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Preface
I started this book nearly 10 years ago. At the time, it seemed obvious to me
that Android would be important in the burgeoning Internet of Things (IoT)
world. Both Larry and I taught the Android Internals course for the great
Marakana (later, New Circle). That class was so popular that both of us got
to see a lot of the world while teaching it. I was certain that a book that
described the general process of customizing Android for a new device
without getting bogged down in details could be a hit.

On the other hand, I recall sitting in the restaurant in Grand Central Station
with the editor of one of the books I co-authored (a man I very much
respected) as he laid out comparable titles and explained in inexorable
detail the chances that such a book would succeed. They were not good.

Sometime later, my co-author on O’Reilly’s Programming Android, Zigurd
Mednieks, proposed the Android Deep Dive series to Addison-Wesley. The
idea was a series of small, replaceable titles, none of which had the
overhead of a large book. If a volume became obsolete, it could be replaced
or updated without impact to the rest of the series. In this lower-risk
environment, my book made sense. It was green-lighted, and I started work
on it.

Somewhere around the time I got the first few chapters written, Laura
Lewin (the series editor at that time) and Zigurd pitched another book to
me. That pitch turned into Android Concurrency. I am very proud of that
book, but it took several years to write and completely stalled work on this
one.

When I finally returned to this book, I was no longer teaching Internals.
Cyanogen had shut down, and both Android and I had moved on. When I
picked up the book again, I discovered that Android had changed so much
in the interim (ART, Treble, and SE Linux) that each time I caught up, it
had already moved on. The book was nearly canceled.

I had the great luck to have Larry Schiefer on board as a technical reviewer.
When I finally conceded that the project was swamped and on the verge of



drowning, our superstar editor Malobika Chakraborty suggested I take on a
co-author. Talk about luck: Larry volunteered! He pulled the book out of its
hole, laid down some fantastic knowledge, and made this project relevant
again. I’m gonna buy him a t-shirt with a big yellow “S” on it.

Before you dig into the first chapter, let me offer a gentle reminder: This is
not a cookbook. The book contains code examples, and they are all
available online. They have all compiled successfully and run at least once.
That, however, is no guarantee that they will compile and run for you
(though we hope they do!). Tool chains change. Android changes. Devices
change. Things that work today may well not work at all tomorrow. Our
intention is that the content here is a guidebook, not a map.

Good luck!

Blake Meike, May 2021

Example Code

Most of the code shown in examples in this book can be found on GitHub at
https://github.com/InsideAndroidOS.

Note
Sometimes a line of code will be too long to fit on one line in this
book. The code continuation symbol (➥) indicates that the line
continues from the previous line.

Register Your Book

Register your copy of Inside the Android OS at informit.com for convenient
access to downloads, updates, and/or corrections as they become available.
To start the registration process, go to informit.com/register and log in or
create an account. Enter the product ISBN 9780134096346 and click
Submit. Look on the Registered Products tab for an Access Bonus Content
link next to this product and follow that link to access any available bonus

https://github.com/InsideAndroidOS
http://informit.com/
http://informit.com/register


materials. If you would like to be notified of exclusive offers on new
editions and updates, please check the box to receive email from us.
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1

Why Android?

Android was built for small. It has scarcity designed deep into its DNA.

It was created in the early 2000s, a time when mobile devices were divided
into categories like “smart phone” and “feature phone”; when flash drive
program/erase cycles were counted in tens of thousands; and when 64
megabytes was a lot of RAM. The idea at Android’s very core—that
because there is no backing store to which to swap running programs, when
memory gets tight the operating system has no choice but to terminate them
—is the inescapable legacy of its fixation on frugality.

Modern smart phones have all the capabilities that laptops had at that time.
Were it designed today, Android would likely be a very different thing.
Although battery life is still a subject of much concern, a modern mobile
OS could swap to flash memory as effectively as a modern laptop swaps to
its SSD. Modern Android developers are supplementing—even replacing—
the simple, frugal libraries built into Android with new and powerful but
much more resource-intensive libraries such as GSON and RxAndroid.

At the same time that mobile phones, the original target of the Android OS,
are outgrowing its architecture, a new and possibly larger opportunity is
appearing: the Internet of Things and the smart devices that comprise it. In
much the way that even small companies found, around the turn of the
century, that they needed a web presence to compete, so many of the same
companies are now discovering that their products need a web presence to
compete. From medical devices and on-board systems in cars, to homes,
appliances, and even clothes, all sorts of products are being supplemented
with built-in intelligence. Many of these devices have substantial



constraints on the processor they can support. Price, design, and flexibility
make Android an excellent choice for powering these types of devices.

Adopting Android

There are a lot of reason that Android might be a good choice for a new
smart device.

Full Stack

The Android OS addresses the full stack of product requirements. From
hardware and the kernel to stereo audio and displays on multiple screens,
Android offers flexibility and provides a wealth of options. One can think
of Android as similar to a distribution of GNU/Linux such as Mint or
CentOS. It transforms a device from a warm piece of silicon to a useful
computer with basic functionality.

Broad Acceptance

Perhaps the most obvious reason for choosing Android for a hardware
project is that it is ubiquitous. Some versions of Android run out of the box
on nearly any common chipset. In fact, most SoC (system on a chip)
vendors provide reference hardware kits with a version of Android and a
backing Linux kernel. At least as important is that many developers are
familiar with the Android system. Building a team, from front-end
application and UI experts to those with the deep understanding of Android
necessary to modify its core, should not be an impediment.

Beautiful UI

The Android system is capable of producing stunning user interfaces, which
is perhaps its most important feature. Support for most popular audio and
video media is baked right in and is relatively easy to use. Offering full
lighting and shadowing, the tools for animation and 3D display are top-
notch. One has only to look at some of the simply gorgeous applications
such as Feedly or Weather View to grasp the nearly unlimited potential of



the Android design palette. When the existing Android UI framework is not
enough, the system supports both Open GL ES and Vulkan for low
overhead, high-performance 3D graphics.

Linux Based

The Android operating system is based on the Linux operating system.
Linux is one of the most popular and widely used of all operating systems.
It is everywhere. Whether a chip is ARM-based, Intel-based, or something
radical, nearly every chipset manufacturer provides a version of Linux that
runs on their device. Bear in mind, however, that Android is officially only
available for ARM- and Intel-based processors (both 32 and 64 bit.) This
means the Android Open Source Project (AOSP) tree’s build system, pre-
built tools, test suites, and the publicly available native development kit
(NDK) only support these architectures. That is not to say Android cannot
run on some other architecture, just that the toolchains and build systems
for those architectures are not supported.

While simply getting Linux ported and running on a new board is an
important first step, quite a bit of work may well be necessary to get all the
hardware accessible to software. Frequently, because the Linux kernel is
licensed with the GNU Public License (GPL), the custom code necessary to
support a particular sensor, display, or port will already be available for free
online. Even if this is not the case, a large community of developers exists
that is very familiar with the process of building new drivers for Linux.
Accommodating a new board or a new device is, if not always simple, at
least fairly straightforward.

Powerful Development Environment

The Android toolchains are quite powerful and are undergoing constant
improvement. Both toolchains—that for building Android’s infrastructure
and that for building Java applications that run on top of Android—are
based, largely, on common off-the-shelf tools.

The Android source code, the Android Open Source Project (AOSP), is
well supported. Creating a build of the version of Android used in this



book, API 29, is relatively straightforward on recent OSX and Linux
platforms. The build system with its directory-based mechanism for per-
hardware customizations was originally based on GNU make. With the
Nougat release, the soong build system replaced make. Soong uses two
additional tools, kati and ninja, to make the build much faster than it was
using make. Existing makefiles continue to work as-is alongside the new
soong build files.

Most of the development for an Android system—even most of the system-
level programming—is done in Java. Android Java developers will use
tools like Android Studio (a fork of IntelliJ’s IDEA IDE) and Gradle, the
standard build tool for Android applications. Gradle is very definitely
sufficient for building, testing, and packaging even system applications with
native components.

As mentioned previously, as of about 2014, several new, interesting, and
powerful development frameworks are available for use in Java Android
application. Although some are large and all are a trade-off in battery life,
tools such as Realm DB, RxAndroid, and Retrofit can drastically improve
the effectiveness of a development team.

One of the most important advancements in Android development was the
announcement of Kotlin as a first-class supported language in May of 2017.
Kotlin is clear, succinct, powerful language that seamlessly integrates with
existing Java and even native code. Although it is not widely used within
AOSP’s core (yet), it can be used by applications written for a custom
Android platform.

Open Source

Building an embedded device necessarily involves negotiating a minefield
of legal issues. This book is technical, not legal. We are not lawyers and
nothing in this or any of the subsequent chapters should be interpreted as
legal advice. If you intend to attempt marketing your own device, you will
need the help of a qualified lawyer. That said, some broad generalizations
might help a budding device developer to understand the moving parts.
Figure 1.1 is a very high-level model of code ownership in the Android
system.



Figure 1.1 Android Code Ownership

At the bottom of the stack is proprietary hardware code. It is usually
obtained from the hardware vendor, who may license it at no cost or,
perhaps, impose some kind of fee. This code is frequently not open source.
It is essential, but it may be delivered as pre-built binaries and possibly with
strict legal injunctions about reverse engineering. Quite possibly you will
never see the source and even the documentation for it might not be very
good. Android’s primary interface to this code is the Hardware Abstraction
Layer (HAL), discussed in Chapters 8 and 10.

At the top of the stack are applications. These are things like the controller
for a proprietary home-entertainment system or the Facebook and Twitter
apps. Apps are also likely to be proprietary and, again, unless they are apps
you develop yourself, you may never see their source code. If your platform
needs specific applications, you will either have to make agreements with
their owners or provide some kind of service (a store or marketplace) from
which an end user can acquire them.

In between these two proprietary layers is the code base for Android itself,
the Android Open Source Project (AOSP). It is completely open source.
You can read it, copy it, customize it, and use it pretty much as you like.



Nearly all of it is protected with licenses that even allow you to redistribute
only pre-built binaries, should you choose to do so. You can take as little or
as much as you need.

People are frequently confused about the openness of the AOSP code base,
because Google strictly controls contributions. It is true that you are
unlikely to be able to contribute a change to the canonical AOSP codebase
as you could with most other open-source projects. What you can do,
though, is create a fork of the relevant code repository, change it in any way
you choose and use it wherever you want.

Although the AOSP code is truly open source, it is not necessarily free of
legal encumbrances. Many of the technologies built into Linux and the
Android services based on top of it have been the subjects of large and
small legal battles. Among the technologies that you might need to license
are things such as Wi-Fi, Bluetooth, multimedia codecs, and other more
esoteric things (like a file system!).

What makes this even more confusing is the AOSP tree includes software
implementations of some of these components (such as multimedia
encoders and decoders) as placeholders. They do not come with any kind of
patent or license grant from Google or the intellectual property (IP) holders.
When you build a new device, these third-party components must be
carefully examined to ensure the device is in compliance with technology-
specific licenses.

Microsoft, in particular, has a portfolio of patents that it has successfully
used in strong-arming an estimated $1 billion in license fees from various
Android device manufacturers. The exact contents of this portfolio were a
closely held secret for many years. In 2014, however, the Chinese
government leaked the contents of the portfolio, and you can now easily
find it online.

AOSP and Google

Google holds its control over the Android OS in two ways. First, most
consumer Android-labeled systems contain a feature-rich, proprietary



Google platform that is not part of AOSP. This platform includes things
such as Google Play Services, Google Maps, and the Play Store.

Second, to install any of these proprietary services—or even, for that
matter, to label the system as an Android™ system and adorn it with the
Android robot icon—a device manufacturer must ensure the device
complies with the Android Compatibility Definition Document (CDD) and
passes the Android Compatibility Test Suite (CTS) and the Vendor Test
Suite (VTS). After a device is verified as compliant, Google Mobile
Services may be licensed for the device, allowing it to ship with Google’s
proprietary add-ons.

These constraints—the Google proprietary code, the licensing agreement,
compliance with the CDD, and passing the CTS and VTS—do not affect
the use of the AOSP codebase. Developers and device creators are free to
use and adapt the AOSP code as long as they neither label the resulting
device as “Android” nor need the Google proprietary code and its
associated functionality (marketplace, cloud services, and so on).

Several examples exist of forks of the AOSP codebase. Perhaps the best
known of these is Fire OS, used on Amazon devices such as the Kindle,
Fire TV, and the Fire Phone. Many, if not most, applications built for
Android will run on Fire OS. Nonetheless, Fire OS cannot be labeled as
Android, cannot include the Google Play Store, and does not support
Google Play Services.

Both Samsung and LineageOS (formerly CyanogenMod) also maintain
operating systems that are heavily modified versions of the AOSP
codebase. Both of these forks, though, have managed to pass the CTS and
stay on Google’s good side. Both are labeled as Android.

Many other examples of AOSP code in non-Google devices exist, from
popular phones and tablets in China and India to the UI for Comcast’s
Xfinity service. Although each of these devices has its own legal story and
its own legal concerns, the use of the AOSP codebase is not, in itself, a
problem for any of them. Depending on whether a manufacturer feels that it
can provide an alternative to the Android label and the accompanying
Google proprietary services, it either does or does not invite Google into its
AOSP-based product. The devices it creates using AOSP code do not need



be visible to Google in any way and do not need any permission or
participation from Google.

Where it gets complicated is devices in the middle ground between the two
ends of the spectrum just described: a device that does not need or want the
Android label but on which the manufacturer wants to include apps with
which users are familiar but are provided by Google. For example, consider
a kiosk for renting movies that is powered by Android. The manufacturer
would like to bundle YouTube so that users can view video trailers.
Google’s position is this arrangement is not supported. The manufacturer
needs either to ensure the device is CDD/CTS compliant or find an
alternative way of providing the desired functionality.

Other Choices

The number of products with embedded systems may be exploding but the
idea of embedded computing itself is nothing new. Many alternatives to
Android are available as the intelligence for an IoT device; Real Time
Operating Systems (RTOSs), some much older than Android and some
newly developed.

An even better alternative, though, might be no OS at all.

Micro-Controllers

Even with the falling prices and increasing power of single-board
computers (SBCs), at the time of this writing, a board that can run Android
will cost something in the $20–$50 range. It will also occupy around 20
cubic centimeters of space. That can be a lot of overhead for a small device.

When cost and space are of paramount importance, a micro-controller like
the wildly popular Arduino may be an attractive alternative. Most micro-
controllers are not full-fledged processors and cannot support multiple
simultaneous processes, Linux, or a flashy UI, let alone Android.

At the time of this writing, so-called “mini” micro-controllers are a full
order of magnitude less expensive than SBCs and may require less than a
single cubic centimeter of space. Over time, certainly, the line between



SBCs and micro-controllers will blur. SBCs will get smaller, micro-
controllers will become more powerful, and RTOS capabilities will scale
linearly with the hardware. Even now, though, it is possible to accomplish
some very impressive magic with one or more small, simple micro-
controllers.

An important limitation of micro-controllers, to be considered before
choosing one as the brains for a project, is its upgradeability. While it is
certainly possible to update a microcontroller-based system over the air, it
can be difficult and might require additional specialized hardware. If over-
the-air (OTA) updates are part of your device strategy, you might need a
full-fledged OS.

Simplicity is a double-edged sword. A system that can be updated can be
hacked. Hacking a micro-controller is entirely possible. Think Stuxnet.
However, doing so is probably difficult and not interesting to an attacker. A
simple read-only memory (ROM)-based micro-controller that is just
sufficient to power your project may save you from a substantial security
budget and keep your product out of the headlines during the next
distributed denial of service (DDoS) incident.

Other RTOSs

The list of operating system alternatives to Android is long. Each of them
solves some set of problems and introduces others.

QNX

QNX was the most popular embedded OS in the world before the advent of
Android. Originally called QUNIX, it is a micro-kernel-based system and
was developed by two students at the University of Waterloo. It was
released in 1984 as QNX to avoid trademark infringement. Since that time
it has been rewritten several times, and sold, first to Harman International
and then to Research In Motion, now Blackberry. Shortly after Blackberry
acquired QNX, it restricted access to the source.

VxWorks



If your device needs the kind of reliability and dependability that powers
the Martian probes and military aircraft, you should consider VxWorks.
VxWorks is a proprietary OS originally developed by RTOS pioneers, Wind
River. Wind River is now a wholly owned subsidiary of Intel.

The VxWorks kernel is monolithic (unlike QNX), but the system is nicely
modularized and the toolchain well developed. All of this, of course, comes
at a price: Vxworks is proprietary and closed source. Wind River also
produces Wind River Linux, a hardened kernel with a custom build system.

Android Things

Android Things is Google’s version of Android stripped down for IoT.
Codenamed Brillo, this stripped down version of Android was designed to
be used by low-power IoT devices with significantly less RAM (as low as
32 MB) while still including Bluetooth Low Energy (BLE) and Wi-Fi
support. Android Things requires manufacturers to use supported single-
board computers (SBCs) or System on Modules (SoMs). Such devices
would automatically receive OS and security updates from Google.
Additionally, Android Things included a standard framework for
developing custom hardware interfaces without requiring changes to the
underlying kernel or Android framework. This approach allowed IoT
manufacturers to focus on their specific purpose and not worry about the
underlying OS, its security, or system-level updates.

Unfortunately, in early 2019 Google announced that Android Things had
been refocused on smart TV and smart speaker systems and that broader
long-term support is at end of life.

Others

Windows CE has been a very popular embedded OS as is evidenced by the
blue screens of death on everything from subway and traffic signs to
vending machines and museum kiosks. Microsoft recently introduced a
successor to CE, called Windows 10 for IoT.

Nucleus RTOS, from Wind River’s long-time rival, Mentor Graphics, found
a home in a number of Samsung, LG, and Motorola phones. Riot OS, Arm
Mbed OS, and Green Hills Integrity are all also players.



Nearly all of these popular RTOSs are proprietary and closed source. Free
and open-sourced RTOSs are out there, though—FreeRTOS, MontaVista,
and Contiki, to name a few—but none of them has the kind of history and
support that Android has.

Summary

You can find many alternatives to Android. Few, however have the
collection of features and support that make it such a great choice for an
IoT project:

It is free. Take as much or as little as you like; use it as you please.

It is portable. Android can be made to run on virtually any type of
hardware. Getting any operating system running on a new device can
be very difficult. Android is no exception. There is, though, a lot of
existing code and a large community with lots of experience with
porting it.

It is adaptable. Plumbing support for new peripherals into the
Android framework is a straightforward and usually simple task.
Doing so is the subject of the rest of this book.

The toolchain is good. The low-level C and C++ code use standard
tools augmented with a baroque but useful build system. Most of the
code—high level and written in Java—is supported by Gradle, a
couple custom plug-ins, and Android Studio. All of these tools are
undergoing constant improvement.

It supports reactive and beautiful UIs. Android can handle a variety
of media, both audio and video. It has powerful tools for animation,
and supports three-dimensional layouts and both touchscreen and D-
pad input.



2

Booting Acme

Let’s get started! Consider a project: customizing Android for a new device,
the Acme device. The hardware engineers for the Acme project have,
fortunately, chosen hardware that turns out to be fairly similar in
architecture to a HiKey960. That means the Acme project will be based on
the well-supported HiKey variant of AOSP and gradually modified to suit
the project goals.

Note
The code and examples in this book were built and run on a
HiKey960, using the release tag android-10.0.0_r33 for the Android
AOSP source tree and compiled on a Linux Ubuntu 16.04. While, of
course, this is not a guarantee of reproducibility, it is some guarantee
of consistency.

Even for developers who are not so fortunate as to have such a lucky choice
of hardware for their project, the general strategy described in this chapter
should be completely applicable. The absolute pre-requirements for the
development process described in the rest of this book are a code-base that

Is under source control and can be reproduced exactly

Can be built with a stable, available toolchain to create a flashable
image

Produces an image that successfully boots into Android



Bringing up a device is work for wizards; it can be frustrating, time
consuming, and unique to a particular device. It is unlikely that any book
could describe it. Even if such a book did exist, it would be obsolete by the
time it got to the printer.

Note
Developers at the interface between hardware and software call the
process of getting a basic operating system running on a new device
as “bring up.” Bringing up a board is, usually, an iterative process,
first getting some small simple code running and then using it to
bootstrap a boot loader and, eventually, an operating system.

Although this chapter is a skeleton for the process, there is some wild hand
waving: This is not a cookbook. Being able to get from source to running
Android, however, is absolutely a pre-requirement for proceeding. To
follow the topics discussed in the rest of this book, a developer must be able
to test incrementally and revert changes when they do not work.

Setting Up a Build Machine

The two supported options for a build machine are Linux and OSX.
Although developing Android applications from Windows is possible, no
support for building Android itself on Windows exists.

Android is definitely most comfortable on Linux. A plurality of the work
done on the Android system is done on Linux platforms. The tools, the
support community, and even the code itself all originate and are most
thoroughly used and tested in the Linux environment. Developers with
Linux development platforms and comfortable using Linux systems are on
the best maintained trail.

Many developers prefer to work on OSX. Fortunately, most versions of
most of the Android code can be built from OSX. Linux kernels, custom
drivers, and native Linux services can also frequently be built on OSX.



Choosing OSX as a build platform, however, is a charged decision.
Developers who depend on OSX for building their products can expect to
spend a significant amount of time porting and debugging tools. The ability
to do an OSX native build can certainly be an important timesaver for an
engineer developing on an OSX machine—when it works. The distinction
between expecting a native OSX build to work most of the time and
depending on having them work all the time may seem subtle. It can
become very clear, though, when a deadline looms and the OSX native C
compiler refuses to compile the most recent source.

Perhaps surprisingly, virtual machines can be realistic alternatives. They are
the only way to do builds on a Windows system. Of course, builds
definitely run slowly on a virtual machine. With a little forethought, though,
the possibility exists that full builds may be necessary only rarely.
Depending on the size of the incremental build, a virtual machine may be
viable.

Note
Unfortunately, at least at the time of this writing, one of the most
appealing possibilities, a shared folder, visible from both an OSX
host and a Linux guest, does not work using either recent versions of
VirtualBox or VMWare Fusion for virtualization. A flaw in the
mapping between guest and host file permissions prevents the build
from completing successfully.

Complete, easily followed directions for setting up the build machine are
available on the AOSP source website at
https://source.android.com/setup/build/initializing.

When building with OSX, creating a separate, case-sensitive volume to
hold the source code is especially important. The volume can be a
mountable disk image file or a physical external drive but it must, unlike
the normal OSX file system, be case sensitive.

The next step is downloading the source.

https://source.android.com/setup/build/initializing


Downloading the Code

The process of downloading the Android source tree is also well
documented at the source website. The full source is fairly large (around
100 GB) and nearly twice that much space will be necessary for a complete
build. Both the download and build processes can be quite lengthy and take
hours, even on a fairly powerful machine with a good network connection.

The code is structured as a forest of git repository trees and maintained
with a tool called repo. As described in the documentation, downloading
the source consists of

1. Obtaining the repo tool

2. Obtaining the repo manifest
3. Using repo to download the git repositories named in the manifest

Repo

Repo is an interesting and powerful tool. It is a Python program that uses git
to provide functionality similar to that provided by git submodules. Repo,
however, was around well before submodules.

The following discussion assumes a good working knowledge of git.
Several excellent resources for developers that are new to git are available,
including Jon Loeliger and Matthew McCullough’s excellent Version
Control with Git (Loeliger, 2012) and the complete and readable
documentation at GitHub (https://help.github.com).

Repo manages an interesting two-layered versioning system. The following
command line initializes a directory as a Repo workspace:

Click here to view code image

repo init -u https://android.googlesource.com/platform/manifest 

\


          -m default.xml

https://help.github.com/
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Running this command in a directory creates a new top-level subdirectory
named .repo. That directory contains, among other things, the manifest
repository—a git repository identified in the initialization command by the
argument of the -u option. The manifest repository is cloned into the .repo
directory and named manifests.

The manifest repo may contain all kinds of things, but it must contain one
or more manifest files. The manifest file that is named as the argument of
the -m command line option (or the file named default.xml, 12if no -m
option is specified) is soft-linked or included from the top level of the .repo
directory as manifest.xml. The manifest.xml file controls the structure of
the rest of the repository. Figure 2.1 illustrates the structure of the repo
workspace.



Figure 2.1 Repo Workspace

After the workspace is initialized, repo can download the actual source.
This is done by issuing the sync command from the command line:

repo sync

In response to this command, the repo program parses manifest.xml, which
is a list of git repositories. It clones each git repository into a location, also
specified in the manifest. When the sync command completes, the working
directory is an identical copy of every other workspace created with the
same commands.



Caution!
Do not copy a repo workspace as you might a normal git repository.
Repo workspaces make heavy use of soft links. A simple file copy
will actually refer to the exact same workspace as the original.

Because the manifest itself is kept in a git repository, it may be versioned: It
is a versioned list of names of versioned repositories. The manifest
directory, in addition to having different manifests—say, one for each of
several different customers—may also contain multiple versions of each of
those manifests, each on a separate git branch. Repo’s -b option allows the
developer to check out the version of a manifest on a particular branch.
That versioned manifest may, in turn, point to specific branches (or even
commits) within each of the repositories that make up the workspace. A
subsequent sync command will populate the workspace as specified by the
branch version of the manifest.

A manifest is a fairly simple XML document. Listing 2.1 gives a partial
example.

Listing 2.1 Repo Manifest
Click here to view code image
<?xml version="1.0" encoding="UTF-8"?>


<manifest>





  <remote  name="aosp"


           fetch=".." />


  <default revision="refs/tags/android-10.0.0_r33"


           remote="aosp"


           sync-j="4" />





  <project path="build/make" name="platform/build" groups="pdk" >


    <copyfile src="core/root.mk" dest="Makefile" />


    <linkfile src="CleanSpec.mk" dest="build/CleanSpec.mk" />


    <linkfile src="buildspec.mk.default" 

dest="build/buildspec.mk.default" />


    <linkfile src="core" dest="build/core" />


    <linkfile src="envsetup.sh" dest="build/envsetup.sh" />


    <linkfile src="target" dest="build/target" />
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    <linkfile src="tools" dest="build/tools" />


  </project>


  <project path="build/blueprint" name="platform/build/blueprint"


  groups="pdk,tradefed" />


  <project path="build/kati" name="platform/build/kati" 

groups="pdk,tradefed" />


  


  <project path="build/blueprint"


           name="platform/build/blueprint"


           groups="pdk,tradefed" />





  <project path="build/soong" name="platform/build/soong" 

groups="pdk,tradefed" >


    <linkfile src="root.bp" dest="Android.bp" />


    <linkfile src="bootstrap.bash" dest="bootstrap.bash" />


  </project>


  <project path="abi/cpp" name="platform/abi/cpp" groups="pdk" />


  <project path="art" name="platform/art" groups="pdk" />


  <project path="bionic" name="platform/bionic" groups="pdk" />


...


</manifest>

The full syntax for the manifest file is specified in the documentation
accompanying the repo source at https://gerrit.googlesource.com/git-
repo/+/master/docs/manifest-format.md. Essentially, each project element
in the XML identifies a git repository by its name, relative to some base
URL, its remote; and where that repository should be placed in the local
workspace, its path. The manifest in Listing 2.1, for instance, identifies a
git repository named “platform/bionic”, to be placed at the top level of the
workspace in a directory named “bionic”.

Deciphering the full URL for the “bionic” source git repository requires a
bit more investigation. Because no explicit remote is specified for the
bionic project, repo will use the default remote. The default remote for this
manifest is specified up in the default element near the top of the manifest.
The manifest in Listing 2.1 specifies the remote named “aosp” as the
default. The “aosp” remote is defined in the element immediately above the
default element. Normally a remote definition would include a name and a
base URL. Instead, the “aosp” remote includes the somewhat cryptic
“fetch” attribute “..”, which has a special meaning. It indicates that the URL
for this remote should be derived from the URL used to initialize the

https://gerrit.googlesource.com/git-repo/+/master/docs/manifest-format.md


workspace (the argument to the -u option, the URL of the original manifest)
by leaving off the last element. In this example, that URL was
https://android.googlesource.com/platform/manifest. Removing the name of
the manifest repository and the last path element leaves a base URL of
https://android.googlesource.com/. Putting this all together, then, the URL
for the “bionic” repository is
https://android.googlesource.com/platform/bionic.

The “..” trick is essential for organizations that want to reduce network
bandwidth usage by creating a local source mirror. Because the source for
Android is very large and may take as much as an hour to download at
WAN speeds, a distributed company with offices in Boston and Seattle, for
example, might find that maintaining mirrors on each site’s local network is
preferable. The initialization-relative addressing made possible by repo’s
fetch=".." attribute makes it possible for the developers in the two offices
to use identical manifests to download their workspaces from two different
sources. The next section covers forking the tree and local mirrors in more
detail.

Because each project in a manifest specifies its own source, creating a
manifest that downloads code mostly from the canonical source and adds or
replaces only things that must be customized for a particular development
project is easy. It is unlikely, for instance, that customizing Android for a
particular device will require modifications to the Android runtime (Dalvik
or ART) or that it will require changes to one or more of the core Java
libraries. Most projects’ manifests can continue to refer to the canonical
AOSP source for the runtime but their own repository for core libraries.

Repo is capable of several other excellent tricks. The copyfile, linkfile,
and include elements all do just what their names suggest. The first two
allow, for instance, placing files at the top level of the workspace (not
otherwise possible, because the top-level directory is not a git repository).
The include element allows multiple manifests to explicitly share common
configuration (in fact, modern repo now “include”s the target manifest,
instead of soft-linking it).

The groups attribute within the XML project element allows even further
customization of a workspace by allowing the creation of coherent subsets
of repositories. Consider, for instance, a codebase that is being developed

https://android.googlesource.com/platform/manifest
https://android.googlesource.com/
https://android.googlesource.com/platform/bionic


for both Intel and ARM hardware architectures. Although integration
testing must verify that 15all tests pass on both platforms, most developers
will probably work only on one or the other. A developer working with the
Intel platform might prefer not to download and build source related only to
ARM architectures. Tagging project elements with groups makes it
possible to do this.

Repo supports the Gerrit continuous integration tool used in the open source
community and at Google to fold contributions back into AOSP. A typical
repo workflow might look like this:

Click here to view code image

repo checkout working proj1 proj2 proj3


# normal edit/git commit cycle in project directories


repo upload --cbr proj1 proj2 proj3


# repeat edit/git commit to respond to code reviews


repo upload --cbr proj1 proj2 proj3


repo abandon working proj1 proj2 proj3

Here, the developer starts a new feature branch called “working” in three
repositories: “proj1”, “proj2”, and “proj3”. After doing some work using
git, normally, to commit incremental updates and rebase, merge and squash
as usual, the developer pushes the current state for all three of the working
branches to Gerrit for review.

Note
repo upload is not atomic—it does not necessarily all succeed or all
fail. Each of the three projects in the preceding example is a separate
repository. It would be entirely possible that two of the three pushes
succeed but that one fails, leaving the workspace in an inconsistent
state.

As usual, the review/revise loop iterates until the new work is accepted and
merged at the origin. After the merge is complete, the local branches can be
abandoned.

clbr://internal.invalid/book/OEBPS/Images/ch02_images.xhtml#p015pro01a


Two final repo features may also be useful. One is the forall command.
Forall executes a shell command in each of the named projects. For
instance:

Click here to view code image

repo forall -c 'git reset --hard HEAD; git clean -xdf'

is one way of resetting all repositories to their initial state.

A second useful feature is repo support for local manifests. A local manifest
—either .repo/local_manifest.xml (deprecated) or all of the files
.repo/local_manifests/*.xml, in alphabetical order—are merged with the
manifest in manifest.xml as part of the sync command. By using local
manifests, developers can further customize their local workspace, adding
definitions for remotes or for additional projects as appropriate.

Forking the Source

The first step to modifying Android for a new device is to create your
project fork of the AOSP source. There are a number of ways of creating
such a fork with repo and git. The choice of which approach to take is up to
the development team and what makes sense for the organization. Not all of
these options are a good fit for all organizations. This section outlines
several approaches that a team might choose. In each case, a 16customized
manifest specifies the projects that make up the platform. The details of the
manifest changes are slightly different for each choice.

Android Version Selection

Before diving into the options for creating a fork of the Android sources,
ensure that you select the correct version of Android. This is not as
straightforward as one might think, partly because of variations in system
on a chip (SoC) vendor support and the ever-changing landscape of
Android’s internals (as will be obvious in this book).

SoC vendor support for different Android versions presents a challenge for
any project. Android is driven by mobile handset development, which has
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less than an 18-month lifecycle. This means that it is likely that the
development for SoC chipsets used in new phones released today was
started 18 months ago. It also means the chipsets have a support lifetime
that is typically around 18 months after release. Traditionally, because
Google has Android on roughly an annual release schedule, a given chipset
is likely to receive vendor support for only one major OS version update
after it is first released. At that point the SoC vendor moves its focus to its
new “flagship” SoC.

This can present challenges when creating an IoT device that does not
require the latest and greatest chipset features and performance, not to
mention the hefty price point that comes with newer chipsets. Finding a
chipset with the right price point, capabilities, and support for a version of
Android appropriate for the product is a balancing act.

Further complicating version selection is Android’s internal structure.
Although Android’s overall architecture has remained intact since its first
release, it has had many enhancements to its internals over time. For the
third-party app developer, these revisions are usually transparent.
Exceptions exist, of course, such as the Android permission system
overhaul that happened in the Android 6 (Marshmallow) release. The
normally friction-free development environment does not apply when
creating new products and working at the system level. Platform vendors
are much more susceptible to Android’s changing internals, which also
factors in to the SoC vendor level of support over time.

One of the most disrupting changes for platform creators came with
Android 8 (Oreo): project Treble. Project Treble completely changed the
way that platforms/SoC expose hardware-related functions to the OS. The
entire Hardware Abstraction Layer (HAL) was re-architected to allow
vendors to upgrade to future versions of Android. All of these features
come at the cost of increased complexity. The HAL is covered in more
detail in Chapters 8 through 12, but it is worth an early word of caution.

In short, vendor integration prior to Android 8 was simpler from a HAL
perspective. The vendor needed only to provide a kernel with the required
hardware support, a set of shared libraries that followed a specific naming
model, and a set of APIs at the C/C++ level. Starting with Android 8, the
HAL forces a strict vendor interface that is exposed using Binder



(Android’s interprocess communication [IPC] mechanism). While this
makes forward migration faster and easier, it complicates the platform
developer’s job when bringing up a new device.

Unfortunately, there is no one right answer when picking an Android
version for use on a new platform. To benefit from fixes and enhancements
made to future Android versions, going with Android 8 or newer is the way
to go. Choosing such a recent release, however, can make the initial system
bring-up process much more complicated, particularly if the device utilizes
custom hardware or features not provided by the SoC vendor.

The choice of Android version also depends on whether the SoC vendor
supports Android 8 or newer. If a product does not require regular updates
or need to take advantage of new OS features, going with Android 7 (or
even earlier) may be a good choice. Even if a product is released with an
Android version prior to 8, updating units in the field via an over-the-air
(OTA) update may still be possible. Of course, implementing a safe, secure
OTA update mechanism is difficult, completely up to the platform vendor,
and well outside the scope of this book.

Local Mirror

Although it is not strictly necessary, creating a local mirror of the Android
source is almost certainly a good idea. Google maintains special repo
manifest (not the manifest for AOSP source) to be used for creating a
mirror. The process is documented in detail in the section “Using a local
mirror” on the AOSP Downloading page
(https://source.android.com/source/downloading).

Several reasons exist for using a local mirror. The chief reason is that local
file copy or, at worst, local network transfer, is likely to be much faster than
an Internet connection. Although the mirror takes a fair amount of space
(around 150G) and takes more time to download than just the AOSP source,
it all becomes worthwhile the first time it is necessary to check out the
AOSP source at a new and different git tag or to download the source for
some big component a second time.

Note

https://source.android.com/source/downloading


Understanding the file-system size requirements when building an
AOSP derived tree or creating a local mirror are important. As noted
previously, the local mirror size is around 150GB of disk space. This
is the bare git repository size, not the size of an actual working tree
used for development. Each instance of the AOSP tree that is
initialized and synchronized will consume another 60+GB of space
in its pristine state and close to double that size when fully built.
There is also compiler cache, which consumes more space (but is
configurable in size).

The bottom line is that when using a local mirror on the same system
that is being used for development, the total disk space needed is the
size of the mirror plus the size of all the AOSP-based trees in use for
development or building.

A second reason for creating a mirror is that doing so provides more control
over the way the local fork of the source is updated. As described in the
previous section, the repo tool maintains a manifest: a list of git
repositories. The repo sync command clones each of the repositories listed
in the manifest into the local workspace and then checks out the contents.
As is usual practice with a git repository, the repo tool checks out the
HEAD of a branch.

The whole point of a git branch, though, is that it is a moving target. The
commit that is head of a given branch today is not the commit that was the
head of that branch a week ago. For this reason, creating a local mirror is
valuable because it makes local checkouts repeatable. The mirror is a static
snapshot of the AOSP source. Unless the mirror itself is updated, two
checkouts made weeks apart will result in identical source. Obviously, this
is not the case if the checkouts are made directly from the Google source.

The Acme device manifest uses the tag android-10.0.0_r33 of AOSP. Note
this is different than using one of the similarly named Android release
branches, like android10-mainline-release. The HEAD of a branch may
change between two repo syncs. Using tags or pinning specific commits
mitigates this problem: Tags generally do not move. In fact, Google and
SoC vendors often provide a manifest for Android on a particular SoC or
development kit in exactly this way.



When using a local mirror, you have two different approaches: a local file-
system copy (which is described on the AOSP Downloading page), or a
local git server setup, a mirror of the Google-hosted repositories. The local
filesystem mirror is a great approach for single developers but does not
easily allow multiple developer contributions. This is where the local git
server mirror is a better choice.

A local git server mirror, however, comes with the added overhead of
setting up a hosted, accessible git server. Although there are plenty of
resources available online for this, it may be more of a burden than some
teams are willing to incur.

It is also worth noting that we definitely do not recommend using a single
monolithic git repository. The AOSP source tree is made up of several
hundred individual source code trees. Many of these are within the main
Android sources whereas others come from existing open source projects.
Putting all of these separate codebases into a monolithic repository would
make it nearly impossible to stay in sync with either AOSP or third-party
sources. Instead of pulling a single repository’s git history into the local
mirror, you would need to manually apply each patch to the appropriate
directory within the tree.

Hosted Git Repositories

Another common alternative is the use of hosted git repositories, such as
GitHub, Bitbucket, or GitLab. Many software development organizations
are already using these services for their day-to-day work. Adopting them
for an Android project allows teams to leverage the existing workflows and
infrastructure with which they are already familiar. In addition, hosted
repositories may already have IT support, provide useful continuous
integration tools, and have refined controls for team member access.

There can be complications, though. Cloud-hosted repositories such as
GitHub typically do not support the path-like, name-spaced layout used by
AOSP. A common way around this issue is to replace the path separator (a
slash) with an underscore. For example, the AOSP repository
“platform/hardware/libhardware” becomes
“platform_hardware_libhardware.”



Additionally, hosted git services usually place a size limit on each
repository. For most git repositories, this is not a problem. However, some
repositories within the Android build tree exceed standard GitHub size
limits (typically 2GB) and cannot be hosted with their full history. These
include the frameworks/base and the 19Linux kernel repositories. The best
approach to take when using a cloud-based service is to host only the
repositories under active development. All other repositories should be
pulled from Google or a local mirror.

Tree Snapshot

Another and somewhat more space-expensive way of providing this
stability is simply to snapshot the entire AOSP source tree. That certainly is
a very safe approach. If the space is available and the target version of the
Android source to be used for the project is not sufficiently stable, it may
also be the best. This is definitely not a recommended technique, though,
especially when teams are developing the platform, because it removes the
use of remote git repositories.

Repository Commit Pinning

As mentioned earlier in the “Local Mirror” section, one of the big
advantages of a mirror is having a consistent “snapshot” of the AOSP tree
at a point in time that does not change. When team members are setting up
new machines, a continuous integration (CI) server, and so on, using the
same source revisions to build the platform is critical. Local mirrors,
though, are not always practical due to team size, IT infrastructure, or file
system space constraints. The next best approach is specific commit pinning
within the manifest file. In Listing 2.1, the remote property for the “aosp”
specifies a revision attribute that points to a specific tag, android-
10.0.0_r33. This means that all repositories fetched from the aosp remote
will be checked out at this specific tag unless it is overridden at a given
project’s entry.

The same revision attribute, specifying a tag, branch, or even git commit
ID can be used within a project tag to specify an individual repository
within the manifest. For example, if a platform needed the Bionic C library



implementation at commit 8c43445152e3372ea284b65845012fdfe7270f82, it
could specify that commit hash in its manifest as shown in Listing 2.2.

Listing 2.2 Manifest Project Entry with Revision
Click here to view code image
  <project groups="default" name="platform/bionic" path="bionic"


revision=”8c43445152e3372ea284b65845012fdfe7270f82”/>

Example: Local Mirror of Forked Repositories

This example uses the repo tool to replace only the individual portions of
the AOSP code base that will be changed locally, in a more fine-grained
and specific way. This partially forked concept can be used with a local
mirror, third-party hosted git repositories, internally hosted git repositories,
or a hybrid of these.

To use the repo tool to create partially forked source, first clone the AOSP
manifest repo itself:

Click here to view code image

git clone https://android.googlesource.com/platform/manifest -b 

refs/tags/


android-10.0.0_r33

This manifest will become the manifest for the Acme project fork of
Android source. It, and not the AOSP original, is the manifest that Acme
developers will use to check out the Acme source code.

The new, local clone of the manifest directory contains the repo manifest
file “default.xml” as shown in Listing 2.3.

Listing 2.3 The AOSP Manifest File
Click here to view code image
<?xml version="1.0" encoding="UTF-8"?>


<manifest>





  <remote  name="aosp"
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           fetch=".."


           review="https://android-review.googlesource.com/" />


  <default revision="refs/tags/android-10.0.0_r33"


           remote="aosp"


           sync-j="4" />





  <project path="build/make" name="platform/build" groups="pdk" >


    <copyfile src="core/root.mk" dest="Makefile" />


    <linkfile src="CleanSpec.mk" dest="build/CleanSpec.mk" />


    <linkfile src="buildspec.mk.default" 

dest="build/buildspec.mk.default" />


    <linkfile src="core" dest="build/core" />


    <linkfile src="envsetup.sh" dest="build/envsetup.sh" />


    <linkfile src="target" dest="build/target" />


    <linkfile src="tools" dest="build/tools" />


  </project>


  <project


    path="build/blueprint"


    name="platform/build/blueprint"


    groups="pdk,tradefed" />


  <project path="build/kati" name="platform/build/kati" 

groups="pdk,tradefed" />


  <project path="build/soong" name="platform/build/soong" 

groups="pdk,tradefed" >


    <linkfile src="root.bp" dest="Android.bp" />


    <linkfile src="bootstrap.bash" dest="bootstrap.bash" />


  <project>





  <!-- ... />





  </project


    path="device/linaro/hikey-kernel"


    name="device/linaro/hikey-kernel"


    groups="device,hikey,pdk"


    clone-depth="1" />





  <!-- ... />





<manifest>

Creating a clone of the source requires only a few small changes, as
illustrated in Listing 2.4 after the comment, “Acme Projects.”



Listing 2.4 Manifest for a Forked AOSP Source
Click here to view code image
<?xml version="1.0" encoding="UTF-8"?>


<manifest>





  <!-- Acme Remote -->


  <remote  name="acme"


           fetch="."


           revision=”master” />


  <remote  name="aosp"


           fetch="https:/acme.net/acme/source" />


  <default revision="refs/tags/android-10.0.0_r33"


           remote="aosp"


           sync-j="4" />





  <!-- Acme Projects -->


  <project path="device/linaro/hikey"


           name="platform/device/linaro/hikey"


           remote="acme"


           revision="acme"


           groups="device,hikey,pkd” />


  <project path="device/acme/one/acme_one"


           name="platform/device/acme/one/acme_one" remote="acme" >


    <linkfile src="AndroidProducts.makefile" 


              dest="device/acme/one/AndroidProducts.mk" />


    <linkfile src="acme_one.mk" dest="device/acme/one/acme_one.mk" 

/>


  </project>


  <project path="device/acme/one/include"


           name="platform/device/acme/one/include"


           remote="acme" />


  <project path="device/acme/one/lib" 


           name="platform/device/acme/one/lib"


           remote="acme" />


  <project path="device/acme/one/daemon"


           name="platform/device/acme/one/daemon"


           remote="acme" />


 <project path="device/acme/one/app/simple_daemon"


           name="platform/device/acme/one/app/simple_daemon"


           remote="acme" />


  <project path="device/acme/one/hidl"


           name="platform/device/acme/one/hidl"
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           remote="acme" />


  <project path="vendor/acme/one/interfaces" 


           name="platform/vendor/acme/one/interfaces"


           remote="acme" />





  <!-- AOSP -->


  <project path="build/make" name="platform/build" groups="pdk" >


    <copyfile src="core/root.mk" dest="Makefile" />


    <linkfile src="CleanSpec.mk" dest="build/CleanSpec.mk" />


    <linkfile src="buildspec.mk.default" 

dest="build/buildspec.mk.default" />


    <linkfile src="core" dest="build/core" />


    <linkfile src="envsetup.sh" dest="build/envsetup.sh" />


    <linkfile src="target" dest="build/target" />


    <linkfile src="tools" dest="build/tools" />


  </project>


  <project


    path="build/blueprint"


    name="platform/build/blueprint"


    groups="pdk,tradefed" />


  <project path="build/kati" name="platform/build/kati" 

groups="pdk,tradefed" />


  <project path="build/soong" name="platform/build/soong" 

groups="pdk,tradefed" >


    <linkfile src="root.bp" dest="Android.bp" />


    <linkfile src="bootstrap.bash" dest="bootstrap.bash" />


  </project>





  <!-- ... />





<manifest>

First, the new manifest defines a new remote, "acme", for the Acme project.
The "fetch" attribute for the acme remote is ".", indicating that projects
downloaded from this remote will have URLs that are the same as that used
for the manifest file itself; that is, if the repo command used to initialize an
Acme project workspace is:

Click here to view code image

repo init -u https:/acme.net/acme/source/manifest
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The repo tool will search for the repository that contains the source for a
project whose name attribute in the manifest has the value “zork” at the
URL:

Click here to view code image

https:/acme.net/acme/source/zork

Next, note that the “review” attribute has been removed from the “aosp”
remote. The process by which new code is submitted, reviewed, and
committed, and the tools for doing so, are one more topic that is beyond the
scope of this book. The repo tool does support a wide variety of commit
processes and local customization. To find out more about this topic, look at
the documentation for the repo tool’s “repo-hooks” element at

Click here to view code image

https://android.googlesource.com/platform/tools/repohooks/+/mas

ter/README.md

The next modification to the manifest points the “aosp” remote explicitly at
the local AOSP mirror. Instead of using the relative location “..” (a relative
reference similar to the one now used by the “acme” remote), the AOSP
source now comes absolutely from the mirror (located in this example at
https://acme.net/acme/aosp).

Finally, the new manifest contains the specifications for the several non-
AOSP projects at paths like “device/linaro/hikey” and
“vendor/acme/one/interfaces”.

Kernel source and some pre-built binaries necessary to boot the HiKey960,
the device used as the baseline for the Acme One device, are easily
available.. Instructions for cloning them can be found in
device/linaro/hikey/hikey960/README. Because it is very likely that you
will need to modify the kernel source, you will probably also maintain forks
of these repos, as well.

Nearly every Android-compatible device will require similar device-
specific customization necessary to build a system image that will boot on
the device. Finding, acquiring, and integrating the device-specific additions
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into the AOSP source code is an essential first step toward bringing up a
device.

The directory structure for the server providing the source for the Acme
project now looks something like Figure 2.2.

Figure 2.2 The Acme Source Tree

Note
You can find a manifest similar to the one shown in Figure 2.2 by
using the following URL in the repo init command (discussed
next):
https://github.com/InsideAndroidOS/acme_platform_manifest.git.
This manifest contains references to repositories holding the code

https://github.com/InsideAndroidOS/acme_platform_manifest.git


and changes for the Acme One platform covered throughout this
book.

Time to build a workspace!

Click here to view code image

> cd workspace


> repo init -u https:/acme.net/acme/source/manifest


# output elided...


> repo sync


# lots of output elided...

The sync operation will certainly take a while; possibly several hours. It
should, however, complete successfully. If it does not, carefully debug the
manifest before proceeding.

Building an Image

The Android build system is large, complex, and not well documented. A
full explanation of its history and usage is beyond the scope of this book.
Future chapters address adding new pieces to the build relevant to the
components being developed. Fortunately, for the moment, the goal is
simply to get from code to a running Android.

An important part of the build system’s complexity is the ability to
customize it to produce images for the prodigious number of Android
devices. The customization is accomplished by setting a number of shell
variables using a tool called lunch.

Note
Distributions of the Android source code other than AOSP, as well as
some versions of AOSP that have been extended with third-party
code, may use variants of lunch, usually with cute names like
snackbar, brunch, or some such thing. These alternatives all
essentially accomplish the same task: assigning values to a set of
shell environmental variables used to configure the build system.
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The lunch tool is itself a shell script loaded by running another shell script
build/envsetup.sh. Note that it is essential that the definitions provided by
envsetup.sh are loaded into the current shell (using “.” or “source”). Just
running envsetup.sh from the command line accomplishes nothing at all.

Click here to view code image

> source build/envsetup.sh


including device/asus/fugu/vendorsetup.sh


including device/generic/car/car-arm64/vendorsetup.sh


including device/generic/car/car-armv7-a-neon/vendorsetup.sh


including device/generic/car/car-x86/vendorsetup.sh


including device/generic/car/car-x86_64/vendorsetup.sh


including device/generic/mini-emulator-arm64/vendorsetup.sh


including device/generic/mini-emulator-armv7-a-

neon/vendorsetup.sh


including device/generic/mini-emulator-mips/vendorsetup.sh


including device/generic/mini-emulator-mips64/vendorsetup.sh


including device/generic/mini-emulator-x86/vendorsetup.sh


including device/generic/mini-emulator-x86_64/vendorsetup.sh


including device/generic/uml/vendorsetup.sh


including device/google/dragon/vendorsetup.sh


including device/google/marlin/vendorsetup.sh


including device/huawei/angler/vendorsetup.sh


including device/lge/bullhead/vendorsetup.sh


including device/linaro/hikey/vendorsetup.sh


including sdk/bash_completion/adb.bash

Now that all the tool definitions from the envsetup.sh script have been
incorporated into the current running shell, they can be used from the
command line. In this particular example, configuring the build system to
build an image for the Acme project, based on HiKey960-like hardware, the
appropriate lunch menu selection is “3”: acme_one-userdebug.

Click here to view code image

> lunch





You're building on Linux





Lunch menu... pick a combo:


     1. acme_one-eng


     2. acme_one-user
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     3. acme_one-userdebug


     4. aosp_arm-eng


     5. aosp_arm64-eng


     6. aosp_blueline-userdebug


     7. aosp_bonito-userdebug


     8. aosp_car_arm-userdebug


     9. aosp_car_arm64-userdebug


     10. aosp_car_x86-userdebug


     11. aosp_car_x86_64-userdebug


     12. aosp_cf_arm64_phone-userdebug


     13. aosp_cf_x86_64_phone-userdebug


     14. aosp_cf_x86_auto-userdebug


     15. aosp_cf_x86_phone-userdebug


     16. aosp_cf_x86_tv-userdebug


     17. aosp_coral-userdebug


     18. aosp_crosshatch-userdebug


     19. aosp_flame-userdebug


     20. aosp_marlin-userdebug


     21. aosp_sailfish-userdebug


     22. aosp_sargo-userdebug


     23. aosp_taimen-userdebug


     24. aosp_walleye-userdebug


     25. aosp_walleye_test-userdebug


     26. aosp_x86-eng


     27. aosp_x86_64-eng


     28. beagle_x15-userdebug


     29. car_x86_64-userdebug


     30. fuchsia_arm64-eng


     31. fuchsia_x86_64-eng


     32. hikey-userdebug


     33. hikey64_only-userdebug


     34. hikey960-userdebug


     35. hikey960_tv-userdebug


     36. hikey_tv-userdebug


     37. m_e_arm-userdebug


     38. mini_emulator_arm64-userdebug


     39. mini_emulator_x86-userdebug


     40. mini_emulator_x86_64-userdebug


     41. poplar-eng


     42. poplar-user


     43. poplar-userdebug


     44. qemu_trusty_arm64-userdebug


     45. uml-userdebug





Which would you like? [aosp_arm-eng] 3





============================================


PLATFORM_VERSION_CODENAME=REL




PLATFORM_VERSION=10


TARGET_PRODUCT=acme_one


TARGET_BUILD_VARIANT=userdebug


TARGET_BUILD_TYPE=release


TARGET_ARCH=arm64


TARGET_ARCH_VARIANT=armv8-a


TARGET_CPU_VARIANT=cortex-a73


TARGET_2ND_ARCH=arm


TARGET_2ND_ARCH_VARIANT=armv8-a


TARGET_2ND_CPU_VARIANT=cortex-a73


HOST_ARCH=x86_64


HOST_2ND_ARCH=x86


HOST_OS=linux


HOST_OS_EXTRA=Linux-4.4.0-184-generic-x86_64-Ubuntu-16.04.6-LTS


HOST_CROSS_OS=windows


HOST_CROSS_ARCH=x86


HOST_CROSS_2ND_ARCH=x86_64


HOST_BUILD_TYPE=release


BUILD_ID=QQ2A.200405.005


OUT_DIR=out


============================================

The build system is now configured and ready to go.

The make command starts the build. It takes a wide variety of argument
flags. For now, the important argument is -j, which tells it how many
processes to run simultaneously. Common wisdom seems to suggest that a
good choice for this number is two more than the number of available
processors. Thus, on a build machine with an eight-core Intel processor, the
build command might look like this:

Click here to view code image

> make -j10


# ... pages and pages of output elided

Even on a very fast machine, the build is likely to take hours. The name of
the configuration command, “lunch,” is appropriate for much more than the
process of choosing the target build device. Fortunately, the long build time
is generally only for “clean” builds of the source. Iterative builds are
usually considerably faster, often completing in just a few minutes.

With luck, the build will complete successfully. Unfortunately, hundreds of
ways exist that it can go wrong. That is an important reason that getting
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something that builds reliably is such an important first step!

Many build failures involve incorrect or incompatible toolchains. This is
especially common when trying to build on OSX. Another common cause
of failure is that a particular device, although listed in the lunch menus, is
simply not supported in the version of the Android source checked out in
the workspace. It is absolutely not the case that every lunch option is tested
on every git branch or at every git tag of the AOSP source.

No magic bullets exist for fixing a source that won’t build. If the problem is
something as small as a recognizable syntax error, something supported by
some C++ compilers but not by others, simply patching the source may be
possible. It is at least as likely, though, that a more effective strategy is
finding (through the community or possibly even trial and error) some other
version of the source or toolchain that does work.

Device Tools

When the build completes successfully, the directory out/target/product
contains several file system images ready for installation on the target
device. Installing the images on the device and then working with the
running system requires two specialized tools: fastboot and adb. Getting
familiar with them before proceeding makes sense.

The sources for both tools are part of AOSP. More conveniently, though,
compiled versions are distributed as part of the Android SDK in the
platform-tools folder. The Android SDK is available from the Android
Developer Website (https://developer.android.com/studio/index.html) either
as part of the Android SDK Developer Bundle (which includes Android
Studio, the standard Android IDE) or separately as a zipped, stand-alone
folder. Versions are available for each of the three most common
development platforms: Linux, Mac, and Windows.

fastboot

fastboot is an overloaded term: It is both a boot mode for a device and the
name of a tool used to communicate with a device when it is in fastboot

https://developer.android.com/studio/index.html


mode. Incidentally, it is also the name of the protocol that the tool and
device use to communicate when the device is in fastboot mode.

Booting an Android device into fastboot mode is very similar to booting a
larger computer into its BIOS. In much the way one can boot a laptop
computer into its BIOS by holding down a key-chord during boot, the most
common way of booting an Android device into fastboot mode is to power
cycle it while holding a specific set of buttons (frequently power and
volume down). Instead of starting the normal bootloader, boot phase-2
instead loads and begins executing the fastboot program. (Figure 6.1 in
Chapter 6 illustrates the boot process.)

Warning!
Bricking a device with fastboot is really, really easy to do!

The fastboot program may have complete and unrestricted access to
device memory. Overwriting not only the operating system and the
backup recovery system but also the fastboot program itself may be
possible. A device on which all phase-3 boot programs are garbage
cannot be booted and cannot be repaired without physical access to
device memory.

By default, the fastboot program communicates with a device over a USB
connection. Perhaps surprisingly, when a device is booted into fastboot
mode, it is likely to have a USB device identifier that is different from the
one it presents after a normal boot. An operating system that controls access
to naked devices (as udev does on Linux) may have to be configured to
allow a fastboot connection, even if adb connections to the normally booted
device work perfectly.

After the device is in fastboot mode and properly attached to a client, it will
be visible to the fastboot program, invoked from the command line:

Click here to view code image

> fastboot devices


ZX1G324JBJ       fastboot





> fastboot getvar all
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(bootloader) slot-count: not found


(bootloader) slot-suffixes: not found


(bootloader) slot-suffixes: not found


(bootloader) version: 0.5


(bootloader) version-bootloader: moto-apq8084-72.01


(bootloader) product: shamu


(bootloader) board: shamu


(bootloader) secure: yes


...

Until the devices command shows a device, no other commands will be
useful. It is the indication that the tool has successfully established a
connection to the device.

Fastboot supports a long list of commands, most of which have to do with
flashing the device memory. As usual, the -h flag will cause fastboot to
print a help message. You can discover additional commands not described
in the help text by reading the fastboot source.

Note
As of late 2016, there is code in the fastboot tool to support TCP
connections. For this to work, of course, the fastboot program on the
device (as well as the client tool) must be recent and support TCP
connections. TCP fastboot may be particularly valuable for small,
proximity-charged devices that do not have a USB port. To use TCP
fastboot, specify the IP address of the target device on the command
line as follows:

Click here to view code image

fastboot -s tcp:<ip/hostname>[:port] <command>

adb

Adb is probably the most important tool in the Android system developer’s
toolbox. It is the Swiss Army knife of Android and provides a variety of
functions: file transfer, shell, application installation, and logging.
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Adb communicates with the Android adb daemon, adbd, which is started
early in the boot process of both the recovery and normal Android systems
(but not fastboot). Like fastboot, the adb tool is most commonly used over a
USB connection. Also, like fastboot, it supports TCP. Unlike fastboot,
however, adb supports multiplexed communications. It can be used to
follow a device’s logging output in one window at the same time that
another window is running an active shell.

A properly connected device should become visible to adb shortly after its
boot screen appears. As with fastboot, use the devices command to verify
that adb can connect to the device daemon process.

Click here to view code image

> adb devices


List of devices attached


ZX1G324JBJ     device

Depending on how the Android image running on a device was built, the
adbd daemon may not start as root, and its value as an investigative tool will
be severely limited. In such a case, if it is possible to run the daemon as
root, the command adb root will do so. Note that, because of security
restrictions, the daemon cannot be run as root on commercial or “user”
builds.

Click here to view code image

> adb shell


shamu:/ $ 


> adb root


restarting adbd as root


> adb shell


shamu:/ #

Note
Although the tools described here will work for nearly any Android
system, some development boards also support a UART console.
With a little work—sometimes even a stock piece of additional
hardware—it is likely that this console can be adapted to use USB
and monitored from a computer using a serial console program such
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as minicom or GNU screen. The access to the startup logging available
from such a console almost certainly makes it worth the effort.

Flashing the Device

Certainly the most convenient way of flashing a device is to remove its
memory card and insert it into a card reader/writer attached to the build
machine. On the build machine, all the standard partitioning and file system
maintenance tools are available. In addition, a device that boots from
removable memory is nearly impossible to brick: a huge advantage.

Many devices, even those that do not normally do so, are completely
capable of booting from a memory card. Making this possible typically
requires installing a custom bootloader. The custom bootloader, usually U-
Boot, takes the place of the standard second-phase bootloader and boots
from the removable memory card instead of from the on-board memory.
Setting up a device so that it boots from removable memory is ideal.

The more common way of flashing images to a device, though, is by using
fastboot. Again, the process of getting a device to fastboot mode is
hardware dependent. On some devices, holding some combination of
buttons immediately after powering on the device will cause it to enter
fastboot mode. Some devices have DIP switches that in some configuration
force the board into fastboot mode at boot. Nearly any device, if running,
can be forced to reboot into fastboot mode with the command:

Click here to view code image

> adb reboot bootloader

When booting into fastboot, a device should power up and, after much less
time than it takes for a full boot, should be visible from the flashboot
program:

Click here to view code image

> fastboot devices


ZX1G324JBJ       fastboot
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It will not be visible from adb.

What happens next depends on the version of Android to be flashed to the
device. Those opaque binary blobs of proprietary software mentioned
earlier in this chapter have always been a part of Android. They are the
genesis of the Hardware Abstraction Layer (HAL) discussed in Chapters
8 and 10.

Prior to Android Oreo, standard practice was to drop the binary blobs into a
device-specific section of the build tree along with the customized make
files that knew where to find them. The blobs would then be incorporated
into the installable image during the build process and installed as part of
the image.

Clearly, however, that implies that each Android image is customized for a
specific hardware platform. The Android Nougat image for a Nexus 5
device will almost certainly not work on even the fairly similar Nexus 5X.
In addition to causing a proliferation of images, this necessary
customization also gave carriers a way to drag their feet providing updates.
It was not enough for Google to produce a new version of Android. In
addition, each phone vendor had to produce a new image for each phone,
incorporating all the changes.

With the advent of Android 8, Oreo, this changed. A Google project called
Treble worked to standardize the Android image. Under Treble, proprietary
binary blobs go into new file system partitions reserved exclusively for
device- and carrier-specific binaries, where they are not affected by system
updates. New releases of the Android system replace or rewrite partitions
that belong exclusively to the Android system. The possibility exists that a
single Android image will work for many devices. This is the way the
Acme device is configured. Chapter 10 covers the updated HAL (HIDL) in
more detail.

The change is important when flashing an Android version 8 or later to a
device, because the Android that you flash will expect to find the
proprietary shims in those new file system partitions. If they are not there,
the device will fail to boot.



The code that installs the device binary shims should be part of the device-
specific bundle downloaded to customize the basic AOSP source for the
device. For the Acme device based on the HiKey960, the script flash-
all.sh in the directory device/linary/hikey/install/ does the trick. The
initial flash for the new Acme device looks like this:

Click here to view code image

> cd device/linaro/hikey/installer/hikey960


> adb reboot bootloader


> fastboot devices


0483826824000000        fastboot


> chmod a+x flash-all


> ./flash-all.sh


android out dir:./../../../../..//out/target/product/hikey960


target reported max download size of 471859200 bytes


sending 'ptable' (196 KB)...


OKAY [  0.059s]


writing 'ptable'...


OKAY [  0.075s]


finished. total time: 0.134s


target reported max download size of 471859200 bytes


sending 'xloader' (151 KB)...


OKAY [  0.048s]


writing 'xloader'...


OKAY [  0.269s]


finished. total time: 0.317s


target reported max download size of 471859200 bytes


sending 'fastboot' (3346 KB)...


OKAY [  0.138s]


writing 'fastboot'...


OKAY [  0.074s]


finished. total time: 0.211s


target reported max download size of 471859200 bytes


sending 'nvme' (128 KB)...


OKAY [  0.045s]


writing 'nvme'...


OKAY [  0.087s]


finished. total time: 0.132s


target reported max download size of 471859200 bytes


sending 'fw_lpm3' (212 KB)...


OKAY [  0.047s]


writing 'fw_lpm3'...


OKAY [  0.054s]


finished. total time: 0.102s


target reported max download size of 471859200 bytes
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sending 'trustfirmware' (145 KB)...


OKAY [  0.049s]


writing 'trustfirmware'...


OKAY [  0.053s]


finished. total time: 0.102s





# more uploads elided...





>

Running this initialization script again should not be necessary. Only a few
changes could require it:

The manufacturer discovers an important bug and offers an update.

The Project Treble interface standards change, and a future Android
is incompatible.

All that is left to do is to flash the newly built image:

Click here to view code image

> cd ../../../../..


> pwd


/home/acme/workspace


> fastboot flash boot out/target/product/hikey960/boot.img


target reported max download size of 471859200 bytes


sending 'boot' (9650 KB)...


OKAY [  0.345s]


writing 'boot'...


OKAY [  0.124s]


finished. total time: 0.468s


> fastboot flash dts out/target/product/hikey960/dt.img


target reported max download size of 471859200 bytes


sending 'dts' (14 KB)...


OKAY [  0.047s]


writing 'dts'...


OKAY [  0.048s]


finished. total time: 0.095s


> fastboot flash system out/target/product/hikey960/system.img


target reported max download size of 471859200 bytes


sending sparse 'system' 1/3 (445539 KB)...


OKAY [203.250s]


writing 'system' 1/3...


OKAY [ 10.197s]


sending sparse 'system' 2/3 (447504 KB)...


OKAY [198.764s]
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writing 'system' 2/3...


OKAY [  8.254s]


sending sparse 'system' 3/3 (109822 KB)...


OKAY [ 46.770s]


writing 'system' 3/3...


OKAY [  1.566s]


finished. total time: 468.801s


> fastboot flash cache out/target/product/hikey960/cache.img


target reported max download size of 471859200 bytes


sending 'cache' (4280 KB)...


OKAY [  0.189s]


writing 'cache'...


OKAY [  0.154s]


finished. total time: 0.343s


> fastboot flash userdata 

out/target/product/hikey960/userdata.img


target reported max download size of 471859200 bytes


sending 'userdata' (147713 KB)...


OKAY [  4.627s]


writing 'userdata'...


OKAY [  5.587s]


finished. total time: 10.214s


>

You should now be able to boot your board!

Summary

This chapter introduced the Acme project, an example of customizing
Android for specific hardware. The project consists of a build system,
managed source, and a device based on well-supported hardware, the
HiKey960. It described a couple of strategies for organizing source and the
basic tools necessary to build and install the source on a device.

It is very likely that the process of creating a real project for a real device
will not be as simple as the process described in this chapter. It might easily
take days, even weeks, to get a board to boot at all. It might take many more
weeks to find source that reliably and repeatably produces a running
Android. It might even take several days to find a build machine that can be
configured with a toolchain that will consistently build a flashable image
without error.



Unfortunately, like the unhappy families in Tolstoy’s Anna Karenina, each
of the problems encountered on each individual project will be more or less
unique to that project. Google and the community of people who have used
similar hardware are the key resources. Finding the two other people in the
world who corrupt their NTS+ file systems every time they run a build, the
person who has figured out how to set the video resolution for the LCD
panel you are using, or the one who has discovered the proper GNU Screen
setting for your board’s UART can be incredibly time consuming. It is,
however, usually quite a bit faster than trying to solve each of those esoteric
problems yourself.

Despite the warning, this chapter provides a powerful framework. It
presents a path that will lead from chaos to the solid ground from which it is
possible to move forward boldly and with predictable, measurable progress.
If your project is forced from the described path at various points, the best
course of action is to address the specific, limited problem and to get back
on the path.

After you can repeatably build a working Android from a duplicable code
base, you are out of the zone where dragons be. The rest is just engineering.



3

Getting Started

This chapter is an overview that provides context for the rest of the book. It
will present three different, high-level views of the Android system. It is
divided into two parts, a conceptual section followed by a practical section.

The conceptual half of the chapter explores Android, metaphorically, from
the side. This section models Android as a geologist might, as a stack of
strata. Each layer in the model has its own significance, and each supports
the layer above it. The exploration will reveal most of the major
components of the Android system as well as several key architectural
structures.

The second half of the chapter—the practical half—explores the AOSP
source. It addresses acquiring the code, its organization, its customization,
and some of the tools used to maintain it.

Putting Android in Its Place

You have almost certainly seen one of the many illustrations of Android as
a layer cake before. Figure 3.1 is another version.



Figure 3.1 Android Layer Cake

Figure 3.1 shows the Android system in its context. The left half of the
figure could be a generic Linux distribution such as Ubuntu or Mint. The
right half illustrates the components specific to Android.

In the model, the system is divided into four major layers, each based on the
one underneath it. Starting at the bottom, they are:

Hardware: This is the physical device; a piece of metal you can hold
in your hand.

Linux Kernel: The kernel is software that creates the process and
memory environments in which all applications run. As noted in
Chapter 1, Android uses the very popular Linux kernel.

System Libraries: System libraries are software libraries, frequently
supplied as opaque binaries by third-party providers that implement
services used by multiple applications.

Applications and System Services: Applications use the
environment provided by the lower layers to do work useful to the
user. A set of special, long-running applications, called system



services or sometimes “daemons,” perform periodic tasks and
manage system state.

In this model, most Android developers work predominantly in the block
labeled “Android Applications” at the top right of the figure. They develop
the applications that run in the Android environment. These developers
spend their time learning and using the environment provided by the
surrounding Android system.

The rest of this book is about customizing Android itself to adapt it to new
hardware. Its focus is the shaded areas outlined with the bold border, most
of which is in the System Services layer of Figure 3.1. Before launching
into the discussion of the Android-specific components, though, reviewing
the rest of the environment in which those components run will be useful.

Hardware

In this model, the bottom of the stack is the hardware. The hardware is the
motivation: some device with cool new features. It is the part that you, the
reader, bring to the party. The purpose of the entire software stack above the
hardware is to enable the creation of applications that provide a human user
with appropriate and intuitive control of some new, innovative hardware
features.

Designing and bringing up hardware are dark arts that are well outside the
scope of this book. Roger Ye’s book, Embedded Programming with Android
(Ye, 2016), part of the Android Deep Dive Series, is an excellent
introduction to “bare-metal” programming and the process of bringing up a
device from scratch.

The Linux Kernel

As noted in Chapter 1, Android’s kernel is a variant of the Linux kernel.
Linux is wildly popular, especially in embedded devices because it is open
source and fairly easy to adapt to new hardware. Chapter 4 discusses it
again in more detail.



The kernel is the Android system’s primary porting layer. The process of
porting Android to a new device consists in large part of getting an Android
variant of the Linux kernel running on the target device and then pulling the
rest of the Android stack over on top of it.

Although a kernel is a key part of Android, building a kernel is not
normally part of building an Android system. Instead, the Android build
tools treat the kernel as a black box: a pre-built, third-party binary. As
Chapter 4 will illustrate, it is a device developer’s responsibility to assemble
the working kernel and to provide it for inclusion into the device-installable
file system image that the Android build system creates.

You might be surprised to hear that the kernel is Android’s primary porting
layer. Much of Android programming is done in the Java programming
language, whose motto was “write once, run anywhere.” For Android,
however, Java source code is compiled into instructions for Dalvik and
ART, not instructions for the Java Virtual Machine (JVM). The purpose of
the Android VM is to make applications portable across Android devices.
Unlike the JVM, multi-platform and OS portability was not a goal at all in
the design of Android’s virtual machine.

System Libraries

There are common capabilities and functions that are used by multiple
applications. Some of these capabilities—cryptography, video and audio
rendering, a web browser—are large and complex. Implementing them as
libraries that can be used by multiple applications makes sense.

Most system libraries are included in the Android system, as is the kernel,
as third-party, black box binaries. They are essential to Android but are
neither built nor maintained as part of the Android source tree.

This is an important area of customization for the developer of a new
device. If software already exists—and that definitely includes software
written in a language other than Java—that can be used as part of the
interface to a new device, it can be included as part of this layer.

Enterprises that already have extensive investments in software may be,
quite understandably, reluctant to abandon that investment simply to move



to the Android platform. Including the proprietary code as a system library
and then plumbing it into the Android framework with Java bindings may
preserve the investment at a reasonable cost.

One of the system libraries that is part of a standard Android system and
that deserves particular attention is Bionic. Bionic is Android’s equivalent
of the standard C library.

Most applications do not request kernel services directly. Instead, they use a
standard library, the C library, to request them. The standard C library
interface was specified originally as part of the ANSI C standard and
subsequently accepted by ISO. The widely established POSIX C library
standard is an incremental superset.

The C library standards are expressed as C header files (.h) against which
applications are compiled. These header files define symbols that allow a
compiler to emit code for macros, constants, variables, and functions in the
application source code. Building an application requires only the header
files. The actual implementations of the C library are not included in the
compiled application.

Instead, at run time, a linker binds the compiled application dynamically to
the implementation of the C library that is present on the system on which
the application is running. Because the API definitions against which the
application was compiled are (with luck!) identical to those actually
implemented by the host system library, everything works. Usually, this just
means that the C library is compiled using the exact same header files that
the library clients use when they are compiled. A given piece of code can be
binary compatible across multiple, similar platforms, as long as all the
platforms have C libraries that implement the exact 

same API.

Bionic is Android’s version of the standard C library. As part of Android’s
ongoing battle for frugality, it has been pruned relentlessly and is
dramatically smaller than its BSD ancestors. It is so small, in fact, that it
does not meet even the ANSI standard, let alone the ubiquitous POSIX
standard. Applications that run perfectly well on other platforms may not
run at all on Android, because Bionic does not support the functionality
they require.



The implication that Bionic has its roots in BSD may come as a surprise.
Most operating systems based on a Linux kernel use a version of the GNU
C library, glibc. Instead, Bionic is derived from the BSD UNIX, libc.
There are several reasons for this but the most obvious is that libc is
licensed under the BSD license and is thus free of the constraints that its
LGPL licensing imposes on glibc. One of the goals in Android’s design
was to eliminate any possible impediment to its acceptance. That goal
absolutely implies removing any possible licensing constraints.

Many existing applications, libraries, and utilities may be used on Android
as long as they are recompiled against the Android platform. Obviously,
some limits exist because of the extent of the pruning in Bionic. For
example, existing code that uses System V IPC or certain functions in the
kernel concurrency feature, pthreads, cannot be built or run on Android.
Additionally, as this chapter will make clearer, the Android software stack
is fundamentally different than a typical Linux stack, which sometimes
makes the use of existing Linux programs difficult or impossible.

Augmenting an Android system by adding one of the standard C-library
implementations is entirely feasible. This simple and very common
augmentation makes it possible to run many standard Unix applications and
libraries on an Android system.

Applications

System services are those special applications, typically with minimal user
interfaces, that maintain various subsystems: indexing files for search,
locating and connecting to Wi-Fi networks, mounting and unmounting
removable media, and so on. One special system service, init, is the first
application run on system startup. It is responsible for much of the system
startup process, including bringing up the other system services. It is
discussed in more detail in Chapter 6.

The Android system service environment is not the same as that on typical
Linux systems. On a Linux system, running the command:

ps -ef



produces a list of currently running applications. On one of these systems,
running this command will typically result in tens of lines of output
describing many processes. Even if the system has just been finished
booting and is not yet running many user applications, there are still likely
to be quite a few applications running. These are the system services: the
long running “daemons.”

Comparing the list of system services for a generic Linux system with a
similar list from an Android system is instructive. Although the 30 to 40
system services that run as part of most common Linux distributions are
fairly similar, the overlap with those running on an Android system is
relatively small. The Android system has unfamiliar system services such as
installd, rild, surfaceflinger, and vold instead of more common services
such as udevd and syslogd. Although Chapter 6 addresses some of these
daemons in a bit more detail, in-depth discussion of the differences between
the daemons in the Android universe and those in the standard Linux
universe are not the focus of this book. Linux daemons are well
documented elsewhere. Although slightly dated, Karim Yaghmour’s
excellent book Embedded Android (Yaghmour, 2013) is a fantastic resource
for work in this area.

The Android Framework

Figure 3.1 illustrates some of the Android-specific components of an
Android system and their positions within the broader model of a working
Linux system. The right side of the figure shows the Android framework in
relation to the larger OS. Android has components that operate within each
of the layers of the system model. From the bottom up, the components of
the Android system are

Binder and other kernel plug-ins: Android requires several non-
standard kernel 

capabilities to function. These extensions are implemented as
standard kernel extension modules. Chief among these extensions is
Binder. Binder is an Interprocess Communi-cations service and is,
perhaps, the heart of Android.



HAL: The Hardware Abstraction Layer (HAL) is a system library
that supports binary compatibility for the Android system across
multiple hardware/driver platforms. The HAL, actually a group of
libraries, serves as the interface between Android and certain generic
types of hardware devices. Like the C library, the HAL is, essentially,
a set of header (.h) files that define an API for each of several
common categories of hardware. The HAL abstracts an interface
between the underlying hardware and Android almost exactly as the
C library abstracts the interface to the kernel and other common
functionality. The HAL has evolved over Android’s lifetime. Newer
versions of Android combine a library and a daemon/service to push
the abstraction even farther. Most HAL code is written in C or C++
and compiled to device native binaries. Chapters 8 and 10 cover this
in greater detail.

Dalvik, ART, and the Native Libraries: These are the special
system libraries that comprise the virtual machine and runtime
environment in which Android applications execute. ART (and
Dalvik, which it replaced) are Android’s analog of the Java virtual
machine and the libraries it provides. Both the runtime and many of
the libraries that support it are written in C/C++ and compiled to
native code for the device. Above this layer, however, nearly all
source code is written in Java and compiled to virtual instructions.
Chapter 7 discusses ART and Dalvik.

Android API Libraries: These are system libraries written in Java,
compiled to dex virtual machine code, and translated to near-machine
code (.oat files) during installation. They are bound to Android
applications at runtime, almost exactly as the C Library is bound to
native applications. The code they contain, though, cannot be
executed without the help of the virtual machine and its runtime
environment. These libraries are the APIs to Android services.

Android Services: The Android analog of a system service, these
privileged Android applications written in Java provide essential
Android functionality. The Zygote service, especially, plays a key
role in an Android system. Zygote is covered in Chapter 6. The
Android service model is covered in the next section and seen again
in Chapters 10 and 11 as part of the binderized HAL.



Android Applications: These applications are developed for
Android, compiled against the Android API, and run within the
runtime environment. Building an Android application is unlike
developing applications either for other varieties of Linux or for other
mobile platforms. Many other resources are available to a developer
building an application. Application building is discussed only
peripherally in this book.

The Android Service Model

A second, side-on view of the Android system gives a more functional
perspective. Shown in Figure 3.2, it illustrates the basic structure of
Android’s service model.

Figure 3.2 The Android System Model



This diagram is key. It illustrates two applications in two separate
processes, one on the right and one on the left. The application in the
process on the left side of the diagram needs access to the scarce resource at
the bottom of the diagram. The arrow from the application to the scarce
resource represents its request.

In the diagram the scarce resource is shown as hardware because it often is.
Examples of scarce hardware resources might include a phone’s screen,
status lights, or a buzzer. Allowing all applications unrestricted access to
these things wouldn’t make sense. At best, applications would have to
coordinate access among themselves. At worst, a malicious application
could make a device unusable by seizing one or more of the essential
resources and refusing to release them.

Hardware resources, of course, are not the only things that can be scarce or
that need protection. A list of accounts or a database of acquaintances might
require similar protection. Android uses the same mechanism to protect
non-hardware resources.

In Figure 3.2, the arrow illustrating the application’s intended request for
the scarce resource is marked with an “X.” The “X” indicates that
application is blocked by the system from making the request directly.

The portal through which an application interacts with hardware—its driver
—is almost certainly catalogued as a file in the /dev directory. Recall that as
the creator of the file system abstraction, the kernel is able to represent
nearly anything as a file. The driver is a special kind of file but still a file.
To interact with the resource directly, the application must open the driver
file and read and write from it.

Like all files in the Linux file system, the driver file is catalogued with
permissions. These permissions determine which processes the kernel will
allow to open the file.

Listing 3.1 shows excerpts from the listing of the contents of the /dev
directory from a typical Android device. Most of these files are drivers for
one device or another. In most cases, the file’s permissions (the first
column) limit access to the file’s owner (second column) or owning group
(third column). Only a couple of the files in this example allow unrestricted



access (crw-rw-rw). 

The others are accessible only by processes with specific UIDs.

Listing 3.1 Files in /dev
Click here to view code image
crw------- root     root     233,   0 1970-07-29 16:48 adsprpc-smd


crw-rw-r-- system   radio     10,  56 1970-07-29 16:48 alarm


...


crw-rw---- system   audio     10,  40 1970-07-29 16:48 

audio_slimslave


crw-rw---- nfc      nfc       10,  70 1970-07-29 16:48 bcm2079x-i2c


crw-rw-rw- root     root      10,  62 1970-07-29 16:48 binder





crw-r----- radio    radio    230,   0 1970-07-29 16:48 hsicctl0


crw-r----- radio    radio    230,   1 1970-07-29 16:48 hsicctl1


crw-r----- radio    radio    230,  10 1970-07-29 16:48 hsicctl10


...


cr--r----- root     system    10, 183 1970-07-29 16:48 hw_random


crw------- root     root      89,   0 1970-07-29 16:48 i2c-0


...


crw-rw---- system   camera   239,   0 1970-07-29 16:48 jpeg0


...


crw-rw---- system   camera   251,   0 1970-07-29 16:48 media0


...


crw-rw---- root     mtp       10,  43 1970-07-29 16:48 mtp_usb


...


crw-rw---- radio    vpn      108,   0 1970-07-29 16:48 ppp


...


crw-rw---- system   drmrpc   244,   0 1970-07-29 16:48 qseecom


crw------- root     root      10,  92 1970-07-29 16:48 ramdump_adsp


...


crw------- root     root     232,   3 1970-07-29 16:48 smd3


crw------- root     root     232,  36 1970-07-29 16:48 smd36


crw-rw---- system   system   232,   4 1970-07-29 16:48 smd4


crw-rw---- system   system   232,   5 1970-07-29 16:48 smd5


crw-rw---- system   system   232,   6 1970-07-29 16:48 smd6


crw-rw---- bluetooth bluetooth 232,   7 1970-07-29 16:48 smd7


crw------- root     root     232,   8 1970-07-29 16:48 smd8


crw-r----- radio    radio    231,  25 1970-07-29 16:48 smd_cxm_qmi





crw-rw---- bluetooth net_bt_stack 248,   0 2017-01-22 12:16 ttyHS0


crw------- media    media    248,   3 2017-01-22 12:16 ttyHS3


clbr://internal.invalid/book/OEBPS/Images/ch03_images.xhtml#p03lis01a


crw------- root     root     247,   0 1970-07-29 16:48 ttyHSL0


crw-rw---- system   vpn       10, 200 1970-07-29 16:48 tun


crw-rw---- system   net_bt_stack  10, 239 1970-07-29 16:48 uhid


...


crw-rw-rw- root     root       1,   9 1970-07-29 16:48 urandom


crw-rw---- root     usb       10,  41 1970-07-29 16:48 

usb_accessory

When Linux was first developed in the 1990s, it was designed for
computers that were shared by many users. At that time, security in an
operating system meant, exactly, protecting users of the same computer
from each other. Although attacks from across a network were not
unknown, it was far more likely that one of the users of a system would
compromise another’s resources on a single system than it was that an
attack would originate externally. Over years of use, the ability of the Linux
system to protect individual user accounts from one another has been tested,
retested, and tested again. It is quite secure.

The permissions system is what prevents the request for the scarce resource
shown in Figure 3.2 

from succeeding. The application’s process is not running with the user and
group IDs that protect the resource and, therefore, the application does not
have read or write permission on the driver. It does not have any way to
obtain direct access to the resource.

Starting with KitKat, Android included an adaptation of SE Linux that
further enhanced access controls. The original discretionary access control
(DAC) model of permissions was not enough to prevent a system from
being compromised. For example, using only DAC, a highly privileged
system service (such as init), 43if compromised, might allow unfettered
access to the system. SE Linux for Android introduced mandatory access
control (MAC). It allows each running process to be further constrained
from a security standpoint. All applications, including system processes, are
assigned SE context that is enforced by the kernel. This limits the damage
any one process can do, if compromised.

As Chapter 5 will demonstrate, writing and extending SE policies is a non-
trivial task. Unless absolutely necessary, not altering the SE policies that are
provided in the AOSP tree is best because they are CDD/CTS compliant.



This is particularly important if the device is to be certified as an Android
device.

The series of unblocked arrows in Figure 3.2 show how Android
applications actually do get access to scarce resources when they need
them. Instead of requesting the access directly, they use an interprocess
communication (IPC) mechanism, Binder, to make a request to a system
service. Normally, the IPC request is completely hidden from the caller
because it is wrapped in in the Android API libraries. The client app sees
only a call to a local method.

When the client app wants to obtain access to a scarce resource, it simply
calls one of the methods in the Android API. The method call actually
initiates an IPC conversation with Android service applications in one or
more remote processes. These service processes, unlike the client, have the
necessary security privileges that do permit them to access the scarce
resource. The service can coordinate the requests as appropriate and
manage access and control client use of the resource. Services provide fine-
grained control over application access to the scarce resources they manage
by declaring permissions. A permission is nothing more than a unique
string that is recognized by the Android system. Android strictly manages
permissions: Applications that want to use them must declare their
intentions in their manifests and must get explicit approval from the
application user before the permissions are granted. When an application
requests access to a scarce resource from a service, the service can provide
access in the firm knowledge that the application is acting on behalf of an
informed user.

This mechanism, access to resources through a proxy service, is the key to
hardware access in Android.

Exploring the Source

The last of this chapter’s high-level views of Android is, as promised, much
more practical. It’s time to look at the AOSP code-base.

The primary source for Android code is the Android Open Source Project
(AOSP) site at https://source.android.com/. Android system developers

https://source.android.com/


should be familiar with this site whether it is the source of the code for their
project or not. Android originates here, and documentation and update
information are available here before being available anywhere else.

In particular, the Overview section of the AOSP website contains important
information about source branching and tagging strategies and the legal
constraints on the use of the Android name, logos, and so on. Anyone
working with Android code should read this documentation and be, at the
least, generally familiar with it.

Other Sources

Several other sources for forks of the AOSP code exist, each with its own
advantages and disadvantages. Among these forks, perhaps the best known
are AOKP and MIUI. Sadly, one of the most important forks,
CyanogenMod, has disappeared from the scene. The support community
has rebranded it as LineageOS, and it may return to viability in the future.

What’s in the Box?

The remaining sections of this chapter assume that the developer/build
machine has been set up as described in Chapter 2. Let’s take a quick walk
through the source, just to get the lay of the land. Listing 3.2 shows the top-
level directory structure.

Listing 3.2 Source Top Level
Click here to view code image
lrwxr-xr-x    1 aosp  staff     19 Oct 13 09:26 Android.bp


-r--r--r--    1 aosp  staff     92 Oct 13 09:26 Makefile


drwxr-xr-x   35 aosp  staff   1564 Oct 13 09:26 art


drwxr-xr-x   14 aosp  staff    816 Oct 13 09:26 bionic


drwxr-xr-x    3 aosp  staff    102 Oct 13 09:26 bootable


lrwxr-xr-x    1 aosp  staff     26 Oct 13 09:26 bootstrap.bash


drwxr-xr-x    5 aosp  staff    374 Oct 13 09:26 build


drwxr-xr-x    3 aosp  staff    102 Oct 13 09:26 compatibility


drwxr-xr-x   12 aosp  staff    748 Oct 13 09:26 cts


drwxr-xr-x    8 aosp  staff    476 Oct 13 09:26 dalvik


drwxr-xr-x    5 aosp  staff    170 Oct 13 09:26 developers
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drwxr-xr-x   20 aosp  staff    748 Oct 13 09:26 development


drwxr-xr-x   10 aosp  staff    340 Oct 13 09:27 device


drwxr-xr-x  310 aosp  staff  10540 Oct 13 09:30 external


drwxr-xr-x   15 aosp  staff    510 Oct 13 09:31 frameworks


drwxr-xr-x   12 aosp  staff    408 Oct 13 09:31 hardware


drwxr-xr-x    5 aosp  staff    170 Oct 13 09:31 kernel


drwxr-xr-x   20 aosp  staff   1258 Oct 13 09:31 libcore


drwxr-xr-x    8 aosp  staff    680 Oct 13 09:31 libnativehelper


drwxr-xr-x    9 aosp  staff    306 Oct 13 09:32 packages


drwxr-xr-x    6 aosp  staff    272 Oct 13 09:32 pdk


drwxr-xr-x   10 aosp  staff    374 Oct 13 09:32 platform_testing


drwxr-xr-x   30 aosp  staff   1020 Oct 13 09:36 prebuilts


drwxr-xr-x   24 aosp  staff   1054 Oct 13 09:36 sdk


drwxr-xr-x   37 aosp  staff   1258 Oct 13 09:36 system


drwxr-xr-x   10 aosp  staff    340 Oct 13 09:36 test


drwxr-xr-x    4 aosp  staff    136 Oct 13 09:36 toolchain


drwxr-xr-x   21 aosp  staff    714 Oct 13 09:37 tools

Android.bp

The build system for Android is in transition. Up through the Marshmallow
release, Android used an extension of GNU make as the underlying build
system. The system used build files named Android.mk dispersed
throughout the build tree, selected using a configuration describing the
particular device being built. The process resulted in a large in-memory
makefile to do the build. While powerful, this approach had limitations and
never scaled well, especially noticeable as the Android source tree grew in
size.

Nougat introduced a new build system, Soong, which is inspired by Bazel
and uses a Go syntax. With Soong, the Android.mk files are replaced with
Android.bp (blue print) files. As announced in late 2020, Google will be
further transitioning the build system to Bazel in the near future.

Makefile

Makefile is the top-level makefile used in the legacy GNU make build system.
It is copied here from the build directory when repo sync is executed.

art



The art directory contains the code for the Android Runtime (ART), an
ahead-of-time compiled runtime that replaces the original Android virtual
machine, Dalvik.

bionic

The bionic directory contains the code for the Android Standard-C-like
library, Bionic. The earlier section of this chapter, “System Libraries,”
describes Bionic.

bootable

The bootable directory contains the source for the recovery executable.
Recovery is used to apply OTA updates, write new firmware, and perform a
factory data wipe.

bootstrap.bash

The bootstrap.bash script is part of the new build system, Soong.

build

The build directory contains the both the old and the new build systems. In
particular, it contains the shell script envsetup.sh, used to configure the
build environment. In addition to setting up required environment variables,
this script introduces helper aliases and shell functions, such as lunch,
which are used to configure and execute the build, as discussed in detail in
Chapter 2.

cts

The cts directory contains the Android Compatibility Test Suite tests.
Passing these tests is the minimum requirement for certification as an
Android device.

dalvik

The dalvik directory contains the source for Android’s original VM,
Dalvik.



developers

The developers directory contains three different repositories of mostly
legacy example code. The example Gradle plug-ins may be of interest.

development

The development directory contains odds and ends that may be useful to
developers. It contains things such as tools for editing Android source using
one of the popular IDEs, Eclipse or IntelliJ; more example code; developer
debug applications; configurations for checkstyle, the emulator; and other
tools.

device

device is an extremely important directory for a device developer. The
Android source and build system are designed with the intention that all
device-specific code—device-specific configuration of the build system,
toolchain customizations, kernel selection, and even specialized versions of
applications—go here. Although most device developers will find that very
constraining, it is a smart strategy to keep as much device-specific code as
possible in this directory. Only broader, more generic cross-platform
changes should be made outside of the device-specific directory. Much of
the work in the rest of this book will happen in this directory.

external

external contains all the buildable packages that are used, but not
maintained, as part of Android. It contains things like bouncycastle, the
Android cryptography library; expat, an XML parser; junit, a standard
testing framework; and so on. All of these things are essential components
of a running Android system but are obtained from external providers.
Placing the code for these components in this directory makes the
dependency explicit and makes Android less susceptible to versioning
issues.

frameworks



The frameworks directory is the heart of Android. The public Android API
is located here, in the directory frameworks/base/core/java. Core system
services such as the ActivityManagerService and PackageManagerService
are in frameworks/base/services/core/java. Input event management and
sensors code can be found under frameworks/base/native. You can usually
find native implementation code next to java directories in sibling jni
directories and static resources in directories named res.

hardware

The hardware directory contains the HAL. This is the abstraction layer code
for common devices: Wi-Fi, Bluetooth, and baseband radios; sensors;
cameras; and so on. Although this directory contains shim code for many
common devices, it is the device directory that contains customizations for
a specific board and any one-off hardware on that board.

libcore

The most interesting things that live in the libcore directory are the sources
for the Apache Harmony base implementations of the Java API. For
example, the file

Click here to view code image

libcore/ojluni/src/main/java/java/lang/Class.java

is the source for Android’s implementation of the Java type Class.

libnativehelper

As the name implies, the libnativehelper directory contains native helper
functions. It is sort of a “commons” directory for HAL code that leverages
Java Native Interface (JNI) to bridge the gap between the runtime code and
backing native code.

packages

The packages directory contains applications that will be included as part of
the system. The directory packages/apps, for instance, contains the standard

clbr://internal.invalid/book/OEBPS/Images/ch03_images.xhtml#p047pro01a


DeskClock, Phone, and Camera apps that are pre-installed (and not
uninstallable) on a typical Android device.

pdk

The pdk directory contains the platform development toolkit (PDK). It is
given to original device manufacturers (ODMs) so that they can develop
HAL and other specialization software for their devices. The PDK is a
subset of the full Android source, so this directory doesn’t contain much
that is useful as part of the Android source tree.

platform-testing

The platform-testing directory contains odds and ends of tools for testing
device functionality.

prebuilts

The large prebuilts directory is very similar to the external directory,
except that the things that it contains are not built as part of the system build
process. For instance, it contains the binaries for the clang and gcc, C
compilers; the Python and Go language SDKs; and the kernel for the
QEMU-based Android emulator.

sdk

sdk, a mostly historical directory, contains source for some of the Android
development tools as they were just before Android Studio was introduced.
Since Android Studio, the SDK tools have their own, partially overlapping,
repo-maintained build tree (see http://tools.android.com/build). Most of the
code here is obsolete.

system

Another very important directory, system contains the native daemons,
system libraries, and data essential to an Android system. In here are the
sources for vold, the SE Linux policies, and the system trusted certificates.

http://tools.android.com/build


These are the parts of the Android system that are illustrated in the top-left
of Figure 3.1 and discussed in Chapter 7.

toolchain

The toolchain directory contains a set of automated tests that can be
executed to gather benchmarking data. Building and running these tests
require patching the source tree.

tools

The tools directory contains a number of helper tools, such as ones to ease
the creation of Android AVDs and to analyze atrace data captures.

out

The out directory is not part of the build environment maintained by repo. It
is, however, the default scratchpad for the build system. None of the
previously mentioned directories should be affected in any way by a system
build. From the build’s point of view, they are all read only. Restoring a
build environment to its pristine state should always be possible by simply
deleting this directory. All intermediates as well as the final build artifacts
are put here.

Summary

This chapter has been a very high-level tour of the Android system. It
inspects Android from three very broad points of view: as a series of layers
of abstraction, starting at the hardware and ending with user applications; as
a client-server architecture in which servers regulate access to scarce
resources; and as a build environment, with source and tools for generating
the running system.

Subsequent chapters walk up the stack illustrated in Figure 3.1, illustrating
the relation between the source code and the running system and
demonstrating at each layer how to customize behavior.



4

The Kernel

As mentioned previously, the Android system uses a Linux kernel. The
Linux kernel is a very large and extremely complex piece of software.
Some developers spend their entire careers understanding and modifying it.
It is the subject of many books, including the excellent Building Embedded
Linux Systems, 2nd ed. (Yaghmour, 2008) and Linux Device Drivers, 3rd ed.
(Corbet, 2005). This chapter is not, of course, a substitute for any of those
books—or for a few years of experience.

Bringing up a kernel for a brand new device—setting up a build
environment, choosing the correct compilation flags, and getting all the
necessary drivers debugged and working—is a dark art that is likely to
require a significant investment of time. A developer with specific kernel
porting experience is likely to be able to accomplish the task in a fraction of
the time required by even a very talented and motivated novice.

The Linux kernel is incorporated into an Android system as an essential but
completely opaque binary. It is—at least from the point of view of the
Android build system—just a dependency. There are, however, several very
specific modifications, kernel modules, that are unique to the Android
system. Those features are the central topic of this chapter.

The Linux Kernel

The kernel creates the virtual environment in which applications live. As
discussed in Chapter 1, 

many kinds of kernels exist and create many kinds of environments. Linux
is a member of the family of kernels that provide two broad environmental



features to client applications: a virtual execution space and a file system.
Other members of this class (chosen fairly arbitrarily) are the Windows NT
Kernel, Dartmouth DTSS, and Digital Equipment Corporation’s RSTS/E.

The astute reader will notice that two of these three kernels, Dartmouth
DTSS and Digital Equipment Corporation’s RSTS/E, are not exactly
household words today. That is because within its family of operating
systems, UNIX-like systems are by far the dominant genus. In particular,
the Linux species has pretty much won the evolutionary battle, especially in
the embedded system niche.

In addition to managing a virtual environment, the Linux kernel is also
Android’s porting layer. The process of porting Android to a new device is,
for the most part, porting Linux to that device and then pulling the rest of
the Android stack over on top of it. The Android virtual machines, Dalvik
and ART, discussed in Chapter 6 and responsible for executing the virtual
machine code into which Java language programs for the Android system
are compiled, although analogs of the JVM, have very little to do with
portability.

Kernel Process Management

Most modern computing hardware has, at its center, a small number
(probably more than one but probably less than ten) of processing units
(also called cores or sometimes processors). These are the components of a
device that execute machine instructions.

A piece of computing hardware is capable of running a number of
simultaneous processes more or less equal to the number of processors that
it has. Simplistically, each core starts executing a stream of instructions
when the power to the chip is turned on and stops when the power is turned
off.

The other essential ingredient for a von Neumann architecture computer is
memory. Modern hardware typically has several different kinds of memory,
each of which is a different balance between cost and speed: registers,
several levels of cache, and on-board and external RAM (random-access
memory).



In an ideal, theoretical machine, each core has identical capabilities and
identical access to all the memory. In practice, there are exceptions.
Registers and, perhaps, some kinds of cache may be available only to a
specific, associated core. Most memory, though, is globally accessible to all
the processors. In the hardware environment, it is completely unremarkable
for a value written by one CPU to be overwritten by another.

Note
Not all hardware is ideal. In an attempt to get the most bang for the
buck, some hardware has specialized cores that have differing
capabilities: more cores for common tasks, fewer for less common.
One example of unequal core capability is hardware popular for
many Android devices, which is capable of adjusting the clock
speeds independently for each core. On such hardware, tasks of
lesser importance may be assigned to slower processors.

The first job of the kernel is to create a virtual execution environment on
top of the hardware. This virtual environment is very different from the
hardware environment described earlier. In it, a nearly infinite number of
processes appear to run simultaneously. Each process appears to use one or
more virtual CPUs to execute instructions and to have its own, private
address space in which the memory cannot be accessed from other
processes. In this virtual environment, the CPUs are ideal and identical, and
it would be very 51surprising if one process could overwrite a memory that
belonged to another. This is the environment with which most application
developers are familiar.

Note
Within this book, a thread of execution, or simply thread, is a
sequence of instructions executed one at a time in order by a single,
possibly virtual CPU, or processor. A process is one or more
threads of execution with a single, private address space not shared
with any other process.

An application is a collection of code with a single purpose.
Frequently, but not always, an application runs as a single process.



Kernel Memory Management

Managing memory is the second major task of a kernel. Hardware memory
can roughly be divided into two categories: random-access and block-
structured. Information can be stored into or retrieved from random access
memory, RAM, exactly as its name suggests, simply by addressing the
specific cell of the memory that is of interest. When the CPU requires the
value that it stored at address 3730, it requests the value at address 3730
explicitly as part of executing an instruction. Access to address 3730 is
completely independent of access to addresses 3731 or 3729.

In an ideal computer, all memory would probably be random access. In
actuality, because random-access memory is expensive, most computer
systems also have block-structured memory. Block structured memory is
usually cheaper, bigger, and, most likely, slower to access than random
access memory. Think of a disk drive or its modern equivalent, a solid-state
drive (SSD).

Whereas a processor can directly access random access memory by address,
accessing block-structured memory is considerably more complicated.
Typically, a process that needs data that is stored in block-structured
memory must first reserve a contiguous piece of random-access memory.
Next, it must communicate to the block-structured memory device that
contains the information that it needs, the addresses of both the block of
memory in which it is interested, and the location and size of the RAM it
has reserved.

This initiates a data transfer. The block-structured memory device copies
the contents of the requested block from its internal store to the RAM.
When the transfer is complete, it notifies the processor. The requested block
of memory is now available as RAM.

Note
The differentiation between the two different types of memory is not
arbitrary. Of course, it is true that both types of memory are block
structured and addressable: The only real distinction is in the size of



the block and the amount of time that it takes to move one of them
across a device’s data paths. As usual, though, size matters—a lot. If
the number of bits in a block is less than or equal to the number of
bits that can be transported simultaneously through the device (the
device word size), the memory is considered random access. If the
number of bits in the memory block requires that the block be
transferred sequentially, word by word, the device is considered
block structured.

Block-structured memory is used in two very important ways. The first is as
a way of creating the virtual memory spaces in which applications run.

When an application process is not actively using some part of its memory
(it is waiting; perhaps for user input or for a certain amount of time to
elapse) the kernel, using a process that is exactly the reverse of that just
described, can free the memory for other use. The kernel marks a section of
the application’s RAM as unavailable and requests that a block-structured
device store it.

After the transfer is complete (the contents of the RAM have been
“swapped” to block storage), the RAM can be reallocated for use by other
processes and other purposes. Of course, when the paused application once
again needs access to the piece of its address space that has been swapped
to disk, the kernel must, once more, reverse the process. It reallocates
memory for the stored data, reads it from the block storage device, and
replaces the contents exactly as they were the last time the application
looked. This is virtual memory, one of the main tools necessary to allow
the sum of the memory used by all the applications running on a device to
be much greater than the amount of hardware RAM that is installed in the
device.

At the time Android was designed, the block-structured memory devices on
most computers were hard drives: spinning magnetic disks with moveable
read-write heads. Hard drives are fairly fragile and running them requires
amounts of power that are out of the question for a battery-powered device.

Mobile devices, in contrast, even then used solid-state memory, similar in
many respects to the memory ubiquitous in modern laptops: SSDs. The big



difference between solid-state memory then and now is that, in 2002, solid-
state memory devices deteriorated significantly with each write operation.
At that time, a bit on a disc drive might be good for millions of read/write
cycles, whereas a bit on a flash card might fail after only tens of thousands
of cycles.

The implication is that, although storing data persistently was possible, the
operating system had to be quite parsimonious in its use. In particular,
trying to use flash memory as virtual memory swap space, in addition to
being slow, would severely limit the life of the device.

Starting with Android 4.4 (KitKat), Android included a kernel module,
zram, to provide swap capability. zram targets devices with very little
memory: as low as 512MB of RAM. It provides a compressed memory
space used to swap out process pages, just as they are swapped to non-
volatile block storage. This may seem counterintuitive: The kernel carves
out a bit of RAM to use as swap space for application memory 53pages.
The zram module, though, compresses pages as they are stored using a fast
compress/decompress algorithm: LZ4 or LZO. Because it uses RAM as a
virtualized swap space, zram is fast and efficient. zram notwithstanding, lack
of virtual memory is second only to power as the most important constraint
in the design of the Android system.

The kernel’s second memory management trick is the catalog tree. Moving
blocks of stored information in and out of RAM is nifty, but it doesn’t go
very far toward the nearly universally accepted abstraction for long-term
memory, a tree of folders (catalogs) containing both other folders and
sequentially accessible files. The kernel has one or more components,
called file systems, which manage different varieties of block-structured
memory hardware and use different strategies to create the tree-of-files
abstraction.

An important thing to remember about the file tree is that the kernel creates
it out of thin air. A block-structured memory device has not even the faint
whiff of a tree structure about it. It is just a big, flat array of bits. If a kernel
can make block-storage look like a tree-structured file system, it can make
nearly anything else look like a file just as easily. This capability comes up
again in Chapter 5, when we discuss Android’s security and again in



Chapters 8 and 10 in the discussion of Android’s hardware abstraction
layer.

The Android Kernel

Although the Android system is based on the Linux kernel, it is not the case
that any Linux kernel will support Android. The Android system requires
several very special kernel features. At least two of these features have been
the source of extended and sometimes acrimonious discussion in the Linux
community. These features can be a major hurdle in porting Android to a
new device: finding a kernel that supports both the target hardware and
Android at the same time.

Like most kernels, Linux implements a plug-in system that allows it to be
customized for various hardware and software requirements. These plug-ins
are either kernel modules or device drivers. The kernel software
components that manage a mouse, a keyboard, speakers, and network
communication are all examples of device drivers.

Device drivers have two roles. First, a driver may manage a specific piece
of hardware. The driver may be programmed with the device protocol
nearly at the level of controlling voltages and pulse timing.

Usually, the driver is also the public interface to the hardware. The driver is
the definition of the hardware API. Drivers usually expose, for application
use, either a random-access or a block-structured virtual interface that
abstracts the details of a hardware device away from the rest of the system:
no other code need be aware of it. An application that wants to use a given
hardware mechanism will do so by connecting with that mechanism’s
device driver and interacting with it according to the driver’s interface.

Android adds an additional layer of abstraction between user space Android
framework processes and the hardware, called the Hardware Abstraction
Layer (HAL). This additional layer of abstraction allows Android to use a
single API for several different kernel drivers that provide access to similar
types of devices, despite the fact that each is controlled by its own driver
and that each of the drivers defines it its own, unique API.



Device drivers execute as part of the kernel. A driver can do anything any
other part of the kernel can do, from scribbling in the memory of any
application to changing what instructions it executes. An error in the driver
frequently manifests as a “kernel panic” and is likely to bring down the
entire system. Because of this, by convention, device drivers are as small
and simple as they can possibly be.

In their seminal book, Linux Device Drivers, authors Corbet et al.
admonish:

... it emphasizes that the role of a device driver is providing
mechanism, not policy. The distinction between mechanism and
policy is one of the best ideas behind the Unix design. Most
programming problems can indeed be split into two parts: “what
capabilities are to be provided” (the mechanism) and “how those
capabilities can be used” (the policy). If the two issues are
addressed by different parts of the program, or even by different
programs altogether, the software package is much easier to
develop and to adapt to particular needs. (Corbet, Rubini, and
Kroah-Hartman, 2005)

This is probably the reason that the Linux community has been so reluctant
to accept the device drivers required by Android, in particular Binder and
wakelocks.

For quite a while, the Linux kernel used in Android systems was a complete
fork of the Linux kernel. Android kernels could not be downloaded from
the canonical Linux website, kernel.org. Instead, they were hosted on
Google websites. The ensuing debates between the two communities, Linux
and Android, were unpleasant and prolonged.

Note
As an example of the conflict, wakelocks and the debate surrounding
them are discussed in detail by Rafael J. Wysocki in his Linux
Weekly News article, “An alternative to suspend blockers” (Wysocki,
2010) and the articles it references at
https://lwn.net/Articles/416690/.

http://kernel.org/
https://lwn.net/Articles/416690/


Although it might be optimistic to say that the rift has been healed, a certain
pragmatism has prevailed. Android has accomplished what no other Linux
distribution has accomplished: making Linux ubiquitous. By orders of
magnitude, most devices using Linux today are Android devices. Android is
popular, and the Linux community has proved itself mature enough to
assimilate the popularity. Downloading an Android Linux from kernel.org
is now possible.

Android Kernel Features

Building an accurate catalog of the differences between a generic Linux
kernel and a kernel necessary to run an Android device is difficult. Several
people have attempted it over the years, and a small but useful body of
literature on the topic exists (mostly rooted at http://elinux.org).

Because the Android kernels are stored in git, creating the patch set
necessary to create the Android kernel from the vanilla kernel on which it is
based is a relatively straightforward process. However, at last check, the
exercise creates something just under 300 patches with a combined size of
around 4 megabytes. What do all these patches do? The following
subsections, while not exhaustive, describe most of the important features
specific to Android kernels.

Wakelocks

Source Now part of the standard Linux kernel

One of the special features required by Android is the wakelock.
Wakelocks or suspend-blockers are a form of opportunistic power control.

By default, most Linux devices are running. Although it may seem obvious
to point that out, it is important because at the time that Android was
developed, most Linux devices were also attached to practically infinite
supplies of power.

On a mobile device, the most important resource by far is the battery. At the
time that Android was in its early development, running a standard Linux
on a mobile device meant battery life that was measured in minutes, not in

http://kernel.org/
http://elinux.org/


days. One of the first hurdles the original Android team had to leap was
dramatically reducing the battery drain. An important step in this direction
was reversing the default wake state. Like the dormouse from Alice in
Wonderland, the Linux kernel on an Android device prefers to be asleep.

Obviously, although being asleep is great for battery life, it isn’t much good
for getting work done. Enter wakelocks.

A wakelock is a simple binary flag. The kernel is constantly trying to go to
sleep. If any wakelocks are set, however, they prevent it from doing so.
Application programs seize wakelocks and become responsible for keeping
the kernel (and, by extension, the hardware) awake until they complete
whatever useful work they are doing. A responsible application, when it is
done with useful work, releases any wakelocks it holds. If no other
applications are holding wakelocks, the kernel immediately puts the device
to sleep.

The original implementation of wakelocks from the Google/Android team
contained a serious race condition (described in detail in the article cited in
the earlier Note). Because of this race condition, the possibility existed for
the kernel to fail to notice an application’s request for a wakelock if the
request happened while the kernel was already in the process of powering
down the device. A device could sleep despite an application’s attempt to
keep it awake.

In 2010, as part of healing the fork between the Android and the standard
Linux kernels, Arve Hjønnevåg rewrote the original Google/Android
patches, renamed them, “Suspend Blockers,” and resubmitted them. They
were accepted into the mainline kernel source. Subsequently, Android
wakelocks were rewritten. They are now based on standard Linux suspend
blockers.

In addition, Android introduced two additional power management tools in
version 6.0 (Marshmallow): Doze and App Standby. When a device enters
Doze mode, it may continue to operate but not at full power. The mode
imposes some severe restrictions on apps, including limits on network
access, Wi-Fi scanning, and other power-hungry operations. Because a
device only enters Doze mode when the user is not actively interacting with



it, the system assumes that applications do not have any valid reason for
holding a wakelock and completely ignores them.

Binder

Google Source Several locations, most commonly 

/drivers/staging/android/binder.c

Canonical Source /drivers/android/binder.c

Exposed as /dev/binder

Binder is an interprocess communication system based on shared memory
that, as introduced in Chapter 3, is at the very heart of Android. It turns up
again in Chapter 10, in the context of Binderized HAL (Project Treble).
Binder’s central role in the Android environment becomes apparent with a
reconsideration of wakelocks and the way Android handles memory
pressure.

As described in the previous section, the wakelock system places the
responsibility for allowing a device to sleep with the user application. It
takes only a moment’s consideration to realize that that situation is simply
too dangerous to permit. Clearly, a malicious application could stage the
equivalent of a denial-of-service attack against a device on which it is
installed, draining the battery by keeping the device awake. It is at least as
likely, though, that an ignorant or incompetently programmed application
might seize a wakelock and then crash before releasing it. Unless the
system has some way of cleaning up after the crashed application, the
wakelock it seized will keep the device awake until its battery dies.

To protect itself from this kind of problem, Android uses the architecture
described earlier in the book in Figure 3.2, the Android System Model. The
scarce resources, in this case, wakelocks, are not directly available to user
applications. Instead, they are controlled by a system service. Specifically,
wakelocks are controlled by the PowerManager. User applications cannot
directly seize wakelocks. The Android system security model prevents
normal applications from interacting with them directly. Only system
services, in this case, PowerManagerService and its process, are granted the
necessary permission. Instead, applications use the interprocess



communications system, Binder, to ask the system service to seize a
wakelock on their behalf.

Another situation that requires similar treatment is that of low memory,
described in more detail in the following section. Android does not have the
near-infinite memory space available to it that desktop Linux systems do.
Instead, it must ruthlessly control available RAM and will kill processes to
reclaim memory for use by another, more important process. Like the DoS
example mentioned earlier, this could result in a process being killed while
holding resources or IPC connections to other processes without being
given a chance to release those resources.

Most interprocess communications systems are peer-to-peer and are,
themselves, applications. Common IPC systems, whether System V IPC
centered implementations of the D-Bus protocol, or based on some other
architecture, are just applications. Though frequently special system-level
applications, they support communications architectures in which all
participants are equivalent. In these systems, distinguishing 57between a
client that doesn’t happen to be talking at the moment and one that cannot
talk and will never talk again (for example, it has crashed) can be quite
difficult.

Recall that the kernel is the thing that creates processes. It is the absolute
authority on which processes exist and which have terminated. Because it is
part of the kernel, Binder has immediate access to this information. Binder
can tell, without a shadow of a doubt, whether one of the ends of an
interprocess conversation is simply occupied elsewhere or whether it will
never respond again. It can supply that information to other clients.

This is the solution to the wakelock and low memory killer problems. A
system service controls wakelocks. Client applications do not have
sufficient permission to seize their own wakelocks. Instead, they use Binder
IPC to request that the system service (which does have permission) hold a
wakelock on their behalf. The system service, in return, registers with
Binder for notification of the death of the client app. Now the system
service can guarantee that the wakelock will be released, either because the
client app explicitly releases it or because it is eventually terminated.
Processes using Binder to communicate with each other can register for



notification about a peer process’s death. This allows any application to
manage resources that are no longer required because a peer ceased to exist.

Binder started life as part of BeOS, the would-be replacement for Apple’s
Classic Macintosh OS. Apple had other ideas. It offered a scant $125
million for BeOS. BeOS, for better or worse, rejected the offer. Instead,
Apple ended up buying NeXTSTEP (along with Steve Jobs) for $429
million. BeOS (and the rights to Binder) were eventually sold to Palm, Inc.,
where Binder became the basis for their Cobalt OS. Around the time of the
demise of Palm, a version of Binder called OpenBinder was released as
open source under the Mozilla Public License Version 1.1.

Android’s version of Binder, while clearly related, is none of these. It was
reimplemented from scratch near the start of the Android project and added
to Google’s fork of the kernel tree in early 2009. Over time, it became
available from kernel.org (www.kernel.org/) but was relegated to a special
“staging” area (drivers/staging/android). Late in 2014—again, with much
debate about its security and stability—it was moved into the “real” part of
the kernel (drivers/android). There has been discussion (though little
progress) toward writing a binder-compatible library that uses the stable,
supported Linux kbus mechanism. At the moment, Android absolutely
depends on Binder, and other Linux systems are warned to use it at their
peril.

Low Memory Killer

Google Source drivers/staging/android/lowmemorykiller.c

Canonical 
Source

drivers/staging/android/lowmemorykiller.c

Daemon 
Source

system/core/lmkd

Exposed as Originally /proc/<pid>/oom_adj, now 
/proc/<pid>/oom_score_adj

As noted earlier, the early Android systems had to be careful about their use
of persistent memory. Flash memory at the time simply could not support

http://kernel.org/
http://www.kernel.org/


swapping and virtual memory. The Linux kernels for Android devices are
configured with little (zram) or no swap space.

This presents a conundrum. The device is practically guaranteed to run out
of memory! If the user of a mobile device keeps starting new applications,
in the manner to which they have become accustomed with their other
computer devices, eventually memory is filled and the system cannot start
another. This almost never happens on, for instance, a laptop, because older
applications are swapped to the nearly limitless virtual memory space.
Without virtual memory, though, a device runs out of memory fairly
quickly.

Given this constraint, only a couple of possible choices exist. Users would
never tolerate a device on which an incoming call (which causes the phone
application to run) generated an out-of-memory condition and forced the
user to select an application to terminate, before allowing her to answer the
call. The plausible alternatives are either that there is a limit on the number
of applications that can be running at any given time so that there is always
sufficient memory to run an important app or that the operating system can
terminate any application to recover the memory that the application is
using.

Most mobile operating systems chose the former path—limiting the number
of applications that the OS allows a user to run. Users of most mobile OSs
were limited to a small number of simultaneously running applications
(usually one). A few designated special applications—maybe a camera, a
music player, or the phone—were immune from the constraint. Most
applications, though, had to be run one at a time.

However, Android from the very start allowed users to start as many
applications as they liked. It is just that Android reserved the right kill those
applications, any time it liked! This is, perhaps, the hardest thing for new
Android developers to understand. On most computers, terminating an
application abruptly (Unix signal kill -9) is a very rare occurrence. On
Android, it is the most common way for an application to end.

All Linux kernels have an out-of-memory killer. If some process on a server
in a rack somewhere misbehaves and runs out of memory, it is much
preferable that the operator be able to connect to the device remotely,



perhaps conduct some simple analysis, and then do a soft reboot, rather than
having to walk into the data center, locate the crippled machine, and turn it
off and on again. If the machine is out of memory, though, it is possible that
no memory is left in which to start the remote connection application.

The Linux out-of-memory killer addresses this situation. When the kernel
finds that it is dangerously low on memory, it will kill some processes to
start others based on a priority table. Android, which, as described earlier, is
constantly in a dangerous low memory situation, simply extends this
facility.

The Android OOM-Killer is dynamic and based on two tables. The first
table is static, is constructed at startup, and creates several priority groups
for applications. For each of the priority groups, it establishes the memory
threshold at which applications of that priority may be killed. On the
original Android systems this table always identified 31 priorities,
numbered from -16 to 15.

On a device with 192MB of RAM, for instance, the table specified that
applications with priority 15 should be killed if there were less than 8192 4k
pages of free memory. On the other hand, applications with priority 0 could
be killed only if there were fewer than 2048 pages of free memory.

The second table assigns each process a priority dynamically, depending on
how important it is to the user at the moment. Android’s Activity Manager
Service manages this second table.

Starting with Android 4.4 (KitKat), the low memory killer was moved out
of the kernel and into user space as the low memory killer daemon (lmkd).
This daemon is accessed via the Activity Manager Service over named
socket, when it is available. When the daemon is not present in the system,
Activity Manager Service reverts to the kernel low memory killer. The
daemon leverages existing Linux kernel vmpressure events to perform the
same operations as the kernel driver. The daemon, however, is more
extensible and can be configured by OEMs. As of Android 9 and kernel
4.12, the kernel low memory killer (but not its behavior) has been
completely removed from Android.

Shared Memory: Ashmem



Google Source Originally mm/ashmem.c, now 
drivers/staging/android/ashmem.c

Canonical 
Source

drivers/staging/android/ashmem.c

Exposed as /dev/ashmem

Binder works, as noted earlier, by mapping a single block of physical
memory into the virtual memory spaces of one or more applications. Any
write by any of the applications sharing the memory block will be visible in
all the other applications. Interprocess communication is very efficient
when no copies are necessary; the recipient sees the exact bits that the
sender wrote. Ashmem makes this possible.

The Android team found the existing Linux shared memory system
“shmem” insufficient for their needs and introduced a variant “ashmem.”
Ashmem, according to its documentation is, “a new shared memory
allocator, similar to POSIX SHM but with different behavior and sporting a
simpler file-based API.” Its distinctive feature appears to be the ability to
shed memory under pressure. Ashmem-allocated memory is reference
counted and depends on Binder for sharing the reference to the ashmem-
allocated memory between processes.

PMEM and Ion: Shared Memory

Google SourcePmem was drivers/misc/pmem.c


Ion was drivers/gpu/ion/* but is now 
drivers/staging/android/ion/*

Canonical 
Source

drivers/staging/android/ion/*

Exposed as /dev/ion

Android needs other ways of sharing memory across processes. The most
obvious of these needs comes from drawing on the screen.



One of the remarkable things about Android at the time of its first releases
was its commitment to OpenGL. From the very start, the Android system
included as standard components both 2D (Skia) and 3D graphics libraries.
The latter library was a software implementation of the OpenGL API,
providing OpenGL ES 2 compatibility. Because Android included this
library as part of the system, it guaranteed that an application that used the
OpenGL API would run on any Android device, whether the device itself
supported OpenGL or not.

To operate efficiently, both the 2D and 3D drawing libraries require that the
client be able to write to the memory that represents the pixels on the
screen. Early versions of Android reserved the physical memory and
mapped it into each process as it took control of the screen. Rendering,
then, simply meant writing bits into the screen’s physical memory.

The kernel module that allowed this mapping of specific regions of physical
memory in early Android was called pmem. Pmem is very similar to its
cousin ashmem, except that where ashmem allows the sharing of blocks of
virtual memory, pmem allocates and shares blocks of contiguous physical
memory.

For a time, Skia was removed from Android and the entire rendering chain
depended on compiling small graphics programs run by a GPU. Google has
reversed direction on this, however. Starting with Android 9, Skia has
resurfaced and has a GL backend. The Android system also needs a way to
reserve and share blocks of physical memory to handle the camera.

Modern Androids use Ion, pmem’s successor, to manage pools of shared
physical memory.

Logger

Google Source drivers/staging/android/logger.c (obsolete)

Canonical Source No longer used

Daemon Source System/core/logd

Exposed as See Table 4.1



As another consequence of having to be careful about its use of persistent
memory, Android cannot write its system logs, as they normally are, to
files. Spewing kilobytes per minute to a flash memory–based file system—
even if the files were carefully managed to prevent filling the limited space
on a mobile device—would wear out the flash memory very quickly.

Android addressed this problem by writing its logs to a circular buffer in the
kernel: Logs do not go to files. If the drawbacks of this idea are not
immediately obvious, they will become obvious during attempts to
diagnose an unmonitored system crash. When an Android system reboots,
its memory is reinitialized and all logs are lost.

The Android kernel logger supports four separate log buffers, shown in
Table 4.1.

Table 4.1 Android Logs

Location Use

/dev/log

/main

Application logs. Where messages from the 
android.util.Log class go.

/dev/log

/system

System logs. Where messages from the hidden 
android.util.Slog class and the native liblog library go.

/dev/log

/events

Binary log of system events: garbage collections, 
ActivityManager state, and so on

/dev/log

/radio

Logs from the baseband processor

Note that although these logs are catalogued in the file system, they are not
files. This is an example of the kernel’s ability to make anything, including
a circular buffer in its own memory, look like a file.

As with the low memory killer support, logging functionality has also been
moved into user space with the daemon logd. The daemon allows OEMs to
adjust log buffer size instead of forcing a fixed size circular buffer size as



the kernel driver did. The daemon also supports an additional buffer type: a
crash buffer. The crash buffer provides a single place for process crashes,
which usually include stack backtraces and register information and is not
intermixed with the main logcat output. Unlike the kernel logger interface,
logd exposes a named socket for processes to read and write logs. The
details of this, however, are abstracted away in the Android logging APIs.

Alarms

Google 
Source

Originally drivers/rtc/alarm.c, now 
drivers/staging/android/alarm-dev.c, replaced by POSIX alarm 
timers, kernel/time/alarmtimer.c

Canonic
al 
Source

kernel/time/alarmtimer.c

Expose
d as

/dev/alarm (Android Alarm Driver)


timerfd_create and /dev/rtc*

Android depends on the ability to wake itself up at a pre-scheduled time.
Even when in their lowest power modes, nearly all mobile chipsets include
a clock capable of sending an interrupt signal that causes the rest of the chip
to power up. Android supports this capability with the alarm driver, which
allows applications to request that the kernel schedule a wakeup call at a
specific time. This, in combination with a wakelock, allows an application
to schedule itself at a time at which the system is otherwise asleep.

Android initially used a custom driver to supply this alarm and wake
functionality. That driver was developed outside of the Linux kernel
community and did not adhere to the best practices followed by the kernel
team. It was never accepted into the tree. In 2011, John Stultz of Linaro
introduced a POSIX alarm driver into the Linux kernel. This driver
eventually replaced the Android alarm driver in the kernel and in 2016
became the officially supported alarm support for Android.

Paranoid Networking



Google 
Source

net/ipv4/af_inet.c, net/ipv6/af_inet6.c, 
drivers/net/tun.c, security/commoncap.c

Canonical 
Source

net/ipv4/af_inet.c, net/ipv6/af_inet6.c, 
drivers/net/tun.c, security/commoncap.c

Exposed as N/A

On most operating systems, networking, if it is available at all, is provided
to all applications as a general service. The designers of Android thought it
important that users be able to control access to the network.

There are several reasons for this. Perhaps the most important is that use of
the network may, depending on your carrier, cost money. If something costs
money, the user ought to be able to control it. Another possible reason is
that a user may want control over what information leaves her device. She
may be willing to give an application access to her list of contacts or to the
network, but never both.

Paranoid networking, unlike the previous Android-specific kernel features,
is not a separate driver. Instead, Android implements network access
control with a very simple bit of code in the IP v4 network driver, switched
by the compile time flag, CONFIG_ANDROID_PARANOID_NETWORK. This code
simply checks the group ID (gid) of the application making the network
request. Unless the application belongs to the process group AID_INET, the
request is denied.

On an Android system, each new application is assigned its own unique
user ID when it is installed. At the same time, it may be assigned to one or
more process groups. If the application requests access to the network, it is
assigned to the AID_INET group and will thus be able to use the network.

Android’s security features and its use of group and user IDs are the subject
of the next chapter.

Other Custom Drivers

These are just the largest, most easily categorized features. In those four
megabytes of patches there are, clearly, many other customizations. Among



these smaller changes are specializations for the USB subsystem, the
Bluetooth subsystem, and a RAM console that stores kernel panic
information across reboots, in /proc/last_kmsg.

Building a Kernel

Fortunately, starting from scratch is not usually necessary. Most hardware
manufacturers recognize the barrier that kernel development represents for
potential customers. Most SoC vendors supply pre-built kernels—probably
even Android compatible kernels—along with their chips. Nearly any
vendor for external hardware (sensors, touchscreens, network interfaces,
and so on) will provide, at the very least, a template Linux driver. Also,
unless the target hardware is bleeding edge, it is very likely that a
community effort addresses it.

Note
As mentioned in the introduction, the complexities of getting a
kernel running on any specific piece of hardware can be quite
daunting. This chapter is not a recipe for building a kernel for your
device. In fact, even if you follow the process step-by-step for
building a kernel for one of the hardware devices discussed in this
chapter, you may not end up with a working system! Tiny changes in
versions, both in hardware and in the software, may break things in
ways that are quite mysterious and difficult to diagnose. Although
we absolutely guarantee that we were able to build a working
system, as described, with our copy of the source and our hardware,
there is no way to guarantee that the same steps, even followed
carefully, will work for you and yours.

The Build System

As noted in Chapter 2, the best way to build a Linux kernel is on a machine
running Linux. As with building the AOSP source, building the kernel takes
significant compute power. Investing in a build machine with fast
processors and plenty of memory may be worthwhile.



Also, as noted in Chapter 2, a virtual machine running a Linux distribution
on a normal development host machine is a plausible second choice.
Attempting to build a kernel, native, on a non-Linux machine may work in
specific cases but is not generally a workable solution.

The examples here use a standard installation of Ubuntu 16.04 running
either on bare metal or in a VirtualBox.

Downloading the Source

The choice of source is probably the most important decision. Obviously, a
kernel that is known to work for a given chipset, even if it will require
significant modification, is the best choice. Time spent in research, even
significant time, can easily be a very worthwhile trade-off against
frustration and bring-up time. Probably the best starting point is the chipset
manufacturer and any attached support community.

Many board manufacturers supply not only custom kernels but extensive
systems for customizing the AOSP build. They include the various board
configuration files necessary to appropriately customize AOSP to run on
the board. Many of them also integrate the kernel build into the AOSP build
system.

Although these third-party systems definitely can work, several of them ride
roughshod over the standard AOSP tools: git, make, and so on. Different
SoC manufacturers support Android with different levels of tools usage,
and some are better than others. Regardless, where it is possible to do so,
try to keep the patches that these systems install on their own git branch. At
the very least, this will make cherry-picking patches from the AOSP source
much easier to do.

Opinion
Google stopped building the kernel as part of the source in 2009 and
made it, instead, an external binary dependency. The AOSP build is
plenty complex already. Build the kernel separately. Drop it into the
Android build when it changes.



Automating the process of moving the kernel after it is built to a
canonical location in the AOSP source is entirely reasonable. Trying
to make the AOSP source build depend, in the sense of make, on the
kernel build, exponentially increases the complexity of the build
system. You have been warned!

This example builds a 4.9.176 kernel for the HiKey-960 board, used
throughout this book as the Acme project. At the time of this writing, the
AOSP pages include instructions for downloading and building the kernel
for this board at https://source.android.com/setup/build/devices. However,
in the interest of completeness, a walkthrough of acquiring the sources and
building them follows.

Begin by setting up the AOSP tree, acquired in Chapter 2, to build for the
HiKey-960:

Click here to view code image

$ source build/envsetup.sh


$ lunch hikey960-userdebug

Next, clone the kernel git repository into this tree, creating a new
subdirectory, hikey-linaro. Immediately change into this directory.

Click here to view code image

$ git clone https://android.googlesource.com/kernel/hikey-

linaro


$ cd hikey-linaro

This is the kernel source directory. Unlike kernel source trees provided by
some vendors, this tree contains the git history for the HiKey kernel. Before
attempting to build, the tree needs to be checked out to the correct release
branch, android-hikey-linaro-4.9:

Click here to view code image

$ git checkout -b android-hikey-linaro-4.9 origin/android-

hikey-linaro-4.9

https://source.android.com/setup/build/devices
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The kernel build depends on a couple of environment variables. The first is
clear enough:

$ export ARCH=arm64

The HiKey-960 is based on a Cortex A73/A53 ARM processor in a
big.LITTLE architecture. The target architecture is arm64.

The next variable setting is significantly more mysterious:

Click here to view code image

$ export CROSS_COMPILE=aarch64-linux-android-

Do not make the mistake of thinking that this is a directory path or a
specific file! This is a string that is prefixed onto the names of the major
tools that the build process uses when building the kernel. If you look in the
directory, ../prebuilts/gcc/linux-x86//aarch64/aarch64-linux-android-
4.9/bin/, you will find common tools—ar, cpp, gcc, ld, and so on—all
with prefixes added to their names. The value of the variable must exactly
be the prefix!

To make sure that the build directory is in a pristine state, clean it:

$ make distclean

The distclean target does not remove the config file (discussed in a
moment). To do that, so that you start completely fresh, also type:

$ make mrproper

The first step in building a kernel is configuring the build. “Configuring”
sets the values of a couple hundred compile time variables that determine
which drivers and which other features are included in the new kernel.

If the target device is already running, often the config file that was used to
build it can be found in the directory /proc/config.gz. Simply download it,
expand it, put it in the kernel directory, and rename it .config.

The Hi-Key960 kernel source contains a basic config file for the board. Use
make to copy it into place:
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Click here to view code image

$ make hikey960_defconfig


  HOSTCC  scripts/basic/fixdep


  HOSTCC  scripts/kconfig/conf.o


  SHIPPED scripts/kconfig/zconf.tab.c


  SHIPPED scripts/kconfig/zconf.lex.c


  SHIPPED scripts/kconfig/zconf.hash.c


  HOSTCC  scripts/kconfig/zconf.tab.o


  HOSTLD  scripts/kconfig/conf


#


# configuration written to .config


#

To make any further customizations, just edit the .config file.
Alternatively, the kernel build system includes a simple menu-driven
system for editing the config. Invoke it, again using make:

$ make menuconfig

menuconfig requires the ncurses libraries. If the build system does not have
them installed, you will need to use the apt-get package management tool
on Ubuntu to install them before invoking it.

Finally, build the kernel. It will take about 15 minutes on a bare-metal
machine with a quad core i7 processor, 16GB of RAM, and SSD storage.

Click here to view code image

make -j4


  


scripts/kconfig/conf  --silentoldconfig Kconfig


  CHK     include/config/kernel.release


  WRAP    arch/arm64/include/generated/asm/bugs.h


  WRAP    arch/arm64/include/generated/asm/clkdev.h


  WRAP    arch/arm64/include/generated/asm/cputime.h


  WRAP    arch/arm64/include/generated/asm/delay.h


  WRAP    arch/arm64/include/generated/asm/div64.h


  WRAP    arch/arm64/include/generated/asm/dma.h


  WRAP    arch/arm64/include/generated/asm/dma-contiguous.h


  WRAP    arch/arm64/include/generated/asm/early_ioremap.h


  CHK     include/generated/uapi/linux/version.h


  WRAP    arch/arm64/include/generated/asm/emergency-restart.h


  UPD     include/generated/uapi/linux/version.h


  ...
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clbr://internal.invalid/book/OEBPS/Images/ch04_images.xhtml#p065pro02a


As previously mentioned, kernel builds and flashing for each SoC and/or
board are unique and are not something this book can discuss in general. In
the case of the HiKey-960, though, now that the kernel has been built, we’ll
need to create a new boot image that contains it. To do this, first copy the
device tree information and the newly created kernel image into the HiKey-
960 device tree, and then rebuild the boot image.

Click here to view code image

$ cp arch/arm64/boot/dts/hisilicon/hi3660-hikey960.tdb 

../device/linaro/hikey-


kernel/hi3660-hikey960.tdb-4.9


$ cp arch/arm64/boot/Image.gz-tdb ../device/linaro/hikey-

kernel/Image.gz-dtb-


hikey960-4.9


$ cd ..


$ m bootimage -j 24

Summary

This section introduced the Linux kernel as modified for Android. It
describes the major features unique to the Android version of the kernel:
Binder, the low-memory killer, wakelocks, and several others.

In addition, it demonstrated building a kernel for an Android system.
Although not a recipe for building a kernel for every Android system, it is a
starting point and, perhaps, provides a few hints that will make the process
less distressing.
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5

Platform Security

Securing an embedded platform is extremely challenging, especially with a
large system such as Android. Android’s security infrastructure permeates
up through the entire software stack. Security encompasses numerous
technologies and concepts. From encrypting data with the latest
cryptographic techniques to ensuring that data in one application is not
accessible by another, the system needs to be constructed so it can readily
support the various facets of platform security.

Android’s security stack starts with the kernel and is built up from there. It
leverages readily available technologies, using common Linux concepts
with a twist, and finishes out with some Android specifics. This chapter
examines how Android’s security stack is constructed and which pieces are
often customized for new devices.

Types of Security

A platform like Android must be concerned with numerous types of
security. When most people think of security and computing systems, they
think of what cryptographic technique or protocol is in use. But there is
more to security than just taking one set of bits and encrypting it into
another set of bits. As with the layers of software in the stack, you must
consider multiple facets of security:

Chipset: How does the system on a chip (SoC) know it is executing
the right thing?

Operational: How does the system know this operation is allowed?



User: How do the app and system secure their data and operations?

Customization: How can apps or the system extend what is
available?

Android addresses each of these facets with varying levels of complexity
and completeness. An original equipment manufacturer (OEM) must
understand not only how security is handled within the platform so it can be
used effectively, but also how to avoid introducing security holes by
inadvertently misusing the system.

Verified Boot

Starting with Android 7, verified boot is required for all Android devices.
Android’s support for verified boot is derived from the secure boot
techniques used in ChromeOS. It is a combination of secure boot-chain
support embedded in the silicon as well as the dm-verity feature of the
Linux kernel. Verified boot is used to ensure the system is only executing a
trusted kernel and a trusted Android system. It is worth reiterating that
although verified boot is required for all Android devices running Android
7 or newer, not all AOSP-based devices will be “Android” devices.

Typically, the chipset uses public cryptography techniques to ensure that the
boot-chain is secure. The chipset has a set of public keys (certificates) in
one-time write storage on the device (that is, burned in). Just like the way
X.509 certificates are used to secure TLS/SSL connections, there is a
trusted “root” within the chip’s ROM along with one or more intermediate
signing certificates. The OEM is responsible for creating its own set of
keys/certificates, getting them signed by the silicon vendor (or another trust
present in the ROM), and ultimately “burning” the OEM public certificate
into the one-time write area of the chipset. A final one-time write operation
permanently sets the secure boot operation, commonly referred to as
“blowing the fuse” in the device. Depending on the chipset, this may be
done when the OEM keys/certificates are written or as a separate operation.
This enables the device’s secure boot mode and requires signed
firmware/images to be present for it to execute the boot loader and start the
Linux kernel.



When the fuse has been blown in the chipset and the OEM’s certificate is
present, the ROM boots the lowest level bootloader (trusted) and verifies
the next bootloader in the chain. Most chipsets’ secure boot functionality
verifies the validity up through the “application bootloader” (for example,
what loads the kernel and ultimately Android). From this point, it is up to
the OEM to provide the necessary support to verify that any kernel it loads
is valid and trusted. This is where it gets interesting for the OEM. Each
silicon vendor may provide different application bootloaders to use, such as
uboot or a custom bootloader. It is up to the OEM to either enable the
silicon vendor’s support for secure boot or extend the provided bootloader
to properly provide this support.

After the application bootloader has validated the Linux kernel using a
crypto signature, the kernel is loaded and control transferred to it with
details about the Android system image (and possibly vendor and oem
images) and secure hash metadata that corresponds to it. Starting with
Android 8, a reference implementation of Android verified boot is provided
as part of AOSP. You can enable this support to build secure images by
adding a line to the platform makefile (for example, acme_one.mk), as shown
in Listing 5.1.

Listing 5.1 Makefile Change to Enable Android Verified Boot
Click here to view code image
BOARD_AVB_ENABLE := true

This causes the build system to create a metadata image, vbmeta.img, for the
target that includes hash data for the boot image and hash tree details for the
system image and sets up the command line boot arguments for the kernel
to use dm-verity for the system image. Other images, such as the vendor
image used for vendor-provided binderized HALs, are also supported. The
default implementation uses SHA-256 with an RSA 4096 bit key from
external/avb/test/data in the AOSP tree. This must be overridden by the
OEM and a custom key provided. The algorithm and key content can be
specified using two additional platform makefile variables, as shown in
Listing 5.2.

Listing 5.2 Makefile Change to Specify AVB Signing Key
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Click here to view code image
BOARD_AVB_ALGORITHM := SHA512_RSA4096


BOARD_AVB_KEY_PATH := /path/to/rsa_key_4096bits.pem

The public portion of the provided key must be available for the bootloader
to use to verify the image(s). The reference implementation includes the
tools necessary to extract this data into the correct format. Additionally, the
reference implementation includes a C library, libavb, which can be
integrated into application bootloaders to provide the required support for
verified boot.

After the boot image is validated, the kernel is loaded and instructed via its
command line arguments to use dm-verity to ensure certain images are
secure. The kernel’s dm-verity support uses the secure hash data for
validating the system image at runtime. Each block of the file system is
cryptographically hashed as part of a hash tree, up to a root hash. The root
hash is what gets signed by the OEM at build time. At runtime, the kernel’s
dm-verity driver computes the secure hash for a block of the file system
any time it is read, up to the root hash in the tree. Although this sounds like
it would hurt performance, the computation does not really add significant
overhead on top of the I/O wait times needed to read the data from storage.
The hash result is then compared to the signed hash in the metadata. If they
differ, the file system has been tampered with or corrupted. In this case, the
kernel will return an I/O error from the low-level file system driver, causing
failures higher in the stack. This means that dm-verity can only be used to
verify read-only file systems or ones that should not change for a given
build of Android for the device! The file systems that fall into this category
for Android are system, system_ext, product, vendor, and odm images.

For more information about verified boot, dm-verity, and Android verified
boot, see these pages from the AOSP project:

https://source.android.com/security/verifiedboot

https://source.android.com/security/verifiedboot/avb

https://source.android.com/security/verifiedboot/dm-verity
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Operational Security

Complex operating systems, such as Android, are constantly performing
operations by applications or other types of processes. These operations
may be simply executing the internal code of an application 70or
performing some action based on the request of the application. In either
case, the system manages what operations are allowed and enforces the
necessary restrictions. Android leverages several different mechanisms to
ensure operational security: process sandboxing, SE Linux for Android, and
Android-defined permissions. Each of these plays an important role with
platform security. However, this is all made possible because of the distinct
layers of the software stack and the underlying Linux kernel.

Android Software Layers

Recall from Chapter 3 the concept of the Android software stack as a “layer
cake,” shown again in Figure 5.1. At the bottom of this stack is the Linux
kernel. Not only does the kernel control the underlying hardware and all
processes running in the system, but it also provides the base of the security
architecture.



Figure 5.1 Android Software Layers (reprise of Figure 3.1)

The Linux kernel is the primary security boundary within the system. The
kernel is in complete control of the underlying hardware, process
scheduling, memory management, and SE enforcement. The runtime used
to execute application code (ART or Dalvik) provides no additional
security. That detail surprises most Android app developers but is crucial
for understanding how the system uses and enforces security. All user space
processes, whether they are third-party applications (APKs) or daemons
running native code, are subject to the same exact security boundaries. In
other words, just because code is written in C/C++ or compiled using the
NDK does not mean it can bypass system security. By default, each process
in the system is “sandboxed” into its own little world.

The Process Sandbox

Just like other Linux-based systems, Android loads and executes
applications within their own process. Each process has its own distinct
memory space, providing isolation from other processes in memory.
Further, each process is given a section of the file system which, by default,
only it can access. Other areas of the file system are generally off limits.
Processes really cannot interact with much outside of their own memory
and file system space. As discussed in Chapter 3 in the “Android Service
Model” section, application processes cannot keep the device awake, access
kernel device handles, and so on. Thus, the application is sandboxed. On
the surface, this sounds like a solid approach. However, even this is not
enough. Some subtle details are at work to keep the various components in
the system isolated. Figure 5.2 illustrates how processes, by default, are not
only restricted from accessing scarce resources but also cannot directly
interact with each other due to sandboxing and their Linux user ID.



Figure 5.2 Android Process Sandbox

The traditional Linux UID concept (and GID) is turned on its head in
Android. Rather than a UID representing a specific person using the system,
each application in Android is assigned a UID when it is installed. When
the running Android system is using multiple user profiles, each app is
assigned unique UIDs for the app plus the specific user.

Note
With the introduction of multiple user profiles in Android 4 (Ice
Cream Sandwich), UID/GID assignment utilizes an “encoding” to
bind together the application portion of the UID and the user profile
for which the application belongs. The general form is

Click here to view code image

user_app_uid = 100000 x user_profile_id + app_uid

where app_uid is the same for all instances of a given app and third-
party app assigned values starting with 10000, and user_profile_id
is 0 for the first user (owner) then 10, 11, 12, and so on after that.
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When viewed via the ps command, an app process assigned app_uid
10022 will be shown as u0_a22 for the first user, u1_a22 for the
second user, u2_a22 for the third user, and so on, and the actual
encodings of each would be 10022, 1010022, and 1110022,
respectively.

System processes (for example, daemons/services) get similar treatment:
They are assigned special UIDs at build time. The UID and GID assignment
ensures the running processes stay isolated from each other. Without this
concept, each process would effectively be able to change and manipulate
things from other processes as they do on some other embedded realtime
operating systems.

The base UID/GID definitions in Android are defined within the AOSP tree
at system/core/include/private/android_filesystem_config.h rather than
in /etc/passwd and /etc/group as they would be on a traditional Linux
system. Applications are assigned a UID when they are installed on a
device. The UID assignment does not change for as long as the app is
installed on that device. After the app is removed, though, the UID is free
and can be assigned to another app. The Android framework tracks installed
app packages and their assigned 

UID/GID via the file /data/system/packages.xml.

The use of UID/GID with the process sandbox provides very coarse-grained
control of the system, also called discretionary access control (DAC).
Originally, Android used only this technique for app and system process
isolation, as discussed in Chapter 3 with respect to scarce resource access.
As Android grew in popularity and expanded its features, DAC was no
longer adequate to protect the apps from each other and the system from
itself. For example, a compromised version of the system server process
could potentially damage the entire system because it holds superuser
privileges. Using DAC alone, there is no way to impose a consistent,
system-wide policy to protect the system.

An alternative approach, known as mandatory access control (MAC),
mitigates this problem. MAC allows all processes, even system processes
running as the superuser, to be contained. Use of MAC allows a consistent,
system-wide policy to be established in the system. Processes are not only



sandboxed in memory and via file system access but further restricted from
performing other fine-grained operations in the system.

Returning to our example of a compromised system server process, with
MAC even a process with superuser permissions can be restricted so that it
is not allowed to fork another process, access specific device files, and so
on. MAC support was first added in Android 4 via SE Linux for Android.
With MAC, all packages, executables, devices, and so on are assigned
contexts or labels that are then granted permission to do things based on
policy, which is defined at system build time.

SE Linux for Android

Security Enhanced Linux, or SE Linux, was created by RedHat and the
NSA. It was first released in 2000. SE Linux is a combination of Linux
kernel changes along with user space tools to manage and control SE
operations.

Just like traditional DAC support in Linux, MAC enforcement is handled
by the Linux kernel. SE Linux refines the way security is handled by the
OS, making it much finer grained and capable of restricting process
functionality beyond the simple “owner-oriented” mechanisms used by
traditional DAC. When enabled, the kernel is given a set of policies and
what to do when a policy is violated.

The two different operating modes for the kernel with SE enabled are
permissive and enforcing. With permissive mode, the kernel emits audit
logs when policy violations occur, but does not stop the operation 73from
continuing. Enforcing mode, on the other hand, both logs the violation and
stops the operation from continuing.

Adding SE Linux to Android helped the platform to meet several goals for
securing the OS:

Prevent privilege escalation, even for system apps/executables, which
would allow a process to access resources for which it would
normally not have access

Prevent data leakage between processes



Prevent security bypass techniques

SE is not a replacement for traditional DAC. Instead, the Linux kernel still
has DAC controls in place, and SE simply builds upon it. This takes the
Android process sandbox to a whole new level. The kernel is responsible
for enforcing the SE policies. The kernel is loaded with the SE policies at
startup from the initram file system (read only). SE operates in a “default
deny” mode. This means that unless a policy (rule) is defined that allows an
operation, the operation will be denied.

This shift from DAC to MAC is not a lightweight change. Policy definition
is everything in SE. If the policy is wrong and processes are not constructed
in a way to handle failures, the system can come to a very abrupt halt.
Similarly, bad policy might inadvertently allow operations that could
compromise the system or an app.

For this reason, SE was rolled out slowly: first added in Android 4.2 (Jelly
Bean) in permissive mode, then refined and placed in full enforcing mode
in Android 5 (Lollipop). Taking a step back to look at a complete, Linux-
based system architecture, the ideal architecture would be constructed to
have decentralized, least privilege, separation of concerns, and
corresponding SE policy along with it. Because of this, the SE policies and
system structure continue to evolve to better contain critical operations.
Chapter 10 builds on this idea in its discussion of the binderized HAL,
which, as of Android 8, allows for vastly improved separation and
constraint of OEM and vendor components.

SE Policy Definition

SE policy definitions can be extremely granular. Essentially, anything that
is known to the kernel can be protected using a policy. From device files to
sockets and shared memory areas, it can all be protected. With this
functionality comes a large increase in complexity. Fortunately, SE for
Android simplifies this slightly compared to desktop or server Linux.

With pure SE Linux, policies are made up of several fundamental building
blocks: users, roles, types, labels, and multi-level security (MLS) levels.
Adding to the complexity, types can be called “domains” and labels can be



called “contexts.” The number of terms becomes dizzying very quickly.
Briefly, the key terms and their definitions are as follow:

Users: SE-defined users, which are not the same as the Linux user.
The SE user does not change during a session (as a Linux user can
change using su or sudo.) It is worth noting, however, that in many
configurations, there is a 1:1 mapping of SE user to Linux user.

Roles: A grouping of users.

Types: A means of determining access to something.

Domains: Process types can be referred to as domains.

Labels: A combination of user, role, type, and MLS level. A label
can also be referred to as a “context.” For example, on Android the
device files /dev/tty* are given the label tty_device via the
following label definition:

Click here to view code image

/dev/tty[0-9]*   u:object_r:tty_device:s0

The preceding concepts are still rather vague, but it is clear that SE policies
are both powerful and complicated. Because of Android’s nature, some of
the complexity of SE Linux is reduced; in practice, Android does not use
the concepts of users, roles, or MLS levels in their full generality. Instead,
there is only a single user, a single role, and a single MLS level used across
all policies. The user is always u, the role is always object_r, and the MLS
level is always s0.

Whew! Android’s approach to SE, using only a portion of all the available
features, makes this a lot easier to digest! Unfortunately, although this
makes it a bit easier to grasp SE for Android, there are still a lot of details in
the policies.

So what exactly are SE policies? SE policies are a collection of “type
enforcement” files that are compiled into a build for a device. These files
have a .te suffix and are provided as part of AOSP and by OEMs/vendors.
Policy rules can be built up as well as overridden. Rules have one of the
following keywords:
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allow: A domain is allowed to use an SE type/object type with
permissions.

neverallow: A domain is never allowed to use an SE type/object type
with permissions.

dontaudit: Violations of rules for this domain are not logged/audited.

Think of SE policies as rules: Rules that can say something like,
“Allow/deny this domain when using this type based on these permissions.”
The snippet from the Android SE policy for the init process, shown in
Listing 5.3, will make this breakdown understandable.

Listing 5.3 A Snippet of init.te
Click here to view code image
allow init tty_device:chr_file rw_file_perms

This rule states that the init domain (a process) is allowed to operate on
something with the label tty_device, a character special file, using the
permissions defined as rw_file_perms. Conceptually, this is relatively
straightforward.

In practice, some details here still may not be obvious when crafting new
policies: what/where are chr_file and rw_file_perms defined? Beyond the
.te files used to define policies, several other special files define different
objects, contexts, and macros for use in the SE policy files.

The type chr_file is defined in a file called access_vectors, which
establishes which kernel-defined objects, entities, or operations make up
this type. Similarly, rw_file_perms is defined in global_macros as a
combination of read and write file operations exposed by the kernel.

Note
The location of the AOSP files depends on the version of AOSP in
use. Prior to Android 8, these files are in external/sepolicy within
the AOSP tree. Starting with Android 8, the files are in
system/sepolicy within the AOSP tree. These policies are CDD
compliant for the specific version of Android to which they belong.
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OEMs and vendors should ensure that any changes or
customizations do not result in CDD violations!

The standard SE policies cover functionality defined by AOSP, protecting
the system as well as processes from each other. However, what about when
OEMs have customizations? Just like anything else in AOSP, the provided
components could be modified, but an OEM should not. Modifying the
AOSP-provided SE policy files is an almost sure way for the device to fail
to be CDD compliant. Even if an OEM is not seeking to have the device
labeled as Android, modifying the base SE policies potentially opens
security holes in the end device. Instead, OEMs who need to add to or
revise SE policy should place SE policy additions or customizations
beneath the board-specific area and leverage special build variables. For
example, the HiKey devices contain some customizations to SE policies
and can be found at device/linaro/hikey/sepolicy in the AOSP tree setup
discussed in Chapter 2.

The Acme One platform built up throughout this book will need some SE
policy additions, covered in later chapters. If you used the Acme repo
manifest from GitHub (refer to Chapter 2), some SE policy files used in
later chapters are present in device/acme/acme_one/sepolicy in the build
tree.

Two different build variables are available for vendors to use to pull in new
SE policies or revisions. The first, BOARD_SEPOLICY_DIRS, specifies a
directory to add to the SE policies when building the platform. The contents
of this directory will extend or override other policies. Only .te files will be
pulled from this directory when you’re compiling the policies for the target.

The second variable, BOARD_SEPOLICY_UNION, defines files that should be
combined with existing files from AOSP of the same name. This is how an
OEM can create new type labels or extend existing type labels for a new
executable or device file. Any file(s) called out here must have the same
name as files from the AOSP tree, such as file_contexts. For example, if
the OEM, such as Acme used throughout this book, adds a new daemon to
monitor a device feature, called monitord, there would need to be a policy
file defined as well as an addition to file_contexts so the executable is
assigned the correct label. The net result would be two additional files in



the device/acme/one/acme_one/sepolicy directory: monitord.te and
file_contexts. In the board-level makefile, acme_one.mk, two additional
lines will be added, as shown in Listing 5.4.

Listing 5.4 Example SE Policy Changes
Click here to view code image
BOARD_SEPOLICY_DIRS += \


    device/acme/one/sepolicy





BOARD_SEPOLICY_UNION += \


    file_contexts

Chapters 6, “System Startup: Installing and Booting the System,” and 12,
“Clients for a Custom Binderized HAL,” demonstrate adding custom SE
policies.

Android Permissions

As described in the previous section, Android’s permissions system builds
on top of the MAC and process sandbox systems to provide even more
granular control. The permissions system, while powerful, can also be
confusing for both developers and end users. Permissions are used to
control access to apps, features, and even specific API calls. Unfortunately,
this complexity can sometimes be subtle and depends on good
documentation to understand when, where, and how permissions are used.

Permissions are defined to be one of four protection “levels”:

normal: Protects features that do not expose hardware, device
specifics, user private data, and so on

dangerous: Protects features that could expose hardware, device
specifics, user private data, and so on

signature: Can only be used (granted) by packages signed with the
same certificate

signatureOrSystem: Just like signature, but can also be used by
system apps
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The permissions themselves are implementation defined and identified
simply by the name of the permission.

You read that correctly: The permissions are just strings that have
implementation specific meaning. In certain cases permissions are defined
by Android that are also tied to specific SE context or GID, but this is more
the exception than the rule. Furthermore, there is no central authority or
required form for the permission names. This creates a potential for naming
conflicts which are largely resolved by the system on a first come, first
serve basis. As a best practice, when new permissions are being defined,
they should be namespaced to minimize the potential for collisions. For
example, instead of creating a new permission, "PROXIMITY_ACCESS", it
would be better to use "com.acme.permission.PROXIMITY_ACCESS".

Enforcing permissions boils down to two different approaches: automatic
enforcement and manual enforcement. Both approaches are needed for
Android to provide the different types of protection.

Automatic Permission Enforcement

The AOSP framework provides automatic enforcement of permissions
when they are used to protect app components: Activity, Service,
BroadcastReceiver, and ContentProvider (via URI). Apps, including
system apps, that need to protect their components via a permission can do
so using the app’s manifest or in some cases at runtime.

Permissions may be specified for a given component via the appropriate tag
in the app’s manifest. For example, to protect a BroadcastReceiver so that
only apps holding the permission com.example.permission.USE_FEATURE
may send it an Intent, the manifest entry would look similar to what is
shown in Listing 5.5.

Listing 5.5 Example Permission for a BroadcastReceiver
Click here to view code image
<receiver android:name=".FeatureReceiver"


          android:permission="com.example.permission.USE_FEATURE">


    <intent-filter>


        <action android:name="com.example.action.FEATURE>
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    </intent-filter>


</receiver>

If the sender of the Intent does not hold the required permission, the call
will fail with a SecurityException. The same concept can be applied to
<activity>, <service>, and <provider> elements.

Note, however, that some features are available only for specific component
types:

Service: The permission is used to protect starting as well as binding
to the specific service.

ContentProvider: Separate readPermission and writePermission
attributes can be used to specify separate permissions for read and
write. Additionally, grantUriPermission attribute and <grant-uri-
permission> subelement can be used to grant temporary access to
apps based on a URI served by the provider.

Also, if the <application> tag within the manifest has a permission
attribute set, that permission is a fallback for access to any of the
components within the application!

The framework-provided enforcement is relatively coarse grained. The
Android-provided Settings application again provides a working example of
this. The Settings activity for requesting access to Bluetooth is protected by
the permission "android.permission.BLUETOOTH". So any application that
wants to enable Bluetooth or make the device discoverable (which it 

must do by running the Setting app) must have this permission. If it does
not, its call to startActivity() will fail.

Manual Permission Enforcement

Automatic permission enforcement is great for protecting an entire feature
or component implementing a feature. However, it is a broad level of
protection. What if a specific API within a feature set needs to be protected,
but not the feature as a whole? For example, ConnectivityManager does not
require a permission to call isDefaultNetworkActive(), but it does require
the android.permission.ACCESS_NETWORK_STATE permission in order to



access the APIs that provide specific details about a network (such as
getNetworkCapabilities()). How does this actually work?

These types of APIs are generally accessed via Binder-based calls (for
example, AIDL-defined interfaces). In fact, Android’s various “manager”
classes, which are retrieved via Context.get-SystemService(), are just
wrapper APIs around binder proxies. System services and binder and
Android’s service model were covered in Chapter 3. The API
implementations manually check and enforce the permission requirements.

The approaches used by different implementations can vary, but
permissions checks are typically performed very early in the API
implementation. The check must be done on the service side; otherwise,
there is no way to enforce it! The framework’s Context object, part of the
backing service’s process, provides the APIs used to manually verify that
the caller has the necessary permission.

Two types of calls are available: check and enforce. The difference between
the two is that the “check” calls simply return
PackageManager.PERMISSION_GRANTED or
PackageManager.PERMISSION_DENIED as appropriate. The “enforce” calls, on
the other hand, automatically throw SecurityException if the caller does
not hold the required permission.

These APIs are called on the service side by code that is aware of the
context of the calling application. The service side “knows” the calling
application’s process ID (PID) and user ID (UID), and the framework can
use this information to check whether or not the caller has been granted the
required permission. This illustrates another reason the Binder subsystem is
backed by a kernel module: the kernel provides details about the calling
process’s context and resources.

Revisiting the ConnectivityManager.getNetworkCapabilities() API, the
backing service implementation for Android 10 is in
frameworks/base/services/core/java/com/android/server/ConnectivityS

ervice.java. Listing 5.6 shows the relevant code.

Listing 5.6 ConnectivityManager Manual Check for Permissions
Click here to view code image
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    @Override


    public NetworkCapabilities getNetworkCapabilities(Network 

network) {


        enforceAccessPermission();


        return getNetworkCapabilitiesInternal(


            getNetworkAgentInfoForNetwork(network));


    }


...


    private void enforceAccessPermission() {


        mContext.enforceCallingOrSelfPermission(


            android.Manifest.permission.ACCESS_NETWORK_STATE,


            "ConnectivityService");


    }


}

File Systems

The final piece of the “operational level” security is the file system. A
portion of this has been discussed briefly in the application sandbox and SE
Linux for Android sections. However, more details are important for an
OEM to understand.

Just like other Linux-based systems, the file system layout in Android is a
hierarchical tree that has one or more backing physical devices and some
virtual devices mounted at locations in the tree. What level of access is
available to these mount points is dependent on the backing media and the
SE policies of the platform.

You can find additional information on Android’s storage mechanisms, file
systems, and partitions in these two AOSP locations:

https://source.android.com/devices/storage

https://source.android.com/devices/bootloader/partitions

The remainder of this section enumerates the key file systems and how
security affects them.

Mount Point: /

https://source.android.com/devices/storage
https://source.android.com/devices/bootloader/partitions


This (/) is the root of the file system and is a Linux initial RAM disk. This
image is part of the boot.img image file for the target. It contains startup
scripts, SE policies, configuration files, property files, and so on. This file
system is read-only, both in the way it is mounted and because it is an initial
RAM disk. The contents cannot be modified at runtime.

Mount Point: /system

Typically, this file system is backed by eMMC, NAND, or some other type
of non-volatile storage. Depending on the storage media, it might be
formatted ext4, jffs, yaffs2, and so on. On most modern Android builds, it is
ext4. Its contents are exactly the system.img file after a successful build.
This is where the core Android services, framework, libraries, daemons,
and native binaries are stored. It is mounted as a read-only file system,
which is critical from a security standpoint. See the previous section,
“Verified Boot,” for more information.

Note
Non-production builds can often include the su command, which can
be used to gain elevated access and then remount the /system
partition as read-write. This can be helpful during an initial system
bring up or debugging. However, it should never be possible on a
production build. Rewriting the /system partition on a release build
is a huge security hole!

Mount Point: /data

The /data file system is also typically backed by eMMC or some other non-
volatile storage. Also like /system, most modern Android systems utilize
the ext4 format for this file system. It is mounted read-write and contains
data for both the platform as well as apps. Although it is mounted read-
write, write access is strictly controlled by permissions and SE policy. The
image from the build that is used for this file system is the userdata.img
file.



App data is located at /data/data/<package name>. This is the file system
portion of the application sandbox, outlined earlier in this chapter. When an
app wants to create a database, shared preferences, or even a regular file,
this is where its app private storage is located. This is protected by file
system permissions based on the application’s assigned UID/GID. This also
means that it is possible for apps to “share” files from this private space by
setting file system– level permissions (though this is generally not
recommended).

The Android framework also uses portions of the /data file system for its
own purposes. Application installs, granted permissions for packages, new
permissions, package native libraries, and optimized DEX/OAT binaries are
some examples of what the framework stores here. Just like the app private
areas, these files are protected by file system–level permissions as well as
SE policy so the contents are kept from prying eyes.

Mount Point: /sdcard

Prehistoric Android phones included a SD/MMC slot used for additional
storage or removable content, such as pictures or video. This is because
back in the 2008 timeframe, NAND or other flash devices were relatively
expensive per MB of storage but SD cards were not. Plus, in the days of
NAND flash, the typical Linux file systems (such as ext4) were not good
about spreading data throughout the device, or “wear leveling,” that was
necessary to prevent the SSDs of the time from failing.

Although most devices in the market today do not have separate SD/MMC
card slots, the system retains a symbolic link at the root file system,
/sdcard. Depending on the hardware, this can point to a real SD card device
(which is mounted elsewhere) or to emulated “external storage.”

Perhaps even more confusing is the concept of “primary” versus
“secondary” external storage. Secondary external storage devices are just
like primary, with the exception that some of the permissions handling is
different. On both types of external devices, apps can read and write to their
own private namespace without any additional permissions. This is handled
by synthesized permissions provided by the kernel and a user space file
system (FUSE) daemon.



Apps can read other areas of external storage by holding the Android
permission READ_EXTERNAL_STORAGE. However, the WRITE_EXTERNAL_STORAGE
permission only gives apps the ability to write to non-package private areas
of primary external storage. Any secondary external storage device(s) can
only be written by system apps or processes.

When emulated external storage is used, the device is typically eMMC
soldered on to the board and treated like an SD card. When no separate
device exists for “external storage,” it is layered on top of the /data file
system, effectively sharing the same storage space. The intent of this
storage media is for larger files. Refer to the AOSP storage documentation
for examples of external storage configurations:

https://source.android.com/devices/storage/config-example

Mount Points: /product, /odm, and /vendor

Android 8 introduced the concept of the /vendor image containing any
vendor-specific proprietary binaries for a platform. This is typically where
board or SoC-specific customizations, such as a HAL or custom daemon,
are located.

Starting with Android 9, manufacturers can use product file systems so that
a single system image can be used with different product images to support
different software SKUs. With this support in place, different Android
software loads can be built for a single device using the same core Android
OS with only the manufacturer-supplied software differing for the various
products.

Android 10 introduced the concept of original design manufacturers
(ODMs) file systems. These allow ODMs to further customize SoC or
board-specific changes while having a common /vendor area. The concept
is similar to the /product file system, except this is used to differentiate
multiple hardware SKUs rather than software SKUs.

These mount points are treated like /system from a security perspective:
They are read-only mount points that are typically secured using dm-verity
to ensure they are not manipulated after being flashed to the device.

https://source.android.com/devices/storage/config-example


Mount Points: /sys, /dev, and /proc

The Linux kernel can expose different types of virtual file systems to user
space: These can be mounted like file systems–backed storage devices. As
described in Chapter 4, the kernel creates the file system out of thin air: It
can put anything it wants into it.

These three mount points expose kernel internals, devices interfaces, and
kernel runtime information. In Android, the content of these areas is
generally locked down for access only by system or privileged processes. It
is easy to understand why: Exposing kernel internals or direct calling access
can cause a number of security problems.

The AOSP framework’s SE policies allow for certain interfaces to be
accessed by end apps (such as the binder interfaces), but by and large, most
apps/processes cannot access these areas. In fact, the CDD specifically
limits access, and there are CTS/VTS tests to verify this. Any OEM
creating a new device with new kernel interfaces needs to be especially
careful not to allow unfettered access to custom kernel objects and
interfaces!

Miscellaneous Mount Points

Several other mount points and partitions can exist in a running Android
system. For example, the /cache mount point is a read-write area that can
be used by the system and applications to store temporary data. Files and
directories here are scoped per application, utilizing a similar file system
sandbox per application as used in the /data partition. Depending on the
manufacturer, other mount points may exist as well. As a general rule to
keep with CDD compliance, any mount point added to the system should be
treated read-only or have special SE policies defined to strictly limit access.
For example, some manufacturers include a /firmware partition that
contains firmware binaries for hardware on the board. This type of partition
should be read-only and also protected with strict SE policy so only the
OEM/vendor-provided binaries and/or the kernel can use the contents.

User Protections



Android is first and foremost a mobile phone operating system. Although it
has been shipped on numerous tablets and IoT devices, at its heart it was
made to power a mobile phone. With phones and tablets, users really do
carry their lives with them. From contacts and email to video players and
social media apps, people have become accustomed to carrying their life’s
details on a device that can be lost or stolen. Protecting this information is
critical.

Android has supported a variety of user identification mechanisms beyond
simple passwords or drawing sequences. Face unlock capability was first
introduced in API 14 (Android 4.0, Ice Cream Sandwich). Since then, it has
expanded to include fingerprint readers and other biometrics. For many IoT
type devices, this functionality is likely to be less important. One feature
that is used to protect the user and could be useful for IoT devices is the
encrypted file system support.

Full disk encryption (FDE) was added to the platform as far back as API 11
(Android 3.0, Honeycomb). FDE was a great step in protections as it
allowed users to protect data on the device until their credentials had been
entered. One major drawback is that with FDE, the device can only perform
some very basic operations until credentials are entered. No phone calls can
be made (other than emergency), no alarms set, and so on. Starting with
API 24 (Android 7.0, Nougat), file-based encryption (FBE) was added to
the platform.

FBE is built on top of a feature called Direct Boot. With Direct Boot,
devices have two different types of storage locations to manage device data
before and after the user has entered credentials. The Credential Encrypted
(CE) storage area is the default location for data storage. It is available only
after the user has unlocked the device.

The Device Encrypted (DE) storage area is available during Direct Boot as
well as after the user has entered credentials. Each area is protected using
independent keys and encrypted data. Not only does this allow Android and
some system apps to operate before the user has unlocked the device, but it
also better separates user profiles because each is encrypted with a different
key.



Note
Starting with Android 10, all new devices are required to support
FBE. There are also certain limitations with FBE and adoptable
storage, depending on the version of Android in use, if earlier than
Android 10. See the AOSP documentation on file-based encryption
for more details: https://source.android.com/security/encryption/file-
based.

FBE and Direct Boot require several lower-level features to be supported in
the platform: kernel support, keymaster support (using HAL 1.0 or 2.0),
Trusted Execution Environment (TEE) to implement keymaster 83and
keystore, and hardware root of trust and Verified Boot bound to keymaster
initialization. Additionally, system apps that must work before the user
unlocks the device must add support for new lifecycle events and APIs so
CE protected areas are used appropriately.

You can find details about FDE, FBE, and Direct Boot on the AOSP and
main Android developer websites:

https://source.android.com/security/encryption/full-disk

https://source.android.com/security/encryption/file-based

https://developer.android.com/training/articles/direct-boot

Customizing Permissions

Earlier, this chapter described the Android Permissions model and showed
how the permissions are leveraged by the framework to protect features.
Although Android defines a multitude of permissions within the SDK, those
are not the only permissions that are present in a running system. Some
third-party SDKs, including some of Google’s SDKs for Android, define
their own permissions, which may be used by apps. Both system-bundled
applications and third-party applications can extend the system in this way.

Note

https://source.android.com/security/encryption/file-based
https://source.android.com/security/encryption/full-disk
https://source.android.com/security/encryption/file-based
https://developer.android.com/training/articles/direct-boot


Defining new permissions is normally only necessary for system-
level applications or apps that are part of a “suite” where there is a
need to provide a level of protection when accessing certain features
and components. It is important to remember that in most cases,
Android permission protection for a package is a fairly low barrier
for potential attackers to overcome if it is not defined and used
correctly.

New Android permissions outside of the core framework are defined by
individual packages for package-specific reasons. For system-bundled
applications, the custom permissions are added to the system when the first
boot optimizes and installs the APK on the platform. For apps installed by
third parties or installed after first boot, the permissions are defined when
the package is installed.

How is this done? Via the application’s manifest, of course! The easiest way
to understand custom permissions is to see an example in action.

Sample Custom Permission–Protected App

A simple example of using custom permissions requires both a “host”
application, which defines the permissions, and a “consumer” app, which
uses the permissions. The Acme One platform tree, set up in Chapter 2,
contains both the host and client app. Rather than walk through creation of
the build files, resources, and so on, this section and the next show only the
files relevant to customizing permission usage.

The host sample app is in device/acme/one/app/PermsSampleHost. The app
defines two new permissions, com.acme.one.permission.GET_MIN_TGT_SDK
and com.acme.one.permission.NOTIFY_MIN_TG_SDK. These permissions are
used to protect a BroadcastReceiver and specific broadcast Intent response
so that only apps granted the permissions can request and receive the
minimum target SDK supported by the Acme platform. The minimum
target SDK supported by the platform is stored in a system property
(ro.build.version.min_supported_target_sdk), but is not exposed via a
public Android framework API. Although not incredibly useful to the



consumer application, it provides a clear illustration of how custom
permissions can be defined and used with a simple example.

Note
This contrived example of a custom permission protecting something
within the platform also illustrates one of the dangers an OEM must
bear in mind: accidentally exposing details to other apps, which is
called a side channel leak or feature leak. OEMs need to carefully
consider what platform private APIs or information is exposed via a
custom API.

When Android permissions are defined, they can be grouped together for
organization purposes. Surprisingly, permission cannot be granted or denied
to groups as a whole. Permissions can only be controlled individually. In
other words, permission groups are useful for end users to view permissions
via the Settings application. Otherwise, though, they do not come into play.
The manifest for the example host application defines a permission group
and the two new permissions. The new permission group for these two
permissions is optional and shown here for completeness.

Listing 5.7 shows the manifest file for the sample host application.

Listing 5.7 PermsSampleHost AndroidManifest.xml
Click here to view code image
<?xml version="1.0" encoding="utf-8"?>


<manifest xmlns:android=http://schemas.android.com/apk/res/android


    coreApp="true"


    package="com.acme.one.permssamplehost" >





    <permission-group android:name="com.acme.one.permission-

group.TGT_INFO"


                      

android:description="@string/perm_group_tgt_info_descr"


                      

android:label="@string/perm_group_tgt_info_label" />





    <permission 

android:name="com.acme.one.permission.GET_MIN_TGT_SDK"
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android:description="@string/perm_get_min_tgt_sdk_descr"


                android:label="@string/perm_get_min_tgt_sdk_label"


                android:permissionGroup="com.acme.one.permission-

group.TGT_INFO"


                android:protectionLevel="signature" />





    <permission 

android:name="com.acme.one.permission.NOTIFY_MIN_TGT_SDK"


                

android:description="@string/perm_notify_min_tgt_sdk_descr"


                

android:label="@string/perm_notify_min_tgt_sdk_label"


                android:permissionGroup="com.acme.one.permission-

group.TGT_INFO"


                android:protectionLevel="signature" />





    <application android:label="@string/app_name"


                 android:icon="@drawable/app_launcher_icon"


                 android:supportsRtl="true"


                 android:allowBackup="false" >





        <receiver android:name=".MinTargetReceiver"


                 android:label="@string/min_tgt_receiver_name"


                 

android:permission="com.acme.one.permission.GET_MIN_TGT_SDK" >


            <intent-filter>


                <action android:name="com.acme.one.service.GET" />


            </intent-filter>


            <intent-filter>


                <action android:name="com.acme.one.service.NOTIFY" 

/>


            </intent-filter>


        </service>


    </application>


</manifest>

Note how the permissions are defined in the <permission> subelements of
the <manifest> tag, and both are signature-level permissions. Similarly,
both are part of a new permission group, defined via the <permission-
group> tag. Be very careful when using the group that the permissionGroup
attribute in the permission matches exactly with the name attribute of the
permission group! It must be exact, and the specified group actually defined



in the manifest (or elsewhere in the system), otherwise the new permissions
will not be created!

The soong blueprint file (see Listing 5.8) calls out the app as product
specific and utilizes platform APIs. This means that the app will be built
against the internal framework libraries, not the one that is stripped for
inclusion in the Android SDK. Because the app utilizes a hidden class to
access the system properties, it must be built this way.

Listing 5.8 PermsSampleHost Android.bp
Click here to view code image
android_app {


    name: "PermsSampleHost",


    product_specific: true,


    certificate: "shared",


    srcs: [


        "app/src/**/*.java",


    ],


    resource_dirs: [


        "app/src/main/res",


    ],


    manifest: "app/src/main/AndroidManifest.xml"


}

The main source of the application is a BroadcastReceiver, which is started
via an explicit Intent and responds accordingly.

The requesting application sends the Intent with one of two actions
specified. The GET action requires an extra to be included with a Messenger
that the receiver will use to send back the response as a Message. The NOTIFY
action will send a response via broadcast Intent which can only be received
by applications that hold the NOTIFY_MIN_TGT_SDK permission. The receiver
code is contained in
app/src/main/java/com/acme/one/permssamplehost/MinTargetReceiver.ja

va, and Listing 5.9 shows the key portions of it.

Listing 5.9 PermsSampleHost MinTargetReceiver.java
Click here to view code image
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package com.acme.one.permssamplehost;





...





public class MinTargetReceiver extends BroadcastReceiver {


    private static final String TAG = "MinTargetReceiver";


    private static final String ACTION_GET = 

"com.acme.one.action.GET";


    private static final String ACTION_NOTIFY = 

"com.acme.one.action.NOTIFY";


    private static final String ACTION_NOTIFY_RESP =


            "com.acme.one.action.NOTIFY_RESP";


    private static final String EXTRA_MESSENGER =


            "com.acme.one.extra.EXTRA_MESSENGER";


    private static final String EXTRA_MIN_TGT_SDK =


            "com.acme.one.extra.EXTRA_MIN_TGT_SDK";


    private static final String PERMISSION_NOTIFY =


            "com.acme.one.permission.NOTIFY_MIN_TGT_SDK";


    private static final String SYSTEM_PROP_MIN_TGT_SDK =


            "ro.build.version.min_supported_target_sdk";


    private static final int MESSAGE_MIN_TGT_SDK = 1000;





    public int getMinTargetSdk() {


        return SystemProperties.getInt(SYSTEM_PROP_MIN_TGT_SDK, 

-1);


    }





    @Override


    public void onReceive(Context context, Intent intent) {


        String action = intent.getAction();





        if (action == null) {


            Log.e(TAG, "No action provided");


        }





        if (TextUtils.equals(action, ACTION_GET)) {


            Messenger msgr = 

intent.getParcelableExtra(EXTRA_MESSENGER);


            if (msgr != null) {


                Message resp = Message.obtain();


                resp.what = MESSAGE_MIN_TGT_SDK;


                resp.arg1 = getMinTargetSdk();


                try {


                    msgr.send(resp);




                } catch (RemoteException e) {


                    //  Ignore, client has died


                }


            } else {


                Log.e(TAG, "No Messenger provided for response");


            }


        } else if (TextUtils.equals(action, ACTION_NOTIFY)) {


            Intent respIntent = new Intent(ACTION_NOTIFY_RESP);


            respIntent.putExtra(EXTRA_MIN_TGT_SDK, 

getMinTargetSdk());


            sendBroadcast(respIntent, PERMISSION_NOTIFY);


        } else {


            Log.e(TAG, "Invalid action: " + action);


        }


    }


}

After it is built into the system image, you can launch the application by
sending the appropriate Intent. Because the shell does not have the
necessary permission granted, an attempt to run the app from the command
line will fail, as shown in the logcat output:

Click here to view code image

$ am broadcast -a "com.acme.one.action.GET" \


-n "com.acme.one.permssamplehost/.MinTargetService"





W/BroadcastQueue( 2742): Permission Denial: broadcasting Intent


{ act=com.acme.one.action.GET flg=0x400010


cmp=com.acme.one.permssamplehost/.MinTargetReceiver } from null 

(pid=19015, uid=2000)


requires com.acme.one.permission.GET_MIN_TGT_SDK due to 

receiver


com.acme.one.permssamplehost/.MinTargetReceiver

Sample Custom Permission Client App

To complete the example of custom permissions, we’ll need a client app
that uses the permissions. This sample can be found in
device/acme/one/app/PermsSampleClient. This app uses the permissions
defined by the host app by declaring that it uses them in its manifest. When
the app is installed on the platform, it will be granted the custom
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permissions as long as it was signed by the same certificate as the host.
Listing 5.10 shows the manifest for the client app.

Listing 5.10 PermsSampleClient AndroidManifest.xml
Click here to view code image
<?xml version="1.0" encoding="utf-8"?>


<manifest xmlns:android=http://schemas.android.com/apk/res/android


    package="com.acme.one.permssampleclient" >





    <uses-permission 

android:name="com.acme.one.permission.GET_MIN_TGT_SDK" />


    <uses-permission 

android:name="com.acme.one.permission.NOTIFY_MIN_TGT_SDK" />





    <application


        android:label="@string/app_name"


        android:icon="@drawable/app_launcher_icon"


        android:supportsRtl="true"


        android:allowBackup="false">





        <activity android:name=".MainActivity">


            <intent-filter>


                <action android:name="android.intent.action.MAIN" 

/>


                <category 

android:name="android.intent.category.LAUNCHER" />


            </intent-filter>


        </activity>


    </application>


</manifest>

It may not be obvious, but a potential race condition exists with custom
permissions. What happens if the client app is installed but the host app is
not? In this case the custom permissions are not granted to the consumer
app, because they do not exist in the system at the time the consumer app is
installed. This is true even if the host app is installed at a later point in time!
The client app’s permissions are not revisited just because the host app is
installed.

Another interesting situation occurs when the host app is removed after its
permissions have been granted to another app. In this case the custom
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permissions are wiped from the system’s known permissions, but the client
app retains the permissions being granted until it is removed or reinstalled!

Note
Android custom permissions work on a “first come, first defined”
basis. If two app packages define the same exact permission, the first
one to be installed is the one that defines it from the system’s point
of view. Remember, it’s just a string associated with a package and
signature! The exception to this is if the system (or system package)
defines a permission. Since Android 4.4.3, the system ensures that
system-defined permissions take precedence.

The client app has a painfully simple UI. It presents two buttons for
retrieving the minimum target SDK, one using the “get” technique and the
other using the “notify” technique. The text status area shows the result or a
failure, if encountered. When the “get” button is tapped, an Intent is sent to
the service and includes the Messenger where the response is to be sent. The
Messenger is bound to a new Handler object that runs in the main thread of
the app. When the “notify” button is tapped, the Intent is sent to the
service, and the BroadcastReceiver is listening for the response. Listing
5.11 shows the key parts of the activity source file, written in Kotlin. You
can find detailed information about Messenger and Message in the book
Android Concurrency, published by Pearson, Inc.

Listing 5.11 PermsSampleClient MainActivity.kt
Click here to view code image
package com.acme.one.permssampleclient





...





class MainActivity : Activity(), Handler.Callback {


    companion object {


        private const val TAG = "MainActivity"


        private const val ACME_MIN_TGT_RXR_PKG = 

"com.acme.one.permssamplehost"


        private const val ACME_MIN_TGT_RXR =


            ACME_MIN_TGT_RXR_PKG + ".MinTargetReceiver"
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        private const val MESSAGE_MIN_TGT_SDK = 1000


        private const val ACTION_GET = "com.acme.one.action.GET"


        private const val ACTION_NOTIFY = 

"com.acme.one.action.NOTIFY"


        private const val ACTION_NOTIFY_RESP = 

"com.acme.one.action.NOTIFY_RESP"


        private const val EXTRA_MESSENGER =


            com.acme.one.extra.EXTRA_MESSENGER"


        private const val EXTRA_MIN_TGT_SDK =


            com.acme.one.extra.EXTRA_MIN_TGT_SDK"





    }





    private lateinit var statusText: TextView


    private lateinit var getButton: Button


    private lateinit var notifyButton: Button


    private val handler = Handler(this)


    private val messenger = Messenger(handler)


    private var active = false





    private val respRxr = object : BroadcastReceiver() {


        override fun onReceive(context: Context, intent: Intent) {


            when (intent.action) {


                ACTION_NOTIFY_RESP -> {


                    val minTgtSdk = 

intent.getIntExtra(EXTRA_MIN_TGT_SDK, -1)


                    if (minTgtSdk != -1) {


                        handler.obtainMessage(MESSAGE_MIN_TGT_SDK, 

minTgtSdk, 0)


                            .sendToTarget()


                    } else {


                        Log.w(TAG, "[onReceive] no min target SDK 

provided")


                    }


                }


            }


        }


    }





    private fun createReceiverIntent(action: String): Intent {


        val intent = Intent(action)


        intent.component = ComponentName(ACME_MIN_TGT_RXR_PKG, 

ACME_MIN_TGT_RXR)


        return intent




    }





    override fun onCreate(savedInstanceState: Bundle?) {


        super.onCreate(savedInstanceState)


        ...





        getButton.setOnClickListener {


            val getIntent = createReceiverIntent(ACTION_GET)


            getIntent.putExtra(EXTRA_MESSENGER, messenger)


            statusText.setText(R.string.using_get)


            Log.d(TAG, "[GET] starting service")


            sendBroadcast(getIntent)


        }





        notifyButton.setOnClickListener {


            val notifyIntent = createReceiverIntent(ACTION_NOTIFY)


            statusText.setText(R.string.using_notify)


            Log.d(TAG, "[NOTIFY] starting service")


            sendBroadcast(notifyIntent)


        }





    }





    override fun onResume() {


        super.onResume()


        ...


        active = true


    }





    override fun onPause() {


        active = false


        ...


        super.onPause()


    }





    override fun handleMessage(msg: Message): Boolean {


        if (!active) {


            ...


            return true


        }





        when (msg.what) {


            MESSAGE_MIN_TGT_SDK -> {


                ...




                statusText.text = 

getString(R.string.min_tgt_sdk_fmt, msg.arg1)


            }





            else -> {


                Log.e(TAG, "[handleMessage] unknown message type: 

${msg.what}")


            }


        }





        return true


    }


}

Note
Although the sample client app does use Kotlin, note that it does not
use any androidx libraries or other third-party libraries. This is
intentional, because the app is built as part of the AOSP platform,
which does not use Gradle. This means “standard” libraries available
in Android Studio via Maven repositories are not readily available
with the built-in Android app package rules when building via soong.
Integrating Gradle into the AOSP build is possible, but it is outside
of the scope of this book.

The build files and other resources are not interesting for this sample.
Running the app on the platform and touching the “get” button shows the
output, and monitoring the logcat output shows the expected details:

Click here to view code image

D/MainActivity(20455): [GET] requesting min target SDK


D/MainActivity(20455): [handleMessage] received min target SDK: 

23

Summary

Android utilizes numerous security features to keep the device, OS, and
user data safe. This chapter looked at the basic security concerns of any
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computing environment:

The device is running valid code.

The operation being performed is allowed.

The app or user data is safe.

The security features can be extended and customized.

The chapter examined how Android verified boot works and how vendors
enable or customize it. After Android is up and running, the process
sandbox, SE policy and Android’s permissions system work to keep apps
isolated from each other and user data safe. This sandboxing in memory,
file system, and via SE policy has morphed over Android’s lifetime to better
protect the system. Rounding out this chapter is a sample of how Android’s
permission system can be extended with custom permissions. Utilizing a
custom permission can be particularly useful for OEMs or package creators
where only certain packages should be able to use the functionality. Pre-
bundled app packages from the OEM or a suite of packages from an app
vendor signed with the same certificate are good examples of where this
can be leveraged.



6

System Startup: Installing and
Booting the System

The diagram of the Android system, shown in Chapter 3 in Figure 3.1, is
more than simply allegorical. It is meant to show, from the bottom to the
top, dependencies within the Android system. The kernel creates an
environment for applications; system applications and libraries create an
environment for the Android system; and so on up to the top of the chain:
Android user applications. Clearly, if each layer depends on the one beneath
it, the components that comprise any given layer must be initialized before
those in the layer above. The process of initializing the successive layers
takes place at system startup when a device is booted. This chapter
describes that process.

The Boot Process

Booting a device is a complex and multi-phase process. It is likely to
involve several programs that are, themselves, large and complex. To
further complicate matters, the entire process takes place in an environment
very close to the hardware: something that most developers never
experience. Chapter 5 discussed the ways in which the boot process affects
device security. Even if a project does not require creating or customizing it,
having a general understanding of how the boot process works and how its
internal phases relate to one another is useful.

Figure 6.1 outlines the phases of the boot process from power on through
the initialization of the Android system.





Figure 6.1 The Android Boot Process

More specifically, here are the steps that most Android devices take when
booting:

1. Hardware Boot

a. Power Stable

b. Reset CPU

c. Load and start Boot ROM (hardwired address)

2. Bootloader (Device dependent, usually proprietary)

a. Power-on Self-Test (POST)

b. Video boot

c. External storage probe

d. Device-specific hardware initialization

e. Fastboot, system update, other features

f. Cryptographic verification of kernel

g. Load and start kernel

3. Kernel

a. Phase 1

i. Memory initialization
ii. File system initialization

iii. Network initialization

b. Phase 2 (overwrites phase 1 code)

i. User-space initialization
ii. Load and start init

c. init
a. Start system daemons

b. Start Android



d. Android

a. Start Zygote

b. Android System Services

To examine these steps in full detail, in the next few sections we follow the
abbreviated log of the boot of a HiKey960. Although, obviously, even
minor changes in software and hardware will cause substantial changes in
the boot log, key events are similar across machines. Reviewing an actual
log is useful in the interests of specificity.

Bootloader

Functionally, the early phases of system boot are part of the hardware. The
code implementing them is frequently stored in on-chip read-only memory
(ROM). They are not something that can be changed easily, even in the
unlikely circumstance that doing so would be desirable. For all practical
purposes, both can be considered part of the device.

Listing 6.1 shows power-on through the initiation of the software
bootloader.

Listing 6.1 xloader Boot Log
Click here to view code image
^@hikey960 boarid:5301 xloader use UART6


scsysstat_value[0].


clear reset source


last_keypoint0,reboot_type0


secdbg not DCU.


SecDbgVer exit





xloader chipid is: 0x36600110, start at 470ms.


Build Date: Dec  6 2017, 15:31:59 [clock_init] ++


hikey960 [hikey960_clk_init]


hi3660 [clk_setup]


[clock_init] --


storage type is UFS


ufs retry: 6 count v_tx:0 v_rx:0


ufs set v_tx:0 v_rx:0


Hikey960[5301] no need avs_init.
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ddr ft:0xf20332a3,mode:1 target:4


UceLdOk





<lines omitted...>





1244M


1866M


C2R,V0x00000015 e:193


C2R,V0x00000016 e:66


C0R,V0x00000017 e:66


C1R,V0x00000017 e:66


boot_c0 PROFILE 4


slave0 irq0:0x00000004


slave1 irq0:0x00000004


main:     ******** Fastboot for Kirin *****************

Note
Access to the boot log is essential for debugging the boot process.
Clearly, the log will not be available through adb, a daemon process
that is started relatively late in system startup. Although on most
systems, retrieving most of the log produced by the most recent boot
is possible via the dmesg command, the process is cumbersome and
requires that the board successfully boot at least far enough to
support a shell.

The logs shown in this chapter were captured from a UART
mezzanine board attached to the booting Hikey960. Such a board, or
at least something similar, is an essential tool for bringing up a board
and debugging the boot process.

When the device is powered on, the first thing that happens is that the
power supply changes to a powered-up state. When the power supply
senses that board power levels have stabilized in the new state, it sends a
RESET signal to the CPU. This signal causes the CPU to load data from boot
ROM and to start executing it.

The bootloader program is likely to execute in several stages. Typically, the
first stage is a small program that performs some very low level and device-
specific initialization tasks. Among these tasks on most devices is a power-



up self-test (POST) that does basic sanity checks of the various hardware
subsystems (memory, bus, and so on) to verify that they are working
normally. If one of the POST tests fails, the entire boot process is usually
aborted with some very minimal perceptible feedback: a pattern of sounds,
flashing LEDs or, at most, a very simple error code on the console display.

If the POST passes, the bootloader loads additional code from a location
specified in a canonical location on a canonical memory device. For
Android, this is nearly always a special partition on the main flash card. The
exact specifications and format of the special file depend on the device and
the version of Android. Historically, Android devices were formatted using
the Master Boot Record (MBR) standard. Newer devices are more likely
to use a newer standard, the GUID Partition Table (GPT).

Regardless of the specifics of how the additional bootloader code is
discovered, the process of executing it is very nearly still part of the
hardware. The second stage of the bootloader, however, is the first code that
a starting system executes that is not in read-only memory.

Because the later stages of the bootloader are mutable code, one of the tasks
of the first stage of the bootloader is verifying the code for subsequent
stages before it is executed. The bootloader computes a cryptographic
signature for any code obtained from a writable device and compares the
computed signature with one that is stored in the secure area of chipset
memory. If the two do not match, the boot process fails, much as it would
fail a POST.

Starting with code that is in read-only memory (and which, therefore,
cannot be changed), each piece of code cryptographically verifies the next
piece of code before executing it. This creates a chain of trust that
guarantees that the running system has not been tampered with or altered.
This trust is important to keep the user of a device safe from malware:
viruses and trojans that might be hidden in the boot code. It also may be
important to protect the device from its user. Applications such as digital
rights management (DRM) and secure funds transfer may depend on code
that has been verified and that is free from meddling.

The strategies used by various manufacturers for configuring the hardware
and communicating with the bootloader vary widely. One common way of



building a bootloader that is both flexible and extensible involves storing
configuration parameters and code in hidden partitions on the device
storage.

Examining the persistent storage for an actual device will usually reveal a
handful of partitions that are never mounted as part of the Android file
system. Recent revisions of Linux will list these partitions by name, even if
they are never mounted, in the subdirectory of /dev, appropriately called,
“by-name.” For example, Listing 6.2 shows the partitions included on the
HiKey960 used in most of these examples.

Listing 6.2 Files in /dev
Click here to view code image
adb shell 'ls -R /dev' | grep by-name


/dev/block/platform/soc/ff3b0000.ufs/by-name


adb shell ls -l /dev/block/platform/soc/ff3b0000.ufs/by-name


total 0


lrwxrwxrwx 1 root root  15 1970-01-01 00:00 boot -> /dev/block/sdd7


lrwxrwxrwx 1 root root  15 1970-01-01 00:00 cache -> 

/dev/block/sdd5


lrwxrwxrwx 1 root root  15 1970-01-01 00:00 dts -> /dev/block/sdd8


lrwxrwxrwx 1 root root 15 1970-01-01 00:01 fastboot -> 

/dev/block/sdd2


lrwxrwxrwx 1 root root 15 1970-01-01 00:01 fip -> /dev/block/sdd4


lrwxrwxrwx 1 root root  15 1970-01-01 00:00 frp -> /dev/block/sdc1


lrwxrwxrwx 1 root root  15 1970-01-01 00:00 fw_lpm3 -> 

/dev/block/sdd6


lrwxrwxrwx 1 root root 15 1970-01-01 00:01 nvme -> /dev/block/sdd3


lrwxrwxrwx 1 root root 16 1970-01-01 00:01 reserved -> 

/dev/block/sdd12


lrwxrwxrwx 1 root root  16 1970-01-01 00:00 system -> 

/dev/block/sdd10


lrwxrwxrwx 1 root root  15 1970-01-01 00:00 trustfirmware -> 

/dev/block/sdd9


lrwxrwxrwx 1 root root  16 1970-01-01 00:00 userdata -> 

/dev/block/sdd13


lrwxrwxrwx 1 root root  16 1970-01-01 00:00 vendor -> 

/dev/block/sdd11


lrwxrwxrwx 1 root root  15 1970-01-01 00:00 xloader_reserved1 -> 

/dev/block/sdd1
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The boot, recovery, vendor, system, cache, and userdata partitions are all
canonical Android partitions and will be discussed shortly. The remaining
partitions, though, are likely to be part of the proprietary system boot
process.

Note
The inquisitive can take an even more accurate and low-level
approach to identifying the partitions on a device by reading the
partition map itself. Where mountable partitions have names that end
in numbers (for example, sdd7, sdd11), the raw device is usually
cataloged in /dev without any partition number (for example, sdd).
The HiKey960 used in these examples, for instance, has four
separate block storage devices: /dev/block/sda, /dev/block/sdb,
/dev/block/sdc, and /dev/block/sdd.

Each of these devices is likely to have a partition map. To decode
that map directly, simply dump the first several thousand bytes from
the device. Presuming adb is running as root, for instance:

Click here to view code image

adb pull /dev/block/sdd

There is no need to pull the entire file, so press Ctrl+C after a few
seconds. Having obtained the file header using a byte dump tool like
od and a description of the appropriate partition table format
(https://en.wikipedia.org/wiki/GUID_Partition_Table), completely
identifying all the partitions is simply a matter of time.

Some bootloaders support unlocking. Unlocking a bootloader is bypassing
the cryptographic verification of the bootloader code before it is executed.
Doing this allows the execution of bootloaders other than the one whose
signature can be verified by the boot ROM. It also breaks chain of
assurance and means that subsequent layers in the OS stack that implicitly
trust their environment are in danger.

Because they are so nearly part of the hardware, there will be no more
detailed investigation into bootloaders here. Roger Ye’s book, Embedded
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Programming with Android (Ye, 2016), part of the Android Deep Dive
Series, is an excellent investigation of this part of the boot process. In
addition, Jonathan Levin’s much more casual self-published essays on
Android Internals (http://newandroidbook.com) document some deep and
useful research.

Most Android bootloaders, like their large-scale computer counterparts
(Grub, LILO, Open Firmware, or the various BIOSs), as their last task
identify and initiate a successor. After all, the bootloader’s only real reason
for existence is to prepare the device for the real operating system.
Bootloaders typically support simple user interfaces that can be used,
among other things, to choose that successor. Android devices usually
support three choices: fastboot, recovery, and normal Android boot.

Fastboot

Fastboot is a very lightweight system that is usually part of the bootloader
itself. Although part of the bootloader, it bears separate discussion because
it has a UI, as described in Chapter 2. Its functionality typically is limited to
flashing the persistent storage of the device.

A system is usually forced into fastboot mode using some kind of hardware
flag: flipping a DIP-switch or holding some combination of buttons during
system startup. The bootloader inspects the switches as part of initialization
and determines whether it should run the fastboot program or not.

Listing 6.3 is the continuation of the log started in Listing 6.1. It shows the
initialization of the fastboot program that is part of a normal (non-fastboot)
startup.

Listing 6.3 fastboot Log
Click here to view code image
main:     ******** Fastboot for Kirin *****************


main:   ******** Build Date: Jun 14 2018, 17:48:58 **


main: ******** Fastboot start at 1836 ms **********





main: print soc_id computed in xloader phase, is below:


main: 00000000  main: 00000000  main: 00000000  main: 00000000  

http://newandroidbook.com/
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main: 


main: 00000000  main: 00000000  main: 00000000  main: 00000000  

main: 


led_alwayson: can't get dtb operators


bbox: bbox_register_module_ops success.


bfm: : >>>>>enter bfm_init


bfm: : [disable_boot_fail_system] boot_fail_system state is 0


clock: PLL Stat


clock: PLL2 ctrl0=0x04909604,ctrl1=0x02000000


clock: PLL2 acpu en_stat:0x00000008, acpu gt_stat:0x00040000


clock: PLL2 final en_stat:0x00100000, final gt_stat:0x00020000


clock: PLL3 ctrl0=0x04904005,ctrl1=0x07000000


clock: PLL3 acpu en_stat:0x00000000, acpu gt_stat:0x00000000


clock: PLL3 final en_stat:0x00200000, final gt_stat:0x00040000


clock: clock init OK


ufs: ufs start on platform[36600110]ufs: ufs current mode: 

0x00000011


ufs: ufs current gear: 0x00000003


ufs: ufs mphy reg 0x4A = 0x00000000


ufs: bUD0BaseOffset: 0x00000010, bUDConfigPLength: 0x00000010


ufs: UFS device manufacturerid = 0x000001ad


ufs: UFS device: H****


bfm: : >>>>>enter set_boot_stage





<lines omitted ...>





usbloader: iddq is 0x0000000000000000


usbloader: hpm is 0x0000000000000000


usbloader: dieid is 0x0a048009d1170d0a977947122140ee1c06d65993


load_kernel: Hikey960: Enable all ip regulator


pmu_ip: Hikey960:switch from PPLL0 to PPLL3


pmu_ip: Hikey960:Enable ispfunc


pmu_ip: Hikey960:Enable clock-gating


pmu_ip: [regulator_power_all_enable] all IP regulator is power on!


load_kernel: set ISP_CORE_CTRL_S to unsec, val = 0x00000007 


load_kernel: set ISP_SUB_CTRL_S to unsec, val = 0x0000000f 


load_kernel:

Kernel

At this point, the bootloader is ready to load and run the kernel. Listing 6.4
is a continuation of the boot log started in Listing 6.1 and continued in



Listing 6.3.

The complete log of the kernel boot contains a wealth of useful information.
In reading the log, it is important to remember that with the kernel come
multiple processes. The log is no longer a single path through ordered tasks.
It is now the interleaved output of multiple processes that may be running
simultaneously.

The listing is extremely abbreviated. Excellent documentation is available
elsewhere that describes the kernel boot process. This log shows only a few
highlights.

Note that this log was produced by booting the kernel built in Chapter 4.

Also note the initialization of a couple of the key Android components
mentioned in Chapter 4, ion (hisi_ion at time 0.000000) and ashmen (at
time 1.891833).

Finally, note that the log shows the command line with which the kernel
was started. This command line is a key means of communicating
configuration information to the kernel.

The bootloader finds the kernel in the device storage boot partition (shown
in Listing 6.4), one of the canonical partitions on an Android system.
Unlike the Linux systems common on larger machines, the storage partition
that holds the kernel is not mounted in the Android file system. Although
the bootloader (and, in fact, any other application with low-level access to
the storage device) can read and probably even write to boot partition, the
partition does not contain a file system, files, or catalogs and is never
mounted in the Android file tree.

To maintain the chain of trust, the bootloader verifies the kernel code by
computing its cryptographic signature and comparing it to the signature
stored on the device (which was, in turn, verified when the hardware
verified the bootloader).

Listing 6.4 Kernel Boot Log
Click here to view code image
load_kernel: 
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----boot time is 3442 ms----


load_kernel: boot_from_bl31: boot to trusted firmware. 

addr=0x00000000 


[    0.000000] Booting Linux on physical CPU 0x0


[    0.000000] Initializing cgroup subsys cpuset


[    0.000000] Initializing cgroup subsys cpu


[    0.000000] Initializing cgroup subsys cpuacct


[    0.000000] Initializing cgroup subsys schedtune


[    0.000000] Linux version 4.4.59-02536-g679a543 

(jstultz@buildbox) (gcc version 5.4.0 20160609 (Ubuntu/Linaro


5.4.0-6ubuntu1~16.04.4) ) #2507 SMP PREEMPT Wed Aug 9


09:52:10 PDT 2017


[    0.000000] Boot CPU: AArch64 Processor [410fd034]


[    0.000000] efi: Getting EFI parameters from FDT:


[    0.000000] efi: UEFI not found.


[    0.000000] Ion: base 0xbe200000, size is 0x1e00000, node name 

graphic, heap-name


     carveout_gralloc namesize 17,[99][97][114][118]


[    0.000000] Ion: insert heap-name carveout_gralloc 


[    0.000000] Reserved memory: initialized node graphic, 

compatible id hisi_ion


[    0.000000] Reserved memory: created CMA memory pool at 

0x0000000016c00000, size


64 MiB


[    0.000000] Reserved memory: initialized node fastboot-cma-mem, 

compatible id


shared-dma-pool


[    0.000000] cma: Reserved 64 MiB at 0x00000000ba000000


[    0.000000] On node 0 totalpages: 785600


[    0.000000]   DMA zone: 12288 pages used for memmap


[    0.000000]   DMA zone: 0 pages reserved


[    0.000000]   DMA zone: 785600 pages, LIFO batch:31


[    0.000000] psci: probing for conduit method from DT.


[    0.000000] psci: PSCIv1.0 detected in firmware.


[    0.000000] psci: Using standard PSCI v0.2 function IDs


[    0.000000] psci: MIGRATE_INFO_TYPE not supported.


[    0.000000] PERCPU: Embedded 19 pages/cpu @ffffffc0be100000 

s47256 r0 d30568 u77824


[    0.000000] pcpu-alloc: s47256 r0 d30568 u77824 alloc=19*4096


[    0.000000] pcpu-alloc: [0] 0 [0] 1 [0] 2 [0] 3 [0] 4 [0] 5 [0] 

6 [0] 7 


[    0.000000] Detected VIPT I-cache on CPU0


[    0.000000] CPU features: enabling workaround for ARM erratum 

845719




[    0.000000] Built 1 zonelists in Zone order, mobility grouping 

on.  Total pages:


773312


[    0.000000] Kernel command line: androidboot.hardware=hikey960


androidboot.selinux=permissive 

firmware_class.path=/system/etc/firmware loglevel=15


buildvariant=userdebug androidboot.swtype=normal


fastboot_version=DailyBuild_201708091533_FASTBOOT setup_logctl=1 

fastbootdmd=0


enter_recovery=0 androidboot.mode=normal low_volt_flag=1 

boardid=0x000014b5


normal_reset_type=coldboot ddr_die=3072M@0M  efuse_status=2


androidboot.serialno=0123456789ABCDEF 

himntn=111111111111111010111111101001100010001


boot_slice=0x00019c31 reboot_reason=AP_S_COLDBOOT recovery_update=0 

userlock=locked


bootlock=unlocked hw_bfm_enable=0 ddr_density=3 swiotlb=2 

mdmreglogbase=0x00000000


mdmreglogsize=0x00000000 modem_socp_enable=0 

androidboot.hardware=HiKey960


androidboot.veritymode=enforcing 

androidboot.verifiedbootstate=ORANGE


ufs_product_name=THGBF7G8K4LBATRC format_data=1 cpu_buck_reg=0x;;


androidboot.ddrsize=3 kce_status=1  console=ttyAMA6,115200 





<lines omitted ...>





[    1.891833] ashmem: initialized





<lines omitted ...>





 [    6.895248] usb 1-1.5: new high-speed USB device number 4 using 

xhci-hcd


[    6.902456] Freeing unused kernel memory: 1016K 

(ffffff800901b000 -


ffffff8009119000)

The File System

As part of initialization, the kernel mounts the Android file system. Listing
6.5 shows the root of that file system. Several of these partitions were
introduced in Chapter 5.



Listing 6.5 Android File System
Click here to view code image
rootfs on / type rootfs 

(ro,seclabel,size=1444252k,nr_inodes=361063)


tmpfs on /dev type tmpfs (rw,seclabel,nosuid,relatime,mode=755)


devpts on /dev/pts type devpts 

(rw,seclabel,relatime,mode=600,ptmxmode=000)


proc on /proc type proc (rw,relatime)


sysfs on /sys type sysfs (rw,seclabel,relatime)


selinuxfs on /sys/fs/selinux type selinuxfs (rw,relatime)


none on /acct type cgroup (rw,relatime,cpuacct)


none on /dev/memcg type cgroup (rw,relatime,memory)


none on /dev/stune type cgroup (rw,relatime,schedtune)


tmpfs on /mnt type tmpfs (rw,seclabel,relatime,mode=755,gid=1000)


none on /config type configfs (rw,relatime)


none on /dev/cpuctl type cgroup (rw,relatime,cpu)


none on /dev/cpuset type cgroup


(rw,relatime,cpuset,noprefix,release_agent=/sbin/cpuset_release_age

nt)


pstore on /sys/fs/pstore type pstore (rw,seclabel,relatime)


/sys/kernel/debug on /sys/kernel/debug type debugfs 

(rw,seclabel,relatime,mode=755)


/dev/block/sdd10 on /system type ext4 

(ro,seclabel,relatime,data=ordered)


/dev/block/sdd5 on /cache type ext4


(rw,seclabel,relatime,discard,noauto_da_alloc,data=ordered)


/dev/block/sdd13 on /data type ext4 


(rw,seclabel,relatime,discard,noauto_da_alloc,data=ordered)


tmpfs on /storage type tmpfs 

(rw,seclabel,relatime,mode=755,gid=1000)


tracefs on /sys/kernel/debug/tracing type tracefs 

(rw,seclabel,relatime)

The key section of Listing 6.5 is the last five lines, which show the mount
points for three of the six (five, before Android release 26) canonical
Android partitions. These important partitions were introduced in Chapter
5, and again in Listing 6.2, where they appeared as named partitions found
on the main block storage device. They are system, cache, and data.

system (/system): This is the read-only part of the Android file
system discussed in Chapter 5. It is sometimes called the ROM,
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although its contents are not sufficient to create a running Android
system, and the ability to write to it is controlled only by software.

cache (/cache): System cache. Originally, this partition kept such
things as optimization data for Android’s just-in-time Java compiler.
It now holds a wider variety of ephemeral data. It is a separate
partition so that it can be easily erased when, for instance, a system
update renders it useless.

userdata (/data): System managed writeable data. Also introduced
in Chapter 5, this is where Android applications are stored and where
the system stored the data that is private to a given application.

These partitions are essential and will be found on every Android device. In
recent versions of Android, they are often mounted by name from the
directory shown in Listing 6.2.

In addition, several other partitions appear frequently on Android devices.
The boot partition has already been discussed as the location of the kernel.
A few common partitions are

boot (unmounted): As discussed earlier, this is the partition that
contains the Linux kernel.

vendor (/vendor) Android Oreo introduced Project Treble, Google’s
effort to separate the Android system binaries from the proprietary
vendor binaries necessary to shim the hardware to the OS. Vendor
proprietary code is now stored on the vendor partition, where it can
be updated independently. This partition was also mentioned in
Chapter 5.

recovery (unmounted): Another partition that is never mounted or
used by the Android system. It contains the operating and file
systems for the recovery system, discussed later in this chapter. It is
very similar to the boot partition but used for recovery mode.

persist (unmounted): Many vendors and carriers have found it useful
to store mutable information in a way that is not destroyed when the
phone is reset. Those that are willing to be blatant about this “feature”
may choose an obvious name for it. Others may choose a subtler



name. This partition is usually accessed through a special driver and
available only to privileged applications.

radio (unmounted): This partition contains the operating and file
systems for the cellular radio processor. Its contents are likely to be
quite proprietary.

storage (/sdcard): Most Android systems support relatively
unprotected bulk storage. Originally, this was likely to be removable
(Micro SD cards) and was mounted at /sdcard. When Android
moved away from removable media and added support for multiple
users, the mount point was changed. Soft links point /sdcard at the
appropriate emulated file system.

product and odm (/product and /odm) Introduced to the platform in
Android versions 9 and 10, respectively, these partitions were
described in Chapter 5. They provide additional flexibility, allowing a
single hardware image to support multiple similar devices. Software
for a specific device can be configured to read only the data and code
that apply to it.

init

As the last step of the process of booting Linux, the kernel starts the init
application. init is the first application to run in a completely normal
application environment, so called user-space, with mapped virtual
memory, a mounted file system, and no direct access to hardware. It is also
the root of the process tree, process id 0, and the ancestor of every other
process.

Listing 6.6 shows the last phase of device boot, again, edited heavily to
save space.

Listing 6.6 init Boot Log
Click here to view code image
[    6.912976] init: init first stage started!


[    6.934559] init: Early mount skipped (missing/incompatible 

fstab in device tree)


[    6.942061] init: Loading SELinux policy
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[    7.031172] random: init: uninitialized urandom read (40 bytes 

read, 45 bits of


entropy available)


[    7.032940] init: init second stage started!


[    7.036781] init: property_set("ro.boot.hardware", "HiKey960") 

failed: property


already set


[    7.041578] init: Running restorecon...


[    7.109305] init: waitpid failed: No child processes


[    7.109546] init: Couldn't load properties from 

/odm/default.prop: No such file or


directory


[    7.109604] init: Couldn't load properties from 

/vendor/default.prop: No such file


or directory


[    7.110252] init: Created socket '/dev/socket/property_service', 

mode 666, user 0,


group 0


[    7.110322] init: Parsing file /init.rc...


[    7.110559] init: Added '/init.environ.rc' to import list


[    7.110568] init: Added '/init.usb.rc' to import list


[    7.110584] init: Added '/init.hikey960.rc' to import list


[    7.110591] init: Added '/init.usb.configfs.rc' to import list


[    7.110601] init: Added '/init.zygote64_32.rc' to import list


[    7.111239] init: Parsing file /init.environ.rc...


[    7.111304] init: Parsing file /init.usb.rc...


[    7.111547] init: Parsing file /init.hikey960.rc...





<lines omitted ...>





[    7.115910] init: processing action (wait_for_coldboot_done)


[    7.380541] init: Command 'wait_for_coldboot_done' 

action=wait_for_coldboot_done


returned 0 took 264.577ms.


[    7.380569] init: processing action (mix_hwrng_into_linux_rng)


[    7.380601] init: /dev/hw_random not found


[    7.380633] init: processing action (set_mmap_rnd_bits)


[    7.381191] init: processing action (set_kptr_restrict)


[    7.381366] init: processing action (keychord_init)


[    7.381384] init: processing action (console_init)


[    7.381424] init: processing action (init)





<lines omitted ...>







[    8.197664] init: computing context for service 'hidl_memory'


[    8.197820] init: starting service 'hidl_memory'...


[    8.198948] init: computing context for service 'bluetooth-1-0'


[    8.199153] init: starting service 'bluetooth-1-0'...


[    8.199873] init: computing context for service 'configstore-

hal-1-0'


[    8.200025] init: starting service 'configstore-hal-1-0'...


[    8.200707] init: computing context for service 

'wifi_hal_legacy'


[    8.200852] init: starting service 'wifi_hal_legacy'...


[    8.201482] init: starting service 'healthd'...


[    8.202088] init: computing context for service 'lmkd'


[    8.202241] init: starting service 'lmkd'...


[    8.202976] init: computing context for service 'servicemanager'


[    8.203120] init: starting service 'servicemanager'...


[    8.203804] init: computing context for service 'surfaceflinger'


[    8.203935] init: starting service 'surfaceflinger'...





<lines omitted ...>





[   11.087269] init: computing context for service 'bootanim'


[   11.087503] init: starting service 'bootanim'...


[   13.044371] init: processing action 

(sys.sysctl.extra_free_kbytes=*)


[   14.099973] init: computing context for service 'wpa_supplicant'


[   14.100518] init: starting service 'wpa_supplicant'...


[   14.102545] init: Created socket '/dev/socket/wpa_wlan0', mode 

660, user 1010,


group 1010


[   15.089361] init: processing action (sys.boot_completed=1)

The listing highlights several important things. The first is that init runs in
multiple phases. The first phase is initialization and configuration. In it,
init examines the file system and sets up communications with the kernel.
One of the key means of accomplishing this communication uses the /sys
and /proc file systems.

As noted in Chapter 4, the file system, a hierarchical arrangement of files
and directories of files, is largely an abstraction created by the kernel.
Drivers in the kernel organize the raw, flat blocks presented by hardware
storage devices into the familiar tree of directories and files.



Again, because the kernel creates the file system, more or less, out of thin
air, no need exists for it to restrict the abstraction to block storage devices.
In fact, the /proc storage system is, precisely, kernel memory cataloged as
files. Applications with write permission on certain files in /proc can write
directly to kernel memory. Although many programs can read the files in
/proc, init is one of the few that can write to them. This is how it
communicates with the kernel.

In its second stage, init reads and parses its configuration files, usually
named “init.<something>.rc.” The locations and contents of these files are
described in some detail in a README file in the AOSP init source
(https://android.googlesource.com/platform/system/core/+/master/init/REA
DME.md).

init starts a very limited number of Linux daemons and then the root
process of the Android system, Zygote.

Recovery

As shown in Figure 6.1, many Android devices support an alternate boot
path: Recovery Mode. Unlike fastboot, recovery mode boots a complete, if
limited, operating system. It has a full network stack, can mount and
unmount volumes, runs adb and a shell, and so on. Although it is a
complete, if minimal, Linux, recovery mode does not start the Android
container. It is similar to the “safe-mode” on larger systems.

Some devices have pre-installed, proprietary recovery systems. Obtaining
the source for them will require contacting the board manufacturer. AOSP
also contains code for a flashable recovery image in the bootable/recovery
directory. To generate the flashable image file, recovery.img, use the make
target the recoveryimage:

make -j9 recoveryimage

In addition, there have been other well-known recovery systems; among
them ClockworkMod and Team Win Recovery Project (TWRP). Both are
open source.

https://android.googlesource.com/platform/system/core/+/master/init/README.md


The source for the ClockworkMod recovery system is included in the
source for Lineage OS, formerly CyanogenMod, in the
android_bootable_recovery-cm repository. As of this writing, although the
code continues to be available in the repositories of the old CyanogenMod
organization, it does not appear to be maintained there. The version in the
Lineage repositories (https://github.com/LineageOS) is maintained and up
to date.

The source for TWRP is also on GitHub (https://github.com/TeamWin). It
is in active development and has been ported to a wide variety of hardware
platforms.

Building a Daemon

One of the biggest advantages of being a developer creating a custom
Android for a new device is the ability to add Linux level daemons. All
Android programs run in the Android container, rather like a web server,
and are thus one layer of abstraction removed from the operating system
and the hardware. An application installed in a typical Android system—
regardless of whether it is written in Java, C, or even assembler—has very
little control, even over when it starts and stops. It is a group of components
that are created and destroyed as necessary by the container.

When building a custom Android, however, adding a new native daemon
requires no more than writing the necessary code, probably C, and starting
it from init.

The unique hardware feature in the Acme device is a proximity sensor.

Note
The Acme device is actually emulated with the same HiKey960 used
in previous chapters and an attached Arduino Uno. The Arduino is
configured as a capacitive proximity sensor as described on the
Arduino website at
https://playground.arduino.cc/Main/CapacitiveSensor.

https://github.com/LineageOS
https://github.com/TeamWin
https://playground.arduino.cc/Main/CapacitiveSensor


The Arduino periodically reports proximity levels over its USB
serial port using a simple binary protocol. The Android device, the
HiKey960, sees the Arduino as a readable USB serial device. You
can find the code for the project, along with all the rest of the code in
this book, in the GitHub repo at
https://github.com/InsideAndroidOS/.

The first approximation to porting the new hardware to Android will be a
daemon that reads the proximity sensor and reports the values by logging
them to the system log.

Creating the Acme Device

Chapter 2 outlined the process of customizing Android for a new device,
the HiKey960. The process involved downloading some hardware-specific
code, necessary for the HiKey device, and modifying the AOSP manifest to
include it. The next step extends those modifications to create an entirely
new device, the Acme One.

An Android device is defined by two directories in the source tree, one in
.../device and one in .../vendor. The former is where most of the action
is.

A device is represented in .../device as a two-level hierarchy. The first
layer represents an organization, in this case Acme. The second represents
the specific device; in our case, the One.

Note
Unless explicitly stated otherwise, all directory paths from this point
on are relative to the root of the build directory, the directory from
which the repo tool was run. They are specified without a leading “/”
or “...”.

In addition to creating a home for device code, you must register a new
device in the build system. Prior to Android 7, registering the device was

https://github.com/InsideAndroidOS/


accomplished using a special script, vendorsetup.sh, which would be
detected and included by the envsetup.sh script. The vendorsetup.sh script
would call the special function, add_lunch_combo, to add device-specific
options to the lunch menu. With the Soong build system, this is now
accomplished via the AndroidProducts.mk makefile by setting the special
variable, COMMON_LUNCH_CHOICES.

The AndroidProducts.mk file for a device is likely to register at least a
couple of builds because a given device may be built in several different
ways. The type of the build is encoded in the values set in the
COMMON_LUNCH_CHOICES variable.

The variable’s value must contain exactly one hyphen (“-”). The build
system parses the variable values, separating each at the hyphen, before the
hyphen, the name of the device to be built and after the hyphen, the build
type. The name of the device can be anything descriptive. There are,
though, exactly three build types:

eng: eng builds are debugging builds. They include a variety of
debugging tools that would be a waste of space except during
development. adb runs as root by default on an eng build.

userdebug: userdebug builds are similar to eng builds but have fewer
debugging tools. They were originally intended for debugging on
hardware with limited storage space. adb does not run as root by
default on a userdebug build, but the su command works.

user: user builds are production releases. All debugging software is
stripped, adb is not run at all by default, and it cannot be run as root,
if started.

Only one of these three words will work, after the hyphen, as the values of
COMMON_LUNCH_CHOICES.

Listing 6.7 demonstrates creating a directory for the Acme One device and
registering all three possible build types.

Listing 6.7 Registering the Acme One Device
Click here to view code image
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mkdir -p device/acme/one


cat > device/acme/one/ AndroidProducts.mk


COMMON_LUNCH_CHOICES := \


	 acme_one-eng \


	 acme_one-userdebug \


	 acme_one-user


PRODUCT_MAKEFILES := \


	 $(LOCAL_DIR)/acme_one.mk


^D

The Acme One device is now registered. After you re-run setenv.sh, it is
visible in the Lunch menu.

Listing 6.8 Acme Lunch
Click here to view code image
. build/envsetup.sh


including device/acme/one/vendorsetup.sh


including device/asus/fugu/vendorsetup.sh


...





> lunch





You're building on Linux





Lunch menu... pick a combo:


     1. acme_one-eng


     2. acme_one-user


     3. acme_one-userdebug


     4. aosp_arm-eng


     5. aosp_arm64-eng


     6. aosp_blueline-userdebug


     7. aosp_bonito-userdebug


...


     45. uml-userdebug

Choosing one of the Acme builds at this point will cause an error. Although
the device has been registered, it has not yet been set up.

Repo Again
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The new device is now registered with the build system. It is not yet,
however, registered in the repo manifest. The new directories and their
contents cannot yet be downloaded or managed using the repo tool (as can
the rest of the source tree). Let’s fix that.

Chapter 2 described the organization of a hypothetical git service for the
Acme project, located at https:/acme.net/acme/source. It is time to add
several new repositories to that service. (Note that this is the hypothetical
project source. The code from this book can be found online at
https://github.com/InsideAndroidOS/)

Figure 2.2 (in Chapter 2) showed the manifest for the first fork of the AOSP
code. That fork did not actually create space for any Acme-specific code at
all; it just made room for the non-AOSP code for the HiKey960 device and
for the new kernel created in Chapter 4. Listing 6.9 shows the fragment of
the new manifest with additional repos for Acme-specific code.

Listing 6.9 The Acme One Manifest
Click here to view code image
<!-- Acme Specific Projects -->


  


  <project path="device/acme/one/acme_one"


           name="platform_device_acme_one_acme_one" remote="acme" >


    <linkfile src="acme_one.mk" dest="device/acme/one/acme_one.mk" 

/>


    <linkfile src="AndroidProducts.makefile"


              dest="device/acme/one/AndroidProducts.mk" />


  </project>


  <project path=”device/acme/one/proximity”


           name=”platform_device_acme_one_proximity”


           remote=”acme” />


  <project path=”device/acme/one/app/simple_daemon”


           name=”platform_device_acme_one_app_simple_daemon”


           remote=”acme” />


  <project path="vendor/acme/one/interfaces" 


           name="platform_vendor_acme_one_interfaces"


           remote="acme" />


  <project path="device/linaro/hikey"


           name="platform_device_linaro_hikey"


           remote="acme"


https://github.com/InsideAndroidOS/
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           revision="acme"


           groups="device,hikey,pdk" />

The vendor repo contains the binderized HAL definition. It is used along
with the HiKey960 vendor tree, which is populated by a setup script in the
HiKey device tree. The Acme device still requires the non-AOSP device-
specific vendor configuration. Perhaps surprisingly, even with the addition
of the code for the new device, the manifest still forks the code for the
HiKey device, on which it is based.

This is an unfortunate reality. Ideally, the Acme device would simply
reference code in the HiKey device directory, on which it depends.
Practically, because of idiosyncrasies in the build system, it is nearly
inevitable that it will be necessary to modify the code for the device on
which the Acme One is based—in this case, the HiKey960. Forking the
dependency makes it possible to maintain control over updates. The Acme
device will depend on the forked HiKey device and the stable, forked
version of the HiKey code. This makes applying updates from the upstream
authoritative source in a managed and predictable way possible.

The first repository in the Acme-specific section of the manifest is the first
new one: platform_device_acme_one_acme_one. This is the root of the Acme
One device tree. A couple irritating constraints govern it.

The first is that it cannot be checked out as the actual root of the Acme
device tree. Because of the way repo works, it cannot be device/acme/one.
Instead, following the pattern set at the root of the AOSP tree, this
repository gets checked out as device/acme/one/acme_one, and then the files
from it that must be cataloged in device/acme/one are linked by the tool
into the parent directory.

The second constraint is imposed by the build system, which looks for files
with names that follow specific naming conventions. The files required at
the root of the Acme One device tree must be at the root—and they may not
be anywhere else. The files in the one base repository must have names that
are sufficiently different from those that the build system recognizes so that
they do not confuse it.



The other three new repositories are the implementation of the new
daemon. Because the code that accesses the new hardware (the proximity
sensor) will eventually be used not only in this daemon but also to plumb
the new sensor into Android, it is implemented as a separate library. The
library and the include file that describe its API comprise two of the three.
The third is the implementation of the actual daemon.

Starting the Daemon

As described earlier in this chapter, starting the daemon code requires that a
script be run by the init process during system startup. The script is
straightforward in its content: It defines a “service” that points to the
daemon binary and applies certain attributes to it. The Acme One proximity
sensor daemon should not run until the system is fully up, all file systems
have been mounted, and its startup requires no special action. Because it is
so nearly generic, the service can be part of the main class: init will start it
with all other services of this class during the main phase. The service will
execute as the system user and within the system group. Listing 6.10 shows
the content of the init script.

Listing 6.10 Acme One Proximity Sensor init Script
Click here to view code image
service acmesimpledaemon /vendor/bin/hw/acmesimpledaemon


    class main


    user system


    group system


    oneshot

Because the daemon is dependent on a specific USB device being plugged
into the system, it is marked as a oneshot service. This means if the process
exits, the init process will not attempt to restart it. Ideally, the daemon
would be written so it would wait for the necessary device(s) or
dependencies to be present before starting. Were it written that way, the
oneshot property would be removed so that, if the daemon died or exited,
init would automatically restart it. This simple example does not wait for
the device to appear, so oneshot is necessary.
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The script is located in the device/acme/one/app/simple_daemon directory,
alongside the daemon source. The Soong blueprint file used to build the
daemon also specifies the init script, as shown in Listing 6.11.

Listing 6.11 Acme One Proximity Sensor Daemon Android.bp
Click here to view code image
cc_binary {


    name: "acmesimpledaemon",


    relative_install_path: "hw",


    init_rc: ["vendor.acmesimpledaemon.acme.one.rc"],


    header_libs: [


        "libacmeproximityshim_headers",


        "liblog_headers",


    ],


    srcs: [


        "acme-simple-daemon.cpp"


    ],


    shared_libs: [


        "liblog",


        "libcutils",


    ],


    static_libs: [


        "libacmeproximityshim",


    ],


    vendor: true,


    proprietary: true,


}

The script in Listing 6.10 is processed by init, starting the daemon as part
of the normal Acme One system startup. Unless the system SE policy
information is updated to include details about the daemon, though, it will
not run for very long! The daemon accesses the proximity sensor via USB
serial device interface, which normal processes cannot access. Recall from
Chapter 5 that the SE’s default behavior is to deny permissions and access
to everything. This includes executing a binary, loading special files, and so
on. Because the daemon accesses a device, it requires an SE policy that
permits file operations and access to USB serial interface device files.

Note
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The simple daemon described here demonstrates how a custom
daemon for a platform can be created and added to the platform,
including access to device interface files. Not all custom platform
daemons will require device access, but they will still require a
customized SE policy. The device file in use here is /dev/ttyUSB0,
but this could be anything exposed by the kernel. It is critical that
any custom AOSP-based device limits a daemon’s access to
hardware interfaces for security purposes and also to pass CTS/VTS.

Even though the daemon executes as the system user/group, allowing it to
have full access to everything in the system_app domain is dangerously
insecure. The SE policy file for all Acme proximity daemons (more will be
created in the HAL chapters), shown in Listing 6.12, defines a new
application domain as well as an execution domain for the binary and grants
for access to the components it needs to do its work.

Listing 6.12 Acme One Proximity Sensor Daemon SE Policy
Click here to view code image
init_daemon_domain(proximityd)





type proximityd, domain;


type proximityd_exec, vendor_file_type, exec_type, file_type;





allow proximityd serial_device:chr_file rw_file_perms;

A key detail in this SE policy file is the use of the init_daemon_domain
macro. This sets up the proximityd domain as an init started daemon.
What exactly does that mean? It means that it sets up the SE process
domain as the domain to which the process initiated by proximityd_exec
automatically transfers. Without this, the daemon would fail to start because
the SE rules for init do not allow it to execute another binary unless the
new process changes domains!

The SE file for the proximity daemon is located in
device/acme/one/sepolicy/proximityd.te.
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In addition to the proximityd domain and execution type, the SE policy file
also contains an allow rule that grants the daemon access to serial devices
for reading/writing. This is necessary to allow the daemon to access the
proximity sensor (which, as mentioned earlier, is connected via USB serial
device).

This is still not quite enough, though, because the default AOSP SE policies
do not label the USB serial device interfaces as serial_device. Now that a
SE domain and context have been defined, they need to be applied to the
daemon binary; otherwise, it will not be available for execution by init.
The two file context changes require adding two lines to the SE file context
details for the platform. Recall this is accomplished using a union of the SE
file, file_contexts. This file is located at
device/acme/one/sepolicy/file_contexts, shown in Listing 6.13.

Listing 6.13 Acme One SE Context Labels
Click here to view code image
# Acme One Specific Changes


/dev/ttyUSB[0-9]*                 u:object_r:serial_device:s0


/vendor/bin/hw/acmesimpledaemon   u:object_r:proximityd_exec:s0

With all of these SE policy changes and additions in place, the Acme One
build for the HiKey960 starts acmesimpledaemon during system startup.

Summary

This chapter outlines the process of booting Linux in an Android system
and describes creating a new, pure Linux daemon. It outlines the behavior
of the root of the process tree, init, and demonstrates using init to start the
daemon process. It also outlines the somewhat arduous task of configuring
SE Linux to accommodate starting a new hardware-based daemon.
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7

Android Startup: Dalvik and
Zygote

Chapter 6 reviewed the process of booting the Linux system. This chapter
investigates the startup of Android’s subsystems.

The processes are quite analogous. Figure 2.1 depicted an Android system
as a layer cake; each new layer depending on services provided by the
underlying layer. The Linux kernel provides a “container,” an environment
that abstracts hardware into standard resources and facilities in which
programs run.

Similarly, Android is a container. It provides abstract services to
applications that run “inside” it. Thinking of the Linux kernel as a container
is a useful exercise because Android is a container in exactly the sense
usually reserved, for instance, for web servers. Android applications are not
associated with the processes that power them in the way that most
applications are.

A typical desktop application owns its process: It is application code that
gets control when the application starts up. Although it may include code
from third-party libraries, invoke code in memory shared with other
applications, use services from other processes either local or through
network connections, it is application code that is at the bottom of the call
stack. The application code may temporarily delegate control elsewhere but
it always gets it back. At the extreme, it is the application that makes the
call that terminates its process.



This is not the case for Android applications. An Android application, even
one that has been completely compiled to native code, is not in control of its
process. Instead, exactly as is the case with many web service containers, it
is the container that controls an Android application process. In Android,
that container is a program called Zygote.

To start a new Android application, the Android system creates a new
process (using the clone system call) that is a copy of the already-running
Zygote. The new instance of Zygote loads the components for the target
application and invokes them as appropriate. In contrast to the typical
desktop application, then, Zygote may temporarily delegate control to the
application, but it is Zygote that always gets control back.

Perhaps even more interesting, even Zygote does not get control over when
an application stops. As described in Chapter 4, the most common way for
an Android application to be terminated is that the 116operating system
terminates it with a kill -9 when it needs memory for other applications.
Exactly as with a web server, the Android system creates a process for an
application only when its services are required and terminates the process
when its resources are required for some other application. Zygote will be
discussed in detail in the second half of this chapter.

Another important service that Android provides is the interpreter. A single
Android application can run on a wide variety of hardware platforms: Intel,
multiple ARM architectures, and even (dramatically less common) MIPS.
This feat is accomplished through the use of an intermediate language
(IL).

Intermediate languages, popularized by the Java language, are machine
languages for virtual computers. The idea is that code written in a computer
language such as Java, designed to be read and written by human beings, is
compiled to the intermediate language. The intermediate language is a
machine language for a virtual computer: hardware that probably doesn’t
actually exist. Running applications written in the intermediate language on
a given real computer requires an application—a compiled binary that uses
the native instructions of the target computer—that interprets successive
instructions in the virtual machine language, translates each into one or
more native instructions, and executes those native instructions. This
program is called the interpreter or virtual machine (VM).



Clearly, a virtual machine has a cost in efficiency. If it takes three native
instructions to execute a single instruction from the intermediate language,
and if that intermediate language instruction is not significantly more
powerful than a single native instruction, then it will take three times as
long to run a program that is compiled to the intermediate language (and
then run in the virtual machine) as it would to run exactly the same program
compiled to native instructions and run directly.

The benefit of a virtual machine, however, is portability. Instead of having
multiple binary versions of an application—one for each target computer
architecture—there is a single intermediate language “binary.” It is only the
virtual machine that interprets the intermediate language that must be built
separately for each architecture. An intermediate language binary can be
run on any architecture that has an implementation of the virtual machine.

Portability is essential to the Android model and, therefore, most Android
code is compiled to an intermediate language, DEX, the IL used by the
original Android virtual machine, Dalvik.

Dalvik

Dalvik, the DVM (Dalvik Virtual Machine), was the original virtual
machine for Android. ART, the Android Runtime, succeeded it in Lollipop,
API 21. Although Dalvik is gone, a brief discussion of its design will
introduce its successor.

Though it may seem obvious, the most important thing to note about Dalvik
is that it has almost nothing at all to do with Java. It is not a JVM. It isn’t
designed like a JVM, and it doesn’t act like a JVM. It cannot execute Java
bytecode, and the constraints that drove its architecture are very different
from those that drove the design of the JVM.

Efficiency means a very different thing on a mobile device; especially the
small, underpowered (both in CPU and battery) devices that were the
targets for the original Android OS. On a rack-mounted machine, efficiency
means 100 percent usage: memory full and CPU running at full speed. If
the machine has spare cycles, using those cycles to pre-compute values that
might be useful in the future makes sense. Even if those values have only a



30 percent chance of being used, computing them in advance will make the
machine appear, on average, to run 30 percent faster.

For a mobile device, the situation is dramatically different. By far the most
valuable resource on a mobile device is the battery. Parsimony with power
was an essential goal in the design of Dalvik.

Note
I, Blake, experimented with Java and Linux on early smartphones.
Even after making all the obvious optimizations, the batteries on the
fairly typical devices with which I experimented lasted between 20
and 40 minutes under normal usage.

Another of the central goals in the design of Java’s virtual machine was
portability. It is a stack-based machine: Most op-codes operate on operands
that have been pushed onto a system stack by previous operations.
Although nearly all real hardware is register based, the JVM makes
absolutely no assumptions about the host’s architecture.

One artifact of Java’s focus on portability is the API through which it
interacts with the host operating system. All Java developers are familiar
with the fairly elegant API (the various java.* packages) that their
programs import and use and through which they interact with the Java
runtime environment. A second API, the one through which the Java
runtime environment interacts with the host operating system, is an
abstraction that is much less familiar but at least as elegant. It is a clever
and extensible API that makes porting Java to a new OS straight-forward, if
not quite trivial.

Portability was not even in the running as a goal for Dalvik. Although
Dalvik has been ported to a few hardware architectures, most of those
architectures are versions of ARM. In addition, Dalvik runs on only one
operating system, Android/Linux. The abstractions that make it a relatively
simple task to port Java to a new OS would be completely pointless for
Dalvik and do not exist.



Because a register-based virtual architecture more closely matches the
architectures of their target hardware, compilers that target a register-based
VM may be able to do a better job of preparing their output so that it can be
pre-optimized for the target hardware. This makes power consuming just-
in-time (JIT) optimization—essential for a high-performance JVM—less
important for the DVM. In fact, in the early versions of Android, Dalvik
had no JIT optimizer at all.

This is the biggest difference between the Dalvik VM and the Java VM. To
squeeze the last drop of performance out of the underpowered CPUs for
which it was designed, Dalvik is register based, not stack based.

Although still a subject of debate, many academic studies (for example,
[Davis, 2003]) seem to agree that a given program can be represented with
fewer instructions in a register-based intermediate language than in a stack-
based VM: The stack-based VM must move each operand onto its stack
before it can use it. On the other hand, individual instructions in a register-
based intermediate language are likely to be bigger (more bits) than their
stack-based counterparts. In the register-based IL, each instruction must
allocate bits used to specify the locations of each of its operands. In a stack-
based language, however, the location of the operands is implicit: on the
stack.

According to the research, these two opposing influences on the size of the
IL binary do not balance out. The studies suggest that the representation of
a program in a register-based IL, although it contains fewer instructions, is
likely to be overall larger than the same program represented in a stack-
based IL. To counteract this bloat, Dalvik has some clever tricks up its
sleeve to reduce the size of its binaries.

The dex compiler translates Java .class files into .dex files. Unlike the Java
compiler, however, which creates a separate .class file for each Java class,
the dex compiler produces a single .dex file for an entire application. This
provides the opportunity for its most important space-saving trick. The dex
compiler tries very hard never to say the same thing twice.

DEX format is thoroughly documented on the Android Source website
(https://source.android.com/devices/tech/dalvik/dex-format). Generally, it is
structured as shown in Figure 7.1.

https://source.android.com/devices/tech/dalvik/dex-format


Figure 7.1 DEX File Structure

Dex structure has two key differences from the structure of Java’s package
for an application’s bytecode, the Java Archive or .jar file.

The most significant difference is that, in a .jar file, the structure shown in
Figure 7.1 is repeated for each class in the source code. Because the jar
contains multiple files, there are several string constant pools, several code
definition blocks, several method signature definition pools, and so on. The
.dex file contains the entire program. There is only one of each of the
blocks.



The global structure of the .dex file provides the first opportunity for
optimization. In this format, every object is represented in the file exactly
once. A reference to an object is simply its offset into the block in which the
object is defined.

For instance, if two different classes each contain a method whose signature
is View findViewById(int) (different classes may contain methods with
exactly the same name), those two method definitions will be represented in
the respective class definitions by offsets into the methods constants section
for the definitions of the method. Those two definitions, though they point
to different code, will contain references to exactly the same constants in
the strings constants section that define the method name and to exactly the
same constants in the types constants section, where the method signature is
defined. This extensive use of references dramatically reduces the size of
the .dex file.

As a further example, consider the definitions for two dissimilar methods:

Click here to view code image

void setWallpaper(android.graphics.Bitmap arg)

and

Click here to view code image

void setWallpaper(java.io.InputStream arg)

In a .dex file, these two definitions are nearly identical and take exactly the
same amount of space. The only difference is that the reference to the type
of the parameter in one (a reference to the type java.io.InputStream) is
different than the reference to the type of the parameter in the other (a
reference to the type android.graphics.Bitmap). There are two function
prototype definitions, but each uses all but one element from the other: a
considerable savings in space.

Dalvik, for all its good points, leaves significant room for improvement.
The most important problem is that, because it is a virtual machine, it does
the work of translating each intermediate language instruction every time an
application is run. Similarly, a just-in-time optimizer, the state of the art for
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virtual machines, is a wasteful choice when power use is a crucial
consideration.

The Dalvik JIT does store optimizer information across runs of a given
application. Although effective, storing state information for just-in-time
optimization is a bit of a kludge. There is nothing “just in time” about the
stored information. If stored optimization is the goal, why not just build a
system from the start that is organized around optimizing only once?

The Android engineers agree! That system is ART.

ART

ART, the Android Runtime, was introduced as an experimental runtime
environment in Android KitKat, 4.4, API 19. It replaced Dalvik in Android
Lollipop, 5.0, API 21.

The ART system uses the same intermediate language that Dalvik used:
DEX. Most programs that were compiled before ART existed and that ran
on Dalvik will run in the ART environment with no change. ART’s strategy
for optimizing and executing a program, however, is significantly different.
Google coined the term ahead-of-time (AOT) optimization to distinguish it
from Dalvik’s JIT strategy.

“Ahead of time” means that an application, compiled to the DEX
intermediate language, is translated to native code, only once, using a tool
named dex2oat, at some point after its installation on a device. This strategy
preserves the essential goal of an intermediate language: portability. Each
Android device has installed as part of the operating system a version of
dex2oat that, analogous to a virtual machine, targets its specific hardware
platform. When a new application is installed, dex2oat translates the
application intermediate language to a native binary. When the application
is run, it is executing code that is native to its platform. No further
translation is necessary, and no waste occurs due to repeated translations of
the same instructions.

Actually, ART’s strategy has evolved over time.



Note
To determine whether a system is using Dalvik or ART, find the
value of the system property persist.sys.dalvik.vm.lib.1:

Click here to view code image

> getprop persist.sys.dalvik.vm.lib.1

On a system running Dalvik, the property will have the value
libdvm.so. If it is using ART, the value will be libart.so.

ART Basics

The ART system does far more than simply compile code and run it in a
garbage-collected environment. A closer description might be that it
compiles, links, and even starts running the application, and then stores the
running image.

The most common invocation of the compiler occurs when a new
application is installed on the system. As part of the application installation
process, the Android system runs dex2oat, over the DEX code, newly
downloaded and installed in the applications directory
/data/app/<application package name>. The verified, optimized native
code is stored in the directory /data/dalvik-cache as data@<application
package name>-<n>.apk@classes.dex. Despite the .dex suffix, the file is an
OAT file.

The format of the OAT file is complex and not well documented. Although
at the time of this writing it appears that the format is still in flux, some
things are stable. The file is an ELF file, a standard format for Unix
binaries. It contains both the compiled native code and also the entire pre-
compilation DEX format “source.” Figure 7.2 is a rough outline of the OAT
file format. (The format is described in the file
$AOSP/art/dex2oat/linker/oat_writer.h).
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Figure 7.2 OAT File Structure

The point of embedding the complete, uncompiled DEX code in the OAT
file is that doing so allows incremental compilation. Bits in the file header
indicate which methods have been compiled and which have not.

The ART runtime is not only compiled to native code but, in the normal
uses of the term, it is linked. The dex2oat compiler refers, during the
process of compiling a .dex file, to the output of the previously compiled
Android system libraries and compiles references to symbols defined in
those libraries to their absolute locations. In other words, the compiled OAT
file must be loaded into memory at exactly the location for which it was
compiled and depends on having an image of the compiled libraries at



exactly the locations at which they were found during the compilation
process.

The process of loading independently compiled binaries into memory and
resolving the references from one to the other is normally called linking.
Linking can be an expensive process. Even the earliest versions of Android
pre-linked many portions of the system libraries as an optimization: doing it
once to save the cost of doing it each time it was necessary.

Of course, the consequence of pre-linking binary libraries is that those
libraries cannot, once linked, be versioned independently. For instance, after
a symbolic reference to the code that activates the haptic feedback device is
linked as a reference to a specific location in memory, updating the haptic
feedback library and changing its location would be disastrous.

On current mobile devices, however, this is not a significant issue. System
libraries are never updated individually. Updates to the system software
always involve updating the entire system as a unit, and all affected
components are updated together.

In the Android system, building the pre-compiled, pre-linked image of the
ART runtime is part of building the system image. The directory
/system/framework contains the .jar files produced by compiling the
Android libraries. In the Dalvik era, these .jar files were loaded into an
application image and the code within them executed by the DVM.

For ART, those libraries are recompiled with dex2oat into a new
subdirectory named for the device architecture (for example, arm). The two
most significant files in this directory are boot.art and boot.oat. These two
files—the first an image of initialized classes and objects, the second the
ELF file containing the code and linking information—are loaded into
memory: .art first, and immediately below it, .oat. Together, they
comprise the pre-linked, pre-initialized system library image. These two
files are soft-linked into /data/dalvik-cache along with the .art and .oat
files for installed applications.

And this brings us at last to the second, less common use of dex2oat. A
system update will almost certainly mean a new boot.art and boot.oat.
These new files cannot be used with the pre-linked .oat files that dex2oat



created previously when it compiled new applications as they were
installed. A system update requires the recompilation of every single
application on the device.

This recompilation is the source of the often seemingly interminable
“Android Is Optimizing Applications” dialog that followed system updates
on KitKat devices. It was not a great experience; more recent versions of
ART do better.

Hybrid ART

Recent versions of ART are smarter and lazier. Why take the time and
energy to compile code that might never be used? In what might at first
seem like a step backwards, the new hybrid ART contains a Dalvik-like
interpreter complete with a JIT.

Most applications are executed at first in the interpreted environment.
Although interpreted, this environment is not Dalvik. The interpreted ART
environment, for instance, uses the same highly tuned garbage collection
system that was introduced with ART in KitKat.

The interpreter collects profile information on the code it executes. It stores
the data it collects, per application, in files in the directory /data/dalvik-
cache/profiles/. A new system daemon, the BackgroundDexOptService,
parses these files occasionally and uses dex2oat.to compile the “hot”
123methods—methods that are 90 percent of the calls in the application. It
also recompiles a program if the list of methods that comprise 90 percent of
the calls changes by more than 10 percent.

The most immediate effect of this new, hybrid ART is that a system update
no longer requires recompilations of every application known to the system
and the attending several-minute wait. In addition, though, hybrid ART
saves the substantial cost of running dex2oat on applications or parts of
applications that are never used.

Zygote



Before any code that has been compiled to the DEX intermediate language
(and that includes about half of the Android framework) can run, the system
must initialize the runtime: Dalvik or ART.

The simplest way to run Java code is to run the java program, the virtual
machine, and tell it which code to execute:

Click here to view code image

java -cp MyApplication.jar net.callmeike.MyApplication

The java program initializes a VM and uses it to execute the intermediate
language instructions for the class net.callmeike.MyApplication in the file
MyApplication.jar.

Similarly, the Android system, as part of startup, must create virtual
machines and the runtime environment for all the system services that are
compiled to the DEX IL. It must also provide a way to start and initialize
new runtime environments for new applications as they start. The Android
solution for this necessity is a clever program called Zygote.

Zygote Memory Management

Zygote is the solution to one of the oldest problems with Java desktop
applications: startup time. Starting a Java desktop application requires each
of the following steps:

The OS resources. The system must find resources for a new, large
program. On any machine that has been running for a while, finding
those resources might well require swapping some other running
program to disk.

Start the JVM. The JVM, normally a program called java, is a
moderately large and complex C++ program. Although it starts fairly
quickly, getting it fully initialized does take time.

Load basic Java libraries. Java loads its libraries lazily from a very
large file called rt.jar. Finding and loading the classes required for
minimal functionality, though heavily optimized, does take time.

clbr://internal.invalid/book/OEBPS/Images/ch07_images.xhtml#p123pro01a


Initialize the basic libraries. Java classes quite frequently require
some initialization (assignments to static variables or static
initializer blocks). As each class is loaded, its initialization code must
be executed. At this point, on a typical laptop computer, even for a
completely trivial application, it may now be several tenths of a
second since the user started the application.

Load the application. This is the first step toward executing the
application that the user actually requested. Application classes are,
most likely, in another .jar file from which they are, again, loaded
lazily. To start executing the program, however, the VM must load
the closure of references from the main class: all the things to which
it refers; all the things to which any of the referents refer; all the
things to which they refer, and so on, until no unresolved references
exist. Note, first of all, that this recursive resolution of references
may very well require loading many Java system libraries as well as
application code. Also note that it does not, by any means, imply the
loading of all of them either.

Initialize the newly loaded classes. Again, some or all of the newly
loaded classes may require initialization. Any initialization code in
any of the newly loaded classes must be executed.

At this point, it is entirely possible that the initialization process has
used enough memory so that a minor garbage collection (GC) is
necessary. Although minor GCs are fast, they do take time.

After all necessary classes have been loaded and initialized, the VM
can begin to execute the application’s main method. For a moderately
complex application, it is entirely possible that it has been nearly a
minute since the user-initiated startup.

Although this delay is definitely annoying on a laptop computer, it would
be devastating on a battery powered mobile device. Wading through the
preceding list of initialization procedures each time a new application
started would drain a battery in no time. Add to that the idea of waiting for
a full minute for a phone application to start up so that you could answer an
incoming call. The Android OS had to address this problem to be viable.
The answer is the Zygote application.



As mentioned earlier, Zygote is to Android what init is to Linux: the parent
of all applications. init starts Zygote as part of bringing up the system.
Zygote initializes itself by pre-loading the entire Android framework.
Unlike desktop Java, it does not load the libraries lazily. It loads all of them
as part of system startup. When completely initialized, it enters a tight loop,
waiting for connections to a socket.

Figure 7.3 Zygote

Zygote makes use of an important feature of the Linux OS, copy-on-write
paging, to eliminate nearly all the items in the Java initialization list. Figure
7.3 is a simplified illustration of how the operating system lays out virtual
memory for applications; in this case, Zygote. Memory is organized into
uniformly sized pages. When the application refers to memory at a
particular address, the device hardware reinterprets the address as an index



into a page table and an offset into the associated page to which the index
points. It is entirely possible, as shown in Figure 7.3, that an address that
points at the top of an application’s virtual memory space refers to a
location that is actually near the bottom of physical memory.

When the system needs to create a new application, it connects to the
Zygote socket and sends a small packet describing the application to be
started. Zygote clones itself, creating a new kernel-level process. Figure 7.4
illustrates the memory layout of a new application cloned from Zygote. The
new application has its own page table. Most of the new page table is
simply a copy of Zygote’s page table. It points to the exact same pages of
physical memory. Only the pages the new application uses for its own
purposes are not shared.



Figure 7.4 Zygote Clone

The new process is interesting in that it shares memory with Zygote, its
parent, in a mode called copy-on-write. Because the two processes are using
exactly the same memory, starting the child process is nearly instantaneous.
The kernel does not need to allocate much memory for the new process, nor
does it need to load the Android framework libraries. Zygote has already
loaded everything.

Because both processes have mapped exactly the same physical memory
into their virtual address spaces, if either changed the contents of the



memory by writing to it, the other would be affected. That would be very
bad.

To avoid the problem, the system copies pages on write. The hardware
notifies the kernel when either process attempts to write to a shared page.
Instead of allowing the write, the kernel allocates a new page of memory
and copies the contents of the original page—the page to which a process is
writing—into it. After the two processes have separate copies of the page,
each can freely modify its own copy. Figure 7.5 represents the state of
memory after a new application spawned from Zygote attempts to write to a
shared page.



Figure 7.5 Zygote Copy on Write

Copy on write is a tremendous savings. In addition to the fast startup, there
is only one copy for all processes of any pages that are unaltered by any
process (all the library code, for instance). Even if some child process were
to write on every single memory page (something that quite literally never
happens), the cost of allocating the new memory is amortized over the life
of the process. It is not incurred at initialization.

Zygote Startup

As mentioned, Zygote is started by init. Recent Androids typically start
multiple copies of Zygote. Depending on the chipset architecture or OEM
preference, platform developers use the system variable, ro.zygote, set at
platform at build time, to control which of four types of Zygotes are started
and which one is “primary.” Most modern Android devices start two
zygotes—one for 32-bit applications and one for 64-bit apps—and default
to 64-bit version.

Note
At the time of this writing, Zygote startup is still accurately
described at https://elinux.org/Android_Zygote_Startup.

The base init script, init.rc, described in Chapter 6, includes the script
that starts Zygote:

Click here to view code image

import /init.${ro.zygote}.rc

The sources for the startup scripts are found in the directory:

Click here to view code image

$AOSP/system/core/rootdir

https://elinux.org/Android_Zygote_Startup
clbr://internal.invalid/book/OEBPS/Images/ch07_images.xhtml#p127pro01a
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Listing 7.1 shows init.zygote32_64.rc for an older system, on which 32-
bit apps were the default. It provides an opportunity to revisit the init
scripting language. Note that the service lines have been wrapped to fit the
page. They cannot be wrapped this way in the actual script.

Listing 7.1 Zygote init for 32-bit Default Applications
Click here to view code image
service zygote /system/bin/app_process32 \


        -Xzygote /system/bin --zygote --start-system-server --

socket-name=zygote


    class main


    priority -20


    user root


    group root readproc


    socket zygote stream 660 root system


    onrestart write /sys/android_power/request_state wake


    onrestart write /sys/power/state on


    onrestart restart audioserver


    onrestart restart cameraserver


    onrestart restart media


    onrestart restart netd


    onrestart restart wificond


    writepid /dev/cpuset/foreground/tasks





service zygote_secondary /system/bin/app_process64 \


        -Xzygote /system/bin --zygote --socket-

name=zygote_secondary


    class main


    priority -20


    user root


    group root readproc


    socket zygote_secondary stream 660 root system


    onrestart restart zygote


    writepid /dev/cpuset/foreground/tasks

Consider the definition of the zygote_secondary service, the 64-bit zygote.
The actual application that is started as user root at the very highest priority
by init is /system/bin/app_process64. The script requests that init create
a stream socket for the process and catalog it as
/dev/socket/zygote_secondary: This is the socket that the system will use
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to start new Android applications. The script also contains an onrestart
directive that will restart the primary Zygote if the secondary zygote fails.

The definition of the primary Zygote service, zygote, is nearly identical. It
uses a different socket and has a much longer list of other servers that will
be restarted if it fails. Note, of course, that if zygote_secondary fails, all of
these servers will be restarted as well.

Runtime Initialization

Zygote’s first order of business when it is started is to initialize the ART
runtime environment. While reading this, keep in mind that it happens only
once; that is, Zygote is started only once, during system startup. Subsequent
application startup simply clones the running Zygote.

The applications that init starts, app_process64 and app_process32, are just
small applications (source in $AOSP/frameworks/base/cmds/app_process)
that parse their command line and then run either Zygote or the class whose
name has been passed as an argument. These are the programs used to start
all programs (not applications!) compiled to DEX: anything that requires
either Dalvik or ART. They serve a purpose very similar to that served by
the “java” command, which starts the Java runtime.

The app_process creates an instance of AppRuntime, a subclass of
AndroidRuntime. It does a lot of bookkeeping, setting up any runtime
parameters (runtime.addOption(...)), the name for the process
(runtime.setArgv0(...)), and the name of the class to run (used only when
not running Zygote: runtime.setClassNameAndArgs(...)), and then calls
AndroidRuntime.start() to invoke the runtime.

The start method (source in
$AOSP/frameworks/base/core/jni/AndroidRuntime.cpp) eventually invokes
startVM. startVM again is mostly setup.

Starting the runtime has gotten significantly more complex since the advent
of ART. It is especially difficult to read the code because nearly all the
variables that contain “dalvik” in their names actually apply to ART.
Nonetheless, a review of the VM configuration options controlled by this
code can prove extremely helpful to a developer. Among the more



interesting are -verbose:gc and the compiler option -generate-debug-info.
The former logs information about system garbage collection, and the latter
causes dex2oat to add debugging information to the system image it builds
after a system update.

After processing the options, startVM invokes JNI_CreateJavaVM. Again, the
name is confusing: The runtime environment that is about to be initialized
has almost nothing to do with Java. To be compatible with code written for
Java, though—and that includes the Java JNI API, discussed in the next
chapter—this method inherits its name from its JNI counterpart. It is,
though, almost certainly not the case that an application that uses the JNI
API to start an instance of the Java VM on, say, a desktop Linux system,
could successfully initialize the ART runtime on Android without further
modification.

The JNI_CreateJavaVM method is defined in
art/runtime/jni/java_vm_ext.cc. It, in turn, calls Runtime::Create,
defined in art/runtime/runtime.cc. Finally, Runtime::Create initializes the
ART runtime, loading the system OAT files and the libraries they contain.

The Android VM is now ready to roll. The argument that app_process
passed in its calls to start was "com.android.internal.os.Zygote.Init".
Its source is in
$AOSP/frameworks/base/core/java/com/android/internal/os/ZygoteInit.

java.

System Service Startup

130Most of the code in ZygoteInit’s main method (the method the runtime
calls, once initialized) is wrapped in a Java try/catch block. The obvious
reason is to allow Zygote to attempt to clean up after a failure. There is a
second, very clever purpose to which we will return in a moment.

Zygote has three major tasks, on startup:

Register the socket to which the system will connect to start new
applications

Preload Android resources and libraries, if necessary



Start the Android System Server

After it has completed these three tasks, it enters a loop, waiting for
connections to the socket.

The first of the tasks, opening the socket, is handled in the
registerServerSocket method. The method creates the socket using the
name passed in the parameters, probably from the init script originally.

The second task is accomplished with a call to the preload method.
Historically, Zygote was initialized aggressively. Modern Androids,
however, support a minimal system that postpones the cost of preloading
the framework until the first application is spawned.

The preload method loads everything it can think of: classes, libraries,
resources, and even a very special case, the WebView (a web browser view
that can be embedded in an Android application). Note that, when using the
ART runtime, many of the preloads are already in memory because they are
in the system OAT file.

At the completion of the preload method, Zygote is fully initialized and
ready to clone new applications very quickly, sharing most of its virtual
memory with them.

The last of the tasks, starting the System Server, is accomplished in the
startSystemServer method. The SystemServer is the first application cloned
from Zygote. Following the process is instructive.

The startSystemServer method fakes a connection to the Zygote socket (for
subsequent application startup, the connection will be real). It creates a new
ZygoteConnection object with the hard-coded content that it would have
received over the canonical socket connection were the system trying to
start the server. It passes the contents of the connection object to
Zygote.forkSystemServer which, in turn, wraps a native method,
com_android_internal_os_nativeForkSystemServer (source in
$AOSP/frameworks/base/core/jni/com_android_internal_os_Zygote.cpp).
The native method first calls ForkAndSpecializeCommon, which does the
actual fork system call. There are now two execution paths, one for Zygote,
in which the fork system call returned the process id (pid) of the new child



process, and one for the newly spawned child process, in which fork
returned a pid of 0.

In the parent process (pid > 0) control returns, eventually to ZygoteInit and
immediately enters the ZygoteServer method runSelectLoop. This is the
endless loop that processes incoming connections with almost the same
code that just started the System Server. The call to
ZygoteConnection.runOnce eventually calls forkAndSpecialize, the analog
of forkSystemServer for the masses.

Perhaps of more interest is what happens to the child process (pid == 0), the
process that will become the System Server. First, the method
SpecializeCommon is called with a flag indicating that this process will
become the System Server. SpecializeCommon in turn calls a series of
additional setup methods that set the correct SE Linux context and process
capabilities.

After the child process has been set up with the correct process options, it
calls Zygote. callPostForkSystemServerHooks and
Zygote.callPostForkChildHooks to load the specialized System Server class
libraries and to start its application code. Both of these calls trigger calls to
the ART runtime native code located in
art/runtime/native/dalvik_system_ZygoteHooks.cc.

Next, the child process calls the handleSystemServerProcess method,
which, in turn, calls ZygoteInit.zygoteInit, RuntimeInit.applicationInit
(source $AOSP/
frameworks/base/core/java/com/android/internal/os.RuntimeInit.java),
and, finally, invokeStaticMain, which is where the magic happens.

The invokeStaticMain method finds the class whose name was given in the
data transferred to Zygote through the socket (or, in the case of the System
Server, faked in hard-coded data), and then obtains a reference to the public
static void main method on that class. The very last thing it does is to
create a new exception holding the method reference and throw it.

This clever trick is the second reason for wrapping the top-level ZygoteInit
code in a try/catch block. This throw, from within invokeStaticMain, clears
the entire Java stack back to its very top. At this point, the new instance of



Zygote has closed all unneeded file descriptors; set its permissions, group,
and user IDs correctly; has the entire Android framework loaded and
warmed up; and now has an empty stack. The exception’s run method,
called in the catch block, runs the new application’s main method in this
fully initialized environment with an empty stack.

When Zygote starts the System Server, it is the class
com.android.server.SystemServer (source in
$AOSP/frameworks/base/services/java/com/android/server/SystemServer

.java) whose main method is run. It is here that all the familiar Android
services are started: the PackageManagerService, the
ActivityManagerService, the PowerManagerService, and so on.

Summary

This chapter traces the initialization of the main component of the Android
system—its runtime, ART, and its root program, Zygote—from its
initialization from Linux init through the start of the System Server and the
initialization of the standard Android managers.
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8

Getting to Android: The HAL

The Android’s Hardware Abstraction Layer (HAL) is just an interface. It is
a layer of abstraction that separates components by disconnecting the
definition of the component’s behavior from its implementation.

As is always the case, introducing an abstraction layer comes with a cost.
So why use the HAL? There are several reasons.

Why a HAL?

The HAL is Android’s interface to hardware. On most Linux systems, the
interface to the hardware is a device driver. Device drivers, however, are
usually device specific and sometimes proprietary.

Consider: The Android system will be installed on diverse hardware with,
for instance, a wide variety of Wi-Fi chips. Although each Wi-Fi chip has
its own kernel driver, at some point, they all provide a Wi-Fi service used
by Android code. It would be very convenient if above some point in the
stack, the Android code for all the different Wi-Fi hardware/driver
combinations were the same.

The HAL is the lingua franca for a class of devices. A single set of C header
files describes the functionality that a HAL provides to the Android system.
HAL code for a particular device is the implementation of the API defined
by those header files. The HAL code shims the hardware device driver
behavior so that it looks to Android like a generic device of some particular
type: Wi-Fi, Bluetooth, and so on. Adapting Android to use, for instance, an
entirely new Wi-Fi device consists of writing the native code that



implements the Android Wi-Fi HAL (as defined by the .h files) for the new
device. The HAL layer means that no code above the HAL—most of it
written in Java—needs to be changed to port Android to use the new
device.

Another reason for the HAL is that one of the original goals for Android (a
goal that it has clearly achieved) was to make putting it on a new device as
frictionless as possible from both engineering and legal points of view.
From the legal point of view, that meant navigating a thin line between the
GPL (GNU Public License) and proprietary code.

The Android system is based on the Linux kernel, which is licensed under
the notoriously viral GPL. The Android platform, on the other hand, is
intended to support hardware manufacturers with devices that are strictly
proprietary, right down to their APIs. The HAL provides an elegant way of
keeping proprietary code away from the GPL.

Hardware developers who are concerned about getting their proprietary
code anywhere near an open source, or, worse yet, GPLed codebase, can
keep all of their proprietary code in the HAL. To do this, they first create a
trivial device driver. It can be open source or even GPLed if there is any
reason to do so. The driver does essentially nothing: It simply passes data to
and from the hardware. The developer next creates a HAL. The HAL code
runs in user space (as a library linked into the application) and may be
completely proprietary. It does not run as part of the kernel and is not a
device driver under the normal definition of that term. It is, however, the
actual driver for the device. Because it is linked into the application as a
library, there is no requirement of any kind that this code be public. It need
never be available except in a binary form.

A third application for the HAL has arisen more recently. An additional
problem that Google encountered as Android came of age was that it could
not get vendors to update devices with the latest versions of Android.

In early Android, hardware vendors built the system images that they
deployed to their devices. They got the base system source from Google,
modified it as necessary, adding their proprietary software and extensions,
built an image, and deployed it to their devices. When a new version of
Android came along, they did it again—sometimes. From a vendor’s point



of view, a new version of Android is something to be sold: a reason for end
users to buy a new device. It is not at all surprising that they tended to drag
their feet releasing updates.

Google, on the other hand, is constantly increasing the number of pies into
which it has a finger. It does not want to have to wait for a recalcitrant
vendor or an entirely new generation of hardware to reap the benefits of
some new feature. Google needed a way to completely remove the device
update mechanism from the clutches of the vendors.

To do this, Google created Project Treble. Treble specifies and requires that
HAL modules use Binder, Android’s interprocess communication (IPC)
system, to communicate with the Android stack. HAL modules are no
longer binary libraries that are linked into the Android runtime. Instead,
they are separate binaries that are stored on completely separate hardware
volumes from the ones that hold the Android core and user applications.
The new HALs are not called directly from Android but are, instead,
invoked using highly optimized IPC calls.

Since Project Treble went live, an over-the-air (OTA) update can
completely rewrite the file system containing the Android OS without
disturbing the vendor’s HAL. There is no longer any need for Google to
wait for a vendor to build a new, hardware-specific version of its Android
system. Google can update the Android OS on any device at pretty much
any time, according to its own schedule. As long as they don’t violate the
HAL IPC contract, the HAL that worked with the old version of the OS will
work with the new version.

Is a HAL Necessary?

A HAL is necessary only for products that need the Android label or want
automatic updates. Developers creating a custom Android for an OEM
device may not need a complicated HAL. As described in the preceding
section, the HAL has exactly three purposes:

It is the native code layer that shims Android onto specific hardware.
At the very least, this means bridging code written in Java to native
code, usually written in C or C++.



It is an abstraction for the functionality provided by a class of
devices, for example, Bluetooth, Wi-Fi, graphics, and so on. It makes
it possible for Android to abstract away the differences between, for
example, Broadcom and Qualcomm Wi-Fi chipsets.

It is an abstraction that permits OTA updates that do not require
linking a new version of Android to vendor-specific binaries.

Although the first of these purposes is obviously necessary, the second two
may not be. A developer building a custom Android targeting a specific
hardware device might just dive right in and modify core Android code, as
necessary, to adapt it to the device. One might even make the argument that
the Java code is easier to modify than the native code in the HAL. So why
not?

Actually, there are some fairly strong arguments for keeping platform
customizations in the HAL. One good reason, of course, is updates. Even if
your business plan does not depend on updates, not having some kind of
firmware update plan for an embedded device would be irresponsible.

No matter what version of Android you choose, either security issues are
already known or security issues will be known. One need only look back
to the massive DDOS attack on Dyn, Inc. in 2016. The attack was launched
predominantly from IoT devices, many of which were manufactured by a
single company, XiongMai Technologies. It is a cautionary tale that should
convince anyone that releasing a programmable device with software that
cannot be updated is careless and dangerous. No one wants to be the
trampoline for the next cyberattack and, even worse, be unable to fix a
security breach when it occurs.

One of the easiest ways to patch bugs, of course, is to take updates from the
official AOSP codebase. If a customized fork of AOSP code has been
modified to adapt it to a specific device, the fork of AOSP will be much
more difficult to merge with the official sources.

Allowing your device to be updated automatically by Google might even be
worth considering. Doing so might take the entire issue of security and
liability off your plate. To do that, though, your custom Android must at a
minimum comply with the Project Treble standards.



Another reason for using the HAL is that an implementation for a new
device may already exist. If the hardware that your project uses is
something that other Android developers have used—say, a motion or a
temperature sensor—it is entirely possible that a complete HAL may
already exist. If it does not, it is possible that a HAL exists that supports a
similar device and that you can adapt that HAL to the new device with
minimal effort.

Designing the HAL

The initial discussion of the Acme project introduced a simple hardware
proximity sensor. Preceding chapters sketched the process of building a
device driver for it. The next step up the Android layer cake is creating code
that uses the driver to interact with the sensor.

By design, the Acme proximity sensor HAL is not only simple but includes
a stub for the device driver. The focus here is on defining the HAL API and
publishing it into Java; not the vagaries of the Linux USB system. Even
though part of the actual code is a stub, the functionality that it represents is
intended to be entirely realistic.

Recall that a HAL is an abstraction for a group of devices. A device driver
is also an abstraction for the device. On the hardware side, device drivers
are typically very specific: a particular driver probably works only with
very specific hardware. (A USB driver is a bit of an exception; an
intermediate layer for devices that support the USB interface.) From the
application side, a device driver is very general. They abstract devices into
one of only two groups: character and block.

HALs are more general on the bottom and more specific on the top. On top,
there are quite a few HAL abstractions, each of which is the interface for a
narrower category of devices: cameras, Wi-Fi, Bluetooth, and so on. On the
bottom a HAL provides access to multiple hardware implementations, all of
which have a specific, common purpose. The possibility even exists that a
single HAL abstraction could integrate multiple hardware devices (and their
drivers), exposing the combination of several hardware components as a
single service.



When designing a HAL, understanding how the services provided by the
hardware will be exposed to an application is absolutely essential. Although
this book has generally approached the Android system as a series of layers,
each built on the previous layer, designing a HAL requires looking far
ahead and trying to predict the future. Even when you build a simple,
proprietary device that doesn’t need a real HAL, this boundary is a good
place to pause for a moment of reflection. Because the HAL is Android’s
abstraction layer, it is a great place to hedge your bets.

First, consider the constraints from below (nearer the hardware). In a
project in which the creation of a hardware device (or its driver) is part of a
project, the kernel device driver and the API (its .h file) that it publishes are
also part of the project. Project developers can modify the driver API as
necessary to sensibly divide functionality across code modules.

That is not the typical case, however. The likelihood is higher that a
hardware device manufacturer that provides a device will also provide its
driver. When a third party—the device manufacturer—provides the device
driver, its API is not under project control. That is a constraint.

To be concrete, if the Acme team created an entirely new type of proximity
sensor, wrote a device driver for it, and that device was the secret sauce for
a new product, then the Acme team would choose the API for the sensor
device driver and adjust it to suit their needs. If, on the other hand (the more
typical case), the Acme team’s plan was a clever new use of the ability to
sense proximity, and they sourced a sensor during a trip to Shenzhen, then
the device driver for the sensor would most likely be provided by the third-
party hardware engineers: possibly as source, possibly not.

In either case, the API of the device driver is the constraint for the bottom
of the HAL. In the former case, that API is more malleable than it is in the
latter.

Next, consider the requirements from above (nearer application code). The
HAL is the first step toward building a service that will expose the
hardware to an application. Now would be a great time for an app developer
(preferably not the same person as the one who will write the HAL!) to
write one of those applications. What feels like a natural interface in the
application? Are the edge cases—initialization, configuration, application



failure, and access control—all handled? When a new sensor with new
capabilities comes along, will the API accommodate the changes with
backward compatibility?

After application requirements are more or less clear, converting the
application API into a set of operations required of the hardware should be
a relatively straightforward task. Remember, of course, that most of the
heavy lifting will be done by a Java service that actually exposes the
hardware to the application. The HAL layer doesn’t have to provide the
service API that the application uses. It merely has to provide a clean,
minimal set of hardware operations on which the service can be built.

The HAL for the Acme proximity sensor is sleek to avoid obscuring the
process of building a HAL. Its design is simple. As is often the case, power
is an important concern. A sensor may use power when it is running and
pointlessly load the battery unless it can be turned off. The design of the
HAL for the Acme proximity sensor assumes that it is exactly such a power
hog: there are calls to turn it on and off.

The call that turns the sensor on takes one argument—an out parameter
struct—that the driver will populate with the min and max values acceptable
in the precision argument passed to the HAL when polling it. Similarly, it
contains the max and min values that the device will return for the proximity
data it will return when it is polled.

After the sensor is turned on, it can be polled for proximity values. The
polling call takes a single argument: the desired precision for the proximity
value it will return. The precision argument restricts the resources (perhaps
time or battery) that the sensor will expend in obtaining the returned value.
The poll returns a current value from the sensor.

When all client applications are done using the sensor, it can be turned off
to save battery.

Building a HAL

This chapter and the next show how to create the code that connects native
code into the Android framework in four steps:



1. Define the HAL: create the .h files that specify the API for the
proximity service

2. Implement the HAL for the Acme proximity service: create layers of
code that shim the device driver API for the proximity service to its
HAL API

3. Create a native (C language) daemon that uses the HAL to access the
proximity device

4. Create the JNI interface that publishes the new HAL into the Java
language

Note
In pre-SE Linux versions of Android, it was possible to create and
run a standalone Java daemon, a translation of the C-language
daemon created in step 3. Although it may still be possible, we
abandoned the effort to create one after many hours of trying. Caveat
developer.

Code Structure

The code in these next two chapters will implement both the HAL for the
proximity device and a simple daemon that uses the device through the
HAL code. This simple daemon could replace the one introduced as a
startup service in Chapter 6.

Figure 8.1 illustrates the components and their relationships.



Figure 8.1 HAL Layer Structure



Note that all the code discussed in these chapters runs as part of an
application (user space) and not as part of the kernel (kernel space). This is
all just normal application code.

The code consists of four functional components, as shown in Figure 8.1:

1. HAL code (dotted boxes): This is the abstraction that separates the
capabilities of hardware from its specific implementations. The .h file
defines the HAL interface. The implementation (.cpp file) specializes
the Android HAL API for the target hardware.

2. Shim code (dashed boxes): This is the glue code that connects the
HAL to a specific device hardware/driver. This code adapts the
Android HAL API to the device driver for the hardware.

3. Daemon (blue/solid gray): This is the stand-alone application that
interacts with the hardware through the HAL.

4. Java System Service (white): This is the System Service that
Android applications will use to access the custom hardware.

To build these components into the Acme One device, you must place their
code in the Acme One device folder, as introduced in previous chapters.
The new directories are organized as shown in Figure 8.2.



Figure 8.2 HAL Directory Structure

All the code implementing the HAL for the proximity sensor goes into a
new subdirectory, proximity. If the Acme device had several HALs for
several different devices, they might be further organized into an
intermediate directory, perhaps hal, that contained separate subdirectories
for each of the different device HALs. The Acme project contains only a
single HAL so it is located directly in the project root directory.



Note that to be useful as a real HAL, the abstract definition of the interface
—specifically the definition of the proximity HAL,
proximity/include/proximity_hal.h—would have to be promoted from its
current location inside the directory specifically for the One device, up into
the Android source tree to a location that would make it visible to other
code that needed to use it. If shared only by generations of Acme devices, it
might be put into a subdirectory of the Acme device directory. If visible
across devices from multiple vendors, it might even be promoted into the
device directory itself.

Figure 8.2 also shows the locations in the source tree of the two daemons to
be implemented in the next chapter. Although this organization is
appropriate during the build process, it is entirely likely that applications—
native daemons and system services—will be developed independently
from the libraries on which they depend (the HAL); perhaps even by
different developers. Facilitate this by separating the code bases into
distinct git repositories and using the manifest to place them in the build
tree in their required locations, as shown in Listing 8.1.

Listing 8.1 Manifest Additions for the Acme HAL
Click here to view code image
<!-- Acme Specific Projects -->


  <project path="device/acme/one-kernel" name="one-kernel" 

remote="acme" />


  <project path="device/acme/one/proximity"


           name="platform_device_acme_one_proximity"


           remote="acme" />


  <project path="device/acme/one/app/native_daemon"


           name="platform_device_acme_one_app_native_daemon"


           remote="acme" />


  <project path="device/acme/one/app/java_daemon"


           name="platform_device_acme_one_app_java_daemon"


           remote="acme" />

Implementing the HAL

The HAL is a line between two endpoints. The first of those two endpoints
is the device driver. As noted previously, it is quite likely that the device
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driver interface for a specific piece of hardware is a given: that its API is
not under project control. The device driver and its API are defined by a
third-party hardware provider and whatever driver they supply with it.

Given the ubiquity of the universal serial bus (USB), it is also very likely
that any new device will communicate with the processor via USB. Even a
newly created device may not have its own driver. It may simply appear in
the USB device tree and be accessed with generic USB commands. If it
does have a distinct driver, that driver is likely to be a specialization of the
USB interface.

Note
Contrary to the implications evoked by its name, USB is not really a
bus. Instead, it is a tree containing a master device that polls one or
more slaves. Masters and slaves behave quite differently and require
very different implementations.

Linux USB core supports both modes, referring to the drivers for the
master end as USB device drivers and those for the slave end as
USB gadget drivers.

Although not discussed here, it is entirely possible that a small
Android device will not be the bus master but, instead, a slave that is
occasionally connected to a master. One can imagine, for instance, a
tablet acting as master for the sensors plugged into it for data
collection in the field. At night, though, when plugged into some
kind of data aggregator, it would act as a gadget.

In its full generality, a USB device can be a very complex thing.
Communicating with a single physical device, for instance, may require
interacting with multiple virtual devices. A USB loudspeaker, for example,
presents as both a keyboard—its controls—and a separate interface for the
bulk transfer of sound data.

Entire books are available on the construction of USB drivers and the code
that interacts with them. Those topics are well outside the scope of this
book. Instead of accessing an actual USB interface (boxes with slanted lines
in Figure 8.1) the shim code in this example (boxes with dashed lines in



Figure 8.1) will be a stub. The “bottom” end of this example HAL does not
actually connect to a device driver. In an actual HAL, the shim code would
include the .h files for one or more device drivers. It would make read,
write, and ioctl calls on the drivers they defined. Even though this example
uses a stub, recall that Chapter 6 described the SE additions necessary to
allow executables (applications) access to USB serial devices labeled as
proximityd_exec. The SE additions in Chapter 6 illustrated creating the
device-specific SE policy that is necessary to grant applications access to
kernel-exposed interfaces.

Several resources can be quite helpful in building the HAL for a USB
device. Most obviously, the Linux kernel contains an entire subsystem,
USB Core, that does most of the heavy lifting.

Another important resource is libusb (https://libusb.info). Libusb is a
portable, user-mode, and USB-version agnostic library for using USB
devices. It supports Android. Even if the library is excessive and overly
general for use in some specific applications, the code provides several
excellent examples of how to use USB devices from application code.

HAL Declaration

The second of the two HAL endpoints is the definition of the HAL API.
Visiting it next is another deviation from the strict bottom-to-top order in
which we’ve been visiting components of the stack so far. It is, however,
entirely realistic and appropriate. After the two endpoints are defined,
writing the HAL is the straightforward (if not simple) task of drawing the
line between them.

As noted earlier, the HAL definition should be more than just the simple
reiteration of a hardware interface. A good HAL API will be flexible
enough to support multiple related devices and friendly to the applications
that use it. It is entirely prudent to define the interface as part of system and
even application design, and then to do whatever is necessary to implement
it.

As described previously, the HAL .h file is, in most senses, the HAL. It is
the interface through which client code will interact with the device it
represents.

https://libusb.info/


The HAL for the proximity device is
proximity/include/dev/proximity_hal.h. It is shown in Listing 8.2.

Listing 8.2 Proximity HAL
Click here to view code image
#ifndef PROXIMITY_HAL_H


#define PROXIMITY_HAL_H





#include <hardware/hardware.h>





#define ACME_PROXIMITY_SENSOR_MODULE "libproximityhal"





typedef struct proximity_sensor_device proximity_sensor_device_t;





struct value_range {


    int min;


    int range;


};





typedef struct proximity_params {


    struct value_range precision;


    struct value_range proximity;


} proximity_params_t;





struct proximity_sensor_device {


    hw_device_t common;





    int fd;





    proximity_params_t params;





    int (*poll_sensor)(proximity_sensor_device_t *dev, int 

precision);


};





#endif // PROXIMITY_HAL_H

Listing 8.2 first defines the constant ACME_PROXIMITY_SENSOR_MODULE. This is
a unique string and the name that client code will use to find the proximity
sensor’s HAL.
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Next, the code declares a struct that is best understood in the terms of
object-oriented (O-O) design. Think of the proximity_sensor_device struct
as the definition of a new O-O class. The first member of the struct, common,
in O-O terms is its super class: it contains data and behaviors that are
common to all HALs for all types of devices. This use of the term “super
class” and the function of the common struct member will become clearer in
the examination of the HAL implementation.

Note
The definitions of the device in hardware.h, hw_module_methods_t,
really is a kind of raw version of inheritance. The HAL structs that
represent device instances are hw_module_methods_ts. That means
that the open method, for instance, is at the same offset relative to the
pointer to the HAL struct for every HAL for any device:
hw_module_methods_t.open. Individual HALs, however, “subclass”
the hw_module_methods_t struct by defining a new struct whose first
element is an hw_module_methods_t but which allocate extra space at
the end of that struct, containing pointers to methods with device-
specific functionality. The resulting struct can be cast as the “super
class” struct, an hw_module_methods_t, because the pointer to the
subclass struct is also a pointer to the super class struct. It can also
be cast as the device-specific struct by code that needs the device-
specific functionality.

Next in Listing 8.2 are more of the struct’s members. To continue the
object-orientation analogy, these are the class’s data members (fields). The
first is the file descriptor for the open device driver that the HAL will hold.
Next are the four values that all proximity sensor devices will provide: min
and max for precision and proximity. Each individual hardware device and
its driver will populate these fields with information about the behavior of
that particular device.

The last member of the struct is a pointer to a function, poll, which takes
the struct itself as its first argument. This is the O-O idiom for a method
call.



Note
Object-oriented languages bundle data (fields) with the operations
that may be performed on that data (methods). The standard way of
implementing this is that an operation on a particular data type takes,
as an implicit first argument, a reference to an instance of the data on
which it will operate. Each call to the operation mutates only the
specific instance passed in the call.

Note that nothing in the declaration of the HAL refers in any way to the
actual hardware or driver to which the HAL provides access. In particular,
the HAL definition file does not refer to the driver or even the shim code’s
.h file (see Listing 8.9). The isolation is complete.

This HAL, now completely described, defines what it is to be a proximity
device. This is the bottleneck through which all information must pass,
moving up or down the stack between any proximity device driver and
Android Java code. With the definition of the top and bottom endpoints, the
implementation should be simply a matter of programming.

HAL Definition

At last, we arrive at the definition of the HAL: its implementation. The
implementation of the proximity HAL for the Acme proximity device is in
proximity/hal/proximity_hal.cpp.

The most important resource for implementing a HAL is the AOSP source
file hardware/libhardware/include/hardware/hardware.h. It defines the
types needed to implement a HAL and, in its comments, describes how a
HAL is implemented. It largely determines the structure of the code in
proximity_hal.cpp.

The documentation in hardware.h outlines a three-step process for creating
a HAL. The first step in the process consists of defining a HAL module.
The HAL module contains metadata about a device and is also the factory
for instances of the HAL. Listing 8.3 shows the module definition for the
Acme One Proximity Sensor.



Listing 8.3 Proximity HAL Module Definition
Click here to view code image
// ...


hw_module_t HAL_MODULE_INFO_SYM = {


        .tag = HARDWARE_MODULE_TAG,


        .module_api_version = HARDWARE_HAL_API_VERSION,


        .hal_api_version = 0,


        .id = ACME_PROXIMITY_SENSOR_MODULE,


        .name = "Acme Proximity Sensor",


        .author = "Acme Team",


        .methods = &proximity_sensor_methods


};

Several of these fields, tag, module_api_version and hal_api_version, are
required and must be bound to the values specified for them in hardware.h.
After the required fields are several fields that identify a specific HAL. The
value of the field .id, for instance, is the constant defined back in this
HAL’s .h file.

The most interesting of the fields is .methods. The .methods field must hold
a reference to an hw_module_methods_t. Listing 8.4 quotes—again from
hardware.h—the declaration of hw_module_methods_t.

Listing 8.4 HAL Methods Definition
Click here to view code image
typedef struct hw_module_methods_t {


    /** Open a specific device */


    int (*open)(const struct hw_module_t* module,


                const char* id,


                struct hw_device_t** device);


} hw_module_methods_t;

In other words, the hw_module_methods_t is a struct that contains a pointer
to a function that all HAL implementations have but that each will
implement differently. In object-oriented terms, it is an abstract method in
the HAL class, the super class for all HALs (including the proximity sensor
HAL).
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What method will all HAL implementations have but that each HAL will
implement differently? Well, in O-O terms, it is the class’s constructor, of
course! In the realm of the HAL, the constructor is named .open.

The .open method takes a reference to the HAL module struct itself as its
first parameter. As noted earlier, this is the O-O design idiom for a method
call.

As its second argument, it takes the device ID. This allows the code for a
single open method to specialize its behavior for several similar devices: a
single implementation might have slightly different behaviors for each of
several devices with different IDs. This is the mechanism that allows a
single HAL to support multiple implementations.

Finally, down to business: It is the job of each HAL’s implementation of the
abstract .open method to allocate and initialize the hw_device_t object
returned in the third parameter of the call.

Listing 8.5 shows the hw_module_method_t implementation for the proximity
sensor.

Listing 8.5 Methods Definition for the Proximity HAL
Click here to view code image
// ...





static hw_module_methods_t proximity_sensor_methods = {


        .open = &open_proximity_sensor_module


};





// ...

The hw_module_t struct for the proximity sensor is now complete. Its
.methods.open field contains a reference to a method that opens the
underlying device for use: open_proximity_sensor_module. That method
will be defined in a moment.

Although there is now a way (incompletely implemented) to create an
instance of the proximity sensor HAL, as yet, there is no way use it. There
is no way to poll it or to close it when it is no longer needed. This is the
purpose of the struct created, initialized, and returned by the .open method,
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the hw_device_t. In O-O terms, it is roughly the equivalent of an instance of
the HAL. The Acme proximity sensor device needs an extension of
hw_device_t that declares the two needed methods, poll and close.

Note
Be careful not to confuse hw_module_t and hw_device_t. The
hw_module_t is the HAL’s description and factory. It has an open
method that returns instances of extensions of hw_device_t that
define the behavior of a class of devices.

Finally, Listing 8.6 is the complete definition of the HAL (located at
device/acme/one/proximity/hal/proximity_hal.cpp). As one would expect in
an O-O architecture, the subclass instance contains references to subclass
methods.

Listing 8.6 Proximity HAL Implementation
Click here to view code image
#include <errno.h>


#include <string.h>


#include <malloc.h>


#include <log/log_system.h>





#include "proximity_hal.h"


#include "dev/proximity_sensor.h"





#define LOG_TAG "PROX"





static int poll_proximity_sensor(proximity_sensor_device_t *dev, 

int precision) {


    SLOGV("Polling proximity sensor");





    if (!dev)


        return -1;





    return poll_sensor(dev->fd, precision);


}





static int close_proximity_sensor(proximity_sensor_device_t *dev) {
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    SLOGV("Closing proximity sensor");





    if (!dev)


        return 0;





    close_sensor(dev->fd);


    free(dev);


    return 0;


}





static int open_proximity_sensor_module(


        const struct hw_module_t *module,


        char const *name,


        struct hw_device_t **device) {


    SLOGV("Opening proximity sensor");





    auto *dev = static_cast<proximity_sensor_device_t*>


      (malloc(sizeof(proximity_sensor_device_t)));


    if (!dev)


        return -ENOMEM;





    memset(dev, 0, sizeof(*dev));





    int fd = open_sensor(dev->params);


    if (fd < 0) {


        SLOGE("Failed to open proximity sensor: %s", 

strerror(errno));


        free(dev);


        return -1;


    }


    dev->fd = fd;





    dev->common.tag = HARDWARE_DEVICE_TAG;


    dev->common.version = 0;


    dev->common.module = (struct hw_module_t *) module;


    dev->common.close = (int (*)(struct hw_device_t *)) 

close_proximity_sensor;





    dev->poll_sensor = poll_proximity_sensor;





    *device = reinterpret_cast<hw_device_t *>(dev);





    return 0;


}







static hw_module_methods_t proximity_sensor_methods = {


        .open = open_proximity_sensor_module


};





hw_module_t HAL_MODULE_INFO_SYM = {


        .tag = HARDWARE_MODULE_TAG,


        .module_api_version = HARDWARE_HAL_API_VERSION,


        .hal_api_version = 0,


        .id = ACME_PROXIMITY_SENSOR_MODULE,


        .name = "Acme Proximity Sensor",


        .author = "Acme Team",


        .methods = &proximity_sensor_methods


};

Note that, so far, this HAL implementation is completely device agnostic.
This same code could be used for nearly any proximity sensor device,
depending on the definitions of three methods: open_sensor, close_sensor,
and poll_sensor.

There are a few ways of specializing this generic implementation for a
specific device. A HAL implementation might be specialized at
compile/bind time by statically assigning the reference to a method
implementation appropriate for the specific device to each of those three
symbols. In fact, that is how this example will work: That is what we do
here. There will be a single shim that will define those three functions.

The choice could also be runtime, though. Multiple definitions of
hw_module_t might all use a HAL implementation very similar to this one.
An extension of the implementation might use the value of hw_module_t.id
to choose among several device-specific function implementations to be
assigned to the proximity_sensor_device_t’s .common.close and
poll_sensor methods.

The HAL must be added to the build system. The build file is shown in
Listing 8.7 and is located at device/acme/one/proximity/Android.bp. The
HAL is a shared library named “libacmehal” and is built from the source
“proximity_hal.cpp.” That source file, of course, includes the file
“proximity_hal.h,” which defines the HAL and which was shown in
Listing 8.2.



Listing 8.7 Acme HAL Build Blueprint File
Click here to view code image
cc_defaults {


    name: "vendor.acme.one.proximity.defaults",


    relative_install_path: "hw",


    cflags: [


        "-g",


        "-O0",


        "-Wall",


    ],


    vendor: true,


}





cc_library_shared {


    name: "proximityhal.default",


    defaults: [


        "vendor.acme.one.proximity.defaults",


    ],


    srcs: [


        "hal/proximity_hal.cpp"


    ],


    header_libs: [


        "liblog_headers",


        "libhardware_headers",


    ],


    local_include_dirs: [


        "include"


    ],


    shared_libs: [


        "liblog",


        "libhardware",


    ],


    static_libs: [


        "libacmeproximityshim",


    ]


}

Understanding the Shim

The final step in connecting the proximity driver to its HAL is the shim that
actually implements the three device methods, open_sensor, close_sensor,
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and poll_sensor, for the Acme Proximity Sensor device. The definition of
the shim interface is in the file
proximity/include/dev/proximity_sensor.h. This is the “bottom” of the
HAL. It is the API for the proxy to which the HAL code will delegate calls
for one, specific type of proximity sensor device to which the proximity
HAL provides access.

Because this example is quite simple and the HAL is responsible for only
one actual hardware device, these multiple layers of abstraction may seem
excessive. Indeed, in this specific context, they may be. Consider, though,
that in this specific pedagogical exercise, the whole notion of a HAL may
be excessive.

The shim API is not part of the HAL. It is not included by proximity_hal.h,
the definition of a proximity sensor’s HAL. The implementations of the
device HAL (there may be more than one) is probably the only code in the
entire system that uses it. It completely encapsulates the details of a specific
device and should certainly never be needed by code that uses the HAL.
Listing 8.8 shows the shim API.

Listing 8.8 Proximity Sensor Shim API
Click here to view code image
#ifndef ACME_PROXIMITY_SENSOR_H


#define ACME_PROXIMITY_SENSOR_H





#include "proximity_hal.h"





int open_sensor(proximity_params_t &params);





int poll_sensor(int fd, int precision);





int close_sensor(int fd);





#endif //ACME_PROXIMITY_SENSOR_H

No surprises here. These are exactly the services described earlier and used
by the HAL: The sensor can be turned on and off to optimize battery use;
while it is on, it can be polled. A poll takes as arguments the device file
descriptor, a requested precision (a number between precision.min and
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precision.max), and returns a proximity value that is between
proximity.min and proximity.max. These bounds are populated in the
params struct passed to the shim when turning the sensor on.

It is worth restating that although the device driver for a given device may
run at least partially as part of the kernel, none of the HAL code does. All
the code in this chapter runs in user space. Although its use may be
restricted to privileged applications, HAL code runs exclusively as part of
some application.

Implementing the Shim

Finally, Listing 8.9 shows the actual implementation of the shim that
connects the HAL to the device driver. It is in the file
proximity/dev/proximity_sensor.cpp. In this example, it is just a stub. It
just mocks the code that would actually talk to a device driver. Instead of
the hardwired values returned here, a real proxy would interface with the
hardware device, probably through its USB driver, to perform the actions
required by the HAL.

Listing 8.9 Proximity Sensor Glue Code Stub
Click here to view code image
#include "dev/proximity_sensor.h"





// This is stub, mocking actual glue code.


// If this were a real thing, it would talk to a device driver,


// presumably for a USB device





int open_sensor(proximity_params_t &params) {


    params.precision_min = 0;


    params.precision_range = 100;


    params.proximity_min = 0;


    params.proximity_range = 100;





    return 0; // a completely fake fd


}





int poll_sensor(int fd, int precision) {


    if (precision < 0) {


        return -1;
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    } else if (precision < 70) {


        return 60;


    } else if (precision < 100) {


        return 63;


    } else {


        return -1;


    }


}


int close_sensor(int fd) {


    return 0;


}

Now that the shim is defined, it must also be added to the build. Because it
is used by the HAL as well as the simple daemon and the binderized HAL
covered in Chapter 12, it is built as a library. The extension of the
Android.bp shown in Listing 8.10 shows the additions necessary to build
the library as well as expose its headers to other components of the system.

Listing 8.10 Proximity Sensor Shim Additions to Android.bp
Click here to view code image
cc_library {


    name: "libacmeproximityshim",


    defaults: [


        "vendor.acme.one.proximity.defaults",


    ],


    srcs: [


        "dev/proximity_sensor.cpp",


    ],


    header_libs: [


        "libhardware_headers",


    ],


    local_include_dirs: [


        "include",


    ],


}





cc_library_headers {


    name: "libacmeproximityshim_headers",


    defaults: [


        "vendor.acme.one.proximity.defaults",


    ],


    header_libs: [
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        "libhardware_headers",


    ],


    export_header_lib_headers: [


        "libhardware_headers",


    ],


    export_include_dirs: ["include"],


}

Summary

This chapter introduced the Android HAL. A HAL is the interface between
Android and a class of similar hardware devices: cameras, audio, sensors,
and so on. The primary purpose of a HAL is to provide a single 152API for
all devices that provide a similar service. A HAL abstracts device specifics
so that Android code that uses the device need not change to accommodate
a specific device.

Because they are both abstractions and APIs, designing HALs requires
careful thought and a pretty good crystal ball. Especially when a team does
not have a lot of experience with either Android or a new device, designing
a HAL may bog down development and not prove future-proof anyway.
Good reasons exist for creating a HAL. Good reasons also exist for
planning to throw one away.

It is even possible to make an argument for C glue code that is extremely
simple and hoisting any complexity up into Android Java. If the project
scope already includes modification of the Android code, a Java device
shim may be the most effective plan. On the other hand, for devices that
will get OS updates—especially if those updates will come from an external
source or that will need to adapt to multiple hardware implementations—a
HAL is just the thing.

The implementation of the Acme Proximity sensor HAL in this chapter is a
representative basic HAL: It is realistic, complete, and it compiled and ran
at the time of this writing. It is, however, a stub. It does not actually use a
USB driver to communicate with a physical device as it almost certainly
would were it more than pedagogical.



The next chapter demonstrates using this HAL in a daemon written in C.
Chapter 11 demonstrates converting this legacy HAL to a Binderized
(Treble) HAL.



9

Getting to Java: The JNI

The previous chapter detailed the process of creating a HAL, an abstract
interface between the Android framework and a novel bit of hardware.

That is only halfway there. Although a HAL is the canonical way of
plumbing hardware into Android, it is not sufficient to make the device
useful from Android Java programs. To do that, we need the Java’s Native
Interface, the JNI.

The goal for this chapter is to cross the boundary into Android’s
implementation language, Java. We’ll cross that boundary by coding a Java
language application that connects to the proximity sensor using its HAL
and that logs its status once every minute or so. We’ll achieve that goal in
three steps:

1. We’ll create a simple native application that talks directly to the
proximity sensor. This application is a simple extension of the one
discussed at the end of Chapter 6.

2. We’ll refactor that application to use the HAL we built in the last
chapter. A native application that uses the HAL is a useful artifact:
The only significant distinction between a native application and the
corresponding Java application is, exactly, the implementation
language. The choice of environments depends entirely on the
preferences of the team that will build and support it.

3. We’ll implement an application in Java using Java’s Native Interface
(the JNI) that uses the native HAL from code running inside the
Android’s bytecode interpreter.



Note
It was our intention to run the last example, the Java application, also
as a daemon. Unfortunately, we were unable to construct SE rules
that allowed it to run in ART under init. Instead, the Java
application shown here must be run as a system service started by
Zygote (as described in Chapter 7).

Code Structure

The applications described in this chapter are complete and freestanding.
Therefore, each goes into its own subdirectory of “app” directory in the
Acme One source structure. Figure 9.1 shows the structure (with the code
from the previous chapters elided).



Figure 9.1 Application Code Layout

Although the code for each of the applications is nested inside the “app”
folder in the Acme One device file structure, there is no need for all the
code to be a fixed part of the Acme One source code repository. As usual,
creating a new git repo for each separate application and using repo to add
them at checkout time to the workspace makes sense.

It is possible to do even better, though. Notice that, as described, each of the
applications has exactly the same function: periodically logging proximity
data to the console. There is no reason ever to build all three for a single
given device. All three implementations might exist—perhaps as legacy
implementations or specialized versions required for some specific device
—but having all three in the workspace at once would be useless, at best.

The repo tool not only supports this scenario—three different versions of
the same application—but a nifty feature called groups (first described in
Chapter 2) makes it very convenient. Listing 9.1 shows the additions to the
manifest.

Listing 9.1 Manifest Additions for the Proximity Applications
Click here to view code image
<!-- Acme Applications -->


  <project path="app/simple_daemon"


           name="simple_daemon" remote="acme"


           groups="nodefault" />


  <project path=app/native_daemon


           name="native_daemon" remote="acme"


           groups="nodefault" />


  <project path=app/java_daemon


           name="java_daemon" remote="acme"


           groups="nodefault" />

Listing 9.1 demonstrates the use of this new workspace customization
feature, the groups attribute. Annotating a project in the manifest with the
group “nodefault” indicates to the repo tool that the annotated repository
should not be downloaded as it normally would be when the workspace is
synched. To pull the code for one (or more) of the applications into the
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workspace, use the repo tool -g flag to specify a group that includes the
desired implementation.

One simple way to select a particular project is by its name. Every project
belongs to a group whose name is “name:” followed by the value of the
project’s name attribute. For example, when used with the manifest shown in
part in Listing 9.1, the following command will create a workspace that
contains the simple-daemon application:

Click here to view code image

repo init -g name:simple_daemon ...

Using the Device

The code for the first version of the application is almost trivial. It simply
opens the device directly (no HAL), polls at a fixed interval, and logs the
result. This is the trivial extension of the daemon from Chapter 6. Listing
9.2 shows the code for it.

Listing 9.2 Simple Native Proximity Application
Click here to view code image
#include <unistd.h>


#include <stdio.h>


#include <android/log.h>


#include "dev/proximity_sensor.h"





#define DELAY_SECS 60


#define ALOG(msg) __android_log_write(ANDROID_LOG_DEBUG, 

"PROXIMITY", msg)





int main(int argc, char *argv[]) {


    struct proximity_params_t config;


    char message[128];





    int fd = open_sensor(config);


    if (fd < 0)


        return -1;





    int n = 0;
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    int precision;


    while (true) {


        sleep(DELAY_SECS);





        n++;


        if (n < 10) {


            precision = 40;


        } else {


            n = 0;


            precision = 80;


        }





        int proximity = poll_sensor(fd, precision);





        if ((proximity < config.proximity_min)) {


            close_sensor(fd);


            return 0;


        }





        snprintf(message,


                 sizeof(message),


                 "proximity @%2d: %4.2f",


                  precision,


                 (100.0 * (proximity - config.proximity_min))


                          / config.proximity_range);





        ALOG(message);


    }


}

This code polls the sensor once every minute with a precision of 40 and
once every 10 minutes with a precision of 80. It logs the result to the
console.

Listing 9.3 shows the blueprint file used to build the application. It
appeared previously in Chapter 6 as Listing 6.11.

Listing 9.3 Building the Simple Native Application
Click here to view code image
cc_binary {


    name: "acmesimpledaemon",


    relative_install_path: "hw",
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    init_rc: ["vendor.acmesimpledaemon.acme.one.rc"],


    header_libs: [


        "libacmeproximityshim_headers",


        "liblog_headers",


    ],


    srcs: [


        "acme-simple-daemon.cpp"


    ],


    shared_libs: [


        "liblog",


        "libcutils",


    ],


    static_libs: [


        "libacmeproximityshim",


    ],


    vendor: true,


    proprietary: true,


}

Using the HAL

The second version of the application is only slightly different from the
first. The functional part of the code, the loop that logs proximity readings,
is identical. The only differences between this code and that of the
preceding application are that, instead of opening the device directly, it
requests the device HAL by name from the OS and then uses the returned
reference to invoke sensor methods through the HAL.

Listing 9.4 shows the code for the second version of the application (located
at device/acme/one/app/native_daemon/acme-native-daemon.cpp).

Listing 9.4 HAL Native Proximity Application
Click here to view code image
#include <unistd.h>


#include <stdio.h>


#include <android/log.h>


#include <hardware/hardware.h>





#include "dev/proximity_hal.h"
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#define DELAY_SECS 60


#define ALOG(msg) __android_log_write(ANDROID_LOG_DEBUG, 

"PROXIMITYD", msg)





int main(int argc, char *argv[]) {


    const hw_module_t* module


    if (hw_get_module(ACME_PROXIMITY_SENSOR_MODULE, &module) {


        ALOG("Failed to load Acme proximity HAL module");


        return -1;


    }


        


    proximity_sensor_device_t* device;


    if (module->methods->open(


        module,


        nullptr,


        reinterpret_cast<struct hw_device_t**>(& device))) {


        ALOG("Failed to open Acme proximity HAL");


    	 return -1;


    }





    proximity_params_t config = device->params;


    char message[128];





    int n = 0;


    int precision;


    while (true) {


        sleep(DELAY_SECS);





        n++;


        if (n < 10) {


            precision = 40;


        } else {


            n = 0;


            precision = 80;


        }





        int proximity = device->poll_sensor(device, precision);





        if ((proximity < config.proximity.min)) {


            device->common.close(reinterpret_cast<hw_device_t *>

(device));


            return 0;


        }







        snprintf(message, sizeof(message), "proximity @%2d: %4.2f", 

precision,


            (100.0 * (proximity - config.proximity.min)) / 

config.proximity.range);





        ALOG(message);


    } 


}

The only thing worthy of particular notice, here, is that the second argument
to the open method is null. It could have been used by the HAL to do
runtime specialization. The simple Acme Proximity HAL described in the
last chapter, however, ignores the parameter completely.

The build script for this second application is also nearly identical to that
for the first native application. The acmenativedaemon must have the same
SE label as that used for the simple version. That label allows it access to
USB serial devices and to be started by init. The label is applied in
file_contexts within the SE policy folder. Because these things are so
similar, they are not included here. The only differences are the application
name and the libraries it uses, as shown in Listing 9.5.

Listing 9.5 HAL Native Proximity Application Build File
Click here to view code image
cc_binary {


    name: "acmenativedaemon",


    relative_install_path: "hw",


    init_rc: ["vendor.acmenativedaemon.acme.one.rc"],


    header_libs: [


        "libacmeproximityshim_headers",


        "liblog_headers",


        "libhardware_headers",


    ],


    srcs: [


        "acme-native-daemon.cpp"


    ],


    shared_libs: [


        "liblog",


        "libcutils",


        "libhardware",


    ],
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    vendor: true,


    proprietary: true,


}

Using the Java Native Interface

Most Android applications are written in interpreted languages. The source
code for these applications—probably Kotlin or Java—is compiled to
bytecodes. Bytecodes are not instructions that can be executed by any
actual hardware. Instead, as discussed in Chapter 7, they are native
instructions for a virtual machine. The virtual machine is an application that
runs on the target device, interprets each of the bytecodes in the compiled
app, and executes a set of native instructions necessary to perform the
action described by the bytecode.

Most Android code, then, is executed as interpreted bytecodes. Clearly, the
execution of those bytecodes can do only things that the virtual machine
that interprets those bytecodes was built to do. In particular, because no
virtual machine has compiled into it the ability to talk to the Acme
proximity sensor, there is no way that interpreted code can use the sensor.

Fortunately, interpreted virtual machine instructions are not a running
program’s only interface to native instructions and the operating system.
Since its creation, the Java language has defined a mechanism that allows
an application to execute arbitrary native code uninterpreted and outside the
virtual machine. The mechanism is as old as Java itself and is called the
Java Native Interface (JNI). The Android virtual machines implement this
mechanism.

Note
Although the JNI allows the execution of machine instructions that
are not part of the virtual machine, JNI code is executed as part of
the same process that is running the virtual machine. JNI code
executes “outside the virtual machine” only in the sense that it is not
executing instructions that virtual machine designers provided. It is
still virtual machine methods that are below the JNI code in the call



stack and to which control will return when the execution of the JNI
code completes.

Executing Native Code

Figure 9.2 illustrates the ways in which native code can be used in an
Android application.

Application code, as discussed earlier, is typically written in an interpreted
language. It is represented in Figure 9.2 by the largest box at the top of the
figure.

Android application code depends on a library of standard functions and
classes in the java.* and android.* packages. The java packages have an
API that is very similar to the Java 8 JRE. The android library defines the
Android runtime environment. Both of these libraries are implemented
largely in Java and, therefore, most of the code in each compiles into
bytecodes that are executed by the virtual machine.

Beneath the interpreted code and shown in the center of Figure 9.2 is the
virtual machine. It is, of course, written in a language (probably C and C++)
that is compiled into machine instructions that are native to the target
device.

To the left and right of the virtual machine in Figure 9.2 are two more
pieces of code that are compiled directly (again, usually from C or C++)
into instructions native to the target device. Although run as part of the
application, these pieces of code are not compiled to bytecodes and are not
interpreted by the virtual machine.



Figure 9.2 Interpreted and Native Code

Nearly all Android programs make use of the native code represented by
the block on the bottom right of the figure when they use the runtime
libraries. Although, as mentioned earlier, much of the runtime environment
code is implemented in Java, the implementations of certain functions that
do specialized things—like interfacing with the kernel, file and network I/O
or performing highly optimized functions like encryption and decryption—
are all native (non-interpreted) code called from the Java.

The Java Native Interface (JNI) is the mechanism by which the interpreted
runtime library code calls the device native code. It is also a well-defined,
public API; is implemented by the Android virtual machine; and can be
used directly by application code, just as it is used by the Java and Android
runtime libraries. Any application can use the JNI to execute native code:
While it is running, it can load an arbitrary native library and execute the
code in it.

Note
A previous Java-based smartphone standard, J2ME, enforced
security and controlled application access to hardware by preventing
the use of native code. Applications could only execute instructions



that were compiled into the virtual machine; access to instructions
deemed “dangerous” was carefully controlled.

Android has a much different security model and no such restriction.
Applications can and do execute their own native code.

JNI: The Java Side

One more time, let’s interrupt our strict up-the-stack journey through the
Android landscape and look at the JNI starting from above, in code written
in Java.

The Java side of the JNI is straightforward and quite simple. It consists of
the keyword “native” and the system method, System.loadLibrary.

A method with the keyword native in its declaration—a native function—
is similar to the declaration of a function in a Java interface: It declares the
function prototype but not its implementation. Methods declared in an
interface must be defined in the classes that implement the interface.
Methods declared “native,” to the contrary, are not defined in Java at all.
Instead, the virtual machine expects to find their definitions as canonically
named symbols in a library loaded with the load (or loadLibrary) method.

Note
Kotlin uses the keyword “external” to accomplish the same thing:
declaring a function whose definition is elsewhere.

Listing 9.6 shows the declaration of the three methods that Java code will
need to interact with the proximity device.

Listing 9.6 Native Method Declarations
Click here to view code image
package com.acme.device.proximity;


// ...





public class AcmeProximitySensor {
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   // ...


    private static native long open();


    private static native int poll(long hdl, int precision);


    private static native void close(long hdl);


}

JNI: The Native Side

These three methods must now be defined in a linkable library. In this
example, the library will be written in C.

The Android virtual machine will translate calls to these native methods
into calls to canonically named functions in a native library. The definitions
for the corresponding functions must have exactly the names that the
runtime expects them to have. Fortunately, there is tool that is part of the
Java Development Kit that will generate the C prototypes for the native
definitions automatically: javah.

Note
javah has been deprecated as of Java 9. Even in Java 8, its
functionality can be duplicated with the -h flag for the java compiler,
javac.

Javah need not be part of the build process. Running it is necessary only
when new native methods are introduced or when one of the signatures of
an existing native methods changes: when the headers it generates will be
different from the headers it generated last time it was run. Some shops
decide to create the headers once and then check them in to source control
like any other source file.

Because the process of generating the native prototypes can be automated,
some shops do prefer to make it part of the build. When there are a lot of
native methods and they are changing frequently, this is a very reasonable
approach. Note, though, that javah only generates the header files and the
function prototypes! If the corresponding function definitions (presumably
in a .c file) do not match, the build will fail with native compiler errors.



Running javah by hand is quite simple. It takes as arguments:

The classpath identifying the directory (or jar) that is the top of the
package tree containing the compiled Java .class files. The classpath
is specified using the -cp command line option.

Either a -d or -o argument indicating the directory or file
(respectively) into which the tool should put the generated output.

The fully qualified name of the class containing native declarations
for which headers are to be generated.

For instance, run from the root of the Java application package
(device/acme/one/app/java_daemon), the following command will create a
.h file from the binary generated by compiling the code in Listing 9.6:

Click here to view code image

javah -cp java \


 -o cpp/com_acme_device_proximity_AcmeProximitySensor.h \


  com.acme.device.proximity.AcmeProximitySensor

Javah will search the directory “java” for the class file containing the class
com.acme.device.proximity.AcmeProximitySensor, (probably
java/com/acme/device/proximity/AndroidProximitySensor.class) and
create C prototypes for any native methods it finds there. The prototypes
will be written to the file
cpp/com_acme_device_proximity_AcmeProximitySensor.h. Listing 9.7
shows the generated file.

Listing 9.7 Proximity HAL JNI Function Prototypes
Click here to view code image
/* DO NOT EDIT THIS FILE - it is machine generated */


#include <jni.h>


/* Header for class com_acme_device_proximity_AcmeProximitySensor 

*/





#ifndef _Included_com_acme_device_proximity_AcmeProximitySensor


#define _Included_com_acme_device_proximity_AcmeProximitySensor


#ifdef __cplusplus


extern "C" {
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#endif


/*


 * Class:     com_acme_device_proximity_AcmeProximitySensor


 * Method:    open


 * Signature: ()J


 */


JNIEXPORT jlong


JNICALL Java_com_acme_device_proximity_AcmeProximitySensor_open


  (JNIEnv *, jclass);





/*


 * Class:     com_acme_device_proximity_AcmeProximitySensor


 * Method:    poll


 * Signature: (JI)I


 */


JNIEXPORT jint


JNICALL Java_com_acme_device_proximity_AcmeProximitySensor_poll


  (JNIEnv *, jclass, jlong, jint);





/*


 * Class:     com_acme_device_proximity_AcmeProximitySensor


 * Method:    close


 * Signature: (J)V


 */


JNIEXPORT void


JNICALL Java_com_acme_device_proximity_AcmeProximitySensor_close


  (JNIEnv *, jclass, jlong);





#ifdef __cplusplus


}


#endif


#endif

Note, especially, the extern "C" { ... } directive. It is essential! It
prevents a C++ compiler from mangling the names of the functions and
making their definitions unrecognizable as the definitions for the
corresponding Java native declaration.

Note
Canonically named methods are not the only way to link the native
implementation of a method to its Java declaration. The



RegisterNatives JNI function takes, as an argument, an array of
JNINativeMethod, each of which identifies a Java method (by fully
qualified signature) and includes a pointer to the native
implementation. Used in the JNI_OnLoad method (called by the VM
when it loads a native library), JNINativeMethod provides an
alternative way of connecting Java and native methods.

Note also that these native definitions depend on the header file jni.h. The
jni.h header file contains the definitions for the native type abstractions for
Java’s base types—int, long, [] (array), and so on—some macros
(JNIEXPORT, JNICALL, and so on), but most importantly the definition of the
JNI environment, a structure of opaque pointers to standard JNI functions.
These functions allow native code to work with Java objects.

This chapter will conclude with a slightly deeper discussion of the JNI
native environment. For the moment, though, let’s just assume (as it is
usually safe to do), that a jint is an int, a jlong is a long, and so on.

The next step is implementing the functions in native code. Stealing code
from Listing 9.4 makes this a trivial task. Listing 9.8 shows the result.

Listing 9.8 Proximity HAL JNI Implementation
Click here to view code image
#include <jni.h>


#include <string>


#include <hardware/hardware.h>





#include "dev/proximity_hal.h"





JNIEXPORT jlong JNICALL 

Java_com_acme_device_proximity_AcmeProximitySensor_open


  (JNIEnv * env, jclass clazz) {


    const hw_module_t *module;





    if (hw_get_module(ACME_PROXIMITY_SENSOR_MODULE, &module))


        return -1;


    long device;


    if (module->methods->open(


            module,
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            nullptr,


            reinterpret_cast<struct hw_device_t **>(&device)))


        return -1;


    return (jlong) device;


}





JNIEXPORT jint JNICALL 

Java_com_acme_device_proximity_AcmeProximitySensor_poll


  (JNIEnv *env, jclass clazz, jlong handle, jint precision);


    auto *device = reinterpret_cast<proximity_sensor_device_t *>

(handle);


    return device->poll_sensor(device, precision);


}





JNIEXPORT jint JNICALL 

Java_com_acme_device_proximity_AcmeProximitySensor_close


  (JNIEnv * env, jclass clazz, jlong handle);


    auto device = reinterpret_cast<proximity_sensor_device_t *>

(handle);


    return device->common.close(reinterpret_cast<hw_device_t *>

(device));


}

This is a calculated and extremely simple example. Once again, though, the
reader is cautioned! The JNI is extensive, complex, and easy to break.
Entire books exist about this topic alone.

The alert reader will notice that the reference to the sensor, returned by the
HAL, is cast as a jlong in both the open and the close methods. This is the
introduction to a common and powerful JNI technique. Its purpose will
become obvious when the corresponding methods are implemented in Java.

A Java Proximity Application

Having plumbed a path from Java code through the HAL and into the Acme
Proximity Sensor, we can now implement an analog for the applications
shown in Listings 9.2 and 9.4 that is written in Java.

The Native Shim



The first step will be to complete the AcmeProximitySensor class, shown in
part in Listing 9.6. It is the shim that connects the Java environment to the
native environment.

It is very much best practice that the shim code abstract away even the
faintest whiff of native-ness. The API for the shim should follow all the best
practices standard for any Java API. In particular, declaring the API in a
mockable Java interface is a great way to make it possible to test client code
without requiring access to any specific hardware.

Listing 9.9 shows a complete implementation of the AcmeProximitySensor
class.

Listing 9.9 Proximity HAL Java Implementation
Click here to view code image
public class AcmeProximitySensor implements AutoCloseable {


    static { System.loadLibrary(“acmeproximityjni”); }





    private long peer;





    public void init() throws IOException {


        synchronized (this) {


            if (peer != 0L) { return; }


            peer = open();


            if (peer == 0L) {


                throw new IOException(“Failed to open proximity 

sensor”);


            }


        }


    }


    


    public int poll(int precision) throws IOException {


        synchronized (this) {


            if (peer == 0L) { throw new IOException(“Device not 

open”); }


            return poll(peer, precision);


        }


    }





    @Override


    public void close() throws IOException {
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        final long hdl;


        synchronized (this) {


            hdl = peer;


            peer = 0L;


        }


        if (hdl == 0L) { return; }


        if (close(hdl) < 0) {


            throw new IOException(“Failed closing proximity 

sensor”);


        }


    }





    @Override


    protected void finalize() throws Throwable {


        try { close(); }


        finally { super.finalize(); }


    }





    private static native long open();





    private static native int poll(long handle, int precision);





    private static native int close(long handle);


}

There are several things to note in this code.

The first is the use of the previously discussed System.loadLibrary method.
It is called, as is frequently the case, from a static initializer that will be
invoked when the class is loaded. This is a common strategy because the
library must be loaded before any of the methods in the class can be used.

There are other strategies, though. A system that requires several native
libraries may load them all at once, perhaps using some kind of registration
system, as part of startup. Another possibility, especially in systems that
require additional initialization, is loading necessary native libraries in an
initialization method that client code must call explicitly before making any
other use of the library.

Note, also, that System.loadLibrary loads the library named in its actual
parameter in a system-dependent way. It modifies the name to conform to
the platform library naming conventions and then attempts to load it from



the library path. When run on a Linux OS, for example, the code in Listing
9.9 will load the libacmeproximityjni.so library. On a Windows system,
though, it would load the acmeproximityjni.dll library.

The library path can be specified at JVM startup using the system parameter
java.library.path or, on Android Linux, by setting the environment
variable LD_LIBRARY_PATH. A second method, System.load, mentioned
previously, will load a library from a specific file named in the fully
qualified path passed as its argument.

Next, observe the use of the variable peer. In this code, the Java long
variable peer contains the native reference to the HAL object as described
in the discussion of Listing 9.8. Unlike C, in which a reference can be made
opaque by declaring it void*, making a reference opaque in Java is fairly
difficult. Nonetheless, it is crucial that the contents of a variable used in this
way be treated as opaque. Any mutation of any kind by the Java code is
almost certainly an error and probably a disastrous one. As usual, in
situations like this, minimizing visibility and mutability is a useful strategy.

Together, Listings 9.8 and 9.9 illustrate the simplest form of a very common
pattern. The responsibility for managing the Java use of specialized
hardware is handled through the coordination of two objects, one Java and
one native. The two objects are the two ends of a bridge—one end in the
native code and the other in the Java code—through which all interactions
take place. Client code instantiates the Java object and the Java object
manages the native object, frequently called a native peer, or a companion
object. The Java code holds a reference to the native object. The native
code’s awareness of the Java code is kept minimal.

The Native Shim: Opaque Peer

Another example of this pattern attempts to enforce the opacity of the
native reference in the Java variable by using reflection in the native code to
set the value of the reference held in the Java variable. Listings 9.10 and
9.11 illustrate this technique.

Listing 9.10 Opaque Peer: Native
Click here to view code image
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JNIEXPORT int


JNICALL Java_com_acme_device_proximity_AcmeProximitySensor_open


    (JNIEnv *env, jclass klass, jobject instance) {





    if (hw_get_module(ACME_PROXIMITY_SENSOR_MODULE, &module))


        return -1;





    hw_device_t *device;


    if (module->methods->open(module, nullptr, &device)))


        return -2;





    jfieldID peer = env->GetFieldID(klass, "peer", "J");


    if (!peer)


        return -3;





    env->SetLongField(instance, peer, reinterpret_cast<jlong>

(mem));


    


    return 0;


}

Listing 9.11 Opaque Peer: Java
Click here to view code image
public class AcmeProximitySensor implements AutoCloseable {


    /...


    


    private long peer;





    /...





    public void init() throws IOException {


        synchronized (this) {


            int status = open(this);


            if (status != 0) {


                throw new IOException(


                    "Failed to open proximity sensor: " + status);


            }


        }


    }





    /...
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    private static native int open(AcmeProximitySensor instance);


    


    /...


}

Two new JNI methods are used here without introduction: GetFieldID and
SetLongField. Their names, though, are fairly self-explanatory (they return
a reference to a Java field and assign the field value, respectively) so that
the concept the listing introduces should be clear.

The open method in Listing 9.11 could, as easily, be an instance method
instead of a static method. In JNI, the difference between the
implementations of a static and an instance method is the second argument
to the method. The second argument to a static native function is a reference
to the class to which the function belongs. The second argument to an
instance native function is a reference to the instance to which the function
belongs. Holding a reference to the instance means that the native code can
access the instance’s fields, exactly as the example code does.

In this case, however, we also need a reference to the object’s class (for the
call to GetFieldID). Because both are needed, using a static method (which
provides the reference to the class object) will work just as well. We pass
the instance reference (this in the call to open, in 

Listing 9.11) explicitly. The native implementation then has both of the
references that it needs.

Although somewhat more complex, the strategy illustrated in Listings 9.10
and 9.11 has advantages. In this implementation, any Java use of the
variable peer is now clearly an error. Distinguishing between appropriate
and inappropriate use of the stored pointer is not necessary: Any use is an
error. Another advantage is that the open method’s return value is now,
unambiguously, a status code. No need exists to partition returns into legal
values and illegal values.

The Native Shim: Finalization

Returning to Listing 9.9, one more issue is worthy of note: the management
of the lifecycle of the companion object.



Although the garbage collector manages Java’s memory, native memory
usually must be allocated and deallocated explicitly. An
AcmeProximitySensor object allocates its companion in its “open” method.
So how does it free it? There are several possible answers to that question.

The first and best is “explicitly.” For reasons that will be discussed
momentarily, the most effective way to handle explicitly managed memory
is explicitly. Ideally, an object with a native peer that must be freed
explicitly would be marked somehow so that clients would know that they
should explicitly free it.

That is exactly the purpose of Java’s Closeable interface. An object that
implements Closeable is hinting to its user that it needs to be closed
explicitly when the user is through with it. The AcmeProximitySensor
implements Closeable’s sub-interface AutoCloseable and uses it to free its
companion.

Note
The AutoCloseable interface, introduced in Java 7, extends
Closeable: Prefer it, where possible. Most significantly, instances of
a class that implements AutoCloseable can be used with the try-with-
resources statement. They can also throw exceptions, other than an
IOException, as appropriate to their specific failure modes.

The contract for the AutoCloseable’s close method is also different:
idempotency is not a requirement. Rather, developers are strongly
encouraged to mark closed instances and to prevent their use after
closing.

A second strategy is a finalizer. A Java finalizer is a method with the
specific signature, protected void finalize() throws Throwable. If an
object has a method with that signature, it is called by the Java runtime just
before the garbage collector frees the object’s memory. This seems perfect:
with one small method, when the AcmeProximitySensor goes away, so does
its companion.



Unfortunately, however, there’s no such thing as a free lunch. Finalizers are
quite difficult to get right and, even when correct, have problems.
Correctness first.

There is no guarantee about the order in which objects are finalized after
they become eligible for garbage collection. The example code in Listing
9.12 has several problems, not the least of which is that it may get a
NullPointerException in its finalizer. There is no guarantee that the list
referenced by objects has itself not already been finalized when the
finalizer for an instance of BrokenFinalizer is run. Its contents might well
have been finalized first!

Listing 9.12 Broken Finalizer: Don’t Do This!
Click here to view code image
public class BrokenFinalizer implements Closeable {


    @NonNull


    private final List<NativeObject> objects





    // ...


    


    @Override


    protected void finalize() throws Throwable {


        for (NativeObject obj: objects) { obj.close(); }


    }


}

In addition to being brittle and very difficult to code, finalizers have two
other problems. The first is that they impose a considerable inefficiency on
the garbage collector. Because a finalizer can do all kinds of weird stuff
(including “resurrect” the object being garbage collected by storing a
reference to it somewhere!), the garbage collector has to do checks that are
not necessary for an object that does not have a finalizer. These checks slow
the collector down, cause it to place a heavier burden on the application,
and mean that the lag between last use and deallocation gets longer.

The second problem, though, hinted at in the last sentence, is even worse.
Although Java promises that it will run the garbage collector before it runs
out of memory, there is no way to predict how long an object that is eligible
for collection will sit around in memory before Java needs space and
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schedules it for collection. Furthermore, Java cannot guarantee that all
finalizers will be run before an application runs out of memory. Finalizers
are run in a platform-dependent way: almost universally on a single Java
thread. If an application allocates and then frees a hundred large objects
every second, each of those objects is scheduled for finalization, and each
finalization takes a half a second to complete, the application is doomed.
An application with native companion objects can build up a considerable
backlog of dead objects before a garbage collection takes place. Instead of
being freed incrementally, all of those objects are put on the finalization
queue suddenly and all at once.

Despite these problems, finalizers can be a reasonable part of a “belt and
suspenders” policy, as shown in Listing 9.9. An AcmeProximitySensor is
Closeable: Client code is expected to explicitly close each instance when it
is done with it. If the client code fails to do so, however, the finalizer will
prevent a native memory leak.

The Native Shim: Reference Queues

The last and most complex way of managing native object lifecycles are
reference queues. In return for somewhat more complicated code,
reference queues remove many of the problems that finalizers have. They
do not interfere with garbage collection, and they allow ordered freeing of
objects.

As of Java 9, finalizers have officially been deprecated in favor of Cleaners.
As part of Java 9, Cleaners are not available in Android. There is good
news, though: PhantomReferences and ReferenceQueues, the technologies
underlying Java 9’s Cleaner, are available in Android. The message to
Android developers should be clear, even if Cleaners themselves are not
available in the Android runtime environment.

The combination of a reference queue and a phantom reference works like
this: The constructor for an instance of the PhantomReference class (or one
of its subclasses) takes two arguments: an object and a reference queue.
When the object whose reference is the first parameter to the constructor
becomes eligible for garbage collection, the phantom reference (itself) is



enqueued on the reference queue that was the second parameter to the
constructor.

Calls to PhantomReference.get always return null: The referenced object
itself is unreachable via the phantom reference and the existence of the
reference cannot affect its reachability. What the reference can do, though,
is provide a way to remember that there is unfinished business, when the
object to which it is a reference no longer exists.

The implementation of a reference queue solution is somewhat difficult.
Let’s take it in four parts. First, Listing 9.13 is the machinery that manages
the lifecycle of an AcmeProximitySensor object and its peer.

Listing 9.13 Reference Queue: Native Companion and Its Lifecycle
Click here to view code image
public class AcmeProximitySensor implements AutoCloseable {





    // ...





    static final Map<AtomicLong, Reference<?>> CLEANERS = new 

HashMap<>();





    static { System.loadLibrary("acmeproximityjni"); }





    // ...





    @NonNull


    public static AcmeProximitySensor getSensor() {


        synchronized (CLEANERS) {


            final AtomicLong peerRef = new AtomicLong(open());


            final AcmeProximitySensor sensor = new 

AcmeProximitySensor(peerRef);


            CLEANERS.put(peerRef, new SensorCleaner(peerRef, 

sensor));


            return sensor;


        }


    }





    static void cleanup(AtomicLong peerRef) {


        final long peer = peerRef.getAndSet(0);


        if (peer == 0) { return; }
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        synchronized (CLEANERS) {


            CLEANERS.remove(peerRef);


            close(peer);


        }


    }





    // ...





    @GuardedBy("CLEANERS")


    private static native void close(long handle);





    @GuardedBy("CLEANERS")


    private static native long open();





    @GuardedBy("CLEANERS")


    private static native int poll(long handle, int precision);


}

The static method getSensor is the factory method for instances of the class
AcmeProximitySensor. Client code will call this method instead of the class
constructor to create new instances. The class constructor is private,
ensuring that this is the only way to create new instances: All new instances
come from this method.

The method does four things:

1. It creates the native companion object and stashes the reference to it in
an AtomicLong.

2. It creates the Java instance, passing the peer reference. The Java
object now has access to its native peer.

3. It creates a SensorCleaner. This is the object that will be responsible
for cleaning up the native peer if the user fails to do so.

4. It stores the SensorCleaner in a map.

The last step is important and yet easy to forget. Like any other Java object,
the SensorCleaner is eligible for garbage collection as soon as there are no
more references to it. Unless something, somewhere, remembers it, it will
be garbage collected and will not be around to clean up after the
AcmeProximitySensor instance with which it is associated.



The static method cleanup(AtomicLong) is the bottleneck at the end of the
lifecycle of every AcmeProximitySensor instance. It simply undoes what the
getSensor method did: It frees the native companion object and removes the
SensorCleaner from the map so that it can be garbage collected.

It also ensures that the native close method will not be called more than
once. The getAndSet in its first line ensures that the rest of the method will
be executed no more than once for a given native peer, no matter how often
it is called. The method is idempotent.

These two methods are the bookends for the AcmeProximitySensor lifecycle.
The getSensor method is the only way to get one. All we have to do is
make sure that the cleanup(AtomicLong) method is called at least once for
every native companion.

As mentioned earlier, the best way to do this is explicitly. Listing 9.14
shows the implementation of the AcmeProximitySensor and, in particular, its
implementation of the AutoCloseable interface.

Listing 9.14 Reference Queue: Explicit Close
Click here to view code image
public class AcmeProximitySensor implements AutoCloseable {





    // ...





    private final AtomicLong peerRef;





    private AcmeProximitySensor(AtomicLong peerRef) { this.peerRef 

= peerRef; }





    public int poll(int precision) throws IOException {


        synchronized (CLEANERS) {


            final long peer = peerRef.get();


            if (peer == 0) { throw new IOException("Device not 

open"); }


            return poll(peer, precision);


        }


    }





    @Override


    public void close() { cleanup(peerRef); }
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    // ...


}

This code is similar to the equivalent code in Listing 9.9. The only
significant difference, really, is that it delegates the call to close, required
by the AutoCloseable interface, to cleanup(AtomicLong). Well-behaved
client code will fulfill the outstanding condition: at least one call to
cleanup(AtomicLong) via AcmeProximitySensor.close.

What happens, though, when client code is not well behaved? Listing 9.15
shows the backstop.

Listing 9.15 Reference Queue: Service Task
Click here to view code image
public class AcmeProximitySensor implements Closeable {


    private static final class SensorCleaner


        extends PhantomReference<AcmeProximitySensor> {


        private final AtomicLong peerRef;





        SensorCleaner(AtomicLong peerRef, AcmeProximitySensor 

sensor) {


            super(sensor, REF_QUEUE);


            this.peerRef = peerRef;


        }





        void cleanup() { AcmeProximitySensor.cleanup(peerRef); }


    }





    static final ReferenceQueue<AcmeProximitySensor> REF_QUEUE


        = new ReferenceQueue<>();





    @NonNull


    public static ScheduledTask getScheduledTask() {


        return new ScheduledTask(AcmeProximitySensor::cleanup, 

100);


    }





    private static void cleanup() {


        Reference<? extends AcmeProximitySensor> ref;


        while ((ref = REF_QUEUE.poll()) instanceof SensorCleaner) {
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              ((SensorCleaner) ref).cleanup();


        }


    }





    // ...


}

The two functions in Listing 9.15, getScheduledTask and cleanup(),
manage the native companions objects left behind by ill-behaved clients.
They also illustrate the biggest downside of using reference queues:
scheduling cleanup.

Typically, finalizers are run on a special thread, maintained by the runtime,
whose sole purpose is running finalizers. The finalizer thread receives
notification for objects that need finalization and schedules their finalizer
methods.

When using reference queues, however, scheduling object cleanup is not
handled by the runtime. The application must poll the reference queue
occasionally and schedule any work that it finds there.

There are good and bad aspects of this requirement. The bad parts are
probably obvious: An application that uses reference queues must be able to
schedule a job to service the reference queue, and it must be able to
schedule any work that the job finds on a robust execution service. If the
execution service fails for any reason, managed objects will no longer be
freed correctly. That is likely to be disastrous.

Note, by the way, that reference queues do not change the indeterminate
scheduling of object cleanup. Objects are only enqueued for cleanup when
the garbage collector needs space and only processed when the application
program gets around to scheduling a cleanup task.

The good aspects may be a little less apparent. Consider: Finalizers are
problematic because it is possible to overwhelm the finalizer thread. As
noted previously, freeing hundreds of finalizable objects quickly might very
well add those objects to the finalizer’s queue faster than it can take them
off for processing. Because the finalizer’s queue is difficult to access
programmatically, little opportunity exists for an application to gauge
whether or not its doom is impending.



Using a reference queue, however, the application controls the cleanup
mechanism; it can scale the object recovery process to the need. A multi-
threaded, high-priority execution service might be able to stay ahead of
object allocation.

Better yet, though, suppose that the same thread processes both the
application-specific tasks that cause memory allocation and the reference
queue that cleans them up. If the thread is busy managing the reference
queue, it cannot allocate new objects. Allocation is naturally limited to
creating no more than it can free. Governing the object allocation rate in
this way makes for extremely robust apps.

Listing 9.15 posits a scheduling mechanism elsewhere in the system that
registers new periodic tasks by calling a class’s getScheduledTask method.
The method returns the task to be run and the interval (in milliseconds)
between runs. Surely, many other ways exist for accomplishing something
similar: This particular implementation simply illustrates that the method
cleanup() must be called periodically.

The cleanup() method polls the reference queue and calls the
cleanup(AtomicLong) for each instance of the SensorCleaner object (whose
associated AcmeProximitySensor has now been garbage collected) that it
finds there. Recall from Listing 9.13 that each AcmeProximitySensor had a
SensorCleaner associated with it in the factory method getSensor. This is
the guarantee that, even if client code fails to close the sensor object, the
cleanup(AtomicLong) will be called to free the native companion object.

There are a couple subtleties to be aware of. First, note that it is important
that there are several references to the AtomicLong that contain the handle to
the native peer. If the AcmeProximitySensor held the only reference, then
when it became unreachable, the AtomicLong might be freed even before the
sensor object itself. The SensorCleaner cannot depend on being able to find
the native object unless it itself keeps a reference.

Second, notice that when a well-behaved client explicitly closes a sensor
object, its SensorCleaner is removed from the map! That means the cleaner
object is now unreachable and that the AcmeProximitySensor object holds
the only reachable reference to the peer handle. It is entirely possible that



the cleaner will be garbage collected first; thus, it will never be queued or
scheduled. That’s perfectly okay because there’s nothing left for it to do.

Because the AtomicLong that is the reference to the native peer is in the map,
a SensorCleaner is guaranteed that it will have access to it when the cleaner
runs and that either it is the first attempt to free the native companion or that
it will not try to do so.

JNI: Some Hints

As discussed earlier, entire books exist on the subject of writing JNI code.
A comprehensive discussion is well outside the scope of this one. However,
in our experience, some practices can make your code more robust and
easier to maintain. Here are a few of them.

Don’t Break the Rules

It is entirely possible to break Java’s rules using native code. For instance,
using native code, it is relatively easy to change the content of String or,
indeed, any immutable object. Although JNI methods make some attempt to
enforce visibility (public versus private) and mutability (final)
constraints, sidestepping nearly any of them is quite possible. Java
developers are used to being able to make assumptions about the
environment in which their code runs. Changing the rules is asking for
trouble.

Clearly and Without Exception, Document Native References
to Java Code

Always and without exception, document any native use of Java code. If a
native method refers to a class member by name, document that reference in
a comment on the field. If native code calls a Java method, be certain that
the Java method has a comment that indicates the fact. The same goes for
native code that creates new instances of some Java class or other. As a
related suggestion, be sure that any code that looks up Java identifiers—
fields, classes, or methods—fails immediately and clearly if it cannot find
its target. Failure to do these things will lead to bizarre crashes when some
well-meaning developer does some small refactor.



Pass Simple Types to Native Code

The rest of the hints in this chapter have a single theme: When possible,
don’t put the burden of dealing with Java constructs on native code.
Whenever possible, Java code should deal with Java data structures and
should communicate with native code using only primitive types, Strings
and arrays of those types. This may mean violating other general rules. For
instance, passing the information in a complex data structure to its native
companion as primitive types may mean that the native method has an
uncomfortably large number of arguments. That is the lesser evil.
Somewhere, code will have to extract the information. Keep that code on
the Java side.

Make Native Methods Static, When Convenient

This tip is more a corollary to the previous hint than a new suggestion.
Native instance methods are passed references to the calling Java instance.
Cases surely exist in which that may be useful. In general, though, avoiding
it is best. Pass the data that the native method requires and pass it to a static
method instead of passing the whole object to an instance method.

Beware the Garbage Collector

This is probably the most important and most easily forgotten of the hints.
Remember that as your native code runs, the garbage collector daemon is
also running. It may move data to which you have a native pointer. Worse
yet, it might deallocate it.

To keep the garbage collector from freeing an object, the object must appear
to the collector as “reachable”: There must be some way that running Java
code can obtain a reference to it. Consider, however, a Java object that is
created by native code. There are no references anywhere in the Java
environment to this new object. Because there are no references, it is
eligible for immediate garbage collection! The JNI provides two solutions
to this problem: the LocalRef and the GlobalRef.

A LocalRef behaves as if a reference to an object had been put into the call
stack of the nearest (in the stack) calling Java method. It creates a reference



to the object that is visible to the garbage collector, making it reachable and
thus ineligible for deallocation.

Many JNI methods that return references to Java objects also create a
LocalRef to the returned object (be sure to verify this for specific calls). In
general, if there is the potential for an object to disappear while native code
is using it, a JNI call that returns a reference will create a LocalRef for it.
Parameters to JNI method calls have LocalRefs as well. There is no danger
that an object passed to a native method through the JNI will suddenly
vanish.

LocalRefs are managed. They are automatically deleted (popped off the
stack) when a native method returns to its Java language caller.
Unfortunately, however, implementations of the JNI support only a limited
number of LocalRefs: typically a few hundred but perhaps only a handful.
As a rule of thumb, immediately deleting a LocalRef when it is no longer
needed is best practice.

In fact, several circumstances exist under which deleting them explicitly is
absolutely essential. Consider the example in Listing 9.16: native code that
creates new objects of some kind and then adds them to a Java array.

Listing 9.16 Filling an Array
Click here to view code image
jobjectArray ds = env->NewObjectArray(arraySize, klass_MyObject, 

nullptr);


for (int i = 0; i < arraySize; i++) {


    jobject d = createNewObject(env, array[i]);


    env->SetObjectArrayElement(ds, i, d);


    env->DeleteLocalRef(d);


 }

The JNI creates a LocalRef for the array created in the first line of the code.
It also creates a LocalRef for each new object to be inserted into the array.
After a new object is inserted into the array, it is reachable via the array.
The individual LocalRefs for the new objects can (and should) be deleted. If
the array is large, it is entirely possible that failing to delete the LocalRefs
will exhaust the local ref pool.
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Another, somewhat trickier condition is one in which the calling code never
returns to a Java method. This can happen when a native thread, for
instance, calls into Java code. Imagine, for example, a native thread—
perhaps a thread servicing network connections—that uses a Java logger.
The native code might create a Java String, log it, and then go back about
its business. The LocalRef to the String will never be released because the
calling code never returns to a Java caller.

The second kind of reference in the JNI toolbox is a GlobalRef. GlobalRefs
are the way that native code holds a reference to a Java object across call
boundaries. A GlobalRef behaves as if a reference to the object to which it
refers had been added to a permanent static array. The ref prevents the
garbage collector from recovering the referenced object’s memory until the
reference is deleted explicitly. Native developers, who are used to explicit
memory management, will find this completely normal.

A common example of the need of a GlobalRef is native creation of a Java
object, as shown in Listing 9.17.

Listing 9.17 Native Object Creation
Click here to view code image
jclass klass_MyObject = env->FindClass(“my/project/MyObject”);


if (!localClass)


    return nullptr;





method_MyObject_ctor = env->GetMethodID(


    klass_MyObject,


    “<init>”,


    “(I)V”);


if (!method_MyObject_ctor)


    return nullptr;





return env->NewObject(klass_MyObject, method_MyObject_ctor, (jint) 

param1);

If this call is used frequently, optimizing it might be possible. Both
klass_MyObject and method_MyObject_ctor are references to Java objects:
the class named “MyObject” and a constructor in that class with a single
integer parameter, respectively. Using JNI methods to look up those
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references for every call to this code will take a substantial proportion of its
execution time. To optimize it, an initialization method might be to look up
the two references once and then hold them. Such an optimization requires
a GlobalRef for each.

Use GlobalRefs with care. Although the limit on the number available
(typically 65535) is usually much larger than the limit on the number of
LocalRefs, they are memory leaks. Treat them as you would any other
unmanaged memory.

Note that neither a LocalRef nor GlobalRef affects the garbage collector’s
ability to move an object in memory. Although such movement is
completely invisible from Java code, a native reference can become a
pointer to garbage, quite literally, in the middle of a line of code. This is not
a tolerable situation and JNI calls have two strategies for handling it:
copying and pinning. When using JNI methods that allow access the
contents of a Java object—as with methods that created implicit LocalRefs
—be sure to verify which of these two strategies a specific call uses.

Copying is just what it sounds like: An atomic JNI call copies the contents
of a Java object into native-managed memory. The native code is free to do
anything it likes with the copy, including, at some point, atomically copying
it back into the Java object.

When an object is pinned, on the other hand, the garbage collector is not
allowed to move it. Native code can access the contents of the pinned object
directly, perhaps without the overhead of the copy. Pinning an object,
however, means that memory in the Java heap is no longer under the control
of the garbage collector. This can easily lead to fragmentation and
premature out-of-memory errors. Best practice is to pin objects only if
necessary, and then for as short a time as possible.

Use Weak Refs When Native Code Must Hold a Reference to a
Java Object

A significant portion of this chapter is devoted to the discussion of how a
Java object can hold a reference to a native companion object. What
happens, though, when a native object needs to be able to find a particular
Java object?



Consider, for instance, a native network management library. Suppose that
client code creates a new Java Connection object for each of several
network connections. The Connection object in turn creates a native
companion object that actually handles socket connections. Finally, suppose
that the native object calls back into Java code for each of the various
events in the connection lifecycle.

Clearly, the callbacks from the native companion object must be calls to the
specific Java Connection instance that created it and not to any other
instance. The native code must, therefore, hold a reference to its Java
companion.

This is, certainly, possible. As we’ve just seen, the native companion object
might hold a GlobalRef to its Java companion: the Java code now has a
reference to the native object and the native object has a reference to the
Java object.

The problem with this, of course, is that a GlobalRef to the Java object will
make it ineligible for garbage collection. Unless there is some explicit
means of freeing it (and that explicit mechanism is carefully used for every
instance), its referent will never be freed, will never be finalized (or added
to a reference queue), and will never free its native companion. The belt
still works but the suspenders are gone. Unless a clear architectural reason
exists for doing the aforementioned, a good practice is to leave the
management of native objects to their Java companions, not vice versa.

There are two ways around this issue. The first is a special global reference,
a WeakGlobalRef. A WeakGlobalRef is similar to a GlobalRef, except that
(like a Java WeakReference) it does not prevent the garbage collection of the
Java object to which it refers. It is different from a raw native reference in
that it will never point at garbage: It will always either point at the intended
object or be null.

It is important to note that the referent in a WeakGlobalRef can disappear at
any time, even between two native instructions, causing intermittent
failures. Listing 9.18 illustrates such a scenario: a snippet in which a native
instance stores a reference to its Java companion.

Listing 9.18 Incorrect Use of a WeakRef: Don’t Do This!



Click here to view code image
mCompanion = reinterpret_cast<jobject>(env-

>NewWeakGlobalRef(javaObj));


if (env->isSameObject(mCompanion, NULL) 


    return;


jclass klass = env->getObjectClass(mCompanion) // mCompanion may be 

NULL!


// ...

Fortunately, a WeakGlobalRef can be used as the argument to LocalRef (or a
GlobalRef). Local and global refs protect their referents from garbage
collection. Listing 9.19 illustrates a corrected version of Listing 9.18.

Listing 9.19 Obtain a LocalRef from a WeakGlobalRef
Click here to view code image
mCompanion = reinterpret_cast<jobject>(env-

>NewWeakGlobalRef(javaObj));


companion = reinterpret_cast<jobject>(env-

>NewLocalRef(mCompanion));


if (env->isSameObject(companion, NULL) 


    return;


jclass klass = env->getObjectClass(companion) // safe!


// ...

There is one other way of managing native handles in Java objects. In this
architecture, references to Java objects are never passed to native code at
all. Instead, they are kept as weak references in a map at the Java/native
boundary. Think of it as a “hat check”: Java hands native code a token,
which can be redeemed for a Java object. The token, however, is completely
opaque to the native code. Listing 9.20 shows a sample implementation.

Listing 9.20 Native Reference “Hat Check”
Click here to view code image
public class NativeRef<T> {


    @NonNull


    @GuardedBy("this")


    private final Random rnd = new Random();





    @NonNull
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    @GuardedBy("this")


    private final Map<Integer, WeakReference<T>> refs = new 

HashMap<>();





    public synchronized int bind(@NonNull T obj) {


        int ref;


        do { ref = rnd.nextInt(Integer.MAX_VALUE); }


        while (refs.containsKey(ref));


        refs.put(ref, new WeakReference<>(obj));


        return ref;


    }





    public synchronized void unbind(int key) { refs.remove(key); }





    @Nullable


    public synchronized T getObjFromContext(long lref) {


        if ((lref < 0) || (lref > Integer.MAX_VALUE)) {


            throw new IllegalArgumentException("Ref out of bounds: 

" + lref);


        }





        final Integer key = (int) lref;


        final WeakReference<T> ref = refs.get(key);


        if (ref == null) { return null; }





        final T obj = ref.get();


        if (obj == null) { refs.remove(key); }


        return obj;


    }


}

This architecture has many of the same features that made
WeakGlobalReferences attractive. Because the reference map holds weak
references, native objects cannot force their Java companions to stay in
memory. Perhaps an advantage, this architecture does not use the size-
limited LocalRef pool.

Note that the implementation uses only positive integers for tokens. For
most applications, this provides plenty of space and avoids problems that
arise from sign extension.



Summary

This chapter, at last, brings us to Android’s implementation language, Java.
In it, we meet and use Java’s JNI, the API through which Java language
code invokes native code.

The chapter uses the Proximity Sensor project introduced in previous
chapters to show three different implementations of a long-running daemon
that logs proximity:

1. A naïve native implementation
2. A native implementation using the HAL (introduced in Chapter 7)
3. A Java app, also using the HAL

The third implementation, the Java application, provides the basis for a
discussion of one of the key issues for code at the Java/native interface:
lifecycle management and how to handle unmanaged native memory in
Java’s garbage-collected environment.

We recommend a “belt and suspenders” approach: Java objects with native
companions should implement Java’s Autoclosable interface. This makes it
clear that client code should explicitly inform the object that it is ready for
disposal.

In addition, we recommend the use of a finalizer or reference queue to
guarantee the proper handling of objects that evade explicit release.
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Project Treble: Binderized HAL

The Android system and its use of the HAL received a major overhaul
starting with Android 8.0. Internally, this was called Project Treble and its
goal was not only to provide a standard abstraction to the underlying
hardware, but to do it in a way that allowed vendors to upgrade the core OS
without requiring a rebuild of HAL libraries and the system image. This
means Google can roll out OS updates without requiring modifications to
the vendor proprietary components. Binderized HALs must be used for
Android 8.0 and newer. This new, extremely flexible, and forward-looking
approach to the HAL requires some knowledge of Android’s Binder
subsystem.

The platform vendor–supplied HAL is no longer a set of shared libraries
following a specific naming convention and binary API. Instead, the vendor
exposes a set of binder interfaces to the system and one or more backing
services that host the HAL implementation. The HAL interfaces are defined
using HIDL (pronounced “hide-l”), a language similar to the AIDL, used to
define binder service interfaces.

This chapter explores the architecture of the binderized HAL and examines
how Android uses it. We’ll dig into an existing binderized HAL definition
from the platform and explain how the pieces fit together.

Note
Unless otherwise noted, the remainder of this chapter uses HIDL
when referring to the binderized HAL architecture, not just the
interface definition language.



HIDL Architecture

The HIDL-based system is built upon the same concepts as Android’s
system services model. Each HAL implementation is backed by a service,
running in user-space, that exposes a HIDL-defined interface. The HIDL
services, usually native processes, are started at system startup and register
with the system. Each HIDL interface is versioned so the system
understands what is available at runtime. This allows the platform to
support one or more interface versions for a specific hardware component,
which is important for devices being upgraded to new versions of the OS.

The key feature of this architecture is that the vendor-provided HIDL
components are separated from the core Android system, allowing the core
OS to be updated without requiring the vendor to provide new custom
libraries. The end result is a robust system that allows vendors to adopt new
releases of Android for existing hardware with minimal friction.

Just like the Android system service architecture, the HIDL framework
includes a hardware service manager, appropriately named
hwservicemanager. This system daemon acts as the registrar of all HIDL-
based HALs in the system. It can be thought of as the name server for
HIDL-defined interfaces in the system. Each HIDL component initializes
and registers its Binder-based interface(s) with hwservicemanager, making
them available to other components in the system. Other processes in the
system find the HIDL binders by making requests to hwservicemanager for
a specific HIDL. Figure 10.1 shows the overall architecture.



Figure 10.1 HIDL High-Level Architecture

In Figure 10.1, the numbered components are defined as follows:

1. hwservicemanager, the central registrar of HIDL services in the system

2. The Linux kernel with the Android Binder IPC driver and other
hardware drivers within it

3. The HIDL services in the system, providing the HAL
implementation(s) for their respective hardware components

4. The client application process that utilizes the Binder-exposed HIDL
services

5. The binder that connects the client and backing HIDL service
processes



Although Android 8.0 and newer requires the use of HIDL, a small handful
of exceptions exist: some HALs are provided in what is called
“passthrough” mode or are specialized same-process HALs (SP-HALs).
The passthrough HALs are effectively HIDL wrappers around legacy or
conventional HAL libraries that allow those libraries to be used in the same
process. Other SP-HALs may not even expose HIDL-defined interfaces.

Note
Google strictly controls which HALs are SP-HALs, and there are no
exceptions for new devices rolling out Android 8.0 or newer. This
includes vendor extension HALs. Devices that are upgrades to
Android 8.0 are given some leniency with vendor extensions.
Otherwise, all other Android-defined binderized HALs must be
binderized for Android 8 or newer running on the platform.

You can find more details about the HIDL architecture at
https://source.android.com/devices/architecture/hidl.

hwservicemanager

As previously stated, hwservicemanager is a central component of the HIDL
architecture. Similar to the system services Binder subsystem’s registrar,
servicemanager, this component keeps a registry of active HIDL
components in the system by HIDL interface, version, an optional name,
and the backing binder interface/object exposed by the component. This
binder object can then be found and requested by clients for making IPC
calls into the HIDL component.

hwservicemanager leverages SE policies and the SE Linux kernel to ensure
only components in the system that are assigned the proper SE context can
register as a HIDL-defined HAL or ask to use one.

HIDL Services

HIDL services expose a binder to the system, which implements a HIDL-
defined interface. This acts as the glue between the HIDL-defined contract

https://source.android.com/devices/architecture/hidl


and the hardware it is intended to control.

Note
“Hardware” in this context may or may not be actual underlying
hardware. The interface being exposed may have its implementation
entirely in software. For example, it may be possible to have a
coarse-level location device using nothing more than geolocation
information retrieved from a public Internet server.

HIDL Client Applications

As has already been discussed with the traditional Android HAL, the
processes using the HIDL-based HAL are not typical Android applications.
These are typically core system framework components, native
processes/daemons, or vendor-specific add-ons that support the specific
hardware.

Hardware Interface Definition Language (HIDL)

Each of the binderized HAL interfaces is defined using definition files
written in HIDL, just as AIDL is used to define Binder-based service
interfaces. HIDL syntax is somewhat different, though, adapting the
features available from the underlying Binder subsystem to make it
extremely efficient. This is important for low-latency communication with
hardware.

HIDL is a mix of C/C++ and Java syntaxes, including support for Javadoc
style comments and Java-like annotations. Like other Binder-based
interfaces, HIDL interfaces are defined and implemented in a way that
allows two separately compiled codebases to communicate with each other.

HIDL definitions are stored in .hal files and are located in specific
directories within the platform source tree. Each HIDL defines an interface
as part of a module within a package and is versioned. This combination of
namespace and strict versioning is required because the HIDL package



needs to remain compatible with both current and future software that may
use the interface. For example, at the time of this writing, the latest HIDL
interface for utilizing a fingerprint reader is
android.hardware.biometrics.fingerprint@2.1.

Generally speaking, HIDL package namespaces fall into one of two
categories:

android.hardware: The core HIDL packages defined by Android

vendor.VENDOR.hardware: OEM/ODM-defined HIDL packages

Android does define some additional package namespaces for other internal
interfaces, but these are the two primary namespaces when dealing with
hardware-related features. In the fingerprint HIDL shown in the preceding
paragraph, the HIDL package is part of the android.hardware package, the
biometrics module, and the fingerprint submodule. It is version 2.1 of the
interface. The hierarchical nature of the package naming is also relevant
when building the HIDL, as we will see in Chapter 11 when building a
custom HIDL for Acme.

Like other source file types, HIDL files can import other interfaces as well
as their types. Interfaces define one or more methods exposed by the HAL.
Recall that HIDL is Binder-based, meaning that the client and backing
HIDL service will almost always be in two separate processes. Thus, each
HIDL method call is an interprocess communication (IPC) call, which
involves transferring data and control between the processes. By default,
methods are synchronous: The caller will block until the IPC call returns.
For efficiency and clarity, data is always passed to the called method and is
not copied back. This is the equivalent of the in keyword for arguments in
AIDL-defined interfaces. In other words, any input arguments to a HIDL
API call are passed by value.

You can find the HIDL grammar definition on the AOSP source site:
https://source.android.com/devices/architecture/hidl#grammar.

Rather than drill down into every aspect of the HIDL language definition,
walking through an example will illustrate the basics. For this example, let’s
look at the sensors HIDL definition, android.hardware.sensors@2.0. You

https://source.android.com/devices/architecture/hidl#grammar


can find the HAL in the source tree at hardware/interfaces/sensors/2.0.
There are several files in this directory, as shown in Listing 10.1.

Listing 10.1 Sensors 2.0 HIDL Files
Click here to view code image
$ ls -l hardware/interfaces/sensors/2.0


total 56


-rw-r--r--  1 aosp  staff    404 Oct 13 09:31 Android.bp


-rw-r--r--  1 aosp  staff  12946 Oct 13 09:31 ISensors.hal


-rw-r--r--  1 aosp  staff   1778 Oct 13 09:31 ISensorsCallback.hal


drwxr-xr-x  2 aosp  staff    374 Oct 13 09:31 default


-rw-r--r--  1 aosp  staff   1596 Oct 13 09:31 types.hal


drwxr-xr-x  3 aosp  staff    102 Oct 13 09:31 vts


$

Android.bp: This is the Android build blueprint file.

ISensors.hal: This is the primary HIDL interface definition for the
sensors binderized HAL.

ISensorsCallback.hal: This is an additional HIDL-defined interface,
provided by clients to the sensors binderized HAL and will be called
when data is available.

default: This subdirectory contains a default implementation of the
binderized HIDL service.

types.hal: This file is used to define any data structures that may be
needed by the HIDL-defined interface. Unlike AIDL, there is no
mechanism to declare a structure/object “parcelable” so it may be
used across the binder interface. Instead, HIDL requires the types to
be declared in a .hal file for use by the HIDL interface.

The complete sensors 2.0 interface illustrates the HIDL syntax and
capabilities well. Let’s walk through the ISensors.hal in pieces, starting
with Listing 10.2.

Listing 10.2 Sensors 2.0 Interface Definition, Part 1
Click here to view code image
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package android.hardware.sensors@2.0;





import @1.0::Event;


import @1.0::OperationMode;


import @1.0::RateLevel;


import @1.0::Result;


import @1.0::SensorInfo;


import @1.0::SharedMemInfo;


import @2.0::ISensorsCallback;

The start of ISensors.hal, as shown in Listing 10.2, will look somewhat
familiar to Java developers. Each HIDL-defined interface is defined as a
package and is versioned using the @major.minor syntax. HIDL interfaces
are defined to be part of packages that follow a hierarchical namespace like
in Java or C++. Android defines several internal packages for HAL and
framework interfaces, as shown in Table 10.1.

Table 10.1 Android-Defined HIDL Packages

Package Prefix Location Interface Type

android.hardware.* hardware/interfaces HAL

android.frameworks.

*

frameworks/hardware/inte

rfaces/*

Android Framework 
Related

android.system.* system/hardware/interfac

es/*

Android System 
Related

android.hidl.* system/libhidl/transport

/*

Core HIDL

vendor.VENDOR.inter

faces.*

vendor/VENDOR/interfaces

/*

Vendor (OEM/ODM) 
Defined

As illustrated, vendors (ODMs/OEMs) may define their own HIDL
interfaces. These may be completely custom HIDL interfaces or extensions
to existing interface definitions. All interfaces are always versioned using a
major and minor number.



After a HIDL interface is “published” (for example, in use on a platform) at
a specific version, the interface is locked down and may not change for that
specific version. This is enforced at build time using a hash of the HIDL
interface definition at a specific version. Once the interface has been
“published,” any attempt to change the definition without changing the
version will result in a build error.

After the package declaration, note the series of import statements. Just like
Java or Kotlin, these statements are used to pull in other HIDL-defined
interfaces or types. However, like AIDL definitions, types or other
interfaces must be imported, even if they are defined in the same package,
as shown with @2.0::ISensosCallback here.

The type of import depends on the file in which the import statement is
located. In this example, the import statements are in the ISensors.hal file,
making them interface-level imports. If, instead, these import statements
were in the types.hal file for sensors, they would be package-level imports.
The difference between the two is subtle, but important to understand. An
interface-level import is an import statement located within a specific
interface .hal file, making the import available to only that HIDL interface.
On the other hand, a package-level import is an import statement located in
a types.hal file for a given package/module/submodule hierarchy. The net
effect of this type of import is that the imported type(s) are available to all
interfaces within the package/module/submodule.

Note how each of the import statements in Listing 10.2 starts with the
version declaration. This means the imports are types or interfaces that are
defined within the current package, android.hardware.sensors. The sensors
HIDL clearly shows how one interface version can build upon a previous
version. In this case, the sensors HIDL version 2.0 builds upon the 1.0
definition by leveraging types/interfaces defined in both. Three other forms
of import statements can also be used, all of which start with the fully
qualified package name (FQPN) of the import, before the version specifier,
as shown in Listing 10.3.

Listing 10.3 Additional HIDL Import Syntax
Click here to view code image
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import FQPN@MAJOR.MINOR


import FQPN@MAJOR.MINOR::INTERFACE


import FQPN@MAJOR.MINOR::types

The first form would include all interfaces and types from the specified
package version. The second form imports a specific interface and all types
from a package. The third form is used to import just the types from another
package, but none of the interfaces.

Continuing further into the sensors HAL example, the interface declaration
comes next, a portion of which is shown in Listing 10.4.

Listing 10.4 Sensors 2.0 Interface Definition, Part 2
Click here to view code image
interface ISensors {


    /**


     * Enumerate all available (static) sensors.


     *


     * The SensorInfo for each sensor returned by getSensorsList 

must be stable


     * from the initial call to getSensorsList after a device boot 

until the


     * entire system restarts. The SensorInfo for each sensor must 

not change


     * between subsequent calls to getSensorsList, even across 

restarts of the


     * HAL and its dependencies (for example, the sensor handle for 

a given


     * sensor must not change across HAL restarts).


     */


    getSensorsList() generates (vec<SensorInfo> list);





    /**


     * Place the module in a specific mode. The following modes are 

defined


     *


     *  SENSOR_HAL_NORMAL_MODE - Normal operation. Default state of 

the module.


     *


     *  SENSOR_HAL_DATA_INJECTION_MODE - Loopback mode.


     *    Data is injected for the supported sensors by the sensor 

service in
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     *    this mode.


     *


     * @return OK on success


     *     BAD_VALUE if requested mode is not supported


     *     PERMISSION_DENIED if operation is not allowed


     */


    setOperationMode(OperationMode mode) generates (Result result);





    ...





    @entry


    @callflow(next = {"getSensorsList"})


    initialize(fmq_sync<Event> eventQueueDescriptor,


               fmq_sync<uint32_t> wakeLockDescriptor,


               ISensorsCallback sensorsCallback)


        generates


              (Result result);





    ...





    registerDirectChannel(SharedMemInfo mem)


               generates (Result,


                          int32_t channelHandle);

The code in Listing 10.4 defines the interface
android.hardware.sensors@2.0::ISensors and the methods it exposes.

Each HIDL file contains a single interface definition and may also contain
types the interface requires. Interfaces may also inherit from other
interfaces using the extends keyword, similar to the way Java interfaces are
inherited. However, just like Java, HIDL does not support multiple
inheritance. Interfaces that do not explicitly extend another interface
implicitly extend from android.hdl.base@1.0::IBase.

The methods shown in Listing 10.4 illustrate standard types, custom types,
and return values. Methods may return nothing, a primitive, a custom type,
or multiple values. All the interface methods shown in Listing 10.4 show
return values that include custom types. The registerDirectChannel
method returns multiple values.

The syntax for returned data looks different than in Java or C/C++. Return
data is specified with the generates keyword. When a primitive value is



returned, the returned data is simply returned from the method. If the
returned value is not primitive, however, the HIDL framework generates a
synchronous callback function that the server side calls to return data.

The prototypes for the HIDL methods are exactly the same for client and
server side, so the client must handle the return data via callback when the
return type is non-primitive. In this case, the HIDL method call on the client
blocks until the server side returns, but the return data is sent back to the
client via the server invoking the provided callback, which runs in the client
before the original method call returns. This makes for an interesting mix of
error-handling code. Even methods that have no return value still return a
Return object defined by HIDL. Using this, the client can check to see
whether a low-level error of some kind occurred while making the method
call.

From the client perspective, the interface methods are blocking methods by
default. This is true, even if the method does not return any data. Just like
AIDL-defined interfaces, HIDL interface methods may be declared as
asynchronous using the oneway keyword. Unlike AIDL interfaces, though,
all data is owned by the caller. This is akin to an AIDL interface where
input arguments for a method are declared using the in keyword.

Note
Although HIDL does not enforce a strict per-transaction (for
example, method call) data limit, keeping the size of the data less
than 4KB per transaction is considered a best practice. Remember,
there may be multiple transactions from multiple processes in flight
to a given HIDL simultaneously. If an interface’s method(s) use
more than this in a single transaction, the interface should be re-
architected.

Just like AIDL-defined interfaces, HIDL is built on top of Android’s
Binder framework, which has a 1MB limit for all concurrent
transactions. Exceeding this limit will result in hard-to-debug failed
transactions that are not directly related to the specific method
throwing a TransactionException.



HIDL Types

Data types in HIDL look similar to Java and C++, with some subtle
differences. In fact, the syntax used is a mix of both Java and C++:

struct and union declarations follow C++ syntax and must be named.

typedef is allowed and follows C++ syntax.

C++-style comments may be used and are copied to generated header
files.

Package namespaces follow Java style syntax. Generated C++
headers convert the namespace to C++ style. For example,
android.hardware.sensors in HIDL becomes
android::hardware::sensors in C++.

Comments may include documentation via Javadoc format.

Java-style annotations may be added to type declarations.

Forward declarations are not allowed. Structures may not refer to
themselves.

The concept of a pointer does not exist in HIDL.

Arrays follow Java-style array usage, as shown in Listing 10.5.

Listing 10.5 HIDL Array Syntax
Click here to view code image
struct Point {


    int32_t x;


    int32_t y;


};


Point[3] triangle;

HIDL includes a number of pre-defined types, some of which are only
available in C++ code. This is in large part because HALs generally deal
with underlying hardware and need to be extremely fast and efficient.
Although HIDL servers can be implemented in Java (for most things),
implementing hardware driver HIDL servers in Java is not recommended.
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Table 10.2 provides a high-level view of HIDL types and their equivalent in
C++ and Java.

Table 10.2 HIDL-defined Types

HIDL Type C++ Type Java Type

enum enum class final Class (with static 

constant fields)

uint8_t..uin

t64_t

uint8_t..uint64_t int..long†

int8_t..int6

4_t

int8_t..int64_t int..long

float float float

double double double

vec<T> hidl_vec<T> ArrayList<T>
††

T[S1][S2]..

[Sn]

T[S1][S2]..[Sn] T[S1][S2]..[Sn]

string hidl_string String
†††

handle hidl_handle N/A

safe_union (custom)struct N/A
††††

struct struct Java Class

union union N/A
††††

fmq_sync MQDescriptorSync N/A

fmq_unsync MQDescriptorUnsync N/A

memory hidl_memory N/A

bitfield<T> Bitwise OR of 

underlying type

N/A



† Java does not have unsigned integer types. The unsigned data is placed
into signed integer types, without conversion. Any Java code using this
must treat the signed data as if it were unsigned.
†† Java primitives are converted to the wrapped type (for example,
vec<int> becomes ArrayList<Integer>).
††† Java String is converted to UTF-8 as the common HIDL type during
transport and may never be null when passed into HIDL. Note that
character set translation from Java’s default UTF-16 to UTF-8 can result
in different encodings.
†††† Available starting with Android 11.

You can find more details on HIDL data types as well as how they are used
in C++ and Java on these pages:

https://source.android.com/devices/architecture/hidl/types

https://source.android.com/devices/architecture/hidl-cpp/types

https://source.android.com/devices/architecture/hidl-java/types

Each HIDL package may define types that are relevant to it. This is
accomplished via the file types.hal in the package module directory.
Looking at the android.hardware.sensors@2.0 package again, the
types.hal file is small because the 2.0 interface builds upon the 1.0
interface (see Listing 10.6).

Listing 10.6 Sensors 2.0 types.hal
Click here to view code image
package android.hardware.sensors@2.0;


enum SensorTimeout : int32_t {


    /**


     * The maximum number of seconds to wait for a message on the 

Wake Lock FMQ


     * before automatically releasing any wake_lock held for a 

WAKE_UP event.


     */


https://source.android.com/devices/architecture/hidl/types
https://source.android.com/devices/architecture/hidl-cpp/types
https://source.android.com/devices/architecture/hidl-java/types
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    WAKE_LOCK_SECONDS = 1,


};





enum EventQueueFlagBits : uint32_t {


    /**


     * Used to notify the Event FMQ that events should be read and 

processed.


     */


    READ_AND_PROCESS = 1 << 0,





    /**


     * Used by the framework to signal to the HAL when events have 

been


     * successfully read from the Event FMQ.


     *


     * If the MessageQueue::writeBlocking function is being used to 

write sensor


     * events to the Event FMQ, then the readNotification parameter 

must be set


     * to EVENTS_READ.


     */


     EVENTS_READ = 1 << 1,


};





enum WakeLockQueueFlagBits : uint32_t {


    /**


     * Used to notify the HAL that the framework has written data 

to the Wake


     * Lock FMQ.


     */


     DATA_WRITTEN = 1 << 0,


};

Note how the types.hal file uses the same package declaration as the
interface files(s) for the package. Custom structures (classes) may be
defined in the types.hal file as well as custom enums, typedefs, and so on.

HIDL Services

HIDL Services provide the implementation of a specific HAL definition.
Although HIDL Services may be implemented in C++ or Java, the



framework is geared more toward C++-based implementations. A handful
of Java-based HIDL service implementations are in the Android
framework, but they are more the exception than the rule. Because of this,
the remainder of this section will only cover C++ implementations.

HIDL services, like their Android Binder service counterparts, run in
standalone processes. These processes are started by the init daemon at
startup, like other native processes. The HIDL service implements the
HIDL-defined interface, communicating with whatever hardware or other
component necessary to implement the defined interface.

To make itself available to HIDL client processes, each service is
responsible for registering itself with the Android HIDL system and
processing requests as they arrive.

Listing 10.7 contains the main entry point for the default sensor service
implementation. This is found at
hardware/interfaces/sensors/2.0/default/service.cpp. Note how this
main is short and simple: It configures the thread pool, creates an instance of
the Sensors class, and joins the thread pool. Each of these steps is important
and ties the whole thing together.

Listing 10.7 Default Sensors 2.0 Service Entry Point
Click here to view code image
using android::hardware::configureRpcThreadpool;


using android::hardware::joinRpcThreadpool;


using android::hardware::sensors::V2_0::ISensors;


using android::hardware::sensors::V2_0::implementation::Sensors;





int main(int /* argc */, char** /* argv */) {


    configureRpcThreadpool(1, true);





    android::sp<ISensors> sensors = new Sensors();


    if (sensors->registerAsService() != ::android::OK) {


        ALOGE("Failed to register Sensors HAL instance");


        return -1;


    }





    joinRpcThreadpool();


    return 1;  // joinRpcThreadpool shouldn't exit}
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The HIDL support library allows HIDL services to configure the number of
threads used to handle requests via the configureRpcThreadpool method. In
this case, the default sensor service implementation limits 195requests to
being handled by a single thread. This is setting up the internal thread pool
to be managed and used by the underlying Binder framework, similar to
what is done for Android services.

The implementation of the sensors 2.0 HIDL is provided by the Sensors
class, located in the same directory as the service code from Listing 10.7.
The HIDL build tools automatically create the registerAsService method,
called in the code in Listing 10.7. This method registers the backing binder
object, exposed through the kernel, for the ISensors interface with the
hwservicemanager process.

Finally, the joinRpcThreadpool method is called, making the main thread of
this process one of the threads in the thread pool from which services
requests. This results in the process servicing incoming requests forever.
This method should never exit, as shown from the comment in the code.

When a client calls a specific API method defined in ISensors.hal, the
Binder and HIDL framework calls the matching method in the instance of
the Sensors class. The method will perform its required action, returning a
primitive result or executing a callback.

Listing 10.8 shows a portion of the C++ prototypes for the ISensors
interface that were shown in Listing 10.4. As previously mentioned, this file
is autogenerated by the build system, which can make it a little difficult to
track down! In the AOSP build tree for Android 10, the soong build system
places the generated files into an intermediates directory tree based on the
type of generated file. Because this is an AOSP-defined hardware interface,
the base of the generated files is
./out/soong/.intermediates/hardware/interfaces; we’ll call it HW_IFS for
brevity. The resultant directory hierarchy is still quite lengthy, even with
this substitution:

Click here to view code image

HW_IFS/sensors/2.0/android.hardware/sensors@2.0_genc++headers/g

en/android/


➥ hardware/sensors/2.0/ISensors.h.
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Note
Sometimes a line of code will be too long to fit on one line in this
book. The code continuation symbol (➥) indicates that the line
continues from the previous line.

Listing 10.8 ISensors C++ Definition
Click here to view code image
struct ISensors : public ::android::hidl::base::V1_0::IBase {


    ...


    using getSensorsList_cb = std::function<void(const 

::android::hardware::hidl_vec


➥ <::android::hardware::sensors::V1_0::SensorInfo>& list)>;





    ...





    virtual ::android::hardware::Return<void> 

getSensorsList(getSensorsList_cb 


➥ hidl_cb) = 0;





    ...





    virtual 

::android::hardware::Return<::android::hardware::sensors::V1_0::Res

ult> 


➥ 

setOperationMode(::android::hardware::sensors::V1_0::OperationMode 

mode) = 0;





    ...





    virtual 

::android::hardware::Return<::android::hardware::sensors::V1_0::Res

ult> 


➥ initialize(const ::android::hardware::MQDescriptorSync


➥ <::android::hardware::sensors::V1_0::Event>& 

eventQueueDescriptor, 


➥ const ::android::hardware::MQDescriptorSync<uint32_t>& 

wakeLockDescriptor, 


➥ const ::android::sp<::android::hardware::sensors::V2_0


➥::ISensorsCallback>& sensorsCallback) = 0;
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    ...





    virtual ::android::hardware::Return<void> 

registerDirectChannel(const


➥::android::hardware::sensors::V1_0::SharedMemInfo& mem, 


➥ registerDirectChannel_cb_hidl_cb) = 0;





    ...





}

Wow, that is tough to read! However, stripping down the namespaces a bit
makes them easier to understand. For example, the extremely long method
definition for initialize is shown in Listing 10.9 when using the
namespaces in the C++ code. This is what the default implementation of the
2.0 sensors HAL does.

Listing 10.9 ISensors C++ Service Implementation
Click here to view code image
using ::android::hardware::sensors::V1_0::Event;


using ::android::hardware::sensors::V1_0::OperationMode;


using ::android::hardware::sensors::V1_0::RateLevel;


using ::android::hardware::sensors::V1_0::Result;


using ::android::hardware::sensors::V1_0::SharedMemInfo;


using ::android::hardware::sensors::V2_0::SensorTimeout;


using ::android::hardware::sensors::V2_0::WakeLockQueueFlagBits;





...





Return<void> Sensors::getSensorsList(getSensorsList_cb _hidl_cb) {


    std::vector<SensorInfo> sensors;


    for (const auto& sensor : mSensors) {


        sensors.push_back(sensor.second->getSensorInfo());


    }





    // Call the HIDL callback with the SensorInfo


    _hidl_cb(sensors);





    return Void();


}
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...





Return<Result> Sensors::setOperationMode(OperationMode mode) {


    ...





    return Result::OK;


}





Return<Result> Sensors::initialize(


    const ::android::hardware::MQDescriptorSync<Event>& 

eventQueueDescriptor,


    const ::android::hardware::MQDescriptorSync<uint32_t>& 

wakeLockDescriptor,


    const sp<ISensorsCallback>& sensorsCallback) {


    ...


}

That is much better! Previously, in the HIDL definition of each method, the
generates keyword declared the data to be returned. Note how depending
on the return data, it may actually be returned directly or via an embedded
callback. The getSensorsList method returns data (a list of SensorInfo) by
executing the provided callback with the data. Both setOperationMode and
initialize return Result, which is defined to be an int32_t so it can be
returned directly.

HIDL Clients

HIDL clients utilize the interface exposed by the underlying service
implementation. Unlike the Android Binder-based clients used at the
system/framework level, the HIDL client code does not have to look up the
binder for the backing service directly. The necessary functionality is built
into the code generated when the HIDL interface is compiled. Each
interface implementation has a getService method that returns an instance
of the interface or a proxy to it. For example, Listing 10.10 shows the
prototype for version 2.0 of the ISensors implementation.

Listing 10.10 ISensors Prototype for getService()
Click here to view code image
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static ::android::sp<ISensors> getService(


  const std::string &serviceName="default", 


  bool getStub=false


);

The getService method communicates with hwservicemanager to retrieve
the backing binder from the HIDL service implementation. The interface
type (for example, ISensors) and service name are used to look up the
HIDL service that was registered with the system. The client leveraging this
method uses the smart pointer to the interface (for example,
::android::sp<ISensors>), as defined by the prototype in Listing 10.10.
However, behind the scenes, this may be direct access to the backing
service implementation (for example, pass-through), or it may be a binder
proxy instance. The calling semantics are exactly the same: The methods of
the interface are called via the smart pointer.

An example of this is shown in Listing 10.11, taken from
SensorsWrapperBase used within the AOSP framework (see
frameworks/native/services/sensorservice/SensorWrapper.h).

Listing 10.11 Calling the ISensors Interface
Click here to view code image
Return<void> getSensorsList(ISensors::getSensorsList_cb _hidl_cb) 

override 


    return mSensors->getSensorsList(_hidl_cb);


}

It is worth reiterating that HIDL interfaces that return non-primitive data
accomplish it via callback to the client. In the implementation shown in
Listing 10.11, the caller of this wrapper method must provide the callback
function defined by the HIDL, an instance of ISensors::getSensorList_cb.
In Listing 10.4 where this HIDL method was defined, the method does not
return data, but generates it. Closing the loop, the code in Listing 10.8
defines ISensors::getSensorsList_cb to be a function that receives a vector
of SensorInfo objects—the type that the HIDL interface generates.

Summary
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This chapter examined the revised hardware abstraction layer architecture
introduced in Android 8: binderized HAL using HIDL. Internally called
Project Treble, the binderized HAL is a complete overhaul of the HAL
concept. Prior to Android 8, vendor/OEM HALs were provided as a set of
shared libraries customized for the specific target that were built into the
system image. With HIDL, the HAL is now based on Android’s IPC
mechanism, Binder. The primary goals of such a radical change were
isolation of vendor-specific components so the AOSP framework (system)
can be updated without requiring a rebuild of the vendor components; better
interoperability between components; better data movement efficiency; and
more intuitive calling semantics with respect to memory usage/ownership.

Similar to the traditional Android HAL, the platform defines the
abstractions to be implemented by the platform components or the
vendor/OEM. Unlike the traditional HAL, though, the abstractions are now
defined via HIDL .hal files, which are cousins to the AIDL file used in
Binder-based services. Although HIDL and AIDL files have some things in
common, they are different in their syntax with HIDL placing stricter
syntax rules and form into place. This allows for much of the server and
client “boilerplate” code to be autogenerated or provided via helper library
—leaving the vendor/OEM to focus on the functionality of the HIDL
implementation rather than the nuts and bolts of the underlying
HIDL/Binder interactions.



11

Creating a Custom Binderized
HAL

In Chapter 10, we introduced Project Treble, or the new binderized HAL
architecture rolled out with Android 8.0. The new binderized HAL, or
HIDL, is required for all devices running Android 8.0 and newer. Now it is
time to apply the HIDL concepts on a custom platform, making it clear how
a new HIDL-based HAL can be created and utilized.

This chapter demonstrates replacing the legacy HAL for Acme’s custom
proximity device, making it HIDL based. We’ll see how the system can be
customized to pick up new, custom hardware for unique devices like those
used in the IoT space.

Acme Custom HIDL

As mentioned in Chapter 10, vendors are free to define their own HIDLs as
well as vendor-specific customizations of AOSP/Google-defined HIDLs.
Unlike traditional HAL shared libraries, these components will live within
the vendor area of the platform: the /vendor or /odm filesystems. This clean
separation allows the core Android system to be updated without requiring
the OEM’s involvement; this is one of the primary goals of the HIDL
architecture.

To illustrate this, let’s define a new HIDL for the Acme One, building upon
our previous work in Chapter 8 with a custom proximity HAL. Because this
proximity support is custom and is not part of the standard AOSP sensors
API, our custom HIDL is needed and is called aproximity. To keep things



simple, the HIDL implementation will not require modifications to the
kernel—it will leverage the same shim library used in Chapter 8 to access
the underlying device. The HIDL will illustrate both simple as well as more
complex return data.

Note
This chapter utilizes a tool from the AOSP build results, hidl-gen.
This tool is built at the same time as a given target. If you have not
previously built a platform, this tool will not be found in your build
tree. Please see Chapter 2 for building the platform. Alternatively, if
the build system is set up and lunch has been run, the tool may also
be built by executing the command m hidl-gen.

HIDL Definition

The aproximity HIDL definition is similar to the traditional HAL API
covered in Chapter 8. In addition to the poll API, you can use a couple of
new APIs to retrieve the proximity details for the underlying sensor as well
as some details about the HIDL’s usage. Listing 11.1 and Listing 11.2 define
the IAproximity HIDL (IAproximity.hal) and its corresponding types
(types.hal), respectively.

Listing 11.1 IAproximity HIDL Definition
Click here to view code image
package vendor.acme.one.aproximity@1.0;





/**


 * The Acme specialized proximity support, providing simple APIs to


 * illustrate vendor custom HIDL.


 */


interface IAproximity {


    /**


     * Retrieve the latest proximity value for the specified 

precision


     * value.


     *


     * @param precision contains the precision requested by the 
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caller.


     *    Valid values may be retrieved using the get_details 

method.


     * @return the proximity value returned by the sensor


     */


    poll(int32_t precision) generates (int32_t proximity);





    /**


     * Get the details about the underlying sensor.


     *


     * @return the details for the underlying sensor, containing 

the


     *    supported precision values and the range of proximity 

values.


     */


    get_details() generates (ProximityDetails details);





    /**


     * Retrieve usage summary information about the backing HIDL 

service.


     *


     * @return a summary of usage information for the HIDL service.


     */


    summarize() generates (ProximitySummary summary);


};

Listing 11.2 aproximity HIDL types.hal Definition
Click here to view code image
package vendor.acme.one.aproximity@1.0;





struct ValueRange {


    int32_t  min;


    int32_t  max;


};





struct ProximityDetails {


    ValueRange  precision;


    ValueRange  proximity;


};





struct ProximitySummary {


    uint64_t  pollCallCount;
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    int64_t   lastPollCalledMs;


};

Create these files in the location
vendor/acme/one/interfaces/aproximity/1.0 within the AOSP source tree.
The AOSP build contains a tool to help generate build files and boilerplate
code to get started with a service implementation. After the preceding files
have been created in the tree, execute the following command in the AOSP
build shell to generate an Android.bp file for building the HIDL (see Listing
11.3).

Listing 11.3 Create the HIDL Android.bp File
Click here to view code image
hidl-gen -L androidbp \


    -r vendor.acme.one:vendor/acme/one/interfaces \


    vendor.acme.one.aproximity@1.0

The new Android.bp file will be located alongside the .hal files. This file
instructs the build system to generate interface headers and boilerplate code
needed for the implementation and client(s). Listing 11.4 shows the
generated content.

Listing 11.4 Android.bp for the aproximity HIDL
Click here to view code image
// This file is autogenerated by hidl-gen -Landroidbp.





hidl_interface {


    name: "vendor.acme.one.aproximity@1.0",


    root: "vendor.acme.one",


    product_specific: true,


    srcs: [


        "types.hal",


        "IAproximity.hal",


    ],


    interfaces: [


        "android.hidl.base@1.0",


    ],


    gen_java: true,


}
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Before the AOSP build system will recognize the new HIDL, the top-level
interfaces directory within the vendor tree for the device needs an
Android.bp file. This informs the build system that the directory is the root
location for HIDL packages. Create a new file,
vendor/acme/one/interfaces/Android.bp, with the content of Listing 11.5.

Listing 11.5 Android.bp for the Acme One HIDL Interfaces
Click here to view code image
hidl_package_root {


    name: "vendor.acme.one",


}

HIDL Service Implementation

Now that the aproximity HIDL is defined, the platform needs the actual
implementation. As previously mentioned, this is typically handled by a
separate service process, particularly for HIDLs that are “drivers” for
hardware. Because aproximity is an example of such a HIDL
implementation, a native (for example, C++) implementation is needed.
Fortunately, hidl-gen 

comes to the rescue here and can generate boilerplate code as a starting
point. Listing 11.6 shows the commands to execute at the top level of the
build tree to generate the boilerplate code for a C++ implementation of the
HIDL.

Listing 11.6 Create aproximity Service Boilerplate
Click here to view code image
mkdir -p device/acme/one/hidl/aproximity


hidl-gen -L c++-impl -o device/acme/one/hidl/aproximity 


  -r vendor.acme.one:vendor/acme/one/interfaces 

vendor.acme.one.aproximity@1.0

You can find the resultant files, Aproximity.cpp and Aproximity.h, in
device/acme/one/hidl/aproximity. Similar to the way the javah or javac -
h tools are used to help create JNI boilerplate code, hidl-gen is invaluable
for creating a starting point for the service implementation. These two files
will be built into a library that is then used by the service process to host the
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HIDL. First things first: The files need to be modified to remove
unnecessary boilerplate code and provide the implementation for Acme
One. The details of the methods and the special Return type will be covered
shortly while working through the implementation. Listing 11.7 shows the
updated header file.

Listing 11.7 Aproximity.h Implementation
Click here to view code image
#pragma once


#include <vendor/acme/one/aproximity/1.0/IAproximity.h>


#include <hidl/MQDescriptor.h>


#include <hidl/Status.h>





namespace vendor {


namespace acme {


namespace one {


namespace aproximity {


namespace V1_0 {


namespace implementation {





using ::android::hardware::hidl_array;


using ::android::hardware::hidl_handle;


using ::android::hardware::hidl_memory;


using ::android::hardware::hidl_string;


using ::android::hardware::hidl_vec;


using ::android::hardware::Return;


using ::android::hardware::Void;


using ::android::sp;





struct Aproximity : public IAproximity {


    Aproximity();


    ~Aproximity();





    // Methods from 

::vendor::acme::one::aproximity::V1_0::IAproximity follow.


    Return<int32_t> poll(int32_t precision) override;


    Return<void> get_details(get_details_cb _hidl_cb) override;


    Return<void> summarize(summarize_cb _hidl_cb) override;





    // Methods from ::android::hidl::base::V1_0::IBase follow.


    Return<void> debug(const hidl_handle &handle,


                       const hidl_vec<hidl_string> &options) 
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override;





private:


    uint64_t            pollCallCount;


    int64_t             lastPollCalledMs;


    int                 fd;


    proximity_params_t  params;


};





}  // namespace implementation


}  // namespace V1_0


}  // namespace aproximity


}  // namespace one


}  // namespace acme


}  // namespace vendor

Now for the actual implementation of the IAproximity methods for the
HIDL. Remember that for a hardware-based HIDL (for example, driver
HIDL), this is where access to the kernel via a /sys or /dev interface would
be performed (or connected via a secondary library that performs the actual
kernel I/O). For our trivial HIDL implementation, we will leverage the shim
library that was created as part of the traditional HAL in Chapter 8, as
shown in Listing 11.8.

Listing 11.8 Aproximity.cpp Implementation
Click here to view code image
#include <chrono>


#include "Aproximity.h"





using namespace std::chrono;





namespace vendor {


namespace acme {


namespace one {


namespace aproximity {


namespace V1_0 {


namespace implementation {





static int64_t now() {


    time_point now = system_clock().now();


    milliseconds nowMs =
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        duration_cast<milliseconds>(now.time_since_epoch());


    return static_cast<int64_t>(nowMs.count());


}





Aproximity::Aproximity() {


    this->fd = open_sensor(this->params);


    if (this->fd < 0) {


        this->params.precision.min = -1;


        this->params.precision.range = -1;


        this->params.proximity.min = -1;


        this->params.proximity.range = -1;


    }


}





Aproximity::~Aproximity() {


    if (this->fd >= 0) {


        close_sensor(this->fd);


        this->fd = -1;


    }


    this->pollCallCount = 0;


    this->lastPollCalledMs = 0;


}





// Methods from ::vendor::acme::one::aproximity::V1_0::IAproximity 

follow.


Return<int32_t> Aproximity::poll(int32_t precision) {


    this->pollCallCount++;


    this->lastPollCalledMs = now(); 





    if (this->fd < 0) {


        return -1;


    }





    int shimPrecision = static_cast<int>(precision);


    int32_t result =


        static_cast<int32_t>(poll_sensor(this->fd, shimPrecision));





    return result;


}





Return<void> Aproximity::get_details(get_details_cb _hidl_cb) {


    ProximityDetails  result;





    result.precision.min = static_cast<int32_t>(this-



>params.precision.min);


    result.precision.max = static_cast<int32_t>(this-

>params.precision.range);


    result.proximity.min = static_cast<int32_t>(this-

>params.proximity.min);


    result.proximity.max = static_cast<int32_t>(this-

>params.proximity.range);





    _hidl_cb(result);


    return Void();


}





Return<void> Aproximity::summarize(summarize_cb _hidl_cb) {


    ProximitySummary  result;





    result.pollCallCount = this->pollCallCount;


    result.lastPollCalledMs = this->lastPollCalledMs;


    _hidl_cb(result);


    return Void();


}





Return<void> Aproximity::debug(const hidl_handle &handle,


                               const hidl_vec<hidl_string> & 

/*options*/) {


    if (handle == nullptr || handle->numFds < 1 || handle->data[0] 

< 0) {


        return Void();


    }


    int fd = handle->data[0];


    dprintf(fd, "HIDL:\n");


    dprintf(fd, "  Poll call count: %lu\n", this->pollCallCount);


    dprintf(fd, "  Last poll call:  %ld\n", this-

>lastPollCalledMs);


    fsync(fd);


    return Void();


}





}  // namespace implementation


}  // namespace V1_0


}  // namespace aproximity


}  // namespace one


}  // namespace acme


}  // namespace vendor



Notice how the methods get_details and summarize each use a HIDL
callback function provided by the caller to return data. This must be done
before the method returns: it is how the service “generates” the non-
primitive data returned to the client, which is waiting synchronously. What
makes this particularly confusing is both methods do return something: an
instance of a special class, Void! If you look carefully at the generated C++
code, each of the HIDL methods returns a special Return class instance. The
HIDL framework uses the Return class along with the help of the backing
Binder framework to determine that the HIDL call succeeded or not. The
aproximity clients, discussed in Chapter 12, will demonstrate how this can
be used.

The remaining method defined for the IAproximity interface is the poll
method, which generates an int32_t with the latest proximity value.
However, unlike the other methods that return more complex data types,
this return value is provided as part of the Return object rather than utilizing
a synchronous callback method.

Most HIDL service implementations will build the backing HIDL calls into
a static library that is then linked with the service executable. The
aproximity service is constructed in the same manner, requiring a separate
file containing the main service (daemon) entry point. The file
device/acme/one/hidl/aproximity/service.cpp provides the entry point
for the service. This is where the Aproximity class instance is created and
registered as the HIDL service. It then joins the RPC thread pool used by
the HIDL subsystem. The RPC thread pool is utilized by the HIDL
framework (really, the backing Binder subsystem) to process incoming
requests. By joining the thread pool, the main thread of this service is added
to the pool and will not return—it will process incoming requests forever.
The code for this is straightforward as shown in Listing 11.9.

Listing 11.9 Aproximity Service Entry Point
Click here to view code image
#include <hidl/HidlSupport.h>


#include <hidl/HidlTransportSupport.h>


#include <utils/Errors.h>


#include <utils/StrongPointer.h>
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#include "Aproximity.h"





using android::hardware::configureRpcThreadpool;


using android::hardware::joinRpcThreadpool;


using 

vendor::acme::one::aproximity::V1_0::implementation::Aproximity;


using namespace android;





int main() {


    configureRpcThreadpool(1, true);





    sp<Aproximity>  aproximity = new Aproximity();


    status_t status = aproximity->registerAsService("default");





    if (status != OK) {


        return status;


    }





    joinRpcThreadpool();


}

After the HIDL service is built and present on the platform, it needs to be
started by the system so the service is available for clients. This is done
using an init run command (or rc) file for the service. Unlike other
daemons in the system that require changes to a core platform script (such
as init.hikey960.rc), the rc file for a HIDL service is kept alongside the
service code and is pulled into the image based on build rules. Create the
file device/acme/one/hidl/aproximity/vendor.acme.one.aproximity@1.0-
service.rc with the content shown in Listing 11.10.

Listing 11.10 The Aproximity Service rc File
Click here to view code image
service vendor.aproximity-1-0 

/vendor/bin/hw/vendor.acme.one.aproximity@1.0-service


    class hal


    user system


    group system

The rc file tells the (vendor) init process to start a service named
vendor.aproximity-1-0 using the executable found at /vendor/bin/hw as
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part of the class of daemons labeled hal, and it is to be executed as the user
system and in the group system.

The service code is ready! Time to pull it into the platform build. Create the
file device/acme/one/hidl/aproximity/Android.bp with the content in
Listing 11.11.

Listing 11.11 Aproximity Service Android.bp
Click here to view code image
cc_defaults {


    name: "vendor.acme.one.aproximity@1.0-defaults",


    defaults: ["hidl_defaults"],


    relative_install_path: "hw",


    shared_libs: [


        "libhidlbase",


        "libhidltransport",


        "libhwbinder",


        "libutils",


        "vendor.acme.one.aproximity@1.0",


    ],


    vendor: true,


    proprietary: true,


}





cc_library {


    name: "vendor.acme.one.aproximity@1.0-impl",


    defaults: ["vendor.acme.one.aproximity@1.0-defaults"],


    srcs: [


        "Aproximity.cpp",


    ],


    header_libs: [


        "libacmeproximityshim_headers",


    ],


    export_include_dirs: ["."],


}





cc_binary {


    name: "vendor.acme.one.aproximity@1.0-service",


    defaults: ["vendor.acme.one.aproximity@1.0-defaults"],


    init_rc: ["vendor.acme.one.aproximity@1.0-service.rc"],


    srcs: ["service.cpp"],


    header_libs: [
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        "libacmeproximityshim_headers",


    ],


    static_libs: [


        "libacmeproximityshim",


        "vendor.acme.one.aproximity@1.0-impl",


    ],


    proprietary: true,


    vendor: true,


}

This blueprint file for soong lays out three different pieces: a set of default
build options for C++ code, a C++ library containing the Aproximity.cpp
implementation, and a C++ binary containing the service entry point and
linked with the service library implementation.

The cc_defaults section builds on top of an existing hidl_defaults
definition elsewhere in the platform and is named
vendor.acme.one.aproximity@1.0-defaults. This type of section in a
blueprint file sets up common things that can be applied to other blocks,
such as building a library or executable binary. The defaults section in this
file specifies the relative install path for any rule using these defaults as
well as a set of shared libraries to be used. The HIDL library and service
binary sections both apply these defaults. The net result is the service binary
will be located at /vendor/bin/hw on the target.

The service helper library is static, so it is not installed on the running
target. It is linked directly into the service binary along with the contents of
the libacmeproximityshim library that provides access to the underlying
device.

The final section pulls together the static libraries and the service entry
point code to create an executable, vendor.acme.one.aproximity@1.0-
service. This is what is executed by init via the rc file in Listing 11.10.
Remember: It is a native Linux binary, not a runtime (for example,
Java/Kotlin) Android application.

SE Linux for Android Changes

Before the new HIDL can be used, you must put some security-related
settings into place. As discussed in Chapter 5, Android’s use of SE Linux



requires that binaries have the necessary access controls enabled. In this
case, the aproximity service executable will need to have SE policies
defined and applied to it before it will function.

Even though Acme One is built upon the HiKey960 device support, the SE
policy changes are made in the overlay found in
device/acme/one/acme_one/sepolicy. The changes are broken down into
three different files: the policy file for the HIDL and two context definition
files that utilize the context labels defined in the policy. The longest and
most complex is the policy type enforcement file, because it defines several
attributes and context labels needed for the HIDL service. As discussed in
Chapter 5, crafting an SE policy file is non-trivial and also sparsely
documented within AOSP. Often, the best documentation is examining
existing SE policy files beneath system/sepolicy in the AOSP source tree.
For example, the files system/sepolicy/public/hal_sensors.te and
system/policy/vendor/hal_sensors_default.te were used as guideposts
when creating the policy file for aproximity. Listing 11.12 shows the policy
file, device/acme/one/acme_one/sepolicy/hal_aproximity.te.

Listing 11.12 hal_aproximity.te Type Enforcement File
Click here to view code image
hal_attribute(aproximity)





type hal_aproximity_hwservice, hwservice_manager_type;





###


# The HIDL aproximity attribute defines the _server and _client


#


binder_call(hal_aproximity_client, hal_aproximity_server)


binder_call(hal_aproximity_server, hal_aproximity_client)





hal_attribute_hwservice(hal_aproximity, hal_aproximity_hwservice)





####


# Create an execution domain for the service hosting the server 

side


#


type hal_aproximity_default, domain;


hal_server_domain(hal_aproximity_default, hal_aproximity)
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type hal_aproximity_default_exec, exec_type, vendor_file_type, 

file_type;


init_daemon_domain(hal_aproximity_default)





allow hal_aproximity_default 

hal_aproximity_hwservice:hwservice_manager find;





# Allow the HIDL access to /dev/tty*, which would cover USB


# serial devices at /dev/ttyUSB*


allow hal_aproximity_default serial_device:chr_file rw_file_perms;

The file leverages a number of macros defined by the AOSP policy files,
which makes the policy file shorter and consistent with other HIDL
definitions. But those macros also obfuscate some very important details!
Let’s walk through the file in chunks to make it easier to digest.

The first chunk to look at is up through the hal_attribute_hw_service line.
The hal_attribute macro at the start of the file does a number of things.
First, it sets up new SE attributes hal_aproximity, hal_aproximity_client,
and hal_aproximity_service. From there, it also declares some neverallow
policies restricting processes that have these attributes from forking other
processes. This lays the groundwork for definitions later in the file.
Similarly, the hal_aproximity_hwservice type is defined to be an
hwservice_manager_type. This ultimately allows the hwservicemanager to
manage service interfaces labeled with this type. The new hal_aproximity
attribute and hal_aproximity_hwservice are tied together via the macro
hal_attribute_hwservice. This macro sets up allow rules for
hal_aproximity_client to find interfaces labeled with
hal_aproximity_hwservice via hwservicemanager. The client label will be
used later in Chapter 12 when we create HIDL client apps. The
hal_attribute_hwservice macro also sets up components running as
hal_aproximity_server so they can add themselves and perform find
operations with the hwservicemanager and use the base HIDL functionality.
Finally, the binder_call macros are used to link the hal_aproximity_client
and hal_aproximity_service processes via Binder, allowing the client to
call the server as well as transfer references and files between the two. That
is a ton of setup for just five lines!



The next chunk defines an execution domain for the HIDL service. Recall
from Chapter 5 that Android SE policies require daemons to run in a well-
defined execution domain. Further, the init process handling of vendor
services will not even try to start up the service defined in the rc file shown
earlier in this chapter, if the SE domain is not set up correctly! The new
domain, hal_aproximity_default, is first defined then passed to the macro
hal_server_domain with the previously defined attribute hal_aproximity as
a type attribute of the domain. Additionally, the macro associates type
attributes halserverdomain and hal_aproximity_server to the new domain.
This effectively marks anything in the new domain as being an aproximity
server and also within the scope of the existing halserverdomain. From
here, a new type, hal_aproximity_default_exec, is used for describing files
needed for the HIDL service execution. This new execution domain will be
used to label the HIDL service binary shortly, in another SE file.

Now that the server side has an execution domain defined, the init process
must be allowed to transition to it. This is a subtle, but critical nuance. After
init has forked to create the new process for the service, it needs to be
allowed to transition domains to the one defined for the HIDL service. This
is accomplished via the init_daemon_domain macro. This macro sets up
several allow policies for init to automatically transition to
hal_aproximity_default when it forks and starts a process labeled as
hal_aproximity_default_exec. Rounding out this chunk is an allow policy
for processes within the hal_aproximity_default domain to find the
hal_aproximity_hwservice.

The final allow rule specifies that any binary running in the
hal_aproximity_default domain is able to access serial devices exposed by
the kernel. Because this HIDL leverages the same shim library as the
traditional HAL to access the underlying device interface(s), it needs the
same SE access to the backing USB serial interface that connects the
custom proximity device to the system on a chip (SoC). This is the same
type of allow rule that is applied to the domain executing the daemon(s)
leveraging the legacy HAL, discussed in Chapter 9.

All the various types defined and allow rules established in
hal_aproximity.te are great, but by themselves they do not accomplish
anything. Remember, with SE Linux, each process, file, socket, and so on is



given a context for the kernel to understand what access it has to features
within the system. In the case of our custom HIDL, the two “top” level
points of concern are the HIDL service and the HIDL interface. The service
is an executable binary that is stored on the file system. To apply the SE
policies to the specific file, add the lines in Listing 11.13 to the end of
device/acme/one/acme_one/sepolicy/file_contexts.

Listing 11.13 Aproximity Additions to file_contexts
Click here to view code image
# Acme One Specific Changes


/vendor/bin/hw/vendor\.acme\.one\.aproximity@1\.0-service   


➥ u:object_r:hal_aproximity_default_exec:s0

The vendor.acme.one.aproximity@1.0-service executable is declared to be
the hal_aproximity_default_exec type. This also marks it as a vendor-
executable file and also establishes that it is a HIDL service for
hal_aproximity_hwservice labeled interfaces.

This leaves the HIDL interface (the binder interface) to be defined. Create
the file device/acme/one/acme_one/sepolicy/hwservice_contexts with the
content shown in Listing 11.14.

Listing 11.14 Aproximity-Specific hwservice_contexts
Click here to view code image
vendor.acme.one.aproximity::IAproximity     

u:object_r:hal_aproximity_hwservice:s0

This final piece brings all the SE policy definitions added for the HIDL
together. The one interface the custom HIDL exposed,
vendor.acme.one.aproximity::IAproximity, is declared to be of type
hal_aproximity_hwservice.

Device Manifest

Now that the HIDL is defined and SE policy has been associated with it, the
system needs to know that this HIDL exists and some of the details about it.
The HIDL infrastructure requires devices to declare via a manifest which
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HIDL components are present and the details about them. Without the
details in this file, hwservicemanager does not know how the HIDL can be
registered and used (for example, the transport). Using this information,
hwservicemanager can verify/impose correct SE policy and support for the
transport. The possible values for transports are hwbinder and passthrough.
Any other value, including a missing transport, is considered an error.
Remember that any new devices running Android 8 or newer are allowed a
very limited set of passthrough type HIDLs. Create the file
devices/acme/one/acme_one/manifest.xml with the content shown in
Listing 11.15.

Listing 11.15 Aproximity Additions to Device manifest.xml
Click here to view code image
<manifest version=”1.0” type=”device”>


    <hal format="hidl">


        <name>vendor.acme.one.aproximity</name>


        <transport>hwbinder</transport>


        <version>1.0</version>


        <interface>


            <name>IAproximity</name>


            <instance>default</instance>


        </interface>


    </hal>


</manifest>

Because Acme One is derived from the hikey960 device, the device
manifest changes need to be picked up by the HiKey960 board
configuration makefile. Edit the file
device/linaro/hikey/hikey960/BoardConfig.mk, adding the content shown
in Listing 11.16 immediately after the BoardConfigCommon.mk file is
included.

Listing 11.16 Aproximity Additions to HiKey960 BoardConfig.mk
Click here to view code image
# Extend the device manifest file (for Acme One HIDL)


ifeq (acme_one, $(TARGET_PRODUCT))


$(warning Including Acme One HIDL manifest)
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DEVICE_MANIFEST_FILE += device/acme/one/manifest.xml


endif

Build the HIDL into Acme

Just like adding a custom app or other component, you must add the HIDL
service to the Acme build. Edit the file
device/acme/one/acme_one/acme_one.mk and add the line shown in Listing
11.17.

Listing 11.17 Acme One HIDL Updates to acme_one.mk
Click here to view code image
PRODUCT_PACKAGES += vendor.acme.one.aproximity@1.0-service

Re-running the build for the target will result in updates to system.img and
vendor.img. After these are flashed on to the HiKey960 board, the
aproximity service will start at system startup, shown in bold in Listing
11.18.

Listing 11.18 Running aproximity Service
Click here to view code image
$ adb logcat -v time | grep -C 3 -i aproximity





01-01 00:07:12.519 I/ServiceManagement( 2453): Removing namespace 

from process name


android.hardware.configstore@1.1-service to configstore@1.1-

service.


01-01 00:07:12.523 I/ServiceManagement( 2449): Registered


android.hardware.health@2.0::IHealth/backup (start delay of 70ms)


01-01 00:07:12.523 I/health@2.0/( 2449): health@2.0/backup: Hal 

init done


01-01 00:07:12.525 I/ServiceManagement( 2460): Registered


vendor.acme.one.aproximity@1.0::IAproximity/default (start delay of 

56ms)


01-01 00:07:12.525 I/ServiceManagement( 2460): Removing namespace 

from process name


vendor.acme.one.aproximity@1.0-service to aproximity@1.0-service.


00:07:12.532 I/netdClient( 2443): Skipping libnetd_client init 

since *we* are netd
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01-01 00:07:12.533 I/ServiceManagement( 2458): Registered


android.hardware.memtrack@1.0::IMemtrack/default (start delay of 

65ms)


01-01 00:07:12.534 I/ServiceManagement( 2458): Removing namespace 

from process name


android.hardware.memtrack@1.0-service to memtrack@1.0-service.





<CTRL-C>





$ adb shell


hikey960:/$ ps -A | grep -i aproximity


system   2460   1   37068   4652 0      0 S 

vendor.acme.one.aproximity@1.0-service

Locking Down the API

Just like a publicly released SDK or library, defining a new, custom HIDL
is a non-trivial effort. It requires careful consideration of the API details.
Creating an API just to turn around and change or remove it would be
obnoxious as well as a nightmare to support. These public interfaces are not
the same as internal codebase APIs, which may be constantly refactored.
After they are “published,” HIDL-defined interfaces have to be considered
frozen: “stable” and always available. This ensures that clients using the
HIDL will work on any target that provides the interface, and that future
devices that expose the HIDL are also compatible. The AOSP framework
does not enforce this requirement at runtime—it really can’t because it has
no way of knowing what prior revisions of an API looked like. All is not
lost, though. The AOSP build system has a mechanism that ensures that an
interface at a specific API does not change. Recall that each HIDL defined
by the AOSP framework, as well as the custom HIDL in this section, has a
version number associated with it. This combination makes the HIDL
interface unique. After an interface has been defined and is ready to be
“locked down,” a special hash is created for it. This hash is used both at
build time and also when executing the Vendor Test Suite (VTS) to verify
the vendor’s device build is compliant. You can find more details about
interface hashing at:

https://source.android.com/devices/architecture/hidl/hashing

https://source.android.com/devices/architecture/hidl/hashing


All HIDL interfaces, including the system-defined interfaces, must be
locked down to pass VTS. For example, Listing 11.19 shows the first
several lines of the AOSP HIDL interfaces for Android 10. It has been
abbreviated for space considerations. You can find the actual file at
hardware/interfaces/current.txt.

Listing 11.19 AOSP HIDL Hashes
Click here to view code image
# Do not change this file except to add new interfaces. Changing


# pre-existing interfaces will fail VTS and break framework-only 

OTAs





# HALs released in Android O





f219c3b5b8c...9ad090417a2 android.hardware.audio@2.0::IDevice


4d579cae1cd...9de5c1c7362 

android.hardware.audio@2.0::IDevicesFactory


203e23f1801...624c2b0848a 

android.hardware.audio@2.0::IPrimaryDevice


aaf93123dee...ebe1ee86748 android.hardware.audio@2.0::IStream


0468c5723b0...27b04b766df android.hardware.audio@2.0::IStreamIn


7296f7064fd...178d063680a android.hardware.audio@2.0::IStreamOut


19d241d71c3...25e9a98b6c2 

android.hardware.audio@2.0::IStreamOutCallback


c84da9f5860...774f8ea2648 android.hardware.audio@2.0::types


1305786c06e...54752b8566b android.hardware.audio.common@2.0::types


...

The Acme One aproximity HIDL is now “locked down” and ready for use.
Because this is a vendor-specific HIDL, the hash details for it go into the
vendor-specific interfaces directory. Thankfully, there is no need to know
the exact algorithm used to generate the hash, the exact hash type (SHA-
256), or to manually calculate it. The hidl-gen tool provides support for
generating interface hashes. Listing 11.20 shows how to generate the file
vendor/acme/one/interfaces/current.txt, which will contain the locked-
down hashes for the aproximity HIDL.

Listing 11.20 Create Custom HIDL Hashes
Click here to view code image
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hidl-gen -L hash -r vendor.acme.one:vendor/acme/one/interfaces \


  -r android.hidl:system/libhidl/transport 

vendor.acme.one.aproximity@1.0 \


  >> vendor/acme/one/interfaces/current.txt

The content of the file will look similar to the AOSP framework’s
current.txt, shown in Listing 11.19. However, only the custom HIDL
interface and types are present in the file, an abbreviated version of which is
shown in Listing 11.21.

Listing 11.21 Acme One HIDL Hashes
Click here to view code image
3b78d426c04...8b4b19ef250 vendor.acme.one.aproximity@1.0::types


dff6991e375...976a938449f 

vendor.acme.one.aproximity@1.0::IAproximity

To demonstrate how changes to the HIDL are caught at build time, let’s
change a small aspect of the HIDL definition. Edit the file IAproximity.hal
and add a new API, reset, which can be used to reset the underlying
hardware (see Listing 11.22).

Listing 11.22 Add the reset Method to IAProximity
Click here to view code image
package vendor.acme.one.aproximity@1.0;





interface IAproximity {


...


    /**


     * Reset the underlying hardware


     */


    reset();


};

There is no need to provide an implementation of the new interface. Simply
start a build and notice how it fails. The hash for the interface does not
match the hash for the same version of the interface. An abbreviated output
is shown in Listing 11.23, with the error set in bold.

Listing 11.23 Failed Build After HIDL API Change
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Click here to view code image
$ m -j 1





...





[ 19% 7/36] HIDL c++-sources: 

vendor/acme/one/interfaces/aproximity/1.0/types.hal


vendor/acme/one/interfaces/aproximity/1


FAILED:


out/soong/.intermediates/vendor/acme/one/interfaces/aproximity/1.0/

vendor.acme.


one.aproximity@1.0_genc++/gen/vendor/acme/one/aproximity/1.0/Aproxi

mityAll.cpp


out/soong/.intermediates/vendor/acme/one/interfaces/aproximity/1.0/

vendor.acme.


one.aproximity@1.0_genc++/gen/vendor/acme/one/aproximity/1.0/types.

cpp


rm -rf


out/soong/.intermediates/vendor/acme/one/interfaces/aproximity/1.0/

vendor.acme.


one.aproximity@1.0_genc++/gen && out/soong/host/linux-x86/bin/hidl-

gen -R -p . -d


out/soong/.intermediates/vendor/acme/one/interfaces/aproximity/1.0/

vendor.acme.


one.aproximity@1.0_genc++/gen/vendor/acme/one/aproximity/1.0/Aproxi

mityAll.cpp.d -o


out/soong/.intermediates/vendor/acme/one/interfaces/aproximity/1.0/

vendor.acme.


one.aproximity@1.0_genc++/gen -L c++-sources -


rvendor.acme.one:vendor/acme/one/interfaces -


randroid.hidl:system/libhidl/transport 

vendor.acme.one.aproximity@1.0


ERROR: vendor.acme.one.aproximity@1.0::IAproximity has hash


c270b98c7a304a5026ffd1c6e6cfb03bf01756efdcd45950758a87e604b108d7 

which does not match


hash on record. This interface has been frozen. Do not change it!


ERROR: Could not parse vendor.acme.one.aproximity@1.0::types. 

Aborting.


09:55:15 ninja failed with: exit status 1





#### failed to build some targets (46 seconds) ####
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Because we had locked down the HIDL interface (hashes were created), the
build system will not allow a new image to be created. There are three
choices in this situation: do not modify the API, bump the version number
and provide the new API implementation, or provide the new API
implementation and re-generate the hash (safe because the HIDL API was
not fully released). Bumping the version number would require a new
HIDL implementation that derives from this 1.0 version and is beyond the
scope of this book. See the AOSP sensors HIDL API for an example of a
multi-versioned HIDL API. To keep things simple, we will just add a no-op
implementation for the new API, regenerate the API hashes for our HIDL,
and verify we can build, as shown in Listing 11.24.

Listing 11.24 Regenerate Custom HIDL Hashes
Click here to view code image
$ hidl-gen -L hash -r vendor.acme.one:vendor/acme/one/interfaces \


  -r android.hidl:system/libhidl/transport 

vendor.acme.one.aproximity@1.0 \


  > vendor/acme/one/interfaces/current.txt


$ m -j 12





...





[100% 15/15] Target vendor fs image: 

out/target/product/hikey960/vendor.img





#### build completed successfully (10 seconds) ####

Summary

This chapter defined a new HIDL-based HAL for the Acme platform:
aproximity. This HAL replaces the traditional HAL implementation defined
in Chapter 8. The implementation leverages the shim library that was built
as part of the traditional HAL, but exposes the functionality via Binder-
based APIs. The binders are registered with the system by a simple service
executable and processed by a service-side implementation of the
IAproximity interface. Chapter 12 will round out the HIDL example by
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showing how to create client applications that can access the aproximity
HAL.



12

Clients for a Custom Binderized
HAL

Android’s newer binderized HAL, HIDL, is a fundamental shift in the way
that OEMs and vendors provide platform-specific support for a device. Not
only does this impact the OEM/vendor implementation of a custom HAL,
the code that utilizes the backing HIDL is also different than a traditional
HAL. Client apps may be written in native C/C++ or Java code but no
longer require special vendor-provided libraries to be bundled with the
system. Similarly, the platform automatically builds Java-side support,
removing the need for a custom JNI layer to take advantage of the HAL
implementation.

HIDL client executables are similar in function to pre-Android 8 daemons
or Android services that leveraged traditional HAL libraries. Typically,
daemons or services using a traditional HAL load the requisite HAL shared
library and often expose functionality to other parts of the system that
require the backing HAL library. This is central to the way Android
manages access to scarce resources, such as hardware features. Exposing
the HAL features is typically done via a binder interface, or other IPC
mechanism such as a POSIX socket. Depending on the exact function of the
HIDL, the same techniques may be used to expose the HIDL functionality
to the rest of the system.

This chapter demonstrates HIDL client implementation using both C++ and
Java/Kotlin code, tapping into the Acme proximity HIDL created in
Chapter 11. Exposing the HIDL functionality to the rest of the system via
daemon or service is device and feature specific, so it is beyond the scope
of this chapter. The main takeaway from this chapter will be how to tap into



the new custom HIDL via a client application that is built into the system.
Remember, these are not third-party applications that are released to the
Google Play or any other app store. Only system- or vendor-provided
executables/apps will have the necessary security access to directly leverage
HIDL interfaces.

Native C++ Aproximity Client

Conceptually, the HIDL client implementation is quite simple with regards
to interfacing with the backing HIDL service: get the backing service then
call the appropriate method as needed. In fact, most of the C++ 220example
code deals with input arguments and providing output to 

the caller!

As discussed in Chapter 10, when a HIDL’s .hal file(s) are built with the
platform, a shared library is created for the HIDL along with the necessary
headers for both service and client. This shared library provides all the
functionality for the client to find the backing HIDL service, connect with
it, and call through to its methods. The Binder-specific bits are handled by
the generated code, allowing the HIDL client developer to focus on the
functionality being used.

Listing 12.1 contains a simple C++ client for the custom HIDL. This is a
command line application that can be run to exercise the different HIDL
features of aproximity. This file is located at
device/acme/one/app/aproximitycl in the platform tree. The key section of
the code is the portion near the end of main, which acquires a pointer to the
backing service and calls the specific HIDL method (shown in bold.)

Listing 12.1 Aproximity C++ HIDL Client
Click here to view code image
#include <hidl/HidlSupport.h>


#include <vendor/acme/one/aproximity/1.0/IAproximity.h>


#include <vendor/acme/one/aproximity/1.0/types.h>


#include <utils/StrongPointer.h>


#include <getopt.h>





using vendor::acme::one::aproximity::V1_0::IAproximity;
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using vendor::acme::one::aproximity::V1_0::ProximityDetails;


using vendor::acme::one::aproximity::V1_0::ProximitySummary;


using android::sp;





using namespace android::hardware;





static void detailsCb(const ProximityDetails& details) {


    printf("[details] precision min/max: %d/%d\n",


           details.precision.min,


           details.precision.max);


    printf("[details] proximity min/max: %d/%d\n",


           details.proximity.min,


           details.proximity.max);


}





static void summaryCb(const ProximitySummary& summary) {


    printf("[summary] poll call count: %lu, last poll call (ms): 

%ld\n",


           summary.pollCallCount,


           summary.lastPollCalledMs);


}





void printUsage(char *name) {


    printf("Usage: %s [-ds] [-g input_precision]\n", name);


    printf("\td:  Display the details of the sensor\n");


    printf("\tg:  Get the latest proximity reading at the 

precision\n");


    printf("\ts:  Print the summary details of the service\n");


}





int main(int argc, char* argv[]) {


    if (argc < 2) {


        printUsage(argv[0]);


        return -1;


    }





    bool doDetails= false;


    bool doProximity = false;


    int precision = -1;


    bool doSummary = false;


    bool doDebug = false;


    int  currentOpt;





    //  Parse the command line options, determine what to do




    while ((currentOpt = getopt(argc, argv, "dg:s")) != -1) {


        switch (currentOpt) {


            case 'd':


                doDetails = true;


                break;


            case 'g':


                doProximity = true;


                precision = atoi(optarg);


                break;


            case 's':


                doSummary = true;


                break;


            case '?':


                if (isprint(optopt)) {


                    fprintf(stderr,


                            "Unknown option: '%c'\n",


                            optopt);


                } else {


                    fprintf(stderr,


                            "Unknown option character: '\\x%X'\n",


                            optopt);


                }





                printUsage(argv[0]);


                return -1;





            default:


                abort();


        }


    }





    if (!doDetails && !doProximity && !doSummary) {


        doDebug = true;


    }





    //  Get the HIDL to use (IAproximity)


    sp<IAproximity>  client = IAproximity::getService();


    if (client == nullptr) {


        fprintf(stderr, "Unable to get aproximity service 

interface\n");


        return -2;


    }





    if (doDetails) {




        Return<void> result = client->get_details(detailsCb);


        if (!result.isOk()) {


            fprintf(stderr,


                    "Unable to get proximity service details. Err: 

%s\n",


                    result.description().c_str());


            return -1;


        }


    }





    if (doProximity) {


        Return<int32_t> retProximity = client->poll(precision);


        if (!retProximity.isOk()) {


            fprintf(stderr,


                    "Unable to get proximity for precision (%d). 

Err: %s\n",


                    precision,


                    retProximity.description().c_str());


            return -1;


        }





        printf("[proximity] %d\n", static_cast<int32_t>

(retProximity));


    }





    if (doSummary) {


        client->summarize(summaryCb);


    }





    return 0;


}

After acquiring a smart pointer to the IAproximity service,
sp<IAproximity>, the client can simply call the desired method. If the smart
pointer is nullptr, it means the client could not connect with the backing
service. This typically happens if the HIDL service is not present or there
was a SE policy violation.

Note
Just like communicating with other binder-based services, if the
HIDL framework is unable to start/find the service that provides the



HIDL implementation, the client may block indefinitely. Under
normal circumstances this will not happen, but during development
can be a major source of confusion. If this happens to your client
app, check the kernel logs (via dmesg) and logcat output for errors
relating to starting the backing HIDL service.

One of the more confusing parts of HIDL interface APIs is the handling of
returned values. Depending on the specific service method, the return
results may be received in different ways. Primitive data (for example,
int32_t, int64_t, boolean, and so on) are returned (almost) directly.
However, as shown in the service-side code in Chapter 11, complex or
multiple return types require the client side to provide a callback method to
receive the return data. This can be seen in Listing 12.1 with the three
different IAproximity methods.

All the exposed service methods return a Return object, which contains
information about the service call and possibly some return data. The
Return object contains status details for the method call. The result of the
Return.isOk() method indicates whether the service call succeeded or not.
If it did not, the Return.description() method can be used to get a log-
friendly message.

Primitive return type handling is demonstrated with the return handling for
the poll method. When Return indicates the call is successful for a
primitive return value, the Return object is simply cast to the primitive type.

In the case of the complex return values ProximityDetails and
ProximitySummary, there is no direct return data. Instead, the client must
provide callback methods, detailsCb and summaryCb, to the HIDL
get_details and summarize methods, as shown in Listing 12.1. These
callback functions handle the different complex return values. Note that
even though callback methods are used, the actual HIDL service call
blocks, so the results will be received via the callback before the service call
returns.

Building the aproximitycl client executable requires a small blueprint file.
Create the file Android.bp in device/acme/one/app/aproximitycl with the
content shown in Listing 12.2.



Listing 12.2 aproximitycl Blueprint File
Click here to view code image
cc_binary {


    name: "aproximitycl",


    srcs: ["aproximitycl.cpp"],


    vendor: true,


    shared_libs: [


        "libhidlbase",


        "libutils",


        vendor.acme.one.aproximitycl@1.0


    ]


}

The blueprint file instructs the build system to create a C++ binary based on
the input file aproximitycl.cpp using the necessary HIDL libraries.
Because the vendor field is set to true, the resultant executable will be in
the vendor file system on the running device. Specifically, it will be located
at /vendor/bin/aproximitycl. Before the new executable can be used, some
new SE policy details must be added to the system.

SE Linux for Android Changes for aproximitycl

Just like when the HIDL service was added in Chapter 11, some new SE
Linux policy changes are needed for aproximitycl to function. Because the
Aproximity HIDL support has already been created, adding the client-side
support is rather simple. Edit the file
device/acme/one/acme_one/sepolicy/hal_aproximity.te, adding the
content from Listing 12.3 to the end.

Listing 12.3 Additions to the hal_aproximity.te Type Enforcement File
Click here to view code image
###


# Create an execution domain for aproximitycl which is able to 

access the service


#


type aproximitycl, domain;


hal_client_domain(aproximitycl, hal_aproximity)
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type aproximitycl_exec, exec_type, vendor_file_type, file_type;





domain_auto_trans(shell, aproximitycl_exec, aproximitycl)


allow shell aproximitycl_exec:file { getattr open read execute map 

};





# Allow `adb shell /vendor/bin/aproximitycl` and also


# `adb shell` then `/vendor/bin/aproximitycl`


allow aproximitycl shell:fd use;


allow aproximitycl adbd:fd use;


allow aproximitycl adbd:process sigchld;


allow aproximitycl adbd:unix_stream_socket { getattr ioctl read 

write };


allow aproximitycl devpts:chr_file rw_file_perms;

This new content for the type enforcement file sets up a new domain and
execution attribute for the HIDL client (aproximitycl). Because it builds
upon the server setup described in Chapter 11, there is no reason to dig into
each line. However, the end of this section is worth mentioning. Instead of
init, the aproximitycl executable may only be run manually via the shell.
To allow this, the domain_auto_trans macro is used, which sets up a policy
to automatically transition anything in the shell domain to the new
aproximitycl domain when the shell forks and executes a binary labeled
with the aproximitycl_exec type. If that sounds familiar, it is because it is
exactly what the service-side init_daemon_domain macro uses behind the
scenes to allow auto-transition of init! The remaining lines of this policy
file establish several “allow” policies needed to permit actual use of
aproximitycl. These policies allow the shell to execute binaries labeled as
aproximitycl_exec and also allow the 

aproximitycl domain executables to use file descriptors, UNIX domain
sockets, virtual terminals, and to send child signals. All of that is required
so aproximitycl can use standard input/output when run via the shell
manually or via the adb shell command.

The remaining SE change needed for the aproximitycl client is to set the
label of the executable binary. Add the line in Listing 12.4 to the end of
device/acme/one/acme_one/sepolicy/file_contexts to place aproximitycl
into the aproximitycl_exec domain.

Listing 12.4 Addition to file_contexts for aproximitycl



Click here to view code image
# Acme One Specific Changes


...


/vendor/bin/aproximitycl   u:object_r:aproximitycl_exec:s0

Build aproximitycl into Acme

Just like when adding a vendor app or other component to the Android OS
build, you must add the HIDL client to the Acme build file. Edit the file
device/acme/one/acme_one/acme_one.mk and add the line shown in Listing
12.5.

Listing 12.5 Add aproxmitycl to acme_one.mk
Click here to view code image
PRODUCT_PACKAGES += aproximitycl

Re-running the build for the target will result in updates to system.img and
vendor.img. After these are flashed on to the HiKey960 board, the service
will start at system startup and can be leveraged via the aproximitycl
executable (see Listing 12.6).

Listing 12.6 Running aproximitycl
Click here to view code image
$ adb shell


hikey960:/ $ aproximitycl


Usage: aproximitycl [-ds] [-g input_precision]


        d:  Display the details of the sensor


        g:  Get the latest proximity reading at the precision


        s:  Print the summary details of the service


255|hikey960:/ $ aproximitycl -d 


[details] precision min/max: 0/100


[details] proximity min/max: 0/100


hikey960:/ $ aproximitycl -g -1 


[proximity] -1


hikey960:/ $ aproximitycl -g 50 


[proximity] 60


hikey960:/ $ aproximitycl -g 99 


[proximity] 63
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hikey960:/ $ aproximitycl -s 


[summary] poll call count: 3, last poll call (ms): 1609601581478

Java/Kotlin Aproximity Client

Utilizing a HIDL directly in a Java (or Kotlin!) package is substantially
easier than legacy HAL access. This is in part because HIDL leverages the
power of Android’s Binder framework, but also because the HIDL build
support auto-generates Java libraries for use by Java-based components. In
other words: No custom JNI code is required! That being said, it is
important to remember that performance-critical features are generally
better kept to native code rather than runtime-based code.

To keep things simple, there is a complete Java/Kotlin-based client for
IAproximity in the platform tree at
device/acme/one/app/AproximityClient. This section will not walk through
setting up each file in that directory. The layout is a typical Android Studio
project. Note, though, that the AOSP build tree does not support Gradle-
based builds.

This example brings up a simple UI showing the details of the aproximity
HIDL and allows the user to request the latest proximity data via the user-
provided precision value. The result is shown along with summary
information. The code for MainActivity, written in Kotlin, can be seen in
Listing 12.7 and has been trimmed here for brevity.

Listing 12.7 AproximityClient MainActivity
Click here to view code image
package com.acme.one.aproximityclient


import ...


import vendor.acme.one.aproximity.V1_0.IAproximity


import vendor.acme.one.aproximity.V1_0.ProximitySummary


import java.lang.NumberFormatException





class MainActivity : Activity() {


    companion object {


        const val TAG = "MainActivity"


    }
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    private lateinit var proxDetails: TextView


    private lateinit var proxSummary: TextView


    private lateinit var proxPrecision: EditText


    private lateinit var proxValue: TextView


    private lateinit var pollButton: Button


    private lateinit var proxHidl: IAproximity





    override fun onCreate(savedInstanceState: Bundle?) {


        super.onCreate(savedInstanceState)


        setContentView(R.layout.activity_main)





        setupHalAccess()


        setupViews()


    }





    override fun onResume() {


        super.onResume()


        updateDetails()


    }





    @SuppressLint("SetTextI18n")


    private fun setupViews() {


        ...


        pollButton = findViewById(R.id.get_proximity)


        pollButton.setOnClickListener {


            val precision = try {


                proxPrecision.text.toString().toInt()


            } catch (e: NumberFormatException) {


                null


            }





            precision?.also {


                val proximity: Int = proxHidl.poll(precision)


                Log.d(TAG, "Latest proximity: $proximity")


                proxValue.text = proximity.toString()





                //  Also update summarize details


                val summary = proxHidl.summarize()


                val count = summary.pollCallCount


                val timeStamp = summary.lastPollCalledMs


                proxSummary.text =


                    "Poll called $count times, last at $timeStamp"





            } ?: run {




                Toast.makeText(


                    this,


                    R.string.bad_precision,


                    Toast.LENGTH_LONG


                ).show()


            }


        }


    }





    private fun setupHalAccess() {


        proxHidl = IAproximity.getService(true)


    }





    private fun updateDetails() {


        val details = proxHidl.get_details()


        val precMin = details.precision.min


        val precMax = details.precision.max


        val proxMin = details.proximity.min


        val proxMax = details.proximity.max


        val detailText =


            "Precision ($precMin / $precMax)," +


                    "Proximity ($proxMin / $proxMax)"


        proxDetails.text = detailText


    }


}

Gaining access to the HIDL service is accomplished in a helper method,
setupHalAccess(), which is called from onCreate(). This method calls the
static method, IAproximity.getService(), which internally communicates
with hwservicemanager to retrieve the backing binder to the HIDL service
and returns an IAproximity proxy instance. The proxy instance is saved in
the member field, proxHidl.

The onResume() method calls another helper method, updateDetails(). This
is the first time the proxy class is used to call to the HIDL service. The
get_details() HIDL method is called to retrieve a ProximityDetails
object. The data from this object, the min and max for precision and
proximity values, are formatted and added to a text field onscreen.

Finally, a simple OnClickListener closure is hooked into the button object,
pollButton. When the user clicks the button, the precision value the user
has selected is retrieved, and the proxy is once again called. This time both



the poll()and summarize() methods are called. The results of both calls are
then formatted and displayed onscreen.

Acquiring access to the HIDL service and utilizing it is noticeably simpler
here in the Java/Kotlin side. There are no thread pools to configure and join,
nor are there any callback methods that need to be provided when calling
through to the service. However, a couple of potential pitfalls exist that
need to be mentioned because the example code is so simple.

First, this code gets access to the HIDL and makes all calls to it directly in
the main thread of the app. For this simple example, that’s fine. However,
each of these operations is an IPC call, which means the main thread is
blocked waiting on another process to handle the request and return data.
Second, the code has no error handling with respect to the HIDL service
calls. Just like binder-based services, anytime an IPC call is made, there is
the possibility of encountering a RemoteException or SecurityException.
These should be dealt with as appropriate for the app when in production
release code. Finally, it may not be obvious because this code looks like
run-of-the-mill Android app code, but this app must be a vendor- or
platform-provided package in order to access the HIDL interfaces.
Typically, an app package like this or special 229system service would
expose the HIDL functionality via a binder interface. A great example of
this is the Secure Element application, located at
packages/apps/SecureElement in the AOSP tree.

SE Linux for Android Changes for AproximityClient

Fortunately, the necessary changes to allow AproximityClient to use the
aproximity HIDL are very straightforward. This is, in part, because of the
type of enforcement macros available in the AOSP SE definitions, but also
because this app needs to be a system app and will be built as such. Listing
12.8 shows the additions needed to the hal_aproximity.te file.

Listing 12.8 Adding AproximityClient to the hal_aproximity.te Type
Enforcement File
Click here to view code image
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###


# Allow platform apps (AproximityClient) to find and use 

hal_aproximity


#


hal_client_domain(platform_app, hal_aproximity)

Build AproximityClient into Acme

Getting the AproximityClient package built and installed on the Acme One
platform is similar to other executables we have created. As previously
mentioned, the full AOSP build system does not support Gradle-based
builds. Dropping a typical Android Studio–based project into the tree will
not work. In fact, if we look at the bundled system packages in the AOSP
tree (under packages/*), the projects that build APKs do not even follow the
typical Android Studio source tree layout! This makes sense; these
packages are not third-party packages to be built against the public SDK
and released for any Android device. These packages are intended to be
built for a specific Android target.

Instead, a soong blueprint file is needed to get AproximityClient built and
included in the platform. The blueprint rule for creating an Android app
package includes support for specifying the source, resources, and manifest
location(s) as well as some other options. This allows a new project to still
utilize the Android Studio project layout.

Note
Even though the soong blueprint file syntax supports a project layout
like those used by Android Studio, it does not have feature parity
with Gradle-based builds. There is no support for Maven
dependencies, Android Gradle Plugin features, build
variants/flavors, and so on. Any package created as part of the
platform build would either need the dependencies built as part of
the AOSP tree or dropped into the specific project as a JAR file.
Building the same app via Gradle or Android Studio can be
achieved, but the dependency setup when using platform-specific
libraries can be involved.



Listing 12.9 shows the blueprint file for AproximityClient.

Listing 12.9 Android.bp Blueprint File for AproxmityClient
Click here to view code image
android_app {


    name: "AproximityClient",


    vendor: true,


    privileged: true,


    certificate: "platform",


    srcs: [


        "app/src/**/*.java",


        "app/src/**/*.kt",


    ],


    resource_dirs: [


        "app/src/main/res",


    ],


    static_libs: [


        "vendor.acme.one.aproximity-V1.0-java",


    ],


    manifest: "app/src/main/AndroidManifest.xml"


}

As we have seen before, you can specify the location of the sources via the
srcs field, allowing the use of an Android Studio project layout. Similarly,
the resource_dirs and manifest fields provide the mechanism to specify
the locations of the package resources and manifest, respectively.

The static_libs field is used to pull in Java libraries, which are available
in the build tree. This is where the HIDL client library for aproximity is
specified as a dependency of this package. This library is auto-generated by
the platform based on the .hal file(s) for a given HIDL. Oddly enough, it
does not actually perform this auto-generation until something specifies the
library as a dependency! When you build the platform after adding the
HIDL service implementation and C++ native client, this library is nowhere
to be found in the build output or intermediates. The build system will not
create the library until the AproximityClient application package is built.

Two other fields in this blueprint file worth mentioning are the privileged
and certificate fields. The privileged field is used to build the package
into the platform as a special platform app. This ultimately places it into a
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different SE context, platform_app. This domain was configured in the
previous section to be allowed to use the aproximity HIDL. The
certificate 

field specifies which of the certificates known to the platform should be
used to sign the APK. This goes hand-in-hand with the privileged field as
the platform certificate is needed for the app to be placed into the
platform_app SE context.

Summary

Creation of a customized HIDL API for an Android platform necessitates
the use of a custom HIDL client application. This is analogous to the
service- or daemon-side access to a traditional Android HAL, exposing the
HAL functionality to the rest of the system. This chapter explored the
creation of both native (C++) and runtime (Java/Kotlin)–based clients for
the Acme One aproximity HIDL. Both types of clients are able to leverage
the HIDL libraries that are generated by the platform. The libraries
obfuscate most of the binder-based mechanics used by the HIDL
architecture behind the scenes. However, both client implementations still
require some knowledge of the backing architecture—specifically with the
use of threads and context of execution. Regardless, the end result is a
straightforward way to use API for accessing the underlying HIDL service
created for the platform.
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forked repositories, local mirrors of, 19–24
forking sources, 15–16
frameworks

Android, 39–40
directory, 46

full stack support, 2

G
garbage collector, 177–179
Gerrit, 15
GID, process sandbox, 70–72
git repositories

commit planning, 19
forked repositories, local mirrors of, 19–24
hosted repositories, 18–19
repo tool, 13

glibc (GNU C library), 38
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AOSP, 5–6
Project Treble, 134

Gradle, Android adoption, 3

H
HAL (Hardware Abstraction Layer), 39

applications, using, 157–159
building, 137–140
code structure, 138–140
custom HIDL (binderized HAL), 199, 219

building HIDL into Acme, 213
defined, 200–202
device manifests, 212–213
Java/Kotlin aproximity client, 226–230
locking down API, 214–216
native C++ aproximity client, 219–226
SE Linux for Android changes, 209–212
services, 202–209

declarations, 141–143
defined, 133, 143–148
designing, 136–137
directories, structure of, 139
HIDL (binderized HAL), 183, 186–187, 188–191

Android-defined HIDL packages, 188
architectures, 183–185
client applications, 186



clients, 197–198
custom HIDL (binderized HAL). See separate entry
hwservicemanager, 185
services, 185, 194–197, 202–209
types of, 191–194

implementing, 140–141
declarations, 141–143
definitions, 143–148
shims, 149–151

layer structure, 138
necessity of, 135
Project Treble, 134
purpose of, 133–134
shims, 149

API, 149
implementing, 150–151

SP-HAL, 185
hardware, 36
hardware directory, 46–47
HIDL (binderized HAL), 183, 186–187, 188–191

Android-defined HIDL packages, 188
architectures, 183–185
client applications, 186
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custom HIDL (binderized HAL), 199, 219

building HIDL into Acme, 213
defined, 200–202
device manifests, 212–213
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locking down API, 214–216
native C++ aproximity client, 219–226
SE Linux for Android changes, 209–212
services, 202–209

hwservicemanager, 185
services, 185, 194–197, 202–209
types of, 191–194

HiKey960, 9
hosted git repositories, 18–19
hwservicemanager, 185
hybrid ART, 122–123
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images

building, lunch tool, 24–27
installing, 27
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fastboot, 28–29

implementing HAL, 140–141
declarations, 141–143
definitions, 143–148
shims, 149–151

init application, 104–106
initializing directories, with repo tool, 11
installing images, 27



adb, 29–30
fastboot, 28–29

integrating vendors, device development, 16–17
interpreters, IL, 116
Ion, 60

J
Java

Android adoption, 3
JNI, 161–162
proximity application build, 165

native shims, 165–167
native shims, finalizers, 169–171
native shims, Opaque Peer, 168–169
native shims, reference queues, 171–176

javah, 161–164
Java/Kotlin aproximity client, custom HIDL (binderized HAL), 226–
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building into Acme, 229–230
SE Linux for Android changes, 229

JNI (Java Native Interface), 159–160
breaking rules, 176
garbage collector, 177–179
Java and, 161–162
native code

documenting references, 176
executing, 160–161
javah, 161–164
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passing simple types, 177
static methods, 177
WeakRefs, 179–182

proximity application build, 165
native shims, 165–167
native shims, finalizers, 169–171
native shims, Opaque Peer, 168–169
native shims, reference queues, 171–176

K
kernel modules, zram, 52–53
kernels

Android, 53–55
alarms, 61–62
Ashmem, 59
Binder, 56–57
Ion, 60
logger, 60–61
low memory killer, 57–59
OOM-Killer, 58–59
paranoid networking, 62
pmem, 59–60
Skia, 60
wakelocks, 55–56

Binder, 39
boot, 100–102



building, 62–63
build systems, 63
downloading sources, 63–66

catalog trees, memory management, 53
Linux, 36–37, 49–50
memory management, 51–53
process management, 50–51
system startup, 100–102

Kotlin. See Java/Kotlin aproximity client

L
labels, SE Linux, 74
layer cake analogy, Android, 35–36
layer structure, HAL, 138
libcore directory, 47
libnativehelper directory, 47
libraries, system, 36, 37, 38

Android API Libraries, 39–40
ART, 39–40, 122
Bionic, 38
C library, 37–38
Dalvik, 39–40
glibc, 38
Native Libraries, 39–40

linking, ART, 121–122
Linux

Android adoption, 2–3



build machine setup, 10
kernel, 36–37, 49–50
SE Linux, 72–73
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labels, 74
policy definitions, 73–76
roles, 74
types, 74
users, 73

system startup
boot process, 93–95
bootloader, 95–99
creating Acme device, 107–109
daemons, 107–111
fastboot, 99–100
file systems, 102–106
kernels, 100–102
recovery, 106–107
repo tool, 110–111

lmkd, 59
local mirrors

AOSP, 17
device development, Acme project, 17–18, 19–24
forked repositories, 19–24

logger, 60–61
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application logs, 61
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system logs, 61

low memory killer, 57–59
lunch tool, images, building, 24–27

M
MAC, process sandbox, 72
Makefile directory, 45
managing

kernels
memory, 51–53
processes, 50–51

memory, Zygote, 123–126
manifests

Acme custom HIDL (binderized HAL), 212–213
repo tool, 11–12, 13–14

manual enforcement of Android permissions, 78–79
memory

Ashmem, 59
block-structured memory, kernels, 51–52
catalog trees, 53
Ion, 60
logger, 60–61
low memory killer, 57–59
managing

kernels, 51–53
Zygote, 123–126



OOM-Killer, 58–59
page tables, 125
pmem, 59–60
RAM, kernels, memory management, 51–53
ROM, 7
shared memory

Ashmem, 59
Ion, 60
pmem, 59–60
Skia, 60

solid-state memory, kernels, 52
zram, 52–53

micro-controllers, 6–7
mirrors, local

AOSP, 17
device development, Acme project, 17–18, 19–24
forked repositories, 19–24

mount points
/ (forward slash), 79
/cache, 81–82, 103
/data, 80, 103
/dev, 81
miscellaneous mount points, 81–82
/odm, 81
/proc, 81
/product, 81
/sdcard, 80–81
/sys, 81



/system, 79, 103
/vendor, 81
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native C++ aproximity client, custom HIDL (binderized HAL), 219–
224

building into Acme, 225–226
SE Linux for Android changes, 224–225

native code
Android applications, 160–161
executing, 160–161
JNI

documenting references, 176
garbage collector, 177–179
object references, 179–182
passing simple types, 177
static methods, 177
WeakRefs, 179–182

Native Libraries, 39–40
native shims

finalizers, 169–171
Opaque Peer, 168–169
proximity application build, 165–176
reference queues, 171–176

O
OAT files, 120–121



/odm mount point, 81
/odm (unmounted) partition, 104
OOM-Killer, 58–59
Opaque Peer, 168–169
open source environment, Android adoption, 3–5
operational security, 67, 69–70

Android permissions, 76
automatic enforcement, 77
customizing, 83–91
manual enforcement, 78–79

Android software layers, 70
process sandbox, 70–72
SE Linux, 72–76

OSX, build machine setup, 10–11
OTA updates, 6
out directory, 48
ownership, code, 3–5

P
packages directory, 47
page tables, memory, 125
paranoid networking, 62
partitions

boot (unmounted), 103
/odm (unmounted), 104
persist (unmounted), 104
/product (unmounted), 104



radio (unmounted), 104
recovery (unmounted), 104
storage (/sdcard), 104
/system, 103
vendor (unmounted), 103

pdk directory, 47
permissions, 43

Android, 76
automatic enforcement, 77
customizing, 83–91
manual enforcement, 78–79

customizing
Client App, 88–91
Protected App, 83–87

persist (unmounted) partition, 104
platform security, 67

chipsets, 67
customization security, 67
operational security, 67, 69–70

Android permissions, 76–79
Android software layers, 70
process sandbox, 70–72
SE Linux, 72–76

types of, 67
user security, 67, 82–83
verified boot, 68–69

platform-testing directory, 47
plug-ins, Binder, 39



pmem, 59–60
policy definitions, 73–76
POSIX alarm driver, 61–62
prebuilts directory, 47
pre-requirements, device development, 9
/proc mount point, 81
processes

managing, kernels, 50–51
sandboxing, 70–72

/product mount point, 81
/product (unmounted) partition, 104
Project Treble, 134, 183. See also HIDL
Protected App custom permission, 83–87
proximity application build, native shims, 165–167

finalizers, 169–171
Opaque Peer, 168–169
reference queues, 171–176

Q
QNX, 7

R
radio (unmounted) partition, 104
RAM (Random Access Memory), kernels, memory management, 51–
53
recovery

boot, 106–107



ClockworkMod recovery system, 107
TWRP, 107

recovery (unmounted) partition, 104
reference queues, native shims, 171–176
repo tool, 11

build process, Acme project, 11–15
daemons, building, 110–111
directories, initializing, 11
Gerrit, 15
git repositories, 13
manifests, 11–12, 13–14
sync command, 12–13
uploads, 15
workflows, 15
workspaces, 11–12

repositories, git
commit planning, 19
forked repositories, local mirrors, 19–24
hosted git repositories, 18–19
repo tool, 13

roles, SE Linux, 74
ROM (Read-Only Memory), 7
RTOS (Real-Time Operating Systems), 6, 8

Android Things, 7–8
QNX, 7
VxWorks, 7

runtime initialization, Zygote, 128–129



S
sandboxing, processes, 70–72
SBC (Single-Board Computers), 6
/sdcard mount point, 80–81
sdk directory, 47
SE Linux, 72–73

Acme custom HIDL (binderized HAL), 209–212
Java/Kotlin aproximity client, 229
native C++ aproximity client, 224–225

custom HIDL (binderized HAL), 209–212
domains, 74
HIDL (binderized HAL), 209–212
labels, 74
policy definitions, 73–76
roles, 74
types, 74
users, 73

security, 67
CE storage areas, 82
chipsets, 67
customization security, 67
DE storage areas, 82
Direct Boot, 82–83
FBE, 82–83
FDE, 82
file systems, 79

/ (forward slash), 79



/cache mount point, 81–82, 103
/data mount point, 80, 103
/dev mount point, 81
/odm mount point, 81
/proc mount point, 81
/product mount point, 81
/sdcard mount point, 80–81
/sys mount point, 81
/system mount point, 79, 103
/vendor mount point, 81

operational security, 67, 69–70, 72–76
Android permissions, 76–79
Android software layers, 70
process sandbox, 70–72

SE Linux, 72–73
domains, 74
labels, 74
policy definitions, 73–76
roles, 74
types, 74
users, 73

types of, 67
user security, 67, 82–83
verified boot, 68–69

services
Acme custom HIDL (binderized HAL), 202–209
Android Services, 40
custom HIDL (binderized HAL), 202–209



HIDL (binderized HAL), 185, 194–197, 202–209
setting up, build machines, 10–11
shared folders, virtual machines, 10
shared memory

Ashmem, 59
Ion, 60
pmem, 59–60
Skia, 60

shims, 149
API, 149
native shims

finalizers, 169–171
Opaque Peer, 168–169
proximity application build, 165–176
reference queues, 171–176

Skia, 60
snapshots, tree, 19
SoC vendors, Android version selection, 16–17
software layers, Android, 70
solid-state memory, kernels, 52
source trees, Acme project device development example, 23
SP-HAL (Same Process-HAL), 185
starting

Android, 115
ART, 120–123
Dalvik (DVM), 116–119
IL, 116
startup times, 123–126



VM, 116
Zygote, 115–116, 123–131

applications, Zygote, 115–116, 127–128
daemons, 111–114
Linux systems

boot process, 93–95
bootloader, 95–99
creating Acme device, 107–109
daemons, 107–111
fastboot, 99–100
file systems, 102–106
kernels, 100–102
recovery, 106–107
repo tool, 110–111

Zygote, 127–128
storage

CE storage areas, 82
DE storage areas, 82

storage (/sdcard) partition, 104
sync command, repo tool, 12–13
/sys mount point, 81
system directory, 48
system libraries, 36, 37, 38, 39–40

Android API Libraries, 39–40
ART, 39–40, 122
Bionic, 38
C library, 37–38
Dalvik, 39–40



glibc, 38
Native Libraries, 39–40

system logs, 61
/system mount point, 79, 103
system services, 36, 129–131
system startup

Acme device, creating, 107–109
boot process, 93–95
bootloader, 95–99
daemons

building, 107
starting, 111–114

fastboot, 99–100
file systems, 102–106
kernels, 100–102
recovery, 106–107
repo tool, 110–111

system updates, ART, 122

T
Things, Android, 7–8
toolchain directory, 48
tools directory, 48
Treble, Project, 134, 183. See also HIDL
tree snapshots, 19
TWRP (Team Win Recovery Project), 107
types, SE Linux, 74
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UI (User Interface), Android adoption, 2
UID (Use ID), process sandbox, 70–72
unlocking bootloaders, 99
updates

OTA, 6
system updates, ART, 122

uploads, repo tool, 15
userdata, /data mount point, 80, 103
users

SE Linux, 73
security, 67, 82–83

V
/vendor mount point, 81
vendors

integration, device development, 16–17
unmounted, 103

verified boot, 68–69
version selection, Android, 16–17
VM (Virtual Machines), 116

ART, 120–123
Dalvik (DVM), 116–119
shared folders, 10
Zygote, 123–131

vmpressure events, 59
VxWorks, 7
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wakelocks, 55–56
WeakRefs, 179–182
workflows, Repo, 15
workspaces

building, 24
repo tool, 11–12

X - Y - Z
zram, 52–53
Zygote, 40, 115–116, 123

clones, 125–126
memory management, 123–126
runtime initialization, 128–129
starting, 127–128
startup times, 123–126
system service startups, 129–131









Code Snippets

Many titles include programming code or configuration examples. To
optimize the presentation of these elements, view the eBook in single-
column, landscape mode and adjust the font size to the smallest setting. In
addition to presenting code and configurations in the reflowable text format,
we have included images of the code that mimic the presentation found in
the print book; therefore, where the reflowable format may compromise the
presentation of the code listing, you will see a “Click here to view code
image” link. Click the link to view the print-fidelity code image. To return
to the previous page viewed, click the Back button on your device or app.
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