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Praise for Building Machine Learning Pipelines

“I wish this book had existed when I started working in production ML! It’s an
outstanding resource for getting a comprehensive view of production ML systems in
general, and TFX in particular. Hannes and Catherine have worked directly with the
TensorFlow team to get the most accurate information available for including in this

book, and then explained it in clear, concise explanations and examples.”
—Robert Crowe, TensorFlow Developer Advocate, Google

“The data science practitioner knows that real-world machine learning involves
more than just machine learning model training. This book demystifies the hidden

technical debt in modern machine learning workflows such that you can put the
lab and factory data science patterns into production as repeatable workflows.”

—Josh Patterson, CEO, Patterson Consulting,
Coauthor of Deep Learning: A Practitioner’s Approach

and Kubeflow Operations Guide

“This is definitely the book to read if you would like to understand how to build ML
pipelines that are automated, scalable, and reproducible! You will learn something

useful from it whether you are a data scientist, machine learning engineer, software
engineer, or DevOps. It also covers the latest features of TFX and its components.”

—Margaret Maynard-Reid, Machine Learning Engineer,
Tiny Peppers, ML GDE (Google Developer Expert), GDG Seattle Lead Organizer



“Wonderfully readable, Building Machine Learning Pipeline serves not only as a
comprehensive guide to help data scientists and ML engineers build automated and

reproducible ML pipelines, but it is also the only authoritative book on the subject. The
book provides an overview of the clearly defined components needed to architect ML

pipelines successfully and walks you through hands-on code examples
in a practical manner."

—Adewale Akinfaderin, Data Scientist, Amazon Web Services

“I really enjoyed reading Building Machine Learning Pipelines. Having used TFX for
several years internally at Google as it was growing, I must say I wish I had your book

back then instead of figuring this all out on my own. You would have saved me
many months of effort and confusion. Thanks for writing such a high quality guide!”

—Lucas Ackerknecht, Machine Learning Specialist,
Anti-Abuse Machine Learning, Google

“We all have some of these amazing prototype models lying around. This book will
introduce you to the tools and techniques that will help you take that prototype to

production. Not only that but you will also build a complete end-to-end pipeline around
it so that any future enhancements get delivered automatically and smoothly.

This is a great book for beginners in ML ops who want to take their skills to the next level
and collaborate with larger teams to help realize the values of innovative new models.”

—Vikram Tiwari, Cofounder, Omni Labs, Inc.

“As a person who had only used TensorFlow as a framework for training deep learning
models, when reading this book I was amazed at the pipeline capabilities that the

TensorFlow ecosystem has to offer. This book is a great guide to all of the tools for
analyzing and deploying models available with TFX, and is easy to read and use for

people looking to make their first machine learning pipeline with TensorFlow.”
—Dr. Jacqueline Nolis, Principal Data Scientist, Brightloom

and Coauthor of Build a Career in Data Science

“This book is an exceptional deep-dive into Machine Learning Engineering.
You will find cogent and practical examples of what it takes to build production-ready

ML infrastructure. I would consider this required reading for any engineer or data
scientist who intends to apply ML to real-world problems.”

—Leigh Johnson, Staff Engineer,
Machine Learning Services, Slack
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Foreword

When Henry Ford’s company built its first moving assembly line in 1913 to produce
its legendary Model T, it cut the time it took to build each car from 12 to 3 hours.
This drastically reduced costs, allowing the Model T to become the first affordable
automobile in history. It also made mass production possible: soon, roads were floo‐
ded with Model Ts.

Since the production process was now a clear sequence of well-defined steps (aka, a
pipeline), it became possible to automate some of these steps, saving even more time
and money. Today, cars are mostly built by machines.

But it’s not just about time and money. For many repetitive tasks, a machine will pro‐
duce much more consistent results than humans, making the final product more pre‐
dictable, consistent, and reliable. Lastly, by keeping humans away from heavy
machinery, safety is greatly improved, and many workers went on to perform higher-
level jobs (although to be fair, many others just lost their jobs).

On the flip side, setting up an assembly line can be a long and costly process. And it’s
not ideal if you want to produce small quantities or highly customized products. Ford
famously said, “Any customer can have a car painted any color that he wants, so long
as it is black.”

The history of car manufacturing has repeated itself in the software industry over the
last couple of decades: every significant piece of software nowadays is typically built,
tested, and deployed using automation tools such as Jenkins or Travis. However, the
Model T metaphor isn’t sufficient anymore. Software doesn’t just get deployed and
forgotten; it must be monitored, maintained, and updated regularly. Software pipe‐
lines now look more like dynamic loops than static production lines. It’s crucial to be
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able to quickly update the software (or the pipeline itself) without ever breaking it.
And software is much more customizable than the Model T ever was: software can be
painted any color (e.g., try counting the number of MS Office variants that exist).

Unfortunately, “classical” automation tools are not well suited to handle a full
machine learning pipeline. Indeed, an ML model is not a regular piece of software.

For one, a large part of its behavior is driven by the data it trains on. Therefore, the
training data itself must be treated as code (e.g., versioned). This is quite a tricky
problem because new data pops up every day (often in large quantities), usually
evolves and drifts over time, often includes private data, and must be labelled before
you can feed it to supervised learning algorithms.

Second, the behavior of a model is often quite opaque: it may pass all the tests on
some data but fail entirely on others. So you must ensure that your tests cover all the
data domains on which your model will be used in production. In particular, you
must make sure that it doesn’t discriminate against a subset of your users.

For these (and other) reasons, data scientists and software engineers first started
building and training ML models manually, “in their garage,” so to speak, and many
of them still do. But new automation tools have been developed in the past few years
that tackle the challenges of ML pipelines, such as TensorFlow Extended (TFX) and
Kubeflow. More and more organizations are starting to use these tools to create ML
pipelines that automate most (or all) of the steps involved in building and training
ML models. The benefits of this automation are mostly the same as for the car indus‐
try: save time and money; build better, more reliable, and safer models; and spend
more time doing more useful tasks than copying data or staring at learning curves.
However, building an ML pipeline is not trivial. So where should you start?

Well, right here!

In this book, Hannes and Catherine provide a clear guide to start automating your
ML pipelines. As a firm believer in the hands-on approach, especially for such a tech‐
nical topic, I particularly enjoyed the way this book guides you step by step through a
concrete example project from start to finish. Thanks to the many code examples and
the clear, concise explanations, you should have your own ML pipeline up and run‐
ning in no time, as well as all the conceptual tools required to adapt these ML pipe‐
lines to your own use cases. I highly recommend you grab your laptop and actually
try things out as you read; you will learn much faster.

I first met Hannes and Catherine in October 2019 at the TensorFlow World confer‐
ence in Santa Clara, CA, where I was speaking on building ML pipelines using TFX.
They were working on this book on the same topic, and we shared the same editor, so
naturally we had a lot to talk about. Some participants in my course had asked very
technical questions about TensorFlow Serving (which is part of TFX), and Hannes
and Catherine had all the answers I was looking for. Hannes even kindly accepted my
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invitation to give a talk on advanced features of TensorFlow Serving at the end of my
course on very short notice. His talk was a treasure trove of insights and helpful tips,
all of which you will find in this book, along with many, many more.

Now it’s time to start building professional ML pipelines!

— Aurélien Géron
Former YouTube Video Classification Team Lead

Author of Hands-On Machine Learning with
Scikit-Learn, Keras, and TensorFlow (O’Reilly)

Auckland, New Zealand, June 18, 2020
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Preface

Everybody’s talking about machine learning. It’s moved from an academic discipline
to one of the most exciting technologies around. From understanding video feeds in
self-driving cars to personalizing medications, it’s becoming important in every
industry. While the model architectures and concepts have received a lot of attention,
machine learning has yet to go through the standardization of processes that the soft‐
ware industry experienced in the last two decades. In this book, we’d like to show you
how to build a standardized machine learning system that is automated and results in
models that are reproducible.

What Are Machine Learning Pipelines?
During the last few years, the developments in the field of machine learning have
been astonishing. With the broad availability of graphical processing units (GPUs)
and the rise of new deep learning concepts like Transformers such as BERT, or Gen‐
erative Adversarial Networks (GANs) such as deep convolutional GANs, the number
of AI projects has skyrocketed. The number of AI startups is enormous. Organiza‐
tions are increasingly applying the latest machine learning concepts to all kinds of
business problems. In this rush for the most performant machine learning solution,
we have observed a few things that have received less attention. We have seen that
data scientists and machine learning engineers are lacking good sources of informa‐
tion for concepts and tools to accelerate, reuse, manage, and deploy their develop‐
ments. What is needed is the standardization of machine learning pipelines.

Machine learning pipelines implement and formalize processes to accelerate, reuse,
manage, and deploy machine learning models. Software engineering went through
the same changes a decade or so ago with the introduction of continuous integration
(CI) and continuous deployment (CD). Back in the day, it was a lengthy process to
test and deploy a web app. These days, these processes have been greatly simplified by
a few tools and concepts. Previously, the deployment of web apps required
collaboration between a DevOps engineer and the software developer. Today, the app
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can be tested and deployed reliably in a matter of minutes. Data scientists and
machine learning engineers can learn a lot about workflows from software engineer‐
ing. Our intention with this book is to contribute to the standardization of machine
learning projects by walking readers through an entire machine learning pipeline,
end to end.

From our personal experience, most data science projects that aim to deploy models
into production do not have the luxury of a large team. This makes it difficult to
build an entire pipeline in-house from scratch. It may mean that machine learning
projects turn into one-off efforts where performance degrades after time, the data sci‐
entist spends much of their time fixing errors when the underlying data changes, or
the model is not used widely. An automated, reproducible pipeline reduces the effort
required to deploy a model. The pipeline should include steps that:

• Version your data effectively and kick off a new model training run
• Validate the received data and check against data drift
• Efficiently preprocess data for your model training and validation
• Effectively train your machine learning models
• Track your model training
• Analyze and validate your trained and tuned models
• Deploy the validated model
• Scale the deployed model
• Capture new training data and model performance metrics with feedback loops

This list leaves out one important point: choosing the model architecture. We assume
that you already have a good working knowledge of this step. If you are getting
started with machine or deep learning, these resources are a great starting point to
familiarize yourself with machine learning:

• Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence
Algorithms, 1st edition by Nikhil Buduma and Nicholas Locascio (O’Reilly)

• Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd
edition by Aurélien Géron (O’Reilly)

Who Is This Book For?
The primary audience for the book is data scientists and machine learning engineers
who want to go beyond training a one-off machine learning model and who want to
successfully productize their data science projects. You should be comfortable with
basic machine learning concepts and familiar with at least one machine learning
framework (e.g., PyTorch, TensorFlow, Keras). The machine learning examples in
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this book are based on TensorFlow and Keras, but the core concepts can be applied to
any framework.

A secondary audience for this book is managers of data science projects, software
developers, or DevOps engineers who want to enable their organization to accelerate
their data science projects. If you are interested in better understanding automated
machine learning life cycles and how they can benefit your organization, the book
will introduce a toolchain to achieve exactly that.

Why TensorFlow and TensorFlow Extended?
Throughout this book, all our pipeline examples will use tools from the TensorFlow
ecosystem, and in particular TensorFlow Extended (TFX). There are a number of rea‐
sons behind our choice of this framework:

• The TensorFlow ecosystem is the most extensively available for machine learning
at the time of writing. It includes multiple useful projects and support libraries
beyond its core focus, such as TensorFlow Privacy and TensorFlow Probability.

• It is popular and widely used in small and large production setups, and there is
an active community of interested users.

• The supported use cases span from academic research to machine learning in
production. TFX is tightly integrated with the core TensorFlow platform for pro‐
duction use cases.

• Both TensorFlow and TFX are open source tools, and there are no restrictions on
their usage.

However, all the principles we describe in this book are relevant to other tools and
frameworks as well.

Overview of the Chapters
In each chapter, we will introduce specific steps for building machine learning pipe‐
lines and demonstrate how these work with an example project.

Chapter 1: Introduction gives an overview of machine learning pipelines, discusses
when you should use them, and describes all the steps that make up a pipeline. We
also introduce the example project we will use throughout the book.

Chapter 2: Introduction to TensorFlow Extended introduces the TFX ecosystem,
explains how tasks communicate with each other, and describes how TFX compo‐
nents work internally. We also take a look at the ML MetadataStore and how it is
used in the context of TFX, and how Apache Beam runs the TFX components behind
the scenes.
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Chapter 3: Data Ingestion discusses how to get data into our pipelines in a consistent
way and also covers the concept of data versioning.

Chapter 4: Data Validation explains how the data that flows into your pipeline can be
validated efficiently using TensorFlow Data Validation. This will alert you if new data
changes substantially from previous data in a way that may affect your model’s
performance.

Chapter 5: Data Preprocessing focuses on preprocessing data (the feature engineering)
using TensorFlow Transform to convert raw data to features suitable for training a
machine learning model.

Chapter 6: Model Training discusses how you can train models within machine learn‐
ing pipelines. We also explain the concept of model tuning.

Chapter 7: Model Analysis and Validation introduces useful metrics for understand‐
ing your model in production, including those that may allow you to uncover biases
in the model’s predictions, and discusses methods to explain your model’s predic‐
tions. “Analysis and Validation in TFX” on page 124 explains how to control the ver‐
sioning of your model when a new version improves on a metric. The model in the
pipeline can be automatically updated to the new version.

Chapter 8: Model Deployment with TensorFlow Serving focuses on how to deploy
your machine learning model efficiently. Starting off with a simple Flask implemen‐
tation, we highlight the limitations of such custom model applications. We will intro‐
duce TensorFlow Serving and how to configure your serving instances. We also
discuss its batching functionality and guide you through the setup of clients for
requesting model predictions.

Chapter 9: Advanced Model Deployments with TensorFlow Serving discusses how to
optimize your model deployments and how to monitor them. We cover strategies for
optimizing your TensorFlow models to increase your performance. We also guide
you through a basic deployment setup with Kubernetes.

Chapter 10: Advanced TensorFlow Extended introduces the concept of custom com‐
ponents for your machine learning pipelines so that you aren’t limited by the stan‐
dard components in TFX. Whether you want to add extra data ingestion steps or
convert your exported models to TensorFlow Lite (TFLite), we will guide you
through the necessary steps for creating such components.

Chapter 11: Pipelines Part I: Apache Beam and Apache Airflow connects all the dots
from the previous chapters. We discuss how you can turn your components into
pipelines and how you’ll need to configure them for the orchestration platform of
your choice. We also guide you through an entire end-to-end pipeline running on
Apache Beam and Apache Airflow.

xx | Preface



Chapter 12: Pipelines Part 2: Kubeflow Pipelines continues from the previous chapter
and walks through end-to-end pipelines using Kubeflow Pipelines and Google’s AI
Platform.

Chapter 13: Feedback Loops discusses how to turn your model pipeline into a cycle
that can be improved by feedback from users of the final product. We’ll discuss what
type of data to capture to improve the model for future versions and how to feed data
back into the pipeline.

Chapter 14: Data Privacy for Machine Learning introduces the rapidly growing field
of privacy-preserving machine learning and discusses three important methods for
this: differential privacy, federated learning, and encrypted machine learning.

Chapter 15: The Future of Pipelines and Next Steps provides an outlook of technolo‐
gies that will have an impact on future machine learning pipelines and how we will
think about machine learning engineering in the years to come.

Appendix A: Introduction to Infrastructure for Machine Learning gives a brief intro‐
duction to Docker and Kubernetes.

Appendix B: Setting Up a Kubernetes Cluster on Google Cloud has some supplemen‐
tary material on setting up Kubernetes on Google Cloud.

Appendix C: Tips for Operating Kubeflow Pipelines has some useful tips for operating
your Kubeflow Pipelines setup, including an overview of the TFX command-line
interface.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.
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This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, etc.) is available for download at https://
oreil.ly/bmlp-git.

If you have a technical question or a problem using the code examples, please email
bookquestions@oreilly.com and buildingmlpipelines@gmail.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Building Machine Learning Pipelines
by Hannes Hapke and Catherine Nelson (O’Reilly). Copyright 2020 Hannes Hapke
and Catherine Nelson, 978-1-492-05319-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.
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O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Both authors would like to thank you for picking up this book and giving it your
attention. If you would like to get in touch with them, you can contact them via their
website www.buildingmlpipelines.com or via email at buildingmlpipelines@gmail.com.
They wish you every success in building your own machine learning pipelines!

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/build-ml-pipelines.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER 1

Introduction

In this first chapter, we will introduce machine learning pipelines and outline all the
steps that go into building them. We’ll explain what needs to happen to move your
machine learning model from an experiment to a robust production system. We’ll
also introduce our example project that we will use throughout the rest of the book to
demonstrate the principles we describe.

Why Machine Learning Pipelines?
The key benefit of machine learning pipelines lies in the automation of the model life
cycle steps. When new training data becomes available, a workflow which includes
data validation, preprocessing, model training, analysis, and deployment should be
triggered. We have observed too many data science teams manually going through
these steps, which is costly and also a source of errors. Let’s cover some details of the
benefits of machine learning pipelines:

Ability to focus on new models, not maintaining existing models
Automated machine learning pipelines will free up data scientists from maintain‐
ing existing models. We have observed too many data scientists spending their
days on keeping previously developed models up to date. They run scripts man‐
ually to preprocess their training data, they write one-off deployment scripts, or
they manually tune their models. Automated pipelines allow data scientists to
develop new models, the fun part of their job. Ultimately, this will lead to higher
job satisfaction and retention in a competitive job market.

Prevention of bugs
Automated pipelines can prevent bugs. As we will see in later chapters, newly
created models will be tied to a set of versioned data and preprocessing steps will
be tied to the developed model. This means that if new data is collected, a new
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model will be generated. If the preprocessing steps are updated, the training data
will become invalid and a new model will be generated. In manual machine
learning workflows, a common source of bugs is a change in the preprocessing
step after a model was trained. In this case, we would deploy a model with differ‐
ent processing instructions than what we trained the model with. These bugs
might be really difficult to debug since an inference of the model is still possible,
but simply incorrect. With automated workflows, these errors can be prevented.

Useful paper trail
The experiment tracking and the model release management generate a paper
trail of the model changes. The experiment will record changes to the model’s
hyperparameters, the used datasets, and the resulting model metrics (e.g., loss or
accuracy). The model release management will keep track of which model was
ultimately selected and deployed. This paper trail is especially valuable if the data
science team needs to re-create a model or track the model’s performance.

Standardization
Standardized machine learning pipelines improve the experience of a data sci‐
ence team. Due to the standardized setups, data scientists can be onboarded
quickly or move across teams and find the same development environments.
This improves efficiency and reduces the time spent getting set up on a new
project. The time investment of setting up machine learning pipelines can also
lead to an improved retention rate.

The business case for pipelines
The implementation of automated machine learning pipelines will lead to three
key impacts for a data science team:

• More development time for novel models
• Simpler processes to update existing models
• Less time spent to reproduce models

All these aspects will reduce the costs of data science projects. But furthermore, auto‐
mated machine learning pipelines will:

• Help detect potential biases in the datasets or in the trained models. Spotting bia‐
ses can prevent harm to people who interact with the model. For example, Ama‐
zon’s machine learning–powered resume screener was found to be biased against
women.

• Create a paper trail (via experiment tracking and model release management)
that will assist if questions arise around data protection laws, such as Europe’s
General Data Protection Regulation (GDPR).

• Free up development time for data scientists and increase their job satisfaction.
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When to Think About Machine Learning Pipelines
Machine learning pipelines provide a variety of advantages, but not every data sci‐
ence project needs a pipeline. Sometimes data scientists simply want to experiment
with a new model, investigate a new model architecture, or reproduce a recent publi‐
cation. Pipelines wouldn’t be useful in these cases. However, as soon as a model has
users (e.g., it is being used in an app), it will require continuous updates and fine-
tuning. In these situations, we are back in the scenarios we discussed earlier about
continuously updating models and reducing the burden of these tasks for data
scientists.

Pipelines also become more important as a machine learning project grows. If the
dataset or resource requirements are large, the approaches we discuss allow for easy
infrastructure scaling. If repeatability is important, this is provided through the auto‐
mation and the audit trail of machine learning pipelines.

Overview of the Steps in a Machine Learning Pipeline
A machine learning pipeline starts with the ingestion of new training data and ends
with receiving some kind of feedback on how your newly trained model is perform‐
ing. This feedback can be a production performance metric or feedback from users of
your product. The pipeline includes a variety of steps, including data preprocessing,
model training, and model analysis, as well as the deployment of the model. You can
imagine that going through these steps manually is cumbersome and very error-
prone. In the course of this book, we will introduce tools and solutions to automate
your machine learning pipeline.

As you can see in Figure 1-1, the pipeline is actually a recurring cycle. Data can be
continuously collected and, therefore, machine learning models can be updated.
More data generally means improved models. And because of this constant influx of
data, automation is key. In real-world applications, you want to retrain your models
frequently. If you don’t, in many cases accuracy will decrease because the training
data is different from the new data that the model is making predictions on. If
retraining is a manual process, where it is necessary to manually validate the new
training data or analyze the updated models, a data scientist or machine learning
engineer would have no time to develop new models for entirely different business
problems.
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Figure 1-1. Model life cycle

A machine learning pipeline commonly includes the steps in the following sections.

Data Ingestion and Data Versioning
Data ingestion, as we describe in Chapter 3, is the beginning of every machine learn‐
ing pipeline. In this pipeline step, we process the data into a format that the following
components can digest. The data ingestion step does not perform any feature engi‐
neering (this happens after the data validation step). It is also a good moment to ver‐
sion the incoming data to connect a data snapshot with the trained model at the end
of the pipeline.

Data Validation
Before training a new model version, we need to validate the new data. Data valida‐
tion (Chapter 4) focuses on checking that the statistics of the new data are as
expected (e.g., the range, number of categories, and distribution of categories). It also
alerts the data scientist if any anomalies are detected. For example, if you are training
a binary classification model, your training data could contain 50% of Class X sam‐
ples and 50% of Class Y samples. Data validation tools provide alerts if the split
between these classes changes, where perhaps the newly collected data is split 70/30
between the two classes. If a model is being trained with such an imbalanced training
set and the data scientist hasn’t adjusted the model’s loss function, or over/under
sampled category X or Y, the model predictions could be biased toward the dominant
category.

Common data validation tools will also allow you to compare different datasets. If
you have a dataset with a dominant label and you split the dataset into a training and
validation set, you need to make sure that the label split is roughly the same between
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1 In supervised classification problems with multiple classes as outputs, it’s often necessary to convert from a
category to a vector such as (0,1,0), which is a one-hot vector, or from a list of categories to a vector such as
(1,1,0), which is a multi-hot vector.

the two datasets. Data validation tools will allow you to compare datasets and high‐
light anomalies.

If the validation highlights anything out of the ordinary, the pipeline can be stopped
here and the data scientist can be alerted. If a shift in the data is detected, the data
scientist or the machine learning engineer can either change the sampling of the indi‐
vidual classes (e.g., only pick the same number of examples from each class), or
change the model’s loss function, kick off a new model build pipeline, and restart the
life cycle.

Data Preprocessing
It is highly likely that you cannot use your freshly collected data and train your
machine learning model directly. In almost all cases, you will need to preprocess the
data to use it for your training runs. Labels often need to be converted to one or
multi-hot vectors.1 The same applies to the model inputs. If you train a model from
text data, you want to convert the characters of the text to indices or the text tokens
to word vectors. Since preprocessing is only required prior to model training and not
with every training epoch, it makes the most sense to run the preprocessing in its
own life cycle step before training the model.

Data preprocessing tools can range from a simple Python script to elaborate graph
models. While most data scientists focus on the processing capabilities of their
preferred tools, it is also important that modifications of preprocessing steps can be
linked to the processed data and vice versa. This means if someone modifies a pro‐
cessing step (e.g., allowing an additional label in a one-hot vector conversion), the
previous training data should become invalid and force an update of the entire pipe‐
line. We describe this pipeline step in Chapter 5.

Model Training and Tuning
The model training step (Chapter 6) is the core of the machine learning pipeline. In
this step, we train a model to take inputs and predict an output with the lowest error
possible. With larger models, and especially with large training sets, this step can
quickly become difficult to manage. Since memory is generally a finite resource for
our computations, the efficient distribution of the model training is crucial.

Model tuning has seen a great deal of attention lately because it can yield significant
performance improvements and provide a competitive edge. Depending on your
machine learning project, you may choose to tune your model before starting to
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think about machine learning pipelines or you may want to tune it as part of your
pipeline. Because our pipelines are scalable, thanks to their underlying architecture,
we can spin up a large number of models in parallel or in sequence. This lets us pick
out the optimal model hyperparameters for our final production model.

Model Analysis
Generally, we would use accuracy or loss to determine the optimal set of model
parameters. But once we have settled on the final version of the model, it’s extremely
useful to carry out a more in-depth analysis of the model’s performance (described in
Chapter 7). This may include calculating other metrics such as precision, recall, and
AUC (area under the curve), or calculating performance on a larger dataset than the
validation set used in training.

Another reason for an in-depth model analysis is to check that the model’s predic‐
tions are fair. It’s impossible to tell how the model will perform for different groups
of users unless the dataset is sliced and the performance is calculated for each slice.
We can also investigate the model’s dependence on features used in training and
explore how the model’s predictions would change if we altered the features of a sin‐
gle training example.

Similar to the model-tuning step and the final selection of the best performing model,
this workflow step requires a review by a data scientist. However, we will demon‐
strate how the entire analysis can be automated with only the final review done by a
human. The automation will keep the analysis of the models consistent and compara‐
ble against other analyses.

Model Versioning
The purpose of the model versioning and validation step is to keep track of which
model, set of hyperparameters, and datasets have been selected as the next version to
be deployed.

Semantic versioning in software engineering requires you to increase the major ver‐
sion number when you make an incompatible change in your API or when you add
major features. Otherwise, you increase the minor version number. Model release
management has another degree of freedom: the dataset. There are situations in
which you can achieve a significant difference of model performance without chang‐
ing a single model parameter or architecture description by providing significantly
more and/or better data for the training process. Does that performance increase
warrant a major version upgrade?

While the answer to this question might be different for every data science team, it is
essential to document all inputs into a new model version (hyperparameters, datasets,
architecture) and track them as part of this release step.
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Model Deployment
Once you have trained, tuned, and analyzed your model, it is ready for prime time.
Unfortunately, too many models are deployed with one-off implementations, which
makes updating models a brittle process.

Modern model servers allow you to deploy your models without writing web app
code. Often, they provide multiple API interfaces like representational state transfer
(REST) or remote procedure call (RPC) protocols and allow you to host multiple ver‐
sions of the same model simultaneously. Hosting multiple versions at the same time
will allow you to run A/B tests on your models and provide valuable feedback about
your model improvements.

Model servers also allow you to update a model version without redeploying your
application, which will reduce your application’s downtime and reduce the commu‐
nication between the application development and the machine learning teams. We
describe model deployment in Chapters 8 and 9.

Feedback Loops
The last step of the machine learning pipeline is often forgotten, but it is crucial to
the success of data science projects. We need to close the loop. We can then measure
the effectiveness and performance of the newly deployed model. During this step, we
can capture valuable information about the performance of the model. In some situa‐
tions, we can also capture new training data to increase our datasets and update our
model. This may involve a human in the loop, or it may be automatic. We discuss
feedback loops in Chapter 13.

Except for the two manual review steps (the model analysis step and the feedback
step), we can automate the entire pipeline. Data scientists should be able to focus on
the development of new models, not on updating and maintaining existing models.

Data Privacy
At the time of writing, data privacy considerations sit outside the standard machine
learning pipeline. We expect this to change in the future as consumer concerns grow
over the use of their data and new laws are brought in to restrict the usage of personal
data. This will lead to privacy-preserving methods being integrated into tools for
building machine learning pipelines.

We discuss several current options for increasing privacy in machine learning models
in Chapter 14:
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2 Google started an internal project called Sibyl in 2007 to manage an internal machine learning production
pipeline. However, in 2015, the topic gained wider attention when D. Sculley et al. published their learnings
of machine learning pipelines, “Hidden Technical Debt in Machine Learning Systems”.

3 D. Sculley et al., “Hidden Technical Debt in Machine Learning Systems,” Google, Inc. (2015).

• Differential privacy, where math guarantees that model predictions do not
expose a user’s data

• Federated learning, where the raw data does not leave a user’s device
• Encrypted machine learning, where either the entire training process can run in

the encrypted space or a model trained on raw data can be encrypted

Pipeline Orchestration
All the components of a machine learning pipeline described in the previous section
need to be executed or, as we say, orchestrated, so that the components are being exe‐
cuted in the correct order. Inputs to a component must be computed before a com‐
ponent is executed. The orchestration of these steps is performed by tools such as
Apache Beam, Apache Airflow (discussed in Chapter 11), or Kubeflow Pipelines for
Kubernetes infrastructure (discussed in Chapter 12).

While data pipeline tools coordinate the machine learning pipeline steps, pipeline
artifact stores like the TensorFlow ML MetadataStore capture the outputs of the indi‐
vidual processes. In Chapter 2, we will provide an overview of TFX’s MetadataStore
and look behind the scenes of TFX and its pipeline components.

Why Pipeline Orchestration?
In 2015, a group of machine learning engineers at Google concluded that one of the
reasons machine learning projects often fail is that most projects come with custom
code to bridge the gap between machine learning pipeline steps.2 However, this cus‐
tom code doesn’t transfer easily from one project to the next. The researchers sum‐
marized their findings in the paper “Hidden Technical Debt in Machine Learning
Systems.”3 The authors argue in this paper that the glue code between the pipeline
steps is often brittle and that custom scripts don’t scale beyond specific cases. Over
time, tools like Apache Beam, Apache Airflow, or Kubeflow Pipelines have been
developed. These tools can be used to manage the machine learning pipeline tasks;
they allow a standardized orchestration and an abstraction of the glue code between
tasks.

While it might seem cumbersome at first to learn a new tool (e.g., Beam or Airflow)
or a new framework (e.g., Kubeflow) and set up an additional machine learning
infrastructure (e.g., Kubernetes), the time investment will pay off very soon. By not
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adopting standardized machine learning pipelines, data science teams will face
unique project setups, arbitrary log file locations, unique debugging steps, etc. The
list of complications can be endless.

Directed Acyclic Graphs
Pipeline tools like Apache Beam, Apache Airflow, and Kubeflow Pipelines manage
the flow of tasks through a graph representation of the task dependencies.

As the example graph in Figure 1-2 shows, the pipeline steps are directed. This means
that a pipeline starts with Task A and ends with Task E, which guarantees that the
path of execution is clearly defined by the tasks’ dependencies. Directed graphs avoid
situations where some tasks start without all dependencies fully computed. Since we
know that we must preprocess our training data before training a model, the repre‐
sentation as a directed graph prevents the training task from being executed before
the preprocessing step is completed.

Figure 1-2. Example directed acyclic graph

Pipeline graphs must also be acyclic, meaning that a graph isn’t linking to a previ‐
ously completed task. This would mean that the pipeline could run endlessly and
therefore wouldn’t finish the workflow.

Because of the two conditions (being directed and acyclic), pipeline graphs are called
directed acyclic graphs (DAGs). You will discover DAGs are a central concept behind
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most workflow tools. We will discuss more details about how these graphs are exe‐
cuted in Chapters 11 and 12.

Our Example Project
To follow along with this book, we have created an example project using open
source data. The dataset is a collection of consumer complaints about financial prod‐
ucts in the United States, and it contains a mixture of structured data (categorical/
numeric data) and unstructured data (text). The data is taken from the Consumer
Finance Protection Bureau.

Figure 1-3 shows a sample from this dataset.

Figure 1-3. Data sample

The machine learning problem is, given data about the complaint, to predict whether
the complaint was disputed by the consumer. In this dataset, 30% of complaints are
disputed, so the dataset is not balanced.

Project Structure
We have provided our example project as a GitHub repo, and you can clone it as nor‐
mal using the following command:

$ git clone https://github.com/Building-ML-Pipelines/\
            building-machine-learning-pipelines.git

Python Package Versions

To build our example project, we used Python 3.6–3.8. We used
TensorFlow version 2.2.0 and TFX version 0.22.0. We will do our
best to update our GitHub repo with future versions, but we can‐
not guarantee that the project will work with other language or
package versions.
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Our example project contains the following:

• A chapters folder containing notebooks for standalone examples from Chapters
3, 4, 7, and 14

• A components folder with the code for common components such as the model
definition

• A complete interactive pipeline
• An example of a machine learning experiment, which is the starting point for the

pipeline
• Complete example pipelines orchestrated by Apache Beam, Apache Airflow, and

Kubeflow Pipelines
• A utility folder with a script to download the data

In the following chapters. we will guide you through the necessary steps to turn the
example machine learning experiment, in our case a Jupyter Notebook with a Keras
model architecture, into a complete end-to-end machine learning pipeline.

Our Machine Learning Model
The core of our example deep learning project is the model generated by the function
get_model in the components/module.py script of our example project. The model
predicts whether a consumer disputed a complaint using the following features:

• The financial product
• The subproduct
• The company’s response to the complaint
• The issue that the consumer complained about
• The US state
• The zip code
• The text of the complaint (the narrative)

For the purpose of building the machine learning pipeline, we assume that the model
architecture design is done and we won’t modify the model. We discuss the model
architecture in more detail in Chapter 6. But for this book, the model architecture is a
very minor point. This book is all about what you can do with your model once you
have it.
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Goal of the Example Project
Over the course of this book, we will demonstrate the necessary frameworks, compo‐
nents, and infrastructure elements to continuously train our example machine learn‐
ing model. We will use the stack in the architecture diagram shown in Figure 1-4.

Figure 1-4. Machine learning pipeline architecture for our example project

We have tried to implement a generic machine learning problem that can easily be
replaced with your specific machine learning problem. The structure and the basic
setup of the machine learning pipeline remains the same and can be transferred to
your use case. Each component will require some customization (e.g., where to ingest
the data from), but as we will discuss, the customization needs will be limited.

Summary
In this chapter, we have introduced the concept of machine learning pipelines and
explained the individual steps. We have also shown the benefits of automating this
process. In addition, we have set the stage for the following chapters and included a
brief outline of every chapter along with an introduction of our example project. In
the next chapter, we will start building our pipeline!
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CHAPTER 2

Introduction to TensorFlow Extended

In the previous chapter, we introduced the concept of machine learning pipelines and
discussed the components that make up a pipeline. In this chapter, we introduce
TensorFlow Extended (TFX). The TFX library supplies all the components we will
need for our machine learning pipelines. We define our pipeline tasks using TFX,
and they can then be executed with a pipeline orchestrator such as Airflow or Kube‐
flow Pipelines. Figure 2-1 gives an overview of the pipeline steps and how the differ‐
ent tools fit together.

Figure 2-1. TFX as part of ML pipelines

In this chapter, we will guide you through the installation of TFX, explaining basic
concepts and terminology that will set the stage for the following chapters. In those
chapters, we take an in-depth look at the individual components that make up our
pipelines. We also introduce Apache Beam in this chapter. Beam is an open source
tool for defining and executing data-processing jobs. It has two uses in TFX pipelines:
first, it runs under the hood of many TFX components to carry out processing steps
like data validation or data preprocessing. Second, it can be used as a pipeline orches‐
trator, as we discussed in Chapter 1. We introduce Beam here because it will help you
understand TFX components, and it is essential if you wish to write custom compo‐
nents, as we discuss in Chapter 10.
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What Is TFX?
Machine learning pipelines can become very complicated and consume a lot of over‐
head to manage task dependencies. At the same time, machine learning pipelines can
include a variety of tasks, including tasks for data validation, preprocessing, model
training, and any post-training tasks. As we discussed in Chapter 1, the connections
between tasks are often brittle and cause the pipelines to fail. These connections are
also known as the glue code from the publication “Hidden Technical Debt in
Machine Learning Systems”. Having brittle connections ultimately means that pro‐
duction models will be updated infrequently, and data scientists and machine learn‐
ing engineers loathe updating stale models. Pipelines also require well-managed
distributed processing, which is why TFX leverages Apache Beam. This is especially
true for large workloads.

Google faced the same problem internally and decided to develop a platform to sim‐
plify the pipeline definitions and to minimize the amount of task boilerplate code to
write. The open source version of Google’s internal ML pipeline framework is TFX.

Figure 2-2 shows the general pipeline architecture with TFX. Pipeline orchestration
tools are the foundation for executing our tasks. Besides the orchestration tools, we
need a data store to keep track of the intermediate pipeline results. The individual
components communicate with the data store to receive their inputs, and they return
the results to the data store. These results can then be inputs to following tasks. TFX
provides the layer that combines all of these tools, and it provides the individual com‐
ponents for the major pipeline tasks.

Figure 2-2. ML pipeline architecture

Initially, Google released some of the pipeline functionality as open source Tensor‐
Flow libraries (e.g., TensorFlow Serving is discussed in Chapter 8) under the
umbrella of TFX libraries. In 2019, Google then published the open source glue code
containing all the required pipeline components to tie the libraries together and to
automatically create pipeline definitions for orchestration tools like Apache Airflow,
Apache Beam, and Kubeflow Pipelines.

TFX provides a variety of pipeline components that cover a good number of use
cases. At the time of writing, the following components were available:
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• Data ingestion with ExampleGen
• Data validation with StatisticsGen, SchemaGen, and the ExampleValidator
• Data preprocessing with Transform
• Model training with Trainer
• Checking for previously trained models with ResolverNode
• Model analysis and validation with Evaluator
• Model deployments with Pusher

Figure 2-3 shows how the components of the pipeline and the libraries fit together.

Figure 2-3. TFX components and libraries

We will discuss the components and libraries in greater detail in the following chap‐
ters. In case you need some nonstandard functionality, in Chapter 10 we discuss how
to create custom pipeline components.

Stable Release of TFX

At the time of writing this chapter, a stable 1.X version of TFX
hasn’t been released. The TFX API mentioned in this and the fol‐
lowing chapters might be subject to future updates. To the best of
our knowledge, all the examples in this book will work with TFX
version 0.22.0.

What Is TFX? | 15



Installing TFX
TFX can easily be installed by running the following Python installer command:

$ pip install tfx

The tfx package comes with a variety of dependencies that will be installed automati‐
cally. It installs not only the individual TFX Python packages (e.g., TensorFlow Data
Validation), but also their dependencies like Apache Beam.

After installing TFX, you can import the individual Python packages. We recom‐
mend taking this approach if you want to use the individual TFX packages (e.g., you
want to validate a dataset using TensorFlow Data Validation, see Chapter 4):

import tensorflow_data_validation as tfdv
import tensorflow_transform as tft
import tensorflow_transform.beam as tft_beam
...

Alternatively, you can import the corresponding TFX component (if using the com‐
ponents in the context of a pipeline):

from tfx.components import ExampleValidator
from tfx.components import Evaluator
from tfx.components import Transform
...

Overview of TFX Components
A component handles a more complex process than just the execution of a single
task. All machine learning pipeline components read from a channel to get input arti‐
facts from the metadata store. The data is then loaded from the path provided by the
metadata store and processed. The output of the component, the processed data, is
then provided to the next pipeline components. The generic internals of a compo‐
nent are always:

• Receive some input
• Perform an action
• Store the final result

In TFX terms, the three internal parts of the component are called the driver, execu‐
tor, and publisher. The driver handles the querying of the metadata store. The execu‐
tor performs the actions of the components. And the publisher manages the saving of
the output metadata in the MetadataStore. The driver and the publisher aren’t mov‐
ing any data. Instead, they read and write references from the MetadataStore.
Figure 2-4 shows the structure of a TFX component.
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Figure 2-4. Component overview

The inputs and outputs of the components are called artifacts. Examples of artifacts
include raw input data, preprocessed data, and trained models. Each artifact is associ‐
ated with metadata stored in the MetadataStore. The artifact metadata consists of an
artifact type as well as artifact properties. This artifact setup guarantees that the com‐
ponents can exchange data effectively. TFX currently provides ten different types of
artifacts, which we review in the following chapters.

What Is ML Metadata?
The components of TFX “communicate” through metadata; instead of passing arti‐
facts directly between the pipeline components, the components consume and pub‐
lish references to pipeline artifacts. An artifact could be, for example, a raw dataset, a
transform graph, or an exported model. Therefore, the metadata is the backbone of
our TFX pipelines. One advantage of passing the metadata between components
instead of the direct artifacts is that the information can be centrally stored.

In practice, the workflow goes as follows: when we execute a component, it uses the
ML Metadata (MLMD) API to save the metadata corresponding to the run. For
example, the component driver receives the reference for a raw dataset from the
metadata store. After the component execution, the component publisher will store
the references of the component outputs in the metadata store. MLMD saves the
metadata consistently to a MetadataStore, based on a storage backend. Currently,
MLMD supports three types of backends:

• In-memory database (via SQLite)
• SQLite
• MySQL
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Because the TFX components are so consistently tracked, ML Metadata provides a
variety of useful functions. We can compare two artifacts from the same component.
For example, we see this in Chapter 7 when we discuss model validation. In this par‐
ticular case, TFX compares the model analysis results from a current run with the
results from the previous run. This checks whether the more recently trained model
has a better accuracy or loss compared to the previous model. The metadata can also
be used to determine all the artifacts that have been based on another, previously cre‐
ated artifact. This creates a kind of audit trail for our machine learning pipelines.

Figure 2-5 shows that each component interacts with the MetadataStore, and the
MetadataStore stores the metadata on the provided database backend.

Figure 2-5. Storing metadata with MLMD

Interactive Pipelines
Designing and implementing machine learning pipelines can be frustrating at times.
It is sometimes challenging to debug components within a pipeline, for example. This
is why the TFX functionality around interactive pipelines is beneficial. In fact, in the
following chapters, we will implement a machine learning pipeline step by step and
demonstrate its implementations through an interactive pipeline. The pipeline runs
in a Jupyter Notebook, and the components’ artifacts can be immediately reviewed.
Once you have confirmed the full functionality of your pipeline, in Chapters 11 and
12, we discuss how you can convert your interactive pipeline to a production-ready
pipeline, for example, for execution on Apache Airflow.

Any interactive pipeline is programmed in the context of a Jupyter Notebook or a
Google Colab session. In contrast to the orchestration tools we will discuss in Chap‐
ters 11 and 12, interactive pipelines are orchestrated and executed by the user.
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You can start an interactive pipeline by importing the required packages:

import tensorflow as tf
from tfx.orchestration.experimental.interactive.interactive_context import \
    InteractiveContext

Once the requirements are imported, you can create a context object. The context
object handles component execution and displays the component’s artifacts. At this
point, the InteractiveContext also sets up a simple in-memory ML MetadataStore:

context = InteractiveContext()

After setting up your pipeline component(s) (e.g., StatisticsGen), you can then exe‐
cute each component object through the run function of the context object, as
shown in the following example:

from tfx.components import StatisticsGen

statistics_gen = StatisticsGen(
    examples=example_gen.outputs['examples'])
context.run(statistics_gen)

The component itself receives the outputs of the previous component (in our case,
the data ingestion component ExampleGen) as an instantiation argument. After exe‐
cuting the component’s tasks, the component automatically writes the metadata of
the output artifact to the metadata store. The output of some components can be dis‐
played in your notebook. The immediate availability of the results and the visualiza‐
tions is very convenient. For example, you can use the StatisticsGen component to
inspect the features of the dataset:

context.show(statistics_gen.outputs['statistics'])

After running the previous context function, you can see a visual overview of the sta‐
tistics of the dataset in your notebook, as shown in Figure 2-6.

Sometimes it can be advantageous to inspect the output artifacts of a component pro‐
grammatically. After a component object has been executed, we can access the arti‐
fact properties, as shown in the following example. The properties depend on the
specific artifact:

for artifact in statistics_gen.outputs['statistics'].get():
    print(artifact.uri)

This gives the following result:

'/tmp/tfx-interactive-2020-05-15T04_50_16.251447/StatisticsGen/statistics/2'
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Figure 2-6. Interactive pipelines allow us to visually inspect our dataset

Throughout the following chapters, we will show how each component can be run in
an interactive context. Then in Chapters 11 and 12, we will show the full pipeline and
how it can be orchestrated by both Airflow and Kubeflow.

Alternatives to TFX
Before we take a deep dive into TFX components in the following chapters, let’s take
a moment to look at alternatives to TFX. The orchestration of machine learning pipe‐
lines has been a significant engineering challenge in the last few years, and it should
come as no surprise that many major Silicon Valley companies have developed their
own pipeline frameworks. In the following table, you can find a small selection of
frameworks:

Company Framework Link
AirBnb AeroSolve https://github.com/airbnb/aerosolve

Stripe Railyard https://stripe.com/blog/railyard-training-models

Spotify Luigi https://github.com/spotify/luigi

Uber Michelangelo https://eng.uber.com/michelangelo-machine-learning-platform/

Netflix Metaflow https://metaflow.org/
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Since the frameworks originated from corporations, they were designed with specific
engineering stacks in mind. For example, AirBnB’s AeroSolve focuses on Java-based
inference code, and Spotify’s Luigi focuses on efficient orchestration. TFX is no dif‐
ferent in this regard. At this point, TFX architectures and data structures assume that
you are using TensorFlow (or Keras) as your machine learning framework. Some
TFX components can be used in combination with other machine learning frame‐
works. For example, data can be analyzed with TensorFlow Data Validation and later
consumed by a scikit-learn model. However, the TFX framework is closely tied to
TensorFlow or Keras models. Since TFX is backed by the TensorFlow community
and more companies like Spotify are adopting TFX, we believe it is a stable and
mature framework that will ultimately be adopted by a broader base of machine
learning engineers.

Introduction to Apache Beam
A variety of TFX components and libraries (e.g., TensorFlow Transform) rely on
Apache Beam to process pipeline data efficiently. Because of the importance for the
TFX ecosystem, we would like to provide a brief introduction into how Apache Beam
works behind the scenes of the TFX components. In Chapter 11, we will then discuss
how to use Apache Beam for a second purpose: as a pipeline orchestrator tool.

Apache Beam offers you an open source, vendor-agnostic way to describe data pro‐
cessing steps that then can be executed on various environments. Since it is incredi‐
bly versatile, Apache Beam can be used to describe batch processes, streaming
operations, and data pipelines. In fact, TFX relies on Apache Beam and uses it under
the hood for a variety of components (e.g., TensorFlow Transform or TensorFlow
Data Validation). We will discuss the specific use of Apache Beam in the TFX ecosys‐
tem when we talk about TensorFlow Data Validation in Chapter 4 and TensorFlow
Transform in Chapter 5.

While Apache Beam abstracts away the data processing logic from its supporting
runtime tools, it can be executed on multiple distributed processing runtime environ‐
ments. This means that you can run the same data pipeline on Apache Spark or Goo‐
gle Cloud Dataflow without a single change in the pipeline description. Also, Apache
Beam was not just developed to describe batch processes but to support streaming
operations seamlessly.

Setup
The installation of Apache Beam is straightforward. You can install the latest version
with:

$ pip install apache-beam
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If you plan to use Apache Beam in the context of Google Cloud Platform—for exam‐
ple, if you want to process data from Google BigQuery or run our data pipelines on
Google Cloud Dataflow (as described in “Processing Large Datasets with GCP” on
page 57)—you should install Apache Beam as follows:

$ pip install 'apache-beam[gcp]'

If you plan to use Apache Beam in the context of Amazon Web Services (AWS) (e.g.,
if you want to load data from S3 buckets), you should install Apache Beam as follows:

$ pip install 'apache-beam[boto]'

If you install TFX with the Python package manager pip, Apache Beam will be auto‐
matically installed.

Basic Data Pipeline
Apache Beam’s abstraction is based on two concepts: collections and transforma‐
tions. On the one hand, Beam’s collections describe operations where data is being
read or written from or to a given file or stream. On the other hand, Beam’s transfor‐
mations describe ways to manipulate the data. All collections and transformations are
executed in the context of a pipeline (expressed in Python through the context man‐
ager command with). When we define our collections or transformations in our fol‐
lowing example, no data is actually being loaded or transformed. This only happens
when the pipeline is executed in the context of a runtime environment (e.g., Apache
Beam’s DirectRunner, Apache Spark, Apache Flink, or Google Cloud Dataflow).

Basic collection example
Data pipelines usually start and end with data being read or written, which is handled
in Apache Beam through collections, often called PCollections. The collections are
then transformed, and the final result can be expressed as a collection again and writ‐
ten to a filesystem.

The following example shows how to read a text file and return all lines:

import apache_beam as beam

with beam.Pipeline() as p: 
    lines = p | beam.io.ReadFromText(input_file) 

Use the context manager to define the pipeline.

Read the text into a PCollection.

Similar to the ReadFromText operation, Apache Beam provides functions to write col‐
lections to a text file (e.g., WriteToText). The write operation is usually performed
after all transformations have been executed:
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with beam.Pipeline() as p:
    ...
    output | beam.io.WriteToText(output_file) 

Write the output to the file output_file.

Basic transformation example
In Apache Beam, data is manipulated through transformations. As we see in this
example and later in Chapter 5, the transformations can be chained by using the pipe
operator |. If you chain multiple transformations of the same type, you have to pro‐
vide a name for the operation, noted by the string identifier between the pipe opera‐
tor and the right-angle brackets. In the following example, we apply all
transformations sequentially on our lines extracted from the text file:

counts = (
    lines
    | 'Split' >> beam.FlatMap(lambda x: re.findall(r'[A-Za-z\']+', x))
    | 'PairWithOne' >> beam.Map(lambda x: (x, 1))
    | 'GroupAndSum' >> beam.CombinePerKey(sum))

Let’s walk through this code in detail. As an example, we’ll take the phrases “Hello,
how do you do?” and “I am well, thank you.”

The Split transformation uses re.findall to split each line into a list of tokens,
giving the result:

["Hello", "how", "do", "you", "do"]
["I", "am", "well", "thank", "you"]

beam.FlatMap maps the result into a PCollection:

"Hello" "how" "do" "you" "do" "I" "am" "well" "thank" "you"

Next, the PairWithOne transformation uses beam.Map to create a tuple out of every
token and the count (1 for each result):

("Hello", 1) ("how", 1) ("do", 1) ("you", 1) ("do", 1) ("I", 1) ("am", 1)
("well", 1) ("thank", 1) ("you", 1)

Finally, the GroupAndSum transformation sums up all individual tuples for each token:

("Hello", 1) ("how", 1) ("do", 2) ("you", 2) ("I", 1) ("am", 1) ("well", 1)
("thank", 1)

You can also apply Python functions as part of a transformation. The following
example shows how the function format_result can be applied to earlier produced
summation results. The function converts the resulting tuples into a string that then
can be written to a text file:

def format_result(word_count):
    """Convert tuples (token, count) into a string"""
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    (word, count) = word_count
    return "{}: {}".format(word, count)

output = counts | 'Format' >> beam.Map(format_result)

Apache Beam provides a variety of predefined transformations. However, if your pre‐
ferred operation isn’t available, you can write your own transformations by using the
Map operators. Just keep in mind that the operations should be able to run in a dis‐
tributed way to fully take advantage of the capabilities of the runtime environments.

Putting it all together
After discussing the individual concepts of Apache Beam’s pipelines, let’s put them
all together in one example. The previous snippets and following examples are a
modified version of the Apache Beam introduction. For readability, the example has
been reduced to the bare minimum Apache Beam code:

import re

import apache_beam as beam
from apache_beam.io import ReadFromText
from apache_beam.io import WriteToText
from apache_beam.options.pipeline_options import PipelineOptions
from apache_beam.options.pipeline_options import SetupOptions

input_file = "gs://dataflow-samples/shakespeare/kinglear.txt" 
output_file = "/tmp/output.txt"

# Define pipeline options object.
pipeline_options = PipelineOptions()

with beam.Pipeline(options=pipeline_options) as p: 
    # Read the text file or file pattern into a PCollection.
    lines = p | ReadFromText(input_file) 

    # Count the occurrences of each word.
    counts = ( 
        lines
        | 'Split' >> beam.FlatMap(lambda x: re.findall(r'[A-Za-z\']+', x))
        | 'PairWithOne' >> beam.Map(lambda x: (x, 1))
        | 'GroupAndSum' >> beam.CombinePerKey(sum))

    # Format the counts into a PCollection of strings.
    def format_result(word_count):
        (word, count) = word_count
        return "{}: {}".format(word, count)

    output = counts | 'Format' >> beam.Map(format_result)

    # Write the output using a "Write" transform that has side effects.
    output | WriteToText(output_file)
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The text is stored in a Google Cloud Storage bucket.

Set up the Apache Beam pipeline.

Create a data collection by reading the text file.

Perform the transformations on the collection.

The example pipeline downloads Shakespeare’s King Lear and performs the token
count pipeline on the entire corpus. The results are then written to the text file loca‐
ted at /tmp/output.txt.

Executing Your Basic Pipeline
As an example, you can run the pipeline with Apache Beam’s DirectRunner by exe‐
cuting the following command (assuming that the previous example code was saved
as basic_pipeline.py). If you want to execute this pipeline on different Apache
Beam runners like Apache Spark or Apache Flink, you will need to set the pipeline
configurations through the pipeline_options object:

python basic_pipeline.py

The results of the transformations can be found in the designated text file:

$ head /tmp/output.txt*
KING: 243
LEAR: 236
DRAMATIS: 1
PERSONAE: 1
king: 65
...

Summary
In this chapter, we presented a high-level overview of TFX and discussed the impor‐
tance of a metadata store as well as the general internals of a TFX component. We
also introduced Apache Beam and showed you how to carry out a simple data trans‐
formation using Beam.

Everything we discussed in this chapter will be useful to you as you read through
Chapters 3–7 on the pipeline components and the pipeline orchestration expalined in
Chapters 11 and 12. The first step is to get your data into the pipeline, and we will
cover this in Chapter 3.
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CHAPTER 3

Data Ingestion

With the basic TFX setup and the ML MetadataStore in place, in this chapter, we
focus on how to ingest your datasets into a pipeline for consumption in various com‐
ponents, as shown in Figure 3-1.

Figure 3-1. Data ingestion as part of ML pipelines

TFX provides us components to ingest data from files or services. In this chapter, we
outline the underlying concepts, explain ways to split the datasets into training and
evaluation subsets, and demonstrate how to combine multiple data exports into one
all-encompassing dataset. We then discuss some strategies to ingest different forms of
data (structured, text, and images), which have proven helpful in previous use cases.

Concepts for Data Ingestion
In this step of our pipeline, we read data files or request the data for our pipeline run
from an external service (e.g., Google Cloud BigQuery). Before passing the ingested
dataset to the next component, we divide the available data into separate datasets
(e.g., training and validation datasets) and then convert the datasets into TFRecord
files containing the data represented as tf.Example data structures.
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TFRecord
TFRecord is a lightweight format optimized for streaming large datasets. While in
practice, most TensorFlow users store serialized example Protocol Buffers in TFRe‐
cord files, the TFRecord file format actually supports any binary data, as shown in the
following:

import tensorflow as tf

with tf.io.TFRecordWriter("test.tfrecord") as w:
    w.write(b"First record")
    w.write(b"Second record")

for record in tf.data.TFRecordDataset("test.tfrecord"):
    print(record)

tf.Tensor(b'First record', shape=(), dtype=string)
tf.Tensor(b'Second record', shape=(), dtype=string)

If TFRecord files contain tf.Example records, each record contains one or more fea‐
tures that would represent the columns in our data. The data is then stored in binary
files, which can be digested efficiently. If you are interested in the internals of TFRe‐
cord files, we recommend the TensorFlow documentation.

Storing your data as TFRecord and tf.Examples provides a few benefits:

1. The data structure is system independent since it relies on Protocol Buffers, a
cross-platform, cross-language library, to serialize data.

2. TFRecord is optimized for downloading or writing large amounts of data
quickly.

3. tf.Example, the data structure representing every data row within TFRecord, is
also the default data structure in the TensorFlow ecosystem and, therefore, is
used in all TFX components.

The process of ingesting, splitting, and converting the datasets is performed by the
ExampleGen component. As we see in the following examples, datasets can be read
from local and remote folders as well as requested from data services like Google
Cloud BigQuery.

Ingesting Local Data Files
The ExampleGen component can ingest a few data structures, including comma-
separated value files (CSVs), precomputed TFRecord files, and serialization outputs
from Apache Avro and Apache Parquet.
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Converting comma-separated data to tf.Example
Datasets for structured data or text data are often stored in CSV files. TFX provides
functionality to read and convert these files to tf.Example data structures. The fol‐
lowing code example demonstrates the ingestion of a folder containing the CSV data
of our example project:

import os
from tfx.components import CsvExampleGen
from tfx.utils.dsl_utils import external_input

base_dir = os.getcwd()
data_dir = os.path.join(os.pardir, "data")
examples = external_input(os.path.join(base_dir, data_dir)) 
example_gen = CsvExampleGen(input=examples) 

context.run(example_gen) 

Define the data path.

Instantiate the pipeline component.

Execute the component interactively.

If you execute the component as part of an interactive pipeline, the metadata of the
run will be shown in the Jupyter Notebook. The outputs of the component are shown
in Figure 3-2, highlighting the storage locations of the training and the evaluation
datasets.

Figure 3-2. ExampleGen component output
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Folder Structure

It is expected that the input path of ExampleGen only contains the
data files. The component tries to consume all existing files within
the path level. Any additional files (e.g., metadata files) can’t be
consumed by the component and make the component step fail.
The component is also not stepping through existing subdirecto‐
ries unless it is configured as an input pattern.

Importing existing TFRecord Files
Sometimes our data can’t be expressed efficiently as CSVs (e.g., when we want to load
images for computer vision problems or large corpora for natural language process‐
ing problems). In these cases, it is recommended to convert the datasets to TFRecord
data structures and then load the saved TFRecord files with the ImportExampleGen
component. If you would like to perform the conversion of your data to TFRecord
files as part of the pipeline, take a look at Chapter 10, in which we discuss the devel‐
opment of custom TFX components including a data ingestion component. TFRe‐
cord files can be ingested as shown in the following example:

import os
from tfx.components import ImportExampleGen
from tfx.utils.dsl_utils import external_input

base_dir = os.getcwd()
data_dir = os.path.join(os.pardir, "tfrecord_data")
examples = external_input(os.path.join(base_dir, data_dir))
example_gen = ImportExampleGen(input=examples)

context.run(example_gen)

Since the datasets are already stored as tf.Example records within the TFRecord files,
they can be imported and don’t need any conversion. The ImportExampleGen com‐
ponent handles this import step.

Converting Parquet-serialized data to tf.Example
In Chapter 2, we discussed the internal architecture of TFX components and the
behavior of a component, which is driven by its executor. If we would like to load
new file types into our pipeline, we can override the executor_class instead of writ‐
ing a completely new component.

TFX includes executor classes for loading different file types, including Parquet seri‐
alized data. The following example shows how you can override the executor_class
to change the loading behavior. Instead of using the CsvExampleGen or ImportExam
pleGen components, we will use a generic file loader component FileBasedExample
Gen, which allows an override of the executor_class:
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from tfx.components import FileBasedExampleGen 
from tfx.components.example_gen.custom_executors import parquet_executor 
from tfx.utils.dsl_utils import external_input

examples = external_input(parquet_dir_path)
example_gen = FileBasedExampleGen(
    input=examples,
    executor_class=parquet_executor.Executor) 

Import generic file loader component.

Import Parquet-specific executor.

Override the executor.

Converting Avro-serialized data to tf.Example

The concept of overriding the executor_class can, of course, be expanded to almost
any other file type. TFX provides additional classes, as shown in the following exam‐
ple for loading Avro-serialized data:

from tfx.components import FileBasedExampleGen 
from tfx.components.example_gen.custom_executors import avro_executor 
from tfx.utils.dsl_utils import external_input

examples = external_input(avro_dir_path)
example_gen = FileBasedExampleGen(
    input=examples,
    executor_class=avro_executor.Executor) 

Import generic file loader component.

Import the Avro-specific executor.

Override the executor.

In case we want to load a different file type, we could write our custom executor spe‐
cific to our file type and apply the same concepts of overriding the executor earlier. In
Chapter 10, we will guide you through two examples of how to write your own cus‐
tom data ingestion component and executor.

Converting your custom data to TFRecord data structures
Sometimes it is simpler to convert existing datasets to TFRecord data structures and
then ingest them with the ImportExampleGen component as we discussed in “Import‐
ing existing TFRecord Files” on page 30. This approach is useful if our data is not
available through a data platform that allows efficient data streaming. For example, if
we are training a computer vision model and we load a large number of images into
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our pipeline, we have to convert the images to TFRecord data structures in the first
place (more on this in the later section on “Image Data for Computer Vision Prob‐
lems” on page 41).

In the following example, we convert our structured data into TFRecord data struc‐
tures. Imagine our data isn’t available in a CSV format, only in JSON or XML. The
following example can be used (with small modifications) to convert these data for‐
mats before ingesting them to our pipeline with the ImportExampleGen component.

To convert data of any type to TFRecord files, we need to create a tf.Example struc‐
ture for every data record in the dataset. tf.Example is a simple but highly flexible
data structure, which is a key-value mapping:

{"string": value}

In the case of TFRecord data structure, a tf.Example expects a tf.Features object,
which accepts a dictionary of features containing key-value pairs. The key is always a
string identifier representing the feature column, and the value is a
tf.train.Feature object.

Example 3-1. TFRecord data structure

Record 1:
tf.Example
    tf.Features
        'column A': tf.train.Feature
        'column B': tf.train.Feature
        'column C': tf.train.Feature

tf.train.Feature allows three data types:

• tf.train.BytesList

• tf.train.FloatList

• tf.train.Int64List

To reduce code redundancy, we’ll define helper functions to assist with converting
the data records into the correct data structure used by tf.Example:

import tensorflow as tf

def _bytes_feature(value):
    return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))

def _float_feature(value):
    return tf.train.Feature(float_list=tf.train.FloatList(value=[value]))

def _int64_feature(value):
    return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
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With the helper functions in place, let’s take a look at how we could convert our
demo dataset to files containing the TFRecord data structure. First, we need to read
our original data file and convert every data record into a tf.Example data structure
and then save all records in a TFRecord file. The following code example is an abbre‐
viated version. The complete example can be found in the book’s GitHub repository
under chapters/data_ingestion.

import csv
import tensorflow as tf

original_data_file = os.path.join(
    os.pardir, os.pardir, "data",
    "consumer-complaints.csv")
tfrecord_filename = "consumer-complaints.tfrecord"
tf_record_writer = tf.io.TFRecordWriter(tfrecord_filename) 

with open(original_data_file) as csv_file:
    reader = csv.DictReader(csv_file, delimiter=",", quotechar='"')
    for row in reader:
        example = tf.train.Example(features=tf.train.Features(feature={ 
            "product": _bytes_feature(row["product"]),
            "sub_product": _bytes_feature(row["sub_product"]),
            "issue": _bytes_feature(row["issue"]),
            "sub_issue": _bytes_feature(row["sub_issue"]),
            "state": _bytes_feature(row["state"]),
            "zip_code": _int64_feature(int(float(row["zip_code"]))),
            "company": _bytes_feature(row["company"]),
            "company_response": _bytes_feature(row["company_response"]),
            "consumer_complaint_narrative": \
                _bytes_feature(row["consumer_complaint_narrative"]),
            "timely_response": _bytes_feature(row["timely_response"]),
            "consumer_disputed": _bytes_feature(row["consumer_disputed"]),
        }))
        tf_record_writer.write(example.SerializeToString()) 
    tf_record_writer.close()

Creates a TFRecordWriter object that saves to the path specified in
tfrecord_filename

tf.train.Example for every data record

Serializes the data structure

The generated TFRecord file consumer-complaints.tfrecord can now be imported with
the ImportExampleGen component.
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1 Reading files from AWS S3 requires Apache Beam 2.19 or higher, which is supported since TFX version 0.22.

2 See the documentation for more details on managing AWS Access Keys.

3 See the documentation for more details on how to create and manage service accounts.

Ingesting Remote Data Files
The ExampleGen component can read files from remote cloud storage buckets like
Google Cloud Storage or AWS Simple Storage Service (S3).1 TFX users can provide
the bucket path to the external_input function, as shown in the following example:

examples = external_input("gs://example_compliance_data/")
example_gen = CsvExampleGen(input=examples)

Access to private cloud storage buckets requires setting up the cloud provider creden‐
tials. The setup is provider specific. AWS is authenticating users through a user-
specific access key and access secret. To access private AWS S3 buckets, you need to
create a user access key and secret.2 In contrast, the Google Cloud Platform (GCP)
authenticates users through service accounts. To access private GCP Storage buckets,
you need to create a service account file with the permission to access the storage
bucket.3

Ingesting Data Directly from Databases
TFX provides two components to ingest datasets directly from databases. In the fol‐
lowing sections, we introduce the BigQueryExampleGen component to query data
from BigQuery tables and the PrestoExampleGen component to query data from
Presto databases.

Google Cloud BigQuery
TFX provides a component to ingest data from Google Cloud’s BigQuery tables. This
is a very efficient way of ingesting structured data if we execute our machine learning
pipelines in the GCP ecosystem.

Google Cloud Credentials
Executing the BigQueryExampleGen component requires that we have set the neces‐
sary Google Cloud credentials in our local environment. We need to create a service
account with the required roles (at least BigQuery Data Viewer and BigQuery Job
User). If you execute the component in the interactive context with Apache Beam or
Apache Airflow, you have to specify the path to the service account credential file
through the environment variable GOOGLE_APPLICATION_CREDENTIALS, as shown in
the following code snippet. If you execute the component through Kubeflow Pipe‐
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lines, you can provide the service account information through OpFunc functions
introduced at “OpFunc Functions” on page 239.

You can do this in Python with the following:

import os
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] =
    "/path/to/credential_file.json"

For more details, see the Google Cloud documentation.

The following example shows the simplest way of querying our BigQuery tables:

from tfx.components import BigQueryExampleGen

query = """
    SELECT * FROM `<project_id>.<database>.<table_name>`
"""
example_gen = BigQueryExampleGen(query=query)

Of course, we can create more complex queries to select our data, for example, join‐
ing multiple tables.

Changes to the BigQueryExampleGen Component

In TFX versions greater than 0.22.0, the BigQueryExampleGen
component needs to be imported from tfx.extensions.goo
gle_cloud_big_query:

from tfx.extensions.google_cloud_big_query.example_gen \
    import component as big_query_example_gen_component
big_query_example_gen_component.BigQueryExampleGen(query=query)

Presto databases

If we want to ingest data from a Presto database, we can use PrestoExampleGen. The
usage is very similar to BigQueryExampleGen, in which we defined a database query
and then executed the query. The PrestoExampleGen component requires additional
configuration to specify the database’s connection details:

from proto import presto_config_pb2
from presto_component.component import PrestoExampleGen

query = """
    SELECT * FROM `<project_id>.<database>.<table_name>`
"""
presto_config = presto_config_pb2.PrestoConnConfig(
    host='localhost',
    port=8080)
example_gen = PrestoExampleGen(presto_config, query=query)
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4 Visit the proto-lens GitHub for details on the protoc installation.

PrestoExampleGen Requires Separate Installation

Since TFX version 0.22, the PrestoExampleGen requires a separate
installation process. After installing the protoc compiler,4 you can
install the component from source with the steps below:

$ git clone git@github.com:tensorflow/tfx.git && cd tfx/
$ git checkout v0.22.0
$ cd tfx/examples/custom_components/presto_example_gen
$ pip install -e .

After the installation, you will be able to import the PrestoExample‐
Gen component and its protocol buffer definitions.

Data Preparation
Each of the introduced ExampleGen components allows us to configure input settings
(input_config) and output settings (output_config) for our dataset. If we would
like to ingest datasets incrementally, we can define a span as the input configuration.
At the same time, we can configure how the data should be split. Often we would like
to generate a training set together with an evaluation and test set. We can define the
details with the output configuration.

Splitting Datasets
Later in our pipeline, we will want to evaluate our machine learning model during the
training and test it during the model analysis step. Therefore, it is beneficial to split
the dataset into the required subsets.

Splitting one dataset into subsets
The following example shows how we can extend our data ingestion by requiring a
three-way split: training, evaluation, and test sets with a ratio of 6:2:2. The ratio set‐
tings are defined through the hash_buckets:

from tfx.components import CsvExampleGen
from tfx.proto import example_gen_pb2
from tfx.utils.dsl_utils import external_input

base_dir = os.getcwd()
data_dir = os.path.join(os.pardir, "data")
output = example_gen_pb2.Output(
    split_config=example_gen_pb2.SplitConfig(splits=[ 
        example_gen_pb2.SplitConfig.Split(name='train', hash_buckets=6), 
        example_gen_pb2.SplitConfig.Split(name='eval', hash_buckets=2),
        example_gen_pb2.SplitConfig.Split(name='test', hash_buckets=2)
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    ]))

examples = external_input(os.path.join(base_dir, data_dir))
example_gen = CsvExampleGen(input=examples, output_config=output) 

context.run(example_gen)

Define preferred splits.

Specify the ratio.

Add output_config argument.

After the execution of the example_gen object, we can inspect the generated artifacts 
by printing the list of the artifacts:

for artifact in example_gen.outputs['examples'].get():
    print(artifact)

Artifact(type_name: ExamplesPath,
    uri: /path/to/CsvExampleGen/examples/1/train/, split: train, id: 2)
Artifact(type_name: ExamplesPath,
    uri: /path/to/CsvExampleGen/examples/1/eval/, split: eval, id: 3)
Artifact(type_name: ExamplesPath,
    uri: /path/to/CsvExampleGen/examples/1/test/, split: test, id: 4)

In the following chapter, we will discuss how we investigate the produced datasets for
our data pipeline.

Default Splits

If we don’t specify any output configuration, the ExampleGen com‐
ponent splits the dataset into a training and evaluation split with a
ratio of 2:1 by default.

Preserving existing splits
In some situations, we have already generated the subsets of the datasets externally,
and we would like to preserve these splits when we ingest the datasets. We can ach‐
ieve this by providing an input configuration.

For the following configuration, let’s assume that our dataset has been split externally
and saved in subdirectories:

└── data
    ├── train
    │   └─ 20k-consumer-complaints-training.csv
    ├── eval
    │   └─ 4k-consumer-complaints-eval.csv
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    └── test
        └─ 2k-consumer-complaints-test.csv

We can preserve the existing input split by defining this input configuration:

import os

from tfx.components import CsvExampleGen
from tfx.proto import example_gen_pb2
from tfx.utils.dsl_utils import external_input

base_dir = os.getcwd()
data_dir = os.path.join(os.pardir, "data")

input = example_gen_pb2.Input(splits=[
    example_gen_pb2.Input.Split(name='train', pattern='train/*'), 
    example_gen_pb2.Input.Split(name='eval', pattern='eval/*'),
    example_gen_pb2.Input.Split(name='test', pattern='test/*')
])

examples = external_input(os.path.join(base_dir, data_dir))
example_gen = CsvExampleGen(input=examples, input_config=input) 

Set existing subdirectories.

Add the input_config argument.

After defining the input configuration, we can pass the settings to the ExampleGen
component by defining the input_config argument.

Spanning Datasets
One of the significant use cases for machine learning pipelines is that we can update
our machine learning models when new data becomes available. For this scenario,
the ExampleGen component allows us to use spans. Think of a span as a snapshot of
data. Every hour, day, or week, a batch extract, transform, load (ETL) process could
make such a data snapshot and create a new span.

A span can replicate the existing data records. As shown in the following, export-1
contains the data from the previous export-0 as well as newly created records that
were added since the export-0 export:

└── data
    ├── export-0
    │   └─ 20k-consumer-complaints.csv
    ├── export-1
    │   └─ 24k-consumer-complaints.csv
    └── export-2
        └─ 26k-consumer-complaints.csv
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We can now specify the patterns of the spans. The input configuration accepts a
{SPAN} placeholder, which represents the number (0, 1, 2, …) shown in our folder
structure. With the input configuration, the ExampleGen component now picks up
the “latest” span. In our example, this would be the data available under folder
export-2:

from tfx.components import CsvExampleGen
from tfx.proto import example_gen_pb2
from tfx.utils.dsl_utils import external_input

base_dir = os.getcwd()
data_dir = os.path.join(os.pardir, "data")

input = example_gen_pb2.Input(splits=[
    example_gen_pb2.Input.Split(pattern='export-{SPAN}/*')
])

examples = external_input(os.path.join(base_dir, data_dir))
example_gen = CsvExampleGen(input=examples, input_config=input)
context.run(example_gen)

Of course, the input definitions can also define subdirectories if the data is already
split:

input = example_gen_pb2.Input(splits=[
    example_gen_pb2.Input.Split(name='train',
                                pattern='export-{SPAN}/train/*'),
    example_gen_pb2.Input.Split(name='eval',
                                pattern='export-{SPAN}/eval/*')
])

Versioning Datasets
In machine learning pipelines, we want to track the produced models together with
the used datasets, which were used to train the machine learning model. To do this, it
is useful to version our datasets.

Data versioning allows us to track the ingested data in more detail. This means that
we not only store the file name and path of the ingested data in the ML MetadataS‐
tore (because it’s currently supported by the TFX components) but also that we track
more metainformation about the raw dataset, such as a hash of the ingested data.
Such version tracking would allow us to verify that the dataset used during the train‐
ing is still the dataset at a later point in time. Such a feature is critical for end-to-end
ML reproducibility.

However, such a feature is currently not supported by the TFX ExampleGen compo‐
nent. If you would like to version your datasets, you can use third-party data version‐
ing tools and version the data before the datasets are ingested into the pipeline.
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Unfortunately, none of the available tools will write the metadata information to the
TFX ML MetadataStore directly.

If you would like to version your datasets, you can use one of the following tools:

Data Version Control (DVC)
DVC is an open source version control system for machine learning projects. It
lets you commit hashes of your datasets instead of the entire dataset itself. There‐
fore, the state of the dataset is tracked (e.g., via git), but the repository isn’t clut‐
tered with the entire dataset.

Pachyderm
Pachyderm is an open source machine learning platform running on Kubernetes.
It originated with the concept of versioning for data (“Git for data”) but has now
expanded into an entire data platform, including pipeline orchestration based on
data versions.

Ingestion Strategies
So far, we have discussed a variety of ways to ingest data into our machine learning
pipelines. If you are starting with an entirely new project, it might be overwhelming
to choose the right data ingestion strategy. In the following sections, we will provide a
few suggestions for three data types: structured, text, and image data.

Structured Data
Structured data is often stored in a database or on a disk in file format, supporting
tabular data. If the data exists in a database, we can either export it to CSVs or con‐
sume the data directly with the PrestoExampleGen or the BigQueryExampleGen com‐
ponents (if the services are available).

Data available on a disk stored in file formats supporting tabular data should be con‐
verted to CSVs and ingested into the pipeline with the CsvExampleGen component.
Should the amount of data grow beyond a few hundred megabytes, you should con‐
sider converting the data into TFRecord files or store the data with Apache Parquet.

Text Data for Natural Language Problems
Text corpora can snowball to a considerable size. To ingest such datasets efficiently,
we recommend converting the datasets to TFRecord or Apache Parquet representa‐
tions. Using performant data file types allows an efficient and incremental loading of
the corpus documents. The ingestion of the corpora from a database is also possible;
however, we recommend considering network traffic costs and bottlenecks.
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Image Data for Computer Vision Problems
We recommend converting image datasets from the image files to TFRecord files, but
not to decode the images. Any decoding of highly compressed images only increases
the amount of disk space needed to store the intermediate tf.Example records. The
compressed images can be stored in tf.Example records as byte strings:

import tensorflow as tf

base_path = "/path/to/images"
filenames = os.listdir(base_path)

def generate_label_from_path(image_path):
    ...
    return label

def _bytes_feature(value):
    return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))

def _int64_feature(value):
    return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))

tfrecord_filename = 'data/image_dataset.tfrecord'

with tf.io.TFRecordWriter(tfrecord_filename) as writer:
    for img_path in filenames:
        image_path = os.path.join(base_path, img_path)
        try:
            raw_file = tf.io.read_file(image_path)
        except FileNotFoundError:
            print("File {} could not be found".format(image_path))
            continue
        example = tf.train.Example(features=tf.train.Features(feature={
            'image_raw': _bytes_feature(raw_file.numpy()),
            'label': _int64_feature(generate_label_from_path(image_path))
        }))
        writer.write(example.SerializeToString())

The example code reads images from a provided path /path/to/images and stores the
image as byte strings in the tf.Example. We aren’t preprocessing our images at this
point in the pipeline. Even though we might save a considerable amount of disk
space, we want to perform these tasks later in our pipeline. Avoiding the preprocess‐
ing at this point helps us to prevent bugs and potential training/serving skew later on.

We store the raw image together with labels in the tf.Examples. We derive the label
for each image from the file name with the function generate_label_from_path in
our example. The label generation is dataset specific; therefore, we haven’t included it
in this example.
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After converting the images to TFRecord files, we can consume the datasets effi‐
ciently with the ImportExampleGen component and apply the same strategies we dis‐
cussed in “Importing existing TFRecord Files” on page 30.

Summary
In this chapter, we discussed various ways of ingesting data into our machine learn‐
ing pipeline. We highlighted the consumption of datasets stored on a disk as well as
in databases. In the process, we also discussed that ingested data records, which are
converted to tf.Example (store in TFRecord files) for the consumption of the down‐
stream components.

In the following chapter, we will take a look at how we can consume the generated
tf.Example records in our data validation step of the pipeline.
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CHAPTER 4

Data Validation

In Chapter 3, we discussed how we can ingest data from various sources into our
pipeline. In this chapter, we now want to start consuming the data by validating it, as
shown in Figure 4-1.

Figure 4-1. Data validation as part of ML pipelines

Data is the basis for every machine learning model, and the model’s usefulness and
performance depend on the data used to train, validate, and analyze the model. As
you can imagine, without robust data, we can’t build robust models. In colloquial
terms, you might have heard the phrase: “garbage in, garbage out”—meaning that
our models won’t perform if the underlying data isn’t curated and validated. This is
the exact purpose of our first workflow step in our machine learning pipeline: data
validation.

In this chapter, we first motivate the idea of data validation, and then we introduce
you to a Python package from the TensorFlow Extended ecosystem called Tensor‐
Flow Data Validation (TFDV). We show how you can set up the package in your data
science projects, walk you through the common use cases, and highlight some very
useful workflows.
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The data validation step checks that the data in your pipelines is what your feature
engineering step expects. It assists you in comparing multiple datasets. It also high‐
lights if your data changes over time, for example, if your training data is significantly
different from the new data provided to your model for inference.

At the end of the chapter, we integrate our first workflow step into our TFX pipeline.

Why Data Validation?
In machine learning, we are trying to learn from patterns in datasets and to general‐
ize these learnings. This puts data front and center in our machine learning work‐
flows, and the quality of the data becomes fundamental to the success of our machine
learning projects.

Every step in our machine learning pipeline determines whether the workflow can
proceed to the next step or if the entire workflow needs to be abandoned and restar‐
ted (e.g., with more training data). Data validation is an especially important check‐
point because it catches changes in the data coming into the machine learning
pipeline before it reaches the time-consuming preprocessing and training steps.

If our goal is to automate our machine learning model updates, validating our data is
essential. In particular, when we say validating, we mean three distinct checks on our
data:

• Check for data anomalies.
• Check that the data schema hasn’t changed.
• Check that the statistics of our new datasets still align with statistics from our

previous training datasets.

The data validation step in our pipeline performs these checks and highlights any
failures. If a failure is detected, we can stop the workflow and address the data issue
by hand, for example, by curating a new dataset.

It is also useful to refer to the data validation step from the data processing step, the
next step in our pipeline. Data validation produces statistics around your data fea‐
tures and highlights whether a feature contains a high percentage of missing values or
if features are highly correlated. This is useful information when you are deciding
which features should be included in the preprocessing step and what the form of the
preprocessing should be.

Data validation lets you compare the statistics of different datasets. This simple step
can assist you in debugging your model issues. For example, data validation can com‐
pare the statistics of your training against your validation data. With a few lines of
code, it brings any difference to your attention. You might train a binary classifica‐
tion model with a perfect label split of 50% positive labels and 50% negative labels,
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but the label split isn’t 50/50 in your validation set. This difference in the label distri‐
bution ultimately will affect your validation metrics.

In a world where datasets continuously grow, data validation is crucial to make sure
that our machine learning models are still up to the task. Because we can compare
schemas, we can quickly detect if the data structure in newly obtained datasets has
changed (e.g., when a feature is deprecated). It can also detect if your data starts to
drift. This means that your newly collected data has different underlying statistics
than the initial dataset used to train your model. This drift could mean that new fea‐
tures need to be selected or that the data preprocessing steps need to be updated (e.g.,
if the minimum or maximum of a numerical column changes). Drift can happen for
a number of reasons: an underlying trend in the data, seasonality of the data, or as a
result of a feedback loop, as we discuss in Chapter 13.

In the following sections, we will walk through these different use cases. However,
before that, let’s take a look at the required installation steps to get TFDV up and
running.

TFDV
The TensorFlow ecosystem offers a tool that can assist you in data validation, TFDV.
It is part of the TFX project. TFDV allows you to perform the kind of analyses we
discussed previously (e.g., generating schemas and validating new data against an
existing schema). It also offers visualizations based on the Google PAIR project Fac‐
ets, as shown in Figure 4-2.

TFDV accepts two input formats to start the data validation: TensorFlow’s TFRecord
and CSV files. In common with other TFX components, it distributes the analysis
using Apache Beam.
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Figure 4-2. Screenshot of a TFDV visualization

Installation
When we installed the tfx package introduced in Chapter 2, TFDV was already
installed as a dependency. If we would like to use TFDV as a standalone package, we
can install it with this command:

$ pip install tensorflow-data-validation

After installing tfx or tensorflow-data-validation, we can now integrate our data
validation into your machine learning workflows or analyze our data visually in a
Jupyter Notebook. Let’s walk through a couple of use cases in the following sections.

Generating Statistics from Your Data
The first step in our data validation process is to generate some summary statistics
for our data. As an example, we can load our consumer complaints CSV data directly
with TFDV and generate statistics for each feature:

import tensorflow_data_validation as tfdv
stats = tfdv.generate_statistics_from_csv(
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    data_location='/data/consumer_complaints.csv',
    delimiter=',')

We can generate feature statistics from TFRecord files in a very similar way using the
following code:

stats = tfdv.generate_statistics_from_tfrecord(
    data_location='/data/consumer_complaints.tfrecord')

We discuss how to generate TFRecord files in Chapter 3.

Both TFDV methods generate a data structure that stores the summary statistics for
each feature, including the minimum, maximum, and average values.

The data structure looks like this:

datasets {
  num_examples: 66799
  features {
    type: STRING
    string_stats {
      common_stats {
        num_non_missing: 66799
        min_num_values: 1
        max_num_values: 1
        avg_num_values: 1.0
        num_values_histogram {
          buckets {
            low_value: 1.0
            high_value: 1.0
            sample_count: 6679.9
...
}}}}}}

For numerical features, TFDV computes for every feature:

• The overall count of data records
• The number of missing data records
• The mean and standard deviation of the feature across the data records
• The minimum and maximum value of the feature across the data records
• The percentage of zero values of the feature across the data records

In addition, it generates a histogram of the values for each feature.

For categorical features, TFDV provides:

• The overall count of data records
• The percentage of missing data records
• The number of unique records
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• The average string length of all records of a feature
• For each category, TFDV determines the sample count for each label and its rank

In a moment, you’ll see how we can turn these statistics into something actionable.

Generating Schema from Your Data
Once we have generated our summary statistics, the next step is to generate a schema
of our dataset. Data schema are a form of describing the representation of your data‐
sets. A schema defines which features are expected in your dataset and which type
each feature is based on (float, integer, bytes, etc.). Besides, your schema should
define the boundaries of your data (e.g., outlining minimums, maximums, and
thresholds of allowed missing records for a feature).

The schema definition of your dataset can then be used to validate future datasets to
determine if they are in line with your previous training sets. The schemas generated
by TFDV can also be used in the following workflow step when you are preprocess‐
ing your datasets to convert them to data that can be used to train machine learning
models.

As shown in the following, you can generate the schema information from your gen‐
erated statistics with a single function call:

schema = tfdv.infer_schema(stats)

tfdv.infer_schema generates a schema protocol defined by TensorFlow:1

feature {
  name: "product"
  type: BYTES
  domain: "product"
  presence {
    min_fraction: 1.0
    min_count: 1
  }
  shape {
    dim {
      size: 1
    }
  }
}

You can display the schema with a single function call in any Jupyter Notebook:

tfdv.display_schema(schema)

And the results are shown in Figure 4-3.
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Figure 4-3. Screenshot of a schema visualization

In this visualization, Presence means whether the feature must be present in 100% of
data examples (required) or not (optional). Valency means the number of values
required per training example. In the case of categorical features, single would mean
each training example must have exactly one category for the feature.

The schema that has been generated here may not be exactly what we need because it
assumes that the current dataset is exactly representative of all future data as well. If a
feature is present in all training examples in this dataset, it will be marked as
required, but in reality it may be optional. We will show you how to update the
schema according to your own knowledge of the dataset in “Updating the Schema”
on page 52.

With the schema now defined, we can compare our training or evaluation datasets,
or check our datasets for any problems that may affect our model.

Recognizing Problems in Your Data
In the previous sections, we discussed how to generate summary statistics and a
schema for our data. These describe our data, but they don’t spot potential issues
with it. In the next few sections, we will describe how TFDV can help us spot prob‐
lems in our data.
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Comparing Datasets
Let’s say we have two datasets: training and validation datasets. Before training our
machine learning model, we would like to determine how representative the valida‐
tion set is in regards to the training set. Does the validation data follow our training
data schema? Are any feature columns or a significant number of feature values miss‐
ing? With TFDV, we can quickly determine the answer.

As shown in the following, we can load both datasets and then visualize both datasets. 
If we execute the following code in a Jupyter Notebook, we can compare the dataset
statistics easily:

train_stats = tfdv.generate_statistics_from_tfrecord(
    data_location=train_tfrecord_filename)
val_stats = tfdv.generate_statistics_from_tfrecord(
    data_location=val_tfrecord_filename)

tfdv.visualize_statistics(lhs_statistics=val_stats, rhs_statistics=train_stats,
                          lhs_name='VAL_DATASET', rhs_name='TRAIN_DATASET')

Figure 4-4 shows the difference between the two datasets. For example, the validation
dataset (containing 4,998 records) has a lower rate of missing sub_issue values. This
could mean that the feature is changing its distribution in the validation set. More
importantly, the visualization highlighted that over half of all records don’t contain
sub_issue information. If the sub_issue is an important feature for our model train‐
ing, we need to fix our data-capturing methods to collect new data with the correct
issue identifiers.

The schema of the training data we generated earlier now becomes very handy.
TFDV lets us validate any data statistics against the schema, and it reports any
anomalies.
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Figure 4-4. Comparison between training and validation datasets

Anomalies can be detected using the following code:

anomalies = tfdv.validate_statistics(statistics=val_stats, schema=schema)

And we can then display the anomalies with:

tfdv.display_anomalies(anomalies)

This displays the result shown in Table 4-1.

Table 4-1. Visualize the anomalies in a Jupyter Notebook

Feature name Anomaly short description Anomaly long description
“company” Column dropped The feature was present in fewer examples than expected.

The following code shows the underlying anomaly protocol. This contains useful
information that we can use to automate our machine learning workflow:

anomaly_info {
  key: "company"
  value {
    description: "The feature was present in fewer examples than expected."
    severity: ERROR
    short_description: "Column dropped"
    reason {
      type: FEATURE_TYPE_LOW_FRACTION_PRESENT
      short_description: "Column dropped"
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2 You can also adjust the schema so that different features are required in the training and serving environ‐
ments. See the documentation for more details.

      description: "The feature was present in fewer examples than expected."
    }
    path {
      step: "company"
    }
  }
}

Updating the Schema
The preceding anomaly protocol shows us how to detect variations from the schema
that is autogenerated from our dataset. But another use case for TFDV is manually
setting the schema according to our domain knowledge of the data. Taking the
sub_issue feature discussed previously, if we decide that we need to require this fea‐
ture to be present in greater than 90% of our training examples, we can update the
schema to reflect this.

First, we need to load the schema from its serialized location:

schema = tfdv.load_schema_text(schema_location)

Then, we update this particular feature so that it is required in 90% of cases:

sub_issue_feature = tfdv.get_feature(schema, 'sub_issue')
sub_issue_feature.presence.min_fraction = 0.9

We could also update the list of US states to remove Alaska:

state_domain = tfdv.get_domain(schema, 'state')
state_domain.value.remove('AK')

Once we are happy with the schema, we write the schema file to its serialized location
with the following:

tfdv.write_schema_text(schema, schema_location)

We then need to revalidate the statistics to view the updated anomalies:

updated_anomalies = tfdv.validate_statistics(eval_stats, schema)
tfdv.display_anomalies(updated_anomalies)

In this way, we can adjust the anomalies to those that are appropriate for our dataset.2

Data Skew and Drift
TFDV provides a built-in “skew comparator” that detects large differences between
the statistics of two datasets. This isn’t the statistical definition of skew (a dataset that
is asymmetrically distributed around its mean). It is defined in TFDV as the
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L-infinity norm of the difference between the serving_statistics of two datasets. If
the difference between the two datasets exceeds the threshold of the L-infinity norm
for a given feature, TFDV highlights it as an anomaly using the anomaly detection
defined earlier in this chapter.

L-infinity Norm

The L-infinity norm is an expression used to define the difference
between two vectors (in our case, the serving statistics). The L-
infinity norm is defined as the maximum absolute value of the vec‐
tor’s entries.
For example, the L-infinity norm of the vector [3, –10, –5] is 10.
Norms are often used to compare vectors. If we wish to compare
the vectors [2, 4, –1] and [9, 1, 8], we first compute their difference,
which is [–7, 3, –9], and then we compute the L-infinity norm of
this vector, which is 9.
In the case of TFDV, the two vectors are the summary statistics of
the two datasets. The norm returned is the biggest difference
between these two sets of statistics.

The following code shows how you can compare the skew between datasets:

tfdv.get_feature(schema,
                 'company').skew_comparator.infinity_norm.threshold = 0.01
skew_anomalies = tfdv.validate_statistics(statistics=train_stats,
                                          schema=schema,
                                          serving_statistics=serving_stats)

And Table 4-2 shows the results.

Table 4-2. Visualization of the data skew between the training and serving datasets

Feature name Anomaly short description Anomaly long description
“company” High L-infinity distance between

training and serving
The L-infinity distance between training and serving is 0.0170752 (up
to six significant digits), above the threshold 0.01. The feature value
with maximum difference is: Experian

TFDV also provides a drift_comparator for comparing the statistics of two datasets
of the same type, such as two training sets collected on two different days. If drift is
detected, the data scientist should either check the model architecture or determine
whether feature engineering needs to be performed again.
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Similar to this skew example, you should define your drift_comparator for the fea‐
tures you would like to watch and compare. You can then call validate_statistics
with the two dataset statistics as arguments, one for your baseline (e.g., yesterday’s
dataset) and one for a comparison (e.g., today’s dataset):

tfdv.get_feature(schema,
                 'company').drift_comparator.infinity_norm.threshold = 0.01
drift_anomalies = tfdv.validate_statistics(statistics=train_stats_today,
                                           schema=schema,
                                           previous_statistics=\
                                               train_stats_yesterday)

And this gives the result shown in Table 4-3.

Table 4-3. Visualization of the data drift between two training sets

Feature name Anomaly short description Anomaly long description
“company” High L-infinity distance between

current and previous
The L-infinity distance between current and previous is 0.0170752 (up
to six significant digits), above the threshold 0.01. The feature value
with maximum difference is: Experian

The L-infinity norm in both the skew_comparator and the drift_comparator is use‐
ful for showing us large differences between datasets, especially ones that may show
us that something is wrong with our data input pipeline. Because the L-infinity norm
only returns a single number, the schema may be more useful for detecting variations
between datasets.

Biased Datasets
Another potential problem with an input dataset is bias. We define bias here as data
that is in some way not representative of the real world. This is in contrast to fairness,
which we define in Chapter 7 as predictions made by our model that have disparate
impacts on different groups of people.

Bias can creep into data in a number of different ways. A dataset is always, by neces‐
sity, a subset of the real world—we can’t hope to capture all the details about every‐
thing. The way that we sample the real world is always biased in some way. One of
the types of bias we can check for is selection bias, in which the distribution of the
dataset is not the same as the real-world distribution of data.

We can use TFDV to check for selection bias using the statistics visualizations that we
described previously. For example, if our dataset contains Gender as a categorical fea‐
ture, we can check that this is not biased toward the male category. In our consumer
complaints dataset, we have State as a categorical feature. Ideally, the distribution of
example counts across the different US states would reflect the relative population in
each state.
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We can see in Figure 4-5 that it doesn’t (e.g., Texas, in third place, has a larger popu‐
lation than Florida in second place). If we find this type of bias in our data and we
believe this bias may harm our model’s performance, we can go back and collect
more data or over/undersample our data to get the correct distribution.

Figure 4-5. Visualization of a biased feature in our dataset

You can also use the anomaly protocol described previously to automatically alert
you to these kinds of problems. Using the domain knowledge you have of your data‐
set, you can enforce limits on numeric values that mean your dataset is as unbiased as
possible—for example, if your dataset contains people’s wages as a numeric feature,
you can enforce that the mean of the feature value is realistic.

For more details and definitions of bias, Google’s Machine Learning Crash Course
has some useful material.

Slicing Data in TFDV
We can also use TFDV to slice datasets on features of our choice to help show
whether they are biased. This is similar to the calculation of model performance on
sliced features that we describe in Chapter 7. For example, a subtle way for bias to
enter data is when data is missing. If data is not missing at random, it may be missing
more frequently for one group of people within the dataset than for others. This can
mean that when the final model is trained, its performance is worse for these groups.

In this example, we’ll look at data from different US states. We can slice the data so
that we only get statistics from California using the following code:
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from tensorflow_data_validation.utils import slicing_util

slice_fn1 = slicing_util.get_feature_value_slicer(
    features={'state': [b'CA']}) 
slice_options = tfdv.StatsOptions(slice_functions=[slice_fn1])
slice_stats = tfdv.generate_statistics_from_csv(
    data_location='data/consumer_complaints.csv',
    stats_options=slice_options)

Note that the feature value must be provided as a list of binary values.

We need some helper code to copy the sliced statistics to the visualization:

from tensorflow_metadata.proto.v0 import statistics_pb2

def display_slice_keys(stats):
    print(list(map(lambda x: x.name, slice_stats.datasets)))

def get_sliced_stats(stats, slice_key):
    for sliced_stats in stats.datasets:
        if sliced_stats.name == slice_key:
            result = statistics_pb2.DatasetFeatureStatisticsList()
            result.datasets.add().CopyFrom(sliced_stats)
            return result
        print('Invalid Slice key')

def compare_slices(stats, slice_key1, slice_key2):
    lhs_stats = get_sliced_stats(stats, slice_key1)
    rhs_stats = get_sliced_stats(stats, slice_key2)
    tfdv.visualize_statistics(lhs_stats, rhs_stats)

And we can visualize the results with the following code:

tfdv.visualize_statistics(get_sliced_stats(slice_stats, 'state_CA'))

And then compare the statistics for California with the overall results:

compare_slices(slice_stats, 'state_CA', 'All Examples')

The results of this are shown in Figure 4-6.

56 | Chapter 4: Data Validation



Figure 4-6. Visualization of data sliced by feature values

In this section, we have shown some useful features of TFDV that allow you to spot
problems in your data. Next, we’ll look at how to scale up your data validation using
a product from Google Cloud.

Processing Large Datasets with GCP
As we collect more data, the data validation becomes a more time-consuming step in
our machine learning workflow. One way of reducing the time to perform the valida‐
tion is by taking advantage of available cloud solutions. By using a cloud provider, we
aren’t limited to the computation power of our laptop or on-premise computing
resources.

As an example, we’ll introduce how to run TFDV on Google Cloud’s product Data‐
flow. TFDV runs on Apache Beam, which makes a switch to GCP Dataflow very easy.

Dataflow lets us accelerate our data validation tasks by parallelizing and distributing
them across the allocated nodes for our data-processing task. While Dataflow charges
for the number of CPUs and the gigabytes of memory allocated, it can speed up our
pipeline step.

We’ll demonstrate a minimal setup to distribute our data validation tasks. For more
information, we highly recommend the extended GCP documentation. We assume
that you have a Google Cloud account created, the billing details set up, and the

Processing Large Datasets with GCP | 57

https://oreil.ly/X3cdi


3 Download TFDV packages.

GOOGLE_APPLICATION_CREDENTIALS environment variable set in your terminal shell.
If you need help to get started, see Chapter 3 or the Google Cloud documentation.

We can use the same method we discussed previously (e.g., tfdv.generate_statis
tics_from_tfrecord), but the methods require the additional arguments pipe
line_options and output_path. While output_path points at the Google Cloud
bucket where the data validation results should be written, pipeline_options is an
object that contains all the Google Cloud details to run our data validation on Google
Cloud. The following code shows how we can set up such a pipeline object:

from apache_beam.options.pipeline_options import (
    PipelineOptions, GoogleCloudOptions, StandardOptions)

options = PipelineOptions()
google_cloud_options = options.view_as(GoogleCloudOptions)
google_cloud_options.project = '<YOUR_GCP_PROJECT_ID>' 
google_cloud_options.job_name = '<YOUR_JOB_NAME>' 
google_cloud_options.staging_location = 'gs://<YOUR_GCP_BUCKET>/staging' 
google_cloud_options.temp_location = 'gs://<YOUR_GCP_BUCKET>/tmp'
options.view_as(StandardOptions).runner = 'DataflowRunner'

Set your project’s identifier.

Give your job a name.

Point toward a storage bucket for staging and temporary files.

We recommend creating a storage bucket for your Dataflow tasks. The storage
bucket will hold all the datasets and temporary files.

Once we have configured the Google Cloud options, we need to configure the setup
for the Dataflow workers. All tasks are executed on workers that need to be provi‐
sioned with the necessary packages to run their tasks. In our case, we need to install
TFDV by specifying it as an additional package.

To do this, download the latest TFDV package (the binary .whl file)3 to your local
system. Choose a version which can be executed on a Linux system (e.g.,
tensorflow_data_validation-0.22.0-cp37-cp37m-manylinux2010_x86_64.whl).
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To configure the worker setup options, specify the path to the downloaded package
in the setup_options.extra_packages list as shown:

from apache_beam.options.pipeline_options import SetupOptions

setup_options = options.view_as(SetupOptions)
setup_options.extra_packages = [
    '/path/to/tensorflow_data_validation'
    '-0.22.0-cp37-cp37m-manylinux2010_x86_64.whl']

With all the option configurations in place, you can kick off the data validation tasks
from your local machine. They are executed on the Google Cloud Dataflow instances:

data_set_path = 'gs://<YOUR_GCP_BUCKET>/train_reviews.tfrecord'
output_path = 'gs://<YOUR_GCP_BUCKET>/'
tfdv.generate_statistics_from_tfrecord(data_set_path,
                                       output_path=output_path,
                                       pipeline_options=options)

After you have started the data validation with Dataflow, you can switch back to the
Google Cloud console. Your newly kicked off job should be listed in a similar way to
the one in Figure 4-7.

Figure 4-7. Google Cloud Dataflow Jobs console

You can then check the details of the running job, its status, and its autoscaling
details, as shown in Figure 4-8.

You can see that with a few steps you can parallelize and distribute the data validation
tasks in a cloud environment. In the next section, we’ll discuss the integration of the
data validation tasks into our automated machine learning pipelines.
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Figure 4-8. Google Cloud Dataflow Job details

Integrating TFDV into Your Machine Learning Pipeline
So far, all methods we have discussed can be used in a standalone setup. This can be
helpful to investigate datasets outside of the pipeline setup.

TFX provides a pipeline component called StatisticsGen, which accepts the output
of the previous ExampleGen components as input and then performs the generation
of statistics:

from tfx.components import StatisticsGen

statistics_gen = StatisticsGen(
    examples=example_gen.outputs['examples'])
context.run(statistics_gen)

Just like we discussed in Chapter 3, we can visualize the output in an interactive con‐
text using:

context.show(statistics_gen.outputs['statistics'])

This gives us the visualization shown in Figure 4-9.
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Figure 4-9. Statistics generated by the StatisticsGen component

Generating our schema is just as easy as generating the statistics:

from tfx.components import SchemaGen

schema_gen = SchemaGen(
    statistics=statistics_gen.outputs['statistics'],
    infer_feature_shape=True)
context.run(schema_gen)

The SchemaGen component only generates a schema if one doesn’t already exist. It’s a
good idea to review the schema on the first run of this component and then manually
adjust it if required as we discussed in “Updating the Schema” on page 52. We can
then use this schema until it’s necessary to change it, for example, if we add a new
feature.

With the statistics and schema in place, we can now validate our new dataset:

from tfx.components import ExampleValidator

example_validator = ExampleValidator(
    statistics=statistics_gen.outputs['statistics'],
    schema=schema_gen.outputs['schema'])
context.run(example_validator)

The ExampleValidator can automatically detect the anomalies
against the schema by using the skew and drift comparators we
described previously. However, this may not cover all the potential
anomalies in your data. If you need to detect some other specific
anomalies, you will need to write your own custom component as
we describe in Chapter 10.
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If the ExampleValidator component detects a misalignment in the dataset statistics
or schema between the new and the previous dataset, it will set the status to failed in
the metadata store, and the pipeline ultimately stops. Otherwise, the pipeline moves
on to the next step, the data preprocessing.

Summary
In this chapter, we discussed the importance of data validation and how you can effi‐
ciently perform and automate the process. We discussed how to generate data statis‐
tics and schemas and how to compare two different datasets based on their statistics
and schemas. We stepped through an example of how you could run your data vali‐
dation on Google Cloud with Dataflow, and ultimately we integrated this machine
learning step in our automated pipeline. This is a really important go/no go step in
our pipeline, as it stops dirty data getting fed through to the time-consuming prepro‐
cessing and training steps.

In the following chapters, we will extend our pipeline setup by starting with data
preprocessing.
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CHAPTER 5

Data Preprocessing

The data we use to train our machine learning models is often provided in formats
our machine learning models can’t consume. For example, in our example project, a
feature we want to use to train our model is available only as Yes and No tags. Any
machine learning model requires a numerical representation of these values (e.g., 1
and 0). In this chapter, we will explain how to convert features into consistent
numerical representations so that your machine learning model can be trained with
the numerical representations of the features.

One major aspect that we discuss in this chapter is focusing on consistent preprocess‐
ing. As shown in Figure 5-1, the preprocessing takes place after data validation,
which we discussed in Chapter 4. TensorFlow Transform (TFT), the TFX component
for data preprocessing, allows us to build our preprocessing steps as TensorFlow
graphs. In the following sections, we will discuss why and when this is a good work‐
flow and how to export the preprocessing steps. In Chapter 6, we will use the prepro‐
cessed datasets and the preserved transformation graph to train and export our
machine learning model, respectively.

Figure 5-1. Data preprocessing as part of ML pipelines
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Data scientists might see the preprocessing steps expressed as TensorFlow operations
(operations) as too much overhead. After all, it requires different implementations
than you might be used to when you write your preprocessing step with Python’s
pandas or numpy. We aren’t advocating the use of TFT during the experimentation
phase. However, as we demonstrate in the following sections, converting your pre‐
processing steps to TensorFlow operations when you bring your machine learning
model to a production environment will help avoid training-serving skews as we dis‐
cussed in Chapter 4.

Why Data Preprocessing?
In our experience, TFT requires the steepest learning curve of any TFX library
because expressing preprocessing steps through TensorFlow operations is required.
However, there are a number of good reasons why data preprocessing should be stan‐
dardized in a machine learning pipeline with TFT, including:

• Preprocessing your data efficiently in the context of the entire dataset
• Scaling the preprocessing steps effectively
• Avoiding a potential training-serving skew

Preprocessing the Data in the Context of the Entire Dataset
When we want to convert our data into numerical representations, we often have to
do it in the context of the entire dataset. For example, if we want to normalize a
numerical feature, we have to first determine the minimum and maximum values of
the feature in the training set. With the determined boundaries, we can then normal‐
ize our data to values between 0 and 1. This normalization step usually requires two
passes over the data: one pass to determine the boundaries and one to convert each
feature value. TFT provides functions to manage the passes over the data behind the
scenes for us.

Scaling the Preprocessing Steps
TFT uses Apache Beam under the hood to execute preprocessing instructions. This
allows us to distribute the preprocessing if needed on the Apache Beam backend of
our choice. If you don’t have access to Google Cloud’s Dataflow product or an
Apache Spark or Apache Flink cluster, Apache Beam will default back to its Direct
Runner mode.
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Avoiding a Training-Serving Skew
TFT creates and saves a TensorFlow graph of the preprocessing steps. First, it will
create a graph to process the data (e.g., determine minimum/maximum values).
Afterwards, it will preserve the graph with the determined boundaries. This graph
can then be used during the inference phase of the model life cycle. This process
guarantees that the model in the inference life cycle step sees the same preprocessing
steps as the model used during the training.

What Is a Training-Serving Skew?
We speak of a training-serving skew when the preprocessing steps used during model
training get out of line with the steps used during inference. In many cases, the data
used to train models is processed in Python notebooks with pandas or in Spark jobs.
When the model is deployed to a production setup, the preprocessing steps are
implemented in an API before the data hits the model for the prediction. As you can
see in Figure 5-2, these two processes require coordination to make sure the steps are
always aligned.

Figure 5-2. A commonly used machine learning setup

With TFT, we can avoid a misalignment of the preprocessing steps. As shown in
Figure 5-3, the prediction-requesting client can now submit the raw data, and the
preprocessing happens on the deployed model graph.

Figure 5-3. Avoiding the training-serving skew with TFT

Such a setup reduces the amount of coordination needed and simplifies deployments.
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Deploying Preprocessing Steps and the ML Model as One Artifact
To avoid a misalignment between the preprocessing steps and the trained model, the
exported model of our pipeline should include the preprocessing graph and the
trained model. We can then deploy the model like any other TensorFlow model, but
during our inference, the data will be preprocessed on the model server as part of the
model inference. This avoids the requirement that preprocessing happen on the cli‐
ent side and simplifies the development of clients (e.g., web or mobile apps) that
request the model predictions. In Chapters 11 and 12, we will discuss how the entire
end-to-end pipeline produces such “combined” saved models.

Checking Your Preprocessing Results in Your Pipeline
Implementing the data preprocessing with TFT and the integrating the preprocessing
in our pipeline gives us an additional benefit. We can generate statistics from the pre‐
processed data and check whether they still conform with our requirements to train a
machine learning model. An example for this use case is the conversion of text to
tokens. If a text contains a lot of new vocabulary, the unknown tokens will be con‐
verted to so-called UNK or unknown tokens. If a certain amount of our tokens are
simply unknown, it is often difficult for the machine learning model to effectively
generalize from the data, and therefore, the model accuracy will be affected. In our
pipelines, we can now check the preprocessing step results by generating statistics
(shown in Chapter 4) after the preprocessing step.

The Difference Between tf.data and tf.transform

There is often confusion between tf.data and tf.transform. tf.data is
a TensorFlow API for building efficient input pipelines for model
training with TensorFlow. The goal of the library is to utilize hard‐
ware resources optimally, such as host CPU and RAM, for the data
ingestion and preprocessing that happens during training. tf.trans‐
form, on the other hand, is used to express preprocessing that
should happen both in training and inference time. The library
makes it possible to perform a full-pass analysis of the input data
(e.g., to compute vocabulary or statistics used for data normaliza‐
tion), and this analysis is executed ahead of the training.
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Data Preprocessing with TFT
The library for preprocessing data within the TensorFlow ecosystem is TFT. Like
TFDV, it is part of the TFX project.

TFT processes the data that we ingested into our pipeline with the earlier generated
dataset schema, and it outputs two artifacts:

• Preprocessed training and evaluation datasets in the TFRecord format. The pro‐
duced datasets can be consumed downstream in the Trainer component of our
pipeline.

• Exported preprocessing graph (with assets), which will be used when we’ll export
our machine learning model.

The key to TFT is the preprocessing_fn function, as shown in Figure 5-4. The func‐
tion defines all transformations we want to apply to the raw data. When we execute
the Transform component, the preprocessing_fn function will receive the raw data,
apply the transformation, and return the processed data. The data is provided as 
TensorFlow Tensors or SparseTensors (depending on the feature). All transforma‐
tions applied to the tensors have to be TensorFlow operations. This allows TFT to
effectively distribute the preprocessing steps.

Figure 5-4. Overview of TFT

TFT Functions

TFT functions that perform elaborate processing steps behind the
scenes like tft.compute_and_apply_vocabulary can be spotted by
the prefix tft. It is common practice to map TFT to the abbrevia‐
tion tft in the Python namespace. Normal TensorFlow operations
will be loaded with the common prefix tf, as in tf.reshape.

TensorFlow Transform also provides useful functions (e.g.,tft.bucketize, tft.com
pute_and_apply_vocabulary, or tft.scale_to_z_score). When these functions are
applied to a dataset feature, they will perform the required pass over the data
and then apply the obtained boundaries to the data. For example, tft.com
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pute_and_apply_vocabulary will generate the vocabulary set of a corpus, apply the
created token-to-index mapping to the feature, and return the index value. The func‐
tion can limit the number of vocab tokens to the top n of the most relevant tokens. In
the following sections, we will be highlighting some of the most useful TFT
operations.

Installation
When we installed the tfx package as introduced in Chapter 2, TFT was installed as a
dependency. If we would like to use TFT as a standalone package, we can install the
PyPI package with:

$ pip install tensorflow-transform

After installing tfx or tensorflow-transform, we can integrate our preprocessing
steps into our machine learning pipelines. Let’s walk through a couple use cases.

Preprocessing Strategies
As we discussed previously, the applied transformations are defined in a function
called preprocessing_fn(). The function will then be consumed by our Transform
pipeline component or by our standalone setup of TFT. Here is an example of a pre‐
processing function that we will discuss in detail in the following sections:

def preprocessing_fn(inputs):
    x = inputs['x']
    x_normalized = tft.scale_to_0_1(x)
    return {
        'x_xf': x_normalized
    }

The function receives a batch of inputs as a Python dictionary. The key is the name of
the feature and the values representing the raw data before the preprocessing are
applied. First, TFT will perform an analysis step, as shown in Figure 5-5. In the case
of our little demo example, it will determine the minimum and maximum values of
our feature through a full pass over the data. This step can happen in a distributed
fashion thanks to the execution of the preprocessing steps on Apache Beam.

In the second pass over the data, the determined values (in our case, the min and max
of the feature column) are being used to scale our feature x between 0 and 1, as
shown in Figure 5-6.

TFT also generates a graph for the prediction with the preserved minimum and max‐
imum values. This will guarantee a consistent execution.
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Figure 5-5. Analysis step during the TFT execution

Figure 5-6. Applying the results of the analysis step

preprocessing_fn()

Please note that TFT will build a graph out of the preprocess
ing_fn() function and it will run in its own session. It is expected
that the function returns a dictionary with the transformed features
as values of the Python dictionary.
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Best Practices
During our work with TFT, we have learned a good number of lessons. Here are 
some of them:

Feature names matter
The naming of the output features of the preprocessing is important. As you will
see in the following TFT implementations, we reuse the name of the input fea‐
ture and append _xf. Also, the names of the input nodes of the TensorFlow
models need to match the names of the output features from the preprocess
ing_fn function.

Consider the data types
TFT limits the data types of the output features. It exports all preprocessed fea‐
tures as either tf.string, tf.float32, or tf.int64 values. This is important in
case your model can’t consume these data types. Some models from TensorFlow
Hub require inputs to be presented as tf.int32 values (e.g., BERT models). We
can avoid that situation if we cast the inputs to the correct data types inside our
models or if we convert the data types in the estimator input functions.

Preprocessing happens in batches
When you write preprocessing functions, you might think of it as processing one
data row at a time. In fact, TFT performs the operations in batches. This is why
we will need to reshape the output of the preprocessing_fn() function to a Ten‐
sor or SparseTensor when we use it in the context of our Transform component.

Remember, no eager execution
The functions inside of the preprocessing_fn() function need to be represented
by TensorFlow ops. If you want to lower an input string, you couldn’t use
lower(). You have to use the TensorFlow operation tf.strings.lower() to per‐
form the same procedure in a graph mode. Eager execution isn’t supported; all
operations rely on pure TensorFlow graph operations.

tf.function can be used in preprocessing_fn() functions, but with restrictions:
You can only use a tf.function that accepts Tensors (i.e., lower() wouldn’t work
since it doesn’t work on a tensor). You can’t call a TFT analyzer (or a mapper that
relies on an analyzer, such as tft.scale_to_z_score).

TFT Functions
TFT provides a variety of functions to facilitate efficient feature engineering. The list
of provided functions is extensive and constantly growing. This is why we don’t claim
to present a complete list of supported functions, but we want to highlight useful
operations in relation to vocabulary generation, normalization, and bucketization:
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tft.scale_to_z_score()

If you want to normalize a feature with a mean of 0 and standard deviation of 1,
you can use this useful TFT function.

tft.bucketize()

This useful function lets you bucketize a feature into bins. It returns a bin or
bucket index. You can specify the argument num_buckets to set the number of
buckets. TFT will then divide the equal-sized buckets.

tft.pca()

This function lets you compute the principal component analysis (PCA) for a
given feature. PCA is a common technique to reduce dimensionality by linearly
projecting the data down to the subspace that best preserves the variance of the
data. It requires the argument output_dim to set the dimensionality of your PCA
representation.

tft.compute_and_apply_vocabulary()

This is one of the most amazing TFT functions. It computes all unique values of
a feature column and then maps the most frequent values to an index. This index
mapping is then used to convert the feature to a numerical representation. The
function generates all assets for your graph behind the scenes. We can configure
most frequent in two ways: either by defining the n highest-ranked unique items
with top_k or by using the frequency_threshold above each element for consid‐
eration in the vocabulary.

tft.apply_saved_model()

This function lets you apply entire TensorFlow models on a feature. We can load
a saved model with a given tag and signature_name and then the inputs will be
passed to the model. The predictions from the model execution will then be
returned.

Text data for natural language problems
If you are working on natural language processing problems and you would like to
utilize TFT for your corpus preprocessing to turn your documents into numerical
representations, TFT has a good number of functions at your disposal. Besides the
introduced function tft.compute_and_apply_vocabulary(), you could also use the
following TFT functions.

tft.ngrams()

This will generate n-grams. It takes a SparseTensor of string values as inputs. For
example, if you want to generate one-grams and bi-grams for the list ['Tom',
'and', 'Jerry', 'are', 'friends']), the function returns [b'Tom', b'Tom
and', b'and', b'and Jerry', b'Jerry', b'Jerry are', b'are', b'are
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friends', b'friends']. Besides the sparse input tensor, the function takes two
additional arguments: ngram_range and separator. ngram_range sets the range
of n-grams. If your n-grams should contain one-grams and bi-grams, set the
ngram_range to (1, 2). The separator allows us to set the joining string or
character. In our example, we set the separator to " ".

tft.bag_of_words()

This function uses tft.ngrams and generates a bag-of-words vector with a row
for each unique n-gram. The original order of the n-grams may not be preserved
if, for example, the tokens repeat within an input.

tft.tfidf()

A frequently used concept in natural language processing is TFIDF, or term fre‐
quency inverse document frequency. It generates two outputs: a vector with the
token indices and a vector representing their TFIDF weights. The function
expects a sparse input vector representing the token indices (the result of the
tft.compute_and_apply_vocabulary() function). The dimensionality of these
vectors is set by the vocab_size input argument. The weight for every token
index is calculated by the document frequency of the token in a document times
the inverse document frequency. This computation is often resource intensive.
Therefore, distributing the computation with TFT is of great advantage.

TensorFlow Text also lets you use all available functions from the TensorFlow Text
library. The library provides extensive TensorFlow support for text normalization,
text tokenization, n-gram computation, and modern language models like BERT.

Image data for computer vision problems
If you are working on computer vision models, TFT can preprocess the image data‐
sets for you. TensorFlow provides various image preprocessing operations with the
tf.images and the tf.io APIs.

tf.io provides useful functions to open images as part of a model graph (e.g.,
tf.io.decode_jpeg and tf.io.decode_png). tf.images provides functions to crop
or resize images, convert color schemes, adjust the images (e.g., contrast, hue, or
brightness), or perform image transformations like image flipping, transposing, etc.

In Chapter 3, we discussed strategies to ingest images into our pipelines. In TFT, we
can now read the encoded images from TFRecord files and, for example, resize them
to a fixed size or reduce color images to grayscale images. Here is an implementation
example of such a preprocessing_fn function:

def process_image(raw_image):
    raw_image = tf.reshape(raw_image, [-1])
    img_rgb = tf.io.decode_jpeg(raw_image, channels=3) 
    img_gray = tf.image.rgb_to_grayscale(img_rgb) 
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    img = tf.image.convert_image_dtype(img, tf.float32)
    resized_img = tf.image.resize_with_pad( 
        img,
        target_height=300,
        target_width=300
    )
    img_grayscale = tf.image.rgb_to_grayscale(resized_img) 
    return tf.reshape(img_grayscale, [-1, 300, 300, 1])

Decode the JPEG image format.

Convert the loaded RGB image to grayscale.

Resize the image to 300 × 300 pixels.

Convert the image to grayscale.

One note regarding the tf.reshape() operation as part of the return statement: TFT
might process inputs in batches. Since the batch size is handled by TFT (and Apache
Beam), we need to reshape the output of our function to handle any batch size.
Therefore, we are setting the first dimension of our return tensor to –1. The remain‐
ing dimensions represent our images. We are resizing them to 300 × 300 pixels and
reducing the RGB channels to a grayscale channel.

Standalone Execution of TFT
After we have defined our preprocessing_fn function, we need to focus on how to
execute the Transform function. For the execution, we have two options. We can
either execute the preprocessing transformations in a standalone setup or as part of
our machine learning pipeline in the form of a TFX component. Both types of execu‐
tions can be performed on a local Apache Beam setup or on Google Cloud’s Dataflow
service. In this section, we will discuss the standalone executions of TFT. This would
be the recommended situation if you would like to preprocess data effectively outside
of pipelines. If you are interested in how to integrate TFT into your pipelines, feel
free to jump to “Integrate TFT into Your Machine Learning Pipeline” on page 75.

Apache Beam provides a depth of functionality that is outside the scope of this book.
It deserves its own publication. However, we want to walk you through the “Hello
World” example of preprocessing with Apache Beam.

In our example, we would like to apply the normalization preprocessing function that
we introduced earlier on our tiny raw dataset, shown in the following source code:

raw_data = [
    {'x':   1.20},
    {'x':   2.99},
    {'x': 100.00}
]
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First, we need to define a data schema. We can generate a schema from a feature
specification, as shown in the following source code. Our tiny dataset only contains
one feature named x. We define the feature with the tf.float32 data type:

import tensorflow as tf
from tensorflow_transform.tf_metadata import dataset_metadata
from tensorflow_transform.tf_metadata import schema_utils

raw_data_metadata = dataset_metadata.DatasetMetadata(
    schema_utils.schema_from_feature_spec({
        'x': tf.io.FixedLenFeature([], tf.float32),
    }))

With the dataset loaded and the data schema generated, we can now execute the
preprocessing function preprocessing_fn, which we defined earlier. TFT provides
bindings for the execution on Apache Beam with the function AnalyzeAndTransform
Dataset. This function is performing the two-step process we discussed earlier: first
analyze the dataset and then transform it. The execution is performed through the
Python context manager tft_beam.Context, which allows us to set, for example, the
desired batch size. However, we recommend using the default batch size because it is
more performant in common use cases. The following example shows the usage of
the AnalyzeAndTransformDataset function:

import tempfile
import tensorflow_transform.beam.impl as tft_beam

with beam.Pipeline() as pipeline:
    with tft_beam.Context(temp_dir=tempfile.mkdtemp()):

        tfrecord_file = "/your/tf_records_file.tfrecord"
        raw_data = (
            pipeline | beam.io.ReadFromTFRecord(tfrecord_file))

        transformed_dataset, transform_fn = (
            (raw_data, raw_data_metadata) | tft_beam.AnalyzeAndTransformDataset(
                preprocessing_fn))

The syntax of the Apache Beam function calls is a bit different from usual Python
calls. In the earlier example, we apply the preprocessing_fn function with the
Apache Beam function AnalyzeAndTransformDataset() and provide the two argu‐
ments with our data raw_data and our defined metadata schema raw_data_meta
data. AnalyzeAndTransformDataset() then returns two artifacts: the preprocessed
dataset and a function, here named transform_fn, representing the transform opera‐
tions applied to our dataset.

If we test our “Hello World” example, execute the preprocessing steps, and print the
results, we will see the tiny processed dataset:
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transformed_data, transformed_metadata = transformed_dataset
print(transformed_data)
[
    {'x_xf': 0.0},
    {'x_xf': 0.018117407},
    {'x_xf': 1.0}
]

In our “Hello World” example, we completely ignored the fact that the data isn’t
available as a Python dictionary, which often needs to be read from a disk. Apache
Beam provides functions to handle file ingestions effectively (e.g., with beam.io.Read
FromText() or beam.io.ReadFromTFRecord()) in the context of building TensorFlow
models.

As you can see, defining Apache Beam executions can get complex quickly, and we
understand that data scientists and machine learning engineers aren’t in the business
of writing execution instructions from scratch. This is why TFX is so handy. It
abstracts all the instructions under the hood and lets the data scientist focus on their
problem-specific setups like defining the preprocessing_fn() function. In the next
section, we will take a closer look into the Transform setup for our example project.

Integrate TFT into Your Machine Learning Pipeline
In the final section of this chapter, we discuss how to apply TFT capabilities to our
example project. In Chapter 4, we investigated the dataset and determined which fea‐
tures are categorical or numerical, which features should be bucketized, and which
feature we want to embed from string representation to a vector representation. This
information is crucial for defining our feature engineering.

In the following code, we define our features. For simpler processing later on, we
group the input feature names in dictionaries representing each transform output
data type: one-hot encoded features, bucketized features, and raw string
representations:

import tensorflow as tf
import tensorflow_transform as tft

LABEL_KEY = "consumer_disputed"

# Feature name, feature dimensionality.
ONE_HOT_FEATURES = {
    "product": 11,
    "sub_product": 45,
    "company_response": 5,
    "state": 60,
    "issue": 90
}

# Feature name, bucket count.
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BUCKET_FEATURES = {
    "zip_code": 10
}

# Feature name, value is unused.
TEXT_FEATURES = {
    "consumer_complaint_narrative": None
}

Before we can loop over these input feature dictionaries, let’s define a few helper
functions to transform the data efficiently. It is a good practice to rename the features
by appending a suffix to the feature name (e.g., _xf). The suffix will help distinguish
whether errors are originating from input or output features and prevent us from
accidentally using a nontransformed feature in our actual model:

def transformed_name(key):
    return key + '_xf'

Some of our features are of a sparse nature, but TFT expects the transformation out‐
puts to be dense. We can use the following helper function to convert sparse to dense
features and to fill the missing values with a default value:

def fill_in_missing(x):
    default_value = '' if x.dtype == tf.string or to_string else 0
    if type(x) == tf.SparseTensor:
        x = tf.sparse.to_dense(
            tf.SparseTensor(x.indices, x.values, [x.dense_shape[0], 1]),
                            default_value)
    return tf.squeeze(x, axis=1)

In our model, we represent most input features as one-hot encoded vectors. The fol‐
lowing helper function converts a given index to a one-hot encoded representation
and returns the vector:

def convert_num_to_one_hot(label_tensor, num_labels=2):
    one_hot_tensor = tf.one_hot(label_tensor, num_labels)
    return tf.reshape(one_hot_tensor, [-1, num_labels])

Before we can process our features, we need one more helper function to convert zip
codes represented as strings to float values. Our dataset lists zip codes as follows:

zip codes
97XXX
98XXX

To bucketize records with missing zip codes correctly, we replaced the placeholders
with zeros and bucketized the resulting floats into 10 buckets:

def convert_zip_code(zip_code):
    if zip_code == '':
        zip_code = "00000"
    zip_code = tf.strings.regex_replace(zip_code, r'X{0,5}', "0")
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    zip_code = tf.strings.to_number(zip_code, out_type=tf.float32)
    return zip_code

With all the helper functions in place, we can now loop over each feature column and
transform it depending on the type. For example, for our features to be converted to
one-hot features, we convert the category names to an index with tft.com
pute_and_apply_vocabulary() and then convert the index to a one-hot vector rep‐
resentation with our helper function convert_num_to_one_hot(). Since we are using
tft.compute_and_apply_vocabulary(), TensorFlow Transform will first loop over
all categories and then determine a complete category to index mapping. This map‐
ping will then be applied during our evaluation and serving phase of the model:

def preprocessing_fn(inputs):
    outputs = {}
    for key in ONE_HOT_FEATURES.keys():
        dim = ONE_HOT_FEATURES[key]
        index = tft.compute_and_apply_vocabulary(
            fill_in_missing(inputs[key]), top_k=dim + 1)
        outputs[transformed_name(key)] = convert_num_to_one_hot(
            index, num_labels=dim + 1)
    ...
    return outputs

Our processing of the bucket features is very similar. We decided to bucketize the
zipcodes because one-hot encoded zip codes seemed too sparse. Each feature is
bucketized into, in our case, 10 buckets, and we encode the index of the bucket as
one-hot vectors:

    for key, bucket_count in BUCKET_FEATURES.items():
        temp_feature = tft.bucketize(
                convert_zip_code(fill_in_missing(inputs[key])),
                bucket_count,
                always_return_num_quantiles=False)
        outputs[transformed_name(key)] = convert_num_to_one_hot(
                temp_feature,
                num_labels=bucket_count + 1)

Our text input features as well as our label column don’t require any transformations;
therefore, we simply convert them to dense features in case a feature might be sparse:

    for key in TEXT_FEATURES.keys():
        outputs[transformed_name(key)] = \
            fill_in_missing(inputs[key])

    outputs[transformed_name(LABEL_KEY)] = fill_in_missing(inputs[LABEL_KEY])
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Why We Didn’t Embed the Text Features to Vectors

You might wonder why we haven’t embedded our text features
into a fixed vector as part of our transform step. This is certainly
possible. But we decided to load the TensorFlow Hub model as a
part of the model instead of the preprocessing. The key reason for
that decision was that we could make the embeddings trainable
and refine the vector representations during our training phase.
Therefore, they cannot be hard-coded into the preprocessing step
and represented as a fixed graph during the training phase.

If we use the Transform component from TFX in our pipeline, it expects the transfor‐
mation code to be provided in a separate Python file. The name of the module file
can be set by the user (e.g., in our case module.py), but the entry point preprocess
ing_fn() needs to be contained in the module file and the function can’t be renamed:

transform = Transform(
    examples=example_gen.outputs['examples'],
    schema=schema_gen.outputs['schema'],
    module_file=os.path.abspath("module.py"))
context.run(transform)

When we execute the Transform component, TFX will apply the transformations
defined in our module.py module file to the loaded input data, which was converted
to TFRecord data structures during the data ingestion step. The component will then
output our transformed data, a transform graph, and the required metadata.

The transformed data and the transform graph can be consumed during our next
step, the Trainer component. Check out “Running the Trainer Component” on page
88 for how to consume the outputs of our Transform component. The following chap‐
ter also highlights how the generated transform graph can be combined with the
trained model to export a saved model. More details can be found in Example 6-2.

Summary
In this chapter, we discussed how to effectively preprocess data in our machine learn‐
ing pipelines with TFT. We introduced how to write preprocessing_fn functions,
provided an overview of some available functions provided by TFT, and discussed
how to integrate the preprocessing steps into the TFX pipeline. Now that the data has
been preprocessed, it is time to train our model.
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CHAPTER 6

Model Training

Now that the data preprocessing step is complete and the data has been transformed
into the format that our model requires, the next step in our pipeline is to train the
model with the freshly transformed data.

As we discussed in Chapter 1, we won’t cover the process of choosing your model
architecture. We assume that you have a separate experimentation process that took
place before you even picked up this book and that you already know the type of
model you wish to train. We discuss how to track this experimentation process in
Chapter 15 because it helps with creating a full audit trail for the model. However, we
don’t cover any of the theoretical background you’ll need to understand the model
training process. If you would like to learn more about this, we strongly recommend
the O’Reilly publication Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow, 2nd edition.

In this chapter, we cover the model training process as part of a machine learning
pipeline, including how it is automated in a TFX pipeline. We also include some
details of distribution strategies available in TensorFlow and how to tune hyperpara‐
meters in a pipeline. This chapter is more specific to TFX pipelines than most of the
others because we don’t cover training as a standalone process.

As shown in Figure 6-1, by this point data has been ingested, validated, and prepro‐
cessed. This ensures that all the data needed by the model is present and that it has
been reproducibly transformed into the features that the model requires. All of this is
necessary because we don’t want the pipeline to fail at our next step. We want to
ensure that the training proceeds smoothly because it is often the most time-
consuming part of the entire pipeline.
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1 We use a Keras model in our example project, but TFX also works perfectly with an Estimator model. Exam‐
ples can be found in the TFX documentation.

Figure 6-1. Model training as part of ML pipelines

One very important feature of training a model in a TFX pipeline is that the data pre‐
processing steps that we discussed in Chapter 5 are saved along with the trained
model weights. This is incredibly useful once our model is deployed to production
because it means that the preprocessing steps will always produce the features the
model is expecting. Without this feature, it would be possible to update the data pre‐
processing steps without updating the model, and then the model would fail in pro‐
duction or the predictions would be based on the wrong data. Because we export the
preprocessing steps and the model as one graph, we eliminate this potential source of
error.

In the next two sections, we’ll take a detailed look at the steps required to train a
tf.Keras model as part of a TFX pipeline.1

Defining the Model for Our Example Project
Even though the model architecture is already defined, some extra code is necessary
here. We need to make it possible to automate the model training part of the pipeline.
In this section, we will briefly describe the model we use throughout this chapter.

The model for our example project is a hypothetical implementation, and we could
probably optimize the model architecture. However, it showcases some common
ingredients of many deep learning models:

• Transfer learning from a pretrained model
• Dense layers
• Concatenation layers

As we discussed in Chapter 1, the model in our example project uses data from the
US Consumer Finance Protection Bureau to predict whether a consumer disputed a
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complaint about a financial product. The features in our model include the financial
product, the company’s response, the US state, and the consumer complaint narra‐
tive. Our model is inspired by the Wide and Deep model architecture, with the addi‐
tion of the Universal Sentence Encoder from TensorFlow Hub to encode the free-text
feature (the consumer complaint narrative).

You can see a visual representation of our model architecture in Figure 6-2, with the
text feature (narrative_xf) taking the “deep” route and the other features taking the
“wide” route.

Figure 6-2. Model architecture for our example project

Example 6-1 shows the full model architecture definition. Because we want to export
the model with our preprocessing steps, we need to guarantee that the model input
names match the transformed feature names from preprocessing_fn(), which we
discussed in Chapter 5. In our example model, we reuse the transformed_name()
function described in Chapter 5 to add the suffix _xf to our features.

Example 6-1. Defining our model architecture

import tensorflow as tf
import tensorflow_hub as hub

def transformed_name(key):
    return key + '_xf'
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def get_model():

    # One-hot categorical features
    input_features = []
    for key, dim in ONE_HOT_FEATURES.items(): 
        input_features.append(
            tf.keras.Input(shape=(dim + 1,),
                           name=transformed_name(key)))

    # Adding bucketized features
    for key, dim in BUCKET_FEATURES.items():
        input_features.append(
            tf.keras.Input(shape=(dim + 1,),
                           name=transformed_name(key)))

    # Adding text input features
    input_texts = []
    for key in TEXT_FEATURES.keys():
        input_texts.append(
            tf.keras.Input(shape=(1,),
                           name=transformed_name(key),
                           dtype=tf.string))

    inputs = input_features + input_texts

    # Embed text features
    MODULE_URL = "https://tfhub.dev/google/universal-sentence-encoder/4"
    embed = hub.KerasLayer(MODULE_URL) 
    reshaped_narrative = tf.reshape(input_texts[0], [-1]) 
    embed_narrative = embed(reshaped_narrative)
    deep_ff = tf.keras.layers.Reshape((512, ), input_shape=(1, 512))(embed_narrative)

    deep = tf.keras.layers.Dense(256, activation='relu')(deep_ff)
    deep = tf.keras.layers.Dense(64, activation='relu')(deep)
    deep = tf.keras.layers.Dense(16, activation='relu')(deep)

    wide_ff = tf.keras.layers.concatenate(input_features)
    wide = tf.keras.layers.Dense(16, activation='relu')(wide_ff)

    both = tf.keras.layers.concatenate([deep, wide])

    output = tf.keras.layers.Dense(1, activation='sigmoid')(both)
    keras_model = tf.keras.models.Model(inputs, output) 

    keras_model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001),
                        loss='binary_crossentropy',
                        metrics=[
                            tf.keras.metrics.BinaryAccuracy(),
                            tf.keras.metrics.TruePositives()
                        ])
    return keras_model
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Loop over the features and create an input for each feature.

Load the tf.hub module of the Universal Sentence Encoder model.

Keras inputs are two-dimensional, but the encoder expects one-dimensional
inputs.

Assemble the model graph with the functional API.

Now that we have defined our model, let’s move on to describe the process to inte‐
grate it into a TFX pipeline.

The TFX Trainer Component
The TFX Trainer component handles the training step in our pipeline. In this sec‐
tion, we will first describe how to train the Keras model from the example project in a
one-off training run. At the end of the section, we will add some considerations for
other training situations and for Estimator models.

All the steps we will describe may seem lengthy and unnecessary compared to the
normal Keras training code. But the key point here is that the Trainer component
will produce a model that will be put into production, where it will transform new
data and use the model to make predictions. Because the Transform steps are
included in this model, the data preprocessing steps will always match what the
model is expecting. This removes a huge potential source of errors when our model is
deployed.

In our example project, the Trainer component requires the following inputs:

• The previously generated data schema, generated by the data validation step dis‐
cussed in Chapter 4

• The transformed data and its preprocessing graph, as discussed in Chapter 5
• Training parameters (e.g., the number of training steps)
• A module file containing a run_fn() function, which defines the training process

In the next section, we will discuss the setup of the run_fn function. We also will
cover how to train a machine learning model in our pipeline and export it to the next
pipeline step that we will discuss in Chapter 7.

run_fn() Function
The Trainer component will look for a run_fn() function in our module file and use
the function as an entry point to execute the training process. The module file needs
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to be accessible to the Trainer component. If you run the component in an interac‐
tive context, you can simply define the absolute path to the module file and pass it to
the component. If you run your pipelines in production, please check Chapter 11 or
Chapter 12 for details on how to provide the module file.

The run_fn() function is a generic entry point to the training steps and not tf.Keras
specific. It carries out the following steps:

• Loading the training and validation data (or the data generator)
• Defining the model architecture and compiling the model
• Training the model
• Exporting the model to be evaluated in the next pipeline step

The run_fn for our example project performs these four steps as shown in
Example 6-2.

Example 6-2. run_fn() function of our example pipeline

def run_fn(fn_args):

    tf_transform_output = tft.TFTransformOutput(fn_args.transform_output)
    train_dataset = input_fn(fn_args.train_files, tf_transform_output) 
    eval_dataset = input_fn(fn_args.eval_files, tf_transform_output)

    model = get_model() 
    model.fit(
        train_dataset,
        steps_per_epoch=fn_args.train_steps,
        validation_data=eval_dataset,
        validation_steps=fn_args.eval_steps) 

    signatures = {
        'serving_default':
            _get_serve_tf_examples_fn(
                model,
                tf_transform_output).get_concrete_function(
                    tf.TensorSpec(
                        shape=[None],
                        dtype=tf.string,
                        name='examples')
                )
    } 
    model.save(fn_args.serving_model_dir,
               save_format='tf', signatures=signatures)

Call the input_fn to get data generators.
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Call the get_model function to get the compiled Keras model.

Train the model using the number of training and evaluation steps passed by the
Trainer component.

Define the model signature, which includes the serving function we will describe
later.

This function is fairly generic and could be reused with any other tf.Keras model.
The project-specific details are defined in helper functions like get_model() or
input_fn().

In the following sections, we want to take a closer look into how we load the data,
train, and export our machine learning model inside the run_fn() function.

Load the data

The following lines in the run_fn load our training and evaluation data:

def run_fn(fn_args):
    tf_transform_output = tft.TFTransformOutput(fn_args.transform_output)
    train_dataset = input_fn(fn_args.train_files, tf_transform_output)
    eval_dataset = input_fn(fn_args.eval_files, tf_transform_output)

In the first line, the run_fn function receives a set of arguments, including the trans‐
form graph, example datasets, and training parameters through the fn_args object.

Data loading for model training and validation is performed in batches, and the load‐
ing is handled by the input_fn() function as shown in Example 6-3.

Example 6-3. Input_fn function of our example pipeline

LABEL_KEY = 'labels'

def _gzip_reader_fn(filenames):
    return tf.data.TFRecordDataset(filenames,
        compression_type='GZIP')

def input_fn(file_pattern,
              tf_transform_output, batch_size=32):

    transformed_feature_spec = (
        tf_transform_output.transformed_feature_spec().copy())

    dataset = tf.data.experimental.make_batched_features_dataset(
        file_pattern=file_pattern,
        batch_size=batch_size,
        features=transformed_feature_spec,
        reader=_gzip_reader_fn,
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2 The Trainer component could be used without the previous Transform component, and we could load the
raw datasets. However, in this case, we would miss out on an excellent feature of TFX, which is exporting the
preprocessing and the model graphs as one SavedModel graph.

        label_key=transformed_name(LABEL_KEY)) 

    return dataset

The dataset will be batched into the correct batch size.

The input_fn function lets us load the compressed, preprocessed datasets that were
generated by the previous Transform step.2 To do this, we need to pass the tf_trans
form_output to the function. This gives us the data schema to load the dataset from
the TFRecord data structures generated by the Transform component. By using the
preprocessed datasets, we can avoid data preprocessing during training and speed up
the training process.

The input_fn returns a generator (a batched_features_dataset) that will supply
data to the model one batch at a time.

Compile and train the model
Now that we have defined our data-loading steps, the next step is defining our model
architecture and compiling our model. In our run_fn, this will require a call to
get_model(), which we have described, so it just needs a single line of code:

    model = get_model()

Next, we train our compiled tf.Keras model with the Keras method fit():
    model.fit(
        train_dataset,
        steps_per_epoch=fn_args.train_steps,
        validation_data=eval_dataset,
        validation_steps=fn_args.eval_steps)

Training Steps Versus Epochs

The TFX Trainer component defines the training process by the
number of training steps rather than by epochs. A training step is
when the model is trained on a single batch of data. The benefit of
using steps rather than epochs is that we can train or validate mod‐
els with large datasets and only use a fraction of the data. At the
same time, if you want to loop over the training dataset multiple
times during training, you can increase the step size to a multiple
of the available samples.
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Once the model training is complete, the next step is to export the trained model. We
will have a detailed discussion about exporting models for deployment in Chapter 8.
In the following section, we want to highlight how the preprocessing steps can be
exported with the model.

Model export
Finally, we export the model. We combine the preprocessing steps from the previous
pipeline component with the trained model and save the model in TensorFlow’s
SavedModel format. We define a model signature based on the graph generated by the
Example 6-4 function. We will describe model signatures in much more detail in
“Model Signatures” on page 135 in Chapter 8.

In the run_fn function, we define the model signature and save the model with the
following code:

    signatures = {
        'serving_default':
            _get_serve_tf_examples_fn(
                model,
                tf_transform_output).get_concrete_function(
                    tf.TensorSpec(
                        shape=[None],
                        dtype=tf.string,
                        name='examples')
                )
    }
    model.save(fn_args.serving_model_dir,
                save_format='tf', signatures=signatures)

The run_fn exports the get_serve_tf_examples_fn as part of the model signature. 
When a model has been exported and deployed, every prediction request will pass
through the serve_tf_examples_fn() shown in Example 6-4. With every request, we
parse the serialized tf.Example records and apply the preprocessing steps to the raw
request data. The model then makes a prediction on the preprocessed data.

Example 6-4. Applying the preprocessing graph to model inputs

def get_serve_tf_examples_fn(model, tf_transform_output):

    model.tft_layer = tf_transform_output.transform_features_layer() 

    @tf.function
    def serve_tf_examples_fn(serialized_tf_examples):
        feature_spec = tf_transform_output.raw_feature_spec()
        feature_spec.pop(LABEL_KEY)
        parsed_features = tf.io.parse_example(
            serialized_tf_examples, feature_spec) 
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        transformed_features = model.tft_layer(parsed_features) 
        outputs = model(transformed_features) 
        return {'outputs': outputs}

    return serve_tf_examples_fn

Load the preprocessing graph.

Parse the raw tf.Example records from the request.

Apply the preprocessing transformation to raw data.

Perform prediction with preprocessed data.

With the definition of our run_fn() function in place, let’s discuss how we can run
the Trainer component.

Running the Trainer Component
As shown in Example 6-5, the Trainer component takes the following as input:

• The Python module file, here saved as module.py, containing the run_fn(),
input_fn(), get_serve_tf_examples_fn(), and other associated functions we
discussed earlier

• The transformed examples generated by the Transform component
• The transform graph generated by the Transform component
• The schema generated by the data validation component
• The number of training and evaluation steps

Example 6-5. Trainer component

from tfx.components import Trainer
from tfx.components.base import executor_spec
from tfx.components.trainer.executor import GenericExecutor 
from tfx.proto import trainer_pb2

TRAINING_STEPS = 1000
EVALUATION_STEPS = 100

trainer = Trainer(
    module_file=os.path.abspath("module.py"),
    custom_executor_spec=executor_spec.ExecutorClassSpec(GenericExecutor), 
    transformed_examples=transform.outputs['transformed_examples'],
    transform_graph=transform.outputs['transform_graph'],
    schema=schema_gen.outputs['schema'],
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    train_args=trainer_pb2.TrainArgs(num_steps=TRAINING_STEPS),
    eval_args=trainer_pb2.EvalArgs(num_steps=EVALUATION_STEPS))

Load the GenericExecutor to override the training executor.

Override the executor to load the run_fn() function.

In a notebook environment (an interactive context), we can run the Trainer compo‐
nent, like any previous component, with the following command:

context.run(trainer)

After the model training and exporting is completed, the component will register the
path of the exported model with the metadata store. Downstream components can
pick up the model for the model validation.

The Trainer component is generic and not limited to running TensorFlow models.
However, the components later in the pipeline expect that the model is saved in the
TensorFlow SavedModel format. The SavedModel graph includes the Transform
graph, so the data preprocessing steps are part of the model.

Overriding the Trainer Component’s Executor

In our example project, we override the Trainer component’s
executor to enable the generic training entry point run_fn() func‐
tion instead of the default trainer_fn() function, which only sup‐
ports tf.Estimator models. In Chapter 12, we will introduce
another Trainer executor, the ai_platform_trainer_execu

tor.GenericExecutor. This executor allows you to train models
on Google Cloud’s AI Platform instead of inside your pipeline.
This is an alternative if your model requires specific training hard‐
ware (e.g., GPUs or tensor processing units [TPUs]), which aren’t
available in your pipeline environment.

Other Trainer Component Considerations
In our examples so far in this chapter, we have only considered a single training run
of a Keras model. But we can also use the Trainer component to fine-tune a model
from a previous run or to train multiple models simultaneously, and we will describe
these in “Advanced Pipeline Concepts” on page 190. We can also use it to optimize a
model through hyperparameter search, and we will discuss this more in “Model Tun‐
ing” on page 95.

In this section, we will also discuss how to use the Trainer component with an
Estimator model and how to load your SavedModel exported by the Trainer com‐
ponent outside a TFX pipeline.
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3 tf.Keras models can be converted to tf.Estimator models through the tf.model_to_estimator() conver‐
sion. However, with the recent updates to TFX, this is no longer the recommended best practice.

4 If you are interested in the steps of how component executors can be developed and exchanged, we recom‐
mend the section “Reusing Existing Components” on page 208 in Chapter 10.

5 For more details on concrete functions, check out the TensorFlow documentation.

Using the Trainer component with an Estimator model

Until recently, TFX supported only tf.Estimator models and the Trainer compo‐
nent was solely designed for Estimators. The default implementation of the Trainer
component used the trainer_fn() function as an entry point to the training process,
but this entry point is very tf.Estimator specific. The Trainer component expects
the Estimator inputs to be defined by functions like train_input_fn(),
eval_input_fn(), and serving_receiver_fn().3

As we discussed in “Running the Trainer Component” on page 88, the core function‐
ality of the component can be swapped out with the generic training executor Generi
cExecutor, which uses the run_fn() function as its entry point to the training
process.4 As the name of the executor implies, the training process becomes generic
and not tied to tf.Estimator or tf.Keras models.

Using the SavedModel outside a pipeline
If we would like to inspect the exported SavedModel outside a TFX pipeline, we can
load the model as a concrete function,5 which represents the graph of a single
signature:

model_path = trainer.outputs.model.get()[0].uri
model = tf.saved_model.load(export_dir=model_path)
predict_fn = model.signatures["serving_default"]

With the model loaded as a concrete function, we can now perform predictions. The
exported model expects the input data to be provided in the tf.Example data struc‐
ture as shown in the following example. More details around the tf.Example data
structure, and how other features (like integers and floats) can be converted can be
found in Example 3-1. The following code shows how to create the serialized data
structure and perform a model prediction by calling the prediction_fn() function:

example = tf.train.Example(features=tf.train.Features(feature={
    'feature_A': _bytes_feature(feature_A_value),
    ...
    })) 

serialized_example = example.SerializeToString()
print(predict_fn(tf.constant([serialized_example])))
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The _bytes_feature helper function is defined in Example 3-1.

If you would like to inspect the progress of the model in detail during training, you
can do this using TensorBoard. We will describe how to use TensorBoard in our
pipeline in the next section.

Using TensorBoard in an Interactive Pipeline
TensorBoard is another wonderful tool that is part of the TensorFlow ecosystem. It
has many helpful functions that we can use in our pipelines, for example, monitoring
metrics while training, visualizing word embeddings in NLP problems, or viewing
activations for layers in the model. A new Profiler feature lets us profile the model to
understand performance bottlenecks.

An example of TensorBoard’s basic visualization is shown in Figure 6-3.

Figure 6-3. Viewing metrics while training in TensorBoard
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To be able to use TensorBoard in our pipeline, we need to add callbacks in the
run_fn function and log the training to a folder we specify:

log_dir = os.path.join(os.path.dirname(fn_args.serving_model_dir), 'logs')
tensorboard_callback = tf.keras.callbacks.TensorBoard(
    log_dir=log_dir, update_freq='batch')

We also need to add the callback to our model training:

model.fit(
    train_dataset,
    steps_per_epoch=fn_args.train_steps,
    validation_data=eval_dataset,
    validation_steps=fn_args.eval_steps,
    callbacks=[tensorboard_callback])

Then, to view TensorBoard in a notebook, we get the location of the model training
logs and pass it to TensorBoard:

model_dir = trainer.outputs['output'].get()[0].uri

%load_ext tensorboard
%tensorboard --logdir {model_dir}

We can also use TensorBoard outside a notebook by running:

tensorboard --logdir path/to/logs

Then connect to http://localhost:6006/ to view TensorBoard. This gives us a larger
window to view the details.

Next, we will introduce some useful strategies for training large models on multiple
GPUs.

Distribution Strategies
TensorFlow provides distribution strategies for machine learning models that can’t
be adequately trained on a single GPU. You might want to consider distribution
strategies when you want to accelerate your training or you can’t fit the entire model
into a single GPU.

The strategies we describe here are abstractions to distribute the model parameters
across multiple GPUs or even multiple servers. In general, there are two groups of
strategies: synchronous and asynchronous training. Under the synchronous strategies,
all training workers train with different slices of the training data synchronously and
then aggregate the gradients from all workers before updating the model. The asyn‐
chronous strategies train models independently with the entire dataset on different
workers. Each worker updates the gradients of the model asynchronously, without
waiting for the other workers to finish. Typically, synchronous strategies are coordi‐

92 | Chapter 6: Model Training

http://localhost:6006/


6 The all-reduce operation reduces information from all the workers to a single information; in other words, it
enables synchronization between all training workers.

nated via all-reduce operations6 and asynchronous strategies through a parameter
server architecture.

A few synchronous and asynchronous strategies exist, and they have their benefits
and drawbacks. At the time of writing this section, Keras supports the following
strategies:

MirroredStrategy
This strategy is relevant for multiple GPUs on a single instance, and it follows the
synchronous training pattern. The strategy mirrors the model and the parameters
across the workers, but each worker receives a different batch of data. The Mir‐
roredStrategy is a good default strategy if you train a machine learning model on
a single node with multiple GPUs and your machine learning model fits in the
GPU memory.

CentralStorageStrategy
In contrast to the MirroredStrategy, the variables in this strategy aren’t mirrored
across all GPUs. Instead, they are stored in the CPU’s memory and then copied
into the assigned GPU to execute the relevant operations. In case of a single GPU
operation, the CentralStorageStrategy will store the variables on the GPU, not in
the CPU. CentralStorageStrategy is a good strategy for distributing your training
when you train on a single node with multiple GPUs and your complete model
doesn’t fit in the memory of single GPU, or when the communication bandwidth
between the GPUs is too limited.

MultiWorkerMirroredStrategy
This follows the design patterns of the MirroredStrategy, but it copies the vari‐
ables across multiple workers (e.g., compute instances). The MultiWorkerMir‐
roredStrategy is an option if one node isn’t enough for your model training.

TPUStrategy
This strategy lets you use Google Cloud’s TPUs. It follows the synchronous train‐
ing pattern and basically works like MirroredStrategy except it uses TPUs instead
of GPUs. It requires its own strategy since the MirroredStrategy uses GPU-
specific all-reduce functions. TPUs have a huge amount of RAM available, and
the cross-TPU communication is highly optimized, which is why the TPU strat‐
egy uses the mirrored approach.

ParameterServerStrategy
The ParameterServerStrategy uses multiple nodes as the central variable reposi‐
tory. This strategy is useful for models exceeding the available resources (e.g.,
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RAM or I/O bandwidth) of a single node. The ParameterServerStrategy is your
only option if you can’t train on a single node and the model is exceeding the
RAM or I/O limitations of a node.

OneDeviceStrategy
The whole point of the OneDeviceStrategy is to test the entire model setup before
engaging in real distributed training. This strategy forces the model training to
only use one device (e.g., one GPU). Once it is confirmed that the training setup
is working, the strategy can be swapped.

Not All Strategies Are Available via the TFX Trainer Component

At the time of writing this section, the TFX Trainer component
only supports the MirroredStrategy. While the different strategies
can currently be used with tf.keras, they will be made accessible
via the Trainer component in the second half of 2020, according
to the TFX roadmap.

Because the MirroredStrategy is supported by the TFX Trainer, we’ll show an exam‐
ple of it here. We can apply the MirroredStrategy easily by adding a few lines before
invoking our model creation and the subsequent model.compile() call:

mirrored_strategy = tf.distribute.MirroredStrategy() 
with mirrored_strategy.scope(): 
    model = get_model()

Instance of distribution strategy.

Wrap model creation and compilation with Python manager.

In this example setup, we create an instance of the MirroredStrategy. In order to
apply the distribution strategy to our model, we wrap the model creation and compi‐
lation with the Python manager (in our case, it all happens inside of the get_model()
function). This will create and compile our model under the distribution scope of our
choice. The MirroredStrategy will use all available GPUs of the instance. If you want
to reduce the number of GPU instances being used (e.g., in case you share instances),
you can specify the GPUs to be used with the MirroredStrategy by changing the cre‐
ation of the distribution strategy:

mirrored_strategy = tf.distribute.MirroredStrategy(devices=["/gpu:0", "/gpu:1"])

In this example, we specify two GPUs to be used for our training runs.
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Batch Size Requirement When Using the MirroredStrategy

The MirroredStrategy expects that the batch size is proportional to
the number of devices. For example, if you train with five GPUs,
the batch size needs to be a multiple of the number of GPUs. Please
keep this in mind when you set up your input_fn() function as
described in Example 6-3.

These distribution strategies are useful for large training jobs that won’t fit on the
memory of a single GPU. Model tuning, which we will discuss in the next section, is a
common reason for us to need these strategies.

Model Tuning
Hyperparameter tuning is an important part of achieving an accurate machine learn‐
ing model. Depending on the use case, it may be something that we do during our
initial experiments or it may be something we want to include in our pipeline. This is
not a comprehensive introduction to model tuning, but we will give a brief overview
of it here and describe how it may be included in a pipeline.

Strategies for Hyperparameter Tuning
Depending on the type of model in your pipeline, the choice of hyperparameters will
be different. If your model is a deep neural network, hyperparameter tuning is espe‐
cially critical to achieving good performance with neural networks. Two of the most
important sets of hyperparameters to tune are those controlling the optimization and
the network architecture.

For optimization, we recommend using Adam or NAdam by default. The learning
rate is a very important parameter to experiment with, and there are many possible
options for learning rate schedulers. We recommend using the largest batch size that
fits in your GPU memory.

For very large models, we suggest the following steps:

• Tune the initial learning rate, starting with 0.1.
• Pick a number of steps to train for (as many as patience allows).
• Linearly decay the learning rate to 0 over the specified number of steps.

For smaller models, we recommend using early stopping to avoid overfitting. With
this technique, model training is stopped when the validation loss does not improve
after a user-defined number of epochs.
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For the network architecture, two of the most important parameters to tune are the
size and number of layers. Increasing these will improve training performance, but it
may cause overfitting and will mean the model takes longer to train. You can also
consider adding residual connections between the layers, particularly for deep
architectures.

The most popular hyperparameter search approaches are grid search and random
search. In grid search, every combination of parameters is tried exhaustively, whereas
in random search, parameters are sampled from the available options and may not
try every combination. Grid search can get extremely time consuming if the number
of possible hyperparameters is large. After trying a range of values, you can fine-tune
by taking the best-performing hyperparameters and starting a new search centered
on them.

In the TensorFlow ecosystem, hyperparameter tuning is implemented using the
Keras Tuner and also Katib, which provides hyperparameter tuning in Kubeflow. In
addition to grid and random search, both of these packages support Bayesian search
and the Hyperband algorithm.

Hyperparameter Tuning in TFX Pipelines
In a TFX pipeline, hyperparameter tuning takes in the data from the Transform com‐
ponent and trains a variety of models to establish the best hyperparameters. The
hyperparameters are then passed to the Trainer component, which then trains a final
model using them.

In this case, the model definition function (the get_model function in our example)
needs to accept the hyperparameters as an input and build the model according to
the specified hyperparameters. So, for example, the number of layers needs to be
defined as an input argument.

The TFX Tuner Component

The TFX Tuner component was released as we were finalizing this
book. You can view the source code in the project’s GitHub repo.
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Summary
In this chapter, we described how to move our model training from a standalone
script to an integrated part of our pipeline. This means that the process can be auto‐
mated and triggered whenever we would like—as soon as new data arrives in the
pipeline or when the previous model accuracy dips beneath a predefined level. We
also described how the model and the data preprocessing steps are saved together to
avoid any errors from a mismatch between the preprocessing and the training. We
additionally covered strategies for distributing the model training and for tuning the
hyperparameters.

Now that we have a saved model, the next step is to dive into the details of what it can
do.
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CHAPTER 7

Model Analysis and Validation

At this point in our machine learning pipeline, we have checked the statistics of our
data, we have transformed our data into the correct features, and we have trained our
model. Surely now it’s time to put the model into production? In our opinion, there
should be two extra steps before you move on to deploy your model: analyzing your
model’s performance in-depth and checking that it will be an improvement on any
model that’s already in production. We show where these steps fit into the pipeline in
Figure 7-1.

Figure 7-1. Model analysis and validation as part of ML pipelines

While we’re training a model, we’re monitoring its performance on an evaluation set
during training, and we’re also trying out a variety of hyperparameters to get peak
performance. But it’s common to only use one metric during training, and often this
metric is accuracy.

When we’re building a machine learning pipeline, we’re often trying to answer a
complex business question or trying to model a complex real-world system. One sin‐
gle metric is often not enough to tell us whether our model will answer that question.
This is particularly true if our dataset is imbalanced or if some of our model’s deci‐
sions have higher consequences than others.
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In addition, a single metric that averages performance over an entire evaluation set
can hide a lot of important details. If your model is dealing with data that is about
people, does everyone who interacts with the model get the same experience? Does
your model perform better for female users than male users? Are users from Japan
seeing poorer results than users from the US? These differences can be both commer‐
cially damaging and cause harm to real people. If your model is doing object detec‐
tion for an autonomous vehicle, does it work acceptably in all lighting conditions?
Using one metric for your whole training set can hide important edge and corner
cases. It’s essential to be able to monitor metrics across different slices of your
dataset.

It’s also extremely important to monitor your metrics through time—before deploy‐
ment, after deployment, and while in production. Even if your model is static, the
data that comes into the pipeline will change through time, often causing a decline in
performance.

In this chapter we’ll introduce the next package from the TensorFlow ecosystem:
TensorFlow Model Analysis (TFMA), which has all these capabilities. We’ll show
how you can get detailed metrics of your model’s performance, slice your data to get
metrics for different groups, and take a deeper dive into model fairness with Fairness
Indicators and the What-If Tool. We’ll then explain how you can go beyond analysis
and start to explain the predictions your model is making.

We’ll also describe the final step before deploying your new model: validating that the
model is an improvement on any previous version. It’s important that any new model
deployed into production represents a step forward so that any other service depend‐
ing on this model is improved in turn. If the new model is not an improvement in
some way, it is not worth the effort of deploying.

How to Analyze Your Model
Our model analysis process starts with our choice of metrics. As we discussed previ‐
ously, our choice is extremely important to the success of our machine learning pipe‐
line. It’s good practice to pick multiple metrics that make sense for our business
problem because one single metric may hide important details. In this section, we will
review some of the most important metrics for both classification and regression
problems.

Classification Metrics
To calculate many classification metrics, it’s necessary to first count the number of
true/false positive examples and true/false negative examples in your evaluation set.
Taking any one class in our labels as an example:
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True positives
Training examples that belong to this class and are correctly labelled as this class
by the classifier. For example, if the true label is 1, and the predicted label is 1, the
example would be a true positive.

False positives
Training examples that do not belong to this class and are incorrectly labelled as
this class by the classifier. For example, if the true label is 0, and the predicted
label is 1, the example would be a false positive.

True negatives
Training examples that do not belong to this class and are correctly labelled as
not in this class by the classifier. For example, if the true label is 0, and the pre‐
dicted label is 0, the example would be a true negative.

False negatives
Training examples that belong to this class and are incorrectly labelled as not in
this class by the classifier. For example, if the true label is 1, and the predicted
label is 0, the example would be a false negative.

These basic metrics are all commonly shown in Table 7-1.

Table 7-1. Confusion matrix

Predicted 1 Predicted 0

True value 1 True positives False negatives

True value 0 False positives True negatives

If we calculate all these metrics for the model from our example project, we get the
results shown in Figure 7-2.

Figure 7-2. Confusion matrix for our example project

We’ll see that these counts are particularly useful when we talk about model fairness
later in this chapter. There are several other metrics for comparing models that com‐
bine these counts into a single number:

How to Analyze Your Model | 101



Accuracy
Accuracy is defined as (true positives + true negatives)/total examples, or the pro‐
portion of examples that were classified correctly. This is an appropriate metric
to use for a dataset where the positive and negative classes are equally balanced,
but it can be misleading if the dataset is imbalanced.

Precision
Precision is defined as true positives/(true negatives + false positives), or the pro‐
portion of examples predicted to be in the positive class that were classified cor‐
rectly. So if a classifier has high precision, most of the examples it predicts as
belonging to the positive class will indeed belong to the positive class.

Recall
Recall is defined as true positives/(true positives + false negatives), or the propor‐
tion of examples where the ground truth is positive that the classifier correctly
identified. So if a classifier has high recall, it will correctly identify most of the
examples that are truly in the positive class.

Another way to generate a single number that describes a model’s performance is the
AUC (area under the curve). The “curve” here is the receiver operating characteristic
(ROC), which plots the true positive rate (TPR) against the false positive rate (FPR).

The TPR is another name for recall, and it is defined as:

true positive rate =
true positives

true positives + false negatives

The FPR is defined as:

false positive rate =
false positives

false positives + true negatives

The ROC is generated by calculating the TPR and FPR at all classification thresholds.
The classification threshold is the probability cutoff for assigning examples to the pos‐
itive or negative class, usually 0.5. Figure 7-3 shows the ROC and the AUC for our
example project. For a random predictor, the ROC would be a straight line from the
origin to [1,1] that follows the x axis. As the ROC moves further away from the x axis
toward the upper left of the plot, the model improves and the AUC increases. AUC is
another useful metric that can be plotted in TFMA.
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Figure 7-3. ROC for our example project

Regression Metrics
In a regression problem, the model predicts some numerical value for each training
example, and this is compared with the actual value. Common regression metrics we
can use in TFMA include:

Mean absolute error (MAE)
MAE is defined as:

MAE =
1
n ∑ |y - ŷ|

where n is the number of training examples, y is the true value, and ŷ is the pre‐
dicted value. For each training example, the absolute difference is calculated
between the predicted value and the true value. In other words, the MAE is the
average error produced by the model.

Mean absolute percentage error (MAPE)
MAPE is defined as:

MAPE =
1
n ∑ | y - ŷ

y | × 100 %

As the name implies, this metric gives the percentage error for all examples. This
is particularly useful for spotting when the model makes systematic errors.
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Mean squared error (MSE)
MSE is defined as:

MSE =
1
n ∑ (y - ŷ)2

This is similar to the MAE, except the y – ŷ term is squared. This makes the effect
of outliers on the overall error much greater.

Once you have chosen the metrics that are appropriate for your business problem,
the next step is to include them in your machine learning pipeline. You can do this
using TFMA, which we will describe in the next section.

TensorFlow Model Analysis
TFMA gives us an easy way to get more detailed metrics than just those used during
model training. It lets us visualize metrics as time series across model versions, and it
gives us the ability to view metrics on slices of a dataset. It also scales easily to large
evaluation sets thanks to Apache Beam.

In a TFX pipeline, TFMA calculates metrics based on the saved model that is
exported by the Trainer component, which is exactly the one that will be deployed.
Thus, it avoids any confusion between different model versions. During model train‐
ing, if you are using TensorBoard you will only get approximate metrics extrapolated
from measurements on minibatches, but TFMA calculates metrics over the whole
evaluation set. This is particularly relevant for large evaluation sets.

Analyzing a Single Model in TFMA
In this section, we’ll look at how to use TFMA as a standalone package. TFMA is
installed as follows:

$ pip install tensorflow-model-analysis

It takes a saved model and an evaluation dataset as input. In this example, we’ll
assume a Keras model is saved in SavedModel format and an evaluation dataset is
available in the TFRecord file format.

First, the SavedModel must be converted to an EvalSharedModel:

import tensorflow_model_analysis as tfma

eval_shared_model = tfma.default_eval_shared_model(
    eval_saved_model_path=_MODEL_DIR,
    tags=[tf.saved_model.SERVING])
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Next, we provide an EvalConfig. In this step, we tell TFMA what our label is, provide
any specifications for slicing the model by one of the features, and stipulate all the
metrics we want TFMA to calculate and display:

eval_config=tfma.EvalConfig(
    model_specs=[tfma.ModelSpec(label_key='consumer_disputed')],
    slicing_specs=[tfma.SlicingSpec()],
    metrics_specs=[
        tfma.MetricsSpec(metrics=[
            tfma.MetricConfig(class_name='BinaryAccuracy'),
            tfma.MetricConfig(class_name='ExampleCount'),
            tfma.MetricConfig(class_name='FalsePositives'),
            tfma.MetricConfig(class_name='TruePositives'),
            tfma.MetricConfig(class_name='FalseNegatives'),
            tfma.MetricConfig(class_name='TrueNegatives')
        ])
    ]
)

Analyzing TFLite Models

We can also analyze TFLite models in TFMA. In this case, the
model type must be passed to the ModelSpec:

eval_config = tfma.EvalConfig(
    model_specs=[tfma.ModelSpec(label_key='my_label',
                                model_type=tfma.TF_LITE)],
    ...
)

We discuss TFLite in more detail in “TFLite” on page 178.

Then, run the model analysis step:

eval_result = tfma.run_model_analysis(
    eval_shared_model=eval_shared_model,
    eval_config=eval_config,
    data_location=_EVAL_DATA_FILE,
    output_path=_EVAL_RESULT_LOCATION,
    file_format='tfrecords')

And view the results in a Jupyter Notebook:

tfma.view.render_slicing_metrics(eval_result)

Even though we want to view the overall metrics, we still call render_slicing_met
rics. The slice in this context is the overall slice, which is the entire dataset. The
result is shown in Figure 7-4.
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Figure 7-4. TFMA notebook visualization for overall metrics

Using TFMA in a Jupyter Notebook

TFMA works as previously described in a Google Colab notebook.
But a few extra steps are required to view the visualizations in a
standalone Jupyter Notebook. Install and enable the TFMA note‐
book extension with:

$ jupyter nbextension enable --py widgetsnbextension
$ jupyter nbextension install --py \
    --symlink tensorflow_model_analysis
$ jupyter nbextension enable --py tensorflow_model_analysis

Append the flag --sys_prefix to each of these commands if you
are running them in a Python virtual environment. The widgetsn
bextension, ipywidgets, and jupyter_nbextensions_configura
tor packages may also require installation or upgrading.
At the time of writing, TFMA visualizations are not available in
Jupyter Lab, only in Jupyter Notebook.

All the metrics we described in “How to Analyze Your Model” on page 100 can be
displayed in TFMA by providing them in the metrics_specs argument to the
EvalConfig:
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metrics_specs=[
    tfma.MetricsSpec(metrics=[
        tfma.MetricConfig(class_name='BinaryAccuracy'),
        tfma.MetricConfig(class_name='AUC'),
        tfma.MetricConfig(class_name='ExampleCount'),
        tfma.MetricConfig(class_name='Precision'),
        tfma.MetricConfig(class_name='Recall')
    ])
]

The results are shown in Figure 7-5.

Figure 7-5. TFMA notebook visualization for other metrics

Analyzing Multiple Models in TFMA
We can also use TFMA to compare our metrics across multiple models. For example,
these may be the same model trained on different datasets, or two models with differ‐
ent hyperparameters trained on the same dataset.

For the models we compare, we first need to generate an eval_result similar to the
preceding code examples. We need to ensure we specify an output_path location to
save the models. We use the same EvalConfig for both models so that we can calcu‐
late the same metrics:
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eval_shared_model_2 = tfma.default_eval_shared_model(
    eval_saved_model_path=_EVAL_MODEL_DIR, tags=[tf.saved_model.SERVING])

eval_result_2 = tfma.run_model_analysis(
    eval_shared_model=eval_shared_model_2,
    eval_config=eval_config,
    data_location=_EVAL_DATA_FILE,
    output_path=_EVAL_RESULT_LOCATION_2,
    file_format='tfrecords')

Then, we load them using the following code:

eval_results_from_disk = tfma.load_eval_results(
    [_EVAL_RESULT_LOCATION, _EVAL_RESULT_LOCATION_2],
    tfma.constants.MODEL_CENTRIC_MODE)

And we can visualize them using:

tfma.view.render_time_series(eval_results_from_disk, slices[0])

The result is shown in Figure 7-6.

Figure 7-6. TFMA visualization comparing two models

The key thing to note here is that for both classification and regression models in
TFMA it is possible to view many metrics at once, rather than being restricted to one
or two during training. This helps to prevent surprising behavior once the model is
deployed.

We can also slice the evaluation data based on features of the dataset, for example, to
get the accuracy by product in our demo project. We’ll describe how to do this in the
following section.
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Model Analysis for Fairness
All the data that we use to train a model is biased in some way: the real world is an
incredibly complex place, and it’s impossible to take a sample of data that adequately
captures all this complexity. In Chapter 4, we looked at bias in data on the way into
our pipeline, and in this chapter we’ll look at whether the model’s predictions are fair.

Fairness and Bias

The terms “fairness” and “bias” are often used interchangeably to
refer to whether different groups of people experience different
performance from a machine learning model. Here, we’ll use the
term “fairness” to avoid confusion with data bias, which we dis‐
cussed in Chapter 4.

To analyze whether our model is fair, we need to identify when some groups of peo‐
ple get a different experience than others in a problematic way. For example, a group
of people could be people who don’t pay back loans. If our model is trying to predict
who should be extended credit, this group of people should have a different experi‐
ence than others. An example of the type of problem we want to avoid is when the
only people who are incorrectly turned down for loans are of a certain race.

A high-profile example of groups getting different experiences from a model is the
COMPAS algorithm that predicts recidivism risk. As reported by Propublica, the
algorithm’s error rate was roughly the same for black and white defendants. How‐
ever, it was especially likely to incorrectly predict that black defendants would be
future criminals, at roughly twice the rate of the same incorrect prediction for white
defendants.

We should try to recognize such problems before our models are deployed to pro‐
duction. To start with, it’s useful to define numerically what we mean by fairness.
Here are several example methods for classification problems:

Demographic parity
Decisions are made by the model at the same rate for all groups. For example,
men and women would be approved for a loan at the same rate.

Equal opportunity
The error rate in the opportunity-giving class is the same for all groups. Depend‐
ing on how the problem is set up, this can be the positive class or the negative
class. For example, of the people who can pay back a loan, men and women
would be approved for a loan at the same rate.
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Equal accuracy
Some metrics such as accuracy, precision, or AUC are equal for all groups. For
example, a facial recognition system should be as accurate for dark-skinned
women as it is for light-skinned men.

Equal accuracy can sometimes be misleading, as in the preceding COMPAS example.
In that example, the accuracy was equal for both groups, but the consequences were
much higher for one group. It’s important to consider the directions of errors that
have the highest consequences for your model.

Definitions of Fairness

There is no one definition of fairness that is appropriate for all
machine learning projects. You will need to explore what is best for
your specific business problem, taking into account potential
harms and benefits to the users of your model. More guidance is
provided in the book Fairness in Machine Learning by Solon Baro‐
cas et al., this article by Martin Wattenberg et al. from Google, and
the Fairness Indicators documentation by Ben Hutchinson et al.

The groups we’re referring to can be different types of customers, product users from
different countries, or people of different gender and ethnicity. In US law, there is the
concept of protected groups, where individuals are protected from discrimination
based on the groups of gender, race, age, disability, color, creed, national origin, reli‐
gion, and genetic information. And these groups intersect: you may need to check
that your model does not discriminate against multiple combinations of groups.

Groups are A Simplification

Groups of people are never clean-cut in the real world. Everyone
has their own complex story: someone may have changed their
religion or their gender during their lifetime. Someone may belong
to multiple races or multiple nationalities. Look for these edge
cases and give people ways to tell you if they have a poor experi‐
ence with your model.

Even if you are not using these groups as features in your model, this does not mean
that your model is fair. Many other features, such as location, might be strongly cor‐
related with one of these protected groups. For example, if you use a US zip code as a
feature, this is highly correlated with race. You can check for these problems by slic‐
ing your data for one of the protected groups, as we describe in the following section,
even if it is not a feature that you have used to train your model.
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Fairness is not an easy topic to deal with, and it leads us into many ethical questions
that may be complex or controversial. However, there are several projects that can
help us analyze our models from a fairness perspective, and we’ll describe how you
can use them in the next few sections. This kind of analysis can give you an ethical
and a commercial advantage by giving everyone a consistent experience. It may even
be a chance to correct underlying unfairness in the system that you are modeling—
for example, analyzing a recruiting tool at Amazon revealed an underlying disadvan‐
tage experienced by female candidates.

In the next sections, we will describe how to use three projects for evaluating fairness
in TensorFlow: TFMA, Fairness Indicators, and the What-If Tool.

Slicing Model Predictions in TFMA
The first step in evaluating your machine learning model for fairness is slicing your
model’s predictions by the groups you are interested in—for example, gender, race,
or country. These slices can be generated by TFMA or the Fairness Indicators tools.

To slice data in TFMA, a slicing column must be provided as a SliceSpec. In this
example, we’ll slice on the Product feature:

slices = [tfma.slicer.SingleSliceSpec(),
          tfma.slicer.SingleSliceSpec(columns=['Product'])]

SingleSliceSpec with no specified arguments returns the entire dataset.

Next, run the model analysis step with the slices specified:

eval_result = tfma.run_model_analysis(
    eval_shared_model=eval_shared_model,
    eval_config=eval_config_viz,
    data_location=_EVAL_DATA_FILE,
    output_path=_EVAL_RESULT_LOCATION,
    file_format='tfrecords',
    slice_spec = slices)

And view the results, as shown in Figure 7-7:

tfma.view.render_slicing_metrics(eval_result, slicing_spec=slices[1])

If we want to consider Demographic parity, as defined previously, then we need to
check whether the same proportion of people in each group are in the positive class.
We can check this by looking at the TPR and the TNR for each group.
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Figure 7-7. TFMA slicing visualization

Consider Which Class Is Beneficial

We’re assuming that there is some choice made by the model that
is beneficial to a person, and we’re assuming that this is the positive
class. If the positive class is not beneficial and the negative class is
harmful to a person, we should consider the true negative rate and
the false positive rate instead.

For equal opportunity, we can check the FPR for each group. For more details on
this, the Fairness Indicators project has useful advice.

Checking Decision Thresholds with Fairness Indicators
Fairness Indicators is another extremely useful tool for model analysis. It has some
overlapping capabilities with TFMA, but one particularly useful feature of it is the
ability to view metrics sliced on features at a variety of decision thresholds. As we dis‐
cussed previously, the decision threshold is the probability score at which we draw
the boundary between classes for a classification model. This lets us check if our
model is fair to groups at different decision thresholds.
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There are several ways to access the Fairness Indicators tool, but the simplest way to
use it as a standalone library is via TensorBoard. We also mention how to load it as
part of a TFX pipeline in “Evaluator Component” on page 125. We install the Tensor‐
Board Fairness Indicators plug-in via:

$ pip install tensorboard_plugin_fairness_indicators

Next, we use TFMA to evaluate the model and ask it to calculate metrics for a set of
decision thresholds we supply. This is supplied to TFMA in the metrics_spec argu‐
ment for the EvalConfig, along with any other metrics we wish to calculate:

eval_config=tfma.EvalConfig(
    model_specs=[tfma.ModelSpec(label_key='consumer_disputed')],
    slicing_specs=[tfma.SlicingSpec(),
                   tfma.SlicingSpec(feature_keys=['product'])],
    metrics_specs=[
        tfma.MetricsSpec(metrics=[
            tfma.MetricConfig(class_name='FairnessIndicators',
                              config='{"thresholds":[0.25, 0.5, 0.75]}')
        ])
    ]
)

Then run the model analysis step as before via tfma.run_model_analysis.

Next, write the TFMA evaluation result to a log directory so that it can be picked up
by TensorBoard:

from tensorboard_plugin_fairness_indicators import summary_v2

writer = tf.summary.create_file_writer('./fairness_indicator_logs')
with writer.as_default():
    summary_v2.FairnessIndicators('./eval_result_fairness', step=1)
writer.close()

And load the result in TensorBoard to a Jupyter Notebook:

%load_ext tensorboard
%tensorboard --logdir=./fairness_indicator_logs
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The Fairness Indicators tool highlights variations from the overall metric value, as
shown in Figure 7-8.

Figure 7-8. Fairness Indicators slicing visualization

And for our example project, Figure 7-9 shows more extreme differences between
groups when the decision threshold is reduced to 0.25.
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Figure 7-9. Fairness Indicators threshold visualization

In addition to exploring fairness considerations in the overall model, we might want
to look at individual data points to see how individual users are affected by our
model. Fortunately, there is another tool in the TensorFlow ecosystem to help us with
this: the What-If Tool.
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Going Deeper with the What-If Tool
After looking at slices of our dataset with TFMA and Fairness Indicators, we can go
into greater detail using another project from Google: the What-If Tool (WIT). This
lets us generate some very useful visualizations and also investigate individual data
points.

There are a number of ways to use the WIT with your model and data. It can be used
to analyze a model that has already been deployed with TensorFlow Serving via Ten‐
sorBoard, or a model that is running on GCP. It can also be used directly with an
Estimator model. But for our example project, the most straightforward way to use it
is to write a custom prediction function that takes in a list of training examples and
returns the model’s predictions for these examples. This way, we can load the visuali‐
zations in a standalone Jupyter Notebook.

We can install the WIT with:

$ pip install witwidget

Next, we create a TFRecordDataset to load the data file. We sample 1,000 training
examples and convert it to a list of TFExamples. The visualizations in the What-If
Tool work well with this number of training examples, but they get harder to under‐
stand with a larger sample:

eval_data = tf.data.TFRecordDataset(_EVAL_DATA_FILE)
subset = eval_data.take(1000)
eval_examples = [tf.train.Example.FromString(d.numpy()) for d in subset]

Next, we load the model and define a prediction function that takes in the list of TFEx
amples and returns the model’s predictions:

model = tf.saved_model.load(export_dir=_MODEL_DIR)
predict_fn = model.signatures['serving_default']

def predict(test_examples):
    test_examples = tf.constant([example.SerializeToString() for example in examples])
    preds = predict_fn(examples=test_examples)
    return preds['outputs'].numpy()

Then we configure the WIT using:

from witwidget.notebook.visualization import WitConfigBuilder

config_builder = WitConfigBuilder(eval_examples).set_custom_predict_fn(predict)

And we can view it in a notebook using:

from witwidget.notebook.visualization import WitWidget

WitWidget(config_builder)

This will give us the visualization in Figure 7-10.
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Figure 7-10. WIT front page

Using the WIT in a Jupyter Notebook

As with TFMA, a few extra steps are required to run the WIT in a
standalone notebook. Install and enable the WIT notebook
extension with:

$ jupyter nbextension install --py --symlink \
    --sys-prefix witwidget

$ jupyter nbextension enable witwidget --py --sys-prefix

Append the flag --sys_prefix to each of these commands if you
are running them in a Python virtual environment.

There are many functions included in the WIT, and we will describe some of the
most useful here. Full documentation is provided at the WIT project home page.

The WIT provides counterfactuals, which for any individual training example show
its nearest neighbor from a different classification. All the features are as similar as
possible, but the model’s prediction for the counterfactual is the other class. This
helps us see how each feature impacts the model’s prediction for the particular train‐
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ing example. If we see that changing a demographic feature (race, gender, etc.)
changes the model’s prediction to the other class, this is a warning sign that the
model may not be fair to different groups.

We can explore this feature further by editing a selected example in the browser.
Then we can rerun the inference and see what effect this has on the predictions made
for the specific example. This can be used to explore demographic features for fair‐
ness or any other features to see what happens if they are changed.

Counterfactuals can also be used as explanations for the model’s behavior. But note
that there may be many possible counterfactuals for each data point that are close to
being the nearest neighbor and also that there are likely to be complex interactions
between features. So counterfactuals themselves should not be presented as if they
completely explain the model’s behavior.

Another particularly useful feature of the WIT is partial dependence plots (PDPs). 
These show us how each feature impacts the predictions of the model, for example,
whether an increase in a numeric feature changes the class prediction probability.
The PDP shows us the shape of this dependence: whether it is linear, monotonic, or
more complex. PDPs can also be generated for categorical features, as shown in
Figure 7-11. Again, if the model’s predictions show a dependence on a demographic
feature, this may be a warning that your model’s predictions are unfair.

Figure 7-11. WIT PDPs
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A more advanced feature, for which we won’t dive into detail here, is to optimize
decision thresholds for fairness strategies. This is provided as a page in the WIT, and
it’s possible to automatically set decision thresholds based on a chosen strategy, as
shown in Figure 7-12.

Figure 7-12. WIT decision thresholds

All of the tools we describe in this section on model fairness can also be used to inter‐
rogate any model even if it does not have the potential to harm users. They can be
used to get a much better understanding of a model’s behavior before it is deployed
and can help avoid surprises when it reaches the real world. This is an area of active
research, and new tools are released frequently. One interesting development is con‐
strained optimization for model fairness, in which instead of just optimizing for one
metric, models can be optimized by taking into consideration other constraints, such
as equal accuracy. An experimental library exists for this in TensorFlow.

Model Explainability
Discussing fairness and using the WIT naturally leads us to discussing how we can
not only describe the performance of our model but also explain what is going on
inside it. We mentioned this briefly in the previous section on fairness, but we’ll
expand on it a little more here.
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Model explainability seeks to explain why the predictions made by a model turn out
that way. This is in contrast to analysis, which describes the model’s performance
with respect to various metrics. Explainability for machine learning is a big topic,
with a lot of active research on the subject happening right now. It isn’t something we
can automate as part of our pipeline because, by definition, the explanations need to
be shown to people. We will just give you a brief overview, and for more details we
recommend the ebook Interpretable Machine Learning by Christoph Molnar and this
whitepaper from Google Cloud.

There are a few possible reasons for seeking to explain your model’s predictions:

• Helping a data scientist debug problems with their model
• Building trust in the model
• Auditing models
• Explaining model predictions to users

The techniques we discuss further on are helpful in all these use cases.

Predictions from simpler models are much easier to explain than predictions from
complex models. Linear regression, logistic regression, and single decision trees are
relatively easy to interpret. We can view the weights for each feature and know the
exact contribution of the feature. For these models, looking at the entire model pro‐
vides an explanation because their architecture makes them interpretable by design,
so that a human can understand the entire thing. For example, the coefficients from a
linear regression model give an explanation that is understandable with no further
processing required.

It is more difficult to explain random forests and other ensemble models, and deep
neural networks are the hardest of all to explain. This is due to the enormous number
of parameters and connections in a neural network, which results in extremely com‐
plex interactions between features. If your model’s predictions have high conse‐
quences and you require explanations, we recommend you choose models that are
easier to explain. You can find more details on how and when to use explanations in
the paper “Explainable Machine Learning in Deployment” by Umang Bhatt et al.

Local and Global Explanations

We can divide ML explainability methods into two broad groups:
local and global explanations. Local explanations seek to explain
why a model made a particular prediction for one single data point.
Global explanations seek to explain how a model works overall,
measured using a large set of data points. We will introduce techni‐
ques for both of these in the next section.
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In the next section, we will introduce some techniques for generating explanations
from your model.

Generating Explanations with the WIT
In “Going Deeper with the What-If Tool” on page 116, we described how we could
use the WIT to help with our model fairness questions. But the WIT is also useful for
explaining our models—in particular, using counterfactuals and PDPs, as we noted.
Counterfactuals provide us with local explanations, but PDPs can provide either local
or global explanations. We showed an example of global PDPs previously in
Figure 7-11, and now we’ll consider local PDPs, as shown in Figure 7-13.

Figure 7-13. WIT local PDPs

PDPs show the change in prediction results (the inference score) for different valid
values of a feature. There is no change in the inference score across the company fea‐
ture, showing that the predictions for this data point don’t depend on the value of
this feature. But for the company_response feature, there is a change in the inference
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score, which shows that the model prediction has some dependence on the value of
the feature.

Assumptions with PDPs

PDPs contain an important assumption: all features are independ‐
ent of each other. For most datasets, especially those that are com‐
plex enough to need a neural network model to make accurate
predictions, this is not a good assumption. These plots should be
approached with caution: they can give you an indication of what
your model is doing, but they do not give you a complete
explanation.

If your model is deployed using Google Cloud’s AI Platform, you can see feature
attributions in the WIT. For a single data example, feature attributions provide posi‐
tive or negative scores for each feature for each feature, which indicate the effect and
magnitude of the feature’s contributions to a model’s prediction. They can also be
aggregated to provide global explanations of the feature’s importance in your model.
The feature attributions are based on Shapley values, which are described in the fol‐
lowing section. Shapley values do not assume that your features are independent, so
unlike PDPs, they are useful if your features are correlated with each other. At the
time of writing, feature attributions were only available for models trained using
TensorFlow 1.x.

Other Explainability Techniques
LIME, or local interpretable model-agnostic explanations, is another method for pro‐
ducing local explanations. It treats a model as a black box and generates new data
points around the point that we would like to get an explanation for. LIME then
obtains predictions from the model for these new data points and trains a simple
model using these points. The weights for this simple model give us the explanations.

The SHAP, or Shapley Additive Explanations, library provides both global and local
explanations using Shapley values. These are computationally expensive to calculate,
so the SHAP library contains implementations that speed up calculations or calculate
approximations for boosted trees and deep neural networks. This library is a great
way to show a feature’s importance for your models.

Shapley Values
Shapley values are useful for both local and global explanations. This concept is an
algorithm borrowed from game theory that distributes gains and losses across each
player in a cooperative game for some outcome of the game. In a machine learning
context, each feature is a “player,” and the Shapley values can be obtained as follows:
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1. Get all the possible subsets of features that don’t contain feature F.
2. Compute the effect on the model’s predictions of adding F to all the subsets.
3. Combine these effects to get the importance of feature F.

These are all relative to some baseline. For our example project, we could pose this as
“how much was a prediction driven by the fact that the company_response was
Closed with explanation instead of Closed with monetary relief.” The value
Closed with monetary relief is our baseline.

We would also like to mention model cards, a framework for reporting on machine
learning models. These are a formal way of sharing facts and limitations about
machine learning models. We include these here because even though they don’t
explain why the model makes its predictions, they are extremely valuable for building
trust in a model. A model card should include the following pieces of information:

• Benchmarked performance of the model on public datasets, including perfor‐
mance sliced across demographic features

• Limitations of the model, for example, disclosing if a decrease in image quality
would produce a less accurate result from an image classification model

• Any trade-offs made by the model, for example, explaining if a larger image
would require longer processing time

Model cards are extremely useful for communicating about models in high-stakes sit‐
uations, and they encourage data scientists and machine learning engineers to docu‐
ment the use cases and limitations of the models they build.

Limitations of Explanations

We recommend that you proceed with caution when tackling
model explainability. These techniques may give you a warm and
happy feeling that you understand what your model is doing, but it
may actually be doing something very complex that is impossible
to explain. This is especially the case with deep learning models.
It just isn’t feasible to represent all the complexity of the millions of
weights that make up a deep neural network in a way that is human
readable. In situations where model decisions have high real-world
consequences, we recommend building the simplest models possi‐
ble with features that are easy to explain.
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Analysis and Validation in TFX
Up to this point in this chapter, we’ve focused on model analysis with a human in the
loop. These tools are extremely useful for monitoring our models and checking that
they are behaving in the way we want. But in an automated machine learning
pipeline, we want the pipeline to run smoothly and alert us to problems. There are
several components in TFX that handle this part of the pipeline: the Resolver, the
Evaluator, and the Pusher. Together, these components check the model’s perfor‐
mance on an evaluation dataset and send it to a serving location if it improves the
previous model.

TFX uses the concept of blessing to describe the gating process for deciding whether
or not to deploy a model for serving. If a model improves the previous model, based
on a threshold we define, it is blessed and can move forward to the next step.

ResolverNode
A Resolver component is required if we want to compare a new model against a pre‐
vious model. ResolverNodes are generic components that query the metadata store.
In this case, we use the latest_blessed_model_resolver. It checks for the last
blessed model and returns it as a baseline so it can be passed on to the Evaluator
component with the new candidate model. The Resolver is not needed if we don’t
want to validate our model against a threshold of some metric, but we highly recom‐
mend this step. If you don’t validate the new model, it will automatically get pushed
to the serving directory, even if its performance is worse than that of the previous
model. On the first run of the Evaluator when there is no blessed model, the Evalua
tor automatically blesses the model.

In an interactive context, we can run the Resolver component as follows:

from tfx.components import ResolverNode
from tfx.dsl.experimental import latest_blessed_model_resolver
from tfx.types import Channel
from tfx.types.standard_artifacts import Model
from tfx.types.standard_artifacts import ModelBlessing

model_resolver = ResolverNode(
    instance_name='latest_blessed_model_resolver',
    resolver_class=latest_blessed_model_resolver.LatestBlessedModelResolver,
    model=Channel(type=Model),
    model_blessing=Channel(type=ModelBlessing)
)
context.run(model_resolver)
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Evaluator Component
The Evaluator component uses the TFMA library to evaluate a model’s predictions
on a validation dataset. It takes as input data from the ExampleGen component, the
trained model from the Trainer component, and an EvalConfig for TFMA (the
same as when using TFMA as a standalone library).

First, we define the EvalConfig:

import tensorflow_model_analysis as tfma

eval_config=tfma.EvalConfig(
    model_specs=[tfma.ModelSpec(label_key='consumer_disputed')],
    slicing_specs=[tfma.SlicingSpec(),
                   tfma.SlicingSpec(feature_keys=['product'])],
    metrics_specs=[
        tfma.MetricsSpec(metrics=[
            tfma.MetricConfig(class_name='BinaryAccuracy'),
            tfma.MetricConfig(class_name='ExampleCount'),
            tfma.MetricConfig(class_name='AUC')
        ])
    ]
)

Then we run the Evaluator component:

from tfx.components import Evaluator

evaluator = Evaluator(
    examples=example_gen.outputs['examples'],
    model=trainer.outputs['model'],
    baseline_model=model_resolver.outputs['model'],
    eval_config=eval_config
)
context.run(evaluator)

We can also show the TFMA visualization with:

eval_result = evaluator.outputs['evaluation'].get()[0].uri
tfma_result = tfma.load_eval_result(eval_result)

And we can load Fairness Indicators with:

tfma.addons.fairness.view.widget_view.render_fairness_indicator(tfma_result)

Validation in the Evaluator Component
The Evaluator component also carries out validation, in which it checks whether the
candidate model we have just trained is an improvement on a baseline model (such
as the model that is currently in production). It obtains predictions from both models
on an evaluation dataset and compares a performance metric (e.g., model accuracy)
from both models. If the new model is an improvement on the previous model, the
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new model receives a “blessing” artifact. Currently it is only possible to calculate the
metric on the whole evaluation set, not on slices.

To carry out validation, we need to set a threshold in the EvalConfig:

eval_config=tfma.EvalConfig(
    model_specs=[tfma.ModelSpec(label_key='consumer_disputed')],
    slicing_specs=[tfma.SlicingSpec(),
                   tfma.SlicingSpec(feature_keys=['product'])],
    metrics_specs=[
        tfma.MetricsSpec(
            metrics=[
                tfma.MetricConfig(class_name='BinaryAccuracy'),
                tfma.MetricConfig(class_name='ExampleCount'),
                tfma.MetricConfig(class_name='AUC')
            ],
            thresholds={
                'AUC':
                    tfma.config.MetricThreshold(
                        value_threshold=tfma.GenericValueThreshold(
                            lower_bound={'value': 0.65}),
                        change_threshold=tfma.GenericChangeThreshold(
                            direction=tfma.MetricDirection.HIGHER_IS_BETTER,
                            absolute={'value': 0.01}
                        )
                    )
            }
        )
    ]
)

In this example, we state that the AUC must be over 0.65, and we want the model to
be validated if its AUC is at least 0.01 higher than that of the baseline model. Any
other metric can be added in place of AUC, but note that the metric you add must
also be included in the list of metrics in the MetricsSpec.

We can check the results with:

eval_result = evaluator.outputs['evaluation'].get()[0].uri
print(tfma.load_validation_result(eval_result))

If the validation check passes, it will return the following result:

validation_ok: true

TFX Pusher Component
The Pusher component is a small but important part of our pipeline. It takes as input
a saved model, the output of the Evaluator component, and a file path for the loca‐
tion our models will be stored for serving. It then checks whether the Evaluator has
blessed the model (i.e., the model is an improvement on the previous version, and it
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is above any thresholds we have set). If it has been blessed, the Pusher pushes the
model to the serving file path.

The Pusher component is provided with the model Evaluator outputs and the serv‐
ing destination:

from tfx.components import Pusher
from tfx.proto import pusher_pb2

_serving_model_dir = "serving_model_dir"

pusher = Pusher(
    model=trainer.outputs['model'],
    model_blessing=evaluator.outputs['blessing'],
    push_destination=pusher_pb2.PushDestination(
        filesystem=pusher_pb2.PushDestination.Filesystem(
            base_directory=_serving_model_dir)))
context.run(pusher)

Once the new model has been pushed to the serving directory, it can then be picked
up by TensorFlow Serving—see the next chapter for more details on this.

Summary
In this chapter, we saw how to analyze a model’s performance in much greater detail
than during model training, and we started thinking about how to make a model’s
performance fair. We also discussed the process for checking that a model’s perfor‐
mance is an improvement on the previously deployed model. We also introduced
explainability for machine learning and gave a brief overview of some of the techni‐
ques in this area.

We must advise caution here, though: just because you’ve analyzed your model’s per‐
formance in detail with Fairness Indicators, this doesn’t guarantee that your model is
fair or ethically sound. It’s important to keep monitoring your model once it is in
production and provide ways for your users to let you know if they feel that the
model’s predictions are unjust. This is especially important when the stakes are high
and the model’s decisions have the potential to cause large real-world impacts to
users.

Now that our model has been analyzed and validated, it’s time to move on to the cru‐
cial next step in the pipeline: serving the model! The next two chapters will tell you all
you need to know about this important step.
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CHAPTER 8

Model Deployment with
TensorFlow Serving

The deployment of your machine learning model is the last step before others can use
your model and make predictions with it. Unfortunately, the deployment of machine
learning models falls into a gray zone in today’s thinking of the division of labor in
the digital world. It isn’t just a DevOps task since it requires some knowledge of the
model architecture and its hardware requirements. At the same time, deploying
machine learning models is a bit outside the comfort zone of machine learning engi‐
neers and data scientists. They know their models inside out but tend to struggle with
the deployment of machine learning models. In this and the following chapter, we
want to bridge the gap between the worlds and guide data scientists and DevOps
engineers through the steps to deploy machine learning models. Figure 8-1 shows the
position of the deployment step in a machine learning pipeline.

Figure 8-1. Model deployments as part of ML pipelines

Machine learning models can be deployed in three main ways: with a model server, in
a user’s browser, or on an edge device. The most common way today to deploy a
machine learning model is with a model server, which we will focus on in this chap‐
ter. The client that requests a prediction submits the input data to the model server
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and in return receives a prediction. This requires that the client can connect with the
model server.

There are situations when you don’t want to submit the input data to a model server
(e.g., when the input data is sensitive, or when there are privacy concerns). In these
situations, you can deploy the machine learning model to a user’s browser. For exam‐
ple, if you want to determine whether an image contains sensitive information, you
could classify the sensitivity level of the image before it is uploaded to a cloud server.

However, there is also a third type of model deployment: deploying to edge devices.
There are situations that don’t allow you to connect to a model server to make pre‐
dictions (i.e., remote sensors or IoT devices). The number of applications being
deployed to edge devices is increasing, making it a valid option for model deploy‐
ments. In Chapter 10, we discuss how TensorFlow models can be converted to TFLite
models, which can be executed on edge devices.

In this chapter, we highlight TensorFlow’s Serving module, a simple and consistent
way of deploying TensorFlow models through a model server. We will introduce its
setup and discuss efficient deployment options. This is not the only way of deploying
deep learning models; there are a few alternative options, which we discuss toward
the end of this chapter.

Let’s start the chapter with how you shouldn’t set up a model server before we take a
deep dive into TensorFlow Serving.

A Simple Model Server
Most introductions to deploying machine learning models follow roughly the same 
workflow:

• Create a web app with Python (i.e., with web frameworks like Flask or Django).
• Create an API endpoint in the web app, as we show in Example 8-1.
• Load the model structure and its weights.
• Call the predict method on the loaded model.
• Return the prediction results as an HTTP request.
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Example 8-1. Example setup of a Flask endpoint to infer model predictions

import json
from flask import Flask, request
from tensorflow.keras.models import load_model
from utils import preprocess 

model = load_model('model.h5') 
app = Flask(__name__)

@app.route('/classify', methods=['POST'])
def classify():
    complaint_data = request.form["complaint_data"]
    preprocessed_complaint_data = preprocess(complaint_data)
    prediction = model.predict([preprocessed_complaint_data]) 
    return json.dumps({"score": prediction}) 

Preprocessing to convert data structure.

Load your trained model.

Perform the prediction.

Return the prediction in an HTTP response.

This setup is a quick and easy implementation, perfect for demonstration projects.
However, we do not recommend using Example 8-1 to deploy machine learning
models to production endpoints.

Next, let’s discuss why we don’t recommend deploying machine learning models
with such a setup. The reason is our benchmark for our proposed deployment
solution.

The Downside of Model Deployments with
Python-Based APIs
While the Example 8-1 implementation can be sufficient for demonstration pur‐
poses, such deployments often face challenges. The challenges start with proper sepa‐
ration between the API and the data science code, a consistent API structure and the
resulting inconsistent model versioning, and inefficient model inferences. We will
take a closer look at these challenges in the following sections.
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Lack of Code Separation
In Example 8-1, we assumed that the trained model was being deployed with the
same API code base that it was also living in. This means that there would be no sep‐
aration between the API code and the machine learning model, which can be prob‐
lematic when data scientists want to update a model and such an update requires
coordination with the API team. Such coordination also requires that the API and
data science teams work in sync to avoid unnecessary delays on the model
deployments.

An intertwined API and data science code base also creates ambiguity around API
ownership.

The lack of code separation also requires that the model has to be loaded in the same
programming language as the API code. This mixing of backend and data science
code can ultimately prevent your API team from upgrading your API backend. How‐
ever, it also provides a good separation of responsibilities: the data scientists can
focus on model training and the DevOps colleagues can focus on the deployment of
the trained models.

We highlight how you can separate your models from your API code effectively and
simplify your deployment workflows in “TensorFlow Serving”.

Lack of Model Version Control
Example 8-1 doesn’t make any provision for different model versions. If you wanted
to add a new version, you would have to create a new endpoint (or add some branch‐
ing logic to the existing endpoint). This requires extra attention to keep all endpoints
structurally the same, and it requires a lot of boilerplate code.

The lack of model version control also requires the API and the data science teams to
coordinate which version is the default version and how to phase in new models.

Inefficient Model Inference
For any request to your prediction endpoint written in the Flask setup as shown in
Example 8-1, a full round trip is performed. This means each request is preprocessed
and inferred individually. The key reason why we argue that such a setup is only for
demonstration purposes is that it is highly inefficient. During the training of your
model, you will probably use a batching technique that allows you to compute multi‐
ple samples at the same time and then apply the gradient change for your batch to
your network’s weights. You can apply the same technique when you want the model
to make predictions. A model server can gather all requests during an acceptable
timeframe or until the batch is full and ask the model for its predictions. This is an
especially effective method when the inference runs on GPUs.
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1 For application use cases, visit TensorFlow.

In “Batching Inference Requests” on page 156, we introduce how you can easily set up
such a batching behavior for your model server.

TensorFlow Serving
As you have seen in the earlier chapters of this book, TensorFlow comes with a fan‐
tastic ecosystem of extensions and tools. One of the earlier open source extensions
was TensorFlow Serving. It allows you to deploy any TensorFlow graph, and you can
make predictions from the graph through its standardized endpoints. As we discuss
in a moment, TensorFlow Serving handles the model and version management for
you, lets you serve models based on policies, and allows you to load your models
from various sources. At the same time, it is focused on high-performance through‐
put for low-latency predictions. TensorFlow Serving is used internally at Google and
has been adopted by a good number of corporations and startups.1

TensorFlow Architecture Overview
TensorFlow Serving provides you the functionality to load models from a given
source (e.g., AWS S3 buckets) and notifies the loader if the source has changed. As
Figure 8-2 shows, everything behind the scenes of TensorFlow Serving is controlled
by a model manager, which manages when to update the models and which model is
used for the predictions. The rules for the inference determination are set by the pol‐
icy which is managed by the model manager. Depending on your configuration, you
can, for example, load one model at a time and have the model update automatically
once the source module detects a newer version.

Figure 8-2. Overview of the TensorFlow Serving architecture
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Exporting Models for TensorFlow Serving
Before we dive into the TensorFlow Serving configurations, let’s discuss how you can
export your machine learning models so that they can be used by TensorFlow
Serving.

Depending on your type of TensorFlow model, the export steps are slightly different.
The exported models have the same file structure as we see in Example 8-2. For Keras
models, you can use:

saved_model_path = model.save(file path="./saved_models", save_format="tf")

Add a Timestamp to Your Export Path

It is recommended to add the timestamp of the export time to the
export path for the Keras model when you are manually saving the
model. Unlike the save method of tf.Estimator, model.save()
doesn’t create the timestamped path automatically. You can create
the file path easily with the following Python code:

import time

ts = int(time.time())
file path = "./saved_models/{}".format(ts)
saved_model_path = model.save(file path=file path,
                              save_format="tf")

For TensorFlow Estimator models, you need to first declare a receiver function:

import tensorflow as tf

def serving_input_receiver_fn():
    # an example input feature
    input_feature = tf.compat.v1.placeholder(
        dtype=tf.string, shape=[None, 1], name="input")

    fn = tf.estimator.export.build_raw_serving_input_receiver_fn(
        features={"input_feature": input_feature})
    return fn

Export the Estimator model with the export_saved_model method of the Estimator:

estimator = tf.estimator.Estimator(model_fn, "model", params={})
estimator.export_saved_model(
    export_dir_base="saved_models/",
    serving_input_receiver_fn=serving_input_receiver_fn)

Both export methods produce output which looks similar to the following example:

...
INFO:tensorflow:Signatures INCLUDED in export for Classify: None
INFO:tensorflow:Signatures INCLUDED in export for Regress: None
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INFO:tensorflow:Signatures INCLUDED in export for Predict: ['serving_default']
INFO:tensorflow:Signatures INCLUDED in export for Train: None
INFO:tensorflow:Signatures INCLUDED in export for Eval: None
INFO:tensorflow:No assets to save.
INFO:tensorflow:No assets to write.
INFO:tensorflow:SavedModel written to: saved_models/1555875926/saved_model.pb
Model exported to:  b'saved_models/1555875926'

In our model export examples, we specified the folder saved_models/ as the model
destination. For every exported model, TensorFlow creates a directory with the time‐
stamp of the export as its folder name:

Example 8-2. Folder and file structure of exported models

$ tree saved_models/
saved_models/
└── 1555875926
    ├── assets
    │   └── saved_model.json
    ├── saved_model.pb
    └── variables
        ├── checkpoint
        ├── variables.data-00000-of-00001
        └── variables.index

3 directories, 5 files

The folder contains the following files and subdirectories:

saved_model.pb
The binary protocol buffer file contains the exported model graph structure as a
MetaGraphDef object.

variables
The folder contains the binary files with the exported variable values and check‐
points corresponding to the exported model graph.

assets
This folder is created when additional files are needed to load the exported
model. The additional file can include vocabularies, which saw in Chapter 5.

Model Signatures
Model signatures identify the model graph’s inputs and outputs as well as the method
of the graph signature. The definition of the input and output signatures allows us to
map serving inputs to a given graph node for the inference. These mappings are use‐
ful if we want to update the model without changing the requests to the model server.
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In addition, the method of the model defines an expected pattern of inputs and out‐
puts. At the moment, there are three supported signature types: predict, classify, or
regress. We will take a closer look at the details in the following section.

Signature Methods
The most flexible signature method is predict. If we don’t specify a different signature
method, TensorFlow will use predict as the default method. Example 8-3 shows an
example signature for the method predict. In the example, we are mapping the key
inputs to the graph node with the name sentence. The prediction from the model is
the output of the graph node y, which we are mapping to the output key scores.

The predict method allows you to define additional output nodes. It is useful to add
more inference outputs when you want to capture the output of an attention layer for
visualizations or to debug a network node.

Example 8-3. Example model prediction signature

signature_def: {
  key  : "prediction_signature"
  value: {
    inputs: {
      key  : "inputs"
      value: {
        name: "sentence:0"
        dtype: DT_STRING
        tensor_shape: ...
      },
      ...
    }
    outputs: {
      key  : "scores"
      value: {
        name: "y:0"
        dtype: ...
        tensor_shape: ...
      }
    }
    method_name: "tensorflow/serving/predict"
  }
}

Another signature method is classify. The method expects one input with the name
inputs and provides two output tensors, classes and scores. At least one of the output
tensors needs to be defined. In our example shown in Example 8-4, a classification
model takes the input sentence and outputs the predicted classes together with the
corresponding scores.
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Example 8-4. Example model classification signature

signature_def: {
  key  : "classification_signature"
  value: {
    inputs: {
      key  : "inputs"
      value: {
        name: "sentence:0"
        dtype: DT_STRING
        tensor_shape: ...
      }
    }
    outputs: {
      key  : "classes"
      value: {
        name: "y_classes:0"
        dtype: DT_UINT16
        tensor_shape: ...
      }
    }
    outputs: {
      key  : "scores"
      value: {
        name: "y:0"
        dtype: DT_FLOAT
        tensor_shape: ...
      }
    }
    method_name: "tensorflow/serving/classify"
  }
}

The third available signature method is regress. This method takes only one input
named inputs and provides only output with the name outputs. This signature
method is designed for regression models. Example 8-5 shows an example of a regress
signature.

Example 8-5. Example model regression signature

signature_def: {
  key  : "regression_signature"
  value: {
    inputs: {
      key  : "inputs"
      value: {
        name: "input_tensor_0"
        dtype: ...
        tensor_shape: ...
      }
    }
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2 Model tag sets are used to identify MetaGraphs for loading. A model could be exported with a graph specified
for training and serving. Both MetaGraphs can be provided through different model tags.

    outputs: {
      key  : "outputs"
      value: {
        name: "y_outputs_0"
        dtype: DT_FLOAT
        tensor_shape: ...
      }
    }
    method_name: "tensorflow/serving/regress"
  }
}

In “URL structure” on page 148, we will see the signature methods again when we
define the URL structure for our model endpoints.

Inspecting Exported Models
After all the talk about exporting your model and the corresponding model signa‐
tures, let’s discuss how you can inspect the exported models before deploying them
with TensorFlow Serving.

You can install the TensorFlow Serving Python API with the following pip
command:

$ pip install tensorflow-serving-api

After the installation, you have access to a useful command-line tool called SavedMo‐
del Command Line Interface (CLI). This tool lets you:

Inspect the signatures of exported models
This is very useful primarily when you don’t export the model yourself, and you
want to learn about the inputs and outputs of the model graph.

Test the exported models
The CLI tools let you infer the model without deploying it with TensorFlow
Serving. This is extremely useful when you want to test your model input data.

We’ll cover both use cases in the following two sections.

Inspecting the Model
saved_model_cli helps you understand the model dependencies without inspecting
the original graph code.

If you don’t know the available tag-sets,2 you can inspect the model with:
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$ saved_model_cli show --dir saved_models/
The given SavedModel contains the following tag-sets:
serve

If your model contains different graphs for different environments (e.g., a graph for a
CPU or GPU inference), you will see multiple tags. If your model contains multiple
tags, you need to specify a tag to inspect the details of the model.

Once you know the tag_set you want to inspect, add it as an argument, and
saved_model_cli will provide you the available model signatures. Our demo model
has only one signature, which is called serving_default:

$ saved_model_cli show --dir saved_models/ --tag_set serve
The given SavedModel 'MetaGraphDef' contains 'SignatureDefs' with the
following keys:
SignatureDef key: "serving_default"

With the tag_set and signature_def information, you can now inspect the model’s
inputs and outputs. To obtain the detailed information, add the signature_def to
the CLI arguments.

The following example signature is taken from our model that was produced by our
demonstration pipeline. In Example 6-4, we defined our signature function, which
takes serialized tf.Example records as inputs and provides the prediction through
the output Tensor outputs, as shown in the following model signature:

$ saved_model_cli show --dir saved_models/ \
        --tag_set serve --signature_def serving_default
The given SavedModel SignatureDef contains the following input(s):
  inputs['examples'] tensor_info:
      dtype: DT_STRING
      shape: (-1)
      name: serving_default_examples:0
The given SavedModel SignatureDef contains the following output(s):
  outputs['outputs'] tensor_info:
      dtype: DT_FLOAT
      shape: (-1, 1)
      name: StatefulPartitionedCall_1:0
Method name is: tensorflow/serving/predict

If you want to see all signatures regardless of the tag_set and signature_def, you
can use the --all argument:

$ saved_model_cli show --dir saved_models/ --all
...

After we investigated the model’s signature, we can now test the model inference
before we deploy the machine learning model.
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Testing the Model
saved_model_cli also lets you test the export model with sample input data.

You have three different ways to submit the sample input data for the model test
inference:

--inputs

The argument points at a NumPy file containing the input data formatted as
NumPy ndarray.

--input_exprs

The argument allows you to define a Python expression to specify the input data.
You can use NumPy functionality in your expressions.

--input_examples

The argument is expecting the input data formatted as a tf.Example data struc‐
ture (see Chapter 4).

For testing the model, you can specify exactly one of the input arguments. Further‐
more, saved_model_cli provides three optional arguments:

--outdir

saved_model_cli will write any graph output to stdout. If you would rather
write the output to a file, you can specify the target directory with --outdir.

--overwrite

If you opt for writing the output to a file, you can specify with --overwrite that
the files can be overwritten.

--tf_debug

If you want to further inspect the model, you can step through the model graph
with the TensorFlow Debugger (TFDBG).

$ saved_model_cli run --dir saved_models/ \
                      --tag_set serve \
                      --signature_def x1_x2_to_y \
                      --input_examples 'examples=[{"company": "HSBC", ...}]'

After all the introduction of how to export and inspect models, let’s dive into the
TensorFlow Serving installation, setup, and operation.

Setting Up TensorFlow Serving
There are two easy ways to get TensorFlow Serving installed on your serving instan‐
ces. You can either run TensorFlow Serving on Docker or, if you run an Ubuntu OS
on your serving instances, you can install the Ubuntu package.
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3 If you haven’t installed or used Docker before, check out our brief introduction in Appendix A.

Docker Installation
The easiest way of installing TensorFlow Serving is to download the prebuilt Docker
image.3 As you have seen in Chapter 2, you can obtain the image by running:

$ docker pull tensorflow/serving

If you are running the Docker container on an instance with GPUs available, you will
need to download the latest build with GPU support.

$ docker pull tensorflow/serving:latest-gpu

The Docker image with GPU support requires Nvidia’s Docker support for GPUs.
The installation steps can be found on the company’s website.

Native Ubuntu Installation
If you want to run TensorFlow Serving without the overhead of running Docker, you
can install Linux binary packages available for Ubuntu distributions.

The installation steps are similar to other nonstandard Ubuntu packages. First, you
need to add a new package source to the distribution’s source list or add a new list file
to the sources.list.d directory by executing the following in your Linux terminal:

$ echo "deb [arch=amd64] http://storage.googleapis.com/tensorflow-serving-apt \
  stable tensorflow-model-server tensorflow-model-server-universal" \
  | sudo tee /etc/apt/sources.list.d/tensorflow-serving.list

Before updating your package registry, you should add the packages’ public key to
your distribution’s key chain:

$ curl https://storage.googleapis.com/tensorflow-serving-apt/\
tensorflow-serving.release.pub.gpg | sudo apt-key add -

After updating your package registry, you can install TensorFlow Serving on your
Ubuntu operating system:

$ apt-get update
$ apt-get install tensorflow-model-server
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Two Ubuntu Packages for TensorFlow Serving

Google provides two Ubuntu packages for TensorFlow Serving! 
The earlier referenced tensorflow-model-server package is the
preferred package, and it comes with specific CPU optimizations
precompiled (e.g., AVX instructions).
At the time of writing this chapter, a second package with the name
tensorflow-model-server-universal is also provided. It doesn’t
contain the precompiled optimizations and can, therefore, be run
on old hardware (e.g., CPUs without the AVX instruction set).

Building TensorFlow Serving from Source
It is recommended to run TensorFlow Serving with the prebuilt Docker image or
Ubuntu packages. In some situations, you have to compile TensorFlow Serving, for
example when you want to optimize the model serving for your underlying hardware.
At the moment, you can only build TensorFlow Serving for Linux operating systems,
and the build tool bazel is required. You can find detailed instructions in the Tensor‐
Flow Serving documentation.

Optimize Your TensorFlow Serving Instances

If you build TensorFlow Serving from scratch, we highly recom‐
mend compiling the Serving version for the specific TensorFlow
version of your models and available hardware of your serving
instances.

Configuring a TensorFlow Server
Out of the box, TensorFlow Serving can run in two different modes. First, you can
specify a model, and have TensorFlow Serving always provide the latest model. Alter‐
natively, you can specify a configuration file with all models and versions that you
want to load, and have TensorFlow Serving load all the named models.

Single Model Configuration
If you want to run TensorFlow Serving by loading a single model and switching to
newer model versions when they are available, the single model configuration is
preferred.

If you run TensorFlow Serving in a Docker environment, you can run the tensor
flow\serving image with the following command:

$ docker run -p 8500:8500 \ 
             -p 8501:8501 \
             --mount type=bind,source=/tmp/models,target=/models/my_model \ 
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4 For a more detailed introduction to REST and gRPC, please check “REST Versus gRPC” on page 147.

             -e MODEL_NAME=my_model \ 
             -e MODEL_BASE_PATH=/models/my_model \
             -t tensorflow/serving 

Specify the default ports.

Mount the model directory.

Specify your model.

Specify the docker image.

By default, TensorFlow Serving is configured to create a representational state trans‐
fer (REST) and Google Remote Procedure Calls (gRPC) endpoint. By specifying both
ports, 8500 and 8501, we expose the REST and gRPC capabilities.4 The docker run
command creates a mount between a folder on the host (source) and the container
(target) filesystem. In Chapter 2, we discussed how to pass environment variables to
the docker container. To run the server in a single model configuration, you need to
specify the model name MODEL_NAME.

If you want to run the Docker image prebuilt for GPU images, you need to swap out
the name of the docker image to the latest GPU build with:

$ docker run ...
             -t tensorflow/serving:latest-gpu

If you have decided to run TensorFlow Serving without the Docker container, you
can run it with the command:

$ tensorflow_model_server --port=8500 \
                          --rest_api_port=8501 \
                          --model_name=my_model \
                          --model_base_path=/models/my_model

In both scenarios, you should see output on your terminal that is similar to the
following:

2019-04-26 03:51:20.304826: I
tensorflow_serving/model_servers/
server.cc:82]
  Building single TensorFlow model file config:
  model_name: my_model model_base_path: /models/my_model
2019-04-26 03:51:20: I tensorflow_serving/model_servers/server_core.cc:461]
  Adding/updating models.
2019-04-26 03:51:20: I
tensorflow_serving/model_servers/
server_core.cc:558]
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  (Re-)adding model: my_model
...
2019-04-26 03:51:34.507436: I tensorflow_serving/core/loader_harness.cc:86]
  Successfully loaded servable version {name: my_model version: 1556250435}
2019-04-26 03:51:34.516601: I tensorflow_serving/model_servers/server.cc:313]
  Running gRPC ModelServer at 0.0.0.0:8500 ...
[warn] getaddrinfo: address family for nodename not supported
[evhttp_server.cc : 237] RAW: Entering the event loop ...
2019-04-26 03:51:34.520287: I tensorflow_serving/model_servers/server.cc:333]
  Exporting HTTP/REST API at:localhost:8501 ...

From the server output, you can see that the server loaded our model my_model suc‐
cessfully, and that created two endpoints: one REST and one gRPC endpoint.

TensorFlow Serving makes the deployment of machine learning models extremely
easy. One great advantage of serving models with TensorFlow Serving is the hot swap
capability. If a new model is uploaded, the server’s model manager will detect the new
version, unload the existing model, and load the newer model for inferencing.

Let’s say you update the model and export the new model version to the mounted
folder on the host machine (if you are running with the docker setup) and no config‐
uration change is required. The model manager will detect the newer model and
reload the endpoints. It will notify you about the unloading of the older model and
the loading of the newer model. In your terminal, you should find messages like:

2019-04-30 00:21:56.486988: I tensorflow_serving/core/basic_manager.cc:739]
  Successfully reserved resources to load servable
  {name: my_model version: 1556583584}
2019-04-30 00:21:56.487043: I tensorflow_serving/core/loader_harness.cc:66]
  Approving load for servable version {name: my_model version: 1556583584}
2019-04-30 00:21:56.487071: I tensorflow_serving/core/loader_harness.cc:74]
  Loading servable version {name: my_model version: 1556583584}
...
2019-04-30 00:22:08.839375: I tensorflow_serving/core/loader_harness.cc:119]
  Unloading servable version {name: my_model version: 1556583236}
2019-04-30 00:22:10.292695: I ./tensorflow_serving/core/simple_loader.h:294]
  Calling MallocExtension_ReleaseToSystem() after servable unload with 1262338988
2019-04-30 00:22:10.292771: I tensorflow_serving/core/loader_harness.cc:127]
  Done unloading servable version {name: my_model version: 1556583236}

By default, TensorFlow Serving will load the model with the highest version number.
If you use the export methods shown earlier in this chapter, all models will be
exported in folders with the epoch timestamp as the folder name. Therefore, newer
models will have a higher version number than older models.

The same default model loading policy of TensorFlow Serving also allows model roll‐
backs. In case you want to roll back a model version, you can delete the model ver‐
sion from the base path. The model server will then detect the removal of the version
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5 The loading and unloading of models only works if the file_system_poll_wait_seconds is configured to be
greater than 0. The default configuration is 2s.

with the next polling of the filesystem,5 unload the deleted model, and load the most
recent, existing model version.

Multiple Model Configuration
You can also configure TensorFlow Serving to load multiple models at the same time.
To do that, you need to create a configuration file to specify the models:

model_config_list {
  config {
    name: 'my_model'
    base_path: '/models/my_model/'
    model_platform: 'tensorflow'
  }
  config {
    name: 'another_model'
    base_path: '/models/another_model/'
    model_platform: 'tensorflow'
  }
}

The configuration file contains one or more config dictionaries, all listed below a
model_config_list key.

In your Docker configuration, you can mount the configuration file and load the
model server with the configuration file instead of a single model:

$ docker run -p 8500:8500 \
             -p 8501:8501 \
             --mount type=bind,source=/tmp/models,target=/models/my_model \
             --mount type=bind,source=/tmp/model_config,\
             target=/models/model_config \ 
             -e MODEL_NAME=my_model \
             -t tensorflow/serving \
             --model_config_file=/models/model_config 

Mount the configuration file.

Specify the model configuration file.

If you use TensorFlow Serving outside of a Docker container, you can point the
model server to the configuration file with the argument model_config_file, which
loads and the configuration from the file:
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$ tensorflow_model_server --port=8500 \
                          --rest_api_port=8501 \
                          --model_config_file=/models/model_config

Configure Specific Model Versions
There are situations when you want to load not just the latest model version, but
either all or specific model versions. For example, you may want to do model A/B
testing, as we will discuss in “Model A/B Testing with TensorFlow Serving” on page
152, or provide a stable and a development model version. TensorFlow Serving, by
default, always loads the latest model version. If you want to load a set of available
model versions, you can extend the model configuration file with:

  ...
  config {
    name: 'another_model'
    base_path: '/models/another_model/'
    model_version_policy: {all: {}}
  }
  ...

If you want to specify specific model versions, you can define them as well:
  ...
  config {
    name: 'another_model'
    base_path: '/models/another_model/'
    model_version_policy {
      specific {
        versions: 1556250435
        versions: 1556251435
      }
    }
  }
  ...

You can even give the model version labels. The labels can be extremely handy later
when you want to make predictions from the models. At the time of writing, version
labels were only available through TensorFlow Serving’s gRPC endpoints:

  ...
  model_version_policy {
    specific {
      versions: 1556250435
      versions: 1556251435
    }
  }
  version_labels {
    key: 'stable'
    value: 1556250435
  }
  version_labels {
    key: 'testing'
    value: 1556251435
  }
  ...

With the model version now configured, we can use those endpoints for the versions
to run our model A/B test. If you are interested in how to infer these model versions,
we recommend “Model A/B Testing with TensorFlow Serving” on page 152 for an
example of a simple implementation.
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Starting with TensorFlow Serving 2.3, the version_label functionality will be available
for REST endpoints in addition to the existing gRPC functionality of TensorFlow
Serving.

REST Versus gRPC
In “Single Model Configuration” on page 142, we discussed how TensorFlow Serving
allows two different API types: REST and gRPC. Both protocols have their advan‐
tages and disadvantages, and we would like to take a moment to introduce both
before we dive into how you can communicate with these endpoints.

REST
REST is a communication “protocol” used by today’s web services. It isn’t a formal
protocol, but more a communication style that defines how clients communicate
with web services. REST clients communicate with the server using the standard
HTTP methods like GET, POST, DELETE, etc. The payloads of the requests are often
encoded as XML or JSON data formats.

gRPC
gRPC is a remote procedure protocol developed by Google. While gRPC supports
different data formats, the standard data format used with gRPC is protocol buffer,
which we used throughout this book. gRPC provides low-latency communication
and smaller payloads if protocol buffers are used. gRPC was designed with APIs in
mind. The downside is that the payloads are in a binary format, which can make a
quick inspection difficult.

Which Protocol to Use?
On the one hand, it looks very convenient to communicate with the model server
over REST. The endpoints are easy to infer, the payloads can be easily inspected, and
the endpoints can be tested with curl requests or browser tools. REST libraries are
widely available for all sorts of clients and often are already available on the client sys‐
tem (i.e., a mobile application).

On the other hand, gRPC APIs have a higher burden of entry initially. gRPC libraries
often need to be installed on the client side. However, they can lead to significant per‐
formance improvements depending on the data structures required for the model
inference. If your model experiences many requests, the reduced payload size due to
the protocol buffer serialization can be beneficial.

Internally, TensorFlow Serving converts JSON data structures submitted via REST to
tf.Example data structures, and this can lead to slower performance. Therefore, you
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might see better performance with gRPC requests if the conversion requires many
type conversions (i.e., if you submit a large array with float values).

Making Predictions from the Model Server
Until now, we have entirely focused on the model server setup. In this section, we
want to demonstrate how a client (e.g., a web app), can interact with the model
server. All code examples concerning REST or gRPC requests are executed on the cli‐
ent side.

Getting Model Predictions via REST
To call the model server over REST, you’ll need a Python library to facilitate the com‐
munication for you. The standard library these days is requests. Install the library:

$ pip install requests

The following example showcases an example POST request.

import requests

url = "http://some-domain.abc"
payload = {"key_1": "value_1"}
r = requests.post(url, json=payload) 
print(r.json()) 
# {'data': ...}

Submit the request.

View the HTTP response.

URL structure
The URL for your HTTP request to the model server contains information about
which model and which version you would like to infer:

http://{HOST}:{PORT}/v1/models/{MODEL_NAME}:{VERB}

HOST
The host is the IP address or domain name of your model server. If you run your
model server on the same machine where you run your client code, you can set
the host to localhost.

PORT
You’ll need to specify the port in your request URL. The standard port for the
REST API is 8501. If this conflicts with other services in your service ecosystem,
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you can change the port in your server arguments during the startup of the
server.

MODEL_NAME
The model name needs to match the name of your model when you either set up
your model configuration or started up the model server.

VERB
The type of model is specified through the verb in the URL. You have three
options: predict, classify, or regress. The verb corresponds to the signature
methods of the endpoint.

MODEL_VERSION
If you want to make predictions from a specific model version, you’ll need to
extend the URL with the model version identifier:

http://{HOST}:{PORT}/v1/models/{MODEL_NAME}[/versions/${MODEL_VERSION}]:{VERB}

Payloads
With the URL in place, let’s discuss the request payloads. TensorFlow Serving expects
the input data as a JSON data structure, as shown in the following example:

{
  "signature_name": <string>,
  "instances": <value>
}

The signature_name is not required. If it isn’t specified, the model server will infer
the model graph signed with the default serving label.

The input data is expected either as a list of objects or as a list of input values. To
submit multiple data samples, you can submit them as a list under the instances key.

If you want to submit one data example for the inference, you can use inputs and list
all input values as a list. One of the keys, instances and inputs, has to be present,
but never both at the same time:

{
  "signature_name": <string>,
  "inputs": <value>
}

Example 8-6 shows an example of how to request a model prediction from our
TensorFlow Serving endpoint. We only submit one data example for the inference in
our example, but we could easily submit a list of data inputs representing multiple
requests.
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Example 8-6. Example model prediction request with a Python client

import requests

def get_rest_request(text, model_name="my_model"):
    url = "http://localhost:8501/v1/models/{}:predict".format(model_name) 
    payload = {"instances": [text]} 
    response = requests.post(url=url, json=payload)
    return response

rs_rest = get_rest_request(text="classify my text")
rs_rest.json()

Exchange localhost with an IP address if the server is not running on the same
machine.

Add more examples to the instance list if you want to infer more samples.

Using TensorFlow Serving via gRPC
If you want to use the model with gRPC, the steps are slightly different from the
REST API requests.

First, you establish a gRPC channel. The channel provides the connection to the
gRPC server at a given host address and over a given port. If you require a secure
connection, you need to establish a secure channel at this point. Once the channel is
established, you’ll create a stub. A stub is a local object which replicates the available
methods from the server:

import grpc
from tensorflow_serving.apis import predict_pb2
from tensorflow_serving.apis import prediction_service_pb2_grpc
import tensorflow as tf

def create_grpc_stub(host, port=8500):
    hostport = "{}:{}".format(host, port)
    channel = grpc.insecure_channel(hostport)
    stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
    return stub

Once the gRPC stub is created, we can set the model and the signature to access pre‐
dictions from the correct model and submit our data for the inference:

def grpc_request(stub, data_sample, model_name='my_model', \
                 signature_name='classification'):
    request = predict_pb2.PredictRequest()
    request.model_spec.name = model_name
    request.model_spec.signature_name = signature_name

    request.inputs['inputs'].CopyFrom(tf.make_tensor_proto(data_sample,
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6 The SSL configuration file is based on the SSL configuration protocol buffer, which can be found in the
TensorFlow Serving API.

                                                           shape=[1,1])) 
    result_future = stub.Predict.future(request, 10) 
    return result_future

inputs is the name of the input of our neural network.

10 is the max time in seconds before the function times out.

With the two function, now available, we can infer our example datasets with the two
function calls:

stub = create_grpc_stub(host, port=8500)
rs_grpc = grpc_request(stub, data)

Secure Connections
The grpc library also provides functionality to connect securely with the gRPC end‐
points. The following example shows how to create a secure channel with gRPC from
the client side:

import grpc

cert = open(client_cert_file, 'rb').read()
key = open(client_key_file, 'rb').read()
ca_cert = open(ca_cert_file, 'rb').read() if ca_cert_file else ''
credentials = grpc.ssl_channel_credentials(
    ca_cert, key, cert
)
channel = implementations.secure_channel(hostport, credentials)

On the server side, TensorFlow Serving can terminate secure connections if SSL is
configured. To terminate secure connections, create an SSL configuration file as
shown in the following example:6

server_key:  "-----BEGIN PRIVATE KEY-----\n
              <your_ssl_key>\n
              -----END PRIVATE KEY-----"
server_cert: "-----BEGIN CERTIFICATE-----\n
              <your_ssl_cert>\n
              -----END CERTIFICATE-----"
custom_ca: ""
client_verify: false

Once you have created the configuration file, you can pass the file path to the Tensor‐
Flow Serving argument --ssl_config_file during the start of TensorFlow Serving:

$ tensorflow_model_server --port=8500 \
                          --rest_api_port=8501 \
                          --model_name=my_model \
                          --model_base_path=/models/my_model \
                          --ssl_config_file="<path_to_config_file>"
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Getting predictions from classification and regression models
If you are interested in making predictions from classification and regression models,
you can use the gRPC API.

If you would like to get predictions from a classification model, you will need to swap
out the following lines:

from tensorflow_serving.apis import predict_pb2
...
request = predict_pb2.PredictRequest()

with:

from tensorflow_serving.apis import classification_pb2
...
request = classification_pb2.ClassificationRequest()

If you want to get predictions from a regression model, you can use the following
imports:

from tensorflow_serving.apis import regression_pb2
...
regression_pb2.RegressionRequest()

Payloads
gRPC API uses Protocol Buffers as the data structure for the API request. By using
binary Protocol Buffer payloads, the API requests use less bandwidth compared to
JSON payloads. Also, depending on the model input data structure, you might expe‐
rience faster predictions as with REST endpoints. The performance difference is
explained by the fact that the submitted JSON data will be converted to a tf.Example
data structure. This conversion can slow down the model server inference, and you
might encounter a slower inference performance than in the gRPC API case.

Your data submitted to the gRPC endpoints needs to be converted to the protocol
buffer data structure. TensorFlow provides you a handy utility function to perform
the conversion called tf.make_tensor_proto. It allows various data formats, includ‐
ing scalars, lists, NumPy scalars, and NumPy arrays. The function will then convert
the given Python or NumPy data structures to the protocol buffer format for the
inference.

Model A/B Testing with TensorFlow Serving
A/B testing is an excellent methodology to test different models in real-life situations.
In this scenario, a certain percentage of clients will receive predictions from model
version A and all other requests will be served by model version B.
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7 A/B testing isn’t complete without the statistical test of the results you get from people interacting with the
two models. The shown implementation just provides us the A/B testing backend.

We discussed earlier that you could configure TensorFlow Serving to load multiple
model versions and then specify the model version in your REST request URL or
gRPC specifications.

TensorFlow Serving doesn’t support server-side A/B testing, meaning that the model
server will direct all client requests to a single endpoint to two model versions. But
with a little tweak to our request URL, we can provide the appropriate support for
random A/B testing from the client side:7

from random import random 

def get_rest_url(model_name, host='localhost', port=8501,
                 verb='predict', version=None):
    url = "http://{}:{}/v1/models/{}/".format(host, port, model_name)
    if version:
        url += "versions/{}".format(version)
    url += ":{}".format(verb)
    return url

...

# Submit 10% of all requests from this client to version 1.
# 90% of the requests should go to the default models.
threshold = 0.1
version = 1 if random() < threshold else None 
url = get_rest_url(model_name='complaints_classification', version=version)

The random library will help us pick a model.

If version = None, TensorFlow Serving will infer with the default version.

As you can see, randomly changing the request URL for our model inference (in our
REST API example), can provide you some basic A/B testing functionality. If you
would like to extend these capabilities by performing the random routing of the
model inference on the server side, we highly recommend routing tools like Istio for
this purpose. Originally designed for web traffic, Istio can be used to route traffic to
specific models. You can phase in models, perform A/B tests, or create policies for
data routed to specific models.

When you perform A/B tests with your models, it is often useful to request informa‐
tion about the model from the model server. In the following section, we will explain
how you can request the metadata information from TensorFlow Serving.
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Requesting Model Metadata from the Model Server
At the beginning of the book, we laid out the model life cycle and explained how we
want to automate the machine learning life cycle. A critical component of the contin‐
uous life cycle is generating accuracy or general performance feedback about your
model versions. We will take a deep dive into how to generate these feedback loops in
Chapter 13, but for now, imagine that your model classifies some data (e.g., the senti‐
ment of the text), and then asks the user to rate the prediction. The information of
whether a model predicted something correctly or incorrectly is precious for improv‐
ing future model versions, but it is only useful if we know which model version has
performed the prediction.

The metadata provided by the model server will contain the information to annotate
your feedback loops.

REST Requests for Model Metadata
Requesting model metadata is straightforward with TensorFlow Serving. TensorFlow
Serving provides you an endpoint for model metadata:

http://{HOST}:{PORT}/v1/models/{MODEL_NAME}[/versions/{MODEL_VERSION}]/metadata

Similar to the REST API inference requests we discussed earlier, you have the option
to specify the model version in the request URL, or if you don’t specify it, the model
server will provide the information about the default model.

As Example 8-7 shows, we can request model metadata with a single GET request.

Example 8-7. Example model metadata request with a python client

import requests

def metadata_rest_request(model_name, host="localhost",
                          port=8501, version=None):
    url = "http://{}:{}/v1/models/{}/".format(host, port, model_name)
    if version:
        url += "versions/{}".format(version)
    url += "/metadata"  
    response = requests.get(url=url) 
    return response

Append /metadata for model information.

Perform a GET request.

The model server will return the model specifications as a model_spec dictionary and
the model definitions as a metadata dictionary:
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{
  "model_spec": {
    "name": "complaints_classification",
    "signature_name": "",
    "version": "1556583584"
  },
  "metadata": {
    "signature_def": {
      "signature_def": {
        "classification": {
          "inputs": {
            "inputs": {
              "dtype": "DT_STRING",
              "tensor_shape": {
                ...

gRPC Requests for Model Metadata
Requesting model metadata with gRPC is almost as easy as the REST API case. In the
gRPC case, you file a GetModelMetadataRequest, add the model name to the specifi‐
cations, and submit the request via the GetModelMetadata method of the stub:

from tensorflow_serving.apis import get_model_metadata_pb2

def get_model_version(model_name, stub):
    request = get_model_metadata_pb2.GetModelMetadataRequest()
    request.model_spec.name = model_name
    request.metadata_field.append("signature_def")
    response = stub.GetModelMetadata(request, 5)
    return response.model_spec

model_name = 'complaints_classification'
stub = create_grpc_stub('localhost')
get_model_version(model_name, stub)

name: "complaints_classification"
version {
  value: 1556583584
}

The gRPC response contains a ModelSpec object that contains the version number of
the loaded model.

More interesting is the use case of obtaining the model signature information of the
loaded models. With almost the same request functions, we can determine the
model’s metadata. The only difference is that we don’t access the model_spec
attribute of the response object, but the metadata. The information needs to be serial‐
ized to be human readable; therefore, we will use SerializeToString to convert the
protocol buffer information:
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from tensorflow_serving.apis import get_model_metadata_pb2

def get_model_meta(model_name, stub):
    request = get_model_metadata_pb2.GetModelMetadataRequest()
    request.model_spec.name = model_name
    request.metadata_field.append("signature_def")
    response = stub.GetModelMetadata(request, 5)
    return response.metadata['signature_def']

model_name = 'complaints_classification'
stub = create_grpc_stub('localhost')
meta = get_model_meta(model_name, stub)

print(meta.SerializeToString().decode("utf-8", 'ignore'))
# type.googleapis.com/tensorflow.serving.SignatureDefMap
# serving_default
# complaints_classification_input
#         input_1:0
#                2@
# complaints_classification_output(
# dense_1/Sigmoid:0
#                tensorflow/serving/predict

gRPC requests are more complex than REST requests; however, in applications with
high performance requirements, they can provide faster prediction performances.
Another way of increasing our model prediction performance is by batching our pre‐
diction requests.

Batching Inference Requests
Batching inference requests is one of the most powerful features of TensorFlow Serv‐
ing. During model training, batching accelerates our training because we can parallel‐
ize the computation of our training samples. At the same time, we can also use the
computation hardware efficiently if we match the memory requirements of our
batches with the available memory of the GPU.

If you run TensorFlow Serving without the batching enabled, as shown in Figure 8-3,
every client request is handled individually and in sequence. If you classify an image,
for example, your first request will infer the model on your CPU or GPU before the
second request, third request, and so on, will be classified. In this case, we under-
utilize the available memory of the CPU or GPU.

As shown in Figure 8-4, multiple clients can request model predictions, and the
model server batches the different client requests into one “batch” to compute. Each
request inferred through this batching step might take a bit longer than a single
request because of the timeout or the limit of the batch. However, similar to our
training phase, we can compute the batch in parallel and return the results to all cli‐

156 | Chapter 8: Model Deployment with TensorFlow Serving



ents after the completion of the batch computation. This will utilize the hardware
more efficiently than single sample requests.

Figure 8-3. Overview of TensorFlow Serving without batching

Figure 8-4. Overview of TensorFlow Serving with batching
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Configuring Batch Predictions
Batching predictions needs to be enabled for TensorFlow Serving and then config‐
ured for your use case. You have five configuration options:

max_batch_size

This parameter controls the batch size. Large batch sizes will increase the request
latency and can lead to exhausting the GPU memory. Small batch sizes lose the
benefit of using optimal computation resources.

batch_timeout_micros

This parameter sets the maximum wait time for filling a batch. This parameter is
handy to cap the latency for inference requests.

num_batch_threads

The number of threads configures how many CPU or GPU cores can be used in
parallel.

max_enqueued_batches

This parameter sets the maximum number of batches queued for predictions.
This configuration is beneficial to avoid an unreasonable backlog of requests. If
the maximum number is reached, requests will be returned with an error instead
of being queued.

pad_variable_length_inputs

This Boolean parameter determines if input tensors with variable lengths will be
padded to the same lengths for all input tensors.

As you can imagine, setting parameters for optimal batching requires some tuning
and is application dependent. If you run online inferences, you should aim for limit‐
ing the latency. It is often recommended to set batch_timeout_micros initially to 0
and tune the timeout toward 10,000 microseconds. In contrast, batch requests will
benefit from longer timeouts (milliseconds to a second) to constantly use the batch
size for optimal performance. TensorFlow Serving will make predictions on the batch
when either the max_batch_size or the timeout is reached.

Set num_batch_threads to the number of CPU cores if you configure TensorFlow
Serving for CPU-based predictions. If you configure a GPU setup, tune
max_batch_size to get an optimal utilization of the GPU memory. While you tune
your configuration, make sure that you set max_enqueued_batches to a huge number
to avoid some requests being returned early without proper inference.

You can set the parameters in a text file, as shown in the following example. In our
example, we create a configuration file called batching_parameters.txt and add the
following content:
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max_batch_size { value: 32 }
batch_timeout_micros { value: 5000 }
pad_variable_length_inputs: true

If you want to enable batching, you need to pass two additional parameters to the
Docker container running TensorFlow Serving. To enable batching, set
enable_batching to true and set batching_parameters_file to the absolute path of
the batching configuration file inside of the container. Please keep in mind that you
have to mount the additional folder with the configuration file if it isn’t located in the
same folder as the model versions.

Here is a complete example of the docker run command that starts the TensorFlow
Serving Docker container with batching enabled. The parameters will then be passed
to the TensorFlow Serving instance:

docker run -p 8500:8500 \
           -p 8501:8501 \
           --mount type=bind,source=/path/to/models,target=/models/my_model \
           --mount type=bind,source=/path/to/batch_config,target=/server_config \
           -e MODEL_NAME=my_model -t tensorflow/serving \
           --enable_batching=true
           --batching_parameters_file=/server_config/batching_parameters.txt

As explained earlier, the configuration of the batching will require additional tuning,
but the performance gains should make up for the initial setup. We highly recom‐
mend enabling this TensorFlow Serving feature. It is especially useful for inferring a
large number of data samples with offline batch processes.

Other TensorFlow Serving Optimizations
TensorFlow Serving comes with a variety of additional optimization features. Addi‐
tional feature flags are:

--file_system_poll_wait_seconds=1

TensorFlow Serving will poll if a new model version is available. You can disable
the feature by setting it to 1. If you only want to load the model once and never
update it, you can set it to 0. The parameter expects an integer value. If you load
models from cloud storage buckets, we highly recommend that you increase the
polling time to avoid unnecessary cloud provider charges for the frequent list
operations on the cloud storage bucket.

--tensorflow_session_parallelism=0

TensorFlow Serving will automatically determine how many threads to use for a
TensorFlow session. In case you want to set the number of a thread manually,
you can overwrite it by setting this parameter to any positive integer value.
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--tensorflow_intra_op_parallelism=0

This parameter sets the number of cores being used for running TensorFlow
Serving. The number of available threads determines how many operations will
be parallelized. If the value is 0, all available cores will be used.

--tensorflow_inter_op_parallelism=0

This parameter sets the number of available threads in a pool to execute Tensor‐
Flow ops. This is useful for maximizing the execution of independent operations
in a TensorFlow graph. If the value is set to 0, all available cores will be used and
one thread per core will be allocated.

Similar to our earlier examples, you can pass the configuration parameter to the
docker run command, as shown in the following example:

docker run -p 8500:8500 \
           -p 8501:8501 \
           --mount type=bind,source=/path/to/models,target=/models/my_model \
           -e MODEL_NAME=my_model -t tensorflow/serving \
           --tensorflow_intra_op_parallelism=4 \
           --tensorflow_inter_op_parallelism=4 \
           --file_system_poll_wait_seconds=10 \
           --tensorflow_session_parallelism=2

The discussed configuration options can improve performance and avoid unneces‐
sary cloud provider charges.

TensorFlow Serving Alternatives
TensorFlow Serving is a great way of deploying machine learning models. With the
TensorFlow Estimators and Keras models, you should be covered for a large variety
of machine learning concepts. However, if you would like to deploy a legacy model or
if your machine learning framework of choice isn’t TensorFlow or Keras, here are a
couple of options.

BentoML
BentoML is a framework-independent library that deploys machine learning models.
It supports models trained through PyTorch, scikit-learn, TensorFlow, Keras, and
XGBoost. For TensorFlow models, BentoML supports the SavedModel format. Ben‐
toML supports batching requests.

Seldon
The UK startup Seldon provides a variety of open source tools to manage model life
cycles, and one of their core products is Seldon Core. Seldon Core provides you a
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8 ONNX is a way of describing machine learning models.

toolbox to wrap your models in a Docker image, which is then deployed via Seldon in
a Kubernetes cluster.

At the time of writing this chapter, Seldon supported machine learning models
trained with TensorFlow, scikit-learn, XGBoost, and even R.

Seldon comes with its own ecosystem that allows building preprocessing into its own
Docker images, which are deployed in conjunction with the deployment images. It
also provides a routing service that allows you to perform A/B test or multiarm ban‐
dit experiments.

Seldon is highly integrated with the Kubeflow environment and, similar to Tensor‐
Flow Serving, is a way to deploy models with Kubeflow on Kubernetes.

GraphPipe
GraphPipe is another way of deploying TensorFlow and non-TensorFlow models.
Oracle drives the open source project. It allows you to deploy not just TensorFlow
(including Keras) models, but also Caffe2 models and all machine learning models
that can be converted to the Open Neural Network Exchange (ONNX) format.8

Through the ONNX format, you can deploy PyTorch models with GraphPipe.

Besides providing a model server for TensorFlow, PyTorch, etc., GraphPipe also pro‐
vides client implementation for programming languages like Python, Java, and Go.

Simple TensorFlow Serving
Simple TensorFlow Serving is a development by Dihao Chen from 4Paradigm. The
library supports more than just TensorFlow models. The current list of supported
model frameworks includes ONNX, scikit-learn, XGBoost, PMML, and H2O. It sup‐
ports multiple models, predictions on GPUs, and client code for a variety of
languages.

One significant aspect of Simple TensorFlow Serving is that it supports authentica‐
tion and encrypted connections to the model server. Authentication is currently not a
feature of TensorFlow Serving, and supporting SSL or Transport Layer Security
(TLS) requires a custom build of TensorFlow Serving.

MLflow
MLflow supports the deployment of machine learning models, but that it is only one
aspect of the tool created by DataBricks. MLflow is designed to manage model
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experiments through MLflow Tracking. The tool has a built-in model server, which
provides REST API endpoints for the models managed through MLflow.

MLflow also provides interfaces to directly deploy models from MLflow to Micro‐
soft’s Azure ML platform and AWS SageMaker.

Ray Serve
The Ray Project provides functionality to deploy machine learning models. Ray Serve
is framework agnostic and it supports PyTorch, TensorFlow (incl. Keras), Scikit-
Learn models, or custom model predictions. The library provides capabilities to
batch requests and it allows the routing of traffic between models and their versions.

Ray Serve is integrated in the Ray Project ecosystem and supports distributed compu‐
tation setups.

Deploying with Cloud Providers
All model server solutions we have discussed up to this point have to be installed and
managed by you. However, all primary cloud providers—Google Cloud, AWS, and
Microsoft Azure—offer machine learning products, including the hosting of machine
learning models.

In this section, we will guide you through an example deployment using Google
Cloud’s AI Platform. Let’s start with the model deployment, and later we’ll explain
how you can get predictions from the deployed model from your application client.

Use Cases
Managed cloud deployments of machine learning models are a good alternative to
running your model server instances if you want to deploy a model seamlessly and
don’t want to worry about scaling the model deployment. All cloud providers offer
deployment options with the ability to scale by the number of inference requests.

However, the flexibility of your model deployment comes at a cost. Managed services
provide effortless deployments, but they cost a premium. For example, two model
versions running full time (requiring two computation nodes) are more expensive
than a comparable compute instance that is running a TensorFlow Serving instance.
Another downside of managed deployments is the limitations of the products. Some
cloud providers require that you deploy via their own software development kits, and
others have limits on the node size and how much memory your model can take up.
These limitations can be a severe restriction for sizeable machine learning models,
especially if the models contain very many layers (i.e., language models).
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Example Deployment with GCP
In this section, we will walk you through one deployment with Google Cloud’s AI
Platform. Instead of writing configuration files and executing terminal commands,
we can set up model endpoints through a web UI.

Limits of Model Size on GCP’s AI Platform

GCP’s endpoints are limited to model sizes up to 500 MB. How‐
ever, if you deploy your endpoints via compute engines of type N1,
the maximum model limit is increased to 2 GB. At the time of writ‐
ing, this option was available as a beta feature.

Model deployment
The deployment consists of three steps:

• Make the model accessible on Google Cloud.
• Create a new model instance with Google Cloud’s AI Platform.
• Create a new version with the model instance.

The deployment starts with uploading your exported TensorFlow or Keras model to
a storage bucket. As shown in Figure 8-5, you will need to upload the entire exported
model. Once the upload of the model is done, please copy the complete path of the
storage location.

Figure 8-5. Uploading the trained model to cloud storage

Once you have uploaded your machine learning model, head over to the AI Platform
of GCP to set up your machine learning model for deployment. If it is the first time
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9 For the lowest prediction latencies, choose a region closest to the geographical region of the model requests.

that you are using the AI Platform in your GCP project, you’ll need to enable the
API. The automated startup process by Google Cloud can take a few minutes.

As shown in Figure 8-6, you need to give the model a unique identifier. Once you
have created the identifier, selected your preferred deployment region,9 and created
an optional project description, continue with the setup by clicking Create.

Figure 8-6. Creating a new model instance

Once the new model is registered, the model will be listed in the dashboard, as shown
in Figure 8-7. You can create a new model version for the dashboard by clicking
“Create version” in the overflow menu.

Figure 8-7. Creating a new model version
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When you create a new model version, you configure a compute instance that runs
your model. Google Cloud gives you a variety of configuration options, as shown in
Figure 8-8. The version name is important since you’ll reference the version name
later in the client setup. Please set the Model URI to the storage path you saved in the
earlier step.

Google Cloud AI Platform supports a variety of machine learning frameworks
including XGBoost, scikit-learn, and custom prediction routines.

Figure 8-8. Setting up the instance details

GCP also lets you configure how your model instance scales if your model experien‐
ces a large number of inference requests. You can select between two scaling behav‐
iors: manual scaling or autoscaling.

Manual scaling gives you the option for setting the exact number of nodes available
for the predictions of your model version. In contrast, autoscaling gives you the func‐

Deploying with Cloud Providers | 165



tionality to adjust the number of instances depending on the demand for your end‐
point. If your nodes don’t experience any requests, the number of nodes could even
drop to zero. Please note that if autoscaling drops the number of nodes to zero, it will
take some time to reinstantiate your model version with the next request hitting the
model version endpoint. Also, if you run inference nodes in the autoscaling mode,
you’ll be billed in 10 min intervals.

Once the entire model version is configured, Google Cloud spins up the instances for
you. If everything is ready for model predictions, you will see a green check icon next
to the version name, as shown in Figure 8-9.

Figure 8-9. Completing the deployment with a new version available

You can run multiple model versions simultaneously. In the control panel of the
model version, you can set one version as the default version, and any inference
request without a version specified will be routed to the designated “default version.”
Just note that each model version will be hosted on an individual node and will accu‐
mulate GCP costs.

Model inference
Since TensorFlow Serving has been battle tested at Google and is used heavily inter‐
nally, it is also used behind the scenes at GCP. You’ll notice that the AI Platform isn’t
just using the same model export format as we have seen with our TensorFlow Serv‐
ing instances but the payloads have the same data structure as we have seen before.

The only significant difference is the API connection. As you’ll see in this section,
you’ll connect to the model version via the GCP API that is handling the request
authentication.

To connect with the Google Cloud API, you’ll need to install the library google-api-
python-client with:

$ pip install google-api-python-client

All Google services can be connected via a service object. The helper function in the
following code snippet highlights how to create the service object. The Google API

166 | Chapter 8: Model Deployment with TensorFlow Serving



client takes a service name and a service version and returns an object that pro‐
vides all API functionalities via methods from the returned object:

import googleapiclient.discovery

def _connect_service():
    return googleapiclient.discovery.build(
        serviceName="ml", version="v1"
    )

Similar to our earlier REST and gRPC examples, we nest our inference data under a
fixed instances key, which carries a list of input dictionaries. We have created a little
helper function to generate the payloads. This function contains any preprocessing if
you need to modify your input data before the inference:

def _generate_payload(sentence):
    return {"instances": [{"sentence": sentence}]}

With the service object created on the client side and the payload generated, it’s time
to request the prediction from the Google Cloud–hosted machine learning model.

The service object of the AI Platform service contains a predict method that accepts a
name and a body. The name is a path string containing your GCP project name,
model name, and, if you want to make predictions with a specific model version, ver‐
sion name. If you don’t specify a version number, the default model version will be
used for the model inference. The body contains the inference data structure we gen‐
erated earlier:

project = "yourGCPProjectName"
model_name = "demo_model"
version_name = "v1"
request = service.projects().predict(
    name="projects/{}/models/{}/versions/{}".format(
        project, model_name, version_name),
    body=_generate_payload(sentence)
)
response = request.execute()

The Google Cloud AI Platform response contains the predict scores for the different
categories similar to a REST response from a TensorFlow Serving instance:

{'predictions': [
    {'label': [
        0.9000182151794434,
        0.02840868942439556,
        0.009750653058290482,
        0.06182243302464485
    ]}
]}

The demonstrated deployment option is a quick way of deploying a machine learning
model without setting up an entire deployment infrastructure. Other cloud providers
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like AWS or Microsoft Azure offer similar model deployment services. Depending on
your deployment requirements, cloud providers can be a good alternative to self-
hosted deployment options. The downsides are potentially higher costs and the lack
of completely optimizing the endpoints (i.e., by providing gRPC endpoints or batch‐
ing functionality, as we discussed in “Batching Inference Requests” on page 156).

Model Deployment with TFX Pipelines
In the introduction to this chapter, in Figure 8-1 we showed the deployment steps as
one component of a machine learning pipeline. After discussing the inner workings
of model deployments, and especially TensorFlow Serving, we want to connect the
dots with our machine learning pipeline in this section.

In Figure 8-10, you can see the steps for a continuous model deployment. We assume
that you have TensorFlow Serving running and configured to load models from a
given file location. Furthermore, we assume that TensorFlow Serving will load the
models from an external file location (i.e., a cloud storage bucket or a mounted per‐
sistent volume). Both systems, the TFX pipeline and the TensorFlow Serving
instance, need to have access to the same filesystem.

Figure 8-10. Deployment of models produced from TFX pipelines

In “TFX Pusher Component” on page 126, we discussed the Pusher component. The
TFX component allows us to push validated models to a given location (e.g., a cloud
storage bucket). TensorFlow Serving can pick up new model versions from the cloud
storage location, unload the earlier model version, and load the latest version for the
given model endpoint. This is the default model policy of TensorFlow Serving.

Due to the default model policy, we can build a simple continuous deployment setup
with TFX and TensorFlow Serving fairly easily.
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Summary
In this chapter, we discussed how to set up TensorFlow Serving to deploy machine
learning models and why a model server is a more scalable option than deploying
machine learning models through a Flask web application. We stepped through the
installation and configuration steps, introduced the two main communication
options, REST and gRPC, and briefly discussed the advantages and disadvantages of
both communication protocols.

Furthermore, we explained some of the great benefits of TensorFlow Serving, includ‐
ing the batching of model requests and the ability to obtain metadata about the dif‐
ferent model versions. We also discussed how to set up a quick A/B test setup with
TensorFlow Serving.

We closed this chapter with a brief introduction of a managed cloud service, using
Google Cloud AI Platform as an example. Managed cloud services provide you the
ability to deploy machine learning models without managing your own server
instances.

In the next chapter, we will discuss enhancing our model deployments, for example,
by loading models from cloud providers or by deploying TensorFlow Serving with
Kubernetes.
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CHAPTER 9

Advanced Model Deployments
with TensorFlow Serving

In the previous chapter, we discussed the efficient deployment of TensorFlow or
Keras models with TensorFlow Serving. With the knowledge of a basic model deploy‐
ment and TensorFlow Serving configuration, we now introduce advanced use cases
of machine learning model deployments in this chapter. The use cases touch a variety
of topics, for example, deploying model A/B testing, optimizing models for deploy‐
ment and scaling, and monitoring model deployments. If you haven’t had the chance
to review the previous chapter, we recommend doing so because it provides the fun‐
damentals for this chapter.

Decoupling Deployment Cycles
The basic deployments shown in Chapter 8 work well, but they have one restriction:
the trained and validated model needs to be either included in the deployment con‐
tainer image during the build step or mounted into the container during the con‐
tainer runtime, as we discussed in the previous chapter. Both options require either
knowledge of DevOps processes (e.g., updating Docker container images) or coordi‐
nation between the data science and DevOps teams during the deployment phase of a
new model version.

As we briefly mentioned in Chapter 8, TensorFlow Serving can load models from
remote storage drives (e.g., AWS S3 or GCP Storage buckets). The standard loader
policy of TensorFlow Serving frequently polls the model storage location, unloads the
previously loaded model, and loads a newer model upon detection. Due to this
behavior, we only need to deploy our model serving container once, and it continu‐
ously updates the model versions once they become available in the storage folder
location.
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Workflow Overview
Before we take a closer look at how to configure TensorFlow Serving to load models
from remote storage locations, let’s take a look at our proposed workflow.

Figure 9-1 shows the separation of workflows. The model serving container is
deployed once. Data scientists can upload new versions of models to storage buckets
either through the buckets’ web interface or through command-line copy operations.
Any changes to model versions will be discovered by the serving instances. A new
build of the model server container or a redeployment of the container is not
necessary.

Figure 9-1. Split of the data science and DevOps deployment cycles

If your bucket folders are publicly accessible, you can serve the remote models by
simply updating the model base path to the remote path:

docker run -p 8500:8500 \
           -p 8501:8501 \
           -e MODEL_BASE_PATH=s3://bucketname/model_path/ \ 
           -e MODEL_NAME=my_model \ 
           -t tensorflow/serving

Remote bucket path

Remaining configuration remains the same

If your models are stored in private cloud buckets, you need to configure TensorFlow
Serving a bit more to provide access credentials. The setup is provider specific. We
will cover two provider examples in this chapter: AWS and GCP.
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1 More details on managing AWS access keys can be found in the documentation.

Accessing private models from AWS S3
AWS authenticates users through a user-specific access key and access secret. To
access private AWS S3 buckets, you need to create a user access key and secret.1

You can provide the AWS access key and secret as environment variables to the
docker run command. This allows TensorFlow Serving to pick up the credentials
and access private buckets:

docker run -p 8500:8500 \
           -p 8501:8501 \
           -e MODEL_BASE_PATH=s3://bucketname/model_path/ \
           -e MODEL_NAME=my_model \
           -e AWS_ACCESS_KEY_ID=XXXXX \ 
           -e AWS_SECRET_ACCESS_KEY=XXXXX \
           -t tensorflow/serving

The name of the environment variables is important.

TensorFlow Serving relies on the standard AWS environment variables and its
default values. You can overwrite the default values (e.g., if your bucket isn’t located
in the us-east-1 region or if you want to change the S3 endpoint).

You have the following configuration options:

• AWS_REGION=us-east-1

• S3_ENDPOINT=s3.us-east-1.amazonaws.com

• S3_USE_HTTPS=1

• S3_VERIFY_SSL=1

The configuration options can be added as environment variables or added to the
docker run command as shown in the following example:

docker run -p 8500:8500 \
           -p 8501:8501 \
           -e MODEL_BASE_PATH=s3://bucketname/model_path/ \
           -e MODEL_NAME=my_model \
           -e AWS_ACCESS_KEY_ID=XXXXX \
           -e AWS_SECRET_ACCESS_KEY=XXXXX \
           -e AWS_REGION=us-west-1 \ 
           -t tensorflow/serving

Additional configurations can be added through environment variables.
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2 More details on how to create and manage service accounts can be found in the documentation.

With these few additional environment variables provided to TensorFlow Serving,
you are now able to load models from remote AWS S3 buckets.

Accessing private models from GCP Buckets
GCP authenticates users through service accounts. To access private GCP Storage
buckets, you need to create a service account file.2

Unlike in the case of AWS, we can’t simply provide the credential as an environment
variable since the GCP authentication expects a JSON file with the service account
credentials. In the GCP case, we need to mount a folder on the host machine contain‐
ing the credentials inside a Docker container and then define an environment vari‐
able to point TensorFlow Serving to the correct credential file.

For the following example, we assume that you have saved your newly created service
account credential file under /home/your_username/.credentials/ on your host
machine. We downloaded the service account credentials from GCP and saved the
file as sa-credentials.json. You can give the credential file any name, but you need
to update the environmental variable GOOGLE_APPLICATION_CREDENTIALS with the
full path inside of the Docker container:

docker run -p 8500:8500 \
           -p 8501:8501 \
           -e MODEL_BASE_PATH=gcp://bucketname/model_path/ \
           -e MODEL_NAME=my_model \
           -v /home/your_username/.credentials/:/credentials/ 
           -e GOOGLE_APPLICATION_CREDENTIALS=/credentials/sa-credentials.json \ 
           -t tensorflow/serving

Mount host directory with credentials.

Specify path inside of the container.

With a couple steps, you have configured a remote GCP bucket as a storage location.

Optimization of Remote Model Loading
By default, TensorFlow Serving polls any model folder every two seconds for updated
model versions, regardless of whether the model is stored in a local or remote loca‐
tion. If your model is stored in a remote location, the polling operation generates a
bucket list view through your cloud provider. If you continuously update your model
versions, your bucket might contain a large number of files. This results in large list-
view messages and therefore consumes a small, but over time not insignificant,
amount of traffic. Your cloud provider will most likely charge for the network traffic

174 | Chapter 9: Advanced Model Deployments with TensorFlow Serving

https://oreil.ly/pbO8q


generated by these list operations. To avoid billing surprises, we recommend reduc‐
ing the polling frequency to every 120 seconds, which still provides you up to 30
potential updates per hour but generates 60 times less traffic:

docker run -p 8500:8500 \
           ...
           -t tensorflow/serving \
           --file_system_poll_wait_seconds=120

TensorFlow Serving arguments need to be added after the image specification of the
docker run command. You can specify any polling wait time greater than one sec‐
ond. If you set the wait time to zero, TensorFlow Serving will not attempt to refresh
the loaded model.

Model Optimizations for Deployments
With the increasing size of machine learning models, model optimization becomes
more important to efficient deployments. Model quantization allows you to reduce
the computation complexity of a model by reducing the precision of the weight’s rep‐
resentation. Model pruning allows you to implicitly remove unnecessary weights by
zeroing them out of your model network. And model distillation will force a smaller
neural network to learn the objectives of a larger neural network.

All three optimization methods aim for smaller models that allow faster model infer‐
ences. In the following sections, we will explain the three optimization options
further.

Quantization
The weights of a neural network are often stored as float 32-bit data types (or, as the
IEEE 754 standard calls it, single-precision binary floating-point format). A floating-
point number is stored as the following: 1 bit storing the sign of the number, 8 bits
for the exponent, and 23 bits for the precision of the floating number.

The network weights, however, can be expressed in bfloat16 floating-point format or
as 8-bit integers. As shown in Figure 9-2, we still need 1 bit to store the sign of the
number. The exponent is also still represented through 8 bits when we store weights
as bfloat16 floating points because it is used by TensorFlow. However, the fraction
representation is reduced from 23 bits to 7 bits. The weights can even sometimes be
represented as integers using only 8 bits.
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Figure 9-2. Reduction of the floating precision

By changing the network’s weight representation to 16-bit floating points or integers,
we can achieve the following benefits:

• The weights can be represented with fewer bytes, requiring less memory during
the model inference.

• Due to the weights’ reduced representation, predictions can be inferred faster.
• The quantization allows the execution of neural networks on 16-bit, or even 8-

bit, embedded systems.

Current workflows for model quantization are applied after model training and are
often called post-training quantization. Since a quantized model can be underfitted
due to the lack of precision, we highly recommend analyzing and validating any
model after quantization and before deployment. As an example of model quantiza‐
tions, we discuss Nvidia’s TensorRT library (see “Using TensorRT with TensorFlow
Serving” on page 177) and TensorFlow’s TFLite library (see “TFLite” on page 178).

Pruning
An alternative to reducing the precision of network weights is model pruning. The
idea here is that a trained network can be reduced to a smaller network by removing
unnecessary weights. In practice, this means that “unnecessary” weights are set to
zero. By setting unnecessary weights to zero, the inference or prediction can be sped
up. Also, the pruned models can be compressed to smaller models sizes since sparse
weights lead to higher compression rates.

176 | Chapter 9: Advanced Model Deployments with TensorFlow Serving



3 See TensorFlow’s website for more information about optimzation methods and an in-depth pruning
example.

How to Prune Models

Models can be pruned during their training phase through tools
like TensorFlow’s model optimization package tensorflow-model-
optimization.3

Distillation
Instead of reducing the network connections, we can also train a smaller, less com‐
plex neural network to learn trained tasks from a much more extensive network. This
approach is called distillation. Instead of simply training a smaller machine learning
model with the same objective as the bigger model, the predictions of the bigger
model (the teacher neural network) influence the update of the smaller model’s (the
student neural network) weights, as shown in Figure 9-3. By using the predictions
from the teacher and student neural networks, the student network can be forced to
learn an objective from the teacher neural network. Ultimately, we can express the
same model objective with fewer weights and with a model architecture that wouldn’t
have been able to learn the objective without the teacher forcing it.

Figure 9-3. Student network learning from a teacher network

Using TensorRT with TensorFlow Serving
One option for performing quantization on a trained TensorFlow model before
deploying it to production is converting the model with Nvidia’s TensorRT.

If you are running computationally intensive deep learning models on an Nvidia
GPU, you can use this additional way of optimizing your model server. Nvidia pro‐
vides a library called TensorRT that optimizes the inference of deep learning models
by reducing the precision of the numerical representations of the network weights
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4 See Nvidia’s documentation about TensorRT.

and biases. TensorRT supports int8 and float16 representations. The reduced preci‐
sion will lower the inference latency of the model.

After your model is trained, you need to optimize the model with TensorRT’s own
optimizer or with saved_model_cli.4 The optimized model can then be loaded into
TensorFlow Serving. At the time of writing this chapter, TensorRT was limited to
certain Nvidia products, including Tesla V100 and P4.

First, we’ll convert our deep learning model with saved_model_cli:

$ saved_model_cli convert --dir saved_models/ \
                          --output_dir trt-savedmodel/ \
                          --tag_set serve tensorrt

After the conversion, you can load the model in our GPU setup of TensorFlow Serv‐
ing as follows:

$ docker run --runtime=nvidia \
             -p 8500:8500 \
             -p 8501:8501 \
             --mount type=bind,source=/path/to/models,target=/models/my_model \
             -e MODEL_NAME=my_model \
             -t tensorflow/serving:latest-gpu

If you are inferring your models on Nvidia GPUs, the hardware is supported by Ten‐
sorRT. Switching to TensorRT can be an excellent way to lower your inference laten‐
cies further.

TFLite
If you want to optimize your machine learning model but you’re not running Nvidia
GPUs, you can use TFLite to perform optimizations on your machine learning.

TFLite has traditionally been used to convert machine learning models to smaller
model sizes for deployment to mobile or IoT devices. However, these models can also
be used with TensorFlow Serving. So instead of deploying a machine learning model
to an edge device, you can deploy a machine learning model with TensorFlow Serv‐
ing that will have a low inference latency and a smaller memory footprint.

While optimizing with TFLite looks very promising, there are a few caveats: at the
time of writing this section, the TensorFlow Serving support for TFLite models is
only in experimental stages. And furthermore, not all TensorFlow operations can be
converted to TFLite instructions. However, the number of supported operations is
continuously growing.
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Steps to Optimize Your Model with TFLite
TFLite can also be used to optimize TensorFlow and Keras models. The library pro‐
vides a variety of optimization options and tools. You can either convert your model
through command-line tools or through the Python library.

The starting point is always a trained and exported model in the SavedModel format.
In the following example, we focus on Python instructions. The conversion process
consists of four steps:

1. Loading the exported saved model
2. Defining your optimization goals
3. Converting the model
4. Saving the optimized model as a TFLite model

import tensorflow as tf

saved_model_dir = "path_to_saved_model"
converter = tf.lite.TFLiteConverter.from_saved_model(
    saved_model_dir)

converter.optimizations = [
    tf.lite.Optimize.DEFAULT 
]
tflite_model = converter.convert()

with open("/tmp/model.tflite", "wb") as f:
    f.write(tflite_model)

Set the optimization strategy.

TFLite Optimizations
TFLite provides predefined optimization objectives. By changing the optimization
goal, the converter will optimize the models differently. A few options are DEFAULT,
OPTIMIZE_FOR_LATENCY, and OPTIMIZE_FOR_SIZE.

In the DEFAULT mode, your model will be optimized for latency and size, whereas the
other two options prefer one option over the other. You can set the convert options
as follows:

...
converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE]
converter.target_spec.supported_types = [tf.lite.constants.FLOAT16]
tflite_model = converter.convert()
...

TFLite | 179



If your model includes a TensorFlow operation that is not supported by TFLite at the
time of exporting your model, the conversion step will fail with an error message.
You can enable an additional set of selected TensorFlow operations to be available for
the conversion process. However, this will increase the size of your TFLite model by
ca. 30 MB. The following code snippet shows how to enable the additional Tensor‐
Flow operations before the converter is executed:

...
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS,
                                       tf.lite.OpsSet.SELECT_TF_OPS]
tflite_model = converter.convert()
...

If the conversion of your model still fails due to an unsupported TensorFlow opera‐
tion, you can bring it to the attention of the TensorFlow community. The community
is actively increasing the number of operations supported by TFLite and welcomes
suggestions for future operations to be included in TFLite. TensorFlow ops can be
nominated via the TFLite Op Request form.

Serving TFLite Models with TensorFlow Serving
The latest TensorFlow Serving versions can read TFLite models without any major
configuration change. You only need to start TensorFlow Serving with the enabled
use_tflite_model flag and it will load the optimized model as shown in the follow‐
ing example:

docker run -p 8501:8501 \
           --mount type=bind,\
            source=/path/to/models,\
            target=/models/my_model \
           -e MODEL_BASE_PATH=/models \
           -e MODEL_NAME=my_model \
           -t tensorflow/serving:latest \
           --use_tflite_model=true 

Enable TFLite model loading.

TensorFlow Lite optimized models can provide you with low-latency and low-
memory footprint model deployments.
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Deploy Your Models to Edge Devices
After optimizing your TensorFlow or Keras model and deploying your TFLite
machine learning model with TensorFlow Serving, you can also deploy the model to a
variety of mobile and edge devices; for example:

• Android and iOS mobile phones
• ARM64-based computers
• Microcontrollers and other embedded devices (e.g., Raspberry Pi)
• Edge devices (e.g., IoT devices)
• Edge TPUs (e.g., Coral)

If you are interested in deployments to mobile or edge devices, we recommend the
publication Practical Deep Learning for Cloud, Mobile, and Edge by Anirudh Koul et
al. (O’Reilly) for further reading. If you are looking for materials on edge devices with
a focus on TFMicro, we recommend TinyML by Pete Warden and Daniel Situnayake
(O’Reilly).

Monitoring Your TensorFlow Serving Instances
TensorFlow Serving allows you to monitor your inference setup. For this task,
TensorFlow Serving provides metric endpoints that can be consumed by Prome‐
theus. Prometheus is a free application for real-time event logging and alerting, cur‐
rently under Apache License 2.0. It is used extensively within the Kubernetes
community, but it can easily be used without Kubernetes.

To track your inference metrics, you need to run TensorFlow Serving and Prome‐
theus side by side. Prometheus can then be configured to pull metrics from Tensor‐
Flow Serving continuously. The two applications communicate via a REST endpoint,
which requires that REST endpoints are enabled for TensorFlow Serving even if you
are only using gRPC endpoints in your application.

Prometheus Setup
Before configuring TensorFlow Serving to provide metrics to Prometheus, we need to
set up and configure our Prometheus instance. For the simplicity of this example, we
are running two Docker instances (TensorFlow Serving and Prometheus) side by
side, as shown in Figure 9-4. In a more elaborate setup, the applications would be
Kubernetes deployments.
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Figure 9-4. Prometheus Docker setup

We need to create a Prometheus configuration file before starting up Prometheus.
For this purpose, we will create a configuration file located at /tmp/prometheus.yml
and add the following configuration details:

global:
  scrape_interval: 15s
  evaluation_interval: 15s
  external_labels:
    monitor: 'tf-serving-monitor'

scrape_configs:
  - job_name: 'prometheus'
    scrape_interval: 5s 
    metrics_path: /monitoring/prometheus/metrics 
    static_configs:
      - targets: ['host.docker.internal:8501'] 

Interval when metrics are pulled.

Metrics endpoints from TensorFlow Serving.

Replace with the IP address of your application.

In our example configuration, we configured the target host to be
host.docker.internal. We are taking advantage of Docker’s domain name resolu‐
tion to access the TensorFlow Serving container via the host machine. Docker auto‐
matically resolves the domain name host.docker.internal to the host’s IP address.
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Once you have created your Prometheus configuration file, you can start the Docker
container, which runs the Prometheus instance:

$ docker run -p 9090:9090 \ 
             -v /tmp/prometheus.yml:/etc/prometheus/prometheus.yml \ 
             prom/prometheus

Enable port 9090.

Mount your configuration file.

Prometheus provides a dashboard for the metrics, which we will later access via port
9090.

TensorFlow Serving Configuration
Similar to our previous configuration for the inference batching, we need to write a
small configuration file to configure the logging settings.

With a text editor of your choice, create a text file containing the following configura‐
tion (in our example, we saved the configuration file to /tmp/monitoring_config.txt):

prometheus_config {
   enable: true,
   path: "/monitoring/prometheus/metrics"
}

In the configuration file, we are setting the URL path for the metrics data. The path
needs to match the path we specified in the Prometheus configuration that we previ‐
ously created (/tmp/prometheus.yml).

To enable the monitoring functionality, we only need to add the path of the monitor
ing_config_file and TensorFlow Serving will provide a REST endpoint with the
metrics data for Prometheus:

$ docker run -p 8501:8501 \
             --mount type=bind,source=`pwd`,target=/models/my_model \
             --mount type=bind,source=/tmp,target=/model_config \
             tensorflow/serving \
             --monitoring_config_file=/model_config/monitoring_config.txt
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Prometheus in Action
With the Prometheus instance running, you can now access the Prometheus dash‐
board to view the TensorFlow Serving metrics with the Prometheus UI, as shown in
Figure 9-5.

Figure 9-5. Prometheus dashboard for TensorFlow Serving

Prometheus provides a standardized UI for common metrics. Tensorflow Serving
provides a variety of metric options, including the number of session runs, the load
latency, or the time to run a particular graph, as shown in Figure 9-6.

Figure 9-6. Prometheus metric options for TensorFlow Serving
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5 Deployments with AWS are similar; instead of the credential file, the AWS secret and key need to be pro‐
vided as environment variables.

Simple Scaling with TensorFlow Serving and Kubernetes
So far, we have discussed the deployment of a single TensorFlow Serving instance
hosting one or more model versions. While this solution is sufficient for a good num‐
ber of deployments, it isn’t enough for applications experiencing a high volume of
prediction requests. In these situations, your single Docker container with Tensor‐
Flow Serving needs to be replicated to reply to the additional prediction requests. The
orchestration of the container replication is usually managed by tools like Docker
Swarm or Kubernetes. While it would go beyond the scope of this publication to
introduce Kubernetes in depth, we would like to provide a small glimpse of how your
deployment could orchestrate through Kubernetes.

For the following example, we assume that you’ll have a Kubernetes cluster running
and that access to the cluster will be via kubectl. Because you can deploy TensorFlow
models without building specific Docker containers, you will see that, in our exam‐
ple, we reused Google-provided Docker containers and configured Kubernetes to
load our models from a remote storage bucket.

The first source code example highlights two aspects:

• Deploying via Kubernetes without building specific Docker containers
• Handling the Google Cloud authentication to access the remote model storage

location

In the following example, we use the GCP as the cloud provider for our deployment:5

apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app: ml-pipelines
  name: ml-pipelines
spec:
  replicas: 1 
  selector:
    matchLabels:
      app: ml-pipelines
  template:
    spec:
      containers:
        - args:
            - --rest_api_port=8501
            - --model_name=my_model
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            - --model_base_path=gs://your_gcp_bucket/my_model 
          command:
            - /usr/bin/tensorflow_model_server
          env:
            - name: GOOGLE_APPLICATION_CREDENTIALS
              value: /secret/gcp-credentials/user-gcp-sa.json 
          image: tensorflow/serving 
          name: ml-pipelines
          ports:
            - containerPort: 8501
          volumeMounts:
            - mountPath: /secret/gcp-credentials 
              name: gcp-credentials
      volumes:
        - name: gcp-credentials
          secret:
            secretName: gcp-credentials 

Increase replicas if needed.

Load model from remote location.

Provide cloud credentials here for GCP.

Load the prebuilt TensorFlow Serving image.

Mount the service account credential file (if Kubernetes cluster is deployed
through the GCP).

Load credential file as a volume.

With this example, we can now deploy and scale your TensorFlow or Keras models
without building custom Docker images.

You can create your service account credential file within the Kubernetes environ‐
ment with the following command:

$ kubectl create secret generic gcp-credentials \
  --from-file=/path/to/your/user-gcp-sa.json

A corresponding service setup in Kubernetes for the given model deployment could
look like the following configuration:

apiVersion: v1
kind: Service
metadata:
  name: ml-pipelines
spec:
  ports:
    - name: http
      nodePort: 30601
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      port: 8501
  selector:
    app: ml-pipelines
  type: NodePort

With a few lines of YAML configuration code, you can now deploy and, most impor‐
tantly, scale your machine learning deployments. For more complex scenarios like
traffic routing to deployed ML models with Istio, we highly recommend a deep dive
into Kubernetes and Kubeflow.

Further Reading on Kubernetes and Kubeflow

Kubernetes and Kubeflow are amazing DevOps tools, and we
couldn’t provide a holistic introduction here. It requires its own
publications. If you are looking for further reading on the two top‐
ics, we can recommend the following publications:

• Kubernetes: Up and Running, 2nd edition by Brendan Burns et
al. (O’Reilly)

• Kubeflow Operations Guide by Josh Patterson et al. (O’Reilly)
• Kubeflow for Machine Learning (forthcoming) by Holden

Karau et al. (O’Reilly)

Summary
In this chapter, we discussed advanced deployment scenarios, such as splitting the
data science and DevOps deployment life cycles by deploying models via remote
cloud storage buckets, optimizing models to reducing the prediction latency and the
model memory footprint, or how to scale your deployment.

In the following chapter, we now want to combine all the individual pipeline compo‐
nents into a single machine learning pipeline to provide reproducible machine learn‐
ing workflows.
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CHAPTER 10

Advanced TensorFlow Extended

With the previous two chapters on model deployments, we completed our overview
of individual pipeline components. Before we take a deep dive into orchestrating
these pipeline components, we want to pause and introduce advanced concepts of
TFX in this chapter.

With the pipeline components we have introduced so far, we can create machine
learning pipelines for most problems. However, sometimes we need to build our own
TFX component or more complex pipeline graphs. Therefore, in this chapter, we will
focus on how to build custom TFX components. We introduce the topic with a cus‐
tom ingestion component that ingests images directly for computer vision ML pipe‐
lines. Furthermore, we will introduce advanced concepts of pipeline structures:
generating two models simultaneously (e.g., for deployments with TensorFlow Serv‐
ing and TFLite), as well as adding a human reviewer into the pipeline workflow.

Ongoing Developments

At the time of this writing, some of the concepts we are introduc‐
ing are still under development and, therefore, might be subject to
future updates. We have done our best to update code examples
with changes to the TFX functionality throughout the production
of this publication, and all examples work with TFX 0.22. Updates
to the TFX APIs can be found in the TFX documentation.
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Advanced Pipeline Concepts
In this section, we will discuss three additional concepts to advance your pipeline set‐
ups. So far, all the pipeline concepts we’ve discussed comprised linear graphs with
one entry and one exit point. In Chapter 1, we discussed the fundamentals of directed
acyclic graphs. As long as our pipeline graph is directed and doesn’t create any circu‐
lar connections, we can be creative with our setup. In the next sections, we will high‐
light a few concepts to increase the productivity of pipelines by:

• Training multiple models simultaneously
• Exporting models for mobile deployments
• Warm starting model training

Training Multiple Models Simultaneously
As we mentioned before, you can train multiple models simultaneously. A common
use case for training multiple models from the same pipeline is when you want to
train a different type of model (e.g., a more simplistic model), but you want to make
sure that the trained model is getting fed with exactly the same transformed data and
the exact same transform graph. Figure 10-1 shows how this setup would work.

Figure 10-1. Training multiple models simultaneously

You can assemble such a graph with TFX by defining multiple Trainer components,
as shown in the following code example:

def set_trainer(module_file, instance_name,
                train_steps=5000, eval_steps=100): 
    return Trainer(
        module_file=module_file,
        custom_executor_spec=executor_spec.ExecutorClassSpec(
            GenericExecutor),
        examples=transform.outputs['transformed_examples'],
        transform_graph=transform.outputs['transform_graph'],
        schema=schema_gen.outputs['schema'],
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        train_args=trainer_pb2.TrainArgs(num_steps=train_steps),
        eval_args=trainer_pb2.EvalArgs(num_steps=eval_steps),
        instance_name=instance_name)

    prod_module_file = os.path.join(pipeline_dir, 'prod_module.py') 
    trial_module_file = os.path.join(pipeline_dir, 'trial_module.py')
    ...

    trainer_prod_model = set_trainer(module_file, 'production_model') 
    trainer_trial_model = set_trainer(trial_module_file, 'trial_model',
                                      train_steps=10000, eval_steps=500)
    ...

Function to instantiate the Trainer efficiently.

Load module for each Trainer.

Instantiate a Trainer component for each graph branch.

At this step, we basically branch the graph into as many training branches as we want
to run simultaneously. Each of the Trainer components consumes the same inputs
from the ingestion, schema, and Transform components. The key difference between
the components is that each component can run a different training setup, which is
defined in the individual training module files. We have also added the arguments for
the training and evaluation steps as a parameter to the function. This allows us to
train two models with the same training setup (i.e., the same module file), but we can
compare the models based on the different training runs.

Each instantiated training component needs to be consumed by its own Evaluator,
as shown in the following code example. Afterward, the models can be pushed by its
own Pusher components:

evaluator_prod_model = Evaluator(
    examples=example_gen.outputs['examples'],
    model=trainer_prod_model.outputs['model'],
    eval_config=eval_config_prod_model,
    instance_name='production_model')

evaluator_trial_model = Evaluator(
    examples=example_gen.outputs['examples'],
    model=trainer_trial_model.outputs['model'],
    eval_config=eval_config_trial_model,
    instance_name='trial_model')

...

As we have seen in this section, we can assemble fairly complex pipeline scenarios
using TFX. In the following section, we will discuss how we can amend a training
setup to export models for mobile deployments with TFLite.
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Exporting TFLite Models
Mobile deployments have become an increasingly important platform for machine
learning models. Machine learning pipelines can help with consistent exports for
mobile deployments. Very few changes are required for mobile deployment com‐
pared to deployment to model servers (such as TensorFlow Serving, as discussed in
Chapter 8). This helps keep the mobile and the server models updated consistently
and helps the consumers of the model have a consistent experience across different
devices.

TFLite Limitations

Because of hardware limitations of mobile and edge devices, TFLite
doesn’t support all TensorFlow operations. Therefore, not every
model can be converted to a TFLite-compatible model. For more
information on which TensorFlow operations are supported, visit
the TFLite website.

In the TensorFlow ecosystem, TFLite is the solution for mobile deployments. TFLite
is a version of TensorFlow that can be run on edge or mobile devices. Figure 10-2
shows how the pipeline can include two training branches.

Figure 10-2. Exporting models for deployments in mobile apps

We can use the branch strategy we discussed in the previous section and amend our
run_fn function of the module file to rewrite the saved models to a TFLite-
compatible format.

Example 10-1 shows the additional functionality we need to add to our run_fn
function.

Example 10-1. TFX Rewriter example

from tfx.components.trainer.executor import TrainerFnArgs
from tfx.components.trainer.rewriting import converters
from tfx.components.trainer.rewriting import rewriter
from tfx.components.trainer.rewriting import rewriter_factory

def run_fn(fn_args: TrainerFnArgs):
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    ...
    temp_saving_model_dir = os.path.join(fn_args.serving_model_dir, 'temp')
    model.save(temp_saving_model_dir,
               save_format='tf',
               signatures=signatures) 

    tfrw = rewriter_factory.create_rewriter(
        rewriter_factory.TFLITE_REWRITER,
        name='tflite_rewriter',
        enable_experimental_new_converter=True
    ) 
    converters.rewrite_saved_model(temp_saving_model_dir, 
                                   fn_args.serving_model_dir,
                                   tfrw,
                                   rewriter.ModelType.TFLITE_MODEL)

    tf.io.gfile.rmtree(temp_saving_model_dir) 

Export the model as a saved model.

Instantiate the TFLite rewriter.

Convert the model to TFLite format.

Delete the saved model after conversion.

Instead of exporting a saved model after the training, we convert the saved model to a
TFLite-compatible model and delete the saved model after exporting it. Our Trainer
component then exports and registers the TFLite model with the metadata store. The
downstream components like the Evaluator or the Pusher can then consume the
TFLite-compliant model. The following example shows how we can evaluate the
TFLite model, which is helpful in detecting whether the model optimizations (e.g.,
quantization) have led to a degradation of the model’s performance:

eval_config = tfma.EvalConfig(
    model_specs=[tfma.ModelSpec(label_key='my_label', model_type=tfma.TF_LITE)],
    ...
)

evaluator = Evaluator(
    examples=example_gen.outputs['examples'],
    model=trainer_mobile_model.outputs['model'],
    eval_config=eval_config,
    instance_name='tflite_model')

With this presented pipeline setup, we can now produce models for mobile deploy‐
ment automatically and push them in the artifact stores for model deployment in
mobile apps. For example, a Pusher component could ship the produced TFLite
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model to a cloud bucket where a mobile developer could pick up the model and
deploy it with Google’s ML Kit in an iOS or Android mobile app.

Converting Models to TensorFlow.js

Since TFX version 0.22, an additional feature of the rewriter_fac
tory is available: the conversion of preexisting TensorFlow models
to TensorFlow.js models. This conversion allows the deployment
of models to web browsers and Node.js runtime environments.
You can use this new functionality by replacing the rewriter_fac
tory name with rewriter_factory.TFJS_REWRITER and set the
rewriter.ModelType to rewriter.ModelType.TFJS_MODEL in
Example 10-1.

Warm Starting Model Training
In some situations, we may not want to start training a model from scratch. Warm
starting is the process of beginning our model training from a checkpoint of a previ‐
ous training run, which is particularly useful if the model is large and training is time
consuming. This may also be useful in situations under the General Data Protection
Regulation (GDPR), the European privacy law that states that a user of a product can
withdraw their consent for the use of their data at any time. By using warm start
training, we can remove only the data belonging to this particular user and fine-tune
the model rather than needing to begin training again from scratch.

In a TFX pipeline, warm start training requires the Resolver component that we
introduced in Chapter 7. The Resolver picks up the details of the latest trained
model and passes them on to the Trainer component:

latest_model_resolver = ResolverNode(
    instance_name='latest_model_resolver',
    resolver_class=latest_artifacts_resolver.LatestArtifactsResolver,
    latest_model=Channel(type=Model))

The latest model is then passed to the Trainer using the base_model argument:

trainer = Trainer(
    module_file=trainer_file,
    transformed_examples=transform.outputs['transformed_examples'],
    custom_executor_spec=executor_spec.ExecutorClassSpec(GenericExecutor),
    schema=schema_gen.outputs['schema'],
    base_model=latest_model_resolver.outputs['latest_model'],
    transform_graph=transform.outputs['transform_graph'],
    train_args=trainer_pb2.TrainArgs(num_steps=TRAINING_STEPS),
    eval_args=trainer_pb2.EvalArgs(num_steps=EVALUATION_STEPS))
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The pipeline then continues as normal. Next, we want to introduce another useful
feature we can add to our pipeline.

Human in the Loop
As part of the advanced TFX concepts, we want to highlight an experimental compo‐
nent that could elevate your pipeline setup. All the pipelines we have discussed so far
run automatically from start to finish, and they might deploy your machine learning
model automatically. Some TFX users have expressed their concerns about the fully
automated setup because they wanted a human to review the trained model after the
automatic model analysis. This could be to spot check your trained model or to gain
confidence in the automated pipeline setup.

In this section, we will discuss the functionality of a human in the loop component. In
Chapter 7, we discussed that once a model passes the validation step, it is “blessed.”
The downstream Pusher component listens to this blessing signal to know whether to
push the model or not. But such a blessing can also be generated by a human, as
Figure 10-3 shows.

Figure 10-3. Human in the loop

Google’s TFX team published a Slack notification component as an example of this
custom component. The functionality we are discussing in this section could be
extended and isn’t limited to the Slack messenger.

The component’s functionality is pretty straightforward. Once it is triggered by the
orchestration tool, it submits a message to a given Slack channel with a link to the
latest exported model and asks for a review by a data scientist (shown in Figure 10-4).
A data scientist could now investigate the model manually with the WIT and review
edge cases that aren’t tested during the Evaluator step.
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Figure 10-4. Slack message asking for review

Once the data scientist concludes their manual model analysis, they can respond in
the Slack thread with their approval or rejection. The TFX component listens to the
Slack responses and stores the decision in the metadata store. The decision can then
be used by the downstream components. It is tracked in the model’s audit trail.
Figure 10-5 shows an example record from Kubeflow Pipeline’s lineage browser. The
metadata store tracks the “blessing” by the data scientist (i.e., the decision maker) and
the time stamp (the Slack thread ID 1584638332.0001 identifies the timestamp as the
time in Unix epoch format).

Figure 10-5. Audit trail in Kubeflow Pipelines

Slack Component Setup
For the Slack component to communicate with your Slack account, it requires a Slack
bot token. You can request a bot token through the Slack API. Once you have a token,
set an environment variable in your pipeline environment with the token string as
shown in the following bash command:

$ export SLACK_BOT_TOKEN={your_slack_bot_token}
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The Slack component is not a standard TFX component and therefore needs to be
installed separately. You can install the component by cloning the TFX repository
from GitHub and then installing the component individually:

$ git clone https://github.com/tensorflow/tfx.git

$ cd tfx/tfx/examples/custom_components/slack
$ pip install -e .

Once the component package is installed in your Python environment, the compo‐
nent can then be found on the Python path and loaded inside your TFX scripts. An
example is shown in the following Python code. Please also remember to install the
Slack component in the environment where you run your TFX pipelines. For exam‐
ple, if you run your pipelines with Kubeflow Pipelines, you will have to create a cus‐
tom Docker image for your pipeline component, which contains the source code of
the Slack component (since it isn’t a standard TFX component).

How to Use the Slack Component
The installed Slack component can be loaded like any other TFX component:

from slack_component.component import SlackComponent

slack_validator = SlackComponent(
    model=trainer.outputs['model'],
    model_blessing=model_validator.outputs['blessing'],
    slack_token=os.environ['SLACK_BOT_TOKEN'], 
    slack_channel_id='my-channel-id', 
    timeout_sec=3600,
)

Load the Slack token from your environment.

Specify the channel where the message should appear.

When executed, the component will post a message and wait up to an hour (defined
by the timeout_sec argument) for an answer. During this time, a data scientist can
evaluate the model and respond with their approval or rejection. The downstream
component (e.g., a Pusher component) can consume the result from the Slack com‐
ponent, as shown in the following code example:

pusher = Pusher(
    model=trainer.outputs['model'],
    model_blessing=slack_validator.outputs['slack_blessing'], 
    push_destination=pusher_pb2.PushDestination(
        filesystem=pusher_pb2.PushDestination.Filesystem(
            base_directory=serving_model_dir)))

Model blessing provided by the Slack component.
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With a few additional steps, you can enrich your pipelines with a human audit of the
machine learning models that is triggered by the pipeline itself. This opens up many
more workflows for pipeline applications (e.g., auditing dataset statistics or reviewing
data drift metrics).

Slack API Standards

The implementation of the Slack component relies on the Real
Time Messaging (RTM) protocol. This protocol is deprecated and
might be replaced by a new protocol standard, which would affect
the component’s functionality.

Custom TFX Components
In Chapter 2, we discussed the architecture of TFX components and how each com‐
ponent consists of three parts: the driver, executor, and publisher. In this section, we
want to go a little deeper and discuss how you can build your own components. First,
we discuss how to write a component from scratch, and afterward, we’ll discuss how
to reuse existing components and customize them for your own use cases. In general,
it is always easier to change an existing component’s functionality than to write a
component from scratch.

To demonstrate the implementation to you, as seen in Figure 10-6, we will develop a
custom component for ingesting JPEG images and its labels in the pipeline. We will
load all images from a provided folder and determine the label based on the filename.
In our example, we want to train a machine learning model to classify cats and dogs.
The filenames of our images carry the content of the image (e.g., dog-1.jpeg), so we
can determine the label from the filename itself. We will load each image, convert it
to tf.Example data structures, and save all samples together as TFRecord files for
consumption by downstream components.

Figure 10-6. Functionality of our demo custom component
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Use Cases of Custom Components
Even though we are discussing an ingestion component as an example for a custom
component, you aren’t limited by the architecture. Your custom component could be
applied anywhere along your machine learning pipeline. The concepts discussed in
the following sections provide you the highest flexibility to customize your machine
learning pipelines to your needs. Some ideas for using custom components are:

• Ingesting data from your custom database
• Sending an email with the generated data statistics to the data science team
• Notifying the DevOps team if a new model was exported
• Kicking off a post-export build process for Docker containers
• Tracking additional information in your machine learning audit trail

We won’t describe how to build each of these separately, but if one of these ideas is
useful to you, the following sections will provide the knowledge to build your own
component.

Writing a Custom Component from Scratch
If we want to write a custom component from scratch, we will need to implement a
few component pieces. First, we must define the inputs and outputs of our compo‐
nent as a ComponentSpec. Then we can define our component executor, which
defines how the input data should be processed and how the output data is generated.
If the component requires inputs that aren’t registered in the metadata store, we’ll
need to write a custom component driver. This is the case when, for example, we
want to register an image path in the component and the artifact hasn’t been regis‐
tered in the metadata store previously.

Figure 10-7. Parts of our custom component

The steps in Figure 10-7 might seem complicated, but we will discuss them each in
turn in the following sections.
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Try to Reuse Components

If you are thinking about altering an existing TFX component in its
functionality, consider reusing existing TFX components and
changing the executor instead of starting from scratch, as we will
discuss in the section “Reusing Existing Components” on page 208.

Component specifications

The component specifications, or ComponentSpec, define how components commu‐
nicate with each other. They describe three important details of each component: the
component inputs, the component outputs, and potential component parameters
that are required during the component execution. Components communicate
through channels, which are inputs and outputs. These channels are types, as we will
see in the following example. The component inputs define the artifacts that the com‐
ponent will receive from previously executed components or new artifacts like file
paths. The component outputs define which artifacts will be registered with the meta‐
data store.

The component parameters define options that are required for execution but aren’t
available in the metadata store. This could be the push_destination in the case of the
Pusher component or the train_args in the Trainer component. The following
example shows a definition of our component specifications for our image ingestion
component:

from tfx.types.component_spec import ChannelParameter
from tfx.types.component_spec import ExecutionParameter
from tfx.types import standard_artifacts

class ImageIngestComponentSpec(types.ComponentSpec):
    """ComponentSpec for a Custom TFX Image Ingestion Component."""
    PARAMETERS = {
        'name': ExecutionParameter(type=Text),
    }
    INPUTS = {
        'input': ChannelParameter(type=standard_artifacts.ExternalArtifact), 
    }
    OUTPUTS = {
        'examples': ChannelParameter(type=standard_artifacts.Examples), 
    }

Using ExternalArtifact to allow new input paths

Exporting Examples

In our example implementation of ImageIngestComponentSpec, we are ingesting an
input path through the input argument input. The generated TFRecord files with the
converted images will be stored in the path passed to the downstream components
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via the examples argument. In addition, we are defining a parameter for the compo‐
nent called name.

Component channels

In our example ComponentSpec, we introduced two types of component channels:
ExternalArtifact and Examples. This is a particular pattern used for ingestion com‐
ponents since they are usually the first component in a pipeline and no upstream
component is available from which we could have received already-processed Exam
ples. If you develop a component further down in the pipeline, you might want to
ingest Examples. Therefore the channel type needs to be standard_artifacts.
Examples. But we aren’t limited to only two types. TFX provides a variety of types.
The following shows a small list of available types:

• ExampleStatistics

• Model

• ModelBlessing

• Bytes

• String

• Integer

• Float

• HyperParameters

With our ComponentSpec now set up, let’s take a look at the component executor.

Component executors
The component executor defines the processes inside the component, including how
the inputs are used to generate the component outputs. Even though we will write
this basic component from scratch, we can rely on TFX classes to inherit function
patterns. As part of the Executor object, TFX will be looking for a function called Do
for the execution details of our component. We will implement our component func‐
tionality in this function:

from tfx.components.base import base_executor

class Executor(base_executor.BaseExecutor):
    """Executor for Image Ingestion Component."""

    def Do(self, input_dict: Dict[Text, List[types.Artifact]],
           output_dict: Dict[Text, List[types.Artifact]],
           exec_properties: Dict[Text, Any]) -> None:
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        ...

The code snippet shows that the Do function of our Executor expects three argu‐
ments: input_dict, output_dict, and exec_properties. These Python dictionaries
contain the artifact references that we pass to and from the component as well as the
execution properties.

Artifacts Contain References

The information provided via the input_dict and output_dict
contain the information stored in the metadata store. These are the
references to the artifacts, not the underlying data itself. For exam‐
ple, our input_dict dictionary will contain a protocol buffer with
the file location information instead of the data. This allows us to
process the data efficiently with programs like Apache Beam.

To walk you through a basic implementation of a working Do method of the executor,
we will reuse the implementation that we discussed in “Image Data for Computer
Vision Problems” on page 41 to convert images to TFRecord data structures. An
explanation of the conversion process and details around the TFRecord data struc‐
tures can be found there. This code should look familiar:

def convert_image_to_TFExample(image_filename, tf_writer, input_base_uri):

    image_path = os.path.join(input_base_uri, image_filename) 

    lowered_filename = image_path.lower() 
    if "dog" in lowered_filename:
        label = 0
    elif "cat" in lowered_filename:
        label = 1
    else:
        raise NotImplementedError("Found unknown image")

    raw_file = tf.io.read_file(image_path) 

    example = tf.train.Example(features=tf.train.Features(feature={ 
        'image_raw': _bytes_feature(raw_file.numpy()),
        'label': _int64_feature(label)
    }))
    writer.write(example.SerializeToString()) 

Assemble the complete image path.

Determine the label for each image based on the file path.

Read the image from a disk.
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Create the TensorFlow Example data structure.

Write the tf.Example to TFRecord files.

With the completed generic function of reading an image file and storing it in files
containing the TFRecord data structures, we can now focus on custom component-
specific code.

We want our very basic component to load our images, convert them to tf.Exam
ples, and return two image sets for training and evaluation. For the simplicity of our
example, we are hardcoding the number of evaluation examples. In a production-
grade component, this parameter should be dynamically set through an execution
parameter in the ComponentSpecs. The input to our component will be the path to
the folder containing all the images. The output of our component will be the path
where we’ll store the training and evaluation datasets. The path will contain two sub‐
directories (train and eval) that contain the TFRecord files:

class ImageIngestExecutor(base_executor.BaseExecutor):

    def Do(self, input_dict: Dict[Text, List[types.Artifact]],
            output_dict: Dict[Text, List[types.Artifact]],
            exec_properties: Dict[Text, Any]) -> None:

        self._log_startup(input_dict, output_dict, exec_properties) 

        input_base_uri = artifact_utils.get_single_uri(input_dict['input']) 
        image_files = tf.io.gfile.listdir(input_base_uri) 
        random.shuffle(image_files)
        splits = get_splits(images)

        for split_name, images in splits:
            output_dir = artifact_utils.get_split_uri(
                output_dict['examples'], split_name) 

            tfrecord_filename = os.path.join(output_dir, 'images.tfrecord')
            options = tf.io.TFRecordOptions(compression_type=None)
            writer = tf.io.TFRecordWriter(tfrecord_filename, options=options) 
            for image in images:
                convert_image_to_TFExample(image, tf_writer, input_base_uri) 

Log arguments.

Get the folder path from the artifact.

Obtain all the filenames.

Set the split Uniform Resource Identifier (URI).
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Create a TFRecord writer instance with options.

Write an image to a file containing the TFRecord data structures.

Our basic Do method receives input_dict, output_dict, and exec_properties as
arguments to the method. The first argument contains the artifact references from
the metadata store stored as a Python dictionary, the second argument receives the
references we want to export from the component, and the last method argument
contains additional execution parameters like, in our case, the component name.
TFX provides the very useful artifact_utils function that lets us process our arti‐
fact information. For example, we can use the following code to extract the data input
path:

artifact_utils.get_single_uri(input_dict['input'])

We can also set the name of the output path based on the split name:

artifact_utils.get_split_uri(output_dict['examples'], split_name)

The last mentioned function brings up a good point. For simplicity of the example,
we have ignored the options to dynamically set data splits, as we discussed in Chap‐
ter 3. In fact, in our example, we are hardcoding the split names and quantity:

def get_splits(images: List, num_eval_samples=1000):
    """ Split the list of image filenames into train/eval lists """
    train_images = images[num_test_samples:]
    eval_images = images[:num_test_samples]
    splits = [('train', train_images), ('eval', eval_images)]
    return splits

Such functionality wouldn’t be desirable for a component in production, but a full-
blown implementation would go beyond the scope of this chapter. In the following
section, we will discuss how you can reuse existing component functions and simplify
your implementations. Our component in this section will have the same functional‐
ity as we discussed in Chapter 3.

Component drivers
If we would run the component with the executor that we have defined so far, we
would encounter a TFX error that the input isn’t registered with the metadata store
and that we need to execute the previous component before running our custom
component. But in our case, we don’t have an upstream component since we are
ingesting the data into our pipeline. The data ingestion step is the start of every pipe‐
line. So what is going on?

As we discussed previously, components in TFX communicate with each other via
the metadata store, and the components expect that the input artifacts are already
registered in the metadata store. In our case, we want to ingest data from a disk, and
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we are reading the data for the first time in our pipeline; therefore, the data isn’t
passed down from a different component and we need to register the data sources in
the metadata store.

Custom Drivers Are Rare

It is rare that you need to implement custom drivers. If you can
reuse the input/output architecture of an existing TFX component
or if the inputs are already registered with the metadata store, you
won’t need to write a custom driver and you can skip this step.

Similar to our custom executor, we can reuse a BaseDriver class provided by TFX to
write a custom driver. We need to overwrite the standard behavior of the component,
and we can do that by overwriting the resolve_input_artifacts method of the
BaseDriver. A bare-bones driver will register our inputs, which is straightforward.
We need to unpack the channel to obtain the input_dict. By looping over all the val‐
ues of the input_dict, we can access each list of inputs. By looping again over each
list, we can obtain each input and then register it at the metadata store by passing it
to the function publish_artifacts. publish_artifacts will call the metadata store,
publish the artifact, and set the state of the artifact as ready to be published:

class ImageIngestDriver(base_driver.BaseDriver):
  """Custom driver for ImageIngest."""

  def resolve_input_artifacts(
      self,
      input_channels: Dict[Text, types.Channel],
      exec_properties: Dict[Text, Any],
      driver_args: data_types.DriverArgs,
      pipeline_info: data_types.PipelineInfo) -> Dict[Text, List[types.Artifact]]:
    """Overrides BaseDriver.resolve_input_artifacts()."""

    del driver_args 
    del pipeline_info

    input_dict = channel_utils.unwrap_channel_dict(input_channels) 
    for input_list in input_dict.values():
        for single_input in input_list:

            self._metadata_handler.publish_artifacts([single_input]) 
            absl.logging.debug("Registered input: {}".format(single_input))
            absl.logging.debug("single_input.mlmd_artifact "

                               "{}".format(single_input.mlmd_artifact)) 
    return input_dict

Delete unused arguments.

Unwrap channel to obtain the input dictionary.

Publish the artifact.
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Print artifact information.

While we loop over each input, we can print additional information:

print("Registered new input: {}".format(single_input))
print("Artifact URI: {}".format(single_input.uri))
print("MLMD Artifact Info: {}".format(single_input.mlmd_artifact))

With the custom driver now in place, we need to assemble our component.

Assembling the custom component

With our ImageIngestComponentSpec defined, the ImageIngestExecutor completed,
and the ImageIngestDriver set up, let’s tie it all together in our ImageIngestCompo
nent. We could then, for example, load the component in a pipeline that trains image
classification models.

To define the actual component, we need to define the specification, executor, and
driver classes. We can do this by setting SPEC_CLASS, EXECUTOR_SPEC, and
DRIVER_CLASS, as shown in the following example code. As the final step, we need to
instantiate our ComponentSpecs with the component’s arguments (e.g., input and
output examples, and the provided name) and pass it to the instantiated ImageIngest
Component.

In the unlikely case that we don’t provide an output artifact, we can set our default
output artifact to be of type tf.Example, define our hard-coded split names, and set it
up as a channel:

from tfx.components.base import base_component
from tfx import types
from tfx.types import channel_utils

class ImageIngestComponent(base_component.BaseComponent):
    """Custom ImageIngestWorld Component."""
    SPEC_CLASS = ImageIngestComponentSpec
    EXECUTOR_SPEC = executor_spec.ExecutorClassSpec(ImageIngestExecutor)
    DRIVER_CLASS = ImageIngestDriver

    def __init__(self, input, output_data=None, name=None):
        if not output_data:
            examples_artifact = standard_artifacts.Examples()
            examples_artifact.split_names = \
                artifact_utils.encode_split_names(['train', 'eval'])

            output_data = channel_utils.as_channel([examples_artifact])

        spec = ImageIngestComponentSpec(input=input,
                                        examples=output_data,
                                        name=name)
        super(ImageIngestComponent, self).__init__(spec=spec)

206 | Chapter 10: Advanced TensorFlow Extended



By assembling our ImageIngestComponent, we have tied together the individual
pieces of our basic custom component. In the next section, we will take a look at how
we can execute our basic component.

Using our basic custom component
After implementing the entire basic component to ingest images and turn them into
TFRecord files, we can use the component like any other component in our pipeline.
The following code example shows how. Notice that it looks exactly like the setup of
other ingestion components that we discussed in Chapter 3. The only difference is
that we need to import our newly created component and then run the initialized
component:

import os

from tfx.utils.dsl_utils import external_input
from tfx.orchestration.experimental.interactive.interactive_context import \
    InteractiveContext

from image_ingestion_component.component import ImageIngestComponent

context = InteractiveContext()

image_file_path = "/path/to/files"
examples = external_input(dataimage_file_path_root)
example_gen = ImageIngestComponent(input=examples,
                                   name=u'ImageIngestComponent')
context.run(example_gen)

The output from the component can then be consumed by downstream components
like StatisticsGen:

from tfx.components import StatisticsGen

statistics_gen = StatisticsGen(examples=example_gen.outputs['examples'])
context.run(statistics_gen)

context.show(statistics_gen.outputs['statistics'])

Very Basic Implementation

We want to caution you that the discussed implementation only
provides basic functionality and is not production ready. For
details of the missing functionality, please see the following section.
For a product-ready implementation, please see our updated com‐
ponent implementation in the next sections.
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Implementation review
In the previous sections, we walked through a basic component implementation.
While the component is functioning, it is missing some key functionality that we dis‐
cussed in Chapter 3 (e.g., dynamic split names or split ratios)—and we would expect
such functionality from our ingestion component. The basic implementation also
required a lot of boiler-plate code (e.g., the setup of the component driver). The
ingestion of the images should be handled efficiently and in a scalable way. We can
achieve such efficient data ingestion through the Apache Beam usage under the hood
of TFX components.

In the next section, we will discuss how we could simplify the implementations and
adopt the patterns we discussed in Chapter 3—for example, ingesting data from
Presto databases. By reusing common functionality, such as the component drivers,
we can speed up implementation and reduce code bugs.

Reusing Existing Components
Instead of writing a component for TFX entirely from scratch, we can inherit an
existing component and customize it by overwriting the executor functionality. As
shown in Figure 10-8, this is generally the preferred approach when a component is
reusing an existing component architecture. In the case of our demo component, the
architecture is equivalent with a file base ingestion component (e.g., CsvExampleGen).
Such components receive a directory path as a component input, load the data from
the provided directory, turn the data into tf.Examples, and return the data struc‐
tures in TFRecord files as output from the component.

Figure 10-8. Extending existing components

As we discussed in Chapter 3, TFX provides the FileBasedExampleGen for this pur‐
pose. Since we are going to reuse an existing component, similar to our Avro and
Parquet examples, we can simply focus on developing our custom executor and mak‐
ing it more flexible as our previous basic component. By reusing existing code infra‐
structure, we can also piggyback on existing Apache Beam implementations.
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By reusing an existing component architecture for ingesting data into our pipelines,
we can also reuse setups to ingest data efficiently with Apache Beam. TFX and
Apache Beam provide classes (e.g., GetInputSourceToExamplePTransform) and func‐
tion decorators (e.g., @beam.ptransform_fn) to ingest the data via Apache Beam
pipelines. In our example, we use the function decorator @beam.ptransform_fn,
which allows us to define Apache Beam transformation (PTransform). The decorator
accepts an Apache Beam pipeline, runs a given transformation (e.g., in our case, the
loading of the images and their conversion to tf.Examples), and returns the Apache
Beam PCollection with the transformation results.

The conversion functionality is handled by a function very similar to our previous
implementation. The updated conversion implementation has one major difference:
we don’t need to instantiate and use a TFRecord writer; instead, we can fully focus on
loading images and converting them to tf.Examples. We don’t need to implement
any functions to write the tf.Examples to TFRecord data structures because we did it
in our previous implementation. Instead, we return the generated tf.Examples and
let the underlying TFX/Apache Beam code handle the writing of the TFRecord files.
The following code example shows the updated conversion function:

def convert_image_to_TFExample(image_path)): 

    # Determine the label for each image based on the file path.
    lowered_filename = image_path.lower()
    print(lowered_filename)
    if "dog" in lowered_filename:
        label = 0
    elif "cat" in lowered_filename:
        label = 1
    else:
        raise NotImplementedError("Found unknown image")

    # Read the image.
    raw_file = tf.io.read_file(image_path)

    # Create the TensorFlow Example data structure.
    example = tf.train.Example(features=tf.train.Features(feature={
        'image_raw': _bytes_feature(raw_file.numpy()),
        'label': _int64_feature(label)
    }))
    return example 

Only the file path is needed.

The function returns examples instead of writing them to a disk.

With the updated conversion function in place, we can now focus on implementing
the core executor functionality. Since we are customizing an existing component
architecture, we can use the same arguments as we discussed in Chapter 3, such as
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split patterns. Our image_to_example function in the following code example takes
four input arguments: an Apache Beam pipeline object, an input_dict with artifact
information, a dictionary with execution properties, and split patterns for ingestion.
In the function, we generate a list of available files in the given directories and pass
the list of images to an Apache Beam pipeline to convert each image found in the
ingestion directories to tf.Examples:

@beam.ptransform_fn
def image_to_example(
    pipeline: beam.Pipeline,
    input_dict: Dict[Text, List[types.Artifact]],
    exec_properties: Dict[Text, Any],
    split_pattern: Text) -> beam.pvalue.PCollection:

    input_base_uri = artifact_utils.get_single_uri(input_dict['input'])
    image_pattern = os.path.join(input_base_uri, split_pattern)
    absl.logging.info(
        "Processing input image data {} "
        "to tf.Example.".format(image_pattern))

    image_files = tf.io.gfile.glob(image_pattern) 
    if not image_files:
        raise RuntimeError(
            "Split pattern {} did not match any valid path."
            "".format(image_pattern))

    p_collection = (
        pipeline
        | beam.Create(image_files) 
        | 'ConvertImagesToTFRecords' >> beam.Map(
            lambda image: convert_image_to_TFExample(image)) 
    )
    return p_collection

Generate a list of files present in the ingestion paths.

Convert the list to a Beam PCollection.

Apply the conversion to every image.

The final step in our custom executor is to overwrite the GetInputSourceToExampleP
Transform of the BaseExampleGenExecutor with our image_to_example:

class ImageExampleGenExecutor(BaseExampleGenExecutor):

    @beam.ptransform_fn
    def image_to_example(...):
        ...
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    def GetInputSourceToExamplePTransform(self) -> beam.PTransform:
        return image_to_example

Our custom image ingestion component is now complete!

Using our custom executor
Since we are reusing an ingestion component and swapping out the processing exec‐
utor, we can now follow the same patterns we discussed for the Avro ingestion in
Chapter 3 and specify a custom_executor_spec. By reusing the FileBasedExample
Gen component and overwriting the executor, we can use the entire functionality of
ingestion components that we discussed in Chapter 3, like defining the input split
patterns or the output train/eval splits. The following code snippet gives a complete
example of using our custom component:

from tfx.components import FileBasedExampleGen
from tfx.utils.dsl_utils import external_input

from image_ingestion_component.executor import ImageExampleGenExecutor

input_config = example_gen_pb2.Input(splits=[
    example_gen_pb2.Input.Split(name='images',
                                pattern='sub-directory/if/needed/*.jpg'),
])

output = example_gen_pb2.Output(
    split_config=example_gen_pb2.SplitConfig(splits=[
        example_gen_pb2.SplitConfig.Split(
            name='train', hash_buckets=4),
        example_gen_pb2.SplitConfig.Split(
            name='eval', hash_buckets=1)
    ])
)

example_gen = FileBasedExampleGen(
    input=external_input("/path/to/images/"),
    input_config=input_config,
    output_config=output,
    custom_executor_spec=executor_spec.ExecutorClassSpec(
        ImageExampleGenExecutor)
)

As we have discussed in this section, extending the component executor will always
be a simpler and faster implementation than writing a custom component from
scratch. Therefore, we recommend this process if you are able to reuse existing com‐
ponent architectures.
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Summary
In the chapter, we expanded on the TFX concepts from previous chapters. We dis‐
cussed how to write custom components in detail. Writing custom components gives
us the flexibility to extend existing TFX components and tailor them for our pipeline
needs. Custom components allow us to integrate more steps into our machine learn‐
ing pipelines. By adding more components to our pipeline, we can guarantee that all
models produced by the pipeline have gone through the same steps. Since the imple‐
mentation of custom components can be complex, we reviewed a basic implementa‐
tion of a component from scratch and highlighted an implementation of a new
component executor by inheriting existing component functionality.

We also discussed advanced settings for a training setup, such as branching pipeline
graphs to produce multiple models from the same pipeline execution. This function‐
ality can be used to produce TFLite models for deployments in mobile apps. We also
discussed warm starting the training process to continuously train machine learning
models. Warm starting model training is a great way of shortening the training steps
for continuously trained models.

We introduced the concept of having a human in the loop in a machine learning
pipeline setup and also discussed how the experimental component can be imple‐
mented. The human in the loop concept is a way of adding an expert review as a
required pipeline step before deploying models. We believe that the combination of
fully automated components and a few, critical reviews by data scientists will support
the adoption of machine learning pipelines.

In the next two chapters, we will take a look at how to run our TFX pipeline in the
orchestration environment of your choice.
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CHAPTER 11

Pipelines Part 1: Apache Beam
and Apache Airflow

In the previous chapters, we introduced all the necessary components to build a
machine learning pipeline using TFX. In this chapter, we will put all the components
together and show how to run the full pipeline with two orchestrators: Apache Beam
and Apache Airflow. In Chapter 12, we will also show how to run the pipeline with
Kubeflow Pipelines. All of these tools follow similar principles, but we will show how
the details differ and provide example code for each.

As we discussed in Chapter 1, the pipeline orchestration tool is vital to abstract the
glue code that we would otherwise need to write to automate a machine learning
pipeline. As shown in Figure 11-1, the pipeline orchestrators sit underneath the com‐
ponents we have already mentioned in previous chapters. Without one of these
orchestration tools, we would need to write code that checks when one component
has finished, starts the next component, schedules runs of the pipeline, and so on.
Fortunately all this code already exists in the form of these orchestrators!

Figure 11-1. Pipeline orchestrators

We will start this chapter by discussing the use cases for the different tools. Then, we
will walk through some common code that is required to move from an interactive
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pipeline to one that can be orchestrated by these tools. Apache Beam and Apache
Airflow are simpler to set up than Kubeflow Pipelines, so we will discuss them in this
chapter before moving on to the more powerful Kubeflow Pipelines in Chapter 12.

Which Orchestration Tool to Choose?
In this chapter and in Chapter 12, we discuss three orchestration tools that you could
use to run your pipelines: Apache Beam, Apache Airflow, and Kubeflow Pipelines.
You need to pick only one of them to run each pipeline. Before we take a deep dive
into how to use all of these tools, we will describe some of the benefits and drawbacks
to each of them, which will help you decide what is best for your needs.

Apache Beam
If you are using TFX for your pipeline tasks, you have already installed Apache Beam.
Therefore, if you are looking for a minimal installation, reusing Beam to orchestrate
is a logical choice. It is straightforward to set up, and it also allows you to use any
existing distributed data processing infrastructure you might already be familiar with
(e.g., Google Cloud Dataflow). You can also use Beam as an intermediate step to
ensure your pipeline runs correctly before moving to Airflow or Kubeflow Pipelines.

However, Apache Beam is missing a variety of tools for scheduling your model
updates or monitoring the process of a pipeline job. That’s where Apache Airflow
and Kubeflow Pipelines shine.

Apache Airflow
Apache Airflow is often already used in companies for data-loading tasks. Expanding
an existing Apache Airflow setup to run your pipeline means you would not need to
learn a new tool such as Kubeflow.

If you use Apache Airflow in combination with a production-ready database like
PostgreSQL, you can take advantage of executing partial pipelines. This can save a
significant amount of time if a time-consuming pipeline fails and you want to avoid
rerunning all the previous pipeline steps.

Kubeflow Pipelines
If you already have experience with Kubernetes and access to a Kubernetes cluster, it
makes sense to consider Kubeflow Pipelines. While the setup of Kubeflow is more
complicated than the Airflow installation, it opens up a variety of new opportunities,
including the ability to view TFDV and TFMA visualizations, model lineage, and the
artifact collections.
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Kubernetes is also an excellent infrastructure platform to deploy machine learning
models. Inference routing through the Kubernetes tool Istio is currently state of the
art in the field of machine learning infrastructure.

You can set up a Kubernetes cluster with a variety of cloud providers, so you are not
limited to a single vendor. Kubeflow Pipelines also lets you take advantage of state-
of-the-art training hardware supplied by cloud providers. You can run your pipeline
efficiently and scale up and down the nodes of your cluster.

Kubeflow Pipelines on AI Platform
It’s also possible to run Kubeflow Pipelines on Google’s AI Platform, which is part of
GCP. This takes care of much of the infrastructure for you and makes it easy to load
data from Google Cloud Storage buckets. Also, the integration of Google’s Dataflow
simplifies the scaling of your pipelines. However, this locks you into one single cloud
provider.

If you decide to go with Apache Beam or Airflow, this chapter has the information
you will need. If you choose Kubeflow (either via Kubernetes or on Google Cloud’s
AI Platform), you will only need to read the next section of this chapter. This will
show you how to convert your interactive pipeline to a script, and then you can head
over to Chapter 12 afterward.

Converting Your Interactive TFX Pipeline to a
Production Pipeline
Up to this point, our examples have shown how to run all the different components
of a TFX pipeline in a notebook-style environment, or interactive context. To run the
pipeline in a notebook, each component needs to be triggered manually when the
previous one has finished. In order to automate our pipelines, we will need to write a
Python script that will run all these components without any input from us.

Fortunately, we already have all the pieces of this script. We’ll summarize all the pipe‐
line components that we have discussed so far:

ExampleGen

Ingests the new data from the data source we wish to use (Chapter 3)

StatisticsGen

Calculates the summary statistics of the new data (Chapter 4)

SchemaGen

Defines the expected features for the model, as well as their types and ranges
(Chapter 4)
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ExampleValidator

Checks the data against the schema and flags any anomalies (Chapter 4)

Transform

Preprocesses the data into the correct numerical representation that the model is
expecting (Chapter 5)

Trainer

Trains the model on the new data (Chapter 6)

Resolver

Checks for the presence of a previously blessed model and returns it for compari‐
son (Chapter 7)

Evaluator

Evaluates the model’s performance on an evaluation dataset and validates the
model if it is an improvement on the previous version (Chapter 7)

Pusher

Pushes the model to a serving directory if it passes the validation step (Chapter 7)

The full pipeline is shown in Example 11-1.

Example 11-1. The base pipeline

import tensorflow_model_analysis as tfma
from tfx.components import (CsvExampleGen, Evaluator, ExampleValidator, Pusher,
                            ResolverNode, SchemaGen, StatisticsGen, Trainer,
                            Transform)
from tfx.components.base import executor_spec
from tfx.components.trainer.executor import GenericExecutor
from tfx.dsl.experimental import latest_blessed_model_resolver
from tfx.proto import pusher_pb2, trainer_pb2
from tfx.types import Channel
from tfx.types.standard_artifacts import Model, ModelBlessing
from tfx.utils.dsl_utils import external_input

def init_components(data_dir, module_file, serving_model_dir,
                    training_steps=2000, eval_steps=200):

    examples = external_input(data_dir)
    example_gen = CsvExampleGen(...)
    statistics_gen = StatisticsGen(...)
    schema_gen = SchemaGen(...)
    example_validator = ExampleValidator(...)
    transform = Transform(...)
    trainer = Trainer(...)
    model_resolver = ResolverNode(...)
    eval_config=tfma.EvalConfig(...)
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    evaluator = Evaluator(...)
    pusher = Pusher(...)

    components = [
        example_gen,
        statistics_gen,
        schema_gen,
        example_validator,
        transform,
        trainer,
        model_resolver,
        evaluator,
        pusher
    ]
    return components

In our example project, we have split the component instantiation from the pipeline
configuration to focus on the pipeline setup for the different orchestrators.

The init_components function instantiates the components. It requires three inputs
in addition to the number of training steps and evaluation steps:

data_dir

Path where the training/eval data can be found.

module_file

Python module required by the Transform and Trainer components. These are
described in Chapters 5 and 6, respectively.

serving_model_dir

Path where the exported model should be stored.

Besides the small tweaks to the Google Cloud setup we will discuss in Chapter 12, the
component setup will be identical for each orchestrator platform. Therefore, we’ll
reuse the component definition across the different example setups for Apache Beam,
Apache Airflow, and Kubeflow Pipelines. If you would like to use Kubeflow Pipe‐
lines, you may find Beam is useful for debugging your pipeline. But if you would like
to jump straight in to Kubeflow Pipelines, turn to the next chapter!

Simple Interactive Pipeline Conversion for
Beam and Airflow
If you would like to orchestrate your pipeline using Apache Beam or Airflow, you can
also convert a notebook to a pipeline via the following steps. For any cells in your
notebook that you don’t want to export, use the %%skip_for_export Jupyter magic
command at the start of each cell.

First, set the pipeline name and the orchestration tool:
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runner_type = 'beam' 
pipeline_name = 'consumer_complaints_beam'

Alternatively, airflow.

Then, set all the relevant file paths:

notebook_file = os.path.join(os.getcwd(), notebook_filename)

# Pipeline inputs
data_dir = os.path.join(pipeline_dir, 'data')
module_file = os.path.join(pipeline_dir, 'components', 'module.py')
requirement_file = os.path.join(pipeline_dir, 'requirements.txt')

# Pipeline outputs
output_base = os.path.join(pipeline_dir, 'output', pipeline_name)
serving_model_dir = os.path.join(output_base, pipeline_name)
pipeline_root = os.path.join(output_base, 'pipeline_root')
metadata_path = os.path.join(pipeline_root, 'metadata.sqlite')

Next, list the components you wish to include in your pipeline:

components = [
    example_gen, statistics_gen, schema_gen, example_validator,
    transform, trainer, evaluator, pusher
]

And export the pipeline:

pipeline_export_file = 'consumer_complaints_beam_export.py'
context.export_to_pipeline(notebook_file path=_notebook_file,
                           export_file path=pipeline_export_file,
                           runner_type=runner_type)

This export command will generate a script that can be run using Beam or Airflow,
depending on the runner_type you choose.

Introduction to Apache Beam
Because Apache Beam is running behind the scenes in many TFX components, we
introduced it in Chapter 2. Various TFX components (e.g., TFDV or TensorFlow
Transform) use Apache Beam for the abstraction of the internal data processing. But
many of the same Beam functions can also be used to run your pipeline. In the next
section, we’ll show you how to orchestrate our example project using Beam.
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Orchestrating TFX Pipelines with Apache Beam
Apache Beam is already installed as a dependency of TFX, and this makes it very easy
to start using it as our pipeline orchestration tool. Beam is very simple and does not
have all the functionality of Airflow or Kubeflow Pipelines, like graph visualizations,
scheduled executions, etc.

Beam can also be a good way to debug your machine learning pipeline. By using
Beam during your pipeline debugging and then moving to Airflow or Kubeflow Pipe‐
lines, you can rule out root causes of pipeline errors coming from the more complex
Airflow or Kubeflow Pipelines setups.

In this section, we will run through how to set up and execute our example TFX pipe‐
line with Beam. We introduced the Beam Pipeline function in Chapter 2. This is
what we’ll use together with our Example 11-1 script to run the pipeline. We will
define a Beam Pipeline that accepts the TFX pipeline components as an argument
and also connects to the SQLite database holding the ML MetadataStore:

import absl
from tfx.orchestration import metadata, pipeline

def init_beam_pipeline(components, pipeline_root, direct_num_workers):

    absl.logging.info("Pipeline root set to: {}".format(pipeline_root))
    beam_arg = [
        "--direct_num_workers={}".format(direct_num_workers), 
        "--requirements_file={}".format(requirement_file)
    ]

    p = pipeline.Pipeline( 
        pipeline_name=pipeline_name,
        pipeline_root=pipeline_root,
        components=components,
        enable_cache=False, 
        metadata_connection_config=\
            metadata.sqlite_metadata_connection_config(metadata_path),
        beam_pipeline_args=beam_arg)
    return p

Beam lets you specify the number of workers. A sensible default is half the num‐
ber of CPUs (if there is more than one CPU).

This is where you define your pipeline object with a configuration.

We can set the cache to True if we would like to avoid rerunning components
that have already finished. If we set this flag to False, everything gets recompu‐
ted every time we run the pipeline.
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The Beam pipeline configuration needs to include the name of the pipeline, the path
to the root of the pipeline directory, and a list of components to be executed as part
of the pipeline.

Next, we will initialize the components from Example 11-1, initialize the pipeline as
earlier, and run the pipeline using BeamDagRunner().run(pipeline):

from tfx.orchestration.beam.beam_dag_runner import BeamDagRunner

components = init_components(data_dir, module_file, serving_model_dir,
                                training_steps=100, eval_steps=100)
pipeline = init_beam_pipeline(components, pipeline_root, direct_num_workers)
BeamDagRunner().run(pipeline)

This is a minimal setup that you can easily integrate with the rest of your infrastruc‐
ture or schedule using a cron job. You can also scale up this pipeline using Apache
Flink or Spark. An example using Flink is briefly described in this TFX example.

In the next section, we will move on to Apache Airflow, which offers many extra fea‐
tures when we use it to orchestrate our pipelines.

Introduction to Apache Airflow
Airflow is Apache’s project for workflow automation. The project was initiated in
2016, and it has gained significant attention from large corporations and the general
data science community since then. In December 2018, the project “graduated” from
the Apache Incubator and became its own Apache project.

Apache Airflow lets you represent workflow tasks through DAGs represented via
Python code. Also, Airflow lets you schedule and monitor workflows. This makes it
an ideal orchestration tool for our TFX pipelines.

In this section, we’ll go through the basics of setting up Airflow. Then, we’ll show
how we can use it to run our example project.

Installation and Initial Setup
The basic setup of Apache Airflow is straightforward. If you are using Mac or Linux,
define the location for the Airflow data with this command:

$ export AIRFLOW_HOME=~/airflow

Once the main data folder for Airflow is defined, you can install Airflow:

$ pip install apache-airflow

Airflow can be installed with a variety of dependencies. At the time of writing, the list
of extensions is PostgreSQL support, Dask, Celery, and Kubernetes.
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A complete list of Airflow extensions and how to install them can be found in the
Airflow documentation.

With Airflow now installed, you need to create an initial database where all the task
status information will be stored. Airflow provides you a command to initialize the
Airflow database:

$ airflow initdb

If you use Airflow out of the box and haven’t changed any configurations, Airflow
will instantiate an SQLite database. This setup works to execute demo projects and to
run smaller workflows. If you want to scale your workflow with Apache Airflow, we
highly recommend a deep dive into the documentation.

A minimal Airflow setup consists of the Airflow scheduler, which coordinates the
tasks and task dependencies, as well as a web server, which provides a UI to start,
stop, and monitor the tasks.

Start the scheduler with the following command:

$ airflow scheduler

In a different terminal window, start the Airflow web server with this command:

$ airflow webserver -p 8081

The command argument -p sets the port where your web browser can access the Air‐
flow interface. When everything is working, go to http://127.0.0.1:8081 and you
should see the interface shown in Figure 11-2.

Figure 11-2. Apache Airflow UI
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Airflow Configuration

The default settings of Airflow can be overwritten by changing the
relevant parameters in the Airflow configuration. If you store your
graph definitions in a different place than ~/airflow/dags, you
may want to overwrite the default configuration by defining the
new locations of the pipeline graphs in ~/airflow/airflow.cfg.

Basic Airflow Example
With the Airflow installation in place, let’s take a look at how to set up a basic Air‐
flow pipeline. In this example, we won’t include any TFX components.

Workflow pipelines are defined as Python scripts, and Airflow expects the DAG defi‐
nitions to be located in ~/airflow/dags. A basic pipeline consists of project-specific
Airflow configurations, task definitions, and the definition of the task dependencies.

Project-specific configurations
Airflow gives you the option to configure project-specific settings, such as when to
retry failed workflows or notifying a specific person if a workflow fails. The list of
configuration options is extensive. We recommend you reference the Airflow docu‐
mentation for an updated overview.

Your Airflow pipeline definitions start with importing the relevant Python modules
and project configurations:

from airflow import DAG
from datetime import datetime, timedelta

project_cfg = { 
    'owner': 'airflow',
    'email': ['your-email@example.com'],
    'email_on_failure': True,
    'start_date': datetime(2019, 8, 1),
    'retries': 1,
    'retry_delay': timedelta(hours=1),
}

dag = DAG( 
    'basic_pipeline',
    default_args=project_cfg,
    schedule_interval=timedelta(days=1))

Location to define the project configuration.

The DAG object will be picked up by Airflow.

Again, Airflow provides a range of configuration options to set up DAG objects.
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Task definitions
Once the DAG object is set up, we can create workflow tasks. Airflow provides task
operators that execute tasks in a Bash or Python environment. Other predefined
operators let you connect to cloud data storage buckets like GCP Storage or AWS S3.

A very basic example of task definitions is shown in the following:

from airflow.operators.python_operator import PythonOperator

def example_task(_id, **kwargs):
    print("task {}".format(_id))
    return "completed task {}".format(_id)

task_1 = PythonOperator(
    task_id='task 1',
    provide_context=True,
    python_callable=example_task,
    op_kwargs={'_id': 1},
    dag=dag,
)

task_2 = PythonOperator(
    task_id='task 2',
    provide_context=True,
    python_callable=example_task,
    op_kwargs={'_id': 2},
    dag=dag,
)

In a TFX pipeline, you don’t need to define these tasks because the TFX library takes
care of it for you. But these examples will help you understand what is going on
behind the scenes.

Task dependencies
In our machine learning pipelines, tasks depend on each other. For example, our
model training tasks require that data validation is performed before training starts.
Airflow gives you a variety of options for declaring these dependencies.

Let’s assume that our task_2 depends on task_1. You could define the task depend‐
ency as follows:

task_1.set_downstream(task_2)

Airflow also offers a bit-shift operator to denote the task dependencies:

task_1 >> task_2 >> task_X

In the preceding example, we defined a chain of tasks. Each of the tasks will be exe‐
cuted if the previous task is successfully completed. If a task does not complete suc‐
cessfully, dependent tasks will not be executed and Airflow marks them as skipped.
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Again, this will be taken care of by the TFX library in a TFX pipeline.

Putting it all together

After explaining all the individual setup steps, let’s put it all together. In your DAG
folder in your AIRFLOW_HOME path, usually at ~/airflow/dags, create a new file
basic_pipeline.py:

from airflow import DAG
from airflow.operators.python_operator import PythonOperator
from datetime import datetime, timedelta

project_cfg = {
    'owner': 'airflow',
    'email': ['your-email@example.com'],
    'email_on_failure': True,
    'start_date': datetime(2020, 5, 13),
    'retries': 1,
    'retry_delay': timedelta(hours=1),
}

dag = DAG('basic_pipeline',
          default_args=project_cfg,
          schedule_interval=timedelta(days=1))

def example_task(_id, **kwargs):
    print("Task {}".format(_id))
    return "completed task {}".format(_id)

task_1 = PythonOperator(
    task_id='task_1',
    provide_context=True,
    python_callable=example_task,
    op_kwargs={'_id': 1},
    dag=dag,
)

task_2 = PythonOperator(
    task_id='task_2',
    provide_context=True,
    python_callable=example_task,
    op_kwargs={'_id': 2},
    dag=dag,
)

task_1 >> task_2

You can test the pipeline setup by executing this command in your terminal:

python ~/airflow/dags/basic_pipeline.py
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Our print statement will be printed to Airflow’s log files instead of the terminal. You
can find the log file at:

~/airflow/logs/NAME OF YOUR PIPELINE/TASK NAME/EXECUTION TIME/

If we want to inspect the results of the first task from our basic pipeline, we have to
investigate the log file:

$ cat ../logs/basic_pipeline/task_1/2019-09-07T19\:36\:18.027474+00\:00/1.log

...

[2019-09-07 19:36:25,165] {logging_mixin.py:95} INFO - Task 1 
[2019-09-07 19:36:25,166] {python_operator.py:114} INFO - Done. Returned value was:
    completed task 1

[2019-09-07 19:36:26,112] {logging_mixin.py:95} INFO - [2019-09-07 19:36:26,112] 
    {local_task_job.py:105} INFO - Task exited with return code 0

Our print statement

Our return message after a successful completion

To test whether Airflow recognized the new pipeline, you can execute:

$ airflow list_dags

-------------------------------------------------------------------
DAGS
-------------------------------------------------------------------
basic_pipeline

This shows that the pipeline was recognized successfully.

Now that you have an understanding of the principles behind an Airflow pipeline,
let’s put it into practice with our example project.

Orchestrating TFX Pipelines with Apache Airflow
In this section, we will demonstrate how we can orchestrate TFX pipelines with Air‐
flow. This lets us use features such as Airflow’s UI and its scheduling capabilities,
which are very helpful in a production setup.

Pipeline Setup
Setting up a TFX pipeline with Airflow is very similar to the BeamDagRunner setup for
Beam, except that we have to configure more settings for the Airflow use case.

Instead of importing the BeamDagRunner, we will use the AirflowDAGRunner. The
runner tasks an additional argument, which is the configurations of Apache Airflow
(the same configurations that we discussed in “Project-specific configurations” on
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page 222). The AirflowDagRunner takes care of all the task definitions and dependen‐
cies that we described previously so that we can focus on our pipeline.

As we discussed earlier, the files for an Airflow pipeline need to be located in the ~/
airflow/dags folder. We also discussed some common configurations for Airflow,
such as scheduling. We provide these for our pipeline:

airflow_config = {
    'schedule_interval': None,
    'start_date': datetime.datetime(2020, 4, 17),
    'pipeline_name': 'your_ml_pipeline',
}

Similar to the Beam example, we initialize the components and define the number of
workers:

from tfx.orchestration import metadata, pipeline

def init_pipeline(components, pipeline_root:Text,
                  direct_num_workers:int) -> pipeline.Pipeline:

    beam_arg = [
        "--direct_num_workers={}".format(direct_num_workers),
    ]
    p = pipeline.Pipeline(pipeline_name=pipeline_name,
                          pipeline_root=pipeline_root,
                          components=components,
                          enable_cache=True,
                          metadata_connection_config=metadata.
                          sqlite_metadata_connection_config(metadata_path),
                          beam_pipeline_args=beam_arg)
    return p

Then, we initialize the pipeline and execute it:

from tfx.orchestration.airflow.airflow_dag_runner import AirflowDagRunner
from tfx.orchestration.airflow.airflow_dag_runner import AirflowPipelineConfig
from base_pipeline import init_components

components = init_components(data_dir, module_file, serving_model_dir,
                                training_steps=100, eval_steps=100)
pipeline = init_pipeline(components, pipeline_root, 0)
DAG = AirflowDagRunner(AirflowPipelineConfig(airflow_config)).run(pipeline)

Again, this code is very similar to the code for the Apache Beam pipeline, but instead
of BeamDagRunner, we use AirflowDagRunner and AirflowPipelineConfig. We initi‐
alize the components using Example 11-1, and then Airflow looks for a variable
named DAG.

In this book’s GitHub repo, we provide a Docker container that allows you to easily
try out the example pipeline using Airflow. It sets up the Airflow web server and
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scheduler, and moves the files to the correct locations. You can also learn more about
Docker in Appendix A.

Pipeline Execution
As we discussed earlier, once we have started our Airflow web server, we can open
the UI at the port we define. The view should look very similar to Figure 11-3. To run
a pipeline, we need to turn the pipeline on and then trigger it using the Trigger DAG
button, indicated by the Play icon.

Figure 11-3. Turning on a DAG in Airflow

The graph view in the web server UI (Figure 11-4) is useful to see the dependencies of
the components and the progress of the pipeline execution.

Figure 11-4. Airflow graph view
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You will need to refresh the browser page to see the updated progress. As the compo‐
nents finish, they will acquire a green box around the edge, as shown in Figure 11-5.
You can view the logs from each component by clicking on them.

Figure 11-5. Completed pipeline in Airflow

Orchestrating pipelines with Airflow is a good choice if you want a fairly lightweight
setup that includes a UI or if your company is already using Airflow. But if your com‐
pany is already running Kubernetes clusters, the next chapter describes Kubeflow
Pipelines, a much better orchestration tool for this situation.

Summary
In this chapter, we discussed the different options for orchestrating your machine
learning pipelines. You need to choose the tool that best suits your setup and your
use case. We demonstrated how to use Apache Beam to run a pipeline, then intro‐
duced Airflow and its principles, and finally showed how to run the complete pipe‐
line with Airflow.

In the next chapter, we will show how to run pipelines using Kubeflow Pipelines and
Google’s AI Platform. If these do not fit your use case, you can skip straight to Chap‐
ter 13 where we will show you how to turn your pipeline into a cycle using feedback
loops.
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CHAPTER 12

Pipelines Part 2: Kubeflow Pipelines

In Chapter 11, we discussed the orchestration of our pipelines with Apache Beam and
Apache Airflow. These two orchestration tools have some great benefits: Apache
Beam is simple to set up, and Apache Airflow is widely adopted for other ETL tasks.

In this chapter, we want to discuss the orchestration of our pipelines with Kubeflow
Pipelines. Kubeflow Pipelines allows us to run machine learning tasks within Kuber‐
netes clusters, which provides a highly scalable pipeline solution. As we discussed in
Chapter 11 and show in Figure 12-1, our orchestration tool takes care of the coordi‐
nation between the pipeline components.

Figure 12-1. Pipeline orchestrators

The setup of Kubeflow Pipelines is more complex than the installation of Apache
Airflow or Apache Beam. But, as we will discuss later in this chapter, it provides great
features, including Pipeline Lineage Browser, TensorBoard Integration, and the ability
to view TFDV and TFMA visualizations. Furthermore, it leverages the advantages of
Kubernetes, such as autoscaling of computation pods, persistent volume, resource
requests, and limits, to name just a few.

This chapter is split into two parts. In the first part, we will discuss how to set up and
execute pipelines with Kubeflow Pipelines. The demonstrated setup is independent
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from the execution environment. It can be a cloud provider offering managed Kuber‐
netes clusters or an on-premise Kubernetes installation.

Introduction to Kubernetes

If Kubernetes concepts and terminology are new to you, check out
our appendices. Appendix A provides a brief overview of
Kubernetes.

In the second part of the chapter, we will discuss how to run Kubeflow Pipelines with
the Google Cloud AI Platform. This is specific to the Google Cloud environment. It
takes care of much of the infrastructure and lets you use Dataflow to easily scale data
tasks (e.g., the data preprocessing). We recommend this route if you would like to use
Kubeflow Pipelines but do not want to spend time managing your Kubernetes
infrastructure.

Introduction to Kubeflow Pipelines
Kubeflow Pipelines is a Kubernetes-based orchestration tool with machine learning
in mind. While Apache Airflow was designed for ETL processes, Kubeflow Pipelines
has the end-to-end execution of machine learning pipelines at its heart.

Kubeflow Pipelines provides a consistent UI to track machine learning pipeline runs,
a central place to collaborate between data scientists (as we’ll discuss in “Useful Fea‐
tures of Kubeflow Pipelines” on page 247), and a way to schedule runs for continuous
model builds. In addition, Kubeflow Pipelines provides its own software development
kit (SDK) to build Docker containers for pipeline runs or to orchestrate containers.
The Kubeflow Pipeline domain-specific language (DSL) allows more flexibility in set‐
ting up pipeline steps but also requires more coordination between the components.
We think TFX pipelines lead to a higher level of pipeline standardization and, there‐
fore, are less error prone. If you are interested in more details about the Kubeflow
Pipelines SDK, we can recommend the suggested reading in “Kubeflow Versus Kube‐
flow Pipelines” on page 231.

When we set up Kubeflow Pipelines, as we discuss in “Installation and Initial Setup”
on page 232, Kubeflow Pipelines will install a variety of tools, including the UI, the
workflow controller, a MySQL database instance, and the ML MetadataStore we dis‐
cussed in “What Is ML Metadata?” on page 17.

When we run our TFX pipeline with Kubeflow Pipelines, you will notice that every
component is run as its own Kubernetes pod. As shown in Figure 12-2, each compo‐
nent connects with the central metadata store in the cluster and can load artifacts
from either a persistent storage volume of a Kubernetes cluster or from a cloud stor‐
age bucket. All the outputs of the components (e.g., data statistics from the TFDV

230 | Chapter 12: Pipelines Part 2: Kubeflow Pipelines



execution or the exported models) are registered with the metadata store and stored
as artifacts on a persistent volume or a cloud storage bucket.

Figure 12-2. Overview of Kubeflow Pipelines

Kubeflow Versus Kubeflow Pipelines
Kubeflow and Kubeflow Pipelines are often mixed up. Kubeflow is a suite of open
source projects which encompass a variety of machine learning tools, including
TFJob for the training of machine models, Katib for the optimization of model hyper‐
parameters, and KFServing for the deployment of machine learning models. Kube‐
flow Pipelines is another one of the projects of the Kubeflow suite, and it is focused
on deploying and managing end-to-end ML workflows.

In this chapter, we will focus on the installation and the operation of Kubeflow Pipe‐
lines only. If you are interested in a deeper introduction to Kubeflow, we recommend
the project’s documentation.

Furthermore, we can recommend two Kubeflow books:

• Kubeflow Operations Guide by Josh Patterson et al. (O’Reilly)
• Kubeflow for Machine Learning (forthcoming) by Holden Karau et al. (O’Reilly)
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As we will demonstrate in this chapter, Kubeflow Pipelines provides a highly scalable
way of running machine learning pipelines. Kubeflow Pipelines is running Argo
behind the scenes to orchestrate the individual component dependencies. Due to this
orchestration through Argo, our pipeline orchestration will have a different work‐
flow, as we discussed in Chapter 11. We will take a look at the Kubeflow Pipelines
orchestration workflow in “Orchestrating TFX Pipelines with Kubeflow Pipelines” on
page 235.

What Is Argo?
Argo is a collection of tools for managing workflows, rollouts, and continuous deliv‐
ery tasks. Initially designed to manage DevOps tasks, it is also a great manager for
machine learning workflows. Argo manages all tasks as containers within the Kuber‐
netes environment. For more information, please check out the continuously growing
documentation.

Installation and Initial Setup
Kubeflow Pipelines is executed inside a Kubernetes cluster. For this section, we will
assume that you have a Kubernetes cluster created with at least 16 GB and 8 CPUs
across your node pool and that you have configured kubectl to connect with your
newly created Kubernetes cluster.

Create a Kubernetes Cluster
For a basic setup of a Kubernetes cluster on a local machine or a cloud provider like
Google Cloud, please check out Appendix A and Appendix B. Due to the resource
requirements by Kubeflow Pipelines, the Kubernetes setup with a cloud provider is
preferred. Managed Kubernetes services available from cloud providers include:

1. Amazon Elastic Kubernetes Service (Amazon EKS)
2. Google Kubernetes Engine (GKE)
3. Microsoft Azure Kubernetes Service (AKS)
4. IBM’s Kubernetes Service

For more details regarding Kubeflow’s underlying architecture, Kubernetes, we
highly recommend Kubernetes: Up and Running by Brendan Burns et al. (O’Reilly).

For the orchestration of our pipeline, we are installing Kubeflow Pipelines as a stand‐
alone application and without all the other tools that are part of the Kubeflow project.
With the following bash commands, we can set up our standalone Kubeflow
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Pipelines installation. The complete setup might take five minutes to fully spin up
correctly.

$ export PIPELINE_VERSION=0.5.0
$ kubectl apply -k "github.com/kubeflow/pipelines/manifests/"\
    "kustomize/cluster-scoped-resources?ref=$PIPELINE_VERSION"
customresourcedefinition.apiextensions.k8s.io/
    applications.app.k8s.io created
...
clusterrolebinding.rbac.authorization.k8s.io/
    kubeflow-pipelines-cache-deployer-clusterrolebinding created

$ kubectl wait --for condition=established \
               --timeout=60s crd/applications.app.k8s.io
customresourcedefinition.apiextensions.k8s.io/
    applications.app.k8s.io condition met

$ kubectl apply -k "github.com/kubeflow/pipelines/manifests/"\
    "kustomize/env/dev?ref=$PIPELINE_VERSION"

You can check the progress of the installation by printing the information about the
created pods:

$ kubectl -n kubeflow get pods
NAME                                              READY   STATUS       AGE
cache-deployer-deployment-c6896d66b-62gc5         0/1     Pending      90s
cache-server-8869f945b-4k7qk                      0/1     Pending      89s
controller-manager-5cbdfbc5bd-bnfxx               0/1     Pending      89s
...

After a few minutes, the status of all the pods should turn to Running. If your pipe‐
line is experiencing any issues (e.g., not enough compute resources), the pods’ status
would indicate the error:

$ kubectl -n kubeflow get pods
NAME                                              READY   STATUS       AGE
cache-deployer-deployment-c6896d66b-62gc5         1/1     Running      4m6s
cache-server-8869f945b-4k7qk                      1/1     Running      4m6s
controller-manager-5cbdfbc5bd-bnfxx               1/1     Running      4m6s
...

Individual pods can be investigated with:
kubectl -n kubeflow describe pod <pod name>

Managed Kubeflow Pipelines Installations

If you would like to experiment with Kubeflow Pipelines, Google
Cloud provides managed installations through the Google Cloud
AI Platform. In “Pipelines Based on Google Cloud AI Platform” on
page 252, we’ll discuss in-depth how to run your TFX pipelines on
Google Cloud’s AI Platform and how to create setups on Kubeflow
Pipelines from Google Cloud’s Marketplace.
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Accessing Your Kubeflow Pipelines Installation
If the installation completed successfully, regardless of your cloud provider or Kuber‐
netes service, you can access the installed Kubeflow Pipelines UI by creating a port
forward with Kubernetes:

$ kubectl port-forward -n kubeflow svc/ml-pipeline-ui 8080:80

With the port forward running, you can access Kubeflow Pipelines in your browser
by accessing http://localhost:8080. For production use cases, a load balancer should be
created for the Kubernetes service.

Google Cloud users can access Kubeflow Pipelines by accessing the public domain
created for your Kubeflow installation. You can obtain the URL by executing:

$ kubectl describe configmap inverse-proxy-config -n kubeflow \
| grep googleusercontent.com
<id>-dot-<region>.pipelines.googleusercontent.com

You can then access the provided URL with your browser of choice. If everything
works out, you will see the Kubeflow Pipelines dashboard or the landing page, as
shown in Figure 12-3.

Figure 12-3. Getting started with Kubeflow Pipelines
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With the Kubeflow Pipelines setup up and running, we can focus on how to run
pipelines. In the next section, we will discuss the pipeline orchestration and the work‐
flow from TFX to Kubeflow Pipelines.

Orchestrating TFX Pipelines with Kubeflow Pipelines
In earlier sections, we discussed how to set up the Kubeflow Pipelines application on
Kubernetes. In this section, we will describe how to run your pipelines on the Kube‐
flow Pipelines setup, and we’ll focus on execution only within your Kubernetes clus‐
ters. This guarantees that the pipeline execution can be performed on clusters
independent from the cloud service provider. In “Pipelines Based on Google Cloud
AI Platform” on page 252, we’ll show how we can take advantage of a managed cloud
service like GCP’s Dataflow to scale your pipelines beyond your Kubernetes cluster.

Before we get into the details of how to orchestrate machine learning pipelines with
Kubeflow Pipelines, we want to step back for a moment. The workflow from TFX
code to your pipeline execution is a little more complex than what we discussed in
Chapter 11, so we will begin with an overview of the full picture. Figure 12-4 shows
the overall architecture.

As with Airflow and Beam, we still need a Python script that defines the TFX compo‐
nents in our pipeline. We’ll reuse the Example 11-1 script from Chapter 11. In con‐
trast to the execution of the Apache Beam or Airflow TFX runners, the Kubeflow
runner won’t trigger a pipeline run, but rather generates the configuration files for an
execution on the Kubeflow setup.

As shown in Figure 12-4, TFX KubeflowRunner will convert our Python TFX scripts
with all the component specifications to Argo instructions, which can then be exe‐
cuted with Kubeflow Pipelines. Argo will spin up each TFX component as its own
Kubernetes pod and run the TFX Executor for the specific component in the
container.
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Figure 12-4. Workflow from TFX script to Kubeflow Pipelines

Custom TFX Container Images

The TFX image used for all component containers needs to include
all required Python packages. The default TFX image provides a
recent TensorFlow version and basic packages. If your pipeline
requires additional packages, you will need to build a custom TFX
container image and specify it in the KubeflowDagRunnerConfig.
We describe how to do this in Appendix C.

All components need to read or write to a filesystem outside of the executor con‐
tainer itself. For example, the data ingestion component needs to read the data from a
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1 You can follow along with the script that generates the Argo YAML instructions in the book’s GitHub repo.

filesystem or the final model needs to be pushed by the Pusher to a particular loca‐
tion. It would be impractical to read and write only within the component container;
therefore, we recommend storing artifacts in hard drives that can be accessed by all
components (e.g., in cloud storage buckets or persistent volumes in a Kubernetes
cluster). If you are interested in setting up a persistent volume, check out “Exchange
Data Through Persistent Volumes” on page 319 in Appendix C.

Pipeline Setup
You can store your training data, Python module, and pipeline artifacts in a cloud
storage bucket or in a persistent volume; that is up to you. Your pipeline just needs
access to the files. If you choose to read or write data to and from cloud storage buck‐
ets, make sure that your TFX components have the necessary cloud credentials when
running in your Kubernetes cluster.

With all files in place, and a custom TFX image for our pipeline containers (if
required), we can now “assemble” the TFX Runner script to generate the Argo YAML
instructions for our Kubeflow Pipelines execution.1

As we discussed in Chapter 11, we can reuse the init_components function to gener‐
ate our components. This allows us to focus on the Kubeflow-specific configuration.

First, let’s configure the file path for our Python module code required to run the
Transform and Trainer components. In addition, we will set setting the folder loca‐
tions for our raw training data, the pipeline artifacts, and the location where our
trained model should be stored at. In the following example, we show you how to
mount a persistent volume with TFX:

import os

pipeline_name = 'consumer_complaint_pipeline_kubeflow'

persistent_volume_claim = 'tfx-pvc'
persistent_volume = 'tfx-pv'
persistent_volume_mount = '/tfx-data'

# Pipeline inputs
data_dir = os.path.join(persistent_volume_mount, 'data')
module_file = os.path.join(persistent_volume_mount, 'components', 'module.py')

# Pipeline outputs
output_base = os.path.join(persistent_volume_mount, 'output', pipeline_name)
serving_model_dir = os.path.join(output_base, pipeline_name)
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2 For more information on Kubernetes ConfigMaps, check out “Some Kubernetes Definitions” on page 303.

If you decide to use a cloud storage provider, the root of the folder structure can be a
bucket, as shown in the following example:

import os
...
bucket = 'gs://tfx-demo-pipeline'

# Pipeline inputs
data_dir = os.path.join(bucket, 'data')
module_file = os.path.join(bucket, 'components', 'module.py')
...

With the files paths defined, we can now configure our KubeflowDagRunnerConfig.
Three arguments are important to configure the TFX setup in our Kubeflow Pipe‐
lines setup:

kubeflow_metadata_config

Kubeflow runs a MySQL database inside the Kubernetes cluster. Calling
get_default_kubeflow_metadata_config() will return the database informa‐
tion provided by the Kubernetes cluster. If you want to use a managed database
(e.g., AWS RDS or Google Cloud Databases), you can overwrite the connection
details through the argument.

tfx_image

The image URI is optional. If no URI is defined, TFX will set the image corre‐
sponding to the TFX version executing the runner. In our example demonstra‐
tion, we set the URI to the path of the image in the container registry (e.g., gcr.io/
oreilly-book/ml-pipelines-tfx-custom:0.22.0).

pipeline_operator_funcs

This argument accesses a list of configuration information that is needed to run
TFX inside Kubeflow Pipelines (e.g., the service name and port of the gRPC
server). Since this information can be provided through the Kubernetes Config‐
Map,2 the get_default_pipeline_operator_funcs function will read the Con‐
figMap and provide the details to the pipeline_operator_funcs argument. In
our example project, we will be manually mounting a persistent volume with our
project data; therefore, we need to append the list with this information:

from kfp import onprem
from tfx.orchestration.kubeflow import kubeflow_dag_runner

...
PROJECT_ID = 'oreilly-book'
IMAGE_NAME = 'ml-pipelines-tfx-custom'
TFX_VERSION = '0.22.0'
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metadata_config = \
    kubeflow_dag_runner.get_default_kubeflow_metadata_config() 
pipeline_operator_funcs = \
    kubeflow_dag_runner.get_default_pipeline_operator_funcs() 
pipeline_operator_funcs.append( 
    onprem.mount_pvc(persistent_volume_claim,
                     persistent_volume,
                     persistent_volume_mount))
runner_config = kubeflow_dag_runner.KubeflowDagRunnerConfig(
    kubeflow_metadata_config=metadata_config,
    tfx_image="gcr.io/{}/{}:{}".format(
        PROJECT_ID, IMAGE_NAME, TFX_VERSION), 
    pipeline_operator_funcs=pipeline_operator_funcs
)

Obtain the default metadata configuration.

Obtain the default OpFunc functions.

Mount volumes by adding them to the OpFunc functions.

Add a custom TFX image if required.

OpFunc Functions
OpFunc functions allow us to set cluster-specific details, which are important for the
execution of our pipeline. These functions allow us to interact with the underlying
digital subscriber line (DSL) objects in Kubeflow Pipelines. The OpFunc functions
take the Kubeflow Pipelines DSL object dsl.ContainerOp as an input, apply the addi‐
tional functionality, and return the same object.

Two common use cases for adding OpFunc functions to your pipeline_opera
tor_funcs are requesting a memory minimum or specifying GPUs for the container
execution. But OpFunc functions also allow setting cloud-provider-specific creden‐
tials or requesting TPUs (in the case of Google Cloud).

Let’s look at the two most common use cases of OpFunc functions: setting the mini‐
mum memory limit to run your TFX component containers and requesting GPUs for
executing all the TFX components. The following example sets the minimum mem‐
ory resources required to run each component container to 4 GB:

def request_min_4G_memory():
    def _set_memory_spec(container_op):
        container_op.set_memory_request('4G')
    return _set_memory_spec
...
pipeline_operator_funcs.append(request_min_4G_memory())
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3 Visit Nvidia for more on installing their latest drivers for Kubernetes clusters

4 Check the documentation for information on Kubernetes secrets and how to set them up.

The function receives the container_op object, sets the limit, and returns the func‐
tion itself.

We can request a GPU for the execution of our TFX component containers in the
same way, as shown in the following example. If you require GPUs for your container
execution, your pipeline will only run if GPUs are available and fully configured in
your Kubernetes cluster:3.]

def request_gpu():
    def _set_gpu_limit(container_op):
        container_op.set_gpu_limit('1')
    return _set_gpu_limit
...
pipeline_op_funcs.append(request_gpu())

The Kubeflow Pipelines SDK provides common OpFunc functions for each major
cloud provider. The following example shows how to add AWS credentials to TFX
component containers:

from kfp import aws
...
pipeline_op_funcs.append(
    aws.use_aws_secret()
)

The function use_aws_secret() assumes that the AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY are registered as base64-encoded Kubernetes secrets.4

The equivalent function for Google Cloud credentials is called use_gcp_secrets().

With the runner_config in place, we can now initialize the components and execute
the KubeflowDagRunner. But instead of kicking off a pipeline run, the runner will out‐
put the Argo configuration, which we will upload in Kubeflow Pipelines in the next
section:

from tfx.orchestration.kubeflow import kubeflow_dag_runner
from pipelines.base_pipeline import init_components, init_pipeline 

components = init_components(data_dir, module_file, serving_model_dir,
                             training_steps=50000, eval_steps=15000)
p = init_pipeline(components, output_base, direct_num_workers=0)

output_filename = "{}.yaml".format(pipeline_name)
kubeflow_dag_runner.KubeflowDagRunner(config=runner_config,
                                      output_dir=output_dir, 
                                      output_filename=output_filename).run(p)
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Reuse the base modules for the components.

Optional Argument.

The arguments output_dir and output_filename are optional. If not provided, the
Argo configuration will be provided as a compressed tar.gz file in the same directory
from which we executed the following python script. For better visibility, we config‐
ured the output format to be YAML, and we set a specific output path.

After running the following command, you will find the Argo configuration con‐
sumer_complaint_pipeline_kubeflow.yaml in the directory pipelines/kubeflow_pipe‐
lines/argo_pipeline_files/:

$ python pipelines/kubeflow_pipelines/pipeline_kubeflow.py

Executing the Pipeline
Now it is time to access your Kubeflow Pipelines dashboard. If you want to create a
new pipeline, click “Upload pipeline” for uploading, as shown in Figure 12-5. Alter‐
natively, you can select an existing pipeline and upload a new version.

Figure 12-5. Overview of loaded pipelines

Select the Argo configuration, as shown in Figure 12-6.
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Figure 12-6. Selecting your generated Argo configuration file

Kubeflow Pipelines will now visualize your component dependencies. If you want to
kick off a new run of your pipeline, select “Create run” as shown in Figure 12-7.

You can now configure your pipeline run. Pipelines can be run once or on a reoccur‐
ring basis (e.g., with a cron job). Kubeflow Pipelines also allows you to group your
pipeline runs in experiments.
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Figure 12-7. Creating a pipeline run

Once you hit Start, as shown in Figure 12-8, Kubeflow Pipelines with the help of
Argo will kick into action and spin up a pod for each container, depending on your
direct component graph. When all conditions for a component are met, a pod for a
component will be spun up and run the component’s executor.

If you want to see the execution details of a run in progress, you can click the “Run
name,” as shown in Figure 12-9.

Orchestrating TFX Pipelines with Kubeflow Pipelines | 243



Figure 12-8. Defined pipeline run details

Figure 12-9. Pipeline run in progress
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You can now inspect the components during or after their execution. For example,
you can check the log files from a particular component if the component failed.
Figure 12-10 shows an example where the Transform component is missing a Python
library. Missing libraries can be provided by adding them to a custom TFX container
image as discussed in Appendix C.

Figure 12-10. Inspecting a component failure

A successful pipeline run is shown in Figure 12-11. After a run completes, you can
find the validated and exported machine learning model in the filesystem location set
in the Pusher component. In our example case, we pushed the model to the
path /tfx-data/output/consumer_complaint_pipeline_kubeflow/ on the persistent
volume.
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Figure 12-11. Successful pipeline run

You can also inspect the status of your pipeline with kubectl. Since every component
runs as its own pod, all pods with the pipeline name in the name prefix should be in
the state Completed:
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$ kubectl -n kubeflow get pods
NAME                                                   READY  STATUS      AGE
cache-deployer-deployment-c6896d66b-gmkqf              1/1    Running     28m
cache-server-8869f945b-lb8tb                           1/1    Running     28m
consumer-complaint-pipeline-kubeflow-nmvzb-1111865054  0/2    Completed   10m
consumer-complaint-pipeline-kubeflow-nmvzb-1148904497  0/2    Completed   3m38s
consumer-complaint-pipeline-kubeflow-nmvzb-1170114787  0/2    Completed   9m
consumer-complaint-pipeline-kubeflow-nmvzb-1528408999  0/2    Completed   5m43s
consumer-complaint-pipeline-kubeflow-nmvzb-2236032954  0/2    Completed   13m
consumer-complaint-pipeline-kubeflow-nmvzb-2253512504  0/2    Completed   13m
consumer-complaint-pipeline-kubeflow-nmvzb-2453066854  0/2    Completed   10m
consumer-complaint-pipeline-kubeflow-nmvzb-2732473209  0/2    Completed   11m
consumer-complaint-pipeline-kubeflow-nmvzb-997527881   0/2    Completed   10m
...

You can also investigate the logs of a specific component through kubectl by execut‐
ing the following command. Logs for specific components can be retrieved through
the corresponding pod:

$ kubectl logs -n kubeflow podname

TFX CLI

Alternative to the UI-based pipeline creation process, you can also
create pipelines and kick off pipeline runs programmatically
through the TFX CLI. You can find details on how to set up the
TFX CLI and how to deploy machine learning pipelines without a
UI in “TFX Command-Line Interface” on page 320 of Appendix C.

Useful Features of Kubeflow Pipelines
In the following sections, we want to highlight useful features of Kubeflow Pipelines.

Restart failed pipelines
The execution of pipeline runs can take a while, sometimes a matter of hours. TFX
stores the state of each component in the ML MetadataStore, and it is possible for
Kubeflow Pipelines to track the successfully completed component tasks of a pipeline
run. Therefore, it offers the functionality to restart failed pipeline runs from the com‐
ponent of the last failure. This will avoid rerunning successfully completed compo‐
nents and, therefore, save time during the pipeline rerun.

Recurring runs
Besides kicking off individual pipeline runs, Kubeflow Pipelines also lets us run the
pipeline according to a schedule. As shown in Figure 12-12, we can schedule runs
similar to schedules in Apache Airflow.
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Figure 12-12. Scheduling recurring runs with Kubeflow Pipelines

Collaborating and reviewing pipeline runs
Kubeflow Pipelines provides interfaces for data scientists to collaborate and to review
the pipeline runs as a team. In Chapters 4 and 7, we discussed visualizations to show
the results of the data or model validation. After the completion of these pipeline
components, we can review the results of the components.
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Figure 12-13 shows the results of the data validation step as an example. Since the
component output is saved to a disk or to a cloud storage bucket, we can also review
the pipeline runs retroactively.

Figure 12-13. TFDV statistics available in Kubeflow Pipelines

Since the results from every pipeline run and component of those runs are saved in
the ML MetadataStore, we can also compare the runs. As shown in Figure 12-14,
Kubeflow Pipelines provides a UI to compare pipeline runs.
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Figure 12-14. Comparing pipeline runs with Kubeflow Pipelines

Kubeflow Pipelines also integrates TensorFlow’s TensorBoard nicely. As you can see
in Figure 12-15, we can review the statistics from model training runs with Tensor‐
Board. After the creation of the underlying Kubernetes pod, we can review the statis‐
tics from model training runs with TensorBoard.
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Figure 12-15. Reviewing training runs with TensorFlow’s TensorBoard

Auditing the pipeline lineage
For the wider adoption of machine learning, it is critical to review the creation of the
model. If, for example, data scientists observe that the trained model is unfair (as we
discussed in Chapter 7), it is important to retrace and reproduce the data or hyper‐
parameters that we used. We basically need an audit trail for each machine learning
model.

Kubeflow Pipelines offers a solution for such an audit trail with the Kubeflow Lineage
Explorer. It creates a UI that can query the ML MetadataStore data easily.

As shown in the lower right corner of Figure 12-16, a machine learning model was
pushed to a certain location. The Lineage Explorer allows us to retrace all compo‐
nents and artifacts that contributed to the exported model, all the way back to the
initial, raw dataset. We can retrace who signed off on the model if we use the human
in the loop component (see “Human in the Loop” on page 195), or we can check the
data validation results and investigate whether the initial training data started to drift.

As you can see, Kubeflow Pipelines is an incredibly powerful tool for orchestrating
our machine learning pipelines. If your infrastructure is based on AWS or Azure, or
if you want full control over your setup, we recommend this approach. However, if
you are already using GCP, or if you would like a simpler way to use Kubeflow Pipe‐
lines, read on.
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Figure 12-16. Inspecting the pipeline lineage with Kubeflow Pipelines

Pipelines Based on Google Cloud AI Platform
If you don’t want to spend the time administrating your own Kubeflow Pipelines
setup or if you would like to integrate with GCP’s AI Platform or other GCP services
like Dataflow, AI Platform training and serving, etc., this section is for you. In the
following section, we will discuss how to set up Kubeflow Pipelines through Google
Cloud’s AI Platform. Furthermore, we will highlight how you can train your machine
learning models with Google Cloud’s AI jobs and scale your preprocessing with Goo‐
gle Cloud’s Dataflow, which can be used as an Apache Beam runner.

Pipeline Setup
Google’s AI Platform Pipelines lets you create a Kubeflow Pipelines setup through a
UI. Figure 12-17 shows the front page for AI Platform Pipelines, where you can start
creating your setup.

Beta Product

As you can see in Figure 12-17, at the time of writing, this Google
Cloud product is still in beta. The presented workflows might
change.
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Figure 12-17. Google Cloud AI Platform Pipelines

When you click New Instance (near the top right of the page), it will send you to the
Google Marketplace, as shown in Figure 12-18.

Figure 12-18. Google Cloud Marketplace page for Kubeflow Pipelines

After selecting Configure, you’ll be asked at the top of the menu to either choose an
existing Kubernetes cluster or create a cluster, as shown in Figure 12-19.

Pipelines Based on Google Cloud AI Platform | 253



Node Sizes

When creating a new Kubernetes cluster or selecting an existing
cluster, consider the available memory of the nodes. Each node
instance needs to provide enough memory to hold the entire
model. For our demo project, we selected n1-standard-4 as an
instance type. At the time of writing, we could not create a custom
cluster while starting Kubeflow Pipelines from Marketplace. If your
pipeline setup requires larger instances, we recommend creating
the cluster and its nodes first, and then selecting the cluster from
the list of existing clusters when creating the Kubeflow Pipelines
setup from GCP Marketplace.

Figure 12-19. Configuring your cluster for Kubeflow Pipelines

Access Scope

During the Marketplace creation of Kubeflow Pipelines or your
custom cluster creation, select “Allow full access to all Cloud APIs”
when asked for the access scope of the cluster nodes. Kubeflow
Pipelines require access to a variety of Cloud APIs. Granting access
to all Cloud APIs simplifies the setup process.

After configuring your Kubernetes cluster, Google Cloud will instantiate your Kube‐
flow Pipelines setup, as shown in Figure 12-20.
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Figure 12-20. Creating your Kubeflow Pipelines setup

After a few minutes, your setup will be ready for use and you can find your Kubeflow
Pipelines setup as an instance listed in the AI Platform Pipelines list of deployed
Kubeflow setups. If you click Open Pipelines Dashboard, as shown in Figure 12-21,
you’ll be redirected to your newly deployed Kubeflow Pipelines setup. From here,
Kubeflow Pipelines will work as we discussed in the previous section and the UI will
look very similar.

Figure 12-21. List of Kubeflow deployments

Step-By-Step Installations Available in the AI Platform
Pipelines Dashboard

If you install Kubeflow Pipelines manually step by step, as dis‐
cussed in “Accessing Your Kubeflow Pipelines Installation” on
page 234 and Appendix B, your Kubeflow Pipelines setup will also
be listed under your AI Platform Pipelines instances.
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TFX Pipeline Setup
The configuration of our TFX pipelines is very similar to the configuration of the
KubeflowDagRunner, which we discussed previously. In fact, if you mount a persistent
volume with the required Python module and training data as discussed in “Pipeline
Setup” on page 237, you can run your TFX pipelines on the AI Platform Pipelines.

In the next sections, we will show you a few changes to the earlier Kubeflow Pipelines
setup that can either simplify your workflow (e.g., loading data from Google Storage
buckets) or assist you with scaling pipelines beyond a Kubernetes cluster (e.g., by
training a machine learning model with AI Platform Jobs).

Use Cloud Storage buckets for data exchange
In “Pipeline Setup” on page 237, we discussed that we can load the data and Python
modules required for pipeline execution from a persistent volume that is mounted in
the Kubernetes cluster. If you run pipelines within the Google Cloud ecosystem, you
can also load data from Google Cloud Storage buckets. This will simplify the work‐
flows, enabling you to upload and review files through the GCP web interface or the
gcloud SDK.

The bucket paths can be provided in the same way as file paths on a disk, as shown in
the following code snippet:

input_bucket = 'gs://YOUR_INPUT_BUCKET'
output_bucket = 'gs://YOUR_OUTPUT_BUCKET'
data_dir = os.path.join(input_bucket, 'data')

tfx_root = os.path.join(output_bucket, 'tfx_pipeline')
pipeline_root = os.path.join(tfx_root, pipeline_name)
serving_model_dir = os.path.join(output_bucket, 'serving_model_dir')
module_file = os.path.join(input_bucket, 'components', 'module.py')

It is often beneficial to split the buckets between input (e.g., the Python module and
training data) and output data (e.g., trained models), but you could also use the same
buckets.

Training models with an AI Platform job
If you want to scale model training through a GPU or TPU, you can configure your
pipeline to run the training step of the machine learning model on this hardware:

project_id = 'YOUR_PROJECT_ID'
gcp_region = 'GCP_REGION>' 

ai_platform_training_args = {
    'project': project_id,
    'region': gcp_region,
    'masterConfig': {
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        'imageUri': 'gcr.io/oreilly-book/ml-pipelines-tfx-custom:0.22.0'} 
    'scaleTier': 'BASIC_GPU', 
}

For example, us-central1.

Provide a custom image (if required).

Other options include BASIC_TPU, STANDARD_1, and PREMIUM_1.

For the Trainer component to observe the AI Platform configuration, you need to
configure the component executor and swap out the GenericExecutor we have used
with our Trainer component so far. The following code snippet shows the additional
arguments required:

from
tfx.extensions.google_cloud_ai_platform.trainer import executor \
as ai_platform_trainer_executor

trainer = Trainer(
    ...
    custom_executor_spec=executor_spec.ExecutorClassSpec(
        ai_platform_trainer_executor.GenericExecutor),
    custom_config = {
            ai_platform_trainer_executor.TRAINING_ARGS_KEY:
                ai_platform_training_args}
)

Instead of training machine learning models inside a Kubernetes cluster, you can dis‐
tribute the model training using the AI Platform. In addition to the distributed train‐
ing capabilities, the AI Platform provides access to accelerated training hardware like
TPUs.

When the Trainer component is triggered in the pipeline, it will kick off a training
job in the AI Platform Jobs, as shown in Figure 12-22. There you can inspect log files
or the completion status of a training task.
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Figure 12-22. AI Platform training jobs

Serving models through AI Platform endpoints
If you run your pipelines within the Google Cloud ecosystem, you can also deploy
machine learning models to endpoints of the AI Platform. These endpoints have the
option to scale your model in case the model experiences spikes of inferences.

Instead of setting a push_destination as we discussed in “TFX Pusher Component”
on page 126, we can overwrite the executor and provide Google Cloud details for the
AI Platform deployment. The following code snippet shows the required configura‐
tion details:

ai_platform_serving_args = {
    'model_name': 'consumer_complaint',
    'project_id': project_id,
    'regions': [gcp_region],
}

Similar to the setup of the Trainer component, we need to exchange the compo‐
nent’s executor and provide the custom_config with the deployment details:

from tfx.extensions.google_cloud_ai_platform.pusher import executor \
    as ai_platform_pusher_executor

pusher = Pusher(
    ...
    custom_executor_spec=executor_spec.ExecutorClassSpec(
        ai_platform_pusher_executor.Executor),
    custom_config = {
        ai_platform_pusher_executor.SERVING_ARGS_KEY:
            ai_platform_serving_args
    }
)
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5 Dataflow is only available through Google Cloud. Alternative distribution runners are Apache Flink and
Apache Spark.

If you provide the configuration of the Pusher component, you can avoid setting up
and maintaining your instance of TensorFlow Serving by using the AI Platform.

Deployment Limitations

At the time of writing, models were restricted to a maximum size
of 512 MB for deployments through the AI Platform. Our demo
project is larger than the limit and, therefore, can’t be deployed
through AI Platform endpoints at the moment.

Scaling with Google’s Dataflow
So far, all the components that rely on Apache Beam have executed data processing
tasks with the default DirectRunner, meaning that the processing tasks will be exe‐
cuted on the same instance where Apache Beam initiated the task run. In this situa‐
tion, Apache Beam will consume as many CPU cores as possible, but it won’t scale
beyond the single instance.

One alternative is to execute Apache Beam with Google Cloud’s Dataflow. In this sit‐
uation, TFX will process jobs with Apache Beam and the latter will submit tasks to
Dataflow. Depending on each job’s requirements, Dataflow will spin up compute
instances and distribute job tasks across instances. This is a pretty neat way of scaling
data preprocessing jobs like statistics generation or data preprocessing.5

In order to use the scaling capabilities of Google Cloud Dataflow, we need to provide
a few more Beam configurations, which we’ll pass to our pipeline instantiation:

tmp_file_location = os.path.join(output_bucket, "tmp")
beam_pipeline_args = [
    "--runner=DataflowRunner",
    "--experiments=shuffle_mode=auto",
    "--project={}".format(project_id),
    "--temp_location={}".format(tmp_file_location),
    "--region={}".format(gcp_region),
    "--disk_size_gb=50",
]

Besides configuring DataflowRunner as the runner type, we also set the shuf
fle_mode to auto. This is an interesting feature of Dataflow. Instead of running
transformations like GroupByKey in the Google Compute Engine’s VM, the operation
will be processed in the service backend of Dataflow. This reduces the execution time
and the CPU/memory costs of the compute instances.
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Pipeline Execution
Executing the pipeline with the Google Cloud AI Platform is no different than what
we discussed in “Orchestrating TFX Pipelines with Kubeflow Pipelines” on page 235.
The TFX script will generate the Argo configuration. The configuration can then be
uploaded to the Kubeflow Pipelines setup on the AI Platform.

During the pipeline execution, you can inspect the training jobs as discussed in
“Training models with an AI Platform job” on page 256 and you can observe the
Dataflow jobs in detail, as shown in Figure 12-23.

Figure 12-23. Google Cloud Dataflow job details

The Dataflow dashboard provides valuable insights into your job’s progress and scal‐
ing requirements.
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Summary
Running pipelines with Kubeflow Pipelines provides great benefits that we think off‐
set the additional setup requirements. We see the pipeline lineage browsing, the
seamless integration with TensorBoard, and the options for recurring runs as good
reasons to choose Kubeflow Pipelines as the pipeline orchestrator.

As we discussed earlier, the current workflow for running TFX pipelines with Kube‐
flow Pipelines is different than the workflows we discussed for pipelines running on
Apache Beam or Apache Airflow in Chapter 11. However, the configuration of the
TFX components is the same, as we discussed in the previous chapter.

In this chapter, we walked through two Kubeflow pipeline setups: the first setup can
be used with almost any managed Kubernetes service, such as AWS Elastic
Kubernetes Service or Microsoft Azure Kubernetes Service. The second setup can be
used with Google Cloud’s AI Platform.

In the following chapter, we will discuss how you can turn your pipeline into a cycle
using feedback loops.
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CHAPTER 13

Feedback Loops

Now that we have a smooth pipeline for putting a machine learning model into pro‐
duction, we don’t want to run it only once. Models shouldn’t be static once they are
deployed. New data is collected, the data distribution changes (described in Chap‐
ter 4), models drift (discussed in Chapter 7), and most importantly, we would like
our pipelines to continuously improve.

Adding feedback of some kind into the machine pipeline changes it into a life cycle,
as shown in Figure 13-1. The predictions from the model lead to the collection of
new data, which continuously improves the model.

Figure 13-1. Model feedback as part of ML pipelines

Without fresh data, the predictive power of a model may decrease as inputs change
over time. The deployment of the ML model may in fact alter the training data that
comes in because user experiences change; for example, in a video recommendation
system, better recommendations from a model lead to different viewing choices from
the user. Feedback loops can help us collect new data to refresh our models. They are
particularly useful for models that are personalized, such as recommender systems or
predictive text.
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1 For more details, see Google’s PAIR manual.

At this point, it is extremely important to have the rest of the pipeline set up robustly.
Feeding in new data should cause the pipeline to fail only if the influx of new data
causes the data statistics to fall outside the limits set in data validation, or if it causes
the model statistics to move outside the boundaries set in model analysis. This can
then trigger events such as model retraining, new feature engineering, and so on. If
one of these triggers occurs, the new model should receive a new version number.

In addition to the collection of new training data, feedback loops can also provide
information on the real-world use of the model. This can include the number of
active users, the times of day when they interact with it, and many other pieces of
data. This type of data is extremely useful for demonstrating the value of the model to
business stakeholders.

Feedback Loops Can Be Dangerous

Feedback loops can also have negative consequences and should be
approached with caution. If you are feeding the model’s predic‐
tions back into new training data with no human input, the model
will be learning from its mistakes as well as its correct predictions.
Feedback loops can also amplify any biases or inequalities that are
present in the original data. Careful model analysis can help you
spot some of these situations.

Explicit and Implicit Feedback
We can divide our feedback into two main types: implicit and explicit.1 Implicit feed‐
back is where people’s actions in their normal usage of a product give the model feed‐
back—for example, by buying something suggested by a recommender system or by
watching a suggested movie. User privacy needs careful consideration with implicit
feedback because it’s tempting to just track every action that a user takes. Explicit
feedback is where a user gives some direct input on a prediction—for example, giving
a thumbs-up or thumbs-down to a recommendation or correcting a prediction.

The Data Flywheel
In some situations, you may have all the data you need to create a new product pow‐
ered by machine learning. But in other cases, you may need to collect more. This
happens particularly often when dealing with supervised learning problems. Super‐
vised learning is more mature than unsupervised learning and generally provides
more robust results, so the majority of models deployed in production systems are
supervised models. Frequently, the situation arises that you have large amounts of

264 | Chapter 13: Feedback Loops

https://oreil.ly/N__j4


unlabelled data but insufficient labelled data. However, the growth of transfer learn‐
ing, as we used in our example project, is starting to remove the need for vast
amounts of labelled data for some machine learning problems.

In the case where you have a lot of unlabelled data and need to collect more labels,
the data flywheel concept is especially useful. This data flywheel allows you to grow
your training dataset by setting up an initial model using preexisting data from a
product, hand-labelled data, or public data. By collecting feedback on the initial
model from users, you can label the data, which improves the model predictions and
thus attracts more users to the product, who label more data, and so on, as illustrated
in Figure 13-2.

Figure 13-2. The data flywheel

Feedback Loops in the Real World
Some of the most familiar examples of feedback loops in machine learning systems
occur when a model’s predictions are exposed to a customer. This is particularly
common in recommender systems, where a model predicts the top k most relevant
choices for a specific user. It’s often difficult to collect training data for recommender
systems in advance of launching a product, so these systems are often heavily depen‐
dent on feedback from their users.
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2 Feedback should be easy to collect and give actionable results.

3 See Michael Manapat’s talk, “Counterfactual Evaluation of Machine Learning Models,” (Presentation, PyData
Seattle 2015), https://oreil.ly/rGCHo.

Netflix’s movie recommendation system is a classic example of a feedback loop. The
user gets movie recommendations and then provides feedback by rating the predic‐
tions. As the user rates more movies, they receive recommendations that are more
closely tailored to their tastes.

Originally, when the main business of Netflix was shipping DVDs in the mail, it used
a one to five star rating system to collect DVD ratings, which signaled that the cus‐
tomer had actually watched the DVD. In this situation, Netflix was only able to col‐
lect explicit feedback. But when its business changed to streaming movies online, the
company was also able to collect the implicit feedback of whether a user watched the
movies that were recommended to them and whether the user watched the whole
movie. Netflix then switched from the one to five star rating system to a simpler
thumbs-up or thumbs-down system, which allowed it to collect more feedback
because the system required less time from users. In addition, the finer-grained rat‐
ings may not have been so actionable: how should a model respond if a movie is rated
three stars? A three-star review doesn’t signal that the prediction is correct or incor‐
rect, whereas a thumbs-up or thumbs-down gives a clear signal to the model.2

Another example of a feedback loop—in this case a negative one—is Microsoft’s infa‐
mous Twitter bot TAY. This hit the news in 2016 when, within 16 hours of its launch,
it was taken offline because of its offensive and sometimes racist tweets. Before it was
taken offline, it had tweeted over 96,000 times. It was retrained automatically based
on replies to its tweets, which were deliberately provocative. The feedback loop in this
situation was that the system took the replies to its initial tweets and incorporated
them into its training data. This was probably intended to make the bot sound more
human, but the outcome was that it picked up on the worst replies and became
extremely offensive.

What Could Go Wrong?

It’s important to think about what might go wrong with a feedback
loop, as well as the best-case scenario. What is the worst thing that
your users might do? How do you protect against bad actors who
may want to disrupt your system in an organized or automated
way?

A third example of real-world feedback loops comes from Stripe, the online payment
company.3 Stripe built a binary classifier to predict fraud on credit card transactions,
and its system would block transactions if the model predicted that they were likely
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fraudulent. The company obtained a training set from past transaction data and
trained a model on it, which produced good results on the training set. However, it
was impossible to know the precision and recall of the production system because if
the model predicted that the transaction was fraudulent, it was blocked. We can’t be
sure whether it was in fact fraudulent because it never happened.

A larger problem arose when the model was retrained on new data: its accuracy
decreased. In this case, the feedback loop caused all the original types of fraudulent
transactions to be blocked, so they were unavailable for new training data. The new
model was being trained on the residual fraudulent transactions that hadn’t been
caught. Stripe’s solution was to relax the rules and allow a small number of charges to
go through, even if the model predicted that they would be fraudulent. This allowed
it to evaluate the model and provide new, relevant training data.

Consequences of Feedback Loops

Feedback loops will often have some consequences that weren’t
apparent during their design. It’s essential to keep monitoring the
system after it has been deployed to check that the feedback loop is
leading to positive change rather than a negative spiral. We suggest
using the techniques in Chapter 7 to keep a close eye on the system.

In the preceding example from Stripe, the feedback loop caused the model’s accuracy
to decrease. However, an increase in accuracy can also be an undesirable effect. You‐
Tube’s recommendation system is designed to increase the amount of time that peo‐
ple spend watching videos. The feedback from the users means that the model
accurately predicts what they will watch next. And it’s been incredibly successful:
people watch over one billion hours of video on YouTube every day. However, there
are concerns that this system leads people toward watching videos with increasingly
extreme content. When systems become very large, it’s extremely hard to anticipate
all the consequences of the feedback loop. So proceed with caution and ensure there
are safeguards for your users.

As these examples show, feedback loops can be positive and help us obtain more
training data that we can use to improve a model and even build a business. How‐
ever, they can also lead to serious problems. If you have carefully chosen the metrics
for your model that ensure your feedback loop will be a positive one, the next step is
to learn how to collect feedback, which we will discuss in the next section.

Explicit and Implicit Feedback | 267

https://oreil.ly/QDCC2
https://oreil.ly/QDCC2
https://oreil.ly/KVF4M
https://oreil.ly/_Iubw
https://oreil.ly/_Iubw


Design Patterns for Collecting Feedback
In this section, we’ll discuss some common ways of collecting feedback. Your choice
of method will depend on a few things:

• The business problem you’re trying to solve
• The type and design of the app or product
• The type of machine learning model: classification, recommender system, etc.

If you’re planning to collect feedback from the users of your product, it’s very impor‐
tant to inform the user what’s happening so that they can consent to providing feed‐
back. This can also help you collect more feedback: if the user is invested in
improving the system, they are more likely to provide feedback.

We will break down the different options for collecting feedback in the following
sections:

• “Users Take Some Action as a Result of the Prediction”
• “Users Rate the Quality of the Prediction”
• “Users Correct the Prediction”
• “Crowdsourcing the Annotations”
• “Expert Annotations”
• “Producing Feedback Automatically”

While your choice of design pattern will be driven to some extent by the problem that
your machine learning pipeline is trying to solve, your choice will affect how you
track the feedback and also how you incorporate it back into your machine learning
pipeline.

Users Take Some Action as a Result of the Prediction
In this method, our model’s predictions are shown directly to a user, who takes some
online action as a result. We record this action, and this record provides some new
training data to the model.

An example of this would be any kind of product recommendation system, such as
the one used by Amazon to recommend a next purchase to their users. The user is
shown a set of products that the model has predicted will be of interest. If the user
clicks on one of these products or goes on to buy the product, the recommendation
was a good one. However, there is no information on whether the other products that
the user didn’t click on were good recommendations. This is implicit feedback: it
does not provide exactly the data that we need to train the model (this would be
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ranking every single prediction). Instead, the feedback needs to be aggregated over
many different users to provide new training data.

Users Rate the Quality of the Prediction
With this technique, a model’s prediction is shown to the user, who gives some kind
of signal to show that they like or dislike the prediction. This is an example of explicit
feedback, where some extra action must be taken by the user to provide new data.
The feedback could be a star rating or a simple binary thumbs-up or thumbs-down.
This is a good fit for recommender systems and is especially useful for personaliza‐
tion. Care must be taken that the feedback is actionable: a rating of three stars out of
five (such as the preceding Netflix example) does not give much information about
whether a model’s predictions are useful or accurate.

One limitation of this method is that the feedback is indirect—in the recommender
system situation, users say what are poor predictions but do not tell you what the cor‐
rect prediction should be. Another limitation of this system is that there are a num‐
ber of ways that the feedback can be interpreted. What a user “likes” may not
necessarily be something that they want to see more of. For example, in a movie rec‐
ommendation system, a user may give a thumbs-up to show that they want to see
more movies of the genre, by the same director, or starring the same actors. All these
nuances are lost when it’s only possible to give binary feedback.

Users Correct the Prediction
This method is an example of explicit feedback, and it works as follows:

• Predictions from a lower-accuracy model are shown to the user.
• The user accepts the prediction if it is correct or updates it if it is incorrect.
• The predictions (now verified by a user) can be used as new training data.

This works best in cases where the user is highly invested in the outcome. A good
example of this would be a banking app through which a user can deposit checks. An
image recognition model automatically fills in the check amount. If the amount is
correct, the user confirms it; if it is incorrect, the user inputs the correct value. In this
case, it’s in the user’s interests to enter the correct amount so that the money is
deposited into their account. The app becomes more accurate over time as more
training data is created by its users. If your feedback loop can use this method, this
can be an excellent way to collect a lot of high-quality, new data quickly.

Care must be taken to only use this method in cases where the objectives of the
machine learning system and the user are strongly aligned. If the user accepts incor‐
rect responses because there is no reason for them to put in effort to change it, the
training data becomes full of errors and the model does not become more accurate
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with time. And if there is some gain to the user if they provide incorrect results, this
will bias the new training data.

Crowdsourcing the Annotations
This method is particularly useful if you have a large amount of unlabelled data and
it’s not possible to collect labels from users through the normal usage of a product. 
Many problems in the NLP and computer vision domains fall into this category: it’s
easy to collect a large corpus of images, but the data isn’t labelled for the specific use
case of your machine learning model. For example, if you want to train an image
classification model that classifies cellphone images as either documents or nondocu‐
ments, you might have your users take many photos but not supply your labels.

In this case, a large pool of unlabelled data is usually collected, which is then passed
to a crowdsourcing platform, such as AWS Mechanical Turk or Figure Eight. Human
annotators are then paid (usually a small amount) to label the data. This is most suit‐
able for tasks that do not require special training.

With this method, it’s necessary to control for varying quality of labelling, and the
annotation tool is usually set up so that multiple people label the same data example.
The Google PAIR guide gives some excellent, detailed suggestions for designing
annotation tools, but the key thing to consider is that the incentives of the annotators
need to be aligned with the model outcomes. The main advantage of this method is
that it’s possible to be extremely specific about the new data that’s created so it can
exactly fit the needs of a complex model.

However, there are a number of drawbacks to this approach—for example, it may not
be suitable for private or sensitive data. Also, be careful to ensure that there is a
diverse pool of raters that reflect the users of your product and society as a whole.
There can be a high cost to this approach too, which may not scale to a large number
of users.

Expert Annotations
Expert annotations are set up similar to crowdsourcing, but with carefully chosen
annotators. This could be you (the person building the pipeline), using an annotation
tool such as Prodigy for text data. Or it may be a domain expert—for example, if you
are training an image classifier on medical images. This method is especially suitable
for the following situations:

• The data requires some specialist knowledge to annotate.
• The data is private or sensitive in some way.
• Only a small number of labels are required (e.g., transfer learning or semi-

supervised learning).
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4 More on this can be found in D. Sculley et al.’s “Hidden Technical Debt in Machine Learning Systems,” in
Advances in Neural Information Processing Systems 28 (NIPS, 2015), https://oreil.ly/eUyZM.

• Mistakes in annotations have high, real-world consequences for people.

This method allows the collection of high-quality feedback, but it is expensive, man‐
ual, and doesn’t scale well.

Producing Feedback Automatically
In some machine learning pipelines, no human is required for feedback collection.
The model makes a prediction, and some future event happens that tells us whether
the model was correct or not. In this case, new training data is collected automatically
by the system. While this does not involve any separate infrastructure to collect the
feedback, it still requires care: unexpected things can happen because the presence of
the predictions can perturb the system. The preceding example from Stripe illustrates
this well: the model influences its own future training data.4

How to Track Feedback Loops
Once you’ve decided which type of feedback loop best fits your business and your
type of model, it’s time to incorporate it into your machine learning pipeline. This is
where model validation, as we discussed in Chapter 7, becomes absolutely essential:
new data will propagate through the system, and, as it does so, it must not cause the
system performance to decline against the metrics you are tracking.

The key concept here is that every prediction should receive a tracking ID, as shown
in Figure 13-3. This can be implemented with some kind of prediction register in
which each prediction is stored along with a tracking ID. The prediction and the ID
are passed to the application, and then the prediction is shown to the user. If the user
gives feedback, the process continues.

Figure 13-3. Tracking feedback
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When feedback is collected, it is stored in a feedback register along with that predic‐
tion’s tracking ID. A data processing step joins the feedback with the original predic‐
tion. This allows you to track the feedback through the data and model validation
steps so that you know which feedback is powering the new model version.

Tracking Explicit Feedback
If the system is collecting explicit feedback, as described previously, there are two 
possibilities for how to track it:

Binary feedback
In most situations, only the feedback that tells you that a prediction is correct can
give you new training data with an associated tracking ID. For example, in a mul‐
ticlass classification system, user feedback only tells you whether the predicted
class is correct or not. If the predicted class is marked as incorrect, you don’t
know which of the other classes it should be. If the predicted class is correct, the
pairing of the data plus the prediction form a new training example. A binary
classification problem is the only situation where you can use the feedback that a
prediction is incorrect. In this case, this feedback tells us that the example
belongs to the negative class.

Reclassification or correction
When a user gives the model a correct answer, the pairing of the input data plus
the new classification form a new training example and should receive a tracking
ID.

Tracking Implicit Feedback
Implicit feedback generates binary feedback. If a recommendation system suggests a
product and the user clicks on that product, the pairing of the product and the user
data form a new training example and receive a tracking ID. However, if the user
does not click on a product, this doesn’t mean that the recommendation was bad. In
this situation, it may be necessary to wait for many pieces of binary feedback for each
product that is recommended before retraining the model.

Summary
Feedback loops turn a machine learning pipeline into a cycle and help it grow and
improve itself. It’s essential to incorporate new data into the machine learning pipe‐
line to prevent the model from getting stale and having its accuracy drop. Make sure
to choose the feedback method that is most aligned with your type of model and its
success metrics.

Feedback loops need careful monitoring. Once you start collecting new data, it’s very
easy to violate one of the most fundamental assumptions of many machine learning
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algorithms: that your training and validation data are drawn from the same distribu‐
tion. Ideally, both your training and validation data will be representative of the real
world that you model, but in practice, this is never the case. So as you collect new
data, it’s important to generate new validation datasets as well as training datasets.

Feedback loops require you to work closely with the designers, developers, and UX
experts involved in the product. They need to build the systems that will capture the
data and improve the model. It’s important that you work with them to connect the
feedback to improvements users will see and to set expectations for when the feed‐
back will change the product. This effort will help keep users invested in giving
feedback.

One note of caution is that feedback loops can reinforce any harmful bias or unfair‐
ness in the initial model. Never forget that there can be a person on the end of this
process! Consider offering users a method to give feedback that a model has caused
harm to someone so that it’s easy for them to flag situations that should be fixed
immediately. This will need far more details than a one to five star rating.

Once your feedback loop is set up and you are able to track the model’s predictions
and responses to predictions, you have all the pieces of the pipeline.
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CHAPTER 14

Data Privacy for Machine Learning

In this chapter, we introduce some aspects of data privacy as they apply to machine
learning pipelines. Privacy-preserving machine learning is a very active area of
research that is just beginning to be incorporated into TensorFlow and other frame‐
works. We’ll explain some of the principles behind the most promising techniques at
the time of writing and show some practical examples for how they can fit into a
machine learning pipeline.

We’ll cover three main methods for privacy-preserving machine learning in this
chapter: differential privacy, federated learning, and encrypted machine learning.

Data Privacy Issues
Data privacy is all about trust and limiting the exposure of data that people would
prefer to keep private. There are many different methods for privacy-preserving
machine learning, and in order to choose between them, you should try to answer the
following questions:

• Who are you trying to keep the data private from?
• Which parts of the system can be private, and which can be exposed to the

world?
• Who are the trusted parties that can view the data?

The answers to these questions will help you decide which of the methods described
in this chapter best fits your use case.
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Why Do We Care About Data Privacy?
Data privacy is becoming an important part of machine learning projects. There are
many legal requirements surrounding user privacy, such as the EU’s General Data
Protection Regulation (GDPR), which went into effect in May 2018, and the Califor‐
nia Consumer Privacy Act of January 2020. There are ethical considerations around
the use of personal data for machine learning, and users of products powered by ML
are starting to care deeply about what happens to their data. Because machine learn‐
ing has traditionally been hungry for data, and because many of the predictions made
by machine learning models are based on personal data collected from users,
machine learning is at the forefront of debates around data privacy.

At the time of writing, there’s always a cost to privacy: adding privacy comes with a
cost in model accuracy, computation time, or both. At one extreme, collecting no
data keeps an interaction completely private but is completely useless for machine
learning. At the other extreme, knowing all the details about a person might endan‐
ger that person’s privacy, but it allows us to make very accurate machine learning
models. We’re just now starting to see the development of privacy-preserving ML, in
which privacy can be increased without such a large trade-off in model accuracy.

In some situations, privacy-preserving machine learning can help you use data that
would otherwise be unavailable for training a machine learning model due to privacy
concerns. It doesn’t, however, give you free rein to do whatever you like with the data
just because you use one of the methods in this chapter. You should discuss your
plans with other stakeholders, for example, the data owners, privacy experts, and
even your company’s legal team.

The Simplest Way to Increase Privacy
Often, the default strategy for building a product powered by machine learning is to
collect all the data possible and then decide afterward what is useful for training a
machine learning model. Even though this is done with the user’s consent, the sim‐
plest way to increase user privacy is to only collect the data that is necessary for the
training of a particular model. In the case of structured data, fields such as name,
gender, or race can simply be deleted. Text or image data can be processed to remove
much personal information, such as deleting faces from images or names from text.
However, in some cases this can reduce the utility of the data or make it impossible to
train an accurate model. And if data on race and gender is not collected, it’s impossi‐
ble to tell whether a model is biased against a particular group.

Control of what data is collected can also be passed to the user: consent to collect data
can be made more nuanced than a simple opt-in or opt-out selection, and the user of
a product can specify exactly what data may be collected about them. This raises
design challenges: should users who provide less data receive less accurate predic‐
tions than the users who contribute more data? How do we track consent through
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1 Cynthia Dwork, “Differential Privacy,” in Encyclopedia of Cryptography and Security, ed. Henk C. A. van Til‐
borg and Sushil Jajodia (Boston: Springer, 2006).

machine learning pipelines? How do we measure the privacy impact of a single fea‐
ture in our models? These are all questions that need more discussion in the machine
learning community.

What Data Needs to Be Kept Private?
In machine learning pipelines, data is often collected from people, but some data has
a higher need for privacy-preserving machine learning. Personally identifying infor‐
mation (PII) is data that can directly identify a single person, such as their name,
email address, street address, ID number, and so on, and this needs to be kept pri‐
vate. PII can appear in free text, such as feedback comments or customer service data,
not just when users are directly asked for this data. Images of people may also be con‐
sidered PII in some circumstances. There are often legal standards around this—if
your company has a privacy team, it’s best to consult them before embarking on a
project using this type of data.

Sensitive data also requires special care. This is often defined as data that could cause
harm to someone if it were released, such as health data or proprietary company data
(e.g., financial data). Care should be taken to ensure that this type of data is not
leaked in the predictions of a machine learning model.

Another category is quasi-identifying data. Quasi-identifiers can uniquely identify
someone if enough of them are known, such as location tracking or credit card trans‐
action data. If several location points are known about the same person, this provides
a unique trace that can be combined with other datasets to reidentify that person. In
December 2019, the New York Times published an in-depth piece on reidentification
using cellphone data, which represents just one of several voices questioning the
release of such data.

Differential Privacy
If we have identified a need for additional privacy in the machine learning pipeline,
there are different methods that can help increase privacy while retaining as much
data utility as possible. The first one we’ll discuss is differential privacy.1 Differential
privacy (DP) is a formalization of the idea that a query or a transformation of a data‐
set should not reveal whether a person is in that dataset. It gives a mathematical
measure of the privacy loss that a person experiences by being included in a dataset
and minimizes this privacy loss through the addition of noise.

Differential privacy describes a promise, made by a data holder, or curator, to a data
subject, and the promise is like this: “You will not be affected, adversely or otherwise,
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by allowing your data to be used in any study or analysis, no matter what other studies,
datasets or information sources are available.”

—Cynthia Dwork2

To put it another way, a transformation of a dataset that respects privacy should not
change if one person is removed from that dataset. In the case of machine learning
models, if a model has been trained with privacy in mind, then the predictions that a
model makes should not change if one person is removed from the training set. DP is
achieved by the addition of some form of noise or randomness to the transformation.

To give a more concrete example, one of the simplest ways of achieving differential
privacy is the concept of randomized response, as shown in Figure 14-1. This is use‐
ful in surveys that ask sensitive questions, such as “Have you ever been convicted of a
crime?” To answer this question, the person being asked flips a coin. If it comes up
heads, they answer truthfully. If it comes up tails, they flip again and answer “Yes” if
the coin comes up heads, and “No” if the coin comes up tails. This gives them denia‐
bility—they can say that they gave a random answer rather than a truthful answer.
Because we know the probabilities for a coin flip, if we ask a lot of people this ques‐
tion, we can calculate the proportion of people who have been convicted of a crime
with reasonable accuracy. The accuracy of the calculation increases when larger num‐
bers of people participate in the survey.

Figure 14-1. Randomized response flowchart

These randomized transformations are the key to DP.
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Assume One Training Example Per Person

Throughout this chapter, for simplicity, we assume that each train‐
ing example in a dataset is associated with or collected from one
individual person.

Local and Global Differential Privacy
DP can be divided into two main methods: local and global DP. In local DP, noise or
randomness is added at the individual level, as in the randomized response example
earlier, so privacy is maintained between an individual and the collector of the data. 
In global DP, noise is added to a transformation on the entire dataset. The data col‐
lector is trusted with the raw data, but the result of the transformation does not reveal
data about an individual.

Global DP requires us to add less noise compared to local DP, which leads to a utility
or accuracy improvement of the query for a similar privacy guarantee. The downside
is that the data collector must be trusted for global DP, whereas for local DP only
individual users see their own raw data.

Epsilon, Delta, and the Privacy Budget
Probably the most common way of implementing DP is using ϵ - δ (epsilon-delta)
DP ϵ. When comparing the result of a randomized transformation on a dataset that
includes one specific person with another result that does not contain that person, e ϵ
describes the maximum difference between the outcomes of these transformations.
So, if ϵ is 0, both transformations return exactly the same result. If the value of ϵ is
smaller, the probability that our transformations will return the same result is greater
—a lower value of ϵ is more private because ϵ measures the strength of the privacy
guarantee. If you query a dataset more than once, you need to sum the epsilons of
each query to get your total privacy budget.

δ is the probability that ϵ does not hold, or the probability that an individual’s data is
exposed in the results of the randomized transformation. We generally set δ to be
approximately the inverse of the population size: for a dataset containing 2,000 peo‐
ple, we would set δ to be 1/1,000.3
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What value of epsilon should you choose? ϵ allows us to compare the privacy of dif‐
ferent algorithms and approaches, but the absolute value that gives us “sufficient”
privacy depends on the use case.4

To decide on a value to use for ϵ, it can be helpful to look at the accuracy of the sys‐
tem as ϵ is decreased. Choose the most private parameters possible while retaining
acceptable data utility for the business problem. Alternatively, if the consequences of
leaking data are very high, you may wish to set the acceptable values of ϵ and δ first,
and then tune your other hyperparameters to get the best model accuracy possible.
One weakness of ϵ - δ DP is that ϵ is not easily interpretable. Other approaches are
being developed to help with this, such as planting secrets within a model’s training
data and measuring how likely it is that they are exposed in a model’s predictions.5

Differential Privacy for Machine Learning
If you want to use DP as part of your machine learning pipeline, there are a few cur‐
rent options for where it can be added, though we expect to see more in the future. 
First, DP can be included in a federated learning system (see “Federated Learning” on
page 283), and this can use either global or local DP. Second, the TensorFlow Privacy
library is an example of global DP: raw data is available for model training.

A third option is the Private Aggregation of Teacher Ensembles (PATE) approach.6

This is a data-sharing scenario: in the case that 10 people have labelled data, but you
haven’t, they train a model locally and each make a prediction on your data. A DP
query is then performed to generate the final prediction on each example in your
dataset so that you don’t know which of the 10 models has made the prediction. A
new model is then trained from these predictions—this model includes the informa‐
tion from the 10 hidden datasets in such a way that it’s not possible to learn about
those hidden datasets. The PATE framework shows how ϵ is being spent in this
scenario.

Introduction to TensorFlow Privacy
TensorFlow Privacy (TFP) adds DP to an optimizer during model training. The type
of DP used in TFP is an example of global DP: noise is added during training so that
private data is not exposed in a model’s predictions. This lets us offer the strong DP
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guarantee that an individual’s data has not been memorized while still maximizing
model accuracy. As shown in Figure 14-2, in this situation, the raw data is available to
the trusted data store and model trainer, but the final predictions are untrusted.

Figure 14-2. Trusted parties for DP

Training with a Differentially Private Optimizer
The optimizer algorithm is modified by adding random noise to the gradients at each
training step. This compares the gradient’s updates with or without each individual
data point and ensures that it is not possible to tell whether a specific data point was
included in the gradient update. In addition, gradients are clipped so that they do not
become too large—this limits the contribution of any one training example. As a nice
bonus, this also helps prevent overfitting.

TFP can be installed with pip. At the time of writing, it requires TensorFlow version
1.X:

$ pip install tensorflow_privacy

We start with a simple tf.keras binary classification example:

import tensorflow as tf

model = tf.keras.models.Sequential([
  tf.keras.layers.Dense(128, activation='relu'),
  tf.keras.layers.Dense(128, activation='relu'),
  tf.keras.layers.Dense(1, activation='sigmoid')
])

The differentially private optimizer requires that we set two extra hyperparameters
compared to a normal tf.keras model: the noise multiplier and the L2 norm clip.
It’s best to tune these to suit your dataset and measure their impact on ϵ:

NOISE_MULTIPLIER = 2
NUM_MICROBATCHES = 32 
LEARNING_RATE = 0.01
POPULATION_SIZE = 5760 
L2_NORM_CLIP = 1.5
BATCH_SIZE = 32 
EPOCHS = 70

The batch size must be exactly divisible by the number of microbatches.
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The number of examples in the training set.

The population size must be exactly divisible by the batch size.

Next, initialize the differentially private optimizer:

from tensorflow_privacy.privacy.optimizers.dp_optimizer \
    import DPGradientDescentGaussianOptimizer

optimizer = DPGradientDescentGaussianOptimizer(
    l2_norm_clip=L2_NORM_CLIP,
    noise_multiplier=NOISE_MULTIPLIER,
    num_microbatches=NUM_MICROBATCHES,
    learning_rate=LEARNING_RATE)

loss = tf.keras.losses.BinaryCrossentropy(
    from_logits=True, reduction=tf.losses.Reduction.NONE) 

Loss must be calculated on a per-example basis rather than over an entire
minibatch.

Training the private model is just like training a normal tf.keras model:

model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy'])

model.fit(X_train, y_train,
            epochs=EPOCHS,
            validation_data=(X_test, y_test),
            batch_size=BATCH_SIZE)

Calculating Epsilon
Now, we calculate the differential privacy parameters for our model and our choice of
noise multiplier and gradient clip:

from tensorflow_privacy.privacy.analysis import compute_dp_sgd_privacy

compute_dp_sgd_privacy.compute_dp_sgd_privacy(n=POPULATION_SIZE,
                                              batch_size=BATCH_SIZE,
                                              noise_multiplier=NOISE_MULTIPLIER,
                                              epochs=EPOCHS,
                                              delta=1e-4) 

The value of delta is set to 1/the size of the dataset, rounded to the nearest order
of magnitude.
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TFP Supports Only TensorFlow 1.X

We show how you can convert the example project from previous
chapters to a DP model in our GitHub repo. The differentially pri‐
vate optimizer is added into the get_model function from Chap‐
ter 6. However, this model can’t be used in our TFX pipeline until
TFP supports TensorFlow 2.X.

The final output of this calculation, the value of epsilon, tells us the strength of the
privacy guarantee for our particular model. We can then explore how changing the
L2 norm clip and noise multiplier hyperparameters discussed earlier affects both
epsilon and our model accuracy. If the values of these two hyperparameters are
increased, keeping all others fixed, epsilon will decrease (so the privacy guarantee
becomes stronger). At some point, accuracy will begin to decrease and the model will
stop being useful. This trade-off can be explored to get the strongest possible privacy
guarantees while still maintaining useful model accuracy.

Federated Learning
Federated learning (FL) is a protocol where the training of a machine learning model
is distributed across many different devices and the trained model is combined on a
central server. The key point is that the raw data never leaves the separate devices and
is never pooled in one place. This is very different from the traditional architecture of
gathering a dataset in a central location and then training a model.

FL is often useful in the context of mobile phones with distributed data, or a user’s
browser. Another potential use case is in the sharing of sensitive data that is dis‐
tributed across multiple data owners. For example, an AI startup may want to train a
model to detect skin cancer. Images of skin cancer are owned by many hospitals, but
they can’t be centralized in one location due to privacy and legal concerns. FL lets the
startup train a model without the data leaving the hospitals.

In an FL setup, each client receives the model architecture and some instructions for
training. A model is trained on each client’s device, and the weights are returned to a
central server. This increases privacy slightly, in that it’s more difficult for an inter‐
ceptor to learn anything about a user from model weights than from raw data, but it
doesn’t provide any guarantee of privacy. The step of distributing the model training
doesn’t provide the user with any increased privacy from the company collecting the
data because the company can often work out what the raw data would have been
with a knowledge of the model architecture and the weights.

However, there is one more very important step to increase privacy using FL: the
secure aggregation of the weights into the central model. There are a number of algo‐
rithms for doing this, but they all require that the central party has to be trusted to
not attempt to inspect the weights before they are combined.
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Figure 14-3 shows which parties have access to the personal data of users in the FL
setting. It’s possible for the company collecting the data to set up secure averaging
such that they don’t see the model weights that are returned from users. A neutral
third party could also perform the secure aggregation. In this case, only the users
would see their data.

Figure 14-3. Trusted parties in federated learning

An additional privacy-preserving extension to FL is the incorporation of DP into this
technique. In this situation, DP limits the amount of information that each user can
contribute to the final model. Research has shown that the resulting models are
almost as accurate as non-DP models if the number of users is large.7 However, as
yet, this hasn’t been implemented for either TensorFlow or PyTorch.

An example of FL in production is Google’s Gboard keyboard for Android mobile
phones. Google is able to train a model to make better next-word predictions without
learning anything about users’ private messaging. FL is most useful in use cases that
share the following characteristics:8

• The data required for the model can only be collected from distributed sources.
• The number of data sources is large.
• The data is sensitive in some way.
• The data does not require extra labelling—the labels are provided directly by the

user and do not leave the source.
• Ideally, the data is drawn from close to identical distributions.
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FL introduces many new considerations into the design of a machine learning sys‐
tem: for example, not all data sources may have collected new data between one
training run and the next, not all mobile devices are powered on all the time, and so
on. The data that is collected is often unbalanced and practically unique to each
device. It’s easiest to get sufficient data for each training run when the pool of devices
is large. New secure infrastructure must be developed for any project using FL.9

Care must be taken to avoid performance issues on devices that train an FL model.
Training can quickly drain the battery on a mobile device or cause large data usage,
leading to expense for the user. Even though the processing power of mobile phones
is increasing rapidly, they are still only capable of training small models, so more
complex models should be trained on a central server.

Federated Learning in TensorFlow
TensorFlow Federated (TFF) simulates the distributed setup of FL and contains a
version of stochastic gradient descent (SGD) that can calculate updates on distributed
data. Conventional SGD requires that updates are computed on batches of a central‐
ized dataset, and this centralized dataset doesn’t exist in a federated setting. At the
time of writing, TFF is mainly aimed at research and experimentation on new feder‐
ated algorithms.

PySyft is an open source Python platform for privacy-preserving machine learning
developed by the OpenMined organization. It contains an implementation of FL
using secure multiparty computation (explained further in the following section) to
aggregate data. It was originally developed to support PyTorch models, but a Tensor‐
Flow version has been released.

Encrypted Machine Learning
Encrypted machine learning is another area of privacy-preserving machine learning
that’s currently receiving a lot of attention from both researchers and practitioners. It
leans on technology and research from the cryptographic community and applies
these techniques to machine learning. The major methods that have been adopted so
far are homomorphic encryption (HE) and secure multiparty computation (SMPC).
There are two ways to use these techniques: encrypting a model that has already been
trained on plain text data and encrypting an entire system (if the data must stay
encrypted during training).
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HE is similar to public-key encryption but differs in that data does not have to be
decrypted before a computation is applied to it. The computation (such as obtaining
predictions from a machine learning model) can be performed on the encrypted data.
A user can provide their data in its encrypted form using an encryption key that is
stored locally and then receive the encrypted prediction, which they can then decrypt
to get the prediction of the model on their data. This provides privacy to the user
because their data is not shared with the party who has trained the model.

SMPC allows several parties to combine data, perform a computation on it, and see
the results of the computation on their own data without knowing anything about the
data from the other parties. This is achieved by secret sharing, a process in which any
single value is split into shares that are sent to separate parties. The original value
can’t be reconstructed from any share, but computations can still be carried out on
each share individually. The result of the computations is meaningless until all the
shares are recombined.

Both of these techniques come with a cost. At the time of writing, HE is rarely used
for training machine learning models: it causes several orders of magnitudes of slow‐
down in both training and predictions. Because of this, we won’t discuss HE any fur‐
ther. SMPC also has an overhead in terms of networking time when the shares and
the results are passed between parties, but it is significantly faster than HE. These
techniques, along with FL, are useful for situations which data can’t be gathered in
one place. However, they do not prevent models from memorizing sensitive data—
DP is the best solution for that.

Encrypted ML is provided for TensorFlow by TF Encrypted (TFE), primarily devel‐
oped by Cape Privacy. TFE can also provide the secure aggregation required for FL.

Encrypted Model Training
The first situation in which you might want to use encrypted machine learning is
training models on encrypted data. This is useful when the raw data needs to be kept
private from the data scientist training the model or when two or more parties own
the raw data and want to train a model using all parties’ data, but don’t want to share
the raw data. As shown in Figure 14-4, only the data owner or owners are trusted in
this scenario.

Figure 14-4. Trusted parties with encrypted model training
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TFE can be used to train an encrypted model for this use case. It’s installed using pip
as usual:

$ pip install tf_encrypted

The first step in building a TFE model is to define a class that yields training data in
batches. This class is implemented locally by the data owner(s). It is converted to
encrypted data using a decorator:

@tfe.local_computation

Writing model training code in TFE is almost identical to regular Keras models—
simply replace tf with tfe:

import tf_encrypted as tfe

model = tfe.keras.Sequential()
model.add(tfe.keras.layers.Dense(1, batch_input_shape=[batch_size, num_features]))
model.add(tfe.keras.layers.Activation('sigmoid'))

The only difference is that the argument batch_input_shape must be supplied to the
Dense first layer.

Working examples of this are given in the TFE documentation. At the time of writ‐
ing, not all functionality of regular Keras was included in TFE, so we can’t show our
example project in this format.

Converting a Trained Model to Serve Encrypted Predictions
The second scenario where TFE is useful is when you’d like to serve encrypted mod‐
els that have been trained on plain-text data. In this case, as shown in Figure 14-5,
you have full access to the unencrypted training data, but you want the users of your
application to be able to receive private predictions. This provides privacy to the
users, who upload encrypted data and receive an encrypted prediction.

Figure 14-5. Trusted parties when encrypting a trained model

This method may be the best fit with today’s machine learning pipelines, as models
can be trained as normal and converted to an encrypted version. It can also be used
for models that have been trained using DP. The main difference from unencrypted
models is that multiple servers are required: each one hosts a share of the original
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model. If anyone views a share of the model on one server or one share of the data
that is sent to any one server, it reveals nothing about the model or the data.

Keras models can be converted to TFE models via:

tfe_model = tfe.keras.models.clone_model(model)

In this scenario, the following steps need to be carried out:

• Load and preprocess the data locally on the client.
• Encrypt the data on the client.
• Send the encrypted data to the servers.
• Make a prediction on the encrypted data.
• Send the encrypted prediction to the client.
• Decrypt the prediction on the client and show the result to the user.

TFE provides a series of notebooks showing how to serve private predictions.

Other Methods for Data Privacy
There are many other techniques for increasing privacy for the people who have their
data included in machine learning models. Simply scrubbing text data for names,
addresses, phone numbers, and so on, can be surprisingly easy using regular expres‐
sions and named-entity recognition models.

K-Anonymity

K-anonymity, often simply known as anonymization, is not a good
candidate for increasing privacy in machine learning pipelines. K-
anonymity requires that each individual in a dataset is indistin‐
guishable from k – 1 others with respect to their quasi-identifiers
(data that can indirectly identify individuals, such as gender, race,
and zip code). This is achieved by aggregating or removing data
until the dataset satisfies this requirement. This removal of data
generally causes a large decrease in the accuracy of machine learn‐
ing models.10
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Summary
When you’re working with personal or sensitive data, choose the data privacy solu‐
tion that best fits your needs regarding who is trusted, what level of model perfor‐
mance is required, and what consent you have obtained from users.

All of the techniques described in this chapter are extremely new, and their produc‐
tion use is not yet widespread. Don’t assume that using one of the frameworks
described in this chapter ensures complete privacy for your users. There is always a
substantial additional engineering effort involved in adding privacy to a machine
learning pipeline. The field of privacy-preserving machine learning is evolving rap‐
idly, and new research is being undertaken right now. We encourage you to look for
improvements in this field and support open source projects around data privacy,
such as PySyft and TFE.

The goals of data privacy and machine learning are often well aligned, in that we
want to learn about a whole population and make predictions that are equally good
for everyone, rather than learning only about one individual. Adding privacy can
stop a model from overfitting to one person’s data. We expect that, in the future, pri‐
vacy will be designed into machine learning pipelines from the start whenever models
are trained on personal data.
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CHAPTER 15

The Future of Pipelines and Next Steps

In the past 14 chapters, we have captured the current state of machine learning pipe‐
lines and given our recommendations on how to build them. Machine learning pipe‐
lines are a relatively new concept, and there’s much more to come in this space. In
this chapter, we will discuss a few things that we feel are important but don’t fit well
with current pipelines, and we also consider future steps for ML pipelines.

Model Experiment Tracking
Throughout this book, we have assumed that you’ve already experimented and the
model architecture is basically settled. However, we would like to share some
thoughts on how to track experiments and make experimentation a smooth process.
Your experimental process may include exploring potential model architectures,
hyperparameters, and feature sets. But whatever you explore, the key point we would
like to make is that your experimental process should fit closely with your production
process.

Whether you optimize your models manually or you tune the models automatically,
capturing and sharing the results of the optimization process is essential. Team mem‐
bers can quickly evaluate the progress of the model updates. At the same time, the
author of the models can receive automated records of the performed experiments.
Good experiment tracking helps data science teams become more efficient.

Experiment tracking also adds to the audit trail of the model and may be a safeguard
against potential litigations. If a data science team is facing the question of whether
an edge case was considered while training a model, experiment tracking can assist in
tracing the model parameters and iterations.

Tools for experiment tracking include Weights and Biases and Sacred. Figure 15-1
shows an example of Weights and Biases in action, with the loss for each model train‐
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ing run plotted against the training epoch. Many different visualizations are possible,
and we can store all the hyperparameters for each model run.

Figure 15-1. Experiment tracking in Weights and Biases

In the future, we expect to see the experiment and the production process become
more tightly linked so that a data scientist can smoothly switch from trying out a new
model architecture to adding it to their pipeline.

Thoughts on Model Release Management
In software engineering, there are well established procedures for versioning code
and managing releases. Large changes that may be backward-incompatible get a
major version change (from 0.x to 1.0, for example). Smaller feature additions get a
minor version change (1.0 to 1.1). But what does this mean in the machine learning
world? From one ML model to the next, the input format of the data may be the same
and the output format of the predictions remains the same, so there is no breaking
change. The pipeline still runs; no errors are thrown. But the performance of the new
model may be completely different from the one that came before. Standardization of
machine learning pipelines requires model versioning practices.
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We suggest the following strategy for model release management:

• If the input data is changed, the model version gets a minor change.
• If the hyperparameters are changed, the model version gets a major change. This

includes the number of layers in a network or the number of nodes in a layer.
• If the model architecture is completely changed (e.g., from a recurrent neural

network [RNN] to a Transformer architecture), this becomes an entirely new
pipeline.

The model validation step controls whether the release happens by validating that the
new model’s performance is an improvement on the previous model’s performance.
At the time of writing, only a single metric is used in this step by a TFX pipeline. We
expect that the validation step will become more sophisticated in the future to
include other factors such as inference time or accuracy on different slices of the data.

Future Pipeline Capabilities
In this book, we’ve captured the state of machine learning pipelines at the time of
writing. But what will machine learning pipelines look like in the future? Some of the
capabilities that we’d like to see include:

• Privacy and fairness becoming first-class citizens: at the time of writing, the
assumption is that the pipeline does not include privacy-preserving ML. Analysis
for fairness is included, but the ModelValidator step can only use overall metrics.

• Incorporation of FL, as we discussed in Chapter 14. If data preprocessing and
model training happen on a large number of individual devices, a machine learn‐
ing pipeline would need to look very different from the one we’ve described in
this book.

• The ability to measure the carbon emissions of our pipelines. As models become
larger, their energy usage becomes significant. Although this is often more rele‐
vant during the experimentation process (especially searching for model archi‐
tectures), it would be very useful to integrate emissions tracking into pipelines.

• Ingestion of data streams: in this book, we have only considered pipelines that
are trained on data batches. But with more sophisticated data pipelines, machine
learning pipelines should be able to consume data streams.

Future tools may further abstract some of the processes in this book, and we expect
that future pipelines will be even smoother to use and more automated.

We also predict that future pipelines will need to tackle some of the other types of
machine learning problems. We have only discussed supervised learning, and almost
exclusively classification problems. It makes sense to start with supervised
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classification problems because these are some of the easiest to understand and build
into pipelines. Regression problems and other types of supervised learning such as
image captioning or text generation will be easy to substitute into most components
of the pipeline we describe in this book. But reinforcement learning problems and
unsupervised problems may not fit so well. These are still rare in production systems,
but we anticipate that they will become more common in the future. The data inges‐
tion, validation, and feature engineering components of our pipeline should still
work with these problems, but the training, evaluation, and validation parts will need
significant changes. The feedback loops will also look very different.

TFX with Other Machine Learning Frameworks
The future of machine learning pipelines will also likely include openness regarding
underlying machine learning frameworks, so that a data scientist doesn’t need to
choose between building their model in TensorFlow, PyTorch, scikit-learn, or any
other future framework.

It is great to see that TFX is moving toward removing pure TensorFlow dependency.
As we discussed in Chapter 4, some TFX components can be used with other ML
frameworks. Other components are going through a transition to allow the integra‐
tion with other ML frameworks. For example, the Trainer component now provides
an executor that allows training models independently from TensorFlow. We hope
that we will see more generic components that integrate frameworks like PyTorch or
scikit-learn easily.

Testing Machine Learning Models
An emerging topic in machine learning engineering is the testing of machine learn‐
ing models. Here, we don’t mean model validation, as we discussed in Chapter 7, but
rather a test of the model inference. These tests can be unit tests for the model or
complete end-to-end tests of the model’s interactions with an app.

As well as testing that the system runs end to end, other tests may center around:

• Inference time
• Memory consumption
• Battery consumption on mobile devices
• The trade-off between model size and accuracy

We are looking forward to seeing best practices from software engineering merge
with data science practices, and model testing will be part of this.
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CI/CD Systems for Machine Learning
With machine learning pipelines becoming more streamlined in the coming months,
we will see machine learning pipelines moving toward more complete CI/CD work‐
flows. As data scientists and machine learning engineers, we can learn from software
engineering workflows. For example, we are looking forward to better integrations of
data versioning in ML pipelines or best practices to facilitate deployment rollbacks of
machine learning models.

Machine Learning Engineering Community
As the field of machine learning engineering is forming, the community around the
topic will be vital. We are looking forward to sharing best practices, custom compo‐
nents, workflows, use cases, and pipeline setups with the machine learning commu‐
nity. We hope this publication is a small contribution to the emerging field. Similar
to DevOps in software engineering, we hope to see more data scientists and software
engineers becoming interested in the discipline of machine learning engineering.

Summary
This book contains our recommendations for how to turn your machine learning
model into a smooth pipeline. Figure 15-2 shows all the steps that we believe are nec‐
essary and the tools that we think are best at the time of writing. We encourage you
to stay curious about this topic, to follow new developments, and to contribute to the
various open source efforts around machine learning pipelines. This is an area of
extremely active development, with new solutions being released frequently.

Figure 15-2. Machine learning pipeline architecture

Figure 15-2 has three extremely important features: it is automated, scalable, and
reproducible. Because it is automated, it frees up data scientists from maintaining
models and gives them time to experiment with new ones. Because it is scalable, it
can expand to deal with large quantities of data. And because it is reproducible, once
you have set it up on your infrastructure for one project, it will be easy to build a sec‐
ond one. These are all essential for a successful machine learning pipeline.
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APPENDIX A

Introduction to Infrastructure
for Machine Learning

This appendix gives a brief introduction to some of the most useful infrastructure
tools for machine learning: containers, in the form of Docker or Kubernetes. While
this may be the point at which you hand your pipeline over to a software engineering
team, it’s useful for anyone building machine learning pipelines to have an awareness
of these tools.

What Is a Container?
All Linux operating systems are based on the filesystem, or the directory structure
that includes all hard drives and partitions. From the root of this filesystem (denoted
as /), you can access almost all aspects of a Linux system. Containers create a new,
smaller root and use it as a “smaller Linux” within a bigger host. This lets you have a
whole separate set of libraries dedicated to a particular container. On top of that, con‐
tainers let you control resources like CPU time or memory for each container.

Docker is a user-friendly API that manages containers. Containers can be built, pack‐
aged, saved, and deployed multiple times using Docker. It also allows developers to
build containers locally and then publish them to a central registry that others can
pull from and immediately run the container.

Dependency management is a big issue in machine learning and data science.
Whether you are writing in R or Python, you’re almost always dependent on third-
party modules. These modules are updated frequently and may cause breaking
changes to your pipeline when versions conflict. By using containers, you can pre‐
package your data processing code along with the correct module versions and avoid
these problems.
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Introduction to Docker
To install Docker on Mac or Windows, visit https://docs.docker.com/install and
download the latest stable version of Docker Desktop for your operating system.

For a Linux operating system, Docker provides a very convenient script to install
Docker with just a couple of commands:

$ curl -fsSL https://get.docker.com -o get-docker.sh
$ sudo sh get-docker.sh

You can test whether your Docker installation is working correctly using the
command:

docker run hello-world

Introduction to Docker Images
A Docker image is the basis of a container, and it consists of a collection of changes
to the root filesystem and the execution parameters to run the container. The image
must first be “built” before it can be run.

A useful concept behind Docker images is storage layers. Building an image means
installing almost a whole dedicated Linux OS for your package. To avoid running this
operation every time, Docker uses a layered filesystem. Here is how it works: if the
first layer contains Files A and B, and the second layer adds File C, the resulting file‐
systems show A, B, and C. If we want to create a second image that uses Files A, B,
and D, we only need to change the second layer to add File D. This means that we can
have base images that have all the basic packages, and then we can focus on changes
specific to your image, as shown in Figure A-1.

Figure A-1. Example of a layered filesystem

Docker image names are called tags. They follow the pattern docker registry/
docker namespace/image name:tag. For example, docker.io/tensorflow/tensor‐
flow:nightly would point to the tensorflow image in DockerHub in the tensorflow
namespace. The tag is usually used to mark versions of a particular image. In our
example, the tag nightly is reserved for nightly builds of TensorFlow.
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Docker images are built based on a Dockerfile. Each line in a Dockerfile starts with
one of a few clauses. The most important are:

FROM

Indicates the Docker base container to build from. We will always want to use
this clause. There are many base containers available to download, such as
ubuntu.

RUN

Runs bash. This is the bread and butter of most Docker images. This is where we
want to do package installations, directory creation, etc. Because each line will
create a layer in the image, it’s good to have package installations and other long
tasks as one of the first lines in Dockerfile. This means that during rebuilds,
Docker will try to use layers from the cache.

ARG

Builds arguments. It’s useful if you want to have multiple flavors of the same
image, for example dev and production.

COPY

Copies files from a context. The path to the context is an argument used in
docker build. The context is a set of local files that are exposed to Docker dur‐
ing the build, and it only uses them in the process. This can be used to copy your
source code to a container.

ENV

Sets an environment variable. This variable will be part of the image and will be
visible in build and run.

CMD

This is the default command for a container. A good practice in Docker is to run
one command per container. Docker will then monitor this command, exit when
it exits, and post STDOUT from it to docker logs. Another way to specify this
command is by using ENTRYPOINT. There are several subtle differences between
these, but here we’ll focus on CMD.

USER

The default user in the container. This is different from host system users. You
should create a user during the build if you want to run commands as one.

WORKDIR

The default directory in the image. This will be the directory the default com‐
mand will be run from.
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EXPOSE

Specifies ports the container will use. For example, HTTP services should have
EXPOSE 80.

Building Your First Docker Image
Let’s build our first image!

First, we need to create a new directory for our small Docker project:

$ mkdir hello-docker
$ cd hello-docker

In this directory, create a file called Dockerfile with the following contents:

FROM ubuntu
RUN apt-get update
RUN apt-get -y install cowsay
CMD /usr/games/cowsay "Hello Docker"

To build it, use the command docker build . -t hello-docker. The -t flag speci‐
fies the tag for this image. You will see a series of commands that are run in the con‐
tainer. Each layer in our image (corresponding to each command in the Dockerfile)
is called in the temporary container running the previous layers. The difference is
saved, and we end up with a full image. The first layer (which we don’t build) is based
on Ubuntu Linux. The FROM command in Dockerfile tells Docker to pull this image
from a registry, in our case DockerHub, and use it as the base image.

After the build is finished, calling docker images should show something like this:

REPOSITORY      TAG        IMAGE ID          CREATED          SIZE
hello-docker    latest     af856e494ed4      2 minutes ago    155MB
ubuntu          latest     94e814e2efa8      5 weeks ago      88.9MB

We should see the base Ubuntu image and our new image.

Even though we have built this image, that doesn’t mean it’s ready to use. The next
step is to run the image. docker run is arguably the most important command in
Docker. It creates a new container from an existing image (or, if an image is not
present on the system, it will try to pull it from the registry). To run our image, we
should call docker run -it hello-docker. This should show us the output of our
cowsay command.

300 | Appendix A: Introduction to Infrastructure for Machine Learning



Docker Registries

One of the great strengths of Docker is the ease of publishing a
built image. The repository of Docker images is called the registry.
The default Docker registry, called DockerHub, is supported by
Docker, Inc. An account on DockerHub is free and lets you push
public images to it.

Diving into the Docker CLI
The Docker CLI is the main way to interact with images and containers on your local
machine. In this section, we’ll discuss the most important commands and options for
it. Let’s start with docker run.

There are many important options we could pass to docker run. With these, we can
override most of the options set in the Dockerfile. This is important because many
Docker images will have a set basic default command, but often that’s not exactly
how we want to run them. Let’s look at our cowsay example:

docker run -it hello-docker /usr/games/cowsay "Our own message"

The argument that comes after the image tag will override the default command we
have set in Dockerfile. This is the best way to specify our own command-line flags
to the default binaries. Other useful flags for docker run include:

-it

Means “interactive” (i) and tty (t), which allows us to interact with the com‐
mand being run from our shell.

-v

Mounts a Docker volume or host directory into the container—for example, a
directory containing datasets.

-e

Passes configurations through environment variables. For example, docker run
-e MYVARNAME=value image will create the MYVARNAME env variable in a
container.

-d

Allows the container to be run in detached mode, making it perfect for long
running tasks.

-p

Forwards a host’s port to a container to allow external services to interact with
the container over a network. For example, docker run -d -p 8080:8080

imagename would forward localhost:8080 to the container’s port 8080.
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Docker Compose

docker run can get pretty complex when you start mounting
directories, managing container links, and so on. Docker Compose
is a project to help with that. It allows you to create a docker-
compose.yaml file in which you can specify all your Docker options
for any number of containers. You can then link containers
together over a network or mount the same directories.

Other useful Docker commands include:

docker ps

Shows all the running containers. To also show exited containers, add the -a flag.

docker images

Lists all images present on the machine.

docker inspect container id

Allows us to examine the container’s configuration in detail.

docker rm

Deletes containers.

docker rmi

Deletes images.

docker logs

Displays the STDOUT and STDERR information produced by a container,
which is very useful for debugging.

docker exec

Allows you to call a command within a running container. For example, docker
exec -it container id bash will allow you to enter into the container envi‐
ronment with bash and examine it from inside. The -it flag works in the same
way as in docker run.

Introduction to Kubernetes
Up to now, we’ve just talked about Docker containers running on a single machine.
What happens if you want to scale up? Kubernetes is an open source project, initially
developed by Google, that manages scheduling and scaling for your infrastructure. It
dynamically scales loads to many servers and keeps track of computing resources.
Kubernetes also maximizes efficiency by putting multiple containers on one machine
(depending on their size and needs), and it manages the communications between
containers. It can run on any cloud platform—AWS, Azure, or GCP.
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Some Kubernetes Definitions
One of the hardest parts of getting started with Kubernetes is the terminology. Here
are a few definitions to help you:

Cluster
A cluster is a set of machines that contains a central node controlling the Kuber‐
netes API server and many worker nodes.

Node
A node is a single machine (either a physical machine or a virtual machine)
within a cluster.

Pod
A pod is a group of containers that run together on the same node. Often, a pod
only contains a single container.

Kubelet
A kubelet is the Kubernetes agent that manages communication with the central
node on each worker node.

Service
A service is a group of pods and the policies to access them.

Volume
A volume is a storage space shared by all containers in the same pod.

Namespace
A namespace is the virtual cluster that divides up the space in a physical cluster
into different environments. For example, we can divide a cluster into develop‐
ment and production environments or environments for different teams.

ConfigMap
A ConfigMap provides an API for storing nonconfidential configuration infor‐
mation (environment variables, arguments, etc.) in Kubernetes. ConfigMaps are
useful to separate the configuration from container images.

kubectl
kubectl is the CLI for Kubernetes.

Getting Started with Minikube and kubectl
We can create a simple, local Kubernetes cluser using a tool called Minikube. Mini‐
kube makes it easy to set up Kubernetes on any operating system. It creates a virtual
machine, installs Docker and Kubernetes on it, and adds a local user connected to it.
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Don’t Use Minikube in Production

Minikube should not be used in production; rather, it is designed
to be a quick and easy local environment. The easiest way to gain
access to a production-quality Kubernetes cluer is by purchasing
managed Kubernetes as a service from any major public cloud
provider.

First, install kubectl, the Kubernetes CLI tool.

For Mac, kubectl can be installed using brew:

brew install kubectl

For Windows, see their resources.

For Linux:

curl -LO https://storage.googleapis.com/kubernetes-release\
/release/v1.14.0/bin/linux/amd64/kubectl
chmod +x ./kubectl
sudo mv ./kubectl /usr/local/bin/kubectl

To install Minikube, we’ll first need to install a hypervisor that creates and runs vir‐
tual machines, such as VirtualBox.

On a Mac, Minikube can be installed using brew:

brew install minikube

For Windows, see the resources.

For Linux machines, use the following steps:

curl -Lo minikube \
https://storage.googleapis.com/minikube/releases/latest/minikube-linux-amd64
chmod +x minikube
sudo cp minikube /usr/local/bin && rm minikube

Once installation is complete, start a simple Kubernetes cluster in a single command:

minikube start

To quickly check if Minikube is good to go, we can try to list the nodes in the cluster:

kubectl get nodes

Interacting with the Kubernetes CLI
The Kubernetes API is based on resources. Almost everything in the Kubernetes
world is represented as a resource. kubectl is built with this in mind, so it will follow
a similar pattern for most of the resource interactions.

For example, a typical kubectl call to list all pods would be:
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kubectl get pods

This should produce a list of all the running pods, but since we haven’t created any,
the listing will be empty. That doesn’t mean that no pods are currently running on
our cluster. Most of the resources in Kubernetes can be placed in a namespace, and
unless you query the specific namespace, they won’t show up. Kubernetes runs its
internal services in a namespace called kube-system. To list all pods in any name‐
space, you can use the -n option:

kubectl get pods -n kube-system

This should return several results. We can also use --all-namespaces to show all
pods regardless of namespace.

You can use the name only to display one pod:

kubectl get po mypod

You can also filter out by label. For example, this call should show all pods that have
the label component with the value etcd in kube-system:

kubectl get po -n kube-system -l component=etcd

The information displayed by get can also be modified. For example:

# Show nodes and addresses of pods.
kubectl get po -n kube-system -o wide
# Show the yaml definition of pod mypod.
kubectl get po mypod -o yaml

To create a new resource, kubectl offers two commands: create and apply. The dif‐
ference is that create will always try to create a new resource (and fail if it already
exists), whereas apply will either create or update an existing resource.

The most common way to create a new resource is by using a YAML (or JSON) file
with the resource definition, as we’ll see in the next section. The following kubectl
commands allow us to create of update Kubernetes resources, (e.g., pods):

# Create a pod that is defined in pod.yaml.
kubectl create -f pod.yaml
# This can also be used with HTTP.
kubectl create -f http://url-to-pod-yaml
# Apply will allow making changes to resources.
kubectl apply -f pod.yaml

To delete a resource, use kubectl delete:

# Delete pod foo.
kubectl delete pod foo
# Delete all resources defined in pods.yaml.
kubectl delete -f pods.yaml
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You can use kubectl edit to update an existing resource quickly. This will open an
editor where you can edit the loaded resource definition:

kubectl edit pod foo

Defining a Kubernetes Resource
Kubernetes resources are most often defined as YAML (although JSON can also be
used). Basically, all resources are data structures with a few essential sections.

apiVersion

Every resource is part of an API, either supplied by Kubernetes itself or by third
parties. The version number shows the maturity of the API.

kind

The type of resource (e.g., pod, volume, etc.).

metadata

The data required for any resource.

name

The key that every resource can be queried by, which must be unique.

labels

Each resource can have any number of key-value pairs called labels. These labels
can then be used in selectors, for querying resources, or just as information.

annotations

Secondary key-value pairs that are purely informational and cannot be used in
queries or selectors.

namespace

A label that shows a resource belongs to a particular namespace or team.

spec

Configuration of the resource. All information required for the actual runtime
should be in spec. Each spec schema is unique to a particular resource type.

Here is an example .yaml file using these definitions:

apiVersion: v1
kind: Pod
metadata:
  name: myapp-pod
  labels:
    app: myapp
spec:
  containers:
  — name: myapp-container
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    image: busybox
    command: ['sh', '-c', 'echo Hello Kubernetes! && sleep 3600']

In this file, we have apiVersion and kind, which define what this resource is. We
have metadata that specifies the name and the label, and we have spec, which makes
up the body of the resource. Our pod consists of a single container, running the com‐
mand sh -c echo Hello Kubernetes! && sleep 3600 in the image busybox.

Deploying Applications to Kubernetes
In this section, we will walk through the full deployment of a functional Jupyter
Notebook using Minikube. We will create a persistent volume for our notebooks and
create a NodePort service to allow us access to our notebook.

First, we need to find the correct Docker image. jupyter/tensorflow-notebook is an
official image maintained by the Jupyter community. Next, we will need to find out
which port our application will listen on: in this case, it’s 8888 (the default port for
Jupyter Notebooks).

We want our notebook to persist between sessions, so we need to use PVC (persistent
volume claim). We create a pvc.yaml file to do this for us:

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
  name: notebooks
spec:
  accessModes:
    — ReadWriteOnce
  resources:
    requests:
      storage: 3Gi

Now we can create this resource by calling:

kubectl apply -f pvc.yaml

This should create a volume. To confirm, we can list all volumes and PVCs:

kubectl get pv
kubectl get pvc
kubectl describe pvc notebooks

Next up, we create our deployment .yaml file. We will have one pod that will mount
our volume and expose port 8888:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: jupyter
  labels:
    app: jupyter

Introduction to Infrastructure for Machine Learning | 307



spec:
  selector:
    matchLabels:
      app: jupyter  
  template:
    metadata:
      labels:
        app: jupyter
    spec:
      containers:
        — image: jupyter/tensorflow-notebook  
        name: jupyter
        ports:
        — containerPort: 8888
          name: jupyter
        volumeMounts:
        — name: notebooks
          mountPath: /home/jovyan
      volumes:
      — name: notebooks
        persistentVolumeClaim:
          claimName: notebooks

It’s important that this selector matches the labels in the template.

Our image.

By applying this resource (in the same way we did with PVC), we will create a pod
with a Jupyter instance:

# Let's see if our deployment is ready.
kubectl get deploy
# List pods that belong to this app.
kubectl get po -l app=jupyter

When our pod is in the Running state, we should grab a token with which we’ll be
able to connect to our notebook. This token will appear in logs:

kubectl logs deploy/jupyter

To confirm that the pod is working, let’s access our notebook with port-forward:

# First we need the name of our pod; it will have a randomized suffix.
kubectl get po -l app=jupyter
kubectl port-forward jupyter-84fd79f5f8-kb7dv 8888:8888

With this, we should be able to access a notebook on http://localhost:8888. The prob‐
lem is, nobody else will be able to since it’s proxied through our local kubectl. Let’s
create a NodePort service to let us access the notebook:
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apiVersion: v1
kind: Service
metadata:
  name: jupyter-service
  labels:
    app: jupyter
spec:
  ports:
    — port: 8888
      nodePort: 30888
  selector:
    app: jupyter
  type: NodePort

When this is created, we should be able to access our Jupyter! But first, we need to
find the IP address of our pod. We should be able to access Jupyter under this address
and port 30888:

minikube ip
# This will show us what is our kubelet address is.
192.168.99.100:30888

Others can now access the Jupyter Notebook by using the obtained IP address and
the service port (see Figure A-2). Once you access the address with your browser, you
should see the Jupyter Notebook instance.

Figure A-2. Jupyter Notebook running on Kubernetes

This was a brief overview of Kubernetes and its parts. The Kubernetes ecosystem is
very extensive, and a brief appendix can’t provide a holistic overview. For more
details regarding Kubeflow’s underlying architecture Kubernetes, we highly recom‐
mend the O’Reilly publication Kubernetes: Up and Running by Brendan Burns et al.
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APPENDIX B

Setting Up a Kubernetes Cluster
on Google Cloud

This appendix provides a brief overview of how to create a Kubernetes cluster on
Google Cloud that can run our example project. If Kubernetes is new to you, take a
look at Appendix A and our suggested reading at the end of Chapter 9. While the
exact commands we will cover only apply to Google Cloud, the overall setup process
is the same with other managed Kubernetes services like AWS EKS or Microsoft
Azure’s AKS.

Before You Get Started
For the following installation steps, we assume you have an account with Google
Cloud. If you don’t have an account, you can create one. Furthermore, we assume
that you have installed Kubernetes kubectl (client version 1.18.2 or higher) on your
local computer and that you can also execute Google Cloud’s SDK gcloud (version
289.0.0 or higher).

Watch Your Cloud Infrastructure Costs

Operating Kubernetes clusters can accumulate significant infra‐
structure costs. Therefore, we highly recommend to watch your
infrastructure costs by setting billing alerts and budgets. Details
can be found in the Google Cloud documentation. We also recom‐
mend turning off idling compute instances because they accrue
costs even if they are idling and no pipeline task is being computed.
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Steps on how to install a kubectl client for your operating system can be found as
part of the Kubernetes documentation. The Google Cloud documentation provides
step-by-step details on how to install their client for your operating system.

Kubernetes on Google Cloud
In the following five sections, we take you through the step-by-step process of creat‐
ing a Kubernetes cluster from scratch with Google Cloud.

Selecting a Google Cloud Project
For the Kubernetes cluster, we need to create a new Google Cloud project or select an
existing project in the Google Cloud Project dashboard.

Please note the project ID for the following steps. We will deploy our cluster in the
project with the ID oreilly-book, as shown in Figure B-1.

Figure B-1. Google Cloud Project dashboard

Setting Up Your Google Cloud Project
Before creating a Kubernetes cluster, let’s set up your Google Cloud project. In the
terminal of your operating system, you can authenticate your Google Cloud SDK cli‐
ent with:

$ gcloud auth login
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Then update the SDK client with:

$ gcloud components update

After you have successfully authenticated and updated the SDK client, let’s configure
a few basics. First, we’ll set the GCP project as the default project and pick a compute
zone as a default zone. In our example, we have chosen us-central-1. You can find a
list of all available zones in the Google Cloud documentation. Pick a zone either clos‐
est to your physical location or where the required Google Cloud services are avail‐
able (not all services are available in all zones).

By setting these default values, we don’t have to specify them later on in following
commands. We also will request to enable Google Cloud’s container APIs. The last
step is only needed once per project:

$ export PROJECT_ID=<your gcp project id> 
$ export GCP_REGION=us-central1-c 
$ gcloud config set project $PROJECT_ID
$ gcloud config set compute/zone $GCP_REGION
$ gcloud services enable container.googleapis.com 

Replace with the project ID from the previous step.

Select your preferred zone or region.

Enable APIs.

Creating a Kubernetes Cluster
With our Google Cloud project ready to go, we can now create a Kubernetes cluster
with a number of compute nodes as part of the cluster. In our example cluster called
kfp-oreilly-book, we allow the cluster to run between zero and five nodes at any
point in time in our pool called kfp-pool, and the desired number of available nodes
is three. We also assign a service account to the cluster. Through the service account,
we can control access permissions for requests from the cluster nodes. To learn more
about service accounts at Google Cloud, we recommend the online documentation:

$ export CLUSTER_NAME=kfp-oreilly-book
$ export POOL_NAME=kfp-pool
$ export MAX_NODES=5
$ export NUM_NODES=3
$ export MIN_NODES=0
$ export SERVICE_ACCOUNT=service-account@oreilly-book.iam.gserviceaccount.com

With the cluster parameters now defined in an environment variable, we can execute
the following command:
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$ gcloud container clusters create $CLUSTER_NAME \
      --zone $GCP_REGION \
      --machine-type n1-standard-4 \
      --enable-autoscaling \
      --min-nodes=$MIN_NODES \
      --num-nodes=$NUM_NODES \
      --max-nodes=$MAX_NODES \
      --service-account=$SERVICE_ACCOUNT

For our demo pipeline, we selected the instance type n1-standard-4, which provides
4 CPUs and 15 GB of memory per node. These instances provide enough compute
resources to train and evaluate our machine learning model and its datasets. You can
find a complete list of available instance types by running the following SDK
command:

$ gcloud compute machine-types list

If you would like to add a GPU to the cluster, you can specify the GPU type and the
number of GPUs by adding the accelerator argument, as shown in the following
example:

$  gcloud container clusters create $CLUSTER_NAME \
      ...
      --accelerator=type=nvidia-tesla-v100,count=1

The creation of the Kubernetes cluster can take a few minutes until all the resources
are fully assigned to your project and available. The time depends on your requested
resources and the number of nodes. For our demo cluster, you can expect to wait
approximately 5 minutes until all the resources are available.

Accessing Your Kubernetes Cluster with kubectl
When your newly created cluster is available, you can set up your kubectl to access
the cluster. The Google Cloud SDK provides a command to register the cluster with
your local kubectl configuration:

$ gcloud container clusters get-credentials $CLUSTER_NAME --zone $GCP_REGION

After updating the kubectl configuration, you can check if the correct cluster is
selected by running the following command:

$ kubectl config current-context
gke_oreilly-book_us-central1-c_kfp-oreilly-book

Using Your Kubernetes Cluster with kubectl
Because your local kubectl can connect with your remote Kubernetes cluster, all
kubectl commands, such as our Kubeflow Pipelines steps mentioned in the follow‐
ing and in Chapter 12, will be executed on the remote cluster:
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$ export PIPELINE_VERSION=0.5.0
$ kubectl apply -k "github.com/kubeflow/pipelines/manifests/kustomize/"\
                   "cluster-scoped-resources?ref=$PIPELINE_VERSION"
$ kubectl wait --for condition=established \
               --timeout=60s crd/applications.app.k8s.io
$ kubectl apply -k "github.com/kubeflow/pipelines/manifests/kustomize/"\
                   "env/dev?ref=$PIPELINE_VERSION"

Persistent Volume Setups for Kubeflow Pipelines
In “Exchange Data Through Persistent Volumes” on page 319, we’ll discuss the setup of
persistent volumes in our Kubeflow Pipelines setup. The complete configuration of
the persistent volume and its claim can be seen in the following code blocks. The pre‐
sented setup is specific to the Google Cloud environment.

Example B-1 shows the configuration of the persistent volume for our Kubernetes
cluster:

Example B-1. Persistent volume configuration

apiVersion: v1
kind: PersistentVolume
metadata:
  name: tfx-pv
  namespace: kubeflow
  annotations:
    kubernetes.io/createdby: gce-pd-dynamic-provisioner
    pv.kubernetes.io/bound-by-controller: "yes"
    pv.kubernetes.io/provisioned-by: kubernetes.io/gce-pd
spec:
  accessModes:
  - ReadWriteOnce
  capacity:
    storage: 20Gi
  claimRef:
    apiVersion: v1
    kind: PersistentVolumeClaim
    name: tfx-pvc
    namespace: kubeflow
  gcePersistentDisk:
    fsType: ext4
    pdName: tfx-pv-disk
  nodeAffinity:
    required:
      nodeSelectorTerms:
      - matchExpressions:
        - key: failure-domain.beta.kubernetes.io/zone
          operator: In
          values:
          - us-central1-c
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        - key: failure-domain.beta.kubernetes.io/region
          operator: In
          values:
          - us-central1
  persistentVolumeReclaimPolicy: Delete
  storageClassName: standard
  volumeMode: Filesystem
status:
  phase: Bound

Once the persistent volume is created, we can claim a portion or all of the available
storage through a persistent volume claim. The configuration file can be seen in
Example B-2:

Example B-2. Persistent volume claim configuration

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
  name: tfx-pvc
  namespace: kubeflow
spec:
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 20Gi

With the presented configuration, we have now created a persistent volume and its
claim in the Kubernetes cluster. The volume can now be mounted as discussed in
“Pipeline Setup” on page 237 or used as discussed in the section “Exchange Data
Through Persistent Volumes” on page 319 of the following appendix.
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APPENDIX C

Tips for Operating Kubeflow Pipelines

When you operate your TFX pipelines with Kubeflow Pipelines, you might want to
customize the underlying container images of your TFX components. Custom TFX
images are required if your components rely on additional Python dependencies out‐
side of the TensorFlow and TFX packages. In the case of our demo pipeline, we have
an additional Python dependency, the TensorFlow Hub library, for accessing our lan‐
guage model.

In the second half of this appendix, we want to show you how to transfer data to and
from your local computer and your persistent volume. The persistent volume setup is
beneficial if you can access your data via a cloud storage provider (e.g., with an on-
premise Kubernetes cluster). The presented steps will guide you through the process
of copying data to and from your cluster.

Custom TFX Images
In our example project, we use a language model provided by TensorFlow Hub. We
use the tensorflow_hub library to load the language model efficiently. This particular
library isn’t part of the original TFX image; therefore, we need to build a custom TFX
image with the required library. This is also the case if you plan to use custom com‐
ponents like the ones we discussed in Chapter 10.

Fortunately, as we discussed in Appendix A, Docker images can be built without
much trouble. The following Dockerfile shows our custom image setup:

FROM tensorflow/tfx:0.22.0

RUN python3.6 -m pip install "tensorflow-hub" 
RUN ... 

ENTRYPOINT ["python3.6", "/tfx-src/tfx/scripts/run_executor.py"] 
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Install required packages.

Install additional packages if needed.

Don’t change the container entry point.

We can easily inherit the standard TFX image as a base for our custom image. To
avoid any sudden changes in the TFX API, we highly recommend pinning the ver‐
sion of the base image to a specific build (e.g., tensorflow/tfx:0.22.0) instead of the
common latest tag. The TFX images are built on the Ubuntu Linux distribution and
come with Python installed. In our case, we can simply install the additional Python
package for the Tensorflow Hub models.

It is very important to provide the same entry point as configured in the base image.
Kubeflow Pipelines expects that the entry point will trigger the component’s execu‐
tor.

Once we have defined our Docker image, we can build and push the image to a con‐
tainer registry. This can be AWS Elastic, GCP or Azure Container Registry. It’s
important to ensure that the running Kubernetes cluster can pull images from the
container registry and has permission to do so for private containers. In the following
code, we demonstrate those steps for the GCP Container Registry:

$ export TFX_VERSION=0.22.0
$ export PROJECT_ID=<your gcp project id>
$ export IMAGE_NAME=ml-pipelines-tfx-custom

$ gcloud auth configure-docker
$ docker build pipelines/kubeflow_pipelines/tfx-docker-image/. \
    -t gcr.io/$PROJECT_ID/$IMAGE_NAME:$TFX_VERSION
$ docker push gcr.io/$PROJECT_ID/$IMAGE_NAME:$TFX_VERSION

Once the built image is uploaded, you can see the image available in the cloud pro‐
vider’s container registry, as shown in Figure C-1.

Component-Specific Images

At the time of writing, it isn’t possible to define custom images for
specific component containers. At the moment, the requirements
for all components need to be included in the image. However,
there are currently proposals being discussed to allow component-
specific images in the future.
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Figure C-1. Google Cloud’s Container Registry

We can now use this container image for all of our TFX components in our Kubeflow
Pipelines setup.

Exchange Data Through Persistent Volumes
As we discussed earlier, we need to provide containers to mount a filesystem to read
from and write data to locations outside of the container filesystem. In the Kuber‐
netes world, we can mount filesystems through persistent volumes (PVs) and persis‐
tent volume claims (PVCs). In simple terms, we can provision a drive to be available
inside of a Kubernetes cluster and then claim that filesystem in its entirety or a por‐
tion of its space.

You can set up such PVs through the Kubernetes configurations that we provide in
“Persistent Volume Setups for Kubeflow Pipelines” on page 315. If you would like to
use this setup, you will need to create a disk with your cloud provider (e.g., AWS
Elastic Block Storage or GCP Block Storage). In the following example, we create a
disk drive with a size of 20 GB named tfx-pv-disk:

$ export GCP_REGION=us-central1-c
$ gcloud compute disks create tfx-pv-disk --size=20Gi --zone=$GCP_REGION

We can now provision the disk to be used as a PV in our Kubernetes cluster. The
following kubectl command will facilitate the provisioning:

$ kubectl apply -f "https://github.com/Building-ML-Pipelines/"\
    "building-machine-learning-pipelines/blob/master/pipelines/"\
    "kubeflow_pipelines/kubeflow-config/storage.yaml"
$ kubectl apply -f "https://github.com/Building-ML-Pipelines/"\
    "building-machine-learning-pipelines/blob/master/pipelines/"\
    "kubeflow_pipelines/kubeflow-config/storage-claim.yaml"
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After the provisioning is completed, we can check if the execution worked by calling
kubectl get pvc, as shown in the following example:

$ kubectl -n kubeflow get pvc
NAME             STATUS   VOLUME    CAPACITY   ACCESS MODES   STORAGECLASS   AGE
tfx-pvc          Bound    tfx-pvc   20Gi       RWO            manual         2m

Kubernetes’ kubectl provides a handy cp command to copy data from our local
machines to the remote PV. In order to copy the pipeline data (e.g., the Python mod‐
ule for the transform and training steps, as well as the training data), we need to
mount the volume to a Kubernetes pod. For the copy operations, we created a simple
app that basically just idles and allows us to access the PV. You can create the pod
with the following kubectl command:

$ kubectl apply -f "https://github.com/Building-ML-Pipelines/"\
    "building-machine-learning-pipelines/blob/master/pipelines/"\
    "kubeflow_pipelines/kubeflow-config/storage-access-pod.yaml"

The pod data-access will mount the PV, and then we can create the necessary fold‐
ers and copy the required data to the volume:

$ export DATA_POD=`kubectl -n kubeflow get pods -o name | grep data-access`
$ kubectl -n kubeflow exec $DATA_POD -- mkdir /tfx-data/data
$ kubectl -n kubeflow exec $DATA_POD -- mkdir /tfx-data/components
$ kubectl -n kubeflow exec $DATA_POD -- mkdir /tfx-data/output

$ kubectl -n kubeflow cp \
    ../building-machine-learning-pipelines/components/module.py \
    ${DATA_POD#*/}:/tfx-data/components/module.py
$ kubectl -n kubeflow cp \
    ../building-machine-learning-pipelines/data/consumer_complaints.csv
    ${DATA_POD#*/}:/tfx-data/data/consumer_complaints.csv

After all the data is transferred to the PV, you can delete the data-access pod by
running the following command:

$ kubectl delete -f \
    pipelines/kubeflow_pipelines/kubeflow-config/storage-access-pod.yaml

The cp command also works in the other direction, in case you want to copy the
exported model from your Kubernetes cluster to a different location outside of your
cluster.

TFX Command-Line Interface
TFX provides a CLI to manage your TFX projects and their orchestration runs. The
CLI tool provides you TFX Templates, a predefined folder and file structure. Projects
that use the provided folder structure can then be managed through the CLI tool
instead of a web UI (in the case of Kubeflow and Airflow). It also incorporated the
Skaffold library to automate the creation and publication of custom TFX images.
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TFX CLI Under Active Development

The TFX CLI is under active development at the time of writing
this section. The commands might change or more functionality
might be added. Also, more TFX templates might become available
in the future.

TFX and Its Dependencies
TFX CLI requires the Kubeflow Pipelines SDK and the Skaffold, a Python tool for
continuously building and deploying Kubernetes applications.

If you haven’t installed or updated TFX and the Python SDK from Kubeflow Pipe‐
lines, run the two pip install commands:

$ pip install -U tfx
$ pip install -U kfp

The installation of Skaffold depends on your operating system:

Linux
$ curl -Lo skaffold \
https://storage.googleapis.com/\
skaffold/releases/latest/skaffold-linux-amd64
$ sudo install skaffold /usr/local/bin/

MacOS
$ brew install skaffold

Windows
$ choco install -y skaffold

After the installation of Skaffold, make sure the execution path of the tool is added to
the PATH of the terminal environment where you are executing the TFX CLI tool. The
following bash example shows how Linux users can add the Skaffold path to their
PATH bash variable:

$ export PATH=$PATH:/usr/local/bin/

Before we discuss how to use the TFX CLI tool, let’s discuss TFX templates briefly.

TFX Templates
TFX provides project templates to organize machine learning pipeline projects. The
templates provide a predefined folder structure and a blueprint for your feature,
model, and preprocessing definitions. The following tfx template copy command
will download the taxi cab example project of the TFX project:

$ export PIPELINE_NAME="customer_complaint"
$ export PROJECT_DIR=$PWD/$PIPELINE_NAME
$ tfx template copy --pipeline-name=$PIPELINE_NAME \
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1 At the time of writing, this was the only template available.

                    --destination-path=$PROJECT_DIR \
                    --model=taxi

When the copy command completes its execution, you can find a folder structure, as
seen in the following bash output:

$ tree .
.
├── __init__.py
├── beam_dag_runner.py
├── data
│   └── data.csv
├── data_validation.ipynb
├── kubeflow_dag_runner.py
├── model_analysis.ipynb
├── models
│   ├── __init__.py
│   ├── features.py
│   ├── features_test.py
│   ├── keras
│   │   ├── __init__.py
│   │   ├── constants.py
│   │   ├── model.py
│   │   └── model_test.py
│   ├── preprocessing.py
│   └── preprocessing_test.py
├── pipeline
│   ├── __init__.py
│   ├── configs.py
│   └── pipeline.py
└── template_pipeline_test.tar.gz

We have taken the taxi cab template1 and tuned our book example project to match
the template. The results can be found in the book’s GitHub repository. If you want
to follow along with this example, please copy the CSV file consumer_complaints.csv
into the folder:

$pwd/$PIPELINE_NAME/data

Also, double check the file pipelines/config.py, which defines the GCS bucket and
other pipeline details. Update the GCS bucket path with a bucket you created or use
the GCS buckets that were created when you created the Kubeflow Pipelines installa‐
tion through GCP’s AI Platform. You can find the path with the following command:

$ gsutil -l
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Publishing Your Pipeline with TFX CLI
We can publish the TFX pipeline, which we created based on the TFX template, to
our Kubeflow Pipelines application. To access our Kubeflow Pipelines setup, we need
to define our GCP Project, a path for our TFX container image and the URL of our
Kubeflow Pipelines endpoint. In “Accessing Your Kubeflow Pipelines Installation”
on page 234, we discussed how to obtain the endpoint URL. Before publishing our
pipeline with TFX CLI, let’s set up the required environment variables for our
example:

$ export PIPELINE_NAME="<pipeline name>"
$ export PROJECT_ID="<your gcp project id>"
$ export CUSTOM_TFX_IMAGE=gcr.io/$PROJECT_ID/tfx-pipeline
$ export ENDPOINT="<id>-dot-<region>.pipelines.googleusercontent.com"

With the details defined, we can now create the pipeline through the TFX CLI with
the following command:

$ tfx pipeline create --pipeline-path=kubeflow_dag_runner.py \
                      --endpoint=$ENDPOINT \
                      --build-target-image=$CUSTOM_TFX_IMAGE

The tfx pipeline create command performs a variety of things. With the assis‐
tance of Skaffold, it creates a default docker image and publishes the container image
via the Google Cloud Registry. It also runs the Kubeflow Runner, as we discussed in
Chapter 12, and uploads the Argo configuration to the pipeline endpoint. After the
command completes the execution, you will find two new files in the template folder
structure: Dockerfile and build.yaml.

The Dockerfile contains an image definition similar to the Dockerfile we discussed in
“Custom TFX Images” on page 317. The build.yaml file configures Skaffold and sets
the docker images registry details and tag policy.

You will be able to see the pipeline now registered in your Kubeflow Pipelines UI.
You can start a pipeline run with the following command:

$ tfx run create --pipeline-name=$PIPELINE_NAME \
                 --endpoint=$ENDPOINT

Creating a run for pipeline: customer_complaint_tfx
Detected Kubeflow.
Use --engine flag if you intend to use a different orchestrator.
Run created for pipeline: customer_complaint_tfx
+------------------------+----------+----------+---------------------------+
| pipeline_name          | run_id   | status   | created_at                |
+========================+==========+==========+===========================+
| customer_complaint_tfx | <run-id> |          | 2020-05-31T21:30:03+00:00 |
+------------------------+----------+----------+---------------------------+

You can check on the status of the pipeline run with the following command:
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$ tfx run status --pipeline-name=$PIPELINE_NAME \
                 --endpoint=$ENDPOINT \
                 --run_id <run_id>

Listing all runs of pipeline: customer_complaint_tfx
+------------------------+----------+------------+---------------------------+
| pipeline_name          | run_id   | status     | created_at                |
+========================+==========+============+===========================+
| customer_complaint_tfx | <run-id> | Running    | 2020-05-31T21:30:03+00:00 |
+------------------------+----------+------------+---------------------------+

A list of all runs for a given pipeline can be obtained with the following command:

$ tfx run list --pipeline-name=$PIPELINE_NAME \
               --endpoint=$ENDPOINT

Listing all runs of pipeline: customer_complaint_tfx
+------------------------+----------+------------+---------------------------+
| pipeline_name          | run_id   | status     | created_at                |
+========================+==========+============+===========================+
| customer_complaint_tfx | <run-id> | Running    | 2020-05-31T21:30:03+00:00 |
+------------------------+----------+------------+---------------------------+

Stop and Delete Pipeline Runs

You can stop a pipeline run with tfx run terminate. Pipeline
runs can be deleted with tfx run delete.

TFX CLI is a very useful tool in the TFX toolchain. It supports not only Kubeflow
Pipelines but also Apache Airflow and Apache Beam orchestrators.
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bytes_feature helper function, 91

C
categorical features, statistics generated about

in TFDV, 47
CentralStorageStrategy, 93
channels

gRPC, establishing, 150
TFX components communicating through,

200
types available in TFX, 201

CI/CD systems for machine learning, 295
classification metrics, 100-103
classification models, getting predictions via

gRPC API, 152
classify method, 136
CLI (see command-line interface in TFX)
cloud

deployments of models on, 162-168
managed Kubernetes services from provid‐

ers, 232
model deployments on

example deployment with GCP, 163-168
use cases, 162

models stored in cloud buckets, 172
accessing models from AWS S3, 173
remote loading optimizations, 174

storage buckets, 34
using cloud storage buckets for data

exchange, 256
watching infrastructure costs, 311

collections (Apache Beam), 22
basic example, 22

command-line interface (CLI) in TFX, 320-324
publishing your pipeline with, 323
TFX and its dependencies, 321
TFX project templates, 321

COMPAS algorithm, 109
computer vision problems

image data, preprocessing with TFT, 72
image data, strategies for ingesting, 41

concrete functions, 90
constrained optimization (for model fairness),

119
counterfactuals, 117
crowdsourcing annotations, 270
CSV files, 28

converting to tf.Example, 29
use in TFDV, 45

custom TFX components, 198-211
reusing existing components, 208
use cases, 199
writing from scratch, 199-208

assembling the custom component, 206
component drivers, 204
component executor, 201
component specifications (Component‐

Spec), 200
implementation review, 208
parts of custom component, 199
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using the custom component, 207

D
DAG objects

Airflow configuration options for, 222
KubeflowDagRunnerConfig, 238
turning on a DAG in Airflow, 227

DAGs (see directed acyclic graphs)
data flywheel, 264
data ingestion, 4, 27-42

concepts, 27
directly from databases, 34

Google Cloud BigQuery, 34
Presto databases, 35

ingesting local data files, 28-33
converting Avro-serialized data to

tf.Example, 31
converting CSV data to tf.Example, 29
converting Parquet-serialized data to

tf.Example, 30
converting your custom data to TFRe‐

cord data structures, 31
importing existing TFRecord files, 30

ingesting remote data files, 34
preparing data for, 36-40

spanning datasets, 38
splitting datasets, 36
versioning datasets, 39

reusing existing components, 208
strategies for, 40-42

image data for computer vision prob‐
lems, 41

structured data, 40
text data for natural language problems,

40
data preprocessing, 5, 63-78

image data for computer vision problems,
41

in machine learning pipelines, 63
reasons for performing, 64-66

avoiding training-serving skew, 65
checking preprocessing results in ML

pipeline, 66
deploying preprocessing steps and

model as one artifact, 66
processing data in context of entire data‐

set, 64
scaling preprocessing steps, 64

using TensorFlow Transform, 67-78

best practices, 70
functions in TFT, 70
installing TFT, 68
preprocessing strategies, 68
standalone execution of TFT, 73

data privacy, 7, 275-289
differential privacy, 277-280

epsilon, delta, and the privacy budget,
279

local and global, 279
for machine learning, 280

encrypted machine learning, 285
converting trained model to serve

encrypted predictions, 287
encrypted model training, 286

federated learning, 283-285
in TensorFlow, 285

issues, 275-277
simplest way to increase privacy, 276
what data should be kept private, 277
why care about data privacy, 276

model deployment and, 130
other methods for, 288
TensorFlow Privacy, 280-283

calculating epsilon, 282
training with differentially private opti‐

mizer, 281
data types

considering in TFT, 70
in tf.Estimator model, 90
neural network weights stored as float 32-

bit data types, 175
data validation, 4, 43-62

benefits of, 44
integrating TFDV into machine learning

pipeline, 60
processing large datasets with GCP, 57-59
recognizing problems in your data, 49-57

biased datasets, 54
comparing datasets, 50
data skew and drift, 52
slicing data, 55
updating the schema, 52

TensorFlow Data Validation (TFDV), 45-49
Data Version Control (DVC), 40
databases

ingesting data directly from, 34
Presto databases, 35

initializing Airflow database, 221
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Kubeflow Pipelines using, 238
MySQL database with Kubeflow Pipelines,

230
Dataflow (Google Cloud), 57

executing Apache Beam with, 259
job details, 260
TensorFlow Transform on, 73
using Apache Beam with, 22

decision thresholds, checking with Fairness
Indicators, 112

delta, 279
demographic parity, 109
deployment cycles, decoupling, 171-175

workflow overview, 172
DevOps depoyment cycles, decoupling from

data scientists, 172
differential privacy, 277-280

epsilon, delta, and the privacy budget, 279
local and global, 279
for machine learning, 280
training with a differentially private opti‐

mizer, 281
directed acyclic graphs (DAGs), 9
distillation (model), 177
distribution strategies, 92-95
Docker, 297

building your first Docker image, 300
command to start TensorFlow Serving con‐

tainer with batching, 159
command-line interface (CLI), 301

docker run command, 301
other useful commands, 302

configuration for TensorFlow Serving with
multiple models, 145

custom TFX images, 317
deploying via Kubernetes without specific

Docker containers, 185
installing TensorFlow Serving, 141
introduction to, 298

Docker images, 298
Prometheus Docker setup, 181
running TensorFlow Serving with image

prebuilt for GPU images, 143
docker run command, 301
Docker Swarm, 185
Dockerfiles, 299, 300, 323
DP (see differential privacy)
drift in data, 45

detecting with TFDV, 52

drift_comparator (TFDV), 53
driver (TFX components), 16

for custom TFX component, 204

E
early stopping, 95
edge devices, deploying models to, 180
encrypted machine learning, 285

converting trained model to serve encrypted
predictions, 287

encrypted model training, 286
epsilon, 279
equal accuracy, 110
equal opportunity, 109

checking false positive rate for each group,
112

Estimator models, 80
exporting for TensorFlow Serving, 134, 134
using Trainer component with, 90

EvalConfig, 105, 107, 125
metrics_specs argument, 106

EvalSharedModel, 104
evaluation datasets, 36

as input for TFMA, 104
Evaluator component (TFX), 125, 193, 216

model validation in, 125
ExampleGen component, 28, 215
Examples channel, 201
ExampleValidator component, 216
executors (TFX component), 16, 201

executor classes for loading different file
types, 30

GenericExecutor, 89
using our custom executor, 211

experiment tracking (model), 291
expert annotations, 270
explainability (model), 119-123

caution with, 123
generating explanations with What-If Tool,

121-122
local and global explanations, 120
other explainability techniques, 122

explicit feedback, 264
tracking, 272

exporting a pipeline, 218
exporting models

exported model folder, 135
for deployment in mobile apps, 192
for TensorFlow Serving, 134
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export_saved_model method, 134
ExternalArtifact channel, 200

F
Fairness Indicators project

checking false positives for equal opportu‐
nity, 112

documentation, 110
loading Fairness Indicators in TFX Evalua‐

tor, 125
fairness, model analysis for, 109-119

checking decision thresholds with Fairness
Indicators, 112

defining numerically the meaning of fair‐
ness, 109

going deeper with What-If Tool, 116-119
slicing model predictions in TFMA, 111

false negatives, 101
false positives, 101

false positive rate (FPR), 102
feature attributions, 122
features

converting to one-hot, 77
feature names in TFT, 70
slicing datasets on, 55
tf.train.Feature object, 32

federated learning, 283-285
in TensorFlow, 285

feedback loops, 7, 263-273
design patterns for collecting feedback,

268-271
crowdsourcing annotations, 270
expert annotations, 270
feedback produced automatically by the

system, 271
users correct the prediction, 269
users rate quality of the prediction, 269
users take an action as result of predic‐

tion, 268
explicit and implicit feedback, 264-267

data flywheel, 264
feedback loops in the real world, 265

monitoring for unexpected consequences,
267

negative consequenes of, 264
tracking, 271

explicit feedback, 272
implicit feedback, 272

FileBasedExampleGen, 208, 211

floating point numbers, quantization of, 175
function decorators, 209
future of pipelines and next steps, 291-295

CI/CD systems for machine learning, 295
future pipeline capabilities, 293
machine learning engineering community,

295
model experiment tracking, 291
model realease management, 292
testing of machine learning models, 294
TFX with other ML frameworks, 294

G
GCP (Google Cloud Platform), 311

accessing models from GCP buckets, 174
adding GCP credentials of TFX component

containers, 240
AI Platform (see Google Cloud AI Plat‐

form)
container registry, 318
Google Cloud Credentials, 34
Kubernetes on, 312-315

accessing your cluster with kubectl, 314
creating a Kubernetes cluster, 313
selecting Google Cloud project, 312
setting up Google Cloud project, 312
using your Kubernetes cluster with

kubectl, 314
persistent volume setup for Kubeflow Pipe‐

lines, 315
processing large datasets with, 57-59
storage buckets, 34
TensorFlow Serving deployment on Kuber‐

netes, 185
training models on AI Platform, 89

GenericExecutor, 89
get_model function, 86
get_serve_tf_examples_fn function, 87, 88
global differential privacy, 279
global explanations, 120
Google Cloud AI Platform

example model deployment with, 163-168
model deployment, 163
model inference, 166

feature attributions, 122
Kubeflow Pipelines on, 215
managed Kubeflow Pipelines installations,

233
pipelines based on, 252-260
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executing the TFX pipeline, 260
Kubeflow Pipelines setup, 252
TFX pipeline setup, 256-259

Google Cloud BigQuery
ingesting data directly from, 34
using Apache Beam with, 22

Google Cloud Marketplace, 253
Google Colab, 18

TFMA in Google Colab notebook, 106
Google Remote Procedure Calls (gRPC)

endpoint configuration with TensorFlow
Serving, 143

request for model metadata via model
server, 155

REST versus, 147-148
using TensorFlow Serving via, 150-152

getting predictions from classification
and regression models, 152

payloads from requests, 152
secure connections, 151

GPUs, 178
Docker container installation of Tensor‐

Flow Serving, 141
requesting for execution of TFX component

containers, 240
GraphPipe, model deployment with, 161
grid search, 96
gRPC (see Google Remote Procedure Calls)

H
hash_buckets, 36
homomorphic encryption (HE), 286
HTTP requests to model server, URLs for, 148
Human in the Loop component, 195-198
Hyperband algorithm, 96
hyperparameter tuning for models, 95

in TFX pipelines, 96

I
image data for computer vision problems

preprocessing with TFT, 72
strategies for ingesting, 41

ImageIngestComponent (example)
assembling, 206
implementation review, 208
using, 207

ImageIngestComponentSpec (example), 200
ImageIngestDriver class (example), 205
ImageIngestExecutor class (example), 203

image_to_example function, 210
implementation review for custom component,

207
implicit feedback, 264

tracking, 272
infrastructure for machine learning, 297-309

containers, 297
deploying applications to Kubernetes,

307-309
Docker, 298-302
Kubernetes, 302-307

ingestion of data (see data ingestion)
init_beam_pipeline function, 220
init_components function, 217, 237
input configuration for split datasets, 38
inputs

for classification method, 136
inspecting for an exported model, 139
for prediction method, 136
for regression method, 137
testing for exported model, 140

input_fn function, 85, 88
interactive pipelines, 18-20

TFX, converting to production pipeline,
215-218

using TensorBoard in, 91

J
JSON

data structures submitted to REST, conver‐
sion to tf.Example, 147

payloads of REST client requests, 147
Jupyter Notebooks, 18

comparing datasets in, 50
deploying to Kubernetes, 307-309
displaying schema generated by TFDV, 48
installing and enabling TFMA notebook

extension, 106
installing and enabling WIT notebook

extension, 117

K
K-anonymity, 288
Katib, 96
Keras Tuner, 96
kubectl, 185

accessing your Kubernetes cluster with, 314
getting started with, 304
installing, 311
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interacting with, 304
using your Kubernetes cluster with, 314

Kubeflow, 187
versus Kubeflow Pipelines, 231

Kubeflow Pipelines, 214, 229-261
accessing your installation, 234
on Google Cloud AI Platform, 215
installation and initial setup, 232
introduction to, 230
Kubeflow versus, 231
operating tips for, 317-324

custom TFX images, 317
exchanging data through persistent vol‐

umes, 319
TFX CLI, 320-324

OpFunc functions, 239
orchestrating TFX pipelines with, 235-251

auditing pipeline lineage, 251
collaborating and reviewing pipeline

runs, 248
executing the pipeline, 241-247
pipeline setup, 237-241
recurring runs, 247
restarting failed pipelines, 247
workflow from TFX script to Kubeflow

Pipelines, 235
overview of, 231
persistent volume setups for, 315
pipelines based on Google Cloud AI Plat‐

form, 252-260
pipeline setup, 252
TFX pipeline setup, 256-259

KubeflowDagRunnerConfig, 238
Kubernetes, 229, 302-309

(see also Kubeflow Pipelines)
creating a cluster, 232
creating or choosing a cluster from Google

Cloud Marketplace, 253
defining resources, 306
definitions of terminology, 303
deploying applications to, 307-309
getting started with Minikube and kubectl,

303
information resources, 187
interacting with the CLI, 304
persistent volume setup for Kubeflow Pipe‐

lines on GCP, 315
setting up a cluster, 311-316

before you get started, 311

Kubernetes on Google Cloud, 312-315
simple scaling with TensorFlow Serving

and, 185-187

L
L-infinity norm, 53
labels, version labels for deployed models, 146
latest_blessed_model_resolver, 124
layered filesystems, 298
learning rate schedulers, 95
legal and regulatory requirements for data pri‐

vacy, 276
LIME (local interpretable model-agnostic

explanations), 122
local differential privacy, 279
local explanations, 120

M
machine learning engineering community, 295
machine learning pipelines

architecture, 295
benefits of, 1
overview of steps in, 3-8
when to consider, 3

MAE (see mean absolute error)
MAPE (see mean absolute percentage error)
mean absolute error (MAE), 103
mean absolute percentage error (MAPE), 103
mean squared error (MSE), 104
metadata

artifact, 17
request for model metadata via model

server
on gRPC API, 155
on REST API, 154

requesting model metadata from model
server, 154-156

SQLite database, 219
TFX components communicating through,

17
MetadataStore, 8, 230

(see also metadata)
components' interactions with, 18
in-memory, setting up with InteractiveCon‐

text, 19
publisher managing saving of metadata to,

16
methods, signature, 136
MetricsSpec, 126
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Microsoft Azure, 162
Microsoft Twitter bot, 266
Minikube, 303
MirroredStrategy, 93

batch size requirement, 95
example use with TFX Trainer, 94

ML Metadata (MLMD) API (TFX), 17
MLflow, model deployment with, 161
mobile deployments for ML models, 192
model analysis and validation, 99-127

analyzing your model, 100-104
using classification metrics, 100-103
using regression metrics, 103

in TFX, 124-127
model analysis, 6
model analysis for fairness, 109-119
model explainability, 119-123
TensorFlow Model Analysis, 104-108

model cards framework, 123
model deployment, 7

size restrictions on AI Platform, 259
model deployment with TensorFlow Serving,

129-169
advanced, 171-187

decoupling deployment cycles, 171-175
model optimizations for deployment,

175-177
monitoring TensorFlow Serving instan‐

ces, 181-185
simple scaling with Kubernetes and,

185-187
alternatives to TensorFlow Serving, 160
batching inference requests, 156-159
configuring a TensorFlow server, 142-147
deployment with cloud providers, 162-168
deployment with TFX pipelines, 168
inspecting exported models, 138-140
making predictions from the model server,

148-152
model A/B testing with TensorFlow Serv‐

ing, 152
model signatures, 135-138
other optimizations, 159
requesting model metadata from model

server, 154-156
setting up TensorFlow Serving, 140-142
simple model server, 130-133

challenges of deployment with Python
apps, 131

TensorFlow Serving, 133
architecture overview, 133
exporting models for, 134-135

model release management, 292
model signatures, 87, 135-138

inspecting for exported models, 138
signature methods, 136

model training, 5, 79-97
defining model for example project, 80-83
distribution strategies, 92-95
encrypted, 286
in machine learning pipelines, 79
TFX Trainer component, 83-91

other considerations, 89-91
running the Trainer, 88-91

training multiple models simultaneously,
190

using differentially private optimizer, 281
warm start, 194
with AI Platform job, 256

model tuning, 5, 95-96
hyperparameter tuning in TFX pipelines, 96
strategies for hyperparameter tuning, 95

model versioning, 6
model release management, 292

ModelSpec object, 105, 155
model_config_list function, 145
MSE (see mean squared error)
MultiWorkerMirroredStrategy, 93
MySQL database (Kubeflow Pipelines), 230,

238

N
natural language problems

text data for, preprocessing with TFT, 71
text data for, strategies for ingesting, 40

Netflix's movie recommendation system, 266
ngrams, 71
node sizes for Kubernetes cluster, 254
numerical features

statistics generated about in TFDV, 47
tft.compute_and_apply_vocabulary func‐

tion, 71
Nvidia's Docker support for GPUs, 141
Nvidia, TensorRT, 178

(see also TensorRT)

O
one-hot features, 77
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converting TFT index to, 76
OneDeviceStrategy, 94
OpFunc functions, 239
orchestration (pipeline), 8

alternatives to TFX, 20
orchestration of container replication, 185
orchestration tools for pipelines, 14, 213-228,

229
(see also Kubeflow Pipelines)
Apache Airflow, 220-228

example, setting up basic pipeline,
222-225

installation and setup, 220
orchestrating TFX pipelines, 225-228

Apache Beam, 218-220
converting interactive TFX pipeline to pro‐

duction, 215-218
simple interactive pipeline conversion

for Apache Beam and Airflow, 217
deciding which tool to use, 214-215

Apache Airflow, 214
Apache Beam, 214
Kubeflow Pipelines, 214

output configuration for split datasets, 37
overall slice, 105

P
Pachyderm, 40
ParameterServerStrategy, 93
Parquet-serialized data, converting to tf.Exam‐

ple, 30
partial dependence plots (PDPs), 118

assumption that all features are independent
of each other, 122

local, 121
payloads

for requests to TensorFlow Serving, 149
from TensorFlow Server on gRPC, 152

persistent volumes
exchanging data through in Kubeflow Pipe‐

lines, 319
mounting with TFX, 237
output of TFX and Kubernetes Pipelines

stored on, 230
setups for Kubeflow Pipelines, 315

personally identifying information (PII), 277
Pipeline function (Apache Beam), 219
pipeline object, setup for use on GCP, 58
pipeline orchestration, 8

(see also orchestration (pipeline); orchestra‐
tion tools for pipelines)

pipeline orchestrators, 213
(see also orchestration tools for pipelines)

port forwarding, creating to access Kubeflow
Pipelines installation, 234

POST requests, 148
precision, 102
predict method, 136
preprocessing_fn function (TFT), 67, 68, 78

best practices with, 70
Presto databases, ingesting data from, 35
principal component analysis (PCA), 71
privacy (see data privacy)
Private Aggregation of Teacher Ensembles

(PATE), 280
project-specific configurations (Airflow), 222
Prometheus, 181

configuring TensorFlow Server to provide
metrics for, 183

setting up and configuring, 181
protected groups (in US law), 110
Protocol Buffers, use by gRPC APIs, 152
pruning models, 176
Publisher (TFX components), 16
publish_artifacts function, 205, 205
Pusher component (TFX), 126, 168, 193, 216

observing AI Platform configurattion, 258
push destination, 200

PySyft platform, 285

Q
quantization (model), 175
quasi-identifying data, 277, 288

R
random search, 96
randomized response, 278
ratio, defining when splitting datasets, 36
Real Time Messaging (RTM) protocol, 198
recall, 102
receiver function, 134
receiver operating characteristic (ROC), 102
regress method, 137
regression metrics, 103
regression models, getting predictions via

gRPC API, 152
regulatory requirements for data privacy, 276
release management for models, 292
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remote model loading, optimization of, 174
Remote Procedure Calls (RPC) (see Google

Remote Procedure Calls)
render_slicing_metrics function, 105
requests Python library, 148
Resolver component, 216

ResolverNodes, 124
required for warm start model training,

194
resolve_input_artifacts method, 205
REST APIs

endpoint configuration with TensorFlow
Serving, 143

endpoint for TensorFlow Serving metrics
provided to Prometheus, 183

getting model predictions via, 148
randomly changing request URL for model

inference in API for A/B testing, 153
request for model metadata via model

server, 154
REST versus gRPC, 147-148

reusing existing TFX components, 200
ROC (see receiver operating characteristic)
routing tools for random routing of model

inference on server side, 153
RTM (Real Time Messaging) protocol, 198
run_fn function, 83-88

adding callbacks to use TensorBoard, 92
compiling and training the model, 86
loading the data, 85
model export, 87

S
SavedModel format, 87, 89

saved model as input for TFMA, 104
using outside a pipeline, 90

saved_model_cli, 178
scheduler (Airflow), 221
schema

generating from data with TFDV, 48
updating in TFDV, 52

SchemaGen component, 215
schema generation by, 61

scores (output tensor), 136
SDK (Kubeflow Pipelines), 230

OpFunc functions, 240
search approaches (hyperparameter), 96
secure connections on gRPC, 151
secure multiparty computation (SMPC), 286

Seldon, model deployment with, 160
selection bias, 54
sensitive data, 277
SerializeToString function, 155
serve_tf_examples_fn function, 87
service object (GCP), 166
SHAP (Shapley Additive Explanations) library,

122
Shapley values, 122
Simple Storage Service (S3), 34

(see also AWS)
Simple TensorFlow Serving, 161
Skaffold, 321

configuration with build.yaml file, 323
skew and drift in data, 52

avoiding training-serving skew, 65
Slack messenger and Human in the Loop com‐

ponent, 195-198
slicing data

Fairness Indicators slicing visualization, 114
render_slicing_metrics function, 105
slicing model predictions in TFMA, 111
in TensorFlow Data Validation, 55

spanning datasets, 38
sparse features, converting to dense features for

TFT, 76
SparseTensors, 67
splitting datasets, 36

default splits, 37
in custom TFX component, 204
preserving existing splits, 37

SQLite databases
Airflow database, 221
TFX database storing ML metadata, 219

SSL, using for TensorFlow Serving on gRPC,
151

statistics
data validation for, 44
generating from data with TFDV, 46

StatisticsGen component, 207, 215
structured data

converting to TFRecord data structures, 32
data ingestion strategies for, 40
datasets stored in CSV files, 29
ingesting from Google Cloud BigQuery, 34

stubs, 150

T
tag-sets (model), 138
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tasks
Airflow task definitions, 223
task dependencies in Airflow, 223

TensorBoard, 104
using Fairness Indicators via, 113
using in interactive pipeline, 91

TensorFlow Data Validation (TFDV), 43, 45-49
generating schema from data, 48
generating statistics from data, 46
installation, 46
integrating into machine learning pipeline,

60
TensorFlow Extended (TFX), 13-25

about, 14
advanced, 189-212

exporting TFLite models, 192
Human in the Loop component,

195-198
ongoing developments, 189
training multiple models simultane‐

ously, 190
warm start model training, 194

alternatives to, 20
base pipeline, 216
command-line interface (CLI), 320

publishing pipeline to Kubeflow Pipe‐
lines, 323

TFX and its dependencies, 321
TFX templates, 321

custom components, 198-211
use cases for, 199
writing from scratch, 199-208

custom Docker image for, 317
hyperparameter tuning in TFX pipelines, 96
installing, 16
interactive pipelines, 18-20
ML Metadata, 17
model analysis and validation in, 124-127

Evaluator component, 125
Pusher component, 126
ResolverNode component, 124
validation in Evaluator component, 125

model deployment with TFX pipelines, 168
overview of components, 14, 16
use with other ML frameworks, 294

TensorFlow Federated (TFF), 285
TensorFlow Lite

analysis of models in TFMA, 105
exporting TFLite models, 192

limitations of, 192
models, serving with TensorFlow Serving,

180
steps to optimizing your models, 179
using to optimize machine learning models,

178
TensorFlow Model Analysis (TFMA), 100,

104-108
analyzing a single model, 104
analyzing multiple models, 107
calculating metrics for set of decision

thresholds, 113
slicing model predictions in, 111
use of library in TFX Evaluator component,

125
TensorFlow Privacy, 280-283

calculating epsilon, 282
training with a differentially private opti‐

mizer, 281
TensorFlow Serving, 133

alternatives to, 160
architecture overview, 133
batching inference requests, 156-159

configuring batch predictions, 158
configuring a server, 142-147

multiple model configuration, 145
single model configuration, 142

decoupling deployment cycles, 171-175
accessing models from AWS S3 buckets,

173
accessing models from GCP buckets, 174
optimizing remote model loading, 174
workflow overview, 172

deploying models produced by TFX pipe‐
lines, 168

exporting models for, 134-135
loading models from remote storage drives,

171
making predictions from the model server,

148-152
using TensorFlow Serving via gRPC,

150-152
model A/B testing with, 152
model hot swap capability, 144
model optimizations for deployment,

175-177
distillation, 177
pruning, 176
quantization, 175
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monitoring instances, 181-185
configuring TensorFlow Serving to pro‐

vide metrics to Prometheus, 183
Prometheus setup, 181

other optimizations, 159
setting up, 140-142

building from source, 142
Docker installation, 141
native Ubuntu installation, 141

simple scaling with Kubernetes and,
185-187

using TensorRT with, 177-180
TensorFlow Lite, 178

TensorFlow Tensors, 67
TensorFlow Text library, 72
TensorFlow Transform (TFT), 63

(see also data preprocessing)
avoiding training-serving skew with, 65
best practices with, 70
eager execution prohibited in preprocess‐

ing, 70
functions in, 67, 70
installation, 68
integrating into machine learning pipeline,

75
standalone execution, 73

tensorflow_hub library, 317
tensorflow_model_server command, 143
TensorRT, using with TensorFlow Serving,

177-180
testing

for exported models, 140
of machine learning models, 294
model A/B testing with TensorFlow Serv‐

ing, 152
text data for natural language problems

converting in TFT, 71
strategies for ingesting, 40

text input features, preprocessing in TFT, 77
tf. prefix for TensorFlow operations, 67
tf.data, difference from tf.transform, 66
tf.Example, 87, 139

conversion of JSON data structures submit‐
ted to REST to, 147

converting Avro-serialized data to, 31
converting CSV data to, 29
converting Parquet-serialized data to, 30

tf.Features object, 32
tf.float32 data type, 74

tf.images API, 72
tf.io API, 72
tf.Keras models, 80
tf.make_tensor_proto function, 152
tf.reshape function, 73
tf.transform, difference from tf.data, 66
TFIDF (term frequency inverse document fre‐

quency), 72
TFLite (see TensorFlow Lite)
TFRecord, 27
TFRecord data structures

converting your custom data to, 31
TFRecord files

existing, importing, 30
TFRecords

benefits of storing data as, 28
evaluation dataset in, 104
use in TFDV, 45

tft.apply_saved_model function, 71
tft.bag_of_words function, 72
tft.bucketize function, 71
tft.compute_and_apply_vocabulary function,

71
tft.ngrams function, 71
tft.pca function, 71
tft.scale_to_z_score function, 71
tft.tfidf function, 72
tft_beam.Context, 74
TFX Trainer component (see Trainer compo‐

nent)
TPUStrategy, 93
Trainer component, 83-91, 216

distribution strategies and, 94
observing AI Platform configuration, 257
other considerations, 89-91

using SavedModel outside a pipeline, 90
using Trainer with Estimator model, 90

required input in our project, 83
Resolver passing latest trained model to, 194
running, 88-91
run_fn function, 83-88

compiling and training the model, 86
loading the data, 85
model export, 87

train_args, 200
training datasets, 36
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