WEB SECURITY
FOR DEVELOPERS

REAL THREATS, PRACTICAL DEFENSE

MALCOLM MCDONALD

WEB SECURITY FOR DEVELOPERS

WEB SECURITY
FOR DEVELOPERS

Real Threata, Practical Defenae

by Malcolm McDonald

¢

nho starch

San Francisco

WEB SECURITY FOR DEVELOPERS. Copyright © 2020 by Malcolm McDonald.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-10: 1-59327-994-9
ISBN-13: 978-1-5932-7994-3

Publisher: William Pollock

Executive Editor: Barbara Yien
Production Manager: Laurel Chun
Production Editors: Katrina Taylor and Meg Sneeringer
Cover Illustration: Gina Redman

Interior Design: Octopod Studios

Project Editor: Dapinder Dosanjh
Developmental Editor: Athabasca Witschi
Technical Reviewer: Cliff Janzen
Copyeditor: Sharon Wilkey

Compositor: Danielle Foster

Proofreader: James Fraleigh

Indexer: BIM Creatives, LLC

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.

245 8th Street, San Francisco, CA 94103

phone: 1.415.863.9900; info@nostarch.com

www.nostarch.com
Library of Congress Cataloging-in-Publication Data

Names: McDonald, Malcolm, author.

Title: Web security for developers / Malcolm McDonald.

Description: San Francisco : No Starch Press, Inc., [2020] | Includes
index.

Identifiers: LCCN 2020006695 (print) | LCCN 2020006696 (ebook) | ISBN
9781593279943 (paperback) | ISBN 1593279949 (paperback) | ISBN
9781593279950 (ebook)

Subjects: LCSH: Hacking. | Computer networks--Security measures.

Classification: LCC TK5105.59 .M4833 2020 (print) | LCC TK5105.59 (ebook)
| DDC 005.8/7--dc23

LC record available at https://lccn.loc.gov/2020006695

LC ebook record available at https://lccn.loc.gov/2020006696

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in it.

To my wife Monica, who put up with being
ignored on weekends while I wrote this book,
and my cat Haggis, who contributed content

by walking over my keyboard periodically

About the Author

Malcolm McDonald is the creator of hacksplaining.com, one of the
most popular security training resources for web development on
the internet. He has spent two decades writing code for financial
firms and start-ups, and drew on his experience as a team lead

to produce straightforward, easy-to-grasp tutorials about secu-
rity vulnerabilities and how to protect against them. He lives in
Oakland, CA with his wife and cat.

About the Technical Reviewer

Since the early days of Commodore PET and VIC-20, technology
has been a constant companion (and sometimes an obsession!)

to Cliff Janzen. Cliff is grateful to have had the opportunity to
work with and learn from some of the best people in the industry,
including Malcolm and the fine people at No Starch. Cliff spends
a majority of the work day managing and mentoring a great team
of security professionals, but strives to stay technically relevant by
tackling everything from security policy reviews to penetration
testing. He feels lucky to have a career that is also his favorite
hobby and a wife who supports him.

BRIEF CONTENTS

Acknowledgments xvii
INfrodUCHON . . o o Xix
Chapter 1: Let's Hack aWebsite 1
PART I THEBASICS. . . . oottt ittt i ittt tteteneenennens 5
Chapter 2: How the Internet Works 7
Chapter 3: How Browsers Work 15
Chapter 4: How Web Servers Work 23
Chapter 5: How Programmers Work o 35
PART I: THETHREATSottt ittt ittt ttnteatenennennss 47
Chapter 6: Injection Aftacks 49
Chapter 7: Cross-Site Scripting Aftacks. 65
Chapter 8: Cross-Site Request Forgery Attacks. 75
Chapter 9: Compromising Authentication 81
Chapter 10: Session Hijacking 93
Chapter 11: Permissions. 103
Chapter 12: Information Leaks. 113
Chapter 13: Encryption 117
Chapter 14: ThirdParty Code 131
Chapter 15: XML Aftacks 145
Chapter 16: Don’t Be an ACCESSOTY . . .« ot vttt oo 153
Chapter 17: Denial-of-Service Aftacks. 163
Chapter 18: Summing Up.o 169

CONTENTS IN DETAIL

ACKNOWLEDGMENTS xvii
INTRODUCTION xix
About This Booko XX
Who Should Read This Book XX
A Brief History of the Internet. XX
Scripting inthe Browser. XXi
A New Challenger Entersthe Arena XXi
Machines for Writing HTML xxii
ASeriesof Tubes xxii
What to Worry About First xxiii
What's in This Book xxiii
1
LET’'S HACK A WEBSITE 1
Software Exploits and the Dark Web 1
How to Hack a Website 3
PART I: THE BASICS 5
2
HOW THE INTERNET WORKS 7
The Internet Protocol Suiteo 7
Internet Protocol Addresses. 8
The Domain Name System 9
Application Layer Protocols 9
HyperText Transfer Protocol 10
Stateful Connections. 13
Encryplion. . ..o 14
SUMMAIY . . o 14
3
HOW BROWSERS WORK 15
Web Page Rendering. 15
The Rendering Pipeline: An Overview 16
The Document Object Model 17

Styling Information 17

JavaScript . o

Before and After Rendering: Everything Else the Browser Does.

SUMMAIY © o e e e

4

HOW WEB SERVERS WORK

Static and Dynamic Resources oo

Static Resources
URLResolution oo
Content Delivery Networks.
Content Management Systems

Dynamic Resources
Templates.
Databases
Distributed Caches
Web Programming languages

SUMMAIY « o oo

5

HOW PROGRAMMERS WORK

Phase 1: Designand Analysis

Phase 2: Writing Code
Distributed vs. Centralized Version Control.
Branching and MergingCode

Phase 3: Pre-Release Testing o
Coverage and Continuous Integration
Test Environments

Phase 4: The Release Process i
Options for Standardized Deployment During Releases
The Build Process i
Database Migration Scripts

Phase 5: PostRelease Testing and Observation
Penetration Testing
Monitoring, Logging, and Error Reporting

Dependency Management

SUMMAIY o oo

PART II:THE THREATS

6

INJECTION ATTACKS

SQLINjection. . ..o
WhatIs SQL2.
Anatomy of a SQL Injection Attack
Mitigation 1: Use Parameterized Statements.
Mitigation 2: Use Object-Relational Mapping.
Bonus Mitigation: Use Defense inDepth.

xii Contents In Detail

23

24
24
24
26
26
27
28
28
30
31
34

35

36
37
37
38
38
39
39
40
41
42
43
43
44
44
45
45

47

Command Injection 56

Anatomy of a Command Injection Attack L. 56
Mitigation: Escape Control Characters. 57
Remote Code Execution 59
Anatomy of a Remote Code Execution Attack 59
Mitigation: Disable Code Execution During Deserialization 59
File Upload Vulnerabilities. 60
Anatomy of a File Upload Attack 60
Mitigations.o 61
SUMMAIY 63
7
CROSS-SITE SCRIPTING ATTACKS 65
Stored Cross-Site Scripting Atfacks 66
Mitigation 1: Escape HTML Characters 67
Mitigation 2: Implement a Content Security Policy. 69
Reflected Cross-Site Scripting Attacks 70
Mitigation: Escape Dynamic Content from HTTP Requests. 71
DOM-Based Cross-Site Scripting Aftacks 71
Mitigation: Escaping Dynamic Content from URI Fragments 73
SUMMAIY o 73
8
CROSS-SITE REQUEST FORGERY ATTACKS 75
Anatomy of a CSRF Attack 76
Mitigation 1: Follow REST Principles. 76
Mitigation 2: Implement Anti-CSRF Cookies.o 77
Mitigation 3: Use the SameSite Cookie Attribute 78
Bonus Mitigation: Require Reauthentication for Sensitive Actions 79
SUMMArY . .ot 79
9
COMPROMISING AUTHENTICATION 81
Implementing Authentication L 82
HTTP-Native Authentication 82
Non-Native Authentication. 83
Brute-Force Attacks 83
Mitigation 1: Use Third-Party Authentication 84
Mitigation 2: Integrate with Single Sign-On. 84
Mitigation 3: Secure Your Own Authentication System 85
Requiring Usernames, Email Address, orBoth. 85
Requiring Complex Passwords 87
Securely Storing Passwords 88
Requiring Multifactor Authentication 89
Implementing and Securing the Logout Function 90
Preventing User Enumeration o 91
SUMMArY . .o 92

Contents In Detail xiii

10

SESSION HIJACKING 93
How Sessions Worko 94
Server-Side Sessions 94
Client-Side Sessions.ottt 96
How Attackers Hijack Sessions i 97
Cookie Theft. o 97
Session Fixation 99
Taking Advantage of Weak SessionIDs. 100
SUMMAIY .« o oo 100
11
PERMISSIONS 103
Privilege Escalation 104
Access Control. . ..o 104
Designing an Authorization Model 105
Implementing Access Control 106
Testing Access Control. 107
Adding Audit Trailso 107
Avoiding Common Oversights 108
Directory Traversalo o 108
Filepaths and Relative Filepaths 108
Anatomy of a Directory Traversal Attack 109
Mitigation 1: Trust Your Web Server 110
Mitigation 2: Use a Hosting Service 110
Mitigation 3: Use Indirect File References., 11
Mitigation 4: Sanitize File References, 11
SUMMAIY .« o oo 112
12
INFORMATION LEAKS 113
Mitigation 1: Disable Telltale Server Headers 114
Mitigation 2: Use Clean URLs 114
Mitigation 3: Use Generic Cookie Parameters. 114
Mitigation 4: Disable Client-Side Error Reporting 115
Mitigation 5: Minify or Obfuscate Your JavaScript Files 115
Mitigation é: Sanitize Your Client-Side Files 116
Stay on Top of Security Advisories 116
SUMMAIY .« o oo 116
13
ENCRYPTION 117
Encryption in the Internet Protocol. 118
Encryption Algorithms, Hashing, and Message Authentication Codes 118
The TLS Handshake 120
Enabling HTTPS . . . o o 122
Digital Certificates. 122
Obtaining a Digital Certificate 123
Installing a Digital Certificate 125

xiv Contents In Detail

Attacking HTTP (and HTTPS) i 127

Wireless Routers 128

WiFi Hotspotfs 128

Internet Service Providers 128

Government AgENCIES v vttt 129

SUMMAIY . .t 129
14

THIRD-PARTY CODE 131

Securing Dependencies 132

Know What Code You Are Running 132

Be Able to Deploy New Versions Quickly. 134

Stay Alert to Security Issues 135

Know WhentoUpgrade 136

Securing Configuration. 136

Disable Default Credentials 137

Disable Open Directory Listings 137

Protect Your Configuration Information. 137

Harden Test Environments 138

Secure Administrative Frontendso 138

Securing the Services That You Use 138

Protect Your APl Keys o 139

Secure Your Webhooks 139

Secure Content Served by Third Parties 140

Services as an Attack Vector L 140

Be Wary of Malvertising 141

Avoid Malware Delivery 141

Use a Reputable Ad Platform 142

Use SafeFrame 142

Tailor Your Ad Preferences. 143

Review and Report Suspicious Ads 143

SUMMAIY . . o 143
15

XML ATTACKS 145

The Uses of XMLo 146

Validating XMLo 147

Document Type Definitions, 147

XMLBombs . ..o 148

XML External Entity Aftacks 149

How Hackers Exploit External Entities 150

Securing Your XML Parser.o 150

Python . ..o 151

RUby . .o 151

NOde.[S . . oot 151

Java 151

NET . 151

Other Considerations 152

SUMMANY . 152

Contents In Detail XV

16

DON’'T BE AN ACCESSORY

Email Fraud.o
Implement a Sender Policy Framework.
Implement DomainKeys Identified Mail
Securing Your Email: Practical Steps

Disguising Malicious Links in Email. L
OpenRedirects.o
Preventing Open Redirects
Other Considerationsttt

Clickjacking
Preventing Clickjacking o

Server-Side Request Forgery
Protecting Against Server-Side Forgery.,

Botnets
Protecting Against Malware Infection.

SUMMAIY .« o oo

17

DENIAL-OF-SERVICE ATTACKS

Denial-of-Service Attack Types
Internet Control Message Protocol Attacks
Transmission Control Protocol Attacks
Application Layer Attacks.
Reflected and Amplified Attacks
Distributed Denial-of-Service Attacks
Unintentional Denial-of-Service Attacks.

Denial-of-Service Attack Mitigation.
Firewalls and Intrusion Prevention Systems
Distributed Denial-of-Service Protection Services
BuildingforScale

SUMMAIY © o

18

SUMMING UP

INDEX

Xvi

Contents In Detail

153

154
155
155
156
156
157
157
158
158
158
159
160
160
160
161

163

164
164
164
165
165
165
166
166
166
167
167
168

169

173

ACKNOWLEDGMENTS

I would like to thank all the folks at No Starch Press who massaged my
words into some sort of readable form: Katrina, Laurel, Barbara, Dapinder,
Meg, Liz, Matthew, Annie, Jan, Tyler, and Bill. Thanks to my colleagues
Dmitri, Adrian, Dan, JJ, Pallavi, Mariam, Rachel, Meredith, Zo, and Charlotte
for constantly asking “is it done yet?” Thanks to Hilary for proofreading
the first chapter! Thanks to Robert Abela at NetSparker for setting up the
website sponsorship. I'm grateful to all those who pointed out typos on the
website, you are the real heroes: Vinney, Jeremy, Cornel, Johannes, Devui,
Connor, Ronans, Heath, Trung, Derek, Stuart, Tim, Jason, Scott, Daniel,
Lanhowe, Bojan, Cody, Pravin, Gaurang, Adrik, Roman, Markus, Tommy,
Daria, David, T, Alli, CryOgenic, Omar, Zeb, Sergey, Evans, and Marc. Thanks
to my Mum and Dad for finally recognizing that, yes, I have a real job now
that I have written a book, and I don’t just “do stuff with computers.” And
thanks to my brothers Scott and Ali, who are sadly not published authors,
despite all their fancy PhDs and such. Finally, one last thanks to my wife
Monica, who has been extraordinarily patient and supportive throughout
the writing of the book. And thanks to Haggis for mostly staying away from
the keyboard and only occasionally puking on the couch.

INTRODUCTION

The web is a wild place. It’s easy to get the
impression that the internet was designed

very deliberately by experts and that every-
thing works as it does for a good reason. In fact,
the evolution of the internet has been rapid and hap-
hazard, and the things we do on the network today go
well beyond what the original inventors imagined.

As a result, securing your website can seem like a daunting proposition.
Websites are a unique type of software that is available to millions of users
immediately upon release, including an active and motivated community
of hackers. Big companies routinely suffer security failures, and new data
breaches are announced every week. How is a lone web developer supposed
to protect themselves in the face of this?

XX

About This Book

The big secret of web security is that the number of web vulnerabilities is
actually rather small—coincidentally, about the size to fit in a single book—
and these vulnerabilities don’t change much from year to year. This book
you will teach you every key threat you need to know about, and I will break
down the practical steps you should take to defend your website.

Who Should Read This Book

If you are a web developer who is just starting out in their career, this book
is an ideal hitchhiker’s guide to security on the internet. Whether you have
just finished a computer science qualification, are fresh out of bootcamp, or
are self-taught, I recommend you read this book cover to cover. Everything
in this book is essential knowledge, and it is explained in the most straight-
forward manner with clear examples. Preparing fully now for the threats
you will face will save you a lot of trouble down the line.

If you are a more experienced programmer, this book will prove useful
too. You can always benefit from brushing up on your security knowledge,
so use this book to fill in any gaps you may have. Treat it like a reference
book and dip into the chapters that seem interesting. You don’t always know
what you don’t know! Seasoned programmers like yourself have a respon-
sibility to lead their team by example, and for web developers, that means
following security best practices.

You will notice that this book isn’t specific to any particular program-
ming language (though I make various security recommendations for the
major languages as needed). A sound understanding of web security will
benefit you, no matter which language you choose to program in. Many
programmers will use a variety of languages across the course of their
careers, so it’s better to learn the principles of web security than to focus
too much on individual libraries.

A Brief History of the Internet

Introduction

Before I lay out the contents of the book, it will be useful to recap how the
internet arrived at its current state. A lot of clever engineers contributed
to the explosive growth of the internet, but as with most software projects,
security considerations often took a back seat while features were added.
Understanding how security vulnerabilities crept in will give you the con-
text you'll need when learning how to fix them.

The World Wide Web was invented by Tim Berners-Lee while working
at the European Organization for Nuclear Research (CERN). The research
conducted at CERN consists of smashing subatomic particles together in
the hope they will split into smaller subatomic particles, thus revealing the
essential fabric of the universe, with the understanding that such research
has the potential to create black holes right here on Earth.

Berners-Lee, apparently less interested than his peers in bringing about
an end to the universe, spent his time at CERN inventing the internet as
we know it today, as a means of sharing data between universities about
their findings. He created the first web browser and the first web server,
and invented HyperText Markup Language (HTML) and the HyperText
Transfer Protocol (HTTP). The world’s first website went online in 1993.

Early web pages were text-only. The first browser capable of displaying
inline images was Mosaic, created at the National Center for Supercomputing
Applications. The creators of Mosaic eventually went on to join Netscape
Communications, where they helped to create Netscape Navigator, the first
widely used web browser. In the early web, most pages were static, and traf-
fic was transmitted without encryption. A simpler time!

Scripting in the Browser

Fast-forward to 1995, and a recent hire of Netscape Communications named
Brendan Eich took 10 days to invent JavaScript, the first language capable
of being embedded in web pages. During development, the language was
called Mocha, then renamed LiveScript, then renamed again to JavaScript,
before being eventually formalized as ECMAScript. Nobody liked the name
ECMAScript, least of all Eich, who claimed it sounded like a skin disease; so
everyone continued to call it JavaScript except in the most formal settings.

JavaScript’s original incarnation combined the clumsy naming conven-
tions of the (otherwise unrelated) Java programming language, the struc-
tured programming syntax of C, the obscure prototype-based inheritance
of Self, and a nightmarish type-conversion logic of Eich’s own devising. For
better or worse, JavaScript became the de facto language of web browsers.
Suddenly, web pages were interactive things, and a whole class of security
vulnerabilities emerged. Hackers found ways to inject JavaScript code into
pages by using cross-site scripting attacks, and the internet became a much
more dangerous place.

A New Challenger Enters the Arena

The first real competitor to Netscape Navigator was Microsoft’s Internet
Explorer. Internet Explorer had a couple of competitive advantages—it was
free and came preinstalled on Microsoft Windows. Explorer rapidly became
the world’s most popular browser, and the Explorer icon became “the inter-
net button” for a generation of users learning how to navigate the web.
Microsoft’s attempts to “own” the web led it to introduce propri-
etary technology like ActiveX into the browser. Unfortunately, this led to
an uptick in malware—malicious software that infects users’ machines.
Windows was (and remains) the primary target for computer viruses, and
the internet proved an effective delivery mechanism.
Internet Explorer’s dominance wouldn’t be challenged for many
years, until the launch of Mozilla’s Firefox, and then by Chrome, a snazzy
new browser created by the plucky young search startup Google. These
newer browsers accelerated the growth and innovation in internet stan-
dards. However, by now, hacking was becoming a profitable business, and

Introduction XXi

xxii

Introduction

any security flaws were being exploited as soon as they were discovered.
Securing their browsers became a huge priority for vendors, and website
owners had to keep on top of the latest security news if they wanted to pro-
tect their users.

Machines for Writing HTML

Web servers evolved at the same rapid clip as browser technology. In the
first days of the internet, hosting websites was a niche hobby practiced by
academics. Most universities ran the open source operating system Linux.
In 1993, the Linux community implemented the Common Gateway Interface
(CGI), which allowed webmasters to easily create websites consisting of inter-
linked, static HTML pages.

More interestingly, CGI allowed HTML to be generated by scripting
languages like Perl or PHP—so a site owner could dynamically create pages
from content stored in a database. PHP originally stood for Personal Home
Page, back when the dream was that everyone would run their own web
server, rather than uploading all their personal information to a social
media behemoth with a questionable data-privacy policy.

PHP popularized the notion of the template file: HTML with embed-
ded processing tags, which could be fed through the PHP runtime engine.
Dynamic PHP websites (like the earliest incarnations of Facebook) flour-
ished across the internet. However, dynamic server code introduced a whole
new category of security vulnerabilities. Hackers found novel ways to run
their own malicious code on the server by using injection attacks, or to
explore the server’s filesystem by using directory traversal.

A Series of Tubes

The constant reinvention of web technology means that much of today’s
internet is powered by what we would consider “old” technology. Software
tends to reach a point where it works enough to be useful, then falls into
“maintenance” mode, where changes are made only if absolutely neces-
sary. This is particularly true of web servers, which need to be online 24/7.
Hackers scan the web for vulnerable sites running on older technology,
since they frequently exhibit security holes. We are still fixing security issues
first discovered a decade ago, which is why in this book I describe every
major security flaw that can affect websites.

At the same time, the internet continues to grow faster than ever! The
trend for internet-enabling everyday devices like cars, doorbells, refrigera-
tors, light bulbs, and cat-litter trays has opened a new vector for attacks. The
simpler the appliance connecting to the Internet of Things, the less likely it
is to have auto-updating security features. This has introduced huge num-
bers of unsecured internet nodes that provide a rich hosting environment
for botnets, malicious software agents that can be installed and controlled
remotely by hackers. This gives an attacker a lot of potential firepower if
they target your site.

What to Worry About First

A web developer can easily be discouraged by the difficulties involved with
properly securing a website. You should have hope, though: an army of secu-
rity researchers are out there bravely discovering, documenting, and fixing
security flaws. The tools you need to secure your site are freely available and
generally easy to use.

Learning about the most common security vulnerabilities, and knowing
how to plug them, will protect your systems against 99 percent of attacks.
There will always be ways for a very technical adversary to compromise your
system, but unless you are running an Iranian nuclear reactor or a US polit-
ical campaign, this thought shouldn’t keep you up at night.

What’s in This Book

The book is divided into two parts. Part I covers the nuts and bolts of how
the internet works. Part II delves into specific vulnerabilities you need to
protect against. The content is as follows:

Chapter 1: Let’s Hack a Website
In this introductory chapter, you will learn how easy it is to hack a web-
site. Hint: it’s really easy, so you did well to buy this book.

Chapter 2: How the Internet Works
The “tubes” of the internet run on the Internet Protocol, a series of net-
work technologies that allow computers across the world to communi-
cate seamlessly. You will review TCP, IP addresses, domain names, and
HTTP, and see how data can be passed securely on the network.

Chapter 3: How Browsers Work
Users interact with your website via the browser, and many security vul-
nerabilities manifest there. You will learn how a browser renders a web
page, and how JavaScript code is executed in the browser security model.

Chapter 4: How Web Servers Work
Most of the code you will write for your website will run in a web server
environment. Web servers are a primary target for hackers. This chapter
describes how they serve static content, and how they use dynamic con-
tent like templates to incorporate data from databases and other systems.
You will also dip into some of the major programming languages used
for web programming, and review the security considerations of each.

Chapter 5: How Programmers Work
This chapter explains how you should go about the process of writing
website code, and the good habits you can develop to reduce the risk
of bugs and security vulnerabilities.

Introduction xxiii

XXiv

Introduction

Chapter 6: Injection Attacks
We will begin our survey of website vulnerabilities by looking at one
of the nastiest threats you will encounter: a hacker injecting code and
executing it on your server. This often happens when your code inter-
faces with a SQL database or the operating system; or the attack might
consist of remote code injected into the web server process itself. You
will also see how file upload functions can allow a hacker to inject mali-
cious scripts.

Chapter 7: Cross-Site Scripting Attacks
This chapter reviews attacks used to smuggle malicious JavaScript code
into the browser environment, and how to protect against them. There
are three distinct methods of cross-site scripting (stored, reflected, and
DOM-based), and you will learn how to protect against each.

Chapter 8: Cross-Site Request Forgery Attacks
You will see how hackers use forgery attacks to trick your users into per-
forming undesirable actions. This is a common nuisance on the inter-
net, and you need to protect your users accordingly.

Chapter 9: Compromising Authentication
If users sign up to your website, it’s essential that you treat their accounts
securely. You will review various methods used by hackers to circumvent
the login screen, from brute-force guessing of passwords to user enu-
meration. You will also review how to securely store user credentials in
your database.

Chapter 10: Session Hijacking
You will see how your users can have their accounts hijacked after they
have logged in. You will learn how to build your website and treat your
cookies securely to mitigate this risk.

Chapter 11: Permissions
Learn how you can prevent malicious actors from using privilege escala-
tion to access forbidden areas of your site. In particular, if you reference
files in your URLSs, hackers will try to use directory traversal to explore
your filesystem.

Chapter 12: Information Leaks
You might well be advertising vulnerabilities in your website by leaking
information. This chapter tells you how to stop that immediately.

Chapter 13: Encryption
This chapter shows how to properly use encryption and explains why it
is important on the internet. Be prepared for some light mathematics.

Chapter 14: Third-Party Code
You will learn how to manage vulnerabilities in other people’s code.
Most of the code you run will be written by someone else, and you
should know how to secure it!

Chapter 15: XML Attacks
Your web server probably parses XML, and could be vulnerable to the
attacks described in this chapter. XML attacks have been a consistently
popular attack vector among hackers for the past couple of decades,
so beware!

Chapter 16: Don’t Be an Accessory
You might unwittingly be acting as an accessory to hacking attempts
on others, as you will see in this chapter. Be a good internet citizen by
making sure you close these security loopholes.

Chapter 17: Denial-of-Service Attacks
In this chapter, I will show you how massive amounts of network traffic
can take your website offline as part of a denial-of-service attack.

Chapter 18: Summing Up
The last chapter is a cheat sheet that reviews the key elements of secu-
rity you learned throughout the book, and recaps the high-level prin-
ciples you should apply when being security-minded. Learn it by heart
and recite the lessons before you go to sleep each night.

Introduction XXV

LET’S HACK A WEBSITE

Z- This book will teach you the essential
security knowledge you need to be an
effective web developer. Before getting
started on that, it’s a useful exercise to see how
you would go about attacking a website. Let’s put our-
selves in the shoes of our adversary to see what we are
up against. This chapter will show you how hackers
operate and how easy it is to get started hacking.

Software Exploits and the Dark Web

Hackers take advantage of security holes in software such as websites. In
the hacking community, a piece of code that illustrates how to take advan-
tage of a security flaw is called an exploit. Some hackers—the good guys,

2

Chapter 1

commonly called white hat hackers—try to discover security holes for fun,
and will advise software vendors and website owners of the exploits before
making them public. Such hackers often collect a financial reward for
doing so.

Responsible software vendors try to produce patches for zero-day exploits
(exploits that have been publicized for less than a day, or not publicized at
all) as soon as possible. However, even when a software vendor releases a
patch to fix a software vulnerability, many instances of the vulnerable soft-
ware will remain unpatched for some time.

Less ethically minded hackers—black hats—hoard exploits to maxi-
mize the time windows during which they can use vulnerabilities, or will
even sell the exploit code on black markets for bitcoin. On today’s internet,
exploits get rapidly weaponized and incorporated into command line tools
widely used by the hacking community.

Solid financial incentives exist for black-hat hackers who use these
exploitation tools. Black markets for stolen credit card details, hacked user
accounts, and zero-day exploits exist on the dark web, websites available only
via special network nodes that anonymize incoming IP addresses. Dark web-
sites, like the one pictured in Figure 1-1, do a brisk business in stolen infor-
mation and compromised servers.

& Welcome to Online CC Store CvwUnion.ws

@ - REGISTRATION FEE - 50% (funds available for purchases)

sniffers “as

The Rules may be changed anytime without notification of members.

With all questions send ticket to support.
Follow the news. Good luck!

We accept Bitcoin / Litecoin / Dashcoin

We made some changes to the shop algorithms. It will be convenient for you.

Figure 1-1: Hi, yes, | would like to buy some stolen credit card numbers since you are
clearly a high-level Russian hacker and not an FBI agent hanging around the dark web
as part of a sting operation.

Hacking tools that can take advantage of the latest exploits are freely
available and easy to set up. You don’t even have to visit the dark web, because
everything you need is a quick Google search away. Let’s see how.

How to Hack a Website

It’s remarkably easy to get started hacking. Here’s how to do it:

1.

Fle Edit View Search Terminal Help

Do a Google search for kali linux download. Kali Linux is a version
of the Linux operating system specifically built for hackers. It comes
preinstalled with more than 600 security and hacking tools. It’s com-
pletely free and is maintained by a small team of professional security
researchers at Offensive Security.

Install a virtual container on your computer. Virtual containers are host
environments that allow you to install other operating systems on your
computer, without overwriting your current operating system. Oracle’s
VirtualBox is free to use and can be installed on Windows, macOS, or
Linux. This should allow you to run Kali Linux on your computer with-
out too much configuration.

Install Kali Linux in the container. Download and double-click the
installer to get started.

Start up Kali Linux and open the Metasploit framework. Metasploit, as
shown in Figure 1-2, is the most popular command line tool for testing
the security of websites and checking for vulnerabilities.

Terminal e®o0

loits - 986 iliary - 300 post

]
. :]
587 payloads - 40 encoders - 10 n |
Free Metasploit Pro trial: http://r-7.co/trymsp]

Figure 1-2: Hacking can be achieved only with sufficient ASCll-art cows.

Run the wmap utility from the Metasploit command line on a target web-
site and see what vulnerabilities you can find. The output should look
something like Figure 1-3. The wmap utility will scan a list of URLs to test
whether the web server exhibits security flaws. Make sure you run the
utility only on a website you own!

let's Hack a Website 3

4

Chapter 1

File Edit View Search Terminal Help

+ -- --=[Free Metasploit Pro trial: http://r-7.co/trymsp]

msf > load wmap

= et [] metasploit.com 2012
[*] Successfully loaded plugin: wmap
msf > wmap sites -a https://50.63.202.8

Site crea :

msf = wmap_run -e /root/.wmap
[*] Using profile /root/.wmap.
[-] NO WMAP NODES DEFINED. Executing local modules

[*] Loading wmap modules...
Figure 1-3: Hacking engaged—expect a visit from law enforcement imminently.

6. Pick an exploit in the Metasploit database that will permit you to take
advantage of the vulnerability.

At this point, we will stop our hacking tutorial, because the next step
would likely constitute a felony. However, the main point should be appar-
ent: it’s really easy to start hacking websites! Metasploit and Kali Linux are
used by real-world hackers and can be set up in a few minutes. They don’t
require any particular expertise to use, yet they are phenomenally good at
identifying vulnerabilities in websites and exploiting them.

This is the reality we are dealing with as web developers today. The
websites we build are available to anyone with an internet connection, as
are the hacking tools that can be used to target them. Don’t panic, though!
By the end of the book, you will (hopefully) know as much about security
as the hackers themselves, and be fully prepared for when they attack your
site. So, let’s get started by discussing the building blocks of the internet
protocol suite.

SSSSSSSSS

HOW THE INTERNET WORKS

To become an expert on web security, you
need a firm grasp of the internet’s under-
lying web technologies and protocols. This
chapter examines the Internet Protocol Suite,
which dictates how computers exchange data over the
web. You’ll also learn about stateful connections and

encryption, which are key elements of the modern web. I'll highlight where
security holes tend to appear along the way.

The Internet Protocol Suite

In the early days of the internet, data exchange wasn’t reliable. The first
message sent over the Advanced Research Projects Agency Network (ARPANET),
the predecessor to the internet, was a LOGIN command destined for a remote
computer at Stanford University. The network sent the first two letters,

L0, and then crashed. This was a problem for the US military, which was

Chapter 2

looking for a way to connect remote computers so that they could continue
to exchange information even if a Soviet nuclear strike took various parts of
the network offline.

To address this problem, the network engineers developed the Transmission
Control Protocol (TCP) to ensure a reliable exchange of information between
computers. TCP is one of about 20 network protocols that are collectively
referred to as the internet protocol suite. When a computer sends a message
to another machine via TCP, the message is split into data packets that are
sent toward their eventual destination with a destination address. The com-
puters that make up the internet push each packet toward the destination
without having to process the whole message.

Once the recipient computer receives the packets, it assembles them
back into a usable order according to the sequence number on each packet.
Every time the recipient receives a packet, it sends a receipt. If the recipient
fails to acknowledge receipt of a packet, the sender resends that packet, pos-
sibly along a different network path. In this way, TCP allows computers to
deliver data across a network that is expected to be unreliable.

TCP has undergone significant improvements as the internet has grown.
Packets are now sent with a checksum that allows recipients to detect data
corruption and determine whether packets need to be resent. Senders also
preemptively adjust the rate at which they send data according to how fast
it’s being consumed. (Internet servers are usually magnitudes more power-
ful than the clients that receive their messages, so they need to be careful
not to overwhelm the client’s capacity.)

TCP remains the most common protocol because of its delivery guarantees, but
nowadays, several other protocols are also used over the internet. The User Datagram
Protocol (UDP), for instance, is a newer protocol that deliberately allows packets to
be dropped so that data can be streamed at a constant rate. UDP is commonly used for
streaming live video, since consumers prefer a few dropped frames over having their
Jfeed delayed when the network gets congested.

Internet Protocol Addresses

Data packets on the internet are sent to Internet Protocol (IP) addresses, num-
bers assigned to individual internet-connected computers. Each IP address
must be unique, so new IP addresses are issued in a structured fashion.

At the highest level, the Internet Corporation for Assigned Names and
Numbers (ICANN) allots blocks of IP addresses to regional authorities. These
regional authorities then grant the blocks of addresses to internet service pro-
viders (ISPs) and hosting companies within their region. When you connect
your browser to the internet, your ISP assigns your computer an IP address
that stays fixed for a few months. (ISPs tend to rotate IP addresses for clients
periodically.) Similarly, companies that host content on the internet are
assigned an IP address for each server they connect to the network.

IP addresses are binary numbers, generally written in IP version 4
(IPv4) syntax, which allows for 9% (4,294,967,296) addresses. Google’s
domain name server, for instance, has the address 8.8.8.8. Because IPv4
addresses are getting used up at a rate that isn’t sustainable, the internet is
shifting to IP version 6 (IPv6) addresses to allow for more connected devices,
represented as eight groups of four hexadecimal digits separated by colons
(for example: 2001:0db8:0000:0042:0000:8a2e:0370:7334).

The Domain Name System

Browsers and other internet-connected software can recognize and route
traffic to IP addresses, but IP addresses aren’t particularly memorable for
humans. To make website addresses friendlier to users, we use a global
directory called the Domain Name System (DNS) to translate human-readable
domains like example.com to IP addresses like 93.184.216.119. Domain names
are simply placeholders for IP addresses. Domain names, like IP addresses,
are unique, and have to be registered before use with private organizations
called domain registrars.

When browsers encounter a domain name for the first time, they use a
local domain name server (typically hosted by an ISP) to look it up, and then
cache the result to prevent time-consuming lookups in the future. This
caching behavior means that new domains or changes to existing domains
take a while to propagate on the internet. Exactly how long this propaga-
tion takes is controlled by the time-to-live (T'TL) variable, which is set on the
DNS record and instructs DNS caches when to expire the record. DNS cach-
ing enables a type of attack called DNS poisoning, whereby a local DNS cache
is deliberately corrupted so that data is routed to a server controlled by an
attacker.

In addition to returning IP addresses for particular domains, domain
name servers host records that can describe domain aliases via canonical name
(CNAME) records that allow multiple domain names to point to the same IP
address. DNS can also help route email by using mail exchange (MX) records.
We’ll examine how DNS records can help combat unsolicited email (spam)
in Chapter 16.

Application Layer Protocols

TCP allows two computers to reliably exchange data on the internet, but it
doesn’t dictate how the data being sent should be interpreted. For that to
happen, both computers need to agree to exchange information through
another, higher-level protocol in the suite. Protocols that build on top of
TCP (or UDP) are called application layer protocols. Figure 2-1 illustrates how
application layer protocols sit above TCP in the internet protocol suite.
The lower-level protocols of the internet protocol suite provide basic
data routing over a network, while the higher-level protocols in the applica-
tion layer provide more structure for applications exchanging data. Many
types of applications use TCP as a transport mechanism on the internet.

How the Internet Works 9

10

Chapter 2

(3]

For example, emails are sent using the Simple Mail Transport Protocol
(SMTP), instant messaging software often uses the Extensible Messaging
and Presence Protocol (XMPP), file servers make downloads available
via the File Transfer Protocol (FTP), and web servers use the HyperText
Transfer Protocol (HTTP). Because the web is our chief focus, let’s look
at HTTP in more detail.

Application layer [DNS FTP HTTP IMAP POP SMTP SSH XMPP

Transport layer TCP uDP
Internet layer IPv4 IPvé
Network layer ARP MAC NDP OSPF PPP

Figure 2-1: The various layers that make up the internet protocol suite

HyperText Transfer Protocol

Web servers use the Hyperlext Transfer Protocol (HTTP) to transport web
pages and their resources to user agents such as web browsers. In an HTTP
conversation, the user agent generates requests for particular resources. Web
servers, expecting these requests, return responses containing either the
requested resource, or an error code if the request can’t be fulfilled. Both
HTTP requests and responses are plaintext messages, though they’re often
sent in compressed and encrypted form. All of the exploits described in this
book use HTTP in some fashion, so it’s worth knowing how the requests
and responses that make up HTTP conversations work in detail.

HTTP Requests

An HTTP request sent by a browser consists of the following elements:
Method Also known as a verb, this describes the action that the user
agent wants the server to perform.

Universal resource locator (URL) This describes the resource being
manipulated or fetched.

Headers These supply metadata such as the type of content the user
agent is expecting or whether it accepts compressed responses.

Body This optional component contains any extra data that needs to
be sent to the server.

Listing 2-1 shows an HTTP request.

GET® http://example.com/®

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_13_6)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36
Accept: text/html,application/xhtml+xml,application/xml; */*

Accept-Encoding: gzip, deflate
Accept-Language: en-GB,en-US;q=0.9,en;q=0.8

Listing 2-1: A simple HTTP request

The method @ and the URL @ appear on the first line. These are fol-
lowed by HTTP headers on separate lines. The User-Agent header © tells the
website the type of browser that is making the request. The Accept header @
tells the website the type of content the browser is expecting.

Requests that use the GET method—called GET requests for short—are the
most common type of request on the internet. GET requests fetch a particular
resource on the web server, identified by a specific URL. The response to a
GET request will contain a resource: perhaps a web page, an image, or even the
results of a search request. The example request in Listing 2-1 represents an
attempt to load the home page of example.com, and would be generated when
a user types example.com in the browser’s navigation bar.

If the browser needs to send information to the server, rather than just
fetch data, it typically uses a POST request. When you fill out a form on a web
page and submit it, the browser sends a POST request. Because POST requests
contain information sent to the server, the browser sends that information
in a request body, after the HTTP headers.

In Chapter 8, you’ll see why it’s important to use POST rather than GET
requests when sending data to your server. Websites that erroneously use
GET requests for doing anything other than retrieving resources are vul-
nerable to cross-site request forgery attacks.

When writing a website, you may also encounter PUT, PATCH, and DELETE
requests. These are used to upload, edit, or delete resources on the server,
respectively, and are typically triggered by JavaScript embedded in a web
page. Table 2-1 documents a handful of other methods that are worth
knowing about.

Table 2-1: The Lesser-Known HTTP Methods

HTTP method Function and implementation

HEAD A HEAD request retrieves the same information as a GET request, but
instructs the server to return the response without a body (in other
words, the useful part). If you implement a GET method on your web
server, the server will generally respond to HEAD requests automatically.

CONNECT CONNECT initiates two-way communications. You'll use it in your HTTP
client code if you ever have to connect through a proxy.

OPTIONS Sending an OPTIONS request lets a user agent ask what other methods
are supported by a resource. Your web server will generally respond
to OPTIONS requests by inferring which other methods you have
implemented.

TRACE A response to a TRACE request will contain an exact copy of the origi-
nal HTTP request, so the client can see what (if any) alterations were
made by intermediate servers. This sounds useful, but it's generally
recommended that you turn off TRACE requests in your web server,
because they can act as a security hole. For instance, they can allow
malicious JavaScript injected into a page to access cookies that have
been deliberately made inaccessible to JavaScript.

How the Internet Works 1

Once a web server receives an HTTP request, it replies to the user agent
with an HTTP response. Let’s break down how responses are structured.

HTTP Responses

HTTP responses sent back by a web server begin with a protocol descrip-
tion, a three-digit status code, and, typically, a status message that indicates
whether the request can be fulfilled. The response also contains headers
providing metadata that instructs the browser how to treat the content.
Finally, most responses contain a body that itself contains the requested
resource. Listing 2-2 shows the contents of a simple HTTP response.

HTTP/1.1@ 2008 OK®

O Content-Encoding: gzip
Accept-Ranges: bytes
Cache-Control: max-age=604800
Content-Type: text/html
Content-Length: 606

@ <!doctype html>
<html>
<head>
<title>Example Domain</title>
@ <style type="text/css">
body {
background-color: #fofof2;
font-family: "Open Sans", "Helvetica Neue", Helvetica, sans-serif;
}
div {
width: 600px;
padding: 50px;
background-color: #fff;
border-radius: 1em;
}
</style>
</head>
@ <body>
<div>
<h1>Example Domain</h1>
<p>This domain is established to be used for illustrative examples.</p>
<p>
More information...
</p>
</div>
</body>
</html>

Listing 2-2: An HTTP response from example.com, the world’s least interesting website

The response begins with the protocol description @, the status code @,
and the status message ©. Status codes formatted as 2xx indicate that the
request was understood, accepted, and responded to. Codes formatted as

12 Chapter 2

3xx redirect the client to a different URL. Codes formatted as 4xx indicate
a client error: the browser generated an apparently invalid request. (The
most common error of this type is HTTP 404 Not Found). Codes formatted as
5xx indicate a server error: the request was valid, but the server was unable
to fulfill the request.

Next are the HTTP headers @. Almost all HTTP responses include a
Content-Type header that indicates the kind of data being returned. Responses
to GET requests also often contain a Cache-Control header to indicate that the
client should cache large resources (for example, images) locally.

If the HTTP response is successful, the body contains the resource the
client was trying to access—often Hyperlext Markup Language (HTML) ©
describing the structure of the requested web page. In this case, the response
contains styling information @ as well as the page content itself @. Other
types of responses may return JavaScript code, Cascading Style Sheets
(GSS) used for styling HTML, or binary data in the body.

Stateful Connections

Web servers typically deal with many user agents at once, but HTTP does
nothing to distinguish which requests are coming from which user agent.
This wasn’t an important consideration in the early days of the internet,
because web pages were largely read-only. Modern websites, however, often
allow users to log in and will track their activity as they visit and interact
with different pages. To allow for this, HTTP conversations need to be
made stateful. A connection or conversation between a client and a server
is stateful when they perform a “handshake” and continue to send packets
back and forth until one of the communicating parties decides to terminate
the connection.

When a web server wants to keep track of which user it’s responding to
with each request, and thus achieve a stateful HTTP conversation, it needs
to establish a mechanism to track the user agent as it makes the subsequent
requests. The entire conversation between a particular user agent and a
web server is called an HTTP session. The most common way of tracking ses-
sions is for the server to send back a Set-Cookie header in the initial HTTP
response. This asks the user agent receiving the response to store a cookie,

a small snippet of text data pertaining to that particular web domain. The
user agent then returns the same data in the Cookie header of any subse-
quent HTTP request to the web server. If implemented correctly, the con-
tents of the cookie being passed back and forth uniquely identify the user
agent and hence establish the HTTP session.

Session information contained in cookies is a juicy target for hackers.
If an attacker steals another user’s cookie, they can pretend to be that user
on the website. Similarly, if an attacker successfully persuades a website to
accept a forged cookie, they can impersonate any user they please. We’ll
look at various methods of stealing and forging cookies in Chapter 10.

How the Internet Works 13

14

Encryption

When the web was first invented, HTTP requests and responses were sent in
plaintext form, which meant they could be read by anyone intercepting the
data packets; this kind of interception is known as a man-in-the-middle attack.
Because private communication and online transactions are common on
the modern web, web servers and browsers protect their users from such
attacks by using encryption, a method of disguising the contents of messages
from prying eyes by encoding them during transmission.

To secure their communications, web servers and browsers send requests
and responses by using Transport Layer Security (TLS), a method of encryp-
tion that provides both privacy and data integrity. TLS ensures that packets
intercepted by a third party can’t be decrypted without the appropriate
encryption keys. It also ensures that any attempt to tamper with the packets
will be detectable, which ensures data integrity.

HTTP conversations conducted using TLS are called HTTP Secure
(HTTPS). HTTPS requires the client and server to perform a TLS hand-
shake in which both parties agree on an encryption method (a cipher) and
exchange encryption keys. Once the handshake is complete, any further
messages (both requests and responses) will be opaque to outsiders.

Encryption is a complex topic but is key to securing your website. We’ll
examine how to enable encryption for your website in Chapter 13.

Summary

Chapter 2

In this chapter, you learned about the plumbing of the internet. TCP
enables reliable communication between internet-connected computers
that each have an IP address. The Domain Name System provides human-
readable aliases for IP addresses. HT'TP builds on top of TCP to send
HTTP requests from user agents (such as web browsers) to web servers,
which in turn reply with HTTP responses. Each request is sent to a specific
URL, and you learned about various types of HT'TP methods. Web servers
respond with status codes, and send back cookies to initiate stateful con-
nections. Finally, encryption (in the form of HTTPS) can be used to secure
communication between a user agent and a web server.

In the next chapter, you’ll take a look at what happens when a web
browser receives an HTTP response—how a web page is rendered, and how
user actions can generate more HTTP requests.

HOW BROWSERS WORK

Z- Most internet users interact with websites
&/ through a browser. To build secure web-
sites, you need to understand how browsers
transform the HyperText Markup Language
(HTML) used to describe web pages into the interac-
tive, visual representations you see onscreen. This

chapter covers how a modern browser renders a web page, highlighting the
security measures it puts in place to protect the user—the browser security
model. We’ll also look at the various ways hackers try to overcome these
security measures.

Web Page Rendering

The software component within a web browser that’s responsible for
transforming a web page’s HTML into the visual representation you
see onscreen is called the rendering pipeline. The rendering pipeline is

16

Chapter 3

responsible for parsing the page’s HTML, understanding the structure and
content of the document, and converting it to a series of drawing opera-
tions that the operating system can understand.

For websites in the early days of the internet, this process was relatively
simple. Web page HTML contained very little styling information (such as
color, font, and font size), so rendering was mostly a matter of loading text
and images and drawing them onscreen in the order they appeared in the
HTML document. HTML was envisioned as a markup language, meaning it
described the web page by breaking it into semantic elements and annotat-
ing how the information was structured. The early web looked pretty crude,
but was very efficient for relaying textual content.

Nowadays, web design is more elaborate and visually appealing. Web
developers encode styling information into separate Cascading Style Sheets
(CSS) files, which instruct the browser precisely how each page element is
to be displayed. A modern, hyperoptimized browser like Google Chrome
contains several million lines of code to correctly interpret and render
HTML and deal with conflicting styling rules in a fast, uniform manner.
Understanding the various stages that make up the rendering pipeline will
help you appreciate this complexity.

The Rendering Pipeline: An Overview

We’ll get into the details of each stage of the rendering pipeline in a
moment, but first let’s look at the high-level process.

When the browser receives an HTTP response, it parses the HTML in
the body of the response into a Document Object Model (DOM): an in-memory
data structure that represents the browser’s understanding of the way the
page is structured. Generating the DOM is an interim step between parsing
the HTML and drawing it onscreen. In modern HTML, the layout of the
page can’t be determined until the whole of the HTML is parsed, because
the order of the tags in the HTML doesn’t necessarily determine the loca-
tion of their content.

Once the browser generates the DOM, but before anything can be drawn
onscreen, styling rules must be applied to each DOM element. These styling
rules declare how each page element is to be drawn—the foreground and
background color, the font style and size, the position and alignment, and
so on. Last, after the browser finalizes the structure of the page and breaks
down how to apply styling information, it draws the web page onscreen. All
of this happens in a fraction of a second, and repeats on a loop as the user
interacts with the page.

The browser also loads and executes any JavaScript it comes across as it
constructs the DOM. JavaScript code can dynamically make changes to the
DOM and styling rules, either before the page is rendered or in response to
user actions.

Now let’s look at each step in more detail.

The Document Object Model

When a browser first receives an HTTP response containing HTML, it
parses the HTML document into a DOM, a data structure describing the
HTML document as a series of nested elements called DOM nodes. Some
nodes in the DOM correspond to elements to be rendered onscreen, such
as input boxes and paragraphs of text; other nodes, such as script and styl-
ing elements, control the page’s behavior and layout.

Each DOM node is roughly equivalent to a tag in the original HTML
document. DOM nodes can contain text content, or contain other DOM
nodes, similar to the way HTML tags can be nested within each other.
Because each node can contain other nodes in a branching fashion, web
developers talk about the DOM tree.

Some HTML tags, like the <script», <style>, <image>, , and <video>
tags, can reference an external URL in an attribute. When they’re parsed
into the DOM, these tags cause the browser to import the external resources,
meaning that the browser must initiate a further HTTP request. Modern
browsers perform these requests in parallel to the page rendering, in order
to speed up the page-load time.

The construction of the DOM from HTML is designed to be as robust
as possible. Browsers are forgiving about malformed HTML; they close
unclosed tags, insert missing tags, and ignore corrupted tags as needed.
Browser vendors don’t punish the web user for the website’s errors.

Styling Information

Once the browser has constructed the DOM tree, it needs to determine
which DOM nodes correspond to onscreen elements, how to lay out those
elements relative to each other, and what styling information to apply to
them. Though these styling rules can be defined inline in the HTML docu-
ment, web developers prefer to encode styling information in separate CSS
files. Separating the styling information from the HTML content makes
restyling existing content easier and keeps HTML content as clean and
semantic as possible. It also makes HTML easier to parse for alternative
browsing technologies such as screen readers.

When using CSS, a web developer will create one or more stylesheets to
declare how elements on the page should be rendered. The HTML docu-
ment will import these stylesheets by using a <style> tag referencing the
external URL that hosts the stylesheet. Each stylesheet contains selectors
that pick out tags in the HTML document and assign styling information,
such as font size, colors, and position, to each. Selectors may be simple: they
might state, for example, that heading text in an <h1> tag should be rendered
in blue. For more complex web pages, selectors get more convoluted: a
selector may describe how quickly a hyperlink changes color when the user
moves their mouse over it.

How Browsers Work 17

18

The rendering pipeline implements a lot of logic to decipher final styl-
ing, because strict rules of precedence need to be followed about how styles
are applied. Each selector can apply to multiple page elements, and each
page element will often have styling information supplied by several selec-
tors. One of the growing pains of the early internet was figuring out how to
create a website that looked the same when rendered by different types of
browsers. Modern browsers are generally consistent in the way they render
a web page, but they still vary. The industry’s benchmark for compliance to
web standards is the Acid3 test, as shown in Figure 3-1. Only a few browsers
score 100. You can visit Attp://acid3.acidlests.org/ to try out the Acid3 test.

o

]
97/100

To pass the test, a browser must use its default settings, the animation has to
be smooth, the score has to end on 100/100, and the final page has to look
exactly, pixel for pixel, like this reference rendering.

Figure 3-1: Acid3, making sure browsers can render colored rectangles correctly since 2008

The construction of the DOM tree and the application of styling rules
occur in parallel to the processing of any JavaScript code contained in the
web page. This JavaScript code can change the structure and layout of the
page even before it’s rendered, so let’s take a quick look at how the execu-
tion of JavaScript dovetails with the rendering pipeline.

JavaScript

Chapter 3

Modern web pages use JavaScript to respond to user actions. JavaScript is

a fully fledged programming language that is executed by the browser’s
JavaScript engine when web pages are rendered. JavaScript can be incor-
porated into an HTML document by using a <script> tag; the code may be
included inline within the HTML document, or, more typically, the <script>
tag will reference a JavaScript file that is to be loaded from an external URL.

By default, any JavaScript code is executed by the browser as soon as the
relevant <script> tag is parsed into a DOM node. For JavaScript code loaded
from an external URL, this means the code is executed as soon as it is loaded.

This default behavior causes problems if the rendering pipeline hasn’t
finished parsing the HTML document; the JavaScript code will attempt to
interact with page elements that may not yet exist in the DOM. To allow for
this, <script> tags are often marked with a defer attribute. This causes the
JavaScript to execute only when the entire DOM has been constructed.

As you would imagine, the fact that browsers eagerly execute any
JavaScript code they come across has security implications. A hacker’s end
goal is often the remote execution of code on another user’s machine, and
the internet makes this goal much easier, as it’s rare to find a computer that
isn’t connected to the network in some way. For this reason, modern brows-
ers heavily restrict JavaScript with the browser security model. This dictates
that JavaScript code must be executed within a sandbox, where it’s not per-
mitted to perform any of the following actions:

e Start new processes or access other existing processes.

e Read arbitrary chunks of system memory. As a managed memory lan-
guage, JavaScript can’t read memory outside its sandbox.

o Access the local disk. Modern browsers allow websites to store small
amounts of data locally, but this storage is abstracted from the file-
system itself.

e Access the operating system’s network layer.

e Call operating system functions.

JavaScript executing in the browser sandbox is permitted to do the
following actions:

e Read and manipulate the DOM of the current web page.

e Listen to and respond to user actions on the current page by register-
ing event listeners.

e Make HTTP calls on behalf of the user.

¢ Open new web pages or refresh the URL of the current page, but only
in response to a user action.

e Write new entries to the browser history and go backward and forward
in history.

e Ask for the user’s location. For example, “Google Maps would like to
use your location.”

e Ask permission to send desktop notifications.

Even with these restrictions, an attacker who can inject malicious Java
Script into your web page can still do a lot of harm by using cross-site script-
ing to read credit card details or credentials as a user enters them. Even tiny
amounts of injected JavaScript pose a threat, because injected code can add
<script> tags in the DOM to load a malicious payload. We’ll look at how to
protect against this type of cross-site scripting attack in Chapter 7.

How Browsers Work 19

20

Before and After Rendering: Everything Else the Browser Does

A browser is much more than a rendering pipeline and a JavaScript engine.
In addition to rendering HTML and executing JavaScript, modern brows-
ers contain logic for many other responsibilities. Browsers connect with the
operating system to resolve and cache DNS addresses, interpret and verify
security certificates, encode requests in HTTPS if needed, and store and
transmit cookies according to the web server’s instructions. To understand
how these responsibilities fit together, let’s take a behind-the-scenes look at
a user logging into Amazon:

The user visits www.amazon.com in their favorite browser.

2. The browser attempts to resolve the domain (amazon.com) to an IP
address. First, the browser consults the operating system’s DNS cache.
If it finds no results, it asks the internet service provider to look in the
provider’s DNS cache. In the unlikely event that nobody on the ISP has
visited the Amazon website before, the ISP will resolve the domain at an
authoritative DNS server.

3. Now that it has resolved the IP address, the browser attempts to initiate
a TCP handshake with the server corresponding to the IP address in
order to establish a secure connection.

4. Once the TCP session has been established, the browser constructs an
HTTP GET request to www.amazon.com. TCP splits the HTTP request
into packets and sends them to the server to be reassembled.

5. At this point, the HTTP conversation upgrades to HTTPS to ensure
secure communication. The browser and server undertake a TLS hand-
shake, agree on an encryption cypher, and exchange encryption keys.

6. The server uses the secure channel to send back an HTTP response
containing HTML of the Amazon front page. The browser parses and
displays the page, typically triggering many other HTTP GET requests.

7. The user navigates to the login page, enters their login credentials, and
submits the login form, which generates a POST request to the server.

8. The server validates the login credentials and establishes a session
by returning a Set-Cookie header in the response. The browser stores

the cookie for the prescribed time, and sends it back with subsequent
requests to Amazon.

After all of this happens, the user can access their Amazon account.

Summary

Chapter 3

This chapter reviewed how browsers transform the HTML used to describe
web pages into the interactive, visual representations you see onscreen. The
browser’s rendering pipeline parses HTML documents into a Document
Object Model (DOM), applies styling information from Cascading Style
Sheets (CSS) files, and then lays out the DOM nodes onscreen.

You also learned about the browser security model. The browser exe-
cutes JavaScript included in <script> tags under strict security rules. You
also reviewed a simple HTTP conversation illustrating the browser’s many
other responsibilities beyond rendering pages: reconstructing HTTP from
TCP packets, verifying security certificates and securing communication
using HTTPS, and storing and transmitting cookies.

In the next chapter, you'll look at the other end of the HTTP conversa-
tion: the web server.

How Browsers Work 21

HOW WEB SERVERS WORK

In the previous chapter, you learned how

browsers communicate over the internet
and render the HTML pages and other
resources that make up a website. In this chap-

ter, you’ll learn about how those same HTML pages
are constructed by web servers.

By its simplest definition, a web serveris a computer program that sends
back HTML pages in response to HTTP requests. Modern web servers
encompass a much broader range of functionality than this suggests, how-
ever. When a browser makes an HTTP request, modern web servers allow
code to be executed in order to generate the web page HTML dynamically,
and often incorporate content from a database. As a web developer, you’ll
spend most of your time writing and testing this type of code.

This chapter covers how developers organize code and resources within
a web server. I’ll also pinpoint common weaknesses in web servers that allow
security vulnerabilities to occur, and talk about how to avoid these pitfalls.

2

Static and Dynamic Resources

Web servers serve two types of content in response to HTTP requests: static
resources and dynamic resources. A static resourceis an HTML file, image
file, or other type of file that the web server returns unaltered in HTTP
responses. A dynamic resourceis code, a script, or a template that the web server
executes or interprets in response to an HTTP request. Modern web servers
are capable of hosting both static and dynamic resources. Which resource
the server executes or returns depends on the URL in the HTTP request.
Your web server will resolve URLs according to a configuration file that
maps URL patterns to particular resources.

Let’s look at how web servers handle static and dynamic resources.

Static Resources

Chapter 4

In the early days of the internet, websites consisted mostly of static resources.
Developers coded HTML files by hand, and websites consisted of individual
HTML files that were deployed to the web server. The “deployment” of a web-
site required the developer to copy all the HTML files to the web server and
restart the server process. When a user wished to visit the website, they would
type the website’s URL in their browser. The browser would make an HTTP
request to the web server hosting the website, which would interpret the
incoming URL as a request for a file on disk. Finally, the web server would
return the HTML file as is in the HTTP response.

An example of this is the website for the 1996 movie Space Jam. It con-
sists entirely of static resources, and it’s still online at spacejam.com. Clicking
through the site takes us back to a simpler and aesthetically less sophisti-
cated time in web development. If you visit the website, you will notice that
each of the URL:s like Attps://www.spacejam.com/cmp/sitemap.html end with a
.htmlsuffix, indicating that each web page corresponds to an HTML file on
the server.

Tim Berners-Lee’s original vision of the web looked much like the Space
Jamwebsite: a network of static files hosted on web servers that would con-
tain all the world’s information.

URL Resolution

Modern web servers handle static resources in much the same way as

their older counterparts. To access a resource in a browser, you include

the resource name in the URL, and the web server returns the resource file
from disk as it’s requested. To display the picture shown in Figure 4-1, the
URL includes the resource name /images/hedgehog_in_spaghetti.png, and the
web server returns the appropriate file from disk.

Figure 4-1: An example of a static resource

Modern web servers have a few additional tricks up their sleeves. A
modern web server allows any URL to be mapped to a particular static
resource. We would expect the hedgehog_in_spaghetti.png resource to be a
file living in the /images directory on the web server, but in fact, the devel-
oper can call it anything they choose. By unlinking the URL from the
filepath, web servers give developers more freedom to organize their code.
This might allow each user to have a different profile image, but use the
same path, for instance.

When returning a static resource, modern web servers often add data
to the HTTP response or process the static resource before returning it.
For example, web servers often dynamically compress large resource files
by using the gzip algorithm to reduce the bandwidth used in the response,
or add caching headers in HTTP responses to instruct the browser to cache
and use a local copy of a static resource if a user views it again within a
defined window of time. This makes the website more responsive for the
user and reduces the load the server has to handle.

Because static resources are simply files of one form or another, they
don’t, by themselves, exhibit much in the way of security vulnerabilities.
The process of resolving a URL to a file can introduce vulnerabilities, how-
ever. If a user designates certain types of files to be private (for example,
the images they upload), you will need to have access control rules defined
on the web server. We’ll look at various ways hackers attempt to circumvent
access control rules in Chapter 11.

How Web Servers Work 25

26

Chapter 4

Content Delivery Networks

A modern innovation designed to improve the delivery speeds of static
files is the content delivery network (CDN), which will store duplicated copies
of static resources in data centers around the world, and quickly deliver
those resources to browsers from the nearest physical location. CDNs like
Cloudflare, Akamai, or Amazon CloudFront offload the burden of serving
large resource files, such as images, to a third party. As such, they allow
even small companies to produce responsive websites without a massive
server expenditure. Integrating a CDN into your site is usually straight-
forward, and the CDN service charges a monthly fee depending on the
amount of resources you deploy.

Using a CDN also introduces security complications. Integrating with
a CDN effectively allows a third party to serve content under your secu-
rity certificate, so you need to set up your CDN integration securely. We’ll
investigate how to securely integrate third-party services such as CDNs in
Chapter 14.

Content Management Systems

Plenty of websites still consist of mostly static content. Rather than being
coded by hand, these sites are generally built using content management systems
(CMSs) that provide authoring tools requiring little to no technical knowl-
edge to write the content. CMSs generally impose a uniform style on the
pages and allow administrators to update content directly in the browser.

CMS plug-ins can also provide analytics to track visitors, add appoint-
ment management or customer support functions, and even create online
stores. This plug-in approach is part of a larger trend of websites using
specialized services from third-party companies to build custom features.
For example, sites commonly use Google Analytics for customer tracking,
Facebook Login for authentication, and Zendesk for customer support. You
can add each of these features with a few lines of code and an API key, mak-
ing it significantly easier to build feature-rich sites from scratch.

Using other people’s code to build your site, either by integrating
a CMS or using plug-in services, theoretically makes you more secure
because these third parties employ security professionals and have an
incentive to secure their services. However, the ubiquity of these services
and plug-ins also makes them a target for hackers. For example, many self-
hosted instances of WordPress, the most popular CMS, are infrequently
patched. You can easily discover WordPress vulnerabilities through a
simple Google search, as shown in Figure 4-2.

When you use third-party code, you need to stay on top of security advi-
sories and deploy security patches as soon as they become available. We’ll
investigate some of risks around third-party code and services in Chapter 14.

GOOQ'e "error_log™ inur:/wp-content $ Q

All News Shopping Videos Images More Sattings Tools

About 345,000 results (0.23 seconds)

Index of pr-content!uploadsf error_log

https: ntent/uploads/error_log/ v

indax of /wp-content/uploads/error_log. IICO] Name - Last modified - Size - Description. [PARENTDIR],
Parent Directory, -. [, php-errors.log, 2014-11-06 10:03 ..

error_log

www.cfs.asn.au/staging/wp themes/themed43375/static/error_log
error_log

fdgpl com.au/wp " . s68/ermor_Jog *

[21 May—2015 21:21:36 Australlafl\de!bourne] PHP Fatal error: CaII to..

/WP rfSchoc |

Error log created 2014-1 0-24 17:34:51: Could not save XML file ..

www.enasolt. P fwp-google-maps/eror_log.bat =

error_log - La Provenza
www.la-p - log =

Figure 4-2: Come get your unsecured WordPress instances.

Dynamic Resources

Though it’s simpler to use static resources, authoring individual HTML files
by hand is time-consuming. Imagine if retail websites had to code up a new
web page every time they added a new item to their inventory. It would inef-
ficiently use up everyone’s time (though it would provide a guarantee of job
security for web developers).

Most modern websites instead use dynamic resources. Often the dynamic
resource’s code loads data from a database in order to populate the HTTP
response. Typically, the dynamic resource outputs HTML, though other con-
tent types can be returned depending on the expectations of the browser.

Dynamic resources allow retail websites to implement a single product
web page capable of displaying many types of products. Each time a user
views a particular product on the site, the web page extracts the product
code from a URL, loads the product price, image, and description from the
database, and interpolates this data into the HTML. Adding new products
to the retailer’s inventory then becomes a matter of simply entering new
rows in the database.

There are many other uses for dynamic resources. If you access your
banking website, it looks up your account details and incorporates them
in the HTML. A search engine like Google returns matches pulled from
Google’s massive search index and returns them in a dynamic page. Many
sites, including social media and web-mail sites, look different to each user,
because they dynamically construct the HTML after the user logs in.

How Web Servers Work 27

28

Chapter 4

As useful as dynamic resources are, they create novel security vulner-
abilities. The dynamic interpolation of content into the HTML can be
vulnerable to attack. We’ll look at how to protect ourselves from maliciously
injected JavaScript in Chapter 7, and see how HT TP requests generated
from other websites can cause harm in Chapter 8.

Templates

The first dynamic resources were simple script files, often written in the
Perl language, that the web server executed when a user visited a particular
URL. These script files would write out the HTML that made up a particu-
lar web page.

Code that makes up a dynamic resource in this fashion often isn’t
intuitive to read. If a web page consists of static resources, you can look at
a static HTML file to get a sense of how it’s organized, but it’s harder to do
the same with dynamic resources that have a thousand lines of Perl code.
Essentially, you have one language (Perl) writing out content in another
language (HTML) that, downstream, a browser will render onscreen.
Making changes to Perl code while keeping in mind what the eventual ren-
dered output will look like is a difficult task.

To address this, web developers often use template files to build
dynamic web pages. Templates are mostly HTML, but have programmatic
logic interspersed within them that contains instructions to the web server.
This logic is generally simple and usually does one of three things: pull
data from a database or the HTTP request and interpolate it into the
HTML, conditionally render sections of the HTML template, or loop over
a data structure (for example, lists of items) to repeatedly render a block
of HTML. All modern web frameworks use template files (with variations
in syntax) because inserting code snippets into HTML typically makes code
cleaner and more readable.

Databases

When a web server executes the code in a dynamic resource, it often loads
data from a database. If you visit a retail website, the web server looks up the
product ID in a database, and uses the product information stored in the
database to construct the page. If you log into a social media site, the web
server loads your timeline and notifications from an underlying database
in order to write the HTML. In fact, most modern websites use databases
to store user information, and the interface between the web server and a
database is a frequent target for hackers.

Database technology predates the invention of the web. As computers
became more widespread back in the 1960s, companies started to see the
value of digitizing and centralizing their record keeping to make searching
and maintenance easier. With the birth of the web, sticking a web frontend
on top of a product inventory database was a natural progression for com-
panies looking to branch out into online retail.

NOTE

Databases are key for authentication too. If a website wants to identify
returning users, it needs to keep a record of who has signed up to the site
and verify, or authenticate, their login information against stored credentials
when they return.

The two most commonly used types of databases are SQL and NoSQL..
Let’s take a look at both.

SQL Databases

The most common databases used today are relational databases that
implement Structured Query Language (SQL), a declarative programming
language that maintains and fetches data.

SQL can be pronounced either “ess-qew-ell” or “sequel,” although you can try
pronouncing it “squeal” if you want to see your database administrator squirm
uncomfortably.

SQL databases are relational, which means they store data in one or
more tables that relate to each other in formally prescribed ways. You can
think of a table as akin to a Microsoft Excel spreadsheet with rows and col-
umns, with each row representing a data item, and each column represent-
ing a data point for each item. Columns in a SQL database have predefined
data types, typically strings of text (often of fixed length), numbers, or dates.

Database tables in a relational database relate to each other via keys.
Usually, each row in a table has a unique numeric primary key, and tables
can refer to each other’s rows via foreign keys. For example, if you were stor-
ing user orders as database records, the orders table would have a foreign
key column called user_id that represents the user who placed the order.
Instead of storing user information directly in the orders table, this user_id
column would contain foreign-key values that refer to a specific row’s pri-
mary key (the id column) in the users table. This type of relation ensures
that you cannot store orders in the database without storing the user, and
ensures that only a single source of truth exists for each user.

Relational databases also feature data integrity constraints that prevent
data corruption and make uniform queries to the database possible. Like
foreign keys, other types of data integrity constraints can be defined in
SQL. For example, you could require the email_address column in a users
table to contain only unique values, to force each user in the database to
have a different email address. You could also require non-null values in
tables so that the database must specify an email address for each user.

SQL databases also exhibit transactional and consistent behavior. A
database transaction is a group of SQL statements executed in a batch. A data-
base is said to be transactional if each transaction is “all or nothing”: that is,
if any SQL statement fails to execute within the batch, the entire transaction
fails and leaves the database state unchanged. SQL databases are consistent
because any successful transaction brings the database from one valid state
to another. Any attempt to insert invalid data in a SQL database causes the
whole transaction to fail and the database to remain unaltered.

How Web Servers Work 29

30

Chapter 4

Because data stored in SQL databases is often highly sensitive, hackers
target databases to sell their contents on the black market. Hackers also often
take advantage of insecurely constructed SQL statements. We’ll examine
how in Chapter 6.

NoSOL Databases

SQL databases are often the bottleneck of a web application’s performance.
If most HTTP requests hitting a website generate a database call, the data-
base server will experience a tremendous load and slow the performance of
the website for all users.

These performance concerns have led to the increasing popularity of
NoSQL databases—databases that sacrifice the strict data integrity require-
ments of traditional SQL databases to achieve greater scalability. NoSQL
encompasses a variety of approaches to storing and accessing data, but a few
trends among them have emerged.

NoSQL databases are often schemaless, allowing you to add fields to new
records without having to upgrade any data structures. To achieve this flexibil-
ity, data is often stored in key-value form, or in_JavaScript Object Notation (JSON).

NoSQL database technology also tends to prioritize widescale replication
of data over absolute consistency. SQL databases guarantee that simultane-
ous queries by different client programs will see the same results; NoSQL
databases often loosen this constraint and guarantee only eventual consistency.

NoSQL databases make storing unstructured or semistructured data
very easy. Extracting and querying data tends to be a little more complex—
some databases offer a programmatic interface, while others implement
their own query languages that adapt SQL-like syntax to their data struc-
tures. NoSQL databases are vulnerable to injection attacks in much the
same way as SQL databases are, though an attacker has to correctly guess
the database type to successfully mount an attack.

Distributed Caches

Dynamic resources can also load data from in-memory distributed caches,
another popular approach to achieving the massive scalability required by
large websites. Caching refers to the process of storing a copy of data kept
elsewhere in an easily retrievable form, to speed up retrieval of that data.
Distributed caches like Redis or Memcached make caching data straightfor-
ward and allow software to share data structures across different servers
and processes in a language-agnostic way. Distributed caches can be shared
among web servers, making them ideal for storing frequently accessed data
that would otherwise have to be retrieved from a database.

Large web companies typically implement their tech stacks as a range
of microservices—simple, modular services that perform one action on
demand—and use distributed caches to communicate between them.
Services often communicate via queues stored in a distributed cache:
data structures that can put tasks in a waiting state so they can be com-
pleted one at a time by numerous worker processes. Services can also use

publish-subscribe channels that allow many processes to register interest in a
type of event, and have them notified en masse when it occurs.

Distributed caches are vulnerable to hacks in the same way that data-
bases are. Thankfully, Redis and Memcached were developed in an age
when these kinds of threats were well-known, so best practices are generally
baked into software development kits (SDKs), the code libraries you use to con-
nect with the caches.

Web Programming Languages

Web servers will execute code in the process of evaluating dynamic resources.
A huge number of programming languages can be used to write web server
code, and each has different security considerations.

Let’s look at some of the more commonly used languages. We’ll use
these languages in code samples in later chapters.

Ruby (on Rails)

The Ruby programming language, like Dragon Ball Zand the Tom Selleck
film Mr. Baseball, was invented in Japan in the mid 90s. Unlike either
Dragon Ball Z or Tom Selleck, it didn’t become popular for another decade
until the Ruby on Rails platform was released.

Ruby on Rails incorporates many best practices for building large-scale
web applications and makes them easy to implement with minimal con-
figuration. The Rails community also takes security seriously. Rails was one
of the first web server stacks to incorporate protections against cross-site
request forgery attacks. Nevertheless, Rail’s ubiquity makes it a common tar-
get for hackers. Several major security vulnerabilities have been discovered
(and hastily patched) in recent years.

Simpler Ruby web servers often described as microframeworks (for example,
Sinatra) have become popular alternatives to Rails in recent years. Micro-
frameworks allow you to combine individual code libraries that perform
one particular function, so your web server is deliberately minimal in size.
This contrasts with Rails’s “everything including the kitchen sink” model of
deployment. Developers who use a microframework generally find the extra
capabilities they need by using the RubyGems package manager.

Python

The Python language was invented in the late 1980s. Its clean syntax, flex-
ible programming paradigm, and wide variety of modules have made the
language phenomenally popular. Newcomers to Python are often surprised
that whitespace and indenting have semantic meaning, which is unusual
among programming languages. Whitespace is so important in the Python
community that they fight holy wars over whether indentation should be
done with tabs or spaces.

Python is used for a variety of applications, and is often the go-to lan-
guage for data science and scientific computing projects. Web developers

How Web Servers Work 31

32

Chapter 4

have a wide choice of actively maintained web servers to choose from (such
as the popular Django and Flask). The diversity of web servers also acts as a
security feature because hackers are less likely to target a particular platform.

JavaScript and Node.js

JavaScript started out as a simple language for executing small scripts within
the browser, but became popular for writing web server code and rapidly
evolved with the Node.js runtime. Node.js runs on top of the V8 JavaScript
engine, the same software component that Google Chrome uses to interpret
JavaScript within the browser. JavaScript still contains many quirks, but the
prospect of using the same language on the client side and server side has
made Node the fastest-growing web development platform.

The largest security risks in Node are due to its rapid growth—hundreds
of modules are added every day. You’ll need to take extra caution when you
use third-party code in your Node application.

PHP

The PHPlanguage was developed from a set of C binaries used to build
dynamic sites on Linux. PHP later developed into a fully fledged program-
ming language, though the unplanned evolution of the language is evident
in its disorganized nature. PHP inconsistently implements many built-in
functions. For example, variable names are case-sensitive, but function
names are not. Despite these quirks, PHP remains popular and, at one
point, it powered 10 percent of sites on the web.

If you're writing PHP, you’re often maintaining a legacy system. Because
older PHP frameworks exhibit some of the nastiest security vulnerabilities you
can imagine, you should update legacy PHP systems to use modern libraries.
Every type of vulnerability, whether it’s command execution, directory tra-
versal, or a buffer overflow, has given PHP programmers sleepless nights.

Java

Java and the Java Virtual Machine (JVM) have been widely used and imple-
mented in the enterprise space, allowing you to run Java’s compiled byte-
code across multiple operating systems. It’s generally a good workhorse
language when performance is a concern.

Developers have used Java for everything, whether for robotics, mobile
app development, big-data applications, or embedded devices. Its popular-
ity as a web development language has waned, but many millions of lines
of Java code still power the internet. From a security perspective, Java is
haunted by its past popularity; legacy applications contain a lot of Java code
that run older versions of the language and frameworks. Java developers
need to update to secure versions in a timely fashion lest they become easy
pickings for hackers.

If you’re a more adventurous developer, you’ll find other popular lan-
guages that run on the JVM and offer compatibility with Java’s huge eco-
system of third-party libraries. Clojure is a popular Lisp dialect; Scala is a

functional language with static typing; Kotlin is a newer object-oriented
language designed to be backward compatible with Java, while making
scripting easier.

C#

C#was designed by Microsoft as part of the .NET initiative. C# (and other
.NET languages, such as VB.NET) use a virtual machine called the Common
Language Runtime (CLR). C# is less abstracted from the operating system
than Java, and you can happily intermingle C++ code with C#.

Microsoft has had a conversion late in life to open source evangelism,
and the reference implementation of C# is now, thankfully, open source. The
Mono project allows .NET applications to run on Linux and other operating
systems. Nevertheless, most companies using C# deploy to Windows servers
and the typical Microsoft stack. Windows has had a troubling history security-
wise—being, for instance, the most common target platform for viruses—so
anyone looking to adopt .NET as a platform needs to be aware of the risks.

Client-Side JavaScript

As a web developer, you have a choice of languages for writing web server
code. But when your code needs to be executed in the browser, you have
exactly one choice: JavaScript. As I mentioned previously, the popularity of
JavaScript as a server-side language can in part be credited to web develop-
ers’ familiarity with it from writing for the client side.

JavaScript in the browser has moved a long way beyond the simple form-
validation logic and animated widgets it was used for in the early days of the
web. A complex site such as Facebook uses JavaScript to redraw areas of the
page as the user interacts with it—for example, rendering a menu when the
user clicks an icon, or opening a dialog when they click a photo. Sites often
update the user interface when background events occur, too, by adding noti-
fication markers when others leave comments or write new posts.

Achieving this kind of dynamic user interface without refreshing
the whole page and interrupting the user experience requires client-side
JavaScript to manage a lot of state in memory. Several frameworks have
been developed to organize memory state and render pages efficiently.
They also allow for modular reuse of JavaScript code over various pages
on the site, a key design consideration when you have millions of lines of
JavaScript to manage.

One such JavaScript framework is Angular, originally released by
Google under an open source license. Angular borrows from server-side
paradigms and uses client-side templates to render web pages. The Angular
template engine—which executes in the browser as the page loads—parses
the template HTML supplied by the server, and processes any directives as
they appear. Because the template engine is simply JavaScript executing in
the browser, it can write directly to the DOM and short-circuit some of the
browser-rendering pipeline. As the memory state changes, Angular auto-
matically re-renders the DOM. This separation makes for cleaner code and
more-maintainable web applications.

How Web Servers Work 33

34

The open source React framework, which was released by the Facebook
development team, takes a slightly different approach from Angular. Instead
of interspersing code in HTML templates, React encourages the developer
to write HTML-like tags directly into JavaScript. React developers typically
create JavaScript XML (JSX) files that they run through a preprocessor and
compile into JavaScript before sending them to the browser.

Writing JavaScript code like return <hi>Hello, {format(user)}</hi> for the
first time can seem strange to developers used to separating JavaScript and
HTML files, but by making HTML a first-class element of the JavaScript
syntax, React enables useful features (for example, syntax highlighting and
code completion) that would otherwise be difficult to support.

Rich, client-side JavaScript frameworks like Angular and React are great
for building and maintaining complex sites. JavaScript code that manipulates
the DOM directly is partial to a new type of security vulnerability, however:
DOM-based cross-site scripting attacks, which we’ll look at in more detail in
Chapter 7.

Note that although JavaScript is the only language a browser typically
executes, that doesn’t mean you have to write all your client-side code in
JavaScript. Many developers use languages like CoffeeScript or TypeScript
that are transpiled into JavaScript during the build process before being sent
to the browser. These languages are subject to the same security vulner-
abilities as JavaScript at execution time, so in this book I'll mostly limit our
discussions to plain old JavaScript.

Summary

Chapter 4

Web servers serve two types of content in response to HT'TP requests: static
resources, such as images, and dynamic resources, which execute custom code.
Static resources are resources that we can serve directly from a file-
system or a content delivery network to increase the responsiveness of the

site. Website owners usually author websites that consist wholly of static
resources in a content-management system, which allows nontechnical
administrators to edit them directly in the browser.

Dynamic resources, on the other hand, are resources that we often
define in the form of templates, HTML that’s interspersed with program-
matic instructions to be interpreted by the server. They’ll typically read
data from a database or a cache that informs how the page is rendered.
The most common form of database is a SQL database, which stores data in
tabular form, with strictly defined rules on the structure of the data. Larger
websites often use a NoSQL database, a newer variety of database that relaxes
some of the constraints of the traditional SQL database in order to achieve
greater scalability. We write dynamic resources in a web programming lan-
guage, of which there are many.

In the next chapter, you’ll look at the process of writing code itself. The
key to writing secure, bug-free code is a disciplined development process;
I’ll show you how you should write, test, build, and deploy your code.

HOW PROGRAMMERS WORK

Building and maintaining a website is an
iterative process, not an end goal. Rarely

does a web developer build a site and get

every feature right the first time. (Unless you're
my friend Dave; stop making the rest of us look bad,
Dave.) In web development, the product evolves and
the codebase grows more complex, requiring devel-
opers to add features, fix bugs, and restructure code.
Redesigns happen as a matter of course.

As a web developer, you need to make and roll out changes to your
codebase in an orderly and disciplined fashion. It’s common for security
vulnerabilities and bugs to creep in over time because of shortcuts taken
in the face of deadlines. Most security vulnerabilities are introduced not
through a lack of development knowledge, but because of a lack of atten-
tion to detail.

36

This chapter focuses on how you should be writing secure code, by
adhering to the Software Development Life Cycle (SDLC), a fancy phrase for the
process a development team follows when designing new website features,
writing code, testing it, and pushing out changes. A chaotic and messy
SDLC makes it impossible to track the code you’re running and its vulner-
abilities, which inevitably leads to a buggy, insecure website. However, a
well-structured SDLC allows you to root out bugs and vulnerabilities early
in the process to protect your end-product site from attacks.

We’ll go through five phases of a good SDLC: design and analysis, writ-
ing code, pre-release testing, the release process, and post-release testing
and observation. We’ll also briefly talk about securing dependencies, the
third-party software that we use in our websites.

Phase 1: Design and Analysis

Chapter 5

The SDLC doesn’t begin with writing code; it begins with thinking about
what code you should be writing. We call this first phase the design and
analysis phase: you analyze the features you need to add and design their
implementation. At the start of a project, this might consist of sketching
out brief design aims. But by the time your site is up and running, you
need to give changes a little more deliberation, because you don’t want
to break functionality for existing users.

The most important objective of this phase is identifying the require-
ments the code is trying to address. Once the development team completes
the code, everyone should be able to judge whether the new code changes
properly address those requirements. If you're writing code for a client,
this phase means meeting with stakeholders and getting them to agree to
a list of goals. For in-house development at a company or organization, it
mostly means developing and documenting a shared vision of whatever
you're building.

Issue-tracking software helps immensely with design and analysis, especially
when you’re diagnosing and fixing bugs in an existing site. (Issue trackers are
also known as bug trackers for this reason.) Issue trackers describe individual
development goals as issues—such as “build a customer checkout page” or
“fix the spelling mistake on the home page.” Issues are then assigned to indi-
vidual developers, who can rank their issue by priority, write code to fix them,
and mark them as complete. Developers can link specific sets of code changes
for the purpose of fixing a bug or adding a feature described in an issue. For
large teams, managers can schedule issues with project management software
for reporting purposes.

The amount of time you should spend working things out on paper
before writing code can vary. Teams that write software for firmware devices
or critical systems like nuclear reactors unsurprisingly spend a lot of time in
the design phase, because they rarely get a chance to fix code after deploying
it. Web developers tend to move more quickly.

Phase 2: Writing Code

Once you have completed design and analysis, you can move on to the
second phase of the SDLC: writing code. You can write code with a lot

of tools, but you should always keep any code that’s not a one-off script

in source control software (also known as version control), which allows you

to store a backup copy of your codebase, browse previous versions of the
codebase, track changes, and annotate the code changes you’re making.
You can share changes with the rest of your team by pushing code changes
to the source repository, usually via command line tools or plug-ins to other
development tools, before releasing them to the world. Pushing your code
changes to the centralized repository makes them available to other team
members for review. Releasing your changes means deploying them to your
production website—the website that your real users will see.

Using source control also allows you to browse the version of the code-
base currently running on the production site, which is key to diagnosing
vulnerabilities and investigating and resolving security issues found post-
release. When a development team identifies and resolves a security issue,
they should look over the code changes that introduced the vulnerability
and check whether the changes affected any other parts of the site.

Source control is the number one tool all development teams need to
use. (Even a development team of one!) Large companies usually run their
own source control servers, while smaller companies and open source devel-
opers typically use a third-party hosted service.

Distributed vs. Centralized Version Control

A variety of source control software exists, each with different syntax and
features. Of the tools currently available, the most popular is Git, a tool
originally created by Linus Torvalds, the founder of Linux, to help orga-
nize the development of the Linux kernel. Git is a distributed version control
system, which means that every copy of the code kept under Git is a fully
fledged repository. When a new developer pulls (downloads) a local copy of
the code from the team repository for the first time, they get not only the
latest version of the codebase, but also a complete history of changes to the
codebase.

Distributed source control tools track the changes the developer makes,
and transmit only those changes when the developer pushes the code. This
model of source control differs from older software, which implements a
centralized server from which developers download and to which they upload
whole files.

Git has become popular in no small part because of GitHub, a website
that makes it straightforward to set up an online Git repository and invite
team members. Users can view code stored in GitHub in the browser and
can easily document it in the Markdown language. GitHub also includes its
own issue tracker and tools to manage competing code changes.

How Programmers Work 37

38

Branching and Merging Code

Source control software allows you to be precise about which code changes
get pushed out with each update to your website. Typically, code releases are
managed using branches. A branch is a logical copy of the codebase, stored
either within the source control server or a developer’s local repository.
Developers can make local changes to their own branch without affecting the
master codebase, and then merge the branch back into the master codebase
when they’ve completed whatever feature or bug fix they were working on.

Larger development teams may have more-elaborate branching schemes. Source con-
trol software allows you to create branches off of branches off of branches ad infini-
tum, since branching is a cheap operation. A large team may have several developers
contribute to the same feature branch for complex code updates.

Before a release takes place, several developers might merge different
branches into the master codebase. If they’ve been making different edits
to the same files, the source control software automatically attempts to
merge those changes. If the differing changes can’t be merged automati-
cally, a merge conflict occurs, which requires the development team to manu-
ally complete the merge process, choosing line by line how competing code
changes should be applied. Resolving merge conflicts is the bane of a devel-
oper’s life: it’s extra work that needs doing after you think you’ve already
finished an issue. And usually it’s because Dave decided to change the for-
matting in several thousand Python files. (Thanks, Dave.)

Merge time is an excellent opportunity to do code reviews, in which one
or more team members look over the code changes and give feedback.

A great way to catch potential security vulnerabilities is to follow the four
eyes principle, which requires two separate people to see every code change
before a release. Often, a fresh set of eyes looking over the code can see
problems not anticipated by the original author. (Cyclopes are terrible cod-
ers, so it’s recommended that you double up on their reviews.)

Git-based tools can formalize code reviews by using pull requests. A
pull request is a developer’s request to merge code into the master codebase,
which allows tools like GitHub to ensure that another developer approves
changes before the merge occurs. (Source control software often makes
the approval of pull requests contingent on all tests passing in a continuous
integration system, which we’ll discuss in the following section.)

Phase 3: Pre-Release Testing

Chapter 5

The third stage of the SDLC is testing. You should release code only after
you've tested it thoroughly to catch any potential bugs and ensure that it
works correctly. A good testing strategy is key to catching software defects,
especially security vulnerabilities, before users experience them or hackers
can exploit them. Anyone making code changes should manually test the
site’s functionality before merging or releasing code. This is a basic level of
diligence you should expect from all members of your team.

Catching software defects earlier in the development life cycle saves a
lot of time and effort, so you should complement your manual testing with
unit testing. Unit tests are small scripts within the codebase that make basic
assertions about how the code operates by executing various parts of the
codebase and testing the output. You should run unit tests as part of your
build process, and write unit tests for particularly sensitive or frequently
changing areas of your code.

Keep unit tests simple, so that they test isolated functions of the code.
Overly complex unit tests that test multiple pieces of functionality at once
are brittle, prone to breaking as code changes are made. A good unit test,
for instance, might assert that only authenticated users can view certain
areas of the website, or that passwords have to meet a minimum complexity
requirement. Good unit tests additionally act as a form of documentation,
illustrating how the code should operate if implemented correctly.

Coverage and Continuous Integration

When you run a unit test, it calls functions in your main codebase. When
you run all your unit tests, the percentage of your codebase that they exe-
cute is called your coverage. Although aiming for 100 percent test coverage is
laudable, it’s often impractical, so be careful in choosing which parts of the
codebase you write unit tests for. (Besides, complete test coverage doesn’t
guarantee correct code; just because every code path is executed doesn’t
mean all scenarios are covered.) Writing good unit tests is a matter of judg-
ment and should be part of a larger risk-assessment strategy. Here’s a good
rule of thumb: when you discover a bug, write a unit test asserting the cor-
rect behavior, and then fix the bug. This prevents the issue from reoccurring.
Once you have sufficient test coverage, you should set up a continuous
integration server. A continuous inlegration server connects to your source
control repository and, whenever code changes are made, checks out a
fresh version of the code and runs the build process while executing your
unit tests. If the build process fails—perhaps because the unit tests start
failing—your development team receives an alert. Continuous integration
ensures that you spot software defects early and address them promptly.

Test Environments

Once you’ve completed all code changes for a release, you should deploy
them to a test environment for final testing. A test environment (often called
a staging, pre-production, or quality assurance environment) should be a fully
operational copy of the website, run on dedicated servers. A test environ-
ment is essential for detecting software defects such as security vulner-
abilities before a release happens. Large development teams often employ
quality assurance (QA) staff dedicated to testing software in such environ-
ments. If you're integrating different sets of code changes together, this is
sometimes called integration testing.

A good test environment should resemble the production environment
as closely as possible, to ensure that the tests are meaningful. You should
run your test environment on the same server and database technologies,

How Programmers Work 39

40

differing only in the configuration and the version of the code running on
it. (You should still apply common sense. Your test environment shouldn’t
be able to send email to real users, for instance, so impose deliberate limita-
tions to your test environments as needed.)

This process is analogous to a cast and crew of a theatrical play under-
taking a dress rehearsal before performing in front of a live audience for
the first time. They put on the play in full costume before a small test audi-
ence. This allows them to work out the final kinks in their performance in
a low-stakes environment, where every detail resembles the real opening-
night performance as closely as possible.

Test environments are a key part of secure releases, but they also pose
security risks of their own if not properly managed. Test and production
environments need to be properly segregated at the network layer, meaning
that communication between the two environments is impossible. You can’t
give attackers the chance to compromise your website by allowing them to
hop across the network from an unsecured test environment into your pro-
duction environment.

Test environments usually have their own database, which requires
realistic-looking test data in order to allow thorough testing of the site’s
functionality. A common approach to generating good test data is copying
over data from production systems. If you do this, take special care to scrub
this kind of data-copy of sensitive information, including names, payment
details, and passwords. Numerous high-profile data leaks in recent years
have been caused by attackers stumbling across improperly scrubbed data
in a test environment.

Phase 4: The Release Process

Chapter 5

Writing code for a website isn’t much use if you don’t ever push it out, so
let’s talk about the fourth phase of the SDLC: the release process. A release
process for websites involves taking code from source control, copying it
onto a web server, and (typically) restarting the web server process. How
you achieve this varies according to where you host your site and what
technology you use. Whatever your approach, your release process needs
to be reliable, reproducible, and revertible.

A reliable release process means that you can guarantee what code,
dependencies, resources, and configuration files get deployed during the
release. If your release process is unreliable, you may not be running the
version of the code you think you're running, which is a serious security
risk. To ensure that your website deploys files reliably, release scripts typi-
cally use checksums—digital “fingerprints” that ensure that the files copied
onto the server are identical to those held in source control.

A reproducible release process is one that you can rerun with the same
results, in different environments, or with different versions of the code.
Reproducibility means less room for manual error during a release. If your
release process requires an administrator to perfectly perform 24 steps in

the correct order, you can expect them to make mistakes. Write scripts and
automate your release process as much as possible! A reproducible process
is also essential for setting up good test environments.

A revertible release process allows you to roll back releases. Sometimes
unexpected contingencies make you want to “undo” a recent release and
revert to a prior version of the code. This process should be as seamless as
possible. Partially rolled-back code is a disaster waiting to happen, because
you may be leaving an insecure configuration in place, or software depen-
dencies with known vulnerabilities. Whatever release process you choose,
you need to be able to reliably revert to a previous version of the codebase
with minimal fuss.

Options for Standardized Deployment During Releases

Hosting companies have invented Plaiform as a Service (PaaS) solutions that
make releasing code easy and reliable. If “in the cloud” refers to running
code on other people’s servers, using an “as a service” offering refers to run-
ning code on other people’s servers, with some helpful automation and an
administrative website. (Hosting companies have a track record of invent-
ing horrible marketing acronyms.)

Microsoft Azure, Amazon Web Services Elastic Beanstalk, Google App
Engine, and Heroku are all PaaS providers that allow developers to release
code with a single command line call. The platform takes care of almost
everything else required during the release process: setting up virtualized
servers, installing the operating system and virtual machines, running your
build process (more on this later), loading dependencies, deploying the
code to disk, and restarting the web server process. You can monitor and
roll back releases in a web console or from the command line, and the plat-
form performs various safety checks to ensure your code deploys cleanly.
Using a PaaS-based release process minimizes downtime for your site,
ensures a clean deployment of code, and produces a full audit trail.

PaaS solutions impose limitations. In exchange for this convenience
and reliability, they support only certain programming languages and oper-
ating systems. They allow a limited amount of server configuration, and
they don’t support complex network layouts. As a result, it can sometimes
be difficult to retrofit legacy applications for deployment on this kind of
platform.

Infrastructure as a Service and DevOps

If you're not using PaaS, because your application is too complex, too old,
or the cost is too prohibitive, yow’ll typically deploy your code to individual
servers. These might be self-hosted, hosted in a data center, or hosted on
virtualized servers in an Infrastructure as a Service (laaS) solution such as
Amazon Elastic Compute Cloud (EC2). In such a scenario, you’re respon-
sible for authoring your own release process.

Historically, companies have employed dedicated systems administra-
tor staff to design and run the release process. However, the rise of DevOps

How Programmers Work 1

2

Chapter 5

(short for developer operations) tools has blurred these responsibilities and
allowed developers more control in the way their code gets deployed.
DevOps tools (which have a variety of evocative names like Puppet, Chef,
and Ansible) make it easy to describe standard deployment scenarios and
modularize release scripts, giving development teams the power to design
their own deployment strategies. This approach tends to be far more reli-
able than writing custom release scripts to download and copy files onto
servers. DevOps tools make it easy to follow best practices because most
deployment scenarios are covered by existing “recipes” or scripts.

Containerization

Another approach to standardizing deployment is using containerization.
Containerization technologies such as Docker allow you to create configu-
ration scripts known as images that describe which operating system, disk
layout, and third-party software a server should use, and which web appli-
cation you should deploy on top of the software stack. You deploy images
to a container that abstracts various functions of the underlying operating
system to allow consistent deployment; everything required specifically for
the release is described in the image, and the container is a completely
generic component.

You can deploy Docker images to real or virtualized servers in a repro-
ducible manner, making for a reliable release process. Developers testing
their code locally can use the same exact Docker image as the production
site, resulting in fewer surprises when the code is released for real.

Containerization is a relatively new technology, but it promises to
make deployment of complex applications more reliable and standard-
ized. A host of associated technologies (for example, Docker Swarm and
Kubernetes) allow complex, multiserver network configurations to be
described in machine-readable configuration files. This makes rebuild-
ing whole environments much more straightforward. A team could, for
instance, easily start up a whole new test environment with multiple web
servers and a database, since these individual services and the way they
communicate with each other would be described in a configuration file
that the hosting service can understand.

The Build Process

Most codebases have a build process, invoked from the command line or
development tools, that takes the static code and prepares it for deploy-
ment. Languages such as Java and C# compile source code into a deploy-
able binary format during the build process, while languages that use
package managers download and validate third-party code, also known
as dependencies, when they run the build process.

Build processes for websites often preprocess client-side assets ready
for deployment. Many developers use languages such as TypeScript and
CoffeeScript that they need to compile into JavaScript by the build process.
Whether JavaScript is coded by hand or generated, build processes usually

minify, or obfuscate, JavaScript files in order to generate a compressed, less
readable, but functionally equivalent version of each JavaScript file that will
load more quickly in the browser.

Styling information for websites is typically held in CSS files, as dis-
cussed in Chapter 3. Managing CSS files for large websites can be a chore
(because styling information is often duplicated in different places and
needs to be updated in sync). Web developers often use CSS pre-processors
such as Sass and SCSS—Ilanguages designed to make stylesheets more man-
ageable, which need to be preprocessed into CSS files at build time.

Each programming language has a preferred build tool that your
development team should be proficient with. You should run the build
process locally before checking any code into source control, so you can
be sure the process works before rerunning it during the release process.
Use a continuous integration server, as mentioned previously, to make
sure this happens.

Database Migration Scripts

Adding new features to a website often requires new database tables

or updates to existing tables. Databases store data that needs to persist
between releases, so you can’t simply wipe down and install a new data-
base with each release. You need to create and then run database migra-
tion scripts against the database as part of your release process to update
your database structures before deploying your code; and undo the scripts
if you roll back the code.

Some technologies (for example, Ruby on Rails) allow you to run migra-
tion scripts as part of the build process. If you can’t run them as part of the
build process, you should keep the scripts under source control, and then
run them with temporarily elevated permissions on the database during
the release window. In some companies, especially large and complex data-
bases often have dedicated database administrators (DBAs) who manage this
process and grumpily act as gatekeepers to their beloved datastores.

If staff members are able to change database structures outside a
release, that’s a security risk. We’ll discuss various ways to lock down per-
missions in Chapter 11.

Phase 5: Post-Release Testing and Observation

Once you've deployed your code, you should perform post-release testing to
ensure that you've deployed it correctly, and that your assumptions about
the way the code would execute in production are correct. Theoretically,
this post-release testing (often called smoke testing) can be pretty cursory if
you have a good test environment and a reliable release process. Nevertheless,
it’s a good idea to pay attention to your gut instincts and be risk-averse when
deciding how much testing to perform at each stage of the SDLC. There’s

a saying that goes, “Continue testing until fear turns into boredom.” It cap-
tures the appropriate sentiment.

How Programmers Work 43

44

Chapter 5

Penetration Testing

Security professionals and ethical hackers often perform penetration testing,
which tests for security vulnerabilities by externally probing a website.
Penetration testing can be useful for both pre-release and post-release
testing. Additionally, the development team can employ sophisticated
automated penetration testing tools that test websites for common security
vulnerabilities by analyzing various URLSs and attempting to craft malicious
HTTP requests. Penetration testing can be expensive and time-consuming,
but it’s much, much cheaper than getting hacked, so strongly consider add-
ing it your testing procedures.

Monitoring, Logging, and Error Reporting

Once you’ve released your code, your production environment needs to
be observable at runtime. This helps administrators spot unusual and
potentially malicious behavior and diagnose issues as they occur. Post-
release observation should happen in the form of three activities: logging,
monitoring, and error reporting.

Logging, the practice of having code write to a log file as the software
application performs actions, helps administrators see what a web server
is doing at any given time. Your code should log every HTTP request (with
a timestamp, URL, and the HTTP response code), as well as significant
actions performed by users (for example, authentication and password-reset
requests) and the site itself (for example, sending email and calling APIs).

You should make logs available to administrators at runtime (either on
the command line or through a web console) and archive them for later
reading (in case postmortems are needed). Adding log statements to your
code helps diagnose problems that occur on your site, but be careful not to
write sensitive details like passwords and credit card information on your
logs in case an attacker ever manages to get access to them.

Monitoring is the practice of measuring response times and other met-
rics on your website at runtime. Monitoring your web server and database
helps administrators spot high-load scenarios or degraded performance by
firing alerts when network speeds slow or database queries take a long time.
You should pass HTTP and database response times into monitoring soft-
ware, which should, in turn, raise alerts when server and database response
times pass certain thresholds. Many cloud platforms have monitoring soft-
ware built in, so take the time to configure your error conditions and your
chosen alerting system appropriately.

You should use error reporting to capture and record unexpected errors
in the code. You can establish error conditions by either picking them out
of logs or capturing and recording them in the code itself. You can then
collate those error conditions in a datastore you make available to adminis-
trators. Many security intrusions exploit badly handled error conditions, so
be sure to pay attention to unexpected errors as they occur.

Third-party services such as Rollbar and Airbrake supply plug-ins that
allow you to collect errors with a few lines of code, so if you don’t have the

time or inclination to set up your own error-reporting system, consider
using these types of services. Alternatively, log-scraping tools such as Splunk
allow you to pick out errors from log files and make sense of them.

Dependency Management

One thing you need to consider alongside the regular SDLC is depen-
dency management. A curious fact about modern web development is that
youw’ll likely write only a small minority of the code that runs your website.
Your site will typically depend on operating system code, a programming
language runtime and associated libraries, possibly a virtual machine,
and a web server process running third-party code libraries. All of these
third-party tools that you’ll have to rely on to support your website’s code
are known as dependencies. (In other words, the software that your software
depends on to run.)

Experts in their field write each of these dependencies, saving you the
burden of having to write your own memory management or low-level TCP
semantics. These experts also have a strong incentive to stay on top of secu-
rity vulnerabilities and issue patches as they arise, so you should take advan-
tage of the resources they provide!

Using other people’s code requires diligence on your part. A secure
SDLC should include a process for reviewing third-party libraries and
determining when patches need to be applied. This often needs to happen
outside the regular development cycle, since hackers won’t wait until your
next scheduled release date to begin trying to exploit a security vulner-
ability. Staying ahead of security advisories and deploying patches for other
people’s code is just as key as securing the code your team writes. We’ll look
at how to do this in Chapter 14.

Summary

In this chapter, you learned that a well-structured software development life
cycle allows you to avoid bugs and software vulnerabilities.

e You should document design goals by using issue-tracking software.

e You should keep code in source control to make older versions of the code
available for inspection, and to make it easy to organize code reviews.

e Before a release, you should test code in a dedicated and isolated test
environment that resembles your production environment and that
treats your data with utmost care.

e You should have a reliable, reproducible, and revertible release pro-
cess. If you have a scripted build process that generates assets ready for
deployment, you should run it regularly and with unit tests in a continu-
ous integration environment to highlight potential problems early in
the development life cycle.

How Programmers Work 45

e After arelease, you should use penetration testing to detect website vul-
nerabilities before a hacker can make use of them. You should also use
monitoring, logging, and error reporting to detect and diagnose prob-
lems with your running site.

¢ You should stay ahead of security advisories for any third-party code
you use, because you may need to deploy patches outside your regular
release cycle.

In the next chapter, you'll (finally!) begin to look at specific software
vulnerabilities and how to protect against them. You’ll begin by looking at
one of the biggest threats websites face: malicious input designed to inject
code into your web server.

46 Chapter 5

PART I

INJECTION ATTACKS

Now that you have a solid grasp of how the
internet works, let’s focus on specific vul-

nerabilities and the methods hackers use to

exploit them. This chapter covers injection attacks,
which occur when the attacker injects external code
into an application in an effort to take control of the
application or read sensitive data.

Recall that the internet is an example of a client-server architecture, mean-
ing that a web server handles connections from many clients at once. Most
clients are web browsers, responsible for generating HTTP requests to the
web server as a user navigates the website. The web server returns HTTP
responses containing the HTML that makes up the content of the web-
site’s pages.

Because the web server controls the website’s content, server-side code
naturally expects specific types of user interactions to occur, and there-
fore expects the browser to generate specific types of HTTP requests. For
instance, the server expects to see a GET request to a new URL each time the

50

user clicks a link, or a POST request if they enter their login credentials and
click Submit.

However, it’s perfectly possible for a browser to generate unexpected
HTTP requests to a server. In addition, web servers happily accept HTTP
requests from any type of client, not just browsers. A programmer equipped
with an HTTP client library can write scripts that send requests to arbi-
trary URLs on the internet. The hacking tools we reviewed in Chapter 1
do exactly that.

Server-side code has no reliable way of telling whether a script or a
browser generated an HTTP request, because the contents of the HTTP
request are indistinguishable regardless of the client. The best a server can
do is to check the User-Agent header, which is supposed to describe the type
of agent that generated the request, but scripts and hacking tools typically
spoof the contents of this header, so it matches what a browser would send.

Knowing all of this, hackers attacking a website frequently pass mali-
cious code in an HTTP request so that it tricks the server into executing the
code. This is the basis of an injection attack on a website.

Injection attacks are astonishingly common on the internet and, if suc-
cessful, can be devastating in their impact. As a web developer, you’ll need
to know all the ways they can occur and how to defend against them. When
writing website code, it’s important to consider what could come through in
the HTTP requests being handled by the site, not just what you expect to
come through. In this chapter, you’ll look at four types of injection attacks:
SQL injection attacks, command injection attacks, remote code execution
attacks, and attacks that exploit file upload vulnerabilities.

SQL Injection

Chapter 6

SQL injection attacks target websites that use an underlying SQL database
and construct data queries to the database in an insecure fashion. SQL injec-
tion attacks pose one of the greatest risks to websites because SQL databases
are so common. This was evident in 2008, when hackers stole 130 million
credit card numbers from Heartland Payment Systems, a payment proces-
sor that stores credit card details and handles payments for merchants. The
hackers used a SQL injection attack to access the web servers that handled
payment data, which was a disaster for a company that relies on the assur-
ance of their information’s security to do business.

Let’s begin by reviewing how SQL databases work, so that we can get to
the heart of how SQL injection works and how we can stop it.

What Is SQL?

Structured Query Language, or SQL, extracts data and data structures in rela-
tional databases. Relational databases store data in tables; each row in a
table is a data item (for example, a user, or a product being sold). SQL syn-
tax allows applications such as web servers to add rows to the database by
using INSERT statements, read rows by using SELECT statements, update rows
by using UPDATE statements, and remove rows by using DELETE statements.

e © © ©

Consider the SQL statements that a web server might run behind the
scenes when you sign up on a website, as shown in Listing 6-1.

INSERT INTO users (email, encrypted_password)
VALUES ('billy@gmail.com', '10WMT9Y")

SELECT * FROM users WHERE email = 'billy@gmail.com'
AND encrypted_password = '10WMTOY'

UPDATE USERS users encrypted password ='3DMW10Z’
WHERE email="billy@gmail.com’

DELETE FROM users WHERE email = 'billy@gmail.com’

Listing 6-1: Typical SQL statements that a web server might run when a user interacts with
a website

SQL databases typically store information about the website’s users in
a users table. When a user first signs up and chooses a username and pass-
word, the web server runs an INSERT statement on the database to create a
new row in the users table @. The next time a user logs in to the website, the
web server runs a SELECT statement to attempt to find the corresponding row
in the users table @. If the user changes their password, the web server runs
an UPDATE statement to update the corresponding row in the users table ©.
Finally, if the user closes their account, the website might run a DELETE state-
ment to remove their row from the users table @.

For each interaction, the web server is responsible for taking parts of
the HTTP request (for example, the username and password entered into a
login form) and constructing a SQL statement to run against the database.
The actual execution of the statement happens through the database driver,
a dedicated code library used to communicate with the database.

Anatomy of a SQL Injection Attack

SQL injection attacks occur when the web server insecurely constructs
the SQL statement it passes to the database driver. This allows the attacker
to pass arguments via the HTTP request that cause the driver to perform
actions other than those the developer intends.

Let’s look at an insecurely constructed SQL statement that reads user
data from the database when a user attempts to log in to a website, as shown
in the Java code in Listing 6-2.

Connection connection = DriverManager.getConnection(DB_URL, DB_USER, DB_PASSWORD);
Statement statement = connection.createStatement();
String sql = "SELECT * FROM users WHERE email='" + email +

AND encrypted password='" + password +

statement.executeQuery(sql);

Listing 6-2: An insecure method of reading user data from the database during a login attempt

The construction of this SQL statement isn’t secure! This snippet uses
the email and password parameters taken from the HTTP request, and inserts
them directly into the SQL statement. Because the parameters aren’t checked
for SQL control characters (such as ') that change the meaning of the SQL

Injection Attacks 51

statement, a hacker can craft input that bypasses the website’s authentica-
tion system.

An example of this is shown in Listing 6-3. In this example, the attacker
passes the user email parameter as billy@gmail.com'--, which terminates the
SQL statement early and causes the password-checking logic to not execute:

statement.executeQuery(
"SELECT * FROM users WHERE email='billy@gmail.com'®--' AND encrypted_password='Z$DSA92H0'@");

Listing 6-3: Using SQL injection to bypass authentication

52

Chapter 6

The database driver executes only the SQL statement @, and ignores
everything that comes after it @. In this type of SQL injection attack, the
single quote character (') closes the email argument early, and the SQL
comment syntax (--) tricks the database driver into ignoring the end of the
statement that does password checking. This SQL statement allows the attacker
to log in as any user without having to know their password! All the attacker
has to do is add the ' and -- characters to the user’s email address in the
login form.

This is a relatively simple example of a SQL injection attack. A more
advanced attack might cause the database driver to run additional com-
mands on the database. Listing 6-4 shows a SQL injection attack that runs
a DROP command to remove the users table entirely, in order to corrupt
the database.

statement.executeQuery("SELECT * FROM users WHERE email='billy@gmail.com';®
DROP TABLE users;®--' AND encrypted password='Z$DSA92HO'");

Listing 6-4: A SQL injection attack in progress

In this scenario, the attacker passes the email parameter as billy@gmail
.com'; DROP TABLE users;--. The semicolon character (;) terminates the first
SQL statement @, after which the attacker inserts an additional, destructive
statement @. The database driver will run both statements, leaving your
database in a corrupt state!

If your website is vulnerable to SQL injection, an attacker can often run
arbitrary SQL statements against your database, allowing them to bypass
authentication; read, download, and delete data at will; or even inject mali-
cious JavaScript into the pages rendered to your users. To scan websites for
SQL injection vulnerabilities, hacking tools like Metasploit can be used to
crawl websites and test HTTP parameters with potential exploits. If your site
is vulnerable to SQL injection attacks, you can be sure that somebody will
eventually take advantage of it.

Mitigation 1: Use Parameterized Statements

To protect against SQL injection attacks, your code needs to construct SQL
strings using bind parameters. Bind parameters are placeholder characters
that the database driver will safely replace with some supplied inputs—like

®Q

the email or password values shown in Listing 6-1. A SQL statement con-
taining bind parameters is called a parameterized statement.

SQL injection attacks use “control characters” that have special mean-
ing in SQL statements to “jump out” of the context and change the whole
semantics of the SQL statement. When you use bind parameters, these con-
trol characters are prefixed with “escape characters” that tell the database
not to treat the following character as a control character. This escaping of
control characters defuses potential injection attacks.

A securely constructed SQL statement using bind parameters should
look like Listing 6-5.

Connection connection = DriverManager.getConnection(DB_URL, DB_USER, DB_PASSWORD);
Statement statement = connection.createStatement();

String sql = "SELECT * FROM users WHERE email = ? and encrypted password = ?";
statement.executeQuery(sql, email, password);

Listing 6-5: Using bind parameters to protect against SQL injection

This code constructs the SQL query in parameterized form using ? as the
bind parameter ®. The code then binds the input values for each parameter
to the statement @, asking the database driver to insert the parameter values
into the SQL statement while securely handling any control characters. If an
attacker attempts to hack this code using the method outlined in Listing 6-4
by passing in a username of billy@email.com'--, your securely constructed SQL
statement will defuse the attack, as shown in Listing 6-6.

statement.executeQuery(
"SELECT * FROM users WHERE email = ? AND encrypted_password = ?",
"billy@email.com'--,",
"Z$DSA92H0") ;

Listing 6-6: The SQL injection attack is defused.

Because the database driver makes sure not to terminate the SQL state-
ment early, this SELECT statement will safely return no users, and the attack
should fail. Parameterized statements ensure that the database driver treats
all control characters (such as ', --, and ;) as an input to the SQL statement,
rather than as part of the SQL statement. If you're not sure whether your
website is using parameterized statements, go check immediately! SQL
injection is probably the biggest risk your website will face.

Similar types of injection attacks may be possible whenever a web server
communicates with a separate backend by constructing a statement in the
backend’s native language. This includes NoSQL databases like MongoDB
and Apache Cassandra, distributed caches like Redis and Memcached, and
directories that implement the Lightweight Directory Access Protocol
(LDAP). Libraries that communicate with these platforms have their own
implementation of bind parameters, so be sure to understand how they
work and to use them in your code.

Injection Attacks 53

Mitigation 2: Use Object-Relational Mapping

Many web server libraries and frameworks abstract away the explicit con-
struction of SQL statements in code and allow you to access data objects by
using object-relational mapping. Object-relational mapping (ORM) libraries
map rows in database tables to code objects in memory, meaning the devel-
oper generally doesn’t have to write their own SQL statements in order to
read from and update the database. This architecture protects against SQL
injection attacks under most circumstances, but can still be vulnerable if
custom SQL statements are used—so it’s important to understand how your
ORM works behind the scenes.

The ORM that people are probably most familiar with is the Ruby on
Rails ActiveRecord framework. Listing 6-7 shows a simple line of Rails code
that finds a user in a secure fashion.

User.find_by(email: "billy@gmail.com")

Listing 6-7: Ruby on Rails code that looks up a user by email in a way that is protected
against injection attacks

Because ORMs use bind parameters under the hood, they protect
against injection attacks in most cases. However, most ORMs also have
backdoors that allow the developer to write raw SQL if needed. If you use
these types of functions, you need to be careful about how you construct
the SQL statements. For instance, Listing 6-8 shows Rails code that ¢s vul-
nerable to injection.

def find_user(email, password)
User.where("email = '" + email +
end

and encrypted_password = + password + "'")

Listing 6-8: Ruby on Rails code that is vulnerable to injection

Because this code passes part of the SQL statements as a raw string, an
attacker can pass in special characters to manipulate the SQL statement
that Rails generates. If the attacker can set the password variable to ' OR 1=1,
they can run a SQL statement that disables the password check, as shown in
Listing 6-9.

SELECT * FROM users WHERE email='billy@gmail.com' AND encrypted_password ="' OR 1=1

Listing 6-9: The 1=1 statement, which is trivially true, disables the password check.

The final clause of this SQL statement disables the password check,
allowing the attacker to log in as that user. You can securely call the
where function in Rails by using bind parameters, as shown in Listing 6-10.

def find user(email, encrypted password)
User.where(["email = ? and encrypted password = ?", email, encrypted password])
end

Listing 6-10: Secure use of the where function

54 Chapter 6

In this scenario, the ActiveRecord framework will securely handle any
SQL control characters an attacker adds to the email or password parameter.

Bonus Mitigation: Use Defense in Depth

As a rule of thumb, you should always secure your website with redundan-
cies. It’s not enough to check your code line by line for vulnerabilities. You
need to consider and enforce security at every level of the stack, allowing
failures at one level to be mitigated by other strategies. This is an approach
called defense in depth.

Consider how you secure your home. The most important defense is
installing locks on all doors and windows, but it also helps to have a burglar
alarm, security cameras, household insurance, and maybe a large bad-
tempered dog, in order to cover all eventualities.

When it comes to preventing SQL injection, defense in depth means
using bind parameters, but also taking additional steps to minimize the harm
in case an attacker stll finds a way to successfully execute injection attacks.
Let’s look at a couple of other ways to mitigate the risk of injection attacks.

Principle of Least Privilege

An additional way to mitigate injection attacks is to follow the principle of least
privilege, which demands that every process and application run only with the
permissions it needs to perform its permitted functions, and no more. This
means that if an attacker injects code into your web server and compromises
a particular software component, the damage they can do is limited to the
actions permissible by that particular software component.

If your web server talks to a database, make sure the account it uses to
log into the database has limited permissions on the data. Most websites
need to run only SQL statements that fall under the subset of SQL called
the data manipulation language (DML), which includes the SELECT, INSERT,
UPDATE, and DELETE statements we discussed earlier.

A subset of the SQL language called data definition language (DDL) uses
CREATE, DROP, and MODIFY statements to create, drop, and modify the table
structures in the database itself. Web servers generally don’t require per-
missions to execute DDL statements, so don’t grant them the DDL set of
permissions at runtime! Narrowing the web server privileges to the mini-
mal DML set reduces the harm an attacker can do if they discover a code
vulnerability.

Blind and Nonblind SQL Injection

Hackers distinguish between blind and nonblind SQL injection attacks. If
your website’s error message leaks sensitive information to the client, like
the message Unique constraint violated: this email address already exists in
users table, this is a nonblind SQL attack. In this scenario, the attacker gets
immediate feedback on their attempts to compromise your system.

Injection Attacks 55

56

If you keep your error messages to the client more generic, like the
messages Could not find this username and password or An unexpected error
occurred, this is a blind SQL attack. This scenario means the attacker is effec-
tively operating in the dark and has less to work with. Websites vulnerable
to nonblind injection attacks are much easier to compromise, so avoid leak-
ing information in error messages.

Command Injection

Chapter 6

Another type of injection attack is command injection, which attackers can
use to exploit a website that makes insecure command line calls to the
underlying operating system. If your web application makes command line
calls, make sure to construct your command strings securely. Otherwise,
attackers can craft HTTP requests that execute arbitrary operating system
commands, and seize control of your application.

For many programming languages, constructing command strings to
invoke operating systems is actually pretty unusual. Java, for example, runs in
avirtual machine, so although you could call out to the operating system by
using the java.lang.Runtime class, Java applications are generally designed to
be portable between different operating systems, so relying on the availability
of specific operating systems functions would go against its philosophy.

Command line calls are more common for interpreted languages. PHP
is designed to follow the Unix philosophy—programs should do one thing
and communicate with each other via text streams—so it’s common for
PHP applications to call other programs via the command line. Similarly,
Python and Ruby are popular for scripting tasks, so they make it easy to
execute commands at the operating system level.

Anatomy of a Command Injection Attack

If your website makes use of command line calls, make sure an attacker
can’t trick the web server into injecting extra commands into the execution
call. Imagine, for instance, that you have a simple website that does nslookup
to resolve domains and IP addresses. The PHP code takes the domain or IP
address from the HTTP request and constructs an operating system call as
shown in Listing 6-11.

<?php
if (isset($ _GET['domain'])) {
echo '<pre>';
$domain = $_GET['domain']®;
$lookup = system("nslookup {$domain®}");
echo($lookup);
echo '</pre>';

>

Listing 6-11: PHP code receiving an HTTP request and constructing an operating system call

The domain parameter is extracted from the HTTP request at ®. Because
the code does not escape the domain argument when constructing the com-
mand string @, an attacker can craft a malicious URL and tag an extra
command on the end, as shown in Figure 6-1.

[N N@ search-o-bot.com?domain=google.com%3Becho%20%22HAXXED%22 J

What address
would you like
to lookup?

google.com && echo "HAXXED" Q

Figure 6-1: Using the URL to inject a malicious command

Here the attacker sends a domain parameter with the value google.com
8% echo "HAXXED", and the browser URL-encodes the whitespace and non-
alphanumeric characters. The 88 syntax in Unix concatenates separate
commands. Because our PHP code doesn’t strip such control characters,
the attacker carefully constructs the HTTP request to append an extra
command. Two separate commands will get executed in this scenario:
the expected nslookup command that looks up google.com, followed by the
injected command echo "HAXXED".

In this case, the injected command is a harmless echo command, which
simply prints out "HAXXED" in the HTTP response. However, an attacker can
use this vulnerability to inject and execute any command they choose on
your server. With a bit of effort, they can explore the filesystem, read sensi-
tive information, and compromise the entire application. Command line
access on a web server gives the attacker complete freedom to take control
of the system unless you take deliberate steps to lessen the impact.

Mitigation: Escape Control Characters

As with SQL injection, you can defend against command injection by
properly escaping inputs from the HTTP request. This means replacing
sensitive control characters (like the & character in our example) with a

Injection Attacks 57

58

Chapter 6

safe alternative. How you do this depends on the operating system and
programing language you're using. To make the PHP code in Listing 6-11
more secure, we simply need to use a call to escapeshellarg, as shown in
Listing 6-12.

<?php

if (isset($_GET['domain'])) {
echo '<pre>';
$domain = escapeshellarg®($ GET['domain']);
$lookup = system("nslookup {$domain}");
echo($lookup);
echo '</pre>';

}

>

Listing 6-12: PHP code escaping inputs from the HTTP request

The call to escapeshellarg @ ensures that attackers can’t inject extra
commands via the domain parameter.

Python and Ruby can prevent potential command injection attacks too.

In Python, the call() function should be invoked with an array, rather
than a string, to prevent attackers from tagging extra commands onto the
end, as shown in Listing 6-13.

from subprocess import call
call(["nslookup", domain])

Listing 6-13: The call function in Python’s subprocess module

In Ruby, the system() function makes a command line call. Supply it
with an array of arguments, rather than a string, to ensure that attackers
can’t sneak in extra commands, as shown in Listing 6-14.

system("nslookup"”, domain)

Listing 6-14: The system() function in Ruby

As with SQL injection, following the principle of least privilege also
helps limit the impact of successful command injection attacks. Your
web server process should run with only the permissions it requires. For
instance, you should limit the directories the web server process can read
from and write to. On Linux, you can use the chroot command to prevent
the process from exploring outside a designated root directory. You should
try to limit the network access your web server has, too, by configuring fire-
walls and access control lists on the network. These steps will make it much
harder for a hacker to exploit a command injection vulnerability, because
even if they can execute commands, they can’t do anything besides read
files in the web server’s running directory.

Remote Code Execution

So far, you've seen how vulnerabilities can creep in when web code con-
structs a call to databases, as with SQL injection, or to the operating sys-
tem it’s running on, as with command injection. In other circumstances,
attackers can inject malicious code to be executed in the language of the
web server itself, a tactic called remote code execution. Remote code execution
attacks on websites are rarer than the injection attacks we discussed earlier,
but every bit as dangerous.

Anatomy of a Remote Code Execution Attack

An attacker can achieve remote code execution by discovering a vulnerability
in a particular type of web server, and then creating exploit scripts to target
websites running on that web server technology. The exploit script incorpo-
rates malicious code in the body of the HTTP request, encoded in such a way
that the server will read and execute that code when the request is handled.
The techniques used to perform remote execution attacks vary significantly.
Security researchers will analyze codebases for common web servers, looking
for vulnerabilities that permit malicious code to be injected.

In early 2013, researchers discovered a vulnerability in Ruby on Rails
that permitted attackers to inject their own Ruby code into the server pro-
cess. Because the Rails framework automatically parses requests according
to their Content-Type header, security researchers noticed that if they created
an XML request with an embedded YAML object (a markup language com-
monly used in the Rails community for storing configuration data), they
could trick the parsing process into executing arbitrary code.

Mitigation: Disable Code Execution During Deserialization

Remote code execution vulnerabilities usually occur when web server soft-
ware uses insecure serialization. Serialization is the process of converting

an in-memory data structure into a stream of binary data, usually for the
purpose of passing the data structure across a network. Deserialization refers
to the reverse process that occurs at the other end, when the binary data is
converted back into a data structure.

Serialization libraries exist in every major programming language and
are widely used. Some serialization libraries, such as the YAML parser used
by Rails, allow data structures to execute code as they reinitialize themselves
in memory. This is a useful feature if you trust the source of the serialized
data, but can be very dangerous if you don’t, because it can permit arbitrary
code execution.

If a web server uses deserialization to handle data coming in from
HTTP requests, it needs to defuse any serialization libraries it uses by dis-
abling any code-execution capabilities; otherwise, an attacker may be able
to find a way to inject code directly into the web server process. We can typi-
cally disable code execution via a relevant configuration setting that will
allow your web server software to deserialize data without executing code.

Injection Attacks 59

60

As a developer who uses a web server to build sites, rather than one who
writes the web server code itself, protecting against remote code execution
in your web stack usually amounts to staying aware of security advisories.
You're unlikely to be writing your own serialization libraries, so be aware of
where your codebase uses third-party serialization libraries. Make sure to
turn off active code execution features in your own code, and keep an eye
out for vulnerability announcements issued by your web server vendor.

File Upload Vulnerabilities

Chapter 6

The final type of injection attack we’ll look at in this chapter takes advan-
tage of vulnerabilities in file upload functions. Websites use file upload func-
tions for a variety of purposes: letting users add images to their profile or
posts, adding attachments to messages, submitting paperwork, sharing doc-
uments with other users, and so on. Browsers make it easy to upload files via
built-in file-upload widgets and JavaScript APIs that allow you to drag files
onto a web page and send them asynchronously to the server.

However, browsers aren’t exactly careful about checking the contents
of a file. Attackers can easily abuse file upload functions by injecting mali-
cious code into an uploaded file. Web servers typically treat uploaded files
like large blobs of binary data, so it’s pretty easy for an attacker to upload a
malicious payload without the web server detecting it. Even if your site has
JavaScript code that checks a file’s content before uploading it, an attacker
can write scripts to post file data to the server-side endpoint directly, cir-
cumventing any security measures you put in place on the client side.

Let’s see how attackers typically exploit file upload functions so that
we identify the various security weaknesses that we need to plug.

Anatomy of a File Upload Attack

As an example of a file upload vulnerability, let’s look at how an attacker
could potentially abuse the profile image upload function of your site. The
attacker first writes a small web shell, a simple executable script that will take
an argument from an HTTP request, execute it on the command line, and
output the result. Web shells are a common tool used by hackers attempting
to compromise a web server. Listing 6-15 shows an example of a web shell
written in PHP.

<?php
if(isset($ REQUEST['cmd'])) {
$cmd = ($_REQUEST['cmd']);
system($cmd);
} else {
echo "What is your bidding?";
}

?>

Listing 6-15: A web shell written in the PHP language

The attacker saves this script as hack.php on their computer and uploads it
as their profile “image” on your site. PHP files are typically treated by operat-
ing systems as executable files, which is key to making this attack work. Clearly
a file ending with .pAp isn’t a valid image file, but the attacker can fairly easily
disable any JavaScript file-type checking done during the upload process.

Once the attacker has uploaded their “image” file, their website profile
page will show a missing image icon, because their profile image is corrupted
and not actually an image. However, at this point they have achieved their real
aim: smuggling the web shell file onto your server, which means their malicious
code is now deployed to your site, waiting to be executed in some fashion.

Because the web shell is available on a public URL, the attacker has
potentially created a backdoor for executing the malicious code. If your
server’s operating system has a PHP runtime installed, and the file was
written to disk with executable privileges during the upload process, the
attacker can pass commands to run the web shell simply by invoking the
URL that corresponds to their profile image.

To perform a command injection attack, the hacker can pass a cmd argu-
ment to the web shell to execute arbitrary operating system commands on
your server, as shown in Figure 6-2.

[N N@ cdn.example.com/1a2fe/hack.php?cmd=cat+/etc/mysql/my.cnf

[elient]

user=admin
password=3f34f1de3847041a73f859cd6b5bd4cs
db_name=43d1f5f70e359968b660e04cleddcel
host=ec5-109--23. compute-32.amazonaws. com
port=2323

[mysql]
no-auto-rehash
connect_timeout=3

Figure 6-2: If your file upload function is vulnerable, a hacker could
use a web shell to access your database credentials.

In this scenario, the attacker can explore your filesystem. The attacker
has taken advantage of your file upload function to gain the same access to
your operating system as they would with a command injection attack.

Mitigations

You can use several mitigations to protect yourself against vulnerabilities in
file upload code. The most important mitigations ensure that any uploaded
files can’t be executed as code. Following the principle of defense in depth,

you should also analyze uploaded files and reject any that appear to be cor-
rupt or malicious.

Injection Atlacks 61

62

Chapter 6

Mitigation 1: Host Files on a Secure System

The first, most important approach to securing file upload functions is

to ensure that your web server treats uploaded files as inert rather than
executable objects. You can do this by hosting your uploaded files in a con-
tent delivery network (CDN) such as Cloudflare or Akamai, as described in
Chapter 4, which offloads the security burden to a third party who stores
your files securely.

CDNs have other nonsecurity-related benefits too. CDNs serve files
extremely fast to the browser, and can put them through processing pipe-
lines as you upload them. Many CDNs offer sophisticated JavaScript upload
widgets that you can add with a few lines of code, and that provide bonus
features like image cropping.

If for some reason a CDN isn’t an option, you can get many of the same
benefits by storing uploaded files in cloud-based storage (for example, Amazon
Simple Storage Service, or S3) or a dedicated content management system.
Both approaches provide secure storage that defuses all web shells as they’re
uploaded. (Although, if you're hosting your own content management sys-
tem, you’ll have to make sure to configure it correctly.)

Mitigation 2: Ensure Uploaded Files Cannot Be Executed

If using a CDN or content management system isn’t an option, you need

to take the same steps to secure your files that a CDN or content manage-
ment does behind the scenes. This means ensuring that all files are written
to disk without executable permissions, separating uploaded files into a
particular directory or partition (so they aren’t intermingled with code),
and hardening your servers so that only the minimally required software is
installed. (Uninstall the PHP engine if you aren’t using it!) It’s a good idea
to rename files as you upload them too, so you don’t write files with danger-
ous file extensions to disk.

The ways to achieve these ends vary depending on your hosting tech-
nology, operating system, and the programming language you use. If you're
running a Python web server on Linux, for instance, you can set file permis-
sions when creating a file by using the os module, as shown in Listing 6-16.

import os
file descriptor = os.open("/path/to/file", os.0_WRONLY | os.0_CREAT, 00600)
with os.fdopen(open(file_descriptor, "wb")) as file_handle:

file handle.write(...)

Listing 6-16: Writing a file with read-write (but not execute) permissions in Python on Linux

Removing unneeded software from your operating system is always a
good idea, because it gives a hacker fewer tools to play with. The Center
for Internet Security (CIS) provides prehardened operating system images
that make a good starting point. They’re available as Docker images or as
Amazon Machine Images (AMIs) in the Amazon Web Services Marketplace.

Mitigation 3: Validate the Content of Uploaded Files

If you're uploading files with a known file type, consider adding some file-
type checking in your code. Make sure the Content-Type header in the HTTP
request of the upload matches the expected file type, but be aware that an
attacker can easily spoof the header.

It’s possible to validate the file type after the file has been uploaded,
particularly with image files, so it’s a good idea to implement this feature
in your server-side code, as shown in Listing 6-17. Your mileage should vary,
though; clever hackers in the past have infiltrated various systems by design-
ing payloads that are valid for more than one type of file format.

>>> import imghdr
>>> imghdr.what('/tmp/what_is_this.dat")
'gif’

Listing 6-17: Reading the file headers to validate a file format in Python

Mitigation 4: Run Antivirus Software

Finally, if you’re running on a server platform that’s prone to viruses (hello,
Microsoft Windows!) make sure you’re running up-to-date antivirus soft-
ware. File upload functions are an open door to virus payloads.

Summary

In this chapter, you learned about various injection attacks, whereby an
attacker crafts malicious HTTP requests to take control of backend systems.

SQL injection attacks take advantage of web code that doesn’t securely
construct SQL strings when communicating with a SQL database. You can
mitigate SQL injection by using bind parameters when communicating with
the database driver.

Command injection attacks take advantage of code that makes insecure
calls to operating system functions. You can similarly defuse command
injection through correct use of binding.

Remote code execution vulnerabilities allow hackers to run exploits
inside the web server process itself, and typically stem from insecure serial-
ization libraries. Make sure to stay on top of any security advisories for the
serialization libraries you use, and for your web server software.

File upload functions often enable command injection attacks if your
file upload functionality writes uploaded files to disk with executable privi-
leges. Make sure to write uploads to a third-party system or to disk with
appropriate permissions, and do whatever you can to validate the file type
as you upload them.

Injection Attacks 63

64

Chapter 6

You can mitigate the risks around all types of injection attacks