
checked."
 else
 echo

 echo "$filename is either not a file, is empty, or
is"
 echo "not readable by you. Exiting script..."
fi

#################### Exit Script #####################

exit
$

You may notice some repeated code within this script. It would be nice to
use functions in order to eliminate the repeated code, but we'll have to wait
until Chapter 17, “Creating Functions,” which covers that topic. Another
script improvement to consider is checking for correct formatting of the
user-provided file (ensuring the file line under an IP address has either IPv4
or IPv6). Also, this script doesn't have a help option (-h), which is another
nice addition you can make. What are some additional user input
improvements you thought about when reading through this script?

Summary
This chapter showed three methods for retrieving data from the script user.
Command-line parameters allow users to enter data directly on the
command line when they run the script. The script uses positional
parameters to retrieve the command-line parameters and assign them to
variables.

The shift command allows you to manipulate the command-line
parameters by rotating them within the positional parameters. This
command allows you to easily iterate through the parameters without
knowing how many parameters are available.

You can use three special variables when working with command-line
parameters. The shell sets the $# variable to the number of parameters
entered on the command line. The $* variable contains all the parameters as
a single string, and the $@ variable contains all the parameters as separate
words. These variables come in handy when you're trying to process long
parameter lists.

Besides parameters, your script users can use command-line options to pass
information to your script. Command-line options are single letters

preceded by a dash. Different options can be assigned to alter the behavior
of your script.

The Bash shell provides three ways to handle command-line options. You
can iterate through the options using the positional parameter variables,
processing each option as it appears on the command line. Use the getopt
command to convert command-line options and parameters into a standard
format that you can process in your script. Or you can use the getopts
command, which provides more advanced processing of the command-line
parameters.

An interactive method to obtain data from your script users is the read
command. The read command allows your scripts to query users for
information and wait. The read command places any data entered by the
script user into one or more variables, which you can use within the script.

Several options are available for the read command that allow you to
customize the data input into your script, such as using hidden data entry,
applying timed data entry, and requesting a specific number of input
characters.

In the next chapter, we look further into how Bash shell scripts output data.
So far, you've seen how to display data on the monitor and redirect it to a
file. Next, we explore a few other options that you have available, not only
to direct data to specific locations but also to direct specific types of data to
specific locations. This will help make your shell scripts look professional!

CHAPTER 15
Presenting Data
IN THIS CHAPTER

Understanding Input and Output

Redirecting Output in Scripts

Redirecting Input in Scripts

Creating Your Own Redirection

Listing Open File Descriptors

Suppressing Command Output

Using Temporary Files

Logging Messages

So far the scripts shown in this book display information either by echoing
data to the monitor or by redirecting data to a file. Chapter 11, “Basic Script
Building,” demonstrated how to redirect the output of a command to a file.
This chapter expands on that topic by showing you how you can redirect the
output of your script to different locations on your Linux system.

Understanding Input and Output
So far, you've seen two methods for displaying the output from your scripts:

Displaying output on the monitor screen

Redirecting output to a file

Both methods produced an all-or-nothing approach to data output. There are
times, however, when it would be nice to display some data on the monitor
and other data in a file. For these instances, it comes in handy to know how

Linux handles input and output so that you can get your script output to the
right place.

The following sections describe how to use the standard Linux input and
output system to your advantage, to help direct script output to specific
locations.

Standard file descriptors
The Linux system handles every object as a file. This includes the input and
output process. Linux identifies each file object using a file descriptor. The
file descriptor is a non-negative integer that uniquely identifies open files in
a session. Each process is allowed to have up to nine open file descriptors at
a time. The Bash shell reserves the first three file descriptors (0, 1, and 2)
for special purposes. These are shown in Table 15-1.

TABLE 15-1 Linux Standard File Descriptors

File Descriptor Abbreviation Description
0 STDIN Standard input
1 STDOUT Standard output
2 STDERR Standard error

These three special file descriptors handle the input and output from your
script. The shell uses them to direct the default input and output in the shell
to the appropriate location, which by default is usually your monitor. The
following sections describe each of these standard file descriptors in greater
detail.

STDIN
The STDIN file descriptor references the standard input to the shell. For a
terminal interface, the standard input is the keyboard. The shell receives
input from the keyboard on the STDIN file descriptor and processes each
character as you type it.

When you use the input redirect symbol (<), Linux replaces the standard
input file descriptor with the file referenced by the redirection. It reads the
file and retrieves data just as if it were typed on the keyboard.

Many Bash commands accept input from STDIN , especially if no files are
specified on the command line. Here's an example of using the cat
command with data entered from STDIN :

$ cat
this is a test
this is a test
this is a second test.
this is a second test.

When you enter the cat command on the command line by itself, it accepts
input from STDIN . As you enter each line, the cat command echoes the line
to the display.

However, you can also use the STDIN redirect symbol to force the cat
command to accept input from another file other than STDIN :

$ cat < testfile
This is the first line.
This is the second line.
This is the third line.
$

Now the cat command uses the lines that are contained in the testfile file
as the input. You can use this technique to input data to any shell command
that accepts data from STDIN.

STDOUT
The STDOUT file descriptor references the standard output for the shell. On a
terminal interface, the standard output is the terminal monitor. All output
from the shell (including programs and scripts you run in the shell) is
directed to the standard output, which is the monitor.

Most Bash commands direct their output to the STDOUT file descriptor by
default. As shown in Chapter 11, you can change that using output
redirection:

$ ls -l> test2
$ cat test2
total 20
-rw-rw-r-- 1 rich rich 53 2020-06-20 11:30 test
-rw-rw-r-- 1 rich rich 0 2020-06-20 11:32 test2
-rw-rw-r-- 1 rich rich 73 2020-06-20 11:23 testfile
$

With the output redirection symbol, all the output that normally would go to
the monitor is instead redirected to the designated redirection file by the
shell.

You can also append data to a file. You do this using the >> symbol:

$ who>> test2
$ cat test2
total 20
-rw-rw-r-- 1 rich rich 53 2020-06-20 11:30 test
-rw-rw-r-- 1 rich rich 0 2020-06-20 11:32 test2
-rw-rw-r-- 1 rich rich 73 2020-06-20 11:23 testfile
rich pts/0 2020-06-20 15:34 (192.168.1.2)
$

The output generated by the who command is appended to the data already
in the test2 file.

However, if you use the standard output redirection for your scripts, you
can run into a problem. Here's an example of what can happen in your
script:

$ ls -al badfile> test3
ls: cannot access badfile: No such file or directory
$ cat test3
$

When a command produces an error message, the shell doesn't redirect the
error message to the output redirection file. The shell created the output
redirection file, but the error message appeared on the monitor screen, not
in the file. Notice that there isn't an error when trying to display the contents
of the test3 file. The test3 file was created just fine, but it's empty.

The shell handles error messages separately from the normal output. If
you're creating a shell script that runs in background mode, often you must
rely on the output messages being sent to a log file. Using this technique, if
any error messages occur, they don't appear in the log file. You need to do
something different.

STDERR
The shell handles error messages using the special STDERR file descriptor.
The STDERR file descriptor references the standard error output for the shell.

This is the location where the shell sends error messages generated by the
shell or programs and scripts running in the shell.

By default, the STDERR file descriptor points to the same place as the STDOUT
file descriptor (even though they are assigned different file descriptor
values). This means that, by default, all error messages go to the monitor
display.

However, as you saw in the example, when you redirect STDOUT , this
doesn't automatically redirect STDERR . When working with scripts, you'll
often want to change that behavior, especially if you're interested in logging
error messages to a log file.

Redirecting errors
You've already seen how to redirect the STDOUT data by using the redirection
symbol. Redirecting the STDERR data isn't much different; you just need to
define the STDERR file descriptor when you use the redirection symbol. You
can do this in a couple of ways.

Redirecting errors only
As you saw in Table 15-1, the STDERR file descriptor is set to the value 2 .
You can select to redirect only error messages by placing this file descriptor
value immediately before the redirection symbol. The value must appear
immediately before the redirection symbol or it doesn't work:

$ ls -al badfile 2> test4
$ cat test4
ls: cannot access badfile: No such file or directory
$

Now when you run the command, the error message doesn't appear on the
monitor. Instead, the output file contains any error messages that are
generated by the command. Using this method, the shell redirects the error
messages only, not the normal data. Here's another example of mixing
STDOUT and STDERR messages in the same output:

$ ls -al test badtest test2 2> test5
-rw-rw-r-- 1 rich rich 158 2020-06-20 11:32 test2
$ cat test5
ls: cannot access test: No such file or directory

ls: cannot access badtest: No such file or directory
$

The ls command tries to find information on three files— test , badtest ,
and test2 . The normal STDOUT output from the ls command went to the
default STDOUT file descriptor, which is the monitor. Because the command
redirects file descriptor 2 output (STDERR) to an output file, the shell sent
any error messages generated directly to the specified redirection file.

Redirecting errors and data
If you want to redirect both errors and the normal output, you need to use
two redirection symbols. You need to precede each with the appropriate file
descriptor for the data you want to redirect and then have them point to the
appropriate output file for holding the data:

$ ls -al test test2 test3 badtest 2> test6 1> test7
$ cat test6
ls: cannot access test: No such file or directory
ls: cannot access badtest: No such file or directory
$ cat test7
-rw-rw-r-- 1 rich rich 158 2020-06-20 11:32 test2
-rw-rw-r-- 1 rich rich 0 2020-06-20 11:33 test3
$

The shell redirects the normal output of the ls command that would have
gone to STDOUT to the test7 file using the 1> symbol. Any error messages
that would have gone to STDERR were redirected to the test6 file using the
2> symbol.

You can use this technique to separate normal script output from any error
messages that occur in the script. This allows you to easily identify errors
without having to wade through thousands of lines of normal output data.

Alternatively, if you want, you can redirect both STDERR and STDOUT output
to the same output file. The Bash shell provides a special redirection
symbol just for this purpose, the &> symbol:

$ ls -al test test2 test3 badtest &> test7
$ cat test7
ls: cannot access test: No such file or directory
ls: cannot access badtest: No such file or directory
-rw-rw-r-- 1 rich rich 158 2020-06-20 11:32 test2

-rw-rw-r-- 1 rich rich 0 2020-06-20 11:33 test3
$

When you use the &> symbol, all the output generated by the command is
sent to the same location, both data and errors. Notice that one of the error
messages is out of order from what you'd expect. The error message for the
badtest file (the last file to be listed) appears second in the output file. The
Bash shell automatically gives error messages a higher priority than the
standard output. This allows you to view the error messages together, rather
than having them scattered throughout the output file.

Redirecting Output in Scripts
You can use the STDOUT and STDERR file descriptors in your scripts to
produce output in multiple locations simply by redirecting the appropriate
file descriptors. There are two methods for redirecting output in the script:

Temporarily redirecting each line

Permanently redirecting all commands in the script

The following sections describe how each of these methods works.

Temporary redirections
If you want to purposely generate error messages in your script, you can
redirect an individual output line to STDERR . You just need to use the output
redirection symbol to redirect the output to the STDERR file descriptor. When
you redirect to a file descriptor, you must precede the file descriptor number
with an ampersand (&):

 echo "This is an error message">&2

This line displays the text wherever the STDERR file descriptor for the script
is pointing, instead of the normal STDOUT . The following is an example of a
script that uses this feature:

$ cat test8
#!/bin/bash
testing STDERR messages

echo "This is an error">&2

echo "This is normal output"
$

If you run the script as normal, you don't notice any difference:

$./test8
This is an error
This is normal output
$

Remember that, by default, Linux directs the STDERR output to STDOUT .
However, if you redirect STDERR when running the script, any text directed
to STDERR in the script is redirected:

$./test8 2> test9
This is normal output
$ cat test9
This is an error
$

Perfect! The text displayed using STDOUT appears on the monitor, whereas
the echo statement text sent to STDERR is redirected to the output file.

This method is great for generating error messages in your scripts. If
someone uses your scripts, they can easily redirect the error messages using
the STDERR file descriptor, as shown.

Permanent redirections
If you have lots of data that you're redirecting in your script, it can get
tedious having to redirect every echo statement. Instead, you can tell the
shell to redirect a specific file descriptor for the duration of the script by
using the exec command:

$ cat test10
#!/bin/bash
redirecting all output to a file
exec 1>testout

echo "This is a test of redirecting all output"
echo "from a script to another file."
echo "without having to redirect every individual line"
$./test10
$ cat testout
This is a test of redirecting all output
from a script to another file.

without having to redirect every individual line
$

The exec command starts a new shell and redirects the STDOUT file
descriptor to a file. All output in the script that goes to STDOUT is instead
redirected to the file.

You can also redirect the STDOUT in the middle of a script:

$ cat test11
#!/bin/bash
redirecting output to different locations

exec 2>testerror

echo "This is the start of the script"
echo "now redirecting all output to another location"

exec 1>testout

echo "This output should go to the testout file"
echo "but this should go to the testerror file">&2
$
$./test11
This is the start of the script
now redirecting all output to another location
$ cat testout
This output should go to the testout file
$ cat testerror
but this should go to the testerror file
$

The script uses the exec command to redirect any output going to STDERR to
the file testerror . Next, the script uses the echo statement to display a
few lines to STDOUT . After that, the exec command is used again to redirect
STDOUT to the testout file. Notice that even when STDOUT is redirected, you
can still specify the output from an echo statement to go to STDERR , which
in this case is still redirected to the testerror file.

This feature can come in handy when you want to redirect the output of just
parts of a script to an alternative location, such as an error log. There's just
one problem you run into when using this.

After you redirect STDOUT or STDERR , you can't easily redirect them back to
their original location. If you need to switch back and forth with your

redirection, you need to learn a trick. The “Creating Your Own Redirection”
section later in this chapter discusses this trick and how to use it in your
shell scripts.

Redirecting Input in Scripts
You can use the same technique used to redirect STDOUT and STDERR in your
scripts to redirect STDIN from the keyboard. The exec command allows you
to redirect STDIN from a file on the Linux system:

exec 0< testfile

This command informs the shell that it should retrieve input from the file
testfile instead of STDIN . This redirection applies any time the script
requests input. Here's an example of this in action:

$ cat test12
#!/bin/bash
redirecting file input

exec 0< testfile
count=1

while read line
do
 echo "Line #$count: $line"
 count=$[$count + 1]
done
$./test12
Line #1: This is the first line.
Line #2: This is the second line.
Line #3: This is the third line.
$

Chapter 14, “Handling User Input,” showed you how to use the read
command to read data entered from the keyboard by a user. By redirecting
STDIN from a file, when the read command attempts to read from STDIN , it
retrieves data from the file instead of the keyboard.

This is an excellent technique to read data in files for processing in your
scripts. A common task for Linux system administrators is to read data from
log files for processing. This is the easiest way to accomplish that task.

Creating Your Own Redirection
When you redirect input and output in your script, you're not limited to the
three default file descriptors. I mentioned that you could have up to nine
open file descriptors in the shell. The other six file descriptors are numbered
from 3 through 8 and are available for you to use as either input or output
redirection. You can assign any of these file descriptors to a file and then
use them in your scripts as well. This section shows you how to use the
other file descriptors in your scripts.

Creating output file descriptors
You assign a file descriptor for output by using the exec command. As with
the standard file descriptors, after you assign an alternative file descriptor to
a file location, that redirection stays permanent until you reassign it. Here's
a simple example of using an alternative file descriptor in a script:

$ cat test13
#!/bin/bash
using an alternative file descriptor

exec 3>test13out

echo "This should display on the monitor"
echo "and this should be stored in the file">&3
echo "Then this should be back on the monitor"
$./test13
This should display on the monitor
Then this should be back on the monitor
$ cat test13out
and this should be stored in the file
$

The script uses the exec command to redirect file descriptor 3 to an
alternative file location. When the script executes the echo statements, they
display on STDOUT as you would expect. However, the echo statements that
you redirect to file descriptor 3 go to the alternative file. This allows you to
keep normal output for the monitor and redirect special information to files,
such as log files.

You can also use the exec command to append data to an existing file
instead of creating a new file:

exec 3>>test13out

Now the output is appended to the test13out file instead of creating a new
file.

Redirecting file descriptors
Here's the trick to help you bring back a redirected file descriptor. You can
assign an alternative file descriptor to a standard file descriptor, and vice
versa. This means that you can redirect the original location of STDOUT to an
alternative file descriptor and then redirect that file descriptor back to
STDOUT . This might sound somewhat complicated, but in practice it's fairly
straightforward. This example will clear things up for you:

$ cat test14
#!/bin/bash
storing STDOUT, then coming back to it

exec 3>&1
exec 1>test14out

echo "This should store in the output file"
echo "along with this line."

exec 1>&3

echo "Now things should be back to normal"
$
$./test14
Now things should be back to normal
$ cat test14out
This should store in the output file
along with this line.
$

This example is a little crazy, so let's walk through it piece by piece. First,
the script redirects file descriptor 3 to the current location of file descriptor
1, which is STDOUT . This means that any output sent to file descriptor 3
goes to the monitor.

The second exec command redirects STDOUT to a file. The shell now
redirects any output sent to STDOUT directly to the output file. However, file
descriptor 3 still points to the original location of STDOUT , which is the

monitor. If you send output data to file descriptor 3 at this point, it still goes
to the monitor, even though STDOUT is redirected.

After sending some output to STDOUT , which points to a file, the script then
redirects STDOUT to the current location of file descriptor 3, which is still set
to the monitor. This means that now STDOUT points to its original location,
the monitor.

This method can get confusing, but it's a common way to temporarily
redirect output in script files and then set the output back to the normal
settings.

Creating input file descriptors
You can redirect input file descriptors exactly the same way as output file
descriptors. Save the STDIN file descriptor location to another file descriptor
before redirecting it to a file; when you're finished reading the file, you can
restore STDIN to its original location:

$ cat test15
#!/bin/bash
redirecting input file descriptors

exec 6<&0

exec 0< testfile

count=1
while read line
do
 echo "Line #$count: $line"
 count=$[$count + 1]
done
exec 0<&6
read -p "Are you done now? " answer
case $answer in
Y|y) echo "Goodbye";;
N|n) echo "Sorry, this is the end.";;
esac
$./test15
Line #1: This is the first line.
Line #2: This is the second line.
Line #3: This is the third line.
Are you done now? y

Goodbye
$

In this example, file descriptor 6 is used to hold the location for STDIN . The
script then redirects STDIN to a file. All the input for the read command
comes from the redirected STDIN , which is now the input file.

When all the lines have been read, the script returns STDIN to its original
location by redirecting it to file descriptor 6. The script tests to make sure
that STDIN is back to normal by using another read command, which this
time waits for input from the keyboard.

Creating a read/write file descriptor
As odd as it may seem, you can also open a single file descriptor for both
input and output. You can then use the same file descriptor to both read data
from a file and write data to the same file.

You need to be especially careful with this method, however. As you read
and write data to and from a file, the shell maintains an internal pointer,
indicating where it is in the file. Any reading or writing occurs where the
file pointer last left off. This can produce some interesting results if you're
not careful. Look at this example:

$ cat test16
#!/bin/bash
testing input/output file descriptor

exec 3<> testfile
read line <&3
echo "Read: $line"
echo "This is a test line">&3
$ cat testfile
This is the first line.
This is the second line.
This is the third line.
$./test16
Read: This is the first line.
$ cat testfile
This is the first line.
This is a test line
ine.
This is the third line.
$

This example uses the exec command to assign file descriptor 3 for both
input and output sent to and from the file testfile . Next, it uses the read
command to read the first line in the file, using the assigned file descriptor,
and then it displays the read line of data in STDOUT . After that, it uses the
echo statement to write a line of data to the file opened with the same file
descriptor.

When you run the script, at first things look just fine. The output shows that
the script read the first line in the testfile file. However, if you display the
contents of the testfile file after running the script, you see that the data
written to the file overwrote the existing data.

When the script writes data to the file, it starts where the file pointer is
located. The read command reads the first line of data, so it left the file
pointer pointing to the first character in the second line of data. When the
echo statement outputs data to the file, it places the data at the current
location of the file pointer, overwriting whatever data was there.

Closing file descriptors
If you create new input or output file descriptors, the shell automatically
closes them when the script exits. There are situations, however, when you
need to manually close a file descriptor before the end of the script.

To close a file descriptor, redirect it to the special symbol &- . This is how it
looks in the script:

exec 3>&-

This statement closes file descriptor 3, preventing it from being used any
more in the script. Here's an example of what happens when you try to use a
closed file descriptor:

$ cat badtest
#!/bin/bash
testing closing file descriptors

exec 3> test17file

echo "This is a test line of data">&3

exec 3>&-

echo "This won't work">&3
$./badtest
./badtest: 3: Bad file descriptor
$

After you close the file descriptor, you can't write any data to it in your
script or the shell produces an error message.

There's yet another thing to be careful of when closing file descriptors. If
you open the same output file later on in your script, the shell replaces the
existing file with a new file. This means that if you output any data, it
overwrites the existing file. Consider the following example of this
problem:

$ cat test17
#!/bin/bash
testing closing file descriptors

exec 3> test17file
echo "This is a test line of data">&3
exec 3>&-

cat test17file

exec 3> test17file
echo "This'll be bad">&3
$./test17
This is a test line of data
$ cat test17file
This’ll be bad
$

After sending a data string to the test17file file and closing the file
descriptor, the script uses the cat command to display the contents of the
file. So far, so good. Next, the script reopens the output file and sends
another data string to it. When you display the contents of the output file,
all you see is the second data string. The shell overwrote the original output
file.

Listing Open File Descriptors
With only nine file descriptors available to you, you'd think that it wouldn't
be hard to keep things straight. Sometimes, however, it's easy to get lost

when trying to keep track of which file descriptor is redirected where. To
help you keep your sanity, the Bash shell provides the lsof command.

The lsof command lists all the open file descriptors on the entire Linux
system. This includes files open by all the processes running in the
background, as well as any user accounts logged in to the system.

Plenty of command-line parameters and options are available to help filter
out the lsof output. The most commonly used are -p , which allows you to
specify a process ID (PID), and -d , which allows you to specify the file
descriptor numbers to display, separated by commas.

To easily determine the current PID of the process, you can use the special
environment variable $$, which the shell sets to the current PID. The -a
option is used to perform a Boolean AND of the results of the other two
options, to produce the following:

$ /usr/sbin/lsof -a -p $$ -d 0,1,2
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
bash 3344 rich 0u CHR 136,0 2 /dev/pts/0
bash 3344 rich 1u CHR 136,0 2 /dev/pts/0
bash 3344 rich 2u CHR 136,0 2 /dev/pts/0
$

This shows the default file descriptors (0, 1, and 2) for the current process
(the Bash shell). The default output of lsof contains several columns of
information, described in Table 15-2.

TABLE 15-2 Default lsof Output

Column Description
COMMAND The first nine characters of the name of the command in the

process
PID The process ID of the process
USER The login name of the user who owns the process
FD The file descriptor number and access type (r — [read], w

— [write], u — [read/write])
TYPE The type of file (CHR — [character], BLK — [block], DIR

— [directory], REG — [regular file])
DEVICE The device numbers (major and minor) of the device
SIZE If available, the size of the file
NODE The node number of the local file
NAME The name of the file

The file type associated with STDIN , STDOUT , and STDERR is character
mode. Because the STDIN , STDOUT , and STDERR file descriptors all point to
the terminal, the name of the output file is the device name of the terminal.
All three standard files are available for both reading and writing (although
it does seem odd to be able to write to STDIN and read from STDOUT).

Now, let's look at the results of the lsof command from inside a script that's
opened a couple of alternative file descriptors:

$ cat test18
#!/bin/bash
testing lsof with file descriptors

exec 3> test18file1
exec 6> test18file2
exec 7< testfile

/usr/sbin/lsof -a -p $$ -d0,1,2,3,6,7
$./test18
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
test18 3594 rich 0u CHR 136,0 2 /dev/pts/0
test18 3594 rich 1u CHR 136,0 2 /dev/pts/0
test18 3594 rich 2u CHR 136,0 2 /dev/pts/0

18 3594 rich 3w REG 253,0 0 360712
/home/rich/test18file1
18 3594 rich 6w REG 253,0 0 360715
/home/rich/test18file2
18 3594 rich 7r REG 253,0 73 360717
/home/rich/testfile
$

The script creates three alternative file descriptors, two for output (3 and 6)
and one for input (7). When the script runs the lsof command, you can see
the new file descriptors in the output. We truncated the first part of the
output so that you could see the results of the filename. The filename shows
the complete pathname for the files used in the file descriptors. It shows
each of the files as type REG , which indicates that they are regular files on
the filesystem.

Suppressing Command Output
Sometimes, you may not want to display any output from your script. This
often occurs if you're running a script as a background process (see Chapter
16, “Script Control”). If any error messages occur from the script while it's
running in the background, the shell emails them to the owner of the
process. This can get tedious, especially if you run scripts that generate
minor nuisance errors.

To solve that problem, you can redirect STDERR to a special file called the
null file. The null file is pretty much what it says it is—a file that contains
nothing. Any data that the shell outputs to the null file is not saved, thus the
data is lost.

The standard location for the null file on Linux systems is /dev/null . Any
data you redirect to that location is thrown away and doesn't appear:

$ ls -al> /dev/null
$ cat /dev/null
$

This is a common way to suppress any error messages without actually
saving them:

$ ls -al badfile test16 2> /dev/null
-rwxr--r-- 1 rich rich 135 Jun 20 19:57

test16*
$

You can also use the /dev/null file for input redirection as an input file.
Because the /dev/null file contains nothing, it is often used by
programmers to quickly remove data from an existing file without having to
remove the file and re-create it:

$ cat testfile
This is the first line.
This is the second line.
This is the third line.
$ cat /dev/null> testfile
$ cat testfile
$

The file testfile still exists on the system, but now it is empty. This is a
common method used to clear out log files that must remain in place for
applications to operate.

Using Temporary Files
The Linux system contains a special directory location reserved for
temporary files. Linux uses the /tmp directory for files that don't need to be
kept indefinitely. Most Linux distributions configure the system to
automatically remove any files in the /tmp directory at bootup.

Any user account on the system has privileges to read and write files in the
/tmp directory. This feature provides an easy way for you to create
temporary files that you don't necessarily have to worry about cleaning up.

There's even a specific command to use for creating a temporary file. The
mktemp command allows you to easily create a unique temporary file in the
/tmp folder. The shell creates the file but doesn't use your default umask
value (see Chapter 7, “Understanding Linux File Permissions”). Instead, it
only assigns read and write permissions to the file's owner and makes you
the owner of the file. After you create the file, you have full access to read
and write to and from it from your script, but no one else can access it
(other than the root user, of course).

Creating a local temporary file

By default, mktemp creates a file in the local directory. To create a
temporary file in a local directory with the mktemp command, you just need
to specify a filename template. The template consists of any text filename,
plus six X's appended to the end of the filename:

$ mktemp testing.XXXXXX
$ ls -al testing*
-rw------- 1 rich rich 0 Jun 20 21:30
testing.UfIi13
$

The mktemp command replaces the six X's with a six-character code to
ensure that the filename is unique in the directory. You can create multiple
temporary files and be assured that each one is unique:

$ mktemp testing.XXXXXX
testing.1DRLuV
$ mktemp testing.XXXXXX
testing.lVBtkW
$ mktemp testing.XXXXXX
testing.PgqNKG
$ ls -l testing*
-rw------- 1 rich rich 0 Jun 20 21:57
testing.1DRLuV
-rw------- 1 rich rich 0 Jun 20 21:57
testing.PgqNKG
-rw------- 1 rich rich 0 Jun 20 21:30
testing.UfIi13
-rw------- 1 rich rich 0 Jun 20 21:57
testing.lVBtkW
$

As you can see, the output of the mktemp command is the name of the file
that it creates. When you use the mktemp command in a script, you'll want to
save that filename in a variable so that you can refer to it later on in the
script:

$ cat test19
#!/bin/bash
creating and using a temp file

tempfile=$(mktemp test19.XXXXXX)

exec 3>$tempfile

echo "This script writes to temp file $tempfile"

echo "This is the first line">&3
echo "This is the second line.">&3
echo "This is the last line.">&3
exec 3>&-

echo "Done creating temp file. The contents are:"
cat $tempfile
rm -f $tempfile 2> /dev/null
$./test19
This script writes to temp file test19.vCHoya
Done creating temp file. The contents are:
This is the first line
This is the second line.
This is the last line.
$ ls -al test19*
-rwxr--r-- 1 rich rich 356 Jun 20 22:03
test19
$

The script uses the mktemp command to create a temporary file and assigns
the filename to the $tempfile variable. It then uses the temporary file as the
output redirection file for file descriptor 3. After displaying the temporary
filename on STDOUT , it writes a few lines to the temporary file, and then it
closes the file descriptor. Finally, it displays the contents of the temporary
file and then uses the rm command to remove it.

Creating a temporary file in /tmp
The -t option forces mktemp to create the file in the temporary directory of
the system. When you use this feature, the mktemp command returns the full
pathname used to create the temporary file, not just the filename:

$ mktemp -t test.XXXXXX
/tmp/test.xG3374
$ ls -al /tmp/test*
-rw------- 1 rich rich 0 2020-06-20 18:41 /tmp/test.xG3374
$

Because the mktemp command returns the full pathname, you can then
reference the temporary file from any directory on the Linux system, no
matter where it places the temporary directory:

$ cat test20
#!/bin/bash

creating a temp file in /tmp

tempfile=$(mktemp -t tmp.XXXXXX)

echo "This is a test file."> $tempfile
echo "This is the second line of the test.">> $tempfile

echo "The temp file is located at: $tempfile"
cat $tempfile
rm -f $tempfile
$./test20
The temp file is located at: /tmp/tmp.Ma3390
This is a test file.
This is the second line of the test.
$

When mktemp creates the temporary file, it returns the full pathname to the
environment variable. You can then use that value in any command to
reference the temporary file.

Creating a temporary directory
The -d option tells the mktemp command to create a temporary directory
instead of a file. You can then use that directory for whatever purposes you
need, such as creating additional temporary files:

$ cat test21
#!/bin/bash
using a temporary directory

tempdir=$(mktemp -d dir.XXXXXX)
cd $tempdir
tempfile1=$(mktemp temp.XXXXXX)
tempfile2=$(mktemp temp.XXXXXX)
exec 7> $tempfile1
exec 8> $tempfile2

echo "Sending data to directory $tempdir"
echo "This is a test line of data for $tempfile1">&7
echo "This is a test line of data for $tempfile2">&8
$./test21
Sending data to directory dir.ouT8S8
$ ls -al
total 72
drwxr-xr-x 3 rich rich 4096 Jun 21 22:20 ./
drwxr-xr-x 9 rich rich 4096 Jun 21 09:44 ../

drwx------ 2 rich rich 4096 Jun 21 22:20
dir.ouT8S8/
-rwxr--r-- 1 rich rich 338 Jun 21 22:20
test21
$ cd dir.ouT8S8
[dir.ouT8S8]$ ls -al
total 16
drwx------ 2 rich rich 4096 Jun 21 22:20 ./
drwxr-xr-x 3 rich rich 4096 Jun 21 22:20 ../
-rw------- 1 rich rich 44 Jun 21 22:20
temp.N5F3O6
-rw------- 1 rich rich 44 Jun 21 22:20
temp.SQslb7
[dir.ouT8S8]$ cat temp.N5F3O6
This is a test line of data for temp.N5F3O6
[dir.ouT8S8]$ cat temp.SQslb7
This is a test line of data for temp.SQslb7
[dir.ouT8S8]$

The script creates a directory in the current directory and uses the cd
command to change to that directory before creating two temporary files.
The two temporary files are then assigned to file descriptors and used to
store output from the script.

Logging Messages
Sometimes, it's beneficial to send output both to the monitor and to a file for
logging. Instead of having to redirect output twice, you can use the special
tee command.

The tee command is like a T-connector for pipes. It sends data from STDIN
to two destinations at the same time. One destination is STDOUT . The other
destination is a filename specified on the tee command line:

tee filename

Because tee redirects data from STDIN , you can use it with the pipe
command to redirect output from any command:

$ date | tee testfile
Sun Jun 21 18:56:21 EDT 2020
$ cat testfile
Sun Jun 21 18:56:21 EDT 2020
$

The output appears in STDOUT and is written to the file specified. Be careful;
by default, the tee command overwrites the output file on each use:

$ who | tee testfile
rich pts/0 2020-06-20 18:41 (192.168.1.2)
$ cat testfile
rich pts/0 2020-06-20 18:41 (192.168.1.2)
$

If you want to append data to the file, you must use the -a option:

$ date | tee -a testfile
Sun Jun 21 18:58:05 EDT 2020
$ cat testfile
rich pts/0 2020-06-201 18:41 (192.168.1.2)
Sun Jun 21 18:58:05 EDT 2020
$

Using this technique, you can both save data in files and display the data on
the monitor for your users:

$ cat test22
#!/bin/bash
using the tee command for logging

tempfile=test22file

echo "This is the start of the test" | tee $tempfile
echo "This is the second line of the test" | tee -a
$tempfile
echo "This is the end of the test" | tee -a $tempfile
$./test22
This is the start of the test
This is the second line of the test
This is the end of the test
$ cat test22file
This is the start of the test
This is the second line of the test
This is the end of the test
$

Now you can save a permanent copy of your output at the same time as
you're displaying it to your users.

Working through a Practical Example

File redirection is very common, both when reading files into scripts and
when outputting data from a script into a file. This example script does both
of those things. It reads a CSV-formatted data file and outputs SQL INSERT
statements to insert the data into a database.

The shell script uses a command-line parameter to define the name of the
CSV file from which to read the data. The CSV format is used to export
data from spreadsheets, so you can place the database data into a
spreadsheet, save the spreadsheet in CSV format, read the file, and create
INSERT statements to insert the data into a MySQL database.

Here's what the script looks like:

$cat test23
#!/bin/bash
read file and create INSERT statements for MySQL

outfile='members.sql'
IFS=','
while read lname fname address city state zip
do
 cat>> $outfile << EOF
 INSERT INTO members (lname,fname,address,city,state,zip)
VALUES ('$lname', '$fname', '$address', '$city', '$state',
'$zip');
EOF
done < ${1}
$

That's a pretty short script, thanks to the file redirection that goes on! There
are three redirection operations happening in the script. The while loop
uses the read statement (discussed in Chapter 14) to read text from the data
file. Notice in the done statement the redirection symbol:

done < ${1}

The $1 represents the first command-line parameter when you run the
test23 program. That specifies the data file from which to read the data.
The read statement parses the text using the IFS character, which we
specify as a comma.

The other two redirection operations in the script both appear in the same
statement:

cat>> $outfile << EOF

This one statement has one output append redirection (the double greater-
than symbol) and one input append redirection (the double less-than
symbol). The output redirection appends the cat command output to the file
specified by the $outfile variable. The input to the cat command is
redirected from the standard input to use the data stored inside the script.
The EOF symbol marks the start and end delimiter of the data that's
appended to the file:

INSERT INTO members (lname,fname,address,city,state,zip)
VALUES ('$lname', '$fname',
 '$address', '$city', '$state', '$zip');

The text creates a standard SQL INSERT statement. Notice that the data
values are replaced with the variables for the data read from the read
statement.

So, basically the while loop reads the data one line at a time, plugs those
data values into the INSERT statement template, and then outputs the result
to the output file.

For this experiment, we used this as the input data file:

$ cat members.csv
Blum,Richard,123 Main St.,Chicago,IL,60601
Blum,Barbara,123 Main St.,Chicago,IL,60601
Bresnahan,Christine,456 Oak Ave.,Columbus,OH,43201
Bresnahan,Timothy,456 Oak Ave.,Columbus,OH,43201
$

When you run the script, nothing appears in the output on the monitor:

$./test23 < members.csv
$

But when you look at the members.sql output file, you should see the
output data:

$ cat members.sql
 INSERT INTO members (lname,fname,address,city,state,zip)
VALUES ('Blum',
 'Richard', '123 Main St.', 'Chicago', 'IL', '60601');
 INSERT INTO members (lname,fname,address,city,state,zip)
VALUES ('Blum',
 'Barbara', '123 Main St.', 'Chicago', 'IL', '60601');
 INSERT INTO members (lname,fname,address,city,state,zip)

VALUES ('Bresnahan',
 'Christine', '456 Oak Ave.', 'Columbus', 'OH', '43201');
 INSERT INTO members (lname,fname,address,city,state,zip)
VALUES ('Bresnahan',
 'Timothy', '456 Oak Ave.', 'Columbus', 'OH', '43201');
$

The script worked exactly as expected! Now you can easily import the
members.sql file into a MySQL database table.

Summary
Understanding how the Bash shell handles input and output can come in
handy when creating your scripts. You can manipulate both how the script
receives data and how it displays data, to customize your script for any
environment. You can redirect the input of a script from the standard input
(STDIN) to any file on the system. You can also redirect the output of the
script from the standard output (STDOUT) to any file on the system.

Besides the STDOUT , you can redirect any error messages your script
generates by redirecting the STDERR output. This is accomplished by
redirecting the file descriptor associated with the STDERR output, which is
file descriptor 2. You can redirect STDERR output to the same file as the
STDOUT output or to a completely separate file. This enables you to separate
normal script messages from any error messages generated by the script.

The Bash shell allows you to create your own file descriptors for use in
your scripts. You can create file descriptors 3 through 8 and assign them to
any output file you desire. After you create a file descriptor, you can
redirect the output of any command to it, using the standard redirection
symbols.

The bash shell also allows you to redirect input to a file descriptor,
providing an easy way to read data contained in a file into your script. You
can use the lsof command to display the active file descriptors in your
shell.

Linux systems provide a special file, called /dev/null , to allow you to
redirect output that you don't want. The Linux system discards anything
redirected to the /dev/null file. You can also use this file to produce an
empty file by redirecting the contents of the /dev/null file to the file.

The mktemp command is a handy feature of the Bash shell that allows you
to easily create temporary files and directories. Simply specify a template
for the mktemp command, and it creates a unique file each time you call it,
based on the file template format. You can also create temporary files and
directories in the /tmp directory on the Linux system, which is a special
location that isn't preserved between system boots.

The tee command is a convenient way to send output both to the standard
output and to a log file. This enables you to display messages from your
script on the monitor and store them in a log file at the same time.

In Chapter 16, you'll see how to control and run your scripts. Linux
provides several different methods for running scripts other than directly
from the command-line interface prompt. You'll see how to schedule your
scripts to run at a specific time, as well as learn how to pause them while
they're running.

CHAPTER 16
Script Control
IN THIS CHAPTER

Handling Signals

Running Scripts in Background Mode

Running Scripts without a Hang-Up

Controlling the Job

Being Nice

Running Like Clockwork

As you start building advanced scripts, you'll probably wonder how to run
and control them on your Linux system. So far in this book, the only way
we've run scripts is directly from the command-line interface in real-time
mode. This isn't the only way to execute scripts in Linux. Quite a few
options are available for running your shell scripts. There are also options
for controlling your scripts. Various control methods include sending
signals to your script, modifying a script's priority, and switching the run
mode while a script is running. This chapter examines the various ways you
can control your shell scripts.

Handling Signals
Linux uses signals to communicate with processes running on the system.
Chapter 4, “More Bash Shell Commands,” described the different Linux
signals and how the Linux system uses these signals to stop, start, and kill
processes. You can control the operation of your shell script by
programming the script to perform certain commands when it receives
specific signals.

Signaling the Bash shell

There are more than 30 Linux signals that can be generated by the system
and applications. Table 16-1 lists the most common Linux system signals
that you'll run across in your shell script writing.

TABLE 16-1 Linux Signals

Signal Value Description
1 SIGHUP Hangs up the process
2 SIGINT Interrupts the process
3 SIGQUIT Stops the process
9 SIGKILL Unconditionally terminates the process
15 SIGTERM Terminates the process if possible
18 SIGCONT Continues a stopped process
19 SIGSTOP Unconditionally stops, but doesn't terminate, the process
20 SIGTSTP Stops or pauses the process, but doesn't terminate

By default, the Bash shell ignores any SIGQUIT (3) and SIGTERM (15)
signals it receives (so an interactive shell cannot be accidentally
terminated). However, the Bash shell does not ignore any received SIGHUP
(1) and SIGINT (2) signals.

If the Bash shell receives a SIGHUP signal, such as when you leave an
interactive shell, it exits. Before it exits, however, it passes the SIGHUP
signal to any processes started by the shell, including any running shell
scripts.

With a SIGINT signal, the shell is just interrupted. The Linux kernel stops
giving the shell processing time on the CPU. When this happens, the shell
passes the SIGINT signal to any processes started by the shell to notify them
of the situation.

As you probably have noticed, the shell passes these signals on to your shell
script program for processing. However, a shell script's default behavior
does not govern these signals, which may have an adverse effect on the
script's operation. To avoid this situation, you can program your script to
recognize signals and perform commands to prepare the script for the
consequences of the signal.

Generating signals
The Bash shell allows you to generate two basic Linux signals using key
combinations on the keyboard. This feature comes in handy if you need to
stop or pause a runaway script.

Interrupting a process
The Ctrl+C key combination generates a SIGINT signal and sends it to any
processes currently running in the shell. You can test this by running a
command that normally takes a long time to finish and pressing the Ctrl+C
key combination:

$ sleep 60
^C
$

The sleep command pauses the shell's operation for the specified number
of seconds and returns the shell prompt. The Ctrl+C key combination sends
a SIGINT signal, which simply stops the current process running in the shell.
By pressing the Ctrl+C key combination before the time passed (60
seconds), you permanently terminated the sleep command.

Pausing a process
Instead of terminating a process, you can pause it in the middle of whatever
it's doing. Sometimes, this can be a dangerous thing (for example, if a script
has a file lock open on a crucial system file), but often it allows you to peek
inside what a script is doing without actually terminating the process.

The Ctrl+Z key combination generates a SIGTSTP signal, stopping any
processes running in the shell. Stopping a process is different than
terminating the process. Stopping the process leaves the program in
memory and able to continue running from where it left off. In the
“Controlling the Job” section later in this chapter, you learn how to restart a
process that's been stopped.

When you use the Ctrl+Z key combination, the shell informs you that the
process has been stopped:

$ sleep 60
^Z

[1]+ Stopped sleep 60
$

The number in the square brackets is the job number assigned by the shell.
The shell refers to each process running in the shell as a job and assigns
each job a unique number within the current shell. It assigns the first started
process job number 1, the second job number 2, and so on.

If you have a stopped job assigned to your shell session, Bash warns you
the first time you try to exit the shell:

$ sleep 70
^Z
[2]+ Stopped sleep 70
$
$ exit
logout
There are stopped jobs.
$

You can view the stopped jobs using the ps command:

$ ps -l
F S UID PID PPID [...] TTY TIME CMD
0 S 1001 1509 1508 [...] pts/0 00:00:00 bash
0 T 1001 1532 1509 [...] pts/0 00:00:00 sleep
0 T 1001 1533 1509 [...] pts/0 00:00:00 sleep
0 R 1001 1534 1509 [...] pts/0 00:00:00 ps
$

In the S column (process state), the ps command shows the stopped job's
state as T . This indicates the command is either being traced or is stopped.

If you really want to exit the shell with a stopped job (or jobs) still active,
just type the exit command again. The shell exits, terminating the stopped
job.

Alternately, now that you know the PID of the stopped job(s), you can use
the kill command to send a SIGKILL (9) signal to terminate it:

$ kill -9 1532
[1]- Killed sleep 60
$ kill -9 1533
[2]+ Killed sleep 70
$

Each time the shell produces a prompt, it also displays the status of any jobs
that have changed states in the shell. After you kill a job, the shell displays
a message showing that the job was killed while running, and then provides
the prompt.

NOTE

On some Linux systems, when you kill the job, you initially don't
get any response. However, the next time you do something that
produces a shell prompt (such as pressing the Enter key), you'll see
a message indicating that the job was killed.

Trapping signals
Instead of allowing your script to leave signals ungoverned, you can trap
them when they appear and perform other commands. The trap command
allows you to specify which Linux signals your shell script can watch for
and intercept from the shell. If the script receives a signal listed in the trap
command, it prevents it from being processed by the shell and instead
handles it locally.

The format of the trap command is

trap commands signals

On the trap command line, you just list the commands you want the shell
to execute, along with a space-separated list of signals you want to trap.
You can specify the signals either by their numeric value or by their Linux
signal name.

Here's a simple example of using the trap command to capture the SIGINT
signal and govern the script's behavior when the signal is sent:

$ cat trapsignal.sh
#!/bin/bash
#Testing signal trapping

trap "echo ' Sorry! I have trapped Ctrl-C'" SIGINT

echo This is a test script.

count=1
while [$count -le 5]
do
 echo "Loop #$count"
 sleep 1
 count=$[$count + 1]
done

echo "This is the end of test script."
exit
$

The trap command used in this example displays a simple text message
each time it detects the SIGINT signal. Trapping this signal makes this script
impervious to the user attempting to stop the program by using the Bash
shell keyboard Ctrl+C command:

$./trapsignal.sh
This is a test script.
Loop #1
Loop #2
^C Sorry! I have trapped Ctrl-C
Loop #3
^C Sorry! I have trapped Ctrl-C
Loop #4
Loop #5
This is the end of test script.
$

Each time the Ctrl+C key combination was used, the script executed the
echo statement specified in the trap command instead of not managing the
signal and allowing the shell to stop the script.

WARNING

If a command in your script is interrupted by a signal, using trap
with a specified command will not necessarily allow the interrupted
command to continue where it left off. To keep critical operations
flowing in your scripts, use trap with a null specification along with
a list of the signals to trap, such as

trap "" SIGINT

Using trap in this way allows the script to completely ignore signal
interruptions and continue its important work.

Trapping a script exit
Besides trapping signals in your shell script, you can trap them when the
shell script exits. This is a convenient way to perform commands just as the
shell finishes its job.

To trap the shell script exiting, just add the EXIT signal to the trap
command:

$ cat trapexit.sh
#!/bin/bash
#Testing exit trapping

trap "echo Goodbye..." EXIT

count=1
while [$count -le 5]
do
 echo "Loop #$count"
 sleep 1
 count=$[$count + 1]
done

exit
$
$./trapexit.sh
Loop #1
Loop #2
Loop #3

Loop #4
Loop #5
Goodbye...
$

When the script gets to the normal exit point, the trap is triggered, and the
shell executes the command you specify on the trap command line. The
EXIT trap also works if you prematurely exit the script:

$./trapexit.sh
Loop #1
Loop #2
Loop #3
^CGoodbye...

$

Because the SIGINT signal isn't in the trap command list, when the Ctrl+C
key combination is used to send that signal the script exits. However, before
the script exits, because the EXIT is trapped, the shell executes the trap
command.

Modifying or removing a trap
To handle traps differently in various sections of your shell script, you
simply reissue the trap command with new options:

$ cat trapmod.sh
#!/bin/bash
#Modifying a set trap

trap "echo ' Sorry...Ctrl-C is trapped.'" SIGINT

count=1
while [$count -le 3]
do
 echo "Loop #$count"
 sleep 1
 count=$[$count + 1]
done

trap "echo ' I have modified the trap!'" SIGINT

count=1
while [$count -le 3]
do

 echo "Second Loop #$count"
 sleep 1
 count=$[$count + 1]
done

exit
$

After the signal trap is modified, the script manages the signal or signals
differently. However, if a signal is received before the trap is modified, the
script processes it per the original trap command:

$./trapmod.sh
Loop #1
^C Sorry...Ctrl-C is trapped.
Loop #2
Loop #3
Second Loop #1
Second Loop #2
^C I have modified the trap!
Second Loop #3
$

TIP

If you try out the trap command in your interactive shell session,
you can view what signals are being trapped by issuing trap -p. If
nothing displays, your shell session is handling signals in the default
manner.

You can also remove a set trap. Add two dashes after the trap command
and a list of the signals you want to return to default behavior:

$ cat trapremoval.sh
#!/bin/bash
#Removing a set trap

trap "echo ' Sorry...Ctrl-C is trapped.'" SIGINT

count=1
while [$count -le 3]
do
 echo "Loop #$count"

 sleep 1
 count=$[$count + 1]
done

trap -- SIGINT
echo "The trap is now removed."

count=1
while [$count -le 3]
do
 echo "Second Loop #$count"
 sleep 1
 count=$[$count + 1]
done

exit
$

NOTE

You can use a single dash instead of a double dash after the trap
command to remove signals traps. Both the single and double dash
work properly.

After the signal trap is removed, the script handles the SIGINT signal in its
default manner, terminating the script. However, if a signal is received
before the trap is removed, the script processes it per the original trap
command:

$./trapremoval.sh
Loop #1
Loop #2
^C Sorry...Ctrl-C is trapped.
Loop #3
The trap is now removed.
Second Loop #1
Second Loop #2
^C
$

In this example, the first Ctrl+C key combination was used to attempt to
terminate the script prematurely. Because the signal was received before the
trap was removed, the script executed the command specified in the trap.

After the script executed the trap removal, Ctrl+C could prematurely
terminate the script.

Running Scripts in Background Mode
Sometimes, running a shell script directly from the command line is
inconvenient. Some scripts can take a long time to process, and you may
not want to tie up the command-line interface as it executes. While the
script is running, you can't do anything else in your terminal session.
Fortunately, there's a simple solution to that problem.

When you use the ps -e command, you see a whole bunch of different
processes running on the Linux system:

$ ps -e
 PID TTY TIME CMD
 1 ? 00:00:02 systemd
 2 ? 00:00:00 kthreadd
 3 ? 00:00:00 rcu_gp
 4 ? 00:00:00 rcu_par_gp
[...]
 2585 pts/0 00:00:00 ps
$

Obviously, all these processes are not running on your terminal. In fact,
many are not running on any terminal — they are running in the
background. In background mode, a process runs without being associated
with a STDIN , STDOUT , and STDERR on a terminal session (Chapter 15,
“Presenting Data”).

You can exploit this feature with your shell scripts as well, allowing them to
run behind the scenes and not lock up your terminal session. The following
sections describe how to run your scripts in background mode on your
Linux system.

Running in the background
Running a shell script in background mode is a fairly easy thing to do. To
run a shell script in background mode from the command-line interface, just
place an ampersand symbol (&) after the command:

$ cat backgroundscript.sh
#!/bin/bash
#Test running in the background

count=1
while [$count -le 5]
do
 sleep 1
 count=$[$count + 1]
done

exit
$
$./backgroundscript.sh &
[1] 2595
$

When you place the ampersand symbol after a command, it separates the
command from the current shell and runs it as a separate background
process on the system. The first thing that displays is the line

[1] 2595

The number in the square brackets is the job number (1) assigned by the
shell to the background process. The next number is the process ID (PID)
the Linux system assigns to the process. Every process running on the
Linux system must have a unique PID.

As soon as the system displays these items, a new command-line interface
prompt appears. You are returned to the current shell, and the command you
executed runs safely in background mode. At this point, you can enter new
commands at the prompt.

When the background process finishes, it displays a message on the
terminal:

[1]+ Done ./backgroundscript.sh

This shows the job number and the status of the job (Done), along with the
command used to start the job (minus the &).

Be aware that while the background process is running, it still uses your
terminal monitor for STDOUT and STDERR messages:

$ cat backgroundoutput.sh
#!/bin/bash

#Test running in the background

echo "Starting the script..."
count=1
while [$count -le 5]
do
 echo "Loop #$count"
 sleep 1
 count=$[$count + 1]
done

echo "Script is completed."
exit
$
$./backgroundoutput.sh &
[1] 2615
$ Starting the script...
Loop #1
Loop #2
Loop #3
Loop #4
Loop #5
Script is completed.

[1]+ Done ./backgroundoutput.sh
$

You'll notice from the example that the output from the
backgroundoutput.sh script displays. The output intermixes with the shell
prompt, which is why Starting the script appears next to the $ prompt.

You can still issue commands while this output is occurring:

$./backgroundoutput.sh &
[1] 2719
$ Starting the script...
Loop #1
Loop #2
Loop #3
pwd
/home/christine/scripts
$ Loop #4
Loop #5
Script is completed.

[1]+ Done ./backgroundoutput.sh
$

While the backgroundoutput.sh script is running in the background, the
command pwd was entered. The script's output, the typed command, and the
command's output all intermixed with each other's output display. This can
be confusing! It is a good idea to redirect STDOUT and STDERR (Chapter 15)
for scripts you will be running in the background to avoid this messy
display.

Running multiple background jobs
You can start any number of background jobs at the same time from the
command-line prompt:

$./testAscript.sh &
[1] 2753
$ This is Test Script #1.

$./testBscript.sh &
[2] 2755
$ This is Test Script #2.

$./testCscript.sh &
[3] 2757
$ And... another Test script.

$./testDscript.sh &
[4] 2759
$ Then...there was one more Test script.

$

Each time you start a new job, the Linux system assigns it a new job
number and PID. You can see that all the scripts are running using the ps
command:

$ ps
 PID TTY TIME CMD
 1509 pts/0 00:00:00 bash
 2753 pts/0 00:00:00 testAscript.sh
 2754 pts/0 00:00:00 sleep
 2755 pts/0 00:00:00 testBscript.sh
 2756 pts/0 00:00:00 sleep
 2757 pts/0 00:00:00 testCscript.sh
 2758 pts/0 00:00:00 sleep
 2759 pts/0 00:00:00 testDscript.sh
 2760 pts/0 00:00:00 sleep

 2761 pts/0 00:00:00 ps
$

You must be careful when using background processes from a terminal
session. Notice in the output from the ps command that each of the
background processes is tied to the terminal session (pts/0) terminal. If the
terminal session exits, the background process also exits.

NOTE

Earlier in this chapter we mentioned that when you attempt to exit
a terminal session, a warning is issued if there are stopped
processes. However, with background processes, only some terminal
emulators remind you that a background job is running, before you
attempt to exit the terminal session.

If you want your script to continue running in background mode after you
have logged off the console, there's something else you need to do. The next
section discusses that process.

Running Scripts without a Hang-up
Sometimes, you may want to start a shell script from a terminal session and
let the script run in background mode until it finishes, even if you exit the
terminal session. You can do this by using the nohup command.

The nohup command blocks any SIGHUP signals that are sent to the process
it is protecting. This prevents the process from exiting when you exit your
terminal session.

The format used for the nohup command is as follows:

nohup command

Here's an example using a shell script launched into the background as the
command:

$ nohup ./testAscript.sh &
[1] 1828
$ nohup: ignoring input and appending output to 'nohup.out'

$

As with a normal background process, the shell assigns the command a job
number, and the Linux system assigns a PID number. The difference is that
when you use the nohup command, the script ignores any SIGHUP signals
sent by the terminal session if you close the session.

Because the nohup command disassociates the process from the terminal,
the process loses the STDOUT and STDERR output links. To accommodate any
output generated by the command, the nohup command automatically
redirects STDOUT and STDERR messages to a file called nohup.out.

NOTE

If possible, the nohup.out file is created in your current working
directory. Otherwise, it is created in your $HOME directory.

The nohup.out file contains all the output that would normally be sent to
the terminal monitor. After the process finishes running, you can view the
nohup.out file for the output results:

$ cat nohup.out
This is Test Script #1.
$

The output appears in the nohup.out file just as if the process ran on the
command line.

NOTE

If you run another command using nohup , the output is appended
to the existing nohup.out file. Be careful when running multiple
commands from the same directory, because all the output is sent to
the same nohup.out file, which can get confusing.

With the use of nohup , you can run scripts in the background, log out of
your terminal session to accomplish other tasks without stopping the script

process, and check on its output later. There's even more flexibility to
managing your background jobs, which is covered next.

Controlling the Job
Earlier in this chapter, you saw how to use the Ctrl+C key combination to
stop a job running in the shell. After you stop a job, the Linux system lets
you either kill or restart it. You can kill the process by using the kill
command. Restarting a stopped process requires that you send it a SIGCONT
signal.

The function of starting, stopping, killing, and resuming jobs is called job
control. With job control, you have full control over how processes run in
your shell environment. This section describes the commands used to view
and control jobs running in your shell.

Viewing jobs
The key command for job control is the jobs command. The jobs
command allows you to view the current jobs being handled by the shell.
Though it doesn't contain the jobs command, the following script will help
us demonstrate the command's power:

$ cat jobcontrol.sh
#!/bin/bash
#Testing job control

echo "Script Process ID: $$"

count=1
while [$count -le 5]
do
 echo "Loop #$count"
 sleep 10
 count=$[$count + 1]
done

echo "End of script..."
exit
$

The script uses the $ variable to display the PID that the Linux system
assigns to the script; then it goes into a loop, sleeping for 10 seconds at a
time for each iteration.

You can start the script from the command-line interface and then stop it
using the Ctrl+Z key combination:

$./jobcontrol.sh
Script Process ID: 1580
Loop #1
Loop #2
Loop #3
^Z
[1]+ Stopped ./jobcontrol.sh
$

Using the same script, another job is started as a background process, using
the ampersand symbol. To make life a little easier, the output of that script
is redirected to a file so that it doesn't appear on the screen:

$./jobcontrol.sh > jobcontrol.out &
[2] 1603
$

The jobs command enables you to view the jobs assigned to the shell, as
shown here:

$ jobs
[1]+ Stopped ./jobcontrol.sh
[2]- Running ./jobcontrol.sh>
jobcontrol.out &
$

The jobs command shows both the stopped and the running jobs, along
with their job numbers and the commands used in the jobs.

NOTE

You probably noticed the plus and minus signs in the jobs
command output. The job with the plus sign is considered the
default job. It would be the job referenced by any job control
commands, if a job number wasn't specified in the command line.

The job with the minus sign is the job that would become the
default job when the current default job finishes processing. There
will be only one job with the plus sign and one job with the minus
sign at any time, no matter how many jobs are running in the shell.

You can view the various jobs' PIDs by adding the -l parameter (lowercase
L) to the jobs command:

$ jobs -l
[1]+ 1580 Stopped ./jobcontrol.sh
[2]- 1603 Running ./jobcontrol.sh>
jobcontrol.out &
$

The jobs command uses a few different command-line parameters,
including the ones shown in Table 16-2.

TABLE 16-2 The jobs Command Parameters

Parameter Description
-l Lists the PID of the process along with the job number
-n Lists only jobs that have changed their status since the last

notification from the shell
-p Lists only the PIDs of the jobs
-r Lists only the running jobs
-s Lists only stopped jobs

If you need to remove stopped jobs, use the kill command to send a
SIGKILL (9) signal to the correct PID. It's a good idea to double-check that

you've got an accurate process number to avoid stopping processes that
need to keep running:

$ jobs -l
[1]+ 1580 Stopped ./jobcontrol.sh
$
$ kill -9 1580
[1]+ Killed ./jobcontrol.sh
$

It's a little tedious to check and recheck for correct PIDs. So in the next
section, you learn how to use commands to interact with the default process
using no PID or job number.

Restarting stopped jobs
Under Bash job control, you can restart any stopped job as either a
background process or a foreground process. A foreground process takes
over control of the terminal you're working on, so be careful about using
that feature.

To restart a job in background mode, use the bg command:

$./restartjob.sh
^Z
[1]+ Stopped ./restartjob.sh
$
$ bg
[1]+ ./restartjob.sh &
$
$ jobs
[1]+ Running ./restartjob.sh &
$

Because the job was the default job, indicated by the plus sign, only the bg
command was needed to restart it in background mode. Notice that no PID
is listed when the job is moved into background mode.

If you have additional jobs, you need to use the job number along with the
bg command to control the ones that are not the default job:

$ jobs
$
$./restartjob.sh
^Z

[1]+ Stopped ./restartjob.sh
$
$./newrestartjob.sh
^Z
[2]+ Stopped ./newrestartjob.sh
$
$ bg 2
[2]+ ./newrestartjob.sh &
$
$ jobs
[1]+ Stopped ./restartjob.sh
[2]- Running ./newrestartjob.sh &
$

The command bg 2 was used to send the second job into background mode.
Notice that when the jobs command was used, it listed both jobs with their
status, even though the default job is not currently in background mode.

To restart a job in foreground mode, use the fg command, along with the
job number:

$ jobs
[1]+ Stopped ./restartjob.sh
[2]- Running ./newrestartjob.sh &
$
$ fg 2
./newrestartjob.sh
This is the script's end.
$

Because the job is running in foreground mode, the command-line prompt
does not appear until the script finishes.

Being Nice
In a multitasking operating system (which Linux is), the kernel is
responsible for assigning CPU time for each process running on the system.
The scheduling priority is the amount of CPU time the kernel assigns to the
process relative to the other processes. By default, all user processes started
from the shell have the same scheduling priority on the Linux system.

The scheduling priority, also called the nice value, is an integer value. It
ranges from –20 (the highest priority) to +19 (the lowest priority). By

default, the Bash shell starts all user processes with a scheduling priority of
0.

TIP

It's confusing to remember that -20 (the lowest value) is the highest
priority, and +19 (the highest value) is the lowest priority. Just
remember the phrase, “Nice guys finish last.” The “nicer” or higher
you are in value, the lower your chance of getting the CPU.

Sometimes, you want to change the scheduling priority of a shell script —
lowering its priority so that it doesn't take as much processing power away
from other running programs or giving it a higher priority so that it gets
more CPU time. You can do this by using the nice command.

Using the nice command
The nice command allows you to set the scheduling priority of a command
as you start it. To make a command run with less priority, just use the -n
command-line option for nice to specify a new priority level:

$ nice -n 10 ./jobcontrol.sh > jobcontrol.out &
[2] 16462
$
$ ps -p 16462 -o pid,ppid,ni,cmd
 PID PPID NI CMD
 16462 1630 10 /bin/bash ./jobcontrol.sh
$

Notice that you must use the nice command on the same line as the
command you are starting. The output from the ps command confirms that
the nice value (column NI) has been set to 10.

The nice command causes the script to run at a lower priority. However, if
you try to increase the priority of one of your commands, you might be in
for a surprise:

$ nice -n -5 ./jobcontrol.sh > jobcontrol.out &
[2] 16473
$ nice: cannot set niceness: Permission denied

$ ps -p 16473 -o pid,ppid,ni,cmd
 PID PPID NI CMD
 16473 1630 0 /bin/bash ./jobcontrol.sh
$

The nice command prevents normal system users from increasing the
priority of their commands. Notice that the job does run, even though the
attempt to raise its priority with the nice command failed. Only the root
user or users with super user privileges can elevate a job's priority.

You don't have to use the -n option with the nice command. You can
simply type the priority, preceded by a dash:

$ nice -10 ./jobcontrol.sh > jobcontrol.out &
[2] 16520
$
$ ps -p 16520 -o pid,ppid,ni,cmd
 PID PPID NI CMD
 16520 1630 10 /bin/bash ./jobcontrol.sh
$

However, this can get confusing when the priority is a negative number,
because a double-dash is required. It's best just to use the -n option to avoid
confusion.

Using the renice command
Sometimes, you'd like to change the priority of a command that's already
running on the system. The renice command helps in this situation. It
allows you to specify the PID of a running process to change its priority:

$./jobcontrol.sh > jobcontrol.out &
[2] 16642
$
$ ps -p 16642 -o pid,ppid,ni,cmd
 PID PPID NI CMD
 16642 1630 0 /bin/bash ./jobcontrol.sh
$
$ renice -n 10 -p 16642
16642 (process ID) old priority 0, new priority 10
$
$ ps -p 16642 -o pid,ppid,ni,cmd
 PID PPID NI CMD
 16642 1630 10 /bin/bash ./jobcontrol.sh
$

The renice command automatically updates the scheduling priority of the
running process. As with the nice command, the renice command has
some limitations for those without super user privileges — you can only
renice processes that you own, and only to a lower priority. However, the
root user account and those users with super user privileges can use the
renice command to change any process to any priority.

Running like Clockwork
When you start working with scripts, you may want to run a script at some
time in the future — usually at a time when you're not there. The Linux
system provides ways to run a script at a preselected future time: the at
command, the cron table, and anacron . Each method uses a different
technique for scheduling when and how often to run scripts. The following
sections describe each of these methods.

Scheduling a job using the at command
The at command allows you to specify one future time when the Linux
system will run a script. The at command submits a job to a queue with
directions for when the shell should run the job.

The at daemon, atd , runs in the background and checks the job queue for
jobs to run. Many Linux distributions start this daemon automatically at
boot time, but some don't even have the package installed. If your
distribution doesn't have it, and you'd like to install it (Chapter 9, “Installing
Software”), the package name is, as you might suppose, at.

The atd daemon checks a special directory on the system (usually
/var/spool/at or /var/spool/cron/atjobs) for jobs submitted using the
at command. By default, the atd daemon checks this directory every 60
seconds. When a job is present, the atd daemon checks the time the job is
set to be run. If the time matches the current time, the atd daemon runs the
job.

The following sections describe how to use the at command to submit jobs
to run and how to manage these jobs.

Understanding the at command format

The basic at command format is pretty simple:

at [-f filename] time

By default, the at command submits input from STDIN to the queue. You
can specify a filename used to read commands (your script file) using the -f
parameter.

The time parameter specifies when you want the Linux system to run the
job. If you specify a time that has already passed, the at command runs the
job at that time on the next day.

You can get pretty creative with how you specify the time. The at
command recognizes lots of different time formats:

A standard hour and minute, such as 10:15

An a.m./p.m. indicator, such as 10:15PM

A specific named time, such as now , noon , midnight , or teatime
(4:00 p.m.)

In addition to specifying the time to run the job, you can include a specific
date, using a few different date formats:

A standard date format, such as MMDDYY, MM/DD/YY, or DD.MM.YY

A text date, such as Jul 4 or Dec 25 , with or without the year

A time increment:

Now + 25 minutes

10:15PM tomorrow

10:15 + 7 days

TIP

Several different date and time formats are available for use with
the at utility. All of them are conveniently described in the
/usr/share/doc/at/timespec file.

When you use the at command, the job is submitted to a job queue. The job
queue holds the jobs submitted by the at command for processing. There
are 52 different job queues available for different priority levels. Job queues
are referenced using lowercase letters, a through z , and uppercase letters A
through Z, with A queue being a different queue than a queue.

NOTE

A few years ago, the batch command was another method that
allowed a script to be run at a later time. The batch command was
unique because you could schedule a script to run when the system
was at a lower usage level. Nowadays the batch command is simply
a script, /usr/bin/batch , that calls the at command and submits
your job to the b queue.

The higher alphabetically the job queue letter, the lower the priority (higher
nice value) the job will run under. By default, at jobs are submitted to the
at job a queue. If you want to run a job at a lower priority, you can specify
a different queue letter using the -q parameter. And if you want your jobs to
consume as little CPU as possible compared to other current processes,
you'll want to put your job into the z (lowercase Z) queue.

Retrieving job output
When an at job runs on the Linux system, there's no monitor associated
with the job. Instead, the Linux system uses the email address of the user
who submitted the at job as STDOUT and STDERR . Any output destined to
STDOUT or STDERR is mailed to the user via the mail system.

Here's a simple example using the at command to schedule a job to run on
a CentOS distribution:

$ cat tryat.sh
#!/bin/bash
Trying out the at command

echo "This script ran at $(date +%B%d,%T)"
echo
echo "This script is using the $SHELL shell."
echo
sleep 5
echo "This is the script's end."

exit
$
$ at -f tryat.sh now
warning: commands will be executed using /bin/sh
job 3 at Thu Jun 18 16:23:00 2020
$

The at command displays the job number assigned to the job along with the
time the job is scheduled to run. The -f option tells what script file to use,
and the now time designation directs at to run the script immediately.

NOTE

Don't let that warning message from the at command cause you
concern. Because this script has #!/bin/bash as its first line, the
commands in this shell script will be executed by the Bash shell.

Using email for the at command's output is inconvenient at best. The at
command sends email via the sendmail application. If your system does not
use sendmail, you won't get any output! Therefore, it's best to redirect
STDOUT and STDERR in your scripts (Chapter 15) when using the at
command, as the following example shows:

$ cat tryatout.sh
#!/bin/bash
Trying out the at command redirecting output

outfile=$HOME/scripts/tryat.out

echo "This script ran at $(date +%B%d,%T)"> $outfile
echo>> $outfile
echo "This script is using the $SHELL shell.">> $outfile
echo>> $outfile
sleep 5
echo "This is the script's end.">> $outfile

exit
$
$ at -M -f tryatout.sh now
warning: commands will be executed using /bin/sh
job 4 at Thu Jun 18 16:48:00 2020
$
$ cat $HOME/scripts/tryat.out
This script ran at June18,16:48:21

This script is using the /bin/bash shell.

This is the script's end.
$

If you don't want to use email or redirection with at , it is best to add the -M
option to suppress any output generated by jobs using the at command.

Listing pending jobs
The atq command allows you to view what jobs are pending on the system:

$ at -M -f tryatout.sh teatime
warning: commands will be executed using /bin/sh
job 5 at Fri Jun 19 16:00:00 2020
$
$ at -M -f tryatout.sh tomorrow
warning: commands will be executed using /bin/sh
job 6 at Fri Jun 19 16:53:00 2020
$
$ at -M -f tryatout.sh 20:30
warning: commands will be executed using /bin/sh
job 7 at Thu Jun 18 20:30:00 2020
$
$ at -M -f tryatout.sh now+1hour
warning: commands will be executed using /bin/sh
job 8 at Thu Jun 18 17:54:00 2020
$
$ atq
1 Thu Jun 18 16:11:00 2020 a christine

5 Fri Jun 19 16:00:00 2020 a christine
6 Fri Jun 19 16:53:00 2020 a christine
7 Thu Jun 18 20:30:00 2020 a christine
8 Thu Jun 18 17:54:00 2020 a christine
$

The job listing from the atq command shows the job number, the date and
time the system will run the job, and the job queue in which the job is
stored.

Removing jobs
After you know the information about what jobs are pending in the job
queues, you can use the atrm command to remove a pending job. Just
specify the job number you want to remove:

$ atq
1 Thu Jun 18 16:11:00 2020 a christine
5 Fri Jun 19 16:00:00 2020 a christine
6 Fri Jun 19 16:53:00 2020 a christine
7 Thu Jun 18 20:30:00 2020 a christine
8 Thu Jun 18 17:54:00 2020 a christine
$
$ atrm 5
$
$ atq
1 Thu Jun 18 16:11:00 2020 a christine
6 Fri Jun 19 16:53:00 2020 a christine
7 Thu Jun 18 20:30:00 2020 a christine
8 Thu Jun 18 17:54:00 2020 a christine
$

You can only remove jobs that you submit for execution. Jobs submitted by
others to at are off-limits for removal by you.

Scheduling regular scripts
Using the at command to schedule a script to run at a future preset time is
great, but what if you need that script to run at the same time every day or
once a week or once a month? Instead of having to continually submit at
jobs, you can use another feature of the Linux system.

The Linux system uses the cron program to allow you to schedule jobs that
need to run on a regular basis. The cron program runs in the background

and checks special tables, called cron tables, for jobs that are scheduled to
run.

Looking at the cron table
The cron table uses a special format for allowing you to specify when a job
should be run. The format for the cron table is

minutepasthour hourofday dayofmonth month dayofweek command

The cron table allows you to specify entries as values, as ranges of values
(such as 1–5), or as a wildcard character (the asterisk). For example, if you
want to run a command at 10:15 every day, you would use this cron table
entry:

15 10 * * * command

The wildcard character used in the dayofmonth, month, and dayofweek
fields indicates that cron will execute the command every day of every
month at 10:15. To specify a command to run at 4:15 p.m. every Monday,
you would use military time (1:00 p.m. is 13 , 2:00 p.m. is 14 , 3:00 p.m. is
15 , and so on), as in the following:

15 16 * * 1 command

You can specify the dayofweek entry as either a three-character text value
(mon , tue , wed , thu , fri , sat , sun) or as a numeric value, with 0 and 7
representing Sunday and 6 being Saturday.

Here's another example. To execute a command at 12:00 noon on the first
day of every month, you would use the following format:

00 12 1 * * command

The dayofmonth entry specifies a date value (1 – 31) for the month.

TIP

The astute reader might be wondering just how you would be able
to set a command to execute on the last day of every month because
you can't set the dayofmonth value to cover every month's last day.
A common method is to add an if-then statement that uses the
date command to check if tomorrow's date is the first day of the
month (01):

00 12 28-31 * * if ["$(date +%d -d tomorrow)" = 01] ;
then command ; fi

This line checks on the potential last days of a month (28-31) at
12:00 noon to see if it is indeed the last day of the month, and if so,
cron runs command.

Another method replaces command with a controlling script and
runs it on potential last days of the month. The controlling script
contains an if - then statement to check if tomorrow's date is the
first day of the month. When tomorrow is the 1st, the controlling
script issues the command to execute the script that must run on the
month's last day.

The command list must specify the full command pathname or shell script
to run. You can add any command-line parameters or redirection symbols
you like, as a regular command line:

15 10 * * * /home/christine/backup.sh> backup.out

The cron program runs the script using the user account that submitted the
job. Thus, you must have the proper permissions to access the script (or
command) and output files specified in the command listing.

Building the cron table
Each system user can have their own cron table (including the root user) for
running scheduled jobs. Linux provides the crontab command for handling
the cron table. To list an existing cron table, use the -l parameter:

$ crontab -l
no crontab for christine
$

By default, each user's cron table file doesn't exist. To add entries to your
cron table, use the -e parameter. When you do that, the crontab command
starts a text editor (Chapter 10, “Working with Editors”) with the existing
cron table (or an empty file if it doesn't yet exist).

Viewing cron directories
When you create a script that has less precise execution time needs, it is
easier to use one of the preconfigured cron script directories. There are four
basic directories: hourly, daily, monthly, and weekly.

$ ls /etc/cron.*ly
/etc/cron.daily:
0anacron apt-compat cracklib-runtime logrotate [...]
apport bsdmainutils dpkg man-db [...]

/etc/cron.hourly:

/etc/cron.monthly:
0anacron

/etc/cron.weekly:
0anacron man-db update-notifier-common
$

Thus, if you have a script that needs to be run one time per day, just copy
the script to the daily directory and cron executes it each day.

Looking at the anacron program
The only problem with the cron program is that it assumes that your Linux
system is operational 24 hours a day, 7 days a week. Unless you're running
Linux in a server environment, this may not necessarily be true.

If the Linux system is turned off at the time a job is scheduled to run in the
cron table, the job doesn't run. The cron program doesn't retroactively run
missed jobs when the system is turned back on. To resolve this issue, many
Linux distributions include the anacron program.

If anacron determines that a job has missed a scheduled running, it runs the
job as soon as possible. This means that if your Linux system is turned off

for a few days, when it starts back up any jobs scheduled to run during the
time it was off are automatically run. With anacron , you're guaranteed that
a job is run, which is why it is often used instead of cron for managing
scheduled jobs.

The anacron program deals only with programs located in the cron
directories, such as /etc/cron.monthly . It uses time stamps to determine
if the jobs have been run at the proper scheduled intervals. A time stamp
file exists for each cron directory and is located in /var/spool/anacron :

$ ls /var/spool/anacron
cron.daily cron.monthly cron.weekly
$
$ sudo cat /var/spool/anacron/cron.daily
[sudo] password for christine:
20200619
$

The anacron program has its own table (usually located at
/etc/anacrontab) to check the job directories:

$ cat /etc/anacrontab
/etc/anacrontab: configuration file for anacron

See anacron(8) and anacrontab(5) for details.

SHELL=/bin/sh
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/us
r/bin
HOME=/root
LOGNAME=root

These replace cron's entries
1 5 cron.daily run-parts --report
/etc/cron.daily
7 10 cron.weekly run-parts --report
/etc/cron.weekly
@monthly 15 cron.monthly run-parts --report
/etc/cron.monthly
$

The basic format of the anacron table is slightly different from that of the
cron table:

period delay identifier command

The period entry defines how often the jobs should be run, specified in
days. The anacron program uses this entry to check against the jobs' time
stamp file. The delay entry specifies how many minutes after the system
starts the anacron program should run missed scripts.

NOTE

The anacron utility does not run scripts located in the
/etc/cron.hourly directory. This is because the anacron program
does not deal with scripts that have execution time needs of less
than daily.

The identifier entry is a unique non-blank character string — for
example, cron.weekly . It is used to uniquely identify the job in log
messages and error emails. The command entry contains the run-parts
program and a cron script directory name. The run-parts program is
responsible for running any script in the directory passed to it.

The at , cron , and anacron utilities all have their place in keeping your
scripts running at their scheduled times. However, you may want a script's
execution triggered when a user starts a new Bash shell instead of at a
particular time on the clock. We'll look at that next.

Starting scripts with a new shell
The ability to run a script every time a user starts a new Bash shell (even
just when a specific user starts a Bash shell) can come in handy. Sometimes,
you want to set shell features for a shell session or ensure that a specific file
has been set.

Recall that the user's startup files run when they log into the Bash shell
(covered in detail in Chapter 6, “Using Linux Environment Variables”).
Also, remember that not every distribution has all the startup files.
Essentially, the first file found in the following ordered list is run and the
rest are ignored:

$HOME/.bash_profile

$HOME/.bash_login

$HOME/.profile

Therefore, you should place any scripts you want run at login time in the
first file listed for your distribution.

The Bash shell runs the .bashrc file any time a new shell is started. You
can test this by adding a simple echo statement to the .bashrc file in your
home directory and starting a new shell:

$ cat $HOME/.bashrc
.bashrc

Source global definitions
if [-f /etc/bashrc]; then
 . /etc/bashrc
fi

User specific environment
PATH="$HOME/.local/bin:$HOME/bin:$PATH"
export PATH

Uncomment the following line if you don't like systemctl's
auto-paging feature:
export SYSTEMD_PAGER=

User specific aliases and functions
echo "I'm in a new shell!"
$
$ bash
I'm in a new shell!
$
$ exit
exit
$

The .bashrc file is also typically run from one of the Bash startup files.
Because the .bashrc file runs both when you log into the Bash shell and
when you start a Bash shell, if you need a script to run in both instances
place your shell script or the call to execute your script inside this file.

Working through a Practical Example

In this section, we'll describe a script that puts a few of the script control
commands we've covered in this chapter to a practical use — trapping
signals for a script, and then running it in the background. This particular
script works best for executing small scripts you already use that need
protection from interrupting signals while they run.

For ease of use, the controlling script accepts signals to trap as script
options, as well as a parameter naming the script to run by employing
getopts (Chapter 14, “Handling User Input”). The script option to denote
signals is handled here in the script:

while getopts S: opt #Signals to trap listed with -S
option
do
 case "$opt" in
 S) # Found the -S option
 signalList="" #Set signalList to null
 #
 for arg in $OPTARG
 do
 case $arg in
 1) #SIGHUP signal is handled
 signalList=$signalList"SIGHUP "
 ;;
 2) #SIGINT signal is handled
 signalList=$signalList"SIGINT "
 ;;
 20) #SIGTSTP signal is handled
 signalList=$signalList"SIGTSTP "
 ;;
 *) #Unknown or unhandled signal
 echo "Only signals 1 2 and/or 20 are
allowed."
 echo "Exiting script..."
 exit
 ;;
 esac
 done
 ;;
 *) echo 'Usage: -S "Signal(s)" script-to-run-name'
 echo 'Exiting script...'
 exit
 ;;
 esac

 #
done

Notice that this code section uses while and for loops (Chapter 13, “More
Structured Commands”), as well as a case statement (Chapter 12, “Using
Structured Commands”) to process through the -S option and its
accompanying signal numbers. The only signals allowed for trapping with
this script are SIGHUP (1), SIGINT (2), and SIGTSTP (20). If an option besides
-S is used or incorrect signals to trap are listed, “error” messages are
provided to the script user.

After the -S option and its parameters are processed, the script determines if
a script name was provided using $@ stored in the $OPTIND environment
variable:

shift $[$OPTIND - 1] #Script name should be in parameter

if [-z $@]
then
 echo
 echo 'Error: Script name not provided.'
 echo 'Usage: -S "Signal(s)" script-to-run-name'
 echo 'Exiting script...'
 exit
elif [-O $@] && [-x $@]
then
 scriptToRun=$@
 scriptOutput="$@.out"
else
 echo
 echo "Error: $@ is either not owned by you or not
executable."
 echo "Exiting..."
 exit
fi

If the script name parameter is provided, a few additional checks are done
to ensure that the script file is owned by the script user and that it is
executable via if - then and elif statements (Chapter 12). If all is well, the
script's name is stored in another variable, scriptToRun , which is not
essential but adds to the code's clarity. Additionally, an output file is created
that contains the script's name and tacks on .out.

Now that we have the script's name we need to run and the signals to block,
we're ready to trap signals and kick off the script:

trap "" $signalList #Ignore these signals

source $scriptToRun> $scriptOutput & #Run script in
background

trap -- $signalList #Set to default behavior

First notice we're being a little fancy in how we run our script. Instead of
using bash or ./ to execute the file, we're employing the source utility.
This is another method for running Bash scripts called sourcing. It operates
just like using bash to run a script but doesn't create a subshell. However,
source does not deal well with any commands listed in trap besides null
(""). That's not a problem, because using null causes the source executed
script to simply ignore any signals listed in the trap command. Our running
script will disregard any sent $signalList signals. Once $scriptToRun is
kicked off into the background to execute, its output is saved to the
scriptOutput file.

Another item to notice in this script segment is the second trap command.
Immediately after sending $scriptToRun into the background, the signal
traps are removed. This is considered good form — trapping signals before
the code that needs the traps, and then removing the signal traps
immediately afterward.

Before we test this practical script, let's look at a script that was created
specifically to test this code. Nothing too exciting here, but you'll want to
familiarize yourself with the script's output so that the test's output file will
make sense:

$ cat testTandR.sh
#!/bin/bash
#Test script to use with trapandrun.sh

echo "This is a test script."

count=1
while [$count -le 5]
do

 echo "Loop #$count"
 sleep 10
 count=$[$count + 1]
done

echo "This is the end of test script."
#exit
$

Now we'll run the test and send the trapped signals to the running script
process to see if they are ignored or processed in a default manner. First,
we'll use the proper syntax for specifying to our script (trapandrun.sh) the
signals to ignore (1 , 2 , and 20) and the name of our script for it to execute
(testTandR.sh):

$./trapandrun.sh -S "1 2 20" testTandR.sh

Running the testTandR.sh script in background
while trapping signal(s): SIGHUP SIGINT SIGTSTP
Output of script sent to: testTandR.sh.out

$

Now that the script (testTandR.sh) is running, we'll use the ps command to
find its PID and the kill command to send a signal to it:

$ ps
 PID TTY TIME CMD
 1637 pts/0 00:00:00 bash
 1701 pts/0 00:00:00 trapandrun.sh
 1702 pts/0 00:00:00 sleep
 1703 pts/0 00:00:00 ps
$
$ kill -1 1701
$
$ cat testTandR.sh.out
This is a test script.
Loop #1
Loop #2
$
$ ps
 PID TTY TIME CMD
 1637 pts/0 00:00:00 bash
 1701 pts/0 00:00:00 trapandrun.sh
 1704 pts/0 00:00:00 sleep
 1706 pts/0 00:00:00 ps
$

You can tell from the script's output file as well as the second ps command
that the script just ignored our SIGHUP (1) signal and didn't hang up. This
time, let's try to interrupt the script using the SIGINT (2) signal:

$ kill -2 1701
$
$ cat testTandR.sh.out
This is a test script.
Loop #1
Loop #2
Loop #3
$
$ ps
 PID TTY TIME CMD
 1637 pts/0 00:00:00 bash
 1701 pts/0 00:00:00 trapandrun.sh
 1709 pts/0 00:00:00 sleep
 1711 pts/0 00:00:00 ps
$

The script ignored this signal too! So far it is running as we planned. Let's
try sending our last trapped signal, SIGTSTP (20):

$ kill -20 1701
$
$ ps
 PID TTY TIME CMD
 1637 pts/0 00:00:00 bash
 1701 pts/0 00:00:00 trapandrun.sh
 1712 pts/0 00:00:00 sleep
 1714 pts/0 00:00:00 ps
$
$ cat testTandR.sh.out
This is a test script.
Loop #1
Loop #2
Loop #3
Loop #4
Loop #5
$
$ cat testTandR.sh.out
This is a test script.
Loop #1
Loop #2
Loop #3
Loop #4
Loop #5

This is the end of test script.
$
$ ps
 PID TTY TIME CMD
 1637 pts/0 00:00:00 bash
 1718 pts/0 00:00:00 ps
$

It worked perfectly. All three designated signals were ignored, and the
script ran in the background without interruption. Here's the controlling
script in its entirety for your perusal:

$ cat trapandrun.sh
#!/bin/bash
Set specified signal traps; then run script in background

####################### Check Signals to Trap
#######################

while getopts S: opt #Signals to trap listed with -S
option
do
 case "$opt" in
 S) # Found the -S option
 signalList="" #Set signalList to null
 #
 for arg in $OPTARG
 do
 case $arg in
 1) #SIGHUP signal is handled
 signalList=$signalList"SIGHUP "
 ;;
 2) #SIGINT signal is handled
 signalList=$signalList"SIGINT "
 ;;
 20) #SIGTSTP signal is handled
 signalList=$signalList"SIGTSTP "
 ;;
 *) #Unknown or unhandled signal
 echo "Only signals 1 2 and/or 20 are
allowed."
 echo "Exiting script..."
 exit
 ;;
 esac
 done
 ;;

 *) echo 'Usage: -S "Signal(s)" script-to-run-name'
 echo 'Exiting script...'
 exit
 ;;
 esac
 #
done

####################### Check Script to Run
#######################

shift $[$OPTIND - 1] #Script name should be in parameter

if [-z $@]
then
 echo
 echo 'Error: Script name not provided.'
 echo 'Usage: -S "Signal(s)" script-to-run-name'
 echo 'Exiting script...'
 exit
elif [-O $@] && [-x $@]
then
 scriptToRun=$@
 scriptOutput="$@.out"
else
 echo
 echo "Error: $@ is either not owned by you or not
executable."
 echo "Exiting..."
 exit
fi

######################### Trap and Run
###########################

echo
echo "Running the $scriptToRun script in background"
echo "while trapping signal(s): $signalList"
echo "Output of script sent to: $scriptOutput"
echo
trap "" $signalList #Ignore these signals

source $scriptToRun> $scriptOutput & #Run script in
background

trap -- $signalList #Set to default behavior

####################### Exit script #######################

exit
$

One item we hope you caught in reading through this controlling script is
that checking whether or not you have execute permission on the file is not
needed. When using the source command to run a script, just as with bash ,
you don't need execute permissions set on the file.

What improvements did you consider while reading through this script's
code? How about modifying it so that the script user has the option of
running the script in the future using the at utility? You might consider
allowing the user to choose between running the script at the default
priority or a lower one. You could trap all the controlling script's exits so
that all the exit messages are consistent. There are so many things you can
do to fine-tune the control of your scripts!

Summary
The Linux system allows you to control your shell scripts by using signals.
The Bash shell accepts signals and passes them on to any process running
under the shell process. Linux signals allow you to easily kill a runaway
process or temporarily pause a long-running process.

You can use the trap statement in your scripts to catch signals and perform
commands. This feature provides a simple way to control whether a user
can interrupt your script while it's running.

By default, when you run a script in a terminal session shell, the interactive
shell is suspended until the script completes. You can cause a script or
command to run in background mode by adding an ampersand sign (&) after
the command name. When you run a script or command in background
mode, the interactive shell returns, allowing you to continue entering more
commands.

Any background processes you start are still tied to your terminal session. If
you exit the terminal session, the background processes also exit. To
prevent this from happening, use the nohup command. This command
intercepts any signals intended for the command that would stop it — for

example, when you exit the terminal session. This allows scripts to continue
running in background mode even if you exit the terminal session.

When you move a process to background mode, you can still control what
happens to it. The jobs command allows you to view processes started
from the shell session. After you know the job ID of a background process,
you can use the kill command to send Linux signals to the process or use
the fg command to bring the process back to the foreground in the shell
session. You can suspend a running foreground process by using the Ctrl+Z
key combination and place it back in background mode by using the bg
command.

The nice and renice commands allow you to change the priority level of a
process. By giving a process a lower priority, you give other, higher-priority
processes more time from the CPU. This comes in handy when running
long processes that can take lots of CPU time.

In addition to controlling processes while they're running, you can
determine when a process starts on the system. Instead of running a script
directly from the command-line interface prompt, you can schedule the
process to run at an alternative time. You can accomplish this in several
different ways. The at command enables you to run a script once at a preset
time. The cron program provides an interface that can run scripts at a
regularly scheduled interval. And the anacron utility ensures scripts that
need to run are executed in a timely manner.

Finally, the Linux system provides script files for you to use for scheduling
your scripts to run whenever a user starts a new Bash shell. Similarly, the
startup files, such as .bashrc , are located in every user's home directory to
provide a location to place scripts and commands that run with a new shell.

In the next chapter, where we're introducing the Part III: Advanced Shell
Scripting section, we look at how to write script functions. Script functions
allow you to write code blocks once and then use them in multiple locations
throughout your script. This keeps your code cleaner and makes script
updates much easier.

Part III
Advanced Shell Scripting
IN THIS PART

Chapter 17 Creating Functions

Chapter 18 Writing Scripts for Graphical Desktops

Chapter 19 Introducing sed and gawk

Chapter 20 Regular Expressions

Chapter 21 Advanced sed

Chapter 22 Advanced gawk

Chapter 23 Working with Alternative Shells

CHAPTER 17
Creating Functions
IN THIS CHAPTER

Exploring basic script functions

Returning a value from a function

Using variables in functions

Investigating array variables and functions

Considering function recursion

Creating a library

Using functions on the command line

Often while writing shell scripts, you'll find yourself using the same code in
multiple locations. If it's just a small code snippet, it's usually not that big a
deal. However, rewriting large chunks of code multiple times in your shell
script can get tiring. The Bash shell provides a way to help you out by
supporting user-defined functions. You can encapsulate your shell script
code into a function and use it as many times as you want, anywhere in
your script. This chapter walks you through the process of creating your
own shell script functions and demonstrates how to use them in other shell
script applications.

Exploring Basic Script Functions
As you start writing more complex shell scripts, you'll find yourself reusing
parts of code that perform specific tasks. Sometimes, it's something simple,
such as displaying a text message and retrieving an answer from the script
users. Other times, it's a complicated calculation that's used multiple times
in your script as part of a larger process.

In each of these situations, it can get tiresome writing the same blocks of
code over and over in your script. It would be nice to just write the block of
code once and be able to refer to that block of code anywhere in your script
without having to rewrite it.

The Bash shell provides a feature allowing you to do just that. Functions
are blocks of script code that you assign a name to and reuse anywhere in
your code. Whenever you need to use that block of code in your script, you
simply use the function name you assigned it (referred to as calling the
function). This section describes how to create and use functions in your
shell scripts.

Creating a function
You can use one of two formats to create functions in Bash shell scripts.
The first format uses the keyword function , along with the function name
you assign to the block of code:

function name {
 commands
}

The name attribute defines a unique name assigned to the function. Each
function you define in your script must be assigned a unique name.

The commands are one or more Bash shell commands that make up your
function. When you call the function, the Bash shell executes each of the
commands in the order in which they appear in the function, just as in a
normal script.

The second format for defining a function in a Bash shell script more
closely follows how functions are defined in other programming languages:

name() {
commands
}

The empty parentheses after the function name indicate that you're defining
a function. The same naming rules apply in this format as in the original
shell script function format.

Using functions

To use a function in your script, specify the function name on a line, just as
you would any other shell command:

$ cat test1
#!/bin/bash
using a function in a script

function func1 {
 echo "This is an example of a function"
}

count=1
while [$count -le 5]
do
 func1
 count=$[$count + 1]
done

echo "This is the end of the loop"
func1
echo "Now this is the end of the script"
$
$./test1
This is an example of a function
This is an example of a function
This is an example of a function
This is an example of a function
This is an example of a function
This is the end of the loop
This is an example of a function
Now this is the end of the script
$

Each time you reference the func1 function name, the Bash shell returns to
the func1 function definition and executes any commands you defined
there.

The function definition doesn't have to be the first thing in your shell script,
but be careful. If you attempt to use a function before it's defined, you'll get
an error message:

$ cat test2
#!/bin/bash
using a function located in the middle of a script

count=1

echo "This line comes before the function definition"

function func1 {
 echo "This is an example of a function"
}

while [$count -le 5]
do
 func1
 count=$[$count + 1]
done
echo "This is the end of the loop"
func2
echo "Now this is the end of the script"

function func2 {
 echo "This is an example of a function"
}
$
$./test2
This line comes before the function definition
This is an example of a function
This is an example of a function
This is an example of a function
This is an example of a function
This is an example of a function
This is the end of the loop
./test2: func2: command not found
Now this is the end of the script
$

The first function, func1 , was defined after a couple of statements in the
script, which is perfectly fine. When the func1 function was used in the
script, the shell knew where to find it.

However, the script attempted to use the func2 function before it was
defined. Because the func2 function wasn't defined, when the script reached
the place where we used it, it produced an error message.

You also need to be careful about your function names. Remember, each
function name must be unique, or you'll have a problem. If you redefine a
function, the new definition overrides the original function definition,
without producing any error messages:

$ cat test3
#!/bin/bash

testing using a duplicate function name

function func1 {
echo "This is the first definition of the function name"
}

func1

function func1 {
 echo "This is a repeat of the same function name"
}

func1
echo "This is the end of the script"
$
$./test3
This is the first definition of the function name
This is a repeat of the same function name
This is the end of the script
$

The original definition of the func1 function works fine, but after the
second definition of the func1 function, any subsequent uses of the function
utilize the second definition.

Returning a Value from a Function
The Bash shell treats functions like mini-scripts, complete with an exit
status (see Chapter 11, “Basic Script Building”). There are three different
ways you can generate an exit status for your functions.

The default exit status
By default, the exit status of a function is the exit status returned by the last
command in the function. After the function executes, you use the standard
$? variable to determine the exit status of the function:

$ cat test4
#!/bin/bash
testing the exit status of a function

func1() {
 echo "trying to display a non-existent file"
 ls -l badfile

}

echo "testing the function: "
func1
echo "The exit status is: $?"
$
$./test4
testing the function:
trying to display a non-existent file
ls: badfile: No such file or directory
The exit status is: 1
$

The exit status of the function is 1 because the last command in the function
failed. However, you have no way of knowing whether or not any of the
other commands in the function completed successfully. Look at this
example:

$ cat test4b
#!/bin/bash
testing the exit status of a function

func1() {
 ls -l badfile
 echo "This was a test of a bad command"
}

echo "testing the function:"
func1
echo "The exit status is: $?"
$
$./test4b
testing the function:
ls: badfile: No such file or directory
This was a test of a bad command
The exit status is: 0
$

This time, because the function ended with an echo statement that
completed successfully, the exit status of the function is 0, even though one
of the commands in the function failed. Using the default exit status of a
function can be a dangerous practice. Fortunately, we have a couple of other
solutions.

Using the return command

The Bash shell uses the return command to exit a function with a specific
exit status. The return command allows you to specify a single integer
value to define the function exit status, providing an easy way for you to
programmatically set the exit status of your function:

$ cat test5
#!/bin/bash
using the return command in a function

function dbl {
 read -p "Enter a value: " value
 echo "doubling the value"
 return $[$value * 2]
}

dbl
echo "The new value is $?"
$

The dbl function doubles the integer value contained in the $value variable
provided by the user input. It then returns the result using the return
command, which the script displays using the $? variable.

You must be careful, however, when using this technique to return a value
from a function. Keep the following two tips in mind to avoid problems:

Remember to retrieve the return value as soon as the function
completes.

Remember that an exit status must be in the range of 0 to 255.

If you execute any other commands before retrieving the value of the
function using the $? variable, the return value from the function is lost.
Remember that the $? variable returns the exit status of the last executed
command.

The second problem defines a limitation for using this return value
technique. Because an exit status must be less than 256, the result of your
function must produce an integer value less than 256. Any value over that
returns an error value:

$./test5
Enter a value: 200
doubling the value

The new value is 1
$

You cannot use this return value technique if you need to return either larger
integer values or a string value. Instead, you need to use another method,
demonstrated in the next section.

Using function output
Just as you can capture the output of a command to a shell variable, you can
also capture the output of a function to a shell variable. You can use this
technique to retrieve any type of output from a function to assign to a
variable:

 result=$(dbl)

This command assigns the output of the dbl function to the $result shell
variable. Here's an example of using this method in a script:

$ cat test5b
#!/bin/bash
using the echo to return a value

function dbl {
 read -p "Enter a value: " value
 echo $[$value * 2]
}

result=$(dbl)
echo "The new value is $result"
$
$./test5b
Enter a value: 200
The new value is 400
$
$./test5b
Enter a value: 1000
The new value is 2000
$

The new function now uses an echo statement to display the result of the
calculation. The script just captures the output of the dbl function instead of
looking at the exit status for the answer.

There's a subtle trick that this example demonstrates. You'll notice that the
db1 function really outputs two messages. The read command outputs a
short message querying the user for the value. The Bash shell script is smart
enough to not consider this as part of the STDOUT output and ignores it. If
you had used an echo statement to produce this query message to the user, it
would have been captured by the shell variable as well as the output value.

NOTE

Using this technique, you can also return floating-point and string
values, making this an extremely versatile method for returning
values from functions.

Using Variables in Functions
You might have noticed in the test5 example in the previous section that
we used a variable called $value within the function to hold the value that
it processed. When you use variables in your functions, you need to be
somewhat careful about how you define and handle them. This is a common
cause of problems in shell scripts. This section goes over a few techniques
for handling variables both inside and outside your shell script functions.

Passing parameters to a function
As mentioned earlier in the “Returning a Value from a Function” section,
the Bash shell treats functions just like mini-scripts. This means that you
can pass parameters to a function just like a regular script (see Chapter 14,
“Handling User Input”).

Functions can use the standard parameter environment variables to
represent any parameters passed to the function on the command line. For
example, the name of the function is defined in the $0 variable, and any
parameters on the function command line are defined using the variables
$1, $2, and so on. You can also use the special variable $# to determine the
number of parameters passed to the function.

When specifying the function in your script, you must provide the
parameters on the same command line as the function, like this:

func1 $value1 10

The function can then retrieve the parameter values using the parameter
environment variables. Here's an example of using this method to pass
values to a function:

$ cat test6
#!/bin/bash
passing parameters to a function

function addem {
 if [$# -eq 0] || [$# -gt 2]
 then
 echo -1
 elif [$# -eq 1]
 then
 echo $[$1 + $1]
 else
 echo $[$1 + $2]
 fi
}

echo -n "Adding 10 and 15: "
value=$(addem 10 15)
echo $value
echo -n "Let's try adding just one number: "
value=$(addem 10)
echo $value
echo -n "Now try adding no numbers: "
value=$(addem)
echo $value
echo -n "Finally, try adding three numbers: "
value=$(addem 10 15 20)
echo $value
$
$./test6
Adding 10 and 15: 25
Let's try adding just one number: 20
Now try adding no numbers: -1
Finally, try adding three numbers: -1
$

The addem function in the text6 script first checks the number of
parameters passed to it by the script. If there aren't any parameters, or if

there are more than two parameters, addem returns a value of -1 . If there's
just one parameter, addem adds the parameter to itself for the result. If there
are two parameters, addem adds them together for the result.

Because the function uses the special parameter environment variables for
its own parameter values, it can't directly access the script parameter values
from the command line of the script. The following example fails:

$ cat badtest1
#!/bin/bash
trying to access script parameters inside a function

function badfunc1 {
 echo $[$1 * $2]
}

if [$# -eq 2]
then
 value=$(badfunc1)
 echo "The result is $value"
else
 echo "Usage: badtest1 a b"
fi
$
$./badtest1
Usage: badtest1 a b
$./badtest1 10 15
./badtest1: * : syntax error: operand expected (error token
is "*
")
The result is
$

Even though the function uses the $1 and $2 variables, they aren't the same
$1 and $2 variables available in the main part of the script. Instead, if you
want to use those values in your function, you have to manually pass them
when you call the function:

$ cat test7
#!/bin/bash
trying to access script parameters inside a function

function func7 {
 echo $[$1 * $2]
}

if [$# -eq 2]
then
 value=$(func7 $1 $2)
 echo "The result is $value"
else
 echo "Usage: badtest1 a b"
fi
$
$./test7
Usage: badtest1 a b
$./test7 10 15
The result is 150
$

When we pass the $1 and $2 variables to the function, they become
available for the function to use, just like any other parameter.

Handling variables in a function
One thing that causes problems for shell script programmers is the scope of
a variable. The scope is where the variable is visible. Variables defined in
functions can have a different scope than regular variables—that is, they
can be hidden from the rest of the script.

Functions use two types of variables:

Global

Local

The following sections describe how to use both types of variables in your
functions.

Global variables
Global variables are variables that are valid anywhere within the shell
script. If you define a global variable in the main section of a script, you can
retrieve its value inside a function. Likewise, if you define a global variable
inside a function, you can retrieve its value in the main section of the script.

By default, any variables you define in the script are global variables.
Variables defined outside a function can be accessed within the function just
fine:

$ cat test8
#!/bin/bash
using a global variable to pass a value

function dbl {
 value=$[$value * 2]
}

read -p "Enter a value: " value
dbl
echo "The new value is: $value"
$
$./test8
Enter a value: 450
The new value is: 900
$

The $value variable is defined outside the function and assigned a value
outside the function. When the dbl function is called, the variable and its
value are still valid inside the function. When the variable is assigned a new
value inside the function, that new value is still valid when the script
references the variable.

This practice can be dangerous, however, especially if you intend to use
your functions in different shell scripts. It requires that you know exactly
what variables are used in the function, including any variables used to
calculate values not returned to the script. Here's an example of how things
can go bad:

$ cat badtest2
#!/bin/bash
demonstrating a bad use of variables

function func1 {
 temp=$[$value + 5]
 result=$[$temp * 2]
}

temp=4
value=6

func1
echo "The result is $result"
if [$temp -gt $value]
then
 echo "temp is larger"

else
 echo "temp is smaller"
fi
$
$./badtest2
The result is 22
temp is larger
$

Because the $temp variable was used in the function, its value is
compromised in the script, producing a result that you may not have
intended. There's an easy way to solve this problem in your functions, as
shown in the next section.

Local variables
Instead of using global variables in functions, any variables that the
function uses internally can be declared as local variables. To do that, just
use the local keyword in front of the variable declaration:

local temp

You can also use the local keyword in an assignment statement while
assigning a value to the variable:

local temp=$[$value + 5]

The local keyword ensures that the variable is limited to within the
function. If a variable with the same name appears outside the function in
the script, the shell keeps the two variable values separate. That means you
can easily keep your function variables separate from your script variables
and share only the ones you want to share:

$ cat test9
#!/bin/bash
demonstrating the local keyword

function func1 {
 local temp=$[$value + 5]
 result=$[$temp * 2]
}

temp=4
value=6

func1
echo "The result is $result"
if [$temp -gt $value]
then
 echo "temp is larger"
else
 echo "temp is smaller"
fi
$
$./test9
The result is 22
temp is smaller
$

Now when you use the $temp variable within the func1 function, it doesn't
affect the value assigned to the $temp variable in the main script.

Investigating Array Variables and Functions
Chapter 5, “Understanding the Shell,” discussed an advanced way of
allowing a single variable to hold multiple values by using arrays. Using
array variable values with functions is a little tricky, and there are some
special considerations. This section describes a technique that allows you to
do that.

Passing arrays to functions
The art of passing an array variable to a script function can be confusing. If
you try to pass the array variable as a single parameter, it doesn't work:

$ cat badtest3
#!/bin/bash
trying to pass an array variable

function testit {
 echo "The parameters are: $@"
 thisarray=$1
 echo "The received array is ${thisarray[*]}"
}

myarray=(1 2 3 4 5)
echo "The original array is: ${myarray[*]}"
testit $myarray
$

$./badtest3
The original array is: 1 2 3 4 5
The parameters are: 1
The received array is 1
$

If you try using the array variable as a function parameter, the function only
picks up the first value of the array variable.

To solve this problem, you must disassemble the array variable into its
individual values and use the values as function parameters. Inside the
function, you can reassemble all the parameters into a new array variable.
Here's an example of doing this:

$ cat test10
#!/bin/bash
array variable to function test

function testit {
 local newarray
 newarray=(`echo "$@"`)
 echo "The new array value is: ${newarray[*]}"
}

myarray=(1 2 3 4 5)
echo "The original array is ${myarray[*]}"
testit ${myarray[*]}
$
$./test10
The original array is 1 2 3 4 5
The new array value is: 1 2 3 4 5
$

The script uses the $myarray variable to hold all the individual array values
to place them all on the command line for the function. The function then
rebuilds the array variable from the command-line parameters. Once inside
the function, the array can be used just like any other array:

$ cat test11
#!/bin/bash
adding values in an array

function addarray {
 local sum=0
 local newarray
 newarray=(`echo "$@"`)

 for value in ${newarray[*]}
 do
 sum=$[$sum + $value]
 done
 echo $sum
}

myarray=(1 2 3 4 5)
echo "The original array is: ${myarray[*]}"
arg1=$(echo ${myarray[*]})
result=$(addarray $arg1)
echo "The result is $result"
$
$./test11
The original array is: 1 2 3 4 5
The result is 15
$

The addarray function iterates through the array values, adding them
together. You can put any number of values in the myarray array variable,
and the addarray function adds them.

Returning arrays from functions
Passing an array variable from a function back to the shell script uses a
similar technique. The function uses an echo statement to output the
individual array values in the proper order, and the script must reassemble
them into a new array variable:

$ cat test12
#!/bin/bash
returning an array value

function arraydblr {
 local origarray
 local newarray
 local elements
 local i
 origarray=($(echo "$@"))
 newarray=($(echo "$@"))
 elements=$[$# - 1]
 for ((i = 0; i <= $elements; i++))
 {
 newarray[$i]=$[${origarray[$i]} * 2]
 }
 echo ${newarray[*]}

}

myarray=(1 2 3 4 5)
echo "The original array is: ${myarray[*]}"
arg1=$(echo ${myarray[*]})
result=($(arraydblr $arg1))
echo "The new array is: ${result[*]}"
$
$./test12
The original array is: 1 2 3 4 5
The new array is: 2 4 6 8 10

The script passes the array value, using the $arg1 variable to the arraydblr
function. The arraydblr function reassembles the array into a new array
variable, and it makes a copy for the output array variable. It then iterates
through the individual array variable values, doubles each value, and places
it into the copy of the array variable in the function.

The arraydblr function then uses the echo statement to output the
individual values of the array variable values. The script uses the output of
the arraydblr function to reassemble a new array variable with the values.

Considering Function Recursion
One feature that local function variables provide is self-containment. A self-
contained function doesn't use any resources outside the function, other than
the variables that the script passes to it in the command line.

This feature enables the function to be called recursively, which means that
the function calls itself to reach an answer. Usually, a recursive function has
a base value that it eventually iterates down to. Many advanced
mathematical algorithms use recursion to reduce a complex equation down
one level repeatedly, until they get to the level defined by the base value.

The classic example of a recursive algorithm is calculating factorials. A
factorial of a number is the value of the preceding numbers multiplied with
the number. Thus, to find the factorial of 5, you'd perform the following
equation:

5! = 1 * 2 * 3 * 4 * 5 = 120

Using recursion, the equation is reduced down to the following format:

x! = x * (x-1)!

or in English, the factorial of x is equal to x times the factorial of x-1. This
can be expressed in a simple recursive script:

function factorial {
 if [$1 -eq 1]
 then
 echo 1
 else
 local temp=$[$1 - 1]
 local result=`factorial $temp`
 echo $[$result * $1]
 fi
}

The factorial function uses itself to calculate the value for the factorial:

$ cat test13
#!/bin/bash
using recursion

function factorial {
 if [$1 -eq 1]
 then
 echo 1
 else
 local temp=$[$1 - 1]
 local result=$(factorial $temp)
 echo $[$result * $1]
 fi
}

read -p "Enter value: " value
result=$(factorial $value)
echo "The factorial of $value is: $result"
$
$./test13
Enter value: 5
The factorial of 5 is: 120
$

Using the factorial function is easy. Having created a function like this, you
may want to use it in other scripts. Next, let's look at how to do that
efficiently.

Creating a Library
It's easy to see how functions can help save typing in a single script, but
what if you just happen to use the same single code block between scripts?
It's obviously challenging if you have to define the same function in each
script, only to use it one time in each script.

There's a solution for that problem! The Bash shell allows you to create a
library file for your functions and then reference that single library file in as
many scripts as you need to.

The first step in the process is to create a common library file that contains
the functions you need in your scripts. Here's a simple library file called
myfuncs that defines three simple functions:

$ cat myfuncs
my script functions

function addem {
 echo $[$1 + $2]
}

function multem {
 echo $[$1 * $2]
}

function divem {
 if [$2 -ne 0]
 then
 echo $[$1 / $2]
 else
 echo -1
 fi
}
$

The next step is to include the myfuncs library file in your script files that
want to use any of the functions. This is where things get tricky.

The problem is with the scope of shell functions. As with environment
variables, shell functions are valid only for the shell session in which you
define them. If you run the myfuncs shell script from your shell command-
line interface prompt, the shell creates a new shell and runs the script in that

new shell. This defines the three functions for that shell, but when you try
to run another script that uses those functions, they aren't available.

This applies to scripts as well. If you try to just run the library file as a
regular script file, the functions don't appear in your script:

$ cat badtest4
#!/bin/bash
using a library file the wrong way
./myfuncs

result=$(addem 10 15)
echo "The result is $result"
$
$./badtest4
./badtest4: addem: command not found
The result is
$

The key to using function libraries is the source command. The source
command executes commands within the current shell context instead of
creating a new shell to execute them. You use the source command to run
the library file script inside your shell script. Doing so makes the functions
available to the script.

The source command has a shortcut alias, called the dot operator. To
source the myfuncs library file in a shell script, you just need to add the
following line:

. ./myfuncs

This example assumes that the myfuncs library file is located in the same
directory as the shell script. If not, you need to use the appropriate path to
access the file. Here's an example of creating a script that uses the myfuncs
library file:

$ cat test14
#!/bin/bash
using functions defined in a library file
. ./myfuncs

value1=10
value2=5
result1=$(addem $value1 $value2)
result2=$(multem $value1 $value2)

result3=$(divem $value1 $value2)
echo "The result of adding them is: $result1"
echo "The result of multiplying them is: $result2"
echo "The result of dividing them is: $result3"
$
$./test14
The result of adding them is: 15
The result of multiplying them is: 50
The result of dividing them is: 2
$

The script successfully uses the functions defined in the myfuncs library
file.

Using Functions on the Command Line
You can use script functions to create some pretty complex operations.
Sometimes, it would be nice to be able to use these functions directly on the
command-line interfacet.

Just as you can use a script function as a command in a shell script, you can
also use a script function as a command in the command-line interface. This
is a nice feature because after you define the function in the shell, you can
use it from any directory on the system; you don't have to worry about a
script being in your PATH environment variable. The trick is to get the shell
to recognize the function. You can do that in a couple of ways.

Creating functions on the command line
Because the shell interprets commands as you type them, you can define a
function directly on the command line. You can do that in two ways.

The first method defines the function all on one line:

$ function divem { echo $[$1 / $2]; }
$ divem 100 5
20
$

When you define the function on the command line, you must remember to
include a semicolon at the end of each command so that the shell knows
where to separate commands:

$ function doubleit { read -p "Enter value: " value; echo $[
 $value * 2]; }
$
$ doubleit
Enter value: 20
40
$

The other method is to use multiple lines to define the function. When you
do that, the Bash shell uses the secondary prompt to ask you for more
commands. Using this method, you don't need to place a semicolon at the
end of each command; just press the Enter key.

$ function multem {
> echo $[$1 * $2]
> }
$ multem 2 5
10
$

When you use the brace at the end of the function, the shell knows that
you're finished defining the function.

WARNING

Be extremely careful when creating functions on the command line.
If you use a function with the same name as a built-in command or
another command, the function overrides the original command.

Defining functions in the .bashrc file
The obvious downside to defining shell functions directly on the command
line is that when you exit the shell, your function disappears. For complex
functions, this can become a problem.

A much simpler method is to define the function in a place where it is
reloaded by the shell each time you start a new shell.

The best place to do that is the .bashrc file. The Bash shell looks for this
file in your home directory each time it starts, whether interactively or as
the result of starting a new shell from within an existing shell.

Directly defining functions
You can define the functions directly in the .bashrc file in your home
directory. Most Linux distributions already define some things in the
.bashrc file, so be careful not to remove those items. Just add your
functions to the bottom of the existing file. Here's an example of doing that:

$ cat .bashrc
.bashrc

Source global definitions
if [-r /etc/bashrc]; then
 . /etc/bashrc
fi

function addem {
 echo $[$1 + $2]
}
$

The function doesn't take effect until the next time you start a new Bash
shell. After you do that, you can use the function anywhere on the system.

Sourcing function files
Just as in a shell script, you can use the source command (or its alias, the
dot operator) to add functions from an existing library file to your .bashrc
script:

$ cat .bashrc
.bashrc

Source global definitions
if [-r /etc/bashrc]; then
 . /etc/bashrc
fi

. /home/rich/libraries/myfuncs
$

Make sure that you include the proper pathname to reference the library file
for the Bash shell to find. The next time you start a shell, all the functions in
your library are available at the command-line interface:

$ addem 10 5
15

$ multem 10 5
50
$ divem 10 5
2
$

Even better, the shell also passes any defined functions to child shell
processes so that your functions are automatically available for any shell
scripts you run from your shell session. You can test this by writing a script
that uses the functions without defining or sourcing them:

$ cat test15
#!/bin/bash
using a function defined in the .bashrc file

value1=10
value2=5
result1=$(addem $value1 $value2)
result2=$(multem $value1 $value2)
result3=$(divem $value1 $value2)
echo "The result of adding them is: $result1"
echo "The result of multiplying them is: $result2"
echo "The result of dividing them is: $result3"
$
$./test15
The result of adding them is: 15
The result of multiplying them is: 50
The result of dividing them is: 2
$

Even without sourcing the library file, the functions worked perfectly in the
shell script.

Working Through a Practical Example
There's much more to using functions than just creating your own functions
to work with. In the open source world, code sharing is essential, and that
also applies to shell script functions. Quite a few different shell script
functions are available for you to download and use in your own
applications.

This section walks through downloading, installing, and using the GNU
shtool shell script function library. The shtool library provides some simple

shell script functions for performing everyday shell functions, such as
working with temporary files and folders or formatting output to display.

Downloading and installing
The first step in the process is to download and install the GNU shtool
library to your system so that you can use the library functions in your own
shell scripts. To do that, you need to use an FTP client program or a
browser in a graphical desktop. Use this URL to download the shtool
package:

ftp://ftp.gnu.org/gnu/shtool/shtool-2.0.8.tar.gz

This downloads the file shtool-2.0.8.tar.gz to your download folder.
From there, you can use the cp command-line tool or the graphical file
manager tool in your Linux distribution (such as Files in Ubuntu) to copy
the file to your home directory.

After you copy the file to your home directory, you can extract it using the
tar command:

tar -zxvf shtool-2.0.8.tar.gz

This extracts the package files into a folder named shtool-2.0.8 . Use the
cd command to change to the newly created folder:

cd shtool-2.0.8

Now you're ready to build the shell script library file.

Building the library
The shtool distribution file must be configured for your specific Linux
environment. To do that, it uses standard configure and make commands,
commonly used in the C programming environment. To build the library
file, you just need to run two commands:

$./configure
$ make

The configure command checks the software necessary to build the shtool
library file. As it finds the tools it needs, it modifies the configuration file
with the proper paths to the tools.

The make command runs through the steps to build the shtool library file.
The resulting file (shtool) is the full library package file. You can test the
library file using the make command as well:

$ make test
Running test suite:
echo...........ok
mdate..........ok
table..........ok
prop...........ok
move...........ok
install........ok
mkdir..........ok
mkln...........ok
mkshadow.......ok
fixperm........ok
rotate.........ok
tarball........ok
subst..........ok
platform.......ok
arx............ok
slo............ok
scpp...........ok
version........ok
path...........ok
OK: passed: 19/19
$

The test mode tests all the functions available in the shtool library. If all
pass, then you're ready to install the library into a common location on your
Linux system so that all your scripts can use it. To do so, you can use the
install option of the make command. However, you need to be logged in
as the root user account to run it:

make install
Password:
./shtool mkdir -f -p -m 755 /usr/local
./shtool mkdir -f -p -m 755 /usr/local/bin
./shtool mkdir -f -p -m 755 /usr/local/share/man/man1
./shtool mkdir -f -p -m 755 /usr/local/share/aclocal
./shtool mkdir -f -p -m 755 /usr/local/share/shtool
...
./shtool install -c -m 644 sh.version
/usr/local/share/shtool/sh.version
./shtool install -c -m 644 sh.path

/usr/local/share/shtool/sh.path
#

Now you're ready to start using the functions in your own shell scripts!

The shtool library functions
The shtool library provides quite a few functions that can come in handy
when you're working with shell scripts. Table 17.1 shows the functions
available in the library.

TABLE 17.1 The shtool Library Functions

Function Description
arx Creates an archive with extended features
echo Displays the string value with construct expansion
fixperm Changes file permissions inside a folder tree
install Installs a script or file
mdate Displays modification time of a file or directory
mkdir Creates one or more directories
mkln Creates a link using relative paths
mkshadow Creates a shadow tree
move Moves files with substitution
path Works with program paths
platform Displays the platform identity
rop Displays an animated progress propeller
rotate Rotates logfiles
scpp The sharing C preprocessor
slo Separates linker options by library class
subst Uses sed substitution operations
table Displays field-separated data in a table format
tarball Creates tar files from files and folders
version Creates a version information file

Each of the shtool functions has lots of options and arguments that you can
use to modify how it works. Here's the format to use a shtool function:

shtool [options] [function [options] [args]]

Using the library
You can use the shtool functions directly from the command line or from
within your shell scripts. Here's an example of using the platform function
inside a shell script:

$ cat test16
#!/bin/bash

shtool platform
$./test16
Ubuntu 20.04 (AMD64)
$

The platform function returns the Linux distribution and the CPU
hardware that the host system is using. One of our favorites is the prop
function. It creates a spinning propeller from alternating the \, |, /, and –
characters while something is processing. That's a great tool to help show
your shell script users that something is happening in the background while
the script is running.

To use the prop function, you just pipe the output of the function you want
to monitor to the shtool script:

$ ls –al /usr/bin | shtool prop –p "waiting......"
waiting...
$

The prop function alternates between the propeller characters to indicate
that something is happening. In this case, it's the output from the ls
command. How much of that you see depends on how fast your CPU can
list all the files in the /usr/bin folder! The –p option allows you to
customize the output text that appears before the propeller characters. Now
that's getting fancy!

Summary

Shell script functions allow you to place script code that's repeated
throughout the script in a single place. Instead of having to rewrite blocks
of code, you can create a function containing the code block and then just
reference the function name in your script. The Bash shell jumps to the
function code block whenever it sees the function name used in the script.

You can even create script functions that return values. This allows you to
create functions that interact with the script, returning both numeric and
character data. Script functions can return numeric data by using the exit
status of the last command in the function or by using the return
command. The return command lets you programmatically set the exit
status of your function to a specific value based on the results of the
function.

Functions can also return values using the standard echo statement. You can
capture the output data using the backtick character as you would any other
shell command. This enables you to return any type of data from a function,
including strings and floating-point numbers.

You can use shell variables within your functions, assigning values to
variables and retrieving values from existing variables. This allows you to
pass any type of data both into and out of a script function from the main
script program. Functions also allow you to define local variables, which
are accessible only from within the function code block. Local variables let
you create self-contained functions, which don't interfere with any variables
or processes used in the main shell script.

Functions can also call other functions, including themselves. When a
function calls itself, it is called recursion. A recursive function often has a
base value that is the terminal value of the function. The function continues
to call itself with a decreasing parameter value until the base value is
reached.

If you use lots of functions in your shell scripts, you can create library files
of script functions. The library files can be included in any shell script file
by using the source command, or its alias, the dot operator. This approach is
called sourcing the library file. The shell doesn't run the library file but
makes the functions available within the shell that runs the script. You can
use this same technique to create functions that you can use on the normal
shell command line. You can either define functions directly on the

command line or add them to your .bashrc file so that they are available
for each new shell session you start. This is a handy way to create utilities
that can be used no matter what your PATH environment variable is set to.

The next chapter discusses the use of text graphics in your scripts. In this
day of modern graphical interfaces, sometimes a plain-text interface just
doesn't cut it. The Bash shell provides some easy ways for you to
incorporate simple graphics features in your scripts to help spice things up.

CHAPTER 18
Writing Scripts for Graphical Desktops
IN THIS CHAPTER

Creating text menus

Doing Windows

Getting graphic

Over the years, shell scripts have acquired a reputation for being dull and
boring. This doesn't have to be the case, however, if you plan on running
your scripts in a graphical environment. There are plenty of ways to interact
with your script user that don't rely on the read and echo statements. This
chapter dives into a few methods you can use to add life to your interactive
scripts so that they don't look so old-fashioned.

Creating Text Menus
The most common way to create an interactive shell script is to utilize a
menu. Offering your users a choice of various options helps guide them
through what the script can and can't do.

Menu scripts usually clear the display area and then show a list of available
options. The user can select an option by pressing an associated letter or
number assigned to each option. Figure 18-1 shows the layout of a sample
menu.

The core of a shell script menu is the case command (see Chapter 12,
“Using Structured Commands”). The case command performs specific
commands, depending on what character your user selects from the menu.

The following sections walk you through the steps you should follow to
create a menu-based shell script.

Create the menu layout

The first step in creating a menu is, obviously, to determine what elements
you want to appear in the menu and lay them out the way that you want
them to appear.

FIGURE 18-1 Displaying a menu from a shell script

Before creating the menu, it's usually a good idea to clear the monitor
display. Doing so enables you to display your menu in a clean environment
without distracting text.

The clear command uses the terminal settings information of your terminal
session (see Chapter 2, “Getting to the Shell”) to clear any text that appears
on the monitor. After the clear command, you can use the echo command
to display your menu elements.

By default, the echo command can display only printable text characters.
When you're creating menu items, it's often helpful to use nonprintable
items, such as the tab and newline characters. To include these characters in
your echo command, you must use the -e option. Thus, the command

 echo -e "1.\tDisplay disk space"

results in the output line

 1. Display disk space

This greatly helps in formatting the layout of the menu items. With just a
few echo commands, you can create a reasonable-looking menu:

 clear
 echo
 echo -e "\t\t\tSys Admin Menu\n"
 echo -e "\t1. Display disk space"
 echo -e "\t2. Display logged on users"
 echo -e "\t3. Display memory usage"
 echo -e "\t0. Exit menu\n\n"
 echo –en "\t\tEnter option: "

The -en option on the last line displays the line without adding the newline
character at the end. This gives the menu a more professional look, because
the cursor stays at the end of the line waiting for the user's input.

The last part of creating the menu is to retrieve the input from the user. This
is done using the read command (see Chapter 14, “Handling User Input”).
Because we expect only single-character input, the nice thing to do is to use
the -n option in the read command to retrieve only one character. Doing so
allows the user to enter a number without having to press the Enter key:

 read -n 1 option

Next, you need to create your menu functions.

Create the menu functions
Shell script menu options are easier to create as a group of separate
functions. This approach enables you to create a simple, concise case
command that is easy to follow.

To do that, you must create separate shell functions for each of your menu
options. The first step in creating a menu shell script is to determine what
functions you want your script to perform and lay them out as separate
functions in your code.

It is common practice to create stub functions for functions that aren't
implemented yet. A stub function is a function that doesn't contain any

commands yet or possibly just an echo statement indicating what should be
there eventually:

 function diskspace {
 clear
 echo "This is where the diskspace commands will go"
 }

The stub function enables your menu to operate smoothly while you work
on the individual functions. You don't have to code all the functions for
your menu to work. You'll notice that the function starts out with the clear
command. This enables you to start the function on a clean monitor screen,
without the menu showing.

One thing that helps out in the shell script menu is to create the menu layout
itself as a function:

 function menu {
 clear
 echo
 echo -e "\t\t\tSys Admin Menu\n"
 echo -e "\t1. Display disk space"
 echo -e "\t2. Display logged on users"
 echo -e "\t3. Display memory usage"
 echo -e "\t0. Exit program\n\n"
 echo -en "\t\tEnter option: "
 read -n 1 option
 }

This strategy enables you to easily redisplay the menu at any time just by
calling the menu function.

Add the menu logic
Now that you have your menu layout and your functions, you just need to
create the programming logic to put the two together. As mentioned earlier,
this requires the case command.

The case command should call the appropriate function according to the
character selection expected from the menu. It's always a good idea to use
the default case command character (the asterisk) to catch any incorrect
menu entries.

The following code illustrates the use of the case command in a typical
menu:

 menu
 case $option in
 0)
 break ;;
 1)
 diskspace ;;
 2)
 whoseon ;;
 3)
 memusage ;;
 *)
 clear
 echo "Sorry, wrong selection";;
 esac

This code first uses the menu function to clear the monitor screen and
display the menu. The read command in the menu function pauses until the
user presses a character on the keyboard. After that's been done, the case
command takes over. The case command calls the appropriate function
based on the returned character. After the function completes, the case
command exits.

Putting it all together
Now that you've seen all the parts that make up a shell script menu, let's put
them together and see how they all interoperate. Here's an example of a full
menu script:

 $ cat menu1
 #!/bin/bash
 # simple script menu

 function diskspace {
 clear
 df -k
 }

 function whoseon {
 clear
 who
 }

 function memusage {
 clear
 cat /proc/meminfo
 }

 function menu {
 clear
 echo
 echo -e "\t\t\tSys Admin Menu\n"
 echo -e "\t1. Display disk space"
 echo -e "\t2. Display logged on users"
 echo -e "\t3. Display memory usage"
 echo -e "\t0. Exit program\n\n"
 echo -en "\t\tEnter option: "
 read -n 1 option
 }

 while [1]
 do
 menu
 case $option in
 0)
 break ;;
 1)
 diskspace ;;
 2)
 whoseon ;;
 3)
 memusage ;;
 *)
 clear
 echo "Sorry, wrong selection";;
 esac
 echo -en "\n\n\t\t\tHit any key to continue"
 read -n 1 line
 done
 clear
 $

This menu creates three functions to retrieve administrative information
about the Linux system using common commands. It uses a while loop to
continually loop through the menu until the user selects option 0, which
uses the break command to break out of the while loop.

You can use this template to create any shell script menu interface. It
provides a simple way to interact with your users.

Using the select command
You may have noticed that half the challenge of creating a text menu is just
creating the menu layout and retrieving the answer that you enter. The Bash
shell provides a handy little utility for you that does all this work
automatically.

The select command allows you to create a menu from a single command
line and then retrieve the entered answer and automatically process it. The
format of the select command is as follows:

 select variable in list
 do
 commands
 done

The list parameter is a space-separated list of text items that build the
menu. The select command displays each item in the list as a numbered
option and then displays a special prompt, defined by the PS3 environment
variable, for the selection.

Here's a simple example of the select command in action:

 $ cat smenu1
 #!/bin/bash
 # using select in the menu

 function diskspace {
 clear
 df -k
 }

 function whoseon {
 clear
 who
 }

 function memusage {
 clear
 cat /proc/meminfo
 }

 PS3="Enter option: "
 select option in "Display disk space" "Display logged on
users" ~CA
 "Display memory usage" "Exit program"

 do
 case $option in
 "Exit program")
 break ;;
 "Display disk space")
 diskspace ;;
 "Display logged on users")
 whoseon ;;
 "Display memory usage")
 memusage ;;
 *)
 clear
 echo "Sorry, wrong selection";;
 esac
 done
 clear
 $

The select statement must all be on one line in the code file. That's
indicated by the continuation character in the listing. When you run the
program, it automatically produces the following menu:

 $./smenu1
 1) Display disk space 3) Display memory usage
 2) Display logged on users 4) Exit program
 Enter option:

When you use the select command, remember that the result value stored
in the variable is the entire text string and not the number associated with
the menu item. The text string values are what you need to compare in your
case statements.

Doing Windows
Using text menus is a step in the right direction, but there's still so much
missing in our interactive scripts, especially if we try to compare them to
the graphical Windows world. Fortunately for us, some resourceful people
out in the open source world have helped us out.

The dialog package is a nifty little tool originally created by Savio Lam and
currently maintained by Thomas E. Dickey. This package re-creates
standard Windows dialogs in a text environment using ANSI escape control
codes. You can easily incorporate these dialogs in your shell scripts to

interact with your script users. This section describes the dialog package
and demonstrates how to use it in shell scripts.

NOTE

The dialog package isn't installed in all Linux distributions by
default. If it's not installed by default, because of its popularity it's
almost always included in the software repository. Check your
specific Linux distribution documentation for how to load the
dialog package. For the Ubuntu Linux distribution, the following is
the command to install it:

 sudo apt-get install dialog

To install the dialog package in Red Hat–based systems, such as
CentOS, use the dnf command:

 sudo dnf install dialog

The package installer installs the dialog package plus any required
libraries for it to work on your system.

The dialog package
The dialog command uses command-line parameters to determine what
type of Windows widget to produce. A widget is the dialog package term
for a type of Windows element. The dialog package currently supports the
types of widgets shown in Table 18.1.

TABLE 18.1 The dialog Widgets

Widget Description
calendar Provides a calendar from which to select a date
checklist Displays multiple entries where each entry can be turned

on or off
form Allows you to build a form with labels and text fields to be

filled out
fselect Provides a file selection window to browse for a file
gauge Displays a meter showing a percentage of completion
infobox Displays a message without waiting for a response
inputbox Displays a single text form box for text entry
inputmenu Provides an editable menu
menu Displays a list of selections from which to choose
msgbox Displays a message and requires the user to click an OK

button
pause Displays a meter showing the status of a specified pause

period
passwordbox Displays a single text box that hides entered text
passwordform Displays a form with labels and hidden text fields
radiolist Provides a group of menu items where only one item can

be selected
tailbox Displays text from a file in a scroll window using the tail

command
tailboxbg Same as tailbox , but operates in background mode
textbox Displays the contents of a file in a scroll window
timebox Provides a window to select an hour, minute, and second
yesno Provides a simple message with Yes and No buttons

As you can see from Table 18.1, you can choose from lots of different
widgets to give your scripts a professional look with little effort.

To specify a specific widget on the command line, use the double dash
format:

 dialog --widget parameters

where widget is the widget name as seen in Table 18.1 and parameters
defines the size of the widget window and any text required for the widget.

Each dialog widget provides output in two forms:

Using STDERR

Using the exit code status

The exit code status of the dialog command determines the button selected
by the user. If an OK or Yes button is selected, the dialog command returns
a 0 exit status. If a Cancel or No button is selected, the dialog command
returns a 1 exit status. You can use the standard $? variable to determine
which button was clicked in the dialog widget.

If a widget returns any data, such as a menu selection, the dialog command
sends the data to STDERR . You can use the standard Bash shell technique of
redirecting the STDERR output to another file or file descriptor:

 dialog --inputbox "Enter your age:" 10 20 2>age.txt

This command redirects the text entered in the text box to the age.txt file.

The following sections look at some examples of the more common dialog
widgets you'll use in your shell scripts.

The msgbox widget
The msgbox widget is the most common type of dialog. It displays a simple
message in a window and waits for the user to click an OK button before
disappearing. The following format is required to use a msgbox widget:

 dialog --msgbox text height width

The text parameter is any string you want to place in the window. The
dialog command automatically wraps the text to fit the size of the window
you create, using the height and width parameters. If you want to place a
title at the top of the window, you can also use the --title parameter,

along with the text of the title. Here's an example of using the msgbox
widget:

 $ dialog --title Testing --msgbox "This is a test" 10 20

After you enter this command, the message box appears on the screen of the
terminal emulator session you're using. Figure 18-2 shows what this looks
like.

FIGURE 18-2 Using the msgbox widget in the dialog command

If your terminal emulator supports the mouse, you can click the OK button
to close the dialog. You can also use keyboard commands to simulate a
click — just press the Enter key.

The yesno widget
The yesno widget takes the msgbox widget one step further, allowing the
user to answer a yes/no question displayed in the window. It produces two
buttons at the bottom of the window — one for Yes and another for No. The
user can switch between buttons by using the mouse, the Tab key, or the

keyboard arrow keys. To select the button, the user can press either the
spacebar or the Enter key.

Here's an example of using the yesno widget:

 $ dialog --title "Please answer" --yesno "Is this thing
on?" 10 20
 $ echo $?
 1
 $

This code produces the widget shown in Figure 18-3.

The exit status of the dialog command is set depending on which button
the user selects. If the No button is clicked, the exit status is 1, and if the
Yes button is clicked, the exit status is 0.

The inputbox widget
The inputbox widget provides a simple text box area for the user to enter a
text string. The dialog command sends the value of the text string to
STDERR. You must redirect that to retrieve the answer. Figure 18-4 shows
what the inputbox widget looks like.

FIGURE 18-3 Using the yesno widget in the dialog command

FIGURE 18-4 The inputbox widget

As you can see in Figure 18-4, the inputbox provides two buttons — OK
and Cancel. If the Cancel button is clicked, the exit status of the command
is 1; otherwise, the exit status is 0:

 $ dialog --inputbox "Enter your age:" 10 20 2>age.txt
 $ echo $?
 0
 $ cat age.txt
 12$

You'll notice that when you use the cat command to display the contents of
the text file there's no newline character after the value. This way, you can
easily redirect the file contents to a variable in a shell script to extract the
string entered by the user.

The textbox widget
The textbox widget is a great way to display lots of information in a
window. It produces a scrollable window containing the text from a file
specified in the parameters:

 $ dialog --textbox /etc/passwd 15 45

The contents of the /etc/passwd file are shown within the scrollable text
window, as illustrated in Figure 18-5.

FIGURE 18-5 The textbox widget

You can use the arrow keys to scroll left and right, as well as up and down
in the text file. The bottom line in the window shows the location
percentage within the file that you're viewing. The textbox widget contains
only a single Exit button, which should be selected to exit the widget.

The menu widget
The menu widget allows you to create a window version of the text menu we
created earlier in this chapter. You simply provide a selection tag and the
text for each item:

 $ dialog --menu "Sys Admin Menu" 20 30 10 1 "Display disk
space"
 2 "Display users" 3 "Display memory usage" 4 "Exit" 2>
test.txt

The first parameter defines a title for the menu. The next two parameters
define the height and width of the menu window, and the third parameter
defines the number of menu items that appear in the window at one time. If
there are more menu items, you can scroll through them using the arrow
keys.

Following those parameters, you must add menu item pairs. The first
element is the tag used to select the menu item. Each tag should be unique
for each menu item and can be selected by pressing the appropriate key on
the keyboard. The second element is the text used in the menu. Figure 18-6
demonstrates the menu produced by the sample command.

FIGURE 18-6 The menu widget with menu items

If the user selects a menu item by pressing the appropriate key for the tag,
that menu item is highlighted but not selected. A selection isn't made until
the OK button is selected by using either the mouse or the Enter key. The
dialog command sends the selected menu item text to STDERR , which you
can redirect as needed.

The fselect widget

There are several fancy built-in widgets provided by the dialog command.
The fselect widget is extremely handy when working with filenames.
Instead of forcing the user to type a filename, you can allow them to use the
fselect widget to browse to the file location and select the file, as shown
in Figure 18-7.

FIGURE 18-7 The fselect widget

The fselect widget format looks like this:

 $ dialog --title "Select a file" --fselect $HOME/ 10 50
2>file.txt

The first parameter after the fselect option is the starting folder location
used in the window. The fselect widget window consists of a directory
listing on the left side, a file listing on the right side that shows all the files
in the selected directory, and a simple text box that contains the currently
selected file or directory. You can manually type a filename in the text box,
or you can use the directory and file listings to select one (use the spacebar
to select a file to add to the text box).

The dialog options
In addition to the standard widgets, you can customize lots of different
options in the dialog command. You've already seen the --title
parameter in action. This parameter allows you to set a title for the widget
that appears at the top of the window.

TABLE 18.2 The dialog Command Options

Option Description
--add-widget Proceeds to the next dialog unless the Esc key has been

pressed or the Cancel button clicked
--aspect

ratio

Specifies the width/height aspect ratio of the window

--backtitle

title

Specifies a title to display on the background, at the top of
the screen

--begin x y Specifies the starting location of the top-left corner of the
window

--cancel-

label label
Specifies an alternative label for the Cancel button

--clear Clears the display using the default dialog background
color

--colors Embeds ANSI color codes in dialog text
--cr-wrap Allows newline characters in dialog text and forces a line

wrap
--create-rc

file

Dumps a sample configuration file to the specified file

--defaultno Makes the default of a yes/no dialog No
--default-

item string
Sets the default item in a checklist, form, or menu dialog

--exit-label

label

Specifies an alternative label for the Exit button

--extra-

button

Displays an extra button between the OK and Cancel
buttons

--extra-

label label
Specifies an alternative label for the Extra button

--help Displays the dialog command help message
--help-

button

Displays a Help button after the OK and Cancel buttons

Option Description
--help-label

label

Specifies an alternative label for the Help button

--help-

status

Writes the checklist, radiolist, or form information after
the help information if the Help button was clicked

--ignore Ignores options that dialog does not recognize
--input-fd fd Specifies a file descriptor other than STDIN
--insecure Changes the password widget to display asterisks when

typing
--item-help Adds a help column at the bottom of the screen for each

tag in a checklist, radiolist, or menu for the tag item
--keep-

window

Doesn't clear old widgets from the screen

--max-input

size

Specifies a maximum string size for the input; default is
2048

--nocancel Suppresses the Cancel button
--no-

collapse

Doesn't convert tabs to spaces in dialog text

--no-kill Places the tailboxbg dialog in background and disables
SIGHUP for the process

--no-label

label

Specifies an alternative label for the No button

--no-shadow Doesn't display shadows for dialog windows
--ok-label

label

Specifies an alternative label for the OK button

--output-fd

fd

Specifies an output file descriptor other than STDERR

--print-

maxsize

Prints the maximum size of dialog windows allowed to the
output

--print-size Prints the size of each dialog window to the output

Option Description
--print-

version

Prints the dialog version to output

--separate-

output

Outputs the result of a checklist widget one line at a time
with no quoting

--separator

string

Specifies a string that separates the output for each widget

--separate-

widget string
Specifies a string that separates the output for each widget

--shadow Draws a shadow to the right and bottom of each window
--single-

quoted

Uses single quoting if needed for the checklist output

--sleep sec Delays for the specified number of seconds after
processing the dialog window

--stderr Sends output to STDERR — the default behavior
--stdout Sends output to STDOUT
--tab-

correct

Converts tabs to spaces

--tab-len n Specifies the number of spaces a tab character uses;
default is 8

--timeout sec Specifies the number of seconds before exiting with an
error code if no user input

--title title Specifies the title of the dialog window
--trim Removes leading spaces and newline characters from

dialog text
--visit-

items

Modifies the tab stops in the dialog window to include the
list of items

--yes-label

label

Specifies an alternative label for the Yes button

Lots of other options allow you to completely customize both the
appearance and the behavior of your windows. Table 18.2 shows the

options available for the dialog command.

The --backtitle option is a handy way to create a common title for your
menu through the script. If you specify it for each dialog window, it persists
throughout your application, creating a professional look for your script.

As you can tell from Table 18.2, you can overwrite any of the button labels
in your dialog window. This feature allows you to create just about any
window situation you need.

Using the dialog command in a script
Using the dialog command in your scripts is a snap. Just remember two
things:

Check the exit status of the dialog command if a Cancel or No button
is available.

Redirect STDERR to retrieve the output value.

If you follow these two rules, you'll have a professional-looking interactive
script in no time. Here's an example using dialog widgets to reproduce the
system admin menu created earlier in the chapter:

 $ cat menu3
 #!/bin/bash
 # using dialog to create a menu

 temp=$(mktemp -t test.XXXXXX)
 temp2=$(mktemp -t test2.XXXXXX)

 function diskspace {
 df -k> $temp
 dialog --textbox $temp 20 60
 }

 function whoseon {
 who> $temp
 dialog --textbox $temp 20 50
 }

 function memusage {
 cat /proc/meminfo> $temp
 dialog --textbox $temp 20 50

 }

 while [1]
 do
 dialog --menu "Sys Admin Menu" 20 30 10 1 "Display disk
space" 2
 "Display users" 3 "Display memory usage" 0 "Exit" 2>
$temp2
 if [$? -eq 1]
 then
 break
 fi

 selection=$(cat $temp2)

 case $selection in
 1)
 diskspace ;;
 2)
 whoseon ;;
 3)
 memusage ;;
 0)
 break ;;
 *)
 dialog --msgbox "Sorry, invalid selection" 10 30
 esac
 done
 rm -f $temp 2> /dev/null
 rm -f $temp2 2> /dev/null
 $

The script uses the while loop with a constant true value to create an
endless loop displaying the menu dialog. This means that, after every
function, the script returns to displaying the menu.

The menu dialog includes a Cancel button, so the script checks the exit
status of the dialog command in case the user presses the Cancel button to
exit. Because it's in a while loop, exiting is as easy as using the break
command to jump out of the while loop.

The script uses the mktemp command to create two temporary files for
holding data for the dialog commands. The first one, $temp , is used to
hold the output of the df , who , and meminfo commands so that they can be
displayed in the textbox dialog (see Figure 18-8). The second temporary
file, $temp2 , is used to hold the selection value from the main menu dialog.

Now this is starting to look like a real application that you can show off to
people!

Getting Graphic
If you're looking for even more graphics for your interactive scripts, you
can go one step further. Both the KDE and GNOME desktop environments
(see Chapter 1, “Starting with Linux Shells”) have expanded on the dialog
command idea and include commands that produce X Windows graphical
widgets for their respective environments.

This section describes the kdialog and zenity packages, which provide
graphical window widgets for the KDE and GNOME desktops,
respectively.

FIGURE 18-8 The meminfo command output displayed using the textbox
dialog option

The KDE environment

The KDE graphical environment includes the kdialog package by default.
The kdialog package uses the kdialog command to generate standard
windows, similar to the dialog-style widgets, within your KDE desktop.
However, instead of having the clunky feel to them, these windows blend
right in with the rest of your KDE application windows. This allows you to
produce Windows-quality user interfaces directly from your shell scripts.

NOTE

Just because your Linux distribution uses the KDE desktop doesn't
necessarily mean it has the kdialog package installed by default.
You may need to manually install it from the distribution
repository.

kdialog widgets
Just like the dialog command, the kdialog command uses command-line
options to specify what type of window widget to use. Here is the format of
the kdialog command:

 kdialog display-options window-options arguments

The display-options options allow you to customize the window widget,
such as add a title or change the colors. The window-options options are
what allow you to specify what type of window widget to use. The
available options are shown in Table 18.3.

TABLE 18.3 kdialog Window Options

Option Description
--checklist title
[tag item status]

A checklist menu, with status specifying
whether or not the item is checked

--error text Error message box
--inputbox text
[init]

Input text box where you can specify the default
value using the init value

--menu title [tag
item]

Menu selection box title and a list of items
identified by a tag

--msgbox text Simple message box with specified text
--password text Password input text box that hides user input
--radiolist title
[tag item status]

A radiolist menu, with status specifying whether
or not the item is selected

--separate-output Returns items on separate lines for checklist and
radiolist menus

--sorry text Sorry message box
--textbox file
[width] [height]

Text box displaying the contents of file ,
alternatively specified by width and height

--title title Specifies a title for the TitleBar area of the
dialog window

--warningyesno text Warning message box with Yes and No buttons
--

warningcontinuecancel

text

Warning message box with Continue and Cancel
buttons

--warningyesnocancel

text

Warning message box with Yes, No, and Cancel
buttons

--yesno text Question box with Yes and No buttons
--yesnocancel text Question box with Yes, No, and Cancel buttons

As you can see from Table 18.3, all the standard window dialog types are
represented. However, when you use a kdialog window widget, it appears

as a separate window in the KDE desktop, not inside the terminal emulator
session.

The checklist and radiolist widgets allow you to define individual items
in the lists and whether they are selected by default:

$kdialog --checklist "Items I need" 1 "Toothbrush" on 2
"Toothpaste"
 off 3 "Hairbrush" on 4 "Deodorant" off 5 "Slippers" off

The resulting checklist window is shown in Figure 18-9.

FIGURE 18-9 A kdialog checklist dialog window

The items specified as “on” are highlighted in the checklist. To select or
deselect an item in the checklist, just click it. If you click the OK button, the

kdialog sends the tag values to STDOUT :

"1" "3"
$

When you press the Enter key, the kdialog box appears with the selections.
When you click the OK or Cancel button, the kdialog command returns
each tag as a string value to STDOUT (these are the "1" and "3" values you
see in the output). Your script must be able to parse the resulting values and
match them with the original values.

Using kdialog
You can use the kdialog window widgets in your shell scripts similarly to
how you use the dialog widgets. The big difference is that the kdialog
window widgets output values using STDOUT instead of STDERR.

Here's a script that converts the system admin menu created earlier into a
KDE application:

 $ cat menu4
 #!/bin/bash
 # using kdialog to create a menu

 temp=$(mktemp -t temp.XXXXXX)
 temp2=$(mktemp -t temp2.XXXXXX)

 function diskspace {
 df -k> $temp
 kdialog --textbox $temp 1000 10
 }

 function whoseon {
 who> $temp
 kdialog --textbox $temp 500 10
 }

 function memusage {
 cat /proc/meminfo> $temp
 kdialog --textbox $temp 300 500
 }

 while [1]
 do
kdialog --menu "Sys Admin Menu" "1" "Display disk space" "2"
"Display

 users" "3" "Display memory usage" "0" "Exit"> $temp2
 if [$? -eq 1]
 then
 break
 fi

 selection=$(cat $temp2)

 case $selection in
 1)
 diskspace ;;
 2)
 whoseon ;;
 3)
 memusage ;;
 0)
 break ;;
 *)
 kdialog --msgbox "Sorry, invalid selection"
 esac
 done
 $

The script using the kdialog command isn't much different from the one
using the dialog command. The resulting main menu is shown in Figure
18-10.

Now your simple shell script looks just like a real KDE application! There's
no limit to what you can do with your interactive scripts now.

FIGURE 18-10 The sys admin menu script using kdialog

The GNOME environment
The GNOME graphical environment supports two popular packages that
can generate standard windows:

gdialog

zenity

By far, zenity is the most commonly available package found in most
GNOME desktop Linux distributions (it's installed by default in both
Ubuntu and CentOS). This section describes the features of zenity and
demonstrates how to use it in your shell scripts.

zenity Widgets
As you would expect, zenity allows you to create different window widgets
by using command-line options. Table 18.4 shows the various widgets that
zenity can produce.

TABLE 18.4 The zenity Window Widgets

Option Description
--calendar Displays a full month calendar
--entry Displays a text entry dialog window
--error Displays an error message dialog window
--file-

selection

Displays a full pathname and filename dialog window

--info Displays an informational dialog window
--list Displays a checklist or radiolist dialog window
--

notification

Displays a notification icon

--progress Displays a progress bar dialog window
--question Displays a yes/no question dialog window
--scale Displays a scale dialog window with a sliding bar to select

the value within a range
--text-info Displays a text box containing text
--warning Displays a warning dialog window

The zenity command-line program works somewhat differently than the
kdialog and dialog programs. Many of the widget types are defined using
additional options on the command line, instead of including them as
arguments to an option.

The zenity command does offer some pretty cool advanced dialog
windows. The --calendar option produces a full month calendar, as shown
in Figure 18-11.

FIGURE 18-11 The zenity calendar dialog window

When you select a date from the calendar, the zenity command returns the
value to STDOUT , just like kdialog :

 $ zenity --calendar
 12/25/2011
 $

FIGURE 18-12 The zenity file selection dialog window

Another pretty cool window in zenity is the file selection option, shown in
Figure 18-12.

You can use the dialog window to browse to any directory location on the
system (as long as you have the privileges to view the directory) and select
a file. When you select a file, the zenity command returns the full file and
pathname:

 $ zenity --file-selection
 /home/ubuntu/menu5
 $

With tools like that at your disposal, the sky's the limit with your shell script
creations!

Using zenity in scripts
As you would expect, zenity performs well in shell scripts. Unfortunately,
the creators of zenity chose not to follow the option convention used in

dialog and kdialog , so converting any existing interactive scripts to zenity
may prove challenging.

In converting the system admin menu from kdialog to zenity, we had to do
quite a bit of manipulation of the widget definitions:

 $cat menu5
 #!/bin/bash
 # using zenity to create a menu

 temp=$(mktemp -t temp.XXXXXX)
 temp2=$(mktemp -t temp2.XXXXXX)

 function diskspace {
 df -k> $temp
 zenity --text-info --title "Disk space" --filename=$temp
 --width 750 --height 10
 }

 function whoseon {
 who> $temp
 zenity --text-info --title "Logged in users" --
filename=$temp
 --width 500 --height 10
 }

 function memusage {
 cat /proc/meminfo> $temp
 zenity --text-info --title "Memory usage" --
filename=$temp
 --width 300 --height 500
 }

 while [1]
 do
 zenity --list --radiolist --title "Sys Admin Menu" --column
"Select"
--column "Menu Item" FALSE "Display disk space" FALSE
"Display users"
 FALSE "Display memory usage" FALSE "Exit"> $temp2
 if [$? -eq 1]
 then
 break
 fi

 selection=$(cat $temp2)
 case $selection in

 "Display disk space")
 diskspace ;;
 "Display users")
 whoseon ;;
 "Display memory usage")
 memusage ;;
 Exit)
 break ;;
 *)
 zenity --info "Sorry, invalid selection"
 esac
 done
 $

Because zenity doesn't support the menu dialog window, we used a radiolist
type window for the main menu, as shown in Figure 18-13.

FIGURE 18-13 The system admin menu using zenity

The radiolist uses two columns, each with a column heading. The first
column includes the radio buttons, and the second column is the item text.
The radiolist also doesn't use tags for the items. When you select an item,
the full text of the item is returned to STDOUT . This makes life a little more
interesting if you use the case command. You must use the full text from

the items in the case options. If there are any spaces in the text, you need to
use quotation marks around the text.

Using the zenity package, you can add a Windows feel to your interactive
shell scripts in the GNOME desktop.

Working Through a Practical Example
The one downside to each of these graphical packages is that there isn't a
way to create a window with multiple entries, such as combining several
text box inputs along with a calendar input, as you can do in a true
graphical environment. That limitation does make querying for multiple
data items a bit clunky, but it's still manageable. The trick is to keep track of
each data query using appropriately named variables.

The dialog package does include a form feature, but it's fairly elementary. It
only allows you to combine several text boxes into a single window to enter
multiple data items. The format for the --form option is

--form text height width formheight [label y x item y x
flen ilen] ...

The parameters used by the --form option are as follows:

text: A title that appears at the top of the form

height: The total form window height

width: The total form window width

formheight: The total height of the form within the window

label: The label for the form field

y: The Y position of the label or item within the form

x: The X position of the label or item within the form

item: A default value to assign to a form field

flen: The length of the form field to display

ilen: The maximum length of the data that can be entered into the
field

For example, to create a form to enter employee information, you'd use

dialog --form "Enter new employee" 19 50 0 \
 "Last name " 1 1 "" 1 15 30 0 \
 "First name " 3 1 "" 3 15 30 0 \
 "Address " 5 1 "" 5 15 30 0 \
 "City " 7 1 "" 7 15 30 0 \
 "State " 9 1 "" 9 15 30 0 \
 "Zip " 11 1 "" 11 15 30 0 2>data.txt

This code produces the form window shown in Figure 18-14.

When you enter data into the form fields and click the OK button, the form
sends the data to the data.txt file. The data.txt file places each data item
in order on a separate line in the file:

$ cat data.txt
Test
Ima
123 Main Street
Chicago
Illinois
60601
$

FIGURE 18-14 The dialog form feature

Your script can then retrieve the form data from the file by reading the file
line by line. The head and tail commands are an easy way to retrieve
specific lines in the file:

last=$(cat data.txt | head -1)
first=$(cat data.txt | head -2 | tail -1)
address=$(cat data.txt | head -3 | tail -1)
city=$(cat data.txt | head -4 | tail -1)
state=$(cat data.txt | head -5 | tail -1)
zip=$(cat data.txt | tail -1)

Now you have all of the data from the form stored in variables that you can
use anywhere in your script:

record="INSERT INTO employees (last, first, address, city,
state, zip) VALUES
('$last', '$first', '$address', '$city', '$state', '$zip');"
echo $record>> newrecords.txt

The newrecords.txt file will contain the INSERT statements for each new
form record so that you can easily import them all into a database. You can

then create a simple front-end menu for the scripts and put everything
together:

#!/bin/bash
temp=$(mktemp -t record.XXXX)

function newrecord {
dialog --form "Enter new employee" 19 50 0 \
 "Last name " 1 1 "" 1 15 30 0 \
 "First name " 3 1 "" 3 15 30 0 \
 "Address " 5 1 "" 5 15 30 0 \
 "City " 7 1 "" 7 15 30 0 \
 "State " 9 1 "" 9 15 30 0 \
 "Zip " 11 1 "" 11 15 30 0 2>$temp

last=$(cat $temp | head -1)
first=$(cat $temp | head -2 | tail -1)
address=$(cat $temp | head -3 | tail -1)
city=$(cat $temp | head -4 | tail -1)
state=$(cat $temp | head -5 | tail -1)
zip=$(cat $temp | head -6 | tail -1)
record="INSERT INTO employees (last, first, address, city,
state, zip) VALUES
('$last', '$first', '$address', '$city', '$state', '$zip');"
echo $record>> newrecords.txt
}

function listrecords {
dialog --title "New Data" --textbox data.txt 20 50
}

while [1]
do
dialog --menu "Employee Data" 20 30 5 \
 1 "Enter new employee" \
 2 "Display records" \
 3 "Exit" 2>$temp

if [$? -eq 1]
then
 break
fi

selection=$(cat $temp)

case $selection in
1)

 newrecord ;;
2)
 listrecords ;;
3)
 break ;;
*)
 dialog --msgbox "Invalid selection" 10 30
esac
done
rm -f $temp 2> /dev/null

This script creates a simple graphical front end that allows you to quickly
enter employee data to create an SQL file that you can easily import into a
database.

Summary
Interactive shell scripts have a reputation for being dull and boring. You can
change that by using a few techniques and tools available on most Linux
systems. First, you can create menu systems for your interactive scripts by
using the case command and shell script functions.

The menu command allows you to paint a menu, using the standard echo
command, and read a response from the user, using the read command. The
case command then selects the appropriate shell script function based on
the value entered.

The dialog program provides several prebuilt text widgets for creating
Windows-like objects on a text-based terminal emulator. You can create
dialogs for displaying text, entering text, and choosing files and dates by
using the dialog program. Doing so brings even more life to your shell
script.

If you're running your shell scripts in a graphical X Windows environment,
you can utilize even more tools in your interactive scripts. For the KDE
desktop, there's the kdialog program. This program provides simple
commands to create window widgets for all the basic window functions.
For the GNOME desktop, there are the gdialog and zenity programs.
Each of these programs provides window widgets that blend into the
GNOME desktop just like a real Windows application.

The next chapter dives into the subject of editing and manipulating text data
files. Often the biggest use of shell scripts revolves around parsing and
displaying data in text files such as log and error files. The Linux
environment includes two very useful tools, sed and gawk , for working
with text data in your shell scripts. The next chapter introduces you to these
tools and shows the basics of how to use them.

CHAPTER 19
Introducing sed and gawk
IN THIS CHAPTER

Manipulating text

Learning about the sed editor

Looking at the sed editor basic commands

Getting introduced to the gawk editor

Exploring sed editor basics

By far, one of the most common functions for which people use shell scripts
is to work with text files. Between examining log files, reading
configuration files, and handling data elements, shell scripts can help
automate the mundane tasks of manipulating any type of data contained in
text files. However, trying to manipulate the contents of text files using just
shell script commands is somewhat awkward. If you perform any type of
data manipulation in your shell scripts, you want to become familiar with
the sed and gawk tools available in Linux. These tools can greatly simplify
any data‐handling tasks you need to perform.

Manipulating Text
Chapter 10, “Working with Editors,” demonstrated how to edit text files
using different editor programs available in the Linux environment. These
editors enable easy manipulation of text contained in a text file by using
simple commands or clicks of the mouse.

There are times, however, when you'll find yourself wanting to manipulate
text in a text file on the fly, without having to pull out a full‐fledged
interactive text editor. In these situations, it's useful to have a simple
command‐line editor that can easily format, insert, modify, or delete text
elements automatically.

The Linux system provides two common tools for doing just that. We
describe in this section the two most popular command‐line editors used in
the Linux world, sed and gawk.

Getting to know the sed editor
The sed editor is called a stream editor, as opposed to a normal interactive
text editor. In an interactive text editor, such as vim , keyboard commands
are used interactively to insert, delete, or replace text in the data. A stream
editor edits a stream of data based on a set of rules supplied ahead of time.

The sed editor can manipulate data in a stream based on commands either
entered into the command line or stored in a command text file. The sed
editor operates as follows:

1. Read one data line from the input.

2. Match that data with the supplied editor commands.

3. Change data in the stream as specified in the commands.

4. Output the new data to STDOUT .

After the stream editor matches and enacts all the commands against a line
of data, it reads the next line of data and repeats the process. After the
stream editor processes all the lines of data in the stream, it terminates.

Because the commands are applied sequentially line by line, the sed editor
makes only one pass through the data stream to make the edits. This feature
makes the sed editor much faster than an interactive editor and provides the
ability to make quick changes to file data.

Here's the format for using the sed command:

sed options script file

The options parameter allows you to customize the behavior of the sed
command and includes the options shown in Table 19.1.

TABLE 19.1 The sed Command Options

Option Description
‐e

commands

Adds additional sed commands to run while processing the
input

‐f file Adds the commands specified in the file to the commands run
while processing the input

‐n Doesn't produce output for each command, but waits for the
print (p) command

The script parameter specifies a single command to apply against the data
stream. If more than one command is required, you must use either the ‐e
option to specify them in the command line or the ‐f option to specify them
in a separate file. Numerous commands are available for manipulating data.
We examine some of the basic commands used by the sed editor in this
chapter and then look at some of the more advanced commands in Chapter
21, “Advanced sed .”

Defining an editor command in the command line
By default, the sed editor applies the specified commands to the STDIN
input stream. This allows you to pipe data directly to the sed editor for
processing. Here's a quick example demonstrating how to do this:

$ echo "This is a test" | sed 's/test/big test/'
This is a big test
$

This example uses the s command in the sed editor. The s command
substitutes a second text string for the first text string pattern specified
between the forward slashes. In this example, the words big test were
substituted for the word test.

When you run this example, it should display the results almost
instantaneously. That's the power of using the sed editor. You can make
multiple edits to data in about the same time it takes for some of the
interactive editors just to start up!

Of course, this simple test demonstrated an edit of one data line. The same
speedy results occur when editing complete files of data, as shown here:

$ cat data1.txt
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
$
$ sed 's/dog/cat/' data1.txt
The quick brown fox jumps over the lazy cat.
The quick brown fox jumps over the lazy cat.
The quick brown fox jumps over the lazy cat.
The quick brown fox jumps over the lazy cat.
$

The sed command executes and returns the data very quickly. As it
processes each line of data, the results are displayed. You'll start seeing
results before the sed editor completes processing the entire file.

It's important to note that the sed editor doesn't modify the data in the text
file itself; it only sends the modified text to STDOUT . If you look at the text
file, it still contains the original data:

$ cat data1.txt
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
$

Using multiple editor commands in the command line
To execute more than one command from the sed command line, use the ‐e
option:

$ sed -e 's/brown/red/; s/dog/cat/' data1.txt
The quick red fox jumps over the lazy cat.
The quick red fox jumps over the lazy cat.
The quick red fox jumps over the lazy cat.
The quick red fox jumps over the lazy cat.
$

Both commands are applied to each line of data in the file. The commands
must be separated with a semicolon (;), and there shouldn't be any spaces
between the end of the first command and the semicolon.

Instead of using a semicolon to separate the commands, you can use the
secondary prompt in the Bash shell. Just enter the first single quotation

mark to open the sed program script (also called the sed editor command
list), and Bash continues to prompt you for more commands until you enter
the closing quotation mark:

$ sed -e '
> s/brown/green/
> s/fox/toad/
> s/dog/cat/' data1.txt
The quick green toad jumps over the lazy cat.
The quick green toad jumps over the lazy cat.
The quick green toad jumps over the lazy cat.
The quick green toad jumps over the lazy cat.
$

You must remember to finish the command on the same line where the
closing single quotation mark appears. After the Bash shell detects the
closing quotation mark, it processes the command. After it starts, the sed
command applies each command you specified to each data line in the text
file.

Reading editor commands from a file
Finally, if you have lots of sed commands you want to process, it is often
easier to just store them in a separate file. Use the ‐f option to specify the
file in the sed command:

$ cat script1.sed
s/brown/green/
s/fox/toad/
s/dog/cat/
$
$ sed -f script1.sed data1.txt
The quick green toad jumps over the lazy cat.
The quick green toad jumps over the lazy cat.
The quick green toad jumps over the lazy cat.
The quick green toad jumps over the lazy cat.
$

In this case, a semicolon is not placed after each command. The sed editor
knows that each line contains a separate command. As with entering
commands on the command line, the sed editor reads the commands from
the specified file and applies them to each line in the data file.

TIP

It's easy to confuse sed editor script files with Bash shell scripts or
other text files. To eliminate confusion, it is considered good form to
use the .sed file extension on any sed script files.

We'll look at some other sed editor commands that come in handy for
manipulating data in the “Looking at the sed Editor Basic Commands”
section. Before that, let's quickly look at the other Linux data editor.

Getting to know the gawk program
Although the sed editor is a handy tool for modifying text files on the fly, it
has its limitations. Often, a more advanced tool is needed for manipulating
data in a file, one that provides a more programming‐like environment
allowing the modification and reorganization of data in a file. This is where
gawk comes in.

NOTE

The gawk program is not installed by default on all distributions. If
your Linux distribution does not have the gawk program, install the
gawk package using Chapter 9, “Installing Software,” as a guide.

The gawk program is the GNU version of the original awk program in Unix.
The gawk program takes stream editing one step further than the sed editor
by providing a programming language instead of just editor commands.
Within the gawk programming language, the following is possible:

Define variables to store data.

Use arithmetic and string operators to operate on data.

Use structured programming concepts, such as if‐then statements and
loops, to add logic to your data processing.

Generate formatted reports by extracting data elements within the data
file and repositioning them in another order or format.

The gawk program's report‐generating capabilities are often used for
extracting data elements from large, bulky text files and formatting them
into a readable report. The perfect example of this is formatting program
log files. Trying to dig through lines of errors in a log file can be difficult.
The gawk program allows the filtering of data elements you want to view
from the log file, and then formats them in a manner that makes reading the
important data easier.

Visiting the gawk command format
Here's the basic format of the gawk program:

gawk options program file

Table 19.2 shows a few options available with the gawk program.

TABLE 19.2 The gawk Options

Option Description
‐F fs Specifies a file separator for delineating data fields in a

line
‐f file Specifies a filename to read the program from
‐v var =
value

Defines a variable and default value used in the gawk
program

‐L [keyword
]

Specifies the compatibility mode or warning level for gawk

The command‐line options provide an easy way to customize features in the
gawk program. We'll look more closely at some of these as we explore gawk
basics.

The power of gawk is in the program script. You can write scripts to read the
data within a text line and then manipulate and display the data to create
any type of output report.

Reading the program script from the command line

A gawk program script is defined by opening and closing braces. You must
place script commands between the two braces ({}). If you incorrectly use a
parenthesis instead of a brace to enclose your gawk script, error messages,
similar to the following, are generated:

$ gawk '(print "Hello World!")'
gawk: cmd. line:1: (print "Hello World!")
gawk: cmd. line:1: ^ syntax error
gawk: cmd. line:2: (print "Hello World!")
gawk: cmd. line:2: ^ unexpected
newline or
 end of string
$

Because the gawk command line assumes that the script is a single text
string, you must also enclose your script in single quotation marks. Here's
an example of a simple gawk program script specified on the command line:

$ gawk '{print "Hello World!"}'

The program script defines a single command, the print command. The
print command does what it says: it prints text to STDOUT . If you try
running this command, you'll be somewhat disappointed, because nothing
happens right away. Because no filename was defined in the command line,
the gawk program retrieves data from STDIN . When you run the program, it
just waits for text to come in via STDIN.

If you type a line of text and press the Enter key, gawk runs the text through
the program script. Just like the sed editor, the gawk program executes the
program script on each line of text available in the data stream. Because the
program script is set to display a fixed text string, no matter what text you
enter in the data stream, you get the same text output:

$ gawk '{print "Hello World!"}'
This is a test
Hello World!
hello
Hello World!
Goodbye
Hello World!
This is another test
Hello World!

To terminate the gawk program, you must signal that the data stream has
ended. The Bash shell provides a key combination to generate an end‐of‐
file (EOF) character. The Ctrl+D key combination generates an EOF
character in Bash. Using that key combination terminates the gawk program
and returns you to a command‐line interface prompt.

Using data field variables
One of the primary features of gawk is its ability to manipulate data in the
text file. It does this by automatically assigning a variable to each data
element in a line. By default, gawk assigns the following variables to each
data field it detects in the line of text:

$0 represents the entire line of text.

$1 represents the first data field in the line of text.

$2 represents the second data field in the line of text.

$n represents the nth data field in the line of text.

Each data field is determined in a text line by a field separation character.
When gawk reads a line of text, it delineates each data field using the
defined field separation character. The default field separation character in
gawk is any whitespace character (such as the tab or space characters).

Here's an example gawk program that reads a text file and displays only the
first data field value:

$ cat data2.txt
One line of test text.
Two lines of test text.
Three lines of test text.
$
$ gawk '{print $1}' data2.txt
One
Two
Three
$

This program uses the $1 field variable to display only the first data field
for each line of text.

For reading a file that uses a different field separation character, specify the
character by using the ‐F option:

$ gawk -F: '{print $1}' /etc/passwd
root
daemon
bin
[...]
christine
sshd
$

This short program displays the first data field in the password file on the
system. Because the /etc/passwd file uses a colon (:) to separate the data
fields, to separate each data element, we used the field separation character
(‐F:) in the gawk options.

Using multiple commands in the program script
A programming language wouldn't be very useful if you could only execute
one command. The gawk programming language allows the combination of
commands into a normal program. To use multiple commands in the
program script specified on the command line, just place a semicolon
between each command:

$ echo "My name is Rich" | gawk '{$4="Christine"; print $0}'
My name is Christine
$

The first command assigns a value to the $4 field variable. The second
command then prints the entire data field. Notice from the output that the
gawk program replaced the fourth data field in the original text with the new
value.

You can also use the secondary prompt to enter your program script
commands one line at a time:

$ gawk '{
> $4="Christine";
> print $0}'
My name is Rich
My name is Christine
$

After we opened with a single quotation mark, the Bash shell provided the
secondary prompt to prompt us for more data. We added our commands one
at a time on each line until we entered the closing single quotation mark.
Because no filename was defined in the command line, the gawk program
retrieves data from STDIN . When we ran the program, it waited for text to
come in via STDIN . To exit the program, we pressed the Ctrl+D key
combination to signal the end of the data and get back to a shell prompt.

Reading the program from a file
Like the sed editor, the gawk editor allows you to store your programs in a
file and refer to them in the command line:

$ cat script2.gawk
{print $1 "'s home directory is " $6}
$
$ gawk -F: -f script2.gawk /etc/passwd
root's home directory is /root
daemon's home directory is /usr/sbin
bin's home directory is /bin
[...]
christine's home directory is /home/christine
sshd's home directory is /run/sshd
$

The script2.gawk program script uses the print command again to print
the /etc/passwd file's home directory data field (field variable $6) and the
user name data field (field variable $1).

You can specify multiple commands in the program file. To do so, just place
each command on a separate line. You don't need to use semicolons:

$ cat script3.gawk
{
text = "'s home directory is "
print $1 text $6
}
$
$ gawk -F: -f script3.gawk /etc/passwd
root's home directory is /root
daemon's home directory is /usr/sbin
bin's home directory is /bin
[...]
christine's home directory is /home/christine

sshd's home directory is /run/sshd
$

The script3.gawk program script defines a variable, text , to hold a text
string used in the print command. Notice that gawk programs don't use a
dollar sign when referencing a variable's value, as a shell script does.

Running scripts before processing data
The gawk program also allows you to specify when the program script is
run. By default, gawk reads a line of text from the input and then executes
the program script on the data in the line of text. Sometimes, you may need
to run a script before processing data, such as to create a header section for
a report. The BEGIN keyword is used to accomplish this. It forces gawk to
execute the program script specified after the BEGIN keyword, before gawk
reads the data:

$ gawk 'BEGIN {print "Hello World!"}'
Hello World!
$

This time the print command displays the text before reading any data.
However, after it displays the text, it quickly exits without waiting for any
data.

The reason for this is that the BEGIN keyword only applies the specified
script before it processes any data. If you want to process data with a
normal program script, you must define the program using another script
section:

$ cat data3.txt
Line 1
Line 2
Line 3
$
$ gawk 'BEGIN {print "The data3 File Contents:"}
> {print $0}' data3.txt
The data3 File Contents:
Line 1
Line 2
Line 3
$

Now after gawk executes the BEGIN script, it uses the second script to
process any file data. Be careful when doing this — both of the scripts are
still considered one text string on the gawk command line. You need to place
your single quotation marks accordingly.

Running scripts after processing data
Like the BEGIN keyword, the END keyword allows you to specify a program
script that gawk executes after reading the data:

$ gawk 'BEGIN {print "The data3 File Contents:"}
> {print $0}
> END {print "End of File"}' data3.txt
The data3 File Contents:
Line 1
Line 2
Line 3
End of File
$

When the gawk program is finished printing the file contents, it executes the
commands in the END script. This is a great technique to use to add footer
data to reports after all the normal data has been processed.

You can put all these elements together into a nice little program script file
to create a full report from a simple data file:

$ cat script4.gawk
BEGIN {
print "The latest list of users and shells"
print "UserID \t Shell"
print "------- \t -------"
FS=":"
}

{
print $1 " \t " $7
}

END {
print "This concludes the listing"
}
$

This script uses the BEGIN script to create a header section for the report. It
also defines a special variable called FS . This is yet another way to define

the field separation character. This way, you don't have to depend on the
script's user to define the field separation character in the command‐line
options.

Here's a somewhat truncated output from running this gawk program script:

$ gawk -f script4.gawk /etc/passwd
The latest list of users and shells
UserID Shell
------- -------
root /bin/bash
daemon /usr/sbin/nologin
[...]
christine /bin/bash
sshd /usr/sbin/nologin
This concludes the listing
$

As expected, the BEGIN script created the header text, the program script
processed the information from the specified data file (the /etc/passwd
file), and the END script produced the footer text. The \t within the print
command produces some nicely formatted tabbed output.

This gives you a small taste of the power available through using simple
gawk scripts. Chapter 22, “Advanced gawk ,” describes some more basic
programming principles available for your gawk scripts, along with some
even more advanced programming concepts you can use in your gawk
program scripts to create professional‐looking reports from even the most
cryptic data files.

Looking at the sed Editor Basic Commands
The key to successfully using the sed editor is to know its myriad of
commands and formats, which help you to customize your text editing. This
section describes some of the basic commands and features you can
incorporate into your script to start using the sed editor.

Introducing more substitution options
We've already covered how to use the s command to substitute new text for
the text in a line. However, a few additional options are available for the s
command that can help make your life easier.

Substituting flags
There's a caveat to how the s command replaces matching patterns in the
text string. Watch what happens in this example:

$ cat data4.txt
This is a test of the test script.
This is the second test of the test script.
$
$ sed 's/test/trial/' data4.txt
This is a trial of the test script.
This is the second trial of the test script.
$

The s command works fine in replacing text in multiple lines, but by
default, it replaces only the first occurrence in each line. To get the s
command to work on different occurrences of the text, you must use a
substitution flag. The substitution flag is set after the substitution command
strings:

s/pattern/replacement/flags

Four types of substitution flags are available:

A number, indicating the pattern occurrence for which new text should
be substituted

g , indicating that new text should be substituted for all occurrences of
the existing text

p , indicating that the contents of the original line should be printed

w file, which means to write the results of the substitution to a file

In the first type of substitution, you can specify which occurrence of the
matching pattern the sed editor should substitute new text for:

$ sed 's/test/trial/2' data4.txt
This is a test of the trial script.
This is the second test of the trial script.
$

As a result of specifying a 2 as the substitution flag, the sed editor replaces
the pattern only in the second occurrence in each line. The g substitution

flag enables you to replace every occurrence (global) of the pattern in the
text:

$ sed 's/test/trial/g' data4.txt
This is a trial of the trial script.
This is the second trial of the trial script.
$

The p substitution flag prints a line that contains a matching pattern in the
substitute command. This is most often used in conjunction with the ‐n sed
option:

$ cat data5.txt
This is a test line.
This is a different line.
$
$ sed -n 's/test/trial/p' data5.txt
This is a trial line.
$

The ‐n option suppresses output from the sed editor. However, the p
substitution flag outputs any line that has been modified. Using the two in
combination produces output only for lines that have been modified by the
substitute command.

The w substitution flag produces the same output but stores the output in the
specified file:

$ sed 's/test/trial/w test.txt' data5.txt
This is a trial line.
This is a different line.
$
$ cat test.txt
This is a trial line.
$

The normal output of the sed editor appears in STDOUT , but only the lines
that include the matching pattern are stored in the specified output file.

Replacing characters
Sometimes, you run across characters in text strings that aren't easy to use
in the substitution pattern. One popular example in the Linux world is the
forward slash (/).

Substituting pathnames in a file can get awkward. For example, if you
wanted to substitute the C shell for the Bash shell in the /etc/passwd file,
you'd have to do this:

$ sed 's/\/bin\/bash/\/bin\/csh/' /etc/passwd

Because the forward slash is used as the string delimiter, you must use a
backslash to escape it if it appears in the pattern text. This often leads to
confusion and mistakes.

To solve this problem, the sed editor allows you to select a different
character for the string delimiter in the substitute command:

$ sed 's!/bin/bash!/bin/csh!' /etc/passwd

In this example, the exclamation point (!) is used for the string delimiter,
making the pathnames much easier to read and understand.

Using addresses
By default, the commands you use in the sed editor apply to all lines of the
text data. If you want to apply a command only to a specific line or a group
of lines, you must use line addressing.

There are two forms of line addressing in the sed editor:

A numeric range of lines

A text pattern that matches text within a line

Both forms use the same format for specifying the address:

[address]command

You can also group more than one command together for a specific address:

address {
 command1
 command2
 command3
}

The sed editor applies each of the commands you specify only to lines that
match the address specified. This section demonstrates using both of these
addressing techniques in your sed editor scripts.

Addressing the numeric line
When using numeric line addressing, you reference lines using their line
position in the text stream. The sed editor assigns the first line in the text
stream as line number 1 and continues sequentially for each new line.

The address you specify in the command can be a single line number or a
range of lines specified by a starting line number, a comma, and an ending
line number. Here's an example of specifying a line number to which the
sed command will be applied:

$ cat data1.txt
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
$
$ sed '2s/dog/cat/' data1.txt
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy cat.
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
$

The sed editor modified the text only in line 2 per the address specified.
Here's another example, this time using a range of line addresses (lines 2
through 3):

$ sed '2,3s/dog/cat/' data1.txt
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy cat.
The quick brown fox jumps over the lazy cat.
The quick brown fox jumps over the lazy dog.
$

If you want to apply a command to a group of lines starting at some point
within the text but continuing to the end of the text, you can use a dollar
sign in place of the last address range number:

$ sed '2,$s/dog/cat/' data1.txt
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy cat.
The quick brown fox jumps over the lazy cat.
The quick brown fox jumps over the lazy cat.
$

Because you may not know how many lines of data are in the text, the
dollar sign often comes in handy.

Using text pattern filters
The other method of restricting to which lines a command is applied is a bit
more complicated. The sed editor allows the specification of a text pattern,
and uses it as a filter to determine to which lines the command is applied.
This is the format:

/pattern/command

You must encapsulate the pattern you specify in forward slashes. The sed
editor applies the command only to lines that contain the text pattern you
specify.

For example, if you want to change the default shell for only the user rich ,
you'd use the sed command:

$ grep /bin/bash /etc/passwd
root:x:0:0:root:/root:/bin/bash
christine:x:1001:1001::/home/christine:/bin/bash
rich:x:1002:1002::/home/rich:/bin/bash
$
$ sed '/rich/s/bash/csh/' /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
[...]
christine:x:1001:1001::/home/christine:/bin/bash
sshd:x:126:65534::/run/sshd:/usr/sbin/nologin
rich:x:1002:1002::/home/rich:/bin/csh
$

The command was applied only to the line with the matching text pattern.
Although using a fixed text pattern may be useful for filtering specific
values, as in the previous example, it's somewhat limited in what you can
do with it. The sed editor uses a feature called regular expressions in text
patterns to allow you to create patterns that get pretty involved.

Regular expressions allow you to create advanced text pattern–matching
formulas to match all sorts of data. These formulas combine a series of
wildcard characters, special characters, and fixed text characters to produce
a concise pattern that can match just about any text situation. Regular

expressions are one of the trickier parts of shell script programming, and
Chapter 20, “Regular Expressions,” covers them in great detail.

Grouping commands
If you need to perform more than one command on an individual line,
group the commands together using braces. The sed editor processes each
command listed on the address line(s):

$ sed '2{
> s/fox/toad/
> s/dog/cat/
> }' data1.txt
The quick brown fox jumps over the lazy dog.
The quick brown toad jumps over the lazy cat.
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
$

Both commands are processed only against the address. And of course, you
can specify an address range before the grouped commands:

$ sed '3,${
> s/brown/green/
> s/fox/toad/
> s/lazy/sleeping/
> }' data1.txt
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
The quick green toad jumps over the sleeping dog.
The quick green toad jumps over the sleeping dog.
$

The sed editor applies all the commands to all the lines in the address
range.

Deleting lines
The text substitution command isn't the only command available in the sed
editor. If you need to delete specific lines of text in a text stream, you can
use the delete command.

The delete (d) command pretty much does what it says. It deletes any text
lines that match the addressing scheme supplied. Be careful with the d

command, because if you forget to include an addressing scheme, all the
lines are deleted from the stream:

$ cat data1.txt
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
$
$ sed 'd' data1.txt
$

The d command is obviously most helpful when used in conjunction with a
specified address. This allows you to remove specific lines of text from the
data stream, either by line number:

$ cat data6.txt
This is line number 1.
This is line number 2.
This is the 3rd line.
This is the 4th line.
$
$ sed '3d' data6.txt
This is line number 1.
This is line number 2.
This is the 4th line.
$

or by a specific range of lines:

$ sed '2,3d' data6.txt
This is line number 1.
This is the 4th line.
$

or by using the special end‐of‐file character:

$ sed '3,$d' data6.txt
This is line number 1.
This is line number 2.
$

The pattern‐matching feature of the sed editor also applies to the delete (d)
command:

$ sed '/number 1/d' data6.txt
This is line number 2.

This is the 3rd line.
This is the 4th line.
$

The sed editor removes the line containing text that matches the pattern you
specify.

NOTE

Remember that the sed editor doesn't touch the original file. Any
lines you delete are only gone from the sed editor's output. The
original file still contains the “deleted” lines.

You can also delete a range of lines using two text patterns, but be careful if
you do this. The first pattern you specify “turns on” the line deletion, and
the second pattern “turns off” the line deletion. The sed editor deletes any
lines between the two specified lines (including the specified lines):

$ sed '/1/,/3/d' data6.txt
This is the 4th line.
$

In addition, you must be careful because the delete feature “turns on”
whenever the sed editor detects the start pattern in the data stream. This
may produce an unexpected result:

$ cat data7.txt
This is line number 1.
This is line number 2.
This is the 3rd line.
This is the 4th line.
This is line number 1 again; we want to keep it.
This is more text we want to keep.
Last line in the file; we want to keep it.
$
$ sed '/1/,/3/d' data7.txt
This is the 4th line.
$

The second occurrence of a line with the number 1 in it triggered the delete
(d) command again, deleting the rest of the lines in the data stream, because

the stop pattern wasn't recognized. Of course, the other obvious problem
occurs if you specify a stop pattern that never appears in the text:

$ sed '/3/,/5/d' data7.txt
This is line number 1.
This is line number 2.
$

Because the delete feature “turned on” at the first pattern match but never
found the end pattern match, it didn’t “turn off.” And the entire rest of the
data stream was deleted.

Inserting and appending text
As you would expect, like any other editor, the sed editor allows you to
insert and append text lines to the data stream. However, the difference
between the two actions can be confusing:

The insert (i) command adds a new line before the specified line.

The append (a) command adds a new line after the specified line.

What is confusing about these two commands is their formats. You can't
always use these commands on a single command line. You sometimes
must specify the line to insert or append the line to insert on a separate line.
Here's the format for doing this:

sed '[address]command\
new line'

The text in new line appears in the sed editor output in the place you
specify. Remember that when you use the insert (i) command, the text
appears before the data stream text:

$ echo "Test Line 2" | sed 'i\Test Line 1'
Test Line 1
Test Line 2
$

And when you use the append (a) command, the text appears after the data
stream text:

$ echo "Test Line 2" | sed 'a\Test Line 1'
Test Line 2

Test Line 1
$

When you use the sed editor from the command‐line interface prompt, you
get the secondary prompt to enter the new line of data. You must complete
the sed editor command on this line. After you enter the ending single
quotation mark, the Bash shell processes the command:

$ echo "Test Line 2" | sed 'i\
> Test Line 1'
Test Line 1
Test Line 2
$

This works well for adding text before or after the text in the data stream,
but what about adding text inside the data stream?

To insert or append data inside the data stream lines, you must use
addressing to tell the sed editor where you want the data to appear. You can
specify only a single line address when using these commands. You can
match either a numeric line number or a text pattern, but you cannot use a
range of addresses. This is logical, because you can only insert or append
before or after a single line, and not a range of lines.

Here's an example of inserting a new line before line 3 in the data stream:

$ cat data6.txt
This is line number 1.
This is line number 2.
This is the 3rd line.
This is the 4th line.
$
$ sed '3i\
> This is an inserted line.
> ' data6.txt
This is line number 1.
This is line number 2.
This is an inserted line.
This is the 3rd line.
This is the 4th line.
$

Here's an example of appending a new line after line 3 in the data stream:

$ sed '3a\
> This is an appended line.

> ' data6.txt
This is line number 1.
This is line number 2.
This is the 3rd line.
This is an appended line.
This is the 4th line.
$

This uses the same process as the insert (i) command; it just places the new
text line after the specified line number. If you have a multiline data stream
and you want to append a new line of text to the end of a data stream, just
use the dollar sign, which represents the last line of data:

$ sed '$a\
> This line was added to the end of the file.
> ' data6.txt
This is line number 1.
This is line number 2.
This is the 3rd line.
This is the 4th line.
This line was added to the end of the file.
$

The same idea applies if you want to add a new line at the beginning of the
data stream. Just insert (i) a new line before line number 1.

To insert or append more than one line of text, you must use a backslash on
each line of new text until you reach the last text line where you want to
insert or append text:

$ sed '1i\
> This is an inserted line.\
> This is another inserted line.
> ' data6.txt
This is an inserted line.
This is another inserted line.
This is line number 1.
This is line number 2.
This is the 3rd line.
This is the 4th line.
$

Both of the specified lines are added to the data stream.

Changing lines

The change (c) command allows you to change the contents of an entire
line of text in the data stream. It works the same way as the insert and
append commands in that you must specify the new line separately from the
rest of the sed command:

$ sed '2c\
> This is a changed line of text.
> ' data6.txt
This is line number 1.
This is a changed line of text.
This is the 3rd line.
This is the 4th line.
$

In the preceding example, the sed editor changes the text in line number 2.
You can also use a text pattern for the address:

$ sed '/3rd line/c\
> This is a changed line of text.
> ' data6.txt
This is line number 1.
This is line number 2.
This is a changed line of text.
This is the 4th line.
$

The text pattern change (c) command changes any line of text in the data
stream that it matches.

$ cat data8.txt
I have 2 Infinity Stones
I need 4 more Infinity Stones
I have 6 Infinity Stones!
I need 4 Infinity Stones
I have 6 Infinity Stones...
I want 1 more Infinity Stone
$
$ sed '/have 6 Infinity Stones/c\
> Snap! This is changed line of text.
> ' data8.txt
I have 2 Infinity Stones
I need 4 more Infinity Stones
Snap! This is changed line of text.
I need 4 Infinity Stones
Snap! This is changed line of text.
I want 1 more Infinity Stone
$

You can use an address range in the change command, but the results may
not be what you expect:

$ cat data6.txt
This is line number 1.
This is line number 2.
This is the 3rd line.
This is the 4th line.
$
$ sed '2,3c\
> This is a changed line of text.
> ' data6.txt
This is line number 1.
This is a changed line of text.
This is the 4th line.
$

Instead of changing both lines with the text, the sed editor uses the single
line of text to replace both lines.

Transforming characters
The transform (y) command is the only sed editor command that operates
on a single character. The transform command uses the format

[address]y/inchars/outchars/

The transform command performs a one‐to‐one mapping of the inchars
and the outchars values. The first character in inchars is converted to the
first character in outchars. The second character in inchars is converted to
the second character in outchars. This mapping continues throughout the
length of the specified characters. If the inchars and outchars are not the
same length, the sed editor produces an error message.

Here's a simple example of using the transform (y) command:

$ cat data9.txt
This is line 1.
This is line 2.
This is line 3.
This is line 4.
This is line 5.
This is line 1 again.
This is line 3 again.
This is the last file line.

$
$ sed 'y/123/789/' data9.txt
This is line 7.
This is line 8.
This is line 9.
This is line 4.
This is line 5.
This is line 7 again.
This is line 9 again.
This is the last file line.
$

As you can see from the output, each instance of the characters specified in
the inchars pattern has been replaced by the character in the same position
in the outchars pattern.

The transform (y) command is a global command; that is, it performs the
transformation on any character found in the text line automatically, without
regard to the occurrence:

$ echo "Test #1 of try #1." | sed 'y/123/678/'
Test #6 of try #6.
$

The sed editor transformed both instances of the matching character 1 in
the text line. You can't limit the transformation to a specific occurrence of
the character.

Printing revisited
The “Introducing more substitution options” section showed how to use the
p flag with the substitution (s) command to display lines that the sed editor
changed. In addition, three commands can be used to print information from
the data stream:

The print (p) command to print a text line

The equal sign (=) command to print line numbers

The list (l) command to list a line

The following sections look at these three printing commands in the sed
editor.

Printing lines
Like the p flag in the substitution (s) command, the print (p) command
prints a line in the sed editor output. On its own, this command doesn't
offer much excitement:

$ echo "This is a test." | sed 'p'
This is a test.
This is a test.
$

All it does is print the data text that you already know is there. The most
common use for the print command is printing lines that contain matching
text from a text pattern:

$ cat data6.txt
This is line number 1.
This is line number 2.
This is the 3rd line.
This is the 4th line.
$
$ sed -n '/3rd line/p' data6.txt
This is the 3rd line.
$

By using the ‐n option on the command line, you can suppress all the other
lines and print only the line that contains the matching text pattern.

You can also use this as a quick way to print a subset of lines in a data
stream:

$ sed -n '2,3p' data6.txt
This is line number 2.
This is the 3rd line.
$

You can also use the print (p) command when you need to see a line before
it gets altered, such as with the substitution (s) or change (c) command. You
can create a script that displays the line before it's changed:

$ sed -n '/3/{
> p
> s/line/test/p
> }' data6.txt
This is the 3rd line.

This is the 3rd test.
$

This sed editor command searches for lines that contain the number 3 and
executes two commands. First, the script uses the p command to print the
original version of the line; then it uses the s command to substitute text,
along with the p flag to print the resulting text. The output shows both the
original line text and the new line text.

Printing line numbers
The equal sign (=) command prints the current line number for the line
within the data stream. Line numbers are determined by using the newline
character in the data stream. Each time a newline character appears in the
data stream, the sed editor assumes that it terminates a line of text:

$ cat data1.txt
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
$
$ sed '=' data1.txt
1
The quick brown fox jumps over the lazy dog.
2
The quick brown fox jumps over the lazy dog.
3
The quick brown fox jumps over the lazy dog.
4
The quick brown fox jumps over the lazy dog.
$

The sed editor prints the line number before the actual line of text. The =
command comes in handy if you're searching for a specific text pattern in
the data stream:

$ cat data7.txt
This is line number 1.
This is line number 2.
This is the 3rd line.
This is the 4th line.
This is line number 1 again; we want to keep it.
This is more text we want to keep.
Last line in the file; we want to keep it.

$
$ sed -n '/text/{
> =
> p
> }' data7.txt
6
This is more text we want to keep.
$

By using the ‐n option, you can have the sed editor display both the line
number and text for the line that contains the matching text pattern.

Listing lines
The list (l) command allows you to print both the text and nonprintable
characters in a data stream. Any nonprintable characters are shown using
either their octal values, proceeded by a backslash, or the standard C‐style
nomenclature for common nonprintable characters, such as \t for tab
characters:

$ cat data10.txt
This line contains tabs.
This line does contain tabs.
$
$ sed -n 'l' data10.txt
This\tline\tcontains\ttabs.$
This line does contain tabs.$
$

The tab character locations are shown with the \t . The dollar sign at the
end of each line indicates the newline character. If you have a data stream
that contains an escape character, the list (l) command displays it (using the
octal code if necessary):

$ cat data11.txt
This line contains an escape character.
$
$ sed -n 'l' data11.txt
This line contains an escape character. \a$
$

The data11.txt file contains an escape control code, which generates a bell
sound. When the cat command is used to display the text file, the escape
control code isn't shown; only the sound is generated (if the computer's

sound is turned on). However, using the list command, the escape control
code used is displayed.

Using files with sed
The substitution (s) command contains flags that allow you to work with
files. There are also regular sed editor commands that let you do that
without having to substitute text.

Writing to a file
The write (w) command is used to write lines to a file. Here's the format for
the write command:

[address]w filename

The filename can be specified as either a relative or absolute pathname, but
in either case, the person running the sed editor must have write
permissions for the file. The address can be any type of addressing method
used in sed , such as a single line number, a text pattern, or a range of line
numbers or text patterns.

Here's an example that prints only the first two lines of a data stream to a
text file:

$ sed '1,2w test.txt' data6.txt
This is line number 1.
This is line number 2.
This is the 3rd line.
This is the 4th line.
$
$ cat test.txt
This is line number 1.
This is line number 2.
$

Of course, if you don't want the lines to display on STDOUT , you can use the
‐n option for the sed command.

This is a great tool to use if you need to create a data file from a master file
on the basis of common text values, such as those in a mailing list:

$ cat data12.txt
Blum, R Browncoat

McGuiness, A Alliance
Bresnahan, C Browncoat
Harken, C Alliance
$
$ sed -n '/Browncoat/w Browncoats.txt' data12.txt
$
$ cat Browncoats.txt
Blum, R Browncoat
Bresnahan, C Browncoat
$

The sed editor writes to a destination file only the data lines that contain the
text pattern.

Reading data from a file
You've already seen how to insert data into and append text to a data stream
from the sed command line. The read (r) command allows you to insert
data contained in a separate file.

Here's the format of the read command:

[address]r filename

The filename parameter specifies either an absolute or relative pathname
for the file that contains the data. You can't use a range of addresses for the
read (r) command. You can only specify a single line number or text pattern
address. The sed editor inserts the text from the file after the address.

$ cat data13.txt
This is an added line.
This is a second added line.
$
$ sed '3r data13.txt' data6.txt
This is line number 1.
This is line number 2.
This is the 3rd line.
This is an added line.
This is a second added line.
This is the 4th line.
$

The sed editor inserts into the data stream all the text lines in the data file.
The same technique works when using a text pattern address:

$ sed '/number 2/r data13.txt' data6.txt
This is line number 1.
This is line number 2.
This is an added line.
This is a second added line.
This is the 3rd line.
This is the 4th line.
$

If you want to add text to the end of a data stream, just use the dollar sign
address symbol:

$ sed '$r data13.txt' data6.txt
This is line number 1.
This is line number 2.
This is the 3rd line.
This is the 4th line.
This is an added line.
This is a second added line.
$

A cool application of the read (r) command is to use it in conjunction with
a delete (d) command to replace a placeholder in a file with data from
another file. For example, suppose that you had a form stored in a text file
that looked like this:

$ cat notice.std
Would the following people:
LIST
please report to the ship's captain.
$

The form letter uses the generic placeholder LIST in place of a list of
people. To insert the list of people after the placeholder, you just use the
read (r) command. However, this still leaves the placeholder text in the
output. To remove that, just use the delete (d) command. The result looks
like this:

$ sed '/LIST/{
> r data12.txt
> d
> }' notice.std
Would the following people:
Blum, R Browncoat
McGuiness, A Alliance
Bresnahan, C Browncoat

Harken, C Alliance
please report to the ship's captain.
$

Now the placeholder text is replaced with the list of names from the data
file.

Working Through a Practical Example
In this section, we'll describe a script that puts both sed and gawk into
action. Before looking at the script, let's describe a situation where the
script is useful. First, we need to discuss the shebang. In Chapter 11, “Basic
Script Building,” we covered the first line of a shell script file:

#!/bin/bash

This first line is sometimes referred to as the shebang and traditionally
looks like this for shell scripts in Unix:

#!/bin/sh

Often the tradition was carried over to Bash shell scripts on Linux, which
wasn't a problem in the past — most distributions had /bin/sh linked to the
Bash shell (/bin/bash). Thus, if /bin/sh was used as the shebang in a shell
script, it was as if /bin/bash had been written:

$ ls -l /bin/sh
lrwxrwxrwx 1 root root 4 Nov 8 2019 /bin/sh -> bash
$

Somewhere along the way this changed on some Linux distributions, such
as Ubuntu. And on these Linux systems, the /bin/sh file is now linked to a
different file than the Bash shell:

$ ls -l /bin/sh
lrwxrwxrwx 1 root root 4 Apr 23 14:33 /bin/sh -> dash
$

If a shell script that has /bin/sh as its shebang runs on this system, the
script will be run in the Dash shell instead of the Bash shell. This may cause
many of the shell script commands to fail.

Now let's look at our real‐world scenario for the practical script: a particular
company uses only RHEL, and the Bash shell scripts on their systems use

the old‐fashioned /bin/sh shebang. This is not a problem, because on that
distribution, the /bin/sh file still links to /bin/bash . But now, the
company wants to bring in servers that run Ubuntu, and the shell scripts
must be converted to use the /bin/bash shebang so that they run properly
on these new servers.

How can this problem be solved? Do you spend hours with a text editor
fixing every shebang by hand? Could the new IT intern be forced into such
terrible manual labor? This type of situation is where sed and gawk shine, so
we'll put them to use for this problem.

First, we'll use sed to create a listing of all the shell scripts in a particular
directory that contain /bin/sh as the shebang in their first line. We can start
the process by using the substitute (s) command along with addressing only
the first line of a shell script:

$ sed '1s!/bin/sh!/bin/bash!' OldScripts/testAscript.sh
#!/bin/bash
[...]
echo "This is Test Script #1."
[...]

exit
$

This provides the substitution, so the testAScript.sh script does contain
#!/bin/sh as its shebang. But we need to check all the files in the directory,
and we don't want to see the script's contents, so we'll modify the command
slightly. Using the ‐s option (which we haven't covered yet in this chapter)
will tell sed to treat every file within the directory as an individual stream,
and thus we can check the first line in each file. The ‐n option will suppress
any output, so we don't have to view all the scripts' contents:

$ sed -sn '1s!/bin/sh!/bin/bash!' OldScripts/*.sh
$

Well, that worked, but it's not quite what we want. We need to see the script
file's names, so we know which scripts have the old shebang.

We'll introduce another useful sed command — F . This command tells sed
to print the current data file's name on which it is operating, even if the ‐n
option is used. We only need to see the name one time, so we'll put a one

(1) in front of the command (otherwise we'd see the name for every line
processed in every file). Now we get the listing we desire:

$ sed -sn '1F;
> 1s!/bin/sh!/bin/bash!' OldScripts/*.sh
OldScripts/backgroundoutput.sh
OldScripts/backgroundscript.sh
[...]
OldScripts/tryat.sh
$

Now let's get gawk in on this act to pretty up the report. By redirecting (|)
the output from sed into gawk , we can make the information a little nicer to
view:

$ sed -sn '1F;
> 1s!/bin/sh!/bin/bash!' OldScripts/*.sh |
> gawk 'BEGIN {print ""
> print "The following scripts have /bin/sh as their
shebang:"
> print ""}
> {print $0}
> END {print "End of Report"}'

The following scripts have /bin/sh as their shebang:

OldScripts/backgroundoutput.sh
OldScripts/backgroundscript.sh
[...]
OldScripts/tryat.sh
End of Report
$

Now that we've produced a report, we'll verify that we want to update these
scripts to use a more modern shebang. Once the decision is made to update
the scripts, we can make the needed changes. But we'll let sed do all the
updating work for us along with a for loop:

$ mkdir TestScripts
$
$ for filename in $(grep -l "bin/sh" OldScripts/*.sh)
> do
> newFilename=$(basename $filename)
> cat $filename |
> sed '1c\#!/bin/bash' > TestScripts/$newFilename
> done

$
$ grep "/bin/bash" TestScripts/*.sh
TestScripts/backgroundoutput.sh:#!/bin/bash
TestScripts/backgroundscript.sh:#!/bin/bash
[...]
TestScripts/tryat.sh:#!/bin/bash
$

Success! Next we need to take this basic sed and gawk functionality and put
it into our practical script. Here is the script in its entirety for your perusal:

$ cat ChangeScriptShell.sh
#!/bin/bash
Change the shebang used for a directory of scripts

################## Function Declarations
##########################

function errorOrExit {
 echo
 echo $message1
 echo $message2
 echo "Exiting script..."
 exit
}

function modifyScripts {
 echo
 read -p "Directory name in which to store new
scripts? " newScriptDir
 #
 echo "Modifying the scripts started at $(date +%N)
nanoseconds"
 #
 count=0
 for filename in $(grep -l "/bin/sh" $scriptDir/*.sh)
 do
 newFilename=$(basename $filename)
 cat $filename |
 sed '1c\#!/bin/bash'>
$newScriptDir/$newFilename
 count=$[$count + 1]
 done
 echo "$count modifications completed at $(date +%N)
nanoseconds"
}

################# Check for Script Directory

######################
if [-z $1]
then
 message1="The name of the directory containing
scripts to check"
 message2="is missing. Please provide the name as a
parameter."
 errorOrExit
else
 scriptDir=$1
fi

################ Create Shebang Report
############################

sed -sn '1F;
1s!/bin/sh!/bin/bash!' $scriptDir/*.sh |
gawk 'BEGIN {print ""
print "The following scripts have /bin/sh as their shebang:"
print "==="}
{print $0}
END {print ""
print "End of Report"}'

################## Change Scripts?
#################################

echo
read -p "Do you wish to modify these scripts' shebang?
(Y/n)? " answer

case $answer in
Y | y)
 modifyScripts
 ;;
N | n)
 message1="No scripts will be modified."
 message2="Run this script later to modify, if
desired."
 errorOrExit
 ;;
*)
 message1="Did not answer Y or n."
 message2="No scripts will be modified."
 errorOrExit
 ;;

esac
$

Notice that we added a few time stamps around the running of the sed to
modify the scripts. Let's look at the script in action:

$ mkdir NewScripts
$./ChangeScriptShell.sh OldScripts

The following scripts have /bin/sh as their shebang:
===
OldScripts/backgroundoutput.sh
OldScripts/backgroundscript.sh
[...]
OldScripts/tryat.sh

End of Report

Do you wish to modify these scripts' shebang? (Y/n)? Y

Directory name in which to store new scripts? NewScripts
Modifying the scripts started at 168687219 nanoseconds
18 modifications completed at 266043476 nanoseconds
$

That was fast! If you have hundreds of old shell scripts to modify, imagine
how much time this script will save you.

A few improvements to this script include

Checking to ensure the new directory location of the modified Bash
shell scripts exists

Checking to see if the file being saved does not already reside in the
directory so that no files are accidentally overwritten

Allowing the new directory location to be passed as a parameter, and
possibly saving the report produced by sed and gawk

What modifications did you come up with?

Summary
Shell scripts can do lots of work on their own, but it's often difficult to
manipulate data with just a shell script. Linux provides two handy utilities

to help with handling text data. The sed editor is a stream editor that
quickly processes data on the fly as it reads it. You must provide the sed
editor with a list of editing commands, which it applies to the data.

The gawk program is a utility from the GNU organization that mimics and
expands on the functionality of the Unix awk program. The g awk program
contains a built‐in programming language that you can use to write scripts
to handle and process data. You can use the gawk program to extract data
elements from large data files and output them in just about any format you
desire. This makes processing large log files a snap, as well as creating
custom reports from data files.

A crucial element of using both the sed and gawk programs is knowing how
to use regular expressions. Regular expressions are key to creating
customized filters for extracting and manipulating data in text files. The
next chapter dives into the often misunderstood world of regular
expressions, showing you how to build regular expressions for
manipulating all types of data.

CHAPTER 20
Regular Expressions
IN THIS CHAPTER

Exploring regular expressions

Defining BRE patterns

Trying out extended regular expressions The key to successfully working
with sed and gawk in your shell script is your comfort using regular
expressions. This is not always an easy thing to do, because trying to filter
specific data from a large batch of data can (and often does) get
complicated. This chapter describes how to create regular expressions in
both sed and gawk that can filter out just the data you need.

Exploring Regular Expressions
The first step to understanding regular expressions is to define just exactly
what they are. This section explains what a regular expression is and
describes how Linux uses regular expressions.

A definition
A regular expression is a pattern template you define that a Linux utility
uses to filter text. A Linux utility (such as sed or gawk) matches the regular
expression pattern against data as that data flows into the utility. If the data
matches the pattern, it's accepted for processing. If the data doesn't match
the pattern, it's rejected. This is illustrated in Figure 20-1.

The regular expression pattern makes use of wildcard characters to
represent one or more characters in the data stream. There are plenty of
instances in Linux where you can specify a wildcard character to represent
data you don't know about. You've already seen an example of using
wildcard characters with the Linux ls command for listing files and
directories (see Chapter 3, “Basic Bash Shell Commands”).

FIGURE 20-1 Matching data against a regular expression pattern

The asterisk wildcard character allows you to list only files that match a
certain criterion. For example:

$ ls -al da*
-rw-r--r-- 1 rich rich 45 Nov 26 12:42 data
-rw-r--r-- 1 rich rich 25 Dec 4 12:40
data.tst
-rw-r--r-- 1 rich rich 180 Nov 26 12:42
data1
-rw-r--r-- 1 rich rich 45 Nov 26 12:44
data2
-rw-r--r-- 1 rich rich 73 Nov 27 12:31
data3
-rw-r--r-- 1 rich rich 79 Nov 28 14:01
data4
-rw-r--r-- 1 rich rich 187 Dec 4 09:45
datatest
$

The da* parameter instructs the ls command to list only the files whose
name starts with “da.” There can be any number of characters after the “da”
in the filename (including none). The ls command reads the information
regarding all the files in the directory but displays only the ones that match
the wildcard character.

Regular expression wildcard patterns work in a similar way. The regular
expression pattern contains text and/or special characters that define a
template for sed and gawk to follow when matching data. You can use
different special characters in a regular expression to define a specific
pattern for filtering data.

Types of regular expressions
The biggest problem with using regular expressions is that there isn't just
one set of them. Several different applications use different types of regular
expressions in the Linux environment. These include such diverse
applications as programming languages (Java, Perl, and Python), Linux
utilities (such as sed , gawk , and the grep utility), and mainstream
applications (such as the MySQL and PostgreSQL database servers).

A regular expression is implemented using a regular expression engine. A
regular expression engine is the underlying software that interprets regular
expression patterns and uses those patterns to match text.

While there are many different regular expression engines in the Linux
world, the two most popular ones are

The POSIX Basic Regular Expression (BRE) engine

The POSIX Extended Regular Expression (ERE) engine

Most Linux utilities at a minimum conform to the POSIX BRE engine
specifications, recognizing all the pattern symbols it defines. Unfortunately,
some utilities (such as sed) conform only to a subset of the BRE engine
specifications. This is due to speed constraints, because sed attempts to
process text in the data stream as quickly as possible.

The POSIX ERE engine is often found in programming languages that rely
on regular expressions for text filtering. It provides advanced pattern
symbols as well as special symbols for common patterns, such as matching
digits, words, and alphanumeric characters. Gawk uses the ERE engine to
process its regular expression patterns.

Because there are so many different ways to implement regular expressions,
it's hard to present a single, concise description of all the possible regular

expressions. The following sections discuss the most commonly found
regular expressions and demonstrate how to use them in sed and gawk.

Defining BRE Patterns
The most basic BRE pattern is matching text characters in a data stream.
This section demonstrates how you can define text in the regular expression
pattern and what to expect from the results.

Plain text
Chapter 18, “Writing Scripts for Graphical Desktops,” demonstrated how to
use standard text strings in sed and gawk to filter data. Here's an example to
refresh your memory:

$ echo "This is a test" | sed -n '/test/p'
This is a test
$ echo "This is a test" | sed -n '/trial/p'
$
$ echo "This is a test" | gawk '/test/{print $0}'
This is a test
$ echo "This is a test" | gawk '/trial/{print $0}'
$

The first pattern defines a single word, “test.” Sed and gawk scripts each use
their own version of the print command to print any lines that match the
regular expression pattern. Because the echo statement contains the word
“test” in the text string, the data stream text matches the defined regular
expression pattern, and sed displays the line.

The second pattern again defines just a single word, this time the word
“trial.” Because the echo statement text string doesn't contain that word, the
regular expression pattern doesn't match, so neither sed nor gawk prints the
line.

You probably already noticed that the regular expression doesn't care where
in the data stream the pattern occurs. It also doesn't matter how many times
the pattern occurs. After the regular expression can match the pattern
anywhere in the text string, it passes the string along to the Linux utility
that's using it.

The key is matching the regular expression pattern to the data stream text.
It's important to remember that regular expressions are extremely picky
about matching patterns. The first rule to remember is that regular
expression patterns are case sensitive. This means they'll match only those
patterns with the proper case of characters:

$ echo "This is a test" | sed -n '/this/p'
$
$ echo "This is a test" | sed -n '/This/p'
This is a test
$

The first attempt failed to match because the word “this” doesn't appear in
all lowercase in the text string, whereas the second attempt, which uses the
uppercase letter in the pattern, worked just fine.

You don't have to limit yourself to whole words in the regular expression. If
the defined text appears anywhere in the data stream, the regular expression
matches the following:

$ echo "The books are expensive" | sed -n '/book/p'
The books are expensive
$

Even though the text in the data stream is “books,” the data in the stream
contains the regular expression “book”, so the regular expression pattern
matches the data. Of course, if you try the opposite, the regular expression
fails:

$ echo "The book is expensive" | sed -n '/books/p'
$

The complete regular expression text didn't appear in the data stream, so the
match failed and sed didn't display the text.

You also don't have to limit yourself to single text words in the regular
expression. You can include spaces and numbers in your text string as well:

$ echo "This is line number 1" | sed -n '/ber 1/p'
This is line number 1
$

Spaces are treated just like any other character in the regular expression:

$ echo "This is line number1" | sed -n '/ber 1/p'
$

If you define a space in the regular expression, it must appear in the data
stream. You can even create a regular expression pattern that matches
multiple contiguous spaces:

$ cat data1
This is a normal line of text.
This is a line with too many spaces.
$ sed -n '/ /p' data1
This is a line with too many spaces.
$

The line with two spaces between words matches the regular expression
pattern. This is a great way to catch spacing problems in text files!

Special characters
As you use text strings in your regular expression patterns, there's
something you need to be aware of. There are a few exceptions when
defining text characters in a regular expression. Regular expression patterns
assign a special meaning to a few characters. If you try to use these
characters in your text pattern, you won't get the results you were expecting.

These special characters are recognized by regular expressions:

.*[]^${}\+?|()

As the chapter progresses, you'll find out just what these special characters
do in a regular expression. For now, however, just remember that you can't
use these characters by themselves in your text pattern.

If you want to use one of the special characters as a text character, you need
to escape it. When you escape the special characters, you add a special
character in front of it to indicate to the regular expression engine that it
should interpret the next character as a normal text character. The special
character that does this is the backslash character (\).

For example, if you want to search for a dollar sign in your text, just
precede it with a backslash character:

$ cat data2
The cost is $4.00

$ sed -n '/\$/p' data2
The cost is $4.00
$

Because the backslash is a special character, if you need to use it in a
regular expression pattern, you need to escape it as well, producing a
double backslash:

$ echo "\ is a special character" | sed -n '/\\/p'
\ is a special character
$

Finally, although the forward slash isn't a regular expression special
character, if you use it in your regular expression pattern in sed or gawk ,
you get an error:

$ echo "3 / 2" | sed -n '///p'
sed: -e expression #1, char 2: No previous regular
expression
$

To use a forward slash, you need to escape that as well:

$ echo "3 / 2" | sed -n '/\//p'
3 / 2
$

Now sed can properly interpret the regular expression pattern, and all is
well.

Anchor characters
As shown in the “Plain text” section, by default, when you specify a regular
expression pattern, if the pattern appears anywhere in the data stream, it
matches. You can use two special characters to anchor a pattern to either the
beginning or the end of lines in the data stream.

Starting at the beginning
The caret character (^) defines a pattern that starts at the beginning of a line
of text in the data stream. If the pattern is located any place other than the
start of the line of text, the regular expression pattern fails.

To use the caret character, you must place it before the pattern specified in
the regular expression:

$ echo "The book store" | sed -n '/^book/p'
$
$ echo "Books are great" | sed -n '/^Book/p'
Books are great
$

The caret anchor character checks for the pattern at the beginning of each
new line of data, as determined by the newline character:

$ cat data3
This is a test line.
this is another test line.
A line that tests this feature.
Yet more testing of this
$ sed -n '/^this/p' data3
this is another test line.
$

As long as the pattern appears at the start of a new line, the caret anchor
catches it.

If you position the caret character in any place other than at the beginning
of the pattern, it acts like a normal character and not as a special character:

$ echo "This ^ is a test" | sed -n '/s ^/p'
This ^ is a test
$

Because the caret character is listed last in the regular expression pattern,
sed uses it as a normal character to match text.

NOTE

If you need to specify a regular expression pattern using only the
caret character, you don't have to escape it with a backslash.
However, if you specify the caret character first, followed by
additional text in the pattern, you need to use the escape character
before the caret character.

Looking for the ending

The opposite of looking for a pattern at the start of a line is looking for it at
the end of a line. The dollar sign ($) special character defines the end
anchor. Add this special character after a text pattern to indicate that the line
of data must end with the text pattern:

$ echo "This is a good book" | sed -n '/book$/p'
This is a good book
$ echo "This book is good" | sed -n '/book$/p'
$

The problem with an ending text pattern is that you must be careful what
you're looking for:

$ echo "There are a lot of good books" | sed -n '/book$/p'
$

Making the word “book” plural at the end of the line means that it no longer
matches the regular expression pattern, even though “book” is in the data
stream. The text pattern must be the last thing on the line for the pattern to
match.

Combining anchors
In some common situations, you can combine both the start and the end
anchors on the same line. In the first situation, suppose you want to look for
a line of data containing only a specific text pattern:

$ cat data4
this is a test of using both anchors
I said this is a test
this is a test
I'm sure this is a test.
$ sed -n '/^this is a test$/p' data4
this is a test
$

Sed ignores the lines that include other text besides the specified text.

The second situation may seem a little odd at first but is extremely useful.
By combining both anchors in a pattern with no text, you can filter blank
lines from the data stream. Consider this example:

$ cat data5
This is one test line.

This is another test line.
$ sed '/^$/d' data5
This is one test line.
This is another test line.
$

The regular expression pattern that is defined looks for lines that have
nothing between the start and the end of the line. Because blank lines
contain no text between the two newline characters, they match the regular
expression pattern. Sed uses the d command to delete lines that match the
regular expression pattern, thus removing all blank lines from the text. This
is an effective way to remove blank lines from documents.

The dot character
The dot special character is used to match any single character except a
newline character. The dot character must match a character, however; if
there's no character in the place of the dot, then the pattern fails.

Let's look at a few examples of using the dot character in a regular
expression pattern:

$ cat data6
This is a test of a line.
The cat is sleeping.
That is a very nice hat.
This test is at line four.
at ten o'clock we'll go home.
$ sed -n '/.at/p' data6
The cat is sleeping.
That is a very nice hat.
This test is at line four.
$

You should be able to figure out why the first line in the data file failed to
match, and why the second and third lines in the data file passed. The fourth
line is a little tricky. Notice that we matched the at , but there's no character
in front of it to match the dot character. Ah, but there is! In regular
expressions, spaces count as characters, so the space in front of the at
matches the pattern. The fifth line proves this, by putting the at in the front
of the line, which fails to match the pattern.

Character classes

The dot special character is great for matching a character position against
any character, but what if you want to limit what characters to match? This
is called a character class in regular expressions.

You can define a class of characters that would match a position in a text
pattern. If one of the characters from the character class is in the data
stream, it matches the pattern.

To define a character class, you use square brackets. The brackets should
contain any character you want to include in the class. You then use the
entire class within a pattern just like any other wildcard character. This
takes a little getting used to at first, but after you catch on, it can generate
some pretty amazing results.

The following is an example of creating a character class:

$ sed -n '/[ch]at/p' data6
The cat is sleeping.
That is a very nice hat.
$

Using the same data file as in the dot special character example, we came
up with a different result. This time we managed to filter out the line that
just contained the word at . The only words that match this pattern are “cat”
and “hat.” Also notice that the line that started with “at” didn't match as
well. There must be a character in the character class that matches the
appropriate position.

Character classes come in handy if you're not sure which case a character is
in:

$ echo "Yes" | sed -n '/[Yy]es/p'
Yes
$ echo "yes" | sed -n '/[Yy]es/p'
yes
$

You can use more than one character class in a single expression:

$ echo "Yes" | sed -n '/[Yy][Ee][Ss]/p'
Yes
$ echo "yEs" | sed -n '/[Yy][Ee][Ss]/p'
yEs
$ echo "yeS" | sed -n '/[Yy][Ee][Ss]/p'

yeS
$

The regular expression used three character classes to cover both lower and
upper cases for all three character positions.

Character classes don't have to contain just letters; you can use numbers in
them as well:

$ cat data7
This line doesn't contain a number.
This line has 1 number on it.
This line a number 2 on it.
This line has a number 4 on it.
$ sed -n '/[0123]/p' data7
This line has 1 number on it.
This line a number 2 on it.
$

The regular expression pattern matches any lines that contain the numbers
0, 1, 2, or 3. Any other numbers are ignored, as are lines without numbers
in them.

You can combine character classes to check for properly formatted
numbers, such as phone numbers and ZIP codes. However, when you're
trying to match a specific format, you must be careful. Here's an example of
a ZIP code match gone wrong:

$ cat data8
60633
46201
223001
4353
22203
$ sed -n '
>/[0123456789][0123456789][0123456789][0123456789]
[0123456789]/p
>' data8
60633
46201
223001
22203
$

This might not have produced the result you were thinking of. It did a fine
job of filtering out the number that was too short to be a ZIP code, because

the last character class didn't have a character to match against. However, it
still passed the six-digit number, even though we only defined five
character classes.

Remember that the regular expression pattern can be found anywhere in the
text of the data stream. You may always have additional characters besides
the matching pattern characters. If you want to ensure that you match
against only five numbers, you need to delineate them somehow, either with
spaces, or as in this example, by showing that they're at the start and end of
the line:

$ sed -n '
> /^[0123456789][0123456789][0123456789][0123456789]
[0123456789]$/p
> ' data8
60633
46201
22203
$

Now that's much better! Later in this chapter, we'll look at how to simplify
this even further.

One extremely popular use for character classes is parsing words that might
be misspelled, such as data entered from a user form. You can easily create
regular expressions that can accept common misspellings in data:

$ cat data9
I need to have some maintenence done on my car.
I'll pay that in a seperate invoice.
After I pay for the maintenance my car will be as good as
new.
$ sed -n '
/maint[ea]n[ae]nce/p
/sep[ea]r[ea]te/p
' data9
I need to have some maintenence done on my car.
I'll pay that in a seperate invoice.
After I pay for the maintenance my car will be as good as
new.
$

The two sed print commands in this example utilize regular expression
character classes to help catch the misspelled words, “maintenance” and

“separate,” in the text. The same regular expression pattern also matches the
properly spelled occurrence of “maintenance.”

Negating character classes
In regular expression patterns, you can also reverse the effect of a character
class. Instead of looking for a character contained in the class, you can look
for any character that's not in the class. To do that, just place a caret
character at the beginning of the character class range:

$ sed -n '/[^ch]at/p' data6
This test is at line four.
$

By negating the character class, the regular expression pattern matches any
character that's neither a “c” nor an “h”, along with the text pattern. Because
the space character fits this category, it passed the pattern match. However,
even with the negation, the character class must still match a character, so
the line with the “at” in the start of the line still doesn't match the pattern.

Using ranges
You may have noticed when I showed the ZIP code example earlier that it
was somewhat awkward having to list all the possible digits in each
character class. Fortunately, you can use a shortcut so you don't have to do
that.

You can use a range of characters within a character class by using the dash
symbol. Just specify the first character in the range, a dash, and then the last
character in the range. The regular expression includes any character that's
within the specified character range, according to the character set used by
the Linux system (see Chapter 2, “Getting to the Shell”).

Now you can simplify the ZIP code example by specifying a range of
digits:

$ sed -n '/^[0-9][0-9][0-9][0-9][0-9]$/p' data8
60633
46201
45902
$

That saved lots of typing! Each character class matches any digit from 0 to
9. The pattern fails if a letter is present anywhere in the data:

$ echo "a8392" | sed -n '/^[0-9][0-9][0-9][0-9][0-9]$/p'
$
$ echo "1839a" | sed -n '/^[0-9][0-9][0-9][0-9][0-9]$/p'
$
$ echo "18a92" | sed -n '/^[0-9][0-9][0-9][0-9][0-9]$/p'
$

The same technique works with letters:

$ sed -n '/[c-h]at/p' data6
The cat is sleeping.
That is a very nice hat.
$

The new pattern “[c-h]at” matches words where the first letter is between
the letter “c” and the letter “h.” In this case, the line with only the word “at”
failed to match the pattern.

You can also specify multiple, noncontinuous ranges in a single character
class:

$ sed -n '/[a-ch-m]at/p' data6
The cat is sleeping.
That is a very nice hat.
$

The character class allows the ranges “a” through “c”, and “h” through “m”
to appear before the at text. This range would reject any letters between “d”
and “g”:

$ echo "I'm getting too fat." | sed -n '/[a-ch-m]at/p'
$

This pattern rejected the “fat” text, as it wasn't in the specified range.

Special character classes
In addition to defining your own character classes, the BRE contains special
character classes you can use to match against specific types of characters.
Table 20.1 describes the BRE special characters you can use.

TABLE 20.1 BRE Special Character Classes

Class Description
[[:alpha:]] Matches any alphabetical character, either upper or lower

case
[[:alnum:]] Matches any alphanumeric character 0–9, A–Z, or a–z
[[:blank:]] Matches a space or Tab character
[[:digit:]] Matches a numerical digit from 0 through 9
[[:lower:]] Matches any lowercase alphabetical character a–z
[[:print:]] Matches any printable character
[[:punct:]] Matches a punctuation character
[[:space:]] Matches any whitespace character: space, Tab, NL

(newline), FF (formfeed), VT (vertical tab), CR (carriage
return)

[[:upper:]] Matches any uppercase alphabetical character A–Z

You use the special character classes just as you would a normal character
class in your regular expression patterns:

$ echo "abc" | sed -n '/[[:digit:]]/p'
$
$ echo "abc" | sed -n '/[[:alpha:]]/p'
abc
$ echo "abc123" | sed -n '/[[:digit:]]/p'
abc123
$ echo "This is, a test" | sed -n '/[[:punct:]]/p'
This is, a test
$ echo "This is a test" | sed -n '/[[:punct:]]/p'
$

Using the special character classes is an easy way to define ranges. Instead
of having to use a range [0–9], you can just use [[:digit:]].

The asterisk
Placing an asterisk after a character signifies that the character must appear
zero or more times in the text to match the pattern:

$ echo "ik" | sed -n '/ie*k/p'
ik
$ echo "iek" | sed -n '/ie*k/p'
iek
$ echo "ieek" | sed -n '/ie*k/p'
ieek
$ echo "ieeek" | sed -n '/ie*k/p'
ieeek
$ echo "ieeeek" | sed -n '/ie*k/p'
ieeeek
$

This pattern symbol is commonly used for handling words that have a
common misspelling or variations in language spellings. For example, if
you need to write a script that may be used in either American or British
English, you could write:

$ echo "I'm getting a color TV" | sed -n '/colou*r/p'
I'm getting a color TV
$ echo "I'm getting a colour TV" | sed -n '/colou*r/p'
I'm getting a colour TV
$

The u* in the pattern indicates that the letter u may or may not appear in the
text to match the pattern. Similarly, if you know of a word that is commonly
misspelled, you can accommodate it by using the asterisk:

$ echo "I ate a potatoe with my lunch." | sed -n
'/potatoe*/p'
I ate a potatoe with my lunch.
$ echo "I ate a potato with my lunch." | sed -n
'/potatoe*/p'
I ate a potato with my lunch.
$

Placing an asterisk next to the possible extra letter allows you to accept the
misspelled word.

Another handy feature is combining the dot special character with the
asterisk special character. This combination provides a pattern to match any
number of any characters. It's often used between two text strings that may
or may not appear next to each other in the data stream:

$ echo "this is a regular pattern expression" | sed -n '
> /regular.*expression/p'

this is a regular pattern expression
$

Using this pattern, you can easily search for multiple words that may appear
anywhere in a line of text in the data stream.

The asterisk can also be applied to a character class. Doing so allows you to
specify a group or range of characters that can appear more than once in the
text:

$ echo "bt" | sed -n '/b[ae]*t/p'
bt
$ echo "bat" | sed -n '/b[ae]*t/p'
bat
$ echo "bet" | sed -n '/b[ae]*t/p'
bet
$ echo "btt" | sed -n '/b[ae]*t/p'
btt
$ echo "baat" | sed -n '/b[ae]*t/p'
baat
$ echo "baaeeet" | sed -n '/b[ae]*t/p'
baaeeet
$ echo "baeeaeeat" | sed -n '/b[ae]*t/p'
baeeaeeat
$ echo "baakeeet" | sed -n '/b[ae]*t/p'
$

As long as the a and e characters appear in any combination between the b
and t characters (including not appearing at all), the pattern matches. If any
other character outside of the defined character class appears, the pattern
match fails.

Trying Out Extended Regular Expressions
The POSIX ERE patterns include a few additional symbols that are used by
some Linux applications and utilities. Gawk recognizes the ERE patterns, but
sed doesn't.

CAUTION

Remember that the regular expression engines in sed and gawk are
different. Gawk can use most of the extended regular expression
pattern symbols, and it can provide some additional filtering
capabilities that sed doesn't have. However, because of this, it is
often slower in processing data streams.

This section describes the more commonly found ERE pattern symbols that
you can use in your gawk program scripts.

The question mark
The question mark is similar to the asterisk, but with a slight twist. The
question mark indicates that the preceding character can appear zero or one
time, but that's all. It doesn't match repeating occurrences of the character:

$ echo "bt" | gawk '/be?t/{print $0}'
bt
$ echo "bet" | gawk '/be?t/{print $0}'
bet
$ echo "beet" | gawk '/be?t/{print $0}'
$
$ echo "beeet" | gawk '/be?t/{print $0}'
$

If the e character doesn't appear in the text, or as long as it appears only
once in the text, the pattern matches.

As with the asterisk, you can use the question mark symbol along with a
character class:

$ echo "bt" | gawk '/b[ae]?t/{print $0}'
bt
$ echo "bat" | gawk '/b[ae]?t/{print $0}'
bat
$ echo "bot" | gawk '/b[ae]?t/{print $0}'
$
$ echo "bet" | gawk '/b[ae]?t/{print $0}'
bet
$ echo "baet" | gawk '/b[ae]?t/{print $0}'

$
$ echo "beat" | gawk '/b[ae]?t/{print $0}'
$
$ echo "beet" | gawk '/b[ae]?t/{print $0}'
$

If zero or one character from the character class appears, the pattern match
passes. However, if both characters appear, or if one of the characters
appears twice, the pattern match fails.

The plus sign
The plus sign is another pattern symbol that's similar to the asterisk, but
with a different twist than the question mark. The plus sign indicates that
the preceding character can appear one or more times but must be present at
least once. The pattern doesn't match if the character is not present:

$ echo "beeet" | gawk '/be+t/{print $0}'
beeet
$ echo "beet" | gawk '/be+t/{print $0}'
beet
$ echo "bet" | gawk '/be+t/{print $0}'
bet
$ echo "bt" | gawk '/be+t/{print $0}'
$

If the e character is not present, the pattern match fails. The plus sign also
works with character classes, the same way the asterisk and question mark
do:

$ echo "bt" | gawk '/b[ae]+t/{print $0}'
$
$ echo "bat" | gawk '/b[ae]+t/{print $0}'
bat
$ echo "bet" | gawk '/b[ae]+t/{print $0}'
bet
$ echo "beat" | gawk '/b[ae]+t/{print $0}'
beat
$ echo "beet" | gawk '/b[ae]+t/{print $0}'
beet
$ echo "beeat" | gawk '/b[ae]+t/{print $0}'
beeat
$

This time, if either character defined in the character class appears, the text
matches the specified pattern.

Using braces
Curly braces are available in ERE to allow you to specify a limit on a
repeatable regular expression. This is often referred to as an interval. You
can express the interval in two formats:

m —The regular expression appears exactly m times.

m,n —The regular expression appears at least m times, but no more
than n times.

This feature allows you to fine-tune exactly how many times you allow a
character (or character class) to appear in a pattern.

CAUTION

By default, gawk doesn't recognize regular expression intervals. You
must specify the --re-interval command-line option for gawk to
recognize regular expression intervals.

Here's an example of using a simple interval of one value:

$ echo "bt" | gawk --re-interval '/be{1}t/{print $0}'
$
$ echo "bet" | gawk --re-interval '/be{1}t/{print $0}'
bet
$ echo "beet" | gawk --re-interval '/be{1}t/{print $0}'
$

By specifying an interval of 1, you restrict the number of times the
character can be present for the string to match the pattern. If the character
appears more times, the pattern match fails.

Often, specifying the lower and upper limits comes in handy:

$ echo "bt" | gawk --re-interval '/be{1,2}t/{print $0}'
$
$ echo "bet" | gawk --re-interval '/be{1,2}t/{print $0}'
bet
$ echo "beet" | gawk --re-interval '/be{1,2}t/{print $0}'
beet

$ echo "beeet" | gawk --re-interval '/be{1,2}t/{print $0}'
$

In this example, the e character can appear once or twice for the pattern
match to pass; otherwise, the pattern match fails.

The interval pattern match also applies to character classes:

$ echo "bt" | gawk --re-interval '/b[ae]{1,2}t/{print $0}'
$
$ echo "bat" | gawk --re-interval '/b[ae]{1,2}t/{print $0}'
bat
$ echo "bet" | gawk --re-interval '/b[ae]{1,2}t/{print $0}'
bet
$ echo "beat" | gawk --re-interval '/b[ae]{1,2}t/{print $0}'
beat
$ echo "beet" | gawk --re-interval '/b[ae]{1,2}t/{print $0}'
beet
$ echo "beeat" | gawk --re-interval '/b[ae]{1,2}t/{print
$0}'
$
$ echo "baeet" | gawk --re-interval '/b[ae]{1,2}t/{print
$0}'
$
$ echo "baeaet" | gawk --re-interval '/b[ae]{1,2}t/{print
$0}'
$

This regular expression pattern matches if there are exactly one or two
instances of the letter a or e in the text pattern, but it fails if there are any
more in any combination.

The pipe symbol
The pipe symbol allows you to specify two or more patterns that the regular
expression engine uses in a logical OR formula when examining the data
stream. If any of the patterns match the data stream text, the text passes. If
none of the patterns match, the data stream text fails.

Here's the format for using the pipe symbol:

expr1|expr2|...

Here's an example:

$ echo "The cat is asleep" | gawk '/cat|dog/{print $0}'
The cat is asleep

$ echo "The dog is asleep" | gawk '/cat|dog/{print $0}'
The dog is asleep
$ echo "The sheep is asleep" | gawk '/cat|dog/{print $0}'
$

This example looks for the regular expression “cat” or “dog” in the data
stream. You can't place any spaces within the regular expressions and the
pipe symbol, or they're added to the regular expression pattern.

The regular expressions on either side of the pipe symbol can use any
regular expression pattern, including character classes, to define the text:

$ echo "He has a hat." | gawk '/[ch]at|dog/{print $0}'
He has a hat.
$

This example would match “cat”, “hat”, or “dog” in the data stream text.

Grouping expressions
Regular expression patterns can also be grouped by using parentheses.
When you group a regular expression pattern, the group is treated like a
standard character. You can apply a special character to the group just as
you would to a regular character. For example:

$ echo "Sat" | gawk '/Sat(urday)?/{print $0}'
Sat
$ echo "Saturday" | gawk '/Sat(urday)?/{print $0}'
Saturday
$

The grouping of the “urday” ending along with the question mark allows
the pattern to match either the full day name “Saturday” or the abbreviated
name “Sat.”

It's common to use grouping along with the pipe symbol to create groups of
possible pattern matches:

$ echo "cat" | gawk '/(c|b)a(b|t)/{print $0}'
cat
$ echo "cab" | gawk '/(c|b)a(b|t)/{print $0}'
cab
$ echo "bat" | gawk '/(c|b)a(b|t)/{print $0}'
bat
$ echo "bab" | gawk '/(c|b)a(b|t)/{print $0}'
bab

$ echo "tab" | gawk '/(c|b)a(b|t)/{print $0}'
$
$ echo "tac" | gawk '/(c|b)a(b|t)/{print $0}'
$

The pattern (c|b)a(b|t) matches any combination of the letters in the first
group along with any combination of the letters in the second group.

Working Through Some Practical Examples
Now that you've seen the rules and a few simple demonstrations of using
regular expression patterns, it's time to put that knowledge into action. The
following sections demonstrate some common regular expression examples
within shell scripts.

Counting directory files
To start things out, let's look at a shell script that counts the executable files
that are present in the directories defined in your PATH environment
variable. To do that, you need to parse out the PATH variable into separate
directory names. Chapter 6, “Using Linux Environment Variables,” showed
you how to display the PATH environment variable:

$ echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
:/usr/games:/usr/
local/games
$

Your PATH environment variable will differ, depending on where the
applications are located on your Linux system. The key is to recognize that
each directory in the PATH is separated by a colon. To get a listing of
directories that you can use in a script, you must replace each colon with a
space. You now recognize that sed can do just that using a simple regular
expression:

$ echo $PATH | sed 's/:/ /g'
/usr/local/sbin /usr/local/bin /usr/sbin /usr/bin /sbin /bin
/usr/games /usr/local/games
$

After you have the directories separated out, you can use them in a standard
for statement (see Chapter 13, “More Structured Commands”) to iterate
through each directory:

mypath=`echo $PATH | sed 's/:/ /g'`
for directory in $mypath
do
...
done

After you have each directory, you can use the ls command to list each file
in each directory and use another for statement to iterate through each file,
incrementing a counter for each file.

The final version of the script looks like this:

$ cat countfiles
#!/bin/bash
count number of files in your PATH
mypath=$(echo $PATH | sed 's/:/ /g')
count=0
for directory in $mypath
do
 check=$(ls $directory)
 for item in $check
 do
 count=$[$count + 1]
 done
 echo "$directory - $count"
 count=0
done
$./countfiles /usr/local/sbin - 0
/usr/local/bin - 2
/usr/sbin - 213
/usr/bin - 1427
/sbin - 186
/bin - 152
/usr/games - 5
/usr/local/games – 0
$

Now we're starting to see some of the power behind regular expressions!

Validating a phone number

The previous example showed how to incorporate the simple regular
expression along with sed to replace characters in a data stream to process
data. Often, regular expressions are used to validate data to ensure that data
is in the correct format for a script.

A common data validation application checks phone numbers. Often, data
entry forms request phone numbers, and often customers fail to enter a
properly formatted phone number. People in the United States use several
common ways to display a phone number:

(123)456-7890
(123) 456-7890
123-456-7890
123.456.7890

This leaves four possibilities for how customers can enter their phone
number in a form. The regular expression must be robust enough to handle
any of these situations.

When building a regular expression, it's best to start on the left side and
build your pattern to match the possible characters you'll run into. In this
example, there may or may not be a left parenthesis in the phone number.
This can be matched by using the pattern

^\(?

The caret is used to indicate the beginning of the data. Because the left
parenthesis is a special character, you must escape it to use it as a normal
character. The question mark indicates that the left parenthesis may or may
not appear in the data to match.

Next is the three-digit area code. In the United States, area codes start with
the number 2 (no area codes start with the digits 0 or 1) and can go to 9. To
match the area code, you'd use the following pattern:

[2-9][0-9]{2}

This requires that the first character be a digit between 2 and 9, followed by
any two digits. After the area code, the ending right parenthesis may or may
not appear:

\)?

After the area code, there can be a space, no space, a dash, or a dot. You can
group those using a character group along with the pipe symbol:

(| |-|\.)

The very first pipe symbol appears immediately after the left parenthesis to
match the no space condition. You must use the escape character for the
dot; otherwise, it is interpreted to match any character.

Next is the three-digit phone exchange number. Nothing special is required
here:

[0-9]{3}

After the phone exchange number, you must match a space, a dash, or a dot
(this time you don't have to worry about matching no space because there
must be at least a space between the phone exchange number and the rest of
the number):

(|-|\.)

Then to finish things off, you must match the four-digit local phone
extension at the end of the string:

[0-9]{4}$

Putting the entire pattern together results in this:

^\(?[2-9][0-9]{2}\)?(| |-|\.)[0-9]{3}(|-|\.)[0-9]{4}$

You can use this regular expression pattern in gawk to filter out bad phone
numbers. Now you just need to create a simple script using the regular
expression in gawk and filter your phone list through the script. Remember
that when you use regular expression intervals in gawk , you must use the --
re-interval command-line option or you won't get the correct results.

Here's the script:

$ cat isphone
#!/bin/bash
script to filter out bad phone numbers
gawk --re-interval '/^\(?[2-9][0-9]{2}\)?(| |-|\.)
[0-9]{3}(|-|\.)[0-9]{4}/{print $0}'
$

Although you can't tell from this listing, the gawk command is on a single
line in the shell script. You can then redirect phone numbers to the script for
processing:

$ echo "317-555-1234" | ./isphone
317-555-1234
$ echo "000-555-1234" | ./isphone
$ echo "312 555-1234" | ./isphone
312 555-1234
$

Or you can redirect an entire file of phone numbers to filter out the invalid
ones:

$ cat phonelist
000-000-0000
123-456-7890
212-555-1234
(317)555-1234
(202) 555-9876
33523
1234567890
234.123.4567
$ cat phonelist | ./isphone
212-555-1234
(317)555-1234
(202) 555-9876
234.123.4567
$

Only the valid phone numbers that match the regular expression pattern
appear.

Parsing an email address
These days, email has become a crucial form of communication. Trying to
validate email addresses has become quite a challenge for script builders
because of the myriad ways to create an email address. This is the basic
form of an email address:

username@hostname

The username value can use any alphanumeric character, along with several
special characters:

Dot

Dash

Plus sign

Underscore

These characters can appear in any combination in a valid email UserID.
The hostname portion of the email address consists of one or more domain
names and a server name. The server and domain names must also follow
strict naming rules, allowing only alphanumeric characters, along with these
special characters:

Dot

Underscore

The server and domain names are each separated by a dot, with the server
name specified first, any subdomain names specified next, and finally, the
top-level domain name without a trailing dot.

At one time, the top-level domains were fairly limited, and regular
expression pattern builders attempted to add them all in patterns for
validation. Unfortunately, as the Internet grew, so did the possible top-level
domains. This technique is no longer a viable solution.

Let's start building the regular expression pattern from the left side. We
know that there can be multiple valid characters in the username. This
should be fairly easy:

^([a-zA-Z0-9_\-\.\+]+)@

This grouping specifies the allowable characters in the username and the
plus sign to indicate that at least one character must be present. The next
character obviously is the @ symbol—no surprises there.

The hostname pattern uses the same technique to match the server name
and the subdomain names:

([a-zA-Z0-9_\-\.]+)

This pattern matches the text

server
server.domain
server.subdomain.domain

There are special rules for the top-level domain. Top-level domains are only
alphabetic characters, and they must be no fewer than two characters (used
in country codes) and no more than five characters in length. The following
is the regular expression pattern for the top-level domain:

\.([a-zA-Z]{2,5})$

Putting the entire pattern together results in the following:

^([a-zA-Z0-9_\-\.\+]+)@([a-zA-Z0-9_\-\.]+)\.([a-zA-Z]{2,5})$

This pattern filters out poorly formatted email addresses from a data list.
Now you can create your script to implement the regular expression:

$ echo "rich@here.now" | ./isemail
rich@here.now
$ echo "rich@here.now." | ./isemail
$
$ echo "rich@here.n" | ./isemail
$
$ echo "rich@here-now" | ./isemail
$
$ echo "rich.blum@here.now" | ./isemail
rich.blum@here.now
$ echo "rich_blum@here.now" | ./isemail
rich_blum@here.now
$ echo "rich/blum@here.now" | ./isemail
$
$ echo "rich#blum@here.now" | ./isemail
$
$ echo "rich*blum@here.now" | ./isemail
$

This is a great example of not only the power of regular expressions, but
also their simplicity. At first glance, the regular expression for filtering out
email addresses looks pretty complicated, but walking through the patterns
one at a time makes understanding what's going on much easier.

Summary

If you manipulate data files in shell scripts, you need to become familiar
with regular expressions. Regular expressions are implemented in Linux
utilities, programming languages, and applications using regular expression
engines. A host of different regular expression engines is available in the
Linux world. The two most popular are the POSIX Basic Regular
Expression (BRE) engine and the POSIX Extended Regular Expression
(ERE) engine. Sed conforms mainly to the BRE engine, whereas gawk
utilizes most features found in the ERE engine.

A regular expression defines a pattern template that's used to filter text in a
data stream. The pattern consists of a combination of standard text
characters and special characters. The special characters are used by the
regular expression engine to match a series of one or more characters,
similar to how wildcard characters work in other applications.

By combining characters and special characters, you can define a pattern to
match almost any type of data. You can then use sed or gawk to filter
specific data from a larger data stream, or for validating data received from
data entry applications.

The next chapter digs deeper into using sed to perform advanced text
manipulation. Lots of advanced features are available in sed that make it
useful for handling large data streams and filtering out just what you need.

CHAPTER 21
Advanced sed
IN THIS CHAPTER

Using multiline commands

Understanding the hold space

Negating a command

Changing the flow

Replacing via a pattern

Using sed in scripts

Making sed utilities

Chapter 19, “Introducing sed and gawk ,” showed you how to use the basics
of the sed editor to manipulate text in data streams. The basic sed editor
commands are capable of handling most of your everyday text-editing
requirements. This chapter looks at the more advanced features that the sed
editor has to offer. These are features that you might not use as often. But
when you need them, it's nice to know that they're available as well as how
to use them.

Looking at Multiline Commands
When using the basic sed editor commands, you may have noticed a
limitation. All the sed editor commands perform functions on a single line
of data. As the sed editor reads a data stream, it divides the data into lines
based on the presence of newline characters. The sed editor handles the
data lines one at a time, processing the defined script commands on the data
line and then moving on to the next line and repeating the processing.

Sometimes, you need to perform actions on data that spans more than one
line. This is especially true if you're trying to find or replace a phrase.

For example, if you're looking for the phrase Linux System
Administrators Group in your data, it's quite possible that the phrase's
words can be split onto two lines. If you processed the text using a normal
sed editor command, it would be impossible to detect the split phrase.

Fortunately, the designers behind the sed editor thought of that situation
and devised a solution. The sed editor includes three special commands that
you can use to process multiline text:

N adds the next line in the data stream to create a multiline group for
processing.

D deletes a single line in a multiline group.

P prints a single line in a multiline group.

The following sections examine these multiline commands more closely
and demonstrate how you can use them in your scripts.

Navigating the next command
Before you can examine the multiline next (N) command, you first need to
look at how the single-line version of the next command works. After you
know what that command does, it's much easier to understand how the
multiline version of the next command operates.

Using the single-line next command
The single-line next (n) command tells the sed editor to move to the next
line of text in the data stream, without going back to the beginning of the
commands. Remember that normally the sed editor processes all the
defined commands on a line before moving to the next line of text in the
data stream. The single-line next (n) command alters this flow.

This may sound somewhat complicated, and sometimes it is. In this
example, we have a data file that contains five lines, two of which are
blank. The goal is to remove the first blank line, which is after the header
line, but leave the second blank line intact. If we write a sed script to delete
blank lines, both blank lines are removed, which is not what we wanted:

$ cat data1.txt
Header Line

Data Line #1

End of Data Lines
$
$ sed '/^$/d' data1.txt
Header Line
Data Line #1
End of Data Lines
$

Because the line we want to remove is blank, there is no text we can search
for to uniquely identify the line. The solution is to use the single-line next
(n) command. In this next example, the script looks for a unique line that
contains the word Header . After the script identifies that line, the n
command moves the sed editor to the next line of text, which is the blank
line.

$ sed '/Header/{n ; d}' data1.txt
Header Line
Data Line #1

End of Data Lines
$

At that point, the sed editor continues processing the command list, which
uses the d command to delete the empty line. When the sed editor reaches
the end of the command script, it reads the next line of text from the data
stream and starts processing commands from the top of the command script.
The sed editor does not find another line with the word Header ; thus, no
further lines are deleted.

Combining lines of text
Now that you've seen the single-line next (n) command, we can look at the
multiline version. The single-line next command moves the next line of text
from the data stream into the processing space (called the pattern space) of
the sed editor. The multiline version of the next command (which uses a
capital N) adds the next line of text to the text already in the pattern space.

This has the effect of combining two lines of text from the data stream into
the same pattern space. The lines of text are still separated by a newline
character, but the sed editor can now treat both lines of text as one line.

Here's a demonstration of how the multiline (N) command operates:

$ cat data2.txt
Header Line
First Data Line
Second Data Line
End of Data Lines
$
$ sed '/First/{ N ; s/\n/ / }' data2.txt
Header Line
First Data Line Second Data Line
End of Data Lines
$

The sed editor script searches for the line of text that contains the word
First in it. When it finds the line, it uses the N command to combine the
next line with that line in the pattern space. It then uses the substitution (s)
command to replace the newline character (\n) with a space. The result is
that the two lines in the text file appear as one line in the sed editor output.

This has a practical application if you're searching for a text phrase that may
be split between two lines in the data file. Here's an example:

$ cat data3.txt
On Tuesday, the Linux System
Admin group meeting will be held.
All System Admins should attend.
Thank you for your cooperation.
$
$ sed 's/System Admin/DevOps Engineer/' data3.txt
On Tuesday, the Linux System
Admin group meeting will be held.
All DevOps Engineers should attend.
Thank you for your cooperation.
$

The substitution (s) command is looking for the specific two-word phrase
System Admin in the text file. In the single line where the phrase appears,
everything is fine; the substitution command can replace the text. But in the
situation where the phrase is split between two lines, the substitution
command doesn't recognize the matching pattern.

The N command helps solve this problem:

$ sed 'N ; s/System.Admin/DevOps Engineer/' data3.txt
On Tuesday, the Linux DevOps Engineer group meeting will be

held.
All DevOps Engineers should attend.
Thank you for your cooperation.
$

By using the multiline (N) command to combine the next line with the line
where the first word is found, you can detect when a line split occurs in the
phrase.

Notice that the substitution (s) command uses a wildcard pattern (.)
between the word System and the word Admin to match both the space and
the newline situation. However, when it matched the newline character, it
removed it from the string, causing the two lines to merge into one line.
This may not be exactly what you want.

To solve this problem, you can use two substitution commands in the sed
editor script, one to match the multiline occurrence and one to match the
single-line occurrence:

$ sed 'N
> s/System\nAdmin/DevOps\nEngineer/
> s/System Admin/DevOps Engineer/
> ' data3.txt
On Tuesday, the Linux DevOps
Engineer group meeting will be held.
All DevOps Engineers should attend.
Thank you for your cooperation.
$

The first substitution command specifically looks for the newline character
between the two search words and includes it in the replacement string.
This allows you to add the newline character in the same place in the new
text.

There's still one subtle problem with this script, however. The script always
reads the next line of text into the pattern space before executing the sed
editor commands. When it reaches the last line of text, there isn't a next line
of text to read, so the N command causes the sed editor to stop. If the
matching text is on the last line in the data stream, the commands don't
catch the matching data:

$ cat data4.txt
On Tuesday, the Linux System
Admin group meeting will be held.

All System Admins should attend.
$
$ sed 'N
> s/System\nAdmin/DevOps\nEngineer/
> s/System Admin/DevOps Engineer/
> ' data4.txt
On Tuesday, the Linux DevOps
Engineer group meeting will be held.
All System Admins should attend.
$

Because the System Admin text appears in the last line in the data stream,
the multiline (N) command misses it, as there isn't another line to read into
the pattern space to combine. We can easily resolve this problem by moving
our single-line editing commands before the multiline command and having
only the editing commands for the multiple lines appear after the N , like
this:

$ sed '
> s/System Admin/DevOps Engineer/
> N
> s/System\nAdmin/DevOps\nEngineer/
> ' data4.txt
On Tuesday, the Linux DevOps
Engineer group meeting will be held.
All DevOps Engineers should attend.
$

Now, the substitution (s) command that looks for the phrase in a single line
works just fine on the last line in the data stream, and the substitution
command after the multiline (N) command covers the occurrence in the
middle of the data stream.

Navigating the multiline delete command
In Chapter 19, “Introducing sed and gawk,” we touched on the topic of the
single-line delete (d) command. The sed editor uses it to delete the current
line in the pattern space. If you're working with the N command, however,
you must be careful when using the single-line delete command:

$ sed 'N ; /System\nAdmin/d' data4.txt
All System Admins should attend.
$

The delete (d) command looked for the words System and Admin in separate
lines and deleted both of the lines in the pattern space. This may or may not
have been what you intended.

The sed editor provides the multiline delete (D) command, which deletes
only the first line in the pattern space. It removes all characters up to and
including the newline character:

$ sed 'N ; /System\nAdmin/D' data4.txt
Admin group meeting will be held.
All System Admins should attend.
$

The second line of text, added to the pattern space by the N command,
remains intact. This comes in handy if you need to remove a line of text that
appears before a line that you find a data string in.

Here's an example of removing a blank line that appears before the first line
in a data stream:

$ cat data5.txt

Header Line
First Data Line

End of Data Lines
$
$ sed '/^$/{N ; /Header/D}' data5.txt
Header Line
First Data Line

End of Data Lines
$

This sed editor script looks for blank lines and then uses the N command to
add the next line of text into the pattern space. If the new pattern space
contents contain the word Header , the D command removes the first line in
the pattern space. Without the combination of the N and D commands, it
would be impossible to remove the first blank line without removing all
other blank lines.

Navigating the multiline print command

By now, you're probably catching on to the difference between the single-
line and multiline versions of the commands. The multiline print command
(P) follows along using the same technique. It prints only the first line in a
multiline pattern space. This includes all characters up to the newline
character in the pattern space. It is used in much the same way as the single-
line p command to display text when you use the -n option to suppress
output from the script.

$ sed -n 'N ; /System\nAdmin/P' data3.txt
On Tuesday, the Linux System
$

When the multiline match occurs, the P command prints only the first line
in the pattern space. The power of the multiline P command comes into play
when you combine it with the N and D multiline commands.

The D command has a unique feature in that after deleting the first line from
the pattern space, it forces the sed editor to return to the beginning of the
script and repeat the commands on the current pattern space (it doesn't read
a new line of text from the data stream). By including the N command in the
command script, you can effectively single-step through the pattern space,
matching multiple lines together.

Next, by using the P command, you can print the first line, and then using
the D command, you can delete the first line and loop back to the beginning
of the script. When you are back at the script's beginning, the N command
reads in the next line of text and starts the process all over again. This loop
continues until you reach the end of the data stream, as shown in removing
the data corruption in this file:

$ cat corruptData.txt
Header Line#
@
Data Line #1
Data Line #2#
@
End of Data Lines#
@
$
$ sed -n '
> N
> s/#\n@//
> P

> D
> ' corruptData.txt
Header Line
Data Line #1
Data Line #2
End of Data Lines
$

The data file has been corrupted with # at some lines' ends followed by @ on
the next line. To fix this issue, using sed the Header Line# line is loaded
into the pattern space, and then the multiline next (N) command loads the
second line (@), appending it to the first line within the space. The
substitution (s) command removes the offending data (#\n@) by replacing it
with a null. Next, the P command prints only the now cleaned-up first line
within the pattern space. The delete (D) command removes this first line
from the space and goes back to the beginning of the script, where the next
N command reads the third line (Data Line #1) of text into the pattern
space and the editing loop continues.

Holding Space
The pattern space is an active buffer area that holds the text examined by
the sed editor while it processes commands. However, it isn't the only space
available in the sed editor for storing text.

The sed editor utilizes another buffer area called the hold space. You can
use the hold space to temporarily hold lines of text while working on other
lines in the pattern space. The five commands associated with operating
with the hold space are shown in Table 21.1.

TABLE 21.1 The sed Editor Hold Space Commands

Command Description
h Copies pattern space to hold space
H Appends pattern space to hold space
g Copies hold space to pattern space
G Appends hold space to pattern space
x Exchanges contents of pattern and hold spaces

These commands let you copy text from the pattern space to the hold space.
This frees up the pattern space to load another string for processing.

Usually, after using the h or H command to move a string to the hold space,
eventually you want to use the g , G , or x command to move the stored
string back into the pattern space (otherwise, you wouldn't have cared about
saving them in the first place).

With two buffer areas, trying to determine what line of text is in which
buffer area can sometimes get confusing. Here's a short example that
demonstrates how to use the h and g commands to move data back and forth
between the sed editor buffer spaces:

$ cat data2.txt
Header Line
First Data Line
Second Data Line
End of Data Lines
$
$ sed -n '/First/ {
> h ; p ;
> n ; p ;
> g ; p }
> ' data2.txt
First Data Line
Second Data Line
First Data Line
$

Let's look at the preceding code example step by step:

1. The sed script uses a regular expression in the address to filter the line
containing the word First .

2. When the line containing the word First appears, the initial command
in {} , the h command, copies the line in the pattern space to the hold
space. At this point, the pattern space and the hold space have the same
data.

3. The p command then prints the contents of the pattern space (First
Data Line), which is still the line that was copied into the hold space.

4. The n command retrieves the next line in the data stream (Second
Data Line) and places it in the pattern space. Now the pattern space

has different data than the hold space.

5. The p command prints the contents of the pattern space (Second Data
Line).

6. The g command places the contents of the hold space (First Data
Line) back into the pattern space, replacing the current text. The
pattern space and the hold space now have the same data again.

7. The p command prints the current contents of the pattern space (First
Data Line).

By shuffling the text lines around using the hold space, we can force the
First Data Line to appear after the Second Data Line in the output. If we
just drop the first p command, we can output the two lines in reverse order:

$ sed -n '/First/ {
> h ;
> n ; p
> g ; p }
> ' data2.txt
Second Data Line
First Data Line
$

This is the start of something useful. You can use this technique to create a
sed script that reverses an entire file of text data! To do that, however, you
need to see the negating feature of the sed editor, which is what the next
section is all about.

Negating a Command
Chapter 19 showed that the sed editor applies commands either to every
text line in the data stream or to lines specifically indicated by either a
single address or an address range. You can also configure a command to
not apply to a specific address or address range in the data stream.

The exclamation mark (!) command is used to negate a command. This
means in situations where the command would normally have been
activated, it isn't. Here's an example demonstrating this feature:

$ sed -n '/Header/!p' data2.txt
First Data Line

Second Data Line
End of Data Lines
$

The normal p command would have printed only the line in the data2 file
that contained the word Header . By adding the exclamation mark, the
opposite happens — all lines in the file are printed except the one that
contained the word Header.

Using the exclamation mark comes in handy in several applications. Recall
that earlier in the chapter, the “Navigating the Next Command” section
showed a situation where a sed editor command wouldn't operate on the
last line of text in the data stream because there wasn't a line after it. You
can use the exclamation point to fix that problem:

$ cat data4.txt
On Tuesday, the Linux System
Admin group meeting will be held.
All System Admins should attend.
$
$ sed 'N;
> s/System\nAdmin/DevOps\nEngineer/
> s/System Admin/DevOps Engineer/
> ' data4.txt
On Tuesday, the Linux DevOps
Engineer group meeting will be held.
All System Admins should attend.
$
$ sed '$!N;
> s/System\nAdmin/DevOps\nEngineer/
> s/System Admin/DevOps Engineer/
> ' data4.txt
On Tuesday, the Linux DevOps
Engineer group meeting will be held.
All DevOps Engineers should attend.
$

This example shows the exclamation mark used with the N command, along
with the dollar sign ($) special address. The dollar sign represents the last
line of text in the data stream, so when the sed editor reaches the last line, it
doesn't execute the N command. However, for all other lines, it does execute
the command.

Using this technique, you can reverse the order of text lines in a data
stream. To reverse the order of the lines as they appear in the text stream

(display the last line first and the first line last), you need to do some fancy
footwork using the hold space.

To accomplish this, use sed to

1. Place a text line in the pattern space.

2. Copy the line in the pattern space into the hold space.

3. Put the next line of text in the pattern space.

4. Append the hold space to the pattern space.

5. Copy everything in the pattern space into the hold space.

6. Repeat steps 3 through 5 until you've put all the lines in reverse order
in the hold space.

7. Retrieve the lines, and print them.

Figure 21-1 diagrams what this looks like in more detail.

FIGURE 21-1 Reversing the order of a text file using the hold space

When using this technique, you do not want to print lines as they are
processed. This means using the -n command-line option for sed . The next

thing to determine is how to append the hold space text to the pattern space
text. This is done by using the G command. The only problem is that you
don't want to append the hold space to the first line of text processed. This
is easily solved by using the exclamation mark command:

1!G

The next step is to copy the new pattern space (the text line with the
appended reverse lines) into the hold space. This is simple enough; just use
the h command.

When you've got the entire data stream in the pattern space in reverse order,
you just need to print the results. You know you have the entire data stream
in the pattern space when you've reached the last line in the data stream. To
print the results, just use the following command:

$p

Those are the pieces we need to create our line-reversing sed editor script.
Now we'll try it out in a test run:

$ cat data2.txt
Header Line
First Data Line
Second Data Line
End of Data Lines
$
$ sed -n '{1!G ; h ; $p }' data2.txt
End of Data Lines
Second Data Line
First Data Line
Header Line
$

The sed editor script performed as expected. The output from the script
reverses the original lines in the text file. This demonstrates the power of
using the hold space in your sed scripts. It provides an easy way to
manipulate the order of lines in the script output.

NOTE

In case you're wondering, a Bash shell command can perform the
function of reversing a text file. The tac command displays a text
file in reverse order. You probably noticed the clever name of the
command because it performs the reverse function of the cat
command.

Changing the Flow
Normally, the sed editor processes commands starting at the top and
proceeding toward the end of the script (the exception is the D command,
which forces the sed editor to return to the top of the script without reading
a new line of text). The sed editor provides a method for altering the flow
of the command script, producing a result similar to that of a structured
programming environment.

Branching
In the previous section, you saw how the exclamation mark command is
used to negate the effect of a command on a line of text. The sed editor
provides a way to negate an entire section of commands, based on an
address, an address pattern, or an address range. This allows you to perform
a group of commands only on a specific subset within the data stream.

Here's the format of the branch (b) command:

[address]b [label]

The address parameter determines which line or lines of data trigger the
branch (b) command. The label parameter defines the location within the
script to which to branch. If the label parameter is not present, the branch
(b) command skips the line or lines of data that triggered the branch, and
goes on to process the other text lines.

Here is an example using the address parameter with the branch command
but no label:

$ cat data2.txt
Header Line
First Data Line
Second Data Line
End of Data Lines
$
$ sed '{2,3b ;
> s/Line/Replacement/}
> ' data2.txt
Header Replacement
First Data Line
Second Data Line
End of Data Replacements
$

The branch (b) command skips the substitution commands for the second
and third lines in the data stream.

Instead of going to the end of the script, you can define a label providing a
location for the branch command to jump. Labels start with a colon and can
be up to seven characters in length:

:label2

To specify the label, just add it after the b command. Using labels allows
you to provide alternative commands to process data that match the branch
address but still process other text lines using the original commands in the
script:

$ sed '{/First/b jump1 ;
> s/Line/Replacement/
> :jump1
> s/Line/Jump Replacement/}
> ' data2.txt
Header Replacement
First Data Jump Replacement
Second Data Replacement
End of Data Replacements
$

The branch (b) command specifies that the program should jump to the
script line labeled jump1 if the matching text First appears in the line. If
the branch command address doesn't match, the sed editor continues
processing commands in the script, including the command after the branch

label, jump1 . (Thus, both substitution commands are processed on lines that
don't match the branch address.)

If a line matches the branch address, the sed editor branches to the labeled
line, jump1 . Thus, only the last substitution command is executed for lines
matching the branch address.

The example shows branching to a label further down in the sed script. You
can also branch to a label that appears earlier in the script, thus creating a
looping effect:

$ echo "This, is, a, test, to, remove, commas." |
> sed -n {'
> :start
> s/,//1p
> b start
> }'
This is, a, test, to, remove, commas.
This is a, test, to, remove, commas.
This is a test, to, remove, commas.
This is a test to, remove, commas.
This is a test to remove, commas.
This is a test to remove commas.
^C
$

Each script iteration removes the first occurrence of a comma from the text
string and prints the string. There's one catch to this script — it never ends.
This situation creates an endless loop, searching for commas until you
manually stop it by sending a signal with the Ctrl+C key combination.

To prevent this problem, specify an address pattern for the branch (b)
command. If the pattern isn't present, the branching stops:

$ echo "This, is, a, test, to, remove, commas." |
> sed -n {'
> :start
> s/,//1p
> /,/b start
> }'
This is, a, test, to, remove, commas.
This is a, test, to, remove, commas.
This is a test, to, remove, commas.
This is a test to, remove, commas.
This is a test to remove, commas.

This is a test to remove commas.
$

Now the branch command branches only if there's a comma in the line.
After the last comma has been removed, the branch (b) command doesn't
execute, allowing the script to properly finish.

Testing
Similar to the branch command, the test (t) command is also used to
modify the flow of the sed editor script. Instead of jumping to a label
based on an address, the test (t) command jumps to a label based on the
outcome of a preceding substitution command.

If the substitution command successfully matches and substitutes a pattern,
the test command branches to the specified label. If the substitution
command doesn't match the specified pattern, the test command doesn't
branch.

The test (t) command uses the same format as the branch command:

[address]t [label]

As with the branch command, if you don't specify a label, sed jumps to the
end of the script's commands, but only if the test succeeds.

The test (t) command provides a cheap way to perform a basic if-then
statement on the text in the data stream. For example, if you don't need to
make a substitution if another substitution was made, the test command,
without a specified label , can help:

$ sed '{s/First/Matched/ ; t
> s/Line/Replacement/}
> ' data2.txt
Header Replacement
Matched Data Line
Second Data Replacement
End of Data Replacements
$

The first substitution command looks for the pattern text First . If it
matches the pattern in the line, it replaces the text, and the test (t) command
jumps over the second substitution command. If the first substitution

command doesn't match the text pattern, the second substitution command
is processed.

Using the test command, we can clean up the loop we tried using the branch
command:

$ echo "This, is, a, test, to, remove, commas." |
> sed -n '{
> :start
> s/,//1p
> t start
> }'
This is, a, test, to, remove, commas.
This is a, test, to, remove, commas.
This is a test, to, remove, commas.
This is a test to, remove, commas.
This is a test to remove, commas.
This is a test to remove commas.
$

When there are no more comma substitutions to make, the test command
doesn't branch, and the processing ends.

Replacing via a Pattern
We've covered how to use patterns in the sed commands to replace text in
the data stream. However, when using wildcard characters it's not easy to
know exactly what text will match the pattern.

For example, say that you want to place double quotation marks around a
word you match in a line. That's simple enough if you're just looking for
one word in the pattern to match:

$ echo "The cat sleeps in his hat." |
> sed 's/cat/"cat"/'
The "cat" sleeps in his hat.
$

But what if you use a wildcard character (.) in the pattern to match more
than one word?

$ echo "The cat sleeps in his hat." |
> sed 's/.at/".at"/g'
The ".at" sleeps in his ".at".
$

The substitution string used the dot wildcard character to match any
occurrence of a letter followed by “at”. Unfortunately, the replacement
string doesn't match the wildcard character value of the matching word.

Using the ampersand
The sed editor has a solution for you. The ampersand symbol (&) is used to
represent the matching pattern in the substitution command. Whatever text
matches the pattern defined, you can use the ampersand symbol to recall it
in the replacement pattern. This lets you manipulate whatever word matches
the pattern defined:

$ echo "The cat sleeps in his hat." |
> sed 's/.at/"&"/g'
The "cat" sleeps in his "hat".
$

When the pattern matches the word cat , "cat" appears in the substituted
word. When it matches the word hat , "hat" appears in the substituted
word.

Replacing individual words
The ampersand symbol retrieves the entire string that matches the pattern
you specify in the substitution command. Sometimes, you'll want to retrieve
only a subset of the string. You can do that, too, but it's a little tricky.

The sed editor uses parentheses to define a substring component within the
substitution pattern. You can then reference each substring component using
a special character in the replacement pattern. The replacement character
consists of a backslash and a number. The number indicates the substring
component's position. The sed editor assigns the first component the
character \1 , the second component the character \2 , and so on.

NOTE

When you use parentheses in the substitution command, you must
use the escape character to identify them as grouping characters
and not normal parentheses. This is the reverse of when you escape
other special characters.

Look at an example of using this feature in a sed editor script:

$ echo "The Guide to Programming" |
> sed '
> s/\(Guide to\) Programming/\1 DevOps/'
The Guide to DevOps
$

This substitution command uses one set of parentheses around Guide To
identifying it as a substring component. It then uses the \1 in the
replacement pattern to recall the first identified component. This isn't too
exciting, but it can really be useful when working with wildcard patterns.

Suppose you need to replace a phrase with just a single word that's a
substring of the phrase, but that substring just happens to be using a
wildcard character. In such cases, using substring components is a lifesaver:

$ echo "That furry cat is pretty." |
> sed 's/furry \(.at\)/\1/'
That cat is pretty.
$
$ echo "That furry hat is pretty." |
> sed 's/furry \(.at\)/\1/'
That hat is pretty.
$

In this situation, you can't use the ampersand symbol, because it would
replace the entire matching pattern. The substring component provides the
answer, allowing you to select just which part of the pattern to use as the
replacement pattern.

This feature can be especially helpful when you need to insert text between
two or more substring components. Here's a script that uses substring
components to insert a comma in long numbers:

$ echo "1234567" | sed '{
> :start
> s/\(.*[0-9]\)\([0-9]\{3\}\)/\1,\2/
> t start}'
1,234,567
$

The script divides the matching pattern into two components:

.*[0-9]
[0-9]{3}

This pattern looks for two substrings. The first substring is any number of
characters ending in a digit. The second substring is a series of three digits
(see Chapter 20, “Regular Expressions,” for information about how to use
braces in a regular expression). If this pattern is found in the text, the
replacement text puts a comma between the two components, each
identified by its component position. The script uses the test (t) command
to iterate through the number until all commas have been put in their proper
place.

Placing sed Commands in Scripts
Now that you've seen the various parts of the sed editor, it's time to put
them together and use them in your shell scripts. This section demonstrates
some of the features that you should know about when using the sed editor
in your Bash shell scripts.

Using wrappers
You may have noticed that trying to implement a sed editor script can be
cumbersome, especially if the script is long. Instead of having to retype the
entire script each time you want to use it, you can place the sed editor
command in a shell script wrapper. The wrapper acts as a go-between for
the sed editor script and the command line. A shell script wrapper,
ChangeScriptShell.sh , was used back in Chapter 19 as a practical
example.

Once inside the shell script, you can use normal shell variables and
parameters with your sed editor scripts. Here's an example of using the
command-line parameter variable as the input to a sed script:

$ cat reverse.sh
#!/bin/bash
Shell wrapper for sed editor script
to reverse test file lines.

sed -n '{1!G; h; $p}' $1

exit
$

The shell script called reverse.sh uses the sed editor script to reverse text
lines in a data stream. It uses the $1 shell parameter to retrieve the first
parameter from the command line, which should be the name of the file to
reverse:

$ cat data2.txt
Header Line
First Data Line
Second Data Line
End of Data Lines
$
$./reverse.sh data2.txt
End of Data Lines
Second Data Line
First Data Line
Header Line
$

Now you can easily use the sed editor script on any file without having to
constantly retype the entire sed command line.

Redirecting sed output
By default, the sed editor outputs the results of the script to STDOUT . You
can employ all the standard methods of redirecting the output of the sed
editor in your shell scripts.

You can use dollar sign/parenthesis, $() , to redirect the output of your sed
editor command to a variable for use later in the script. The following is an
example of using the sed script to add commas to the result of a numeric
computation:

$ cat fact.sh
#!/bin/bash
Shell wrapper for sed editor script

to calculate a factorial, and
format the result with commas.

factorial=1
counter=1
number=$1

while [$counter -le $number]
do
 factorial=$[$factorial * $counter]
 counter=$[$counter + 1]
done

result=$(echo $factorial |
sed '{
:start
s/\(.*[0-9]\)\([0-9]\{3\}\)/\1,\2/
t start
}')

echo "The result is $result"

exit
$
$./fact.sh 20
The result is 2,432,902,008,176,640,000
$

After you use the normal factorial calculation script, the result of that script
is used as the input to the sed editor script, which adds commas. This value
is then used in the echo statement to produce the result. And how nice to
now have that long sed script within a Bash shell script so that you can use
it without typing all the sed commands in again!

Creating sed Utilities
As you've seen in the short examples presented so far in this chapter, you
can do lots of cool data-formatting things with the sed editor. This section
shows a few handy well-known sed editor scripts for performing common
data-handling functions.

Spacing with double lines

To start things off, look at a simple sed script to insert a blank line between
lines in a text file:

$ sed 'G' data2.txt
Header Line

First Data Line

Second Data Line

End of Data Lines

$

That was pretty simple! The key to this trick is the default value of the hold
space. Recall that the G command simply appends the contents of the hold
space to the current pattern space contents. When you start the sed editor,
the hold space contains an empty line. By appending that to an existing line,
you create a blank line after the existing line.

You may have noticed that this script also adds a blank line to the last line
in the data stream, producing a blank line at the end of the file. If you want
to get rid of this, you can use the negate symbol and the last line symbol to
ensure that the script doesn't add the blank line to the last line of the data
stream:

$ sed '$!G' data2.txt
Header Line

First Data Line

Second Data Line

End of Data Lines
$

Now that looks a little better. As long as the line isn't the last line, the G
command appends the contents of the hold space. When the sed editor gets
to the last line, it skips the G command.

Spacing files that may have blanks
To take double spacing one step further, what if the text file already has a
few blank lines but you want to double-space all the lines? If you use the

previous script, you'll get some areas that have too many blank lines,
because each existing blank line gets doubled:

$ cat data6.txt
Line one.
Line two.

Line three.
Line four.
$
$ sed '$!G' data6.txt
Line one.

Line two.

Line three.

Line four.
$

Now we have three blank lines where the original blank line was located.
The solution to this problem is to first delete any blank lines from the data
stream and then use the G command to insert new blank lines after all the
lines. To delete existing blank lines, we just need to use the d command
with a pattern that matches a blank line:

/^$/d

This pattern uses the start line tag (the caret) and the end line tag (the dollar
sign). Adding this pattern to the script produces the desired results:

$ sed '/^$/d ; $!G' data6.txt
Line one.

Line two.

Line three.

Line four.
$

Perfect! It works just as desired.

Numbering lines in a file

Chapter 19 showed you how to use the equal sign to display the line
numbers of lines in the data stream:

$ sed '=' data2.txt
1
Header Line
2
First Data Line
3
Second Data Line
4
End of Data Lines
$

This can be a little awkward to read, because the line number is on a line
above the actual line in the data stream. A better solution is to place the line
number on the same line as the text.

Now that you've seen how to combine lines using the N command, it
shouldn't be too hard to utilize that information in the sed editor script. The
trick to this utility, however, is that you can't combine the two commands in
the same script.

After you have the output for the equal sign command, you can pipe the
output to another sed editor script that uses the N command to combine the
two lines. You also need to use the substitution (s) command to replace the
newline character with either a space or a tab character. Here's what the
final solution looks like:

$ sed '=' data2.txt | sed 'N; s/\n/ /'
1 Header Line
2 First Data Line
3 Second Data Line
4 End of Data Lines
$

Now that looks much better. This is a great little utility to have around when
you're working on programs where you need to see the line numbers used in
error messages.

There are Bash shell commands that can also add line numbers. However,
they add some additional (and potentially unwanted) spacing:

$ nl data2.txt
 1 Header Line

 2 First Data Line
 3 Second Data Line
 4 End of Data Lines
$
$ cat -n data2.txt
 1 Header Line
 2 First Data Line
 3 Second Data Line
 4 End of Data Lines
$
$ nl data2.txt | sed 's/ //; s/\t/ /'
1 Header Line
2 First Data Line
3 Second Data Line
4 End of Data Lines
$

The sed editor script handles the output without any additional spacing. But
if you want to use these utilities, sed is there to help you remove any
unwanted spacing!

Printing last lines
So far, we've covered how to use the p command to print all the lines in a
data stream or just lines that match a specific pattern. What if you just need
to work with the last few lines of a long listing, such as a log file?

The dollar sign represents the last line of a data stream, so it's easy to
display just the last line:

$ sed -n '$p' data2.txt
End of Data Lines
$

Now, how can you use the dollar sign symbol to display a set number of
lines at the end of the data stream? The answer is to create a rolling
window.

A rolling window is a common way to examine blocks of text lines in the
pattern space by combining them using the N command. The N command
appends the next line of text to the text already in the pattern space. After
you have a block of 10 text lines in the pattern space, you can check to see
if you're at the end of the data stream using the dollar sign. If you're not at
the end, continue adding more lines to the pattern space while removing the

original lines (remember the D command, which deletes the first line in the
pattern space).

By looping through the N and D commands, you add new lines to the block
of lines in the pattern space while removing old lines. The branch (b)
command is the perfect fit for the loop. To end the loop, just identify the
last line and use the q command to quit.

Here's what the final sed editor script looks like:

$ cat data7.txt
Line1
Line2
Line3
Line4
Line5
Line6
Line7
Line1
Line2
Line3
Line4
Line5
Line6
Line7
Line8
Line9
Line10
Line11
Line12
Line13
Line14
Line15
$
$ sed '{
> :start
> $q ; N ; 11,$D
> b start
> }' data7.txt
Line6
Line7
Line8
Line9
Line10
Line11
Line12
Line13

Line14
Line15
$

The script first checks whether the line is the last line in the data stream. If
it is, the quit (q) command stops the loop. The N command appends the next
line to the current line in the pattern space. The 11,$D command deletes the
first line in the pattern space if the current line is after line 10. This creates
the sliding window effect in the pattern space. Thus, the sed program script
displays only the last 10 lines of the data7.txt file.

Deleting lines
Another useful utility for the sed editor is to remove unwanted blank lines
in a data stream. It's easy to remove all the blank lines from a data stream,
but it takes a little ingenuity to selectively remove blank lines. This section
shows you three quick sed editor scripts that you can use to help remove
unwanted blank lines from your data.

Deleting consecutive blank lines
It can be a nuisance when extra blank lines crop up in data files. Often you
have a data file that contains blank lines, but sometimes a data line is
missing and produces too many blank lines (as you saw in the double-
spacing example earlier).

The easiest way to remove consecutive blank lines is to check the data
stream using a range address. In Chapter 19 we covered how to use ranges
in addresses, including how to incorporate patterns in the address range.
The sed editor executes the command for all lines that match within the
specified address range.

The key to removing consecutive blank lines is to create an address range
that includes a non-blank line and a blank line. If the sed editor comes
across this range, it shouldn't delete the line. However, for lines that don't
match that range (two or more blank lines in a row), it should delete the
lines.

Here's the script to do this:

/./,/^$/!d

The range is /./ to / ^ $/ . The start address in the range matches any line
that contains at least one character. The end address in the range matches a
blank line. Lines within this range aren't deleted.

Here's the script in action:

$ cat data8.txt
Line one.

Line two.

Line three.

Line four.
$
$ sed '/./,/^$/!d' data8.txt
Line one.

Line two.

Line three.

Line four.
$

No matter how many blank lines appear between lines of data in the file, the
output places only one blank line between the lines.

Deleting leading blank lines
It is also a nuisance when data files contain multiple blank lines at the start
of the file. Often when you are trying to import data from a text file into a
database, the blank lines create null entries, throwing off any calculations
using the data.

Removing blank lines from the top of a data stream is not a difficult task.
Here's the script that accomplishes that function:

/./,$!d

The script uses an address range to determine what lines are deleted. The
range starts with a line that contains a character and continues to the end of

the data stream. Any line within this range is not deleted from the output.
This means that any lines before the first line that contain a character are
deleted.

Look at this simple script in action:

$ cat data9.txt

Line one.

Line two.
$
$ sed '/./,$!d' data9.txt
Line one.

Line two.
$

The test file contains two blank lines before the data lines. The script
successfully removes both of the leading blank lines while keeping the
blank line within the data intact.

Deleting trailing blank lines
Unfortunately, deleting trailing blank lines is not as simple as deleting
leading blank lines. Just like printing the end of a data stream, deleting
blank lines at the end of a data stream requires a little ingenuity and
looping.

Before we start the discussion, let's see what the script looks like:

sed '{
:start
/^\n*$/{$d; N; b start }
}'

This may look a little odd to you at first. Notice that there are braces within
the normal script braces. This allows you to group commands together
within the overall command script. The group of commands applies to the
specified address pattern. The address pattern matches any line that contains
only a newline character. When one is found, if it's the last line, the d
command deletes it. If it's not the last line, the N command appends the next
line to it, and the branch (b) command loops to the beginning to start over.

Here's the script in action:

$ cat data10.txt
Line one.
Line two.

$
$ sed '{
> :start
> /^\n*$/{$d; N; b start}
> }' data10.txt
Line one.
Line two.
$

The script successfully removed the blank lines from the end of the text file.

Removing HTML tags
These days, it's not uncommon to download text from a website to save or
use as data in an application. Sometimes, however, when you download text
from the website, you also get the HTML tags used to format the data. This
can be a problem when all you want to see is the data.

A standard HTML web page contains several different types of HTML tags,
identifying formatting features required to properly display the page
information. Here's a sample of what an HTML file looks like:

$ cat data11.txt
<html>
<head>
<title>This is the page title</title>
</head>
<body>
<p>
This is the first line in the Web page.
This should provide some useful
information to use in our sed script.
</body>
</html>
$

HTML tags are identified by the less-than and greater-than symbols. Most
HTML tags come in pairs. One tag starts the formatting process (for

example, for bolding), and another tag stops the formatting process (for
example, to turn off bolding).

Removing HTML tags creates a problem, however, if you're not careful. At
first glance, you'd think that the way to remove HTML tags would be to just
look for a text string that starts with a less-than symbol (<), ends with a
greater-than symbol (>), and has data in between the symbols:

 s/<.*>//g

Unfortunately, this command has some unintended consequences:

$ sed 's/<.*>//g' data11.txt

This is the line in the Web page.
This should provide some
information to use in our sed script.

$

Notice that the title text is missing, along with the text that was bolded and
italicized. The sed editor literally interpreted the script to mean any text
between the less-than and greater-than sign, including other less-than and
greater-than signs! Each time the text was enclosed in HTML tags (such as
first), the sed script removed the entire text.

The solution to this problem is to have the sed editor ignore any embedded
greater-than signs between the original tags. To do that, you can create a
character class that negates the greater-than sign. This changes the script to

s/<[^>]*>//g

This script now works properly, displaying the data you need to see from
the web page HTML code:

$ sed 's/<[^>]*>//g' data11.txt

This is the page title

This is the first line in the Web page.
This should provide some useful
information to use in our sed script.

$

That's a little better. To clean things up some, we can add a delete command
to get rid of those pesky blank lines:

$ sed 's/<[^>]*>//g ; /^$/d' data11.txt
This is the page title
This is the first line in the Web page.
This should provide some useful
information to use in our sed script.
$

Now that's much more compact; there's only the data you need to see.

Working Through a Practical Example
For our practical example in this chapter, we'll use sed to scan Bash shell
scripts. The purpose of this scan is to find commands that may be better off
located within a function.

Back in Chapter 17, “Creating Functions,” we covered how to set up
functions that can be called multiple times within a script. It's considered
good form to put any duplicated code blocks within a function. That way, if
a change is needed for the commands in the code block, you need to make
those changes in only one place. Not only is this approach a time-saver, but
it also reduces the chances of introducing errors that may occur if you
change one block of code but not the others strewn about the script.

To keep things simple, we'll just look for three repeating lines of code
within a file. Consider the following text file:

$ cat ScriptData.txt
Line 1
Line 2
Line 3
Line 4

Line 5
Line 6
Line 3
Line 4
Line 5
Line 7
Line 8
Line 3
Line 4
Line 5
Line 9
Line 10
Line 11
Line 12
$

If you look carefully, you'll notice that Line 3 , Line 4 , and Line 5 are
repeated three times throughout this file. To find those repeated lines, we'll
merge each text line together with the next two following lines:

1. Read in the next line, but only if processing the text file's first line,
using the multiline N command.

2. Read in the next line (this is the second read for the text file's first line)
using the multiline N command. Now we have three lines within the
pattern space.

3. Print the pattern space to STDOUT .

4. Delete the first line in the pattern space using the D command, which
deletes the text within the pattern space up to and including the first
newline, and then starts processing the sed script commands from the
beginning.

The following command shows this process:

$ sed -n '{
> 1N
> N
> p
> D}
> ' ScriptData.txt
Line 1
Line 2
Line 3

Line 2
Line 3
Line 4
Line 3
Line 4
Line 5
Line 4
Line 5
Line 6
Line 5
Line 6
Line 3
Line 6
Line 3
Line 4
Line 3
Line 4
Line 5
Line 4
Line 5
[...]
Line 9
Line 10
Line 9
Line 10
Line 11
Line 10
Line 11
Line 12
$

The problem with this method is that it is hard for a human to differentiate
what lines have been merged together. Because the lines still contain the
newline character (\n), the output is nearly impossible to interpret.

To fix this issue, we'll replace the newline character at the end of each text
line with a bell sound character (\a) using the substitute (s) command:

$ sed -n '{
> 1N
> N
> s/\n/\a/g
> p
> s/\a/\n/
> D}
> ' ScriptData.txt
Line 1Line 2Line 3

Line 2Line 3Line 4
Line 3Line 4Line 5
Line 4Line 5Line 6
Line 5Line 6Line 3
Line 6Line 3Line 4
Line 3Line 4Line 5
Line 4Line 5Line 7
Line 5Line 7Line 8
Line 7Line 8Line 3
Line 8Line 3Line 4
Line 3Line 4Line 5
Line 4Line 5Line 9
Line 5Line 9Line 10
Line 9Line 10Line 11
Line 10Line 11Line 12
$

Now, we're getting somewhere! Notice that although we replaced the
newline characters with a bell sound character (globally) in the third line of
the sed script, after printing the pattern space we had to switch the first bell
sound character back to a newline. This is due to the delete (D) command,
which needs the newline character after the first text line so that it won't
delete the entire pattern space.

While it may be tempting to forge ahead to comparing the lines and finding
duplicates, there is one more consideration. Shell script lines often have
spaces or tabs within each line, as shown in this test text file:

$ cat ScriptDataB.txt
Line 1
Line 2
Line 3
Line 4
 Line 5
Line 6
 Line 3
 Line 4
 Line 5
Line 7
Line 8
 Line 3
 Line 4
 Line 5
Line 9
Line 10
Line 11

Line 12
$

These spaces and tabs will disrupt the matching process. But it's fairly easy
to handle this situation. We'll just eliminate the spaces and tabs via a global
(g) substitute (s) command:

$ sed -n '{
> 1N
> N
> s/ //g
> s/\t//g
> s/\n/\a/g
> p
> s/\a/\n/
> D}
> ' ScriptDataB.txt
Line1Line2Line3
Line2Line3Line4
Line3Line4Line5
Line4Line5Line6
Line5Line6Line3
Line6Line3Line4
Line3Line4Line5
Line4Line5Line7
Line5Line7Line8
Line7Line8Line3
Line8Line3Line4
Line3Line4Line5
Line4Line5Line9
Line5Line9Line10
Line9Line10Line11
Line10Line11Line12
$

Now we'll employ two other Bash shell commands to help us sort the file
(sort) and find any duplicates (uniq -d):

$ sed -n '{
> 1N;
> N;
> s/ //g;
> s/\t//g;
> s/\n/\a/g;
> p
> s/\a/\n/;
> D}

> ' ScriptDataB.txt |
> sort | uniq -d |
> sed 's/\a/\n/g'
Line3
Line4
Line5
$

Perfect! The commands scanned the file and found three repeating lines.
Now we can pretty this up, and store it in a shell wrapper. Here's one way to
do it:

$ cat NeededFunctionCheck.sh
#!/bin/bash
Checks for 3 duplicate lines in scripts.
Suggest these lines be possibly replaced
by a function.

tempfile=$2

sed -n '{
1N; N;
s/ //g; s/\t//g;
s/\n/\a/g; p;
s/\a/\n/; D}' $1>> $tempfile

sort $tempfile | uniq -d | sed 's/\a/\n/g'

rm -i $tempfile

exit
$

Notice that this script takes two parameters — the first ($1) for which file to
scan, and the second ($2) to designate a temporary file to store the merged
file lines. The reason we redirected STDOUT to a file, instead of directly into
the sort command, is that it gives you the ability to keep the temporary file
to see if your sed merging process (and any tweaks you make to it) are
working correctly.

Before you start diving into modifying this script to try out variations, let's
scan our test text file with it:

$./NeededFunctionCheck.sh ScriptDataB.txt TempFile.txt
Line3

Line4
Line5
rm: remove regular file 'TempFile.txt'? Y
$

This is exactly what we are wanting. Now, let's try scanning a real script
and see how it does:

$./NeededFunctionCheck.sh CheckMe.sh TempFile.txt
echo"Usage:./CheckMe.shparameter1parameter2"
echo"Exitingscript..."
exit
rm: remove regular file 'TempFile.txt'? Y
$

This is a little harder to read, because we eliminated all the spaces within
each script line. (One script improvement you can make is to only remove
multiple spaces between characters.) However, it gives us enough of a
shove in the right direction. We know that these three lines are repeated
within the script. And the script needs to be reviewed to possibly replace
the repeated commands with a function.

You can make lots of potential improvements within this script. Once
you've got your modifications in place and working, remove that temporary
file to make it faster. How about producing line numbers to show where the
code is located within the script? You could even make the information into
a fancy report…but we recommend you wait until you read through the
next chapter, “Advanced gawk ,” before you try that script improvement.

Summary
The sed editor provides some advanced features that allow you to work
with text patterns across multiple lines. This chapter showed you how to use
the multiline next (N) command to retrieve the next line in a data stream and
place it in the pattern space. Once it's in the pattern space, you can perform
complex substitution (s) commands to replace phrases that span more than
one line of text.

The multiline delete (D) command allows you to remove the first line when
the pattern space contains two or more lines. This is a convenient way to
iterate through multiple lines in the data stream. Similarly, the multiline
print (P) command allows you to print just the first line when the pattern

space contains two or more lines of text. The combination of the multiline
commands allows you to iterate through the data stream and create a
multiline substitution system.

Next, we covered the hold space. The hold space allows you to set aside a
line of text while processing more lines of text. You can recall the contents
of the hold space at any time and either replace the text in the pattern space
or append the contents of the hold space to the text in the pattern space.
Using the hold space allows you to sort through data streams, reversing the
order of text lines as they appear in the data.

Next we reviewed the various sed editor flow control commands. The
branch (b) command provides a way for you to alter the normal flow of sed
editor commands in the script, creating loops or skipping commands under
certain conditions. The test (t) command provides an if-then type of
statement for your sed editor command scripts. The test (t) command
branches only if a prior substitution (s) command succeeds in replacing text
in a line.

The chapter continued with a discussion of how to use sed scripts in your
shell scripts. A common technique for large sed scripts is to place the script
in a shell wrapper. You can use command-line parameter variables within
the sed script to pass shell command-line values. This creates an easy way
to utilize your sed editor scripts directly from the command line, or even
from other shell scripts.

We concluded the chapter with a look at creating common sed utilities,
which allow you to do lots of processing of text files. Some features include
numbering lines in a file in a more human-readable format, printing last text
file lines, and removing HTML tags.

The next chapter digs deeper into the gawk world. The gawk program
supports many features of higher-level programming languages. You can
create some pretty involved data manipulation and reporting programs just
by using gawk . The chapter describes the various programming features and
demonstrates how to use them to generate your own fancy reports from
simple data.

CHAPTER 22
Advanced gawk
IN THIS CHAPTER

Using variables

Working with arrays

Considering patterns

Structured commands

Printing with formats

Using built‐in functions

Trying out user‐defined functions

Chapter 19, “Introducing sed and gawk” introduced the gawk program and
demonstrated the basics of using it to produce formatted reports from raw
data files. This chapter dives more deeply into customizing gawk to produce
reports. The gawk program is a full‐fledged programming language,
providing features that allow you to write advanced programs to manipulate
data. If you are jumping into the shell script world from another
programming language, you should feel right at home with gawk . In this
chapter, you'll see how to use the gawk programming language to write
programs to handle just about any data‐formatting task you'll run into.

Using Variables
One important feature of any programming language is the ability to store
and recall values using variables. The gawk programming language supports
two different types of variables:

Built‐in variables

User‐defined variables

Several built‐in variables are available for you to use in gawk . The built‐in
variables contain information used in handling the data fields and records in
the data file. You can also create your own variables in your gawk programs.
The following sections walk you through how to use variables in your gawk
programs.

TABLE 22.1 The gawk Data Field and Record Variables

Variable Description
FIELDWIDTHS A space‐separated list of numbers defining the exact width

(in spaces) of each data field
FS Input field separator character
RS Input record separator character
OFS Output field separator character
ORS Output record separator character

Built‐in variables
The gawk program uses built‐in variables to reference specific features
within the program data. This section describes the built‐in variables
available for you to use in your gawk programs and demonstrates how to use
them.

The field and record separator variables
Chapter 19 demonstrated one type of built‐in variable available in gawk , the
data field variables. The data field variables allow you to reference
individual data fields within a data record using a dollar sign and the
numerical position of the data field in the record. Thus, to reference the first
data field in the record, you use the $1 variable. To reference the second
data field, you use the $2 variable, and so on.

Data fields are delineated by a field separator character. By default, the field
separator character is a whitespace character, such as a space or a tab.
Chapter 19 showed how to change the field separator character either on the
command line by using the ‐F command‐line parameter or within the gawk
program by using the special FS built‐in variable.

The FS built‐in variable belongs to a group of built‐in variables that control
how gawk handles fields and records in both input data and output data.
Table 22.1 lists the built‐in variables contained in this group.

The FS and OFS variables define how your gawk program handles data fields
in the data stream. You've already seen how to use the FS variable to define
what character separates data fields in a record. The OFS variable performs
the same function but for the output by using the print command.

By default, gawk sets the OFS variable to a space, so when you use the
command

print $1,$2,$3

you see the output as

field1 field2 field3

You can see this in the following example:

$ cat data1
data11,data12,data13,data14,data15
data21,data22,data23,data24,data25
data31,data32,data33,data34,data35
$ gawk 'BEGIN{FS=","} {print $1,$2,$3}' data1
data11 data12 data13
data21 data22 data23
data31 data32 data33
$

The print command automatically places the value of the OFS variable
between each data field in the output. By setting the OFS variable, you can
use any string to separate data fields in the output:

$ gawk 'BEGIN{FS=","; OFS="-"} {print $1,$2,$3}' data1
data11-data12-data13
data21-data22-data23
data31-data32-data33
$ gawk 'BEGIN{FS=","; OFS="--"} {print $1,$2,$3}' data1
data11--data12--data13
data21--data22--data23
data31--data32--data33

$ gawk 'BEGIN{FS=","; OFS="<-->"} {print $1,$2,$3}' data1
data11<-->data12<-->data13
data21<-->data22<-->data23
data31<-->data32<-->data33
$

The FIELDWIDTHS variable allows you to read records without using a field
separator character. In some applications, instead of using a field separator
character, data is placed in specific columns within the record. In these
instances, you must set the FIELDWIDTHS variable to the match the layout of
the data in the records.

Once you set the FIELDWIDTHS variable, gawk ignores the FS and calculates
data fields based on the provided field width sizes. Here's an example using
field widths instead of field separator characters:

$ cat data1b
1005.3247596.37
115-2.349194.00
05810.1298100.1
$ gawk 'BEGIN{FIELDWIDTHS="3 5 2 5"}{print $1,$2,$3,$4}'
data1b
100 5.324 75 96.37
115 -2.34 91 94.00
058 10.12 98 100.1
$

The FIELDWIDTHS variable defines four data fields, and gawk parses the data
record accordingly. The string of numbers in each record is split based on
the defined field width values.

WARNING

It's important to remember that once you set the FIELDWIDTHS
variable, those values must remain constant. This method can't
accommodate variable‐length data fields.

The RS and ORS variables define how your gawk program handles records in
the data stream. By default, gawk sets the RS and ORS variables to the

newline character. The default RS variable value indicates that each new line
of text in the input data stream is a new record.

Sometimes you run into situations where data fields are spread across
multiple lines in the data stream. A classic example of this is data that
includes an address and phone number, each on a separate line:

Ima Test
123 Main Street
Chicago, IL 60601
(312)555-1234

If you try to read this data using the default FS and RS variable values, gawk
will read each line as a separate record and interpret each space in the
record as a field separator. This isn't what you intended.

To solve this problem, you need to set the FS variable to the newline
character. This indicates that each line in the data stream is a separate field
and that all of the data on a line belongs to the data field. However, when
you do that, you don't know where a new record starts.

To solve this problem, set the RS variable to an empty string and then leave
a blank line between data records in the data stream. The gawk program will
interpret each blank line as a record separator.

The following is an example of using this technique:

$ cat data2
Ima Test
123 Main Street
Chicago, IL 60601
(312)555-1234

Frank Tester
456 Oak Street
Indianapolis, IN 46201
(317)555-9876

Haley Example
4231 Elm Street
Detroit, MI 48201
(313)555-4938
$ gawk 'BEGIN{FS="\n"; RS=""} {print $1,$4}' data2
Ima Test (312)555-1234

Frank Tester (317)555-9876
Haley Example (313)555-4938
$

Perfect—the gawk program interpreted each line in the file as a data field
and the blank lines as record separators.

Data variables
Besides the field and record separator variables, gawk provides some other
built‐in variables to help you know what's going on with your data and to
extract information from the shell environment. Table 22.2 shows the other
built‐in variables in gawk.

TABLE 22.2 More gawk Built‐in Variables

Variable Description
ARGC The number of command‐line parameters present.
ARGIND The index in ARGV of the current file being processed.
ARGV An array of command‐line parameters.
CONVFMT The conversion format for numbers (see the printf

statement). The default value is %.6 g .
ENVIRON An associative array of the current shell environment

variables and their values.
ERRNO The system error if an error occurs when reading or closing

input files.
FILENAME The filename of the data file used for input to the gawk

program.
FNR The current record number in the data file.
IGNORECASE If set to a non‐zero value, ignore the case of characters in

strings used in the gawk command.
NF The total number of data fields in the data file.
NR The number of input records processed.
OFMT The output format for displaying numbers. The default is

%.6g ., which displays the value in either floating‐point or
scientific notation, whichever is shorter, using up to six
decimal places.

RLENGTH The length of the substring matched in the match function.
RSTART The start index of the substring matched in the match

function.

You should recognize a few of these variables from your shell script
programming. The ARGC and ARGV variables allow you to retrieve the
number of command‐line parameters and their values from the shell. This
can be a little tricky, however, since gawk doesn't count the program script
as part of the command‐line parameters:

$ gawk 'BEGIN{print ARGC,ARGV[1]}' data1
2 data1
$

The ARGC variable indicates that there are two parameters on the command
line. This includes the gawk command and the data1 parameter (remember,
the program script doesn't count as a parameter). The ARGV array starts with
an index of 0, which represents the command. The first array value is the
first command‐line parameter after the gawk command.

TIP

Note that unlike shell variables, when you reference a gawk variable
in the script, you don't add a dollar sign before the variable name.

The ENVIRON variable may seem a little odd to you. It uses an associative
array to retrieve shell environment variables. An associative array uses text
for the array index values instead of numeric values.

The text in the array index is the shell environment variable. The value of
the array is the value of the shell environment variable. The following is an
example of this:

$ gawk '
> BEGIN{
> print ENVIRON["HOME"]
> print ENVIRON["PATH"]
> }'
/home/rich
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
:/usr/games:/usr/local/games:/snap/bin
$

The ENVIRON["HOME"] variable retrieves the HOME environment variable
value from the shell. Likewise, the ENVIRON["PATH"] variable retrieves the
PATH environment variable value. You can use this technique to retrieve any
environment variable value from the shell to use in your gawk programs.

The FNR , NF , and NR variables come in handy when you're trying to keep
track of data fields and records in your gawk program. Sometimes you're in
a situation where you don't know exactly how many data fields are in a
record. The NF variable allows you to specify the last data field in the record
without having to know its position:

$ gawk 'BEGIN{FS=":"; OFS=":"} {print $1,$NF}' /etc/passwd
root:/bin/bash
daemon:/usr/sbin/nologin
bin:/usr/sbin/nologin
sys:/usr/sbin/nologin
sync:/bin/sync
games:/usr/sbin/nologin
man:/usr/sbin/nologin
…
rich:/bin/bash
$

The NF variable contains the numerical value of the last data field in the
data file. You can then use it as a data field variable by placing a dollar sign
in front of it.

The FNR and NR variables are similar to each other but slightly different. The
FNR variable contains the number of records processed in the current data
file. The NR variable contains the total number of records processed. Let's
look at a couple of examples to see this difference:

$ gawk 'BEGIN{FS=","}{print $1,"FNR="FNR}' data1 data1
data11 FNR=1
data21 FNR=2
data31 FNR=3
data11 FNR=1
data21 FNR=2
data31 FNR=3
$

In this example, the gawk program command line defines two input files. (It
specifies the same input file twice.) The script prints the first data field
value and the current value of the FNR variable. Notice that the FNR value
was reset back to 1 when the gawk program processed the second data file.

Now, let's add the NR variable and see what that produces:

$ gawk '
> BEGIN {FS=","}
> {print $1,"FNR="FNR,"NR="NR}
> END{print "There were",NR,"records processed"}' data1
data1
data11 FNR=1 NR=1
data21 FNR=2 NR=2
data31 FNR=3 NR=3
data11 FNR=1 NR=4
data21 FNR=2 NR=5
data31 FNR=3 NR=6
There were 6 records processed
$

The FNR variable value was reset when gawk processed the second data file,
but the NR variable maintained its count into the second data file. The
bottom line is that if you're using only one data file for input, the FNR and NR
values will be the same. If you're using multiple data files for input, the FNR
value will be reset for each data file, and the NR value will keep count
throughout all the data files.

NOTE

You'll notice when using gawk that often the gawk script can become
larger than the rest of your shell script. In the examples in this
chapter, for simplicity we just run the gawk scripts directly from the
command line, using the multiline feature of the shell. When you
use gawk in a shell script, you should place different gawk commands
on separate lines. Doing so will make it much easier for you to read
and follow, rather than trying to cram it all onto one line in the shell
script. Also, if you find yourself using the same gawk scripts in
different shell scripts, remember you can save the gawk script in a
separate file and reference it using the –f parameter (see Chapter
19).

User‐defined variables

Just like any other self‐respecting programming language, gawk allows you
to define your own variables for use within the program code. A gawk user‐
defined variable name can be any number of letters, digits, and underscores,
but it can't begin with a digit. It is also important to remember that gawk
variable names are case sensitive.

Assigning variables in scripts
Assigning values to variables in gawk programs is similar to doing so in a
shell script, using an assignment statement:

$ gawk '
> BEGIN{
> testing="This is a test"
> print testing
> }'
This is a test
$

The output of the print statement is the current value of the testing
variable. Like shell script variables, gawk variables can hold either numeric
or text values:

$ gawk '
> BEGIN{
> testing="This is a test"
> print testing
> testing=45
> print testing
> }'
This is a test
45
$

In this example, the value of the testing variable is changed from a text
value to a numeric value.

Assignment statements can also include mathematical algorithms to handle
numeric values:

$ gawk 'BEGIN{x=4; x= x * 2 + 3; print x}'

11
$

As you can see from this example, the gawk programming language
includes the standard mathematical operators for processing numerical
values. These can include the remainder symbol (%) and the exponentiation
symbol (using either ^ or **).

Assigning variables on the command line
You can also use the gawk command line to assign values to variables for
the gawk program. This allows you to set values outside of the normal code,
changing values on the fly. Here's an example of using a command‐line
variable to display a specific data field in the file:

$ cat script1
BEGIN{FS=","}
{print $n}
$ gawk -f script1 n=2 data1
data12
data22
data32
$ gawk -f script1 n=3 data1
data13
data23
data33
$

This feature allows you to change the behavior of the script without
necessitating that you change the actual script code. The first example
displays the second data field in the file, whereas the second example
displays the third data field, just by setting the value of the n variable in the
command line.

There's one problem with using command‐line parameters to define variable
values. When you set the variable, the value isn't available in the BEGIN
section of the code:

$ cat script2
BEGIN{print "The starting value is",n; FS=","}
{print $n}
$ gawk -f script2 n=3 data1
The starting value is

data13
data23
data33
$

You can solve this by using the ‐v command line parameter. This allows
you to specify variables that are set before the BEGIN section of code. The
‐v command‐line parameter must be placed before the script code in the
command line:

$ gawk -v n=3 -f script2 data1
The starting value is 3
data13
data23
data33
$

Now the n variable contains the value set in the command line during the
BEGIN section of code.

Working with Arrays
Many programming languages provide arrays for storing multiple values in
a single variable. The gawk programming language provides the array
feature using associative arrays.

Associative arrays are different from numerical arrays in that the index
value can be any text string. You don't have to use sequential numbers to
identify data elements contained in the array. Instead, an associative array
consists of a hodgepodge of strings referencing values. Each index string
must be unique and uniquely identifies the data element that's assigned to it.
If you're familiar with other programming languages, this is the same
concept as hash maps or dictionaries.

The following sections walk you through using associative array variables
in your gawk programs.

Defining array variables
You can define an array variable using a standard assignment statement.
The format of the array variable assignment is

var[index] = element

where var is the variable name, index is the associative array index value,
and element is the data element value. Here are some examples of array
variables in gawk :

capital["Illinois"] = "Springfield"
capital["Indiana"] = "Indianapolis"
capital["Ohio"] = "Columbus"

When you reference an array variable, you must include the index value to
retrieve the appropriate data element value:

$ gawk 'BEGIN{
> capital["Illinois"] = "Springfield"
> print capital["Illinois"]
> }'
Springfield
$

When you reference the array variable, the data element value appears. This
also works with numeric data element values:

$ gawk 'BEGIN{
> var[1] = 34
> var[2] = 3
> total = var[1] + var[2]
> print total
> }'
37
$

As you can see from this example, you can use array variables just as you
would any other variable in the gawk program.

Iterating through array variables
The problem with associative array variables is that you might not have any
way of knowing what the index values are. Unlike numeric arrays, which
use sequential numbers for index values, an associative array index can be
anything.

If you need to iterate through an associate array in gawk , you can use a
special format of the for statement:

for (var in array)
{
 statements
}

The for statement loops through the statements, each time assigning the
variable var the next index value from the array associative array. It's
important to remember that the variable is the value of the index and not the
data element value. You can easily extract the data element value by using
the variable as the array index:

$ gawk 'BEGIN{
> var["a"] = 1
> var["g"] = 2
> var["m"] = 3
> var["u"] = 4
> for (test in var)
> {
> print "Index:",test," - Value:",var[test]
> }
> }'
Index: u - Value: 4
Index: m - Value: 3
Index: a - Value: 1
Index: g - Value: 2
$

Notice that the index values aren't returned in any particular order, but they
each reference the appropriate data element value. This is somewhat
important to know, since you can't count on the returned values being in the
same order, just that the index and data values match.

Deleting array variables
Removing an array index from an associative array requires a special
command:

delete array[index]

The delete command removes the associative index value and the
associated data element value from the array:

$ gawk 'BEGIN{
> var["a"] = 1
> var["g"] = 2
> for (test in var)
> {
> print "Index:",test," - Value:",var[test]
> }
> delete var["g"]
> print "---"
> for (test in var)
> print "Index:",test," - Value:",var[test]
> }'
Index: a - Value: 1
Index: g - Value: 2

Index: a - Value: 1
$

Once you delete an index value from the associative array, you can't retrieve
it.

Considering Patterns
The gawk program supports several types of matching patterns to filter data
records, in much the same way as the sed editor. Chapter 19 already
showed two special patterns in action. The BEGIN and END keywords are
special patterns that execute statements before or after the data stream data
has been read. Similarly, you can create other patterns to execute statements
when matching data appears in the data stream.

This section demonstrates how to use matching patterns in your gawk scripts
to limit what records a program script applies to.

Regular expressions
Chapter 20, “Regular Expressions,” showed how to use regular expressions
as matching patterns. You can use either a basic regular expression (BRE)
or an extended regular expression (ERE) to filter which lines in the data
stream the program script applies to.

When you're using a regular expression, the regular expression must appear
before the left brace of the program script that it controls:

$ gawk 'BEGIN{FS=","} /11/{print $1}' data1
data11
$

The regular expression /11/ matches records that contain the string 11
anywhere in the data fields. The gawk program matches the defined regular
expression against all the data fields in the record, including the field
separator character:

$ gawk 'BEGIN{FS=","} /,d/{print $1}' data1
data11
data21
data31
$

This example matches the comma used as the field separator in the regular
expression. This is not always a good thing. It can lead to problems trying
to match data specific to one data field that may also appear in another data
field. If you need to match a regular expression to a specific data instance,
you should use the matching operator.

The matching operator
The matching operator allows you to restrict a regular expression to a
specific data field in the records. The matching operator is the tilde symbol
(~). You specify the matching operator, along with the data field variable,
and the regular expression to match:

$1 ~ /^data/

The $1 variable represents the first data field in the record. This expression
filters records where the first data field starts with the text data. The
following is an example of using the matching operator in a gawk program
script:

$ gawk 'BEGIN{FS=","} $2 ~ /^data2/{print $0}' data1

data21,data22,data23,data24,data25
$

The matching operator compares the second data field with the regular
expression /^data2/ , which indicates the string starts with the text data2.

This is a powerful tool that is commonly used in gawk program scripts to
search for specific data elements in a data file:

$ gawk -F: '$1 ~ /rich/{print $1,$NF}' /etc/passwd
rich /bin/bash
$

This example searches the first data field for the text rich . When it finds
the pattern in a record, it prints the first and last data field values of the
record.

You can also negate the regular expression match by using the ! symbol:

$1 !~ /expression/

If the regular expression isn't found in the record, the program script is
applied to the record data:

$ gawk –F: '$1 !~ /rich/{print $1,$NF}' /etc/passwd
root /bin/bash
daemon /bin/nologin
bin /bin/nologin
sys /bin/nologin
--- output truncated ---
$

In this example, the gawk program script prints the user ID and shell for all
of the entries in the /etc/passwd file that don't match the user ID rich !

Mathematical expressions
In addition to regular expressions, you can use mathematical expressions in
the matching pattern. This feature comes in handy when matching
numerical values in data fields. For example, if you want to display all the
system users who belong to the root users group (group number 0), you
could use this script:

$ gawk -F: '$4 == 0{print $1}' /etc/passwd
root
$

The script checks for records where the fourth data field contains the value
0 . On this Linux system there's just one user account that belongs to the
root user group.

You can use any of the normal mathematical comparison expressions:

x == y : Value x is equal to y.

x <= y : Value x is less than or equal to y.

x < y : Value x is less than y.

x >= y : Value x is greater than or equal to y.

x > y : Value x is greater than y.

You can also use expressions with text data, but you must be careful. Unlike
regular expressions, expressions are an exact match. The data must match
exactly with the pattern:

$ gawk -F, '$1 == "data"{print $1}' data1
$
$ gawk -F, '$1 == "data11"{print $1}' data1
data11
$

The first test doesn't match any records because the first data field value
isn't data in any of the records. The second test matches one record with the
value data11.

Structured Commands
The gawk programming language supports the usual cast of structured
programming commands. This section describes each of these commands
and demonstrates how to use them within a gawk programming
environment.

The if statement
The gawk programming language supports the standard if‐then‐else
format of the if statement. You must define a condition for the if statement
to evaluate, enclosed in parentheses. If the condition evaluates to a TRUE
condition, the statement immediately following the if statement is
executed. If the condition evaluates to a FALSE condition, the statement is
skipped. This can use the format

if (condition)
 statement1

or you can place it on one line, like this:

if (condition) statement1

Here's a simple example demonstrating this format:

$ cat data4
10
5
13
50
34
$ gawk '{if ($1> 20) print $1}' data4
50
34
$

Not too complicated. If you need to execute multiple statements in the if
statement, you must enclose them with braces:

$ gawk '{
> if ($1> 20)
> {
> x = $1 * 2
> print x
> }
> }' data4
100
68
$

Be careful that you don't confuse the if statement braces with the braces
used to start and stop the program script. The gawk program can detect
missing braces and will produce an error message if you mess up:

$ gawk '{
> if ($1> 20)
> {
> x = $1 * 2
> print x
> }' data4
gawk: cmd. line:7: (END OF FILE)
gawk: cmd. line:7: parse error
$

The gawk if statement also supports the else clause, allowing you to
execute one or more statements if the if statement condition fails. Here's an
example of using the else clause:

$ gawk '{
> if ($1> 20)
> {
> x = $1 * 2
> print x
> } else
> {
> x = $1 / 2
> print x
> }}' data4
5
2.5
6.5
100
68
$

You can use the else clause on a single line, but you must use a semicolon
after the if statement section:

if (condition) statement1; else statement2

Here's the same example using the single‐line format:

$ gawk '{if ($1> 20) print $1 * 2; else print $1 / 2}' data4

5
2.5
6.5
100
68
$

This format is more compact but can be harder to follow.

The while statement
The while statement provides a basic looping feature for gawk programs.
The following is the format of the while statement:

while (condition)
{
 statements
}

The while loop allows you to iterate over a set of data, checking a condition
that stops the iteration. This is useful if you have multiple data values in
each record that you must use in calculations:

$ cat data5
130 120 135
160 113 140
145 170 215
$ gawk '{
> total = 0
> i = 1
> while (i < 4)
> {
> total += $i
> i++
> }
> avg = total / 3
> print "Average:",avg
> }' data5
Average: 128.333
Average: 137.667
Average: 176.667
$

The while statement iterates through the data fields in the record, adding
each value to the total variable and then incrementing the counter variable,

i . When the counter value is equal to 4, the while condition becomes
FALSE , and the loop terminates, dropping through to the next statement in
the script. That statement calculates the average; then the average is printed.
This process is repeated for each record in the data file.

The gawk programming language supports using the break and continue
statements in while loops, allowing you to jump out of the middle of the
loop:

$ gawk '{
> total = 0
> i = 1
> while (i < 4)
> {
> total += $i
> if (i == 2)
> break
> i++
> }
> avg = total / 2
> print "The average of the first two data elements is:",avg
> }' data5
The average of the first two data elements is: 125
The average of the first two data elements is: 136.5
The average of the first two data elements is: 157.5
$

The break statement is used to break out of the while loop if the value of
the i variable is 2.

The do‐while statement
The do‐while statement is similar to the while statement but performs the
statements before checking the condition statement. The following is the
format for the do‐while statement:

do
{
 statements
} while (condition)

This format guarantees that the statements are executed at least one time
before the condition is evaluated. This comes in handy when you need to
perform statements before evaluating the condition:

$ gawk '{
> total = 0
> i = 1
> do
> {
> total += $i
> i++
> } while (total < 150)
> print total }' data5
250
160
315
$

The script reads the data fields from each record and totals them until the
cumulative value reaches 150. If the first data field is over 150 (as seen in
the second record), the script is guaranteed to read at least the first data field
before evaluating the condition.

The for statement
The for statement is a common method used in many programming
languages for looping. The gawk programming language supports the C‐
style of for loops:

for(variable assignment; condition; iteration process)

This helps simplify the loop by combining several functions in one
statement:

$ gawk '{
> total = 0
> for (i = 1; i < 4; i++)
> {
> total += $i
> }
> avg = total / 3
> print "Average:",avg
> }' data5
Average: 128.333
Average: 137.667
Average: 176.667
$

By defining the iteration counter in the for loop, you don't have to worry
about incrementing it yourself as you did when using the while statement.

Printing with Formats
You may have noticed that the print statement doesn't exactly give you
much control over how gawk displays your data. About all you can do is
control the output field separator character (OFS). If you're creating detailed
reports, often you'll need to place data in a specific format and location.

The solution is to use the formatted printing command, called printf . If
you're familiar with C programming, the printf command in gawk
performs the same way, allowing you to specify detailed instructions on
how to display data.

The following is the format of the printf command:

printf "format string", var1, var2

The format string is the key to the formatted output. It specifies exactly
how the formatted output should appear, using both text elements and
format specifiers. A format specifier is a special code that indicates what
type of variable is displayed and how to display it. The gawk program uses
each format specifier as a placeholder for each variable listed in the
command. The first format specifier matches the first variable listed, the
second matches the second variable, and so on.

The format specifiers use the following format:

%[modifier]control-letter

where control‐letter is a one‐character code that indicates what type of
data value will be displayed, and modifier defines an optional formatting
feature.

Table 22.3 lists the control letters that can be used in the format specifier.

TABLE 22.3 Format Specifier Control Letters

Control
letter

Description

c Displays a number as an ASCII character
d Displays an integer value
i Displays an integer value (same as d)
e Displays a number in scientific notation
f Displays a floating‐point value
g Displays either scientific notation or floating point,

whichever is shorter
o Displays an octal value
s Displays a text string
x Displays a hexadecimal value
X Displays a hexadecimal value, but using capital letters for A

through F

Thus, if you need to display a string variable, you'd use the format specifier
%s . If you need to display an integer variable, you'd use either %d or %i (%d
is the C‐style for decimals). If you want to display a large value using
scientific notation, you'd use the %e format specifier:

$ gawk 'BEGIN{
> x = 10 * 100
> printf "The answer is: %e\n", x
> }'
The answer is: 1.000000e+03
$

In addition to the control letters, there are three modifiers that you can use
for even more control over your output:

width : A numeric value that specifies the minimum width of the
output field. If the output is shorter, printf pads the output with
spaces with spaces, using right justification for the text. If the output is
longer than the specified width, it overrides the width value.

prec : A numeric value that specifies the number of digits to the right
of the decimal place in floating‐point numbers, or the maximum
number of characters displayed in a text string.

‐ (minus sign): The minus sign indicates that left justification should
be used instead of right justification when placing data in the formatted
space.

When using the printf statement, you have complete control over how
your output appears. For example, in the “Built‐in Variables” section, we
used the print command to display data fields from our records:

$ gawk 'BEGIN{FS="\n"; RS=""} {print $1,$4}' data2
Ima Test (312)555-1234
Frank Tester (317)555-9876
Haley Example (313)555-4938
$

You can use the printf command to help format the output so that it looks
better. First, let's convert the print command to a printf command and see
what that does:

$ gawk 'BEGIN{FS="\n"; RS=""} {printf "%s %s\n", $1, $4}'
data2
Ima Test (312)555-1234
Frank Tester (317)555-9876
Haley (313)555-4938
$

That produces the same output as the print command. The printf
command uses the %s format specifier as a placeholder for the two string
values.

Notice that you have to manually add the newline character at the end of the
printf command to force a new line. Without it, the printf command will
continue to use the same line on subsequent prints.

This is useful if you need to print multiple things on the same line but using
separate printf commands:

$ gawk 'BEGIN{FS=","} {printf "%s ", $1} END{printf "\n"}'
data1
data11 data21 data31
$

Each of the printf outputs appears on the same line. To be able to
terminate the line, the END section prints a single newline character.

Next, let's use a modifier to format the first string value:

$ gawk 'BEGIN{FS="\n"; RS=""} {printf "%16s %s\n", $1, $4}'
data2
 Ima Test (312)555-1234
 Frank Tester (317)555-9876
 Haley Example (313)555-4938
$

By adding the 16 modifier value, we force the output for the first string to
use 16 spaces. By default, the printf command uses right justification to
place the data in the format space. To make it left justified, just add a minus
sign to the modifier:

$ gawk 'BEGIN{FS="\n"; RS=""} {printf "%-16s %s\n", $1,
$4}' data2
Ima Test (312)555-1234
Frank Tester (317)555-9876
Haley Example (313)555-4938
$

Now that looks pretty professional!

The printf command also comes in handy when dealing with floating‐
point values. By specifying a format for the variable, you can make the
output look more uniform:

$ gawk '{
> total = 0
> for (i = 1; i < 4; i++)
> {
> total += $i
> }
> avg = total / 3
> printf "Average: %5.1f\n",avg
> }' data5
Average: 128.3
Average: 137.7
Average: 176.7
$

By using the %5.1f format specifier, you can force the printf command to
round the floating‐point values to a single decimal place.

Using Built‐in Functions
The gawk programming language provides quite a few built‐in functions
that perform common mathematical, string, and even time functions. You
can utilize these functions in your gawk programs to help cut down on the
coding requirements in your scripts. This section walks you through the
different built‐in functions available in gawk.

Mathematical functions
If you've done programming in any type of language, you're probably
familiar with using built‐in functions in your code to perform common
mathematical functions. The gawk programming language doesn't
disappoint those looking for advanced mathematical features.

Table 22.4 shows the mathematical built‐in functions available in gawk.

TABLE 22.4 The gawk Mathematical Functions

Function Description
atan2(x , y) The arctangent of x / y, with x and y specified in radians.
cos(x) The cosine of x, with x specified in radians.
exp(x) The exponential of x.
int(x) The integer part of x, truncated toward 0.
log(x) The natural logarithm of x.
rand() A random floating‐point value larger than 0 and less than 1.
sin(x) The sine of x, with x specified in radians.
sqrt(x) The square root of x.
srand(x) Specify a seed value for calculating random numbers.

Although gawk does not have an extensive list of mathematical functions, it
does provide some of the basic elements you need for standard
mathematical processing. The int() function produces the integer portion
of a value, but it doesn't round the value. It behaves much like a floor
function found in other programming languages. It produces the nearest
integer to a value between the value and 0.

This means that the int() function of the value 5.6 will return 5, while the
int() function of the value –5.6 will return –5.

The rand() function is great for creating random numbers, but you'll need
to use a trick to get meaningful values. The rand() function returns a
random number, but only between the values 0 and 1 (not including 0 or 1).
To get a larger number, you'll need to scale the returned value.

A common method for producing larger integer random numbers is to
create an algorithm that uses the rand() function, along with the int()
function:

x = int(10 * rand())

This returns a random integer value between (and including) 0 and 9. Just
substitute the 10 in the equation with the upper limit value for your
application, and you're ready to go.

Be careful when using some of the mathematical functions, because the
gawk programming language does have a limited range of numeric values it
can work with. If you go over that range, you'll get an error message:

$ gawk 'BEGIN{x=exp(100); print x}'
26881171418161356094253400435962903554686976
$ gawk 'BEGIN{x=exp(1000); print x}'
gawk: warning: exp argument 1000 is out of range
inf
$

The first example calculates the exponential of 100, which is a very large
number but within the range of the system. The second example attempts to
calculate the exponential of 1000, which goes over the numerical range
limit of the system and produces an error message.

Besides the standard mathematical functions, gawk also provides a few
functions for bitwise manipulating of data:

and(v1 , v2) : Performs a bitwise AND of values v1 and v2

compl(val) : Performs the bitwise complement of val

lshift(val , count) : Shifts the value val count number of bits left

or(v1 , v2) : Performs a bitwise OR of values v1 and v2

rshift(val , count) : Shifts the value val count number of bits
right

xor(v1 , v2) : Performs a bitwise XOR of values v1 and v2

The bit manipulation functions are useful when working with binary values
in your data.

String functions
The gawk programming language also provides several functions you can
use to manipulate string values, shown in Table 22.5.

TABLE 22.5 The gawk String Functions

Function Description
asort(s
[, d])

Sort an array s based on the data element values. The index
values are replaced with sequential numbers indicating the new
sort order. Alternatively, the new sorted array is stored in array
d if specified.

asorti(s
[, d])

Sort an array s based on the index values. The resulting array
contains the index values as the data element values, with
sequential number indexes indicating the sort order.
Alternatively, the new sorted array is stored in array d if
specified.

gensub(r
, s , h [,
t])

Search either the variable $0 , or the target string t if supplied,
for matches of the regular expression r. If h is a string
beginning with either g or G, replaces the matching text with s.
If h is a number, it represents which occurrence of r to replace.

gsub(r ,
s [, t])

Search either the variable $0 , or the target string t if supplied,
for matches of the regular expression r. If found, substitute the
string s globally.

index(s ,
t)

Returns the index of the string t in string s, or 0 if not found.

length([

s])
Returns the length of string s, or if not specified, the length of
$0 .

match(s ,
r [, a])

Returns the index of the string s where the regular expression r
occurs. If array a is specified, it contains the portion of s that
matches the regular expression.

split(s ,
a [, r])

Splits s into array a using either the FS (field separator)
character, or the regular expression r if supplied. Returns the
number of fields.

sprintf(

format ,
variables

)

Returns a string similar to the output of printf using the
format and variables supplied.

Function Description
sub(r , s
[, t])

Search either the variable $0 , or the target string t, for
matches of the regular expression r. If found, substitutes the
string s for the first occurrence.

substr(s
, i [, n
])

Returns the nth character substring of s, starting at index i. If n
is not supplied, the rest of s is used.

tolower(

s)
Converts all characters in s to lowercase.

toupper(

s)
Converts all characters in s to uppercase.

Some of the string functions are relatively self‐explanatory:

$ gawk 'BEGIN{x = "testing"; print toupper(x); print
length(x) }'
TESTING
7
$

However, some of the string functions can get pretty complicated. The
asort and asorti functions are new gawk functions that allow you to sort
an array variable based on either the data element values (asort) or the
index values (asorti). Here's an example of using asort :

$ gawk 'BEGIN{
> var["a"] = 1
> var["g"] = 2
> var["m"] = 3
> var["u"] = 4
> asort(var, test)
> for (i in test)
> print "Index:",i," - value:",test[i]
> }'
Index: 4 - value: 4
Index: 1 - value: 1
Index: 2 - value: 2
Index: 3 - value: 3
$

The new array, test , contains the newly sorted data elements of the
original array, but the index values are now changed to numerical values,

indicating the proper sort order.

The split function is a great way to push data fields into an array for
further processing:

$ gawk 'BEGIN{ FS=","}{
> split($0, var)
> print var[1], var[5]
> }' data1
data11 data15
data21 data25
data31 data35
$

The new array uses sequential numbers for the array index, starting with
index value 1 containing the first data field.

Time functions
The gawk programming language contains a few functions to help you deal
with time values, shown in Table 22.6.

TABLE 22.6 The gawk Time Functions

Function Description
mktime(

datespec)
Converts a date specified in the format YYYY MM DD
HH MM SS [DST] into a timestamp value

strftime(

format [,
timestamp])

Formats either the current time of day timestamp, or
timestamp if provided, into a formatted day and date, using
the date() shell function format

systime() Returns the timestamp for the current time of day

The time functions are often used when working with log files that contain
dates that you need to compare. By converting the text representation of a
date to the epoch time (the number of seconds since midnight, January 1,
1970), you can easily compare dates.

The following is an example of using the time functions in a gawk program:

$ gawk 'BEGIN{
> date = systime()
> day = strftime("%A, %B %d, %Y", date)
> print day

> }'
Friday, December 26, 2014
$

This example uses the systime function to retrieve the current epoch
timestamp from the system and then uses the strftime function to convert
it into a human‐readable format using the shell command's date format
characters.

Trying Out User‐Defined Functions
You're not limited to just using the built‐in functions available in gawk . You
can create your own functions for use in your gawk programs. This section
shows you how to define and use your own functions in your gawk
programs.

Defining a function
To define your own function, you must use the function keyword:

function name([variables])
{
 statements
}

The function name must uniquely identify your function. You can pass one
or more variables into the function from the calling gawk program:

function printthird()
{
 print $3
}

This function will print the third data field in the record.

The function can also return a value using the return statement:

return value

The value can be a variable, or an equation that evaluates to a value:

function myrand(limit)
{
 return int(limit * rand())
}

You can assign the value returned from the function to a variable in the
gawk program:

x = myrand(100)

The variable will contain the value returned from the function.

Using your functions
When you define a function, it must appear by itself before you define any
programming sections (including the BEGIN section). This may look a little
odd at first, but it helps keep the function code separate from the rest of the
gawk program:

$ gawk '
> function myprint()
> {
> printf "%-16s - %s\n", $1, $4
> }
> BEGIN{FS="\n"; RS=""}
> {
> myprint()
> }' data2
Ima Test - (312)555-1234
Frank Tester - (317)555-9876
Haley Example - (313)555-4938
$

The function defines the myprint() function, which formats the first and
fourth data fields in the record for printing. The gawk program then uses the
function to display the data from the data file.

Once you define a function, you can use it as often as necessary in the
program section of the code. This saves lots of work when using long
algorithms.

Creating a function library
Obviously, having to rewrite your gawk functions every time you need them
is not all that pleasant of an experience. However, gawk provides a way for
you to combine your functions into a single library file that you can use in
all your gawk programming.

First, you need to create a file that contains all your gawk functions:

$ cat funclib
function myprint()
{
 printf "%-16s - %s\n", $1, $4
}
function myrand(limit)
{
 return int(limit * rand())
}
function printthird()
{
 print $3
}
$

The funclib file contains three function definitions. To use them, you need
to use the ‐f command‐line parameter. Unfortunately, you can't combine
the ‐f command‐line parameter with an inline gawk script, but you can use
multiple ‐f parameters on the same command line.

Thus, to use your library, just create a file that contains your gawk program,
and specify both the library file and your program file on the command line:

$ cat script4
BEGIN{ FS="\n"; RS=""}
{
 myprint()
}
$ gawk -f funclib -f script4 data2
Ima Test - (312)555-1234
Frank Tester - (317)555-9876
Haley Example - (313)555-4938
$

Now all you need to do is add the funclib file to your gawk command line
whenever you need to use a function defined in the library.

Working Through a Practical Example
The advanced gawk features come in handy if you have to handle data
values in a data file, such as tabulating sales figures or calculating bowling
scores. When you work with data files, the key is to first group related data
records together and then perform any calculations required on the related
data.

For example, let's work with a data file that contains the bowling scores
from a game between two teams, each with two players:

$ cat scores.txt
Rich Blum,team1,100,115,95
Barbara Blum,team1,110,115,100
Christine Bresnahan,team2,120,115,118
Tim Bresnahan,team2,125,112,116
$

Each player has scores from three separate games in the data file, and each
player is identified by a team name in the second column. Here's the shell
script to sort out the data for each team and calculate the totals and
averages:

$ cat bowling.sh
$!/bin/sh

for team in $(gawk –F, '{print $2}' scores.txt | uniq)
do
 gawk –v team=$team 'BEGIN{FS=","; total=0}
 {
 if ($2==team)
 {
 total += $3 + $4 + $5;
 }
 }
 END {
 avg = total / 6;
 print "Total for", team, "is", total, ",the average
is",avg
 }' scores.txt
done
$

The first gawk statement inside the for loop filters out the team names in
the data file and then uses the uniq function to return one value for each
separate team name. The for loop then iterates for each separate team
name.

The gawk statement inside the for loop is what's doing the calculations. For
each data record it first determines if the team name matches the team value
currently in the loop iteration. That's done by using the –v option in gawk ,
which allows us to pass a shell variable inside the gawk program. If the team
name matches, the code keeps a running sum of the three scores in the data

record, adding each data record's values, as long as that data record matches
the team name.

At the end of each loop iteration, the gawk code displays the score totals as
well as the average of the scores. The output should look like this:

$./bowling.sh
Total for team1 is 635, the average is 105.833
Total for team2 is 706, the average is 117.667
$

Now you have a handy shell script to calculate the results of all your
bowling tournaments; you just need to plug the data from each player into
the data text file and run the script!

Summary
This chapter walked you through the more advanced features of the gawk
programming language. Every programming language requires using
variables, and gawk is no different. The gawk programming language
includes some built‐in variables that you can use to reference specific data
field values and retrieve information about the number of data fields and
records processed in the data file. You can also create your own variables
for use in your scripts.

The gawk programming language also provides many of the standard
structured commands you'd expect from a programming language. You can
easily create fancy programs using if‐then logic, while , do‐while , and
for loops. Each of these commands allows you to alter the flow of your
gawk program script to iterate through data field values to create detailed
data reports.

The printf command is a great tool to have if you need to customize your
report output. It allows you to specify the exact format for displaying data
from the gawk program script. You can easily create formatted reports,
placing data elements in exactly the correct position.

Finally, this chapter discussed the many built‐in functions available in the
gawk programming language and showed you how to create your own
functions. The gawk program contains many useful functions for handling
mathematical features, such as standard square roots and logarithms, as well

as trigonometric functions. There are also several string‐related functions
that make extracting substrings from larger strings a breeze.

You aren't limited to the built‐in functions in the gawk program. If you're
working on an application that uses lots of specialized algorithms, you can
create your own functions to process the algorithms and then use those
functions in your own code. You can also set up a library file containing all
the functions you use in your gawk programs, saving you time and effort in
all your coding.

The next chapter switches gears a little. It examines a few other shell
environments you may run into in your Linux shell‐scripting endeavors.
Although the Bash shell is the most common shell used in Linux, it's not the
only shell. It helps to know a little about some of the other shells available
and how they differ from the Bash shell.

CHAPTER 23
Working with Alternative Shells
IN THIS CHAPTER

Understanding the Dash shell

Programming in the Dash shell

Introducing the zsh shell

Writing scripts for zsh

Although the Bash shell is the most widely used shell in Linux
distributions, it's not the only one. Now that you've seen the ins and outs of
the standard Linux Bash shell and what you can do with it, it's time to
examine a few other shells available in the Linux world. This chapter
describes two other popular shells that you may run into in your Linux
journey and shows how they differ from the Bash shell.

Considering the Dash Shell
The Debian Linux distribution, like many of its derivatives, such as Ubuntu,
uses the Dash shell as a replacement for the standard Linux Bash shell. The
Dash shell has had an interesting past. It's a direct descendant of the ash
shell, a simple copy of the Bourne shell available on Unix systems (see
Chapter 1, “Starting with Linux Shells”). Kenneth Almquist created a
small-scale version of the Bourne shell for Unix systems and called it the
Almquist shell, which was then shortened to ash. This original version of
the ash shell was extremely small and fast but lacked many advanced
features, such as command-line editing and history features, making it
difficult to use as an interactive shell.

The NetBSD Unix operating system adopted the ash shell and still uses it
today as the default shell. The NetBSD developers customized the ash shell
by adding several new features, making it closer to the Bourne shell. The
new features include command-line editing using both Emacs and vi editor

commands, as well as a history command to recall previously entered
commands. This version of the ash shell is also used by the FreeBSD
operating system as the default login shell.

The Debian Linux distribution created its own version of the ash shell
(called Debian ash, or Dash) for inclusion in its version of Linux. For the
most part, Dash copies the features of the NetBSD version of the ash shell,
providing the advanced command-line editing capabilities.

However, to add to the shell confusion, the Dash shell is not actually the
default user shell in many Debian-based Linux distributions. Because of the
popularity of the Bash shell in Linux, most Debian-based Linux
distributions use the Bash shell as the normal login shell, and only use the
Dash shell as a quick-start shell for the installation script to install the
distribution files.

To check this out on your system, just take a peek at the /etc/passwd file
entry for your user account; you can see the default interactive shell
assigned to your account. Here's an example:

$ cat /etc/passwd | grep rich
rich:x:1000:1000:Rich,,,:/home/rich:/bin/bash
$

This Ubuntu system uses the Bash shell as the default for the interactive
user shell. To check out the default system shell, use the ls command to
look at the /bin directory for the sh file:

$ ls -al /bin/sh
lrwxrwxrwx 1 root root 4 Jul 21 08:10 /bin/sh -> dash
$

Sure enough, this Ubuntu system uses the Dash shell as the default system
shell. This is where problems can come in.

As you saw in Chapter 11, “Basic Script Building,” every shell script must
start with a line that declares the shell used for the script. In our Bash shell
scripts, we've been using the following:

#!/bin/bash

This tells the shell to use the shell program located at /bin/bash to execute
the script. In the Unix world, the default shell was always located at

/bin/sh . Many shell script programmers familiar with the Unix
environment use this in their Linux shell scripts:

#!/bin/sh

On most Linux distributions, the /bin/sh file is a symbolic link (see
Chapter 3, “Basic Bash Shell Commands”) to the /bin/bash shell program.
This allows you to easily port shell scripts designed for the Unix Bourne
shell to the Linux environment without having to modify them.

But as you saw in the example, the Ubuntu Linux distribution links the
/bin/sh file to the /bin/dash shell program. Because the Dash shell
contains only a subset of the commands available in the original Bourne
shell, this can (and often does) cause some shell scripts to not work
properly.

The next section walks you through the basics of the Dash shell and how it
differs from the Bash shell. This is especially important to know if you
write Bash shell scripts that may need to be run in an Ubuntu environment.

Looking at the Dash Shell Features
Although both the Bash shell and the Dash shell are modeled after the
Bourne shell, they have some differences. This section walks you through
the features found in the Dash shell to acquaint you with how it works
before we dive into the shell scripting features.

The Dash command-line parameters
The Dash shell uses command-line parameters to control its behavior. Table
23.1 lists these parameters and describes what each does.

TABLE 23.1 The Dash Command-Line Parameters

Parameter Description
-a Export all variables assigned to the shell.
-c Read commands from a specified command string.
-e If not interactive, exit immediately if any untested command

fails.
-f Display pathname wildcard characters.
-n If not interactive, read commands but don't execute them.
-u Write an error message to STDERR when attempting to expand

a variable that is not set.
-v Write input to STDERR as it is read.
-x Write each command to STDERR as it's executed.
-I Ignore EOF characters from the input when in interactive

mode.
-i Force the shell to operate in interactive mode.
-m Turn on job control (enabled by default in interactive mode).
-s Read commands from STDIN (the default behavior if no file

arguments are present).
-E Enable the Emacs command-line editor.
-V Enable the vi command-line editor.

There are just a few additional command-line parameters that Debian added
to the original ash shell command-line parameter list. The -E and -V
command-line parameters enable the special command-line editing features
of the Dash shell.

The -E command-line parameter allows you to use the Emacs editor
commands for editing command-line text (see Chapter 10, “Working with
Editors”). You can use all of the Emacs commands for manipulating text on
a single line by using the Ctrl and Alt key combinations.

The -V command-line parameter allows you to use the vi editor commands
for editing command-line text (again, see Chapter 9, “Installing Software”).
This feature allows you to switch between normal mode and vi editor mode

on the command line by pressing the Esc key. When you're in vi editor
mode, you can use all of the standard vi editor commands (such as x to
delete a character and i to insert text). Once you are finished editing the
command line, you must press the Esc key again to exit vi editor mode.

The Dash environment variables
There are quite a few default environment variables that the Dash shell uses
to track information, and you can create your own environment variables as
well. This section describes the environment variables and how Dash
handles them.

Default environment variables
The Dash environment variables are very similar to the environment
variables used in Bash (see Chapter 5, “Understanding the Shell”). This is
not by accident. Remember that both the Dash and Bash shells are
extensions of the Bourne shell, so they both incorporate many of its
features. However, because of its goal of simplicity, the Dash shell contains
significantly fewer environment variables than Bash. You need to take this
fact into consideration when creating shell scripts in a Dash shell
environment.

The Dash shell uses the set command to display environment variables:

$set
COLORTERM=''
DESKTOP_SESSION='default'
DISPLAY=':0.0'
DM_CONTROL='/var/run/xdmctl'
GS_LIB='/home/atest/.fonts'
HOME='/home/atest'
IFS='
'
KDEROOTHOME='/root/.kde'
KDE_FULL_SESSION='true'
KDE_MULTIHEAD='false'
KONSOLE_DCOP='DCOPRef(konsole-5293,konsole)'
KONSOLE_DCOP_SESSION='DCOPRef(konsole-5293,session-1)'
LANG='en_US'
LANGUAGE='en'
LC_ALL='en_US'
LOGNAME='atest'

OPTIND='1'
PATH='/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbi
n:/bin'
PPID='5293'
PS1='$ '
PS2='> '
PS4='+ '
PWD='/home/atest'
SESSION_MANAGER='local/testbox:/tmp/.ICE-unix/5051'
SHELL='/bin/dash'
SHLVL='1'
TERM='xterm'
USER='atest'
XCURSOR_THEME='default'
_='ash'
$

Your default Dash shell environment will most likely differ, since different
Linux distributions assign different default environment variables at login.

Positional parameters
In addition to the default environment variables, the Dash shell assigns
special variables to any parameters defined in the command line. Here are
the positional parameter variables available for use in the Dash shell:

$0 : The name of the shell script

$n : The nth position parameter

$* : A single value with the contents of all the parameters, separated
by the first character in the IFS environment variable, or a space if IFS
isn't defined

$@ : Expands to multiple arguments consisting of all the command-line
parameters

$# : The number of positional parameters

$? : The exit status of the most recent command

$- : The current option flags

$$: The process ID (PID) of the current shell

$! : The process ID (PID) of the most recent background command

All of the Dash positional parameters mimic the same positional parameters
available in the Bash shell. You can use each of the positional parameters in
your shell scripts just as you would in the Bash shell.

User-defined environment variables
The Dash shell also allows you to set your own environment variables. As
with Bash, you can define a new environment variable on the command line
by using the assignment statement:

$ testing=10 ; export testing
$ echo $testing
10
$

Without the export command, user-defined environment variables are
visible only in the current shell or process.

WARNING

There's one huge difference between Dash variables and Bash
variables. The Dash shell doesn't support variable arrays. This
small feature causes all sorts of problems for advanced shell script
writers.

The Dash built-in commands
Just as with the Bash shell, the Dash shell contains a set of built-in
commands that it recognizes. You can use these commands directly from
the command-line interface, or you can incorporate them in your shell
scripts. Table 23.2 lists the Dash shell built-in commands.

TABLE 23.2 The Dash Shell Built-in Commands

Command Description
alias Create an alias string to represent a text string.
bg Continue the specified job in background mode.
cd Switch to the specified directory.
echo Display a text string and environment variables.
eval Concatenate all arguments with a space.
exec Replace the shell process with the specified command.
exit Terminate the shell process.
export Export the specified environment variable for use in all child

shells.
fc List, edit, or reexecute commands previously entered on the

command line.
fg Continue the specified job in foreground mode.
getopts Obtain options and arguments from a list of parameters.
hash Maintain and retrieve a hash table of recent commands and

their locations.
pwd Display the value of the current working directory.
read Read a line from STDIN and assign the value to a variable.
readonly Read a line from STDIN to a variable that can't be changed.
printf Display text and variables using a formatted string.
set List or set option flags and environment variables.
shift Shift the positional parameters a specified number of times.
test Evaluate an expression and return 0 if true or 1 if false.
times Display the accumulated user and system times for the shell

and all shell processes.
trap Parse and execute an action when the shell receives a specified

signal.
type Interpret the specified name and display the resolution (alias,

built-in, command, keyword).

Command Description
ulimit Query or set limits on processes.
umask Set the value of the default file and directory permissions.
unalias Remove the specified alias.
unset Remove the specified variable or option flag from the

exported variables.
wait Wait for the specified job to complete and return the exit

status.

You probably recognize all of these built-in commands from the Bash shell.
The Dash shell supports many of the same built-in commands as the Bash
shell. You'll notice that there aren't any commands for the command history
file or the directory stack. The Dash shell doesn't support these features.

Scripting in Dash
Unfortunately, the Dash shell doesn't recognize all of the scripting features
of the Bash shell. Shell scripts written for the Bash environment often fail
when run in the Dash shell, causing all sorts of grief for shell script
programmers. This section describes the differences you'll need to be aware
of to get your shell scripts to run properly in a Dash shell environment.

Creating Dash scripts
You probably guessed by now that creating shell scripts for the Dash shell is
pretty similar to creating shell scripts for the Bash shell. You should always
specify which shell you want to use in your script to ensure that the script
runs with the proper shell.

You do this on the first line of the shell:

#!/bin/dash

You can also specify a shell command-line parameter on this line, as was
demonstrated earlier in “The Dash command-line parameters” section.

Things that won't work

Unfortunately, because the Dash shell is only a subset of the Bourne shell
features, there are a few things in Bash shell scripts that won't work in the
Dash shell. These are often called Bashisms. This section is a quick
summary of Bash shell features you may be used to using in your Bash
shell scripts that won't work if you're in a Dash shell environment.

Using arithmetic
Chapter 11 showed three ways to express a mathematical operation in the
Bash shell script:

Using the expr command: expr operation

Using square brackets: $[operation]

Using double parentheses: $((operation))

The Dash shell supports the expr command and the double parentheses
method but doesn't support the square brackets method. This can be a
problem if you have lots of mathematical operations that use the square
brackets.

The proper format for performing mathematical operations in Dash shell
scripts is to use the double parentheses method:

$ cat test1
#!/bin/dash
testing mathematical operations

value1=10
value2=15

value3=$(($value1 * $value2))
echo "The answer is $value3"
$./test1
The answer is 150
$

Now the shell can perform the calculation properly.

The test command
While the Dash shell supports the test command, you must be careful how
you use it. The Bash shell version of the test command is slightly different

from the Dash shell version.

The Bash shell test command allows you to use the double equal sign (==)
to test if two strings are equal. This is an add-on to accommodate
programmers familiar with using this format in other programming
languages.

However, the test command available in the Dash shell doesn't recognize
the == symbol for text comparisons. Instead, it only recognizes the =
symbol. If you use the == symbol in your Bash scripts, you'll need to
change the text comparison symbol to just a single equal sign:

$ cat test2
#!/bin/dash
testing the = comparison

test1=abcdef
test2=abcdef

if [$test1 = $test2]
then
 echo "They're the same!"
else
 echo "They're different"
fi
$./test2
They're the same!
$

This little Bashism is responsible for many hours of frustration for shell
programmers!

The function command
Chapter 17, “Creating Functions,” showed you how to define your own
functions in your shell scripts. The Bash shell supports two methods for
defining functions:

Using the function statement

Using the function name only

The Dash shell doesn't support the function statement. Instead, you must
define a function using the function name followed by parentheses.

If you're writing shell scripts that may be used in the Dash environment,
always define functions using the function name and not the function
statement:

$ cat test3
#!/bin/dash
testing functions

func1() {
 echo "This is an example of a function"
}

count=1
while [$count -le 5]
do
 func1
 count=$(($count + 1))
done
echo "This is the end of the loop"
func1
echo "This is the end of the script"
$./test3
This is an example of a function
This is an example of a function
This is an example of a function
This is an example of a function
This is an example of a function
This is the end of the loop
This is an example of a function
This is the end of the script
$

Now the Dash shell recognized the function defined in the script just fine
and was able to use it within the script.

Exploring the zsh Shell
Another popular shell that you may run into is the Z shell (called zsh). The
zsh shell is an open source Unix shell developed by Paul Falstad. It takes
ideas from all of the existing shells and adds many unique features to create
a full-blown advanced shell designed for programmers.

The following are some of the features that make the zsh shell unique:

Improved shell option handling

Shell compatibility modes

Loadable modules

Of all these features, the loadable module is the most advanced feature in
shell design. As you've seen in the Bash and Dash shells, each shell
contains a set of built-in commands that are available without the need for
external utility programs. The benefit of built-in commands is execution
speed. The shell doesn't have to load a utility program into memory before
running it; the built-in commands are already in the shell memory, ready to
go.

The zsh shell provides a core set of built-in commands, plus the capability
to add additional command modules. Each command module provides a set
of additional built-in commands for specific circumstances, such as network
support and advanced math functions. You can add only the modules you
think you need for your specific situation.

This feature provides a great way either to limit the size of the zsh shell for
situations that require a small shell size and few commands or to expand the
number of available built-in commands for situations that require faster
execution speeds.

TIP

The Z shell is usually not installed by default in most Linux
distributions. However, due to its popularity, you can easily install it
from the standard repository in just about every Linux distribution
(see Chapter 9).

Viewing Parts of the zsh Shell
This section walks you through the basics of the zsh shell, showing the
built-in commands that are available (or that can be added by installing

modules) as well as the command-line parameters and environment
variables used by the zsh shell.

Shell options
Most shells use command-line parameters to define the behavior of the
shell. The zsh shell uses a few command-line parameters to define the
operation of the shell, but mostly it uses options to customize the behavior
of the shell. You can set shell options either on the command line or within
the shell itself by using the set command.

Table 23.3 lists the command-line parameters available for the zsh shell.

TABLE 23.3 The zsh Shell Command-Line Parameters

Parameter Description
-c Execute only the specified command and exit.
-i Start as an interactive shell, providing a command-line

interface prompt.
-s Force the shell to read commands from STDIN .
-o Specify command-line options.

Although this may seem like a small set of command-line parameters, the -
o parameter is somewhat misleading. It allows you to set shell options that
define features within the shell. By far the zsh shell is the most
customizable shell available. There are lots of features that you can alter for
your shell environment. The different options fit into several general
categories:

Changing directories: Options that control how the cd and dirs
commands handle directory changes

Completion: Options that control command-completion features

Expansion and globbing: Options that control file expansion in
commands

History: Options that control command history recall

Initialization: Options that control how the shell handles variables and
startup files when started

Input/Output: Options that control command handling

Job Control: Options that dictate how the shell handles and starts jobs

Prompting: Options that define how the shell works with command-
line prompts

Scripts and functions: Options that control how the shell processes
shell scripts and defines shell functions

Shell emulation: Options that allow you to set the behavior of the zsh
shell to mimic the behavior of other shell types

Shell state: Options that define what type of shell to start

zle: Options for controlling the zsh line editor (zle) feature

Option aliases: Special options that can be used as aliases for other
option names

With this many different categories of shell options, you can imagine just
how many actual options the zsh shell supports.

Built-in commands
The zsh shell is unique in that it allows you to expand the built-in
commands available in the shell. This provides for a wealth of speedy
utilities at your fingertips for a host of different applications.

This section describes the core built-in commands, along with the various
modules available as of this writing.

Core built-in commands
The core of the zsh shell contains the basic built-in commands you're used
to seeing in other shells. Table 23.4 describes the built-in commands
available for you.

TABLE 23.4 The zsh Core Built-in Commands

Command Description
alias Define an alternate name for a command and arguments.
autoload Preload a shell function into memory for quicker access.
bg Execute a job in background mode.
bindkey Bind keyboard combinations to commands.
builtin Execute the specified built-in command instead of an

executable file of the same name.
bye The same as exit .
cd Change the current working directory.
chdir Change the current working directory.
command Execute the specified command as an external file instead of

a function or built-in command.
declare Set the data type of a variable (same as typeset).
dirs Display the contents of the directory stack.
disable Temporarily disable the specified hash table elements.
disown Remove the specified job from the job table.
echo Display variables and text.
emulate Set zsh to emulate another shell, such as the Bourne, Korn, or

C shell.
enable Enable the specified hash table elements.
eval Execute the specified command and arguments in the current

shell process.
exec Execute the specified command and arguments replacing the

current shell process.
exit Exit the shell with the specified exit status. If none specified,

use the exit status of the last command.
export Allow the specified environment variable names and values

to be used in child shell processes.
false Return an exit status of 1.

Command Description
fc Select a range of commands from the history list.
fg Execute the specified job in foreground mode.
float Set the specified variable for use as a floating-point variable.
functions Set the specified name as a function.
getln Read the next value in the buffer stack and place it in the

specified variable.
getopts Retrieve the next valid option in the command-line arguments

and place it in the specified variable.
hash Directly modify the contents of the command hash table.
history List the commands contained in the history file.
integer Set the specified variable for use as an integer value.
jobs List information about the specified job, or all jobs assigned

to the shell process.
kill Send a signal (Default SIGTERM) to the specified process or

job.
let Evaluate a mathematical operation and assign the result to a

variable.
limit Set or display resource limits.
local Set the data features for the specified variable.
log Display all users currently logged in who are affected by the

watch parameter.
logout Same as exit , but only works when the shell is a login shell.
popd Remove the next entry from the directory stack.
print Display variables and text.
printf Display variables and text using C-style format strings.
pushd Change the current working directory, and put the previous

directory in the directory stack.
pushln Place the specified arguments into the editing buffer stack.
pwd Display the full pathname of the current working directory.

Command Description
read Read a line and assign data fields to the specified variables

using the IFS characters.
readonly Assign a value to a variable that can't be changed.
rehash Rebuild the command hash table.
set Set options or positional parameters for the shell.
setopt Set the options for a shell.
shift Read and delete the first positional parameter, and then shift

the remaining ones down one position.
source Find the specified file and copy its contents into the current

location.
suspend Suspend the execution of the shell until it receives a SIGCONT

signal.
test Return an exit status of 0 if the specified condition is TRUE .
times Display the cumulative user and system times for the shell

and processes that run in the shell.
trap Block the specified signals from being processed by the shell,

and execute the specified commands if the signals are
received.

true Return a zero exit status.
ttyctl Lock and unlock the display.
type Display how the specified command would be interpreted by

the shell.
typeset Set or display attributes of variables.
ulimit Set or display resource limits of the shell or processes running

in the shell.
umask Set or display the default permissions for creating files and

directories.
unalias Remove the specified command alias.
unfunction Remove the specified defined function.
unhash Remove the specified command from the hash table.

Command Description
unlimit Remove the specified resource limit.
unset Remove the specified variable attribute.
unsetopt Remove the specified shell option.
wait Wait for the specified job or process to complete.
whence Display how the specified command would be interpreted by

the shell.
where Display the pathname of the specified command if found by

the shell.
which Display the pathname of the specified command using the csh

shell-style output.
zcompile Compile the specified function or script for faster

autoloading.
zmodload Perform operations on loadable zsh modules.

The zsh shell is no slouch when it comes to providing built-in commands!
You should recognize most of these commands from their Bash
counterparts. The most important features of the zsh shell built-in
commands are modules.

Add-in modules
There's a long list of modules that provide additional built-in commands for
the zsh shell, and the list continues to grow as resourceful programmers
create new modules. Table 23.5 shows some popular modules.

TABLE 23.5 The zsh Modules

Module Description
zsh/datetime Additional date and time commands and variables
zsh/files Commands for basic file handling
zsh/mapfile Access to external files via associative arrays
zsh/mathfunc Additional scientific functions
zsh/pcre The extended regular expression library
zsh/net/socket Unix domain socket support
zsh/stat Access to the stat system call to provide system

statistics
zsh/system Interface for various low-level system features
zsh/net/tcp Access to TCP sockets
zsh/zftp A specialized FTP client command
zsh/zselect Block and return when file descriptors are ready
zsh/zutil Various shell utilities

The zsh shell modules cover a wide range of topics, from providing simple
command-line editing features to advanced networking functions. The idea
behind the zsh shell is to provide a basic minimum shell environment and
let you add on the pieces you need to accomplish your programming job.

Viewing, adding, and removing modules
The zmodload command is the interface to the zsh modules. You use this
command to view, add, and remove modules from the zsh shell session.

Using the zmodload command without any command-line parameters
displays the currently installed modules in your zsh shell:

% zmodload
zsh/complete
zsh/files
zsh/main
zsh/parameter
zsh/stat
zsh/terminfo

zsh/zle
zsh/zutil
%

Different zsh shell implementations include different modules by default.
To add a new module, just specify the module name on the zmodload
command line:

% zmodload zsh/net/tcp
%

Nothing indicates that the module loaded. You can perform another
zmodload command, and the new module should appear in the list of
installed modules. Once you load a module, the commands associated with
the module are available as built-in commands.

TIP

It's a common practice to place zmodload commands in the
$HOME/.zshrc startup file so that your favorite functions load
automatically when the zsh shell starts.

Scripting with zsh
The main purpose of the zsh shell was to provide an advanced
programming environment for shell programmers. With that in mind, it's no
surprise that the zsh shell offers many features that make shell scripting
easier.

Mathematical operations
As you would expect, the zsh shell allows you to perform mathematical
functions with ease. In the past, the Korn shell has led the way in
supporting mathematical operations by providing support for floating-point
numbers. The zsh shell has full support for floating-point numbers in all of
its mathematical operations!

Performing calculations

The zsh shell supports two methods for performing mathematical
operations:

The let command

Double parentheses

When you use the let command, you should enclose the operation in
double quotation marks to allow for spaces:

% let value1=" 4 * 5.1 / 3.2 "
% echo $value1
6.3749999999999991
%

Notice that using floating-point numbers introduces a precision problem. To
solve this, it's always a good idea to use the printf command and specify
the decimal precision needed to correctly display the answer:

% printf "%6.3f\n" $value1
6.375
%

Now that's much better!

The second method is to use the double parentheses. This method
incorporates two techniques for defining the mathematical operation:

% value1=$((4 * 5.1))
% ((value2 = 4 * 5.1))
% printf "%6.3f\n" $value1 $value2
20.400
20.400
%

Notice that you can place the double parentheses either around just the
operation (preceded by a dollar sign) or around the entire assignment
statement. Both methods produce the same results.

If you don't use the typeset command to declare the data type of a variable
beforehand, the zsh shell attempts to automatically assign the data type.
This can be dangerous when working with both integer and floating-point
numbers. Take a look at this example:

% value=10
% value2=$(($value1 / 3))
% echo $value2
3
%

Now that's probably not the answer you want to come out from the
calculation. When you specify numbers without decimal places, the zsh
shell interprets them as integer values and performs integer calculations. To
ensure that the result is a floating-point number, you must specify the
numbers with decimal places:

% value=10.
% value2=$(($value1 / 3.))
% echo $value2
3.3333333333333335
%

Now the result is in the floating-point format.

Mathematical functions
With the zsh shell, built-in mathematical functions are either feast or
famine. The default zsh shell doesn't include any special mathematical
function. However, if you install the zsh/mathfunc module, you'll have
more math functions than you'll most likely ever need:

% value1=$((sqrt(9)))
zsh: unknown function: sqrt
% zmodload zsh/mathfunc
% value1=$((sqrt(9)))
% echo $value1
3.
%

That was simple! Now you have an entire math library of functions at your
fingertips.

TIP

Lots of mathematical functions are supported in zsh. For a
complete listing of all the math functions that the zsh/mathfunc
module provides, look at the manual page for zshmodules.

Structured commands
The zsh shell provides the usual set of structured commands for your shell
scripts:

if-then-else statements

for loops (including the C-style)

while loops

until loops

select statements

case statements

The zsh shell uses the same syntax for each of these structured commands
that you're used to from the Bash shell. The zsh shell also includes a
different structured command called repeat . The repeat command uses
the following format:

repeat param
do
 commands
done

The param parameter must be a number or a mathematical operation that
equates to a number. The repeat command then performs the specified
commands that number of times:

% cat test4
#!/bin/zsh
using the repeat command

value1=$((10 / 2))
repeat $value1
do
 echo "This is a test"
done
$./test4
This is a test
This is a test
This is a test
This is a test
This is a test
%

This command allows you to repeat sections of code for a set number of
times based on a calculation.

Functions
The zsh shell supports the creation of your own functions either by using
the function command or by defining the function name followed by
parentheses:

% function functest1 {
> echo "This is the test1 function"
}
% functest2() {
> echo "This is the test2 function"
}
% functest1
This is the test1 function
% functest2
This is the test2 function
%

As with Bash shell functions (see Chapter 17), you can define functions
within your shell script and then either use global variables or pass
parameters to your functions.

Working Through a Practical Example
A very useful module in the zsh shell is the tcp module. It allows you to
create a TCP socket, listen for incoming connections, and then establish a
connection with a remote system. This is a great way to transfer data
between shell applications!

To demonstrate, here's a quick example. First, you'll want to open a shell
window to act as the server. Start zsh, load the tcp module, and then define
a TCP socket number to listen for incoming connections. Do that with these
commands:

server$ zsh
server% zmodload zsh/net/tcp
server% ztcp -l 8000
server% listen=$REPLY
server% ztcp -a $listen

The ztcp command with the -l option listens on the specified TCP port
(8000 in this example) for incoming network connections. The special
$REPLY variable contains the file handle associated with the network socket.
The ztcp command with the -a option waits until an incoming connection
is established.

Now open another shell window on your system (or you can even do this on
another Linux system on the same network) to act as the client, and enter
these commands to connect to the other shell:

client$ zsh
client% zmodload zsh/net/tcp
client% ztcp localhost 8000
client% remote=$REPLY
client%

When the connection is established, you'll see a zsh shell prompt appear on
in the server shell window. You can then save the new connection handle on
the server to a variable:

server% remote=$REPLY

Now you're ready to send and receive data! To send a message from one
system to the other, use the print statement, sending the text to the $remote
connection handle:

client% print 'This is a test message'>&$remote
client%

Then, in the other shell window use the read command to retrieve the data
received on the $remote connection handle and the print command to
display it:

server% read -r data >&$remote; print -r $data
This is a test message
server%

Congratulations, you've just sent data from one shell to another! You can
use the same technique to send data in the opposite direction. When you're
done, use the -c option to close out the appropriate handles on each system.
For the server, use the following:

server% ztcp -c $listen
server% ztcp -c $remote

And for the client, use this:

client% ztcp -c $remote

Now you have networking features available for your shell scripts, taking
them to a new level!

Summary
This chapter discussed two popular alternative Linux shells that you may
run into. The Dash shell was developed as part of the Debian Linux
distribution and is mainly found in the Ubuntu Linux distribution. It's a
smaller version of the Bourne shell, so it doesn't support as many features
as the Bash shell, which can cause problems for script writing.

The zsh shell is often found in programming environments, since it
provides lots of cool features for shell script programmers. It uses loadable
modules to load separate code libraries, which make using advanced
functions as easy as running command-line commands. Loadable modules
are available for lots of different functions, from complex mathematical
algorithms to network applications such as FTP and HTTP.

The next section of this book dives into some specific scripting applications
you might encounter in the Linux environment. In the next chapter you'll
see how to put your scripting skills to use to help with Linux system
administration.

Part IV
Creating and Managing
Practical Scripts
IN THIS PART

Chapter 24 Writing Simple Script Utilities

Chapter 25 Getting Organized

CHAPTER 24
Writing Simple Script Utilities
IN THIS CHAPTER

Automating archives

Scripting Account Removal

Auditing your system

Shell scripts are all about automating tasks, making your life easier, and
letting the system handle the boring jobs.

We've included several sample useful scripts throughout the book, and this
chapter adds some additional ones. Learning how to write Bash script
utilities will pay you back many times over. And the beauty of shell scripts
is that they are easily customized for your particular needs — especially
now that you are almost a Bash script-writing guru!

Performing Backups
Whether you're responsible for a Linux system in a large corporate
environment or a small mom-and-pop shop, or you're just using it at home,
the loss of data can be catastrophic. To help prevent bad things from
happening, it's always a good idea to perform regular backups (also called
archives).

However, what's a good idea and what's practical are often two separate
things. Trying to arrange a backup schedule to store important project files
can be a challenge. This is another place where shell scripts often come to
the rescue.

NOTE

There are several fancy GUI and/or web-based programs you can
use to conduct and manage backups, such as Amanda, Bacula, and
Duplicity. However, at their core are Bash shell commands. If don't
want or need anything that flashy, or you'd like to understand the
engine within these programs, this chapter section is for you.

If you desire to write your own backup scripts, we demonstrate two
methods for using shell scripts so that you can archive specific data on your
Linux systems.

Backing up files daily
If you're using your Linux system to work on an important project, you can
create a shell script that automatically takes backups of specific directories.
Doing so helps avoid a time-consuming restore process from your main
archive files. Designating these directories in a configuration file allows
you to change them when a particular project changes and/or reuse the
script's configuration file for a different project.

Here we show you how to create an automated shell script that can take
backups of specified directories and keep a record of your data's past
versions.

Obtaining the required functions
The workhorse for backing up data in the Linux world is the tar command
(Chapter 4, “More Bash Shell Commands”). The tar command is used to
archive entire directories into a single file. Here's an example of creating an
archive file of a working directory using the tar command:

$ ls -1 /home/christine/Project
addem.sh
AndBoolean.sh
askage.sh
[...]
update_file.sh
variable_content_eval.sh

$
$ tar -cf archive.tar /home/christine/Project/*.*
tar: Removing leading `/' from member names
tar: Removing leading `/' from hard link targets
$
$ ls -og archive.tar
-rw-rw-r-- 1 112640 Aug 6 13:33 archive.tar
$

Notice the tar command responds with a warning message that it's
removing the leading forward slash from member names. This means that
the pathname is converted from an absolute pathname to a relative
pathname (Chapter 3, “Basic Bash Shell Commands”), which allows you to
extract the tar archived files anywhere you want in your filesystem. You'll
probably want to get rid of any output messages in your script. We can
accomplish this by redirecting STDERR to the /dev/null file (Chapter 15,
“Presenting Data”):

$ pwd
/home/christine
$
$ tar -cf archive.tar Project/*.* 2>/dev/null
$
$ ls -og archive.tar
-rw-rw-r-- 1 112640 Aug 6 13:38 archive.tar
$

Because a tar archive file can consume lots of disk space, it's a good idea
to compress the file. You can do so by simply adding the -z option (Chapter
4). This compresses the tar archive file into a gzipped tar file, which is
called a tarball. Be sure to use the proper file extensions to denote that the
file is a tarball. Either .tar.gz or .tgz is fine. Here's an example of
creating a tarball of a project directory:

$ tar -zcf archive.tgz Project/*.* 2>/dev/null
$
$ ls -hog archive.tgz
-rw-rw-r-- 1 11K Aug 6 13:40 archive.tgz
$
$ ls -hog archive.tar
-rw-rw-r-- 1 110K Aug 6 13:38 archive.tar
$

Notice that due to compression archive.tgz is about 99 KB smaller than
the archive.tar file. Now we have the main component for our backup

script completed.

Instead of modifying or creating a new archive script for every new
directory of files we want to back up, we can use a configuration file. The
configuration file should contain each directory's absolute directory
reference we want included in the archive.

$ cat Files_To_Backup.txt
/home/christine/BackupScriptProject/
/home/christine/Downloads/
/home/christine/Does_not_exist/
/home/christine/PythonConversion/
$

Notice the Does_not_exist directory. We'll use that particular directory
(which doesn't exist) to test a script feature later.

NOTE

If you're using a Linux distribution that includes a graphical
desktop, be careful about backing up your entire $HOME directory.
Although this may be tempting, the $HOME directory contains lots of
configuration and temporary files related to the graphical desktop.
It creates a much larger archive file than you probably intended.
Pick a subdirectory (or two) in which to store your working files,
and use that subdirectory in your archive configuration file.

To have our script read through the configuration file and add the names of
each directory to an archive list, we'll use the simple read command
(Chapter 14, “Handling User Input”). But instead of using the cat
command piped into a while loop (Chapter 13, “More Structured
Commands”), this script redirects standard input (STDIN) using the exec
command (see Chapter 15). Here's how it looks in the script:

exec 0 < $config_file

read file_name

Notice that a variable is used for the archive configuration file,
config_file . Each record is read in from the configuration file. As long as

the read command finds a new configuration file record to read, it returns
an exit value of 0 for success in the ? variable (Chapter 11, “Basic Script
Building”). You can use this as a test in a while loop in order to read all the
records from the configuration file:

while [$? -eq 0]
do
[...]
read file_name
done

When the read command hits the end of the configuration file, it returns a
non-zero status in the ? variable. At that point, the while loop is exited.

In the while loop, two things need to happen. First, we must add the
directory name to our archive list. Even more important is to check if that
directory even exists! It would be very easy to remove a directory from the
filesystem and forget to update the archive configuration file. We can check
a directory's existence using a simple if statement (see Chapter 12, “Using
Structured Commands”). If the directory does exist, it is added to the list of
directories to archive, file_list . Otherwise, a warning message is issued.
Here is what this if statement looks like:

if [-f $file_name -o -d $file_name]
then
 file_list="$file_list $file_name"
else
 echo
 echo "$file_name, does not exist."
 echo "Obviously, I will not include it in this
archive."
 echo "It is listed on line $file_no of the config
file."
 echo "Continuing to build archive list..."
 echo
fi

file_no=$[$file_no + 1]

Because a record in our archive configuration file can be a filename or a
directory, the if statement tests for the existence of both, using the -f and
the -d options. The or option, -o , allows for either the file's or the
directory's existence test to return a non-zero status for the entire if
statement to be treated as true.

To provide a little extra help in tracking down nonexistent directories and
files, the variable file_no is added. Thus, the script can tell you exactly
what line number in the archive configuration file contains the incorrect or
missing file or directory.

Creating a daily archive location
If you are just backing up a few files, it's fine to keep the archive in your
personal directory. However, if several directories are backed up, it is best
to create a central repository archive directory:

$ sudo mkdir /archive
 [sudo] password for christine:
$
$ ls -ld /archive
drwxr-xr-x 2 root root 4096 Aug 6 14:20 /archive
$

After you have your central repository archive directory created, you need
to grant access to it for certain users. If you do not do this, trying to create
files in this directory fails, as shown here:

$ mv Files_To_Backup.txt /archive/
mv: cannot move 'Files_To_Backup.txt' to
'/archive/Files_To_Backup.txt': Permission denied
$

You could grant the users needing to create files in this directory permission
via sudo or create a user group. In this case, a special user group is created,
Archivers :

$ sudo groupadd Archivers
$
$ sudo chgrp Archivers /archive
$
$ ls -ld /archive
drwxr-xr-x 2 root Archivers 4096 Aug 6 14:20 /archive
$
$ sudo usermod -aG Archivers christine
$
$ sudo chmod 775 /archive
$
$ ls -ld /archive
drwxrwxr-x 2 root Archivers 4096 Aug 6 14:20 /archive
$

After a user has been added to the Archivers group, the user must log out
and log back in for the group membership to take effect. Now files can be
created by this group's members without the use of super user privileges:

$ mv Files_To_Backup.txt /archive/
$
$ ls /archive/
Files_To_Backup.txt
$

Keep in mind that all Archivers group members can add and delete files
from this directory. It may be best to add the sticky bit (Chapter 7,
“Understanding Linux File Permissions”) to the directory, in order to keep
group members from deleting each other's tarballs. To keep things
organized, consider creating subdirectories within the /archive directory
for each user.

You should now have enough information to start building the script. The
next section walks you through creating this daily project backup script.

Creating a daily backup script
The Daily_Archive.sh script automatically creates an archive to a
designated location, using the current date to uniquely identify the file.
Here's the code for that portion of the script:

today=$(date +%y%m%d)

Set Archive File Name

backupFile=archive$today.tar.gz

Set Configuration and Destination File

config_file=/archive/Files_To_Backup
destination=/archive/$backupFile
#

The destination variable appends the full pathname for the archived file.
The config_file variable points to the archive configuration file
containing the directories to be archived. These both are easily changed to
alternate directories and files if needed.

The Daily_Archive.sh script, all put together, now looks like this:

$ cat Daily_Archive.sh
#!/bin/bash

Daily_Archive - Archive designated files & directories

Gather Current Date

today=$(date +%y%m%d)

Set Archive File Name

backupFile=archive$today.tar.gz

Set Configuration and Destination File

config_file=/archive/Files_To_Backup.txt
destination=/archive/$backupfile

######### Main Script #########################

Check Backup Config file exists

if [-f $config_file] # Make sure the config file still
exists.
then # If it exists, do nothing but continue on.
 echo
else # If it doesn't exist, issue error & exit
script.
 echo
 echo "$config_file does not exist."
 echo "Backup not completed due to missing Configuration
File"
 echo
 exit
fi

Build the names of all the files to backup

file_no=1 # Start on Line 1 of Config File.
exec 0< $config_file # Redirect Std Input to name of
Config File

read file_name # Read 1st record

while [$? -eq 0] # Create list of files to backup.
do
 # Make sure the file or directory exists.

 if [-f $file_name -o -d $file_name]
 then
 # If file exists, add its name to the list.
 file_list="$file_list $file_name"
 else
 # If file doesn't exist, issue warning
 echo
 echo "$file_name, does not exist."
 echo "Obviously, I will not include it in this
archive."
 echo "It is listed on line $file_no of the config
file."
 echo "Continuing to build archive list..."
 echo
 fi

 file_no=$[$file_no + 1] # Increase Line/File number by
one.
 read file_name # Read next record.
done

#######################################

Backup the files and Compress Archive

echo "Starting archive..."
echo

tar -czf $destination $file_list 2> /dev/null

echo "Archive completed"
echo "Resulting archive file is: $destination"
echo

exit
$

Hopefully, you saw a few potential needed improvements for this script. For
example, what if there are no existing files or directories to back up and
$file_list is empty? You can use an if - then statement to check for that
problem. How about using the -v option on the tar command and
redirecting STDOUT to create a report or log? You can make this script as
rigorous as you need.

Running the daily archive script

Before you attempt to test the script, remember that we need to change
permissions on the script file (Chapter 11). The file's owner must be given
execute (x) privilege before the script can be run:

$ ls -og Daily_Archive.sh
-rw-r--r-- 1 2039 Aug 6 14:13 Daily_Archive.sh
$
$ chmod u+x Daily_Archive.sh
$
$ ls -og Daily_Archive.sh
-rwxr--r-- 1 2039 Aug 6 14:13 Daily_Archive.sh
$

Testing the Daily_Archive.sh script is straightforward:

$./Daily_Archive.sh

/home/christine/Does_not_exist/, does not exist.
Obviously, I will not include it in this archive.
It is listed on line 3 of the config file.
Continuing to build archive list...

Starting archive...

Archive completed
Resulting archive file is: /archive/archive200806.tar.gz

$

You can see that the script caught one directory that does not exist,
/home/christine/Does_not_exist . It lets you know what line number in
the configuration file this erroneous directory is on and continues making a
list and archiving the data.

Our special project data (and other files) is now safely archived in a tarball
file:

$ ls /archive/
archive200806.tar.gz Files_To_Backup.txt
$

Since this is an important script, consider using anacron (Chapter 16,
“Script Control”) so that it is run on a daily basis without you needing to
remember to launch the script.

TIP

Keep in mind that tar is one way to perform backups on your
system using Bash shell commands. There are several other utilities
(or combinations of commands) that may better meet your needs,
such as rsync . To see various utility names that may assist in this
backup endeavor, type man -k archive and then man -k copy at the
command-line prompt.

Creating an hourly archive script
If you are in a high-volume production environment where files are
changing rapidly, a daily archive might not meet your needs. If you want to
increase the archiving frequency to hourly, you need to take another item
into consideration.

When you're backing up files hourly and trying to use the date command to
time stamp each tarball, things can get ugly rather quickly. Sifting through a
directory of tarballs with filenames looking like this is tedious:

archive200806110233.tar.gz

Instead of placing all the archive files in the same folder, you can create a
directory hierarchy for your archived files. Figure 24.1 demonstrates this
principle.

The archive directory contains directories for each month of the year, using
the month number as the directory name. Each month's directory in turn
contains folders for each day of the month (using the day's numerical value
as the directory name). This allows you to just time stamp the individual
tarballs and place them in the appropriate directory for the day and month.

First, the new directory /archive/hourly must be created, along with the
appropriate permissions set upon it. Remember from early in this chapter
that members of the Archivers group are granted permission to create
archives in this directory area. Thus, the newly created directory must have
its primary group and group permissions changed:

FIGURE 24.1 Creating an archive directory hierarchy

$ sudo mkdir /archive/hourly
[sudo] password for christine:
$
$ sudo chgrp Archivers /archive/hourly
$
$ ls -ogd /archive/hourly/
drwxr-xr-x 2 4096 Aug 7 15:56 /archive/hourly/
$
$ sudo chmod 775 /archive/hourly
$
$ ls -ogd /archive/hourly/
drwxrwxr-x 2 4096 Aug 7 15:56 /archive/hourly/
$

After the new directory is set up, the Files_To_Backup configuration file
for the hourly archives can be moved to the new directory:

$ cat Files_To_Backup.txt
/usr/local/Production/Machine_Errors/
/home/Development/Simulation_Logs/
$
$ mv Files_To_Backup.txt /archive/hourly/
$

Now, there is a new challenge to solve. The script must create the individual
month and day directories automatically. However, if these directories
already exist and the script tries to create them, an error is generated. This is
not a desirable outcome!

If you look at the command-line options for the mkdir command (Chapter
3), you'll find the -p command-line option. This option allows you to create
directories and subdirectories in a single command. Plus, the added benefit
is that it doesn't produce an error message if the directory already exists.
Perfect fit for what is needed in the script!

We're now ready to create the Hourly_Archive.sh script. Here is the top
half of the script:

$ cat Hourly_Archive.sh
#!/bin/bash

Hourly_Archive - Every hour create an archive

Set Configuration File

config_file=/archive/hourly/Files_To_Backup.txt

Set Base Archive Destination Location

basedest=/archive/hourly

Gather Current Day, Month & Time

day=$(DATE +%D)
month=$(DATE +%M)
time=$(DATE +%K%M)

Create Archive Destination Directory

mkdir -p $basedest/$month/$day

Build Archive Destination File Name

destination=$basedest/$month/$day/archive$time.tar.gz

######### Main Script #########################
[...]

When Hourly_Archive.sh reaches the “Main Script” section, the rest of the
code is an exact duplicate of what is in the Daily_Archive.sh script. Lots
of the work was already done!

Hourly_Archive.sh retrieves the day and month values from the date
command, along with the time stamp used to uniquely identify the archive
file. It then uses that information to create the archive directory for the day
(or to silently continue if it already exists). Finally, the script uses the tar
command to create the archive and compress it into a tarball.

Running the hourly archive script
As with the Daily_Archive.sh script, it's a good idea to test the
Hourly_Archive.sh script before putting it in the cron table. But first the
permissions need modification. Also, it's a good idea to get the current hour
and minute via the date command before testing the script. Having this
information allows verification of final archive's filename for correctness:

$ chmod u+x Hourly_Archive.sh
$
$ date +%k%M
1610
$
$./Hourly_Archive.sh

Starting archive...

Archive completed
Resulting archive file is:
/archive/hourly/08/07/archive1610.tar.gz

$
$ ls /archive/hourly/08/07/
/archive/hourly/08/07/archive1610.tar.gz
$

The script worked fine the first time, creating the appropriate month and
day directories, and then creating the properly named archive file. Notice
that the archive file has the appropriate hour (16) and minute (10) in its
name, archive1610.tar.gz.

TIP

If you run the Hourly_Archive.sh script during the day, when the
hour is in single digits, your archive file's name will have only three
digits. For example, if you run the script at 1:15 a.m., the archive
file's name is archive115.tar.gz . If you prefer to always have four
digits in the archive filename, modify the script line, TIME=$(date
+%k%M) to TIME=$(date +%k0%M) . By adding a zero (0) after the %k ,
any single-digit hours are padded to two digits with a leading zero.
Thus, archive115.tar.gz is instead named archive0115.tar.gz.

Just to test things out, the script is run a second time to see if it has a
problem with the existing directory, /archive/hourly/08/07/ :

$ date +%k%M
1615
$
$./Hourly_Archive.sh

Starting archive...

Archive completed
Resulting archive file is:
/archive/hourly/08/07/archive1615.tar.gz

$
$ ls /archive/hourly/08/07/
archive1610.tar.gz archive1615.tar.gz
$

No problems with the existing directory! The script again ran fine and
created a second archive file. It's now ready for the cron table.

Managing Account Deletion

Managing local user accounts is much more than just adding, modifying,
and deleting accounts. You must also consider security issues, the need to
preserve work, and the accurate deletion of accounts. This can be a time-
consuming task. Here is another instance when writing script utilities is a
real time saver!

Obtaining the required functions
Deleting a local account is the more complicated task of accounts
management, because at least four separate actions are required:

1. Obtain the correct user account name to delete.

2. Kill any processes currently running on the system that belong to the
account.

3. Determine all files on the system belonging to the account.

4. Remove the user account.

It's easy to miss a step. The shell script utility in this section helps you (or
your system admin interns) avoid making such mistakes.

Getting the correct account name
The first step in the account deletion process is the most important:
obtaining the correct user account name to delete. Because this is an
interactive script, we use the read command (Chapter 14) to obtain the
account name. Since the script user may get interrupted and leave the
question hanging, we added the -t option on the read command and
timeout after giving the script user 60 seconds to answer the question:

echo "Please enter the username of the user "
echo -e "account you wish to delete from system: \c"
read -t 60 answer

Because interruptions are part of life, it's best to give users three chances to
answer the question. This is accomplished by using a while loop (Chapter
13) with the -z option, to test whether the answer variable is empty. The
answer variable is empty when the script first enters the while loop on
purpose. The question to fill the answer variable is at the end of the loop:

while [-z "$answer"]
do
[...]
echo "Please enter the username of the user "
echo -e "account you wish to delete from system: \c"
read -t 60 answer
done

A way to communicate with the script user is needed when the first
question timeout occurs, when there is another chance to answer the
question. The case statement (Chapter 12) is the structured command that
works perfectly here. Using an incremented variable (ask_count), different
messages are set up to communicate with the script user. The code for this
section looks like this:

case $ask_count in
2)
 echo
 echo "Please answer the question."
 echo
;;
3)
 echo
 echo "One last try...please answer the question."
 echo
;;
4)
 echo
 echo "Since you refuse to answer the question..."
 echo "exiting program."
 echo
 #
 exit
;;
esac
#

Now the script has all the structure it needs to ask the user what account to
delete. There are several more questions in this script to ask the user, and
asking just that one question was lots of code! Therefore, we'll turn this
piece of code into a function (Chapter 17, “Creating Functions”) in order to
use it in multiple locations within the Delete_User.sh script.

Creating a function to get the correct account name

The first thing we did was to declare the function's name, get_answer .
Next, we clear out any previous answers to questions the script user gave,
using the unset command (Chapter 6, “Using Linux Environment
Variables”). The code to do these two items looks like this:

function get_answer {

unset answer

The other original code item we need to change is the question to the script
user. The script doesn't ask the same question each time, so two new
variables are created, line1 and line2 , to handle question lines:

echo $line1
echo -e $line2" \c"

However, not every question has two lines to display. Some have only one
line. An if statement (Chapter 12) assists with this problem. The function
tests if line2 is empty and only uses line1 if it is:

if [-n "$line2"]
then
 echo $line1
 echo -e $line2" \c"
else
 echo -e $line1" \c"
fi

Finally, the function needs to clean up after itself by clearing out the line1
and line2 variables. The function now looks like this:

function get_answer {

unset answer
$ask_count=0

while [-z "$answer"]
do
 ask_count=$[$ask_count + 1]

 case $ask_count in
 2)
 echo
[...]
 esac

 echo
 if [-n "$line2"]
 then #Print 2 lines
 echo $line1
 echo -e $line2" \c"
 else #Print 1 line
 echo -e $line1" \c"
 fi

 read -t 60 answer
done

unset line1
unset line2

} #End of get_answer function

To ask the script user what account to delete, a few variables are set and the
get_answer function is called. Using this function makes the script code
cleaner:

line1="Please enter the username of the user "
line2="account you wish to delete from system:"
get_answer
user_account=$answer

Verifying the entered account name
Because of potential typographical errors, the user account name entered
needs verification. Doing so is easy because the code is already in place to
handle asking questions:

line1="Is $user_account the user account "
line2="you wish to delete from the system? [y/n]"
get_answer

After the question is asked, the script must process the answer. The variable
answer again carries the script user's answer to the question. If the user
answers “yes,” the correct user account to delete has been entered and the
script can continue. A case statement (see Chapter 12) is used to process
the answer, and it is coded in a way to check for the multiple ways the
answer “yes” can be entered.

case $answer in
y|Y|YES|yes|Yes|yEs|yeS|YEs|yES)

;;
*)
 echo
 echo "Because the account, $user_account, is not "
 echo "the one you wish to delete, we are leaving the
script..."
 echo
 exit
;;
esac

That's tedious! Since we plan on only continuing the processing if the user
answers a variation of “yes” to our question, we can simplify the case
statement by stripping down the answer variable. To accomplish this task,
we employ command substitution (Chapter 11), a pipe, and the cut
command, which will allow us to reduce the characters in the answer
variable. Specifically, the cut command's -c1 option strips everything from
answer but the first character:

answer=$(echo $answer | cut -c1)

Now that we have to deal with only the first character, our case statement is
more compact:

case $answer in
y|Y)

;;
[...]
esac

NOTE

You may wonder why we didn't use the -n1 option on the read
command (Chapter 14) within the get_answer function to keep
answer limited to one character in length, as opposed to stripping it
down later with the cut command. The reason for this is that the
get_answer function is used also to obtain user account names,
which are typically longer than one character. And by using the cut
command to limit answer leaves the get_answer function more
versatile.

In different locations, this script handles multiple yes/no answers from the
user. Thus, again, it makes sense to create a function to handle this task, and
only a few changes are made to the preceding code: the function's name is
declared and the variables exit_line1 and exit_line2 are added to the
case statement. These changes, along with some variable cleanup at the
end, result in the process_answer function:

function process_answer {

answer=$(echo $answer | cut -c1)

case $answer in
y|Y)
;;
*)
 echo
 echo $exit_line1
 echo $exit_line2
 echo
 exit
;;
esac

unset exit_line1
unset exit_line2

} #End of process_answer function

A simple function call now processes the answer:

exit_line1="Because the account, $user_account, is not "
exit_line2="the one you wish to delete, we are leaving the
script..."
process_answer

Determining whether the account exists
The user has given us the name of the account to delete and has verified it.
Now is a good time to double-check that the user account really exists on
the system. Also, just to be safe, we'll show the full account record to the
script user to check one more time that this is the account to delete. To
accomplish these items, a variable, user_account_record , is set to the
outcome of a grep (Chapter 4) search for the account through the
/etc/passwd file. The -w option allows an exact word match for this
particular user account:

user_account_record=$(cat /etc/passwd | grep -w
$user_account)

If no user account record is found in /etc/passwd , the account has already
been deleted or never existed in the first place. In either case, the script user
needs notification of this situation and the script exited. The exit status of
the grep command helps here. If the account record is not found, the ?
variable is set to 1 :

if [$? -eq 1]
then
 echo
 echo "Account, $user_account, not found. "
 echo "Leaving the script..."
 echo
 exit
fi

If the record was found, we still need to verify with the script user that this
is the correct account. Here is where all the work to set up the functions
really pays off! We just set the proper variables and call the functions:

echo "I found this record:"
echo $user_account_record
echo

line1="Is this the correct User Account? [y/n]"
get_answer

exit_line1="Because the account, $user_account, is not"
exit_line2="the one you wish to delete, we are leaving the
script..."
process_answer

Removing any account processes
So far, the script has obtained and verified the correct name of the user
account to be deleted. In order to remove the user account from the system,
the account cannot own any processes currently running. Thus, the next step
is to find and kill off those processes. This is going to get a little
complicated!

Finding the user processes is the easy part. Here the script can use the ps
command (Chapter 4) and the -u option to locate any running processes
owned by the account. By redirecting the output to /dev/null , the user
doesn't see any display. This is handy, because if there are no processes, the
ps command shows only a header, which may confuse the script user:

ps -u $user_account>/dev/null

The ps command's exit status and a case structure are used to determine the
next step to take:

case $? in
1) # No processes running for this User Account
 #
 echo "There are no processes for this account currently
running."
 echo
;;
0) # Processes running for this User Account.
 # Ask Script User if wants us to kill the processes.
 #
 echo "$user_account has the following process(es)
running:"
 ps -u $user_account
 #
 line1="Would you like me to kill the process(es)?
[y/n]"
 get_answer
 #
[...]

;;
esac

If the ps command's exit status returns a 1 , there are no processes running
on the system that belong to the user account. However, if the exit status
returns a 0 , processes owned by this account are running on the system. In
this case, the script needs to ask the script user if they would like to have
these processes killed. This task can be accomplished by using the
get_answer function.

You might think that the next action the script does is to call the
process_answer function. Unfortunately, the next item is too complicated
for process_answer . Thus, another case statement is embedded to process
the script user's answer. The first part of the case statement looks very
similar to the process_answer function:

answer=$(echo $answer | cut -c1)

case $answer in
y|Y) # If user answers "yes",
 # kill User Account processes.
[...]
;;
*) # If user answers anything but "yes", do not kill.
 echo
 echo "Will not kill the process(es)"
 echo

;;
esac

As you can see, there is nothing interesting in the case statement itself.
However, things get intriguing within the “yes” section of the case
statement, where the user account processes are killed. To build the
command necessary to kill off one or more processes, three commands are
needed. The first command is the ps command again. It is needed to gather
up the process IDs (PIDs) of the currently running user account processes.
The necessary ps command is assigned to the variable, command_1 :

command_1="ps -u $user_account --no-heading"

The second command strips off just the PIDs. This simple gawk command
(Chapter 19, “Introducing sed and gawk ”) strips off the first field from the
ps command's output, which happens to be the PIDs:

gawk '{print $1}'

The third command, xargs , has not yet been introduced in this book. The
xargs command builds and executes commands from standard input, STDIN
(Chapter 15). It is a great command to use at the end of a pipe, building and
executing commands from each STDIN item produced. The xargs command
is actually killing off each process via its PID using the absolute directory
reference of the kill command and sudo :

command_3="xargs -d \\n /usr/bin/sudo /bin/kill -9"

The xargs command is assigned to the variable command_3 . It uses the -d
option to denote what is considered a delimiter. In other words, because the
xargs command can accept multiple items as input, what separates one item
from another item? In this case, \n (newline) is used to set the delimiter.
Thus, when each PID is sent to xargs , it treats the PID as a separate item to
process. Because the xargs command is being assigned to a variable, the
backslash (\) in the \n must be escaped with an additional backslash (\).

Notice that xargs uses the full pathname of the commands it is using on
each PID. Both the sudo and kill (Chapter 4) commands are used to kill
any of the user account's running processes. Also notice that the kill signal
-9 is used.

NOTE

Modern implementations of the xargs command do not require the
absolute directory reference of commands, such as sudo and kill .
However, Linux distributions that are only a few years older may
have the earlier version of the xargs command, so we kept the
absolute directory references.

All three commands are hooked together via a pipe. The ps command
produces a list of the user's running processes, which include the PID of
each process. The ps command passes its standard output (STDOUT) as STDIN
to the gawk command. The gawk command, in turn, strips off only the PIDs
from the ps command's STDOUT (Chapter 15). The xargs command takes
each PID the gawk command produces as STDIN . It creates and executes the

kill command for each PID to kill all the user's running processes. The
entire command pipe looks like this:

$command_1 | gawk '{print $1}' | $command_3

Thus, the complete case statement for killing off any of the user account's
running processes is as follows:

case $answer in
y|Y) # If user answers "yes",
 # kill User Account processes.
 #
 echo
 echo "Killing off process(es)...
 #
 # List user process running code in command_1
 command_1="ps -u $user_account --no-heading"
 #
 # Create command_3 to kill processes in variable
 command_3="xargs -d \\n /usr/bin/sudo /bin/kill -9"
 #
 # Kill processes via piping commands together
 $command_1 | gawk '{print $1}' | $command_3
 #
 echo
 echo "Process(es) killed."
;;
*) #If user answers anything but "yes", do not kill.
 echo
 echo "Will not kill process(es)."
;;
esac

By far, this is the most complicated piece of the script! However, now with
any user account–owned processes gone, the script can move on to the next
step: finding all the user account's files.

Finding account files
When a user account is deleted from the system, it is a good practice to
back up all the files that belonged to that account. Along with that practice,
it is also important to remove the files or assign their ownership to another
account. If the account you delete has a User ID of 1003, and you don't
remove or reassign those files, then the next account that is created with a

User ID of 1003 owns those files! You can see the security disasters that
can occur in this scenario.

The Delete_User.sh script doesn't do all that for you; instead, it creates a
report that can be slightly modified and used in a backup script as an
archive configuration file. Also, you can use the report to help you remove
or reassign the files.

To find the user's files, we use another new-to-this-book command: the
find command. In this case, the find command searches the entire virtual
directory (/) with the -user option, which pinpoints any files owned by the
user_account . The command looks like the following:

find / -user $user_account> $report_file

That was pretty simple compared to dealing with the user account
processes. It gets even easier in the next step of the Delete_User.sh script:
actually removing the user account.

Removing the account
A little caution is always a good idea when removing a user account from
the system. Therefore, we ask one more time if the script user really wants
to remove the account:

line1="Remove $user_account's account from system? [y/n]"
get_answer

exit_line1="Since you do not wish to remove the user
account,"
exit_line2="$user_account at this time, exiting the
script..."
process_answer

Finally, we get to the main purpose of our script: actually removing the user
account from the system. Here the userdel command (Chapter 7) is used:

userdel $user_account

Now that we have all the script's pieces, we are ready to put them together
into a whole, useful script utility.

Creating the script

The Delete_User.sh script is highly interactive with the script's user.
Therefore, it is important to include lots of verbiage to keep the script user
informed about what is going on during the script's execution.

At the top of the script, the two functions get_answer and process_answer
are declared. The script then goes to the four steps of removing the user
account:

1. Obtaining and confirming the user account name

2. Finding and killing any user processes

3. Creating a report of all files owned by the user account

4. Removing the user account

Here's the entire Delete_User.sh script:

$ cat Delete_User.sh
#!/bin/bash

#Delete_User - Automates the 4 steps to remove an account

##

Define Functions

function get_answer {

unset answer
ask_count=0

while [-z "$answer"] #While no answer is given, keep
asking.
do
 ask_count=$[$ask_count + 1]

 case $ask_count in #If user gives no answer in time
allotted
 2)
 echo
 echo "Please answer the question."
 echo
 ;;
 3)

 echo
 echo "One last try...please answer the question."
 echo
 ;;
 4)
 echo
 echo "Since you refuse to answer the question..."
 echo "exiting program."
 echo
 #
 exit
 ;;
 esac

 if [-n "$line2"]
 then #Print 2 lines
 echo $line1
 echo -e $line2" \c"
 else #Print 1 line
 echo -e $line1" \c"
 fi

Allow 60 seconds to answer before time-out
 read -t 60 answer
done
Do a little variable clean-up
unset line1
unset line2

} #End of get_answer function

function process_answer {

answer=$(echo $answer | cut -c1)

case $answer in
y|Y)
If user answers "yes", do nothing.
;;
*)
If user answers anything but "yes", exit script
 echo
 echo $exit_line1
 echo $exit_line2
 echo
 exit
;;

esac

Do a little variable clean-up

unset exit_line1
unset exit_line2

} #End of process_answer function

End of Function Definitions

############# Main Script ####################
Get name of User Account to check

echo "Step #1 - Determine User Account name to Delete "
echo
line1="Please enter the username of the user "
line2="account you wish to delete from system:"
get_answer
user_account=$answer

Double check with script user that this is the correct
User Account

line1="Is $user_account the user account "
line2="you wish to delete from the system? [y/n]"
get_answer

Call process_answer funtion:
if user answers anything but "yes", exit script

exit_line1="Because the account, $user_account, is not "
exit_line1="the one you wish to delete, we are leaving the
script..."
process_answer

##

Check that user_account is really an account on the system

user_account_record=$(cat /etc/passwd | grep -w
$user_account)

if [$? -eq 1] # If the account is not found, exit
script
then
 echo

 echo "Account, $user_account, not found. "
 echo "Leaving the script..."
 echo
 exit
fi

echo
echo "I found this record:"
echo $user_account_record
echo

line1="Is this the correct User Account? [y/n]"
get_answer

Call process_answer function:
if user answers anything but "yes", exit script

exit_line1="Because the account, $user_account, is not "
exit_line2="the one you wish to delete, we are leaving the
script..."
process_answer

##

Search for any running processes that belong to the User
Account

echo
echo "Step #2 - Find process on system belonging to user
account"
echo

ps -u $user_account> /dev/null #List user processes
running.

case $? in
1) # No processes running for this User Account
 #
 echo "There are no processes for this account currently
running."
 echo
;;
0) # Processes running for this User Account.
 # Ask Script User if wants us to kill the processes.
 #
 echo "$user_account has the following process(es)
running:"

 ps -u $user_account
 #
 line1="Would you like me to kill the process(es)?
[y/n]"
 get_answer
 #
 answer=$(echo $answer | cut -c1)
 #
 case $answer in
 y|Y) # If user answers "yes",
 # kill User Account processes.
 #
 echo
 echo "Killing off process(es)..."
 #
 # List user process running code in command_1
 command_1="ps -u $user_account --no-heading"
 #
 # Create command_3 to kill processes in variable
 command_3="xargs -d \\n /usr/bin/sudo /bin/kill
-9"
 #
 # Kill processes via piping commands together
 $command_1 | gawk '{print $1}' | $command_3
 #
 echo
 echo "Process(es) killed."
 ;;
 *) #If user answers anything but "yes", do not
kill.
 echo
 echo "Will not kill process(es)."
 ;;
 esac
;;
esac
##

Create a report of all files owned by User Account

echo
echo "Step #3 - Find files on system belonging to user
account"
echo
echo "Creating a report of all files owned by
$user_account."
echo
echo "It is recommended that you backup/archive these

files,"
echo "and then do one of two things:"
echo " 1) Delete the files"
echo " 2) Change the files' ownership to a current user
account."
echo
echo "Please wait. This may take a while..."

report_date=$(date +%y%m%d)
report_file="$user_account"_Files_"$report_date".rpt

find / -user $user_account> $report_file 2>/dev/null

echo
echo "Report is complete."
echo "Name of report: $report_file"
echo -n "Location of report: "; pwd
echo
####################################
Remove User Account
echo
echo "Step #4 - Remove user account"
echo

line1="Do you wish to remove $user_account's account from
system? [y/n]"
get_answer

Call process_answer function:
if user answers anything but "yes", exit script

exit_line1="Since you do not wish to remove the user
account,"
exit_line2="$user_account at this time, exiting the
script..."
process_answer

userdel $user_account #delete user account
echo
echo "User account, $user_account, has been removed"
echo

exit
$

That was lots of work! However, the Delete_User.sh script is a great time-
saver and helps you avoid lots of nasty problems when deleting local user

accounts.

Running the script
Because it is intended to function as an interactive script, the
Delete_User.sh script should not be placed in the cron table. However, it
is still important to ensure that it works as expected.

Before the script is tested, the appropriate permissions are set on the script's
file:

$ chmod u+x Delete_User.sh
$
$ ls -og Delete_User.sh
-rwxr-xr-x 1 6111 Aug 12 14:18 Delete_User.sh
$

NOTE

To run this type of script, you must either be logged in as the root
user account or use the sudo command to run the script with super
user privileges.

The script is tested by removing an account, consultant , that was set up
for a company's temporary consultant on this system:

$ sudo ./Delete_User.sh
[sudo] password for christine:
Step #1 - Determine User Account name to Delete

Please enter the username of the user
account you wish to delete from system: consultant
Is consultant the user account
you wish to delete from the system? [y/n] yes

I found this record:
consultant:x:1003:1004::/home/consultant:/bin/bash

Is this the correct User Account? [y/n] y

Step #2 - Find process on system belonging to user account

consultant has the following process(es) running:

 PID TTY TIME CMD
 5781 ? 00:00:00 systemd
[...]
 5884 ? 00:00:00 trojanhorse.sh
 5885 ? 00:00:00 sleep
 5886 ? 00:00:00 badjuju.sh
 5887 ? 00:00:00 sleep
Would you like me to kill the process(es)? [y/n] y

Killing off process(es)...

Process(es) killed.

Step #3 - Find files on system belonging to user account

Creating a report of all files owned by consultant.

It is recommended that you backup/archive these files,
and then do one of two things:
 1) Delete the files
 2) Change the files' ownership to a current user account.

Please wait. This may take a while...

Report is complete.
Name of report: consultant_Files_200812.rpt
Location of report: /home/christine/scripts

Step #4 - Remove user account

Do you wish to remove consultant's account from system?
[y/n] yes

User account, consultant, has been removed

$ ls *.rpt
consultant_Files_200812.rpt
$
$ grep ^consultant /etc/passwd
$

That worked great! Notice the script was run using sudo , because super
user privileges are needed for deleting accounts. And notice that the
Consultant user's files were found and put into a report file, and then the
account was deleted.

Now you have a script utility that assists you when you need to delete user
accounts. Even better, you can modify it to meet your organization's needs.

Monitoring Your System
Mistakes happen. But you don't want those mistakes to compromise the
security of your Linux system. One thing you can do to keep an eye on
things is monitor your system with an audit script. In this section, we'll
delve into a script that allows you to monitor two particularly tricky areas
within your Linux systems — system account shells and potentially
dangerous file permissions.

Obtaining the default shell audit functions
System accounts (Chapter 7) are accounts that provide services or perform
special tasks. Typically, they need an account record within the
/etc/passwd file but are blocked from logging into the system. (A classic
exception to this rule is the root account.)

The way to prevent anyone from logging into these accounts is to set their
default shell to /bin/false , /usr/sbin/nologin , or some variation (such
as /sbin/nologin). The problem occurs when a system account's default
shell is changed from its current setting to /bin/bash . Although a
nefarious person (called a bad actor in modern security terminology)
cannot log in to that account unless a password is set for it, it still is a step
toward weakened security. Thus, these account settings need auditing and
any incorrect default shell situations rectified.

One way to audit this potential issue is to determine how many accounts
have false or nologin set as their default shell, and then periodically check
this number. If the number decreases, it's worth further investigation.

First, to grab the default shell from each account within the /etc/passwd
file, we'll use the cut command. With this command, we can denote the
field delimiter used by the file, and tell it what field we want from each
record. In the case of the /etc/passwd file, the delimiter is a colon (:), and
we want to see what is in the default shell field, which happens to be the
seventh field in each record:

$ cut -d: -f7 /etc/passwd
/bin/bash
/usr/sbin/nologin
/usr/sbin/nologin
/usr/sbin/nologin
[...]
/bin/false
/bin/bash
/usr/sbin/nologin
/bin/bash
/usr/sbin/nologin
/bin/bash
$

Now that we're able to grab the right field, we need to filter out the results.
The only items we are interested in are false and nologin shells. Here,
grep (Chapter 4) can help us. One of the neat things about grep is that we
can use regular expressions (Chapter 20, “Regular Expressions”) as our
pattern for which to search. In this case, because we need to search for both
false and nologin, we'll need an extended regular expression (ERE). And
grep can handle those, too, as long as we tack on its -E option. We'll pipe
the cut command's findings into the grep command and filter out any
default shells that don't match what we're looking for:

$ cut -d: -f7 /etc/passwd |
> grep -E "(false|nologin)"
/usr/sbin/nologin
/usr/sbin/nologin
/usr/sbin/nologin
/usr/sbin/nologin
[...]
/bin/false
/bin/false
/usr/sbin/nologin
/usr/sbin/nologin
$

That works perfectly! Notice in our grep command, the two choices to find
are false and nologin . In order to act as an extended regular expression,
these either/or choices are placed into parentheses and separated by a pipe
(|) symbol. One more item is required for this grep filter to work: shell
quoting. Due to the fact that parentheses and pipes have special meaning to
the Bash shell, we must encase this ERE syntax in shell quotes to protect
them from incorrect interpretation by the shell.

Now we have almost all the pieces of the puzzle in place. Still needed is the
ability to count the number of accounts that have these special default
shells. Thus, we'll include the wc command (Chapter 11). Because the only
item we are interested in is the number of accounts that have these shells,
we will use the -l (lowercase L) option to count the lines produced by the
grep command. Now our code looks like this:

$ cut -d: -f7 /etc/passwd |
> grep -E "(false|nologin)" | wc -l
44
$

Thus, we have 44 accounts on this system that have either false or nologin
as their default shell. We still need to send this number to a report file, but
we want it to display to the script user too. To accomplish this task, we'll
use the tee command (Chapter 15).

$ cut -d: -f7 /etc/passwd |
> grep -E "(false|nologin)" | wc -l |
> tee mydefaultshell.rpt
44
$
$ cat mydefaultshell.rpt
44
$

Now we're getting somewhere. However, because we need to keep multiple
copies of the produced report for later comparison, a name better than
mydefaultshell.rpt is essential. It's typically a good idea to include the
current date into the file's name in situations like this. To grab the date and
some additional time identification information, we'll use the date
command. The needed format of the date command looks like this:

$ date +%F%s
2020-08-141597420127
$

So that we can use it in a filename, we set the format to one that displays
the current date with dashes (%F). Because this audit may run multiple times
per day, we tacked onto the time stamp additional time identification
information (%s): the number of seconds since January 1, 1970.

NOTE

Unix Epoch time, which is also called POSIX time, is the number of
seconds since January 1, 1970. It is used within Linux systems for a
variety of purposes, such as recording the last time your password
was changed.

Now we can create an absolute directory reference to our uniquely named
file for use in our tee command:

reportDir="/home/christine/scripts/AuditReports"
reportDate="$(date +%F%s)"
accountReport=$reportDir/AccountAudit$reportDate.rpt
cat /etc/passwd | cut -d: -f7 |
grep -E "(nologin|false)" | wc -l |
tee $accountReport

There is another problem to handle before we move on to the second audit
of this script: protecting the newly created report. Once this system account
default shell count is recorded, you don't want anyone to modify the report
or delete it, because the script will need it later for a count comparison.

To protect the report, we'll enlist the immutable attribute. This setting is so
named because, once set on a file, no one can modify the file or remove it
(as well as some additional features.) To set this attribute, super user
privileges are required, and the chattr command is used:

$ sudo chattr +i mydefaultshell.rpt
[sudo] password for christine:
$
$ rm -i mydefaultshell.rpt
rm: cannot remove 'mydefaultshell.rpt': Operation not
permitted
$
$ sudo rm -i mydefaultshell.rpt
rm: remove regular file 'mydefaultshell.rpt'? y
rm: cannot remove 'mydefaultshell.rpt': Operation not
permitted
$
$ echo "Hello" >> mydefaultshell.rpt
-bash: mydefaultshell.rpt: Operation not permitted

$

Once the immutable attribute (sometimes called the immutable bit) is set,
no one can remove or modify the file, including those with super user
privileges! To see if this attribute is set, use the lsattr command and look
for the i in the output. To remove the attribute, you again need super user
privileges for use the chattr command. Once removed, the file can be
modified or deleted:

$ lsattr mydefaultshell.rpt
----i---------e----- mydefaultshell.rpt
$
$ sudo chattr -i mydefaultshell.rpt
$
$ lsattr mydefaultshell.rpt
--------------e----- mydefaultshell.rpt
$
$ echo "Hello" >> mydefaultshell.rpt
$
$ cat mydefaultshell.rpt
44
Hello
$
$ rm -i mydefaultshell.rpt
rm: remove regular file 'mydefaultshell.rpt'? y
$

Now that we can protect our audit report, only one last issue remains:
comparing the current report to the last report. In order to do this, we'll
employ the ls command and two new options: -1 (the number one) and -t .
Using these options, the ls command will list out the files in a single
column in the order of newest report to oldest:

$ reportDate="$(date +%F%s)"
$ touch AccountAudit$reportDate.rpt
$
$ reportDate="$(date +%F%s)"
$ touch AccountAudit$reportDate.rpt
$
$ ls -1t AccountAudit*.rpt
AccountAudit2020-08-141597422307.rpt
AccountAudit2020-08-141597422296.rpt
$

The reason for listing the files in a single-column format is so that we can
employ sed to help us grab the filename of the second oldest report for
comparison, as such:

$ prevReport="$(ls -1t AccountAudit*.rpt |
> sed -n '2p')"
$
$ echo $prevReport
AccountAudit2020-08-141597422296.rpt
$

That worked just as we were expecting. But what if the second report
doesn't exist? We'll get unexpected results, which may result in problems
within our script. To handle this last audit report issue, we'll bring in the if
- then statement:

prevReport="$(ls -1t $reportDir/AccountAudit*.rpt |
sed -n '2p')"

if [-z $prevReport]
then
 echo
 echo "No previous false/nologin report exists to
compare."
else
 echo
 echo "Previous report's false/nologin shells: "
 cat $prevReport
 fi

Now that we've got all the default shell audit functionality determined, we
can start taking a look at the permission audit side of our script.

NOTE

This script is handy for conducting audits. However, it is not an
intrusion detection system (IDS). An IDS application monitors the
network and/or applications running on your system, looking for
suspicious behavior. It provides various features, such as blocking
attacks and reporting anything it finds potentially malicious. If you
are concerned about bad actors compromising your system, an IDS
application is the way to go. There are several from which to
choose, such as Snort, DenyHosts, and Fail2ban.

Obtaining the permission audit functions
The set user ID (SUID) and set group ID (SGID) are handy permissions that
are used by several programs within the Linux virtual directory system
(Chapter 7). However, problems arise if these permissions are
unintentionally or even maliciously set on programs, causing them to run
under a different grouping of permissions. Thus, these two potentially
“dangerous” permissions are worthwhile to audit on your system to ensure
they are set only where they belong.

To locate the files and directories that have these two permissions, we'll
employ the find command. Since we need to audit all files and directories
residing on this system, the starting point for this search will be the top of
the virtual directory structure (/). To designate to the find command what
permissions we are searching for, the -perm option (permissions) will work.
This particular option allows us to use an octal value (Chapter 7) to
designate the particular permission settings we need to find. We'll also use
super user privileges to examine all the various files and directories. And to
keep the display clean, we'll throw errors (2) into the black hole
(/dev/null):

$ sudo find / -perm /6000 2>/dev/null
[sudo] password for christine:
/var/local
/var/crash
/var/metrics

/var/log/journal
[...]
/usr/bin/umount
/usr/bin/sudo
/usr/bin/chsh
[...]
/run/log/journal
$

Notice that the value after -perm is / 6000 . The octal value of 6 designates
find to search for both SUID and SGID permissions. The forward slash (/)
and the 000 octal values tell the find command to ignore the rest of a file's
or directory's permissions. If the forward slash (/) was not used, find
would look for files with the SUID and SGID permissions, and all other
permissions set to nothing (000), which is not what we want.

NOTE

In older versions of the find command, the plus symbol was used
(+), instead of the forward slash (/) to ignore certain permissions. If
you are using an older version of Linux, you may need to swap out
the forward slash for the plus symbol.

You can redirect STDOUT from the find command into a file to leisurely
review later. It is also useful to save this report to compare with later audits
of these permissions:

reportDir="/home/christine/scripts/AuditReports"
reportDate="$(date +%F%s)"
permReport=$reportDir/PermissionAudit$reportDate.rpt

sudo find / -perm /6000>$permReport 2>/dev/null

Now that the permission audit report is saved, we can compare earlier
versions of the report to the current one to notify the script user of any
differences between the two. Changes to file permissions indicate either
new software was installed that needed these settings or that a file has been
erroneously (or maliciously) set with these permissions.

To perform this comparison, we can use the diff command. This utility
allows us to compare files, and it displays any differences between the two

to STDOUT.

WARNING

The diff command compares files only on a line-by-line basis.
Thus, for these reports it will compare line 1 of the first report to
line 1 of the second report, line 2 to line 2, line 3 to line 3, and so on.
If a new file or set of files is added, due to say a software
installation, and the files need the SUID or SGID permissions, when
the next audit is run, diff will display many differences! To solve
this potential problem, you can use the -q or the --brief option on
the diff command, and it will only display the message that the two
reports are different.

We'll also need verification that another report exists before we try this
comparison. Here's what this code looks like:

prevReport="$(ls -1t $reportDir/PermissionAudit*.rpt |
sed -n '2p')"

if [-z $prevReport]
then
 echo
 echo "No previous permission report exists to compare."
else
 echo
 echo "Differences between this report and the last: "
 #
 differences=$(diff $permReport $prevReport)
 #
 if [-z "$differences"]
 then
 echo "No differences exist."
 else
 echo $differences
 fi
 fi

Notice that checks are done not only for another report but also to see if
there are truly any differences between the two reports. If there are no
differences, only No differences exist is displayed.

Creating the script
Now that we have all the primary features figured out for this audit script,
we can start putting it together. For this particular Bash shell script, we
decided to use getopts (Chapter 14) and offer the use of the -A option to
run only the account audit, and the -p option to execute only the permission
audit. Although you can run both audits by combining the two options (-
Ap), we included the flexibility of running both audits if no options were
provided. This allows easier incorporation of this script into an automated
environment via cron or anacron.

Here's the entire Audit_System.sh script for your review:

$ cat Audit_System.sh
#!/bin/bash

Audit_System.sh - Audit system files and accounts

Initialize variables #######################

runAccountAudit="false"
runPermAudit="false"

reportDir="/home/christine/scripts/AuditReports"

Get options (if provided) #################

while getopts :Ap opt
do
 case "$opt" in
 A) runAccountAudit="true" ;;
 p) runPermAudit="true" ;;
 *) echo "Not a valid option."
 echo "Valid options are: -A, -p, or -Ap"
 exit
 ;;
 esac
done

Determine if no options ##################

if [$OPTIND -eq 1]
then
 # No options were provided; set all to "true"

 runAccountAudit="true"
 runPermAudit="true"
fi

Run selected audits #######################

Account Audit ##################

if [$runAccountAudit = "true"]
then
 echo
 echo "****** Account Audit *****"
 echo

Determine current false/nologin shell count

 echo "Number of current false/nologin shells: "

 reportDate="$(date +%F%s)"
 accountReport=$reportDir/AccountAudit$reportDate.rpt

 # Create current report
 cat /etc/passwd | cut -d: -f7 |
 grep -E "(nologin|false)" | wc -l |
 tee $accountReport

 # Change report's attributes:
 sudo chattr +i $accountReport

Show past false/nologin shell count

 prevReport="$(ls -1t $reportDir/AccountAudit*.rpt |
 sed -n '2p')"
 if [-z $prevReport]
 then
 echo
 echo "No previous false/nologin report exists to
compare."
 else
 echo
 echo "Previous report's false/nologin shells: "
 cat $prevReport
 fi
fi

Permissions Audit ##############

if [$runPermAudit = "true"]

then
 echo
 echo "****** SUID/SGID Audit *****"
 echo
 reportDate="$(date +%F%s)"
 permReport=$reportDir/PermissionAudit$reportDate.rpt

 # Create current report
 echo "Creating report. This may take a while..."
 sudo find / -perm /6000>$permReport 2>/dev/null

 # Change report's attributes:
 sudo chattr +i $permReport

Compare to last permission report

 #
 prevReport="$(ls -1t $reportDir/PermissionAudit*.rpt |
 sed -n '2p')"
 #
 if [-z $prevReport]
 then
 echo
 echo "No previous permission report exists to
compare."
 else
 echo
 echo "Differences between this report and the last:
"
 #
 differences=$(diff $permReport $prevReport)
 #
 if [-z "$differences"]
 then
 echo "No differences exist."
 else
 echo $differences
 fi
 fi
fi

exit
$

There is a lot of high-level scripting going on in this file. And now that
you've reached Bash shell scripting guru status, you may be tempted to start
thinking about tweaks, but hold on. We've got to test the script first.

Running the script
Before we run the script, we need to create the audit report directory. The
directory will hold the audit reports, so choose your directory location
carefully.

$ mkdir AuditReports
$ ls AuditReports/
$

Once the audit report directory is created, you can start running the script.
Our first time through, we'll run only the account default shell audit by
using the -A option:

$./Audit_System.sh -A

****** Account Audit *****

Number of current false/nologin shells:
44

No previous false/nologin report exists to compare.
$

That worked perfectly. Notice that there are 44 accounts on this system that
use false or nologin as their default shells. Also notice that since no other
account audit reports exist, the script properly let us know there was
nothing with which to compare this report.

Now let's try out the permission audit portion of the script by employing the
-p option:

$./Audit_System.sh -p

****** SUID/SGID Audit *****

Creating report. This may take a while...

No previous permission report exists to compare.
$
$ ls -1 AuditReports/
AccountAudit2020-08-141597427922.rpt
PermissionAudit2020-08-141597428079.rpt
$

It worked as expected. Now we have two audit reports stored in our
AuditReports directory.

NOTE

You may have noticed that the sudo command is used two times
within this script. The reason the script didn't ask for our password
when running the script is due to our recent use of the sudo
command. If you haven't used sudo in a while, it will come up and
ask for your password. If you don't want this type of behavior
within your script, remove the sudo commands from it and run the
script like this: sudo ./Audit_System.sh , along with the options
you choose to use.

Now, let's add a bogus file that has SUID permissions and see if the script
catches it. We'll try running it with both options (so that both audits are
conducted) this time too:

$ touch sneakyFile.exe
$ chmod u+xs sneakyFile.exe
$
$./Audit_System.sh -Ap

****** Account Audit *****

Number of current false/nologin shells:
44

Previous report's false/nologin shells:
44

****** SUID/SGID Audit *****

Creating report. This may take a while...

Differences between this report and the last:
82d81 < /home/christine/scripts/sneakyFile.exe
$

Not only did both audits run, but the permission audit caught our
sneakyFile.exe SUID permission. Now that we know the script runs

correctly, it's time to start thinking about modifications and improvements.
Here are a few for you to consider:

Add additional audits to the script, such as reports on newly added
accounts or failed login attempts.

Limit the number of reports stored in the AuditReports directory.

Use checksums (type man SHA512sum to learn more) to add an
additional layer that helps ensure reports have not been modified.

What additional functionality or tweaks would you like to add to this script?
Now that you are a Linux Bash shell scripting ninja, we bet you have a lot
of great ideas.

Summary
This chapter put some of the shell-scripting information presented in the
book to good use for creating additional Linux utilities. When you're
responsible for a Linux system, whether it's a large multiuser system or
your own system, you need to watch lots of things. Instead of manually
running commands, you can create shell script utilities to do the work for
you.

The first section walked you through using shell scripts for archiving and
backing up data files on the Linux system. The tar command is a popular
command for archiving data. The chapter showed you how to use it in shell
scripts to create archive files and how to manage the archive files in an
archive directory.

The next section covered using a shell script for the four steps needed to
delete user accounts. Creating functions for shell code that is repeated
within a script makes the code easier to read and modify. This script
combined many of the different structured commands, such as the case and
while commands. The chapter demonstrated the difference in script
structure for a script destined for the cron tables versus an interactive script.

The chapter ended with a script that helps to audit some potential problems:
misuse of the SUID and SGID permissions, and incorrect default shells for
system accounts. This script is easily expanded to add many additional

audits. It is also rather simple to modify the script so that it can be run
automatically on a daily or a weekly basis by anacron.

Next, we'll look at how to manage all these shell scripts you now have, as
well as the additional ones you'll write along your Bash shell scripting
career path.

CHAPTER 25
Getting Organized
IN THIS CHAPTER

Looking at version control

Building a Git environment

Using Git

Writing complex and useful shell scripts saves lots of time, but you can
quickly lose that saved time through script mismanagement. Tracking
updates to scripts, working with other team members involved in modifying
the scripts, and distributing the scripts to your various systems all add to the
complexity of script management. Fortunately, there is a utility that can
help you properly manage your Bash shell scripts. In this chapter, we take
you through the concept of version control and the popular Git utility that
implements it.

Understanding Version Control
Imagine a system admin team whose members all write scripts for the
various Linux systems in the company. A backup script is managed by this
team, and it is deployed on nearly all of the company's servers. A few
special versions of this backup script exist that use encryption due to files
being transferred over public networks.

One day, it's determined that the backup script needs an update to improve
its processing speed and reliability. The team starts the backup script update
project. They begin the process of modifying the backup script and testing
the modifications. Through this process, each project team member has to
make sure they get the latest version of the script to modify and/or test.
Adding more complexity to this matter, the team is not located in the same
building. In fact, they are located around the world. To keep everything
straight, the backup script update project requires a lot of text messages,

emails, and sometimes online meetings. In addition, the special versions of
the backup script that use encryption also must be modified with the latest
changes and tested. This script update project quickly becomes bogged
down with complications and required extra communication.

The backup script update project team can get help through version control.
Version control (also known as source control or revision control) is a
method or system that organizes various project files and tracks updates to
them.

NOTE

Version control methods or systems can control more than Bash
scripts. They can typically handle in-house written software
programs, plain-text files, graphics, word processing documents,
compressed files, and more.

A version control system (VCS) provides a common central place to store
and merge Bash script files so that the latest version is easily accessed. It
protects the files so that a script is not accidentally overwritten by another
script writer. And it eliminates extra communications concerning who is
currently modifying what.

Additional benefits include situations around new team members of a script
project. For example, a new script writer team member can get a copy of
the latest backup script version through the version control system and
immediately start work on the backup script update project.

Distributed VCSs make script projects even easier. The script writers can
perform their development or modification work on their own Linux
system. Once they've reach a modification goal, they send a copy of their
modified files and VCS metadata to the remote central system, and other
team members can download this latest project version and conduct tests or
work on their modification goal. A side benefit is that now the work is
backed up to a central location, which is easily accessible from around the
world.

NOTE

A version control system for Linux projects was created by Linus
Torvalds in 2005. You may recognize that name, since he developed
the Linux kernel (Chapter 1, “Starting with Linux Shells”). Linus
desired a distributed VCS that could quickly merge files as well as
provide other features that Linux kernel developers needed. He
couldn't find one, so he wrote one! The result was Git, which is still
a very popular high-performance distributed VCS.

Git is a distributed VCS, which is often employed in agile and continuous
software development environments. But it is also used for managing Bash
shell scripts. To understand Git's underlying principles, you need to know a
few terms related to its configuration. Figure 25-1 shows a conceptual
depiction of the Git environment.

Each location within the Git environment is important. The following
sections cover the details of these areas and highlight a few special Git
features.

Working directory
The working directory is where all the scripts are created, modified, and
reviewed. It is typically a subdirectory within the script writer's home
directory, similar to /home/christine/scripts. It is best to create a new
subdirectory for every project, because Git places files within that location
for tracking purposes.

FIGURE 25-1 Conceptual depiction of the Git environment

The script writer's Linux system, where the working directory resides, is
typically a local server or laptop, depending on workplace requirements.
You could even set up your working environment within a local virtual
machine that mimics the script's destination system(s). This is also a
wonderful method for testing modified or new scripts, because it protects
the destination Linux systems from disruption.

Staging area
A staging area is also called the index. This area is located on the same
system as the working directory. Bash scripts in the working directory are
registered into the staging area via a Git command (git add). The staging
area employs a hidden subdirectory in the working directory named .git .
This required location is created via the git init command.

When scripts are cataloged into the staging area, Git creates or updates
script information in an index file, .git/index . The data recorded includes
checksums (Chapter 24, “Writing Simple Script Utilities”), time stamps,
and associated script filenames.

Besides updating the index file, Git compresses the script file(s) and stores
these compressed files as an object(s), also called a blob, in a
.git/objects/ directory. If a script has been modified, it is compressed
and stored as a new object in the .git/objects/ directory. Git does not just
store script modifications; it keeps a compressed copy of each modified
script.

Looking at the local repository

The local repository contains each script file's history. It uses the working
directory's .git subdirectory as well. Relationships between the script file
versions (called a project tree) and commit information are stored as objects
in the .git/objects/ directory via a Git command (git commit).

Together the project tree and commit data are called a snapshot. Every
commit creates a new snapshot. However, old snapshots are kept, and they
are viewable. Another nice feature is that you can return to a previous
snapshot if needed.

Exploring a remote repository
In the Git configuration, the remote repository is typically a cloud-based
location that provides a code hosting service. However, you can set up a
code hosting site on another server within your local network to serve as the
remote repository. What you use really depends on your project's needs as
well as your script management team members' locations.

Prominent remote repositories include GitHub, GitLab, BitBucket, and
Launchpad. However, by far, GitHub is the most popular. We use GitHub
for our remote repository examples in this book.

Branching
An additional feature provided by Git, called a branch, can help in your
various script projects. A branch is an area within a local repository for a
particular project section. For example, you can have the primary branch in
your script project named main , and when you make a modification to the
script in the main branch, it's best practice to create a new branch, called
something like modification , and make the changes to the script there.
Once the script changes have been tested, the script in the modification
branch is often merged back into the primary branch.

The advantage to using this method is that your scripts that reside in the
main branch stay production-worthy, since the Bash shell scripts that are
being modified and tested reside in a different branch. Only when the
modified scripts are successfully tested are the scripts merged into the main
branch.

Cloning

Another nice feature of Git is that you can copy a project. This process is
called cloning. If your team brings on a new member, that individual can
clone the script and tracking files from the remote repository and have all
they need to start participating in modifying the script.

This feature is also useful for specialized versions of a script. In our earlier
scenario, the backup script was modified on a few Linux systems to include
encryption. When the backup script update project has completed its
modifications, merged them into the primary branch, and pushed the local
repository to a remote repository, the team responsible for making the
special backup script versions can clone the project. Then they'll have all
the pieces needed to add encryption to the improved backup script.

NOTE

With Git, cloning and forking are different but closely related
activities. A project clone occurs when the files are downloaded
from a remote repository to your local system using the git clone
command. Forking happens when you copy from one remote
repository to another one.

Using Git for VCS
In case you are not yet sold on the idea of using Git as your version control
system for your script projects, we'll try to make our case a little stronger.
Using Git as your VCS includes the following benefits:

Performance Git uses only local files to operate, making it faster to
employ. The exceptions to this include sending and retrieving files to
and from a remote repository.

History Git captures all the files' contents at the moment the file is
registered with the index. When a commit is completed to the local
repository, Git creates and stores a reference to that snapshot in time.

Accuracy Git employs checksums to protect file integrity.

Decentralization Script writers can work on the same project, but they
don't have to be on the same network or system.

Older VCSs required script writers to be on the same network, which didn't
provide a great deal of flexibility. They were also slower in operation,
which is one reason Linus Torvalds decided to create Git.

Now that, hopefully, we have convinced you to consider Git, we'll cover the
basics of using it for your next script writing or modification project.

Setting Up Your Git Environment
The Git utility typically is not installed by default. Thus, you'll need to
install the git package prior to setting up your Git environment. See
Chapter 9, “Installing Software,” for details on package installation.

Here's an installation of Git on a CentOS Linux distribution:

$ sudo dnf install git
[sudo] password for christine:
[...]
Dependencies resolved.
==
=========
 Package Arch Version
Repository Size
==
=========
Installing:
 git x86_64 2.18.4-2.el8_2
AppStream 186 k
Installing dependencies:
 git-core x86_64 2.18.4-2.el8_2
AppStream 4.0 M
 git-core-doc noarch 2.18.4-2.el8_2
AppStream 2.3 M
 perl-Error noarch 1:0.17025-2.el8
AppStream 46 k
 perl-Git noarch 2.18.4-2.el8_2
AppStream 77 k
 perl-TermReadKey x86_64 2.37-7.el8
AppStream 40 k

Transaction Summary

==
=========
Install 6 Packages

Total download size: 6.6 M
Installed size: 36 M
Is this ok [y/N]: y
Downloading Packages:
[...]
Running transaction check
Transaction check succeeded.
Running transaction test
Transaction test succeeded.
[...]
Installed:
 git-2.18.4-2.el8_2.x86_64 git-core-2.18.4-
2.el8_2.x86_64
 git-core-doc-2.18.4-2.el8_2.noarch perl-Error-
1:0.17025-2.el8.noarch
 perl-Git-2.18.4-2.el8_2.noarch perl-TermReadKey-
2.37-7.el8.x86_64

Complete!
$
$ which git
/usr/bin/git
$

And here's an installation of Git on an Ubuntu Linux distribution:

$ sudo apt install git
[sudo] password for christine:
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
 git-man liberror-perl
[...]
After this operation, 38.4 MB of additional disk space will
be used.
Do you want to continue? [Y/n] Y
[...]
Fetched 5,464 kB in 1min 33s (58.9 kB/s)
Selecting previously unselected package liberror-perl.
(Reading database ... 202052 files and directories currently
installed.)
[...]
Unpacking git (1:2.25.1-1ubuntu3) ...

Setting up liberror-perl (0.17029-1) ...
Setting up git-man (1:2.25.1-1ubuntu3) ...
Setting up git (1:2.25.1-1ubuntu3) ...
Processing triggers for man-db (2.9.1-1) ...
$
$ which git
/usr/bin/git
$

Nothing was too difficult with this process. As long as you have super user
privileges, installing Git is fairly easy.

After you have the git package installed on your system, setting up your
Git environment for a new script writing project involves four basic steps:

1. Create a working directory.

2. Initialize the .git/ directory.

3. Set up the local repository options.

4. Establish your remote repository location.

To begin the process, create a working directory. A subdirectory in your
local home folder will suffice:

$ mkdir MWGuard
$
$ cd MWGuard/
$
$ pwd
/home/christine/MWGuard
$

A simple subdirectory MWGuard was created for the script writing project.
After the working directory is created, use the cd command to move your
present working directory into it.

Within the working directory, initialize the .git/ directory. This task
employs the git init command:

$ git init
Initialized empty Git repository in
/home/christine/MWGuard/.git/
$
$ ls -ld .git

drwxrwxr-x 7 christine christine 4096 Aug 24 14:49 .git
$

The git init command creates the .git/ subdirectory. Because the
directory name is preceded with a dot (.), it is hidden from regular ls
commands. Use the ls -la command or add the directory name as an
argument to the ls -ld command, as we did earlier, in order to view its
metadata.

NOTE

You can have multiple project directories at the same time. To
accomplish this, create a separate working directory for each
project.

If this is the first time you have built a .git/ subdirectory on your system,
add a name and email address to the global Git repository's configuration
file. This identification data helps in tracking file changes, especially if you
have several people involved in the project. To perform this task, use the
git config command:

$ git config --global user.name "Christine Bresnahan"
$
$ git config --global user.email "cbresn1723@gmail.com"
$
$ git config --get user.name
Christine Bresnahan
$
$ git config --get user.email
cbresn1723@gmail.com
$

By including --global on the git config command, the user.name and
user.email data is stored in the global Git configuration file. Notice that
you can view this information using the --get option and passing it the
data's name as an argument.

NOTE

Global Git configuration information means that this data applies
to all Git projects on this system. Local Git configuration
information is applied only to a particular Git project stored within
a working directory on the system.

Git global configuration information is stored in the .gitconfig file within
your home directory and the local repository, which is the working-
directory /.git/config configuration file. Be aware that some systems
have a system-level configuration file, which is /etc/gitconfig.

To view all the various configurations stored in these files, use the git
config --list command:

$ git config --list
user.name=Christine Bresnahan
user.email=cbresn1723@gmail.com
core.repositoryformatversion=0
core.filemode=true
core.bare=false
core.logallrefupdates=true
$
$ ls /home/christine/.gitconfig
/home/christine/.gitconfig
$
$ cat /home/christine/.gitconfig
[user]
 name = Christine Bresnahan
 email = cbresn1723@gmail.com
$
$ ls /home/christine/MWGuard/.git/config
/home/christine/MWGuard/.git/config
$
$ cat /home/christine/MWGuard/.git/config
[core]
 repositoryformatversion = 0
 filemode = true
 bare = false
 logallrefupdates = true
$

The settings that are displayed via the --list option use a file-
section.name format. Notice that when the two Git configuration files
(global and the project's local repository) are displayed to STDOUT with the
cat command, the section names are shown along with the data they hold.

After your local Git environment is configured, it is time to establish your
project's remote repository. For demonstration purposes, we chose the
cloud-based remote repository GitHub. If you want to follow along, you can
set up a free remote repository through the github.com/join link.

NOTE

Though Git can work with any file type, its tools are primarily
aimed at plain-text files, such as Bash shell scripts. Therefore, be
aware that you are not able to use all the git utilities on any nontext
files.

After you have your project's remote repository established, you'll need to
record the web address it provides. This address is used for sending your
project files to the remote repository, which is covered later in this chapter.

Committing with Git
When you have your Git environment established, you can begin employing
its various organizational features. There are basic four steps, as follows:

1. Create or modify the script(s).

2. Add the script(s) to the staging area (index).

3. Commit the script(s) to the local repository.

4. Push the script(s) to the remote repository.

Depending on your workflow, you may repeat certain steps before
progressing to the next one. For example, in a single day, a Linux admin
works on writing Bash shell scripts and, as they are completed, moves them
to the staging area. At the end of the day, the script writer commits the

http://github.com/join

entire project to the local repository. After that, they push the project work
to the remote repository for nonlocal team members to access.

Here, a simple shell script, MyGitExampleScript.sh , was created to use as
a project example with Git:

$ cat MyGitExampleScript.sh
#!/bin/bash
Git example script

echo "Hello Git World"
exit
$

After the script is created, it is added to the staging area (index). This is
accomplished through the git add command. Since the script was not
currently in our working directory, /home/christine/MWGuard , we copied
it there first. Now that our script is in the correct location, we'll perform the
git add command while our present working directory (displayed via the
pwd command) is also in the correct location, /home/christine/MWGuard :

$ pwd
/home/christine/scripts
$
$ cp MyGitExampleScript.sh /home/christine/MWGuard/
$
$ cd /home/christine/MWGuard/
$
$ pwd
/home/christine/MWGuard
$
$ ls *.sh
MyGitExampleScript.sh
$
$ git add MyGitExampleScript.sh
$
$ git status
[...]
No commits yet

Changes to be committed:
 (use "git rm --cached <file>..." to unstage)
 new file: MyGitExampleScript.sh

$

The git add command does not provide any output when it is executed.
Thus, to see if it worked as desired, we used the git status command. The
git status command shows that a new file, MyGitExampleScript.sh ,
was added to the index. This is just what we wanted to happen.

TIP

If you want, you can add all your scripts in the current working
directory to the staging area's index at the same time. To
accomplish this, issue the git add . command. Notice the period (.)
at the end of the command! It is effectively a wildcard, telling Git to
add all the working directory's files to the index.

However, if you have files in your working directory that you do not
want added to the staging area index, create a .gitignore file in the
working directory. Next, add the names of files and directories you
do not want included in the index into this file via your favorite text
editor. The git add . command will now ignore those files but
move the rest of the script files to the staging area's index.

The staging area's index filename is .git/index , and when the file
command is used on it, the file type is shown as a Git index. This is the file
that Git uses to track changes.

$ file .git/index
.git/index: Git index, version 2, 1 entries
$

The next step in the process is to commit the project to the local repository.
The commit is accomplished via the git commit command. We added the -
m option to add a comment, which is useful for documenting commits:

$ git commit -m "Initial Commit"
[...] Initial Commit
 1 file changed, 5 insertions(+)
 create mode 100644 MyGitExampleScript.sh
$
$ cat .git/COMMIT_EDITMSG
Initial Commit
$

$ git status
[...]
nothing to commit, working tree clean
$

TIP

Comments are stored in the COMMIT_EDITMSG file, and they are
helpful for tracking why changes were made to various scripts.
When you make commits later in a script's life, include why the
modification was made with the -m option arguments, such as -m
"Improved script's user interface".

After you have issued git commit , the git status command will display
the message nothing to commit, working directory clean . This tells
you that Git now considers all the scripts in the working directory as
committed to the local repository.

WARNING

If you do not add the -m option and its argument to the git commit
command, you are placed into the vim editor to edit the
.git/COMMIT_EDITMSG file by hand. The vim editor was covered in
Chapter 10, “Working with Editors.”

Now that the script project is committed to the local repository, it can be
shared with other script project team members by pushing it to the remote
repository. If the script(s) is completed, you can also share it with select
others or the whole world.

If this is a new script project, after the remote repository account is
established, create a special file called a Markdown file. The file's content
displays on the remote repository's web page and describes the repository. It
uses what is called Markdown language. You'll need to name the file
README.md . Here is an example of creating this file, adding it to the staging
area index, and committing it to the local repository:

$ pwd
/home/christine/MWGuard
$
$ ls
MyGitExampleScript.sh
$
$ echo "# Milky Way Guardian" > README.md
$ echo "## Script Project" >> README.md
$
$ cat README.md
Milky Way Guardian
Script Project
$
$
$ git add README.md
$
$ git status
[...]
Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 new file: README.md

$
$ git commit -m "README.md commit"
[...] README.md commit
 1 file changed, 2 insertions(+)
 create mode 100644 README.md
$
$ git status
[...]
nothing to commit, working tree clean
$

NOTE

You can get really fancy with your README.md file by using various
features of the Markdown language. Find out more about
Markdown at guides.github.com/features/mastering-markdown.

At any time you can review the Git log, but it's always a good idea to do so
before pushing your script project to a remote repository. Each commit is
given a hash number to identify it, which is shown in the log. Also, notice
the various comment lines along with dates and author information.

http://guides.github.com/features/mastering-markdown

$ git log
commit 898330bd0b01e0b6eee507c5eeb3c72f9544f506[...]
Author: Christine Bresnahan <cbresn1723@gmail.com>
Date: Mon Aug 24 15:58:52 2020 -0400

 README.md commit

commit 3b484638bc6e391d0a1b816946cba8c5f4bbc8e6
Author: Christine Bresnahan <cbresn1723@gmail.com>
Date: Mon Aug 24 15:46:56 2020 -0400

 Initial Commit
$

Before you can push your project to the remote repository, you need to
configure its address on your system. This address is provided to you when
you set up your remote repository with a Git service provider, such as
GitHub.

To add the address, use the git remote add origin URL command, where
URL is the remote repository's address:

$ git remote add origin https://github.com/C-
Bresnahan/MWGuard.git
$
$ git remote -v
origin https://github.com/C-Bresnahan/MWGuard.git (fetch)
origin https://github.com/C-Bresnahan/MWGuard.git (push)
$

Notice that we checked the status of the remote address via the git remote
-v command. It's a good idea to check the address before pushing a project.
If you've got the wrong address or you made a typographical error, the push
will not work. So review everything carefully!

TIP

If you make a mistake, such as a typographical error, in the
address, you can remove the remote repository's address via the git
remote rm origin command. After it is removed, set up the remote
address again using the correct address.

After the remote repository address is configured, we can push our script
project up to its location. However, before we do that, to keep things simple
we're going to rename the primary branch to main using the git branch
command:

$ git branch -m main
$
$ git branch --show-current
main
$

Notice that you can see the current branch name using the git branch --
show-current command. It's is a good idea to do this before a push to
ensure you've got the correct branch name, which we need in the push
command.

Now to copy our script up to the remote repository, we need the -u origin
option tacked onto the push command to denote the location of the
repository, and the name of the branch, main , that we are currently using:

$ git push -u origin main
Username for 'https://github.com': C-Bresnahan
Password for 'https://C-Bresnahan@github.com':
Enumerating objects: 6, done.
Counting objects: 100% (6/6), done.
Compressing objects: 100% (4/4), done.
Writing objects: 100% (6/6), 604 bytes | 60.00 KiB/s, done.
Total 6 (delta 0), reused 0 (delta 0)
To https://github.com/C-Bresnahan/MWGuard.git
 * [new branch] main -> main
Branch 'main' set up to track remote branch 'main' from
'origin'.
$

Typically the remote repository will demand a username and password.
When the project is pushed to the remote repository, you should be able to
view it using your favorite web browser. If it is a private repository, you'll
have to log into the remote repository service in order to see your work.

Figure 25-2 shows the remote repository on GitHub for this project. Keep in
mind that different Git remote repository providers will have different user
interfaces for your script projects.

FIGURE 25-2 MWGuard remote repository

What is really nice about the remote repository is that anyone on your
Linux admin team who is working on the project can pull down the latest
script versions using the git pull command. You'll need to either set up
access for them to the remote repository or make it public.

$ whoami
rich
$
$ pwd
/home/rich/MWGuard
$
$ git remote add origin https://github.com/C-
Bresnahan/MWGuard.git
$
$ git pull origin main
remote: Enumerating objects: 6, done.
remote: Counting objects: 100% (6/6), done.
remote: Compressing objects: 100% (4/4), done.
remote: Total 6 (delta 0), reused 6 (delta 0), pack-reused 0
Unpacking objects: 100% (6/6), 584 bytes | 58.00 KiB/s,
done.
From https://github.com/C-Bresnahan/MWGuard
 * branch main -> FETCH_HEAD

 * [new branch] main -> origin/main
$

If the individual pulling down the project files already has a modified
version of a particular script in their local repository that was not uploaded
to the remote repository, the git pull command will fail and protect that
script. However, the error message will instruct how to rectify this problem.

WARNING

Keep in mind that if anyone wants the latest script versions, and
they weren't already working on the project, they'll get an error
message similar to fatal: not a git repository when they
attempt to issue the git remote add origin command. It would be
best for them to clone the project, which is covered next.

A new development team member can copy the entire script project to their
local system from the remote repository using the git clone command:

$ whoami
tim
$
$ ls
$
$ git clone https://github.com/C-Bresnahan/MWGuard.git
Cloning into 'MWGuard'...
remote: Enumerating objects: 6, done.
remote: Counting objects: 100% (6/6), done.
remote: Compressing objects: 100% (4/4), done.
remote: Total 6 (delta 0), reused 6 (delta 0), pack-reused 0
Unpacking objects: 100% (6/6), 584 bytes | 58.00 KiB/s,
done.
$
$ ls
MWGuard
$
$ cd MWGuard/
$
$ ls -a
. .. .git MyGitExampleScript.sh README.md
$
$ git log

commit [...](HEAD -> main, origin/main, origin/HEAD)
Author: Christine Bresnahan <cbresn1723@gmail.com>
Date: Mon Aug 24 15:58:52 2020 -0400

 README.md commit

commit 3b484638bc6e391d0a1b816946cba8c5f4bbc8e6
Author: Christine Bresnahan <cbresn1723@gmail.com>
Date: Mon Aug 24 15:46:56 2020 -0400

 Initial Commit
$

When the project is cloned from the remote repository, the working
directory is automatically created, along with the .git/ directory, the Git
staging area (index), and the local repository. The git log command shows
the project's history. This is an easy way for a new team member to grab
everything needed to begin working on the project.

The distributed VCS utility Git is useful in many ways beyond the needs of
script writers. There are many more useful project features available with
Git. The ones covered in this chapter will get you started down the right
path for managing all the amazing Bash shell scripts you are going to write
in your lifetime.

Summary
In this chapter, we first set the stage for Git by covering concepts such as
VCS. Created by Linus Torvalds, Git provides an amazing distributed VCS
that is useful for many things, including managing Bash shell scripts. We
also took a look at important Git locations, such as the working directory;
the staging area, which is also called the index; and the local and remote
repositories. In addition, we touched on the branches and cloning features
of Git.

Because many Linux distributions do not have Git installed by default, we
stepped through installing the git package on both CentOS and Ubuntu.
Setting up a working directory for the project was done first for the local
configuration. The next part covered how to use the git init command,
which creates a hidden subdirectory, .git/ , within the working directory.
After that, we demonstrated how to configure local repository options for

tracking purposes. Finally, we touched on the remote repository, using
GitHub as our example.

The chapter ended with using Git in a practical way. Using a sample Bash
shell script, we moved it to the working directory, and then added it to the
staging area (index) using the git add command. The sample script was
next committed to the local repository. This was accomplished by using the
git commit command. The last step in this process was to move the project
files to the remote repository. We used GitHub as our remote repository and
sent the project there through the git push command.

Thanks for joining us on this journey through the Linux command line and
shell scripting. We hope you've enjoyed the expedition and have learned
how to get around on the command line, and how to create and manage
shell scripts to save time. But don't stop your command-line education here!
There's always something new being developed in the open source world,
whether it's a new command-line utility or a full-blown shell. Stay in touch
with the Linux community and follow along with new advances and
features.

APPENDIX A
Quick Guide to Bash Commands
IN THIS APPENDIX

Reviewing built‐in commands

Looking at common Bash commands

Assessing environment variables

As you've seen throughout this book, the Bash shell contains lots of features
and thus has lots of commands available. This appendix provides a concise
guide to allow you to quickly look up a feature or command that you can
use from the Bash command line or from a Bash shell script.

Reviewing Built‐In Commands
The Bash shell includes many popular commands built into the shell. You
can use these commands to achieve faster processing times. Table A.1
shows the built‐in commands available directly from the Bash shell.

TABLE A.1 Bash Built‐In Commands

Command Description
& Starts a job in background mode
((x)) Evaluates the x mathematical expression
not: Reads and executes commands from a designated file in the

current shell
: Does nothing, and always exits successfully
[t] Evaluates the t conditional expression
[[e]] Evaluates the e conditional expression
alias Defines an alias for the specified command
bg Resumes a job in background mode
bind Binds a keyboard sequence to a readline function or macro
break Exits from a for , while , select , or until loop
builtin Executes the specified shell built‐in command
caller Returns the context of any active subroutine call
case Selectively executes commands based on pattern
cd Changes the current directory to the specified directory
command Executes the specified command without the normal shell

lookup
compgen Generates possible completion matches for the specified word
complete Displays how the specified words would be completed
compopt Changes options for how the specified words would be

completed
continue Resumes the next iteration of a for , while , select , or until

loop
coproc Executes a coprocess
declare Declares a variable or variable type
dirs Displays a list of currently remembered directories
disown Removes the specified jobs from the jobs table for the process

Command Description
echo Displays the specified string to STDOUT
enable Enables or disables the specified built‐in shell command
eval Concatenates the specified arguments into a single command,

and executes the command
exec Replaces the shell process with the specified command
exit Forces the shell to exit with the specified exit status
export Sets the specified variables to be available for child shell

processes
false Sets a result to failed status
fc Selects a list of commands from the history list
fg Resumes a job in foreground mode
for Executes set commands for every item in the list
function Defines a shell script function
getopts Parses the specified positional parameters
hash Finds and remembers the full pathname of the specified

command
help Displays a help file
history Displays the command history
if Executes set commands based on conditional expression
jobs Lists the active jobs
kill Sends a system signal to the specified process ID (PID)
let Evaluates each argument in a mathematical expression
local Creates a limited‐scope variable in a function
logout Exits a login shell
mapfile Reads STDIN lines and puts them into an indexed array
popd Removes entries from the directory stack
printf Displays text using formatted strings
pushd Adds a directory to the directory stack

Command Description
pwd Displays the pathname of the current working directory
read Reads one line of data from STDIN , and assigns it to a variable
readarray Reads STDIN lines, and puts them into an indexed array
readonly Reads one line of data from STDIN , and assigns it to a variable

that can't be changed
return Forces a function to exit with a value that can be retrieved by

the calling script
select Displays list of words with numbers allowing selection
set Sets and displays environment variable values and shell

attributes
shift Rotates positional parameters down one position
shopt Toggles the values of variables controlling optional shell

behavior
source Reads and executes commands from a designated file in the

current shell
suspend Suspends the execution of the shell until a SIGCONT signal is

received
test Returns an exit status of 0 or 1 based on the specified

condition
time Displays the accumulated real, user, and system times

executing command(s)
times Displays the accumulated user and system shell times
trap Executes the specified command if the specified system signal

is received
true Sets a result to successful status
type Displays how the specified word would be interpreted if used

as a command
typeset Declares a variable or variable type
ulimit Sets a limit on the specified resource for system users
umask Sets default permissions for newly created files and directories

Command Description
unalias Removes the specified alias
unset Removes the specified environment variable or shell attribute
until Executes set commands until condition statement returns true
wait Waits for the specified process to complete, and returns the

exit status
while Executes set commands while condition statement returns true
{ c; } Group commands to execute within current shell

The built‐in commands provide higher performance than external
commands, but the more built‐in commands that are added to a shell, the
more memory it consumes with commands that you may never use. The
Bash shell also contains external commands that provide extended
functionality for the shell. These are discussed in the following section.

Looking at Common Bash Commands
In addition to the built‐in commands, the Bash shell utilizes external
commands to allow you to maneuver around the filesystem and manipulate
files and directories. Table A.2 shows the common external commands
you'll want to use when working in the Bash shell.

TABLE A.2 The Bash Shell External Commands

Command Description
at Executes designated script or command to run at set future

time
atq Displays jobs in the at utility queue
atrm Removes designated job from the at utility queue
bash Interprets commands from standard input or from a file, or

starts a subshell using the Bourne Again Shell command
language

bc Performs calculations via its programming language
bzip2 Compresses using the Burrows–Wheeler block sorting text

compression algorithm and Huffman coding
cat Lists the contents of the specified file
chage Changes the password expiration date for the specified system

user account
chfn Changes the specified user account's current information
chgrp Changes the default group of the specified file or directory
chmod Changes system security permissions for the specified file or

directory
chown Changes the default owner of the specified file or directory
chpasswd Reads a file of login name and password pairs and updates the

passwords
chsh Changes the specified user account's default shell
clear Removes text from a terminal emulator or virtual console

terminal
compress Original Unix file compression utility
coproc Spawns a subshell in background mode and executes the

designated command
cp Copies the specified files to an alternate location
crontab Initiates the editor for the user's cron table file, if allowed

Command Description
cut Removes a designated portion of each specified file's lines
date Displays the date in various formats
df Displays current disk space statistics for all mounted devices
dialog Creates window dialogs in a text environment
du Displays disk usage statistics for the specified file path
emacs Invokes the Emacs text editor
env Executes the designated program in a modified environment

or displays the value of all the environment variables
exit Performs a normal termination of current process
expr Evaluates the designated expression
fdisk Organizes and creates the specified disk's partition table
file Displays the file type of the specified file
find Performs a recursive search for files
free Checks available and used memory on the system
fsck Checks and optionally repairs designated filesystem
gawk Streams editing using programming language commands
grep Searches a file for the specified pattern
gedit Invokes the GNOME Desktop editor
getopt Parses command options, including long options
gdialog Creates window dialogs for GNOME Shell
groups Displays group membership of the designated user
groupadd Creates a new system group
groupmod Modifies an existing system group
gunzip The GNU Project's reversal of compression using Lempel–Ziv

compression
gzcat The GNU Project's utility for displaying contents of

compressed files using Lempel–Ziv compression

Command Description
gzip The GNU Project's compression using Lempel–Ziv

compression
head Displays the first portion of the specified file's contents
help Displays the help pages for Bash built‐in commands
kdialog Creates window dialogs for KDE
killall Sends a system signal to a running process based on process

name
kwrite Invokes the KWrite text editor
less Advanced viewing of file contents
link Creates a link to a file using an alias name
ln Creates a symbolic or hard link to a designated file
ls Lists directory contents and/or file information
lvcreate Creates a Logical Volume Manager (LVM) volume
lvdisplay Displays an LVM volume
lvextend Increases the size of an LVM volume
lvreduce Decreases the size of an LVM volume
mandb Creates the database allowing man page keyword searches
man Displays the man pages for the designated command or topic
mkdir Creates the specified directory
mkfs Formats a partition with specified filesystem
mktemp Creates a temporary file or directory
more Lists the contents of the specified file, pausing after each

screen of data
mount Displays or mounts disk devices into the virtual filesystem
mv Renames a file or directory
nano Invokes the nano text editor
nice Runs a command using a different priority level on the system
nohup Executes designated command while ignoring SIGHUP signal

Command Description
passwd Changes the password for a system user account
printenv Displays the value of the specified environment variable or

displays the value of all the environment variables
ps Displays information about the running processes on the

system
pvcreate Creates a physical LVM volume
pvdisplay Displays a physical LVM volume
pwd Displays the current working directory
renice Changes the priority of a running application on the system
rm Deletes the specified file or directory
rmdir Deletes the specified empty directory
sed Streams line editing using editor commands
setterm Modifies terminal settings
sleep Pauses Bash shell operation for a specified amount of time
sort Organizes data in a data file based on the specified order
stat Views the file statistics of the specified file
sudo Runs an application as the root user account
tail Displays the last portion of the specified file's contents
tar Archives data and directories into a single file
tee Sends information to both STDOUT and STDIN
top Displays the active processes, showing vital system statistics
touch Creates a new empty file or updates the time stamp on an

existing file
umount Removes a mounted disk device from the virtual filesystem
uptime Displays information on how long the system has been

running
useradd Creates a new system user account
userdel Removes an existing system user account

Command Description
usermod Modifies an existing system user account
vgchange Activates or deactivates an LVM volume group
vgcreate Creates an LVM volume group
vgdisplay Displays an LVM volume group
vgextend Increases the size of an LVM volume group
vgreduce Decreases the size of an LVM volume group
vgremove Deletes an LVM volume group
vi Invokes the vim text editor
vim Invokes the vim text editor
vmstat Produces a detailed report on memory and CPU usage on the

system
wc Displays text file statistics
whereis Displays a designated command's files, including binary,

source code, and man pages
which Finds the location of an executable file
who Displays users currently logged into system
whoami Displays the current user's username
xargs Takes items from STDIN , builds commands, and executes the

commands
xterm Invokes the xterm terminal emulator
zenity Creates window widgets for GNOME Shell
zip Unix version of the Windows PKZIP program

You can accomplish just about any task you need to on the command line
by using these commands.

Assessing Environment Variables
The Bash shell also utilizes many environment variables. Although
environment variables aren't commands, they often affect how shell

commands operate, so it's important to know some of the shell environment
variables. Table A.3 shows several of the environment variables available in
the Bash shell.

TABLE A.3 Bash Shell Environment Variables

Variable Description
* Contains all the command‐line parameters as

a single text value
@ Contains all the command‐line parameters as

separate text values
The number of command‐line parameters
? The exit status of the most recently used

foreground process
‐ The current command‐line option flags
$ The process ID (PID) of the current shell
! The PID of the most recently executed

background process
0 The name of the command from the

command line
_ The absolute pathname of the shell
BASH The full filename used to invoke the shell
BASHOPTS Enabled shell options in a colon‐separated

list
BASHPID The current Bash shell's PID
BASH_ALIASES An array containing the currently used

aliases
BASH_ARGC The number of parameters in the current

subroutine
BASH_ARGV An array containing all the command‐line

parameters specified
BASH_CMDS An array containing the internal hash table of

commands
BASH_COMMAND The name of the command currently being

executed

Variable Description
BASH_ENV When set, each Bash script attempts to

execute a startup file defined by this variable
before running.

BASH_EXECUTION_STRING The command used in the ‐c command‐line
option

BASH_LINENO An array containing the line numbers of each
command in the script

BASH_REMATCH An array containing text elements that match
a specified regular expression

BASH_SOURCE An array containing source filenames for the
declared functions in the shell

BASH_SUBSHELL The number of subshells spawned by the
current shell

BASH_VERSINFO A variable array that contains the individual
major and minor version numbers of the
current instance of the Bash shell

BASH_VERSION The version number of the current instance
of the Bash shell

BASH_XTRACEFD When set to a valid file descriptor integer,
trace output is generated and separated from
diagnostic and error messages. The file
descriptor must have set ‐x enabled.

BROWSER The absolute pathname of the preferred web
browser

COLUMNS Contains the terminal width of the terminal
used for the current instance of the Bash
shell

COMP_CWORD An index into the variable COMP_WORDS ,
which contains the current cursor position

COMP_KEY The completion invocation character
keyboard key

COMP_LINE The current command line

Variable Description
COMP_POINT The index of the current cursor position

relative to the beginning of the current
command

COMP_TYPE The completion type integer value
COM_WORDBREAKS A set of characters used as word separators

when performing word completion
COMP_WORDS A variable array that contains the individual

words on the current command line
COMPREPLY A variable array that contains the possible

completion codes generated by a shell
function

COPROC A variable array that holds file descriptors
for an unnamed coprocess's I/O

DBUS_SESSION_BUS_ADDRESS The current login session's D‐Bus address
that provides a map for connections

DE A variable that contains the current login
session's desktop environment

DESKTOP_SESSION Within an LXDE environment, a variable
that contains the current login session's
desktop environment

DIRSTACK A variable array that contains the current
contents of the directory stack

DISPLAY A variable that contains a map for graphical
applications for where to display the
graphical user interface

EDITOR When set, defines the default editor used by
some shell commands

EMACS When set, the shell assumes it's running in an
Emacs shell buffer and disables line editing.

ENV When the shell is invoked in POSIX mode,
each Bash script attempts to execute a startup
file defined by this variable before running.

Variable Description
EUID The numeric effective user ID of the current

user
FCEDIT The default editor used by the fc command
FIGNORE A colon‐separated list of suffixes to ignore

when performing filename completion
FUNCNAME The name of the currently executing shell

function
FUNCNEST The maximum level for nesting functions
GLOBIGNORE A colon‐separated list of patterns defining

the set of filenames to be ignored by
filename expansion

GROUPS A variable array containing the list of groups
of which the current user is a member

histchars Up to three characters that control history
expansion

HISTCMD The history number of the current command
HISTCONTROL Controls what commands are entered in the

shell history list
HISTFILE The name of the file to save the shell history

list (~/.bash_history by default)
HISTFILESIZE The maximum number of lines to save in the

history file
HISTIGNORE A colon‐separated list of patterns used to

decide which commands are ignored for the
history file

HISTSIZE The maximum number of commands stored
in the history file

HISTTIMEFORMAT When set, determines the format string for
the history file entries' time stamps

HOME Current login session's home directory name

Variable Description
HOSTALIASES Contains the name of the file that holds

aliases for various host names used by some
shell commands

HOSTFILE Contains the name of the file that should be
read when the shell needs to complete a host
name

HOSTNAME The name of the current host
HOSTTYPE A string describing the machine the Bash

shell is running on
IFS Contains a list of characters used to separate

files, when the words are split as part of an
expansion

IGNOREEOF The number of consecutive EOF characters
the shell must receive before exiting. If this
value doesn't exist, the default is 1.

INFODIR A colon‐separated list of info page
directories searched by the info command

INPUTRC The name of the readline initialization file.
The default is ~/.inputrc .

INVOCATION_ID A random and unique 128‐bit identifier used
to identify login shells (and other units) by
systemd

JOURNAL_STREAM A colon‐separated list of a file descriptor's
device and inode number (in decimal
format). This is set only when STDOUT or
STDERR are connected to the journaling
system.

LANG The locale category for the shell
LC_ALL Overrides the LANG variable, defining a

locale category
LC_ADDRESS Determines how address information is

displayed

Variable Description
LC_COLLATE Sets the collation order used when sorting

string values
LC_CTYPE Determines the interpretation of characters

used in filename expansion and pattern
matching

LC_IDENTIFICATION Contains locale metadata information
LC_MEASUREMENT Sets the locale to use for units of

measurement
LC_MESSAGES Determines the locale setting used when

interpreting double‐quoted strings preceded
by a dollar sign

LC_MONETARY Defines the format of monetary numeric
values

LC_NAME Sets the format of names
LC_NUMERIC Determines the locale setting used when

formatting numbers
LC_PAPER Defines the locale setting used for paper

standards and formats
LC_TELEPHONE Sets the structure of telephone numbers
LD_LIBRARY_PATH A colon‐separated list of library directories

searched prior to standard library directories
LINENO The line number in a script currently

executing
LINES Defines the number of lines available on the

terminal
LOGNAME Username of current login session
LS_COLORS Determines the colors used to display

filenames
MACHTYPE A string defining the system type in cpu‐

company‐system format

Variable Description
MAIL If set, defines the mail file of the current

login session intermittently searched by
some mail programs for new mail

MAILCHECK Sets how often (in seconds) the shell should
check for new mail (the default is 60)

MAILPATH A colon‐separated list of mail filenames
intermittently searched by some mail
programs for new mail

MANPATH A colon‐separated list of man page
directories searched by the man command

MAPFILE Array variable containing the mapfile
command's read text; used only when no
variable name is given

OLDPWD The previous working directory used in the
shell

OPTARG Contains the value to use if an option
requires a parameter value, and is set by the
getopts command

OPTERR If set to 1, the Bash shell displays errors
generated by the getopts command.

OPTIND Contains the value of the current location
within a parameter list where the getopts
command left off

OSTYPE A string defining the operating system the
shell is running on

PAGER Determines the pager utility to use for
viewing files with some shell commands

PATH A colon‐separated list of directories searched
by the shell for commands

PIPESTATUS A variable array containing a list of exit
status values from the processes in the
foreground process

Variable Description
POSIXLY_CORRECT If set, Bash starts in POSIX mode.
PPID The PID of the Bash shell's parent process
PROMPT_COMMAND If set, the command to execute before

displaying the primary prompt
PS1 The primary command‐line prompt string
PS2 The secondary command‐line prompt string
PS3 The prompt to use for the select command
PS4 The prompt displayed before the command

line is echoed if the Bash ‐x parameter is
used

PWD The current working directory
RANDOM Returns a random number between 0 and

32767. Assigning a value to this variable
seeds the random number generator.

READLINE_LINE The readline line buffer contents
READLINE_POINT The current readline line buffer's insertion

point position
REPLY The default variable for the read command
SECONDS The number of seconds since the shell was

started. Assigning a value resets the timer to
the value.

SHELL The shell's full pathname
SHELLOPTS A colon‐separated list of enabled Bash shell

options
SHLVL Indicates the shell level, incremented by 1

each time a new Bash shell is started
TERM Terminal type currently in use by login

session, where the information is provided
from a file pointed to by the variable

Variable Description
TERMCAP Terminal type currently in use by login

session, where the information is provided
within the variable

TIMEFORMAT A format specifying how the shell displays
time values

TMOUT The value of how long (in seconds) the
select and read commands should wait for
input. The default of 0 indicates to wait
indefinitely.

TMPDIR When set to a directory name, the shell uses
the directory as a location for temporary
shell files.

TZ If set, specifies the system's time zone
TZDIR Defines the directory where time zone files

are located
UID The numeric real user ID of the current user
USER Username of current login session
VISUAL When set, defines the default screen‐based

editor used by some shell commands

You can display the currently defined environment variables using the
printenv command. Shell environment variables established at boot time
can (and often do) vary between different Linux distributions.

APPENDIX B
Quick Guide to sed and gawk
IN THIS APPENDIX

The basics for using sed

What you need to know about gawk

If you do any type of data handling in your shell scripts, most likely you'll
need to use either the sed program or the gawk program (and sometimes
both). This appendix provides a quick reference for sed and gawk
commands that come in handy when working with data in your shell scripts.

The sed Editor
The sed editor can manipulate data in a data stream based on commands
you either enter into the command line or store in a command text file. It
reads one line of data at a time from the input and matches that data with
the supplied editor commands, changes data in the stream as specified in the
commands, and then outputs the new data to STDOUT.

Starting the sed editor
Here's the format for using the sed command:

sed options script file

The options parameters allow you to customize the behavior of the sed
command and include the options shown in Table B.1.

TABLE B.1 The sed Command Options

Option Description
‐e

script

Adds commands specified in script to the commands run while
processing the input

‐f

file

Adds the commands specified in the file file to the commands
run while processing the input

‐n Doesn't produce output for each command but waits for the print
command

The script parameter specifies a single command to apply against the
stream data. If more than one command is required, you must use either the
‐e option, to specify them in the command line, or the ‐f option, to specify
them in a separate file.

sed commands
The sed editor script contains commands that sed processes for each line of
data in the input stream. This section describes some of the more common
sed commands you'll want to use.

Substitution
The s command substitutes text in the input stream. Here's the format of the
s command:

s/pattern/replacement/flags

pattern is the text to replace, and replacement is the new text that sed
inserts in its place.

The flags parameter controls how the substitution takes place. Four types
of substitution flags are available:

A number indicates the pattern occurrence that should be replaced.

g indicates that all occurrences of the text should be replaced.

p indicates that the contents of the original line should be printed.

w file indicates that the results of the substitution should be written to
a file.

In the first type of substitution, you can specify which occurrence of the
matching pattern the sed editor should replace. For example, you use the
number 2 to replace only the second occurrence of the pattern.

Addressing
By default, the commands you use in the sed editor apply to all lines of the
text data. If you want to apply a command to only a specific line, or a group
of lines, you must use line addressing.

There are two forms of line addressing in the sed editor:

A numeric range of lines

A text pattern that filters out a line

Both forms use the same format for specifying the address:

[address]command

When using numeric line addressing, you reference lines by their line
position in the text stream. The sed editor assigns the first line in the text
stream as line number 1 and continues sequentially for each new line. To
replace the word “dog” with the word “cat” but only if it appears on lines 2
or 3 in the data file, you'd use this:

$ sed '2,3s/dog/cat/' data1

The other method of restricting which lines a command applies to is a bit
more complicated. The sed editor allows you to specify a text pattern that it
uses to filter lines for the command. Here's the format for this:

/pattern/command

You must encapsulate the pattern you specify in forward slashes. The sed
editor applies the command only to lines that contain the text pattern that
you specify.

$ sed '/rich/s/bash/csh/' /etc/passwd

This filter finds the line that contains the text rich and replaces the text
bash with csh.

You can also group more than one command together for a specific address:

address {
 command1
 command2
 command3 }

The sed editor applies each of the commands you specify only to lines that
match the address specified. The sed editor processes each command listed
on the address line(s):

$ sed '2{
> s/fox/elephant/
> s/dog/cat/
> }' data1

The sed editor applies each of the substitutions to the second line in the
data file.

Deleting lines
The delete command, d , pretty much does what it says. It deletes any text
lines that match the addressing scheme supplied. Be careful with the delete
command, because if you forget to include an addressing scheme, all the
lines are deleted from the stream:

$ sed 'd' data1

The delete command is obviously most useful when used in conjunction
with a specified address. This allows you to delete specific lines of text
from the data stream, either by line number:

$ sed '3' data1

or by a specific range of lines:

$ sed '2,3d' data1

The pattern‐matching feature of the sed editor also applies to the delete
command:

$ sed '/number 1/d' data1

Only lines matching the specified text are deleted from the stream.

Inserting and appending text

As you would expect, like any other editor, the sed editor allows you to
insert and append text lines to the data stream. The difference between the
two actions can be confusing:

The insert command (i) adds a new line before the specified line.

The append command (a) adds a new line after the specified line.

The format of these two commands can be confusing; you can't use these
commands on a single command line. You must specify the line to insert or
append on a separate line by itself. Here's the format for doing this:

sed '[address]command\
new line'

The text in new line appears in the sed editor output in the place you
specify. Remember that when you use the insert command, the text appears
before the data stream text:

$ echo "testing" | sed 'i\
> This is a test'
This is a test
testing
$

And when you use the append command, the text appears after the data
stream text:

$ echo "testing" | sed 'a\
> This is a test'
testing
This is a test
$

This allows you to insert text at the end of the normal text.

Changing lines
The change command (c) allows you to change the contents of an entire
line of text in the data stream. It works the same as the insert and append
commands, in that you must specify the new line separately from the rest of
the sed command:

$ sed '3c\
> This is a changed line of text.' data1

The backslash character is used to indicate the new line of data in the script.

Transform command
The transform command (y) is the only sed editor command that operates
on a single character. The transform command uses this format:

[address]y/inchars/outchars/

The transform command performs a one‐to‐one mapping of the inchars
and the outchars values. The first character in inchars is converted to the
first character in outchars. The second character in inchars is converted to
the second character in outchars. This mapping continues throughout the
length of the specified characters. If the inchars and outchars are not the
same length, the sed editor produces an error message.

Printing lines
Similar to the p flag in the substitution command, the p command prints a
line in the sed editor output. The most common use for the print command
is for printing lines that contain matching text from a text pattern:

$ sed -n '/number 3/p' data1
This is line number 3.
$

The print command allows you to filter only specific lines of data from the
input stream.

Writing to a file
The w command is used to write lines to a file. Here's the format for the w
command:

[address]w filename

The filename can be specified as either a relative or absolute pathname, but
in either case, the person running the sed editor must have write
permissions for the file. address can be any type of addressing method
used in sed , such as a single line number, a text pattern, or a range of line
numbers or text patterns.

Here's an example that prints only the first two lines of a data stream to a
text file:

$ sed '1,2w test' data1

The output file test contains only the first two lines from the input stream.

Reading from a file
You've already seen how to insert and append text into a data stream from
the sed command line. The read command (r) allows you to insert data
contained in a separate file.

Here's the format of the read command:

[address]r filename

The filename parameter specifies either an absolute or relative pathname
for the file that contains the data. You can't use a range of addresses for the
read command. You can specify only a single line number or text pattern
address. The sed editor inserts the text from the file after the address.

$ sed '3r data' data1

The sed editor inserts the complete text from the data file into the data1
file, starting at line 3 of the data1 file.

The gawk Program
The gawk program is the GNU version of the original awk program in Unix.
The awk program takes stream editing one step further than the sed editor
by providing a programming language instead of just editor commands.
This section describes the basics of the gawk program as a quick reference
to its abilities.

The gawk command format
The basic format of the gawk program is as follows:

gawk options program file

Table B.2 shows the options available with the gawk program.

TABLE B.2 The gawk Options

Option Description
‐F fs Specifies a file separator for delineating data fields in a line
‐f file Specifies a filename to read the program from
‐v var=

value

Defines a variable and default value used in the gawk program

‐mf N Specifies the maximum number of fields to process in the data
file

‐mr N Specifies the maximum record size in the data file
‐W

keyword

Specifies the compatibility mode or warning level for gawk. Use
the help option to list all the available keywords.

The command‐line options provide an easy way to customize features in the
gawk program.

Using gawk
You can use gawk either directly from the command line or from within
your shell scripts. This section demonstrates how to use the gawk program
and how to enter scripts for gawk to process.

Reading the program script from the command line
A gawk program script is defined by an opening and closing brace. You
must place script commands between the two braces. Because the gawk
command line assumes that the script is a single text string, you must also
enclose your script in single quotation marks. Here's an example of a simple
gawk program script specified on the command line:

$ gawk '{print $1}'

This script displays the first data field in every line of the input stream.

Using multiple commands in the program script
A programming language wouldn't be very useful if you could execute only
one command. The gawk programming language allows you to combine
commands into a normal program. To use multiple commands in the

program script specified on the command line, just place a semicolon
between commands:

$ echo "My name is Rich" | gawk '{$4="Dave"; print $0}'
My name is Dave
$

The script performs two commands: it replaces the fourth data field with a
different value, and then it displays the entire data line in the stream.

Reading the program from a file
As with the sed editor, the gawk editor allows you to store your programs in
a file and refer to them in the command line:

$ cat script1
{ print $5 "'s userid is " $1 }
$ gawk -F: -f script1 /etc/passwd

The gawk program processes all the commands specified in the file on the
input stream data.

Running scripts before processing data
The gawk program also allows you to specify when the program script is
run. By default, gawk reads a line of text from the input and then executes
the program script on the data in the line of text. Sometimes, you may need
to run a script before processing data, such as to create a header section for
a report. To do that, you use the BEGIN keyword. This forces gawk to
execute the program script specified after the BEGIN keyword before reading
the data:

$ gawk 'BEGIN {print "This is a test report"}'
This is a test report
$

You can place any type of gawk command in the BEGIN section, such as
commands that assign default values to variables.

Running scripts after processing data
Similar to the BEGIN keyword, the END keyword allows you to specify a
program script that gawk executes after reading the data:

$ gawk 'BEGIN {print "Hello World!"} {print $0} END {print
 "byebye"}' data1
Hello World!
This is a test
This is a test
This is another test.
This is another test.
byebye
$

The gawk program executes the code in the BEGIN section first, then
processes any data in the input stream, and then executes the code in the
END section.

The gawk variables
The gawk program is more than just an editor; it's a complete programming
environment. As such, lots of commands and features are associated with
gawk . This section shows the main features you need to know for
programming with gawk.

Built‐in variables
The gawk program uses built‐in variables to reference specific features
within the program data. This section describes the gawk built‐in variables
available for you to use in your gawk programs and demonstrates how to use
them.

The gawk program defines data as records and data fields. A record is a line
of data (delineated by the newline characters by default), and a data field is
a separate data element within the line (delineated by a white space
character, such as a space or tab, by default).

The gawk program uses data field variables to reference data elements
within each record. Table B.3 describes these variables.

TABLE B.3 The gawk Data Field and Record Variables

Variable Description
$0 The entire data record
$1 The first data field in the record
$2 The second data field in the record
$n The nth data field in the record
FIELDWIDTHS A space‐separated list of numbers defining the exact width

(in spaces) of each data field
FS Input field separator character
RS Input record separator character
OFS Output field separator character
ORS Output record separator character

In addition to the field and record separator variables, gawk provides some
other built‐in variables to help you know what's going on with your data
and to extract information from the shell environment. Table B.4 shows the
other built‐in variables in gawk.

TABLE B.4 More gawk Built‐In Variables

Variable Description
ARGC The number of command‐line parameters present
ARGIND The index in ARGV of the current file being processed
ARGV An array of command‐line parameters
CONVFMT The conversion format for numbers (see the printf

statement), with a default value of %.6g
ENVIRON An associative array of the current shell environment

variables and their values
ERRNO The system error if an error occurs reading or closing input

files
FILENAME The filename of the data file used for input to the gawk

program
FNR The current record number in the data file
IGNORECASE If set to a non‐zero value, gawk ignores the case of all

characters in all string functions (including regular
expressions)

NF The total number of data fields in the data file
NR The number of input records processed
OFMT The output format for displaying numbers, with a default of

%.6g

RLENGTH The length of the substring matched in the match function
RSTART The start index of the substring matched in the match function

You can use the built‐in variables anywhere in the gawk program script,
including the BEGIN and END sections.

Assigning variables in scripts
Assigning values to variables in gawk programs is similar to how you assign
values to variables in a shell script—using an assignment statement:

$ gawk '
> BEGIN{

> testing="This is a test"
> print testing
> }’
This is a test
$

After you assign a value to a variable, you can use that variable anywhere in
your gawk script.

Assigning variables in the command line
You can also use the gawk command line to assign values to variables for
the gawk program. This allows you to set values outside of the normal code,
changing values on the fly. Here's an example of using a command‐line
variable to display a specific data field in the file:

$ cat script1
BEGIN{FS=","}
{print $n}
$ gawk -f script1 n=2 data1
$ gawk -f script1 n=3 data1

This feature is a great way to process data from your shell scripts in the
gawk script.

The gawk program features
Some features of the gawk program make it handy for manipulating data,
allowing you to create gawk scripts that can parse just about any type of text
file, including log files.

Regular expressions
You can use either a Basic Regular Expression (BRE) or an Extended
Regular Expression (ERE) to filter the lines in the data stream to which the
program script applies.

When using a regular expression, the regular expression must appear before
the left brace of the program script that it controls:

$ gawk 'BEGIN{FS=","} /test/{print $1}' data1
This is a test
$

The matching operator
The matching operator allows you to restrict a regular expression to a
specific data field in the records. The matching operator is the tilde
character (~). You specify the matching operator, along with the data field
variable, and the regular expression to match:

$1 ~ /^data/

This expression filters records where the first data field starts with the text
data.

Mathematical expressions
In addition to regular expressions, you can use mathematical expressions in
the matching pattern. This feature comes in handy when you're matching
numerical values in data fields. For example, if you want to display all the
system users who belong to the root users group (group number 0), you
could use this script:

$ gawk -F: '$4 == 0{print $1}' /etc/passwd

This script displays the first data field value for all lines that contain the
value 0 in the fourth data field.

Structured commands
The gawk program supports the structured commands discussed in this
section.

The if‐then‐else statement:

 if (condition) statement1; else statement2

The while statement:

 while (condition)
{
 statements
}

The do‐while statement:

 do {
 statements
} while (condition)

The for statement:

for(variable assignment; condition; iteration process)

This provides a wealth of programming opportunities for the gawk script
programmer. You can write gawk programs that rival the functions of just
about any higher‐level language program.

Index
Symbols and Numerics

$#, 382–384

$@, 384–386

$*, 384–386

$?, 477, 478–479

$(), 609–610

$?, 663

$($#), 384–386

$() format, 283

$? special variable, 297

&>, 415

$0, 380, 480, 537

$1, 378, 537

1>, 415

$2, 537

2>, 415

& (ampersand), 443–444, 449, 606–607

* (asterisk), 64–65, 114, 502, 566, 578–579

\ (backslash character), 758

` (backtick character), 283

^ (caret character), 243, 570–571

' (closing quotation mark), 534

{} (curly braces), 127, 536, 581–582

$ (dollar sign), 48, 571–572, 600

. (dot) operator, 59, 68, 277, 490, 493, 572–573

-- (double dash), 389–390, 393

.. (double dot), 59–60

!! (double exclamation mark), 131

>> (double greater than), 285, 413

<< (double less-than symbol), 286

= (equal sign), 555

! (exclamation mark), 65, 600–602

/ (forward slash), 570

> (greater than), 285

< (less than), 285

+ (plus sign), 580–581

| (pipe character), 106, 582–583

(pound sign), in shell scripts, 276

? (question mark), 64–65, 579–580

" (quotation marks), 141

; (semicolon), 121, 122, 127, 275, 276, 534

[] (square brackets), 573–575

~ (tilde), 639–640

| (vertical line), 287

A

absolute directory references, 57–60, 67

access control list (ACL), 184–186

access permission triplets, 176–177

accounts

creating multiple, 374–375

managing

creating script for, 703–708

determining existence, 698–699

finding files, 702

getting name, 693–696

removing account, 702

removing processes, 699–702

running script for, 708–710

verifying name, 696–698

system, 164

user, 163

Activities menu (GNOME 3 desktop), 14

add command, 732–733

address pattern, 604

addresses

e-mail, 587–589

range, 615

sed

about, 756–757

grouping, 546

numeric, 544–545

text pattern filters, 545–546

Advanced Package Tool (APT) suite, 210

AIX Unix, 192

Alacritty, 27

alias, 159, 236

Almquist, Kenneth, 659

Almquist shell, 659

ampersand (&), 443–444, 449, 606–607

anacron, 460–461

anchor characters

^ (caret character), 570–571

$ (dollar sign), 571–572

combining, 572

append command, 549–551, 758

applets, 13

application containers, 225–228

apt-cache, 210

apt-get, 210

apt-get install, 506

aptitude

about, 210

installing software packages, 213–215

managing packages, 211–213

repositories, 218–220

uninstalling software, 216–217

updating software, 215–216

aptitude full-upgrade, 216

aptitude install, 214

aptitude purge, 217

aptitude search, 213

archiving data

about, 109–111

daily archive script

creating, 686–688

running, 688–689

hourly archive script

creating, 689–693

running, 692–693

scripting

configuration file, 682–684

creating daily archive location, 685–686

ARGC variable, 632

ARGV variable, 632

arrays

associative, 632, 636

functions

passing, 485–487

returning, 487–488

gawk

deleting, 638

iteration through, 637–638

variable assignment, 636–637

variable, 159–161

ash shell, 11, 659

asort, 651–652

asorti, 651–652

assignment statement, 634

associative array, 632, 636

asterisk (*), 64–65, 114, 502, 566, 578–579

at, 454–458

atd, 454

atq, 457

atrm, 457–458

AT&T Unix, 86, 89

autoremove command, 217

B

background jobs, 445–446

background mode, 429–430

--background option, 26

backslash character (\), 758

backtick character (`), 283

basename, 380

bash, 117–120, 139, 142

bash calculator (bc), 293–297

bash shell

about, 11, 660

basic commands, 47–82

Bourne variables, 145

commands

about, 85–111

built-in, 127, 741–744

common, 744–748

environment variables, 748–753

environment variables, 146–150, 748–753

EOF key combination, 537

external commands, 744–748

handling files, 66–74

interacting with Bash manual, 49–53

line numbers, 612–613

listing files and directories, 60–65

managing directories, 74–76

mathematical operations, 292–293

navigating filesystem, 53–60

referencing current directory, 277

signaling, 435–436

starting, 47–48

using shell prompt, 48–49

viewing file contents, 77–82

BASH_ENV environment variable, 146, 158

.bash_history, 131–132

.bash_login file, 462

.bash_profile file, 462

.bashrc file

about, 152, 462

function definition in

directly defining, 492–493

sourcing function files, 493–494

batch, 455

bc, 293–297

BEGIN keyword, 539–541, 638

Bell Labs, 86

Berkeley Software Distribution (BSD), 89–91

bg, 450–451

/bin/bash, 660

/bin/sh, 115, 116, 660

bitwise manipulation, 650

block device files, 8

Bookmarks menu (Konsole Terminal Emulator), 40–41

Boolean operators, 331–332

Bourne shell, 11, 290, 292, 659

Bourne variables, 145

brackets

double, 335

math, 292–293

pattern matching, 335

square, 573–575

branch command, 603–605

branching, 726

BRE. See POSIX Basic Regular Expression engine

break command, 365–368, 390, 504

break statement, 644

broken dependencies, 223–224

BSD. See Berkeley Software Distribution

B-tree filesystem, 193

Btrfs filesystem, 193

buffers

emacs, 250–251

scrollback, 39

built-in commands

bash, 127, 741–744

dash shell, 664–665

reviewing, 741–744

shell, 129–132

zsh

add-in modules, 673

core, 670–672

viewing, adding, removing modules, 673–674

built-in variables, gawk, 628–634, 763–764

Burrows-Wheeler block sorting text compression, 108

bzip2, 108

C

C shell, 114

Calendar menu (GNOME 3 desktop), 14

caret character (^), 243, 570–571

case command, 335–337

case sensitivity, regular expressions, 568

case statement

default case, 502

menu functions, 501–502

menu logic, 502

processing options, 388–389

removing account processes, 700–702

shell script menus, 499

zsh, 676

cat, 78, 80, 403, 412, 731

cd, 59, 129, 230

CentOS, 24, 116, 153–154, 727–728

chage, 170, 171–173

change command, 551–552

changing ownership, 181–182

character classes

about, 573–575

negating, 575–576

special, 577

character device files, 8

character mode, 425

characters

anchor

^ (caret character), 570–571

$ (dollar sign), 571–572

combining, 572

dot, 572–573

EOF, 296–297, 537

escape, 292, 347–348, 569–570

field separation, 537, 628

ranges, 576–577

regular expressions

anchor, 570–572

asterisk, 578–579

braces, 581–582

character classes, 573–575

dot character, 572–573

escape, 569–570

negating character classes, 575–576

pipe symbol, 582–583

plain text, 567–569

plus sign, 580–581

question mark, 579–580

ranges, 576–577

special, 569–570

special character classes, 577

replacing with sed, 543–544

shell escape, 292

special, 569–570, 572–573

transforming with sed, 552–553

wildcard

about, 64, 565–566

cron tables, 458

reading directory using, 352–354

replacement strings, 606–608

checking filesystems, 201–202

checklist widget, 518

chfn, 170, 171–173

chgrp, 181–182, 184

child process, 128

child shell, parent relationships, 117–125

chmod, 180–181, 183, 277

chown, 181–182

chpasswd, 170–171

chsh, 170, 171–173

Cinnamon desktop, 15, 16

clear command, 500, 502

CLI. See command line interface (CLI)

Client, 23

clone, 192

cloning, 726

closing file descriptors, 424–425

closing quotation mark ('), 534

colon (:), 47, 151

combining anchors, 572

command aliases, 157

command grouping, 122

command line interface (CLI)

about, 21–23, 275

accessing via graphical terminal emulation, 26–27

accessing via Linux console terminal, 23–26

functions, 491–494

gawk

about, 536–537

variable assignment, 635–636, 764

sed, 533–535

command line mode, 242

command line options

getopt command, 392–395

getopts command, 393, 395–398

processing, 388–389, 391–392

separating from parameters, 389–390

standardizing, 398–399

zsh, 668

command line parameters

counting, 382–384

dash shell, 661–662

gawk, 634

getopt command, 392–395

getopts command, 393, 395–398

iterating with for statement, 384–386

reading, 377–380

script name, 380–381

shifting, 386–388

special variables, 382–386

testing, 381–382

useradd, 166–169

xterm, 44–45

zsh, 668

command mode (vim editor), 238–239

command modules

about, 668

add-in, 673

viewing, adding, removing, 673–674

command substitutions

backtick, 287

subshells, 284

variables, 283–284

command-line completion, 69

command-line parameters, 44–45

commands. See also specific commands

external, 127–129, 744–748

history, 130–132

reading values from, 350–351

shell built-in

about, 129–132

bash shell, 127, 741–744

dash shell, 664–665

zsh, 670–674

structured

gawk, 641–645

zsh, 676

comma-separated value files, 374

committing, with Git, 732–739

common bash commands, 744–748

compound testing, 331–332

compress, 108–109

compressing data, 108–109, 683

conditions, 311

configure command, 230–231

consecutive blank lines, 615–616

console terminals, 22

containers, managing software using, 225–228

continue command, 368–371

continue statement, 644

control commands (nano editor), 243–244

cool-retro-term, 27

coproc, 126–127

co-processes, 126–127

copying and pasting

in Emacs editor, 249

in vim editor, 240–241

copying files, 66–69

copy-on-write (COW), 192–193

coreutils, 10

cp, 66–69, 72

CPU utilization, 94

creating

directories, 74–75

files, 66

filesystems, 199–201

cron, 454, 458–460

cron directories, 460

cron tables, 458–459, 692, 708

crontab, 459

.csv files, 374

Ctrl+Alt key combination, 24

Ctrl+Alt+T, 30

Ctrl+Shift+M, 38

curly braces ({}), 127, 536, 581–582

current working directory, 58

D

d command, 241

dash (-), 117

dash shell

about, 659–661

built-in commands, 664–665

command line parameters, 661–662

environment variables, 662–664

features, 661–665

positional parameters, 663

scripting

arithmetic, 666

function command, 667–668

test command, 666–667

data, editing. See editors

data field variables, 537–538, 628, 639

data files

archiving

about, 109–111

configuration file, 682–684

creating location for, 685–686

daily script, 686–688

hourly script, 689–693

scripting, 681–693

compressing, 108–109, 683

looping on, 364–365

searching, 106–108

sorting, 102–106

data mode journaling, 191

date, 276, 692

dd command, 241

deb, 219

Debian

about, 18

dash shell, 659–661

package management, 210–220

deb-src, 219

DEC. See Digital Equipment Corporation

decoding file permissions, 176–179

default exit status, 477–478

default group, 329–330

default interactive shell, 117

default shell audit functions, 710–714

default shell program, 113

default system shell, 116

delete command, sed, 547–549

deleting directories, 75–76

deleting files, 73–74

deleting lines, 614–617

dependencies, 210, 223–224

desktop environment

GNOME desktop, 13–15

KDE, 12–13

Linux, 11–17

/dev/hdx, 194

device drivers, 8

device files, 8

device names, hard drives, 194

/dev/sdx, 194

df, 100–101, 516

dialog command

about, 506–507

scripting, 515–516

specifying widget, 507

dialog package

options, 513–515

output, 507

using in script, 515–516

widgets

about, 506–507

fselect, 512

inputbox, 508–510

menu, 511–512

msgbox, 507–508

textbox, 510–511

yesno, 508, 509

Dickey, Thomas E., 505

diff, 716

Digital Equipment Corporation (DEC), 42

directories

absolute references, 57–60, 67

counting files, 584–585

creating, 74–75

cron, 460

deleting, 75–76

file comparisons using, 320–321

HOME, 277

$HOME/bin, 277

listing, 60–65

managing, 74–76

parent, 75

reading using wildcards, 352–354

referencing current, 277

relative references, 59–60

root, 54

temporary, 429–430

/tmp, 427

traversing, 57–60

virtual, 53–54

disk blocks, 190

disk space, monitoring, 96–102, 710–721

display server, 23

displaying messages, scripting, 278–279

distributed VCSs, 724

distribution, 17–19

dnf

broken dependencies, 223–224

installing software, 221–222

listing installed packages, 220–221

repositories, 224

uninstalling software, 223

updating software, 223

dnf clean all, 223

dnf deplist, 224

dnf install, 221, 246

dnf list, 223, 245

dnf list installed, 220

dnf remove, 223

do statement, 346

dollar sign ($), 48, 571–572, 600

done command, 362

done statement, 346

dot (.) operator, 59, 68, 277, 490, 493, 572–573

double bracket command, 335

double dash (--), 389–390, 393

double dot (..), 59–60

double exclamation mark (!!), 131

double greater than (>>), 285, 413

double less-than symbol (<<), 286

double line spacing, 610–611

double parentheses command, 333–335

do-while statement, 644–645

dpkg, 210, 212

du, 101–102, 106

dumb terminal, 21

E

echo $0 command, 117

echo $BASH_SUBSHELL, 122

echo command

about, 126, 129, 139, 278–279, 422

background process list, 126

-en option, 501

menu layouts, 499–501

-n parameter, 279

echo $my_variable, 141–142

Edit menu

GNOME Terminal, 33

Konsole Terminal Emulator, 39

KWrite editor, 255–256

editing data, 240

editors. See also gawk; sed editor

emacs

basics, 247–248

buffers, 250–251

on console, 246–252

copying and pasting, 249

editing, 248–249

in GUI, 252–253

installing, 244

searching and replacing, 249–250

windows, 251–252

GNOME, 263–271

Kate, 259–263

KDE, 253–263

nano, 242–244

stream, 531

vim

basics, 237–239

copying and pasting, 240–241

editing, 240

installing, 236–237

searching and substituting, 241–242

egrep command, 108

elif statement, 308–311

else clause, 309–312, 642–643

emacs

basics, 247–248

buffers, 250–251

copying and pasting, 249

editing, 248–249

installing, 244

searching and replacing, 249–250

using

on console, 246–252

in GUI, 252–253

windows, 251–252

e-mail addresses, parsing, 587–589

empty files, 325–326

END keyword, 540, 638

env, 138–139, 140

ENVIRON variable, 632

environment, Git, 727–732

environment files, 152

environment variables

about, 137–138

bash shell

about, 146–150

commands, 748–753

default, 748–753

BASH_ENV, 146, 158

dash shell, 662–664

default shell, 145–150

in gawk, 632

global, 138–139

IFS, 364–365

local, 140

LS_COLORS, 61

OPTARG, 396

OPTIND, 396, 397

PAM, 152

PATH, 150–151, 277, 373

persisting, 159

removing, 144–145

scripting, 280–281

system

interactive shell, 157

login shell, 152–157

non-interactive shell, 158

user-defined, 141–144

variable arrays, 159–161

EOF text string, 296–297, 537

epoch time, 652, 712

equal sign (=), 555

equal sign command, 555

ERE. See POSIX Extended Regular Expression engine

error messages, 414–415

escape character, 292, 347–348, 569–570

/etc/apt/sources.list, 218

/etc/bash.bashrc, 153

/etc/cron.hourly, 461

/etc/cron.monthly, 460–461

/etc/fstab, 201

/etc/group file, 173–174

/etc/inittabs file, 7

/etc/login.defs, umask values, 166

/etc/passwd file, 164–165, 169, 307–308, 364–365, 698, 710–711

/etc/profile

about, 152–156, 159

CentOS, 155–156

Ubuntu Linux, 153

umask values, 179

/etc/profile.d, 153–154, 158

/etc/rc.d folders, 7

/etc/shadow, 165–166

/etc/skel directory, 166

/etc/yum.repos.d, 224

Ex mode (vim editor), 238–239

exclamation mark (!), 65, 600–602

exec, 418, 419, 683

executable files, 328, 373–374

execute privilege, 688

exit, 120–121, 129, 298–300, 438

EXIT signal, 440

exit status

codes

checking, 297–298

dialog widget output, 507

test command, 311–312

default, 477–478

ps, 699–700

exiting scripts, 297–300

export, 142–144

expr command, 290–292, 666

((expression)) (double bracket command), 335

((expression)) (double parentheses command), 333–335

ext filesystem, 9, 190

ext2 filesystem, 9, 190

ext3 filesystem, 9, 191

ext4 filesystem, 9, 191

extended filesystem. See ext filesystem

extended regular expressions, 567, 579–583

external commands, 127–129, 744–748

F

Falstad, Paul, 668

fdisk, 194–196

Fedora Linux, 19, 210, 220

fg, 451

fgrep command, 108

FHS. See Filesystem Hierarchy Standard

field separation character, 537, 628

field separators, internal, 351–352

FIELDWIDTHS variable, 629–630

file, 77

File Browser, 268

file compression utilities, 108–109

file descriptor

about, 412

closing, 424–425

creating input, 421

creating output, 419–420

listing open, 424–426

read/write, 422

redirecting, 420–421

standard, 412–414

file globbing, 65, 352

File menu

GNOME Terminal, 33

Konsole Terminal Emulator, 38

file paths, 54

file permissions

access control lists (ACL), 184–186

changing, 179–182

codes, 176–179

decoding, 176–179

groups, 173–176

security, 163–173

sharing files, 182–184

file redirection, 432

files

account, 702

comparisons

checking directories, 320–321

checking for file, 322–324

checking for object existence, 321–322

date, 330

default group, 329–330

execute permission, 328

ownership, 328–329

read access, 324

write permission, 326–327

copying, 66–69

creating, 66

date, 330

default group, 329–330

deleting, 73–74

executable, finding, 373–374

linking, 69–71

listing, 60–65

looping on data, 364–365

numbering lines in, 612–613

ownership, 328–329

printing last lines, 613–614

reading editor commands from, 534–535, 759

reading gawk scripts from, 539, 760

redirecting loop output to, 371–372

renaming, 71–73

script, creating, 276–278

sed using

reading, 557–559

writing, 556–557

sharing, 182–184

spacing with double lines, 610–611

startup, 462

temporary, 427–430

using command-line completion, 69

viewing contents, 77–82

filesystem commands. See external commands

Filesystem Hierarchy Standard (FHS), 57

filesystems

about, 8–9, 189–190

checking and repairing, 201–202

creating, 199–201

as a function of Linux kernel, 5, 8–9

GNU parted program, 198–199

journaling, 191–192

Linux, 53–57

management, 8–9

managing logical volumes, 202–207

mounting media, 97–100

navigating, 53–60

partitions, 194–197

traversing directories, 57–60

volume-managing, 192–194

working with, 194–202

working with gdisk, 197–198

filtering listing output, 64–65

find, 702, 715

finding executable files, 373–374

finger, 171, 172

5dd command, 240

flags, 756

flatpak command, 227–228

flatpak containers, 227–228

floating-point math, 293–297

Fluxbox, 16

FNR variable, 632–633

for command

about, 345–354

changing field separator, 351–352

C-style, 354–357

piping output, 371–372

reading complex values in list, 347–349

reading directory using wildcards, 352–354

reading list from variable, 349–350

reading values from command, 350–351

reading values in list, 346–347

redirecting output to file, 371–372

for loops, 361–363, 676

for statement, 384–386, 645

--foreground option, 26

forking, 128

format specifiers

control letters, 646

modifiers, 647

format string, 646

formatted numbers, 574–575

formatted printing, 645–648

forward slash (/), 54, 57, 59, 61, 67, 241, 570

FreeBSD, 659

FS variable, 628

fsck, 201–202

fselect widget, 512

function command, 667–668

function keyword, 474, 653–654

function() statement, 667–668

functions

array variables, 485–488

command line usage, 491–494

creating, 474

creating on command line, 491–492

dash shell, 667–668

default exit status, 477–478

default shell audit, 710–714

defining in .bashrc file, 492–494

gawk

built-in, 648–653

creating library, 654–655

defining, 653–654

mathematical, 649–650

string, 650–652

time, 652–653

user-defined, 653–655

using, 654

get account name, 695–696

libraries, 489–491

parameter passing to, 480–482

recursion, 488–489

return command, 478–479

returning values, 477–480

scope, 482

stub, 501

using, 474–476

using output, 479–480

variables in, 480–485

zsh, 675–677

Fvwm, 16

fvwm95, 16

G

gawk

about, 535–541, 566, 760–765

arrays

deleting, 638

iteration through, 637–638

variable assignment, 636–637

bitwise manipulation, 650

command format, 536, 760

data field variables, 537–538, 763

environment variables, 632

features, 764–765

formatted printing, 645–648

functions

built-in, 648–653

creating library, 654–655

defining, 653–654

mathematical, 649–650

string, 650–652

time, 652–653

user-defined, 653–655

using, 654

intervals, 581

matching operator, 764

mathematical expressions, 764

multiple commands in program script, 538, 761

options, 760

pattern matching

matching operator, 639–640

mathematical expressions, 640–641

regular expressions, 639, 764

print command, 629

reading program file, 539, 761

reading script from command line, 536–537, 760

record variables, 763

running scripts

after processing data, 540–541, 761–762

before processing data, 539–540, 761

structured commands, 641–645, 765

using, 760–762

variables

about, 537–538, 627–636

ARGC, 632

ARGV, 632

assigning in scripts, 634–635

assigning on command line, 635–636, 764

built-in, 628–634, 763–764

data, 631–634

data field, 628–631, 639

ENVIRON, 632

field and record separator, 628–631

FIELDWIDTHS, 629–630

FNR, 632–633

FS, 628

NF, 632–633

NR, 632–633

OFS, 628–629

ORS, 630

RS, 630

user-defined, 634–636

gdialog, 521

gdisk utility, 194, 197–198

gedit, 264–271

Gentoo, 18

getfacl command, 184–186

getopt command, 392–395, 393

getopts command, 395–398

Git. See also version control

committing with, 732–739

setting up environment, 727–732

using for version control, 727

global environment variables, 138–139

global variables, in functions, 483–484

GNOME desktop, 13–15

GNOME editor. See gedit

GNOME graphical environment, 521–525

GNOME Terminal

accessing, 27–32

menu bar, 32–36

gnome-terminal, 31

GNU

about, 3, 9–11

gzip, 109

vim, 235

GNU bash shell, 114–115

GNU long parameters, 91–92

GNU Network Object Model Environment. See GNOME desktop

GNU parted program, 198–199

GNU utilities, 9–11

graphical interfaces, elements, 26–27

graphical terminal emulation, accessing CLI via, 26–27

graphical terminals, 22–23

greater than (>), 285

grep, 106–108, 305, 711

grip utility, 108–109

groupadd, 174–175

grouping commands, 546

grouping expressions, 583

groupmod, 175–176

groups

about, 173, 685–686

changing file ownership, 181–182

creating, 174–175

default, 329–330

/etc/group file, 173–174

modifying, 175–176

Guake, 29

GUI environment, using Emacs editor in, 252–253

gunzip, 109

gzcat, 109

gzip, 109

H

hard links, 70–71

hardware management, 5, 8

hdparm, 196

head, 82

Help menu

GNOME Terminal, 36

Konsole Terminal Emulator, 41–42

history command, 130–132

hold space, 598–599

$HOME, 280–281, 322–324

HOME directory, 277

$HOME startup files, 156–157

$HOME/.bash_login, 152

$HOME/.bash_profile, 152

$HOME/.bashrc, 152

$HOME/bin directory, 277

$HOME/.profile, 152

hpfs filesystem, 9

HTML tags, removing, 617–619

Huffman coding, 108

I

-i command, 73–74

IBM, 192

IDE drives, 194

if statement

archiving data files script, 684

gawk, 641–643

nested, 307–311

IFS, 351–352

IFS environment variable, 364–365

if-then statements

about, 605

compound testing, 331–332

continue command, 368–371

as test command alternative, 313

working with, 303–306

if-then-else statements, 306–307, 676

immutable attribute, 712–713

incremental search, 249–250

index, 725

init command, 730

init process, 6

inline input redirection, 285–286, 296

inner loop, 362, 366–367

inode numbers, 70–71, 190

inode table, 190, 191

inodes, 190

input redirection

inline, 285–286, 296

scripting, 285–286, 418–419

inputbox widget, 508–510

insert command, 549–551, 758

insert mode (vim editor), 238–239

inserting text, 549–551, 608

installing software, 209–232

int(), 649–650

interactive shell, 157

internal field separator, 351–352

interprocess communication, 95

interrupting processes, 436–437

intervals, 581–582

--inversescreen option, 26

IRIX Unix, 195

ISO image file, 18

iso9660 filesystem, 9, 98

J

JFS. See Journaled File System

jfs filesystem, 9

job control, 448

job number, 437

job queue, 455

jobs

background, 445–446

controlling, 448–451

restarting, 450–451

scheduling

listing pending, 457

output, 455–457

removing, 457–458

stopped, 437–438

viewing, 448–450

jobs, 124–125, 448–450

Journaled File System (JFS), 192

journaling filesystems, 191

JWM, 16

K

K Desktop Environment (KDE). See KDE

K menu, 13

Kate editor, 259–263

KDE. See also Konsole Terminal

about, 12–13

editors

Kate, 259–263

KWrite, 253–259

KDE Plasma, 12–13

Kdialog

using, 519–521

widgets, 517–519

kernel

filesystem management, 8–9

hardware management, 8

software program management, 6–7

system memory management, 5–6

kill, 95–96, 448, 450, 701

kitty, 27

Konsole Terminal

about, 27

accessing, 36–37

menu bar, 38–42

using, 36–42

korn shell, 11

Kwin, 23

KWrite, 253–259

kwrite command, 254–255

L

label parameter, 603–604

Lam, Savio, 505

leading blank lines, 616

Lempel-Ziv coding, 108

less, 80, 220

less than (<), 285

let command, 674

libraries, 489–491, 493–494

line addressing

about, 756–757

grouping, 546

numeric, 544–545

text pattern filters, 545–546

line numbers, 555, 612–613

lines

listing, 555–556

printing, 554

printing numbers, 555

linking files, 69–71

links, symbolic, 70, 660

Linux

about, 3–4

desktop environment, 11–17

distributions, 17–19

GNU utilities, 9–11

kernel

filesystem management, 8–9

hardware management, 8

software program management, 6–7

system memory management, 5–6

signals, 436

Linux console, 22, 23–26

Linux filesystem, 53–57

Linux LiveDVD, 19

Linux Mint, 19, 210, 220

LISP, 251

list parameter, 504

listing lines, 555–556

lists

reading complex values in, 347–349

reading from variable, 349–350

reading values in, 346–347

LiveDVD, 3, 19

ln, 70

load average, 93, 94

local environment variables, 140

local keyword, 484–485

local repository, 725–726

local variables, 140, 484–485

logging, scripting, 430–431

logging in, 23–26

logical volume (LV), 202–207

Logical Volume Manager (LVM), 202–207

login name, 163

login program, 165

login shell, 116, 152–157

loops

for, 361–363, 676

controlling

break command, 365–368

continue command, 368–371

on file data, 364–365

inner, 362, 366–367

nested, 361–363

outer, breaking out, 367–368

processing output, 371–372

until, 363, 676

while

about, 390, 676

archiving data files script, 684

menu dialog, 516

nested, 361–363

reading files, 403–404

text menus, 504

ls, 60–65, 176–177, 237, 713, 730

ls -l command, 237

LS_COLORS environment variable, 61

lsof, 424–426

LV. See logical volume

lvcreate, 205–206

lvdisplay, 205

lvextend, 207

LVM. See Logical Volume Manager

lvreduce, 207

M

man, 50–52

man pages, 50–53

managing directories, 74–76

manual, Bash, 49–53

Markdown file, 734

matching operator, 639–640, 764

MATE desktop, 15

math

brackets, 292–293

expr command, 290–292

floating-point, 293–297

gawk

bitwise manipulation, 650

built-in functions, 649–650

pattern matching, 639–640

scripting, 289–297

mathematical comparisons, 333–335

mathematical functions, 675–676

media

mounting, 97–100

removable, 97, 98

meminfo, 516

memory management, 5–6

menu bar

GNOME Terminal, 32–36

Konsole Terminal Emulator, 38–42

menu scripts, 499

menu widget, 511–512

messages

displaying from scripts, 278–279

error, 414–415

metacharacter wildcards, 65

Metacity, 23

Microsoft Windows, 11

minix filesystem, 9

Mint, 19, 210, 220

minus sign (-), 125

mkdir, 74–75, 200, 691

mke2fs, 199

mkefs, 199

mkfs.btrfs, 199

mkfs.ext3, 199

mkfs.ext4, 199, 200, 206

mkfs.xfs, 199

mkfs.zfs, 199

mkreiserfs, 199

mktemp, 427–428, 516

mktemp -t, 428–429

monitoring disk space, 710–721

more, 78–79, 80

mount, 97–99, 200

mount points, 55

mounting, 97–100

moving files, 71–73

msdos filesystem, 9

msgbox widget, 507–508

multiline commands

delete, 595–596

next, 592–595

print, 596–597

multiple background jobs, 445–446

multiple commands, scripting, 275–276

multi-word values, 348–349

mv, 72–73

MX Linux, 19

N

$n, 537

n command, 592–593

nano, 242–244

ncp filesystem, 9

negating character classes, 575–576

nested loops, 361–363

network browser, 23

network device files, 8

new line, 758

next command

multi-line, 593–595

single-line, 592–593

NF variable, 632–633

nfs filesystem, 9

nice, 452–453

nodes, 8

nohup, 447–448

nohup.out, 447–448

non-incremental search, 250

non-interactive shell, 158

normal mode, 256

NR variable, 632–633

ntfs filesystem, 9, 98

number manipulation. See math

numbering lines, 612–613

numeric comparisons, 313–314

numeric line addressing, 544–545

O

Octal mode, 178–179

OFS variable, 628–629

open source software (OSS), 10

OpenSolaris, 193

openSUSE, 12, 18, 193, 210, 220

OPTARG environment variable, 396

OPTIND environment variable, 396, 397

options. See command line options

ordered mode journaling, 191

ORS variable, 630

OSS. See open source software

outer loop, breaking out, 367–368

output redirection, 413–414, 416–418

output redirections

permanent, 417–418

scripting, 285, 416–418

output suppression, 426

ownership, changing, 181–182

P

p command, 196, 241

package management, 209–210

Package Management System (PMS)

about, 209–210

aptitude

installing software packages, 213–215

managing packages, 211–213

repositories, 218–220

uninstalling software, 216–217

updating software, 215–216

dnf, 220

yum, 220

zypper, 220

pager, 50

pages, 6

PAM. See Pluggable Authentication Modules

Panel (KDE Plasma desktop), 13

parameters. See also command line parameters

BSD-style, 89–91

dash shell

command line, 661–662

command-line, 661–662

positional, 663

GNU long, 91–92

list, 504

passing arrays as, 486

passing to function, 480–482

positional, 378–379, 663

testing, 381–382

Unix-style, 86–89

parent directories, 75

parent process ID (PPID), 88

parent shell, child relationships, 117–127

partitions, creating, 194–197

partprobe, 196

passwd, 170–171

passwords, reading, 402–403

PATH environment variable, 150–151, 277, 373

pattern matching

double bracket command, 335

filtering file listings, 64–65

gawk

matching operator, 639–640

mathematical expressions, 640–641

regular expressions, 639, 764

sed, 545–546, 551

pattern space, 593, 597, 602

/pattern/command, 757

pausing processes, 437–438

period (.), 61

permanent redirection, 417–418

permissions

about, 688

audit functions, 714–716

changing, 180–181

file comparisons, 327–328

persistent environment variables, 159

phone numbers, validating, 585–587

physical volumes (PV), 203, 204

PID. See process ID

pipe character (|), 106, 582–583

pipes

loop output, 371–372

reading from files, 403–404

scripting, 287–289

tee command, 430–431

pkill command, 96

PKZIP, 108

Pluggable Authentication Modules (PAM), 152

plugins, managing, 268–271

plus sign (+), 125, 580–581

PMS. See Package Management System (PMS)

positional parameters, 378–379, 663

POSIX Basic Regular Expression engine (BRE), 567

POSIX Extended Regular Expression engine (ERE), 567

pound sign (#), in shell scripts, 276

PPID. See parent process ID

present working directory, 58

print command, 629

Print Screen option (File menu), 38

printenv, 138–139, 140, 144

printf command, 645–648, 674–675

printing

formatted, 645–648

last lines, 613–614

lines, 759

priority, 451–452

proc filesystem, 9

process

co-processes, 126–127

defined, 6, 85, 118

forking, 128

init, 6

interrupting, 436–437

pausing, 437–438

real-time monitoring, 93–95

removing for account, 699–702

stopping, 95–96

process ID (PID), 444

process lists

about, 121–123, 333

background, 125–126

co-processing, 126–127

process signals, 95–96

.profile file, 462

profile.d, 153–154

program shortcuts, 13

programs

gawk scripts

multiple commands, 538, 761

reading file, 539, 761

management, 6–7

monitoring, 85–96

prompt, Bash shell, 48–49

ps

about, 86–95, 124, 128

BSD-style parameters, 89–91

exit status, 699–700

—forest parameter, 119

GNU long parameters, 91–92

Unix-style parameters, 86–89

Puppy Linux, 19

PV. See physical volumes (PV)

pvcreate, 204

pwd, 58, 129, 304

Q

-qa parameters, 288

question mark (?), 64–65, 579–580

quotation marks ("), 141

R

radiolist widget, 518

rand(), 649

range address, 615

ranges, 576–577

read access, 324

read command

about, 399–400, 422, 684, 693–694

from file, 403–404

menu functions, 501, 502

with no display, 402–403

sed, 557–559

timing out, 401–402

reading from file

about, 403–404

gawk, 539, 761

sed, 534–535, 759

while loop, 403–404

readlink command, 237

real-time process monitoring, 93–95

recovery commands, 201

recursion, 488–489

Red Hat Linux, 13, 18, 220–224. See also RHEL

Red Hat Package Management system (RPM), 287

redirection

creating, 419–420

errors, 414–416

file, 371–372, 432

file descriptors, 420–421

input

about, 296, 418–419

inline, 285–286, 296

scripting, 285–286

output

about, 285, 413–414

permanent, 417–418

in scripts, 416–418

sed scripts, 609–610

temporary, 416–417

output and errors, 416–418

redirect-on-write (ROW), 192

regular expression engine, 567

regular expressions

about, 546

BRE patterns, 567–579

building, 585

case sensitivity, 568

characters

anchor, 570–572

asterisk, 578–579

braces, 581–582

character classes, 573–575

dot character, 572–573

escape, 569–570

negating character classes, 575–576

pipe symbol, 582–583

plain text, 567–569

plus sign, 580–581

question mark, 579–580

ranges, 576–577

special, 569–570

special character classes, 577

special characters, 569–570

combining anchors, 572

counting directory files, 584–585

defining, 565–566

gawk, 639, 764

grouping expressions, 583

intervals, 581–582

parsing e-mail addresses, 587–589

types, 567

validating phone numbers, 585–587

whitespace, 537

Reiser, Hans, 192

Reiser4 filesystem, 192, 193

ReiserFS filesystem, 192

relative directory references, 59–60

remote repository, 726

removable media, 97, 98

removing

environment variables, 144–145

files, 73–74

HTML tags, 617–619

users, 169

renaming files, 71–73

renice, 453

repairing filesystems, 201–202

repeat command, 676

replacement strings, 606–608

replace-string, 250

replacing, in Emacs editor, 249–250

Report Bug option (Help menu), 42

repositories

about, 209–210

aptitude, 218–220

local, 725–726

remote, 726

rpm, 224

--reset option, 26

restarting jobs, 450–451

return command, 478–479

revision control. See version control

rf command, 76

RHEL, 27, 193, 194

rm, 73–74, 76

rmdir, 75–76

rolling window, 613

root directory, 54

root drive, 54

rpm, 210, 220, 287–289

RPM. See Red Hat Package Management system

rpmfusion.org, 224

rpm.list, 289

RS variable, 630

run level, 6–7

run-parts, 461

rxvt-unicode, 27

S

s command, 593–594

Sakura, 27

SATA drives, 194

scale, 294

scheduling

jobs, 454–458

regular scripts, 458–461

scheduling priority, 451–452

scope, function, 482–483

script exits, trapping, 440

script name, reading, 380–381

scripting

archiving data files

about, 681–693

configuration file, 682–684

creating daily archive location, 685–686

daily archive script, 686–688

hourly archive script, 689–693

background mode, 443–445

bc, 295–297

comment line, 276

creating file, 276–278

creating multiple user accounts, 374–375

dash shell

arithmetic, 666

function command, 667–668

test command, 666–667

dialog command in, 515–516

displaying messages, 278–279

exiting, 297–300

file descriptors

closing, 424–425

listing open, 424–426

redirection, 419–424

finding executable files, 373–374

floating-point math, 293–297

functions

about, 473–476

array variables, 485–488

command line usage, 491–494

creating, 474

creating on command line, 491–492

default exit status, 477–478

defining in .bashrc file, 492–494

global variables, 483–484

libraries, 489–491

local variables, 484–485

parameter passing to, 480–482

passing arrays, 485–487

return command, 478–479

returning arrays, 487–488

returning values, 477–480

scope, 482–483

using, 474–476

using output, 479–480

variables in, 480–485

gawk, assigning in scripts, 634–635

getopt command in, 393–395

input redirection, 285–286, 418–419

logging, 430–431

managing user accounts

creating script for, 703–708

determining existence, 698–699

finding files, 702

getting name, 693–696

removing account, 702

removing processes, 699–702

running script for, 708–710

verifying name, 696–698

monitoring disk space, 710–721

multiple commands, 275–276

options

processing, 388–389

processing with values, 391–392

output redirection, 285, 416–418

parameters

command line, 377–382

counting, 382–384

reading, 377–380

script name, 380–381

shifting, 386–388

special variables, 382–386

testing, 381–382

performing math, 289–297

pipes, 287–289

redirecting input and output, 284–286

running without hang-up, 447–448

scheduling, 458–461

sed commands in

redirecting output, 609–610

wrappers, 608–609

starting with new shell, 462–463

suppressing output, 426

temporary files, 427–430

text strings, 278

user input, 399–404

variables

environment, 280–281

user, 281–283

zenity in, 521–525

zsh, 674–677

scripts

creating, 716–719

running, 719–721

scrollback buffer, 39

SCSI drives, 194

search command, 213

Search menu (GNOME Terminal), 34

searching

data, 106–108

in Emacs editor, 249–250

in vim editor, 241–242

security

adding users, 166–169

changing settings, 179–182

/etc/passwd file, 164–165

/etc/shadow file, 165–166

Linux, 163–173

modifying users, 169–173

removing users, 169

sed editor

&, 606–607

about, 532–535, 566, 755–759

address pattern, 604

addresses, 544–546

branch command, 603–605

branching, 603–605

changing lines, 551–552

characters

replacing, 543–544

transforming, 552–553

command options, 532, 755

commands

addressing, 756–757

changing lines, 758

defining, 533

deleting lines, 757

inserting and appending text, 549–551, 758

printing lines, 759

reading from file, 534–535, 759

substitution, 756

transform command, 758–759

writing to file, 759

d command, 595–596

deleting lines, 547–549

files

reading, 557–559

writing, 556–557

G command, 610–611

hold space commands, 598–599

inserting and appending text, 549–551, 758

inserting text, 608

label parameter, 603–604

line addressing, 756–757

multiline commands

delete, 595–596

next, 592–595

print, 596–597

multiple commands, 534

n command, 592–593

N command, 593–595

negating commands, 599–602

options script file, 755

P command, 596–597

printing

about, 543

line numbers, 555

lines, 554

listing lines, 555–556

replacement via pattern, 606–608

replacing individual words, 607–608

s command, 593–595

script flow, 602–606

in scripts

redirecting output, 609–610

shell script wrappers, 608–609

starting, 755–759

substitution flags, 542–544

testing, 605–606

text strings, 568

utilities

deleting consecutive blank lines, 615–616

deleting leading blank lines, 616

deleting lines, 614–617

deleting trailing blank lines, 616–617

numbering lines, 612–613

printing last lines, 613–614

removing HTML tags, 617–619

spacing files with blanks, 611–612

spacing with double lines, 610–611

select command, 504–505, 676

self-containment, 488

semicolon (;), 121, 122, 127, 275, 276, 534

sendmail, 456

serial cable, 21

set, 140, 393, 662–663

set group ID (SGID), 183, 714

set user ID (SUID), 183, 714

setfacl command, 184–186

setterm -background white, 26

setterm -foreground black, 26

setterm -inversescreen on, 26

setterm options, 25–26

Settings menu (Konsole Terminal Emulator), 41

SGID. See set group ID

sharing files, 182–184

shell

about, 10–11, 113

accessing CLI via graphical terminal emulation, 26–27

accessing CLI via Linux console terminal, 23–26

built-in commands, 127–132

external commands, 127–132

getting to the, 21–45

GNU utilities, 10–11

interactive, 157

non-interactive, 158

parent and child relationships, 117–127

reaching the command line, 21–23

starting scripts with new, 462–463

types, 113–117

using GNOME terminal emulator, 27–36

using Konsole terminal emulator, 36–42

using xterm terminal emulator, 42–45

shell escape character, 292

shell prompt, using, 48–49

shell quoting, 711

shell script, 275–276, 499

shell script wrappers, 608–609

shell scripts, 10–11

shift, 386–388, 390

SIGCONT, 448

SIGHUP, 436, 447

SIGINT, 436–437, 438–439, 442

SIGKILL, 438

signaling, 129, 435–436

signals

about, 129

EXIT, 440

generating, 436–438

Linux, 436

process, 95–96

TERM, 95

trapping, 438–439

SIGQUIT, 436

SIGTERM, 436

SIGTSTP, 437

single parentheses, 332–333

single quotation marks, 347–348

single-user mode, 6

Slackware, 18

sleep, 124, 125–126, 437

smb filesystem, 9

snap command, 225–227

snap containers, 225–227

snapshots, 192, 193

soft link, 70

software

Debian-based systems, 210–220

installing, 209–232

installing from source code, 228–232

installing package management, 209–210

managing using containers, 225–228

Red Hat-based systems, 220–224

X Window, 12

software program management, 5, 6–7

sort, 102–106, 288

sorting data, 102–106

source code, installing software from, 229–232

source command, 490, 493–494

source control. See version control

sourcing function files, 493–494

spacing files with blanks, 611–612

s/pattern/replacement/flags, 756

special character classes, 577

special characters, 569–570, 572–573

split, 652

square brackets, 573–575

square brackets ([]), 573–575

SSD NVMe drives, 194

st, 27

staging area, 725

standard file descriptors, 412–414

standard input, 399–400

startup files, 152, 156–157, 462

STDERR

about, 414

dialog widget output, 507

redirecting, 414–416, 507

redirection

permanent, 417–418

temporary, 416–417

STDIN

about, 412–413

gawk input, 536

redirecting, 418–419

sed input, 533

STDOUT

about, 413–414

gawk output, 536

redirection

alternative file descriptor, 420–421

permanent, 417–418

temporary, 416–417

sed output, 532–533

sticky bit, 183

storage devices, 55

--store option, 26

Stratis filesystem, 193

stream editor, 532

strftime, 653

string comparisons

equality, 315–316

order, 316–318

size, 318–319

string delimiters, 543–544

strings

EOF text, 296–297, 537

format, 646

gawk functions, 650–652

replacement, 606–608

scripting, 278

sed, 568

structured commands

about, 303

gawk

do-while statement, 644–645

if statement, 641–643

for statement, 645

while statement, 643–644

gawk program, 765

zsh, 676

stub functions, 501

subshell

about, 119, 123–127

command substitution, 284

forking, 128

substituting, in vim editor, 241–242

substitution command

about, 593–595, 756

individual word replacement, 607–608

parentheses in, 607

substitution flags, 542–544, 756

sudo, 215, 232, 701

SUID. See set user ID

Sun Microsystems, 193

suppressing command output, 426

swap space, 5

swapping out, 6

symbolic links, 70, 660

sysstat, 229

system accounts, 164

system environment variables

interactive shell, 157

login shell, 152–157

non-interactive shell, 158

system information, 93

system memory, status, 94

system memory management, 5–6

System menu (GNOME 3 desktop), 14

systemd initialization method, 6–7

systime, 653

sysv filesystem, 9

SysVinit (SysV) initialization method, 6

T

tab auto-complete, 69

tab silence, 40

Tabs menu (GNOME Terminal), 35–36

tac command, 602

tail, 80–81, 82

tar, 109–111, 229, 683

tarball, 229, 683

taskbar, 13

tcsh, 114

tcsh shell, 11

tee, 430–431

Tektronix 4014, 42

teletypewriter, 24

temporary directory, 429–430

temporary files, 427–430

temporary redirection, 416–417

TERM signal, 95

terminal (TTY), 86

terminal emulation, 22

Terminal menu (GNOME Terminal), 34–35

Terminator, 27

Terminology, 27

Termite, 27

test command

about, 605–606, 666–667

file comparisons

checking directories, 320–321

checking for file, 322–324

checking for object existence, 321–322

date, 330

default group, 329–330

empty files, 325–326

execute permission, 328

ownership, 328–329

read access, 324

write permission, 326–327

numeric comparisons, 313–314

string comparisons

equality, 315–316

order, 316–318

size, 318–319

test commands, 357–359

testing parameters, 381–382

text

inserting, 608

inserting and appending with sed, 549–551

manipulating, 531–541

removing HTML tags from, 617–619

text menus

creating, 499–505

menu functions, 501–502

menu layout, 499–501

menu logic, 502

text mode virtual consoles, 24

text pattern filters, 545–546

text strings

EOF, 296–297, 537

scripting, 278

sed, 568

textbox widget, 510–511

tilda, 27

tilde (~), 58, 156, 238, 639–640

time

epoch, 652, 712

gawk, functions, 652–653

timestamps

anacron, 461

hourly backups, 692

/tmp directory, 427

top, 94–95

Torvalds, Linus, 4–5

touch, 66

trailing blank lines, 616–617

transform command, 552–553, 758–759

trap, 438–439, 441–442

trapping script exit, 440

trapping signals, 438–439

traps

modifying or removing, 441–443

script exits, 440

tty, 24

TTY. See terminal

2x command, 240

type, 128

typeset command, 675

U

Ubuntu Linux, 19, 660

ufs filesystem, 9

UID. See user ID

$UID, 280–281

umask, 178

umount, 99–100

umsdos filesystem, 9

uncompress command, 109

uninstalling

software with aptitude, 216–217

software with dnf, 223

University of California, Berkeley, 89

Unix-style parameters, 86–89

unset, 144, 160

until command, 359–361

until loops, 363, 676

upgrade command, 215–216, 223–224

upgrading

software with aptitude, 215–216

software with dnf, 223

$USER, 280–281

user accounts

about, 163

creating multiple, 374–375

managing

creating script for, 703–708

determining existence, 698–699

finding files, 702

getting name, 693–696

removing account, 702

removing processes, 699–702

running script for, 708–710

verifying name, 696–698

user ID (UID), 163, 166, 280

user input, 399–404

user variables, 281–283

useradd, 166–169

user-defined variables

about, 140

dash shell, 663–664

gawk, 634–636

setting, 141–144

userdel, 169

usermod, 170, 174

users

adding new, 166–169

creating multiple accounts, 374–375

modifying, 169–173

processes, 699–702

removing, 169

/usr/bin/batch, 455

V

variable arrays, 159–161

${variable} format, 280–281

variables. See also environment variables

command substitution, 283–284

functions

output assignment to, 479–480

using, 480–485

gawk

about, 537–538, 627–636

ARGC, 632

ARGV, 632

array variable assignment, 636–637

assigning in scripts, 634–635

assigning on command line, 635–636

built-in, 628–634, 763–764

data, 631–634

data field, 628

ENVIRON, 632

field and record separator, 628–631

FIELDWIDTHS, 629–630

FNR, 632–633

FS, 628

NF, 632–633

NR, 632–633

OFS, 628–629

ORS, 630

RS, 630

multiple, 356–357

reading list from, 349–350

scripting, 279–284, 382–386

user, 281–283

user-defined

about, 140–144

dash shell, 663–664

gawk, 634–636

/var/spool/anacron, 461

/var/spool/at, 454

version control

about, 723–724

branching, 726

cloning, 726

local repository, 725–726

remote repository, 726

staging area, 725

using Git for, 727

working directory, 724–725

vertical line (|), 287

vfat filesystem, 9, 97, 98

VFS. See Virtual Files System

VG. See volume group

vgcreate, 204–205

vgdisplay, 205

vgextend, 204

vgreduce, 207

vi, 237

View menu

GNOME Terminal, 34

Konsole Terminal Emulator, 39–40

viewing file contents, 77–82

vim

basics, 237–239

copying and pasting, 240–241

editing, 240

installing, 236–237

searching and substituting, 241–242

vim, 532

virtual consoles, 22, 23–26

virtual directories, 53–54

Virtual Files System (VFS), 9

virtual memory, 5, 6

visual mode, 241

Visual Studio for Linux, 242

volume, 193

volume group (VG), 203–207

volume-managing filesystems, 192–194

VT102, 42

VT220, 42

W

w command, 556–557

Wayland, 12

wc command, 286

which, 246

while command

about, 374

format, 357–358

multiple test commands, 358–359

while loop

about, 390, 676

archiving data files script, 684

menu dialog, 516

nested, 361–363

reading files, 403–404

text menus, 504

while statement, 643–644

who, 276, 413

whoeson, 516

widgets libraries

about, 23

kdialog, 517–521

zenity, 521–525

wildcard characters

about, 64, 565–566

cron tables, 458

reading directory using, 352–354

replacement strings, 606–608

wildcard metacharacters, 68, 69

window manager, 23

working directory, 724–725

writable-snapshot, 192

write access, 326–327

writeback mode journaling, 191, 192

writing to file, 759

X

X File System (XFS), 192

X Window system, 12, 516

xargs command, 700–701

Xfce, 17

Xfce4 Terminal, 27

XFS filesystem, 9, 192

X.org package, 12

xterm

about, 27, 42–43

accessing, 43–44

command-line parameters, 44–45

xz utility, 108

Y

Yakuake, 27

yesno widget, 508, 509

yum, 220

Z

z shell. See zsh

zenity

using in scripts, 523–525

widgets, 521–523

zero, 297

ZFS filesystem, 193

zip, 108, 109

zmodload command, 673–674

zsh (zshell)

about, 11, 293

built-in commands

add-in modules, 673

core, 670–672

viewing, adding, removing modules, 673–674

options, 669–670

scripting

calculations, 674–675

functions, 677

mathematical functions, 675–676

mathematical operations, 674–676

structured commands, 676

zsh/mathfunc module, 676

zypper, 220

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright
	Dedication
	About the Authors
	About the Technical Editor
	Acknowledgments
	Introduction
	Who Should Read This Book
	How This Book Is Organized
	Minimum Requirements
	Where to Go from Here

	Part I: The Linux Command Line
	CHAPTER 1: Starting with Linux Shells
	Investigating Linux
	Examining Linux Distributions
	Summary

	CHAPTER 2: Getting to the Shell
	Reaching the Command Line
	Accessing CLI via a Linux Console Terminal
	Accessing CLI via Graphical Terminal Emulation
	Using the GNOME Terminal Emulator
	Using the Konsole Terminal Emulator
	Using the xterm Terminal Emulator
	Summary

	CHAPTER 3: Basic Bash Shell Commands
	Starting the Shell
	Using the Shell Prompt
	Interacting with the Bash Manual
	Navigating the Filesystem
	Listing Files and Directories
	Handling Files
	Managing Directories
	Viewing File Contents
	Summary

	CHAPTER 4: More Bash Shell Commands
	Monitoring Programs
	Monitoring Disk Space
	Working with Data Files
	Summary

	CHAPTER 5: Understanding the Shell
	Investigating Shell Types
	Exploring Parent and Child Shell Relationships
	Understanding External and Built-In Commands
	Summary

	CHAPTER 6: Using Linux Environment Variables
	Exploring Environment Variables
	Setting User-Defined Variables
	Removing Environment Variables
	Uncovering Default Shell Environment Variables
	Setting the PATH Environment Variable
	Locating System Environment Variables
	Learning about Variable Arrays
	Summary

	CHAPTER 7: Understanding Linux File Permissions
	Exploring Linux Security
	Using Linux Groups
	Decoding File Permissions
	Changing Security Settings
	Sharing Files
	Access Control Lists
	Summary

	CHAPTER 8: Managing Filesystems
	Exploring Linux Filesystems
	Working with Filesystems
	Managing Logical Volumes
	Summary

	CHAPTER 9: Installing Software
	Exploring Package Management
	Inspecting the Debian-Based Systems
	The Red Hat–Based Systems
	Managing Software Using Containers
	Installing from Source Code
	Summary

	CHAPTER 10: Working with Editors
	Visiting the vim Editor
	Navigating the nano Editor
	Exploring the Emacs Editor
	Exploring the KDE Family of Editors
	Exploring the GNOME Editor
	Summary

	Part II: Shell Scripting Basics
	CHAPTER 11: Basic Script Building
	Using Multiple Commands
	Creating a Script File
	Displaying Messages
	Using Variables
	Redirecting Input and Output
	Employing Pipes
	Performing Math
	Exiting the Script
	Working through a Practical Example
	Summary

	CHAPTER 12: Using Structured Commands
	Working with the if-then Statement
	Exploring the if-then-else Statement
	Nesting ifs
	Trying the test Command
	Considering Compound Testing
	Working with Advanced if-then Features
	Considering the case Command
	Working through a Practical Example
	Summary

	CHAPTER 13: More Structured Commands
	Looking at the for Command
	Trying the C-Style for Command
	Exploring the while Command
	Using the until Command
	Nesting Loops
	Looping on File Data
	Controlling the Loop
	Processing the Output of a Loop
	Working through a Few Practical Examples
	Summary

	CHAPTER 14: Handling User Input
	Passing Parameters
	Using Special Parameter Variables
	Being Shifty
	Working with Options
	Standardizing Options
	Getting User Input
	Working through a Practical Example
	Summary

	CHAPTER 15: Presenting Data
	Understanding Input and Output
	Redirecting Output in Scripts
	Redirecting Input in Scripts
	Creating Your Own Redirection
	Listing Open File Descriptors
	Suppressing Command Output
	Using Temporary Files
	Logging Messages
	Working through a Practical Example
	Summary

	CHAPTER 16: Script Control
	Handling Signals
	Running Scripts in Background Mode
	Running Scripts without a Hang-up
	Controlling the Job
	Being Nice
	Running like Clockwork
	Working through a Practical Example
	Summary

	Part III: Advanced Shell Scripting
	CHAPTER 17: Creating Functions
	Exploring Basic Script Functions
	Returning a Value from a Function
	Using Variables in Functions
	Investigating Array Variables and Functions
	Considering Function Recursion
	Creating a Library
	Using Functions on the Command Line
	Working Through a Practical Example
	Summary

	CHAPTER 18: Writing Scripts for Graphical Desktops
	Creating Text Menus
	Doing Windows
	Getting Graphic
	Working Through a Practical Example
	Summary

	CHAPTER 19: Introducing sed and gawk
	Manipulating Text
	Looking at the sed Editor Basic Commands
	Working Through a Practical Example
	Summary

	CHAPTER 20: Regular Expressions
	Exploring Regular Expressions
	Defining BRE Patterns
	Trying Out Extended Regular Expressions
	Working Through Some Practical Examples
	Summary

	CHAPTER 21: Advanced sed
	Looking at Multiline Commands
	Holding Space
	Negating a Command
	Changing the Flow
	Replacing via a Pattern
	Placing sed Commands in Scripts
	Creating sed Utilities
	Working Through a Practical Example
	Summary

	CHAPTER 22: Advanced gawk
	Using Variables
	Working with Arrays
	Considering Patterns
	Structured Commands
	Printing with Formats
	Using Built‐in Functions
	Trying Out User‐Defined Functions
	Working Through a Practical Example
	Summary

	CHAPTER 23: Working with Alternative Shells
	Considering the Dash Shell
	Looking at the Dash Shell Features
	Scripting in Dash
	Exploring the zsh Shell
	Viewing Parts of the zsh Shell
	Scripting with zsh
	Working Through a Practical Example
	Summary

	Part IV: Creating and Managing Practical Scripts
	CHAPTER 24: Writing Simple Script Utilities
	Performing Backups
	Managing Account Deletion
	Monitoring Your System
	Summary

	CHAPTER 25: Getting Organized
	Understanding Version Control
	Setting Up Your Git Environment
	Committing with Git
	Summary

	APPENDIX A: Quick Guide to Bash Commands
	Reviewing Built‐In Commands
	Looking at Common Bash Commands
	Assessing Environment Variables

	APPENDIX B: Quick Guide to sed and gawk
	The sed Editor
	The gawk Program

	Index
	End User License Agreement

