

Systems Performance

This page intentionally left blank

Systems Performance
Enterprise and the Cloud

Brendan Gregg

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim,
the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for inciden-
tal or consequential damages in connection with or arising out of the use of the information or programs con-
tained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data
Gregg, Brendan.

Systems performance : enterprise and the cloud / Brendan Gregg.
pages cm

Includes bibliographical references and index.
ISBN-13: 978-0-13-339009-4 (alkaline paper)
ISBN-10: 0-13-339009-8 (alkaline paper)

1. Operating systems (Computers)—Evaluation. 2. Application software—Evaluation. 3. Business
Enterprises—Data processing. 4. Cloud computing. I. Title.

QA76.77.G74 2014
004.67'82—dc23

2013031887

Copyright © 2014 Brendan Gregg

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or like-
wise. To obtain permission to use material from this work, please submit a written request to Pearson Educa-
tion, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax
your request to (201) 236-3290.

ISBN-13: 978-0-13-339009-4
ISBN-10: 0-13-339009-8
Text printed in the United States of America.
5 16

v

Contents

Preface xxv

Acknowledgments xxxiii

About the Author xxxv

Chapter 1 Introduction 1
1.1 Systems Performance 1

1.2 Roles 2

1.3 Activities 3

1.4 Perspectives 4

1.5 Performance Is Challenging 4

1.5.1 Performance Is Subjective 5

1.5.2 Systems Are Complex 5

1.5.3 There Can Be Multiple Performance Issues 6

1.6 Latency 6

1.7 Dynamic Tracing 7

1.8 Cloud Computing 8

1.9 Case Studies 9

1.9.1 Slow Disks 9

vi Contents

1.9.2 Software Change 11

1.9.3 More Reading 13

Chapter 2 Methodology 15
2.1 Terminology 16

2.2 Models 17

2.2.1 System under Test 17

2.2.2 Queueing System 17

2.3 Concepts 18

2.3.1 Latency 18

2.3.2 Time Scales 19

2.3.3 Trade-offs 20

2.3.4 Tuning Efforts 21

2.3.5 Level of Appropriateness 22

2.3.6 Point-in-Time Recommendations 23

2.3.7 Load versus Architecture 24

2.3.8 Scalability 24

2.3.9 Known-Unknowns 26

2.3.10 Metrics 27

2.3.11 Utilization 27

2.3.12 Saturation 29

2.3.13 Profiling 30

2.3.14 Caching 30

2.4 Perspectives 32

2.4.1 Resource Analysis 33

2.4.2 Workload Analysis 34

2.5 Methodology 35

2.5.1 Streetlight Anti-Method 36

2.5.2 Random Change Anti-Method 37

2.5.3 Blame-Someone-Else Anti-Method 38

2.5.4 Ad Hoc Checklist Method 38

2.5.5 Problem Statement 39

2.5.6 Scientific Method 39

Contents vii

2.5.7 Diagnosis Cycle 41

2.5.8 Tools Method 41

2.5.9 The USE Method 42

2.5.10 Workload Characterization 49

2.5.11 Drill-Down Analysis 50

2.5.12 Latency Analysis 51

2.5.13 Method R 52

2.5.14 Event Tracing 53

2.5.15 Baseline Statistics 54

2.5.16 Static Performance Tuning 55

2.5.17 Cache Tuning 55

2.5.18 Micro-Benchmarking 56

2.6 Modeling 57

2.6.1 Enterprise versus Cloud 57

2.6.2 Visual Identification 58

2.6.3 Amdahl’s Law of Scalability 60

2.6.4 Universal Scalability Law 61

2.6.5 Queueing Theory 61

2.7 Capacity Planning 65

2.7.1 Resource Limits 66

2.7.2 Factor Analysis 68

2.7.3 Scaling Solutions 69

2.8 Statistics 69

2.8.1 Quantifying Performance 69

2.8.2 Averages 70

2.8.3 Standard Deviations, Percentiles, Median 72

2.8.4 Coefficient of Variation 72

2.8.5 Multimodal Distributions 73

2.8.6 Outliers 74

2.9 Monitoring 74

2.9.1 Time-Based Patterns 74

2.9.2 Monitoring Products 76

2.9.3 Summary-since-Boot 76

viii Contents

2.10 Visualizations 76

2.10.1 Line Chart 77

2.10.2 Scatter Plots 78

2.10.3 Heat Maps 79

2.10.4 Surface Plot 80

2.10.5 Visualization Tools 81

2.11 Exercises 82

2.12 References 82

Chapter 3 Operating Systems 85
3.1 Terminology 86

3.2 Background 87

3.2.1 Kernel 87

3.2.2 Stacks 89

3.2.3 Interrupts and Interrupt Threads 91

3.2.4 Interrupt Priority Level 92

3.2.5 Processes 93

3.2.6 System Calls 95

3.2.7 Virtual Memory 97

3.2.8 Memory Management 97

3.2.9 Schedulers 98

3.2.10 File Systems 99

3.2.11 Caching 101

3.2.12 Networking 102

3.2.13 Device Drivers 103

3.2.14 Multiprocessor 103

3.2.15 Preemption 103

3.2.16 Resource Management 104

3.2.17 Observability 104

3.3 Kernels 105

3.3.1 Unix 106

3.3.2 Solaris-Based 106

3.3.3 Linux-Based 109

3.3.4 Differences 112

Contents ix

3.4 Exercises 113

3.5 References 113

Chapter 4 Observability Tools 115
4.1 Tool Types 116

4.1.1 Counters 116

4.1.2 Tracing 118

4.1.3 Profiling 119

4.1.4 Monitoring (sar) 120

4.2 Observability Sources 120

4.2.1 /proc 121

4.2.2 /sys 126

4.2.3 kstat 127

4.2.4 Delay Accounting 130

4.2.5 Microstate Accounting 131

4.2.6 Other Observability Sources 131

4.3 DTrace 133

4.3.1 Static and Dynamic Tracing 134

4.3.2 Probes 135

4.3.3 Providers 136

4.3.4 Arguments 137

4.3.5 D Language 137

4.3.6 Built-in Variables 137

4.3.7 Actions 138

4.3.8 Variable Types 139

4.3.9 One-Liners 141

4.3.10 Scripting 141

4.3.11 Overheads 143

4.3.12 Documentation and Resources 143

4.4 SystemTap 144

4.4.1 Probes 145

4.4.2 Tapsets 145

4.4.3 Actions and Built-ins 146

x Contents

4.4.4 Examples 146

4.4.5 Overheads 148

4.4.6 Documentation and Resources 149

4.5 perf 149

4.6 Observing Observability 150

4.7 Exercises 151

4.8 References 151

Chapter 5 Applications 153
5.1 Application Basics 153

5.1.1 Objectives 155

5.1.2 Optimize the Common Case 156

5.1.3 Observability 156

5.1.4 Big O Notation 156

5.2 Application Performance Techniques 158

5.2.1 Selecting an I/O Size 158

5.2.2 Caching 158

5.2.3 Buffering 159

5.2.4 Polling 159

5.2.5 Concurrency and Parallelism 160

5.2.6 Non-Blocking I/O 162

5.2.7 Processor Binding 163

5.3 Programming Languages 163

5.3.1 Compiled Languages 164

5.3.2 Interpreted Languages 165

5.3.3 Virtual Machines 166

5.3.4 Garbage Collection 166

5.4 Methodology and Analysis 167

5.4.1 Thread State Analysis 168

5.4.2 CPU Profiling 171

5.4.3 Syscall Analysis 173

5.4.4 I/O Profiling 180

5.4.5 Workload Characterization 181

Contents xi

5.4.6 USE Method 181

5.4.7 Drill-Down Analysis 182

5.4.8 Lock Analysis 182

5.4.9 Static Performance Tuning 185

5.5 Exercises 186

5.6 References 187

Chapter 6 CPUs 189
6.1 Terminology 190

6.2 Models 191

6.2.1 CPU Architecture 191

6.2.2 CPU Memory Caches 191

6.2.3 CPU Run Queues 192

6.3 Concepts 193

6.3.1 Clock Rate 193

6.3.2 Instruction 193

6.3.3 Instruction Pipeline 194

6.3.4 Instruction Width 194

6.3.5 CPI, IPC 194

6.3.6 Utilization 195

6.3.7 User-Time/Kernel-Time 196

6.3.8 Saturation 196

6.3.9 Preemption 196

6.3.10 Priority Inversion 196

6.3.11 Multiprocess, Multithreading 197

6.3.12 Word Size 198

6.3.13 Compiler Optimization 199

6.4 Architecture 199

6.4.1 Hardware 199

6.4.2 Software 209

6.5 Methodology 214

6.5.1 Tools Method 215

6.5.2 USE Method 216

xii Contents

6.5.3 Workload Characterization 216

6.5.4 Profiling 218

6.5.5 Cycle Analysis 219

6.5.6 Performance Monitoring 220

6.5.7 Static Performance Tuning 220

6.5.8 Priority Tuning 221

6.5.9 Resource Controls 222

6.5.10 CPU Binding 222

6.5.11 Micro-Benchmarking 222

6.5.12 Scaling 223

6.6 Analysis 224

6.6.1 uptime 224

6.6.2 vmstat 226

6.6.3 mpstat 227

6.6.4 sar 230

6.6.5 ps 230

6.6.6 top 231

6.6.7 prstat 232

6.6.8 pidstat 234

6.6.9 time, ptime 235

6.6.10 DTrace 236

6.6.11 SystemTap 243

6.6.12 perf 243

6.6.13 cpustat 249

6.6.14 Other Tools 250

6.6.15 Visualizations 251

6.7 Experimentation 254

6.7.1 Ad Hoc 255

6.7.2 SysBench 255

6.8 Tuning 256

6.8.1 Compiler Options 256

6.8.2 Scheduling Priority and Class 256

6.8.3 Scheduler Options 257

Contents xiii

6.8.4 Process Binding 259

6.8.5 Exclusive CPU Sets 259

6.8.6 Resource Controls 260

6.8.7 Processor Options (BIOS Tuning) 260

6.9 Exercises 260

6.10 References 262

Chapter 7 Memory 265
7.1 Terminology 266

7.2 Concepts 267

7.2.1 Virtual Memory 267

7.2.2 Paging 268

7.2.3 Demand Paging 269

7.2.4 Overcommit 270

7.2.5 Swapping 271

7.2.6 File System Cache Usage 271

7.2.7 Utilization and Saturation 271

7.2.8 Allocators 272

7.2.9 Word Size 272

7.3 Architecture 272

7.3.1 Hardware 273

7.3.2 Software 278

7.3.3 Process Address Space 284

7.4 Methodology 289

7.4.1 Tools Method 289

7.4.2 USE Method 290

7.4.3 Characterizing Usage 291

7.4.4 Cycle Analysis 293

7.4.5 Performance Monitoring 293

7.4.6 Leak Detection 293

7.4.7 Static Performance Tuning 294

7.4.8 Resource Controls 294

7.4.9 Micro-Benchmarking 294

xiv Contents

7.5 Analysis 295

7.5.1 vmstat 295

7.5.2 sar 298

7.5.3 slabtop 302

7.5.4 ::kmastat 302

7.5.5 ps 304

7.5.6 top 305

7.5.7 prstat 305

7.5.8 pmap 306

7.5.9 DTrace 308

7.5.10 SystemTap 312

7.5.11 Other Tools 312

7.6 Tuning 314

7.6.1 Tunable Parameters 314

7.6.2 Multiple Page Sizes 317

7.6.3 Allocators 318

7.6.4 Resource Controls 318

7.7 Exercises 319

7.8 References 320

Chapter 8 File Systems 323
8.1 Terminology 324

8.2 Models 325

8.2.1 File System Interfaces 325

8.2.2 File System Cache 325

8.2.3 Second-Level Cache 326

8.3 Concepts 326

8.3.1 File System Latency 327

8.3.2 Caching 327

8.3.3 Random versus Sequential I/O 328

8.3.4 Prefetch 329

8.3.5 Read-Ahead 330

8.3.6 Write-Back Caching 330

Contents xv

8.3.7 Synchronous Writes 331

8.3.8 Raw and Direct I/O 331

8.3.9 Non-Blocking I/O 332

8.3.10 Memory-Mapped Files 332

8.3.11 Metadata 333

8.3.12 Logical versus Physical I/O 333

8.3.13 Operations Are Not Equal 335

8.3.14 Special File Systems 336

8.3.15 Access Timestamps 336

8.3.16 Capacity 337

8.4 Architecture 337

8.4.1 File System I/O Stack 337

8.4.2 VFS 337

8.4.3 File System Caches 339

8.4.4 File System Features 344

8.4.5 File System Types 345

8.4.6 Volumes and Pools 351

8.5 Methodology 353

8.5.1 Disk Analysis 353

8.5.2 Latency Analysis 354

8.5.3 Workload Characterization 356

8.5.4 Performance Monitoring 358

8.5.5 Event Tracing 358

8.5.6 Static Performance Tuning 359

8.5.7 Cache Tuning 360

8.5.8 Workload Separation 360

8.5.9 Memory-Based File Systems 360

8.5.10 Micro-Benchmarking 361

8.6 Analysis 362

8.6.1 vfsstat 363

8.6.2 fsstat 364

8.6.3 strace, truss 364

8.6.4 DTrace 365

xvi Contents

8.6.5 SystemTap 375

8.6.6 LatencyTOP 375

8.6.7 free 376

8.6.8 top 376

8.6.9 vmstat 376

8.6.10 sar 377

8.6.11 slabtop 378

8.6.12 mdb ::kmastat 379

8.6.13 fcachestat 379

8.6.14 /proc/meminfo 380

8.6.15 mdb ::memstat 380

8.6.16 kstat 381

8.6.17 Other Tools 382

8.6.18 Visualizations 383

8.7 Experimentation 383

8.7.1 Ad Hoc 384

8.7.2 Micro-Benchmark Tools 384

8.7.3 Cache Flushing 387

8.8 Tuning 387

8.8.1 Application Calls 387

8.8.2 ext3 389

8.8.3 ZFS 389

8.9 Exercises 391

8.10 References 392

Chapter 9 Disks 395
9.1 Terminology 396

9.2 Models 397

9.2.1 Simple Disk 397

9.2.2 Caching Disk 397

9.2.3 Controller 398

9.3 Concepts 399

9.3.1 Measuring Time 399

Contents xvii

9.3.2 Time Scales 400

9.3.3 Caching 401

9.3.4 Random versus Sequential I/O 402

9.3.5 Read/Write Ratio 403

9.3.6 I/O Size 403

9.3.7 IOPS Are Not Equal 404

9.3.8 Non-Data-Transfer Disk Commands 404

9.3.9 Utilization 404

9.3.10 Saturation 405

9.3.11 I/O Wait 406

9.3.12 Synchronous versus Asynchronous 407

9.3.13 Disk versus Application I/O 407

9.4 Architecture 407

9.4.1 Disk Types 408

9.4.2 Interfaces 414

9.4.3 Storage Types 415

9.4.4 Operating System Disk I/O Stack 418

9.5 Methodology 421

9.5.1 Tools Method 422

9.5.2 USE Method 422

9.5.3 Performance Monitoring 423

9.5.4 Workload Characterization 424

9.5.5 Latency Analysis 426

9.5.6 Event Tracing 427

9.5.7 Static Performance Tuning 428

9.5.8 Cache Tuning 429

9.5.9 Resource Controls 429

9.5.10 Micro-Benchmarking 429

9.5.11 Scaling 431

9.6 Analysis 431

9.6.1 iostat 432

9.6.2 sar 440

9.6.3 pidstat 441

xviii Contents

9.6.4 DTrace 442

9.6.5 SystemTap 451

9.6.6 perf 451

9.6.7 iotop 452

9.6.8 iosnoop 455

9.6.9 blktrace 457

9.6.10 MegaCli 459

9.6.11 smartctl 460

9.6.12 Visualizations 461

9.7 Experimentation 465

9.7.1 Ad Hoc 465

9.7.2 Custom Load Generators 465

9.7.3 Micro-Benchmark Tools 466

9.7.4 Random Read Example 466

9.8 Tuning 467

9.8.1 Operating System Tunables 467

9.8.2 Disk Device Tunables 469

9.8.3 Disk Controller Tunables 469

9.9 Exercises 470

9.10 References 471

Chapter 10 Network 473
10.1 Terminology 474

10.2 Models 474

10.2.1 Network Interface 474

10.2.2 Controller 475

10.2.3 Protocol Stack 476

10.3 Concepts 476

10.3.1 Networks and Routing 476

10.3.2 Protocols 477

10.3.3 Encapsulation 478

10.3.4 Packet Size 478

10.3.5 Latency 479

Contents xix

10.3.6 Buffering 481

10.3.7 Connection Backlog 481

10.3.8 Interface Negotiation 482

10.3.9 Utilization 482

10.3.10 Local Connections 482

10.4 Architecture 483

10.4.1 Protocols 483

10.4.2 Hardware 486

10.4.3 Software 488

10.5 Methodology 493

10.5.1 Tools Method 494

10.5.2 USE Method 495

10.5.3 Workload Characterization 496

10.5.4 Latency Analysis 497

10.5.5 Performance Monitoring 498

10.5.6 Packet Sniffing 498

10.5.7 TCP Analysis 500

10.5.8 Drill-Down Analysis 500

10.5.9 Static Performance Tuning 501

10.5.10 Resource Controls 502

10.5.11 Micro-Benchmarking 502

10.6 Analysis 503

10.6.1 netstat 503

10.6.2 sar 509

10.6.3 ifconfig 511

10.6.4 ip 512

10.6.5 nicstat 512

10.6.6 dladm 513

10.6.7 ping 514

10.6.8 traceroute 514

10.6.9 pathchar 515

10.6.10 tcpdump 516

10.6.11 snoop 517

xx Contents

10.6.12 Wireshark 520

10.6.13 DTrace 520

10.6.14 SystemTap 533

10.6.15 perf 533

10.6.16 Other Tools 534

10.7 Experimentation 535

10.7.1 iperf 535

10.8 Tuning 536

10.8.1 Linux 536

10.8.2 Solaris 539

10.8.3 Configuration 542

10.9 Exercises 542

10.10 References 543

Chapter 11 Cloud Computing 545
11.1 Background 546

11.1.1 Price/Performance Ratio 546

11.1.2 Scalable Architecture 547

11.1.3 Capacity Planning 548

11.1.4 Storage 550

11.1.5 Multitenancy 550

11.2 OS Virtualization 551

11.2.1 Overhead 553

11.2.2 Resource Controls 555

11.2.3 Observability 558

11.3 Hardware Virtualization 563

11.3.1 Overhead 566

11.3.2 Resource Controls 572

11.3.3 Observability 574

11.4 Comparisons 581

11.5 Exercises 583

11.6 References 584

Contents xxi

Chapter 12 Benchmarking 587
12.1 Background 588

12.1.1 Activities 588

12.1.2 Effective Benchmarking 589

12.1.3 Benchmarking Sins 591

12.2 Benchmarking Types 597

12.2.1 Micro-Benchmarking 597

12.2.2 Simulation 599

12.2.3 Replay 600

12.2.4 Industry Standards 601

12.3 Methodology 602

12.3.1 Passive Benchmarking 603

12.3.2 Active Benchmarking 604

12.3.3 CPU Profiling 606

12.3.4 USE Method 607

12.3.5 Workload Characterization 608

12.3.6 Custom Benchmarks 608

12.3.7 Ramping Load 608

12.3.8 Sanity Check 611

12.3.9 Statistical Analysis 612

12.4 Benchmark Questions 613

12.5 Exercises 614

12.6 References 615

Chapter 13 Case Study 617
13.1 Case Study: The Red Whale 617

13.1.1 Problem Statement 618

13.1.2 Support 619

13.1.3 Getting Started 620

13.1.4 Choose Your Own Adventure 622

13.1.5 The USE Method 623

13.1.6 Are We Done? 626

13.1.7 Take 2 627

xxii Contents

13.1.8 The Basics 628

13.1.9 Ignoring the Red Whale 628

13.1.10 Interrogating the Kernel 629

13.1.11 Why? 631

13.1.12 Epilogue 633

13.2 Comments 633

13.3 Additional Information 634

13.4 References 634

Appendix A USE Method: Linux 637
Physical Resources 637

Software Resources 640

Reference 641

Appendix B USE Method: Solaris 643
Physical Resources 643

Software Resources 646

References 647

Appendix C sar Summary 649
Linux 649

Solaris 650

Appendix D DTrace One-Liners 651
syscall Provider 651

proc Provider 655

profile Provider 655

sched Provider 657

fbt Provider 658

pid Provider 659

io Provider 660

sysinfo Provider 660

vminfo Provider 661

ip Provider 661

Contents xxiii

tcp provider 662

udp provider 663

Appendix E DTrace to SystemTap 665
Functionality 665

Terminology 666

Probes 666

Built-in Variables 667

Functions 668

Example 1: Listing syscall Entry Probes 668

Example 2: Summarize read() Returned Size 668

Example 3: Count syscalls by Process Name 670

Example 4: Count syscalls by syscall Name, for Process
ID 123 671

Example 5: Count syscalls by syscall Name, for
"httpd" Processes 672

Example 6: Trace File open()s with Process Name
and Path Name 672

Example 7: Summarize read() Latency for "mysqld"
Processes 672

Example 8: Trace New Processes with Process Name
and Arguments 673

Example 9: Sample Kernel Stacks at 100 Hz 674

References 674

Appendix F Solutions to Selected Exercises 675
Chapter 2—Methodology 675

Chapter 3—Operating Systems 675

Chapter 6—CPUs 675

Chapter 7—Memory 676

Chapter 8—File Systems 676

Chapter 9—Disks 677

Chapter 11—Cloud Computing 677

xxiv Contents

Appendix G Systems Performance Who’s Who 679

Glossary 683

Bibliography 689

Index 697

xxv

Preface

There are known knowns; there are things we know we know.
We also know there are known unknowns; that is to say we

know there are some things we do not know.
But there are also unknown unknowns—

there are things we do not know we don’t know.

—U.S. Secretary of Defense Donald Rumsfeld, February 12, 2002

While the above statement was met with chuckles from those attending the press
briefing, it summarizes an important principle that is as relevant in complex tech-
nical systems as it is in geopolitics: performance issues can originate from any-
where, including areas of the system that you know nothing about and are
therefore not checking (the unknown-unknowns). This book may reveal many of
these areas, while providing methodologies and tools for their analysis.

About This Book

Welcome to Systems Performance: Enterprise and the Cloud! This book is about the
performance of operating systems and of applications from operating system con-
text, and it is written for both enterprise and cloud computing environments. My
aim is to help you get the most out of your systems.

When working with application software that is under constant development,
you may be tempted to think of operating system performance—where the kernel

xxvi Preface

has been developed and tuned for decades—as a solved problem. It isn’t! The oper-
ating system is a complex body of software, managing a variety of ever-changing
physical devices with new and different application workloads. The kernels are
also in constant development, with features being added to improve the perfor-
mance of particular workloads, and newly encountered bottlenecks being removed
as systems continue to scale. Analyzing and working to improve the performance
of the operating system is an ongoing task that should lead to continual perfor-
mance improvements. Application performance can also be analyzed in the operat-
ing system context; I’ll cover that here as well.

Operating System Coverage

The main focus of this book is the study of systems performance, with tools, exam-
ples, and tunable parameters from Linux- and Solaris-based operating systems
used as examples. Unless noted, the specific distribution of an operating system is
not important in the examples used. For Linux-based systems, the examples are
from a variety of bare-metal systems and virtualized cloud tenants, running either
Ubuntu, Fedora, or CentOS. For Solaris-based systems, the examples are also
either bare-metal or virtualized and are from either Joyent SmartOS or OmniTI
OmniOS. SmartOS and OmniOS use the open-source illumos kernel: the active
fork of the OpenSolaris kernel, which itself was based on the development version
of what became Oracle Solaris 11.

Covering two different operating systems provides an additional perspective for
each audience, offering a deeper understanding of their characteristics, especially
where each OS has taken a different design path. This helps the reader to under-
stand performance more comprehensively, without being limited to a single OS,
and to think about operating systems more objectively.

Historically, more performance work has been done for Solaris-based systems,
making them the better choice for some examples. The situation for Linux has
been greatly improving. When System Performance Tuning [Musumeci 02] was
written, over a decade ago, it also addressed both Linux and Solaris but was heav-
ily oriented toward the latter. The author noted reasons for this:

Solaris machines tend to be more focused on performance. I suspect this is because
Sun systems are more expensive than their Linux counterparts, on average. As a
result, people tend to be a lot more picky about performance, so more work has been
done in that area on Solaris. If your Linux box doesn’t perform well enough, you can
just buy another one and split up the workload—it’s cheap. If your several-million-
dollar Ultra Enterprise 10000 doesn’t perform well and your company is losing non-
trivial sums of money every minute because of it, you call Sun Service and start
demanding answers.

Preface xxvii

This helps explain Sun’s historical performance focus: Solaris profits were tied
to hardware sales, and real money was frequently on the line for performance
improvements. Sun needed—and could afford to hire—over 100 full-time perfor-
mance engineers (including, at times, myself and Musumeci). Together with Sun’s
kernel engineering teams, many developments were made in the field of systems
performance.

Linux has come a long way in terms of performance work and observability,
especially now that it is being used in large-scale cloud computing environments.
Many performance features for Linux, included in this book, have been developed
only within the past five years.

Other Content

Example screen shots from performance tools are included, not just for the data
shown, but also to illustrate the types of data available. The tools often present the
data in intuitive ways, many in the style of earlier Unix tools, producing output
that is familiar and often self-explanatory. This means that screen shots can be a
powerful way to convey the purpose of these tools, some requiring little additional
description. (If a tool does require laborious explanation, that may be a failure of
design!)

The history of technologies can provide useful insight to deepen your under-
standing, and it has been mentioned in places. It is also useful to learn a bit about
the key people in this industry (it’s a small world): you’re likely to come across
them or their work in performance and other contexts. A “who’s who” list has been
provided in Appendix G.

What Isn’t Covered

This book focuses on performance. To perform all the example tasks given will
require, at times, some system administration activities, including the installation
or compilation of software (which is not covered here). Specifically on Linux, you
will need to install the sysstat package, as many of its tools are used in this text.

The content also summarizes operating system internals, which are covered in
more detail in separate dedicated texts. Advanced performance analysis topics are
summarized so that you are aware of their existence and can then study them from
additional sources if and when needed.

xxviii Preface

How This Book Is Structured

The book includes the following:

� Chapter 1, Introduction, is an introduction to systems performance analysis,
summarizing key concepts and providing examples of performance activities.

� Chapter 2, Methodology, provides the background for performance analy-
sis and tuning, including terminology, concepts, models, methodologies for
observation and experimentation, capacity planning, analysis, and statistics.

� Chapter 3, Operating Systems, summarizes kernel internals for the per-
formance analyst. This is necessary background for interpreting and under-
standing what the operating system is doing.

� Chapter 4, Observability Tools, introduces the types of system observabil-
ity tools available, and the interfaces and frameworks upon which they are
built.

� Chapter 5, Applications, discusses application performance topics and
observing them from the operating system.

� Chapter 6, CPUs, covers processors, cores, hardware threads, CPU caches,
CPU interconnects, and kernel scheduling.

� Chapter 7, Memory, is about virtual memory, paging, swapping, memory
architectures, busses, address spaces, and allocators.

� Chapter 8, File Systems, is about file system I/O performance, including
the different caches involved.

� Chapter 9, Disks, covers storage devices, disk I/O workloads, storage con-
trollers, RAID, and the kernel I/O subsystem.

� Chapter 10, Network, is about network protocols, sockets, interfaces, and
physical connections.

� Chapter 11, Cloud Computing, introduces operating-system- and hardware-
based virtualization methods in common use for cloud computing and their
performance overhead, isolation, and observability characteristics.

� Chapter 12, Benchmarking, shows how to benchmark accurately, and how
to interpret others’ benchmark results. This is a surprisingly tricky topic, and
this chapter shows how you can avoid common mistakes and try to make
sense of it.

� Chapter 13, Case Study, contains a systems performance case study, show-
ing how a real cloud customer issue was analyzed from beginning to end.

Preface xxix

Chapters 1 to 4 provide essential background. After reading them, you can ref-
erence the remainder of the book as needed.

Chapter 13 is written differently, using a storytelling approach to paint a bigger
picture of a performance engineer’s work. If you’re new to performance analysis,
you might want to read this first, for context, and then return to it again when
you’ve read the other chapters.

As a Future Reference

This book has been written to provide value for many years, by focusing on back-
ground and methodologies for the systems performance analyst.

To support this, many chapters have been separated into two parts. The first
part consists of terms, concepts, and methodologies (often with those headings),
which should stay relevant many years from now. The second provides examples of
how the first part is implemented: architecture, analysis tools, and tunables,
which, while they will become out-of-date, will still be useful in the context of
examples.

Tracing Examples

We frequently need to explore the operating system in depth, which can be per-
formed by kernel tracing tools. There are many of these at various stages of devel-
opment, for example, ftrace, perf, DTrace, SystemTap, LTTng, and ktap. One of
them has been chosen for most of the tracing examples here and is demonstrated
on both Linux- and Solaris-based systems: DTrace. It provides the features needed
for these examples, and there is also a large amount of external material about it,
including scripts that can be referenced as use cases of advanced tracing.

You may need or wish to use different tracing tools, which is fine. The DTrace
examples are examples of tracing and show the questions that you can ask of the
system. It is often these questions, and the methodologies that pose them, that are
the most difficult to know.

Intended Audience

The intended audience for this book is primarily systems administrators and oper-
ators of enterprise and cloud computing environments. It is also a reference for
developers, database administrators, and web server administrators who need to
understand operating system and application performance.

xxx Preface

As the lead performance engineer at a cloud computing provider, I frequently work
with support staff and customers who are under enormous time pressure to solve mul-
tiple performance issues. For many, performance is not their primary job, and they
need to know just enough to solve the issues at hand. This has encouraged me to keep
this book as short as possible, knowing that your time to study it may be very limited.
But not too short: there is much to cover to ensure that you are prepared.

Another intended audience is students: this book is also suitable as a support-
ing text for a systems performance course. During the writing of this book (and for
many years before it began), I developed and taught such classes myself, which
included simulated performance issues for the students to solve (without provid-
ing the answers beforehand!). This has helped me to see which types of material
work best in leading students to solve performance problems, and that has guided
my choice of content for this book.

Whether you are a student or not, the chapter exercises give you an opportunity
to review and apply the material. These include (by suggestion from reviewers)
some optional advanced exercises, which you are not expected to solve (they may
be impossible; they should be thought-provoking at least).

In terms of company size, this book should contain enough detail to satisfy small
to large environments, including those with dozens of dedicated performance staff.
For many smaller companies, the book may serve as a reference when needed, with
only some portions of it used day to day.

Typographic Conventions

The following typographical conventions are used throughout this book:

netif_receive_skb() function name

iostat(1) man page

Documentation/ . . . Linux docs

CONFIG_ . . . Linux configuration option

kernel/ . . . Linux kernel source code

fs/ Linux kernel source code, file systems

usr/src/uts/ . . . Solaris-based kernel source code

superuser (root) shell prompt

$ user (non-root) shell prompt

^C a command was interrupted (Ctrl-C)

[...] truncation

mpstat 1 typed command or highlighting

Preface xxxi

Supplemental Material and References

The following selected texts (the full list is in the Bibliography) can be referenced
for further background on operating systems and performance analysis:

[Jain 91] Jain, R. The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simula-
tion, and Modeling. Wiley, 1991.

[Vahalia 96] Vahalia, U. UNIX Internals: The New Frontiers. Prentice Hall,
1996.

[Cockcroft 98] Cockcroft, A., and R. Pettit. Sun Performance and Tuning:
Java and the Internet. Prentice Hall, 1998.

[Musumeci 02] Musumeci, G. D., and M. Loukidas. System Performance Tun-
ing, 2nd Edition. O’Reilly, 2002.

[Bovet 05] Bovet, D., and M. Cesati. Understanding the Linux Kernel,
3rd Edition. O’Reilly, 2005.

[McDougall 06a] McDougall, R., and J. Mauro. Solaris Internals: Solaris 10
and OpenSolaris Kernel Architecture. Prentice Hall, 2006.

[McDougall 06b] McDougall, R., J. Mauro, and B. Gregg. Solaris Performance
and Tools: DTrace and MDB Techniques for Solaris 10 and
OpenSolaris. Prentice Hall, 2006.

[Gove 07] Gove, D. Solaris Application Programming. Prentice Hall,
2007.

[Love 10] Love, R. Linux Kernel Development, 3rd Edition. Addison-
Wesley, 2010.

[Gregg 11] Gregg, B., and J. Mauro. DTrace: Dynamic Tracing in Oracle
Solaris, Mac OS X and FreeBSD. Prentice Hall, 2011.

This page intentionally left blank

xxxiii

Acknowledgments

Deirdré Straughan has, once again, provided amazing help, sharing my interest in
technical education deeply enough to survive another book. She has been involved
from concept to manuscript, at first helping me plan what this book would be, then
spending countless hours editing and discussing every draft page, identifying
many parts I hadn’t explained properly. At this point I’ve worked with her on over
2,000 pages of technical content (plus blog posts!), and I’m lucky to have had such
outstanding help.

Barbara Wood performed the copy edit and worked through the text in great
detail and in great time, making numerous final improvements to its quality, read-
ability, and consistency. With the length and complexity, this is a difficult text to
work on, and I’m very glad for Barbara’s help and hard work.

I’m very grateful for everyone who provided feedback on some or all of the book.
This is a deeply technical book with many new topics and has required serious
effort to review the material—frequently requiring kernel source code from differ-
ent kernels to be double-checked and understood.

Darryl Gove provided outstanding feedback, both at a deeply technical level and
for the high-level presentation and organization of material. He is an author him-
self, and I look forward to any of his future books, knowing how driven he is to pro-
vide the best possible material to our readers.

I’m very grateful to Richard Lowe and Robert Mustacchi, who both worked
through the entire book and found topics I had missed or needed to explain better.
Richard’s understanding of different kernel internals is astonishing, and also a

xxxiv Acknowledgments

little terrifying. Robert also helped considerably with the Cloud Computing chap-
ter, bringing to bear his expertise from working on the KVM port to illumos.

Thanks for the feedback from Jim Mauro and Dominic Kay: I’ve worked with
them on books before, and they have great minds for comprehending difficult tech-
nical content and then explaining it to readers.

Jerry Jelinek and Max Bruning, both of whom have kernel engineering exper-
tise, also provided detailed feedback on multiple chapters.

Adam Leventhal provided expert feedback for the File Systems and Disks chap-
ters, notably helping me to understand the current nuances of flash memory—an
area where he has longstanding expertise, having invented innovative new uses of
flash memory while at Sun.

David Pacheco provided excellent feedback on the Applications chapter, and Dan
McDonald on the Network chapter. I’m lucky to have them bring their expertise to
areas they know so well.

Carlos Cardenas worked through the entire book and provided some unique
feedback that I was seeking regarding statistical analysis.

I’m grateful to Bryan Cantrill, Keith Wesolowski, Paul Eggleton, Marsell
Kukuljevic-Pearce, and Adrian Cockcroft, for their feedback and contributions.
Adrian’s comments encouraged me to reshuffle the chapter order, helping the
reader better relate to the material covered.

I’m grateful to authors before me, whose names are listed in the Bibliography,
who have forged paths into systems performance and documented their findings.
I’ve also captured expertise I’ve learned from performance experts I’ve worked
with over the years, including Bryan Cantrill, Roch Bourbonnais, Jim Mauro,
Richard McDougall, and many others, from whom I’ve learned much.

Thanks to Bryan Cantrill for supporting this project, and to Jason Hoffman for
his enthusiasm.

Thanks to Claire, Mitchell, and other family and friends for making the sacri-
fices to support me in a project like this.

And a special thanks to Greg Doench, senior editor at Pearson, for his help,
patience, and advice on the project.

I’ve enjoyed working on this book, though it has at times been daunting. It
would have been much easier for me to write it over a decade ago, when I knew
less about the complexities and subtle nuances of systems performance. Since
then, I’ve worked as a software engineer, a kernel engineer, and a performance
engineer, and in enterprise, storage, and cloud computing. I’ve debugged perfor-
mance issues everywhere in the stack, from applications to metal. This experi-
ence, and knowing how much has not yet been documented, has both discouraged
and encouraged me to write about it. This is the book I thought needed to be writ-
ten, and it’s a relief to have it done.

xxxv

About the Author

Brendan Gregg, lead performance engineer at Joyent, analyzes performance and
scalability throughout the software stack. As performance lead and kernel engi-
neer at Sun Microsystems (and later Oracle), his work included developing the
ZFS L2ARC, a pioneering file system technology for improving performance using
flash memory. He has invented and developed many performance tools, including
some that ship with Mac OS X and Oracle Solaris 11. His recent work has included
performance visualizations for Linux and illumos kernel analysis. For contribu-
tions to system administration, and his work on performance analysis methodolo-
gies, he is the recipient of the USENIX 2013 LISA Award for Outstanding
Achievement in System Administration. He is also a coauthor of DTrace: Dynamic
Tracing in Oracle Solaris, Mac OS X, and FreeBSD (Prentice Hall, 2011), and
SolarisTM Performance and Tools: DTrace and MDB Techniques for Solaris 10 and
OpenSolaris (Prentice Hall, 2007).

This page intentionally left blank

1

1
Introduction

Performance is an exciting, varied, and challenging discipline. This chapter intro-
duces you to the field of performance, specifically systems performance, describing
roles, activities, perspectives, and challenges. It also introduces latency, an essen-
tial performance metric, and some newer developments in computing: dynamic
tracing and cloud computing. Examples of performance activities are also included,
to provide context.

1.1 Systems Performance

Systems performance is the study of the entire system, including all physical com-
ponents and the full software stack. Anything in the data path, software or hard-
ware, is included, as it can affect performance. For distributed systems, this means
multiple servers and applications. If you don’t have a diagram of your environ-
ment showing the data path, find one or draw it yourself; it will help you under-
stand the relationships between components and help ensure that you don’t
overlook whole areas.

Figure 1.1 shows a generic system software stack on a single server, including
the operating system (OS) kernel, with example database and application tiers.
The term entire stack is sometimes used to describe only the application environ-
ment, including databases, applications, and web servers. When speaking of sys-
tems performance, however, we use entire stack to mean everything, including
system libraries and the kernel.

2 Chapter 1 � Introduction

This stack is discussed in Chapter 3, Operating Systems, and investigated in
more detail in later chapters. The following sections describe systems performance
and performance in general.

1.2 Roles

Systems performance as an activity can be done by a variety of roles, including
system administrators, support staff, application developers, database administra-
tors, and web administrators. For many of these, performance is a part-time activ-
ity, and there may be a tendency to explore performance only within the role’s area
of responsibility (the network team checks the network, the database team checks
the database, and so on). However, for some performance issues, finding the root
cause requires a cooperative effort from these teams.

Some companies employ performance engineers, whose primary activity is sys-
tems performance. They can work with multiple teams and perform a holistic
study of the environment, an approach that may be vital in resolving complex per-
formance issues. They can also identify opportunities to develop better tooling and
metrics for system-wide analysis and capacity planning across the environment.

Figure 1.1 Generic system software stack

1.3 Activities 3

There are also specialty application-specific occupations in the field of perfor-
mance, for example, for Java performance and MySQL performance. These often
begin with a limited check of system performance before moving to application-
specific tools.

1.3 Activities

The field of performance includes the following activities, listed in an ideal order of
execution:

1. Setting performance objectives and performance modeling

2. Performance characterization of prototype software or hardware

3. Performance analysis of development code, pre-integration

4. Performing non-regression testing of software builds, pre- or post-release

5. Benchmarking/benchmarketing for software releases

6. Proof-of-concept testing in the target environment

7. Configuration optimization for production deployment

8. Monitoring of running production software

9. Performance analysis of issues

Steps 1 to 5 are part of traditional software product development. The product is
then launched, followed by either proof-of-concept testing in the customer environ-
ment, or deployment and configuration. If an issue is encountered in the customer
environment (steps 6 to 9), it means that the issue was not detected or fixed dur-
ing the development stages.

Performance engineering should ideally begin before hardware is chosen or soft-
ware is written. This can be the first step, involving setting objectives and creat-
ing a performance model. Often, products are developed without this step,
deferring performance engineering work to later on when a problem arises. With
each step of the development process, however, it can become progressively harder
to fix performance issues, due to architectural decisions made earlier.

The term capacity planning can refer to a number of the preceding activities.
During design, it includes studying the resource footprint of development soft-
ware, to see how well the design can meet the target needs. After deployment, it
includes monitoring resource usage, to predict problems before they occur.

Methodologies and tools to help perform these activities are covered in this book.

4 Chapter 1 � Introduction

Environments and activities vary from company to company and product to
product, and in many cases not all nine steps are performed. Your job may also
focus on only some or just one of these activities.

1.4 Perspectives

Apart from a focus on different activities, performance roles can be viewed from
different perspectives. Two perspectives for performance analysis are labeled on
Figure 1.2: workload analysis and resource analysis, which approach the software
stack from different directions.

The resource analysis perspective is commonly employed by system administra-
tors, who are responsible for the system resources. Application developers, who are
responsible for the delivered performance of the workload, commonly focus on the
workload analysis perspective. Each perspective has its own strengths, discussed
in detail in Chapter 2, Methodology. For challenging issues, it may help to try anal-
ysis from both perspectives.

1.5 Performance Is Challenging

Systems performance engineering is a challenging field for a number of reasons, includ-
ing the fact that it is subjective, it is complex, and it often involves multiple issues.

Figure 1.2 Analysis perspectives

1.5 Performance Is Challenging 5

1.5.1 Performance Is Subjective

Technology disciplines tend to be objective, so much so that people in the industry
are known for seeing in black and white. This can be true of software troubleshoot-
ing, where a bug is either present or absent and is either fixed or not fixed. Such
bugs often manifest as error messages that can be easily interpreted and under-
stood to mean the presence of an error.

Performance, on the other hand, is often subjective. With performance issues, it
can be unclear whether there is an issue to begin with, and if so, when it has been
fixed. What may be considered “bad” performance for one user, and therefore an
issue, may be considered “good” performance for another.

Consider the following information:

The average disk I/O response time is 1 ms.

Is this “good” or “bad”? While response time, or latency, is one of the best metrics
available, interpreting latency information is difficult. To some degree, whether a
given metric is “good” or “bad” may depend on the performance expectations of the
application developers and end users.

Subjectivity can be made objective by defining clear goals, such as having a tar-
get average response time, or requiring a percentage of requests to fall within a
certain latency range. Other ways to deal with this subjectivity are introduced in
Chapter 2, Methodology, including latency analysis for expressing issues as a ratio
of their operation latency.

1.5.2 Systems Are Complex

In addition to subjectivity, performance can be a challenging discipline due to the
complexity of systems and the lack of a clear starting point for analysis. Some-
times we begin with a guess, such as blaming the network, and the performance
analyst must figure out if this is even the right direction.

Performance issues may also originate from complex interactions between sub-
systems that perform well when analyzed in isolation. This can occur due to a cas-
cading failure, when one failed component causes performance issues in others. To
understand the resulting issue, you must untangle the relationships between com-
ponents and understand how they contribute.

Bottlenecks can also be complex and related in unexpected ways; fixing one may
simply move the bottleneck elsewhere in the system, with overall performance not
improving as much as hoped.

Apart from the complexity of the system, performance issues may be caused by
a complex characteristic of the production workload. In these cases, they may
never be reproducible in a lab environment, or only intermittently so.

6 Chapter 1 � Introduction

Solving complex performance issues often requires a holistic approach. The
whole system—both its internals and its external interactions—may need to be
investigated. This requires a wide range of skills, not typically found in one per-
son, and can make performance engineering a varied and intellectually challeng-
ing line of work.

Different methodologies can be used to guide us through these complexities, as
introduced in Chapter 2; Chapters 6 to 10 include specific methodologies for the
system resources: CPUs, Memory, File Systems, Disks, and Network.

1.5.3 There Can Be Multiple Performance Issues

Finding a performance issue is usually not the problem; in complex software there
are often many. To illustrate this, try finding the bug database for your operating
system or applications and search for the word performance. You might be sur-
prised! Typically, there will be a number of performance issues that are known but
not yet fixed, even in mature software that is considered to have high perfor-
mance. This poses yet another difficulty when analyzing performance: the real
task isn’t finding an issue, it’s identifying the issue or issues that matter the most.

To do this, the performance analyst must quantify the magnitude of issues.
Some performance issues may not apply to your workload or may apply only to a
very small degree. Ideally, you will not just quantify the issues but also estimate
the speedup if each is fixed. This information can be valuable when management
looks for justification for spending engineering or operations resources.

A metric well suited to performance quantification, when available, is latency.

1.6 Latency

Latency is a measure of time spent waiting. Used broadly, it can mean the time for
any operation to complete, such as an application request, a database query, a file
system operation, and so forth. For example, latency can express the time for a
website to load completely, from link click to screen paint. This is an important
metric for both the customer and the website provider: high latency can cause frus-
tration, and customers may take their business elsewhere.

As a metric, latency can allow maximum speedup to be estimated. For example,
Figure 1.3 depicts a database query that takes 100 ms (which is the latency), dur-
ing which it spends 80 ms blocked waiting for disk reads. The maximum perfor-
mance improvement by eliminating disk reads (e.g., by caching) can be calculated:
up to five times (5x). This is the estimated speedup, and the calculation has also
quantified the performance issue: disk reads are causing the query to run up to 5x
more slowly.

1.7 Dynamic Tracing 7

Such a calculation is not possible with other metrics. I/O operations per second
(IOPS), for example, depend on the type of I/O and are often not directly compara-
ble. If a change were to reduce the IOPS rate by 80%, it’s difficult to know what
the performance impact would be. There might be 5x fewer IOPS, but what if each of
these I/O increased in size (bytes) by 10x?

In the context of networking, latency can refer to the time for a connection to be
established, but not the data transfer time. Throughout this book, terminology is
clarified at the beginning of each chapter so that such context differences are clear.

While latency is a useful metric, it hasn’t always been available when and
where needed. Some system areas provide average latency only; some provide no
latency metrics at all. With the advent of dynamic tracing, latency can be mea-
sured from arbitrary points of interest and can provide data showing the full dis-
tribution of latency.

1.7 Dynamic Tracing

Dynamic tracing allows all software to be instrumented, live and in production. It
is a technique of taking in-memory CPU instructions and dynamically building
instrumentation upon them. This allows custom performance statistics to be cre-
ated from any running software, providing observability far beyond what the
baked-in statistics provide. Issues that were previously impossible to solve due to a
lack of observability can now be solved. Issues that were previously possible to
solve, but prohibitively difficult, are now often easier.

Dynamic tracing is so different from traditional observation that it can be diffi-
cult, at first, to grasp its role. Consider an operating system kernel: analyzing ker-
nel internals can be like venturing into a dark room, with candles (system
statistics) placed where the kernel engineers thought they were needed. Dynamic
tracing is like a flashlight that you can point anywhere.

It was first made available as a production-ready tool with DTrace, which pro-
vides many other features, including its own programming language, D. DTrace

Figure 1.3 Disk I/O latency example

8 Chapter 1 � Introduction

was developed by Sun Microsystems and released for the Solaris 10 operating sys-
tem in 2005. It was also the first component of Solaris to be made available as
open source, from which it has been ported to Mac OS X and FreeBSD, and it is
currently being ported to Linux.

Prior to DTrace, system tracing was commonly performed using static probes: a
small set of instrumentation points placed in the kernel and other software. Their
visibility was limited, and their usage was often time-consuming, requiring a cycle
of configuration, tracing, dumping data, and then analysis.

DTrace provides both static and dynamic tracing of user- and kernel-level soft-
ware and can provide data in real time. The following simple example traces pro-
cess execution during an ssh login. Tracing is system-wide (not associated with a
particular process ID):

In this example, DTrace was instructed to print timestamps (nanoseconds) with
process names and arguments. Much more sophisticated scripts can be written in
the D language, allowing us to create and calculate custom measures of latency.

DTrace and dynamic tracing are explained in Chapter 4, Observability Tools.
There are many examples of DTrace one-liners and scripts in later chapters, on
both Linux- and Solaris-based systems. For more advanced usage, there is a sepa-
rate book on DTrace [Gregg 11].

1.8 Cloud Computing

The most recent development affecting systems performance is the rise of cloud com-
puting and the virtualization technologies upon which the cloud is commonly built.

Cloud computing has enabled rapid scaling by using an architecture that can
balance an application across a growing number of small systems. This approach
has also decreased the need for rigorous capacity planning, as more capacity can
be added from the cloud at short notice. In some cases it has also increased the

dtrace -n 'exec-success { printf("%d %s", timestamp, curpsinfo->pr_psargs); }'
dtrace: description 'exec-success ' matched 1 probe
CPU ID FUNCTION:NAME
 2 1425 exec_common:exec-success 732006240859060 sh -c /usr/bin/locale -a
 2 1425 exec_common:exec-success 732006246584043 /usr/bin/locale -a
 5 1425 exec_common:exec-success 732006197695333 sh -c /usr/bin/locale -a
 5 1425 exec_common:exec-success 732006202832470 /usr/bin/locale -a
 0 1425 exec_common:exec-success 732007379191163 uname -r
 0 1425 exec_common:exec-success 732007449358980 sed -ne /^# START exclude/,/^#
FINISH exclude/p /etc/bash/bash_completion
 1 1425 exec_common:exec-success 732007353365711 -bash
 1 1425 exec_common:exec-success 732007358427035 /usr/sbin/quota
 2 1425 exec_common:exec-success 732007368823865 /bin/mail -E
 12 1425 exec_common:exec-success 732007374821450 uname -s
 15 1425 exec_common:exec-success 732007365906770 /bin/cat -s /etc/motd

1.9 Case Studies 9

desire for performance analysis: using fewer resources can mean fewer systems.
Since cloud usage is typically charged by the hour, a performance win resulting in
fewer systems can mean immediate cost savings. Compare this scenario to an
enterprise customer, who may be locked into a fixed support contract for years and
may not be able to realize cost savings until the contract has ended.

New difficulties caused by cloud computing and virtualization include the man-
agement of performance effects from other tenants (sometimes called performance
isolation) and physical system observability from each tenant. For example, unless
managed properly by the system, disk I/O performance may be poor due to conten-
tion with a neighbor. In some environments, the true usage of the physical disks
may not be observable by each tenant, making identification of this issue difficult.

These topics are covered in Chapter 11, Cloud Computing.

1.9 Case Studies

If you are new to systems performance, case studies showing when and why vari-
ous activities are performed can help you relate them to your current environ-
ment. Two hypothetical examples are summarized here; one is a performance issue
involving disk I/O, and one is performance testing of a software change.

These case studies describe activities that are explained in other chapters of
this book. The approaches described here are also intended to show not the right
way or the only way, but rather a way that these performance activities can be con-
ducted, for your critical consideration.

1.9.1 Slow Disks

Scott is a system administrator at a medium-size company. The database team has
filed a support ticket complaining of “slow disks” on one of their database servers.

Scott’s first task is to learn more about the issue, gathering details to form a
problem statement. The ticket claims that the disks are slow, but it doesn’t explain
if this is causing a database issue or not. Scott responds by asking these questions:

� Is there currently a database performance issue? How is it measured?

� How long has this issue been present?

� Has anything changed with the database recently?

� Why were the disks suspected?

10 Chapter 1 � Introduction

The database team replies: “We have a log for queries slower than 1,000 ms.
These usually don’t happen, but during the past week they have been growing to
dozens per hour. AcmeMon showed that the disks were busy.”

This confirms that there is a real database issue, but it also shows that the disk
hypothesis is likely a guess. Scott wants to check the disks, but he also wants to
check other resources quickly in case that guess was wrong.

AcmeMon is the company’s basic server monitoring system, providing historical
performance graphs based on operating system tools: mpstat(1), iostat(1),
and others. Scott logs in to AcmeMon to see for himself.

Scott begins with a methodology called the USE method to quickly check for
resource bottlenecks. As the database team reported, utilization for the disks is
high, around 80%, while for the other resources (CPU, network) utilization is much
lower. The historical data shows that disk utilization has been steadily increasing
during the past week, while CPU utilization has been steady. AcmeMon doesn’t
provide saturation or error statistics for the disks, so to complete the USE method
Scott must log in to the server and run some commands.

He checks disk error counters from /proc; they are zero. He runs iostat with
an interval of one second and watches utilization and saturation metrics over time.
AcmeMon reported 80% utilization but uses a one-minute interval. At one-second
granularity, Scott can see that disk utilization fluctuates, often hitting 100% and
causing levels of saturation and increased disk I/O latency.

To further confirm that this is blocking the database—and isn’t asynchronous
with respect to the database queries—he uses a dynamic tracing-based script to cap-
ture timestamps and database stack traces whenever the database was descheduled
by the kernel. This shows that the database is often blocking during a file system
read, during a query, and for many milliseconds. This is enough evidence for Scott.

The next question is why. The disk performance statistics appear to be consis-
tent with high load. Scott performs workload characterization to understand this
further, using iostat(1) to measure IOPS, throughput, average disk I/O latency,
and the read/write ratio. From these, he also calculates the average I/O size and
estimates the access pattern: random or sequential. For more details, Scott can use
disk I/O level tracing; however, he is satisfied that this already points to a case of
high disk load, and not a problem with the disks.

Scott adds more details to the ticket, stating what he checked and including
screen shots of the commands used to study the disks. His summary so far is that
the disks are under high load, which increases I/O latency and is slowing the que-
ries. However, the disks appear to be acting normally for the load. He asks if there
is a simple explanation: Did the database load increase?

The database team responds that it did not, and that the rate of queries (which
isn’t reported by AcmeMon) has been steady. This sounds consistent with an ear-
lier finding, that CPU utilization was also steady.

1.9 Case Studies 11

Scott thinks about what else could cause higher disk I/O load without a notice-
able increase in CPU and has a quick talk with his colleagues about it. One of
them suggests file system fragmentation, which is expected when the file system
approaches 100% capacity. Scott finds that it is only at 30%.

Scott knows he can perform drill-down analysis to understand the exact causes
of disk I/O, but this can be time-consuming. He tries to think of other easy expla-
nations that he can check quickly first, based on his knowledge of the kernel I/O
stack. He remembers that this disk I/O is largely caused by file system cache (page
cache) misses.

Scott checks the file system cache hit rate and finds it is currently at 91%. This
sounds high (good), but he has no historical data to compare it to. He logs in to other
database servers that serve similar workloads and finds their cache hit rate to be over
97%. He also finds that the file system cache size is much larger on the other servers.

Turning his attention to the file system cache size and server memory usage, he
finds something that had been overlooked: a development project has a prototype
application that is consuming a growing amount of memory, even though it isn’t
under production load yet. This memory is taken from what is available for the file
system cache, reducing its hit rate, therefore increasing disk I/O, and hurting the
production database server.

Scott contacts the application development team and asks them to shut down
the application and move it to a different server, referring to the database issue.
After they do this, Scott watches disk utilization creep downward in AcmeMon, as
the file system cache recovers to its original size. The slow queries return to zero,
and he closes the ticket as resolved.

1.9.2 Software Change

Pamela is a performance and scalability engineer at a small company and works
on all performance-related activities. The application developers have developed a
new core feature and are unsure whether its introduction could hurt performance.
Pamela decides to perform non-regression testing of the new application version,
before it is deployed in production. (Non-regression testing is an activity for con-
firming that a software or hardware change does not regress performance, hence,
non-regression testing.)

Pamela acquires an idle server for the purpose of testing and searches for a cli-
ent workload simulator. The application team had written one a while ago,
although it has various limitations and known bugs. She decides to try it but
wants to confirm that it adequately resembles the current production workload.

She configures the server to match the current deployment configuration and
runs the client workload simulator from a different system to the target. The client

12 Chapter 1 � Introduction

workload can be characterized by studying an access log, and there is already a
company tool to do this, which she uses. She also runs the tool on a production
server log for different times of day and compares workloads. It appears that the
client simulator applies an average production workload but doesn’t account for
variance. She notes this and continues her analysis.

Pamela knows a number of approaches to use at this point. She picks the easi-
est: increasing load from the client simulator until a limit is reached. The client
simulator can be configured to execute a target number of client requests per sec-
ond, with a default of 1,000 that she had used earlier. She decides to increase load
starting at 100 and adding increments of 100 until a limit is reached, each level
being tested for one minute. She writes a shell script to perform the test, which
collects results in a file for plotting by other tools.

With the load running, she performs active benchmarking to determine what
the limiting factors are. The server resources and server threads seem largely idle.
The client simulator shows that the completed requests level off at around 700 per
second.

She switches to the new software version and repeats the test. This also reaches
the 700 mark and levels off. She also analyzes the server to look for limiting fac-
tors but again cannot see any.

She plots the results, showing completed request rate versus load, to visually
identify the scalability profile. Both appear to reach an abrupt ceiling.

While it appears that the software versions have similar performance character-
istics, Pamela is disappointed that she wasn’t able to identify the limiting factor
causing the scalability ceiling. She knows she checked only server resources, and
the limiter could instead be an application logic issue. It could also be elsewhere:
the network or the client simulator.

Pamela wonders if a different approach may be needed, such as running a fixed
rate of operations and then characterizing resource usage (CPU, disk I/O, network
I/O), so that it can be expressed in terms of a single client request. She runs the
simulator at a rate of 700 per second for the current and new software and mea-
sures resource consumption. The current software drove the 32 CPUs to an aver-
age of 20% utilization for the given load. The new software drove the same CPUs
to 30% utilization, for the same load. It would appear that this is indeed a regres-
sion, one that consumes more CPU resources.

Curious to understand the 700 limit, Pamela launches a higher load and then
investigates all components in the data path, including the network, the client sys-
tem, and the client workload generator. She also performs drill-down analysis of
the server and client software. She documents what she has checked, including
screen shots, for reference.

1.9 Case Studies 13

To investigate the client software she performs thread state analysis and finds
that it is single-threaded. That one thread is spending 100% of its time executing
on-CPU. This convinces her that this is the limiter of the test.

As an experiment, she launches the client software in parallel on different cli-
ent systems. In this way, she drives the server to 100% CPU utilization for both
the current and new software. The current version reaches 3,500 requests/s, and
the new version 2,300 requests/s, consistent with earlier findings of resource con-
sumption.

Pamela informs the application developers that there is a regression with the
new software version, and she begins to profile its CPU usage to understand why:
what code paths are contributing. She notes that an average production workload
was tested, and that varied workloads were not. She also files a bug to note that
the client workload generator is single-threaded, which can become a bottleneck.

1.9.3 More Reading

A more detailed case study is provided as Chapter 13, Case Study, which docu-
ments how I resolved a particular cloud performance issue. The next chapter intro-
duces the methodologies used for performance analysis, and remaining chapters
cover the necessary background and specifics.

This page intentionally left blank

15

2
Methodology

It is a capital mistake to theorize before one has data. Insensibly one begins to twist
facts to suit theories, instead of theories to suit facts.

Sherlock Holmes in “A Scandal in Bohemia” by Sir Arthur Conan Doyle

When faced with an underperforming and complicated system environment, the
first challenge can be knowing where to begin your analysis, what data to collect,
and how to analyze it. As I said in Chapter 1, performance issues can arise from
anywhere, including software, hardware, and any component along the data path.

Methodologies can help the performance analyst approach complex systems by
showing where to start and what steps to take to locate and analyze performance
issues. For beginners, methodologies show where to begin and provide enumerated
steps for how to proceed. For casual users or experts, they can serve as checklists
to ensure that details are not missed. They include methods to quantify and con-
firm the findings, identifying the performance issues that matter the most.

This chapter has three parts:

� Background introduces terminology, basic models, key performance con-
cepts, and perspectives.

� Methodology discusses performance analysis methodologies, both observa-
tional and experimental; modeling; and capacity planning.

� Metrics introduces performance statistics, monitoring, and visualizations.

16 Chapter 2 � Methodology

Many of the methodologies introduced here are explored in more detail in later
chapters, including the methodology sections in Chapters 5 through 10.

2.1 Terminology

The following are key terms for systems performance. Later chapters provide addi-
tional terms and describe some of these in different contexts.

� IOPS: Input/output operations per second is a measure of the rate of data
transfer operations. For disk I/O, IOPS refers to reads and writes per second.

� Throughput: the rate of work performed. Especially in communications, the
term is used to refer to the data rate (bytes per second or bits per second). In
some contexts (e.g., databases), throughput can refer to the operation rate
(operations per second or transactions per second).

� Response time: the time for an operation to complete. This includes any
time spent waiting and time spent being serviced (service time), including the
time to transfer the result.

� Latency: Latency is a measure of time an operation spends waiting to be
serviced. In some contexts, it can refer to the entire time for an operation,
equivalent to response time. See Section 2.3, Concepts, for examples.

� Utilization: For resources that service requests, utilization is a measure of
how busy a resource is, based on how much time in a given interval it was
actively performing work. For resources that provide storage, utilization may
refer to the capacity that is consumed (e.g., memory utilization).

� Saturation: the degree to which a resource has queued work it cannot
service.

� Bottleneck: In system performance, a bottleneck is a resource that limits the
performance of the system. Identifying and removing systemic bottlenecks is
a key activity of systems performance.

� Workload: The input to the system or the load applied is the workload. For a
database, the workload consists of the database queries and commands sent
by the clients.

� Cache: a fast storage area that can duplicate or buffer a limited amount of
data, to avoid communicating directly with a slower tier of storage, thereby
improving performance. For economic reasons, a cache is smaller than the
slower tier.

The Glossary includes basic terminology for reference if needed.

2.2 Models 17

2.2 Models

The following simple models illustrate some basic principles of systems performance.

2.2.1 System under Test

The performance of a system under test (SUT) is shown in Figure 2.1.

It is important to be aware that perturbations (interference) can affect results,
including those caused by scheduled system activity, other users of the system, and
other workloads. The origin of the perturbations may not be clear, and careful
study of system performance may be required to determine it. This can be particu-
larly difficult in some cloud environments, where other activity (by guest tenants)
on the physical host system is not observable from within a guest SUT.

Another difficulty with modern environments is that they may be composed of
several networked components needed to service the input workload, including
load balancers, web servers, database servers, application servers, and storage sys-
tems. The mere act of mapping the environment may help to reveal previously
overlooked sources of perturbations. The environment may also be modeled as a
network of queueing systems, for analytical study.

2.2.2 Queueing System

Some components and resources can be modeled as a queueing system. Figure 2.2
shows a simple queueing system.

The field of queueing theory, introduced in Section 2.6, Modeling, studies queue-
ing systems and networks of queueing systems.

Figure 2.1 System under test

18 Chapter 2 � Methodology

2.3 Concepts

The following are important concepts of systems performance and are assumed
knowledge for the rest of this chapter and this book. The topics are described in a
generic manner, before implementation-specific details are introduced in the archi-
tecture and analysis sections of later chapters.

2.3.1 Latency

For some environments, latency is the sole focus of performance. For others, it is
the top one or two key areas of analysis, along with throughput.

As an example of latency, Figure 2.3 shows a network transfer, such as an HTTP
GET request, with the time split into latency and data transfer components.

The latency is the time spent waiting before an operation is performed. In this
example, the operation is a network service request to transfer data. Before this
operation can take place, the system must wait for a network connection to be
established, which is latency for this operation. The response time spans this
latency and the operation time.

Figure 2.2 Simple queueing model

Figure 2.3 Network connection latency

2.3 Concepts 19

Because latency can be measured from different locations, it is often expressed
with the target of the measurement. For example, the load time for a website may
be composed of three different times measured from different locations: DNS
latency, TCP connection latency, and then TCP data transfer time. DNS latency
refers to the entire DNS operation. TCP connection latency refers to the initializa-
tion only (TCP handshake).

At a higher level, all of these, including the TCP data transfer time, may be
treated as latency of something else. For example, the time from when the user
clicks a website link to when the resulting page is fully loaded may be termed
latency, which includes the time for the browser to render the web page.

As latency is a time-based metric, various calculations are possible. Perfor-
mance issues can be quantified using latency and then ranked because they are
expressed using the same units (time). Predicted speedup can also be calculated,
by considering when latency can be reduced or removed. Neither of these can be
accurately performed using an IOPS metric, for example.

For reference, time orders of magnitude and their abbreviations are listed in
Table 2.1.

When possible, other metric types can be converted to latency or time so that
they can be compared. If you had to choose between 100 network I/O or 50 disk I/O,
how would you know which would perform better? This would be a complicated
choice, involving many factors: network hops, rate of network drops and retrans-
mits, I/O size, random or sequential I/O, disk types, and so on. But if you compare
100 ms of total network I/O and 50 ms of total disk I/O, the difference is clear.

2.3.2 Time Scales

While time can be compared numerically, it also helps to have an instinct about time,
and expectations for latency from different sources. System components operate over
vastly different time scales (orders of magnitude), to the extent that it can be difficult

Table 2.1 Units of Time

Unit Abbreviation Fraction of 1 s

Minute m 60

Second s 1

Millisecond ms 0.001 or 1/1000 or 1 x 10-3

Microsecond μs 0.000001 or 1/1000000 or 1 x 10-6

Nanosecond ns 0.000000001 or 1/1000000000 or 1 x 10-9

Picosecond ps 0.000000000001 or 1/1000000000000 or 1 x 10-12

20 Chapter 2 � Methodology

to grasp just how big those differences are. In Table 2.2, example latencies are pro-
vided, starting with CPU register access for a 3.3 GHz processor. To demonstrate the
differences in time scales we’re working with, the table shows an average time that
each operation might take, scaled to an imaginary system in which register access—
0.3 ns (about one-third of one-billionth of a second) in real life—takes one full second.

As you can see, the time scale for CPU cycles is tiny. The time it takes light to
travel 0.5 m, perhaps the distance from your eyes to this page, is about 1.7 ns.
During the same time, a modern CPU may have executed five CPU cycles and pro-
cessed several instructions.

For more about CPU cycles and latency, see Chapter 6, CPUs, and for disk I/O
latency, Chapter 9, Disks. The Internet latencies included are from Chapter 10,
Network, which has more examples.

2.3.3 Trade-offs

You should be aware of some common performance trade-offs. The good/fast/cheap
“pick two” trade-off is shown in Figure 2.4, alongside the terminology adjusted for
IT projects.

Table 2.2 Example Time Scale of System Latencies

Event Latency Scaled

1 CPU cycle 0.3 ns 1 s

Level 1 cache access 0.9 ns 3 s

Level 2 cache access 2.8 ns 9 s

Level 3 cache access 12.9 ns 43 s

Main memory access (DRAM, from CPU) 120 ns 6 min

Solid-state disk I/O (flash memory) 50–150 μs 2–6 days

Rotational disk I/O 1–10 ms 1–12 months

Internet: San Francisco to New York 40 ms 4 years

Internet: San Francisco to United Kingdom 81 ms 8 years

Internet: San Francisco to Australia 183 ms 19 years

TCP packet retransmit 1–3 s 105–317 years

OS virtualization system reboot 4 s 423 years

SCSI command time-out 30 s 3 millennia

Hardware (HW) virtualization system reboot 40 s 4 millennia

Physical system reboot 5 m 32 millennia

2.3 Concepts 21

Many IT projects have picked on-time and inexpensive, leaving performance to
be fixed later down the road. This choice can become problematic when the earlier
decisions inhibit improving performance, such as choosing and populating a subop-
timal storage architecture, or using a programming language or operating system
that lacks comprehensive performance analysis tools.

A common trade-off in performance tuning is that between CPU and memory, as
memory can be used to cache results, reducing CPU usage. On modern systems
with an abundance of CPU, the trade may work the other way: CPU may be spent
to compress data to reduce memory usage.

Tunable parameters often come with trade-offs. Here are a couple of examples:

� File system record size (or block size): Small record sizes, close to the
application I/O size, will perform better for random I/O workloads and make
more efficient use of the file system cache while the application is running.
Large record sizes will improve streaming workloads, including file system
backups.

� Network buffer size: Small buffer sizes will reduce the memory overhead
per connection, helping the system scale. Large sizes will improve network
throughput.

Look for such trade-offs when making changes to the system.

2.3.4 Tuning Efforts

Performance tuning is most effective when done closest to where the work is per-
formed. For workloads driven by applications, this means within the application
itself. Table 2.3 shows an example software stack, with tuning possibilities.

By tuning at the application level, it may be possible to eliminate or reduce
database queries and improve performance by a large factor (e.g., 20x). Tuning
down to the storage device level may eliminate or improve storage I/O, but a tax

Figure 2.4 Trade-offs: pick two

22 Chapter 2 � Methodology

has already been paid executing higher-level OS stack code, so this may improve
resulting application performance by only percentages (e.g., 20%).

There is another reason for finding large performance wins at the application
level. Many of today’s environments target rapid deployment for features and func-
tionality. Thus, application development and testing tend to focus on correctness,
leaving little or no time for performance measurement or optimization before pro-
duction deployment. These activities are conducted later, when performance
becomes a problem.

While the application can be the most effective level to tune, it isn’t necessarily
the most effective level from which to base observation. Slow queries may be best
understood from their time spent on-CPU, or from the file system and disk I/O that
they perform. These are observable from operating system tools.

In many environments (especially cloud computing), the application level is
under constant development, pushing software changes into production weekly or
daily. Large performance wins, including fixes for regressions, are frequently found
as the application code changes. In these environments, tuning for the operating
system and observability from the operating system can be easy to overlook.
Remember that operating system performance analysis can also identify application-
level issues, not just OS-level issues, in some cases more easily than from the
application alone.

2.3.5 Level of Appropriateness

Different organizations and environments have different requirements for perfor-
mance. You may have joined an organization where it is the norm to analyze much
deeper than you’ve seen before, or even knew was possible. Or you may find that
what you consider basic analysis is considered advanced and has never before been
performed (good news: low-hanging fruit!).

Table 2.3 Example Targets of Tuning

Layer Tuning Targets

Application database queries performed

Database database table layout, indexes, buffering

System calls memory-mapped or read/write, sync or async I/O flags

File system record size, cache size, file system tunables

Storage RAID level, number and type of disks, storage tunables

2.3 Concepts 23

This doesn’t necessarily mean that some organizations are doing it right and
some wrong. It depends on the return on investment (ROI) for performance exper-
tise. Organizations with large data centers or cloud environments may need a
team of performance engineers who analyze everything, including kernel internals
and CPU performance counters, and frequently use dynamic tracing. They may
also formally model performance and develop accurate predictions for future
growth. Small start-ups may have time only for superficial checks, trusting third-
party monitoring solutions to check their performance and provide alerts.

The most extreme environments include stock exchanges and high-frequency
traders, where performance and latency are critical and can justify intense effort
and expense. As an example of this, a new transatlantic cable is currently planned
between the New York and London exchanges at the cost of $300 million, to reduce
transmission latency by 6 ms [1].

2.3.6 Point-in-Time Recommendations

The performance characteristics of environments change over time, due to the
addition of more users, newer hardware, and updated software or firmware. An
environment currently limited by a 1 Gbit/s network infrastructure may start to
feel the pinch in disk or CPU performance after an upgrade to 10 Gbits/s.

Performance recommendations, especially the values of tunable parameters, are
valid only at a specific point in time. What may have been the best advice from a
performance expert one week may become invalid a week later after a software or
hardware upgrade, or after adding more users.

Tunable parameter values found by searching on the Internet can provide quick
wins—in some cases. They can also cripple performance if they are not appropri-
ate for your system or workload, were appropriate once but are not now, or are
appropriate only as a temporary work-around for a software bug, which is fixed
properly in a later software upgrade. It’s akin to raiding someone else’s medicine
cabinet and taking drugs that may not be appropriate for you, or may have
expired, or were supposed to be taken only for a short duration.

It can be useful to browse such recommendations just to see which tunable
parameters exist and have needed changing in the past. The task then becomes to
see whether these should be tuned for your system and workload, and to what. But
you may still miss an important parameter if others have not needed to tune that
one before, or have tuned it but haven’t shared their experience anywhere.

24 Chapter 2 � Methodology

2.3.7 Load versus Architecture

An application can perform badly due to an issue with the software configuration
and hardware on which it is running: its architecture. However, an application can
also perform badly simply due to too much load applied, resulting in queueing and
long latencies. Load and architecture are pictured in Figure 2.5.

If analysis of the architecture shows queueing of work but no problems with
how the work is performed, the issue may be one of too much load applied. In a
cloud computing environment, this is the point where more nodes can be intro-
duced to handle the work.

For example, an issue of architecture may be a single-threaded application that is
busy on-CPU, with requests queueing while other CPUs are available and idle. In
this case, performance is limited by the application’s single-threaded architecture.

An issue of load may be a multithreaded application that is busy on all avail-
able CPUs, with requests still queueing. In this case, performance is limited by the
available CPU capacity, or put differently, by more load than the CPUs can handle.

2.3.8 Scalability

The performance of the system under increasing load is its scalability. Figure 2.6
shows a typical throughput profile as a system’s load increases.

For some period, linear scalability is observed. A point is then reached, marked
with a dotted line, where contention for a resource begins to affect performance.
This point can be described as a knee point, as it is the boundary between two pro-

Figure 2.5 Load versus architecture

2.3 Concepts 25

files. Beyond this point, the throughput profile departs from linear scalability, as
contention for the resource increases. Eventually the overheads for increased con-
tention and coherency cause less work to be completed and throughput to decrease.

This point may occur when a component reaches 100% utilization: the satura-
tion point. It may also occur when a component approaches 100% utilization, and
queueing begins to be frequent and significant.

An example system that may exhibit this profile is an application that performs
heavy compute, with more load added as threads. As the CPUs approach 100% uti-
lization, performance begins to degrade as CPU scheduler latency increases. After
peak performance, at 100% utilization, throughput begins to decrease as more
threads are added, causing more context switches, which consume CPU resources
and cause less actual work to be completed.

The same curve can be seen if you replace “load” on the x axis with a resource
such as CPU cores. For more on this topic, see Section 2.6, Modeling.

The degradation of performance for nonlinear scalability, in terms of average
response time or latency, is graphed in Figure 2.7 [Cockcroft 95].

Figure 2.6 Throughput versus load

Figure 2.7 Performance degradation

26 Chapter 2 � Methodology

Higher response time is, of course, bad. The “fast” degradation profile may occur
for memory load, when the system begins to page (or swap) to supplement main
memory. The “slow” degradation profile may occur for CPU load.

Another “fast” profile example is disk I/O. As load (and the resulting disk utili-
zation) increases, I/O becomes more likely to queue behind other I/O. An idle rota-
tional disk may serve I/O with a response time of about 1 ms, but when load
increases, this can approach 10 ms. This is modeled in Section 2.6.5 under M/D/1
and 60% Utilization.

Linear scalability of response time could occur if the application begins to
return errors when resources are unavailable, instead of queueing work. For exam-
ple, a web server may return 503 “Service Unavailable” instead of adding requests
to a queue, so that those requests that are served can be performed with a consis-
tent response time.

2.3.9 Known-Unknowns

Introduced in the Preface, the notion of known-knowns, known-unknowns, and
unknown-unknowns is important for the field of performance. The breakdown is as
follows, with examples for systems performance analysis:

� Known-knowns: These are things you know. You know you should be check-
ing a performance metric, and you know its current value. For example, you
know you should be checking CPU utilization, and you also know that the
value is 10% on average.

� Known-unknowns: These are things you know that you do not know. You
know you can check a metric or the existence of a subsystem, but you haven’t
yet observed it. For example, you know you could be checking what is making
the CPUs busy by the use of profiling but have yet to do so.

� Unknown-unknowns: These are things you do not know you do not know.
For example, you may not know that device interrupts can become heavy
CPU consumers, so you are not checking them.

Performance is a field where “the more you know, the more you don’t know.” It’s
the same principle: the more you learn about systems, the more unknown-
unknowns you become aware of, which are then known-unknowns that you can
check on.

2.3 Concepts 27

2.3.10 Metrics

Performance metrics are statistics generated by the system, applications, or addi-
tional tools that measure activity of interest. They are studied for performance
analysis and monitoring, either numerically at the command line or graphically
using visualizations.

Common types of systems performance metrics include

� IOPS: I/O operations per second

� Throughput: either operations or volume per second

� Utilization

� Latency

The usage of throughput depends on its context. Database throughput is usu-
ally a measure of queries or requests (operations) per second. Network throughput
is a measure of bits or bytes (volume) per second.

IOPS is a throughput measurement, but one for I/O operations only (reads and
writes). Again, context matters, and definitions can vary.

Overhead

Performance metrics are not free; at some point, CPU cycles must be spent to gather
and store them. This causes overhead, which can negatively affect the performance
of the target of measurement. This is called the observer effect. (It is often confused
with Heisenberg’s Uncertainty Principle, which describes the limit of precision at
which pairs of physical properties, such as position and momentum, may be known.)

Issues

The temptation is to assume that the software vendor has provided metrics that
are well chosen, are bug-free, and provide complete visibility. In reality, metrics
can be confusing, complicated, unreliable, inaccurate, and even plain wrong (due to
bugs). Sometimes a metric was correct on one software version but did not get
updated to reflect the addition of new code and code paths.

For more about problems with metrics, see Section 4.6, Observing Observabil-
ity, in Chapter 4, Observability Tools.

2.3.11 Utilization

The term utilization is often used for operating systems to describe device usage,
such as for the CPU and disk devices. Utilization can be time-based or capacity-
based.

28 Chapter 2 � Methodology

Time-Based

Time-based utilization is formally defined in queueing theory. For example
[Gunther 97]:

the average amount of time the server or resource was busy

along with the ratio

U = B/T

where U = utilization, B = total time the system was busy during T, the observa-
tion period.

This is also the “utilization” most readily available from operating system perform-
ance tools. The disk monitoring tool iostat(1) calls this metric %b for percent
busy, a term that better conveys the underlying metric: B/T.

This utilization metric tells us how busy a component is: when a component
approaches 100% utilization, performance can seriously degrade when there is con-
tention for the resource. Other metrics can be checked to confirm and to see if the
component has therefore become a system bottleneck.

Some components can service multiple operations in parallel. For them, perfor-
mance may not degrade much at 100% utilization, as they can accept more work.
To understand this, consider a building elevator. It may be considered utilized
when it is moving between floors, and not utilized when it is idle waiting. How-
ever, the elevator may be able to accept more passengers even when it is busy
100% of the time responding to calls—that is, it is at 100% utilization.

A disk that is 100% busy may also be able to accept and process more work, for
example, by buffering writes in the on-disk cache to be completed later. Storage
arrays frequently run at 100% utilization because some disk is busy 100% of the
time, but the array has plenty of idle disks and can accept much more work.

Capacity-Based

The other definition of utilization is used by IT professionals in the context of
capacity planning [Wong 97]:

A system or component (such as a disk drive) is able to deliver a certain amount of
throughput. At any level of performance, the system or component is working at some
proportion of its capacity. That proportion is called the utilization.

This defines utilization in terms of capacity instead of time. It implies that a disk
at 100% utilization cannot accept any more work. With the time-based definition,
100% utilization only means it is busy 100% of the time.

2.3 Concepts 29

100% busy does not mean 100% capacity.

For the elevator example, 100% capacity may mean the elevator is at its maxi-
mum payload capacity and cannot accept more passengers.

In an ideal world, we would be able to measure both types of utilization for a
device, so that, for example, you would know when a disk is 100% busy and perfor-
mance begins to degrade due to contention, and also when it is at 100% capacity
and cannot accept more work. Unfortunately, this usually isn’t possible. For a disk,
it would require knowledge of what the disk’s on-board controller was doing, and a
prediction of capacity. Disks do not currently provide this information.

In this book, utilization usually refers to the time-based version. The capacity
version is used for some volume-based metrics, such as memory usage.

Non-Idle Time

The problem of defining utilization came up during the development of a cloud
monitoring project at my company. The lead engineer, Dave Pacheco, asked me to
define utilization. I did (as above). Unsatisfied with the possibility of confusion, he
came up with a different term to make it self-evident: non-idle time.

While this is more accurate, it is not yet in common usage (which refers to this
metric as percent busy, as described earlier).

2.3.12 Saturation

The degree to which more work is requested of a resource than it can process is
saturation. Saturation begins to occur at 100% utilization (capacity-based), as
extra work cannot be processed and begins to queue. This is pictured in Figure 2.8.

Figure 2.8 Utilization versus saturation

30 Chapter 2 � Methodology

The figure pictures saturation increasing linearly beyond the 100% capacity-based uti-
lization mark as load continues to increase. Any degree of saturation is a performance
issue, as time is spent waiting (latency). For time-based utilization (percent busy),
queueing and therefore saturation may not begin at the 100% utilization mark,
depending on the degree to which the resource can operate on work in parallel.

2.3.13 Profiling

Profiling builds a picture of a target that can be studied and understood. In the
field of computing performance, profiling is typically performed by sampling the
state of the system at timed intervals, and then studying the set of samples.

Unlike the previous metrics covered, including IOPS and throughput, the use of sam-
pling provides a coarse view of the target’s activity, depending on the rate of sampling.

As an example of profiling, CPU usage can be understood in reasonable detail
by sampling the CPU program counter or stack backtrace at frequent intervals to
gather statistics on the code paths that are consuming CPU resources. This topic is
covered in Chapter 6, CPUs.

2.3.14 Caching

Caching is frequently used to improve performance. A cache stores results from a
slower storage tier in a faster storage tier for reference. An example is caching disk
blocks in main memory (RAM).

Multiple tiers of caches may be used. CPUs commonly employ multiple hard-
ware caches for main memory (Levels 1, 2, and 3), beginning with a very fast but
small cache (Level 1) and increasing in both storage size and access latency. This is
an economic trade-off between density and latency; levels and sizes are chosen for
the best performance for the on-chip space available.

There are many other caches present in a system, many of them implemented in
software using main memory for storage. See Section 3.2.11, Caching, in Chapter 3,
Operating Systems, for a list of caching layers.

One metric for understanding cache performance is each cache’s hit ratio—the
number of times the needed data was found in the cache (hits) versus the number
of times it was not (misses):

hit ratio = hits/total accesses (hits + misses)

The higher, the better, as a higher ratio reflects more data successfully accessed
from faster media. Figure 2.9 shows the expected performance improvement for
increasing cache hit ratios.

2.3 Concepts 31

The performance difference between 98% and 99% is much greater than that
between 10% and 11%. This is a nonlinear profile because of the difference in
speed between cache hits and misses—the two storage tiers at play. The greater
the difference, the steeper the slope becomes.

Another metric for understanding cache performance is the cache miss rate, in
terms of misses per second. This is proportional (linear) to the performance pen-
alty of each miss and can be easier to interpret.

For example, workloads A and B perform the same task using different algo-
rithms and use a main memory cache to avoid reading from disk. Workload A has
a cache hit ratio of 90%, and workload B a cache hit ratio of 80%. This information
alone suggests workload A performs better. What if workload A had a miss rate of
200/s and workload B, 20/s? In those terms, workload B performs 10x fewer disk
reads, which may complete the task much sooner than A. To be certain, the total
runtime for each workload can be calculated as

runtime = (hit rate x hit latency) + (miss rate x miss latency)

This calculation uses the average hit and miss latencies and assumes the work is
serialized.

Algorithms

Cache management algorithms and policies determine what to store in the limited
space available for a cache.

Most recently used (MRU) refers to a cache retention policy, which decides what
to favor keeping in the cache: the objects that have been used most recently. Least
recently used (LRU) can refer to an equivalent cache eviction policy, deciding what
objects to remove from the cache when more space is needed. There are also most
frequently used (MFU) and least frequently used (LFU) policies.

Figure 2.9 Cache hit ratio and performance

32 Chapter 2 � Methodology

You may encounter not frequently used (NFU), which may be an inexpensive but
less thorough version of LRU.

Hot, Cold, and Warm Caches

These words are commonly used to describe the state of the cache:

� Cold: A cold cache is empty, or populated with unwanted data. The hit ratio
for a cold cache is zero (or near zero as it begins to warm up).

� Hot: A hot cache is populated with commonly requested data and has a high
hit ratio, for example, over 99%.

� Warm: A warm cache is one that is populated with useful data but doesn’t
have a high enough hit ratio to be considered hot.

� Warmth: Cache warmth describes how hot or cold a cache is. An activity that
improves cache warmth is one that aims to improve the cache hit ratio.

When caches are first initialized, they begin cold and then warm up over time.
When the cache is large or the next-level storage is slow (or both), the cache can
take a long time to become populated and warm.

For example, I worked on a storage appliance that had 128 Gbytes of DRAM as
a file system cache, 600 Gbytes of flash memory as a second-level cache, and rota-
tional disks for storage. With a random read workload, the disks delivered around
2,000 reads/s. With an 8 Kbyte I/O size, this meant that the caches could warm up
at a rate of only 16 Mbytes/s (2,000 x 8 Kbytes). When both caches began cold, it
took over 2 hours for the DRAM cache to warm up, and over 10 hours for the flash
memory cache.

2.4 Perspectives

There are two common perspectives for performance analysis, each with different
audiences, metrics, and approaches. They are workload analysis and resource anal-
ysis. They can be thought of as either top-down or bottom-up analysis of the oper-
ating system software stack, as shown in Figure 2.10.

Section 2.5, Methodology, provides specific strategies to apply for each. These
perspectives are introduced here in more detail.

2.4 Perspectives 33

2.4.1 Resource Analysis

Resource analysis begins with analysis of the system resources: CPUs, memory,
disks, network interfaces, busses, and interconnects. It is most likely performed by
system administrators—those responsible for the physical environment resources.
Activities include

� Performance issue investigations: to see if a particular type of resource is
responsible

� Capacity planning: for information to help size new systems, and to see
when existing system resources may become exhausted

This perspective focuses on utilization, to identify when resources are at or
approaching their limit. Some resource types, such as CPUs, have utilization met-
rics readily available. Utilization for other resources can be estimated based on
available metrics, for example, estimating network interface utilization by compar-
ing the send and receive megabits per second (throughput) with the known maxi-
mum bandwidth.

Metrics best suited for resource analysis include

� IOPS

� Throughput

� Utilization

� Saturation

Figure 2.10 Analysis perspectives

34 Chapter 2 � Methodology

These measure what the resource is being asked to do, and how utilized or satu-
rated it is for a given load. Other types of metrics, including latency, are also of use
to see how well the resource is responding for the given workload.

Resource analysis is a common approach to performance analysis, in part
because of the widely available documentation on the topic. Such documentation
focuses on the operating system “stat” tools: vmstat(1), iostat(1), mpstat(1).
It’s important when you read such documentation to understand that this is a per-
spective, but not the only perspective.

2.4.2 Workload Analysis

Workload analysis (see Figure 2.11) examines the performance of the applications:
the workload applied and how the application is responding. It is most commonly
used by application developers and support staff—those responsible for the appli-
cation software and configuration.

The targets for workload analysis are

� Requests: the workload applied

� Latency: the response time of the application

� Completion: looking for errors

Studying workload requests typically involves checking and summarizing their
attributes: the process of workload characterization (described in more detail in
Section 2.5, Methodology). For databases, these attributes may include the client
host, database name, tables, and query string. This data may help identify unnec-
essary work, or unbalanced work. While the work may be performing well (low
latency), examining these attributes may identify ways to reduce or eliminate the
work applied. (The fastest query is the one you don’t do at all.)

Figure 2.11 Workload analysis

2.5 Methodology 35

Latency (response time) is the most important metric for expressing application
performance. For a MySQL database, it’s query latency; for Apache, it’s HTTP
request latency; and so on. In these contexts, the term latency is used to mean the
same as response time (refer back to Section 2.3.1, Latency, for more about context).

The tasks of workload analysis include identifying and confirming issues—for
example, by looking for latency beyond an acceptable threshold—then finding the
source of the latency (drill-down analysis) and confirming that the latency is
improved after applying a fix. Note that the starting point is the application. To
investigate latency usually involves drilling down deeper into the application,
libraries, and the operating system (kernel).

System issues may be identified by studying characteristics related to the com-
pletion of an event, including its error status. While a request may complete
quickly, it may do so with an error status that causes the request to be retried,
accumulating latency.

Metrics best suited for workload analysis include

� Throughput (transactions per second)

� Latency

These measure the rate of requests and the resulting performance.

2.5 Methodology

This section describes numerous methodologies and procedures for system perfor-
mance analysis and tuning and introduces some that are new, particularly the
USE method. Some anti-methodologies have also been included.

To help summarize their role, these methodologies have been categorized as dif-
ferent types, such as observational analysis and experimental analysis, as shown
in Table 2.4.

Table 2.4 Generic System Performance Methodologies

Methodology Type

Streetlight anti-method observational analysis

Random change anti-method experimental analysis

Blame-someone-else anti-method hypothetical analysis

Ad hoc checklist method observational and experimental analysis

Problem statement information gathering

continues

36 Chapter 2 � Methodology

Performance monitoring, queueing theory, and capacity planning are covered
later in this chapter. Later chapters also recast some of these methodologies in dif-
ferent contexts and provide some additional methodologies specific to particular
areas of performance analysis.

The following sections begin with commonly used but weaker methodologies for
comparison, including the anti-methodologies. For the analysis of performance
issues, the first methodology you should attempt is the problem statement method,
before moving on to others.

2.5.1 Streetlight Anti-Method

This method is actually the absence of a deliberate methodology. The user ana-
lyzes performance by choosing observability tools that are familiar, found on the
Internet, or just at random to see if anything obvious shows up. This approach is
hit or miss and can overlook many types of issues.

Tuning performance may be attempted in a similar trial-and-error fashion, set-
ting whatever tunable parameters are known and familiar to different values to
see if that helps.

Scientific method observational analysis

Diagnosis cycle analysis life cycle

Tools method observational analysis

USE method observational analysis

Workload characterization observational analysis, capacity planning

Drill-down analysis observational analysis

Latency analysis observational analysis

Method R observational analysis

Event tracing observational analysis

Baseline statistics observational analysis

Performance monitoring observational analysis, capacity planning

Queueing theory statistical analysis, capacity planning

Static performance tuning observational analysis, capacity planning

Cache tuning observational analysis, tuning

Micro-benchmarking experimental analysis

Capacity planning capacity planning, tuning

Table 2.4 Generic System Performance Methodologies (Continued)

Methodology Type

2.5 Methodology 37

Even when this method reveals an issue, it can be slow as tools or tunings unre-
lated to the issue are found and tried, just because they’re familiar. This methodol-
ogy is therefore named after an observational bias called the streetlight effect,
illustrated by this parable:

One night a police officer sees a drunk searching the ground beneath a streetlight and
asks what he is looking for. The drunk says he has lost his keys. The police officer
can’t find them either and asks: “Are you sure you lost them here, under the street-
light?” The drunk replies: “No, but this is where the light is best.”

The performance equivalent would be looking at top(1), not because it makes
sense, but because the user doesn’t know how to read other tools.

An issue that this methodology does find may be an issue but not the issue.
Other methodologies quantify findings, so that false positives can be ruled out
more quickly.

2.5.2 Random Change Anti-Method

This is an experimental anti-methodology. The user randomly guesses where the
problem may be and then changes things until it goes away. To determine whether
performance has improved or not as a result of each change, a metric is studied,
such as application runtime, operation time, latency, operation rate (operations per
second), or throughput (bytes per second). The approach is as follows:

1. Pick a random item to change (e.g., a tunable parameter).

2. Change it in one direction.

3. Measure performance.

4. Change it in the other direction.

5. Measure performance.

6. Were the results in step 3 or step 5 better than the baseline? If so, keep the
change and go back to step 1.

While this process may eventually unearth tuning that works for the tested
workload, it is very time-consuming and can also leave behind tuning that doesn’t
make sense in the long term. For example, an application change may improve per-
formance because it works around a database or operating system bug—a bug that
is then later fixed. But the application will still have that tuning that no longer
makes sense, and that no one understood properly in the first place.

Another risk is where a change that isn’t properly understood causes a worse prob-
lem during peak production load and a need to back out the change during this time.

38 Chapter 2 � Methodology

2.5.3 Blame-Someone-Else Anti-Method

This anti-methodology follows these steps:

1. Find a system or environment component for which you are not responsible.

2. Hypothesize that the issue is with that component.

3. Redirect the issue to the team responsible for that component.

4. When proven wrong, go back to step 1.

Maybe it’s the network. Can you check with the network team if they have had
dropped packets or something?

Instead of investigating performance issues, the user of this methodology makes
them someone else’s problem, which can be wasteful of other teams’ resources
when it turns out not to be their problem after all. This anti-methodology can be
identified by a lack of data leading to the hypothesis.

To avoid becoming a victim of blame-someone-else, ask the accuser for screen
shots showing which tools were run and how the output was interpreted. You can
take these screen shots and interpretations to someone else for a second opinion.

2.5.4 Ad Hoc Checklist Method

Stepping through a canned checklist is a common methodology used by support
professionals when asked to check and tune a system, often in a short time frame.
A typical scenario involves the deployment of a new server or application in pro-
duction, and a support professional spending half a day checking for common
issues now that the system is under real load. These checklists are ad hoc and are
built from recent experience and issues for that system type.

Here is an example checklist entry:

Run iostat –x 1 and check the await column. If this is consistently over 10 (ms)
during load, then the disks are either slow or overloaded.

A checklist may be composed of a dozen or so such checks.
While these checklists can provide the most value in the shortest time frame,

they are point-in-time recommendations (see Section 2.3, Concepts) and need to be
frequently refreshed to stay current. They also tend to focus on issues for which
there are known fixes that can be easily documented, such as the setting of tun-
able parameters, but not custom fixes to the source code or environment.

If you are managing a team of support professionals, an ad hoc checklist can be
an effective way to ensure that everyone knows how to check for the worst of the

2.5 Methodology 39

issues, and that all the obvious culprits have been checked. A checklist can be writ-
ten to be clear and prescriptive, showing how to identify each issue and what the
fix is. But of course, this list must be constantly updated.

2.5.5 Problem Statement

Defining the problem statement is a routine task for support staff when first
responding to issues. It’s done by asking the customer the following questions:

1. What makes you think there is a performance problem?

2. Has this system ever performed well?

3. What changed recently? Software? Hardware? Load?

4. Can the problem be expressed in terms of latency or runtime?

5. Does the problem affect other people or applications (or is it just you)?

6. What is the environment? What software and hardware are used? Versions?
Configuration?

Just asking and answering these questions often points to an immediate cause and
solution. The problem statement has therefore been included here as its own meth-
odology and should be the first approach you use when tackling a new issue.

2.5.6 Scientific Method

The scientific method studies the unknown by making hypotheses and then test-
ing them. It can be summarized in the following steps:

1. Question

2. Hypothesis

3. Prediction

4. Test

5. Analysis

The question is the performance problem statement. From this you can hypothe-
size what the cause of poor performance may be. Then you construct a test, which
may be observational or experimental, that tests a prediction based on the hypoth-
esis. You finish with analysis of the test data collected.

For example, you may find that application performance is degraded after
migrating to a system with less main memory, and you hypothesize that the cause

40 Chapter 2 � Methodology

of poor performance is a smaller file system cache. You might use an observational
test to measure the cache miss rate on both systems, predicting that cache misses
will be higher on the smaller system. An experimental test would be to increase the
cache size (adding RAM), predicting that performance will improve. Another,
perhaps easier, experimental test is to artificially reduce the cache size (using tun-
able parameters), predicting that performance will be worse.

The following are some more examples.

Example (Observational)

1. Question: What is causing slow database queries?

2. Hypothesis: Noisy neighbors (other cloud computing tenants) are performing
disk I/O, contending with database disk I/O (via the file system).

3. Prediction: If file system I/O latency is measured during a query, it will show
that the file system is responsible for the slow queries.

4. Test: Tracing of database file system latency as a ratio of query latency shows
that less than 5% of the time is spent waiting for the file system.

5. Analysis: The file system and disks are not responsible for slow queries.

Although the issue is still unsolved, some large components of the environment
have been ruled out. The person conducting this investigation can return to step 2
and develop a new hypothesis.

Example (Experimental)

1. Question: Why do HTTP requests take longer from host A to host C than from
host B to host C?

2. Hypothesis: Host A and host B are in different data centers.

3. Prediction: Moving host A to the same data center as host B will fix the
problem.

4. Test: Move host A and measure performance.

5. Analysis: Performance has been fixed—consistent with the hypothesis.

If the problem wasn’t fixed, reverse the experimental change (move host A back, in
this case) before beginning a new hypothesis!

Example (Experimental)

1. Question: Why did file system performance degrade as the file system cache
grew in size?

2.5 Methodology 41

2. Hypothesis: A larger cache stores more records, and more compute is required
to manage a larger cache than a smaller one.

3. Prediction: Making the record size progressively smaller, and therefore caus-
ing more records to be used to store the same amount of data, will make per-
formance progressively worse.

4. Test: Test the same workload with progressively smaller record sizes.

5. Analysis: Results are graphed and are consistent with the prediction. Drill-
down analysis is now performed on the cache management routines.

This is an example of a negative test—deliberately hurting performance to learn
more about the target system.

2.5.7 Diagnosis Cycle

Similar to the scientific method is the diagnosis cycle:

hypothesis instrumentation data hypothesis

Like the scientific method, this method also deliberately tests a hypothesis
through the collection of data. The cycle emphasizes that the data can lead quickly
to a new hypothesis, which is tested and refined, and so on. This is similar to a
doctor making a series of small tests to diagnose a patient and refining the hypoth-
esis based on the result of each test.

Both of these approaches have a good balance of theory and data. Try to move
from hypothesis to data quickly, so that bad theories can be identified early and
discarded, and better ones developed.

2.5.8 Tools Method

A tools-oriented approach is as follows:

1. List available performance tools (optionally, install or purchase more).

2. For each tool, list useful metrics it provides.

3. For each metric, list possible rules for interpretation.

The result of this is a prescriptive checklist showing which tool to run, which met-
rics to read, and how to interpret them. While this can be fairly effective, it relies
exclusively on available (or known) tools, which can provide an incomplete view of
the system, similar to the streetlight anti-method. Worse, the user is unaware that

42 Chapter 2 � Methodology

he or she has an incomplete view—and may remain unaware. Issues that require
custom tooling (e.g., dynamic tracing) may never be identified and solved.

In practice, the tools method does identify certain resource bottlenecks, errors,
and other types of problems, though often not efficiently.

When a large number of tools and metrics are available, it can be time-consuming
to iterate through them. The situation gets worse when multiple tools appear to
have the same functionality, and you spend additional time trying to understand the
pros and cons of each. In some cases, such as file system micro-benchmark tools,
there are over a dozen tools to choose from, when you may need only one.1

2.5.9 The USE Method

The utilization, saturation, and errors (USE) method should be used early in a per-
formance investigation, to identify systemic bottlenecks [Gregg 13]. It can be sum-
marized this way:

For every resource, check utilization, saturation, and errors.

These terms are defined as follows:

� Resource: all physical server functional components (CPUs, busses, . . .).
Some software resources can also be examined, provided the metrics make
sense.

� Utilization: for a set time interval, the percentage of time that the resource
was busy servicing work. While busy, the resource may still be able to accept
more work; the degree to which it cannot do so is identified by saturation.

� Saturation: the degree to which the resource has extra work that it can’t
service, often waiting on a queue.

� Errors: the count of error events.

For some resource types, including main memory, utilization is the capacity of the
resource that is used. This is different from the time-based definition and was
explained earlier in Section 2.3.11, Utilization. Once a capacity resource reaches
100% utilization, more work cannot be accepted, and the resource either queues the
work (saturation) or returns errors, which are also identified using the USE method.

1. As an aside, an argument I’ve encountered to support multiple overlapping tools is that
“competition is good.” My counterargument is that developing those tools divides resources,
which can accomplish more in combination, and that it also wastes end users’ time as they
try to pick through them.

2.5 Methodology 43

Errors should be investigated because they can degrade performance and may
not be immediately noticed when the failure mode is recoverable. This includes
operations that fail and are retried, and devices that fail in a pool of redundant
devices.

In contrast with the tools method, the USE method involves iterating over sys-
tem resources instead of tools. This helps you create a complete list of questions to
ask, and only then do you search for tools to answer them. Even when tools cannot
be found to answer questions, the knowledge that these questions are unanswered
can be extremely useful for the performance analyst: they are now “known-
unknowns.”

The USE method also directs analysis to a limited number of key metrics, so
that all system resources are checked as quickly as possible. After this, if no issues
have been found, other methodologies can be used.

Procedure

The USE method is pictured as the flowchart in Figure 2.12. Errors are placed
first before utilization and saturation are checked. Errors are usually quick and
easy to interpret, and it can be time-efficient to rule them out before investigating
the other metrics.

This method identifies problems that are likely to be system bottlenecks. Unfor-
tunately, a system may be suffering from more than one performance problem, so
the first thing you find may be a problem but not the problem. Each discovery can
be investigated using further methodologies, before returning to the USE method
as needed to iterate over more resources.

Expressing Metrics

The USE method metrics are usually expressed as follows:

� Utilization: as a percent over a time interval (e.g., “One CPU is running at
90% utilization”)

� Saturation: as a wait-queue length (e.g., “The CPUs have an average run-
queue length of four”)

� Errors: number of errors reported (e.g., “This network interface has had 50
late collisions”)

Though it may seem counterintuitive, a short burst of high utilization can cause
saturation and performance issues, even though the overall utilization is low over a
long interval. Some monitoring tools report utilization over 5-minute averages. CPU
utilization, for example, can vary dramatically from second to second, so a 5-minute
average may disguise short periods of 100% utilization and, therefore, saturation.

44 Chapter 2 � Methodology

Consider a toll plaza on a highway. Utilization can be defined as how many toll-
booths were busy servicing a car. Utilization at 100% means you can’t find an
empty booth and must queue behind someone (saturation). If I told you the booths
were at 40% utilization across the entire day, could you tell me whether any cars
had queued at any time during that day? They probably did during rush hour,
when utilization was at 100%, but that isn’t visible in the daily average.

Resource List

The first step in the USE method is to create a list of resources. Try to be as com-
plete as possible. Here is a generic list of server hardware resources, along with
specific examples:

Figure 2.12 The USE method flow

2.5 Methodology 45

� CPUs: sockets, cores, hardware threads (virtual CPUs)

� Main memory: DRAM

� Network interfaces: Ethernet ports

� Storage devices: disks

� Controllers: storage, network

� Interconnects: CPU, memory, I/O

Each component typically acts as a single resource type. For example, main mem-
ory is a capacity resource, and network interfaces are an I/O resource (which can
mean either IOPS or throughput). Some components can behave as multiple
resource types: for example, a storage device is both an I/O resource and a capac-
ity resource. Consider all types that can lead to performance bottlenecks. Also note
that I/O resources can be further studied as queueing systems, which queue and
then service these requests.

Some physical components, such as hardware caches (e.g., CPU caches), can be
left out of your checklist. The USE method is most effective for resources that suf-
fer performance degradation under high utilization or saturation, leading to bottle-
necks, while caches improve performance under high utilization. These can be
checked using other methodologies. If you are unsure whether to include a
resource, include it, then see how well the metrics work in practice.

Functional Block Diagram

Another way to iterate over resources is to find or draw a functional block diagram for
the system, such as the one shown in Figure 2.13. Such a diagram also shows relation-
ships, which can be very useful when looking for bottlenecks in the flow of data.

CPU, memory, and I/O interconnects and busses are often overlooked. Fortu-
nately, they are not common system bottlenecks, as they are typically designed to
provide an excess of throughput. Unfortunately, if they are, the problem can be dif-
ficult to solve. Maybe you can upgrade the main board, or reduce load; for exam-
ple, “zero copy” projects lighten memory bus load.

For investigating interconnects, see CPU Performance Counters in Section 6.4.1,
Hardware, of Chapter 6, CPUs.

Metrics

Once you have your list of resources, consider the metric types: utilization, satura-
tion, and errors. Table 2.5 shows some example resources and metric types, along
with possible metrics (generic OS).

These metrics can be either averages per interval or counts.

46 Chapter 2 � Methodology

Repeat for all combinations, and include instructions for fetching each metric.
Take note of metrics that are not currently available; these are the known-
unknowns. You’ll end up with a list of about 30 metrics, some of which are difficult
to measure, and some of which can’t be measured at all. Fortunately, the most com-
mon issues are usually found with the easier metrics (e.g., CPU saturation, mem-
ory capacity saturation, network interface utilization, disk utilization), so these
can be checked first.

Figure 2.13 Example two-processor functional block diagram

Table 2.5 Example USE Method Metrics

Resource Type Metric

CPU utilization CPU utilization (either per CPU or a system-wide average)

CPU saturation dispatcher-queue length (aka run-queue length)

Memory utilization available free memory (system-wide)

Memory saturation anonymous paging or thread swapping (page scanning is
another indicator), or out-of-memory events

Network
interface

utilization receive throughput/max bandwidth, transmit throughput/
max bandwidth

Storage
device I/O

utilization device busy percent

Storage
device I/O

saturation wait-queue length

Storage
device I/O

errors device errors (“soft,” “hard”)

2.5 Methodology 47

Some examples of harder combinations are provided in Table 2.6.

Some of these may not be available from standard operating system tools and
may require the use of dynamic tracing or the CPU performance counter facility.

Appendix A is an example USE method checklist for Linux systems, iterating
over all combinations for hardware resources with the Linux observability toolset.
Appendix B provides the same for Solaris-based systems. Both appendixes also
include some software resources.

Software Resources

Some software resources can be similarly examined. This usually applies to
smaller components of software, not entire applications, for example:

� Mutex locks: Utilization may be defined as the time the lock was held, satu-
ration by those threads queued waiting on the lock.

� Thread pools: Utilization may be defined as the time threads were busy pro-
cessing work, saturation by the number of requests waiting to be serviced by
the thread pool.

Table 2.6 Example USE Method Advanced Metrics

Resource Type Metric

CPU errors for example, correctable CPU cache error-correcting
code (ECC) events or faulted CPUs (if the OS + HW sup-
ports that)

Memory errors for example, failed malloc()s (although this is usually
due to virtual memory exhaustion, not physical)

Network saturation saturation-related network interface or OS errors, e.g.,
Linux “overruns” or Solaris “nocanputs”

Storage controller utilization depends on the controller; it may have a maximum IOPS
or throughput that can be checked against current
activity

CPU interconnect utilization per-port throughput/maximum bandwidth (CPU
performance counters)

Memory
interconnect

saturation memory stall cycles, high cycles per instruction (CPU
performance counters)

I/O interconnect utilization bus throughput/maximum bandwidth (performance
counters may exist on your HW, e.g., Intel “uncore”
events)

48 Chapter 2 � Methodology

� Process/thread capacity: The system may have a limited number of pro-
cesses or threads, whose current usage may be defined as utilization; waiting
on allocation may be saturation; and errors are when the allocation failed
(e.g., “cannot fork”).

� File descriptor capacity: similar to process/thread capacity, but for file
descriptors.

If the metrics work well in your case, use them; otherwise, alternative methodolo-
gies such as latency analysis can be applied.

Suggested Interpretations

Here are some general suggestions for interpreting the metric types:

� Utilization: Utilization at 100% is usually a sign of a bottleneck (check satura-
tion and its effect to confirm). Utilization beyond 60% can be a problem for a
couple of reasons: depending on the interval, it can hide short bursts of 100%
utilization. Also, some resources such as hard disks (but not CPUs) usually
cannot be interrupted during an operation, even for higher-priority work. As
utilization increases, queueing delays become more frequent and noticeable.
See Section 2.6.5, Queueing Theory, for more about 60% utilization.

� Saturation: Any degree of saturation can be a problem (nonzero). It may be
measured as the length of a wait queue, or as time spent waiting on the queue.

� Errors: Nonzero error counters are worth investigating, especially if they are
increasing while performance is poor.

It’s easy to interpret the negative cases: low utilization, no saturation, no errors.
This is more useful than it sounds—narrowing down the scope of an investigation
can help you focus quickly on the problem area, having identified that it is likely
not a resource problem. This is the process of elimination.

Cloud Computing

In a cloud computing environment, software resource controls may be in place to
limit or throttle tenants who are sharing one system. At Joyent we primarily use
OS virtualization (SmartOS Zones), which imposes memory limits, CPU limits,
and storage I/O throttling. Each of these resource limits can be examined with the
USE method, similarly to examining the physical resources.

For example, “memory capacity utilization” can be the tenant’s memory usage
versus its memory cap. “Memory capacity saturation” can be seen by anonymous
paging activity, even though the traditional page scanner may be idle.

2.5 Methodology 49

2.5.10 Workload Characterization

Workload characterization is a simple and effective method for identifying a class
of issues: those due to the load applied. It focuses on the input to the system,
rather than the resulting performance. Your system may have no architectural or
configuration issues present, but it is under more load than it can reasonably
handle.

Workloads can be characterized by answering the following questions:

� Who is causing the load? Process ID, user ID, remote IP address?

� Why is the load being called? Code path, stack trace?

� What are the load characteristics? IOPS, throughput, direction (read/write),
type? Include variance (standard deviation) where appropriate.

� How is the load changing over time? Is there a daily pattern?

It can be useful to check all of these, even when you have strong expectations
about what the answers will be, because you may be surprised.

Consider this scenario: You have a performance issue with a database, whose
clients are a pool of web servers. Should you check the IP addresses of who is using
the database? You already expect them to be the web servers, as per the configura-
tion. You check anyway and discover that the entire Internet appears to be throw-
ing load at the databases, destroying their performance. You are actually under a
denial-of-service (DoS) attack!

The best performance wins are the result of eliminating unnecessary work.
Sometimes unnecessary work is caused by applications malfunctioning, for exam-
ple, a thread stuck in a loop creating unnecessary CPU work. It can also be caused
by bad configurations—for example, system-wide backups that run during the
day—or even a DoS attack as described previously. Characterizing the workload
can identify these issues, and with maintenance or reconfiguration they may be
eliminated.

If the identified workload cannot be eliminated, another approach may be to use
system resource controls to throttle it. For example, a system backup task may be
interfering with a production database by consuming CPU resources to compress
the backup, and then network resources to transfer it. This CPU and network
usage may be throttled using resource controls (if the system supports them), so
that the backup still occurs (more slowly) without hurting the database.

Apart from identifying issues, workload characterization can also be input for
the design of simulation benchmarks. If the workload measurement is an average,
ideally you will also collect details of the distribution and variation. This can be
important for simulating the variety of workloads expected, rather than testing

50 Chapter 2 � Methodology

only an average workload. See Section 2.8, Statistics, for more about averages and
variation (standard deviation), and Chapter 12, Benchmarking.

Analysis of the workload also helps separate problems of load from problems of
architecture, by identifying the former. Load versus architecture was introduced in
Section 2.3, Concepts.

The specific tools and metrics for performing workload characterization depend
on the target. Some applications record detailed logs of client activity, which can be
the source for statistical analysis. They may also already provide daily or monthly
reports of client usage, which can be mined for details.

2.5.11 Drill-Down Analysis

Drill-down analysis starts with examining an issue at a high level, then narrow-
ing the focus based on the previous findings, discarding areas that seem uninter-
esting, and digging deeper into those areas that are. The process can involve
digging down through deeper layers of the software stack, to hardware if neces-
sary, to find the root cause of the issue.

A drill-down analysis methodology for system performance is provided in
Solaris Performance and Tools [McDougall 06b] and has three stages:

1. Monitoring: This is used for continually recording high-level statistics over
time, and identifying or alerting if a problem may be present.

2. Identification: Given a suspected problem, this narrows the investigation to
particular resources or areas of interest, identifying possible bottlenecks.

3. Analysis: Further examination of particular system areas is done to attempt
to root-cause and quantify the issue.

Monitoring may be performed company-wide and the results of all servers or cloud
instances aggregated. A traditional means to do this is the Simple Network Monitor-
ing Protocol (SNMP), which can be used to monitor any network-attached device that
supports it. The resulting data may reveal long-term patterns that may be missed
when using command-line tools over short durations. Many monitoring solutions pro-
vide alerts if a problem is suspected, prompting analysis to move to the next stage.

Identification is performed interactively on the server, using standard observ-
ability tools to check system components: CPUs, disks, memory, and so on. It is
usually done via a command-line session using tools such as vmstat(1),
iostat(1), and mpstat(1). Some newer tools allow real-time interactive perfor-
mance analysis via a GUI (for example, Oracle ZFS Storage Appliance Analytics).

Analysis tools include those based on tracing or profiling, for deeper inspection
of suspect areas. Such deeper analysis may involve the creation of custom tools

2.5 Methodology 51

and inspection of source code (if available). Here is where most of the drilling takes
place, peeling away layers of the software stack as necessary to find the root cause.
Tools for performing this include strace(1), truss(1), perf, and DTrace.

Five Whys

An additional methodology you can use during the analysis stage is the Five Whys
technique: ask yourself “why?” then answer the question, and repeat up to five
times in total (or more). Here is an example procedure:

1. A database has begun to perform poorly for many queries. Why?

2. It is delayed by disk I/O due to memory paging. Why?

3. Database memory usage has grown too large. Why?

4. The allocator is consuming more memory than it should. Why?

5. The allocator has a memory fragmentation issue.

This is a real-world example that very unexpectedly led to a fix in a system mem-
ory allocation library. It was the persistent questioning and drilling down to the
core issue that led to the fix.

2.5.12 Latency Analysis

Latency analysis examines the time taken to complete an operation, then breaks it
into smaller components, continuing to subdivide the components with the highest
latency so that the root cause can be identified and quantified. Similarly to drill-
down analysis, latency analysis may drill down through layers of the software
stack to find the origin of latency issues.

Analysis can begin with the workload applied, examining how that workload
was processed in the application, then drilling down into the operating system
libraries, system calls, the kernel, and device drivers.

For example, analysis of MySQL query latency could involve answering the fol-
lowing questions (example answers are given here):

1. Is there a query latency issue? (yes)

2. Is the query time largely spent on-CPU or waiting off-CPU? (off-CPU)

3. What is the off-CPU time spent waiting for? (file system I/O)

4. Is the file system I/O time due to disk I/O or lock contention? (disk I/O)

5. Is the disk I/O time likely due to random seeks or data transfer time? (trans-
fer time)

52 Chapter 2 � Methodology

For this example, each step of the process posed a question that divided the latency
into two parts, and then proceeded to analyze the larger part: a binary search of
latency, if you will. The process is pictured in Figure 2.14.

As the slower of A or B is identified, it is then further split into A or B, ana-
lyzed, and so on.

Latency analysis of database queries is the target of method R.

2.5.13 Method R

Method R is a performance analysis methodology developed for Oracle databases
that focuses on finding the origin of latency, based on Oracle trace events [Millsap
03]. It is described as “a response time-based performance improvement method
that yields maximum economic value to your business” and focuses on identifying
and quantifying where time is spent during queries. While this is used for the
study of databases, its approach could be applied to any system and is worth men-
tioning here as an avenue of possible study.

Figure 2.14 Latency analysis procedure

2.5 Methodology 53

2.5.14 Event Tracing

Systems operate by processing discrete events. These include CPU instructions,
disk I/O and other disk commands, network packets, system calls, library calls,
application transactions, database queries, and so on. Performance analysis usu-
ally studies summaries of these events, such as operations per second, bytes per
second, or average latency. Sometimes important detail is lost in the summary, and
the events are best understood when inspected individually.

Network troubleshooting often requires packet-by-packet inspection, with tools
such as tcpdump(1). This example summarizes packets as single lines of text:

Varying amounts of information can be printed by tcpdump(1) as needed (see
Chapter 10, Network).

Storage device I/O at the block device layer can be traced using iosnoop(1M)
(DTrace-based; see Chapter 9, Disks):

tcpdump -ni eth4 -ttt
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth4, link-type EN10MB (Ethernet), capture size 65535 bytes
00:00:00.000000 IP 10.2.203.2.22 > 10.2.0.2.33986: Flags [P.], seq
1182098726:1182098918, ack 4234203806, win 132, options [nop,nop,TS val 1751498743
ecr 1751639660], length 192
00:00:00.000392 IP 10.2.0.2.33986 > 10.2.203.2.22: Flags [.], ack 192, win 501,
options [nop,nop,TS val 1751639684 ecr 1751498743], length 0
00:00:00.009561 IP 10.2.203.2.22 > 10.2.0.2.33986: Flags [P.], seq 192:560, ack 1,
win 132, options [nop,nop,TS val 1751498744 ecr 1751639684], length 368
00:00:00.000351 IP 10.2.0.2.33986 > 10.2.203.2.22: Flags [.], ack 560, win 501,
options [nop,nop,TS val 1751639685 ecr 1751498744], length 0
00:00:00.010489 IP 10.2.203.2.22 > 10.2.0.2.33986: Flags [P.], seq 560:896, ack 1,
win 132, options [nop,nop,TS val 1751498745 ecr 1751639685], length 336
00:00:00.000369 IP 10.2.0.2.33986 > 10.2.203.2.22: Flags [.], ack 896, win 501,
options [nop,nop,TS val 1751639686 ecr 1751498745], length 0

./iosnoop -Dots
STIME(us) TIME(us) DELTA DTIME UID PID D BLOCK SIZE COMM ...
722594048435 722594048553 117 130 0 485 W 95742054 8192 zpool-...
722594048879 722594048983 104 109 0 485 W 95742106 8192 zpool-...
722594049335 722594049552 217 229 0 485 W 95742154 8192 zpool-...
722594049900 722594050029 128 137 0 485 W 95742178 8192 zpool-...
722594050336 722594050457 121 127 0 485 W 95742202 8192 zpool-...
722594050760 722594050864 103 110 0 485 W 95742226 8192 zpool-...
722594051190 722594051262 72 80 0 485 W 95742250 8192 zpool-...
722594051613 722594051678 65 72 0 485 W 95742318 8192 zpool-...
722594051977 722594052067 90 97 0 485 W 95742342 8192 zpool-...
722594052417 722594052515 98 105 0 485 W 95742366 8192 zpool-...
722594052840 722594052902 62 68 0 485 W 95742422 8192 zpool-...
722594053220 722594053290 69 77 0 485 W 95742446 8192 zpool-...

54 Chapter 2 � Methodology

Multiple timestamps are printed here, including the start time (STIME), end time
(TIME), delta time between request and completion (DELTA), and estimated time to
service this I/O (DTIME).

The system call layer is another common location for tracing, with tools includ-
ing strace(1) on Linux and truss(1) on Solaris-based systems (see Chapter 5,
Applications). These tools also have options to print timestamps.

When performing event tracing, look for the following information:

� Input: all attributes of an event request: type, direction, size, and so on

� Times: start time, end time, latency (difference)

� Result: error status, result of event (size)

Sometimes performance issues can be understood by examining attributes of the
event, for either the request or the result. Event timestamps are particularly use-
ful for analyzing latency and can often be included by using event tracing tools.
The preceding tcpdump(1) output included delta timestamps, measuring the time
between packets, using -ttt.

The study of prior events provides more information. A particularly bad latency
event, known as a latency outlier, may be caused by previous events rather than
the event itself. For example, the event at the tail of a queue may have high
latency but is caused by the previous queued events, not its own properties. This
case can be identified from the traced events.

2.5.15 Baseline Statistics

Comparing current performance metrics with past values is often enlightening.
Changes in load or resource usage can be identified, and problems traced back to
when they first began. Some observability tools (those based on kernel counters) can
show the summary-since-boot, for comparison with current activity. This is coarse,
but better than nothing. Another approach is the collection of baseline statistics.

This can involve executing a wide range of system observability tools and log-
ging the output for future reference. Unlike the summary-since-boot, which can
hide variation, the baseline can include per-second statistics so that variation can
be seen.

A baseline may be collected before and after system or application changes, so
that performance changes can be analyzed. It may also be collected irregularly and
included with site documentation, so that administrators have a reference for what
is “normal.” To perform this task at regular intervals each day is an activity that is
served by performance monitoring (see Section 2.9, Monitoring).

2.5 Methodology 55

2.5.16 Static Performance Tuning

Static performance tuning focuses on issues of the configured architecture. Other
methodologies focus on the performance of the applied load: the dynamic perfor-
mance [Elling 00]. Static performance analysis can be performed when the system
is at rest and no load is applied.

For static performance analysis and tuning, step through all the components of
the system and check the following:

� Does the component make sense?

� Does the configuration make sense for the intended workload?

� Was the component autoconfigured in the best state for the intended
workload?

� Has the component experienced an error and is it in a degraded state?

Here are some examples of issues that may be found using static performance
tuning:

� Network interface negotiation: selecting 100 Mbits/s instead of 1 Gbit/s

� Failed disk in a RAID pool

� Older version of the operating system, applications, or firmware used

� Mismatched file system record size compared to workload I/O size

� Server accidentally configured as a router

� Server configured to use resources, such as authentication, from a remote
data center instead of locally

Fortunately, these types of issues are easy to check for. The hard part is remember-
ing to do it!

2.5.17 Cache Tuning

Applications and operating systems may employ multiple caches for improving I/O
performance, from the application down to the disks. See Section 3.2.11, Caching,
in Chapter 3, Operating Systems, for a full list. Here is a general strategy for tun-
ing each cache level:

1. Aim to cache as high in the stack as possible, closer to where the work is per-
formed, reducing the operational overhead of cache hits.

56 Chapter 2 � Methodology

2. Check that the cache is enabled and working.

3. Check the cache hit/miss ratios and miss rate.

4. If the cache size is dynamic, check its current size.

5. Tune the cache for the workload. This task depends on available cache tun-
able parameters.

6. Tune the workload for the cache. Doing this includes reducing unnecessary
consumers of the cache, which frees up more space for the target workload.

Look out for double caching—for example, two different caches that consume
main memory and cache the same data twice.

Also consider the overall performance gain of each level of cache tuning. Tuning
the CPU Level 1 cache may save nanoseconds, as cache misses may then be served
by Level 2. But improving CPU Level 3 cache may avoid much slower DRAM
accesses and result in a greater overall performance gain. (These CPU caches are
described in Chapter 6, CPUs.)

2.5.18 Micro-Benchmarking

Micro-benchmarking tests the performance of simple and artificial workloads. It
may be performed to support the scientific method, putting hypotheses and predic-
tions to the test, or it may be part of a capacity planning exercise.

This differs from industry benchmarking, which typically aims to test a real-
world and natural workload. Such benchmarking is performed by running work-
load simulations and can become complex to conduct and understand.

Micro-benchmarking is less complicated to conduct and understand, as fewer
factors are in play. It can be performed by a micro-benchmark tool that applies the
workload and measures the performance. Or a load generator tool can be used that
just applies the workload, leaving measurements of performance to the standard
system tools. Either approach is fine, but it can be safest to use a micro-benchmark
tool and to double-check performance using standard system tools.

Some example targets of micro-benchmarks, including a second dimension for
the tests, are

� Syscall time: for fork(), exec(), open(), read(), close()

� File system reads: from a cached file, varying the read size from 1 byte to
1 Mbyte

� Network throughput: transferring data between TCP endpoints, for vary-
ing socket buffer sizes

2.6 Modeling 57

Micro-benchmarking typically conducts the target operation as quickly as possi-
ble and measures the time for a large number of these operations to complete. The
average time can then be calculated (average time = runtime/operation count).

Later chapters include specific micro-benchmarking methodologies, listing the
targets and attributes to test. The topic of benchmarking is covered in more detail
in Chapter 12, Benchmarking.

2.6 Modeling

Analytical modeling of a system can be used for various purposes, in particular
scalability analysis: studying how performance scales as load or resources scale.
Resources may be hardware, such as CPU cores, or software, such as processes or
threads.

Analytical modeling can be considered as the third type of performance evalua-
tion activity, along with observability of a production system (“measurement”) and
experimental testing (“simulation”) [Jain 91]. Performance is best understood
when at least two of these activities are performed: analytical modeling and simu-
lation, or simulation and measurement.

If the analysis is for an existing system, you can begin with measurement: char-
acterizing the load and resulting performance. Experimental analysis, by testing a
workload simulation, can be used if the system does not yet have production load,
or to test workloads beyond what is seen in production. Analytical modeling can be
used to predict performance and can be based on the results of measurement or
simulation.

Scalability analysis may reveal that performance stops scaling linearly at a par-
ticular point, called the knee point, due to a resource constraint. Finding whether
these points exist, and where, can direct an investigation to performance issues
that inhibit scalability, so that they can be fixed before they are encountered in
production.

See Section 2.5.10, Workload Characterization, and Section 2.5.18, Micro-
Benchmarking, for more on those steps.

2.6.1 Enterprise versus Cloud

While modeling allows us to simulate large-scale enterprise systems without the
expense of owning one, the performance of large-scale environments is often com-
plex and difficult to model accurately.

With cloud computing, environments of any scale can be rented for short dura-
tions—the length of a benchmark test. Instead of creating a mathematical model

58 Chapter 2 � Methodology

from which to predict performance, the workload can be characterized, simulated,
and then tested on clouds of different scales. Some of the findings, such as knee
points, may be the same but will now be based on measured data rather than theo-
retical models, and by testing a real environment you may discover limiters that
were not included in your model.

2.6.2 Visual Identification

When enough results can be collected experimentally, plotting them as delivered
performance versus a scaling parameter may reveal a pattern.

Figure 2.15 shows throughput of an application as the number of threads is
scaled. There appears to be a knee point around eight threads, where the slope
changes. This can now be investigated, such as by looking at the application and
system configuration for any setting around the value of eight.

Figure 2.15 Scalability test results

2.6 Modeling 59

In this case, the system was an eight-core system, each core having two hard-
ware threads. To further confirm that this is related to the CPU core count, the
CPU effects at fewer than and more than eight threads can be investigated and
compared (e.g., CPIs; see Chapter 6, CPUs). Or, this may be investigated experi-
mentally by repeating the scaling test on a system with a different core count and
confirming that the knee point moves as expected.

There are a number of scalability profiles to look for which may be identified
visually, without using a formal model. These are shown in Figure 2.16.

For each of these, the x axis is the scalability dimension, and the y axis is the
resulting performance (throughput, transactions per second, etc.). The patterns are

� Linear scalability: Performance increases proportionally as the resource is
scaled. This may not continue forever and may instead be the early stages of
another scalability pattern.

� Contention: Some components of the architecture are shared and can be
used only serially, and contention for these shared resources begins to reduce
the effectiveness of scaling.

� Coherence: The tax to maintain data coherency including propagation of
changes begins to outweigh the benefits of scaling.

Figure 2.16 Scalability profiles

60 Chapter 2 � Methodology

� Knee point: A factor is encountered at a scalability point that changes the
scalability profile.

� Scalability ceiling: A hard limit is reached. This may be a device bottle-
neck, such as a bus or interconnect reaching maximum throughput, or a
software-imposed limit (system resource control).

While visual identification can be easy and effective, you can learn more about
system scalability by using a mathematical model. The model may deviate from
the data in an unexpected way, which can be useful to investigate: either there is a
problem with the model, and hence with your understanding of the system, or the
problem is in the real scalability of the system. The next sections introduce
Amdahl’s Law of Scalability, the Universal Scalability Law, and queueing theory.

2.6.3 Amdahl’s Law of Scalability

Named after computer architect Gene Amdahl [Amdahl 67], this law models sys-
tem scalability, accounting for serial components of workloads that do not scale in
parallel. It can be used to study the scaling of CPUs, threads, workloads, and more.

Amdahl’s Law of Scalability was pictured in the earlier scalability profiles as
contention, which describes contention for the serial resource or workload compo-
nent. It can be defined as [Gunther 97]

C(N) = N/1 + (N - 1)

The relative capacity is C(N), and N is the scaling dimension, such as the CPU
count or user load. The parameter (where 0 <= <= 1) represents the degree of
seriality and is how this deviates from linear scalability.

Amdahl’s Law of Scalability can be applied by taking the following steps:

1. Collect data for a range of N, either by observation of an existing system or
experimentally using micro-benchmarking or load generators.

2. Perform regression analysis to determine the Amdahl parameter (); this
may be done using statistical software, such as gnuplot or R.

3. Present the results for analysis. The collected data points can be plotted
along with the model function to predict scaling and reveal differences
between the data and the model. This may also be done using gnuplot or R.

The following is example gnuplot code for Amdahl’s Law of Scalability regres-
sion analysis, to provide a sense of how this step can be performed:

2.6 Modeling 61

A similar amount of code is required to process this in R, involving the nls()
function for nonlinear least squares fitting to calculate the coefficients, which are
then used during plotting. See the Performance Scalability Models toolkit in the
references at the end of the chapter for the full code in both gnuplot and R [2].

An example Amdahl’s Law of Scalability function is shown in the next section.

2.6.4 Universal Scalability Law

The Universal Scalability Law (USL), previously called super-serial model [Gunther
97], was developed by Dr. Neil Gunther to include a parameter for coherency delay.
This was pictured earlier as the coherence scalability profile, which includes the
effects of contention.

USL can be defined as

C(N) = N/1 + (N - 1) + N(N - 1)

C(N), N, and are as with Amdahl’s Law of Scalability. is the coherence parame-
ter. When == 0, this becomes Amdahl’s Law of Scalability.

Examples of both USL and Amdahl’s Law of Scalability analysis are graphed in
Figure 2.17.

The input dataset has a high degree of variance, making it difficult to visually
determine the scalability profile. The first ten data points, drawn as circles, were
provided to the models. An additional ten data points are also plotted, drawn as
crosses, which check the model prediction against reality.

For more on USL analysis, see [Gunther 97] and [Gunther 07].

2.6.5 Queueing Theory

Queueing theory is the mathematical study of systems with queues, providing
ways to analyze their queue length, wait time (latency), and utilization (time-
based). Many components in computing, both software and hardware, can be mod-
eled as queueing systems. The modeling of multiple queueing systems is called
queueing networks.

inputN = 10 # rows to include as model input
alpha = 0.1 # starting point (seed)
amdahl(N) = N1 * N/(1 + alpha * (N - 1))
regression analysis (non-linear least squares fitting)
fit amdahl(x) filename every ::1::inputN using 1:2 via alpha

62 Chapter 2 � Methodology

This section summarizes the role of queueing theory and provides an example,
to help you understand its role. It is a large field of study that is covered in detail
in other texts ([Jain 91], [Gunther 97]), should the need arise.

Queueing theory builds upon various areas of mathematics and statistics,
including probability distributions, stochastic processes, Erlang’s C formula (Agner
Krarup Erlang invented queueing theory), and Little’s Law. Little’s Law can be
expressed as

L = W

which determines the average number of requests in a system, L, as the average
arrival rate, , multiplied by average service time, W.

Queueing systems can be used to answer a variety of questions, including the
following:

� What will the mean response time be if the load doubles?

� What will be the effect on mean response time after adding an additional
processor?

� Can the system provide a 90th percentile response time of under 100 ms
when the load doubles?

Figure 2.17 Scalability models

2.6 Modeling 63

Apart from response time, other factors, including utilization, queue lengths, and
number of resident jobs, can be studied.

A simple queueing system model is shown in Figure 2.18.

This has a single service center that processes jobs from the queue. Queueing
systems can have multiple service centers that process work in parallel. In queue-
ing theory, the service centers are often called servers.

Queueing systems can be categorized by three factors:

� Arrival process: This describes the inter-arrival time for requests to the
queueing system, which may be random, fixed-time, or a process such as
Poisson (which uses an exponential distribution for arrival time).

� Service time distribution: This describes the service times for the service
center. They may be fixed (deterministic), exponential, or of another distribu-
tion type.

� Number of service centers: one or many.

These factors can be written in Kendall’s notation.

Kendall’s Notation

This notation assigns codes for each attribute. It has the form

A/S/m

These are the arrival process (A), service time distribution (S), and number of ser-
vice centers (m). There is also an extended form of Kendall’s notation that includes
more factors: number of buffers in the system, population size, and service discipline.

Figure 2.18 Queueing model

64 Chapter 2 � Methodology

Examples of commonly studied queueing systems are

� M/M/1: Markovian arrivals (exponentially distributed arrival times),
Markovian service times (exponential distribution), one service center

� M/M/c: same as M/M/1, but multiserver

� M/G/1: Markovian arrivals, general distribution of service times (any), one
service center

� M/D/1: Markovian arrivals, deterministic service times (fixed), one service
center

M/G/1 is commonly applied to study the performance of rotational hard disks.

M/D/1 and 60% Utilization

As a simple example of queueing theory, consider a disk that responds to a work-
load deterministically (this is a simplification). The model is M/D/1.

The question posed is: How does the disk’s response time vary as its utilization
increases?

Queueing theory allows the response time for M/D/1 to be calculated:

r = s(2 -)/2(1 -)

where the response time, r, is defined in terms of the service time, s, and the utili-
zation, .

For a service time of 1 ms, and utilizations from 0 to 100%, this relationship has
been graphed in Figure 2.19.

Beyond 60% utilization, the average response time doubles. By 80%, it has tri-
pled. As disk I/O latency is often the bounding resource for an application, increas-
ing the average latency by double or higher can have a significant negative effect
on application performance. This is why disk utilization can become a problem well
before it reaches 100%, as it is a queueing system where requests (typically) can-
not be interrupted and must wait their turn. This is different from CPUs, for
example, where higher-priority work can preempt.

This graph can visually answer an earlier question—What will the mean
response time be if the load doubles?—when utilization is relative to load.

This model is simple, and in some ways it shows the best case. Variations in ser-
vice time can drive the mean response time higher (e.g., using M/G/1 or M/M/1).
There is also a distribution of response times, not pictured in Figure 2.19, such
that the 90th and 99th percentiles degrade much faster beyond 60% utilization.

2.7 Capacity Planning 65

As with the earlier gnuplot example for Amdahl’s Law of Scalability, it may be
illustrative to show some actual code, for a sense of what may be involved. This
time the R statistics software was used [3]:

The earlier M/D/1 equation has been passed to the plot() function. Much of this
code specifies limits to the graph, line properties, and axis labels.

2.7 Capacity Planning

Capacity planning examines how well the system will handle load, and how it will
scale as load scales. It can be performed in a number of ways, including studying

Figure 2.19 M/D/1 mean response time versus utilization

svc_ms <- 1 # average disk I/O service time, ms
util_min <- 0 # range to plot
util_max <- 100 # "
ms_min <- 0 # "
ms_max <- 10 # "
Plot mean response time vs utilization (M/D/1)
plot(x <- c(util_min:util_max), svc_ms * (2 - x/100) / (2 * (1 - x/100)),
 type="l", lty=1, lwd=1,
 xlim=c(util_min, util_max), ylim=c(ms_min, ms_max),
 xlab="Utilization %", ylab="Mean Response Time (ms)")

66 Chapter 2 � Methodology

resource limits and factor analysis, which are described here, and modeling, as
introduced previously. This section also includes solutions for scaling, including
load balancers and sharding. For more on this topic, see The Art of Capacity Plan-
ning [Allspaw 08].

For capacity planning of a particular application, it helps to have a quantified
performance objective to plan for. Determining this is discussed early on in Chap-
ter 5, Applications.

2.7.1 Resource Limits

This approach is a search for the resource that will become the bottleneck under
load. The steps are:

1. Measure the rate of server requests, and monitor this rate over time.

2. Measure hardware and software resource usage. Monitor this rate over time.

3. Express server requests in terms of resources used.

4. Extrapolate server requests to known (or experimentally determined) limits
for each resource.

Begin by identifying the role of the server and the type of requests it serves. For
example, a web server serves HTTP requests, a Network File System (NFS) server
serves NFS protocol requests (operations), and a database server serves query
requests (or command requests, for which queries are a subset).

The next step is to determine the system resource consumption per request. For
an existing system, the current rate of requests along with resource utilization can
be measured. Extrapolation can then be used to see which resource will hit 100%
utilization first, and what the rate of requests will be.

For a future system, micro-benchmarking or load generation tools can be used to
simulate the intended requests in a test environment, while measuring resource
utilization. Given sufficient client load, you may be able to find the limit experi-
mentally.

The resources to monitor include

� Hardware: CPU utilization, memory usage, disk IOPS, disk throughput,
disk capacity (volume used), network throughput

� Software: virtual memory usage, processes/tasks/threads, file descriptors

Let’s say you’re looking at an existing system currently performing 1,000 requests/s.
The busiest resources are the 16 CPUs, which are averaging 40% utilization; you

2.7 Capacity Planning 67

predict that they will become the bottleneck for this workload once they become 100%
utilized. The question becomes: What will the requests-per-second rate be at that
point?

CPU% per request = total CPU%/requests = 16 x 40%/1,000 = 0.64% CPU per request

max requests/s = 100% x 16 CPUs/CPU% per request = 1,600 / 0.64 = 2,500 requests/s

The prediction is 2,500 requests/s, at which point the CPUs will be 100% busy.
This is a rough best-case estimate of capacity, as some other limiting factor may be
encountered before the requests reach that rate.

This exercise used only one data point: application throughput (requests per sec-
ond) of 1,000 versus device utilization of 40%. If monitoring over time is enabled,
multiple data points at different throughput and utilization rates can be included, to
improve the accuracy of the estimation. Figure 2.20 illustrates a visual method for
processing these and extrapolating the maximum application throughput.

Is 2,500 requests/s enough? Answering this question requires understanding
what the peak workload will be, which shows up in daily access patterns. For an
existing system that you have monitored over time, you may already have an idea
of what the peak will look like.

Consider a web server that is processing 100,000 website hits per day. This may
sound like many, but it is averaging only about 1 request/s—not much. However, it
may be that most of the 100,000 website hits occur in the seconds after new con-
tent is posted, so the peak is significant.

Figure 2.20 Resource limit analysis

68 Chapter 2 � Methodology

2.7.2 Factor Analysis

When purchasing and deploying new systems, there are often many factors that
can be changed to achieve the desired performance. These may include varying the
number of disks and CPUs, the amount of RAM, the use of flash devices, RAID
configurations, file system settings, and so forth. The task is usually to achieve the
performance required for the minimum cost.

Testing all combinations would determine which has the best price/performance
ratio; however, this can quickly get out of hand: eight binary factors would require
256 tests.

A solution is to test a limited set of combinations. Here is an approach based on
knowing the maximum system configuration:

1. Test performance with all factors configured to maximum.

2. Change factors one by one, testing performance (it should drop for each).

3. Attribute a percentage performance drop to each factor, based on measure-
ments, along with the cost savings.

4. Starting with maximum performance (and cost), choose factors to save cost,
while maintaining the required requests per second based on their combined
performance drop.

5. Retest the calculated configuration for confirmation of delivered performance.

For an eight-factor system, this approach may require only ten tests.
As an example, consider capacity planning for a new storage system, with a

requirement of 1 Gbyte/s read throughput and a 200 Gbyte working set size. The
maximum configuration achieves 2 Gbytes/s and includes four processors, 256
Gbytes of DRAM, 2 x dual-port 10 GbE network cards, jumbo frames, and no com-
pression or encryption enabled (which is costly to activate). Switching to two pro-
cessors reduces performance by 30%, one network card by 25%, non-jumbo by 35%,
encryption by 10%, compression by 40%, and less DRAM by 90% as the workload is
no longer expected to fully cache. Given these performance drops and their known
savings, the best price/performance system that meets the requirements can now
be calculated; it might be a two-processor system with one network card, which
meets the throughput needed: 2 × (1 - 0.30) × (1 - 0.25) = 1.04 Gbytes/s estimated. It
would then be wise to test this configuration, in case these components perform
differently from their expected performance when used together.

2.8 Statistics 69

2.7.3 Scaling Solutions

Meeting higher performance demands has often meant larger systems, a strategy
called vertical scaling. Spreading load across numerous systems, usually fronted
by systems called load balancers that make them all appear as one, is called hori-
zontal scaling.

Cloud computing takes horizontal scaling further, by building upon smaller vir-
tualized systems rather than entire systems. This provides finer granularity when
purchasing compute to process the required load and allows scaling in small, effi-
cient increments. Since no initial large purchase is required, as with enterprise
mainframes (including a support contract commitment), there is less need for rig-
orous capacity planning in the early stages of a project.

A common scaling strategy for databases on the cloud is sharding, where data is
split into logical components, each managed by its own database (or redundant
group of databases). For example, a customer database may be split into parts by
dividing the customer names into alphabetical ranges.

Scalability design depends very much on the workloads you need to handle and
the applications you wish to use. For more on this topic, see Scalable Internet
Architectures [Schlossnagle 06].

2.8 Statistics

It’s important to have a good understanding of how to use statistics and what their
limitations are. This section discusses quantifying performance issues using statis-
tics (metrics) and statistical types including averages, standard deviations, and
percentiles.

2.8.1 Quantifying Performance

Quantifying issues and the potential performance improvement for fixing them
allows them to be compared and prioritized. This task may be performed using
observation or experiments.

Observation-Based

To quantify performance issues using observation:

1. Choose a reliable metric.

2. Estimate the performance gain from resolving the issue.

70 Chapter 2 � Methodology

For example:

� Observed: Application request takes 10 ms.

� Observed: Of that, 9 ms is disk I/O.

� Suggestion: Configure the application to cache I/O in memory, with expected
DRAM latency around ~10 μs.

� Estimated gain: 10 ms 1.01 ms (10 ms - 9 ms + 10 μs) =~ 9x gain.

As introduced in Section 2.3, Concepts, latency (time) is well suited for this, as it
can be directly compared between components, which makes calculations like this
possible.

When using latency, ensure that it is measured as a synchronous component of
the application request. Some events occur asynchronously, such as background
disk I/O (write flush to disk), and do not directly affect application performance.

Experimentation-Based

To quantify performance issues experimentally:

1. Apply the fix.

2. Quantify before versus after using a reliable metric.

For example:

� Observed: Application transaction latency averages 10 ms.

� Experiment: Increase the application thread count to allow more concurrency
instead of queueing.

� Observed: Application transaction latency averages 2 ms.

� Gain: 10 ms 2 ms = 5x.

This approach may not be appropriate if the fix is expensive to attempt in the pro-
duction environment!

2.8.2 Averages

An average represents a dataset by a single value: an index of central tendency.
The most common type of average used is an arithmetic mean (or mean for short),
which is a sum of values divided by the count of values. Other types include the
geometric mean and harmonic mean.

2.8 Statistics 71

Geometric Mean

The geometric mean is the nth root (where n is the count of values) of multiplied
values. This is described in [Jain 91], which includes an example of using it for net-
work performance analysis: if the performance improvement of each layer of the
kernel network stack is measured individually, what is the average performance
improvement? Since the layers work together on the same packet, performance
improvements have a “multiplicative” effect, which can be best summarized by the
geometric mean.

Harmonic Mean

The harmonic mean is the count of values divided by the sum of their reciprocals.
It can be more appropriate for taking the average of rates, for example, calculat-
ing the average transfer rate for 800 Mbytes of data, when the first 100 Mbytes
will be sent at 50 Mbytes/s and the remaining 700 Mbytes at a throttled rate of
10 Mbytes/s. The answer, using the harmonic mean, is 800/(100/50 + 700/10) =
11.1 Mbytes/s.

Averages over Time

With performance, many metrics we study are averages over time. A CPU is never
“at 50% utilization”; it has been utilized during 50% of some interval, which could
be a second, minute, or hour. It is important to check for intervals whenever con-
sidering averages.

For example, I had an issue where a customer had performance problems
caused by CPU saturation (scheduler latency) even though their monitoring tools
showed CPU utilization was never higher than 80%. The monitoring tool was
reporting 5-minute averages, which masked periods in which CPU utilization hit
100% for seconds at a time.

Decayed Average

A decayed average is sometimes used in systems performance. Examples include
the system “load averages” reported by uptime(1) and per-process CPU utiliza-
tion on Solaris-based systems.

A decayed average is still measured over a time interval, but recent time is
weighted more heavily than time further past. This reduces (dampens) short-term
fluctuations in the average.

See Load Averages in Section 6.6, Analysis, of Chapter 6, CPUs, for more on
this.

72 Chapter 2 � Methodology

2.8.3 Standard Deviations, Percentiles, Median

Standard deviations and percentiles (e.g., 99th percentile) are statistical tech-
niques to provide information on the distribution of data. The standard deviation
is a measure of variance, with larger values indicating greater variance from the
average (mean). The 99th percentile shows the point in the distribution that
includes 99% of the values. Figure 2.21 pictures these for a normal distribution,
along with the minimum and maximum.

Percentiles such as 99th, 90th, 95th, and 99.9th are used in performance moni-
toring of request latency to quantify the slowest in the population. These may also
be specified in service-level agreements (SLAs) as a way to measure that perfor-
mance is acceptable for most users.

The 50th percentile, called the median, can be examined to show where the bulk
of the data is.

2.8.4 Coefficient of Variation

Since standard deviation is relative to the mean, variance can be understood only
when considering both standard deviation and mean. A standard deviation of 50
alone tells us little. That plus a mean of 200 tells us a lot.

There is a way to express variation as a single metric: the ratio of the standard
deviation to the mean, which is called the coefficient of variation (CoV or CV). For
this example, the CV is 25%. Lower CVs mean less variance.

Figure 2.21 Statistical values

2.8 Statistics 73

2.8.5 Multimodal Distributions

There is a problem with means, standard deviations, and percentiles, which may
be obvious from the previous chart: they are intended for normal-like or unimodal
distributions. System performance is often bimodal, returning low latencies for a
fast code path and high latencies for a slow one, or low latencies for cache hits and
high latencies for cache misses. There may also be more than two modes.

Figure 2.22 shows the distribution of disk I/O latency for a mixed workload of
reads and writes, which includes random and sequential I/O.

This is presented as a histogram, which shows two modes. The mode on the left
shows latencies of less than 1 ms, which is for on-disk cache hits. The right, with a
peak around 7 ms, is for on-disk cache misses: random reads. The average (mean)
I/O latency is 3.3 ms, which is plotted as a vertical line. This average is not the
index of central tendency (as described earlier); in fact, it is almost the opposite. As
a metric, the average for this distribution is seriously misleading.

Then there was the man who drowned crossing a
stream with an average depth of six inches.

W. I. E. Gates

Every time you see an average used as a performance metric, especially an aver-
age latency, ask: What is the distribution? Section 2.10, Visualizations, provides

Figure 2.22 Latency distribution

74 Chapter 2 � Methodology

another example and shows how effective different visualizations and metrics are
at showing this distribution.

2.8.6 Outliers

Another statistical problem is the presence of outliers: a very small number of
extremely high or low values that don’t appear to fit the expected distribution (sin-
gle- or multimode).

Disk I/O latency outliers are an example—very occasional disk I/O that can take
over 1,000 ms, when the majority of disk I/O is between 0 and 10 ms. Latency out-
liers like these can cause serious performance problems, but their presence can be
difficult to identify from most metric types, other than as a maximum.

For a normal distribution, the presence of outliers is likely to shift the mean by
a little, but not the median (which may be useful to consider). The standard devia-
tion and 99th percentile have a better chance of identifying outliers, but this is still
dependent on their frequency.

To better understand multimodal distributions, outliers, and other complex yet
common behaviors, inspect the full distribution, such as by using a histogram. See
Section 2.10, Visualizations, for more ways to do this.

2.9 Monitoring

System performance monitoring records performance statistics over time (a time
series), so that the past can be compared to the present and time-based usage pat-
terns can be identified. This is useful for capacity planning, quantifying growth,
and showing peak usage. Historic values can also provide context for understand-
ing the current value of performance metrics, by showing what the “normal” range
and average have been in the past.

2.9.1 Time-Based Patterns

Examples of time-based patterns are shown in Figures 2.23, 2.24, and 2.25, which
plot file system reads from a cloud computing server over different time intervals.

These graphs show a daily pattern that begins to ramp up around 8:00 a.m.,
dips a little in the afternoon, then decays during the night. The longer-scale charts
show that activity is lower on the weekend days. A couple of short spikes are also
visible in the 30-day chart.

2.9 Monitoring 75

Various cycles of behavior including those shown in the figures can commonly be
seen in historic data, including

� Hourly: Activity may occur every hour from the application environment,
such as monitoring and reporting tasks. It’s also common for these to execute
with a 5- or 10-minute cycle.

� Daily: There may be a daily pattern of usage that coincides with work hours
(9:00 a.m. to 5:00 p.m.), which may be stretched if the server is for multiple
time zones. For Internet servers, the pattern may follow when worldwide
users are active. Other daily activity may include nightly log rotation and
backups.

Figure 2.23 Monitoring activity: one day

Figure 2.24 Monitoring activity: five days

Figure 2.25 Monitoring activity: 30 days

76 Chapter 2 � Methodology

� Weekly: As well as a daily pattern, there may be a weekly pattern present
based on workdays and weekends.

� Quarterly: Financial reports are done on a quarterly schedule.

Irregular increases in load may be present from other activities, such as releasing
new content on a website.

2.9.2 Monitoring Products

There are many third-party products for system performance monitoring. Typical
features include archiving data and presenting it as browser-based interactive
graphs, and providing configurable alerts.

Some of these operate by running agents on the system to gather their statis-
tics. These agents either execute operating system observability tools (such as
sar(1)) and process the output (which is considered inefficient and can even con-
tribute to performance issues!), or link directly to operating system libraries and
interfaces to read statistics directly.

There are also monitoring solutions that use SNMP. They usually avoid the
need to run custom agents on the system, provided it has SNMP support.

As systems become more distributed and the usage of cloud computing grows,
you will more often need to monitor numerous systems, perhaps hundreds or thou-
sands. This is where a centralized monitoring product can be especially useful,
allowing an entire environment to be monitored from one interface.

Some companies prefer to develop their own monitoring solutions, to better suit
their custom environment and needs.

2.9.3 Summary-since-Boot

If monitoring has not been performed, check whether at least summary-since-boot
values are available from the operating system, which can be used to compare with
the current values.

2.10 Visualizations

Visualizations allow more data to be examined than can be seen in a text display.
They also enable pattern recognition and pattern matching. This can be an effec-
tive way to identify correlations between different metric sources, which may be
difficult to accomplish programmatically, but easy to do visually.

2.10 Visualizations 77

2.10.1 Line Chart

A line chart (also called line graph) is a well-known, basic visualization. It is com-
monly used for examining performance metrics over time, showing the passage of
time on the x axis.

Figure 2.26 is an example, showing the average (mean) disk I/O latency for a 20 s
period. This was measured on a production cloud server running a MySQL data-
base, where disk I/O latency was suspected to be causing slow queries.

This line chart shows fairly consistent average read latency of around 4 ms,
which is higher than expected for these disks.

Multiple lines can be plotted, showing related data on the same set of axes. With
this example, a separate line may be plotted for each disk, showing whether they
exhibit similar performance.

Statistical values can also be plotted, providing more information on the distri-
bution of data. Figure 2.27 shows the same range of disk I/O events, with lines
added for the per-second median, standard deviation, and percentiles. Note that
the y axis now has a much greater range than the previous line chart (8x).

This shows why the average is higher than expected: the distribution includes
higher-latency I/O. Specifically, 1% of the I/O is over 20 ms, as shown by the 99th
percentile. The median also shows where I/O latency was expected, around 1 ms.

Figure 2.26 Line chart of average latency

78 Chapter 2 � Methodology

2.10.2 Scatter Plots

Figure 2.28 shows disk I/O events for the same stretch of time as a scatter plot,
which enables all data to be seen. Each disk I/O is drawn as a point, with its com-
pletion time on the x axis and latency on the y axis.

Figure 2.27 Median, mean, standard deviation, percentiles

Figure 2.28 Scatter plot

2.10 Visualizations 79

Now the source of the higher-than-expected average latency can be understood
fully: there are many disk I/O with latencies of 10 ms, 20 ms, even over 50 ms. The
scatter plot has shown all the data, revealing the presence of these outliers.

Many of the I/O were sub-millisecond, shown close to the x axis. This is where
the resolution of scatter plots begins to become a problem, as the points overlap
and become difficult to distinguish. This gets worse with more data: imagine plot-
ting events from an entire cloud, involving millions of data points, on one scatter
plot. Another problem is the volume of data that must be collected and processed: x
and y coordinates for every I/O.

2.10.3 Heat Maps

Heat maps can solve the scatter plot scalability problem by quantizing x and y
ranges into groups called buckets. These are displayed as large pixels, colored
based on the number of events in that x and y range. This quantizing also solves
the scatter plot visual density limit, allowing heat maps to show data from a sin-
gle system or thousands of systems in the same way. They can be used for the anal-
ysis of latency, utilization, and other metrics [Gregg 10a].

The same dataset as plotted earlier is shown in Figure 2.29 as a heat map.

High-latency outliers can be identified as blocks that are high in the heat map,
usually of light colors as they span few I/O (often a single I/O). Patterns in the bulk
of the data begin to emerge, which may be impossible to see with a scatter plot.

Figure 2.29 Heat map

80 Chapter 2 � Methodology

The full range of seconds for this disk I/O trace (not shown earlier) is shown in
the Figure 2.30 heat map.

Despite spanning nine times the range, the visualization is still very readable. A
bimodal distribution can be seen for much of the range, with some I/O returning
with near-zero latency (likely a disk cache hit), and others with a little less than 1 ms
(likely a disk cache miss).

A problem with heat maps is that they are not yet as well known as line charts,
so users must gain some understanding to use them effectively.

There are various other examples of heat maps later in this book.

2.10.4 Surface Plot

This is a representation of three dimensions, rendered as a three-dimensional sur-
face. It works best when the third-dimension value does not frequently change dra-
matically from one point to the next, producing a surface resembling rolling hills.
A surface plot is often rendered as a wireframe model.

Figure 2.31 shows a wireframe surface plot of per-CPU utilization. It contains
60 s of per-second values from many servers (this is cropped from an image that
spanned a data center of over 300 physical servers and 5,312 CPUs) [4].

Each server is represented by plotting its 16 CPUs as rows on the surface, the 60
per-second utilization measurements as columns, and then setting the height of the
surface to the utilization value. Color is also set to reflect the utilization value. Both
hue and saturation could be used, if desired, to add fourth and fifth dimensions of

Figure 2.30 Heat map: full range

2.10 Visualizations 81

data to the visualization. (If the resolution is sufficient, a pattern could be used to
indicate a sixth dimension.)

These 16 x 60 server rectangles are then mapped across the surface as a check-
erboard. Even without markings, some server rectangles can be clearly seen in the
image. One that appears as an elevated plateau on the right shows that its CPUs
are almost always at 100%.

The use of grid lines highlights subtle changes in elevation. Some faint lines are
visible, which indicate a single CPU constantly running at low utilization (a few
percent).

2.10.5 Visualization Tools

Unix performance analysis has historically focused on the use of text-based tools,
due in part to limited graphical support. Such tools can be executed quickly over a
login session and report data in real time. Visualizations have been more time-
consuming to access and often require a trace-and-report cycle. When working
urgent performance issues, the speed at which you can access metrics can be critical.

Modern visualization tools provide real-time views of system performance,
accessible from the browser and mobile devices. There are many products that do
this, including many that can monitor your entire cloud, such as Joyent’s Cloud
Analytics, a DTrace-based cloud-wide analysis tool that produces real-time visual-
izations including latency heat maps.

Figure 2.31 Wireframe surface plot: data center CPU utilization

82 Chapter 2 � Methodology

2.11 Exercises

1. Answer the following questions about key performance terminology:

� What are IOPS?

� What is utilization and saturation?

� What is latency?

� What is micro-benchmarking?

2. Choose five methodologies to use for your (or a hypothetical) environment.
Select the order in which they can be conducted, and explain the reason for
choosing each.

3. Summarize the problems when using average latency as a sole performance
metric. Can these problems be solved by including the 99th percentile?

2.12 References

[Amdahl 67] Amdahl, G. “Validity of the Single Processor Approach to
Achieving Large Scale Computing Capabilities.” AFIPS, 1967.

[Jain 91] Jain, R. The Art of Computer System Performance Analysis:
Techniques for Experimental Design, Measurement, Simula-
tion and Modeling. Wiley, 1991.

[Cockcroft 95] Cockcroft, A. Sun Performance and Tuning. Prentice Hall,
1995.

[Gunther 97] Gunther, N. The Practical Performance Analyst. McGraw-Hill,
1997.

[Wong 97] Wong, B. Configuration and Capacity Planning for Solaris
Servers. Prentice Hall, 1997.

[Elling 00] Elling, R. Static Performance Tuning. Sun Blueprints, 2000.

[Millsap 03] Millsap, C., and J. Holt. Optimizing Oracle Performance.
O’Reilly, 2003.

[McDougall 06b] McDougall, R., J. Mauro, and B. Gregg. Solaris Performance
and Tools: DTrace and MDB Techniques for Solaris 10 and
OpenSolaris. Prentice Hall, 2006.

2.12 References 83

[Schlossnagle 06] Schlossnagle, T. Scalable Internet Architectures. Sams Pub-
lishing, 2006.

[Gunther 07] Gunther, N. Guerrilla Capacity Planning. Springer, 2007.

[Allspaw 08] Allspaw, J. The Art of Capacity Planning. O’Reilly, 2008.

[Gregg 10a] Gregg, B. “Performance Visualizations.” USENIX LISA
invited talk, 2010.

[Gregg 13] Gregg, B. “Thinking Methodically about Performance,”
Communications of the ACM, February 2013.

[1] www.telegraph.co.uk/technology/news/8753784/The-300m-
cable-that-will-save-traders-milliseconds.html

[2] https://github.com/brendangregg/PerfModels

[3] www.r-project.org

[4] http://dtrace.org/blogs/brendan/2011/12/18/visualizing-device-
utilization

../../../../../www.telegraph.co.uk/technology/news/8753784/The-300mcable-that-will-save-traders-milliseconds.html
../../../../../www.telegraph.co.uk/technology/news/8753784/The-300mcable-that-will-save-traders-milliseconds.html
../../../../../https@github.com/brendangregg/PerfModels
../../../../../www.r-project.org/default.htm
../../../../../dtrace.org/blogs/brendan/2011/12/18/visualizing-deviceutilization
../../../../../dtrace.org/blogs/brendan/2011/12/18/visualizing-deviceutilization

This page intentionally left blank

85

3
Operating Systems

An understanding of the operating system and its kernel is essential for systems
performance analysis. You will frequently need to develop and then test hypothe-
ses about system behavior, such as how system calls are being performed, how
CPUs are scheduling threads, how limited memory could be affecting perfor-
mance, or how a file system processes I/O. These behaviors will require you to
apply your knowledge of the operating system and the kernel.

This chapter provides an overview of operating systems and the kernel and is
assumed knowledge for the rest of the book. If you missed operating systems class,
you can treat this as a crash course. Keep an eye out for any gaps in your knowl-
edge, as there will be an exam at the end (I’m kidding; it’s just a quiz). For more on
kernel internals, see the references at the end of this chapter and the Bibliography.

This chapter has two parts:

� Background introduces terminology and operating system fundamentals.

� Kernels summarizes Linux and Solaris-based kernels.

Areas related to performance, including CPU scheduling, memory, disks, file sys-
tems, networking, and many specific performance tools, are covered in more detail
in the chapters that follow.

86 Chapter 3 � Operating Systems

3.1 Terminology

For reference, here is the core operating system terminology used in this book:

� Operating system: This refers to the software and files that are installed on
a system so that it can boot and execute programs. It includes the kernel,
administration tools, and system libraries.

� Kernel: The kernel is the program that manages the system, including
devices (hardware), memory, and CPU scheduling. It runs in a privileged
CPU mode that allows direct access to hardware, called kernel mode.

� Process: an OS abstraction and environment for executing a program. The
program normally runs in user mode, with access to kernel mode (e.g., for
performing device I/O) via system calls or traps.

� Thread: an executable context that can be scheduled to run on a CPU. The
kernel has multiple threads, and a process contains one or more.

� Task: a Linux runnable entity, which can refer to a process (with a single
thread), a thread from a multithreaded process, or kernel threads.

� Kernel-space: the memory address space for the kernel.

� User-space: the memory address space for processes.

� User-land: user-level programs and libraries (/usr/bin, /usr/lib, . . .).

� Context switch: a kernel routine that switches a CPU to operate in a differ-
ent address space (context).

� System call (syscall): a well-defined protocol for user programs to request
the kernel to perform privileged operations, including device I/O.

� Processor: Not to be confused with process, a processor is a physical chip
containing one or more CPUs.

� Trap: a signal sent to the kernel, requesting a system routine (privileged
action). Trap types include system calls, processor exceptions, and interrupts.

� Interrupt: a signal sent by physical devices to the kernel, usually to request
servicing of I/O. An interrupt is a type of trap.

The Glossary includes more terminology for reference if needed for this chapter,
including address space, buffer, CPU, file descriptor, POSIX, and registers.

3.2 Background 87

3.2 Background

The following sections describe operating system concepts and generic kernel
internals. Specific kernel differences are covered after these sections.

3.2.1 Kernel

The kernel manages CPU scheduling, memory, file systems, network protocols, and
system devices (disks, network interfaces, etc.). It provides access to devices and
kernel services built upon them via system calls. It is pictured in Figure 3.1.

Also shown are system libraries, which are often used to provide a richer and
easier programming interface than the system calls alone. Applications include all
running user-level software, including databases, web servers, administration
tools, and operating system shells.

System libraries are pictured here as a broken ring, to show that applications
can call system calls directly (if permitted by the operating system). Traditionally,
this diagram is drawn with complete rings, which reflect decreasing levels of privi-
lege starting with the kernel at the center (a model that originated in Multics
[Graham 68], the predecessor of Unix).

Figure 3.1 Role of the operating system kernel

88 Chapter 3 � Operating Systems

Kernel Execution

The kernel is a large program, typically hundreds of thousands of lines of code. It
primarily executes on demand, when a user-level program makes a system call, or
a device sends an interrupt. Some kernel threads operate asynchronously for
housekeeping, which may include the kernel clock routine and memory manage-
ment tasks, but these try to be lightweight and consume very little CPU resources.

Workloads that perform frequent I/O, such as web servers, frequently execute in
kernel context. Workloads that are compute-intensive are left alone as much as
possible by the kernel, so they can run uninterrupted on-CPU. It may be tempting
to think that the kernel cannot affect the performance of these workloads, but
there are many cases where it does. The most obvious is CPU contention, when
other threads are competing for CPU resources and the kernel scheduler needs to
decide which will run and which will wait. The kernel also chooses which CPU a
thread will run on and can choose CPUs with warmer hardware caches or better
memory locality for the process, to significantly improve performance.

Clock

A core component of the original Unix kernel is the clock() routine, executed
from a timer interrupt. It has historically been executed at 60, 100, or 1,000 times
per second,1 and each execution is called a tick. Its functions have included updat-
ing the system time, expiring timers and time slices for thread scheduling, main-
taining CPU statistics, and executing callouts (scheduled kernel routines).

There have been performance issues with the clock, improved in later kernels,
including

� Tick latency: For 100 Hz clocks, up to 10 ms of additional latency may be
encountered for a timer as it waits to be processed on the next tick. This has
been fixed using high-resolution real-time interrupts, so that execution occurs
immediately without waiting.

� Tick overhead: Modern processors have dynamic power features, which can
power down parts during idle periods. The clock routine interrupts this pro-
cess, which for idle systems can consume power needlessly. Linux has imple-
mented dynamic ticks, so that when the system is idle, the timer routine
(clock) does not fire.

Modern kernels have moved much functionality out of the clock routine to on-
demand interrupts, in an effort to create a tickless kernel. This includes Linux,
where the clock routine—which is the system timer interrupt—performs little work

1. Other rates include 250 for Linux 2.6.13, 256 for Ultrix, and 1,024 for OSF/1 [RFC 1589].

3.2 Background 89

other than updating the system clock and jiffies counter (jiffies is a Linux unit of
time, similar to ticks).

Kernel Mode

The kernel is the only program running in a special CPU mode called kernel mode,
allowing full access to devices and the execution of privileged instructions. The
kernel arbitrates device access to support multitasking, preventing processes and
users from accessing each other’s data unless explicitly allowed.

User programs (processes) run in user mode, where they request privileged
operations from the kernel via system calls, such as for I/O. To perform a system
call, execution will mode-switch from user to kernel mode, and then execute with
the higher privilege level. This is shown in Figure 3.2.

Each mode has its own software execution state including a stack and registers.
The execution of privileged instructions in user mode causes exceptions, which are
then properly handled by the kernel.

The switch between these modes takes time (CPU cycles), which adds a small
amount of overhead for each I/O. Some services, such as NFS, have been imple-
mented as kernel-mode software (instead of a user-mode daemon), so that they can
perform I/O from and to devices without needing to switch to user mode.

If the system call blocks during execution, the process may switch off CPU and
be replaced by another: a context-switch.

3.2.2 Stacks

A stack contains the execution ancestry for a thread in terms of functions and reg-
isters. Stacks are used by CPUs for efficient processing of function execution in
native software.

Figure 3.2 System call execution modes

90 Chapter 3 � Operating Systems

When a function is called, the current set of CPU registers (which store the
state of the CPU) is saved to the stack, and a new stack frame is added to the top
for the current execution of the thread. Functions end execution by calling a
“return” CPU instruction, which removes the current stack and returns execution
to the previous one, restoring its state.

Stack inspection is an invaluable tool for debugging and performance analysis.
Stacks show the call path to current execution, which often answers why some-
thing is executing.

How to Read a Stack

The following example kernel stack (from Linux) shows the path taken for TCP
transmission, as printed by a debugging tool:

The top of the stack is usually shown as the first line. In this example it
includes tcp_sendmsg—the name of the function currently executing. To the left
and right of the function name are details typically included by debuggers: the ker-
nel module location (`kernel) and the instruction offset (0x1, which refers to the
address of the instruction within the function).

The function that called tcp_sendmsg() (its parent) can be seen below it:
inet_sendmsg(). And its parent is below it: sock_aio_write(). By reading
down the stack, the full ancestry can be seen: function, parent, grandparent, and
so on. Or, by reading bottom-up, you can follow the path of execution to the cur-
rent function: how we got here.

Since stacks expose the internal path taken through source code, there is typi-
cally no documentation for these functions other than the code itself. For this
example stack, this is the Linux kernel source code. An exception to this is where
functions are part of an API and have public documentation.

User and Kernel Stacks

While executing a system call, a process thread has two stacks: a user-level stack
and a kernel-level stack. Their scope is pictured in Figure 3.3.

 kernel`tcp_sendmsg+0x1
 kernel`inet_sendmsg+0x64
 kernel`sock_aio_write+0x13a
 kernel`do_sync_write+0xd2
 kernel`security_file_permission+0x2c

 kernel`rw_verify_area+0x61
 kernel`vfs_write+0x16d
 kernel`sys_write+0x4a
 kernel`sys_rt_sigprocmask+0x84
 kernel`system_call_fastpath+0x16

3.2 Background 91

The user-level stack of the blocked thread does not change for the duration of a
system call, as the thread is using a separate kernel-level stack while executing in
kernel context. (An exception to this may be signal handlers, which may borrow a
user-level stack depending on their configuration.)

3.2.3 Interrupts and Interrupt Threads

Apart from responding to system calls, the kernel also responds to service requests
from devices. These are called interrupts, as they interrupt current execution.
These are pictured in Figure 3.4.

Figure 3.3 User and kernel stacks

Figure 3.4 Interrupt processing

92 Chapter 3 � Operating Systems

An interrupt service routine is registered to process the device interrupt. Such
routines are designed to operate as quickly as possible, to reduce the effects of
interrupting active threads. If an interrupt needs to perform more than a little
work, especially if it may block on locks, it can be processed by an interrupt thread
that can be scheduled by the kernel.

How this is implemented depends on the kernel version. On Linux, device driv-
ers can be modeled as two halves, with the top half handling the interrupt quickly,
and scheduling work to a bottom half to be processed later [Corbet 05]. Handling
the interrupt quickly is important as the top half runs in interrupt-disabled mode
to postpone the delivery of new interrupts, which can cause latency problems for
other threads if it runs for too long. The bottom half can be either tasklets or work
queues; the latter are threads that can be scheduled by the kernel and can sleep
when necessary. Solaris-based systems promote interrupts to interrupt threads if
more work needs to be performed [McDougall 06a].

The time from an interrupt arrival to when it is serviced is the interrupt latency,
which is dependent on the implementation. This is a subject of study for real-time
or low-latency systems.

3.2.4 Interrupt Priority Level

The interrupt priority level (IPL) represents the priority of the currently active
interrupt service routine. It is read from the processor during the delivery of an
interrupt signal, and the interrupt succeeds only if its level exceeds the currently
executing interrupt (if any); otherwise the interrupt is queued for later delivery.
This prevents higher-priority work from being interrupted by lower-priority work.

An example IPL range is shown in Figure 3.5, which for this kernel services
IPLs 1 through 10 as interrupt threads.

Figure 3.5 Example interrupt priority level range

3.2 Background 93

Serial I/O has a high interrupt because its hardware buffer is usually small and
needs quick servicing to avoid overflows.

3.2.5 Processes

A process is an environment for executing a user-level program. It consists of a
memory address space, file descriptors, thread stacks, and registers. In some ways,
a process is like a virtual early computer, where only one program is executing,
with its own registers and stacks.

Processes are multitasked by the kernel, which typically supports the execution
of thousands of processes on a single system. They are individually identified by
their process ID (PID), which is a unique numeric identifier.

A process contains one or more threads, which operate in the process address
space and share the same file descriptors (state describing open files). A thread is
an executable context consisting of a stack, registers, and program counter. Multi-
ple threads allow a single process to execute in parallel across multiple CPUs.

Process Creation

Processes are normally created using the fork() system call. This creates a dupli-
cate of the process, with its own process ID. The exec() system call can then be
called to begin execution of a different program.

Figure 3.6 shows an example process creation for the shell (sh) executing the ls
command.

The fork() syscall may use a copy-on-write (COW) strategy to improve perfor-
mance. This adds references to the previous address space rather than copying all
of the contents. Once either process modifies the multiply-referenced memory, a
separate copy is then made for the modifications. This strategy either defers or
eliminates the need to copy memory, reducing memory and CPU usage.

Figure 3.6 Process creation

94 Chapter 3 � Operating Systems

Process Life Cycle

The life cycle of a process is shown in Figure 3.7. This is a simplified diagram; for
modern multithreaded operating systems it is the threads that are scheduled and
run, and there are some additional implementation details regarding how these
map to process states (for reference, see proc.h in your kernel source code).

The on-proc state is for running on a processor (CPU). The ready-to-run state is
when the process is runnable but is waiting on a CPU run queue for its turn on a
CPU. I/O will block, putting the process in the sleep state until the I/O completes
and the process is woken up. The zombie state occurs during process termination,
when the process waits until its process status has been read by the parent pro-
cess, or until it is removed by the kernel.

Process Environment

The process environment is shown in Figure 3.8; it consists of data in the address
space of the process and metadata (context) in the kernel.

The kernel context consists of various process properties and statistics: its pro-
cess ID (PID), the owner’s user ID (UID), and various times. These are commonly
examined via the ps(1) command. It also has a set of file descriptors, which refer
to open files and which are (usually) shared between threads.

This example pictures two threads, each containing some metadata, including a
priority in kernel context and its stack in the user address space. The diagram is
not drawn to scale; the kernel context is very small compared to the process
address space.

The user address space contains memory segments of the process: executable,
libraries, and heap. For more details, see Chapter 7, Memory.

Figure 3.7 Process life cycle

3.2 Background 95

3.2.6 System Calls

System calls request the kernel to perform privileged system routines. The num-
ber of system calls available is in the hundreds, but some effort is made to keep
that number as small as possible, to keep the kernel simple (Unix philosophy;
[Thompson 78]). More sophisticated interfaces can be built upon them in user-land
as system libraries, where they are easier to develop and maintain.

Key system calls to remember are listed in Table 3.1.

Figure 3.8 Process environment

Table 3.1 Key System Calls

System Call Description

read() read bytes

write() write bytes

open() open a file

close() close a file

fork() create a new process

exec() execute a new program

connect() connect to a network host

accept() accept a network connection

stat() fetch file statistics

continues

96 Chapter 3 � Operating Systems

System calls are well documented, each having a man page that is usually
shipped with the operating system. They also have a generally simple and consis-
tent interface, which includes setting a special variable, errno, to indicate if an
error was encountered and its type.

Many of these system calls have an obvious purpose. Here are a few whose com-
mon usage may be less obvious:

� ioctl(): This is commonly used to request miscellaneous actions from the
kernel, especially for system administration tools, where another (more obvi-
ous) system call isn’t suitable. See the example that follows.

� mmap(): This is commonly used to map executables and libraries to the pro-
cess address space, and for memory-mapped files. It is sometimes used to
allocate the working memory of a process, instead of the brk()-based
malloc(), to reduce the syscall rate and improve performance (which doesn’t
always work due to the trade-off involved: memory-mapping management).

� brk(): This is used to extend the heap pointer, which defines the size of the
working memory of the process. It is typically performed by a system mem-
ory allocation library, when a malloc() (memory allocate) call cannot be sat-
isfied from the existing space in the heap. See Chapter 7, Memory.

If a system call is unfamiliar, you can learn more in its man page (these are in sec-
tion 2: syscalls).

The ioctl() syscall may be the most difficult to learn, due to its ambiguous
nature. As an example of its usage, the Linux perf(1) tool (introduced in Chapter
6, CPUs) performs privileged actions to coordinate performance instrumentation.
Instead of system calls being added for each action, a single system call is added:
perf_event_open(), which returns a file descriptor for use with ioctl(). This
ioctl() can then be called using different arguments to perform the different
desired actions. For example, ioctl(fd, PERF_EVENT_IOC_ENABLE) enables
instrumentation. The arguments, in this example PERF_EVENT_IOC_ENABLE, can
be more easily added and changed by the developer.

ioctl() set I/O properties, or other miscellaneous functions

mmap() map a file to the memory address space

brk() extend the heap pointer

Table 3.1 Key System Calls (Continued)

System Call Description

3.2 Background 97

3.2.7 Virtual Memory

Virtual memory is an abstraction of main memory, providing processes and the
kernel with their own, almost infinite, private view of main memory. It supports
multitasking, allowing processes and the kernel to operate on their own private
address spaces without worrying about contention. It also supports oversubscrip-
tion of main memory, allowing the operating system to transparently map virtual
memory between main memory and secondary storage (disks) as needed.

The role of virtual memory is shown in Figure 3.9. Primary memory is main
memory (RAM), and secondary memory is the storage devices (disks).

Virtual memory is made possible by support in both the processor and operat-
ing system. It is not real memory, and most operating systems map virtual mem-
ory to real memory only on demand, when the memory is first populated (written).

See Chapter 7, Memory, for more about virtual memory.

3.2.8 Memory Management

While virtual memory allows main memory to be extended using secondary stor-
age, the kernel strives to keep the most active data in main memory. There are two
kernel routines for this:

� Swapping moves entire processes between main memory and secondary storage.

� Paging moves small units of memory called pages (e.g., 4 Kbytes).

Figure 3.9 Virtual memory address spaces

98 Chapter 3 � Operating Systems

Swapping is the original Unix method and can cause severe performance loss. Pag-
ing is more efficient and was added to BSD with the introduction of paged virtual
memory. In both cases, least recently used (or not recently used) memory is moved to
secondary storage and moved back to main memory only when needed again.

In Linux, the term swapping is used to refer to paging. The Linux kernel does
not support the (older) Unix-style swapping of entire threads and processes.

For more on paging and swapping, see Chapter 7, Memory.

3.2.9 Schedulers

Unix and its derivatives are time-sharing systems, allowing multiple processes to
run at the same time by dividing execution time among them. The scheduling of
processes on processors and individual CPUs is performed by the scheduler, a key
component of the operating system kernel. The role of the scheduler is pictured in
Figure 3.10, which shows that the scheduler operates on threads (in Linux, tasks),
mapping them to CPUs.

The basic intent is to divide CPU time among the active processes and threads,
and to maintain a notion of priority so that more important work can execute
sooner. The scheduler keeps track of all threads in the ready-to-run state, tradi-
tionally on per-priority queues called run queues [Bach 86]. Modern kernels may
implement these queues per CPU and may also use other data structures, apart
from queues, to track the threads. When more threads want to run than there are

Figure 3.10 Kernel scheduler

3.2 Background 99

available CPUs, the lower-priority threads wait their turn. Most kernel threads
run with a higher priority than user-level processes.

Process priority can be modified dynamically by the scheduler to improve the
performance of certain workloads. Workloads can be categorized as either

� CPU-bound: applications that perform heavy compute, for example, scien-
tific and mathematical analysis, which is expected to have long runtimes (sec-
onds, minutes, hours). These become limited by CPU resources.

� I/O-bound: applications that perform I/O, with little compute, for example,
web servers, file servers, and interactive shells, where low-latency responses
are desirable. When their load increases, they are limited by I/O to storage or
network resources.

The scheduler can identify CPU-bound workloads and decrease their priority,
allowing I/O-bound workloads—where low-latency responses are more desirable—
to run sooner. This can be achieved by calculating the ratio of recent compute time
(time executing on-CPU) to real time (elapsed time) and decreasing the priority of
processes with a high (compute) ratio [Thompson 78]. This mechanism gives pref-
erence to shorter-running processes, which are usually those performing I/O,
including human interactive processes.

Modern kernels support multiple scheduling classes, which apply different algo-
rithms for managing priority and runnable threads. These may include the real-
time scheduling class, which uses a priority higher than all noncritical work,
including kernel threads. Along with preemption support (described later), the
real-time scheduling class provides low-latency scheduling for real-time systems.

See Chapter 6, CPUs, for more about the kernel scheduler and other scheduling
classes.

3.2.10 File Systems

File systems are an organization of data as files and directories. They have a file-
based interface for accessing them, which is usually based on the POSIX stan-
dard. Kernels can support multiple file system types and instances. Providing a
file system is one of the most important roles of the operating system, once
described as the most important role [Ritchie 74].

The operating system provides a global file namespace, organized as a top-down
tree topology starting with the root level (“/”). File systems join the tree by mount-
ing, attaching their own tree to a directory (the mount point). This allows the end
user to navigate the file namespace transparently, regardless of the underlying file
system type.

A typical operating system may be organized as shown in Figure 3.11.

100 Chapter 3 � Operating Systems

The top-level directories include etc for system configuration files, usr for system-
supplied user-level programs and libraries, dev for device files, var for varying
files including system logs, tmp for temporary files, and home for user home direc-
tories. In the example pictured, var and home may reside on their own file system
instances and separate storage devices; however, they can be accessed like any
other component of the tree.

Most file system types use storage devices (disks) to store their contents. Some
file system types are dynamically created by the kernel, such as /proc or /dev.

VFS

The virtual file system (VFS) is a kernel interface to abstract file system types,
originally developed by Sun Microsystems so that the Unix file system (UFS) and
NFS could more easily coexist. Its role is pictured in Figure 3.12.

Figure 3.11 Operating system file hierarchy

Figure 3.12 Virtual file system

3.2 Background 101

The VFS interface makes it easier to add new file system types to the kernel. It
also supports providing the global file namespace, pictured earlier, so that user
programs and applications can access various file system types transparently.

I/O Stack

For storage-device-based file systems, the path from user-level software to the stor-
age device is called the I/O stack. This is a subset of the entire software stack
shown earlier. A generic I/O stack is shown in Figure 3.13.

File systems and their performance are covered in detail in Chapter 8, File Sys-
tems, and the storage devices they are built upon are covered in Chapter 9, Disks.

3.2.11 Caching

Since disk I/O has historically had high latency, many layers of the software stack
attempt to avoid it by caching reads and buffering writes. Caches may include
those shown in Table 3.2 (in the order in which they are checked).

Figure 3.13 Generic I/O stack

102 Chapter 3 � Operating Systems

For example, the buffer cache is an area of main memory that stores recently
used disk blocks. Disk reads may be served immediately from the cache if the
requested block is present, avoiding the high latency of disk I/O.

The types of caches present will vary based on the system and environment.

3.2.12 Networking

Modern kernels provide a stack of built-in network protocols, allowing the system
to communicate on the network and take part in distributed system environ-
ments. The stack is referred to as the TCP/IP stack, after the commonly used TCP
and IP protocols. User-level applications access the network through programma-
ble endpoints called sockets.

The physical device that connects to the network is the network interface and is
usually provided on a network interface card (NIC). A common duty of the system
administrator is to associate an IP address with a network interface, so that it can
communicate with the network.

Network protocols do not change often, but enhancements and options do, such
as newer TCP options and TCP congestion control algorithms, which require ker-
nel support. Another change is support for different network interface cards, which
require new device drivers for the kernel.

For more on networking and network performance, see Chapter 10, Networking.

Table 3.2 Example Cache Layers for Disk I/O

Cache Example

1 application cache —

2 web server cache Apache cache

3 caching server memcached

4 database cache MySQL buffer cache

5 directory cache DNLC

6 file metadata cache inode cache

7 operating system buffer cache segvn

8 file system primary cache ZFS ARC

9 file system secondary cache ZFS L2ARC

10 device cache ZFS vdev

11 block cache buffer cache

12 disk controller cache RAID card cache

13 storage array cache —

14 on-disk cache —

3.2 Background 103

3.2.13 Device Drivers

A kernel must communicate with a wide variety of physical devices. Such commu-
nication is achieved using device drivers: kernel software for device management
and I/O. Device drivers are often provided by the vendors who develop the hard-
ware devices. Some kernels support pluggable device drivers, which can be loaded
and unloaded without requiring a system restart.

Device drivers can provide character and/or block interfaces to their devices.
Character devices, also called raw devices, provide unbuffered sequential access of
any I/O size down to a single character, depending on the device. Such devices
include keyboards and serial ports (and in original Unix, paper tape and line
printer devices).

Block devices perform I/O in units of blocks, which have historically been 512
bytes each. These can be accessed randomly based on their block offset, which
begins at 0 at the start of the block device. In original Unix, the block device inter-
face also provided caching of block device buffers to improve performance, in an
area of main memory called the buffer cache.

3.2.14 Multiprocessor

Multiprocessor support allows the operating system to use multiple CPU instances
to execute work in parallel. It is usually implemented as symmetric multiprocess-
ing (SMP), where all CPUs are treated equally. This was technically difficult to
accomplish, posing problems for accessing and sharing memory and CPUs among
threads running in parallel. See Chapter 6, CPUs, for details, including schedul-
ing and thread synchronization, and Chapter 7, Memory, for details on memory
access and architectures.

CPU Cross Calls

For a multiprocessor system, there are times when CPUs need to coordinate, such
as for cache coherency of memory translation entries (informing other CPUs that
an entry, if cached, is now stale). A CPU can request other CPUs, or all CPUs, to
immediately perform such work using a CPU cross call. Cross calls are processor
interrupts that are designed to be executed quickly, to minimize interruption of
other threads.

Cross calls can also be used by preemption.

3.2.15 Preemption

Kernel preemption support allows high-priority user-level threads to interrupt the
kernel and execute. This enables real-time systems—those that have strict

104 Chapter 3 � Operating Systems

response time requirements. A kernel that supports preemption is said to be fully
preemptable, although practically it will still have some small critical code paths
that cannot be interrupted.

An approach supported by Linux is voluntary kernel preemption, where logical
stopping points in the kernel code can check and perform preemption. This avoids
some of the complexity of supporting a fully preemptive kernel and provides low-
latency preemption for common workloads.

3.2.16 Resource Management

The operating system may provide various configurable controls for fine-tuning
access to system resources, such as CPUs, memory, disk, and the network. These
are resource controls and can be used on systems that run different applications or
tenants (cloud computing) to manage performance. Such controls may impose fixed
limits per process (or groups of processes) for resource usage, or a more flexible
approach—allowing spare usage to be shared among them.

Early versions of Unix and BSD have had basic per-process resource controls,
including CPU priorities with nice(1), and some resource limits with ulimit(1).

Solaris-based systems have provided advanced resource controls since Solaris 9
(2002) and are documented in the resources_controls(5) man page.

For Linux, control groups (cgroups) have been developed and integrated in
2.6.24 (2008), since which various additional controls have been added. These are
documented in the kernel source under Documentation/cgroups.

Specific resource controls are mentioned in later chapters as appropriate. An
example use case is described in Chapter 11, Cloud Computing, for managing the
performance of OS-virtualized tenants.

3.2.17 Observability

The operating system consists of the kernel, libraries, and programs. These pro-
grams include tools to observe system activity and analyze performance, typically
installed in /usr/bin and /usr/sbin. Third-party tools may also be installed on the
system to provide additional observability.

Observability tools, and the operating system components upon which they are
built, are introduced in the next chapter.

3.3 Kernels 105

3.3 Kernels

This section introduces Solaris-based and Linux kernels (in chronological order),
their history and features, and discusses differences with a focus on performance.
Unix origins are also discussed for background.

Some obvious differences between modern kernels include the file systems they
support (see Chapter 8, File Systems) and the observability frameworks they pro-
vide (see Chapter 4, Observability Tools). There are also differences with their sys-
tem call (syscall) interfaces, network stack architecture, real-time support, and
CPU, disk, and network I/O scheduling.

Table 3.3 shows recent kernel versions, with syscall counts based on the num-
ber of entries in section 2 of the OS man pages. This is a crude comparison, but
enough to see some differences.

These are just the syscalls with documentation; more are usually provided by the
kernel for private use by operating system software. Apart from differences
between kernels, there is a pattern over time: Linux has been adding system calls.
Solaris has been removing them.

UNIX had twenty system calls at the very first, and today Linux—which is a direct
descendant—has over a thousand . . . I just worry about the complexity and the size of
things that grow.

Ken Thompson, ACM Turing Centenary Celebration, 2012

Both kernels are actually growing in complexity and exposing this to user-land
in different ways, either by adding new system calls or through other kernel
interfaces.

Table 3.3 Kernel Versions with Documented Syscall Counts

Kernel Version Syscalls

Linux 2.6.32-21-server 408

Linux 2.6.32-220.el6.x86_64 427

Linux 3.2.6-3.fc16.x86_64 431

SunOS 5.9 221

SunOS 5.10 218

SunOS 5.11 142

106 Chapter 3 � Operating Systems

3.3.1 Unix

Unix was developed by Ken Thompson, Dennis Ritchie, and others at AT&T Bell
Labs during 1969 and the years that followed. Its exact origin was described in
The UNIX Time-Sharing System [Ritchie 74]:

The first version was written when one of us (Thompson), dissatisfied with the avail-
able computer facilities, discovered a little-used PDP-7 and set out to create a more
hospitable environment.

The developers of UNIX had previously worked on the Multiplexed Information
and Computer Services (Multics) operating system. UNIX was developed as a
lightweight multitasked operating system and kernel, originally named UNiplexed
Information and Computing Service (UNICS), as a pun on Multics. From UNIX
Implementation [Thompson 78]:

The kernel is the only UNIX code that cannot be substituted by a user to his own lik-
ing. For this reason, the kernel should make as few real decisions as possible. This
does not mean to allow the user a million options to do the same thing. Rather, it
means to allow only one way to do one thing, but have that way be the least-common
divisor of all the options that might have been provided.

While the kernel was small, it did provide some features for high performance.
Processes had scheduler priorities, reducing run-queue latency for higher-priority
work. Disk I/O was performed in large (512-byte) blocks for efficiency and cached
in an in-memory per-device buffer cache. Idle processes could be swapped out to
storage, allowing busier processes to run in main memory. And the system was, of
course, multitasking—allowing multiple processes to run concurrently, improving
job throughput.

To support networking, multiple file systems, paging, and other features we now
consider standard, the kernel had to grow. And with multiple derivatives, includ-
ing BSD, SunOS (Solaris), and later Linux, kernel performance became competi-
tive, which drove the addition of more features and code.

3.3.2 Solaris-Based

The Solaris kernel is not just Unix-derived but even has some surviving code from
the original Unix kernel. Solaris began as SunOS, created by Sun Microsystems in
1982. Based on BSD, SunOS was kept small and compact so that it performed well
on Sun workstations. By the late 1980s, Sun had developed new operating system
features that were contributed, along with features from BSD and Xenix, to

3.3 Kernels 107

AT&T’s Unix System V Release 4 (SVR4). As SVR4 became the new Unix stan-
dard, Sun created a new kernel and operating system based on it: SunOS 5. Sun
marketing called this Solaris 2.0 and back-named prior SunOS as Solaris 1.0. The
engineers, however, kept the SunOS name in the kernel.

Sun kernel developments, especially those related to performance, include the
following:

� NFS: The NFS protocol allows files to be shared over a network and used
transparently as part of the global file system tree (mounted). NFS is in pop-
ular use today as versions 3 and 4, each of which has introduced many perfor-
mance improvements.

� VFS: The virtual file system (VFS) is an abstraction and interface that allows
multiple file systems to easily coexist. Sun initially created it so that NFS
and UFS could coexist. VFS is covered in Chapter 8, File Systems.

� Page cache: This caches virtual memory pages and has been the primary file
system cache for most operating systems since its introduction (the ZFS ARC
is an exception). It was introduced in SunOS 4 during a virtual memory
rewrite, which also supported shared pages. See Chapter 8, File Systems, for
more on the page cache.

� Memory-mapped files: can be used to reduce the overhead of file I/O and
were introduced by the SunOS virtual memory rewrite for SVR4.

� RPC: the remote procedure call interface.

� NIS: Network Information Services is a simple flat-topology framework for
sharing information over a network, including the passwd and hosts files. It
was commonly used for many years but is now giving way to LDAP.

� CacheFS: The caching file system, introduced in Solaris 2.4 (1994), was used
to improve performance when accessing slow NFS servers. Since then, the
performance of NFS servers has improved to the point where CacheFS is no
longer commonly used or considered.

� Fully preemptable kernel: An early Sun differentiator was its fully pre-
emptable kernel, ensuring low latency for high-priority work, including real-
time work.

� Scheduler classes: Multiple scheduler classes are provided for tuning the
performance of different classes of workloads. These include time-sharing
(TS), interactive (IA), real-time (RT), system (SYS), fixed (FX), and fair-share
scheduler (FSS). See Chapter 6, CPUs.

108 Chapter 3 � Operating Systems

� Multiprocessor support: In the early 1990s, Sun invested heavily in multi-
processor operating system support, developing kernel support for both asym-
metric and symmetric multiprocessing (ASMP and SMP) [Mauro 01].

� Slab allocator: Replacing the SVR4 buddy allocator, the kernel slab alloca-
tor provided better performance via per-CPU caches of preallocated buffers
that could be quickly reused. This allocator type, and its derivatives, has
become the standard for operating systems.

� Crash analysis: Sun developed a mature kernel crash dump analysis frame-
work that is enabled by default for all systems and includes the modular
debugger (mdb(1)) for crash dump, kernel, and application analysis.

� M:N thread scheduling: This implemented an additional object between
threads and processes for the purpose of efficient thread scheduling. This
object was called a lightweight process (LWP), which could have its own user-
level scheduling behavior that differed from the kernel scheduler. Sun’s
implementation was later found to have issues and not worth the complexity
[Cantrill 96]. It was removed in Solaris 9, but the terminology (LWP) and
some data structures are left over in some parts of Solaris.

� STREAMS network stack: Sun built its TCP/IP network stack on the
AT&T STREAMS interface, which provided communications between user-
space and kernel-space. It eventually did not scale with faster networks, and
by Solaris 10 much of the STREAMS plumbing had been removed.

� 64-bit support: The Solaris 7 kernel (1998) provided support for 64-bit pro-
cessors.

� Lock statistics: Lock performance statistics were introduced in Solaris 7.

� MPSS: Multiple page size support allows the OS to use different-size mem-
ory pages provided by the processor, including large (or huge) pages, improv-
ing efficiency of memory operations.

� MPO: Memory Placement Optimization was added to Solaris 9 to improve
how memory was allocated with respect to processor architecture (locality),
which can significantly improve memory access performance.

� Resource controls: a facility for limiting various resource usage by pro-
cesses or groups of processes called projects (later used by Zones).

� FireEngine: a set of high-performance TCP/IP stack enhancements for
Solaris 10, including vertical perimeters to improve CPU and memory locality
of packet processing, and IP fanout for spreading load across CPUs.

� DTrace: a static and dynamic tracing framework and tool, providing virtu-
ally unlimited observability of the entire software stack, in real time and in
production. It was released for Solaris 10 in 2005 and was the first widely

3.3 Kernels 109

successful implementation of dynamic tracing. It has been ported to other
operating systems, including Mac OS X and FreeBSD, and is currently being
ported to Linux. DTrace is covered in Chapter 4, Observability Tools.

� Zones: an OS-based virtualization technology that allows instances of operat-
ing systems to be created that share the same host kernel. It was released for
Solaris 10, but the concept was first accomplished by FreeBSD jails in 1998.
Compared to other virtualization technologies, these are lightweight and pro-
vide high performance. See Chapter 11, Cloud Computing.

� Crossbow: an architecture for providing high-performing virtualized net-
work interfaces and network bandwidth resource controls. This feature has
been crucial for building high-performing and reliable clouds.

� ZFS: The ZFS file system provided enterprise-level features and was released
with Solaris 10 update 1 and also as open source. It is now available for other
operating systems and is the basis for many filer appliances. See Chapter 8,
File Systems.

Many of these features have been ported or reimplemented for Linux, and some
are still in development.

Under pressure from Linux, Sun open-sourced Solaris in 2005 as the OpenSolaris
project. It remained open until Oracle purchased Sun in 2010 and stopped releas-
ing source code updates. The last released version of OpenSolaris, which mirrored
the development version of Solaris 11, became the basis of the open-source illumos
kernel. Today there are several operating systems based on the illumos kernel,
including Joyent’s SmartOS, which is used for many of the Solaris-based examples
in this book.

3.3.3 Linux-Based

Linux was created in 1991 by Linus Torvalds as a free operating system for Intel
personal computers. He announced the project in a Usenet post:

I’m doing a (free) operating system (just a hobby, won’t be big and professional like
gnu) for 386(486) AT clones. This has been brewing since April, and is starting to get
ready. I’d like any feedback on things people like/dislike in minix, as my OS resembles
it somewhat (same physical layout of the file-system (due to practical reasons) among
other things).

This refers to the MINIX operating system, which was being developed as a free
and small (mini) version of Unix for small computers. BSD was also aiming to pro-
vide a free Unix version although at the time had legal troubles.

110 Chapter 3 � Operating Systems

The Linux kernel was developed upon general ideas from many ancestors,
including

� Unix (and Multics): operating system layers, system calls, multitasking,
processes, process priorities, virtual memory, global file system, file system
permissions, device files, buffer cache

� BSD: paged virtual memory, demand paging, fast file system (FFS), TCP/IP
network stack, sockets

� Solaris: VFS, NFS, page cache, unified page cache, slab allocator, and (in
progress) ZFS and DTrace

� Plan 9: resource forks (rfork), for creating different levels of sharing between
processes and threads (tasks)

Linux kernel features, especially those related to performance, include the fol-
lowing. Many of these include the Linux kernel version where they were first
introduced.

� CPU scheduling classes: Various advanced CPU scheduling algorithms have
been developed, including scheduling domains (2.6.7) to make better decisions
regarding non-uniform memory access (NUMA). See Chapter 6, CPUs.

� I/O scheduling classes: Different block I/O scheduling algorithms have
been developed, including deadline (2.5.39), anticipatory (2.5.75), and com-
pletely fair queueing (CFQ) (2.6.6). See Chapter 9, Disks.

� TCP congestion: Newer TCP congestion algorithms are supported by the
Linux kernel, which allows them to be selected as needed. There have also
been numerous TCP enhancements. See Chapter 10, Network.

� Overcommit: Along with the out-of-memory (OOM) killer, this is a strategy
to do more with less main memory. See Chapter 7, Memory.

� Futex (2.5.7): Short for fast user-space mutex, this is used to provide high-
performing user-level synchronization primitives.

� Huge pages (2.5.36): This provides support for preallocated large memory
pages by the kernel and the memory management unit (MMU). See Chapter 7,
Memory.

� OProfile (2.5.43): a system profiler for studying CPU usage and other
events, for both the kernel and applications.

� RCU (2.5.43): The kernel provides a read-copy update synchronization mech-
anism that allows multiple reads to occur concurrently with updates, improv-
ing performance and scalability for data that is mostly read.

3.3 Kernels 111

� epoll (2.5.46): a system call for efficiently waiting for I/O across many open
file descriptors, which improves the performance of server applications.

� Modular I/O scheduling (2.6.10): Linux provides pluggable scheduling algo-
rithms for scheduling block device I/O. See Chapter 9, Disks.

� DebugFS (2.6.11): a simple unstructured interface for the kernel to expose
data to user level, which is used by some performance tools.

� Cpusets (2.6.12): exclusive CPUs grouping for processes.

� Voluntary kernel preemption (2.6.13): This process provides low-latency
scheduling without the complexity of full preemption.

� inotify (2.6.13): a framework for monitoring file system events.

� blktrace (2.6.17): a framework and tool for the tracing of block I/O events
(later migrated into tracepoints).

� splice (2.6.17): a system call to move data quickly between file descriptors
and pipes, without a trip through user-space.

� Delay accounting (2.6.18): tracks per-task delay states. See Chapter 4,
Observability Tools.

� IO accounting (2.6.20): measures various storage I/O statistics per process.

� DynTicks (2.6.21): Dynamic ticks allow the kernel timer interrupt (clock) to
not fire unless necessary (tickless), saving CPU resources and power.

� SLUB (2.6.22): a new and simplified version of the slab memory allocator.

� CFS (2.6.23): completely fair scheduler. See Chapter 6, CPUs.

� cgroups (2.6.24): Control groups allow resource usage to be measured and
limited for groups of processes.

� latencytop (2.6.25): instrumentation and a tool for observing sources of
latency in the operating system.

� Tracepoints (2.6.28): static kernel tracepoints (aka static probes) that
instrument logical execution points in the kernel, for use by tracing tools
(previously kernel markers). Tracing tools are introduced in Chapter 4,
Observability Tools.

� perf (2.6.31): Linux Performance Events (perf) is a set of tools for perfor-
mance observability, including CPU performance counter profiling and static
and dynamic tracing. See Chapter 6, CPUs, for an introduction.

� Transparent huge pages (2.6.38): This is a framework to allow easy use of
huge (large) memory pages. See Chapter 7, Memory.

� Uprobes (3.5): the infrastructure for dynamic tracing of user-level software,
used by other tools (perf, SystemTap, etc.).

112 Chapter 3 � Operating Systems

� KVM: The Kernel-based Virtual Machine (KVM) technology was developed
for Linux by Qumranet, which was purchased by Red Hat in 2008. KVM
allows virtual operating system instances to be created, running their own
kernel. See Chapter 11, Cloud Computing.

Some of these features, including epoll and KVM, have been ported or reimple-
mented for Solaris-based systems.

Linux has also indirectly contributed to many other operating systems by its
vast support for device drivers and the push to have them open-sourced.

3.3.4 Differences

While they are both Unix descendants and share the same operating system con-
cepts, the Linux and Solaris-based kernels do differ in many ways, both large and
small. There is no neat and simple way to summarize the complexity.

The key advantages of Linux-based systems come largely not from the kernel or
operating system proper, but from application package support, device driver sup-
port, the large community, and the fact that it is open source. Most Solaris-based
kernels are also open source (Oracle Solaris currently is not), but they do not have
the same extensive driver support (which can be a problem for laptop use).

Solaris-based systems provide ZFS for an enterprise-level file system, and DTrace
for virtually unlimited observability. While these are being ported to Linux, they are
already available and mature on Solaris-based systems, where they have been used
in production since 2003. Linux does have a number of newer accounting and trac-
ing frameworks that provide extended observability (described in the next chapter),
but they may not yet be commonly enabled or installed by default.

Solaris-based systems also have kernel crash dumps enabled by default, so that
kernel panics can be analyzed and solved from the first occurrence.

Apart from these major differences, there are many, many minor differences
between the kernels, especially with performance optimizations. To understand how
these may affect you, analyze the intended workload to see which will be relevant.

As an example of a minor difference, the POSIX fadvise() call is currently
implemented on Linux but ignored by Solaris-based kernels. This can be used by
applications to inform the kernel not to cache data associated with a file descrip-
tor and therefore allow the Linux kernel to cache more efficiently, improving per-
formance. Here is an example of its usage, from the MySQL database:

storage/innobase/row/row0merge.c:
 /* Each block is read exactly once. Free up the file cache. */
 posix_fadvise(fd, ofs, sizeof *buf, POSIX_FADV_DONTNEED);

3.5 References 113

Minor differences like these can change quickly, and this particular issue may
be fixed in Solaris-based kernels by the time you are reading this book.2

While there are minor differences in delivered performance depending on the
workload, the largest difference may be performance observability, particularly
support for dynamic tracing. If one kernel supports you finding 10x and greater
wins in your production environment, any 10% or so differences found earlier may
not look as important.

Observability tools are covered in the next chapter.

3.4 Exercises

1. Answer the following questions about OS terminology:

� What is the difference between a process, a thread, and a task?

� What is a context switch?

� What is the difference between paging and swapping?

� What is the difference between I/O-bound and CPU-bound workloads?

2. Answer the following conceptual questions:

� Describe the role of the kernel.

� Describe the role of system calls.

� Describe the role of VFS and its location in the I/O stack.

3. Answer the following deeper questions:

� List the reasons why a thread would leave the CPU.

� Describe the advantages of virtual memory and demand paging.

3.5 References

[Graham 68] Graham, B. “Protection in an Information Processing Utility,”
Communications of the ACM, May 1968.

[Ritchie 74] Ritchie, D. M., and K. Thompson. “The UNIX Time-Sharing
System,” Communications of the ACM 17, no. 7 (July 1974),
pp. 365–75.

[Thompson 78] Thompson, K. UNIX Implementation. Bell Laboratories, 1978.

2. A ticket has been filed for this and is assigned to me.

114 Chapter 3 � Operating Systems

[Bach 86] Bach, M. J. The Design of the UNIX Operating System. Pren-
tice Hall, 1986.

[Cantrill 96] Cantrill, B. Runtime Performance Analysis of the M-to-N
Scheduling Model (Thesis). Brown University, 1996.

[Mauro 01] Mauro, J., and R. McDougall. Solaris Internals: Core Kernel
Architecture. Prentice Hall, 2001.

[Corbet 05] Corbet, J., A. Rubini, and G. Kroah-Hartman. Linux Device
Drivers, 3rd Edition. O’Reilly, 2005.

[McDougall 06a] McDougall, R., and J. Mauro. Solaris Internals: Solaris 10
and OpenSolaris Kernel Architecture. Prentice Hall, 2006.

[RFC 1589] A Kernel Model for Precision Timekeeping, 1994.

Kernel internals is a fascinating and extensive topic. This chapter summarized
only the essentials. In addition to the sources mentioned in this chapter, the fol-
lowing are also excellent references for kernel internals:

[Goodheart 94] Goodheart, B., and J. Cox. The Magic Garden Explained: The
Internals of UNIX System V Release 4, an Open Systems
Design. Prentice Hall, 1994.

[Vahalia 96] Vahalia, U. UNIX Internals: The New Frontiers. Prentice Hall,
1996.

[Neville-Neil 04] Neville-Neil, G. V., and M. K. McKusick. The Design and
Implementation of the FreeBSD Operating System. Addison-
Wesley, 2004.

[Bovet 05] Bovet, D., and M. Cesati. Understanding the Linux Kernel,
3rd Edition. O’Reilly, 2005.

[Singh 06] Singh, A. Mac OS X Internals: A Systems Approach. Addison-
Wesley, 2006.

[Love 10] Love, R. Linux Kernel Development, 3rd Edition. Addison-
Wesley, 2010.

115

4
Observability Tools

Operating systems have historically provided many tools for observing system soft-
ware and hardware components. To the newcomer, the wide range of available
tools suggested that everything—or at least everything important—could be
observed. In reality, there were many gaps, and systems performance experts
became skilled in the art of inference and interpretation: figuring out activity from
indirect tools and statistics.

For example, network packets could be examined individually (sniffing), but
disk I/O could not (at least, not remotely easily). Conversely, disk utilization (per-
cent busy) was easily observable from operating system tools, but network inter-
face utilization was not.

With the addition of tracing frameworks, especially dynamic tracing, every-
thing can now be observed, and virtually any activity can be observed directly. This
has had a profound effect on systems performance, making it possible to create
hundreds of new observability tools (the potential number is unlimited).

This chapter describes the types of operating system observability tools, includ-
ing key examples, and the frameworks upon which they are built. The focus here is
the frameworks, including /proc, kstat, /sys, DTrace, and SystemTap. Many more
tools that use these frameworks are introduced in later chapters, including Linux
Performance Events (LPE) in Chapter 6, CPUs.

116 Chapter 4 � Observability Tools

4.1 Tool Types

Performance observability tools can be categorized as providing system-wide or per-
process observability, and most are based on either counters or tracing. These attri-
butes are shown in Figure 4.1, along with tool examples.

Some tools fit in more than one quadrant; for example, top(1) also has a
system-wide summary, and DTrace also has per-process capabilities.

There are also performance tools that are based on profiling. These observe
activity by taking a series of snapshots either system-wide or per process.

The following sections summarize tools that use counters, tracing, and profiling
as well as those that perform monitoring.

4.1.1 Counters

Kernels maintain various statistics, called counters, for counting events. They are
usually implemented as unsigned integers that are incremented when events
occur. For example, there are counters for the number of network packets received,
disk I/O issued, and system calls performed.

Counters are considered “free” to use since they are enabled by default and
maintained continually by the kernel. The only additional cost when using them is
the act of reading their values from user-land (which should be negligible). The fol-
lowing example tools read these system-wide or per process.

Figure 4-1 Observability tool types

4.1 Tool Types 117

System-Wide

These tools examine system-wide activity in the context of system software or
hardware resources, using kernel counters. Examples are

� vmstat: virtual and physical memory statistics, system-wide

� mpstat: per-CPU usage

� iostat: per-disk I/O usage, reported from the block device interface

� netstat: network interface statistics, TCP/IP stack statistics, and some per-
connection statistics

� sar: various statistics; can also archive them for historical reporting

These tools are typically viewable by all users on the system (non-root). Their sta-
tistics are also commonly graphed by monitoring software.

Many follow a usage convention where they accept an optional interval and
count, for example, vmstat(8) with an interval of one second and an output count
of three:

The first line of output is the summary-since-boot, which shows averages for the
entire time the system has been up. The subsequent lines are the one-second inter-
val summaries, showing current activity. At least, this is the intent: this Linux ver-
sion mixes summary-since-boot and current values for the first line.

Per-Process

These tools are process-oriented and use counters that the kernel maintains for
each process. Examples are

� ps: process status, shows various process statistics, including memory and
CPU usage.

� top: shows top processes, sorted by one of the statistics such as CPU usage.
Solaris-based systems provide prstat(1M) for this purpose.

� pmap: lists process memory segments with usage statistics.

These tools typically read statistics from the /proc file system.

$ vmstat 1 3
procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu----
 r b swpd free buff cache si so bi bo in cs us sy id wa
 4 0 0 34455620 111396 13438564 0 0 0 5 1 2 0 0 100 0
 4 0 0 34458684 111396 13438588 0 0 0 0 2223 15198 13 11 76 0
 4 0 0 34456468 111396 13438588 0 0 0 0 1940 15142 15 11 74 0

118 Chapter 4 � Observability Tools

4.1.2 Tracing

Tracing collects per-event data for analysis. Tracing frameworks are not typically
enabled by default, since tracing incurs CPU overhead to capture the data and can
require significant storage to save it. These overheads can slow the target of trac-
ing and need to be accounted for when interpreting measured times.

Logging, including the system log, can be thought of as low-frequency tracing
that is enabled by default. Logging includes per-event data, although usually only
for infrequent events such as errors and warnings.

The following are examples of system-wide and per-process tracing tools.

System-Wide

These tracing tools examine system-wide activity in the context of system soft-
ware or hardware resources, using kernel tracing facilities. Examples are

� tcpdump: network packet tracing (uses libpcap)

� snoop: network packet tracing for Solaris-based systems

� blktrace: block I/O tracing (Linux)

� iosnoop: block I/O tracing (DTrace-based)

� execsnoop: tracing of new processes (DTrace-based)

� dtruss: system-wide buffered syscall tracing (DTrace-based)

� DTrace: tracing of kernel internals and the usage of any resource (not just
network or block I/O), using static and dynamic tracing

� SystemTap: tracing of kernel internals and the usage of any resource, using
static and dynamic tracing

� perf: Linux Performance Events, tracing static and dynamic probes

As DTrace and SystemTap are programming environments, system-wide tracing
tools can be built upon them, including the few included in this list. More exam-
ples are provided throughout this book.

Per-Process

These tracing tools are process-oriented, as are the operating system frameworks
on which they are based. Examples are

� strace: system call tracing for Linux-based systems

� truss: system call tracing for Solaris-based systems

4.1 Tool Types 119

� gdb: a source-level debugger, commonly used on Linux-based systems

� mdb: an extensible debugger for Solaris-based systems

The debuggers can examine per-event data, but they must do so by stopping and
starting the execution of the target.

Tools such as DTrace, SystemTap, and perf all support a mode of execution
where they can examine a single process only, although they are better described
as system-wide tools.

4.1.3 Profiling

Profiling characterizes the target by collecting a set of samples or snapshots of its
behavior. CPU usage is a common example, where samples are taken of the pro-
gram counter or stack trace to characterize the code paths that are consuming
CPU cycles. These samples are usually collected at a fixed rate, such as 100 or
1,000 Hz (cycles per second) across all CPUs. Profiling tools, or profilers, some-
times vary this rate slightly to avoid sampling in lockstep with target activity,
which could lead to over- or undercounting.

Profiling can also be based on untimed hardware events, such as CPU hard-
ware cache misses or bus activity. It can also show which code paths are responsi-
ble, information that can especially help developers optimize their code for the
usage of system resources.

System-Wide and Per-Process

Here are some examples of profilers, all of which perform timer- and hardware-
cache-based profiling:

� oprofile: Linux system profiling

� perf: a Linux performance toolkit, which includes profiling subcommands

� DTrace: programmatic profiling, timer-based using its profile provider,
and hardware-event-based using its cpc provider

� SystemTap: programmatic profiling, timer-based using its timer tapset, and
hardware-event-based using its perf tapset

� cachegrind: from the valgrind toolkit, can profile hardware cache usage
and be visualized using kcachegrind

� Intel VTune Amplifier XE: Linux and Windows profiling, with a graphical
interface including source browsing

� Oracle Solaris Studio: Solaris and Linux profiling with its Performance
Analyzer, which has a graphical interface including source browsing

120 Chapter 4 � Observability Tools

Programming languages often have their own special-purpose profilers that can
inspect language context.

See Chapter 6, CPUs, for more about profiling tools.

4.1.4 Monitoring (sar)

Monitoring was introduced in Chapter 2, Methodology. The most commonly used
tool for monitoring a single operating system host is the system activity reporter,
sar(1), originating from AT&T Unix. sar(1) is counter-based and has an agent
that executes at scheduled times (via cron) to record the state of system counters.
The sar(1) tool allows these to be viewed at the command line, for example:

By default, sar(1) reads its statistics archive (if enabled) to print recent his-
toric statistics. You can specify an optional interval and count for it to examine cur-
rent activity at the rate specified.

Specific uses of sar(1) are described later in this book; see Chapters 6, 7, 8, 9,
and 10. Appendix C is a summary of the sar(1) options.

While sar(1) can report many statistics, it may not cover all you really need,
and those it does provide have at times been misleading (especially on Solaris-
based systems [McDougall 06b]). Alternatives have been developed, such as Sys-
tem Data Recorder and Collectl.

In Linux, sar(1) is provided via the sysstat package. Third-party monitoring
products are often built on sar(1), or the same observability statistics it uses.

4.2 Observability Sources

The sections that follow describe various interfaces and frameworks that provide
the statistics and data for observability tools. They are summarized in Table 4.1.

The main sources of systems performance statistics are covered next: /proc, /sys,
and kstat. Delay accounting and microstate accounting are then described, and
other sources are summarized. After these, the DTrace and SystemTap tools are
introduced, which are built upon some of these frameworks.

sar
Linux 3.2.6-3.fc16.x86_64 (web100) 04/15/2013 _x86_64_ (16 CPU)
05:00:00 CPU %user %nice %system %iowait %steal %idle
05:10:00 all 12.61 0.00 4.58 0.00 0.00 82.80
05:20:00 all 21.62 0.00 9.59 0.93 0.00 67.86
05:30:00 all 23.65 0.00 9.61 3.58 0.00 63.17
05:40:00 all 28.95 0.00 8.96 0.04 0.00 62.05
05:50:00 all 29.54 0.00 9.32 0.19 0.00 60.95
Average: all 23.27 0.00 8.41 0.95 0.00 67.37

4.2 Observability Sources 121

4.2.1 /proc

This is a file system interface for kernel statistics. /proc contains a number of
directories, where each directory is named after the process ID for the process it
represents. These directories contain a number of files containing information and
statistics about each process, mapped from kernel data structures. On Linux, there
are additional files in /proc for system-wide statistics.

/proc is dynamically created by the kernel and is not backed by storage devices
(it runs in-memory). It is mostly read-only, providing statistics for observability
tools. Some files are writeable, for controlling process and kernel behavior.

The file system interface is convenient: it’s an intuitive framework for exposing
kernel statistics to user-land via the directory tree and has a well-known program-
ming interface via the POSIX file system calls: open(), read(), close(). The
file system also provides user-level security, through use of file access permissions.

The following shows how per-process statistics are read by top(1), traced using
strace(1):

This has opened a file called stat in a directory named after the process ID, and
then read the file contents.

top(1) repeats this for all active processes on the system. On some systems,
especially those with many processes, the overhead from performing these can
become noticeable, especially for versions of top(1) that repeat this sequence for

Table 4.1 Observability Sources

Type Linux Solaris

Per-process counters /proc /proc, lxproc

System-wide counters /proc, /sys kstat

Device driver and debug info /sys kstat

Per-process tracing ptrace, uprobes procfs, dtrace

CPU performance counters perf_event libcpc

Network tracing libpcap libdlpi, libpcap

Per-thread latency metrics delay accounting microstate accounting

System-wide tracing tracepoints, kprobes, ftrace dtrace

stat("/proc/14704", {st_mode=S_IFDIR|0555, st_size=0, ...}) = 0
open("/proc/14704/stat", O_RDONLY) = 4
read(4, "14704 (sshd) S 1 14704 14704 0 -"..., 1023) = 232
close(4)

122 Chapter 4 � Observability Tools

every process on every screen update. This can lead to a situation where top(1)
reports that top(1) itself is the highest CPU consumer!

The file system type for /proc on Linux is “proc” and for Solaris-based systems it
is “procfs.”

Linux

Various files are provided in /proc for per-process statistics. Here is an example of
those that may be available:

The exact list of files available depends on the kernel version and CONFIG
options.

Those related to per-process performance observability include

� limits: in-effect resource limits

� maps: mapped memory regions

� sched: various CPU scheduler statistics

� schedstat: CPU runtime, latency, and time slices

� smaps: mapped memory regions with usage statistics

� stat: process status and statistics, including total CPU and memory usage

� statm: memory usage summary in units of pages

� status: stat and statm information, human-readable

� task: directory of per-task statistics

Linux has also extended /proc to include system-wide statistics, contained in
these additional files and directories:

$ ls -F /proc/28712
attr/ cpuset io mountinfo oom_score sessionid syscall
auxv cwd@ latency mounts pagemap smaps task/
cgroup environ limits mountstats personality stack wchan
clear_refs exe@ loginuid net/ root@ stat
cmdline fd/ maps numa_maps sched statm
coredump_filter fdinfo/ mem oom_adj schedstat status

$ cd /proc; ls -Fd [a-z]*
acpi/ dma kallsyms mdstat schedstat timer_list
buddyinfo driver/ kcore meminfo scsi/ timer_stats
bus/ execdomains keys misc self@ tty/
cgroups fb key-users modules slabinfo uptime
cmdline filesystems kmsg mounts@ softirqs version
consoles fs/ kpagecount mtrr stat vmallocinfo
cpuinfo interrupts kpageflags net@ swaps vmstat

4.2 Observability Sources 123

System-wide files related to performance observability include

� cpuinfo: physical processor information, including every virtual CPU,
model name, clock speed, and cache sizes.

� diskstats: disk I/O statistics for all disk devices

� interrupts: interrupt counters per CPU

� loadavg: load averages

� meminfo: system memory usage breakdowns

� net/dev: network interface statistics

� net/tcp: active TCP socket information

� schedstat: system-wide CPU scheduler statistics

� self: a symlink to the current process ID directory, for convenience

� slabinfo: kernel slab allocator cache statistics

� stat: a summary of kernel and system resource statistics: CPUs, disks, pag-
ing, swap, processes

� zoneinfo: memory zone information

These are read by system-wide tools. For example, here’s vmstat(8) reading /proc,
as traced by strace(1):

/proc files are usually text formatted, allowing them to be read easily from the
command line and processed by shell scripting tools. For example:

crypto iomem latency_stats pagetypeinfo sys/ zoneinfo
devices ioports loadavg partitions sysrq-trigger
diskstats irq/ locks sched_debug sysvipc/

open("/proc/meminfo", O_RDONLY) = 3
lseek(3, 0, SEEK_SET) = 0
read(3, "MemTotal: 889484 kB\nMemF"..., 2047) = 1170
open("/proc/stat", O_RDONLY) = 4
read(4, "cpu 14901 0 18094 102149804 131"..., 65535) = 804
open("/proc/vmstat", O_RDONLY) = 5
lseek(5, 0, SEEK_SET) = 0
read(5, "nr_free_pages 160568\nnr_inactive"..., 2047) = 1998

$ cat /proc/meminfo
MemTotal: 889484 kB
MemFree: 636908 kB
Buffers: 125684 kB
Cached: 63944 kB

continues

124 Chapter 4 � Observability Tools

While this is convenient, it does add overhead for the kernel to encode the statis-
tics as text, and for any user-land tool that then processes the text.

The contents of /proc are documented in the proc(5) man page and in the
Linux kernel documentation: Documentation/filesystems/proc.txt. Some parts have
extended documentation, such as diskstats in Documentation/iostats.txt and
scheduler stats in Documentation/scheduler/sched-stats.txt. Apart from the docu-
mentation, you can also study the kernel source code to understand the exact ori-
gin of all items in /proc. It can also be helpful to read the source to the tools that
consume them.

Some of the /proc entries depend on CONFIG options: schedstats are enabled
with CONFIG_SCHEDSTATS, and sched with CONFIG_SCHED_DEBUG.

Solaris

On Solaris-based systems, /proc contains only process status statistics. System-
wide observability is provided via other frameworks, mostly kstat.

Here is a list of files in a /proc process directory:

Files related to performance observability include

� map: virtual address space mappings

� psinfo: miscellaneous process information, including CPU and memory
usage

� status: process state information

� usage: extended process activity statistics, including process microstates,
fault, block, context switch, and syscall counters

� lstatus: similar to status, but containing statistics for each thread

� lpsinfo: similar to psinfo, but containing statistics for each thread

� lusage: similar to usage, but containing statistics for each thread

SwapCached: 0 kB
Active: 119168 kB
[...]
$ grep Mem /proc/meminfo
MemTotal: 889484 kB
MemFree: 636908 kB

$ ls -F /proc/22449
as cred fd/ lstatus map path/ rmap status xmap
auxv ctl ldt lusage object/ priv root@ usage
contracts/ cwd@ lpsinfo lwp/ pagedata psinfo sigact watch

4.2 Observability Sources 125

� lwpsinfo: lightweight process (thread) statistics for the representative LWP
(currently most active); there are also lwpstatus and lwpsinfo files

� xmap: extended memory mapping statistics (undocumented)

The following truss(1) output shows prstat(1M) reading status for a process:

The format of these files is binary, as seen by the pread() data above. psinfo
contains

This can be read directly to a psinfo_t variable in user-space, where the mem-
bers can then be dereferenced. This makes the Solaris /proc more suitable for pro-
cessing by programs written in C, which can include the struct definitions from the
system-supplied header files.

open("/proc/4363/psinfo", O_RDONLY) = 5
pread(5, "01\0\0\001\0\0\0\v11\0\0".., 416, 0) = 416

typedef struct psinfo {
 int pr_flag; /* process flags (DEPRECATED: see below) */
 int pr_nlwp; /* number of active lwps in the process */
 int pr_nzomb; /* number of zombie lwps in the process */
 pid_t pr_pid; /* process id */
 pid_t pr_ppid; /* process id of parent */
 pid_t pr_pgid; /* process id of process group leader */
 pid_t pr_sid; /* session id */
 uid_t pr_uid; /* real user id */
 uid_t pr_euid; /* effective user id */
 gid_t pr_gid; /* real group id */
 gid_t pr_egid; /* effective group id */
 uintptr_t pr_addr; /* address of process */
 size_t pr_size; /* size of process image in Kbytes */
 size_t pr_rssize; /* resident set size in Kbytes */
 dev_t pr_ttydev; /* controlling tty device (or PRNODEV) */
 ushort_t pr_pctcpu; /* % of recent cpu time used by all lwps */
 ushort_t pr_pctmem; /* % of system memory used by process */
 timestruc_t pr_start; /* process start time, from the epoch */
 timestruc_t pr_time; /* cpu time for this process */
 timestruc_t pr_ctime; /* cpu time for reaped children */
 char pr_fname[PRFNSZ]; /* name of exec'ed file */
 char pr_psargs[PRARGSZ]; /* initial characters of arg list */
 int pr_wstat; /* if zombie, the wait() status */
 int pr_argc; /* initial argument count */
 uintptr_t pr_argv; /* address of initial argument vector */
 uintptr_t pr_envp; /* address of initial environment vector */
 char pr_dmodel; /* data model of the process */
 lwpsinfo_t pr_lwp; /* information for representative lwp */
 taskid_t pr_taskid; /* task id */
 projid_t pr_projid; /* project id */
 poolid_t pr_poolid; /* pool id */
 zoneid_t pr_zoneid; /* zone id */
 ctid_t pr_contract; /* process contract id */
 } psinfo_t;

126 Chapter 4 � Observability Tools

/proc is documented by the proc(4) man page, and by the sys/procfs.h header
file. As with Linux, if the kernel is open source, it can be helpful to study the ori-
gin of these statistics and how tools consume them.

lxproc

There has been the occasional need for a Linux-like /proc on Solaris-based sys-
tems. One reason is for porting Linux observability tools (e.g., htop(1)), which
can otherwise be difficult to port due to the /proc differences: from a text-based
interface to binary.

One solution is the lxproc file system: it provides a loosely Linux-compatible /proc
for Solaris-based systems and can be mounted in parallel with the standard procfs
/proc. For example, lxproc can be mounted on /lxproc, and applications that require
a Linux-like proc can be modified to load process information from /lxproc instead
of /proc—what should be a minor change.

Like Linux /proc, there are also directories for each process containing process
information.

lxproc may be incomplete and require additions: it is provided only as a best-
effort interface for simple Linux /proc users.

4.2.2 /sys

Linux provides a sysfs file system, mounted on /sys, which was introduced with
the 2.6 kernel to provide a directory-based structure for kernel statistics. This dif-
fers from /proc, which has evolved over time and had various system statistics
added to the top-level directory. sysfs was originally designed to provide device
driver statistics but has been extended to include any statistic type.

For example, the following lists /sys files for CPU 0 (truncated):

smartos# more /lxproc/meminfo
 total: used: free: shared: buffers: cached:
Mem: 1073741824 88395776 985346048 0 0 0
Swap: 2147483648 267640832 1879842816
MemTotal: 1048576 kB
MemFree: 962252 kB
[...]

$ find /sys/devices/system/cpu/cpu0 -type f
/sys/devices/system/cpu/cpu0/crash_notes
/sys/devices/system/cpu/cpu0/cache/index0/type
/sys/devices/system/cpu/cpu0/cache/index0/level
/sys/devices/system/cpu/cpu0/cache/index0/coherency_line_size
/sys/devices/system/cpu/cpu0/cache/index0/physical_line_partition

4.2 Observability Sources 127

Many of those listed provide information about the CPU hardware caches. The
following output shows their contents (using grep(1), so that the file name is
included with the output):

This shows that CPU 0 has access to two Level 1 caches, each 32 Kbytes, a Level 2
cache of 256 Kbytes, and a Level 3 cache of 8 Mbytes.

The /sys file system typically has tens of thousands of statistics in read-only
files, as well as many writeable files for changing kernel state. For example, CPUs
can be set to online or offline by writing “1” or “0” to a file named “online.” As with
reading statistics, setting state can be performed by using text strings at the com-
mand line (echo 1 > filename), rather than a binary interface.

4.2.3 kstat

Solaris-based systems have a kernel statistics (kstat) framework used by system-
wide observability tools. kstat includes statistics for most resources, including
CPUs, disks, network interfaces, memory, and many software components in the
kernel. A typical system has tens of thousands of statistics available from kstat.

Unlike /proc or /sys, there is no pseudo file system for kstat, and it is read
from /dev/kstat via ioctl(). This is usually performed via the libkstat library,
which provides convenience functions, or via Sun::Solaris::Kstat, a Perl library for
the same purpose (although it is being phased out in some distributions in favor of

/sys/devices/system/cpu/cpu0/cache/index0/ways_of_associativity
/sys/devices/system/cpu/cpu0/cache/index0/number_of_sets
/sys/devices/system/cpu/cpu0/cache/index0/size
/sys/devices/system/cpu/cpu0/cache/index0/shared_cpu_map
/sys/devices/system/cpu/cpu0/cache/index0/shared_cpu_list
[...]
/sys/devices/system/cpu/cpu0/topology/physical_package_id
/sys/devices/system/cpu/cpu0/topology/core_id
/sys/devices/system/cpu/cpu0/topology/thread_siblings
/sys/devices/system/cpu/cpu0/topology/thread_siblings_list
/sys/devices/system/cpu/cpu0/topology/core_siblings
/sys/devices/system/cpu/cpu0/topology/core_siblings_list

$ grep . /sys/devices/system/cpu/cpu0/cache/index*/level
/sys/devices/system/cpu/cpu0/cache/index0/level:1
/sys/devices/system/cpu/cpu0/cache/index1/level:1
/sys/devices/system/cpu/cpu0/cache/index2/level:2
/sys/devices/system/cpu/cpu0/cache/index3/level:3
$ grep . /sys/devices/system/cpu/cpu0/cache/index*/size
/sys/devices/system/cpu/cpu0/cache/index0/size:32K
/sys/devices/system/cpu/cpu0/cache/index1/size:32K
/sys/devices/system/cpu/cpu0/cache/index2/size:256K
/sys/devices/system/cpu/cpu0/cache/index3/size:8192K

128 Chapter 4 � Observability Tools

libkstat). The kstat(1M) tool provides the statistics at the command line and can
be used with shell scripting.

kstats are structured as a four-tuple:

These are

� module: This usually refers to the kernel module that created the statistic,
such as sd for the SCSI disk driver, or zfs for the ZFS file system.

� instance: Some modules exist as multiple instances, such as an sd module
for each SCSI disk. The instance is an enumeration.

� name: This is a name for the group of statistics.

� statistic: This is the individual statistic name.

For example, the following reads the nproc statistic using kstat(1M) and spec-
ifying the full four-tuple:

This statistic shows the currently running number of processes. The -p option to
kstat(1M) was used to print parseable output (colon-separated). A blank field is
treated as a wildcard. Trailing colons can also be dropped. These rules together
allow the following to match and print all statistics from the system_misc group:

The avenrun* statistics are used to calculate the system load averages, as
reported by tools including uptime(1) and top(1).

module:instance:name:statistic

$ kstat -p unix:0:system_misc:nproc
unix:0:system_misc:nproc 94

$ kstat -p unix:0:system_misc
unix:0:system_misc:avenrun_15min 201
unix:0:system_misc:avenrun_1min 383
unix:0:system_misc:avenrun_5min 260
unix:0:system_misc:boot_time 1335893569
unix:0:system_misc:class misc
unix:0:system_misc:clk_intr 1560476763
unix:0:system_misc:crtime 0
unix:0:system_misc:deficit 0
unix:0:system_misc:lbolt 1560476763
unix:0:system_misc:ncpus 2
unix:0:system_misc:nproc 94
unix:0:system_misc:snaptime 15604804.5606589
unix:0:system_misc:vac 0

4.2 Observability Sources 129

Many statistics in kstat are cumulative. Instead of providing the current value,
they show the total since boot. For example:

This freemem statistic is incremented per second with the number of free pages.
This allows the average over time intervals to be calculated. The summary-since-
boot, as printed by many system-wide observability tools, can also be calculated by
dividing the current value by seconds since boot.

Another version of freemem provides the instantaneous value (unix:0:system_
pages:freemem). This mitigates a shortcoming in the cumulative version: it takes
at least one second to know the current value, so that would be the minimum time
for which a delta could be calculated.

Without any statistic name, kstat(1M) lists all statistics. For example, the fol-
lowing commands pipe the list of all statistics into grep(1) to search for those
containing freemem, and then wc(1) to count the number of total statistics:

The kstat statistics are not formally documented because they are considered an
unstable interface—subject to change whenever the kernel changes. To under-
stand what each does, the locations that increment them can be studied in the ker-
nel source (if available). For example, the cumulative freemem statistic originates
from the following kernel code:

$ kstat -p unix:0:vminfo:freemem
unix:0:vminfo:freemem 184882526123755

$ kstat -p | grep freemem
unix:0:system_pages:freemem 5962178
unix:0:vminfo:freemem 184893612065859
$ kstat -p | wc -l
 33195

usr/src/uts/common/sys/sysinfo.h:
typedef struct vminfo { /* (update freq) update action */
 uint64_t freemem; /* (1 sec) += freemem in pages */
 uint64_t swap_resv; /* (1 sec) += reserved swap in pages */
 uint64_t swap_alloc; /* (1 sec) += allocated swap in pages */
 uint64_t swap_avail; /* (1 sec) += unreserved swap in pages */
 uint64_t swap_free; /* (1 sec) += unallocated swap in pages */
 uint64_t updates; /* (1 sec) ++ */
} vminfo_t;

usr/src/uts/common/os/space.c:
vminfo_t vminfo; /* VM stats protected by sysinfolock mutex */

usr/src/uts/common/os/clock.c:
static void

continues

130 Chapter 4 � Observability Tools

The freemem statistic is incremented once per second in the kernel clock()
routine, by the value of a global called freemem. Locations that modify freemem
can be inspected to see all the code involved.

The source code to the existing system tools (if available) can also be studied for
example kstat usage.

4.2.4 Delay Accounting

Linux systems with the CONFIG_TASK_DELAY_ACCT option track time per
task in the following states:

� Scheduler latency: waiting for a turn on-CPU

� Block I/O: waiting for a block I/O to complete

� Swapping: waiting for paging (memory pressure)

� Memory reclaim: waiting for the memory reclaim routine

Technically, the scheduler latency statistic is sourced from schedstats (men-
tioned earlier, in /proc) but is exposed with the other delay accounting states. (It is
in struct sched_info, not struct task_delay_info.)

These statistics can be read by user-level tools using taskstats, which is a netlink-
based interface for fetching per-task and process statistics. The kernel source Docu-
mentation/accounting directory has both the documentation, delay-accounting.txt,
and an example consumer, getdelays.c:

clock(void)
{
[...]
 if (one_sec) {
[...]

 vminfo.freemem += freemem;

$./getdelays -dp 17451
print delayacct stats ON
PID 17451

CPU count real total virtual total delay total delay average
386 3452475144 31387115236 1253300657 3.247ms

IO count delay total delay average
 302 1535758266 5ms
SWAP count delay total delay average
 0 0 0ms
RECLAIM count delay total delay average
 0 0 0ms

4.2 Observability Sources 131

Times are in nanoseconds unless specified otherwise. This example was taken from a
heavily CPU-loaded system, and the process inspected was suffering scheduler latency.

4.2.5 Microstate Accounting

Solaris-based systems have per-thread and per-CPU microstate accounting, which
records a set of high-resolution times for predefined states. These were a vast
improvement of accuracy over the prior tick-based metrics and also provided addi-
tional states for performance analysis [McDougall 06b]. They are exposed to user-
level tools via kstat for per-CPU metrics and /proc for per-thread metrics.

The CPU microstates are shown as the usr, sys, and idl columns of
mpstat(1M) (see Chapter 6, CPUs). You can find them in the kernel code as CMS_
USER, CMS_SYSTEM, and CMS_IDLE.

The thread microstates are visible as the USR, SYS, . . . columns from prstat –m
and are summarized in Section 6.6.7, prstat of Chapter 6, CPUs.

4.2.6 Other Observability Sources

Various other observability sources include

� CPU performance counters: These are programmable hardware registers
that provide low-level performance information, including CPU cycle counts,
instruction counts, stall cycles, and so on. On Linux they are accessed via the
perf_events interface and the perf_event_open() syscall and are con-
sumed by tools including perf(1). On Solaris-based systems they are
accessed via libcpc and consumed by tools including cpustat(1M). For more
about these counters and tools, see Chapter 6, CPUs.

� Per-process tracing: This traces user-level software events, such as sys-
calls and function calls. It is usually expensive to perform, slowing the tar-
get. On Linux there is the ptrace() syscall for controlling process tracing,
which is used by strace(1) for tracing syscalls. Linux also has uprobes for
user-level dynamic tracing. Solaris-based systems trace syscalls using procfs
and the truss(1) tool and dynamic tracing via DTrace.

� Kernel tracing: On Linux, tracepoints provide static kernel probes (origi-
nally kernel makers), and kprobes provide dynamic probes. Both of these are
used by tracing tools such as ftrace, perf(1), DTrace, and SystemTap. On
Solaris-based systems, static and dynamic probes are provided by the dtrace
kernel module. Both DTrace and SystemTap, consumers of kernel tracing,
will be covered in the following sections, which also explain the terms static
and dynamic probes.

132 Chapter 4 � Observability Tools

� Network sniffing: These interfaces provide a way to capture packets from
network devices for detailed investigations into packet and protocol perfor-
mance. On Linux, sniffing is provided via the libpcap library and /proc/net/
dev and is consumed by the tcpdump(8) tool. On Solaris-based systems
sniffing is provided via the libdlpi library and /dev/net and is consumed by
the snoop(1M) tool. A port of libpcap and tcpdump(8) has also been devel-
oped for Solaris-based systems. There are overheads, both CPU and storage,
for capturing and examining all packets. See Chapter 10, Network, for more
about network sniffing.

� Process accounting: This dates back to mainframes and the need to bill
departments and users for their computer usage, based on the execution and
runtime of processes. It exists in some form for both Linux- and Solaris-based
systems and can sometimes be helpful for performance analysis at the pro-
cess level. For example, the atop(1) tool uses process accounting to catch
and display information from short-lived processes that would otherwise be
missed when taking snapshots of /proc [1].

� System calls: Some system or library calls may be available to provide some
performance metrics. These include getrusage(), a function call for pro-
cesses to get their own resource usage statistics, including user- and system-
time, faults, messages, and context switches. Solaris-based systems also have
swapctl(),a system function for swap device management and statistics
(Linux has /proc/swap).

If you are interested in how each of these works, you will find that documentation
is usually available, intended for the developer who is building tools upon these
interfaces.

And More

Depending on your kernel version and enabled options, even more observability
sources may be available. Some are mentioned in later chapters of this book.

Here are a few more:

� Linux: I/O accounting, blktrace, timer_stats, lockstat, debugfs

� Solaris: extended accounting, flow accounting, Solaris Auditing

One technique to find such sources is to read the kernel code you are interested in
observing and see what statistics or tracepoints have been placed there.

In some cases there may be no kernel statistics for what you are after. Apart
from dynamic tracing, covered next, you may find that debuggers can fetch kernel
variables to shed some light on an investigation. These include gdb(1) and

4.3 DTrace 133

mdb(1) (Solaris only). A similar and even more desperate approach is used by
tools that open /dev/mem or /dev/kmem to read kernel memory directly.

Multiple observability sources with different interfaces can be a burden to learn
and can be inefficient when their capabilities overlap. As DTrace has been part of
the Solaris kernel since 2003, there have been efforts to move some old tracing
frameworks to DTrace, and to serve all new tracing needs from it. This consolida-
tion has been working very well and has simplified tracing on Solaris-based sys-
tems. We can hope that this trend continues, and that the future for both kernels
brings fewer, yet more powerful, observability frameworks.

4.3 DTrace

DTrace is an observability framework that includes a programming language and
a tool. This section summarizes DTrace basics, including dynamic and static trac-
ing, probes, providers, D, actions, variables, one-liners, and scripting. It is intended
as a DTrace primer, providing you with enough background for understanding its
use later in this book, where it is used to extend performance observability on both
Solaris- and Linux-based systems.

DTrace can observe all user- and kernel-level code via instrumentation points
called probes. When probes are hit, arbitrary actions may be performed in its D
language. Actions can include counting events, recording timestamps, performing
calculations, printing values, and summarizing data. These actions can be per-
formed in real time, while tracing is still enabled.

As an example of using DTrace for dynamic tracing, the following instruments
the kernel ZFS (file system) spa_sync() function, showing the completion time
and duration in nanoseconds (illumos kernel):

The spa_sync() function flushes written data to the ZFS storage devices, caus-
ing bursts of disk I/O. It is of particular interest for performance analysis, as I/O

dtrace -n 'fbt:zfs:spa_sync:entry { self->start = timestamp; }
fbt:zfs:spa_sync:return /self->start/ { printf("%Y: %d ns",
walltimestamp, timestamp - self->start); self->start = 0; }'

dtrace: description 'fbt:zfs:spa_sync:entry ' matched 2 probes
CPU ID FUNCTION:NAME
 7 65353 spa_sync:return 2012 Oct 30 00:20:27: 63849335 ns
 12 65353 spa_sync:return 2012 Oct 30 00:20:32: 39754457 ns
 18 65353 spa_sync:return 2012 Oct 30 00:20:37: 261013562 ns
 8 65353 spa_sync:return 2012 Oct 30 00:20:42: 29800786 ns
 17 65353 spa_sync:return 2012 Oct 30 00:20:47: 250368664 ns
 20 65353 spa_sync:return 2012 Oct 30 00:20:52: 37450783 ns
 11 65353 spa_sync:return 2012 Oct 30 00:20:57: 56010162 ns
[...]

134 Chapter 4 � Observability Tools

can sometimes queue behind the issued disk I/O. Using DTrace, information about
the rate at which spa_sync() fires, and the duration, can be immediately seen
and studied. Thousands of other kernel functions can be studied in a similar way,
by either printing per-event details or summarizing them.

A key difference of DTrace from other tracing frameworks (e.g., syscall tracing)
is that DTrace is designed to be production-safe, with minimized performance
overhead. One way it does this is by use of per-CPU kernel buffers, which improve
memory locality, reduce cache coherency overheads, and can remove the need for
synchronization locks. These buffers are also used to pass data to user-land at a
gentle rate (by default, once per second), minimizing context switches. DTrace also
provides a set of actions that can summarize and filter data in-kernel, which also
reduces data overheads.

DTrace supports both static and dynamic tracing, each providing complemen-
tary functionality. Static probes have a documented and stable interface, and
dynamic probes allow virtually unlimited observability as needed.

4.3.1 Static and Dynamic Tracing

One way to understand static and dynamic tracing is to examine the source and
CPU instructions involved. Consider the following code from the kernel block
device interface (illumos), usr/src/uts/common/os/bio.c:

The DTRACE_IO1 macro is an example of a static probe, which is added to the
code before compilation. There is no visible example of dynamic probes in the
source code, since these are added after compilation while the software is running.

The compiled instructions for this function are (truncated)

/*
 * Mark I/O complete on a buffer, release it if I/O is asynchronous,
 * and wake up anyone waiting for it.
 */
void
biodone(struct buf *bp)
{
 if (bp->b_flags & B_STARTED) {

 DTRACE_IO1(done, struct buf *, bp);
 bp->b_flags &= ~B_STARTED;

 }
[...]

> biodone::dis
biodone: pushq %rbp
biodone+1: movq %rsp,%rbp
biodone+4: subq $0x20,%rsp
biodone+8: movq %rbx,-0x18(%rbp)

4.3 DTrace 135

When using dynamic tracing to probe the entry to the biodone() function, the
first instruction is changed:

The int instruction calls a soft interrupt, which is programmed to perform the
dynamic tracing action. When dynamic tracing is disabled, the instruction is
returned to its original state. This is live patching of the kernel address space, and
the technique used can vary between processor types.

Instructions are added only when dynamic tracing is enabled. When it is not
enabled, there are no additional instructions for instrumentation, and therefore no
probe effect. This is described as zero overhead when not in use. The overhead when
it is in use from the additional instructions is proportional to the rate at which the
probes fire: the rate of events that are traced, and the actions they perform.

DTrace can dynamically trace the entry and return of functions, and any
instruction in user-space. Since this dynamically builds probes from CPU instruc-
tions, which can vary between software releases, it is considered an unstable inter-
face. Any DTrace one-liners or scripts based on dynamic tracing may need
updating for newer releases of the software that they trace.

4.3.2 Probes

DTrace probes are named with a four-tuple:

The provider is the collection of related probes, similar to a software library. The
module and function are dynamically generated and specify the code location of the
probe. The name is the name of the probe itself.

biodone+0xc: movq %rdi,-0x8(%rbp)
biodone+0x10: movq %rdi,%rbx
biodone+0x13: movl (%rdi),%eax
biodone+0x15: testl $0x2000000,%eax
[...]

> biodone::dis
biodone: int $0x3
biodone+1: movq %rsp,%rbp
biodone+4: subq $0x20,%rsp
biodone+8: movq %rbx,-0x18(%rbp)
biodone+0xc: movq %rdi,-0x8(%rbp)
biodone+0x10: movq %rdi,%rbx
biodone+0x13: movl (%rdi),%eax
biodone+0x15: testl $0x2000000,%eax
[...]

provider:module:function:name

136 Chapter 4 � Observability Tools

When specifying these, wildcards (“*”) may be used. Leaving a field blank (“::”)
is equivalent to a wildcard (“:*:”). Blank left fields may also be dropped from the
probe specification (e.g., “:::BEGIN” == “BEGIN”).

For example:

is the start probe from the io provider. The module and function fields are left
blank, so these will match all locations of the start probe.

4.3.3 Providers

The DTrace providers available depend on your DTrace and operating system ver-
sion. They may include

� syscall: system call trap table

� vminfo: virtual memory statistics

� sysinfo: system statistics

� profile: sampling at arbitrary rates

� sched: kernel scheduling events

� proc: process-level events: create, exec, exit

� io: block device interface tracing (disk I/O)

� pid: user-level dynamic tracing

� tcp: TCP protocol events: connections, send and receive

� ip: IP protocol events: send and receive

� fbt: kernel-level dynamic tracing

There are many additional providers for higher-level languages: Java, JavaScript,
Node.js, Perl, Python, Ruby, Tcl, and others.

Many of the providers are implemented using static tracing, so that they have a
stable interface. It’s preferable to use these (over dynamic tracing) where possible,
so that your scripts work for different versions of the target software. The trade-off
is that visibility is limited in comparison, as only the essentials are promoted to
the stable interface, to minimize maintenance and the documentation burden.

io:::start

4.3 DTrace 137

4.3.4 Arguments

Probes can provide data via a set of variables called arguments. The use of argu-
ments depends on the provider.

For example, the syscall provider provides entry and return probes for each sys-
tem call. These set the following argument variables:

� Entry: arg0, ..., argN: arguments to system call

� Return: arg0 or arg1: return value; errno is also set

The fbt and pid providers set arguments similarly, allowing the data passed and
returned to kernel- or user-level functions to be examined.

To find out what the arguments are for each provider, refer to its documenta-
tion (you can also try dtrace(1) with the –lv options, which prints a summary).

4.3.5 D Language

The D language is awk-like and can be used in one-liners or scripts (the same as
awk). DTrace statements have the form

The action is a series of optional semicolon-delimited statements that are exe-
cuted when the probe fires. The predicate is an optional filtering expression.

For example, the statement

traces the exec-success probe from the proc provider and performs the printing
action trace(pid) if the process name is equal to "httpd". The exec-success
probe is commonly used to trace the creation of new processes and instruments a
successful exec() system call. The current process name is retrieved using the
built-in variable execname, and the current process ID via pid.

4.3.6 Built-in Variables

Built-in variables can be used in calculations and predicates and can be printed
using actions such as trace() and printf(). Commonly used built-ins are listed
in Table 4.2.

probe_description /predicate/ { action }

proc:::exec-success /execname == "httpd"/ { trace(pid); }

138 Chapter 4 � Observability Tools

4.3.7 Actions

Commonly used actions include those listed in Table 4.3.

Table 4.2 Commonly Used Built-in Variables

Variable Description

execname on-CPU process name (string)

uid on-CPU user ID

pid on-CPU process ID

timestamp current time, nanoseconds since boot

vtimestamp time thread was on-CPU, nanoseconds

arg0..N probe arguments (uint64_t)

args[0]..[N] probe arguments (typed)

curthread pointer to current thread kernel structure

probefunc function component of probe description (string)

probename name component of probe description (string)

curpsinfo current process information

Table 4.3 Commonly Used Actions

Action Description

trace(arg) print arg

printf(format, arg, ...) print formatted string

stringof(addr) return a string from a kernel address

copyinstr(addr) return a string from a user-space address (this requires the
kernel to perform a copy in from user-space to kernel-space)

stack(count) print kernel-level stack trace, truncated if a count is provided

ustack(count) print user-level stack trace, truncated if a count is provided

func(pc) return a kernel function name, from the kernel program
counter (pc)

ufunc(pc) return a user function name, from the user program coun-
ter (pc)

exit(status) exit DTrace and return status

trunc(@agg, count) truncate the aggregation, either fully (delete all keys) or to
the number of keys specified (count)

clear(@agg) delete values from an aggregation (keep keys)

printa(format, @agg) print aggregation, formatted

4.3 DTrace 139

The last three actions listed are for a special variable type called an aggregation.

4.3.8 Variable Types

Table 4.4 summarizes the types of variables, listed in order of usage preference
(aggregations are chosen first, then low to high overhead).

The thread-local variable has a per-thread scope. This allows data, such as time-
stamps, to be easily associated with a thread.

The clause-local variable is used for intermediate calculations and is valid only
during action clauses for the same probe description.

Multiple CPUs writing to the same scalar at the same time can lead to a cor-
rupt variable state, hence the “no.” It’s unlikely, but has happened, and has been
noticed for string scalars (leading to a corrupted string).

An aggregation is a special variable type that can be tallied per CPU and com-
bined later for passing to user-land. These have the lowest overhead and are used
for summarizing data in different ways.

Actions that populate aggregations are listed in Table 4.5.

Table 4.4 Variable Types and Their Overhead

Type Prefix Scope Overhead
Multi-
CPU Safe

Example
Assignment

Aggregation @ global low yes @x = count();

Aggregation
with keys

@[] global low yes @x[pid] =
count();

Clause-local this-> clause
instance

very low yes this->x = 1;

Thread-local self-> thread medium yes self->x = 1;

Scalar none global low–
medium

no x = 1;

Associative array none global medium–
high

no x[y] = 1;

Table 4.5 Aggregating Actions

Aggregating Action Description

count() count occurrences

sum(value) sum value

continues

140 Chapter 4 � Observability Tools

As an example of an aggregation and a histogram action, quantize(), the fol-
lowing shows the returned sizes for the read() syscall:

This one-liner gathers statistics while tracing and prints a summary when
dtrace ends, in this case, when Ctrl-C was typed. The first line of output,
dtrace: description . . . , is printed by default by dtrace, providing an indi-
cation of when tracing has begun.

The value column is the minimum size for the quantized range, and the count col-
umn is the occurrences for that range. The middle shows an ASCII representation of

min(value) record minimum of value

max(value) record maximum of value

quantize(value) record value as a power-of-two histogram

lquantize(value, min, max, step) record value as a linear histogram, with mini-
mum, maximum, and step provided

llquantize(value, factor, min_
magnitude, max_magnitude, steps)

record value as a hybrid log/linear histogram

dtrace -n 'syscall::read:return { @["rval (bytes)"] = quantize(arg0); }'
dtrace: description 'syscall::read:return ' matched 1 probe
^C
 rval (bytes)
 value ------------- Distribution ------------- count
 -1 | 0
 0 |@@@@@@@@@@@@@@ 447
 1 |@@@ 100
 2 | 5
 4 | 0
 8 | 2
 16 | 2
 32 |@@ 53
 64 | 1
 128 | 0
 256 | 0
 512 | 4
 1024 |@ 19
 2048 | 10
 4096 |@ 34
 8192 |@@@@ 130
 16384 |@@@@@@ 170
 32768 |@@@@ 125
 65536 |@@@@ 114
 131072 | 5
 262144 | 5
 524288 | 0

Table 4.5 Aggregating Actions (Continued)

Aggregating Action Description

4.3 DTrace 141

the distribution. In this case, the most frequently returned size was zero bytes, which
occurred 447 times. Many of the returned reads were between 8,192 and 131,071
bytes, with 170 in the 16,384 to 32,767 range. This bimodal distribution would not
have been noticed in a tool that reported only an average.

4.3.9 One-Liners

DTrace allows you to write concise and powerful one-liners like those I demon-
strated earlier. Following are some more examples.

Trace open() system calls, printing the process name and file path name:

Note that Oracle Solaris 11 significantly modified the system call trap table
(which is probed by DTrace to create the syscall provider), such that tracing
open() on that system becomes

Summarize CPU cross calls by process name:

Sample kernel-level stacks at 99 Hz:

Many more DTrace one-liners are used throughout this book and are listed in
Appendix D.

4.3.10 Scripting

DTrace statements can be saved to a file for execution, allowing much longer
DTrace programs to be written.

dtrace -n 'syscall::open:entry { printf("%s %s", execname, copyinstr(arg0)); }'

dtrace -n 'syscall::openat:entry { printf("%s %s", execname, copyinstr(arg1)); }'

dtrace -n 'sysinfo:::xcalls { @[execname] = count(); }'

dtrace -n 'profile:::profile-99 { @[stack()] = count(); }'

142 Chapter 4 � Observability Tools

For example, the bitesize.d script shows requested disk I/O sizes by process name:

Since this file begins with an interpreter line (#!), it can be made executable
and then run from the command line.

The #pragma line sets quiet mode, which suppresses the default DTrace output
(which was seen in the earlier spa_sync() example and consists of the CPU, ID,
and FUNCTION:NAME columns).

The actual enabling in this script by the io:::start probe is straightforward.
The dtrace:::BEGIN probe fires at the start to print an informational message,
and dtrace:::END fires at the end to format and print the summary.

Here is some example output:

While tracing, most of the disk I/O was requested by the tar command, with sizes
shown above.

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN
{
 printf("Tracing... Hit Ctrl-C to end.\n");
}

io:::start
{
 this->size = args[0]->b_bcount;
 @Size[pid, curpsinfo->pr_psargs] = quantize(this->size);
}

dtrace:::END
{
 printf("\n%8s %s\n", "PID", "CMD");
 printa("%8d %S\n%@d\n", @Size);
}

./bitesize.d
Tracing... Hit Ctrl-C to end.
^C

 PID CMD
 3424 tar cf /dev/null .\0

 value ------------- Distribution ------------- count
 512 | 0
 1024 |@@@ 39
 2048 |@@@@@@ 71
 4096 |@@@@@@@@@ 111
 8192 |@@@@@@@@@@@@@@@@@@@@@ 259
 16384 | 6
 32768 |@ 8
 65536 | 0

4.3 DTrace 143

bitesize.d is from a collection of DTrace scripts called the DTraceToolkit, which
can be found online.

4.3.11 Overheads

As has been mentioned, DTrace minimizes instrumentation overhead by use of
per-CPU kernel buffers and in-kernel aggregation summaries. By default, it also
passes data from kernel-space to user-space at a gentle asynchronous rate of once
per second. It has various other features that reduce overhead and improve safety,
including a routine whereby it will abort tracing if it detects that the system may
have become unresponsive.

The overhead cost of performing tracing is relative to the frequency of traces
and the actions they perform. Tracing block device I/O is typically so infrequent
(1,000 I/O per second or less) that the overheads are negligible. On the other hand,
tracing network I/O, when packet rates can reach millions per second, can cause
significant overhead.

The action also comes at a cost. For example, I frequently sample kernel stacks
at a rate of 997 Hz across all CPUs (using stack()) without a noticeable over-
head. Sampling user-level stacks is more involved (using ustack()), for which I
typically reduce the rate to 97 Hz.

There are also overheads when saving data into variables, especially associa-
tive arrays. While the use of DTrace typically comes without noticeable overhead,
you do need to be aware that it is possible, and to use some caution.

4.3.12 Documentation and Resources

The reference for DTrace, which documents all actions, built-ins, and standard pro-
viders, is the Dynamic Tracing Guide, originally by Sun Microsystems and made
freely available online [2]. For background on dynamic tracing, the problems it
solves, and the evolution of DTrace, see [Cantrill 04] and [Cantrill 06].

Appendix D lists handy DTrace one-liners. Apart from their utility, they may be
a useful reference for learning DTrace, one line at a time.

For a reference of scripts and strategy, see the text DTrace: Dynamic Tracing in
Oracle Solaris, Mac OS X and FreeBSD [Gregg 11]. The scripts from this book are
available online [3].

The DTraceToolkit contains over 200 scripts and is currently hosted on my home
page [4]. Many of the scripts are wrapped in shell or Perl, to provide command-line
options and behavior like other Unix tools, for example, execsnoop:

144 Chapter 4 � Observability Tools

GUIs have also been built upon DTrace, including Oracle ZFS Appliance Analyt-
ics and Joyent Cloud Analytics.

4.4 SystemTap

SystemTap also provides static and dynamic tracing for user- and kernel-level code
and was conceived for Linux by a team from Red Hat, IBM, and Intel [Eigler 05],
at a time when no ports of DTrace for Linux were available. As with DTrace,
instrumentation points called probes can be programmed to perform arbitrary
actions, including counting events, recording timestamps, performing calculations,
printing values, summarizing data, and so forth. These actions are performed in
real time, while tracing is still enabled. SystemTap can be used from the com-
mand line as one-liners or scripts.

SystemTap sources other kernel frameworks for tracing: tracepoints for static
probes, kprobes for dynamic probes, and uprobes for user-level probes. These
sources are also used by other tools (perf, LTTng).

After several years of development, SystemTap has made good progress in
matching the DTrace feature set and in some cases has surpassed it. However, sta-
bility has been an issue, with some versions causing kernel panics or hangs.1

SystemTap has had other issues as well, though minor in comparison: slower start-
up time, confusing error messages, undocumented implicit functionality, and a
less-concise language.

execsnoop -h
USAGE: execsnoop [-a|-A|-ehjsvZ] [-c command]
 execsnoop # default output
 -a # print all data
 -A # dump all data, space delimited
 -e # safe output, parseable
 -j # print project ID
 -s # print start time, us
 -v # print start time, string
 -Z # print zonename

-c command # command name to snoop
 eg,
 execsnoop -v # human readable timestamps
 execsnoop -Z # print zonename
 execsnoop -c ls # snoop ls commands only

1. The SystemTap wiki has always reported “safe use on production systems” as “yes.” This is
despite bug 2725, reported in 2006, which induces a kernel hang when tracing all kernel
function probes. The latest comment from August 2012 for this issue reads: “Kernel bugs are
believed to be responsible for the remaining occurrences of such crashes.”

4.4 SystemTap 145

Meanwhile, two separate projects have been begun to port DTrace to Linux. One
is by Oracle for Oracle Enterprise Linux; the other is a largely solo effort by a UK-
based programmer, Paul Fox. These ports have been used to provide the DTrace
Linux examples in this book. Since these are new projects and still in develop-
ment, they, too, can induce kernel panics.

If you wish or need to use SystemTap instead, it should be possible to convert most
of the DTrace scripts in this book. Appendix E is a short guide to this conversion.

The next section summarizes SystemTap basics—probes, tapsets, actions, and
built-ins—and then provides two examples of SystemTap for comparison.

4.4.1 Probes

Probe definitions are period-delimited with optional embedded arguments in
parentheses. Some examples are

� begin: start of program

� end: end of program

� syscall.read: start of the read() syscall

� syscall.read.return: end of the read() syscall

� kernel.function("sys_read"): start of the kernel sys_read() function

� kernel.function("sys_read").return: end of the sys_read() function

� socket.send: a socket send

� timer.ms(100): a probe that fires every 100 ms on one CPU

� timer.profile: a probe that fires on all CPUs at the kernel clock rate,
used for sampling/profiling

� process("a.out").statement("*@main.c:100"): trace the target pro-
cess, executable "a.out", line 100 of main.c

Many of the probes provide related data as built-in variables. For example, the
syscall.read probe provides the requested size as $count.

4.4.2 Tapsets

Groups of related probes are called tapsets. Many of the probes include the tapset
name at the beginning of the probe name. Examples of tapsets are

� syscall: system calls

� ioblock: block device interface and I/O scheduler

146 Chapter 4 � Observability Tools

� scheduler: kernel CPU scheduler events

� memory: process and virtual memory usage

� scsi: SCSI target events

� networking: network device events, including receive and transmit

� tcp: TCP protocol events, including for send and receive events

� socket: socket events

Tapsets are also used to provide additional executable actions.

4.4.3 Actions and Built-ins

SystemTap also provides many actions and built-ins, including execname() for
the process name, pid() for the current process ID, and print_backtrace() to
print the kernel stack backtrace. More are listed in Appendix E.

4.4.4 Examples

The following one-liner traces the read() system call, saving a power-of-two histo-
gram of the returned read size. This has been included both as an example of
SystemTap and as a comparison to DTrace, for which the equivalent one-liner was
demonstrated earlier.

stap -ve 'global stats; probe syscall.read.return { stats <<< $return; }
probe end { printf("\n\trval (bytes)\n"); print(@hist_log(stats)); }'

Pass 1: parsed user script and 77 library script(s) using 202200virt/22864res/3060shr
kb, in 100usr/10sys/125real ms.
Pass 2: analyzed script: 2 probe(s), 1 function(s), 2 embed(s), 1 global(s) using
370116virt/143020res/91712shr kb, in 350usr/110sys/711real ms.
Pass 3: translated to C into "/tmp/stapgOPjnH/stap_82838d54d78482c02d20b14d10b2eb13_
6394.c" using 370116virt/144708res/93400shr kb, in 40usr/10sys/549real ms.
Pass 4: compiled C into "stap_82838d54d78482c02d20b14d10b2eb13_6394.ko" in 560usr/
0sys/5638real ms.
Pass 5: starting run.
^C
 rval (bytes)
value |-- count
 -32 | 0
 -16 | 0
 -8 |@@@@@@@@@@@@@@@@@@@@@@ 22
 -4 | 0
 -2 | 0
 -1 | 0
 0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 31
 1 |@@@ 3
 2 |@@@@ 4
 4 | 0
 8 |@ 1
 16 |@@@@@ 5

4.4 SystemTap 147

The -v option prints verbose information about the compilation stages, which
informs the user when tracing has been enabled (“starting run”). Without it,
SystemTap prints nothing by default, leaving you wondering when tracing has
begun. In some cases the compilation stages can take over 20 seconds, and an early
Ctrl-C will not only abort tracing altogether but can print confusing error mes-
sages depending on the stage of compilation that was interrupted.

The one-liner begins by declaring a global variable stats—SystemTap requires
pre-declarations. The probe definition is prefixed with the keyword probe and
matches the return of read() system calls. The action is to record the return
value, provided as $return, in the stats variable using the statistics operator
<<<. This records values in a generic fashion, allowing them to be summarized in
different ways later.

The end probe is required to print this statistics variable as a histogram. With-
out it, SystemTap prints a basic numerical summary on exit.

One final note from the histogram: the $return value for read() is sometimes
negative—set to a negative version of the error number (errno). This follows the
kernel convention instead of the POSIX standard and could be confusing to users
who are expecting to see the latter. It also isn’t clear that this is intentional, as the
purpose of $return is undocumented.

Here are the equivalent one-liners, first SystemTap, then DTrace:

Comparisons like this can provide a deeper understanding of each individual tech-
nology. Here is a different example, this time using SystemTap to highlight limita-
tions with DTrace:

 32 |@@@@@@ 6
 64 | 0
 128 | 0
 256 |@ 1
 512 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 29
 1024 | 0
 2048 | 0

stap -e 'global stats; probe syscall.read.return { stats <<< $return; }
 probe end { printf("\trval (bytes)\n"); print(@hist_log(stats)); }'

dtrace -n 'syscall::read:return { @["rval (bytes)"] = quantize(arg0); }'

stap -e 'global s; probe syscall.read.return {
if ($return >= 0) { s[execname()] <<< $return; } }
probe end { printf("\n%-36s %8s %8s %10s\n", "EXEC", "CALLS", "AVGSZ",
"TOTAL"); foreach (k in s+) { printf("%-36s %8d %8d %10d\n", k,
@count(s[k]), @avg(s[k]), @sum(s[k])); } }'

^C
continues

148 Chapter 4 � Observability Tools

This one-liner saves a statistic of read return sizes by process name. It is printed
using three different functions, providing the columns for the number of calls,
average size (bytes), and total bytes. DTrace requires three separate aggregations
to be populated for this, one for each type.

This also makes use of if statements and a foreach loop. DTrace does not pro-
vide if, instead providing branch functionality via predicates, which can at times
be unnatural for programmers to follow. DTrace also currently has no loop capabil-
ity, apart from unrolled loops, as for safety it never performs backward jumps.
SystemTap solved this issue by providing an upper bound to the loop, so that an
infinite loop in a SystemTap script would not hang in kernel context.

One final difference: statistic values can be accessed directly in SystemTap, such
as with s[k], whereas DTrace aggregations can be printed only in their entirety,
or processed by aggregating functions.

4.4.5 Overheads

The overheads of using SystemTap are similar to those described earlier for
DTrace, with the same cautions for use. Additionally, the compilation stages of
SystemTap can consume CPU resources (for several seconds) when programs are
first executed. SystemTap caches programs so that this overhead does not occur for
every use. It should also be possible to compile SystemTap programs on a different
system, then transfer the cached result to the target system.

Another additional overhead is the requirement for kernel debug information
for kernel analysis, which is not typically included in a Linux distribution (it can
be hundreds of megabytes in size).

EXEC CALLS AVGSZ TOTAL
tty 1 832 832
hostname 2 832 1664
sendmail 2 25 50
systemd 3 14 44
dbus-daemon 4 16 65
tput 4 1272 5088
dircolors 4 1585 6340
systemd-logind 5 191 958
grep 8 1116 8930
id 9 703 6329
systemd-cgroups 12 586 7036
tar 49 607 29769
stapio 52 0 12
bash 54 1793 96875
sshd 313 995 311535

4.5 perf 149

4.4.6 Documentation and Resources

SystemTap has an extensive collection of man pages, including pages for individ-
ual probes. For example, for the ioblock.request probe:

The SystemTap language is documented online in the SystemTap Language Ref-
erence [5]. There is also a tutorial, beginner’s guide, and tapset reference on the
SystemTap documentation site [6].

You can also treat all the DTrace examples in this book as examples of possible
SystemTap functionality. See Appendix E for their conversion.

4.5 perf

Linux Performance Events (LPE), perf for short, has been evolving to support a
wide range of performance observability activities. While it doesn’t currently have
the real-time programmatic capabilities of DTrace or SystemTap, it can perform
static and dynamic tracing (based on tracepoints, kprobes, and uprobes), as well as
profiling. It can also inspect stack traces, local variables, and data types. Since it is
part of the mainline kernel, it may be the easiest to use (if it is already there) and
may provide enough observability to answer many of your questions.

Some of the tracing overheads from perf(1) should be similar to those of
DTrace. In typical use, DTrace programs are written to summarize data in-kernel
(aggregations), which perf(1) does not currently do. With perf(1), data is

$ man probe::ioblock.request
PROBE::IOBLOCK.REQ(3stapIO Scheduler and block IO TapPROBE::IOBLOCK.REQ(3stap)

NAME
 probe::ioblock.request - Fires whenever making a generic block I/O
 request.

SYNOPSIS
 ioblock.request

VALUES
 None

DESCRIPTION
 name - name of the probe point devname - block device name ino - i-node
 number of the mapped file sector - beginning sector for the entire bio
 flags - see below BIO_UPTODATE 0 ok after I/O completion BIO_RW_BLOCK 1
 RW_AHEAD set, and read/write would block BIO_EOF 2 out-out-bounds error
 BIO_SEG_VALID 3 nr_hw_seg valid BIO_CLONED 4 doesn't own data
 BIO_BOUNCED 5 bio is a bounce bio BIO_USER_MAPPED 6 contains user pages
 BIO_EOPNOTSUPP 7 not supported
[...]

150 Chapter 4 � Observability Tools

passed to the user level for post-processing (it has a scripting framework to help),
which can cause significant additional overhead when tracing frequent events.

See Section 6.6, Analysis, in Chapter 6, CPUs, for an introduction to perf(1)
and a demonstration of many of its capabilities.

4.6 Observing Observability

Observability tools and the statistics upon which they are built are implemented
in software, and all software has the potential for bugs. The same is true for the
documentation that describes the software. Regard with a healthy skepticism any
statistics that are new to you, questioning what they really mean and whether
they are really correct.

Metrics may be subject to any of the following problems:

� Tools are not always right.

� Man pages are not always right.

� Available metrics may be incomplete.

� Available metrics may be poorly designed.

When multiple observability tools have overlapping coverage, you can use them
to cross-check each other. Ideally, they will source different frameworks to check
for bugs there, too. Dynamic tracing is especially useful for this purpose, as cus-
tom tools can be created with it.

Another verification technique is to apply known workloads and then to check
that the observability tools agree with the results you expect. This can involve the
use of micro-benchmarking tools that report their own statistics for comparison.

Sometimes it isn’t the tool or statistic that is in error, but the documentation
that describes it, including man pages. The software may have evolved without the
documentation being updated.

Realistically, you may not have time to double-check every performance mea-
surement you use and will do this only if unusual results are encountered or par-
ticularly important results are used. Even if you do not double-check, it can be
valuable to be aware that you didn’t, and that you assumed the tools were correct.

Apart from metrics being incorrect, they can also be incomplete. When faced
with a large number of tools and metrics, it may be tempting to assume that they
provide complete and effective coverage. This is often not the case: metrics may
have been added by programmers to debug their own code and later built into
observability tools without much study of real customer needs. Some program-
mers may not have added any at all to new subsystems.

4.8 References 151

An absence of metrics can be more difficult to identify than the presence of poor
metrics. Chapter 2, Methodology, can help you find these missing metrics by study-
ing the questions you need answered for performance analysis.

4.7 Exercises

1. Answer the following questions about observability tool terminology:

� What is profiling?

� What is tracing?

� What is the difference between static and dynamic tracing?

4.8 References

[Cantrill 04] Cantrill, B., M. Shapiro, and A. Leventhal. “Dynamic Instru-
mentation of Production Systems.” USENIX, 2004.

[Eigler 05] Eigler, F. Ch., et al. Architecture of SystemTap: A Linux
Trace/Probe Tool, http://sourceware.org/systemtap/
archpaper.pdf, 2005.

[Cantrill 06] Cantrill, B. “Hidden in Plain Sight,” ACM Queue, 2006.

[McDougall 06b] McDougall, R., J. Mauro, and B. Gregg. Solaris Performance
and Tools: DTrace and MDB Techniques for Solaris 10 and
OpenSolaris. Prentice Hall, 2006.

[Gregg 11] Gregg, B., and J. Mauro. DTrace: Dynamic Tracing in Oracle
Solaris, Mac OS X and FreeBSD. Prentice Hall, 2011.

[1] www.atoptool.nl/index.php

[2] http://dtrace.org/guide

[3] www.dtracebook.com

[4] www.brendangregg.com/dtrace.html

[5] http://sourceware.org/systemtap/langref

[6] http://sourceware.org/systemtap/documentation.html

../../../../../www.atoptool.nl/index.php
../../../../../dtrace.org/guide
../../../../../www.dtracebook.com/default.htm
../../../../../www.brendangregg.com/dtrace.html
../../../../../sourceware.org/systemtap/langref
../../../../../sourceware.org/systemtap/documentation.html
../../../../../sourceware.org/systemtap/archpaper.pdf
../../../../../sourceware.org/systemtap/archpaper.pdf

This page intentionally left blank

153

5
Applications

Performance is best tuned closest to where the work is performed: in the applica-
tions. These include databases, web servers, application servers, load balancers,
file servers, and more. The chapters that follow approach applications from the
perspectives of the resources they consume: CPUs, memory, file systems, disks,
and the network. This chapter addresses the application level.

Applications themselves can become extremely complex, especially in distributed
application environments involving many components. The study of application
internals is usually the domain of the application developer and can include the use
of third-party tools for introspection. For those studying systems performance,
including system administrators, application performance analysis includes configu-
ration of the application to make best use of system resources, characterization of
how the application is using the system, and analysis of common pathologies.

This chapter discusses application basics, fundamentals for application perfor-
mance, programming languages and compilers, and strategies for generic applica-
tion performance analysis.

5.1 Application Basics

Before diving into application performance, you should familiarize yourself with
the role of the application, its basic characteristics, and its ecosystem in the indus-
try. This forms the context within which you can understand application activity. It

154 Chapter 5 � Applications

also gives you opportunities to learn about common performance issues and tun-
ing and provides avenues for further study. To learn this context, try answering
the following questions:

� Function: What is the role of the application? Is it a database server, web
server, load balancer, file server, object store?

� Operation: What requests does the application serve, or what operations
does it perform? Databases serve queries (and commands), web servers serve
HTTP requests, and so on. This can be measured as a rate, to gauge load and
for capacity planning.

� CPU mode: Is the application implemented as user-level or kernel-level soft-
ware? Most applications are user-level, executing as one or more processes,
but some are implemented as kernel services (for example, NFS).

� Configuration: How is the application configured, and why? This informa-
tion may be found in a configuration file or via administration tools. Check if
any tunable parameters related to performance have been changed, includ-
ing buffer sizes, cache sizes, parallelism (processes or threads), and other
options.

� Metrics: Are application metrics provided, such as an operation rate? They
may be provided by bundled tools or third-party tools, via API requests, or by
processing operation logs.

� Logs: What operation logs does the application create? What logs can be
enabled? What performance metrics, including latency, are available from the
logs? For example, MySQL supports a slow query log, providing valuable per-
formance details for each query slower than a certain threshold.

� Version: Is the application the latest version? Have performance fixes or
improvements been noted in the release notes for recent versions?

� Bugs: Is there a bug database for the application? What are the “perfor-
mance” bugs for your version of the application? If you have a current perfor-
mance issue, search the bug database to see if anything like it has happened
before, how it was investigated, and what else was involved.

� Community: Is there a community for the application where performance
findings are shared? Communities may include forums, blogs, Internet Relay
Chat (IRC) channels, meetups, and conferences. Meetups and conferences
often post slides and videos online, which are useful resources for years after-
ward. They may also have a community manager who shares community
updates and news.

� Books: Are there books about the application and/or its performance?

5.1 Application Basics 155

� Experts: Who are the recognized performance experts for the application?
Learning their names can help you find material they have authored.

Regardless of the source, you are aiming to understand the application at a high
level—what it does, how it operates, and how it performs. An immensely useful
resource, if you can find one, is a functional diagram illustrating application
internals.

The next sections cover other application basics: setting objectives, optimizing
the common case, observability, and big O notation.

5.1.1 Objectives

A performance goal provides direction for your performance analysis work and
helps you select which activities to perform. Without a clear goal, performance
analysis risks turning into a random “fishing expedition.”

For application performance, you can start with what operations the applica-
tion performs (as described earlier) and what the goal for performance is. The goal
may be

� Latency: a low application response time

� Throughput: a high application operation rate or data transfer rate

� Resource utilization: efficiency for a given application workload

It is better if these can be quantified, using metrics that may be derived from
business or quality-of-service requirements. Examples are

� An average application request latency of 5 ms

� 95% of requests at a latency of 100 ms or less

� Elimination of latency outliers: zero requests beyond 1,000 ms

� A maximum throughput of at least 10,000 application requests per second per
server

� Average disk utilization under 50% for 10,000 application requests per second

Once a goal has been chosen, you can work on the limiters for that goal. For
latency, the limiter may be disk or network I/O; for throughput, it may be CPU
usage. The strategies in this and other chapters will help you identify them.

For throughput-based goals, note that not all operations are equal in terms of
performance or cost. If the goal is a certain rate of operations, it may be important
to also specify what type of operations they are. This may be a distribution based
on expected or measured workloads.

156 Chapter 5 � Applications

Section 5.2, Application Performance Techniques, describes common methods for
improving application performance. Some of these may make sense for one goal
but not another; for example, selecting a larger I/O size may improve throughput
at the expense of latency. Remember the goal that you are pursuing to see which
topics are most applicable.

5.1.2 Optimize the Common Case

Software internals can be complex, with many different possible code paths and
behaviors. This may be especially evident if you browse the source code: applica-
tions are commonly tens of thousands of lines of code, while operating system ker-
nels are upward of hundreds of thousands. Picking areas to optimize at random
may involve a great deal of work for not much gain.

One way to efficiently improve application performance is to find the most com-
mon code path for the production workload and begin by improving that. If the
application is CPU-bound, that may mean the code paths that are frequently on-
CPU. If the application is I/O-bound, you should be looking at the code paths that
frequently lead to I/O. These can be determined by analysis and profiling of the
application, including studying stack traces, as covered in later chapters. A higher
level of context for understanding the common case may also be provided by appli-
cation observability tools.

5.1.3 Observability

As is described in many chapters of this book, the biggest performance wins in
operating systems can come from eliminating unnecessary work. The same is true
for applications.

This fact sometimes gets overlooked when an application is being chosen based
on performance. If benchmarking showed application A to be 10% faster than
application B, it may be tempting to choose application A. However, if application
A is opaque and application B provides a rich set of observability tools, it’s very
likely that application B will be the better choice in the long run. Those observabil-
ity tools make it possible to see and eliminate unnecessary work, and active work
can be better understood and tuned. The performance wins gained through
enhanced observability may dwarf the initial 10% performance difference.

5.1.4 Big O Notation

Big O notation, commonly taught as a computer science subject, is used to analyze
the complexity of algorithms and to model how they will perform as the input

5.1 Application Basics 157

dataset scales. This helps programmers pick more efficient and performant algo-
rithms when developing applications ([Knuth 76], [Knuth 97]).

Common big O notations and algorithm examples are listed in Table 5.1.

The notation allows programmers to estimate speedup of different algorithms,
determining which areas of code will lead to the greatest improvements. For exam-
ple, for searching a sorted array of 100 items, the difference between linear search
and binary search is a factor of 21 (100/log(100)).

The performance of these algorithms is pictured in Figure 5.1, showing their
trend as they scale.

Table 5-1 Example Big O Notations

Notation Examples

O(1) Boolean test

O(log n) binary search of a sorted array

O(n) linear search of a linked list

O(n log n) quick sort (average case)

O(n^2) bubble sort (average case)

O(2^n) factoring numbers; exponential growth

O(n!) brute force of traveling salesman problem

Figure 5-1 Runtime versus input size for different algorithms

158 Chapter 5 � Applications

This classification helps the systems performance analyst to understand that
some algorithms will perform very poorly at scale. Performance problems may
show up when applications are pushed to service higher numbers of users or data
objects than they ever have before, at which point algorithms such as O(n^2) may
begin to be pathological. The fix may be for the developer to use a more efficient
algorithm, or to partition the population differently.

Big O notation does ignore some constant computation costs incurred for the
selection of each algorithm. For cases where n (the input data size) is small, these
costs may dominate.

5.2 Application Performance Techniques

This section describes some commonly used techniques by which application per-
formance can be improved: selecting an I/O size, caching, buffering, polling, concur-
rency and parallelism, non-blocking I/O, and processor binding. Refer to the
application documentation to see which of these are used, and for any additional
application-specific features.

5.2.1 Selecting an I/O Size

Costs associated with performing I/O can include initializing buffers, making a sys-
tem call, context switching, allocating kernel metadata, checking process privileges
and limits, mapping addresses to devices, executing kernel and driver code to deliver
the I/O, and, finally, freeing metadata and buffers. “Initialization tax” is paid for small
and large I/O alike. For efficiency, the more data transferred by each I/O, the better.

Increasing the I/O size is a common strategy used by applications to improve
throughput. It’s usually much more efficient to transfer 128 Kbytes as a single I/O
than as 128 x 1 Kbyte I/O, considering any fixed per-I/O costs. Disk I/O, in particu-
lar, has historically had a high per-I/O cost due to seek time.

There’s a downside when the application doesn’t need larger I/O sizes. A database
performing 8 Kbyte random reads may run more slowly with a 128 Kbyte I/O size, as
120 Kbytes of data transfer is wasted. This introduces I/O latency, which can be low-
ered by selecting a smaller I/O size that more closely matches what the application
is requesting. Unnecessarily larger I/O sizes can also waste cache space.

5.2.2 Caching

The operating system uses caches to improve file system read performance and
memory allocation performance; applications often use caches for a similar reason.

5.2 Application Performance Techniques 159

Instead of always performing an expensive operation, the results of commonly per-
formed operations may be stored in a local cache for future use. An example is the
database buffer cache, which stores the results of commonly performed database
queries.

A common task when deploying applications is to determine which caches are
provided, or can be enabled, and then to configure their sizes to suit the system.

An important aspect of the cache is how it manages integrity, so that lookups do
not return stale data. This is called cache coherency and can be expensive to per-
form—ideally not more so than the benefit the cache provides.

While caches improve read performance, their storage is often used as buffers to
improve write performance.

5.2.3 Buffering

To improve write performance, data may be coalesced in a buffer before being sent
to the next level. This increases the I/O size and efficiency of the operation.
Depending on the type of writes, it may also increase write latency, as the first
write to a buffer waits for subsequent writes before being sent.

A ring buffer (or circular buffer) is a type of fixed buffer that can be used for con-
tinuous transfer between components, which act upon the buffer asynchronously.
It may be implemented using start and end pointers, which can be moved by each
component as data is appended or removed.

5.2.4 Polling

Polling is a technique in which the system waits for an event to occur by checking
the status of the event in a loop, with pauses between checks. There are some
potential performance problems with polling:

� Costly CPU overhead of repeated checks

� High latency between the occurrence of the event and the next polled check

Where this is a performance problem, applications may be able to change their
behavior to listen for the event to occur, which immediately notifies the applica-
tion and executes the desired routine.

poll() System Call

There is a poll() syscall to check for the status of file descriptors, which serves a
similar function to polling, although it is event-based so it doesn’t suffer the perfor-
mance cost of polling.

160 Chapter 5 � Applications

The poll() interface supports multiple file descriptors as an array, which
requires the application to scan the array when events occur to find the related file
descriptors. This scanning is O(n) (see Section 5.1.4, Big O Notation), whose over-
head can become a performance problem at scale. A different interface is avail-
able: on Linux it is epoll(), which can avoid the scan and therefore be O(1).
Solaris-based systems have a similar feature called event ports, which use port_
get(3C) instead of poll().

5.2.5 Concurrency and Parallelism

Time-sharing systems (including all derived from Unix) provide program concur-
rency: the ability to load and begin executing multiple runnable programs. While
their runtimes may overlap, they do not necessarily execute on-CPU at the same
instant. Each of these programs may be an application process.

Apart from executing different applications concurrently, different functions
within an application can also be made concurrent. This can be achieved using
multiple processes (multiprocess) or multiple threads (multithreaded), each per-
forming its own task.

Another approach is event-based concurrency, whereby an application services
different functions and switches between them when events occur. For example,
the Node.js runtime uses this approach. This provides concurrency but may do so
using a single thread or process, which can eventually become a scalability bottle-
neck as it can utilize only one CPU.

To take advantage of a multiprocessor system, an application must execute on
multiple CPUs at the same time. This is parallelism, which an application may
accomplish by being multiprocess or multithreaded. For reasons explained in
Chapter 6, CPUs, multiple threads (or the equivalent tasks) are more efficient and
are therefore the preferred approach.

Apart from increased throughput of CPU work, multiple threads (or processes)
allow I/O to be performed concurrently, as other threads can execute while a
thread blocked on I/O waits.

Since multithreaded programming shares the same address space as the pro-
cess, threads can read and write the same memory directly, without the need for
more expensive interfaces (such as inter-process communication (IPC) for multi-
process programming). For integrity, synchronization primitives are used so that
data does not become corrupted by multiple threads reading and writing simulta-
neously. These may be used in conjunction with hash tables to improve
performance.

5.2 Application Performance Techniques 161

Synchronization Primitives

Synchronization primitives police access to memory, similarly to the way traffic
lights regulate access to an intersection. And, like traffic lights, they halt the flow
of traffic, causing wait time (latency). The three commonly used types are

� Mutex (MUTually EXclusive) locks: Only the holder of the lock can oper-
ate. Others block and wait off-CPU.

� Spin locks: Spin locks allow the holder to operate, while others requiring the
lock spin on-CPU in a tight loop, checking for the lock to be released. While
these can provide low-latency access—the blocked thread never leaves CPU
and is ready to run in a matter of cycles once the lock is available—they also
waste CPU resources while threads spin, waiting.

� RW locks: Reader/writer locks ensure integrity by allowing either multiple
readers, or one writer only and no readers.

Mutex locks may be implemented by the library or kernel as adaptive mutex locks:
a hybrid of spin and mutex locks, which spin if the holder is currently running on
another CPU and block if it isn’t (or if a spin threshold is reached). Adaptive mutex
locks are optimized to provide low-latency access without wasting CPU resources
and have been in use on Solaris-based systems for many years. They were imple-
mented for Linux in 2009, where they are called adaptive spinning mutexes [1].

Investigating performance issues involving locks can be time-consuming and
often requires familiarity with the application source code. This is usually an
activity for the developer.

Hash Tables

A hash table of locks can be used to employ the optimum number of locks for a
large number of data structures. While hash tables are summarized here, this is
an advanced topic that assumes a programming background.

Picture the following two approaches:

� A single global mutex lock for all data structures. While this solution is sim-
ple, concurrent access will encounter contention for the lock and latency while
waiting for it. Multiple threads that need the lock will serialize—execute in
sequence, rather than concurrently.

� A mutex lock for every data structure. While this reduces contention to only
the times it is really needed—concurrent access to the same data structure—
there are storage overheads for the lock, and CPU overheads for the creation
and destruction of the lock for every data structure.

162 Chapter 5 � Applications

A hash table of locks is an in-between solution and is suitable when lock conten-
tion is expected to be light. A fixed number of locks are created, and a hashing
algorithm is used to select which lock is used for which data structure. This avoids
the creation and destruction cost with the data structure and also avoids the prob-
lem of having only a single lock.

The example hash table shown in Figure 5.2 has four entries, called buckets,
each of which contains its own lock.

This example also shows one approach for solving hash collisions, where two or
more input data structures hash to the same bucket. Here, a chain of data struc-
tures is created to store them all under the same bucket, where they will be found
again by the hashing function. These hash chains can be a performance problem if
they become too long and are walked serially. The hash function and table size can
be selected with the goal of uniformly spreading data structures over many buck-
ets, to keep hash chain length to a minimum.

Ideally, the number of hash table buckets should be equal to or greater than the
CPU count, for the potential of maximum parallelism. The hashing algorithm may
be as simple as taking low-order bits of the data structure address and using this
as an index into a power-of-two-size array of locks. Such simple algorithms are also
fast, allowing data structures to be located quickly.

With an array of adjacent locks in memory, a performance problem can arise
when locks fall within the same cache line. Two CPUs updating different locks in
the same cache line will encounter cache coherency overhead, with each CPU
invalidating the cache line in the other’s cache. This situation is called false shar-
ing and is commonly solved by padding hash locks with unused bytes so that only
one lock exists in each cache line in memory.

5.2.6 Non-Blocking I/O

The Unix process life cycle, pictured in Chapter 3, Operating Systems, shows pro-
cesses blocking and entering the sleep state during I/O. There are a couple of per-
formance problems with this model:

Figure 5-2 Example hash table

5.3 Programming Languages 163

� For many concurrent I/O, each I/O consumes a thread (or process) while it is
blocked. In order to support many concurrent I/O, the application must cre-
ate many threads (typically one for each client), which have a cost associated
with thread creation and destruction.

� For frequent short-lived I/O, the overhead of frequent context switching can
consume CPU resources and add application latency.

The non-blocking I/O model issues I/O asynchronously, without blocking the
current thread, which can then perform other work. This has been a key feature of
Node.js [2], a server-side JavaScript application environment that directs code to
be developed in non-blocking ways.

5.2.7 Processor Binding

For NUMA environments, it can be advantageous for a process or thread to remain
running on a single CPU and to run on the same CPU as it did previously after
performing I/O. This can improve the memory locality of the application, reducing
the cycles for memory I/O and improving overall application performance. Operat-
ing systems are well aware of this and are designed to keep application threads on
the same CPUs (CPU affinity). These topics are introduced in Chapter 7, Memory.

Some applications force this behavior by binding themselves to CPUs. This can
significantly improve performance for some systems. It can also reduce perfor-
mance when the bindings conflict with other CPU bindings, such as device inter-
rupt mappings to CPUs.

Be especially careful about the risks of CPU binding when there are other ten-
ants or applications running on the same system. This is a problem we’ve encoun-
tered in cloud computing for OS virtualization, where an application can see all
the CPUs and then bind to some, on the assumption that it is the only application
on the server. When a server is shared by other tenant applications that are also
binding, there can be conflicts and scheduler latency as the bound CPUs are busy
with other tenants, even though other CPUs are idle.

5.3 Programming Languages

Programming languages may be compiled or interpreted and may also be executed
via a virtual machine. Many languages list “performance optimizations” as fea-
tures, but, strictly speaking, these are usually features of the software that exe-
cutes the language, not the language itself. For example, the Java HotSpot Virtual
Machine software includes a just-in-time (JIT) compiler to dynamically improve
performance.

164 Chapter 5 � Applications

Interpreters and language virtual machines also provide different levels of per-
formance observability support via their own specific tools. For the system perfor-
mance analyst, basic profiling using these tools can lead to some quick wins. For
example, high CPU usage may be identified as a result of garbage collection (GC),
and then fixed via some commonly used tunables. Or it may be caused by a code
path that can be found as a known bug in a bug database and fixed by upgrading
the software version (this happens a lot).

The following sections describe basic performance characteristics per program-
ming language type. For more about individual language performance, look for
texts about that language.

5.3.1 Compiled Languages

Compilation takes a program and emits machine instructions in advance of run-
time that are stored in binary executable files called binaries. These can be run at
any time without compiling again. Compiled languages include C and C++. Some
languages may have both interpreters and compilers.

Compiled code is generally high-performing and doesn’t require further transla-
tion before execution by the CPUs. The operating system kernel is written almost
entirely in C, with a few critical paths written in assembly.

Performance analysis of compiled languages is usually straightforward, as the
executed machine code usually maps closely to the original program (although this
depends on compilation optimizations). During compilation, a symbol table can be
generated which maps addresses to program functions and object names. Later
profiling and tracing of CPU execution can then be mapped directly to these pro-
gram names, allowing the analyst to study program execution. Stack traces, and
the numerical addresses they contain, can also be mapped and translated to func-
tion names to provide code path ancestry.

Compilers can improve performance by use of compiler optimizations—routines
that optimize the choice and placement of CPU instructions.

Compiler Optimizations

The gcc(1) compiler provides a range from 0 to 3, where 3 uses the largest num-
ber of optimizations. gcc(1) can be queried to show which optimizations it uses
for different levels. For example:

$ gcc -Q -O3 --help=optimizers
The following options control optimizations:
 -O
 -Ofast
 -Os

5.3 Programming Languages 165

The full list includes about 180 options, some of which are enabled, even at –O0.
As an example of what one of these options does, the -fomit-frame-pointer
option, seen in this list, is described in the gcc(1) man page:

Don’t keep the frame pointer in a register for functions that don’t need one. This
avoids the instructions to save, set up and restore frame pointers; it also makes an
extra register available in many functions. It also makes debugging impossible on
some machines.

This is an example of a trade-off: omitting the frame pointer typically breaks the
operation of analyzers that profile stack traces.

Given the usefulness of stack profilers, this option may be sacrificing much in
terms of later performance wins that can no longer be found easily, which may far
outweigh the performance gains that this option initially offers. A solution, in this
case, can be to compile with -fno-omit-frame-pointer, to avoid this optimization.

Should performance issues arise, it may be tempting to simply recompile the
application with a reduced optimization level (from –O3 to –O2, for example), in
the hope that any debugging needs could then be met. This turns out not to be sim-
ple: the changes to the compiler output can be massive and important, and they
can affect the behavior of the issue you were originally trying to analyze.

5.3.2 Interpreted Languages

Interpreted languages execute a program by translating it into actions during run-
time, a process that adds execution overhead. Interpreted languages are not
expected to exhibit high performance and are used for situations where other fac-
tors are more important, such as ease of programming and debugging. Shell script-
ing is an example of an interpreted language.

Unless observability tools are provided, performance analysis of interpreted lan-
guages can be difficult. CPU profiling can show the operation of the interpreter—
including parsing, translating, and performing actions—but it may not show the
original program function names, leaving essential program context a mystery.

 -falign-functions [enabled]
 -falign-jumps [enabled]
 -falign-labels [enabled]
 -falign-loops [enabled]
 -fasynchronous-unwind-tables [enabled]
 -fbranch-count-reg [enabled]
 -fbranch-probabilities [disabled]
 -fbranch-target-load-optimize [disabled]
[...]
 -fomit-frame-pointer [disabled]
[...]

166 Chapter 5 � Applications

This interpreter analysis may not be totally fruitless, as there can be performance
issues with the interpreter itself, even when the code it is executing appears to be
well designed.

Depending on the interpreter, program context may be easy to fetch indirectly
(e.g., dynamic tracing of the parser). Often these programs are studied by simply
adding print statements and timestamps. More rigorous performance analysis is
uncommon, since interpreted languages are not commonly selected for high-
performance applications in the first place.

5.3.3 Virtual Machines

A language virtual machine (also called a process virtual machine) is software that
simulates a computer. Some programming languages, including Java and Erlang,
are commonly executed using virtual machines (VMs), which provide them with a
platform-independent programming environment. The application program is com-
piled to the virtual machine instruction set (bytecode) and then executed by the
virtual machine. This allows portability of the compiled objects, provided a virtual
machine is available to run them on the target platform.

The bytecode is compiled from the original program and then interpreted by the
language virtual machine, which translates it to machine code. The Java HotSpot
Virtual Machine supports JIT compilation, which compiles bytecode to machine
code ahead of time, so that during execution the native machine code can be exe-
cuted. This provides the performance advantages of compiled code, together with
the portability of a virtual machine.

Virtual machines are typically the most difficult of the language types to
observe. By the time the program is executing on-CPU, multiple stages of compila-
tion or interpretation may have passed, and information about the original pro-
gram may not be readily available. Performance analysis usually focuses on the
toolset provided with the language virtual machine, many of which provide DTrace
probes, and on third-party tools.

5.3.4 Garbage Collection

Some languages use automatic memory management, where allocated memory does
not need to be explicitly freed, leaving that to an asynchronous garbage collection
process. While this makes programs easier to write, there can be disadvantages:

� Memory growth: There is less control of the application’s memory usage,
which may grow when objects are not identified automatically as eligible to

5.4 Methodology and Analysis 167

be freed. If the application grows too large, it may either hit its own limits or
encounter system paging, severely harming performance.

� CPU cost: GC will typically run intermittently and involves searching or
scanning objects in memory. This consumes CPU resources, reducing what is
available to the application for short periods. As the memory of the applica-
tion grows, CPU consumption by GC may also grow. In some cases and imple-
mentations, this can reach the point where GC continually consumes an
entire CPU.

� Latency outliers: Application execution may be paused while GC executes,
causing occasional application responses with high latency. This depends on
the GC type: stop-the-world, incremental, or concurrent.

GC is a common target for performance tuning, to reduce CPU cost and occur-
rence of latency outliers. For example, the Java VM provides many tunable param-
eters to set the GC type, number of GC threads, maximum heap size, target heap
free ratio, and more.

If tuning is not effective, the problem may be the application creating too much
garbage, or leaking references. These are issues for the application developer.

5.4 Methodology and Analysis

This section describes methodologies for application analysis and tuning. The tools
used for analysis are either introduced here or are referenced from other chapters.
The topics are summarized in Table 5.2.

Table 5-2 Application Performance Methodologies

Methodology Type

Thread state analysis observational analysis

CPU profiling observational analysis

Syscall analysis observational analysis

I/O profiling observational analysis

Workload characterization observational analysis, capacity planning

USE method observational analysis

Drill-down analysis observational analysis

Lock analysis observational analysis

Static performance tuning observational analysis, tuning

168 Chapter 5 � Applications

See Chapter 2, Methodology, for additional general methodologies and the intro-
duction to some of these. Also see the chapters that follow for the analysis of sys-
tem resources and virtualization.

These methodologies may be followed individually or used in combination. My
suggestion is to try them in the order listed in the table.

In addition to these, look for custom analysis techniques for the specific applica-
tion and the programming language in which it is developed. These may consider
logical behavior of the application, including known issues, and lead to some quick
performance wins.

5.4.1 Thread State Analysis

The goal is to identify at a high level where application threads are spending their
time, which solves some issues immediately and directs the investigation of oth-
ers. This is done by dividing each application’s thread time into a number of mean-
ingful states.

Two State

At a minimum, there are two thread states:

� On-CPU: executing

� Off-CPU: waiting for a turn on-CPU, or for I/O, locks, paging, work, and so on

If time is largely spent on-CPU, CPU profiling can usually explain this quickly
(covered later). This is the case for many performance issues, so spending time
measuring other states may not be necessary.

If time is found to be spent off-CPU, various other methodologies can be used,
although without a better starting point this can be time-consuming.

Six State

Here is an expanded list, this time using six thread states (and a different naming
scheme), which gives better starting points for the off-CPU cases:

� Executing: on-CPU

� Runnable: and waiting for a turn on-CPU

� Anonymous paging: runnable, but blocked waiting for anonymous page-ins

� Sleeping: waiting for I/O, including network, block, and data/text page-ins

� Lock: waiting to acquire a synchronization lock (waiting on someone else)

� Idle: waiting for work

5.4 Methodology and Analysis 169

These have been selected as a minimal and useful set; you may wish to add more
states to your list. For example, the executing state may be split into user- and
kernel-mode execution, and the sleeping state can be divided based on the target.
(I had to restrain myself to keep this list to six.)

Performance is improved by reducing the time in the first five of these states,
which increases the time spent in idle (headroom). Other things being equal, this
would mean that application requests have lower latency, and the application can
handle more load.

Once you’ve established in which of the first five states the threads are spend-
ing their time, you can investigate them further:

� Executing: Check whether this is user- or kernel-mode time and the reason
for CPU consumption by using profiling. Profiling can determine which code
paths are consuming CPU and for how long, which can include time spent
spinning on locks. See Section 5.4.2, CPU Profiling.

� Runnable: Spending time in this state means the application needs more
CPU resources. Examine CPU load for the entire system, and any CPU lim-
its present for the application (e.g., resource controls).

� Anonymous paging: A lack of available main memory for the application
can cause anonymous paging and delays. Examine memory usage for the
entire system and any memory limits present for the application. See Chap-
ter 7, Memory, for details.

� Sleeping: Analyze the resource on which the application is blocked. See Sec-
tion 5.4.3, Syscall Analysis, and Section 5.4.4, I/O Profiling.

� Lock: Identify the lock, the thread holding it, and the reason why the holder
held it for so long. The reason may be that the holder was blocked on another
lock, which requires further unwinding. This is an advanced activity, usually
performed by the software developer who has intimate knowledge of the
application and its locking hierarchy.

Because of how applications typically wait for work, you will often find that time
in the sleeping and lock states is actually idle time. An application worker thread
may wait on a conditional variable for work (lock state), or for network I/O (sleep-
ing state). So when you see large sleeping and lock state times, remember to drill
down a little to check if this is really idle time.

The following summarizes how these thread states may be measured on Linux-
and Solaris-based systems; the tools and technologies mentioned are covered more
in other sections of this book. Check for developments, especially for new tools and
tool options, that make finding these easier.

170 Chapter 5 � Applications

Linux

The time spent executing is not hard to determine: top(1) reports this as %CPU.
Measuring times in the other states can require some digging, as follows.

Runnable is tracked by the kernel schedstats feature and is exposed via /proc/
*/schedstat. The perf sched tool can also provide metrics for understanding time
spent runnable and waiting.

Time waiting for anonymous paging (in Linux, swapping) can be measured by the
kernel delay accounting feature, provided it is enabled. It provides separate states
for swapping and for time blocked during memory reclaim (also related to memory
pressure). There isn’t a commonly used tool to expose these states; however, the ker-
nel documentation contains an example program to do this: getdelays.c, which was
demonstrated in Chapter 4, Observability Tools. Another approach is to use tracing
tools such as DTrace or SystemTap.

Time blocked in the sleeping state can be loosely estimated using other tools, for
example, pidstat -d to determine if a process is performing disk I/O, and proba-
bly sleeping. Delay and other I/O accounting features, if they are enabled, do pro-
vide time blocked on block I/O, which can also be observed using iotop(1). Other
reasons for blocking can be investigated using tracing tools such as DTrace or
SystemTap. The application may also have instrumentation, or instrumentation
can be added, to track time performing explicit I/O (disk and network).

If the application is stuck in the sleeping state for very long intervals (seconds),
you can try pstack(1) to determine why. This takes a single snapshot of the
threads and their user stack traces, which should include the sleeping threads and
the reason they are sleeping. Be warned, however: pstack(1) may briefly pause
the target while it does this, so use with caution.

Lock time can be investigated using tracing tools.

Solaris

On Solaris-based systems, the microstate accounting statistics, introduced in
Chapter 4, Observability Tools, provide most of the thread states directly. These
can be viewed using prstat(1M):

$ prstat -mLcp 4937 1
Please wait...
 PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/LWPID
 4937 root 7.4 7.9 0.0 0.0 15 0.0 69 0.2 239 31 3K 0 redis-server/1
 4937 root 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0 0 0 0 redis-server/3
 4937 root 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0 0 0 0 redis-server/2
Total: 1 processes, 3 lwps, load averages: 5.28, 5.36, 5.36
[...]

5.4 Methodology and Analysis 171

The eight columns, from USR to LAT, are all microstate accounting thread states
and divide the thread time into percentages. The sum of these columns is 100%.
Here is a mapping of these to the states we are interested in:

� Executing: USR + SYS

� Runnable: LAT

� Anonymous paging: DFL

� Sleeping: SLP

� Lock: LCK

� Idle: also in SLP + LCK

While this is not a perfect match, getting this far so easily has tremendous
value. The separation of idle time can be performed using DTrace to examine the
stack trace when a thread leaves CPU, to determine what it is waiting for. If a
thread is stuck in a sleep state for a long period (seconds), try pstack(1), with
the caveat that it will briefly pause the target, so use with caution.

See Chapter 6, CPUs, for more about prstat(1M) and these columns.

5.4.2 CPU Profiling

CPU profiling is described in Section 6.5.4, Profiling, in Chapter 6, CPUs, which
also provides detailed examples using DTrace and perf(1). Profiling is an impor-
tant activity that is summarized here from the application perspective.

The intent is to determine why an application is consuming CPU resources. An
effective technique is to sample the on-CPU user-level stack trace and coalesce the
results. The stack traces shows the code path taken, which can reveal both high-
and low-level reasons for the application consuming CPU.

Sampling stack traces can generate many thousands of lines of output to exam-
ine, even when summarizing the output to print only unique stacks. One way to
understand the profile quickly is to visualize it using flame graphs, which are
shown in Chapter 6, CPUs.

Apart from sampling the stack trace, the currently running function alone can
be sampled. In some cases this is sufficient to identify why the application is using
the CPU and produces much less output, making it quicker to read and under-
stand. This example, from Chapter 6, CPUs, uses DTrace:

dtrace -n 'profile-997 /arg1 && execname == "beam.smp"/ {
@[ufunc(arg1)] = count(); } tick-10s { exit(0); }'

[...]
continues

172 Chapter 5 � Applications

In this case, it was the ut_fold_ulint_pair() function that was on-CPU the
most during sampling.

It can also be useful to study the caller of the currently running function, which
some profiling software (including DTrace) can easily do. For example, if the previ-
ous example identified malloc() as on-CPU the most, that doesn’t tell us a lot.
The caller of malloc() should be much more interesting to profile and also doesn’t
require capturing stack traces.

The study of interpreted and virtual machine CPU usage can be difficult; there
may be no easy mapping from the executing software back to the original program.
How this can be solved depends on the language environment: it may support debug
features that can be enabled to do this, or there may be third-party tools.

As an example, DTrace uses ustack helpers to look inside VMs and translate
stacks back to the original program. There are ustack helpers for Java, Python,
and Node.js.

For example, sampling Java on-CPU stacks with DTrace jstack():

 innostore_drv.so`os_aio_array_get_nth_slot 80
 beam.smp`process_main 127
 libc.so.1`mutex_trylock_adaptive 140
 innostore_drv.so`os_aio_simulated_handle 158
 beam.smp`sched_sys_wait 202
 libc.so.1`memcpy 258
 innostore_drv.so`ut_fold_binary 1800
 innostore_drv.so`ut_fold_ulint_pair 4039

dtrace -n 'profile-97 /pid == 1742/ { @[jstack(100)] = count(); }'
dtrace: description 'profile-97 ' matched 1 probe
^C
[...]
 libc.so.1`_so_send+0x7
 libjvm.so`__1cDhpiEsend6Fipcii_i_+0xac
 libjvm.so`JVM_Send+0x31
 libnet.so`Java_java_net_SocketOutputStream_socketWrite0+0x100

java/net/SocketOutputStream.socketWrite0
java/net/SocketOutputStream.socketWrite
java/net/SocketOutputStream.write
java/io/DataOutputStream.write
TransThread.TransTCP
TransThread.run
StubRoutines (1)

 libjvm.so`__1cJJavaCallsLcall_helper6FpnJJavaValue_pnMmethodHandle_pnRJ...
 libjvm.so`__1cCosUos_exception_wrapper6FpFpnJJavaValue_pnMmethodHandle_...
 libjvm.so`__1cJJavaCallsEcall6FpnJJavaValue_nMmethodHandle_pnRJavaCallA...
 libjvm.so`__1cJJavaCallsMcall_virtual6FpnJJavaValue_nLKlassHandle_nMsym...
 libjvm.so`__1cJJavaCallsMcall_virtual6FpnJJavaValue_nGHandle_nLKlassHan...
 libjvm.so`__1cMthread_entry6FpnKJavaThread_pnGThread__v_+0xd0
 libjvm.so`__1cKJavaThreadRthread_main_inner6M_v_+0x51
 libjvm.so`__1cKJavaThreadDrun6M_v_+0x105
 libjvm.so`__1cG_start6Fpv_0_+0xd2

libc.so.1`_thr_setup+0x4e
 libc.so.1`_lwp_start
 10

5.4 Methodology and Analysis 173

The output has been truncated, showing only the most frequent stack, which
was sampled ten times. The stack shows the internals of the JVM (libjvm), with
each function shown as C++ signatures. The Java stack has been translated from
the JVM, highlighted here in bold, which shows the classes and methods responsi-
ble for this CPU code path. For this stack, it was java/io/DataOutputStream.write.

See the other methodologies and tools in Chapter 6, CPUs, for different ways to
examine application CPU usage.

5.4.3 Syscall Analysis

The thread state analysis methodology began by describing two thread states to
study: on-CPU and off-CPU. It can be useful, and sometimes more practical, to
study these based on system call execution:

� Executing: on-CPU (user mode)

� Syscalls: time during a system call (kernel mode running or waiting)

The syscall time includes I/O, locks, and other syscall types. Other thread states,
such as runnable (and waiting for a CPU) and anonymous paging, are left out of
this simplification. If either is true (CPU saturation or memory saturation), it can
be identified system-wide via the USE method.

The executing state can be studied by the CPU profiling methodology men-
tioned earlier.

System calls (syscalls) can be studied in a number of ways. The intent is to find out
where syscall time is spent, including the type of syscall and the reason it is called.

Breakpoint Tracing

The traditional style of syscall tracing involves setting breakpoints for syscall
entry and return. These are invasive, and for applications with high syscall rates
their performance may be worsened by an order of magnitude.

Depending on application performance requirements, this style of tracing may be
acceptable to use for short durations, to determine the syscall types being called.

strace

On Linux, this is performed using the strace(1) command. For example:

$ strace -ttt -T -p 1884
1356982510.395542 close(3) = 0 <0.000267>
1356982510.396064 close(4) = 0 <0.000293>
1356982510.396617 ioctl(255, TIOCGPGRP, [1975]) = 0 <0.000019>

continues

174 Chapter 5 � Applications

The options used were (see the man page for all)

� -ttt: prints the first column of time-since-epoch, in units of seconds with
microsecond resolution.

� -T: prints the last field (<time>), which is the duration of the system call, in
units of seconds with microsecond resolution.

� -p PID: trace this process ID. A command can also be specified so that
strace(1) launches and traces it.

A feature of strace(1) can be seen in the output—translation of syscall argu-
ments into a human-readable form. This is especially useful for determining the
use of ioctl().

This form of strace(1) prints a line of output per syscall. The -c option can be
used to summarize system call activity:

The output includes

� time: percentage showing where system CPU time was spent

� seconds: total system CPU time, in seconds

� usecs/call: average system CPU time per call, in microseconds

1356982510.396980 rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0 <0.000024>
1356982510.397288 rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0 <0.000014>
1356982510.397365 wait4(-1, [{WIFEXITED(s) && WEXITSTATUS(s) == 0}],
WSTOPPED|WCONTINUED, NULL) = 1975 <0.018187>
1356982510.415710 rt_sigprocmask(SIG_BLOCK, [CHLD TSTP TTIN TTOU], [CHLD], 8) = 0
<0.000018>
1356982510.416047 ioctl(255, SNDRV_TIMER_IOCTL_SELECT or TIOCSPGRP, [1884]) = 0
<0.000016>
1356982510.416118 rt_sigprocmask(SIG_SETMASK, [CHLD], NULL, 8) = 0 <0.000154>
[...]

$ strace -c -p 1884
Process 1884 attached - interrupt to quit
^CProcess 1884 detached
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
 83.29 0.007994 9 911 455 wait4
 14.41 0.001383 3 455 clone
 0.85 0.000082 0 2275 ioctl
 0.68 0.000065 0 910 close
 0.63 0.000060 0 4551 rt_sigprocmask
 0.15 0.000014 0 455 setpgid
 0.00 0.000000 0 455 rt_sigreturn
 0.00 0.000000 0 455 pipe
------ ----------- ----------- --------- --------- ----------------
100.00 0.009598 10467 455 total

5.4 Methodology and Analysis 175

� calls: number of system calls during strace(1)

� syscall: system call name

This would be of greater use if the overhead was not such a problem.
To illustrate this, the dd(1) command is used to perform 5 million 1 Kbyte

transfers and is tested without and with strace(1). Without:

The output of dd(1) includes runtime and throughput statistics. This test took
around 2 s to complete.

Here is the same command while strace(1) summarizes syscall usage:

The runtime increased by a factor of 73, with an equivalent drop in throughput.
This is a particularly severe case, as dd(1) performs a high rate of system calls.

$ dd if=/dev/zero of=/dev/null bs=1k count=5000k
5120000+0 records in
5120000+0 records out
5242880000 bytes (5.2 GB) copied, 1.91247 s, 2.7 GB/s

$ strace -c dd if=/dev/zero of=/dev/null bs=1k count=5000k
5120000+0 records in
5120000+0 records out
5242880000 bytes (5.2 GB) copied, 140.722 s, 37.3 MB/s
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
 51.46 0.008030 0 5120005 read
 48.54 0.007574 0 5120003 write
 0.00 0.000000 0 20 13 open
 0.00 0.000000 0 10 close
 0.00 0.000000 0 5 fstat
 0.00 0.000000 0 1 lseek
 0.00 0.000000 0 14 mmap
 0.00 0.000000 0 8 mprotect
 0.00 0.000000 0 2 munmap
 0.00 0.000000 0 3 brk
 0.00 0.000000 0 6 rt_sigaction
 0.00 0.000000 0 1 rt_sigprocmask
 0.00 0.000000 0 5 5 access
 0.00 0.000000 0 2 dup2
 0.00 0.000000 0 1 execve
 0.00 0.000000 0 1 getrlimit
 0.00 0.000000 0 1 arch_prctl
 0.00 0.000000 0 2 1 futex
 0.00 0.000000 0 1 set_tid_address
 0.00 0.000000 0 1 set_robust_list
------ ----------- ----------- --------- --------- ----------------
100.00 0.015604 10240092 19 total

176 Chapter 5 � Applications

truss

On Solaris-based systems, the truss(1) command serves this role. For example:

The options used were (see the man page for all)

� -d: prints the first column of timestamps, showing seconds since epoch.

� -E: prints the second column of timestamps, showing the elapsed time dur-
ing the system call, in seconds.

� -p PID: trace this process ID. A command can also be specified so that
truss(1) launches and traces it.

The output includes one line per system call and has useful translations of argu-
ments into human-readable format. The timestamps have only 0.1 ms resolution,
which makes them of limited use.

truss(1) also supports summary mode using -c:

$ truss -dE -p 81573
Base time stamp: 1356985396.2469 [Mon Dec 31 20:23:16 UTC 2012]
 0.0016 0.0000 waitid(P_ALL, 0, 0x08047A80, WEXITED|WTRAPPED|WSTOPPED|WCONTINUED) =
0
 0.0018 0.0000 lwp_sigmask(SIG_SETMASK, 0x06820000, 0x00000000, 0x00000000,
0x00000000) = 0xFFBFFEFF [0xFFFFFFFF]
 0.0019 0.0000 ioctl(255, TIOCGSID, 0x08047AEC) = 0
 0.0019 0.0000 getsid(0) = 81573
 0.0020 0.0000 ioctl(255, TIOCSPGRP, 0x08047B24) = 0
 0.0021 0.0000 lwp_sigmask(SIG_SETMASK, 0x00020000, 0x00000000, 0x00000000,
0x00000000) = 0xFFBFFEFF [0xFFFFFFFF]
 0.0022 0.0000 ioctl(255, TCGETS, 0x0811D640) = 0
 0.0023 0.0000 ioctl(255, TIOCGWINSZ, 0x08047B48) = 0
[...]

$ truss -c dd if=/dev/zero of=/dev/null bs=1k count=10k
10240+0 records in
10240+0 records out

syscall seconds calls errors
_exit .000 1
read .075 10252
write .073 10246
open .000 9 1
close .000 10
brk .000 6
getpid .000 1
fstat .000 6
sysi86 .000 1
ioctl .000 1 1
execve .000 1
sigaction .000 2
getcontext .000 1
setustack .000 1
mmap .000 8

5.4 Methodology and Analysis 177

The seconds column shows the system CPU time in the system calls. The calls
column shows the count.

truss(1) can also perform a form of dynamic tracing of user-level function
calls using the -u option. For example, tracing printf() calls:

As with strace(1), the overheads can be severe for high rates of system calls,
or traced function calls, making this prohibitive for most production use cases.

Buffered Tracing

With buffered tracing, instrumentation data can be buffered in-kernel while the
target program continues to execute. This differs from breakpoint tracing, which
interrupts the target program for each tracepoint.

DTrace provides both buffered tracing and aggregations to reduce tracing over-
head and allows custom programs to be written for syscall analysis. Some exam-
ples are shown in this section. In Linux 3.7, a trace subcommand was added to
perf(1) to perform buffered tracing of syscalls (and more).

The following DTrace one-liners demonstrate some basic syscall analysis and
are intended for both Linux- and Solaris-based systems (demonstrated on the lat-
ter). There are many more example one-liners in Appendix D.

This one-liner traces process signals (via the kill() syscall), showing source
PID and process name, and destination PID and signal number:

mmapobj .000 1
getrlimit .000 1
memcntl .000 3
sysconfig .000 3
sysinfo .000 1
lwp_private .000 1
llseek .000 3
schedctl .000 1
resolvepath .000 3
stat64 .000 2
fstat64 .000 4
open64 .000 2

 -------- ------ ----
sys totals: .150 20571 2
usr time: .029
elapsed: .880

$ truss -u 'libc:*printf*' uptime
/1: open("/usr/lib/locale/en_US.UTF-8/LC_MESSAGES/SUNW_OST_OSCMD.mo", O_RDONLY)
Err#2 ENOENT
/1: -> libc:printf(0x403363, 0x0, 0x0, 0x0, 0x0, 0xfffffd7fffdfeab0)
/1: <- libc:printf() = 4
/1: -> libc:printf(0x403368, 0x58, 0x0, 0x0, 0x0, 0x10)
/1: <- libc:printf() = 11
[...]

178 Chapter 5 � Applications

While tracing, this caught a bash process sending a -9 (SIGKILL) to PID 2638,
and some signals from postgres (PostgreSQL database). The inclusion of time-
stamps can be helpful for correlation with other activity.

This one-liner counts syscalls (using an aggregation) for processes named
"postgres" (PostgreSQL database):

During tracing, the llseek() syscall was executed the most—27,925 times.
The next one-liner measures the duration (also called latency) of read() sys-

calls by PostgreSQL:

dtrace -qn 'syscall::kill:entry {
 printf("%Y: %s (PID %d) sent a SIG %d to PID %d\n",
 walltimestamp, execname, pid, arg1, arg0); }'
2013 Apr 17 00:27:37: bash (PID 2583) sent a SIG 9 to PID 2638
2013 Apr 17 00:27:51: postgres (PID 25906) sent a SIG 16 to PID 25896
2013 Apr 17 00:27:51: postgres (PID 2676) sent a SIG 17 to PID 25906
2013 Apr 17 00:27:51: postgres (PID 2676) sent a SIG 17 to PID 25906

dtrace -n 'syscall:::entry /execname == "postgres"/ { @[probefunc] = count(); }'
dtrace: description 'syscall:::entry ' matched 233 probes
^C

 setitimer 4
 semsys 22
 open64 35
 kill 79
 lwp_sigmask 79
 setcontext 79
 write 126
 fcntl 252
 pollsys 2498
 read 2750
 send 9542
 recv 12096
 llseek 27925

dtrace -n 'syscall::read:entry /execname == "postgres"/ {
self->ts = timestamp; } syscall::read:return /self->ts/ { @["ns"] =
quantize(timestamp - self->ts); self->ts = 0; }'

dtrace: description 'syscall::read:entry ' matched 2 probes
^C

 ns
 value ------------- Distribution ------------- count
 256 | 0
 512 |@@ 1124
 1024 |@@@@@@@ 5108
 2048 |@@@@@@@@@@@@@@@@@@@@@@@ 15427
 4096 |@@@@@@ 4391
 8192 |@ 777
 16384 |@ 425
 32768 | 114
 65536 | 5

5.4 Methodology and Analysis 179

While tracing, most of the read() syscalls were between 1 and 8 μs (1,024–8,191 ns).
The read() syscall operates on a file descriptor which may be a file system object or a
network socket. Identifying each is demonstrated in the respective chapters, by use of
the fds[] DTrace array, to map file descriptors to their file system types.

For this one-liner, if the timestamp built-in is changed to vtimestamp, it mea-
sures CPU time during the system call only. This can be used to compare with the
duration times, to see if the system call spent more time in kernel code or blocked
for I/O.

More sophisticated DTrace scripts may be written to express syscall times in
different ways. Examples include (from the DTraceToolkit [3])

� dtruss: DTrace version of truss(1), operates system-wide

� execsnoop: trace new process execution via the exec() syscall

� opensnoop: trace open() syscalls with various details

� procsystime: summarize syscall time in various ways

These have solved numerous performance issues, often by identifying high-level
process activity that can be tuned or eliminated. This is a type of workload charac-
terization: the workload is the application system calls.

For example, the following shows running execsnoop with -v for string time-
stamps on a cloud-based system:

The timestamps show that all of these processes were executed during a 2 s period.
A high rate of short-lived processes can consume CPU resources and interfere with
other applications due to CPU cross calls (tearing down the MMU contexts during
process exit).

 131072 | 4
 262144 | 4
 524288 | 0

execsnoop -v
STRTIME UID PID PPID ARGS
2013 Jan 12 22:10:05 0 15044 14378 /usr/bin/date +%M
2013 Jan 12 22:10:05 0 15039 15038 /opt/mon/bin/rrdtool graph /opt/mo...
2013 Jan 12 22:10:05 0 15037 15036 /opt/mon/bin/rrdtool update /opt/m...
2013 Jan 12 22:10:05 0 15041 15040 /opt/mon/bin/rrdtool graph /opt/mo...
2013 Jan 12 22:10:05 0 15043 15042 /opt/mon/bin/rrdtool graph /opt/mo...
2013 Jan 12 22:10:06 0 15046 15045 /usr/bin/echo
2013 Jan 12 22:10:06 0 15048 15045 /usr/bin/tail -200
2013 Jan 12 22:10:06 0 15049 15048 /usr/bin/cat -sv /var/adm/messages...
2013 Jan 12 22:10:06 0 15050 15049 /usr/bin/ls -tr1 /var/adm/messages...
2013 Jan 12 22:10:06 0 15045 14377 /usr/bin/sh /usr/bin/dmesg
[...]

180 Chapter 5 � Applications

5.4.4 I/O Profiling

Similar to the role of CPU profiling, I/O profiling determines why and how I/O-
related system calls are being performed. This can be done using DTrace, examin-
ing the user-level stack traces for system calls.

For example, this one-liner traces PostgreSQL read() syscalls, gathers the
user-level stack trace, and aggregates them:

The output (truncated) shows user-level stacks and then a count for the number of
occurrences. These stacks include application internal function names. You proba-
bly won’t be able to understand these without studying the source code, but you
may be able to glean enough useful meaning from their names. The first stack con-
tains XLogRead: it may be related to a type of database log. The second stack con-
tains PgstatCollectorMain.isra, which sounds like monitoring activity.

Stack traces show why the system calls are being performed. It can be useful to
study the other attributes from the workload characterization methodology as well
(from Chapter 2, Methodology):

dtrace -n 'syscall::read:entry /execname == "postgres"/ {
@[ustack()] = count(); }'

dtrace: description 'syscall::read:entry ' matched 1 probe
^C
[...]

 libc.so.1`__read+0x15
 postgres`XLogRead+0xb7
 postgres`XLogSend+0x115
 postgres`WalSenderMain+0x10c6
 postgres`PostgresMain+0x1aa
 postgres`ServerLoop+0x6fe
 postgres`PostmasterMain+0x7e2
 postgres`main+0x412
 postgres`_start+0x83

 210

 libc.so.1`__read+0x15
 postgres`WaitLatchOrSocket+0xb1
 postgres`PgstatCollectorMain.isra.21+0x2ed

 postgres`pgstat_start+0x68
 postgres`reaper+0x5bd
 libc.so.1`__sighndlr+0x15
 libc.so.1`call_user_handler+0x292
 libc.so.1`sigacthandler+0x77
 libc.so.1`syscall+0x13
 libc.so.1`thr_sigsetmask+0x1c2
 libc.so.1`sigprocmask+0x52
 postgres`ServerLoop+0xb7
 postgres`PostmasterMain+0x7e2
 postgres`main+0x412
 postgres`_start+0x83

 10723

5.4 Methodology and Analysis 181

� Who: process ID, username

� What: I/O syscall target (e.g., file system or socket), I/O size, IOPS, through-
put (bytes per second), other attributes

� How: IOPS variation over time

In addition to the workload applied, the resulting performance—syscall latency—
can be studied as described for the previous methodology.

5.4.5 Workload Characterization

The application applies work to system resources—CPUs, memory, file system,
disk, and network—as well as to the operating system via system calls. All of these
can be studied using the workload characterization methodology, introduced in
Chapter 2, Methodology, and discussed in later chapters.

In addition, the workload sent to the application can be studied. This focuses on
the operations that the application serves, and their attributes, and may be a key
metric included in performance monitoring and used for capacity planning.

5.4.6 USE Method

As introduced in Chapter 2, Methodology, and applied in later chapters, the USE
method checks the utilization, saturation, and errors of all hardware resources.
Many application performance issues may be solved this way, by showing that a
resource has become a bottleneck.

The USE method can also be applied to software resources, depending on the
application. If you can find a functional diagram showing the internal components
of an application, consider the utilization, saturation, and error metrics for each
software resource and see what makes sense.

For example, the application may use a pool of worker threads to process
requests, with a queue for requests waiting their turn. Treating this as a resource,
the three metrics could then be defined in this way:

� Utilization: average number of threads busy processing requests during an
interval, as a percentage of the total threads. For example, 50% would mean
that, on average, half the threads were busy working on requests.

� Saturation: average length of the request queue during an interval. This
shows how many requests have backed up waiting for a worker thread.

� Errors: requests denied or failed for any reason.

182 Chapter 5 � Applications

Your task is then to find how these metrics can be measured. They may already be
provided by the application somewhere, or they may need to be added or mea-
sured using another tool, such as dynamic tracing.

Queueing systems, like this example, can also be studied using queueing theory
(see Chapter 2, Methodology).

For a different example, consider file descriptors. The system may impose a
limit, such that these are a finite resource. The three metrics could be as follows:

� Utilization: number of in-use file descriptors, as a percentage of the limit.

� Saturation: depends on the OS behavior: if threads block waiting for file
descriptor allocation, this can be the number of blocked threads waiting for
this resource.

� Errors: allocation error, such as EFILE, “Too many open files.”

Repeat this exercise for the components of your application, and skip any metrics
that don’t make sense.

This process may help you develop a short checklist for checking application
health before moving on to other methodologies such as drill-down analysis.

5.4.7 Drill-Down Analysis

For applications, drill-down analysis can begin with examining the operations the
application serves and then drilling down into application internals to see how it is
performing them. For I/O, this drill-down analysis can enter system libraries, sys-
calls, and the kernel.

This is an advanced activity that will quickly lead to application internals,
which are ideally open source so that they can be studied. Dynamic tracing tools
(DTrace, SystemTap, perf(1)) can instrument these internals, in some lan-
guages more easily than in others. Check if the language has its own toolset for
analysis, which may be more appropriate to use.

There are also specific tools for investigating library calls: ltrace(1) on Linux, and
apptrace(1) on Solaris-based systems (although its use has given way to DTrace).

5.4.8 Lock Analysis

For multithreaded applications, locks can become a bottleneck, inhibiting parallel-
ism and scalability. They can be analyzed by

� Checking for contention

� Checking for excessive hold times

5.4 Methodology and Analysis 183

The first identifies whether there is a problem now. Excessive hold times are not nec-
essarily a problem, but they may be in the future, with more parallel load. For each,
try to identify the name of the lock (if it exists) and the code path that led to using it.

While there are special-purpose tools for lock analysis, you can sometimes solve
issues from CPU profiling alone. For spin locks, contention shows up as CPU usage
and can easily be identified using CPU profiling of stack traces. For adaptive
mutex locks, contention often involves some spinning, which can also be identified
by CPU profiling of stack traces. In that case, be aware that the CPU profile gives
only a part of the story, as threads may have blocked and slept while waiting for
the locks. See Section 5.4.2, CPU Profiling.

Examples of special-purpose lock analysis tools on Solaris-based systems are

� plockstat(1M): analysis of user-level locks

� lockstat(1M): analysis of kernel-level locks

These commands have similar behavior. They are also implemented using DTrace,
which can be used directly for deeper lock analysis.

Here is an example usage of lockstat(1M):

lockstat -n 1000000 -C -s5 sleep 5 > lockstat.txt
more lockstat.txt

Adaptive mutex spin: 134438 events in 5.058 seconds (26577 events/sec)

Count indv cuml rcnt nsec Lock Caller
14144 11% 11% 0.00 1787 0xffffff0d71404348 zfs_range_unlock+0x2a

 nsec ------ Time Distribution ------ count Stack
 256 |@ 902 zfs_read+0x239
 512 |@@@@ 1948 fop_read+0x8b
 1024 |@@@@@@ 3033 read+0x2a7
 2048 |@@@@@@@@@ 4286 read32+0x1e
 4096 |@@@@@@ 3143
 8192 |@ 656
 16384 | 148
 32768 | 24
 65536 | 2
 131072 | 0
 262144 | 0
 524288 | 0
 1048576 | 2

Count indv cuml rcnt nsec Lock Caller
13701 10% 21% 0.00 1769 0xffffff0d71404348 zfs_range_lock+0x86

 nsec ------ Time Distribution ------ count Stack
 256 |@@ 1119 zfs_read+0x101
 512 |@@@@ 1970 fop_read+0x8b
 1024 |@@@ 1492 read+0x2a7
 2048 |@@@@@@@@@@ 4976 read32+0x1e

continues

184 Chapter 5 � Applications

 4096 |@@@@@@@ 3469
 8192 |@ 520
 16384 | 124
 32768 | 24
 65536 | 7

[...]

Adaptive mutex block: 399 events in 5.058 seconds (79 events/sec)

Count indv cuml rcnt nsec Lock Caller
 21 5% 5% 0.00 21053 0xffffff0d71404348 zfs_range_unlock+0x2a

 nsec ------ Time Distribution ------ count Stack
 8192 |@@@@@ 4 zfs_read+0x239
 16384 |@@@@ 3 fop_read+0x8b
 32768 |@@@@@@@@@@@@@@@ 11 read+0x2a7
 65536 |@@@@ 3 read32+0x1e

Count indv cuml rcnt nsec Lock Caller
 20 5% 10% 0.00 15107 0xffffff0d71404348 zfs_range_lock+0x86

 nsec ------ Time Distribution ------ count Stack
 8192 |@@@@ 3 zfs_read+0x101
 16384 |@@@@@@@@@@@@ 8 fop_read+0x8b
 32768 |@@@@@@@@@@@@@ 9 read+0x2a7

 read32+0x1e
[...]

Spin lock spin: 2174 events in 5.058 seconds (430 events/sec)

Count indv cuml rcnt nsec Lock Caller
 589 27% 27% 0.00 73972 cp_default disp_lock_enter+0x26

 nsec ------ Time Distribution ------ count Stack
 512 |@@@ 65 disp_getbest+0x28
 1024 |@@@@@@@@@@@@ 239 disp_getwork+0x37
 2048 |@ 23 idle+0x55
 4096 | 6 thread_start+0x8
 8192 |@ 39
 16384 |@ 37
 32768 |@@ 53
 65536 |@@ 43
 131072 |@@ 45
 262144 | 18
 524288 | 3
 1048576 | 7
 2097152 | 4
 4194304 | 7
[...]

R/W reader blocked by writer: 1 events in 5.058 seconds (0 events/sec)

Count indv cuml rcnt nsec Lock Caller
 1 100% 100% 0.00 259688397 0xffffff0d6f0cf898 as_fault+0x2a9

 nsec ------ Time Distribution ------ count Stack
 268435456 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1 pagefault+0x96

 trap+0x2c7
 cmntrap+0xe6

5.4 Methodology and Analysis 185

Here, lockstat(1M) traced contention events (-C) with five levels of stack trace
(-s5) and was executed with a coprocess (sleep(1)) for the purpose of providing a
time-out of 5 s. The output was redirected to a file for easier browsing (it is over
100,000 lines long).

The output begins with adaptive spin times and distribution plots showing the
time for each contention event, along with the name of the lock and the stack
trace. The highest was zfs_range_unlock, which had 14,144 occurrences of con-
tention, with an average spin time of 1,787 ns. The distribution plot shows that
there were two occurrences where the spin time was over 1,048,576 ns (in the 1 to
2 ms bucket). The number of these that blocked can be seen in the adaptive mutex
block section of the output.

Tracing of kernel- or user-level locks does add overhead. These particular tools
are based on DTrace, which minimizes this overhead as much as possible. Alterna-
tively, as described earlier, CPU profiling at a fixed rate (e.g., 97 Hz) will identify
many (but not all) lock issues, without the per-event tracing overhead.

5.4.9 Static Performance Tuning

Static performance tuning focuses on issues of the configured environment. For
application performance, examine the following aspects of the static configuration:

� What version of the application is running? Are there newer versions? Do
their release notes mention performance improvements?

� What known performance issues are there with the application? Is there a
bug database that can be searched?

� How is the application configured?

� If it was configured or tuned differently from the defaults, what was the rea-
son? (Was it based on measurements and analysis, or guesswork?)

� Does the application employ a cache of objects? How is it sized?

� Does the application run concurrently? How is that configured (e.g., thread
pool sizing)?

� Is the application running in a special mode? (For example, debug mode may
have been enabled and be reducing performance.)

� What system libraries does the application use? What versions are they?

� What memory allocator does the application use?

� Is the application configured to use large pages for its heap?

� Is the application compiled? What version of the compiler? What compiler
options and optimizations? 64-bit?

186 Chapter 5 � Applications

� Has the application encountered an error, and is it now running in a
degraded mode?

� Are there system-imposed limits or resource controls for CPU, memory, file
system, disk, or network usage? (These are common with cloud computing.)

Answering these questions may reveal configuration choices that have been over-
looked.

5.5 Exercises

1. Answer the following questions about terminology:

� What is a cache?

� What is a ring buffer?

� What is a spin lock?

� What is an adaptive mutex lock?

� What is the difference between concurrency and parallelism?

� What is CPU affinity?

2. Answer the following conceptual questions:

� What are the general pros and cons of using a large I/O size?

� What is a hash table of locks used for?

� Describe general performance characteristics of the runtime of compiled lan-
guages, interpreted languages, and those using virtual machines.

� Explain the role of garbage collection and how it can affect performance.

3. Choose an application, and answer the following basic questions about it:

� What is the role of the application?

� What discrete operation does the application perform?

� Does the application run in user mode or kernel mode?

� How is the application configured? What key options are available regard-
ing performance?

� What performance metrics are provided by the application?

� What logs does the application create? Do they contain performance
information?

� Has the most recent version of the application fixed performance issues?

� Are there known performance bugs for the application?

5.6 References 187

� Does the application have a community (e.g., IRC, meetups)? A performance
community?

� Are there books about the application? Performance books?

� Are there well-known performance experts for the application? Who are they?

4. Choose an application that is under load, and perform these tasks (many of
which may require the use of dynamic tracing):

� Before taking any measurements, do you expect the application to be CPU-
bound or I/O-bound? Explain your reasoning.

� Identify using observability tools if it is CPU-bound or I/O-bound.

� Characterize the size of I/O it performs (e.g., file system reads/writes, net-
work sends/receives).

� Does the application have caches? Identify their size and hit rate.

� Measure the latency (response time) for the operation that the application
serves. Show the average, minimum, maximum, and full distribution.

� Perform drill-down analysis of the operation, investigating the origin of the
bulk of the latency.

� Characterize the workload applied to the application (especially who and
what).

� Step through the static performance tuning checklist.

� Does the application run concurrently? Investigate its use of synchroniza-
tion primitives.

5. (optional, advanced) Develop a tool for Linux called tsastat(1) that prints
columns for each of the six thread state analysis states, with time spent in
each. This can behave similarly to pidstat(1) and produce a rolling output.

5.6 References

[Knuth 76] Knuth, D. “Big Omicron and Big Omega and Big Theta,” ACM
SIGACT News, 1976.

[Knuth 97] Knuth, D. The Art of Computer Programming, Volume 1, Fundamen-
tal Algorithms, 3rd Edition. Addison-Wesley, 1997.

[1] http://lwn.net/Articles/314512/

[2] http://nodejs.org

[3] www.brendangregg.com/dtrace.html#DTraceToolkit

../../../../../lwn.net/Articles/314512/default.htm
../../../../../nodejs.org/default.htm
../../../../../www.brendangregg.com/dtrace.html#DTraceToolkit

This page intentionally left blank

189

6
CPUs

CPUs drive all software and are often the first target for systems performance
analysis. Modern systems typically have many CPUs, which are shared among all
running software by the kernel scheduler. When there is more demand for CPU
resources than there are resources available, process threads (or tasks) will queue,
waiting their turn. Waiting can add significant latency during the runtime of
applications, degrading performance.

The usage of the CPUs can be examined in detail to look for performance
improvements, including eliminating unnecessary work. At a high level, CPU
usage by process, thread, or task can be examined. At a lower level, the code path
within applications and the kernel can be profiled and studied. At the lowest level,
CPU instruction execution and cycle behavior can be studied.

This chapter consists of five parts:

� Background introduces CPU-related terminology, basic models of CPUs,
and key CPU performance concepts.

� Architecture introduces processor and kernel scheduler architecture.

� Methodology describes performance analysis methodologies, both observa-
tional and experimental.

� Analysis describes CPU performance analysis tools on Linux- and Solaris-
based systems, including profiling, tracing, and visualizations.

� Tuning includes examples of tunable parameters.

190 Chapter 6 � CPUs

The first three sections provide the basis for CPU analysis, and the last two show
its practical application to Linux- and Solaris-based systems.

The effects of memory I/O on CPU performance are covered, including CPU
cycles stalled on memory and the performance of CPU caches. Chapter 7, Memory,
continues the discussion of memory I/O, including MMU, NUMA/UMA, system
interconnects, and memory busses.

6.1 Terminology

For reference, CPU-related terminology used in this chapter includes the following:

� Processor: the physical chip that plugs into a socket on the system or pro-
cessor board and contains one or more CPUs implemented as cores or hard-
ware threads.

� Core: an independent CPU instance on a multicore processor. The use of
cores is a way to scale processors, called chip-level multiprocessing (CMP).

� Hardware thread: a CPU architecture that supports executing multiple
threads in parallel on a single core (including Intel’s Hyper-Threading Tech-
nology), where each thread is an independent CPU instance. One name for
this scaling approach is multithreading.

� CPU instruction: a single CPU operation, from its instruction set. There are
instructions for arithmetic operations, memory I/O, and control logic.

� Logical CPU: also called a virtual processor,1 an operating system CPU
instance (a schedulable CPU entity). This may be implemented by the proces-
sor as a hardware thread (in which case it may also be called a virtual core), a
core, or a single-core processor.

� Scheduler: the kernel subsystem that assigns threads to run on CPUs.

� Run queue: a queue of runnable threads that are waiting to be serviced by
CPUs. For Solaris, it is often called a dispatcher queue.

Other terms are introduced throughout this chapter. The Glossary includes basic
terminology for reference, including CPU, CPU cycle, and stack. Also see the termi-
nology sections in Chapters 2 and 3.

1. It is also sometimes called a virtual CPU; however, that term is more commonly used to refer
to virtual CPU instances provided by a virtualization technology. See Chapter 11, Cloud
Computing.

6.2 Models 191

6.2 Models

The following simple models illustrate some basic principles of CPUs and CPU per-
formance. Section 6.4, Architecture, digs much deeper and includes implementation-
specific details.

6.2.1 CPU Architecture

Figure 6.1 shows an example CPU architecture, for a single processor with four
cores and eight hardware threads in total. The physical architecture is pictured,
along with how it is seen by the operating system.

Each hardware thread is addressable as a logical CPU, so this processor appears
as eight CPUs. The operating system may have some additional knowledge of
topology, such as which CPUs are on the same core, to improve its scheduling
decisions.

6.2.2 CPU Memory Caches

Processors provide various hardware caches for improving memory I/O perfor-
mance. Figure 6.2 shows the relationship of cache sizes, which become smaller and
faster (a trade-off) the closer they are to the CPU.

The caches that are present, and whether they are on the processor (integrated)
or external to the processor, depend on the processor type. Earlier processors pro-
vided fewer levels of integrated cache.

Figure 6-1 CPU architecture

192 Chapter 6 � CPUs

6.2.3 CPU Run Queues

Figure 6.3 shows a CPU run queue, which is managed by the kernel scheduler.

The thread states shown in the figure, ready to run and on-CPU, are covered in
Figure 3.7 in Chapter 3, Operating Systems.

The number of software threads that are queued and ready to run is an impor-
tant performance metric indicating CPU saturation. In this figure (at this instant)
there are four, with an additional thread running on-CPU. The time spent waiting
on a CPU run queue is sometimes called run-queue latency or dispatcher-queue
latency. In this book, the term scheduler latency is used instead, as it is appropri-
ate for all dispatcher types, including those that do not use queues (see the discus-
sion of CFS in Section 6.4.2, Software).

For multiprocessor systems, the kernel typically provides a run queue for each
CPU and aims to keep threads on the same run queue. This means that threads are
more likely to keep running on the same CPUs, where the CPU caches have cached
their data. (These caches are described as having cache warmth, and the approach to
favor CPUs is called CPU affinity.) On NUMA systems, memory locality may also be
improved, which also improves performance (this is described in Chapter 7, Memory).

Figure 6-2 CPU cache sizes

Figure 6-3 CPU run queue

6.3 Concepts 193

It also avoids the cost of thread synchronization (mutex locks) for queue operations,
which would hurt scalability if the run queue was global and shared among all CPUs.

6.3 Concepts

The following are a selection of important concepts regarding CPU performance,
beginning with a summary of processor internals: the CPU clock rate and how
instructions are executed. This is background for later performance analysis, par-
ticularly for understanding the cycles-per-instruction (CPI) metric.

6.3.1 Clock Rate

The clock is a digital signal that drives all processor logic. Each CPU instruction
may take one or more cycles of the clock (called CPU cycles) to execute. CPUs exe-
cute at a particular clock rate; for example, a 5 GHz CPU performs 5 billion clock
cycles per second.

Some processors are able to vary their clock rate, increasing it to improve per-
formance or decreasing it to reduce power consumption. The rate may be varied on
request by the operating system, or dynamically by the processor itself. The ker-
nel idle thread, for example, can request the CPU to throttle down to save power.

Clock rate is often marketed as the primary feature of the processor, but this
can be a little misleading. Even if the CPU in your system appears to be fully uti-
lized (a bottleneck), a faster clock rate may not speed up performance—it depends
on what those fast CPU cycles are actually doing. If they are mostly stall cycles
while waiting on memory access, executing them more quickly doesn’t actually
increase the CPU instruction rate or workload throughput.

6.3.2 Instruction

CPUs execute instructions chosen from their instruction set. An instruction
includes the following steps, each processed by a component of the CPU called a
functional unit:

1. Instruction fetch

2. Instruction decode

3. Execute

4. Memory access

5. Register write-back

194 Chapter 6 � CPUs

The last two steps are optional, depending on the instruction. Many instructions
operate on registers only and do not require the memory access step.

Each of these steps takes at least a single clock cycle to be executed. Memory
access is often the slowest, as it may take dozens of clock cycles to read or write to
main memory, during which instruction execution has stalled (and these cycles
while stalled are called stall cycles). This is why CPU caching is important, as
described in Section 6.4: it can dramatically reduce the number of cycles needed for
memory access.

6.3.3 Instruction Pipeline

The instruction pipeline is a CPU architecture that can execute multiple instruc-
tions in parallel, by executing different components of different instructions at the
same time. It is similar to a factory assembly line, where stages of production can
be executed in parallel, increasing throughput.

Consider the instruction steps previously listed. If each were to take a single
clock cycle, it would take five cycles to complete the instruction. At each step of
this instruction, only one functional unit is active and four are idle. By use of pipe-
lining, multiple functional units can be active at the same time, processing differ-
ent instructions in the pipeline. Ideally, the processor can then complete one
instruction with every clock cycle.

6.3.4 Instruction Width

But we can go faster still. Multiple functional units can be included of the same
type, so that even more instructions can make forward progress with each clock
cycle. This CPU architecture is called superscalar and is typically used with pipe-
lining to achieve a high instruction throughput.

The instruction width describes the target number of instructions to process in
parallel. Modern processors are 3-wide or 4-wide, meaning they can complete up to
three or four instructions per cycle. How this works depends on the processor, as
there may be different numbers of functional units for each stage.

6.3.5 CPI, IPC

Cycles per instruction (CPI) is an important high-level metric for describing where
a CPU is spending its clock cycles and for understanding the nature of CPU utili-
zation. This metric may also be expressed as instructions per cycle (IPC), the
inverse of CPI.

6.3 Concepts 195

A high CPI indicates that CPUs are often stalled, typically for memory access. A
low CPI indicates that CPUs are often not stalled and have a high instruction
throughput. These metrics suggest where performance tuning efforts may be best
spent.

Memory-intensive workloads, for example, may be improved by installing faster
memory (DRAM), improving memory locality (software configuration), or reducing
the amount of memory I/O. Installing CPUs with a higher clock rate may not
improve performance to the degree expected, as the CPUs may need to wait the
same amount of time for memory I/O to complete. Put differently, a faster CPU
may mean more stall cycles but the same rate of completed instructions.

The actual values for high or low CPI are dependent on the processor and pro-
cessor features and can be determined experimentally by running known work-
loads. As an example, you may find that high-CPI workloads run with a CPI at ten
or higher, and low CPI workloads run with a CPI at less than one (which is possi-
ble due to instruction pipelining and width, described earlier).

It should be noted that CPI shows the efficiency of instruction processing, but
not of the instructions themselves. Consider a software change that added an inef-
ficient software loop, which operates mostly on CPU registers (no stall cycles): such
a change may result in a lower overall CPI, but higher CPU usage and utilization.

6.3.6 Utilization

CPU utilization is measured by the time a CPU instance is busy performing work
during an interval, expressed as a percentage. It can be measured as the time a
CPU is not running the kernel idle thread but is instead running user-level appli-
cation threads or other kernel threads, or processing interrupts.

High CPU utilization may not necessarily be a problem, but rather a sign that
the system is doing work. Some people also consider this an ROI indicator: a
highly utilized system is considered to have good ROI, whereas an idle system is
considered wasted. Unlike with other resource types (disks), performance does not
degrade steeply under high utilization, as the kernel supports priorities, preemp-
tion, and time sharing. These together allow the kernel to understand what has
higher priority, and to ensure that it runs first.

The measure of CPU utilization spans all clock cycles for eligible activities,
including memory stall cycles. It may seem a little counterintuitive, but a CPU
may be highly utilized because it is often stalled waiting for memory I/O, not just
executing instructions, as described in the previous section.

CPU utilization is often split into separate kernel- and user-time metrics.

196 Chapter 6 � CPUs

6.3.7 User-Time/Kernel-Time

The CPU time spent executing user-level application code is called user-time, and
kernel-level code is kernel-time. Kernel-time includes time during system calls,
kernel threads, and interrupts. When measured across the entire system, the user-
time/kernel-time ratio indicates the type of workload performed.

Applications that are computation-intensive may spend almost all their time
executing user-level code and have a user/kernel ratio approaching 99/1. Exam-
ples include image processing, genomics, and data analysis.

Applications that are I/O-intensive have a high rate of system calls, which exe-
cute kernel code to perform the I/O. For example, a web server performing net-
work I/O may have a user/kernel ratio of around 70/30.

These numbers are dependent on many factors and are included to express the
kinds of ratios expected.

6.3.8 Saturation

A CPU at 100% utilization is saturated, and threads will encounter scheduler latency
as they wait to run on-CPU, decreasing overall performance. This latency is the time
spent waiting on the CPU run queue or other structure used to manage threads.

Another form of CPU saturation involves CPU resource controls, as may be
imposed in a multitenant cloud computing environment. While the CPU may not
be 100% utilized, the imposed limit has been reached, and threads that are runna-
ble must wait their turn. How visible this is to users of the system depends on the
type of virtualization in use; see Chapter 11, Cloud Computing.

A CPU running at saturation is less of a problem than other resource types, as
higher-priority work can preempt the current thread.

6.3.9 Preemption

Preemption, introduced in Chapter 3, Operating Systems, allows a higher-priority
thread to preempt the currently running thread and begin its own execution
instead. This eliminates the run-queue latency for higher-priority work, improv-
ing its performance.

6.3.10 Priority Inversion

Priority inversion occurs when a lower-priority thread holds a resource and blocks
a higher-priority thread from running. This reduces the performance of the higher-
priority work, as it is blocked waiting.

6.3 Concepts 197

Solaris-based kernels implement a full priority inheritance scheme to avoid pri-
ority inversion. Here is an example of how this can work (based on a real-world
case):

1. Thread A performs monitoring and has a low priority. It acquires an address
space lock for a production database, to check memory usage.

2. Thread B, a routine task to perform compression of system logs, begins
running.

3. There is insufficient CPU to run both. Thread B preempts A and runs.

4. Thread C is from the production database, has a high priority, and has been
sleeping waiting for I/O. This I/O now completes, putting thread C back into
the runnable state.

5. Thread C preempts B, runs, but then blocks on the address space lock held by
thread A. Thread C leaves CPU.

6. The scheduler picks the next-highest-priority thread to run: B.

7. With thread B running, a high-priority thread, C, is effectively blocked on a
lower-priority thread, B. This is priority inversion.

8. Priority inheritance gives thread A thread C’s high priority, preempting B,
until it releases the lock. Thread C can now run.

Linux since 2.6.18 has provided a user-level mutex that supports priority inheri-
tance, intended for real-time workloads [1].

6.3.11 Multiprocess, Multithreading

Most processors provide multiple CPUs of some form. For an application to make
use of them, it needs separate threads of execution so that it can run in parallel.
For a 64-CPU system, for example, this may mean that an application can execute
up to 64 times faster if it can make use of all CPUs in parallel, or handle 64 times
the load. The degree to which the application can effectively scale with an increase
in CPU count is a measure of scalability.

The two techniques to scale applications across CPUs are multiprocess and
multithreading, which are pictured in Figure 6.4.

On Linux both the multiprocess and multithread models may be used, and both
are implemented by tasks.

Differences between multiprocess and multithreading are shown in Table 6.1.
With all the advantages shown in the table, multithreading is generally consid-

ered superior, although more complicated for the developer to implement.

198 Chapter 6 � CPUs

Whichever technique is used, it is important that enough processes or threads
be created to span the desired number of CPUs—which, for maximum perfor-
mance, may be all of the CPUs available. Some applications may perform better
when running on fewer CPUs, when the cost of thread synchronization and
reduced memory locality outweighs the benefit of running across more CPUs.

Parallel architectures are also discussed in Chapter 5, Applications.

6.3.12 Word Size

Processors are designed around a maximum word size—32-bit or 64-bit—which is
the integer size and register size. Word size is also commonly used, depending on

Figure 6-4 Software CPU scalability techniques

Table 6-1 Multiprocess and Multithreading Attributes

Attribute Multiprocess Multithreading

Development Can be easier. Use of fork(). Use of threads API.

Memory overhead Separate address space per process
consumes some memory resources.

Small. Requires only extra
stack and register space.

CPU overhead Cost of fork()/exit(), which
includes MMU work to manage
address spaces.

Small. API calls.

Communication Via IPC. This incurs CPU cost includ-
ing context switching for moving
data between address spaces, unless
shared memory regions are used.

Fastest. Direct access to share
memory. Integrity via syn-
chronization primitives (e.g.,
mutex locks).

Memory usage While some memory may be dupli-
cated, separate processes can
exit() and return all memory back
to the system.

Via system allocator. This may
incur some CPU contention
from multiple threads, and
fragmentation before mem-
ory is reused.

6.4 Architecture 199

the processor, for the address space size and data path width (where it is some-
times called the bit width).

Larger sizes can mean better performance, although it’s not as simple as it
sounds. Larger sizes may cause memory overheads for unused bits in some data
types. The data footprint also increases when the size of pointers (word size)
increases, which can require more memory I/O. For the x86 64-bit architecture,
these overheads are compensated by an increase in registers and a more efficient
register calling convention, so 64-bit applications will more likely be faster than
their 32-bit versions.

Processors and operating systems can support multiple word sizes and can run
applications compiled for different word sizes simultaneously. If software has been
compiled for the smaller word size, it may execute successfully but perform rela-
tively poorly.

6.3.13 Compiler Optimization

The CPU runtime of applications can be significantly improved through compiler
options (including setting word size) and optimizations. Compilers are also fre-
quently updated to take advantage of the latest CPU instruction sets and to imple-
ment other optimizations. Sometimes application performance can be significantly
improved simply by using a newer compiler.

This topic is covered in more detail in Chapter 5, Applications.

6.4 Architecture

This section introduces CPU architecture and implementation, for both hardware
and software. Simple CPU models were introduced in Section 6.2, Models, and
generic concepts in the previous section.

These topics have been summarized as background for performance analysis.
For more details, see vendor processor manuals and texts on operating system
internals. Some are listed at the end of this chapter.

6.4.1 Hardware

CPU hardware includes the processor and its subsystems, and the CPU intercon-
nect for multiprocessor systems.

Processor

Components of a generic two-core processor are shown in Figure 6.5.

200 Chapter 6 � CPUs

The control unit (pictured as control logic) is the heart of the CPU, performing
instruction fetch, decoding, managing execution, and storing results.

This example processor depicts a shared floating-point unit and (optional)
shared Level 3 cache. The actual components in your processor will vary depend-
ing on its type and model. Other performance-related components that may be
present include the following:

� P-cache: prefetch cache (per CPU)

� W-cache: write cache (per CPU)

� Clock: signal generator for the CPU clock (or provided externally)

� Timestamp counter: for high-resolution time, incremented by the clock

� Microcode ROM: quickly converts instructions to circuit signals

� Temperature sensors: for thermal monitoring

� Network interfaces: if present on-chip (for high performance)

Some processor types use the temperature sensors as input for dynamic over-
clocking of individual cores (including Intel Turbo Boost technology), improving
performance while the core remains in its temperature envelope.

CPU Caches

Various hardware caches are usually included in the processor (referred to as on-
chip, on-die, embedded, or integrated) or with the processor (external). These
improve memory performance by using faster memory types for caching reads and

Figure 6-5 Generic two-core processor components

6.4 Architecture 201

buffering writes. The levels of cache access for a generic processor are shown in
Figure 6.6.

They include

� Level 1 instruction cache (I$)

� Level 1 data cache (D$)

� Translation lookaside buffer (TLB)

� Level 2 cache (E$)

� Level 3 cache (optional)

The E in E$ originally stood for external cache, but with the integration of Level
2 caches it has since been cleverly referred to as embedded cache. The “Level” ter-
minology is used nowadays instead of the “E$”-style notation, which avoids such
confusion.

The caches available on each processor depend on its type and model. Over time,
the number and sizes of these caches have been increasing. This is illustrated in
Table 6.2 by the listing of Intel processors since 1978, including advances in caches
[Intel 12].

Figure 6-6 CPU cache hierarchy

Table 6-2 Example Intel Processor Cache Sizes from 1978 to 2011

Processor Date Max Clock Transistors
Data
Bus Level 1 Level 2 Level 3

8086 1978 8 MHz 29 K 16-bit —

Intel 286 1982 12.5 MHz 134 K 16-bit —

Intel 386 DX 1985 20 MHz 275 K 32-bit — — —

Intel 486 DX 1989 25 MHz 1.2 M 32-bit 8 KB — —

Pentium 1993 60 MHz 3.1 M 64-bit 16 KB — —

Pentium Pro 1995 200 MHz 5.5 M 64-bit 16 KB 256/512 KB —

continues

202 Chapter 6 � CPUs

For multicore and multithreading processors, some of these caches may be
shared between cores and threads.

Apart from the increasing number and sizes of CPU caches, there is also a trend
toward providing these on-chip, where access latency can be minimized, instead of
providing them externally to the processor.

Latency

Multiple levels of cache are used to deliver the optimum configuration of size and
latency. The access time for the Level 1 cache is typically a few CPU clock cycles,
and for the larger Level 2 cache around a dozen clock cycles. Main memory can
take around 60 ns (around 240 cycles, for a 4 GHz processor), and address transla-
tion by the MMU also adds latency.

The CPU cache latency characteristics for your processor can be determined
experimentally using micro-benchmarking [Ruggiero 08]. Figure 6.7 shows the
result of this, plotting memory access latency for an Intel Xeon E5620 2.4 GHz
tested over increasing ranges of memory using LMbench [2].

Both axes are logarithmic. The steps in the graphs show when a cache level was
exceeded, and access latency becomes a result of the next (slower) cache level.

Associativity

Associativity is a cache characteristic describing a constraint for locating new
entries in the cache. Types are

� Fully associative: The cache can locate new entries anywhere. For exam-
ple, an LRU algorithm could evict the least recently used entry in the entire
cache.

Pentium II 1997 266 MHz 7 M 64-bit 32 KB 256/512 KB —

Pentium III 1999 500 MHz 8.2 M 64-bit 32 KB 512 KB —

Intel Xeon 2001 1.7 GHz 42 M 64-bit 8 KB 512 KB —

Pentium M 2003 1.6 GHz 77 M 64-bit 64 KB 1 MB —

Intel Xeon MP 2005 3.33 GHz 675 M 64-bit 16 KB 1 MB 8 MB

Intel Xeon 7410 2006 3.4 GHz 1.3 B 64-bit 64 KB 2 x 1 MB 16 MB

Intel Xeon 7460 2008 2.67 GHz 1.9 B 64-bit 64 KB 3 x 3 MB 16 MB

Intel Xeon 7560 2010 2.26 GHz 2.3 B 64-bit 64 KB 256 KB 24 MB

Intel Xeon E7-8870 2011 2.4 GHz 2.2 B 64-bit 64 KB 256 KB 30 MB

Table 6-2 Example Intel Processor Cache Sizes from 1978 to 2011 (Continued)

Processor Date Max Clock Transistors
Data
Bus Level 1 Level 2 Level 3

6.4 Architecture 203

� Direct mapped: Each entry has only one valid location in the cache, for
example, a hash of the memory address, using a subset of the address bits to
form an address in the cache.

� Set associative: A subset of the cache is identified by mapping (e.g., hash-
ing), from within which another algorithm (e.g., LRU) may be performed. It is
described in terms of the subset size; for example, four-way set associative maps
an address to four possible locations, and then picks the best from those four.

CPU caches often use set associativity as a balance between fully associative
(which is expensive to perform) and direct mapped (which has poor hit rates).

Cache Line

Another characteristic of CPU caches is their cache line size. This is a range of
bytes that are stored and transferred as a unit, improving memory throughput. A
typical cache line size for x86 processors is 64 bytes. Compilers take this into
account when optimizing for performance. Programmers sometimes do as well; see
Hash Tables in Section 5.2.5 of Chapter 5, Applications.

Cache Coherency

Memory may be cached in multiple CPU caches on different processors at the same
time. When one CPU modifies memory, all caches need to be aware that their
cached copy is now stale and should be discarded, so that any future reads will
retrieve the newly modified copy. This process, called cache coherency, ensures that

Figure 6-7 Memory access latency testing

204 Chapter 6 � CPUs

CPUs are always accessing the correct state of memory. It is also one of the great-
est challenges when designing scalable multiprocessor systems, as memory can be
modified rapidly.

MMU

The MMU is responsible for virtual-to-physical address translation. A generic
MMU is pictured in Figure 6.8, along with CPU cache types. This MMU uses an
on-chip TLB to cache address translations. Cache misses are satisfied by transla-
tion tables in main memory (DRAM), called page tables, which are read directly by
the MMU (hardware).

These factors are processor-dependent. Some (older) processors handle TLB
misses using software to walk the page tables, and then populate the TLB with the
requested mappings. Such software may maintain its own, larger, in-memory cache
of translations, called the translation storage buffer (TSB). Newer processors can
service TLB misses in hardware, greatly reducing their cost.

Interconnects

For multiprocessor architectures, processors are connected using either a shared
system bus or a dedicated interconnect. This is related to the memory architecture
of the system, uniform memory access (UMA) or NUMA, as discussed in Chapter 7,
Memory.

A shared system bus, called the front-side bus, used by earlier Intel processors is
illustrated by the four-processor example in Figure 6.9.

The use of a system bus has scalability problems when the processor count is
increased, due to contention for the shared bus resource. Modern servers are typi-
cally multiprocessor, NUMA, and use a CPU interconnect instead.

Figure 6-8 Memory management unit and CPU caches

6.4 Architecture 205

Interconnects can connect components other than processors, such as I/O control-
lers. Example interconnects include Intel’s Quick Path Interconnect (QPI) and AMD’s
HyperTransport (HT). An example Intel QPI architecture for a four-processor sys-
tem is shown in Figure 6.10.

Figure 6-9 Example Intel front-side bus architecture, four-processor

Figure 6-10 Example Intel QPI architecture, four-processor

206 Chapter 6 � CPUs

The private connections between processors allow for noncontended access and
also allow higher bandwidths than the shared system bus. Some example speeds
for Intel FSB and QPI are shown in Table 6.3 [Intel 09].

QPI is double-pumped, performing a data transfer on both edges of the clock,
doubling the data transfer rate. This explains the bandwidth shown in the table
(6.4 GT/s x 2 bytes x double = 25.6 Gbytes/s).

Apart from external interconnects, processors have internal interconnects for
core communication.

Interconnects are typically designed for high bandwidth, so that they do not
become a systemic bottleneck. If they do, performance will degrade as CPU
instructions encounter stall cycles for operations that involve the interconnect,
such as remote memory I/O. A key indicator for this is a rise in CPI. CPU instruc-
tions, cycles, CPI, stall cycles, and memory I/O can be analyzed using CPU perfor-
mance counters.

CPU Performance Counters

CPU performance counters (CPCs) go by many names, including performance
instrumentation counters (PICs), performance monitoring unit (PMU), hardware
events, and performance monitoring events. They are processor registers that can
be programmed to count low-level CPU activity. They typically include counters for
the following:

� CPU cycles: including stall cycles and types of stall cycles

� CPU instructions: retired (executed)

� Level 1, 2, 3 cache accesses: hits, misses

� Floating-point unit: operations

� Memory I/O: reads, writes, stall cycles

� Resource I/O: reads, writes, stall cycles

Each CPU has a small number of registers, usually between two and eight, that
can be programmed to record events like these. Those available depend on the pro-
cessor type and model and are documented in the processor manual.

Table 6-3 Intel CPU Interconnect Bandwidths

Intel Transfer Rate Width Bandwidth

FSB (2007) 1.6 GT/s 8 bytes 12.8 Gbytes/s

QPI (2008) 6.4 GT/s 2 bytes 25.6 Gbytes/s

6.4 Architecture 207

As a relatively simple example, the Intel P6 family of processors provide perfor-
mance counters via four model-specific registers (MSRs). Two MSRs are the coun-
ters and are read-only. The other two MSRs are used to program the counters,
called event-select MSRs, and are read-write. The performance counters are 40-bit
registers, and the event-select MSRs are 32-bit. The format of the event-select
MSRs is shown in Figure 6.11.

The counter is identified by the event select and the UMASK. The event select
identifies the type of event to count, and the UMASK identifies subtypes or groups
of subtypes. The OS and USR bits can be set so that the counter is incremented
only while in kernel mode (OS) or user mode (USR), based on the processor protec-
tion rings. The CMASK can be set to a threshold of events that must be reached
before the counter is incremented.

The Intel processor manual (volume 3B [Intel 13]) lists the dozens of events that
can be counted by their event-select and UMASK values. The selected examples in
Table 6.4 provide an idea of the different targets (processor functional units) that
may be observable. You will need to refer to your current processor manual to see
what you actually have.

There are many, many more counters, especially for newer processors. The Intel
Sandy Bridge family of processors provide not only more counter types, but also
more counter registers: three fixed and four programmable counters per hardware
thread, and an additional eight programmable counters per core (“general-
purpose”). These are 48-bit counters when read.

Since performance counters vary among manufacturers, a standard has been
developed to provide a consistent interface across them. This is the Processor
Application Programmers Interface (PAPI). Instead of the Intel names seen in
Table 6.4, PAPI assigns generic names to the counter types, for example, PAPI_
tot_cyc for total cycle counts, instead of CPU_CLK_UNHALTED.

Figure 6-11 Example Intel performance event-select MSR

208 Chapter 6 � CPUs

Table 6-4 Selected Examples of Intel CPU Performance Counters

Event
Select UMASK Unit Name Description

0x43 0x00 data cache DATA_MEM_
REFS

All loads from any memory type. All
stores to any memory type. Each part
of a split is counted separately. . . .
Does not include I/O accesses or
other nonmemory accesses.

0x48 0x00 data cache DCU_MISS_
OUTSTANDING

Weighted number of cycles while a
DCU miss is outstanding, incre-
mented by the number of outstand-
ing cache misses at any particular
time. Cacheable read requests only
are considered. . . .

0x80 0x00 instruction
fetch unit

IFU_IFETCH Number of instruction fetches, both
cacheable and noncacheable, includ-
ing UC (uncacheable) fetches.

0x28 0x0F L2 cache L2_IFETCH Number of L2 instruction fetches. . . .

0xC1 0x00 floating-
point unit

FLOPS Number of computational floating-
point operations retired. . . .

0x7E 0x00 external
bus logic

BUS_SNOOP_
STALL

Number of clock cycles during which
the bus is snoop stalled.

0xC0 0x00 instruction
decoding
and
retirement

INST_RETIRED Number of instructions retired.

0xC8 0x00 interrupts HW_INT_RX Number of hardware interrupts
received.

0xC5 0x00 branches BR_MISS_PRED_
RETIRED

Number of mispredicted branches
retired.

0xA2 0x00 stalls RESOURCE_
STALLS

Incremented by one during every
cycle for which there is a resource-
related stall. . . .

0x79 0x00 clocks CPU_CLK_
UNHALTED

Number of cycles during which the
processor is not halted.

6.4 Architecture 209

6.4.2 Software

Kernel software to support CPUs includes the scheduler, scheduling classes, and
the idle thread.

Scheduler

Key functions of the kernel CPU scheduler are shown in Figure 6.12.

These are

� Time sharing: multitasking between runnable threads, executing those with
the highest priority first.

� Preemption: For threads that have become runnable at a high priority, the
scheduler can preempt the currently running thread, so that execution of the
higher-priority thread can begin immediately.

� Load balancing: moving runnable threads to the run queues of idle or less
busy CPUs.

The figure shows run queues per CPU. There are also run queues per priority
level, so that the scheduler can easily manage which thread of the same priority
should run.

Figure 6-12 Kernel CPU scheduler functions

210 Chapter 6 � CPUs

A brief summary of how scheduling works for recent Linux and Solaris-based
kernels follows. Function names are included, so that you can find them in the
source code for further reference (although they may have changed). Also refer to
internals texts, listed in the Bibliography.

Linux

On Linux, time sharing is driven by the system timer interrupt by calling
scheduler_tick(), which calls scheduler class functions to manage priorities
and the expiry of units of CPU time called time slices. Preemption is triggered
when threads become runnable and the scheduler class check_preempt_curr()
function is called. Switching of threads is managed by __schedule(), which
selects the highest-priority thread via pick_next_task() for running. Load bal-
ancing is performed by the load_balance() function.

Solaris

On Solaris-based kernels, time sharing is driven by clock(), which calls sched-
uler class functions including ts_tick() to check for time slice expiration. If the
thread has exceeded its time, its priority is reduced, allowing another thread to
preempt. Preemption is handled by preempt() for user threads and kpreempt()
for kernel threads. The swtch() function manages a thread leaving CPU for any
reason, including from voluntary context switching, and calls dispatcher functions
to find the best runnable thread to take its place: disp(), disp_getwork(), or
disp_getbest(). Load balancing includes the idle thread calling similar func-
tions to find runnable threads from another CPU’s dispatcher queue (run queue).

Scheduling Classes

Scheduling classes manage the behavior of runnable threads, specifically their pri-
orities, whether their on-CPU time is time-sliced, and the duration of those time
slices (also known as time quantum). There are also additional controls via sched-
uling policies, which may be selected within a scheduling class and can control
scheduling between threads of the same priority. Figure 6.13 depicts them along
with the thread priority range.

The priority of user-level threads is affected by a user-defined nice value, which
can be set to lower the priority of unimportant work. In Linux, the nice value sets
the static priority of the thread, which is separate from the dynamic priority that
the scheduler calculates.

Note that the priority ranges are inverted between Linux and Solaris-based ker-
nels. The original Unix priority range (6th edition) used lower numbers for higher
priority, the system Linux uses now.

6.4 Architecture 211

Linux

For Linux kernels, the scheduling classes are

� RT: provides fixed and high priorities for real-time workloads. The kernel
supports both user- and kernel-level preemption, allowing RT tasks to be dis-
patched with low latency. The priority range is 0–99 (MAX_RT_PRIO–1).

� O(1): The O(1) scheduler was introduced in Linux 2.6 as the default time-
sharing scheduler for user processes. The name comes from the algorithm
complexity of O(1) (see Chapter 5, Applications, for a summary of big O nota-
tion). The prior scheduler contained routines that iterated over all tasks,
making it O(n), which became a scalability issue. The O(1) scheduler dynami-
cally improves the priority of I/O-bound over CPU-bound workloads, to reduce
latency of interactive and I/O workloads.

� CFS: Completely fair scheduling was added to the Linux 2.6.23 kernel as the
default time-sharing scheduler for user processes. The scheduler manages
tasks on a red-black tree instead of traditional run queues, which is keyed
from the task CPU time. This allows low CPU consumers to be easily found
and executed in preference to CPU-bound workloads, improving the perfor-
mance of interactive and I/O-bound workloads.

The scheduling class behavior can be adjusted by user-level processes by calling
sched_setscheduler() to set the scheduler policy. The RT class supports the
SCHED_RR and SCHED_FIFO policies, and the CFS class supports SCHED_
NORMAL and SCHED_BATCH.

Figure 6-13 Thread scheduler priorities

212 Chapter 6 � CPUs

Scheduler policies are as follows:

� RR: SCHED_RR is round-robin scheduling. Once a thread has used its time
quantum, it is moved to the end of the run queue for that priority level, allow-
ing others of the same priority to run.

� FIFO: SCHED_FIFO is first-in first-out scheduling, which continues run-
ning the thread at the head of the run queue until it voluntarily leaves, or
until a higher-priority thread arrives. The thread continues to run, even if
other threads of the same priority are on the run queue.

� NORMAL: SCHED_NORMAL (previously known as SCHED_OTHER) is
time-sharing scheduling and is the default for user processes. The scheduler
dynamically adjusts priority based on the scheduling class. For O(1), the time
slice duration is set based on the static priority: longer durations for higher-
priority work. For CFS, the time slice is dynamic.

� BATCH: SCHED_BATCH is similar to SCHED_NORMAL, but with the
expectation that the thread will be CPU-bound and should not be scheduled
to interrupt other I/O-bound interactive work.

Other classes and policies may be added over time. Scheduling algorithms have
been researched that are hyperthreading-aware [Bulpin 05] and temperature-
aware [Otto 06], which optimize performance by accounting for additional proces-
sor factors.

When there is no thread to run, a special idle task (also called idle thread) is
executed as a placeholder until another thread is runnable.

Solaris

For Solaris-based kernels, the scheduling classes are as follows:

� RT: Real-time scheduling provides fixed and high priorities for real-time
workloads. These preempt all other work (except interrupt service routines)
so that application response time can be deterministic—a typical require-
ment for real-time workloads.

� SYS: System is a high-priority scheduling class for kernel threads. These
threads have a fixed priority and execute for as long as needed (or until pre-
empted by RT or interrupts).

� TS: Time sharing is the default for user processes; it dynamically adjusts pri-
ority and quantum based on recent CPU usage. Thread priority is demoted if
it uses its quantum, and the quantum is increased. This causes CPU-bound
workloads to run at a low priority with large time quantums (reducing

6.4 Architecture 213

scheduler costs), and I/O-bound workloads—which voluntarily context switch
before their quantum is used—to run at a high priority. The result is that the
performance of I/O-bound workloads is not affected by the presence of long-
running CPU jobs. This class also applies the nice value, if set.

� IA: Interactive is similar to TS, but with a slightly higher default priority. It
is rarely used today (it was previously used to improve the responsiveness of
graphical X sessions).

� FX: Fixed (not pictured in Figure 6.13) is a process scheduling class for set-
ting fixed priorities, in the same global priority range as TS (0–59).

� FSS: Fair-share scheduling (not pictured in Figure 6.13) manages CPU usage
between groups of processes, either projects or zones, based on share values.
This allows groups of projects to use the CPUs fairly based on shares, instead
of based on their number of threads or processes. Each process group can con-
sume a fraction of CPU calculated from its share value divided by the total
busy shares on the system at that time. This means that if that group is the
only busy group, it can use all CPU resources. FSS is in popular use for cloud
computing, so that tenants (zones) can be allocated shares fairly and can also
consume more CPU if it is available and unused. FSS exists in the same
global priority range as TS (0–59) and has a fixed time quantum.

� SYSDC: The system duty cycle scheduling class is for kernel threads that are
large CPU consumers, such as the ZFS transaction group flush thread. It
allows a target duty cycle to be specified (the ratio of CPU time to runnable
time) and will deschedule the thread to match the duty cycle. This prevents
long-running kernel threads, which would otherwise be in the SYS class, from
starving other threads that need to use that CPU.

� Interrupts: For the purpose of scheduling interrupt threads, they are given a
priority that is 159 + IPL (see Section 3.2.3, Interrupts and Interrupt
Threads, in Chapter 3, Operating Systems).

Solaris-based systems also support scheduling policies (not pictured in Figure
6.13) that are set using sched_setscheduler(): SCHED_FIFO, SCHED_RR,
and SCHED_OTHER (time sharing).

The idle thread is a special case, running with the lowest priority.

Idle Thread

The kernel “idle” thread (or idle task) runs on-CPU when there is no other runnable
thread and has the lowest possible priority. It is usually programmed to inform the
processor that CPU execution may either be halted (halt instruction) or throttled
down to conserve power. The CPU will wake up on the next hardware interrupt.

214 Chapter 6 � CPUs

NUMA Grouping

Performance on NUMA systems can be significantly improved by making the ker-
nel NUMA-aware, so that it can make better scheduling and memory placement
decisions. This can automatically detect and create groups of localized CPU and
memory resources and organize them in a topology to reflect the NUMA architec-
ture. This topology allows the cost of any memory access to be estimated.

On Linux systems, these are called scheduling domains [3], which are in a
topology beginning with the root domain.

On Solaris-based systems, these are called locality groups (lgrps) and begin
with the root group.

A manual form of grouping can be performed by the system administrator,
either by binding processes to run on one or more CPUs only, or by creating an
exclusive set of CPUs for processes to run on. See Section 6.5.10, CPU Binding.

Processor Resource-Aware

Other than for NUMA, the CPU resource topology can be understood by the ker-
nel so that it can make better scheduling decisions for power management and
load balancing. On Solaris-based systems, this is implemented by processor groups.

6.5 Methodology

This section describes various methodologies and exercises for CPU analysis and
tuning. Table 6.5 summarizes the topics.

Table 6-5 CPU Performance Methodologies

Methodology Types

Tools method observational analysis

USE method observational analysis

Workload characterization observational analysis, capacity planning

Profiling observational analysis

Cycle analysis observational analysis

Performance monitoring observational analysis, capacity planning

Static performance tuning observational analysis, capacity planning

Priority tuning tuning

Resource controls tuning

CPU binding tuning

6.5 Methodology 215

See Chapter 2, Methodology, for more strategies and the introduction to many of
these. You are not expected to use them all; treat this as a cookbook of recipes that
may be followed individually or used in combination.

My suggestion is to use the following, in this order: performance monitoring, the
USE method, profiling, micro-benchmarking, and static analysis.

Section 6.6, Analysis, shows operating system tools for applying these strategies.

6.5.1 Tools Method

The tools method is a process of iterating over available tools, examining key met-
rics they provide. While this is a simple methodology, it can overlook issues for which
the tools provide poor or no visibility, and it can be time-consuming to perform.

For CPUs, the tools method can involve checking the following:

� uptime: Check load averages to see if CPU load is increasing or decreasing
over time. A load average over the number of CPUs in the system usually
indicates saturation.

� vmstat: Run per second, and check the idle columns to see how much
headroom there is. Less than 10% can be a problem.

� mpstat: Check for individual hot (busy) CPUs, identifying a possible thread
scalability problem.

� top/prstat: See which processes and users are the top CPU consumers.

� pidstat/prstat: Break down the top CPU consumers into user- and
system-time.

� perf/dtrace/stap/oprofile: Profile CPU usage stack traces for either
user- or kernel-time, to identify why the CPUs are in use.

� perf/cpustat: Measure CPI.

If an issue is found, examine all fields from the available tools to learn more con-
text. See Section 6.6, Analysis, for more about each tool.

Micro-benchmarking experimental analysis

Scaling capacity planning, tuning

Table 6-5 CPU Performance Methodologies (Continued)

Methodology Types

vmstat

216 Chapter 6 � CPUs

6.5.2 USE Method

The USE method is for identifying bottlenecks and errors across all components,
early in a performance investigation, before deeper and more time-consuming
strategies are followed.

For each CPU, check for

� Utilization: the time the CPU was busy (not in the idle thread)

� Saturation: the degree to which runnable threads are queued waiting their
turn on-CPU

� Errors: CPU errors, including correctable errors

Errors may be checked first since they are typically quick to check and the easi-
est to interpret. Some processors and operating systems will sense an increase in
correctable errors (error-correcting code, ECC) and will offline a CPU as a precau-
tion, before an uncorrectable error causes a CPU failure. Checking for these errors
can be a matter of checking that all CPUs are still online.

Utilization is usually readily available from operating system tools as percent
busy. This metric should be examined per CPU, to check for scalability issues. It
can also be examined per core, for cases where a core’s resources are heavily uti-
lized, preventing idle hardware threads from executing. High CPU and core utili-
zation can be understood by using profiling and cycle analysis.

For environments that implement CPU limits or quotas (resource controls), as
occurs in some cloud computing environments, CPU utilization may need to be
measured in terms of the imposed limit, in addition to the physical limit. Your sys-
tem may exhaust its CPU quota well before the physical CPUs reach 100% utiliza-
tion, encountering saturation earlier than expected.

Saturation metrics are commonly provided system-wide, including as part of
load averages. This metric quantifies the degree to which the CPUs are over-
loaded, or a CPU quota, if present, is used up.

6.5.3 Workload Characterization

Characterizing the load applied is important in capacity planning, benchmarking,
and simulating workloads. It can also lead to some of the largest performance
gains by identifying unnecessary work that can be eliminated.

Basic attributes for characterizing CPU workload are

� Load averages (utilization + saturation)

� User-time to system-time ratio

6.5 Methodology 217

� Syscall rate

� Voluntary context switch rate

� Interrupt rate

The intent is to characterize the applied load, not the delivered performance.
The load average is suited for this, as it reflects the CPU load requested, regard-
less of the delivered performance as shown by the utilization/saturation break-
down. See the example and further explanation in Section 6.6.1, uptime.

The rate metrics are a little harder to interpret, as they reflect both the applied
load and to some degree the delivered performance, which can throttle their rate.

The user-time to system-time ratio shows the type of load applied, as intro-
duced earlier in Section 6.3.7, User-Time/Kernel-Time. High user-time rates are
due to applications spending time performing their own compute. High system-
time shows time spent in the kernel instead, which may be further understood by
the syscall and interrupt rate. I/O-bound workloads have higher system-time, sys-
calls, and also voluntary context switches as threads block waiting for I/O.

Here is an example workload description that you might receive, designed to
show how these attributes can be expressed together:

On our busiest application server, the load average varies between 2 and 8 during the
day depending on the number of active clients. The user/system ratio is 60/40, as this
is an I/O-intensive workload performing around 100 K syscalls/s, and a high rate of
voluntary context switches.

These characteristics can vary over time as different load is encountered.

Advanced Workload Characterization/Checklist

Additional details may be included to characterize the workload. These are listed
here as questions for consideration, which may also serve as a checklist when
studying CPU issues thoroughly:

� What is the CPU utilization system-wide? Per CPU?

� How parallel is the CPU load? Is it single-threaded? How many threads?

� Which applications or users are using the CPUs? How much?

� Which kernel threads are using the CPUs? How much?

� What is the CPU usage of interrupts?

� What is the CPU interconnect utilization?

� Why are the CPUs being used (user- and kernel-level call paths)?

� What types of stall cycles are encountered?

218 Chapter 6 � CPUs

See Chapter 2, Methodology, for a higher-level summary of this methodology
and the characteristics to measure (who, why, what, how). The sections that follow
expand upon the last two questions in this list: how call paths can be analyzed
using profiling, and stall cycles using cycle analysis.

6.5.4 Profiling

Profiling builds a picture of the target for study. CPU usage can be profiled by
sampling the state of the CPUs at timed intervals, following these steps:

1. Select the type of profile data to capture, and the rate.

2. Begin sampling at a timed interval.

3. Wait while the activity of interest occurs.

4. End sampling and collect sample data.

5. Process the data.

Some profiling tools, including DTrace, allow real-time processing of the captured
data, which can be analyzed while sampling is still occurring.

Processing and navigating the data may be enhanced by a separate toolset from
the one used to collect the data. One example is flame graphs (covered later),
which process the output of DTrace and other profiling tools. Another is the Perfor-
mance Analyzer from Oracle Solaris Studio, which automates collecting and
browsing the profile data with the target source code.

The types of CPU profile data are based on the following factors:

� User level, kernel level, or both

� Function and offset (program-counter-based), function only, partial stack
trace, or full stack trace

Selecting full stack traces for both user and kernel level captures the complete pro-
file of CPU usage. However, it typically generates an excessive amount of data.
Capturing only user or kernel, partial stacks (e.g., five levels deep), or even just
the executing function name may prove sufficient for identifying CPU usage from
much less data.

As a simple example of profiling, the following DTrace one-liner samples the
user-level function name at 997 Hz for a duration of 10 s:

dtrace -n 'profile-997 /arg1 && execname == "beam.smp"/ {
@[ufunc(arg1)] = count(); } tick-10s { exit(0); }'

[...]

6.5 Methodology 219

DTrace has already performed step 5, processing the data by aggregating function
names and printing the sorted frequency counts. This shows that the most com-
mon on-CPU user-level function while tracing was ut_fold_ulint_pair(),
which was sampled 4,039 times.

A frequency of 997 Hz was used to avoid sampling in lockstep with any activity
(e.g., timed tasks running at 100 or 1,000 Hz).

By sampling the full stack trace, the code path for CPU usage can be identified,
which typically points to higher-level reasons for CPU usage. More examples of
sampling are given in Section 6.6, Analysis. Also see Chapter 5, Applications, for
more on CPU profiling, including fetching other programming language context
from the stack.

For the usage of specific CPU resources, such as caches and interconnects, pro-
filing can use CPC-based event triggers instead of timed intervals. This is
described in the next section on cycle analysis.

6.5.5 Cycle Analysis

By using the CPU performance counters (CPCs), CPU utilization can be under-
stood at the cycle level. This may reveal that cycles are spent stalled on Level 1, 2,
or 3 cache misses, memory I/O, or resource I/O, or spent on floating-point opera-
tions or other activity. This information may lead to performance wins by adjust-
ing compiler options or changing the code.

Begin cycle analysis by measuring CPI. If CPI is high, continue to investigate
types of stall cycles. If CPI is low, look for ways in the code to reduce instructions
performed. The values for “high” or “low” CPI depend on your processor: low could
be less than one, and high could be greater than ten. You can get a sense of these
values by performing known workloads that are either memory-I/O-intensive or
instruction-intensive and measuring the resulting CPI for each.

Apart from measuring counter values, CPC can be configured to interrupt the
kernel on the overflow of a given value. For example, at every 10,000 Level 2 cache
misses, the kernel could be interrupted to gather a stack backtrace. Over time, the

 libc.so.1`mutex_lock_impl 29
 libc.so.1`atomic_swap_8 33
 beam.smp`make_hash 45
 libc.so.1`__time 71
 innostore_drv.so`os_aio_array_get_nth_slot 80
 beam.smp`process_main 127
 libc.so.1`mutex_trylock_adaptive 140
 innostore_drv.so`os_aio_simulated_handle 158
 beam.smp`sched_sys_wait 202
 libc.so.1`memcpy 258
 innostore_drv.so`ut_fold_binary 1800
 innostore_drv.so`ut_fold_ulint_pair 4039

220 Chapter 6 � CPUs

kernel builds a profile of the code paths that are causing Level 2 cache misses,
without the prohibitive overhead of measuring every single miss. This is typically
used by integrated developer environment (IDE) software, to annotate code with
the locations that are causing memory I/O and stall cycles. Similar observability is
possible using DTrace and the cpc provider.

Cycle analysis is an advanced activity that can take days to perform with
command-line tools, as demonstrated in Section 6.6, Analysis. You should also
expect to spend some quality time with your CPU vendor’s processor manuals. Per-
formance analyzers such as Oracle Solaris Studio can save time as they are pro-
grammed to find the CPCs of interest to you.

6.5.6 Performance Monitoring

Performance monitoring can identify active issues and patterns of behavior over
time. Key metrics for CPUs are

� Utilization: percent busy

� Saturation: either run-queue length, inferred from load average, or as a
measure of thread scheduler latency

Utilization should be monitored on a per-CPU basis to identify thread scalabil-
ity issues. For environments that implement CPU limits or quotas (resource con-
trols), such as some cloud computing environments, CPU usage compared to these
limits also needs to be recorded.

A challenge when monitoring CPU usage is choosing an interval to measure and
archive. Some monitoring tools use 5 minutes, which can hide the existence of
shorter bursts of CPU utilization. Per-second measurements are preferable, but
you should be aware that there can be bursts even within a second. These can be
identified from saturation.

6.5.7 Static Performance Tuning

Static performance tuning focuses on issues of the configured environment. For
CPU performance, examine the following aspects of the static configuration:

� How many CPUs are available for use? Are they cores? Hardware threads?

� Is the CPU architecture single- or multiprocessor?

� What is the size of the CPU caches? Are they shared?

6.5 Methodology 221

� What is the CPU clock speed? Is it dynamic (e.g., Intel Turbo Boost and
SpeedStep)? Are those dynamic features enabled in the BIOS?

� What other CPU-related features are enabled or disabled in the BIOS?

� Are there performance issues (bugs) with this processor model? Are they
listed in the processor errata sheet?

� Are there performance issues (bugs) with this BIOS firmware version?

� Are there software-imposed CPU usage limits (resource controls) present?
What are they?

The answers to these questions may reveal previously overlooked configuration
choices.

The last question is especially true for cloud computing environments, where
CPU usage is commonly limited.

6.5.8 Priority Tuning

Unix has always provided a nice() system call for adjusting process priority,
which sets a nice-ness value. Positive nice values result in lower process priority
(nicer), and negative values—which can be set only by the superuser (root)—result
in higher priority. A nice(1) command became available to launch programs with
nice values, and a renice(1M) command was later added (in BSD) to adjust the
nice value of already running processes. The man page from Unix 4th edition pro-
vides this example [4]:

The value of 16 is recommended to users who wish to execute long-running programs
without flak from the administration.

The nice value is still useful today for adjusting process priority. This is most
effective when there is contention for CPUs, causing scheduler latency for high-
priority work. Your task is to identify low-priority work, which may include moni-
toring agents and scheduled backups, that can be modified to start with a nice
value. Analysis may also be performed to check that the tuning is effective, and
that the scheduler latency remains low for high-priority work.

Beyond nice, the operating system may provide more advanced controls for pro-
cess priority such as changing the scheduler class or scheduler policy, or changing
the tuning of the class. Both Linux and Solaris-based kernels include the real-time
scheduling class, which can allow processes to preempt all other work. While this
can eliminate scheduler latency (other than for other real-time processes and inter-
rupts), make sure you understand the consequences. If the real-time application

222 Chapter 6 � CPUs

encounters a bug where multiple threads enter an infinite loop, it can cause all
CPUs to become unavailable for all other work—including the administrative shell
required to manually fix the problem. This particular scenario is usually solved only
by rebooting the system (oops!).

6.5.9 Resource Controls

The operating system may provide fine-grained controls for allocating CPU cycles
to processes or groups of processes. These may include fixed limits for CPU utiliza-
tion and shares for a more flexible approach—allowing idle CPU cycles to be con-
sumed based on a share value. How these work is implementation-specific and
discussed in Section 6.8, Tuning.

6.5.10 CPU Binding

Another way to tune CPU performance involves binding processes and threads to
individual CPUs, or collections of CPUs. This can increase CPU cache warmth for
the process, improving its memory I/O performance. For NUMA systems it also
improves memory locality, also improving performance.

There are generally two ways this is performed:

� Process binding: configuring a process to run only on a single CPU, or only
on one CPU from a defined set.

� Exclusive CPU sets: partitioning a set of CPUs that can be used only by the
process(es) assigned to them. This can improve CPU cache further, as when
the process is idle other processes cannot use the CPUs, leaving the caches
warm.

On Linux-based systems, the exclusive CPU sets approach can be implemented
using cpusets. On Solaris-based systems, this is called processor sets. Configura-
tion examples are provided in Section 6.8, Tuning.

6.5.11 Micro-Benchmarking

There are various tools for CPU micro-benchmarking, which typically measure the
time taken to perform a simple operation many times. The operation may be based
on the following:

� CPU instructions: integer arithmetic, floating-point operations, memory
loads and stores, branch and other instructions

6.5 Methodology 223

� Memory access: to investigate latency of different CPU caches and main
memory throughput

� Higher-level languages: similar to CPU instruction testing, but written in
a higher-level interpreted or compiled language

� Operating system operations: testing system library and system call func-
tions that are CPU-bound, such as getpid() and process creation

An early example of a CPU benchmark is Whetstone by the National Physical
Laboratory, written in 1972 in Algol 60 and intended to simulate a scientific work-
load. The Dhrystone benchmark was later developed in 1984 to simulate integer
workloads of the time and became a popular means to compare CPU performance.
These, and various Unix benchmarks including process creation and pipe through-
put, were included in a collection called UnixBench, originally from Monash Uni-
versity and published by BYTE magazine [Hinnant 84]. More recent CPU
benchmarks have been created to test compression speeds, prime number calcula-
tion, encryption, and encoding.

Whichever benchmark you use, when comparing results between systems it’s
important that you understand what is really being tested. Benchmarks like those
described previously often end up testing compiler optimizations between differ-
ent compiler versions, rather than the benchmark code or CPU speed. Many
benchmarks also execute single-threaded, but these results lose meaning in sys-
tems with multiple CPUs. A four-CPU system may benchmark slightly faster than
an eight-CPU system, but the latter is likely to deliver much greater throughput
when given enough parallel runnable threads.

For more on benchmarking, see Chapter 12, Benchmarking.

6.5.12 Scaling

Here is a simple scaling method, based on capacity planning of resources:

1. Determine the target user population or application request rate.

2. Express CPU usage per user or per request. For existing systems, CPU usage
can be monitored with the current user count or request rate. For future sys-
tems, load generation tools can simulate users so that CPU usage can be
measured.

3. Extrapolate users or requests when the CPU resources reach 100% utiliza-
tion. This provides the theoretical limit for the system.

System scalability can also be modeled to account for contention and coherency
latency, for a more realistic prediction of performance. See Section 2.6, Modeling,

224 Chapter 6 � CPUs

in Chapter 2, Methodology, for more about this, and also Section 2.7, Capacity
Planning, of the same chapter for more on scaling.

6.6 Analysis

This section introduces CPU performance analysis tools for Linux- and Solaris-
based operating systems. See the previous section for strategies to follow when
using them.

The tools in this section are listed in Table 6.6.

The list begins with tools for CPU statistics, and then drills down to tools for
deeper analysis including code-path profiling and CPU cycle analysis. This is a
selection of tools and capabilities to support Section 6.5, Methodology. See the doc-
umentation for each tool, including its man pages, for full references of its features.

While you may be interested in only Linux or only Solaris-based systems, con-
sider looking at the other operating system’s tools and the observability that they
provide for a different perspective.

6.6.1 uptime

uptime(1) is one of several commands that print the system load averages:

Table 6-6 CPU Analysis Tools

Linux Solaris Description

uptime uptime load averages

vmstat vmstat includes system-wide CPU averages

mpstat mpstat per-CPU statistics

sar sar historical statistics

ps ps process status

top prstat monitor per-process/thread CPU usage

pidstat prstat per-process/thread CPU breakdowns

time ptime time a command, with CPU breakdowns

DTrace, perf DTrace CPU profiling and tracing

perf cpustat CPU performance counter analysis

$ uptime
 9:04pm up 268 day(s), 10:16, 2 users, load average: 7.76, 8.32, 8.60

6.6 Analysis 225

The last three numbers are the 1-, 5-, and 15-minute load averages. By comparing
the three numbers, you can determine if the load is increasing, decreasing, or
steady during the last 15 minutes (or so).

Load Averages

The load average indicates the demand for CPU resources and is calculated by
summing the number of threads running (utilization) and the number that are
queued waiting to run (saturation). A newer method for calculating load averages
uses utilization plus the sum of thread scheduler latency, rather than sampling the
queue length, which improves accuracy. For reference, the internals of these calcu-
lations on Solaris-based kernels are documented in [McDougall 06b].

To interpret the value, if the load average is higher than the CPU count, there
are not enough CPUs to service the threads, and some are waiting. If the load
average is lower than the CPU count, it (probably) means that there is headroom,
and the threads could run on-CPU when they wanted.

The three load average numbers are exponentially damped moving averages,
which reflect load beyond the 1-, 5-, and 15-minute times (the times are actually
constants used in the exponential moving sum [Myer 73]). Figure 6.14 shows the
results of a simple experiment where a single CPU-bound thread was launched
and the load averages plotted.

By the 1-, 5-, and 15-minute marks, the load averages had reached about 61% of
the known load of 1.0.

Figure 6-14 Exponentially damped load averages

226 Chapter 6 � CPUs

Load averages were introduced to Unix in early BSD and were based on sched-
uler average queue length and load averages commonly used by earlier operating
systems (CTSS, Multics [Saltzer 70], TENEX [Bobrow 72]). They were described in
[RFC 546]:

[1] The TENEX load average is a measure of CPU demand. The load average is an
average of the number of runable processes over a given time period. For example, an
hourly load average of 10 would mean that (for a single CPU system) at any time dur-
ing that hour one could expect to see 1 process running and 9 others ready to run (i.e.,
not blocked for I/O) waiting for the CPU.

As a modern example, a system with 64 CPUs has a load average of 128. This
means that on average there is always one thread running on each CPU, and one
thread waiting for each CPU. The same system with a load average of ten would
indicate significant headroom, as it could run another 54 CPU-bound threads
before all CPUs are busy.

Linux Load Averages

Linux currently adds tasks performing disk I/O in the uninterruptable state to the
load averages. This means that the load average can no longer be interpreted to
mean CPU headroom or saturation only, since it is unknown from the value alone
to what degree it reflects CPU or disk load. Comparisons of the three load average
numbers are also difficult, as the load may have varied among CPUs and disks
over time.

A different way to incorporate other resource load is to use separate load aver-
ages for each resource type. (I’ve prototyped examples of this for disk, memory, and
network load, each providing its own set of load averages, and found it a similar
and useful overview for non-CPU resources.)

It is best to use other metrics to understand CPU load on Linux, such as those
provided by vmstat(1) and mpstat(1).

6.6.2 vmstat

The virtual memory statistics command, vmstat(8), prints system-wide CPU
averages in the last few columns, and a count of runnable threads in the first col-
umn. Here is example output from the Linux version:

$ vmstat 1
procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu----
r b swpd free buff cache si so bi bo in cs us sy id wa

15 0 2852 46686812 279456 1401196 0 0 0 0 0 0 0 0 100 0
16 0 2852 46685192 279456 1401196 0 0 0 0 2136 36607 56 33 11 0

6.6 Analysis 227

The first line of output is the summary-since-boot, with the exception of r on
Linux—which begins by showing current values. The columns are

� r: run-queue length—the total number of runnable threads (see below)

� us: user-time

� sy: system-time (kernel)

� id: idle

� wa: wait I/O, which measures CPU idle when threads are blocked on disk I/O

� st: stolen (not shown in the output), which for virtualized environments
shows CPU time spent servicing other tenants

All of these values are system-wide averages across all CPUs, with the exception of
r, which is the total.

On Linux, the r column is the total number of tasks waiting plus those run-
ning. The man page currently describes it as something else—“the number of pro-
cesses waiting for run time”—which suggests it counts only those waiting and not
running. As insight into what this is supposed to be, the original vmstat(1) by
Bill Joy and Ozalp Babaoglu for 3BSD in 1979 begins with an RQ column for the
number of runnable and running processes, as the Linux vmstat(8) currently
does. The man page needs updating.

On Solaris, the r column counts only the number of threads waiting in the dis-
patcher queues (run queues). The value can appear erratic, as it is sampled only
once per second (from clock()), whereas the other CPU columns are based on
high-resolution CPU microstates. These other columns currently do not include
wait I/O or stolen. See Chapter 9, Disks, for more about wait I/O.

6.6.3 mpstat

The multiprocessor statistics tool, mpstat, can report statistics per CPU. Here is
some example output from the Linux version:

15 0 2852 46685952 279456 1401196 0 0 0 56 2150 36905 54 35 11 0
15 0 2852 46685960 279456 1401196 0 0 0 0 2173 36645 54 33 13 0
[...]

$ mpstat -P ALL 1
02:47:49 CPU %usr %nice %sys %iowait %irq %soft %steal %guest %idle
02:47:50 all 54.37 0.00 33.12 0.00 0.00 0.00 0.00 0.00 12.50
02:47:50 0 22.00 0.00 57.00 0.00 0.00 0.00 0.00 0.00 21.00
02:47:50 1 19.00 0.00 65.00 0.00 0.00 0.00 0.00 0.00 16.00

continues

228 Chapter 6 � CPUs

The -P ALL option was used to print the per-CPU report. By default, mpstat(1)
prints only the system-wide summary line (all). The columns are

� CPU: logical CPU ID, or all for summary

� %usr: user-time

� %nice: user-time for processes with a nice’d priority

� %sys: system-time (kernel)

� %iowait: I/O wait

� %irq: hardware interrupt CPU usage

� %soft: software interrupt CPU usage

� %steal: time spent servicing other tenants

� %guest: CPU time spent in guest virtual machines

� %idle: idle

Key columns are %usr, %sys, and %idle. These identify CPU usage per CPU
and show the user-time/kernel-time ratio (see Section 6.3.7, User-Time/Kernel-Time).
This can also identify “hot” CPUs—those running at 100% utilization (%usr +
%sys) while others are not—which can be caused by single-threaded application
workloads or device interrupt mapping.

For Solaris-based systems, mpstat(1M) begins with the summary-since-boot,
followed by the interval summaries. For example:

02:47:50 2 24.00 0.00 52.00 0.00 0.00 0.00 0.00 0.00 24.00
02:47:50 3 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
02:47:50 4 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
02:47:50 5 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
02:47:50 6 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
02:47:50 7 16.00 0.00 63.00 0.00 0.00 0.00 0.00 0.00 21.00
02:47:50 8 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
02:47:50 9 11.00 0.00 53.00 0.00 0.00 0.00 0.00 0.00 36.00
02:47:50 10 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
02:47:50 11 28.00 0.00 61.00 0.00 0.00 0.00 0.00 0.00 11.00
02:47:50 12 20.00 0.00 63.00 0.00 0.00 0.00 0.00 0.00 17.00
02:47:50 13 12.00 0.00 56.00 0.00 0.00 0.00 0.00 0.00 32.00
02:47:50 14 18.00 0.00 60.00 0.00 0.00 0.00 0.00 0.00 22.00
02:47:50 15 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
[...]

$ mpstat 1
CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
[...]
 0 8243 0 288 3211 1265 1682 40 236 262 0 8214 47 19 0 34
 1 43708 0 1480 2753 1115 1238 58 406 1967 0 26157 17 59 0 24
 2 11987 0 393 2994 1186 1761 79 281 522 0 10035 46 21 0 34
 3 3998 0 135 935 55 238 22 60 97 0 2350 88 6 0 6

6.6 Analysis 229

The columns include

� CPU: logical CPU ID

� xcal: CPU cross calls

� intr: interrupts

� ithr: interrupts serviced as threads (lower IPL)

� csw: context switches (total)

� icsw: involuntary context switches

� migr: thread migrations

� smtx: spins on mutex locks

� srw: spins on reader/writer locks

� syscl: system calls

� usr: user-time

� sys: system-time (kernel)

� wt: wait I/O (deprecated, always zero)

� idl: idle

Key columns to check are

� xcal, to see if there is an excess rate, which consumes CPU resources. For
example, look for at least 1,000/s across several CPUs. Drill-down analysis
can explain their cause (see the example of this in Section 6.6.10, DTrace).

� smtx, to see if there is an excess rate, which consumes CPU resources and
may also be evidence of lock contention. Lock activity can then be explored
using other tools (see Chapter 5, Applications).

� usr, sys, and idl, to characterize CPU usage per CPU and the user-time/
kernel-time ratio.

 4 12649 0 414 2885 1261 3130 82 365 619 0 14866 7 26 0 67
 5 30054 0 991 745 241 1563 52 349 1108 0 17792 8 40 0 52
 6 12882 0 439 636 167 2335 73 289 747 0 12803 6 23 0 71
 7 981 0 40 793 45 870 11 81 70 0 2022 78 3 0 19
 8 3186 0 100 687 27 450 15 75 156 0 2581 66 7 0 27
 9 8433 0 259 814 315 3382 38 280 552 0 9376 4 18 0 78
 10 8451 0 283 512 153 2158 20 194 339 0 9776 4 16 0 80
 11 3722 0 119 800 349 2693 12 199 194 0 6447 2 10 0 88
 12 4757 0 138 834 214 1387 29 142 380 0 6153 35 10 0 55
 13 5107 0 147 1404 606 3856 65 268 352 0 8188 4 14 0 82
 14 7158 0 229 672 205 1829 31 133 292 0 7637 19 12 0 69
 15 5822 0 209 866 232 1333 9 145 180 0 5164 30 13 0 57

230 Chapter 6 � CPUs

6.6.4 sar

The system activity reporter, sar(1), can be used to observe current activity and
can be configured to archive and report historical statistics. It was introduced in
Chapter 4, Observability Tools, and is mentioned in other chapters as appropriate.

The Linux version provides the following options:

� -P ALL: same as mpstat -P ALL

� -u: same as mpstat(1)’s default output: system-wide average only

� -q: includes run-queue size as runq-sz (waiting plus running, the same as
vmstat’s r) and load averages

The Solaris version provides

� -u: system-wide averages for %usr, %sys, %wio (zero), and %idl

� -q: includes run-queue size as runq-sz (waiting only), and percent of time
the run queue had threads waiting as %runocc, although this value is inac-
curate between 0 and 1

Per-CPU statistics are not available in the Solaris version.

6.6.5 ps

The process status command, ps(1), lists details on all processes, including CPU
usage statistics. For example:

This style of operation originated from BSD and can be recognized by a lack of a
dash before the aux options. These list all users (a), with extended user-oriented
details (u), and include processes without a terminal (x). The terminal is shown in
the teletype (TTY) column.

A different style, from SVR4, uses options preceded by a dash:

$ ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 23772 1948 ? Ss 2012 0:04 /sbin/init
root 2 0.0 0.0 0 0 ? S 2012 0:00 [kthreadd]
root 3 0.0 0.0 0 0 ? S 2012 0:26 [ksoftirqd/0]
root 4 0.0 0.0 0 0 ? S 2012 0:00 [migration/0]
root 5 0.0 0.0 0 0 ? S 2012 0:00 [watchdog/0]
[...]
web 11715 11.3 0.0 632700 11540 pts/0 Sl 01:36 0:27 node indexer.js
web 11721 96.5 0.1 638116 52108 pts/1 Rl+ 01:37 3:33 node proxy.js
[...]

6.6 Analysis 231

This lists every process (-e) with full details (-f). ps(1) on most Linux- and
Solaris-based systems supports both the BSD and SVR4 arguments.

Key columns for CPU usage are TIME and %CPU.
The TIME column shows the total CPU time consumed by the process (user +

system) since it was created, in hours:minutes:seconds.
On Linux, the %CPU column shows the CPU usage during the previous second

as the sum across all CPUs. A single-threaded CPU-bound process will report
100%. A two-thread CPU-bound process will report 200%.

On Solaris, %CPU is normalized for the CPU count. For example, a single CPU-
bound thread will be shown as 12.5% for an eight-CPU system. This metric also
shows recent CPU usage, using similar decayed averages as with load averages.

Various other options are available for ps(1), including -o to customize the
output and columns shown.

6.6.6 top

top(1) was created by William LeFebvre in 1984 for BSD. He was inspired by the
VMS command MONITOR PROCESS/TOPCPU, which showed the top CPU-consuming
jobs with CPU percentages and an ASCII bar chart histogram (but not columns of
data).

The top(1) command monitors top running processes, updating the screen at
regular intervals. For example, on Linux:

$ ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 Nov13 ? 00:00:04 /sbin/init
root 2 0 0 Nov13 ? 00:00:00 [kthreadd]
root 3 2 0 Nov13 ? 00:00:00 [ksoftirqd/0]
root 4 2 0 Nov13 ? 00:00:00 [migration/0]
root 5 2 0 Nov13 ? 00:00:00 [watchdog/0]
[...]

$ top
top - 01:38:11 up 63 days, 1:17, 2 users, load average: 1.57, 1.81, 1.77
Tasks: 256 total, 2 running, 254 sleeping, 0 stopped, 0 zombie
Cpu(s): 2.0%us, 3.6%sy, 0.0%ni, 94.2%id, 0.0%wa, 0.0%hi, 0.2%si, 0.0%st
Mem: 49548744k total, 16746572k used, 32802172k free, 182900k buffers
Swap: 100663292k total, 0k used, 100663292k free, 14925240k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
11721 web 20 0 623m 50m 4984 R 93 0.1 0:59.50 node
11715 web 20 0 619m 20m 4916 S 25 0.0 0:07.52 node
 10 root 20 0 0 0 0 S 1 0.0 248:52.56 ksoftirqd/2
 51 root 20 0 0 0 0 S 0 0.0 0:35.66 events/0
11724 admin 20 0 19412 1444 960 R 0 0.0 0:00.07 top
 1 root 20 0 23772 1948 1296 S 0 0.0 0:04.35 init

232 Chapter 6 � CPUs

A system-wide summary is at the top and a process/task listing at the bottom,
sorted by the top CPU consumer by default. The system-wide summary includes
the load averages and CPU states: %us, %sy, %ni, %id, %wa, %hi, %si, %st. These
states are equivalent to those printed by mpstat(1), as described earlier, and are
averaged across all CPUs.

CPU usage is shown by the TIME and %CPU columns, which were introduced in
the previous section on ps(1).

This example shows a TIME+ column, which is the same as the one shown
above, but at a resolution of hundredths of a second. For example, “1:36.53” means
1 minute and 36.53 seconds of on-CPU time in total. Some versions of top(1) pro-
vide an optional “cumulative time” mode, which includes the CPU time from child
processes that have exited.

On Linux, the %CPU column by default is not normalized by CPU count; top(1)
calls this “Irix mode,” after its behavior on IRIX. This can be switched to “Solaris
mode,” which divides the CPU usage by the CPU count. In that case, the hot two-
thread process on a 16-CPU server would report percent CPU as 12.5.

Though top(1) is often a tool for beginning performance analysts, you should
be aware that the CPU usage of top(1) itself can become significant and place
top(1) as the top CPU-consuming process! This has been due to the available sys-
tem calls—open(), read(), close()—and their cost when iterating over /proc
entries for many processes. Some versions of top(1) for Solaris-based systems
have reduced the overhead by leaving file descriptors open and calling pread(),
which the prstat(1M) tool also does.

Since top(1) takes snapshots of /proc, it can miss short-lived processes that
exit before a snapshot is taken. This commonly happens during software builds,
where the CPUs can be heavily loaded by many short-lived tools from the build
process. A variant of top(1) for Linux, called atop(1), uses process accounting to
catch the presence of short-lived processes, which it includes in its display.

6.6.7 prstat

The prstat(1) command was introduced as “top for Solaris-based systems.” For
example:

$ prstat
 PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP
 21722 101 23G 20G cpu0 59 0 72:23:41 2.6% beam.smp/594
 21495 root 321M 304M sleep 1 0 2:57:41 0.9% node/5
 20721 root 345M 328M sleep 1 0 2:49:53 0.8% node/5
 20861 root 348M 331M sleep 1 0 2:57:07 0.7% node/6
 15354 root 172M 156M cpu9 1 0 0:31:42 0.7% node/5
 21738 root 179M 143M sleep 1 0 2:37:48 0.7% node/4
 20385 root 196M 174M sleep 1 0 2:26:28 0.6% node/4

6.6 Analysis 233

A one-line system summary is at the bottom. The CPU column shows recent CPU
usage and is the same metric shown by top(1) on Solaris. The TIME column
shows consumed time.

prstat(1M) consumes fewer CPU resources than top(1) by using pread() to
read /proc status with file descriptors left open, instead of the open(), read(),
close() cycle.

Thread microstate accounting statistics can be printed by prstat(1M) using
the -m option. The following example uses -L to report this per thread (per LWP)
and -c for continual output (instead of screen refreshes):

The eight highlighted columns show time spent in each microstate and sum to
100%. They are

� USR: user-time

� SYS: system-time (kernel)

� TRP: system trap

� TFL: text faults (page faults for executable segments)

� DFL: data faults

 23186 root 172M 149M sleep 1 0 0:10:56 0.6% node/4
 18513 root 174M 138M cpu13 1 0 2:36:43 0.6% node/4
 21067 root 187M 162M sleep 1 0 2:28:40 0.5% node/4
 19634 root 193M 170M sleep 1 0 2:29:36 0.5% node/4
 10163 root 113M 109M sleep 1 0 12:31:09 0.4% node/3
 12699 root 199M 177M sleep 1 0 1:56:10 0.4% node/4
 37088 root 1069M 1056M sleep 59 0 38:31:19 0.3% qemu-system-x86/4
 10347 root 67M 64M sleep 1 0 11:57:17 0.3% node/3
Total: 390 processes, 1758 lwps, load averages: 3.89, 3.99, 4.31

$ prstat -mLc 1
 PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/LWPID
30650 root 20 2.7 0.0 0.0 0.0 0.0 76 0.5 839 36 5K 0 node/1
42370 root 11 2.0 0.0 0.0 0.0 0.0 87 0.1 205 23 2K 0 node/1
42501 root 11 1.9 0.0 0.0 0.0 0.0 87 0.1 201 24 2K 0 node/1
42232 root 11 1.9 0.0 0.0 0.0 0.0 87 0.1 205 25 2K 0 node/1
42080 root 11 1.9 0.0 0.0 0.0 0.0 87 0.1 201 24 2K 0 node/1
53036 root 7.0 1.4 0.0 0.0 0.0 0.0 92 0.1 158 22 1K 0 node/1
56318 root 6.8 1.4 0.0 0.0 0.0 0.0 92 0.1 154 21 1K 0 node/1
55302 root 6.8 1.3 0.0 0.0 0.0 0.0 92 0.1 156 23 1K 0 node/1
54823 root 6.7 1.3 0.0 0.0 0.0 0.0 92 0.1 154 23 1K 0 node/1
54445 root 6.7 1.3 0.0 0.0 0.0 0.0 92 0.1 156 24 1K 0 node/1
53551 root 6.7 1.3 0.0 0.0 0.0 0.0 92 0.1 153 20 1K 0 node/1
21722 103 6.3 1.5 0.0 0.0 3.3 0.0 88 0.0 40 0 1K 0 beam.smp/578
21722 103 6.2 1.3 0.0 0.0 8.7 0.0 84 0.0 43 0 1K 0 beam.smp/585
21722 103 5.1 1.2 0.0 0.0 3.2 0.0 90 0.0 38 1 1K 0 beam.smp/577
21722 103 4.7 1.1 0.0 0.0 0.0 0.0 87 0.0 45 0 985 0 beam.smp/580
Total: 390 processes, 1758 lwps, load averages: 3.92, 3.99, 4.31

234 Chapter 6 � CPUs

� LCK: time spent waiting for user-level locks

� SLP: time spent sleeping, including blocked on I/O

� LAT: scheduler latency (dispatcher queue latency)

This breakdown of thread time is extremely useful. Here are suggested paths for
further investigation (also see Section 5.4.1, Thread State Analysis, in Chapter 5,
Applications):

� USR: profiling of user-level CPU usage

� SYS: check system calls used and profile kernel-level CPU usage

� SLP: depends on the sleep event; trace syscall or code path for more details

� LAT: check system-wide CPU utilization and any imposed CPU limit/quota

Many of these can also be performed using DTrace.

6.6.8 pidstat

The Linux pidstat(1) tool prints CPU usage by process or thread, including
user- and system-time breakdowns. By default, a rolling output is printed of only
active processes. For example:

This example captured a system backup, involving a tar(1) command to read
files from the file system, and the gzip(1) command to compress them. The user-
time for gzip(1) is high, as expected, as it becomes CPU-bound in compression
code. The tar(1) command spends more time in the kernel, reading from the file
system.

The -p ALL option can be used to print all processes, including those that are
idle. -t prints per-thread statistics. Other pidstat(1) options are included in
other chapters of this book.

$ pidstat 1
Linux 2.6.35-32-server (dev7) 11/12/12 _x86_64_ (16 CPU)

22:24:42 PID %usr %system %guest %CPU CPU Command
22:24:43 7814 0.00 1.98 0.00 1.98 3 tar
22:24:43 7815 97.03 2.97 0.00 100.00 11 gzip

22:24:43 PID %usr %system %guest %CPU CPU Command
22:24:44 448 0.00 1.00 0.00 1.00 0 kjournald
22:24:44 7814 0.00 2.00 0.00 2.00 3 tar
22:24:44 7815 97.00 3.00 0.00 100.00 11 gzip
22:24:44 7816 0.00 2.00 0.00 2.00 2 pidstat
[...]

6.6 Analysis 235

6.6.9 time, ptime

The time(1) command can be used to run programs and report CPU usage. It is
provided either in the operating system under /usr/bin, or as a shell built-in.

This example runs time twice on a cksum(1) command, calculating the check-
sum of a large file:

The first run took 5.1 s, during which 2.8 s was in user mode—calculating the
checksum—and 0.3 s was in system-time—the system calls required to read the
file. There is a missing 2.0 s (5.1 - 2.8 - 0.3), which is likely time spent blocked on
disk I/O reads, as this file was only partially cached. The second run completed
more quickly, in 2.5 s, with almost no time blocked on I/O. This is expected, as the
file may be fully cached in main memory for the second run.

On Linux, the /usr/bin/time version supports verbose details:

$ time cksum Fedora-16-x86_64-Live-Desktop.iso
560560652 633339904 Fedora-16-x86_64-Live-Desktop.iso

real 0m5.105s
user 0m2.810s
sys 0m0.300s
$ time cksum Fedora-16-x86_64-Live-Desktop.iso
560560652 633339904 Fedora-16-x86_64-Live-Desktop.iso

real 0m2.474s
user 0m2.340s
sys 0m0.130s

$ /usr/bin/time -v cp fileA fileB
 Command being timed: "cp fileA fileB"

User time (seconds): 0.00
 System time (seconds): 0.26
 Percent of CPU this job got: 24%
 Elapsed (wall clock) time (h:mm:ss or m:ss): 0:01.08
 Average shared text size (kbytes): 0
 Average unshared data size (kbytes): 0
 Average stack size (kbytes): 0
 Average total size (kbytes): 0
 Maximum resident set size (kbytes): 3792
 Average resident set size (kbytes): 0
 Major (requiring I/O) page faults: 0
 Minor (reclaiming a frame) page faults: 294
 Voluntary context switches: 1082
 Involuntary context switches: 1
 Swaps: 0
 File system inputs: 275432

File system outputs: 275432
Socket messages sent: 0

 Socket messages received: 0
 Signals delivered: 0
 Page size (bytes): 4096
 Exit status: 0

236 Chapter 6 � CPUs

The -v option is not typically provided in the shell built-in version.
Solaris-based systems include an additional ptime(1) version of time(1),

which provides high-precision times based on thread microstate accounting. Nowa-
days, time(1) on Solaris-based systems ultimately uses the same source of statis-
tics. ptime(1) is still useful, as it provides a -m option to print the full set of
thread microstate times, including scheduler latency (lat):

In this case, the runtime was 8.3 s, during which 6.4 s was sleeping (disk I/O).

6.6.10 DTrace

DTrace can be used to profile CPU usage for both user- and kernel-level code, and
to trace the execution of functions, CPU cross calls, interrupts, and the kernel
scheduler. These abilities support workload characterization, profiling, drill-down
analysis, and latency analysis.

The following sections introduce DTrace for CPU analysis on Solaris- and Linux-
based systems. Unless noted, the DTrace commands are intended for both operating
systems. A DTrace primer was included in Chapter 4, Observability Tools.

Kernel Profiling

Previous tools, including mpstat(1) and top(1), showed system-time—CPU time
spent in the kernel. DTrace can be used to identify what the kernel is doing.

The following one-liner, demonstrated on a Solaris-based system, samples ker-
nel stack traces at 997 Hz (to avoid lockstep, as explained in Section 6.5.4, Profil-
ing). The predicate ensures that the CPU is in kernel mode when sampling, by
checking that the kernel program counter (arg0) is nonzero:

$ ptime -m cp fileA fileB

real 8.334800250
user 0.016714684
sys 1.899085951
trap 0.000003874
tflt 0.000000000
dflt 0.000000000
kflt 0.000000000
lock 0.000000000
slp 6.414634340
lat 0.004249234
stop 0.000285583

dtrace -n 'profile-997 /arg0/ { @[stack()] = count(); }'
dtrace: description 'profile-997 ' matched 1 probe
^C

6.6 Analysis 237

The most frequent stack is printed last, which in this case is for the idle thread,
which was sampled 23,083 times. For the other stacks, the top function and ances-
try are shown.

Many pages were truncated from this output. The following one-liners show
other ways to sample kernel CPU usage, some of which condense the output much
further.

One-Liners

Sample kernel stacks at 997 Hz:

Sample kernel stacks at 997 Hz, top ten only:

Sample kernel stacks, five frames only, at 997 Hz:

[...]
 unix`do_copy_fault_nta+0x49
 genunix`uiomove+0x12e
 zfs`dmu_write_uio_dnode+0xac
 zfs`dmu_write_uio_dbuf+0x54
 zfs`zfs_write+0xc60
 genunix`fop_write+0x8b
 genunix`write+0x250
 genunix`write32+0x1e
 unix`_sys_sysenter_post_swapgs+0x149

 302

 unix`do_splx+0x65
 genunix`disp_lock_exit+0x47
 genunix`post_syscall+0x318
 genunix`syscall_exit+0x68
 unix`0xfffffffffb800ed9

 621

 unix`i86_mwait+0xd
 unix`cpu_idle_mwait+0x109

 unix`idle+0xa7
 unix`thread_start+0x8

 23083

dtrace -n 'profile-997 /arg0/ { @[stack()] = count(); }'

dtrace -n 'profile-997 /arg0/ { @[stack()] = count(); } END { trunc(@, 10); }'

dtrace -n 'profile-997 /arg0/ { @[stack(5)] = count(); }'

238 Chapter 6 � CPUs

Sample kernel on-CPU functions at 997 Hz:

Sample kernel on-CPU modules at 997 Hz:

User Profiling

CPU time spent in user mode can be profiled similarly to the kernel. The following
one-liner matches on user-level code by checking on arg1 (user PC) and also
matches processes named "mysqld" (MySQL database):

The last stack shows that MySQL was in do_command() and performing calc_
sum_of_all_status(), which was frequently on-CPU. The stack frames look a
little mangled as they are C++ signatures (the c++filt(1) tool can be used to
unmangle them).

The following one-liners show other ways to sample user CPU usage, provided
user-level actions are available (this feature is currently not yet ported to Linux).

dtrace -n 'profile-997 /arg0/ { @[func(arg0)] = count(); }'

dtrace -n 'profile-997 /arg0/ { @[mod(arg0)] = count(); }'

dtrace -n 'profile-97 /arg1 && execname == "mysqld"/ { @[ustack()] =
count(); }'

dtrace: description 'profile-97 ' matched 1 probe
^C
[...]
libc.so.1`__priocntlset+0xa
libc.so.1`getparam+0x83
libc.so.1`pthread_getschedparam+0x3c
libc.so.1`pthread_setschedprio+0x1f
mysqld`_Z16dispatch_command19enum_server_commandP3THDPcj+0x9ab
mysqld`_Z10do_commandP3THD+0x198
mysqld`handle_one_connection+0x1a6
libc.so.1`_thrp_setup+0x8d
libc.so.1`_lwp_start
4884

mysqld`_Z13add_to_statusP17system_status_varS0_+0x47
mysqld`_Z22calc_sum_of_all_statusP17system_status_var+0x67
mysqld`_Z16dispatch_command19enum_server_commandP3THDPcj+0x1222
mysqld`_Z10do_commandP3THD+0x198
mysqld`handle_one_connection+0x1a6
libc.so.1`_thrp_setup+0x8d
libc.so.1`_lwp_start
5530

6.6 Analysis 239

One-Liners

Sample user stacks at 97 Hz, for PID 123:

Sample user stacks at 97 Hz, for all processes named "sshd":

Sample user stacks at 97 Hz, for all processes on the system (include process
name in output):

Sample user stacks at 97 Hz, top ten only, for PID 123:

Sample user stacks, five frames only, at 97 Hz, for PID 123:

Sample user on-CPU functions at 97 Hz, for PID 123:

Sample user on-CPU modules at 97 Hz, for PID 123:

dtrace -n 'profile-97 /arg1 && pid == 123/ { @[ustack()] = count(); }'

dtrace -n 'profile-97 /arg1 && execname == "sshd"/ { @[ustack()] = count(); }'

dtrace -n 'profile-97 /arg1/ { @[execname, ustack()] = count(); }'

dtrace -n 'profile-97 /arg1 && pid == 123/ { @[ustack()] = count(); }
 END { trunc(@, 10); }'

dtrace -n 'profile-97 /arg1 && pid == 123/ { @[ustack(5)] = count(); }'

dtrace -n 'profile-97 /arg1 && pid == 123/ { @[ufunc(arg1)] = count(); }'

dtrace -n 'profile-97 /arg1 && pid == 123/ { @[umod(arg1)] = count(); }'

240 Chapter 6 � CPUs

Sample user stacks at 97 Hz, including during system-time when the user
stack is frozen (typically on a syscall), for PID 123:

Sample which CPU a process runs on, at 97 Hz, for PID 123:

Function Tracing

While profiling can show the total CPU time consumed by functions, it doesn’t
show the runtime distribution of those function calls. This can be determined by
using tracing and the vtimestamp built-in—a high-resolution timestamp that
increments only when the current thread is on-CPU. A function’s CPU time can be
measured by tracing its entry and return and calculating the vtimestamp delta.

For example, using dynamic tracing (fbt provider) to measure the CPU time in
the kernel ZFS zio_checksum_generate() function:

Most of the time this function took between 65 and 131 μs of CPU time. This
includes the CPU time of all subfunctions.

This particular style of tracing can add overhead if the function is called fre-
quently. It is best used in conjunction with profiling, so that results can be cross-
checked.

dtrace -n 'profile-97 /pid == 123/ { @[ustack()] = count(); }'

dtrace -n 'profile-97 /pid == 123/ { @[cpu] = count(); }'

dtrace -n 'fbt::zio_checksum_generate:entry { self->v = vtimestamp; }
fbt::zio_checksum_generate:return /self->v/ { @["ns"] =
quantize(vtimestamp - self->v); self->v = 0; }'

dtrace: description 'fbt::zio_checksum_generate:entry ' matched 2 probes
^C

 ns
 value ------------- Distribution ------------- count
 128 | 0
 256 | 3
 512 |@ 62
 1024 |@ 79
 2048 | 13
 4096 | 21
 8192 | 8
 16384 | 2
 32768 | 41

65536 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 3740
 131072 |@ 134
 262144 | 0

6.6 Analysis 241

Similar dynamic tracing may be performed for user-level code via the PID pro-
vider, if available.

Dynamic tracing via the fbt or pid providers is considered an unstable interface,
as functions may change between releases. There are static tracing providers
available for tracing CPU behavior, which are intended to provide a stable inter-
face. These include probes for CPU cross calls, interrupts, and scheduler activity.

CPU Cross Calls

Excessive CPU cross calls can reduce performance due to their CPU consumption.
Prior to DTrace, the origin of cross calls was difficult to determine. It’s now as easy
as a one-liner, tracing cross calls and showing the code path that led to them:

This was demonstrated on a Solaris-based system with the sysinfo provider.

Interrupts

DTrace allows interrupts to be traced and examined. Solaris-based systems ship
with intrstat(1M), a DTrace-based tool for summarizing interrupt CPU usage.
For example:

dtrace -n 'sysinfo:::xcalls { @[stack()] = count(); }'
dtrace: description 'sysinfo:::xcalls ' matched 1 probe
^C
[...]

 unix`xc_sync+0x39
 kvm`kvm_xcall+0xa9
 kvm`vcpu_clear+0x1d
 kvm`vmx_vcpu_load+0x3f
 kvm`kvm_arch_vcpu_load+0x16
 kvm`kvm_ctx_restore+0x3d
 genunix`restorectx+0x37
 unix`_resume_from_idle+0x83

 97

intrstat 1
[...]
 device | cpu4 %tim cpu5 %tim cpu6 %tim cpu7 %tim
-------------+--
 bnx#0 | 0 0.0 0 0.0 0 0.0 0 0.0
 ehci#0 | 0 0.0 0 0.0 0 0.0 0 0.0
 ehci#1 | 0 0.0 0 0.0 0 0.0 0 0.0
 igb#0 | 0 0.0 0 0.0 0 0.0 0 0.0
 mega_sas#0 | 0 0.0 5585 7.1 0 0.0 0 0.0
 uhci#0 | 0 0.0 0 0.0 0 0.0 0 0.0
 uhci#1 | 0 0.0 0 0.0 0 0.0 0 0.0
 uhci#2 | 0 0.0 0 0.0 0 0.0 0 0.0
 uhci#3 | 0 0.0 0 0.0 0 0.0 0 0.0
[...]

242 Chapter 6 � CPUs

The output is typically pages long on multi-CPU systems and includes interrupt
counts and percent CPU times for each driver, for each CPU. The preceding excerpt
shows that the mega_sas driver was consuming 7.1% of CPU 5.

If intrstat(1M) is not available (as is currently the case on Linux), interrupt
activity can be examined by use of dynamic function tracing.

Scheduler Tracing

The scheduler provider (sched) provides probes for tracing operations of the kernel
CPU scheduler. Probes are listed in Table 6.7.

Since many of these fire in thread context, the curthread built-in refers to the
thread in question, and thread-local variables can be used. For example, tracing
on-CPU runtime using a thread-local variable (self->ts):

Table 6-7 sched Provider Probes

Probe Description

on-cpu The current thread begins execution on-CPU.

off-cpu The current thread is about to end execution on-CPU.

remain-cpu The scheduler has decided to continue running the current thread.

enqueue A thread is being enqueued to a run queue (examine it via args[]).

dequeue A thread is being dequeued from a run queue (examine it via args[]).

preempt The current thread is about to be preempted by another.

dtrace -n 'sched:::on-cpu /execname == "sshd"/ { self->ts = timestamp; }
sched:::off-cpu /self->ts/ { @["ns"] = quantize(timestamp - self->ts);
self->ts = 0; }'

dtrace: description 'sched:::on-cpu ' matched 6 probes
^C

 ns
 value ------------- Distribution ------------- count
 2048 | 0
 4096 | 1
 8192 |@@ 8
 16384 |@@@ 12
 32768 |@@@@@@@@@@@@@@@@@@@@@@@ 94
 65536 |@@@ 14
 131072 |@@@ 12
 262144 |@@ 7
 524288 |@ 4
 1048576 |@ 5
 2097152 | 2
 4194304 | 1
 8388608 | 1
 16777216 | 0

6.6 Analysis 243

This traced the on-CPU runtime for processes named "sshd". Most of the time it
was on-CPU only briefly, between 32 and 65 μs.

6.6.11 SystemTap

SystemTap can also be used on Linux systems for tracing of scheduler events. See
Section 4.4, SystemTap, in Chapter 4, Observability Tools, and Appendix E for help
with converting the previous DTrace scripts.

6.6.12 perf

Originally called Performance Counters for Linux (PCL), the perf(1) command
has evolved and become a collection of tools for profiling and tracing, now called
Linux Performance Events (LPE). Each tool is selected as a subcommand. For
example, perf stat executes the stat command, which provides CPC-based sta-
tistics. These commands are listed in the USAGE message, and a selection is
reproduced here in Table 6.8 (from version 3.2.6-3).

Table 6-8 perf Subcommands

Command Description

annotate Read perf.data (created by perf record) and display annotated code.

diff Read two perf.data files and display the differential profile.

evlist List the event names in a perf.data file.

inject Filter to augment the events stream with additional information.

kmem Tool to trace/measure kernel memory (slab) properties.

kvm Tool to trace/measure kvm guest OS.

list List all symbolic event types.

lock Analyze lock events.

probe Define new dynamic tracepoints.

record Run a command and record its profile into perf.data.

report Read perf.data (created by perf record) and display the profile.

sched Tool to trace/measure scheduler properties (latencies).

script Read perf.data (created by perf record) and display trace output.

stat Run a command and gather performance counter statistics.

timechart Tool to visualize total system behavior during a workload.

top System profiling tool.

244 Chapter 6 � CPUs

Key commands are demonstrated in the following sections.

System Profiling

perf(1) can be used to profile CPU call paths, summarizing where CPU time is
spent in both kernel- and user-space. This is performed by the record command,
which captures samples at regular intervals to a perf.data file. A report com-
mand is then used to view the file.

In the following example, all CPUs (-a) are sampled with call stacks (-g) at 997
Hz (-F 997) for 10 s (sleep 10). The --stdio option is used to print all the out-
put, instead of operating in interactive mode.

The full output is many pages long, in descending sample count order. These sam-
ple counts are given as percentages, which show where the CPU time was spent.
This example indicates that 72.98% of time was spent in the idle thread, and
9.43% of time in the dd process. Out of that 9.43%, 87.5% is composed of the stack
shown, which is for ext4_file_write().

perf record -a -g -F 997 sleep 10
[perf record: Woken up 44 times to write data]
[perf record: Captured and wrote 13.251 MB perf.data (~578952 samples)]
perf report --stdio
[...]
Overhead Command Shared Object Symbol
........
#
 72.98% swapper [kernel.kallsyms] [k] native_safe_halt
 |

 --- native_safe_halt
 default_idle

 cpu_idle
 rest_init

 start_kernel
x86_64_start_reservations

 x86_64_start_kernel

 9.43% dd [kernel.kallsyms] [k] acpi_pm_read
 |

 --- acpi_pm_read
 ktime_get_ts

 |
 |--87.75%-- __delayacct_blkio_start

 | io_schedule_timeout
 | balance_dirty_pages_ratelimited_nr
 | generic_file_buffered_write

 | __generic_file_aio_write
 | generic_file_aio_write
 | ext4_file_write
 | do_sync_write
 | vfs_write
 | sys_write
 | system_call
 | __GI___libc_write

 |
[...]

6.6 Analysis 245

These kernel and process symbols are available only if their debuginfo files are
available; otherwise hex addresses are shown.

perf(1) operates by programming an overflow interrupt for the CPU cycle
counter. Since the cycle rate varies on modern processors, a “scaled” counter is
used that remains constant.

Process Profiling

Apart from profiling across all CPUs, individual processes can be targeted. The fol-
lowing command executes the command and creates the perf.data file:

As before, debuginfo must be available for perf(1) to translate symbols when
viewing the report.

Scheduler Latency

The sched command records and reports scheduler statistics. For example:

This shows the average and maximum scheduler latency while tracing.
Scheduler events are frequent, so this type of tracing incurs CPU and storage

overhead. The perf.data file in this example was 1.7 Gbytes for 10 s of tracing. The
INFO lines in the output show that some events were dropped. This points out an
advantage of the DTrace model of in-kernel filtering and aggregation: it can

perf record -g command

perf sched record sleep 10
[perf record: Woken up 108 times to write data]
[perf record: Captured and wrote 1723.874 MB perf.data (~75317184 samples)]
perf sched latency

 --

 Task | Runtime ms | Switches | Average delay ms | Maximum delay
ms | Maximum delay at |
 --

 kblockd/0:91 | 0.009 ms | 1 | avg: 1.193 ms | max: 1.193
ms | max at: 105455.615096 s
 dd:8439 | 9691.404 ms | 763 | avg: 0.363 ms | max: 29.953
ms | max at: 105456.540771 s
 perf_2.6.35-32:8440 | 8082.543 ms | 818 | avg: 0.362 ms | max: 29.956
ms | max at: 105460.734775 s
 kjournald:419 | 462.561 ms | 457 | avg: 0.064 ms | max: 12.112
ms | max at: 105459.815203 s
[...]
 INFO: 0.976% lost events (167317 out of 17138781, in 3 chunks)
 INFO: 0.178% state machine bugs (4766 out of 2673759) (due to lost events?)
 INFO: 0.000% context switch bugs (3 out of 2673759) (due to lost events?)

246 Chapter 6 � CPUs

summarize data while tracing and pass only the summary to user-space, minimiz-
ing overhead.

stat

The stat command provides a high-level summary of CPU cycle behavior based
on CPC. In the following example it launches a gzip(1) command:

The statistics include the cycle and instruction count, and the IPC (inverse of CPI).
As described earlier, this is an extremely useful high-level metric for determining
the types of cycles occurring and how many of them are stall cycles.

The following lists other counters that can be examined:

Look for both “Hardware event” and “Hardware cache event.” Those available
depend on the processor architecture and are documented in the processor manu-
als (e.g., the Intel Software Developer’s Manual).

$ perf stat gzip file1

 Performance counter stats for 'gzip perf.data':

 62250.620881 task-clock-msecs # 0.998 CPUs
 65 context-switches # 0.000 M/sec

 1 CPU-migrations # 0.000 M/sec
 211 page-faults # 0.000 M/sec

 149282502161 cycles # 2398.089 M/sec
 227631116972 instructions # 1.525 IPC
 39078733567 branches # 627.765 M/sec
 1802924170 branch-misses # 4.614 %
 87791362 cache-references # 1.410 M/sec
 24187334 cache-misses # 0.389 M/sec

 62.355529199 seconds time elapsed

perf list

List of pre-defined events (to be used in -e):

 cpu-cycles OR cycles [Hardware event]
 instructions [Hardware event]
 cache-references [Hardware event]
 cache-misses [Hardware event]
 branch-instructions OR branches [Hardware event]
 branch-misses [Hardware event]
 bus-cycles [Hardware event]
[...]
 L1-dcache-loads [Hardware cache event]
 L1-dcache-load-misses [Hardware cache event]
 L1-dcache-stores [Hardware cache event]
 L1-dcache-store-misses [Hardware cache event]
[...]

6.6 Analysis 247

These events can be specified using –e. For example (this is from an Intel Xeon):

Apart from instructions and cycles, this example also measured the following:

� L1-dcache-load-misses: Level 1 data cache load misses. This gives you a
measure of the memory load caused by the application, after some loads have
been returned from the Level 1 cache. It can be compared with other L1 event
counters to determine cache hit rate.

� LLC-load-misses: Last level cache load misses. After the last level, this
accesses main memory, and so this is a measure of main memory load. The
difference between this and L1-dcache-load-misses gives an idea (other
counters are needed for completeness) of the effectiveness of the CPU caches
beyond Level 1.

� dTLB-load-misses: Data translation lookaside buffer misses. This shows
the effectiveness of the MMU to cache page mappings for the workload and
can measure the size of the memory workload (working set).

Many other counters can be inspected. perf(1) supports both descriptive
names (like those used for this example) and hexadecimal values. The latter may
be necessary for esoteric counters you find in the processor manuals, for which a
descriptive name isn’t provided.

Software Tracing

perf record -e can be used with various software instrumentation points for
tracing activity of the kernel scheduler. These include software events and trace-
point events (static probes), as listed by perf list. For example:

$ perf stat -e instructions,cycles,L1-dcache-load-misses,LLC-load-misses,dTLB-load-
misses gzip file1

 Performance counter stats for 'gzip file1':

 12278136571 instructions # 2.199 IPC
 5582247352 cycles

90367344 L1-dcache-load-misses
 1227085 LLC-load-misses
 685149 dTLB-load-misses

 2.332492555 seconds time elapsed

perf list
 context-switches OR cs [Software event]
 cpu-migrations OR migrations [Software event]
[...]

continues

248 Chapter 6 � CPUs

The following example uses the context switch software event to trace when
applications leave the CPU and collects call stacks for 10 s:

 sched:sched_kthread_stop [Tracepoint event]
 sched:sched_kthread_stop_ret [Tracepoint event]
 sched:sched_wakeup [Tracepoint event]
 sched:sched_wakeup_new [Tracepoint event]
 sched:sched_switch [Tracepoint event]
 sched:sched_migrate_task [Tracepoint event]
 sched:sched_process_free [Tracepoint event]
 sched:sched_process_exit [Tracepoint event]
 sched:sched_wait_task [Tracepoint event]
 sched:sched_process_wait [Tracepoint event]
 sched:sched_process_fork [Tracepoint event]
 sched:sched_stat_wait [Tracepoint event]
 sched:sched_stat_sleep [Tracepoint event]
 sched:sched_stat_iowait [Tracepoint event]
 sched:sched_stat_runtime [Tracepoint event]
 sched:sched_pi_setprio [Tracepoint event]
[...]

perf record -f -g -a -e context-switches sleep 10
[perf record: Woken up 1 times to write data]
[perf record: Captured and wrote 0.417 MB perf.data (~18202 samples)]
perf report --stdio
========
captured on: Wed Apr 10 19:52:19 2013
hostname : 9d219ce8-cf52-409f-a14a-b210850f3231
[...]
#
Events: 2K context-switches
#
Overhead Command Shared Object Symbol
........
#
 47.60% perl [kernel.kallsyms] [k] __schedule
 |

 --- __schedule
 schedule

 retint_careful
 |
 |--50.11%-- Perl_pp_unstack
 |
 |--26.40%-- Perl_pp_stub
 |
 --23.50%-- Perl_runops_standard

 25.66% tar [kernel.kallsyms] [k] __schedule
 |

 --- __schedule
 |

 |--99.72%-- schedule
| |

 | |--99.90%-- io_schedule
 | | sleep_on_buffer
 | | __wait_on_bit
 | | out_of_line_wait_on_bit
 | | __wait_on_buffer
 | | |
 | | |--99.21%-- ext4_bread

| | | |

6.6 Analysis 249

This truncated output shows two applications, perl and tar, and their call stacks
when they context switched. Reading the stacks shows the tar program was sleep-
ing on file system (ext4) reads. The perl program was involuntary context switched
as it is performing heavy compute, although that isn’t clear from this output alone.

More information can be found using the sched tracepoint events. Kernel sched-
uler functions can also be traced directly using dynamic tracepoints (dynamic trac-
ing), which along with the static probes can provide similar data to what was seen
earlier from DTrace, although it can require more post-processing to produce the
results you are after.

Chapter 9, Disks, includes another example of static tracing with perf(1):
block I/O tracepoints. Chapter 10, Network, includes an example of dynamic trac-
ing with perf(1) for the tcp_sendmsg() kernel function.

Documentation

For more on perf(1), see its man pages, documentation in the Linux kernel
source under tools/perf/Documentation, the “Perf Tutorial” [4], and “The Unofficial
Linux Perf Events Web-Page” [5].

6.6.13 cpustat

On Solaris-based systems, the tools for examining CPC are cpustat(1M) for system-
wide analysis and cputrack(1M) for process analysis. These refer to CPC using
the term performance instrumentation counters (PICs).

For example, to measure CPI, both cycles and instructions must be counted.
Using the PAPI names:

 | | | |--99.72%-- htree_dirbl...
 | | | | ext4_htree_f...
 | | | | ext4_readdir
 | | | | vfs_readdir
 | | | | sys_getdents
 | | | | system_call
 | | | | __getdents64

 | | | --0.28%-- [...]
 | | |
 | | --0.79%-- __ext4_get_inode_loc
[...]

cpustat -tc PAPI_tot_cyc,PAPI_tot_ins,sys 1
 time cpu event tsc pic0 pic1
 1.001 0 tick 2390794244 2095800691 910588497
 1.002 1 tick 2391617432 2091867238 832659178
 1.002 2 tick 2392676108 2075492108 917078382
 1.003 3 tick 2393561424 2067362862 831551337
 1.003 4 tick 2393739432 2020553426 909065542
[...]

250 Chapter 6 � CPUs

cpustat(1M) produces a line of output per CPU. This output can be post-
processed (e.g., with awk) so that the CPI calculation can be made.

The sys token was used so that both user- and kernel-mode cycles are counted.
This sets the flag described in CPU Performance Counters in Section 6.4.1,
Hardware.

Measuring the same counters using the platform-specific event names:

Run cpustat -h for the full list of supported counters for your processor. The
output usually ends with a reference to the vendor processor manual; for example:

See Appendix A of the “Intel 64 and IA-32 Architectures Software Developer’s Manual
Volume 3B: System Programming Guide, Part 2” Order Number: 253669-026US, Feb-
ruary 2008.

The manuals describe low-level processor behavior in detail.
Only one instance of cpustat(1M) can be running on the system at the same

time, as the kernel does not support multiplexing.

6.6.14 Other Tools

Other Linux CPU performance tools include

� oprofile: the original CPU profiling tool by John Levon.

� htop: includes ASCII bar charts for CPU usage and has a more powerful
interactive interface than the original top(1).

� atop: includes many more system-wide statistics and uses process account-
ing to catch the presence of short-lived processes.

� /proc/cpuinfo: This can be read to see processor details, including clock
speed and feature flags.

� getdelays.c: This is an example of delay accounting observability and
includes CPU scheduler latency per process. It was demonstrated in
Chapter 4, Observability Tools.

� valgrind: a memory debugging and profiling toolkit [6]. It contains call-
grind, a tool to trace function calls and gather a call graph, which can be visu-
alized using kcachegrind; and cachegrind for analysis of hardware cache
usage by a given program.

cpustat -tc cpu_clk_unhalted.thread_p,inst_retired.any_p,sys 1

6.6 Analysis 251

For Solaris:

� lockstat/plockstat: for lock analysis, including spin locks and CPU con-
sumption from adaptive mutexes (see Chapter 5, Applications).

� psrinfo: processor status and information (-vp).

� fmadm faulty: to check if a CPU has been predictively faulted due to an
increase in correctable ECC errors. Also see fmstat(1M).

� isainfo -x: to list processor feature flags.

� pginfo, pgstat: processor group statistics, showing CPU topology and how
CPU resources are shared.

� lgrpinfo: for locality group statistics. This can be useful for checking that
lgrps are in use, which requires processor and operating system support.

There are also sophisticated products for CPU performance analysis, including
Oracle Solaris Studio, which is available for Solaris and Linux.

6.6.15 Visualizations

CPU usage has historically been visualized as line graphs of utilization or load aver-
age, including the original X11 load tool (xload(1)). Such line graphs are an effec-
tive way to show variation, as magnitudes can be visually compared. They can also
show patterns over time, as was shown in Section 2.9, Monitoring, of Chapter 2,
Methodology.

However, line graphs of per-CPU utilization don’t scale with the CPU counts we
see today, especially for cloud computing environments involving tens of thou-
sands of CPUs—a graph of 10,000 lines can become paint.

Other statistics plotted as line graphs, including averages, standard deviations,
maximums, and percentiles, provide some value and do scale. However, CPU utili-
zation is often bimodal—composed of idle or near-idle CPUs, and then some at
100% utilization—which is not effectively conveyed with these statistics. The full
distribution often needs to be studied. A utilization heat map makes this possible.

The following sections introduce CPU utilization heat maps, CPU subsecond-
offset heat maps, and flame graphs. I created these visualization types to solve
problems in enterprise and cloud performance analysis.

Utilization Heat Map

Utilization versus time can be presented as a heat map, with the saturation (dark-
ness) of each pixel showing the number of CPUs at that utilization and time range.
Heat maps were introduced in Chapter 2, Methodology.

252 Chapter 6 � CPUs

Figure 6.15 shows CPU utilization for an entire data center (availability zone),
running a public cloud environment. It includes over 300 physical servers and
5,312 CPUs.

The darker shading at the bottom of this heat map shows that most CPUs are
running between 0% and 30% utilization. However, the solid line at the top shows
that, over time, there are also some CPUs at 100% utilization. The fact that the
line is dark shows that multiple CPUs were at 100%, not just one.

This particular visualization is provided by real-time monitoring software
(Joyent Cloud Analytics), which allows points to be selected with a click to reveal
more details. In this case, the 100% CPU line can be clicked to reveal which serv-
ers these CPUs belonged to, and what tenants and applications are driving CPUs
at that rate.

Subsecond-Offset Heat Map

This heat map type allows activity within a second to be examined. CPU activity is
typically measured in microseconds or milliseconds; reporting this data as aver-
ages over an entire second can wipe out useful information. This type of heat map
puts the subsecond offset on the y axis, with the number of non-idle CPUs at each
offset shown by the saturation. This visualizes each second as a column, “paint-
ing” it from bottom to top.

Figure 6.16 shows a CPU subsecond-offset heat map for a cloud database (Riak).
What is interesting about this heat map isn’t the times that the CPUs were

busy servicing the database, but the times that they were not, indicated by the

Figure 6-15 CPU utilization heat map, 5,312 CPUs

6.6 Analysis 253

white columns. The duration of these gaps was also interesting: hundreds of milli-
seconds during which none of the database threads were on-CPU. This led to the
discovery of a locking issue where the entire database was blocked for hundreds of
milliseconds at a time.

If we had examined this data using a line graph, a dip in per-second CPU utili-
zation might have been dismissed as variable load and not investigated further.

Flame Graphs

Profiling stack traces is an effective way to explain CPU usage, showing which
kernel- or user-level code paths are responsible. It can, however, produce thou-
sands of pages of output. Flame graphs visualize the profile stack frames, so that
CPU usage can be understood more quickly and more clearly.

Flame graphs can be built upon data from DTrace, perf, or SystemTap. The
example in Figure 6.17 shows the Linux kernel profiled using perf.

The flame graph has the following characteristics:

� Each box represents a function in the stack (a “stack frame”).

� The y axis shows stack depth (number of frames on the stack). The top box
shows the function that was on-CPU. Everything beneath that is ancestry.
The function beneath a function is its parent, just as in the stack traces
shown earlier.

� The x axis spans the sample population. It does not show the passing of time
from left to right, as most graphs do. The left-to-right ordering has no mean-
ing (it’s sorted alphabetically).

Figure 6-16 CPU subsecond-offset heat map

254 Chapter 6 � CPUs

� The width of the box shows the total time it was on-CPU or part of an ances-
try that was on-CPU (based on sample count). Wider box functions may be
slower than narrow box functions, or they may simply be called more often.
The call count is not shown (nor is it known via sampling).

� The sample count can exceed elapsed time if multiple threads were running
and sampled in parallel.

The colors are not significant and are picked at random to be warm colors. It’s
called a “flame graph” because it shows what is hot on-CPU.

It is also interactive. It is an SVG with an embedded JavaScript routine that
when opened in a browser allows you to mouse over elements to reveal details at
the bottom. In the Figure 6.17 example, start_xmit() was highlighted, which
shows that it was present in 72.55% of the sampled stacks.

6.7 Experimentation

This section describes tools for actively testing CPU performance. See Section
6.5.11, Micro-Benchmarking, for background.

When using these tools, it’s a good idea to leave mpstat(1) continually run-
ning to confirm CPU usage and parallelism.

Figure 6-17 Linux kernel flame graph

6.7 Experimentation 255

6.7.1 Ad Hoc

While this is trivial and doesn’t measure anything, it can be a useful known work-
load for confirming that observability tools show what they claim to show. This cre-
ates a single-threaded workload that is CPU-bound (“hot on one CPU”):

This is a Bourne shell program that performs an infinite loop in the background. It
will need to be killed once you no longer need it.

6.7.2 SysBench

The SysBench system benchmark suite has a simple CPU benchmark tool that cal-
culates prime numbers. For example:

This executed eight threads, with a maximum prime number of 100,000. The run-
time was 30.4 s, which can be used for comparison with the results from other sys-
tems or configurations (assuming many things, such as that identical compiler
options were used to build the software; see Chapter 12, Benchmarking).

while :; do :; done &

sysbench --num-threads=8 --test=cpu --cpu-max-prime=100000 run
sysbench 0.4.12: multi-threaded system evaluation benchmark

Running the test with following options:
Number of threads: 8

Doing CPU performance benchmark

Threads started!
Done.

Maximum prime number checked in CPU test: 100000

Test execution summary:
 total time: 30.4125s
 total number of events: 10000
 total time taken by event execution: 243.2310
 per-request statistics:
 min: 24.31ms
 avg: 24.32ms
 max: 32.44ms
 approx. 95 percentile: 24.32ms

Threads fairness:
 events (avg/stddev): 1250.0000/1.22
 execution time (avg/stddev): 30.4039/0.01

256 Chapter 6 � CPUs

6.8 Tuning

For CPUs, the biggest performance wins are typically those that eliminate unnec-
essary work, which is an effective form of tuning. Section 6.5, Methodology, and
Section 6.6, Analysis, introduced many ways to analyze and identify the work per-
formed, helping you find any unnecessary work. Other methodologies for tuning
were also introduced: priority tuning and CPU binding. This section includes these
and other tuning examples.

The specifics of tuning—the options available and what to set them to—depend
on the processor type, the operating system version, and the intended workload.
The following, organized by type, provide examples of what options may be avail-
able and how they are tuned. The earlier methodology sections provide guidance
on when and why these tunables would be tuned.

6.8.1 Compiler Options

Compilers, and the options they provide for code optimization, can have a dra-
matic effect on CPU performance. Common options include compiling for 64-bit
instead of 32-bit, and selecting a level of optimizations. Compiler optimization is
discussed in Chapter 5, Applications.

6.8.2 Scheduling Priority and Class

The nice(1) command can be used to adjust process priority. Positive nice values
decrease priority, and negative nice values increase priority, which only the super-
user can set. The range is from -20 to +19. For example:

runs the command with a nice value of 19—the lowest priority that nice can set. To
change the priority of an already running process, use renice(1).

On Linux, the chrt(1) command can show and set the scheduling priority
directly, and the scheduling policy. The scheduling priority can also be set directly
using the setpriority() syscall, and the priority and scheduling policy can be
set using the sched_setscheduler() syscall.

On Solaris, you can set scheduling classes and priorities directly using the
priocntl(1) command. For example:

$ nice -n 19 command

priocntl -s -c RT -p 10 -i pid PID

6.8 Tuning 257

This sets the target process ID to run in the real-time scheduling class with a pri-
ority of 10. Be careful when setting this: you can lock up your system if the real-
time threads consume all CPU resources.

6.8.3 Scheduler Options

Your kernel may provide tunable parameters to control scheduler behavior,
although it is unlikely that these will ever need to be tuned.

On Linux systems, config options can be set, including the examples in Table 6.9
from a 3.2.6 kernel, with defaults from Fedora 16.

Some Linux kernels provide additional tunables (e.g., in /proc/sys/sched).
On Solaris-based systems, the kernel tunable parameters shown in Table 6.10

modify scheduler behavior.
For reference, find the matching documentation for your operating system ver-

sion (e.g., for Solaris, the Solaris Tunable Parameters Reference Manual). Such docu-
mentation should list key tunable parameters, their type, when to set them, their
defaults, and the valid ranges. Be careful when using these, as their ranges may not
be fully tested. (Tuning them may also be prohibited by company or vendor policy.)

Table 6-9 Example Linux Scheduler Config Options

Option Default Description

CONFIG_CGROUP_SCHED y allows tasks to be grouped, allocating CPU
time on a group basis

CONFIG_FAIR_GROUP_SCHED y allows CFS tasks to be grouped

CONFIG_RT_GROUP_SCHED y allows real-time tasks to be grouped

CONFIG_SCHED_AUTOGROUP y automatically identifies and creates task
groups (e.g., build jobs)

CONFIG_SCHED_SMT y hyperthreading support

CONFIG_SCHED_MC y multicore support

CONFIG_HZ 1,000 sets kernel clock rate (timer interrupt)

CONFIG_NO_HZ y tickless kernel behavior

CONFIG_SCHED_HRTICK y use high-resolution timers

CONFIG_PREEMPT n full kernel preemption (exception of spin lock
regions and interrupts)

CONFIG_PREEMPT_NONE n no preemption

CONFIG_PREEMPT_VOLUNTARY y preemption at voluntary kernel code points

258 Chapter 6 � CPUs

Scheduler Class Tuning

Solaris-based systems also provide a means to modify the time quantum and prior-
ities used by scheduling classes, via the dispadmin(1) command. For example,
printing out the table of tunables (called the dispatcher table) for the time-sharing
scheduling class (TS):

This output includes

� ts_quantum: time quantum (in milliseconds, as set resolution using -r 1000)

� ts_tqexp: new priority provided when the thread expires its current time
quantum (priority reduction)

� ts_slpret: new priority after thread sleeps (I/O) then wakes up (priority
promotion)

� ts_maxwait: maximum seconds waiting for CPU before being promoted to
the priority in ts_lwait

� PRIORITY LEVEL: priority value

This can be written to a file, modified, then reloaded by dispadmin(1M). You
ought to have a reason for doing this, such as having first measured priority con-
tention and scheduler latency using DTrace.

Table 6-10 Example Solaris Scheduler Tunables

Parameter Default Description

rechoose_interval 3 CPU affinity duration (clock ticks)

nosteal_nsec 100,000 avoid thread steals (idle CPU looking for work) if thread
ran this recently (nanoseconds)

hires_tick 0 change to 1 for a 1,000 Hz kernel clock rate, instead of
100 Hz

dispadmin -c TS -g -r 1000
Time Sharing Dispatcher Configuration
RES=1000

ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait PRIORITY LEVEL
 200 0 50 0 50 # 0
 200 0 50 0 50 # 1
 200 0 50 0 50 # 2
 200 0 50 0 50 # 3
 200 0 50 0 50 # 4
 200 0 50 0 50 # 5
[...]

6.8 Tuning 259

6.8.4 Process Binding

A process may be bound to one or more CPUs, which may increase its performance
by improving cache warmth and memory locality.

On Linux, this is performed using the taskset(1) command, which can use a
CPU mask or ranges to set CPU affinity. For example:

This sets PID 10790 to run only on CPUs 7 through 10.
On Solaris-based systems, this is performed using pbind(1). For example:

This sets PID 11901 to run on CPU 10. Multiple CPUs cannot be specified. For
similar functionality, use exclusive CPU sets.

6.8.5 Exclusive CPU Sets

Linux provides cpusets, which allow CPUs to be grouped and processes assigned
to them. This can improve performance similarly to process binding, but perfor-
mance can be improved further by making the cpuset exclusive—preventing other
processes from using it. The trade-off is a reduction in available CPU for the rest of
the system.

The following commented example creates an exclusive set:

For reference, see the cpuset(7) man page.
On Solaris, you can create exclusive CPU sets using the psrset(1M) command.

$ taskset -pc 7-10 10790
pid 10790's current affinity list: 0-15
pid 10790's new affinity list: 7-10

$ pbind -b 10 11901
process id 11901: was not bound, now 10

mkdir /dev/cpuset
mount -t cpuset cpuset /dev/cpuset
cd /dev/cpuset
mkdir prodset # create a cpuset called "prodset"
cd prodset
echo 7-10 > cpus # assign CPUs 7-10
echo 1 > cpu_exclusive # make prodset exclusive
echo 1159 > tasks # assign PID 1159 to prodset

260 Chapter 6 � CPUs

6.8.6 Resource Controls

Apart from associating processes with whole CPUs, modern operating systems pro-
vide resource controls for fine-grained allocation of CPU usage.

Solaris-based systems have resource controls (added in Solaris 9) for processes
or groups of processes called projects. CPU usage can be controlled in a flexible
way using the fair share scheduler and shares, which control how idle CPU can be
consumed by those who need it. Limits can also be imposed, in terms of total per-
cent CPU utilization, for cases where consistency is more desirable than the
dynamic behavior of shares.

For Linux, there are container groups (cgroups), which can also control
resource usage by processes or groups of processes. CPU usage can be controlled
using shares, and the CFS scheduler allows fixed limits to be imposed (CPU band-
width), in terms of allocating microseconds of CPU cycles per interval. CPU band-
width is relatively new, added in 2012 (3.2).

Chapter 11, Cloud Computing, describes a use case of managing CPU usage of
OS-virtualized tenants, including how shares and limits can be used in concert.

6.8.7 Processor Options (BIOS Tuning)

Processors typically provide settings to enable, disable, and tune processor-level
features. On x86 systems, these are typically accessed via the BIOS settings menu
at boot time.

The settings usually provide maximum performance by default and don’t need
to be adjusted. The most common reason I adjust these today is to disable Intel
Turbo Boost, so that CPU benchmarks execute with a consistent clock rate (bear-
ing in mind that, for production use, Turbo Boost should be enabled for slightly
faster performance).

6.9 Exercises

1. Answer the following questions about CPU terminology:

� What is the difference between a process and a processor?

� What is a hardware thread?

� What is the run queue (also called a dispatcher queue)?

� What is the difference between user-time and kernel-time?

� What is CPI?

6.9 Exercises 261

2. Answer the following conceptual questions:

� Describe CPU utilization and saturation.

� Describe how the instruction pipeline improves CPU throughput.

� Describe how processor instruction width improves CPU throughput.

� Describe the advantages of multiprocess and multithreaded models.

3. Answer the following deeper questions:

� Describe what happens when the system CPUs are overloaded with runna-
ble work, including the effect on application performance.

� When there is no runnable work to perform, what do the CPUs do?

� When handed a suspected CPU performance issue, name three methodolo-
gies you would use early during the investigation, and explain why.

4. Develop the following procedures for your operating system:

� A USE method checklist for CPU resources. Include how to fetch each met-
ric (e.g., which command to execute) and how to interpret the result. Try to
use existing OS observability tools before installing or using additional soft-
ware products.

� A workload characterization checklist for CPU resources. Include how to
fetch each metric, and try to use existing OS observability tools first.

5. Perform these tasks:

� Calculate the load average for the following system, whose load is at steady
state:

– The system has 64 CPUs.

– The system-wide CPU utilization is 50%.

– The system-wide CPU saturation, measured as the total number of run-
nable and queued threads on average, is 2.0.

� Choose an application, and profile its user-level CPU usage. Show which
code paths are consuming the most CPU.

� Describe CPU behavior visible from this Solaris-based screen shot alone:

prstat -mLc 10
 PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/LWPID
 11076 mysql 4.3 0.7 0.0 0.0 0.0 58 31 5.7 790 48 12K 0 mysqld/15620
 11076 mysql 3.5 1.0 0.0 0.0 0.0 42 46 7.6 1K 42 18K 0 mysqld/15189
 11076 mysql 3.0 0.9 0.0 0.0 0.0 34 53 8.9 1K 20 17K 0 mysqld/14454
 11076 mysql 3.1 0.6 0.0 0.0 0.0 55 36 5.7 729 27 11K 0 mysqld/15849
 11076 mysql 2.5 1.1 0.0 0.0 0.0 28 59 8.6 1K 35 19K 0 mysqld/16094
 11076 mysql 2.4 1.1 0.0 0.0 0.0 34 54 8.3 1K 45 20K 0 mysqld/16304

continues

262 Chapter 6 � CPUs

6. (optional, advanced) Develop bustop(1)—a tool that shows physical bus or
interconnect utilization—with a presentation similar to iostat(1): a list of
busses, columns for throughput in each direction, and utilization. Include satu-
ration and error metrics if possible. This will require using CPC.

6.10 References

[Saltzer 70] Saltzer, J., and J. Gintell. “The Instrumentation of Multics,”
Communications of the ACM, August 1970.

[Bobrow 72] Bobrow, D., et al. “TENEX: A Paged Time Sharing System for
the PDP-10*,” Communications of the ACM, March 1972.

[Myer 73] Myer, T. H., J. R. Barnaby, and W. W. Plummer. TENEX Exec-
utive Manual. Bolt, Baranek and Newman, Inc., April 1973.

[Hinnant 84] Hinnant, D. “Benchmarking UNIX Systems,” BYTE maga-
zine 9, no. 8 (August 1984).

[Bulpin 05] Bulpin, J., and I. Pratt. “Hyper-Threading Aware Process
Scheduling Heuristics,” USENIX, 2005.

[McDougall 06b] McDougall, R., J. Mauro, and B. Gregg. Solaris Performance
and Tools: DTrace and MDB Techniques for Solaris 10 and
OpenSolaris. Prentice Hall, 2006.

[Otto 06] Otto, E. Temperature-Aware Operating System Scheduling
(Thesis). University of Virginia, 2006.

[Ruggiero 08] Ruggiero, J. Measuring Cache and Memory Latency and CPU
to Memory Bandwidth. Intel (Whitepaper), 2008.

[Intel 09] An Introduction to the Intel QuickPath Interconnect. Intel,
2009.

 11076 mysql 2.5 0.8 0.0 0.0 0.0 56 32 8.8 1K 16 15K 0 mysqld/16181
 11076 mysql 2.3 1.1 0.0 0.0 0.0 8.5 79 9.0 1K 21 20K 0 mysqld/15856
 11076 mysql 2.3 1.0 0.0 0.0 0.0 12 76 9.2 1K 40 16K 0 mysqld/15411
 11076 mysql 2.2 1.0 0.0 0.0 0.0 29 57 11 1K 53 17K 0 mysqld/16277
 11076 mysql 2.2 0.8 0.0 0.0 0.0 36 54 7.1 993 27 15K 0 mysqld/16266
 11076 mysql 2.1 0.8 0.0 0.0 0.0 34 56 7.1 1K 19 16K 0 mysqld/16320
 11076 mysql 2.3 0.7 0.0 0.0 0.0 44 47 5.8 831 24 12K 0 mysqld/15971
 11076 mysql 2.1 0.7 0.0 0.0 0.0 54 37 5.3 862 22 13K 0 mysqld/15442
 11076 mysql 1.9 0.9 0.0 0.0 0.0 45 46 6.3 1K 23 16K 0 mysqld/16201
Total: 34 processes, 333 lwps, load averages: 32.68, 35.47, 36.12

6.10 References 263

[Intel 12] Intel 64 and IA-32 Architectures Software Developer’s Man-
ual, Combined Volumes 1, 2A, 2B, 2C, 3A, 3B, and 3C. Intel,
2012.

[Intel 13] Intel 64 and IA-32 Architectures Software Developer’s Man-
ual, Volume 3B, System Programming Guide, Part 2. Intel,
2013.

[RFC 546] TENEX Load Averages for July 1973, August 1973.
http://tools.ietf.org/html/rfc546.

[1] http://lwn.net/Articles/178253/

[2] www.bitmover.com/lmbench/

[3] http://minnie.tuhs.org/cgi-bin/utree.pl?file=V4

[4] https://perf.wiki.kernel.org/index.php/Tutorial

[5] www.eece.maine.edu/~vweaver/projects/perf_events

[6] http://valgrind.org/docs/manual/

../../../../../lwn.net/Articles/178253/default.htm
../../../../../www.bitmover.com/lmbench/default.htm
../../../../../minnie.tuhs.org/cgi-bin/utree.pl@file=V4
../../../../../https@perf.wiki.kernel.org/index.php/Tutorial
../../../../../www.eece.maine.edu/~vweaver/projects/perf_events
../../../../../valgrind.org/docs/manual/default.htm
../../../../../tools.ietf.org/html/rfc546

This page intentionally left blank

265

7
Memory

System main memory stores application and kernel instructions, their working
data, and file system caches. In many systems, the secondary storage for this data
is the primary storage devices—the disks—which operate orders of magnitude
more slowly. Once main memory has filled, the system may begin switching data
between main memory and the storage devices. This is a slow process that will
often become a system bottleneck, dramatically decreasing performance. The sys-
tem may also terminate the largest memory-consuming process.

Other performance factors to consider include the CPU expense of allocating
and freeing memory, copying memory, and managing memory address space map-
pings. On multisocket architectures, memory locality can become a factor, as mem-
ory attached to local sockets has lower access latency than remote sockets.

This chapter has five parts, the first three providing the basis for memory anal-
ysis, and the last two showing its practical application to Linux- and Solaris-based
systems. The parts are as follows:

� Background introduces memory-related terminology and key memory per-
formance concepts.

� Architecture provides generic descriptions of hardware and software mem-
ory architecture.

� Methodology explains performance analysis methodology.

� Analysis describes performance tools for memory analysis.

� Tuning explains tuning and example tunable parameters.

266 Chapter 7 � Memory

The on-CPU memory caches (Level 1/2/3, TLB) are covered in Chapter 6, CPUs.

7.1 Terminology

For reference, memory-related terminology used in this chapter includes the
following:

� Main memory: Also referred to as physical memory, this describes the fast
data storage area of a computer, commonly provided as DRAM.

� Virtual memory: an abstraction of main memory that is (almost) infinite
and noncontended. Virtual memory is not real memory.

� Resident memory: memory that currently resides in main memory.

� Anonymous memory: memory with no file system location or path name. It
includes the working data of a process address space, called the heap.

� Address space: a memory context. There are virtual address spaces for each
process, and for the kernel.

� Segment: an area of memory flagged for a particular purpose, such as for
storing executable or writeable pages.

� OOM: out of memory, when the kernel detects low available memory.

� Page: a unit of memory, as used by the OS and CPUs. Historically it is either
4 or 8 Kbytes. Modern processors have multiple page size support for larger
sizes.

� Page fault: an invalid memory access. These are normal occurrences when
using on-demand virtual memory.

� Paging: the transfer of pages between main memory and the storage devices.

� Swapping: From Unix, this is the transfer of entire processes between main
memory and the swap devices. Linux often uses swapping to refer to paging
to the swap device (the transfer of swap pages). In this book the original defi-
nition is used: swapping is for entire processes.

� Swap: an on-disk area for paged anonymous data and swapped processes. It
may be an area on a storage device, also called a physical swap device, or a
file system file, called a swap file. Some tools use the term swap to refer to
virtual memory (which is confusing and incorrect).

Other terms are introduced throughout this chapter. The Glossary includes basic
terminology for reference if needed, including address, buffer, and DRAM. Also see
the terminology sections in Chapters 2 and 3.

7.2 Concepts 267

7.2 Concepts

The following are a selection of important concepts regarding memory and mem-
ory performance.

7.2.1 Virtual Memory

Virtual memory is an abstraction that provides each process and the kernel with
its own large, linear, and private address space. It simplifies software develop-
ment, leaving physical memory placement for the operating system to manage. It
also supports multitasking, as virtual address spaces are separated by design, and
also oversubscription, since in-use memory can extend beyond main memory. Vir-
tual memory was introduced in Chapter 3, Operating Systems. For historical back-
ground, see [Denning 70].

Figure 7.1 shows the role of virtual memory for a process, on a system with a
swap device (secondary storage). A page of memory is shown, as most virtual mem-
ory implementations are page-based.

The process address space is mapped by the virtual memory subsystem to main
memory and the physical swap device. Pages of memory can be moved between
them by the kernel as needed, a process called paging. This allows the kernel to
oversubscribe main memory.

The kernel may impose a limit to oversubscription. On Solaris-based kernels, it
is the size of both main memory and the physical swap devices. The kernel will fail
allocations that try to exceed this limit. Such “out of virtual memory” errors can be
confusing at first, since virtual memory itself is an abstract resource.

Linux can be configured to support the same behavior, but it also allows other
behaviors, including placing no bounds on memory allocation. This is termed

Figure 7-1 Process virtual memory

268 Chapter 7 � Memory

overcommit and is described after the following sections on paging and demand
paging, which are necessary for overcommit to work.

7.2.2 Paging

Paging is the movement of pages in and out of main memory, which are referred to
as page-ins and page-outs respectively. It was first introduced by the Atlas Com-
puter in 1962 [Corbató 68], allowing

� Partially loaded programs to execute

� Programs larger than main memory to execute

� Efficient movement of programs between main memory and storage devices

These abilities are still true today. Unlike swapping out entire programs, pag-
ing is a fine-grained approach to managing and freeing main memory, since the
page size unit is relatively small (e.g., 4 Kbytes).

Paging with virtual memory (paged virtual memory) was introduced to Unix via
BSD [Babaoglu 79] and became the standard.

With the later addition of the page cache for sharing file system pages (see
Chapter 8, File Systems), two different types of paging became available: file sys-
tem paging and anonymous paging.

File System Paging

File system paging is caused by the reading and writing of pages in memory-
mapped files. This is normal behavior for applications that use file memory map-
pings (mmap()), and on file systems that use the page cache (most do; see Chapter 8,
File Systems). It has been referred to as “good” paging [McDougall 06b].

When needed, the kernel can free memory by paging some out. This is where
the terminology gets a bit tricky: if a file system page has been modified in main
memory (“dirty”), the page-out will require it to be written to disk. If, instead, the
file system page has not been modified (“clean”), the page-out merely frees the
memory for immediate reuse, since a copy already exists on disk. Because of this,
the term page-out means that a page was moved out of memory—this may or may
not have included a write to a storage device (you may see this defined differently).

Anonymous Paging

Anonymous paging involves data that is private to processes: the process heap and
stacks. It is termed anonymous because it has no named location in the operating
system (i.e., no file system path name). Anonymous page-outs require moving the

7.2 Concepts 269

data to the physical swap devices or swap files. Linux uses the term swapping to
refer to this type of paging.

Anonymous paging hurts performance and has therefore been referred to as
“bad” paging [McDougall 06b]. When applications access memory pages that have
been paged out, they block on the disk I/O required to read them back to main
memory. This is an anonymous page-in, which introduces synchronous latency to
the application. Anonymous page-outs may not affect application performance
directly, as they can be performed asynchronously by the kernel.

Performance is best when there is no anonymous paging (or swapping). This can
be achieved by configuring applications to remain within the main memory avail-
able and by monitoring page scanning, memory utilization, and anonymous pag-
ing, to ensure that there are no longer indicators of a memory shortage.

7.2.3 Demand Paging

Operating systems that support demand paging (most do) map pages of virtual
memory to physical memory on demand, as shown in Figure 7.2. This defers the
CPU overhead of creating the mappings until they are actually needed and
accessed, instead of at the time a range of memory is first allocated.

The sequence shown in Figure 7.2 begins with a write to a newly allocated page
of virtual memory, resulting in on-demand mapping to physical memory. A page
fault occurs as a page is accessed when there is initially no page mapping from vir-
tual to physical.

Figure 7-2 Page fault example

270 Chapter 7 � Memory

The first step could also be a read, in the case of a mapped file, which does con-
tain data but isn’t yet mapped to this process address space.

If the mapping can be satisfied from another page in memory, it is called a
minor fault. This may occur for mapping a new page from available memory, dur-
ing memory growth of the process (as pictured). It can also occur for mapping to
another existing page, such as reading a page from a mapped shared library.

Page faults that require storage device access (not shown in this figure), such as
accessing an uncached memory-mapped file, are called major faults.

The result of the virtual memory model and demand allocation is that any page
of virtual memory may be in one of the following states:

A. Unallocated

B. Allocated, but unmapped (unpopulated and not yet faulted)

C. Allocated, and mapped to main memory (RAM)

D. Allocated, and mapped to the physical swap device (disk)

State (D) is reached if the page is paged out due to system memory pressure. A
transition from (B) to (C) is a page fault. If it requires disk I/O, it is a major page
fault; otherwise, a minor page fault.

From these states, two memory usage terms can also be defined:

� Resident set size (RSS): the size of allocated main memory pages (C)

� Virtual memory size: the size of all allocated areas (B + C + D)

Demand paging was added to Unix via BSD, along with paged virtual memory.

7.2.4 Overcommit

Linux supports the notion of overcommit, which allows more memory to be allo-
cated than the system can possibly store—more than physical memory and swap
devices combined. It relies on demand paging and the tendency of applications to
not use much of the memory they have allocated.

With overcommit, application requests for memory (e.g., malloc()) will suc-
ceed when they would otherwise have failed. Instead of allocating memory conser-
vatively to remain within virtual memory limits, an application programmer can
allocate memory generously and later use it sparsely on demand.

On Linux, the behavior of overcommit can be configured with a tunable parame-
ter. See Section 7.6, Tuning, for details. The consequences of overcommit depend
on how the kernel manages memory pressure; see the discussion of the OOM killer
in Section 7.3, Architecture.

7.2 Concepts 271

7.2.5 Swapping

Swapping is the movement of entire processes between main memory and the
physical swap device or swap file. This is the original Unix technique for manag-
ing main memory and is the origin of the term swap [Thompson 78].

To swap out a process, all of its private data must be written to the swap device,
including thread structures and the process heap (anonymous data). Data that
originated from file systems and has not been modified can be dropped and read
from the original locations again when needed.

Processes that are swapped out are still known by the kernel, as a small amount
of process metadata is always resident in kernel memory. To swap a process back
in, the kernel takes into account thread priority, the time it was waiting on disk,
and the size of the process. Long-waiting and smaller processes are favored.

Swapping severely hurts performance, as a process that has been swapped out
requires numerous disk I/O to run again. It made more sense on early Unix for the
machines of the time, such as the PDP-11, which had a maximum process size of
64 Kbytes [Bach 86].

While Solaris-based systems can still swap, they do so only if paging cannot free
sufficient memory quickly enough for application demands (since paging is
bounded by the rate of page scanning; see Section 7.3, Architecture). Linux sys-
tems do not swap processes at all and rely only on paging.

When people say, “The system is swapping,” they usually mean it is paging. On
Linux, the term swapping refers to paging to the swap file or device (anonymous
paging).

7.2.6 File System Cache Usage

It is normal for memory usage to grow after system boot as the operating system
uses available memory to cache the file system, improving performance. The prin-
ciple is: If there is spare main memory, use it for something useful. This can dis-
tress naïve users who see the available free memory shrink to near zero sometime
after boot. But it does not pose a problem for applications, as the kernel should be
able to quickly free memory from the file system cache when applications need it.

For more about the various file system caches that can consume main memory,
see Chapter 8, File Systems.

7.2.7 Utilization and Saturation

Main memory utilization can be calculated as used memory versus total memory.
Memory used by the file system cache can be treated as unused, as it is available
for reuse by applications.

272 Chapter 7 � Memory

If demands for memory exceed the amount of main memory, main memory
becomes saturated. The operating system may then free memory by employing
paging, swapping, and, on Linux, the OOM killer (described later). Any of these
activities is an indicator of main memory saturation.

Virtual memory can also be studied in terms of capacity utilization, if the sys-
tem imposes a limit on the amount of virtual memory it is willing to allocate
(Linux overcommit will not). If so, once virtual memory is exhausted, the kernel
will fail allocations; for example, malloc() returns ENOMEM.

Note that the currently available virtual memory on a system is sometimes (con-
fusingly) called available swap.

7.2.8 Allocators

While virtual memory handles multitasking of physical memory, the actual alloca-
tion and placement within a virtual address space are often handled by allocators.
These are either user-land libraries or kernel-based routines, which provide the
software programmer with an easy interface for memory usage (e.g., malloc(),
free()).

Allocators can have a significant effect on performance, and a system may pro-
vide multiple user-level allocator libraries to pick from. They can improve perfor-
mance by use of techniques including per-thread object caching, but they can also
hurt performance if allocation becomes fragmented and wasteful. Specific exam-
ples are covered in Section 7.3, Architecture.

7.2.9 Word Size

As introduced in Chapter 6, CPUs, processors may support multiple word sizes,
such as 32-bit and 64-bit, allowing software for either to run. As the address space
size is bounded by the addressable range from the word size, applications requir-
ing more than 4 Gbytes (and usually a little less) are too large for a 32-bit address
space and need to be compiled for 64 bits or higher.

Memory performance may be improved by using larger bit widths depending on
the CPU architecture. A small amount of memory may be wasted, in cases where a
data type has unused bits at the larger bit width.

7.3 Architecture

This section introduces memory architecture, both hardware and software, includ-
ing processor and operating system specifics.

7.3 Architecture 273

These topics have been summarized as background for performance analysis
and tuning. For more details, see the vendor processor manuals and texts on oper-
ating system internals listed at the end of this chapter.

7.3.1 Hardware

Memory hardware includes main memory, busses, CPU caches, and the MMU.

Main Memory

The common type of main memory in use today is dynamic random-access memory
(DRAM). This is a type of volatile memory—its contents are lost when power is
lost. DRAM provides high-density storage, as each bit is implemented using only
two logical components: a capacitor and a transistor. The capacitor requires a peri-
odic refresh to maintain charge.

Enterprise servers are configured with different amounts of DRAM depending
on their purpose, typically ranging from 1 Gbyte to 1 Tbyte and larger. These can
dwarf the memory of cloud computing instances, which are typically between 512
Mbytes and 64 Gbytes each. However, cloud computing is designed to spread load
over a pool of instances, so they can collectively bring much more DRAM online for
a distributed application, although at a much higher coherency cost.

Latency

The access time of main memory can be measured as the column address strobe
(CAS) latency: the time between sending a memory module the desired address
(column) and when the data is available to be read. This varies depending on the
type of memory (for DDR3 it is around 10 ns). For memory I/O transfers, this
latency may occur multiple times for a memory bus (e.g., 64 bits wide) to transfer a
cache line (e.g., at 64 bytes wide). There are also other latencies involved with the
CPU and MMU for then reading the newly available data.

Main Memory Architecture

An example main memory architecture for a generic two-processor uniform mem-
ory access (UMA) system is shown in Figure 7.3.

Each CPU has uniform access latency to all of memory, via a shared system bus.
When managed by a single operating system kernel instance that runs uniformly
across all processors, this is also a symmetric multiprocessing (SMP) architecture.

For comparison, an example two-processor non-uniform memory access (NUMA)
system is shown in Figure 7.4, which uses a CPU interconnect that becomes part
of the memory architecture. For this architecture, the access time for main mem-
ory varies based on its location relative to the CPU.

274 Chapter 7 � Memory

CPU 1 can perform I/O to DRAM A directly, via its memory bus. This is referred
to as local memory. CPU 1 performs I/O to DRAM B via CPU 2 and the CPU inter-
connect (two hops). This is referred to as remote memory and has a higher access
latency.

The banks of memory connected to each CPU are referred to as memory nodes,
or just nodes. The operating system may be aware of the memory node topology
based on information provided by the processor. This then allows it to assign mem-
ory and schedule threads based on memory locality, favoring local memory as much
as possible to improve performance.

Busses

How main memory is physically connected to the system depends on the main
memory architecture, as previously pictured. The actual implementation may
involve additional controllers and busses between the CPUs and memory and be
accessed in one of the following ways:

� Shared system bus: single or multiprocessor, via a shared system bus, a
memory bridge controller, and finally a memory bus. This was pictured as the
UMA example, Figure 7.3, and as the Intel front-side bus example, Figure 6.9
in Chapter 6, CPUs. The memory controller in that example was a Northbridge.

Figure 7-3 Example UMA main memory architecture, two-processor

Figure 7-4 Example NUMA main memory architecture, two-processor

7.3 Architecture 275

� Direct: single processor with directly attached memory via a memory bus.

� Interconnect: multiprocessor, each with directly attached memory via a
memory bus, and processors connected via a CPU interconnect. This was pic-
tured earlier as the NUMA example in Figure 7.4; CPU interconnects are dis-
cussed in Chapter 6, CPUs.

If you suspect your system is none of the above, find a system functional diagram
and follow the data path between CPUs and memory, noting all components along
the way.

DDR SDRAM

The speed of the memory bus, for any architecture, is often dictated by the mem-
ory interface standard supported by the processor and system board. A common
standard in use since 1996 is double data rate synchronous dynamic random-
access memory (DDR SDRAM). The term double data rate refers to the transfer of
data on both the rise and fall of the clock signal (also called double-pumped). The
term synchronous refers to the memory being clocked synchronously with the
CPUs.

Example DDR SDRAM standards are shown in Table 7.1.

The DDR4 interface standard was released in September 2012. These are also
named using “PC-” followed by the data transfer rate in megabytes per second, for
example, PC-1600.

Multichannel

System architectures may support the use of multiple memory busses in parallel,
to improve bandwidth. Common multiples are dual-, triple-, and quad-channel. For

Table 7-1 Example DDR Bandwidths

Standard Memory Clock (MHz) Data Rate (MT/s) Peak Bandwidth (MB/s)

DDR-200 100 200 1,600

DDR-333 167 333 2,667

DDR2-667 167 667 5,333

DDR2-800 200 800 6,400

DDR3-1333 167 1,333 10,667

DDR3-1600 200 1,600 12,800

DDR4-3200 200 3,200 25,600

276 Chapter 7 � Memory

example, the Intel Core i7 processors support up to quad-channel DDR3-1600, for
a maximum memory bandwidth of 51.2 Gbytes/s.

CPU Caches

Processors typically include on-chip hardware caches to improve memory access
performance. The caches may include the following levels, of decreasing speed and
increasing size:

� Level 1: usually split into a separate instruction cache and data cache

� Level 2: a cache for both instructions and data

� Level 3: another larger level of cache

Level 1 is typically referenced by virtual memory addresses, and Level 2 onward
by physical memory addresses, depending on the processor.

These caches were discussed further in Chapter 6, CPUs. An additional type of
hardware cache, the TLB, is discussed in this chapter.

MMU

The memory management unit is responsible for virtual-to-physical address trans-
lations. These are performed per page, and offsets within a page are mapped
directly. The MMU was introduced in Chapter 6, CPUs, in the context of nearby
CPU caches.

A generic MMU is pictured in Figure 7.5, with levels of CPU caches and main
memory.

Figure 7-5 Memory management unit

7.3 Architecture 277

Multiple Page Sizes

Modern processors support multiple page sizes, which allow different page sizes to
be used by the operating system and the MMU, for example, 4 Kbytes, 2 Mbytes,
1 Gbyte. Solaris-based kernels support multiple page sizes and the dynamic cre-
ation of larger sizes, calling this feature multiple page size support (MPSS).

Linux has a feature called huge pages, which sets aside a portion of physical
memory for use with a particular large page size, such as 2 Mbytes. The early res-
ervation of huge pages is less flexible than the Solaris-based approach of dynamic
allocation; however, it also avoids a problem of memory fragmentation preventing
larger pages being dynamically allocated.

TLB

The MMU pictured in Figure 7.5 uses a TLB as the first level of address transla-
tion cache, followed by the page tables in main memory. The TLB may be divided
into separate caches for instruction and data pages.

Since the TLB has a limited number of entries for mappings, the use of larger
page sizes increases the range of memory that can be translated from its cache (its
reach), which reduces TLB misses and improves system performance. The TLB
may be further divided into separate caches for each of these page sizes, improv-
ing the probability of retaining larger mappings in cache.

As an example of TLB sizes, a typical Intel Core i7 processor provides the four
TLBs shown in Table 7.2 [Intel 12].

This processor has one level of data TLB. The Intel Core microarchitecture sup-
ports two levels, in the same way that CPUs provide multiple levels of main mem-
ory cache.

The exact makeup of the TLB is specific to the processor type. Refer to the ven-
dor processor manuals for details on the TLBs in your processor and further infor-
mation on their operation.

Table 7-2 TLBs for a Typical Intel Core i7 Processor

Type Page Size Entries

Instruction 4 K 64 per thread, 128 per core

Instruction large 7 per thread

Data 4 K 64

Data large 32

278 Chapter 7 � Memory

7.3.2 Software

Software for memory management includes the virtual memory system, address
translation, swapping, paging, and allocation. The topics most related to perfor-
mance are included in this section: freeing memory, free list, page scanning, swap-
ping, the process address space, and memory allocators.

Freeing Memory

When the available memory on the system becomes low, there are various meth-
ods that the kernel can use to free up memory, adding it to the free list of pages.
These methods are pictured in Figure 7.6, in the general order in which they are
used as available memory decreases.

These methods include

� Free list: a list of pages that are unused (also called idle memory) and avail-
able for immediate allocation. This is usually implemented as multiple free
page lists, one for each locality group (NUMA).

� Reaping: When a low-memory threshold is crossed, kernel modules and the
kernel slab allocator can be instructed to immediately free any memory that
can easily be freed. This is also known as shrinking.

Figure 7-6 Freeing memory

7.3 Architecture 279

On Linux, specifically, the methods are

� Page cache: the file system cache. A tunable parameter called swappiness
sets the degree to which to favor freeing memory from the page cache as
opposed to swapping.

� Swapping: This is paging by the page-out daemon, kswapd, which finds not-
recently-used pages to add to the free list, including application memory.
They are paged out, which may involve writing to either a file-system-based
swap file or a swap device. This is available only if a swap file or device has
been configured.

� OOM killer: The out-of-memory killer will free memory by finding and kill-
ing a sacrificial process, found using select_bad_process() and then
killed by calling oom_kill_process(). This may be logged in the system log
(/var/log/messages) as an “Out of memory: Kill process” message.

On Solaris-based systems, specifically, the methods are

� Cyclic page cache: This contains a list of valid but currently unreferenced
file system pages, called the cachelist, which can be added to the free list as
needed. This avoids the overhead of page scanning.

� ZFS ARC: The ZFS file system will detect that the system may begin page
scanning soon and will perform its own reaping to free up memory using
arc_kmem_reap_now().

� Paging: Performed by the page-out daemon (also called the page scanner),
this finds not-recently-used pages to add to the free list, including applica-
tion memory. They are paged out, which may involve writing to either the file
system or the swap device.

� Swapping: Still present on Solaris-based systems, this moves entire pro-
cesses to the swap device and is the original Unix method for handling main
memory pressure.

� Hard swapping: unloads kernel modules that are not active and sequen-
tially swaps out processes to the swap device.

Comparisons between the systems are interesting. On Solaris-based systems,
the file system cache should be empty by the time paging occurs. Linux provides a
way to balance this behavior: swappiness, a parameter between 0 and 100 (the
default value is 60), where higher values favor freeing memory by paging applica-
tions, and lower values by reclaiming it from the page cache (similar to the behav-
ior of Solaris-based systems). This allows system throughput to be improved, by
preserving warm file system cache while paging out cold application memory [1].

280 Chapter 7 � Memory

It is also interesting to ask what happens if no swap device or swap file is con-
figured on either system. This limits virtual memory size, so unless overcommit is
in use, memory allocations will fail sooner. On Linux, this may also mean that the
OOM killer is used sooner.

Consider an application issue with endless memory growth. With swap, this is
likely to first become a performance issue due to paging, which is an opportunity to
debug the issue live. Without swap, there is no paging grace period, so either the
application hits an “Out of memory” error, or the OOM killer terminates it. This
may delay debugging the issue if it is seen only after hours of usage.

The sections that follow describe the free list, reaping, and the page-out dae-
mon in more detail, for Linux- and Solaris-based operating systems.

Free List(s)

The original Unix memory allocator used a memory map and a first-fit scan. With
the introduction of paged virtual memory in BSD, a free list and a page-out dae-
mon were added [Babaoglu 79]. The free list, pictured in Figure 7.7, allows avail-
able memory to be located immediately.

Memory freed is added to the head of the list, for future allocations. Memory
that is freed by the page-out daemon—and that may still contain useful cached file
system pages—is added to the tail. Should a future request for one of these pages
occur before the useful page has been reused, it can be reclaimed and removed
from the free list.

A form of free list is still in use by Linux- and Solaris-based systems, as pic-
tured in Figure 7.6. Free lists are typically consumed via allocators, such as the
slab allocator for the kernel, and libc malloc for user-space. These in turn consume
pages and then expose them via their allocator API.

Having a single free list is also a simplification; how this is implemented
depends on the kernel type and version.

Figure 7-7 Free list operations

7.3 Architecture 281

Linux

Linux uses the buddy allocator for managing pages. This provides multiple free
lists for different-size memory allocations, following a power-of-two scheme. The
term buddy refers to finding neighboring pages of free memory so that they can be
allocated together. For historical background, see [Peterson 77].

The buddy free lists are at the bottom of the following hierarchy, beginning with
the per-memory node pg_data_t:

� Nodes: banks of memory, NUMA-aware

� Zones: ranges of memory for certain purposes (direct memory access (DMA),
normal, highmem)

� Migration types: unmovable, reclaimable, movable, . . .

� Sizes: power-of-two number of pages

Allocating within the node free lists improves memory locality and performance.

Solaris

Solaris-based systems use multiple free lists for different memory locations
(mnodes), page sizes, and page coloring. These also behave in a buddylike way,
grouping pages into larger page sizes. The lists are declared in vm_dep.h:

Page coloring is the mapping between virtual and physical page addresses,
which may be hashed, round-robin, or use some other scheme. This is another
strategy to improve access performance.

Reaping

Reaping mostly involves freeing memory from the kernel slab allocator caches.
These caches contain unused memory in slab-size chunks, ready for reuse. Reap-
ing returns this memory to the system for page allocations.

On Linux, kernel modules can also call register_shrinker() to register spe-
cific functions for reaping their own memory.

/*
 * Per page size free lists. Allocated dynamically.
 * dimensions [mtype][mmu_page_sizes][colors]
 *
 * mtype specifies a physical memory range with a unique mnode.
 */

extern page_t ****page_freelists;

282 Chapter 7 � Memory

On Solaris-based systems, reaping is largely driven from the slab allocator with
kmem_reap().

Page Scanning

Freeing memory by paging is managed by the kernel page-out daemon. When
available main memory in the free list drops below a threshold, the page-out dae-
mon begins page scanning.

Page scanning occurs only when needed. A normally balanced system may not
page scan very often and may do so only in short bursts. Solaris-based systems use
other mechanisms to free memory before page scanning, as shown earlier, and
page scanning for more than several seconds is typically a sign of a memory pres-
sure issue.

Linux

The page-out daemon is called kswapd(), which scans LRU page lists of inactive
and active memory to free pages. It is woken up based on free memory and two
thresholds to provide hysteresis, as shown in Figure 7.8.

Once free memory has reached the lowest threshold, kswapd operates in syn-
chronous mode, freeing pages of memory as they are requested (the kernel is
exempt from this requirement) [Gorman 04]. This lowest threshold is tunable
(vm.min_free_kbytes), and the others are scaled based on it (by 2x, 3x).

The page cache has separate lists for inactive pages and active pages. These
operate in an LRU fashion, allowing kswapd to find free pages quickly. They are
shown in Figure 7.9.

Figure 7-8 kswapd wake-ups and modes

7.3 Architecture 283

kswapd scans the inactive list first, and then the active if needed. The term
scanning refers to checking pages as the list is walked: a page may be ineligible to
be freed if it is locked or dirty. This term has a different meaning with the original
page-out daemon, which scans all of memory and still exists in Solaris-based
systems.

Solaris

Page scanning walks all pages of memory in a continual loop, finding least-recently-
used pages and then scheduling them to be moved to the physical swap device. This
was originally added in BSD with paged virtual memory [Babaoglu 79] and was
later enhanced to include two pointers to scan memory instead of one, as pictured in
Figure 7.10 (this clocklike representation dates back to Multics [Corbató 68]).

Figure 7-9 kswapd lists

Figure 7-10 Two-handed page scanner

284 Chapter 7 � Memory

The first hand sets a bit on each page, indicating that it hasn’t been accessed.
When pages are accessed, this bit is cleared. The second hand checks if the bit is
still set. If it is, the page scanner knows it is not recently used and can be paged
out. The distance between the hands is tunable (handspreadpages).

The rate at which pages are scanned is dynamic, based on the available free
memory. This is pictured in Figure 7.11 for an example 128 Gbyte system, along
with the tunable names (based on [McDougall 06a]).

When available memory drops below desfree, and then minfree, the page-out
daemon is woken up more frequently to scan pages. If available memory drops
below desfree for 30 s, the kernel also begins swapping.

These tunables are initialized in the setupclock() function, which sets them
based on ratios of main memory. For example, lotsfree is set to 1/64. The deficit
parameter is dynamic and will grow when memory consumption is rapid, so that
the kernel grows the free list sooner.

Page scanning became expensive for larger systems, which led to the addition of
the cyclic page cache so that pages could be found quickly. This is similar to how
the Linux page-out daemon finds pages.

7.3.3 Process Address Space

Managed by both hardware and software, the process virtual address space is a
range of virtual pages that are mapped to physical pages as needed. The addresses

Figure 7-11 Page scan rate

7.3 Architecture 285

are split into areas called segments for storing the thread stacks, process execut-
able, libraries, and heap. Examples for 32-bit processes are shown in Figure 7.12,
for both x86 and SPARC processors.

The program executable segment contains separate text and data segments.
Libraries are also composed of separate executable text and data segments. These
different segment types are

� Executable text: contains the executable CPU instructions for the process.
This is mapped from the text segment of the binary program on the file sys-
tem. It is read-only with the execute permission.

� Executable data: contains initialized variables mapped from the data seg-
ment of the binary program. This has read/write permissions, so that the
variables can be modified while the program is running. It also has a private
flag, so that modifications are not flushed to disk.

� Heap: This is the working memory for the program and is anonymous mem-
ory (no file system location). It grows as needed and is allocated via malloc().

� Stack: stacks of the running threads, mapped read/write.

The library text segments may be shared by other processes that use the same
library, each of which has a private copy of the library data segment.

Figure 7-12 Example process virtual memory address space

286 Chapter 7 � Memory

Heap Growth

A common source of confusion is the endless growth of heap. Is it a memory leak?
For most allocators, a does not return memory to the operating system;
rather, it keeps it ready to serve future allocations. This means the process resi-
dent memory will only ever grow, which is normal. Methods for processes to reduce
memory include

� Re-exec: calling to begin from an empty address space

� Memory mapping: using and , which will return mem-
ory to the system

Some allocators support mmap as a mode of operation. See Section 8.3.10,
Memory-Mapped Files, in Chapter 8, File Systems.

7.3.4 Allocators

There are a variety of user- and kernel-level allocators for memory allocation. Fig-
ure 7.13 shows the role of allocators, including some common types.

Page management was described earlier in Section 7.3.2 under Free List(s).
Memory allocator features can include

� Simple API: for example, , .

� Efficient memory usage: When servicing memory allocations of a variety of
sizes, memory usage can become fragmented, where there are many unused

Figure 7-13 User- and kernel-level memory allocators

free()

exec()

mmap() munmap()

malloc() free()

7.3 Architecture 287

regions that waste memory. Allocators can strive to coalesce the unused
regions, so that larger allocations can make use of them, improving efficiency.

� Performance: Memory allocations can be frequent, and on multithreaded
environments they can perform poorly due to contention for synchronization
primitives. Allocators can be designed to use locks sparingly and also make
use of per-thread or per-CPU caches to improve memory locality.

� Observability: An allocator may provide statistics and debug modes to show
how it is being used, and which code paths are responsible for allocations.

The sections that follow describe kernel-level allocators—slab and SLUB—and
user-level allocators—libmalloc, libumem, and mtmalloc.

Slab

The kernel slab allocator manages caches of objects of a specific size, allowing
them to be recycled quickly without the overhead of page allocation. This is espe-
cially effective for kernel allocations, which are frequently for fixed-size structs.

As an example from the kernel, the following two lines are from ZFS arc.c:

The first, kmem_alloc(), shows a traditional-style kernel allocation whose size
is passed as an argument. The kernel maps this to a slab cache (or an oversize
arena) based on that size. The second, kmem_cache_alloc(), operates directly on
a custom slab allocator cache, in this case (kmem_cache_t *)hdr_cache.

Developed for Solaris 2.4 [Bonwick 94], it was later enhanced with per-CPU
caches called magazines [Bonwick 01]:

Our basic approach is to give each CPU an M-element cache of objects called a maga-
zine, by analogy with automatic weapons. Each CPU’s magazine can satisfy M alloca-
tions before the CPU needs to reload—that is, exchange its empty magazine for a full
one.

Apart from high performance, Solaris provides various debug and analysis facil-
ities for the slab allocator. These including auditing, where allocation details can
be traced, including stack.

The slab allocator was introduced to Linux in version 2.2, where it was the
default option for many years. Recent kernel versions provide SLUB as an option
or as the default.

 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);

 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);

288 Chapter 7 � Memory

SLUB

The Linux kernel SLUB allocator is based on the slab allocator and is designed to
address various concerns, especially regarding the complexity of the slab allocator.
These include the removal of object queues, and also per-CPU caches—leaving
NUMA optimization to the page allocator (see the earlier Free List(s) section).

The SLUB allocator was made the default option in Linux 2.6.23 [2].

libc

The Solaris user-level allocator provided by libc is simple and general-purpose.
While typically the default allocator (depending on compiler configuration), the
man page recommends against its usage (malloc(3C)):

These default memory allocation routines are safe for use in multithreaded applica-
tions but are not scalable. Concurrent accesses by multiple threads are single-
threaded through the use of a single lock. Multithreaded applications that make
heavy use of dynamic memory allocation should be linked with allocation libraries
designed for concurrent access, such as libumem(3LIB) or libmtmalloc(3LIB).

Apart from performance issues, the allocator is heap-based and subject to fragmen-
tation over time.

glibc

The GNU libc allocator is based on dlmalloc by Doug Lea. The behavior depends on
the allocation request size. Small allocations are served from bins of memory, con-
taining units of a similar size, which can be coalesced using a buddylike algorithm.
Larger allocations can use a tree lookup to find space efficiently. And very large allo-
cations switch to using mmap(). The net result is a high-performing allocator that
uses the benefits from multiple allocation policies.

libumem

On Solaris-based systems, libumem is a user-space version of the slab allocator. It
can be used by linking or preloading the library and provides improved perfor-
mance for multithreaded applications.

libumem was designed from the onset to be scalable, along with debugging and
analysis capabilities that cost the minimum overhead in both time and space.
Other memory analysis tools slow the target when operating in analysis mode—
sometimes to the point where the problems no longer occur, and often to a degree
that makes them unsuitable for production use.

7.4 Methodology 289

mtmalloc

This is another high-performance multithreaded user-level allocator for Solaris-
based systems. It uses a per-thread cache for small allocations and a single over-
size area for large allocations. The per-thread caches avoid lock contention issues
with the traditional allocator.

7.4 Methodology

This section describes various methodologies and exercises for memory analysis
and tuning. The topics are summarized in Table 7.3.

See Chapter 2, Methodology, for more strategies and an introduction to many of
these.

These methods may be followed individually or used in combination. My sugges-
tion is to use the following strategies to start with, in this order: performance mon-
itoring, the USE method, and characterizing usage.

Section 7.5, Analysis, shows operating system tools for applying these methods.

7.4.1 Tools Method

The tools method is a process of iterating over available tools, examining key met-
rics they provide. While a simple methodology, it can overlook issues for which the
tools provide poor or no visibility and can be time-consuming to perform.

Table 7-3 Memory Performance Methodologies

Methodology Types

Tools method observational analysis

USE method observational analysis

Characterizing usage observational analysis, capacity planning

Cycle analysis observational analysis

Performance monitoring observational analysis, capacity planning

Leak detection observational analysis

Static performance tuning observational analysis, capacity planning

Resource controls tuning

Micro-benchmarking experimental analysis

290 Chapter 7 � Memory

For memory, the tools method can involve checking the following:

� Page scanning: Look for continual page scanning (more than 10 s) as a sign of
memory pressure. On Linux, this can be done using sar -B and checking the
pgscan columns. On Solaris, you can use vmstat(1M) and check the sr column.

� Paging: The paging of memory is a further indication that the system is low
on memory. On Linux, you can use vmstat(8) and check the si and so col-
umns (here, the term swapping means anonymous paging). On Solaris,
vmstat -p shows paging by type; check for anonymous paging.

� vmstat: Run vmstat per second and check the free column for available
memory.

� OOM killer: On Linux only, these events can be seen in the system log /var/
log/messages, or from dmesg(1). Search for “Out of memory.”

� Swapping: On Solaris only, this is usually noticed after the fact, by running
vmstat and checking the w column, which indicates swapped-out threads. To
see swapping live, use vmstat -S and check si and so.

� top/prstat: See which processes and users are the top physical memory
consumers (resident) and virtual memory consumers (see the man page for
the names of the columns, which differ depending on version). These tools
also summarize free memory.

� dtrace/stap/perf: Trace memory allocations with stack traces, to iden-
tify the cause of memory usage.

If an issue is found, examine all fields from the available tools to learn more con-
text. See Section 7.5, Analysis, for more about each tool. Other methodologies may
identify more types of issues.

7.4.2 USE Method

The USE method is for identifying bottlenecks and errors across all components,
early in a performance investigation, before deeper and more time-consuming
strategies are followed.

Check system-wide for

� Utilization: how much memory is in use, and how much is available. Both
physical memory and virtual memory should be checked.

� Saturation: the degree of page scanning, paging, swapping, and Linux OOM
killer sacrifices performed, as measures to relieve memory pressure.

� Errors: failed memory allocations.

7.4 Methodology 291

Saturation may be checked first, as continual saturation is a sign of a memory
issue. These metrics are usually readily available from operating system tools,
including vmstat(1), sar(1), and dmesg(1), for OOM killer sacrifices. For sys-
tems configured with a separate disk swap device, any activity to the swap device
is also a sign of memory pressure.

Utilization is typically harder to read and interpret. You know when you are out
of physical memory by the saturation metrics: the system begins paging or pro-
cesses are sacrificed (OOM). To determine physical utilization, you need to know
how much memory is available (free). Different tools may report this differently,
depending on whether they account for unreferenced file system cache pages or
inactive pages. A system may report that it has only 10 Mbytes of available mem-
ory when it actually has 10 Gbytes of file system cache that can be reclaimed by
applications immediately when needed. Check the tool documentation to see what
is included.

Virtual memory utilization may also need to be checked, depending on whether
the system performs overcommit. For those systems that do not, memory alloca-
tions will fail once virtual memory is exhausted—a type of memory error.

Historically, memory errors have been left for the applications to report,
although not all applications do (and, with Linux overcommit, developers may not
have felt it necessary to do so). A system error counter was recently added to
SmartOS to report on per-zone failed brk() calls, as a type of memory-related
error counter.

For environments that implement memory limits or quotas (resource controls),
as occurs in some cloud computing environments, memory saturation may need to
be measured differently. For example, OS virtualization on Solaris-based systems
uses a different mechanism for enforcing memory quotas for each guest instance,
which is reported differently to the page-out scanner (see Chapter 11, Cloud Com-
puting). Your OS instance may be at its memory limit and paging, even though the
system is not scanning using the traditional page-out scanner.

7.4.3 Characterizing Usage

Characterizing memory usage is an important exercise when capacity planning,
benchmarking, and simulating workloads. It can also lead to some of the largest
performance gains by identifying misconfigurations. For example, a database cache
may be configured too small and have low hit rates, or too large and cause system
paging.

For memory, this involves identifying where and how much memory is used:

� System-wide physical and virtual memory utilization

� Degree of saturation: paging, swapping, OOM killing

292 Chapter 7 � Memory

� Kernel and file system cache memory usage

� Per-process physical and virtual memory usage

� Usage of memory resource controls, if present

Here is an example description to show how these attributes can be expressed
together:

The system has 256 Gbytes of main memory, which is only at 1% utilization, with 30%
in a file system cache. The largest process is a database, consuming 2 Gbytes of main
memory (RSS), which is its configured limit from the previous system it was migrated
from.

These characteristics can vary over time as more memory is used to cache working
data. Kernel or application memory may also grow continually over time due to a
memory leak—a software error—aside from regular cache growth.

Advanced Usage Analysis/Checklist

Additional details may be included to understand usage in more detail. These are
listed here as questions for consideration, which may also serve as a checklist
when studying memory issues thoroughly:

� Where is the kernel memory used? Per slab?

� How much of the file system cache (or page cache) is active as opposed to
inactive?

� Where is the process memory used?

� Why are processes allocating memory (call paths)?

� Why is the kernel allocating memory (call paths)?

� What processes are actively being paged/swapped out?

� What processes have previously been paged/swapped out?

� May processes or the kernel have memory leaks?

� In a NUMA system, how well is memory distributed across memory nodes?

� What are the CPI and memory stall cycle rates?

� How balanced are the memory busses?

� How much local memory I/O is performed as opposed to remote memory I/O?

The sections that follow can help answer some of these questions. See Chapter 2,
Methodology, for a higher-level summary of this methodology and the characteris-
tics to measure (who, why, what, how).

7.4 Methodology 293

7.4.4 Cycle Analysis

Memory bus load can be determined by inspecting the CPU performance counters
(CPCs), which can be programmed to count memory stall cycles. They can also be used
to measure cycles per instruction (CPI), as a measure of how memory-dependent the
CPU load is. See Chapter 6, CPUs.

7.4.5 Performance Monitoring

Performance monitoring can identify active issues and patterns of behavior over
time. Key metrics for memory are

� Utilization: percent used, which may be inferred from available memory

� Saturation: paging, swapping, OOM killing

For environments that implement memory limits or quotas (resource controls), sta-
tistics related to the imposed limits may also need to be collected.

Errors can also be monitored (if available), which are described with utilization
and saturation in Section 7.4.2, USE Method.

Monitoring memory usage over time, especially by process, can help identify the
presence and rate of memory leaks.

7.4.6 Leak Detection

This problem occurs when an application or kernel module grows endlessly, con-
suming memory from the free lists, from the file system cache, and eventually from
other processes. This may be first noticed because the system is now paging, in
response to the endless memory pressure.

This type of issue is caused by either

� A memory leak: a type of software bug where memory is forgotten but never
freed. This is fixed by modifying the software code, or by applying patches or
upgrades (which modify the code).

� Memory growth: The software is consuming memory normally, but at a
much higher rate than is desirable for the system. This is fixed either by
changing the software configuration, or by the software developer changing
how the application consumes memory.

Memory growth issues are often misidentified as memory leaks. The first ques-
tion to ask is: Is it supposed to do that? Check the configuration.

294 Chapter 7 � Memory

How memory leaks can be analyzed depends on the software and language type.
Some allocators provide debug modes for recording allocation details, which can
then be analyzed postmortem for identifying the call path responsible. There are
also tools the developer can use for memory leak investigations.

7.4.7 Static Performance Tuning

Static performance tuning focuses on issues of the configured environment. For
memory performance, examine the following aspects of the static configuration:

� How much main memory is there in total?

� How much memory are applications configured to use (their own config)?

� Which memory allocators do the applications use?

� What is the speed of main memory? Is it the fastest type available?

� What is the system architecture? NUMA, UMA?

� Is the operating system NUMA-aware?

� How many memory busses are present?

� What are the number and size of the CPU caches? TLB?

� Are large pages configured and used?

� Is overcommit available and configured?

� What other system memory tunables are in use?

� Are there software-imposed memory limits (resource controls)?

Answering these questions may reveal configuration choices that have been
overlooked.

7.4.8 Resource Controls

The operating system may provide fine-grained controls for the allocation of mem-
ory to processes or groups of processes. These controls may include fixed limits for
main memory and virtual memory usage. How they work is implementation-
specific and is discussed in Section 7.6, Tuning.

7.4.9 Micro-Benchmarking

Micro-benchmarking may be used to determine the speed of main memory and
characteristics such as CPU cache and cache line sizes. It may be helpful when

7.5 Analysis 295

analyzing differences between systems, as the speed of memory access may have a
greater effect on performance than CPU clock speed, depending on the application
and workload.

In Chapter 6, CPUs, the Latency section under CPU Caches (in Section 6.4.1)
shows the result of micro-benchmarking memory access latency to determine char-
acteristics of the CPU caches.

7.5 Analysis

This section introduces memory analysis tools for Linux- and Solaris-based operat-
ing systems. See the previous section for strategies to follow when using them.

The tools in this section are shown in Table 7.4.

This is a selection of tools and capabilities to support Section 7.4, Methodology,
beginning with system-wide memory usage statistics, then drilling down to per-
process and allocation tracing. See the tool documentation, including man pages,
for full references for their features. Also see Chapter 8, File Systems, for more
tools for investigating file system memory usage.

While your interest may be in Linux- or Solaris-based systems only, consider the
other operating system tools and the observability that they provide for a different
perspective.

7.5.1 vmstat

The virtual memory statistics command, vmstat, provides a high-level view of sys-
tem memory health, including current free memory and paging statistics. CPU sta-
tistics are also included, as described in Chapter 6, CPUs.

Table 7-4 Memory Analysis Tools

Linux Solaris Description

vmstat vmstat virtual and physical memory statistics

sar sar historical statistics

slabtop ::kmastat kernel slab allocator statistics

ps ps process status

top prstat monitor per-process memory usage

pmap pmap process address space statistics

DTrace DTrace allocation tracing

296 Chapter 7 � Memory

It was introduced by Bill Joy and Ozalp Babaoglu in 1979 for BSD. The original
man page included

BUGS: So many numbers print out that it’s sometimes hard to figure out what to watch.

Many of the columns remain largely unchanged since the first version, especially
for Solaris. The sections that follow show the columns and options for the Linux
and Solaris-based versions.

Linux

Here is example output:

This version of vmstat(8) does not print summary-since-boot values for the
memory columns on the first line of output, showing current status immediately.
The columns are in kilobytes by default and are

� swpd: amount of swapped-out memory

� free: free available memory

� buff: memory in the buffer cache

� cache: memory in the page cache

� si: memory swapped in (paging)

� so: memory swapped out (paging)

The buffer and page caches are described in Chapter 8, File Systems. It is nor-
mal for the free memory in the system to drop after boot and be used by these
caches to improve performance. It can be released for application use when needed.

If the si and so columns are continually nonzero, the system is under memory
pressure and is paging to a swap device or file (see swapon(8)). Other tools, includ-
ing memory by process, can be used to investigate what is consuming memory.

On systems with large amounts of memory, the columns can become unaligned
and a little difficult to read. You can try changing the output units to megabytes
using the -S option:

$ vmstat 1
procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu----
 r b swpd free buff cache si so bi bo in cs us sy id wa
 4 0 0 34454064 111516 13438596 0 0 0 5 2 0 0 0 100 0
 4 0 0 34455208 111516 13438596 0 0 0 0 2262 15303 16 12 73 0
 5 0 0 34455588 111516 13438596 0 0 0 0 1961 15221 15 11 74 0
 4 0 0 34456300 111516 13438596 0 0 0 0 2343 15294 15 11 73 0
[...]

7.5 Analysis 297

There is also a -a option for printing a breakdown of inactive and active mem-
ory from the page cache:

These memory statistics can be printed as a list using the -s option.

Solaris

On Solaris-based systems, the vmstat(1) command more closely resembles the
original from BSD. There are many fields showing activity of the page-out daemon,
making it a little unfriendly for those who have yet to learn the page scanner
internals.

Here is example output:

On systems with large amounts of memory, the columns become unaligned. The
first line of output is the summary-since-boot. The memory-related columns are

� w: number of swapped-out threads

� swap: available virtual memory (Kbytes)

� free: free available memory, including page cache and free lists (Kbytes)

� re: pages reclaimed from the page cache (cache hits)

� mf: minor faults

$ vmstat 1 -Sm
procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu----
 r b swpd free buff cache si so bi bo in cs us sy id wa
 4 0 0 35280 114 13761 0 0 0 5 2 1 0 0 100 0
 4 0 0 35281 114 13761 0 0 0 0 2027 15146 16 13 70 0
[...]

$ vmstat -a 1
procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu----
 r b swpd free inact active si so bi bo in cs us sy id wa
 5 0 0 34453536 10358040 3201540 0 0 0 5 2 0 0 0 100 0
 4 0 0 34453228 10358040 3200648 0 0 0 0 2464 15261 16 12 71 0
[...]

$ vmstat 1
 kthr memory page disk faults cpu
 r b w swap free re mf pi po fr de sr lf rm s0 s1 in sy cs us sy id
 1 0 9 85726296 6870964 273 9852 124 241 261 0 1165 0 -784 -0 152 37912 60785 22501
14 7 79
 0 0 113 106216432 26827696 535 4840 24 0 0 0 0 0 0 0 29 36891 85679 29106 11 5 84
 0 0 113 106223888 26831880 128 1608 8 0 0 0 0 0 0 0 10 40656 74944 26552 19 5 76
 1 0 113 106224396 26827560 3 1450 40 0 0 0 0 0 0 0 24 35755 74409 27757 19 5 77
[...]

298 Chapter 7 � Memory

� pi: memory paged in, all types (Kbytes)

� po: memory paged out, all types (Kbytes)

� fr: page cache memory freed by the page scanner or file system (Kbytes)

� de: deficit—the anticipated short-term memory shortfall (Kbytes) (see the
Solaris section of Section 7.3.2, Software)

� sr: pages scanned by the page-out daemon

The example output shows a system that has had a problem in the past, with
113 threads swapped out (w). The page scanner is not currently running (sr), so
the system is not currently under excessive memory pressure. There is a small
rate of page-ins (pi), although they could be normal (file system) or abnormal
(anonymous).

The -p option shows the breakdown of page-ins, page-outs, and frees:

This system has a rate of anonymous page-ins (api), which is the “bad” paging.
This causes synchronous disk I/O-level latency during application runtime. In this
case, it would be due to a previous memory pressure event that paged out memory
and the active threads are currently being paged back in.

If needed, many of these statistics can be observed per CPU from kstat. See the
cpu::vm: groups of statistics. kstat was introduced in Chapter 4, Observability
Tools.

It is normal for the free memory (free) to drop after system boot, as memory is
used by the page cache and other kernel caches. This memory can be returned for
application use when needed. It is not normal for the system to have a continual rate
of page scanning (sr), which is a sign of a memory pressure issue. If this is the case,
use other tools, such as memory by process, to see where the memory is used.

7.5.2 sar

The system activity reporter, sar(1), can be used to observe current activity and
can be configured to archive and report historical statistics. It is mentioned in vari-
ous chapters in this book for the different statistics it provides.

$ vmstat -p 1
 memory page executable anonymous filesystem
 swap free re mf fr de sr epi epo epf api apo apf fpi fpo fpf
 85726500 6871164 273 9852 261 0 1165 0 0 0 123 240 261 1 0 1
 106233644 26826364 10 1035 0 0 0 0 0 0 12 0 0 0 0 0
 106247632 26842396 127 2092 0 0 0 0 0 0 48 0 0 0 0 0
 106240192 26842796 5 1625 0 0 0 0 0 0 20 0 0 0 0 0
[...]

7.5 Analysis 299

Linux

The Linux version provides memory statistics via the following options:

� -B: paging statistics

� -H: huge pages statistics

� -r: memory utilization

� -R: memory statistics

� -S: swap space statistics

� -W: swapping statistics

These span memory usage, activity of the page-out daemon, and huge pages usage.
See Section 7.3, Architecture, for background on these topics.

Statistics provided include those in Table 7.5.

Table 7-5 Linux sar Statistics

Option Statistic Description Units

-B pgpgin/s page-ins Kbytes/s

-B pgpgout/s page-outs Kbytes/s

-B fault/s both major and minor faults count/s

-B majflt/s major faults count/s

-B pgfree/s pages added to free list count/s

-B pgscank/s pages scanned by background page-out daemon
(kswapd)

count/s

-B pgscand/s direct page scans count/s

-B pgsteal/s page and swap cache reclaims count/s

-B %vmeff ratio of page steal/page scan, which shows page
reclaim efficiency

percent

-H hbhugfree free huge pages memory (large page size) Kbytes

-H hbhugused used huge pages memory Kbytes

-r kbmemfree free memory Kbytes

-r kbmemused used memory (excluding the kernel) Kbytes

-r kbbuffers buffer cache size Kbytes

-r kbcached page cache size Kbytes

-r kbcommit main memory committed: an estimate of the
amount needed to serve the current workload

Kbytes

continues

300 Chapter 7 � Memory

Many of the statistic names include the units measured: pg for pages, kb for
kilobytes, % for a percentage, and /s for per second. See the man page for the full
list, which includes some additional percentage-based statistics.

It is important to remember that this much detail is available, when needed, on the
usage and operation of high-level memory subsystems. To understand these in deeper
detail, you may need to browse the source code in mm, specifically mm/vmscan.c.
There are also many posts to the linux-mm mailing list that provide further
insight, as the developers discuss what the statistics should be.

The %vmeff metric is an interesting measure of page reclaim efficiency. High
means pages are successfully stolen from the inactive list (healthy); low means the
system is struggling. The man page describes near 100% as high, and less than
30% as low.

Solaris

The Solaris version provides these options:

� -g: paging statistics

� -k: kernel memory allocation statistics

� -p: paging activities

� -r: unused memory metrics

� -w: swapping statistics

-r %commit main memory committed for current workload,
estimate

percent

-r kbactive active list memory size Kbytes

-r kbinact inactive list memory size Kbytes

-R frpg/s memory pages freed; negative indicates allocations pages/s

-R bufpg/s buffer cache page additions (growth) pages/s

-R campg/s page cache page additions (growth) pages/s

-S kbswpfree free swap space Kbytes

-S kbswpused used swap space Kbytes

-S kbswpcad cached swap space: this resides in both main mem-
ory and the swap device and so can be paged out
without disk I/O

Kbytes

-W pswpin/s page-ins (Linux “swap-ins”) pages/s

-W pswpout/s page-outs (Linux “swap-outs”) pages/s

Table 7-5 Linux sar Statistics (Continued)

Option Statistic Description Units

7.5 Analysis 301

These span memory usage, kernel allocations, paging, and swapping. See Section 7.3,
Architecture, for background on these topics.

Statistics provided include those shown in Table 7.6.

The -k breakdown into “small” and “large” pools seems unusual today. I suspect
this is a historic leftover from supporting SVR4’s lazy buddy allocator, which used
large and small memory pools [Vahalia 96].

More statistics for the memory subsystems can be read from kstat or con-
structed dynamically using DTrace.

Table 7-6 Solaris sar Statistics

Option Statistic Description Units

-g pgout/s page-out requests operations/s

-g ppgout/s pages paged out pages/s

-g pgfree/s page added to free list by the page-out daemon pages/s

-g pgscan/s page scanned by the page-out daemon pages/s

-k small memory in small kmem caches (object size <=
256 bytes)

bytes

-k large memory in larger kmem caches (object size >
256 bytes)

bytes

-k ovsz_alloc memory in kmem oversize (usually > 128 Kbyte
objects)

bytes

-p atch/s reclaims (attaches) from the page cache pages/s

-p pgin/s page-in requests operations/s

-p ppgin/s pages paged in pages/s

-p pflt/s page faults from protection or copy-on-write
(COW)

pages/s

-p vflt/s page faults from address translation pages/s

-p slock/s page faults from software lock requests requir-
ing disk I/O

pages/s

-r freemem free memory (see units) pages

-r freeswap free physical swap (see units) blocks
(sectors)

-w swpin/s swap-ins (process swapping) count/s

-w swpout/s swap-outs (process swapping) count/s

302 Chapter 7 � Memory

7.5.3 slabtop

The Linux slabtop(1) command prints kernel slab cache usage from the slab
allocator. Like top(1), it refreshes the screen in real time.

Here is some example output:

The output has a summary at the top and a list of slabs, including their object
count (OBJS), how many are active (ACTIVE), percent used (USE), the size of the
objects (OBJ SIZE, bytes), and the total size of the cache (CACHE SIZE, bytes).

In this example, the -sc option was used to sort by cache size, with the largest
at the top.

The slab statistics are from /proc/slabinfo and can also be printed using vmstat -m.

7.5.4 ::kmastat

On Solaris-based systems, the ::kmastat debugger command (dcmd) for mdb(1)
summarizes kernel memory usage. The output is in three parts: slab allocator
cache usage, usage summaries, and vmem usage summaries.

Here is some example output:

$ slabtop -sc
 Active / Total Objects (% used) : 3590651 / 3682877 (97.5%)
 Active / Total Slabs (% used) : 94610 / 94610 (100.0%)
 Active / Total Caches (% used) : 58 / 83 (69.9%)
 Active / Total Size (% used) : 432643.91K / 477592.84K (90.6%)
 Minimum / Average / Maximum Object : 0.01K / 0.13K / 12.75K

 OBJS ACTIVE USE OBJ SIZE SLABS OBJ/SLAB CACHE SIZE NAME
3345069 3334148 99% 0.10K 85771 39 343084K buffer_head
151728 77833 51% 0.55K 5232 29 83712K radix_tree_node
 5520 4495 81% 2.00K 345 16 11040K kmalloc-2048
 11193 11185 99% 0.82K 287 39 9184K ext3_inode_cache
 9464 9464 100% 0.61K 182 52 5824K inode_cache
 29064 28977 99% 0.19K 692 42 5536K dentry
 4896 4734 96% 0.66K 102 48 3264K proc_inode_cache
 380 344 90% 5.73K 76 5 2432K task_struct
 20094 20094 100% 0.08K 394 51 1576K sysfs_dir_cache
[...]

mdb -k
> ::kmastat
cache buf buf buf memory alloc alloc
name size in use total in use succeed fail
------------------------------ ----- --------- --------- ------ ---------- -----
kmem_magazine_1 16 6547 55471 884K 550935 0
kmem_magazine_3 32 22454 23125 740K 57447 0
kmem_magazine_7 64 18045 29698 1.87M 98639 0
kmem_magazine_15 128 8083 41075 5.18M 5838996 0
kmem_magazine_31 256 13452 13470 3.51M 21535 0

7.5 Analysis 303

The output was over 500 lines long and has been truncated here. While verbose,
this can be invaluable when tracking down the source of kernel memory growth.

Other useful memory-related dcmds include ::kmem_slabs, ::kmem_slabs -v,
and ::memstat. For example:

While this is a useful summary, a downside is that you must be the superuser
(root) and running mdb -k to view it.

kmem_magazine_47 384 158 18890 7.38M 23037 0
[...]
------------------------------ ----- --------- --------- ------ ---------- -----
Total [hat_memload] 18.0M 2904783556 0
Total [kmem_msb] 593M 125192718 0
Total [kmem_va] 11.0G 2232820 0
Total [kmem_default] 11.1G 3156770876 0
Total [kmem_io_64G] 3.99M 4083 0
Total [kmem_io_4G] 1.99M 7156 0
Total [kmem_io_2G] 20K 52 0
Total [bp_map] 512K 33145 0
Total [umem_np] 2.25M 2494 0
Total [id32] 8K 1634 0
Total [zfs_file_data] 23.1G 46011272 0
Total [zfs_file_data_buf] 23.4G 50697539 0
Total [segkp] 1.69M 2869123 0
[...]
vmem memory memory memory alloc alloc
name in use total import succeed fail
------------------------------ --------- ---------- --------- ---------- -----
heap 13.2G 971G 0 368844548 0
 vmem_metadata 617M 617M 617M 147416 0
 vmem_seg 575M 575M 575M 147133 0
 vmem_hash 41.6M 41.6M 41.6M 79 0
 vmem_vmem 373K 416K 380K 238 0
 static 0 0 0 0 0
 static_alloc 0 0 0 0 0
 hat_memload 18.0M 18.0M 18.0M 4620 0
 kstat 1.60M 1.65M 1.59M 14523 0
 kmem_metadata 676M 676M 676M 152699 0
[...]

> ::memstat
Page Summary Pages MB %Tot
------------ ---------------- ---------------- ----
Kernel 3793378 14817 30%
ZFS File Data 5924809 23143 47%
Anon 2194335 8571 17%
Exec and libs 11649 45 0%
Page cache 51625 201 0%
Free (cachelist) 12733 49 0%
Free (freelist) 589031 2300 5%

Total 12577560 49131
Physical 12577559 49131

304 Chapter 7 � Memory

7.5.5 ps

The process status command, ps(1), lists details on all processes, including mem-
ory usage statistics. Its usage was introduced in Chapter 6, CPUs.

For example, using the BSD-style options:

This output includes the following columns:

� %MEM: main memory usage (physical memory, RSS) as a percentage of the
total in the system

� RSS: resident set size (Kbytes)

� VSZ: virtual memory size (Kbytes)

While RSS shows main memory usage, it includes shared segments such as sys-
tem libraries, which may be mapped by dozens of processes. If you were to sum the
RSS column, you may find it exceeds the memory available in the system, due to
overcounting of this shared memory. See the later pmap(1) command for analysis
of shared memory usage.

These columns may be selected using the SVR4-style -o option, for example:

The Linux version can also print columns for major and minor faults (maj_flt,
min_flt).

On Solaris, major and minor fault information is available in /proc but not cur-
rently exposed from ps(1). Also note that there was a bug with the aux output

$ ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
[...]
bind 1152 0.0 0.4 348916 39568 ? Ssl Mar27 20:17 /usr/sbin/named -u bind
root 1371 0.0 0.0 39004 2652 ? Ss Mar27 11:04 /usr/lib/postfix/master
root 1386 0.0 0.6 207564 50684 ? Sl Mar27 1:57 /usr/sbin/console-kit-
daemon --no-daemon
rabbitmq 1469 0.0 0.0 10708 172 ? S Mar27 0:49 /usr/lib/erlang/erts-
5.7.4/bin/epmd -daemon
rabbitmq 1486 0.1 0.0 150208 2884 ? Ssl Mar27 453:29 /usr/lib/erlang/erts-
5.7.4/bin/beam.smp -W w -K true -A30 ...

ps -eo pid,pmem,vsz,rss,comm
 PID %MEM VSZ RSS COMMAND
[...]
13419 0.0 5176 1796 /opt/local/sbin/nginx
13879 0.1 31060 22880 /opt/local/bin/ruby19
13418 0.0 4984 1456 /opt/local/sbin/nginx
15101 0.0 4580 32 /opt/riak/lib/os_mon-2.2.6/priv/bin/memsup
10933 0.0 3124 2212 /usr/sbin/rsyslogd
[...]

7.5 Analysis 305

where the RSS and VSZ columns can be merged—a whitespace separator is miss-
ing. This was fixed in recent illumos/SmartOS.

The output of ps(1) can be post-sorted on the memory columns so that the
highest consumers can be quickly identified. Or, try the top(1) and prstat(1M)
tools, which provide sorting options.

7.5.6 top

The top(1) command monitors top running processes and includes memory usage
statistics. It was introduced in Chapter 6, CPUs. For example, on Linux:

The summary at the top shows total, used, and free for both main memory (Mem)
and virtual memory (Swap). The sizes of the buffer cache (buffers) and page
cache (cached) are also shown.

In this example, the per-process output has been sorted on %MEM by configuring
top using O and changing the sort order. The largest process in this example is
node, using 2.2 Gbytes of main memory and almost 3 Gbytes of virtual memory.

The main memory percentage column (%MEM), virtual memory size (VIRT), and
resident set size (RES) have the same meanings as the equivalent columns from
ps(1) described earlier.

7.5.7 prstat

The prstat(1M) command was introduced as a top for Solaris-based systems and
was covered in Chapter 6, CPUs. For example:

top - 00:53:33 up 242 days, 2:38, 7 users, load average: 1.48, 1.64, 2.10
Tasks: 261 total, 1 running, 260 sleeping, 0 stopped, 0 zombie
Cpu(s): 0.0%us, 0.0%sy, 0.0%ni, 99.9%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 8181740k total, 6658640k used, 1523100k free, 404744k buffers
Swap: 2932728k total, 120508k used, 2812220k free, 2893684k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
29625 scott 20 0 2983m 2.2g 1232 S 45 28.7 81:11.31 node
 5121 joshw 20 0 222m 193m 804 S 0 2.4 260:13.40 tmux
 1386 root 20 0 202m 49m 1224 S 0 0.6 1:57.70 console-kit-dae
 6371 stu 20 0 65196 38m 292 S 0 0.5 23:11.13 screen
 1152 bind 20 0 340m 38m 1700 S 0 0.5 20:17.36 named
15841 joshw 20 0 67144 23m 908 S 0 0.3 201:37.91 mosh-server
18496 root 20 0 57384 16m 1972 S 3 0.2 2:59.99 python
 1258 root 20 0 125m 8684 8264 S 0 0.1 2052:01 l2tpns
16295 wesolows 20 0 95752 7396 944 S 0 0.1 4:46.07 sshd
23783 brendan 20 0 22204 5036 1676 S 0 0.1 0:00.15 bash
[...]

306 Chapter 7 � Memory

In this example, the sort order was set to RSS (-s rss) so that the largest mem-
ory consumers were listed at the top. The process named redis-server is the
largest by far, consuming 45 Gbytes of main memory (RSS) and 65 Gbytes of vir-
tual memory (SIZE).

prstat(1M) can print microstate accounting statistics, which include text- and
data-fault times. For this server:

This large redis-server process has a percentage of time spent waiting for
data faults (DFL). This is the same server from the earlier vmstat -p example,
which showed a rate of anonymous page-ins. These two things may be related: the
system may have run low on memory and paged out redis-server, which is now
spending time waiting (DFL) as it is paged back in.

7.5.8 pmap

The pmap(1) command lists the memory mappings of a process, showing their
sizes, permissions, and mapped objects. This allows process memory usage to be
examined in more detail, and shared memory to be quantified.

$ prstat -cs rss 1
Please wait...
 PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP
 4937 root 65G 45G sleep 60 0 21:03:47 0.7% redis-server/3
 47 root 455M 330M cpu3 59 0 38:18:13 2.1% node/6
 289 root 439M 311M cpu8 59 0 38:07:13 2.1% node/6
 25433 root 310M 272M sleep 59 0 2:23:32 0.9% node/2
 26533 root 308M 263M cpu5 59 0 2:19:51 0.8% node/2
 26068 root 284M 244M cpu15 59 0 2:14:33 1.2% node/2
 26219 root 275M 243M sleep 59 0 2:27:36 1.4% node/2
 26334 root 283M 240M sleep 59 0 2:29:36 0.8% node/2
 26067 root 277M 235M cpu0 59 0 2:16:57 1.1% node/2
 25260 root 271M 233M sleep 59 0 2:13:22 0.8% node/2
 25154 root 263M 225M sleep 59 0 2:17:11 1.0% node/2
 10987 root 296M 223M sleep 59 0 14:37:14 1.8% node/6
 15247 root 2917M 195M sleep 100 - 0:07:22 0.0% node/5
 4042 root 194M 154M cpu13 59 0 4:57:23 0.9% node/6
 8891 1001 300M 126M sleep 59 0 0:26:46 0.1% splunkd/24

$ prstat -mLcp 4937 1
Please wait...
 PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/LWPID
 4937 root 7.4 7.9 0.0 0.0 15 0.0 69 0.2 239 31 3K 0 redis-server/1
 4937 root 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0 0 0 0 redis-server/3
 4937 root 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0 0 0 0 redis-server/2
Total: 1 processes, 3 lwps, load averages: 5.28, 5.36, 5.36
[...]

7.5 Analysis 307

For example, on a Solaris-based system:

This shows the memory mappings of a PostgreSQL database, including virtual
memory (Kbytes), main memory (RSS), private anonymous memory (Anon), and
permissions (Mode). For most of the mappings, very little memory is anonymous,
and much of it is read-only (r-x), meaning those pages can be shared with other
processes. This is especially the case for system libraries. The bulk of the memory
consumed in this example is in a shared memory segment (ism).

The Linux version of pmap(1) is similar and is based on the Solaris version.
More recent versions use the term Dirty instead of Anon.

The Solaris version provides a -s option to show the page size of mappings:

The shared-memory segment for this PostgreSQL database was mostly using 2
Mbyte pages.

The output of pmap(1) can be long for processes with many mappings. It also
pauses the process as it reports memory usage, which can hurt the performance of

pmap -x 13504
13504: /opt/local/bin/postgres -D /var/pgsql/data90
 Address Kbytes RSS Anon Locked Mode Mapped File
08027000 132 132 4 - rw--- [stack]
08050000 4204 1880 - - r-x-- postgres
0847A000 28 28 - - rwx-- postgres
08481000 260 48 - - rwx-- postgres
084C2000 248 212 20 - rwx-- [heap]
FC400000 36112 36112 - 36112 rwxsR [ism shmid=0x1]
FE8E0000 904 68 - - r-x-- libiconv.so.2.5.0
FE9D1000 4 4 - - rwx-- libiconv.so.2.5.0
FE9E0000 1220 1220 - - r-x-- libc_hwcap1.so.1
FEB21000 36 36 12 - rwx-- libc_hwcap1.so.1
FEB2A000 8 8 - - rwx-- libc_hwcap1.so.1
FEB30000 416 416 - - r-x-- libnsl.so.1
FEBA8000 8 8 - - rw--- libnsl.so.1
FEBAA000 20 20 - - rw--- libnsl.so.1
FEBD0000 304 304 - - r-x-- libm.so.2
FEC2B000 16 16 - - rwx-- libm.so.2
FEC81000 4 4 - - rwxs- [anon]
FEC90000 64 8 - - rwx-- [anon]
FECAC000 76 32 - - r---- LCL_DATA
[...]

pmap -xs 13504
13504: /opt/local/bin/postgres -D /var/pgsql/data90
 Address Kbytes RSS Anon Locked Pgsz Mode Mapped File
08027000 132 132 4 - 4K rw--- [stack]
[...]
FC400000 34816 34816 - 34816 2M rwxsR [ism shmid=0x1]
FE600000 1296 1296 - 1296 4K rwxsR [ism shmid=0x1]
[...]

308 Chapter 7 � Memory

active work. It is useful to run when needed for diagnosis and analysis, but it
shouldn’t be run regularly as a monitoring tool.

7.5.9 DTrace

DTrace can be used to trace user- and kernel-level allocations, minor and major
page faults, and the operation of the page-out daemon. These abilities support
characterizing usage and drill-down analysis.

The following sections introduce DTrace for memory analysis on Solaris- and
Linux-based systems. Unless noted, the DTrace commands are intended for both
operating systems. A DTrace primer was included in Chapter 4, Observability Tools.

Allocation Tracing

User-level allocators can be traced using the pid provider, if available. This is a
dynamic tracing provider, which means software can be instrumented at any
moment, without restarting, and without needing to configure allocators to run in
debug mode beforehand.

The following example summarizes the requested size of malloc() calls, for
PID 15041 (a Riak database):

All of the requested allocations were between 512 bytes and 16,383 bytes, and
most were in the 1–2 Kbyte range.

This one-liner summarizes the requested bytes for malloc(), which is the first
argument, by passing it (arg0) to the power-of-two quantize() aggregating func-
tion. If desired, the return value of malloc() can be traced as well, to check that
the allocation succeeded.

The key was set to "requested bytes" merely to decorate the output with a
description. This key can include the user-level stack trace using the ustack()
action:

dtrace -n 'pid$target::malloc:entry { @["requested bytes"] =
quantize(arg0); }' -p 15041

dtrace: description 'pid$target::malloc:entry ' matched 3 probes
^C

 requested bytes
 value ------------- Distribution ------------- count
 256 | 0
 512 |@@@@ 3824
 1024 |@@@@@@@@@@@@@@@@@ 17807
 2048 |@@@@@@@@@@@@@ 13564
 4096 |@@@@@@ 5907
 8192 |@ 1040
 16384 | 0

7.5 Analysis 309

In this case, the output was many pages long and has been truncated to fit. It
shows user-level stack traces that led to the allocation, along with a distribution of
the requested allocation size.

Since allocations are a frequent activity, the cost of tracing—although fast per
event—can start to add up and cause performance overhead while tracing.

Other internals of user-level allocators can be investigated. For example, listing
the entry probes for the libumem allocator:

dtrace -n 'pid$target::malloc:entry { @["requested bytes, for:", ustack()] =
quantize(arg0); }' -p 15041

dtrace: description 'pid$target::malloc:entry ' matched 3 probes
[...]
 requested bytes, for:

 libumem.so.1`malloc
 libstdc++.so.6.0.13`_Znwm+0x1e
 libstdc++.so.6.0.13`_Znam+0x9

 eleveldb.so`_ZN7leveldb9ReadBlockEPNS_16RandomAccessFileERKNS_...

 eleveldb.so`_ZN7leveldb5Table11BlockReaderEPvRKNS_11ReadOption...

 eleveldb.so`_ZN7leveldb12_GLOBAL__N_116TwoLevelIterator13InitD...

 eleveldb.so`_ZN7leveldb12_GLOBAL__N_116TwoLevelIterator4SeekER...

 eleveldb.so`_ZN7leveldb12_GLOBAL__N_115MergingIterator4SeekERK...

 eleveldb.so`_ZN7leveldb12_GLOBAL__N_16DBIter4SeekERKNS_5SliceE...
 eleveldb.so`eleveldb_iterator_move+0x24b

 beam.smp`process_main+0x6939
 beam.smp`sched_thread_func+0x1cf
 beam.smp`thr_wrapper+0xbe
 0xfffffd7fe4d7b862
 0xb8c0000000000000

 value ------------- Distribution ------------- count
 256 | 0
 512 |@@@@@ 1
 1024 |@@@@@@@@@@ 2
 2048 |@@@@@@@@@@@@@@@@@@@@@@@@@ 5
 4096 | 0

dtrace -ln 'pid$target:libumem::entry' -p 15041
 ID PROVIDER MODULE FUNCTION NAME
73348 pid15041 libumem.so.1 malloc entry
73350 pid15041 libumem.so.1 vmem_heap_init entry
73351 pid15041 libumem.so.1 umem_type_init entry
73352 pid15041 libumem.so.1 umem_get_max_ncpus entry
73353 pid15041 libumem.so.1 __umem_agent_free_bp entry
73354 pid15041 libumem.so.1 umem_do_abort entry
73355 pid15041 libumem.so.1 print_stacktrace entry
73356 pid15041 libumem.so.1 umem_panic entry
73357 pid15041 libumem.so.1 umem_err_recoverable entry
73358 pid15041 libumem.so.1 __umem_assert_failed entry
73359 pid15041 libumem.so.1 T.4 entry
73360 pid15041 libumem.so.1 umem_lockup_cache entry
[...]

310 Chapter 7 � Memory

The output listed 163 entry probes. These can be used to build more complex one-
liners and scripts to investigate allocator internals.

Kernel-level allocators can be traced in a similar way, using the dynamic fbt pro-
vider. For example, on Solaris-based systems, the following one-liner traces the
slab allocator:

The output includes the name of the cache, followed by the kernel stack trace for
allocations, and then the count while tracing.

The following one-liners show different ways to trace allocations, for both user-
and kernel-level allocators.

One-Liners

Summarize user-level malloc() request size for process PID:

Summarize user-level malloc() request size with call stack for process PID:

dtrace -n 'fbt::kmem_cache_alloc:entry {
@[stringof(args[0]->cache_name), stack()] = count(); }'

dtrace: description 'fbt::kmem_cache_alloc:entry ' matched 1 probe
[...]
 zio_cache

 zfs`zio_create+0x79
 zfs`zio_null+0x77
 zfs`zio_root+0x2d
 zfs`dmu_buf_hold_array_by_dnode+0x113

 zfs`dmu_buf_hold_array+0x78
 zfs`dmu_read_uio+0x5c
 zfs`zfs_read+0x1a3
 genunix`fop_read+0x8b
 genunix`read+0x2a7
 genunix`read32+0x1e
 unix`_sys_sysenter_post_swapgs+0x149

 38686
 streams_dblk_16

 genunix`allocb+0x9e
 fifofs`fifo_write+0x1a5
 genunix`fop_write+0x8b
 genunix`write+0x250
 unix`sys_syscall+0x17a

 38978

dtrace -n 'pid$target::malloc:entry { @["request"] = quantize(arg0); }' -p PID

dtrace -n 'pid$target::malloc:entry { @[ustack()] = quantize(arg0); }' -p PID

7.5 Analysis 311

Count libumem function calls:

Count user-level stacks for heap growth (via brk()):

Trace kernel-level slab allocations by cache name and stack (Solaris):

Fault Tracing

Tracing of page faults can provide further insight into how the system is serving
memory. It can be performed using either the dynamic fbt provider or the stable
vminfo provider where available.

For example, on Solaris-based systems, the following one-liner traces minor
faults for processes named "beam.smp" (this is the Erlang VM, which in this case
is running the Riak database) and frequency counts the user-level stack trace, five
levels deep:

This summarizes the code paths that are consuming memory and causing minor
faults. In this case, it is the Erlang garbage collect code. Major faults can also be
traced using the vminfo:::maj_fault probe.

dtrace -n 'pid$target:libumem::entry { @[probefunc] = count(); }' -p PID

dtrace -n 'syscall::brk:entry { @[execname, ustack()] = count(); }'

dtrace -n 'fbt::kmem_cache_alloc:entry { @[stringof(args[0]->cache_name),
 stack()] = count(); }'

dtrace -n 'vminfo:::as_fault /execname == "beam.smp"/ {
@[ustack(5)] = count(); }

dtrace: description 'vminfo:::as_fault ' matched 1 probe
[...]

 beam.smp`erts_add_monitor+0x29d
 beam.smp`monitor_2+0x293
 beam.smp`process_main+0x51db
 beam.smp`sched_thread_func+0x1cf
 beam.smp`thr_wrapper+0xbe

 723

 beam.smp`erts_sweep_monitors+0xae
 beam.smp`process_info_aux+0x154a
 beam.smp`process_info_2+0x70f
 beam.smp`process_main+0x69e8
 beam.smp`sched_thread_func+0x1cf

 43745

312 Chapter 7 � Memory

Another useful fault-related probe is vminfo:::anonpgin, for anonymous
page-ins. For example:

This traced system-wide, frequency counting the process ID and process name that
led to anonymous page-ins. This is the same system shown by the earlier
vmstat(1) example that identified anonymous page-ins, and the prstat(1M)
example that identified that redis-server was spending time in data faults.
This DTrace one-liner has connected the dots, confirming that the redis-server
is spending time in anonymous page-ins, which are a result of low system memory
and paging.

Page-Out Daemon

If needed, the internal operation of the page-out daemon can also be traced using
the fbt provider. The specifics depend on the kernel version.

7.5.10 SystemTap

SystemTap can also be used on Linux systems for dynamic tracing of file system
events. See Section 4.4, SystemTap, in Chapter 4, Observability Tools, and Appen-
dix E for help with converting the previous DTrace scripts.

7.5.11 Other Tools

Other Linux memory performance tools include the following:

� free: report free memory, with buffer cache and page cache (see Chapter 8,
File Systems).

� dmesg: check for “Out of memory” messages from the OOM killer.

� valgrind: a performance analysis suite, including memcheck, a wrapper for
user-level allocators for memory usage analysis including leak detection. This
costs significant overhead; the manual advises that it can cause the target to
run 20 to 30 times slower [3].

dtrace -n 'vminfo:::anonpgin { @[pid, execname] = count(); }'
dtrace: description 'vminfo:::anonpgin ' matched 1 probe
^C

 26533 node 1
 26067 node 6
 4937 redis-server 907

7.5 Analysis 313

� swapon: to add and observe physical swap devices or files.

� iostat: If the swap device is a physical disk or slice, device I/O may be
observable using iostat(1), which indicates that the system is paging.

� perf: Introduced in Chapter 6, CPUs, this can be used to investigate CPI,
MMU/TSB events, and memory bus stall cycles from the CPU performance
instrumentation counters. It also provides probes for page faults and several
kernel memory (kmem) events.

� /proc/zoneinfo: statistics for memory zones (NUMA nodes).

� /proc/buddyinfo: statistics for the kernel buddy allocator for pages.

Other Solaris memory performance tools include the following:

� prtconf: shows physical memory installed size (which can be filtered from
the output using either |grep Mem, or –m on newer versions).

� prtdiag: shows physical memory layout (on systems that support it).

� swap: swap statistics: list swap devices (-l), and summarize usage (-s).

� iostat: If the swap device is a physical disk or slice, device I/O may be
observable using iostat(1), which indicates that the system is paging or
swapping.

� cpustat: Introduced in Chapter 6, CPUs, this can be used to investigate
CPI, MMU/TSB events, and memory bus stall cycles from the CPU perfor-
mance instrumentation counters.

� trapstat: print trap statistics, including TLB/TSB miss rates for different
page sizes, and percent CPU consumed. Currently supported only on SPARC
processors.

� kstat: contains more statistics for understanding kernel memory usage. For
most of these, the only documentation is the source code (if available).

Applications and virtual machines (e.g., the Java VM) may also provide their
own memory analysis tools. See Chapter 5, Applications.

Some allocators maintain their own statistics for observability. For example, the
libumem library can be investigated using mdb(1) dcmds on Solaris:

mdb leaky_core.11493
Loading modules: [libumem.so.1 libc.so.1 ld.so.1]
> ::vmem
ADDR NAME INUSE TOTAL SUCCEED FAIL
fffffd7ffdb6d4f0 sbrk_top 14678769664 31236771840 34038748 64125
fffffd7ffdb6e0f8 sbrk_heap 14678769664 14678769664 34038748 0
fffffd7ffdb6ed00 vmem_internal 320589824 320589824 71737 0

continues

314 Chapter 7 � Memory

This shows ::vmem, which prints the internal virtual memory structures used by
libumem and their usage, and ::umem_malloc_info, which shows allocation sta-
tistics by cache, which can indicate the usage pattern of memory by size (compare
BUFSZ with MALLOCED). While providing only basic attributes, these commands
can shed light on what are typically opaque process heaps.

7.6 Tuning

The most important memory tuning is ensuring that the applications remain in
main memory, and that paging and swapping do not occur frequently. Identifying
this problem was covered in Section 7.4, Methodology, and Section 7.5, Analysis.
This section discusses other memory tuning: kernel tunable parameters, configur-
ing large pages, allocators, and resource controls.

The specifics of tuning—the options available and what to set them to—depend
on the operating system version and the intended workload. The following sec-
tions, organized by tuning type, provide examples of what may be available, and
why they may need to be tuned.

7.6.1 Tunable Parameters

This section describes tunable parameter examples for recent Linux and Solaris-
based kernels.

fffffd7ffdb6f908 vmem_seg 293679104 293679104 71699 0
fffffd7ffdb70510 vmem_hash 26870272 26873856 33 0
fffffd7ffdb71118 vmem_vmem 46200 55344 15 0
000000000067e000 umem_internal 91463936 91467776 20845 0
000000000067f000 umem_cache 113696 180224 44 0
0000000000680000 umem_hash 7455232 7458816 54 0
0000000000681000 umem_log 0 0 0 0
0000000000682000 umem_firewall_va 0 0 0 0
0000000000683000 umem_firewall 0 0 0 0
0000000000684000 umem_oversize 5964579061 6179110912 32905555 0
0000000000686000 umem_memalign 0 0 0 0
0000000000695000 umem_default 8087601152 8087601152 1040611 0
> ::umem_malloc_info
CACHE BUFSZ MAXMAL BUFMALLC AVG_MAL MALLOCED OVERHEAD %OVER
0000000000697028 8 0 0 0 0 0 0.0%
0000000000698028 16 8 19426 8 155400 160349 103.1%
0000000000699028 32 16 19529 16 312464 322383 103.1%
000000000069a028 48 32 1007337 24 24186306 24933364 103.0%
000000000069b028 64 48 54161 40 2166755 1354569 62.5%
[...]
00000000006b7028 4096 4080 5760 3489 20096972 3956788 19.6%
00000000006b8028 4544 4528 205210 4294 881092360 70876830 8.0%
00000000006b9028 8192 8176 544525 5560 3027503427 1476807373 48.7%
00000000006ba028 9216 9200 44217 8653 382609833 26574285 6.9%
00000000006bb028 12288 12272 76066 10578 804644858 136139430 16.9%
00000000006bc028 16384 16368 43619 13811 602419234 115723982 19.2%

7.6 Tuning 315

Linux

Various memory tunable parameters are described in the kernel source documen-
tation in Documentation/sysctl/vm.txt and can be set using sysctl(8). The exam-
ples in Table 7.7 are from a 3.2.6 kernel, with defaults from Fedora 16.

The tunables use a consistent naming scheme that includes the units. Note that
dirty_background_bytes and dirty_background_ratio are mutually exclusive, as are
dirty_bytes and dirty_ratio (only one may be set).

The size of vm.min_free_kbytes is set dynamically as a fraction of main mem-
ory. The algorithm to choose this is not linear, as the needs for free memory do not
linearly scale with main memory size. (For reference, it is documented in mm/
page_alloc.c.) vm.min_free_kbytes can be reduced to free up some memory for
applications, but that can also cause the kernel to be overwhelmed during memory
pressure and resort to using OOM sooner.

Table 7-7 Example Linux Memory Tunables

Option Default Description

vm.dirty_background_bytes 0 amount of dirty memory to trigger pdflush
background write-back

vm.dirty_background_ratio 10 percentage of dirty system memory to trigger
pdflush background write-back

vm.dirty_bytes 0 amount of dirty memory that causes a writing
process to start write-back

vm.dirty_ratio 20 ratio of dirty system memory to cause a writ-
ing process to begin write-back

vm.dirty_expire_centisecs 3,000 minimum time for dirty memory to be eligible
for pdflush (promotes write cancellation)

vm.dirty_writeback_centisecs 500 pdflush wake-up interval (0 to disable)

vm.min_free_kbytes dynamic sets the desired free memory amount (some
kernel atomic allocations can consume this)

vm.overcommit_memory 0 0 = use a heuristic to allow reasonable over-
commits; 1 = always overcommit; 2 = don’t
overcommit

vm.swappiness 60 the degree to favor swapping (paging) for free-
ing memory over reclaiming it from the page
cache

vm.vfs_cache_pressure 100 the degree to reclaim cached directory and
inode objects; lower values retain them more;
0 means never reclaim—can easily lead to out-
of-memory conditions

316 Chapter 7 � Memory

Another parameter for avoiding OOM is vm.overcommit_memory, which can be
set to 2 to disable overcommit and avoid cases where this leads to OOM. If control
of the OOM killer on a per-process basis is desired, check your kernel version for
/proc tunables such as oom_adj or oom_score_adj. These should be described in
Documentation/filesystems/proc.txt.

The vm.swappiness tunable can significantly affect performance should it begin
swapping application memory earlier than desired. The value of this tunable can
be between 0 and 100, with high values favoring swapping applications and there-
fore retaining the page cache. It may be desirable to set this to zero, so that appli-
cation memory is retained as long as possible at the expense of the page cache.
When there is still a memory shortage, the kernel can still use swapping.

Solaris

Table 7.8 shows key tunables for memory, which can be set in /etc/system, along
with typical defaults. See the vendor documentation for the full list, instructions
for setting each, descriptions, and warnings. Some of these were shown earlier in
Figure 7.11.

The pagesize(1) command can be used to determine what these units mean.
Note that adjusting kernel tunables is sometimes prohibited by company or ven-
dor policy (check first). These should also be set to appropriate rates already and
should not need adjusting.

On large memory systems (beyond 100 Gbytes), it can be worthwhile to tune
some of these to lower values, to free up more memory for applications to use. On

Table 7-8 Example Solaris Memory Tunables

Option Default Units Description

lotsfree 1/64 mem pages threshold to begin page scanning (with
deficit)

desfree 1/128 mem pages target free memory; below this for 30 s
triggers swapping

minfree 1/256 mem pages begin blocking memory allocations

throttlefree 1/256 mem pages threshold to block memory allocations
(sleep)

pageout_reserve 1/512 mem pages reserved pages for page-out and scheduler

slowscan 100 pages/s rate to begin scanning

fastscan 64 Mbytes pages/s maximum scan rate

maxpgio 40 pages maximum queued page I/O allowed

7.6 Tuning 317

systems with multiple storage devices (e.g., storage arrays), maxpgio may need to
be increased so that the queue length is more appropriate for the I/O capacity
available.

7.6.2 Multiple Page Sizes

Large page sizes can improve memory I/O performance by improving the hit ratio
of the TLB cache (increasing its reach). Most modern processors support multiple
page sizes, such as a 4 Kbyte default and a 2 Mbyte large page.

On Linux, large pages (called huge pages) can be configured in a number of
ways. For reference, see Documentation/vm/hugetlbpage.txt.

These usually begin with the creation of huge pages:

One way for an application to consume huge pages is via the shared memory
segments, and the SHM_HUGETLBS flag to shmget().

Another way involves creating a huge-page-based file system for applications to
map memory from:

Other ways include the MAP_ANONYMOUS|MAP_HUGETLB flags to mmap() and
use of the libhugetlbfs API [4].

More recently, support has been developed for transparent huge pages (THP).
This uses huge pages when appropriate, without manual steps from the system
administrator [5]. For reference, see Documentation/vm/transhuge.txt.

On Solaris-based systems, large pages can be configured by configuring the
application environment to use the libmpss.so.1 library. For example:

echo 50 > /proc/sys/vm/nr_hugepages
grep Huge /proc/meminfo
AnonHugePages: 0 kB
HugePages_Total: 50
HugePages_Free: 50
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB

mkdir /mnt/hugetlbfs
mount -t hugetlbfs none /mnt/hugetlbfs -o pagesize=2048K

$ LD_PRELOAD=$LD_PRELOAD:mpss.so.1
$ MPSSHEAP=2M
$ export LD_PRELOAD MPSSHEAP

318 Chapter 7 � Memory

These can be placed in a start script for the application. Large pages are created
dynamically by the kernel, and it is successful only if enough pages are available
to create them (otherwise the default is smaller pages).

Programs compiled using Oracle Solaris Studio may automatically use large
pages so do not need manual preloading of mpss.

7.6.3 Allocators

Different user-level allocators may be available, offering improved performance for
multithreaded applications. These may be selected at compile time, or at execu-
tion time by setting the LD_PRELOAD environment variable.

For example, on Solaris the libumem allocator can be selected using

This may be placed in its start-up script.

7.6.4 Resource Controls

Basic resource controls, including setting a main memory limit and a virtual mem-
ory limit, may be available using ulimit(1).

For Linux, the container groups (cgroups) memory subsystem provides various
additional controls. These include

� memory.memsw.limit_in_bytes: the maximum allowed memory and
swap space, in bytes

� memory.limit_in_bytes: the maximum allowed user memory, including
file cache usage, in bytes

� memory.swappiness: similar to vm.swappiness described earlier but can be
set for a cgroup

� memory.oom_control: can be set to 0, to allow the OOM killer for this
cgroup, or 1, to disable it

On Solaris-based systems, per-zone or per-project memory limits can be applied
using resource controls and the prctl(1) command. These can enforce their limit
by paging out memory, rather than failing allocations, which may be more desir-
able depending on the target application. These are described in Section 11.2, OS
Virtualization, in Chapter 11, Cloud Computing.

export LD_PRELOAD=libumem.so

7.7 Exercises 319

7.7 Exercises

1. Answer the following questions about memory terminology:

� What is a page of memory?

� What is resident memory?

� What is virtual memory?

� Using Unix terminology, what is the difference between paging and
swapping?

� Using Linux terminology, what is the difference between paging and
swapping?

2. Answer the following conceptual questions:

� What is the purpose of demand paging?

� Describe memory utilization and saturation.

� What is the purpose of the MMU and the TLB?

� What is the role of the page-out daemon?

� What is the role of the OOM killer?

3. Answer the following deeper questions:

� What is anonymous paging, and why is it more important to analyze than
file system paging?

� Describe the steps the kernel takes to free up more memory when free
memory becomes exhausted on Linux- or Solaris-based systems (pick one).

� Describe the performance advantages of slab-based allocation.

4. Develop the following procedures for your operating system:

� A USE method checklist for memory resources. Include how to fetch each
metric (e.g., which command to execute) and how to interpret the result. Try
to use existing OS observability tools before installing or using additional
software products.

� A workload characterization checklist for memory resources. Include how to
fetch each metric, and try to use existing OS observability tools first.

5. Perform these tasks:

� Choose an application, and summarize code paths that lead to memory allo-
cation (malloc()).

� Choose an application that has some degree of memory growth (calling
brk()), and summarize code paths that lead to this growth.

320 Chapter 7 � Memory

� Describe the memory activity visible in the following Linux screen shot
alone:

6. (optional, advanced) Find or develop metrics to show how well the kernel
NUMA memory locality policies are working in practice. Develop “known”
workloads that have good or poor memory locality for testing the metrics.

7. (optional, advanced) Develop a tool that measures or estimates the working set
size of a process. This should be safe to use in production systems (a require-
ment that may make this impossible). A partial solution is to do this for file
system pages only (not the heap).

7.8 References

[Corbató 68] Corbató, F. J. A Paging Experiment with the Multics System.
MIT Project MAC Report MAC-M-384, 1968.

[Denning 70] Denning, P. “Virtual Memory,” ACM Computing Surveys
(CSUR) 2, no. 3 (1970).

[Peterson 77] Peterson, J., and T. Norman. “Buddy Systems,” Communica-
tions of the ACM, 1977.

[Thompson 78] Thompson, K. UNIX Implementation. Bell Laboratories, 1978.

[Babaoglu 79] Babaoglu, O., W. Joy, and J. Porcar. Design and Implementa-
tion of the Berkeley Virtual Memory Extensions to the UNIX

vmstat 1
procs -----------memory-------- ---swap-- -----io---- --system-- -----cpu-----
 r b swpd free buff cache si so bi bo in cs us sy id wa st
 2 0 413344 62284 72 6972 0 0 17 12 1 1 0 0 100 0 0
 2 0 418036 68172 68 3808 0 4692 4520 4692 1060 1939 61 38 0 1 0
 2 0 418232 71272 68 1696 0 196 23924 196 1288 2464 51 38 0 11 0
 2 0 418308 68792 76 2456 0 76 3408 96 1028 1873 58 39 0 3 0
 1 0 418308 67296 76 3936 0 0 1060 0 1020 1843 53 47 0 0 0
 1 0 418308 64948 76 3936 0 0 0 0 1005 1808 36 64 0 0 0
 1 0 418308 62724 76 6120 0 0 2208 0 1030 1870 62 38 0 0 0
 1 0 422320 62772 76 6112 0 4012 0 4016 1052 1900 49 51 0 0 0
 1 0 422320 62772 76 6144 0 0 0 0 1007 1826 62 38 0 0 0
 1 0 422320 60796 76 6144 0 0 0 0 1008 1817 53 47 0 0 0
 1 0 422320 60788 76 6144 0 0 0 0 1006 1812 49 51 0 0 0
 3 0 430792 65584 64 5216 0 8472 4912 8472 1030 1846 54 40 0 6 0
 1 0 430792 64220 72 6496 0 0 1124 16 1024 1857 62 38 0 0 0
 2 0 434252 68188 64 3704 0 3460 5112 3460 1070 1964 60 40 0 0 0
 2 0 434252 71540 64 1436 0 0 21856 0 1300 2478 55 41 0 4 0
 1 0 434252 66072 64 3912 0 0 2020 0 1022 1817 60 40 0 0 0
[...]

7.8 References 321

Operating System. Computer Science Division, Department of
Electrical Engineering and Computer Science, University of
California, Berkeley, 1979.

[Bach 86] Bach, M. J. The Design of the UNIX Operating System. Pren-
tice Hall, 1986.

[Bonwick 94] Bonwick, J. “The Slab Allocator: An Object-Caching Kernel
Memory Allocator.” USENIX, 1994.

[Vahalia 96] Vahalia, U. UNIX Internals: The New Frontiers. Prentice Hall,
1996.

[Bonwick 01] Bonwick, J., and J. Adams. “Magazines and Vmem: Extend-
ing the Slab Allocator to Many CPUs and Arbitrary
Resources.” USENIX, 2001.

[Gorman 04] Gorman, M. Understanding the Linux Virtual Memory Man-
ager. Prentice Hall, 2004.

[McDougall 06a] McDougall, R., and J. Mauro. Solaris Internals: Solaris 10
and OpenSolaris Kernel Architecture. Prentice Hall, 2006.

[McDougall 06b] McDougall, R., J. Mauro, and B. Gregg. Solaris Performance
and Tools: DTrace and MDB Techniques for Solaris 10 and
OpenSolaris. Prentice Hall, 2006.

[Intel 12] Intel 64 and IA-32 Architectures Software Developer’s Man-
ual, Combined Volumes: 1, 2A, 2B, 2C, 3A, 3B and 3C. Intel,
2012.

[1] http://lwn.net/Articles/83588/, 2004

[2] http://lwn.net/Articles/229096/, 2007

[3] http://valgrind.org/docs/manual/, 2012

[4] http://lwn.net/Articles/375096/, 2010

[5] http://lwn.net/Articles/423584/, 2011

../../../../../lwn.net/Articles/83588/default.htm
../../../../../lwn.net/Articles/229096/default.htm
../../../../../valgrind.org/docs/manual/default.htm
../../../../../lwn.net/Articles/375096/default.htm
../../../../../lwn.net/Articles/423584/default.htm

This page intentionally left blank

323

8
File Systems

When studying application I/O performance, the performance of the file system
matters more than disk performance. File systems use caching, buffering, and
asynchronous I/O to avoid subjecting applications to disk-level (or remote system)
latency. Nevertheless, performance analysis and the available toolsets have histor-
ically focused on the performance of the disks.

In the era of dynamic tracing, file system analysis is now easy and practical. This
chapter shows how file system requests can be examined in detail, including the use of
dynamic tracing to measure start to completion time from the application context. This
often allows file systems, and their underlying disk devices, to be quickly ruled out as
the source of poor performance, allowing investigation to move on to other areas.

This chapter consists of five parts, the first three providing the basis for file sys-
tem analysis and the last two showing its practical application to Linux- and
Solaris-based systems. The parts are as follows:

� Background introduces file-system-related terminology, basic models, illus-
trating file system principles, and key file system performance concepts.

� Architecture introduces generic and specific file system architecture.

� Methodology describes performance analysis methodologies, both observa-
tional and experimental.

� Analysis shows file system performance tools for Linux- and Solaris-based
systems, including static and dynamic tracing.

� Tuning describes file system tunable parameters.

324 Chapter 8 � File Systems

8.1 Terminology

For reference, file-system-related terminology used in this chapter includes the
following:

� File system: an organization of data as files and directories, with a file-based
interface for accessing them, and file permissions to control access. Addi-
tional content may include special file types for devices, sockets, and pipes,
and metadata including file access timestamps.

� File system cache: an area of main memory (usually DRAM) used to cache
file system contents, which may include different caches for various data and
metadata types.

� Operations: File system operations are the requests of the file system,
including read(), write(), open(), close(), stat(), mkdir(), and other
operations.

� I/O: input/output. File system I/O can be defined in several ways; here it is
used to mean only operations that directly read and write (performing I/O),
including read(), write(), stat() (read statistics), and mkdir() (write a
new directory entry). I/O does not include open() and close().

� Logical I/O: I/O issued by the application to the file system.

� Physical I/O: I/O issued directly to disks by the file system (or via raw I/O).

� Throughput: the current data transfer rate between applications and the
file system, measured in bytes per second.

� inode: An index node (inode) is a data structure containing metadata for a
file system object, including permissions, timestamps, and data pointers.

� VFS: virtual file system, a kernel interface to abstract and support different
file system types. On Solaris, a VFS inode is called a vnode.

� Volume manager: software for managing physical storages devices in a flex-
ible way, creating virtual volumes from them for use by the OS.

Other terms are introduced throughout this chapter. The Glossary includes basic
terminology for reference, including fsck, IOPS, operation rate, and POSIX. Also
see the terminology sections in Chapters 2 and 3.

8.2 Models 325

8.2 Models

The following simple models illustrate some basic principles of file systems and
their performance.

8.2.1 File System Interfaces

A basic model of a file system is shown in Figure 8.1, in terms of its interfaces.

The locations where logical and physical operations occur are also labeled in the
figure. See Section 8.3.12, Logical versus Physical I/O, for more about these.

One approach for studying file system performance is to treat it as a black box,
focusing on the latency of the object operations. This is explained in more detail in
Section 8.5.2, Latency Analysis.

8.2.2 File System Cache

A generic file system cache stored in main memory is pictured in Figure 8.2, ser-
vicing a read operation.

The read returns either from cache (cache hit) or from disk (cache miss). Cache
misses are stored in the cache, populating the cache (warming it up).

Figure 8-1 File system interfaces

326 Chapter 8 � File Systems

The file system cache may also buffer writes to be written (flushed) later. The
mechanisms for doing this differ for different file system types and are described in
Section 8.4, Architecture.

8.2.3 Second-Level Cache

Second-level cache may be any memory type; Figure 8.3 shows it as flash memory.
This cache type was first developed for ZFS.

8.3 Concepts

Following is a selection of important concepts regarding file system performance.

Figure 8-2 File system main memory cache

Figure 8-3 File system second-level cache

8.3 Concepts 327

8.3.1 File System Latency

File system latency is the primary metric of file system performance, measured as
the time from a logical file system request to its completion. It is inclusive of time
spent in the file system, kernel disk I/O subsystem, and waiting on disk devices—
the physical I/O. Application threads often block during an application request to
wait for file system requests to complete, for which file system latency directly and
proportionally affects application performance.

Cases where applications may not be directly affected include the use of non-
blocking I/O, or when I/O is issued from an asynchronous thread (e.g., a background
flush thread). It may be possible to identify these cases from the application, if it
provides detailed metrics for its file system usage. If not, a generic approach is to use
a kernel tracing tool that can show the user-level stack trace that led to a logical file
system I/O. This stack trace can then be studied to see which application routines
issued it.

Operating systems have not historically made file system latency readily
observable, instead providing disk-device-level metrics. But there are many cases
where such metrics do not directly affect the application, making them confusing
to interpret, if not downright irrelevant. An example of this is where file systems
perform background flushing of written data, which may appear as bursts of high-
latency disk I/O. From the disk-device-level metrics, this looks alarming; however,
no application is waiting on these to complete. See Section 8.3.12, Logical versus
Physical I/O, for more cases.

8.3.2 Caching

After booting, the file system will typically use main memory (RAM) as a cache to
improve performance. For applications, this process is transparent: their logical I/O
latency becomes much lower, as it can be served from main memory rather than
the much slower disk devices.

Over time, the cache grows, while free memory for the operating system
shrinks. This can distress new users but is perfectly normal. The principle is: If
there is spare main memory, remember something useful. When applications need
more memory, the kernel should quickly free it from the file system cache for use.

File systems use caching to improve read performance, and buffering (in the cache)
to improve write performance. Multiple types of cache are typically used by the file
system and the block device subsystem, which may include those in Table 8.1.

Specific cache types are described in Section 8.4, Architecture, and Chapter 3, Oper-
ating Systems, has the full list of caches (including application- and device-level).

328 Chapter 8 � File Systems

8.3.3 Random versus Sequential I/O

A series of logical file system I/O can be described as random or sequential, based
on the file offset of each I/O. With sequential I/O, the next I/O begins at the end of
the previous I/O. Random I/O have no apparent relationship between them, and
the offset changes randomly. A random file system workload may also refer to
accessing many different files at random. Figure 8.4 illustrates these access pat-
terns, showing an ordered series of I/O and example file offsets.

Due to the performance characteristics of certain storage devices (described in
Chapter 9, Disks), file systems have historically attempted to reduce random I/O
by placing file data on disk sequentially and contiguously. The term fragmentation
describes when file systems do this poorly, causing file placement to become scat-
tered over a drive, so that sequential logical I/O yields random physical I/O.

File systems may measure logical I/O access patterns so that they can identify
sequential workloads, and then improve their performance using prefetch or read-
ahead. The next sections cover these topics.

Table 8-1 Example Cache Types

Cache Example

Page cache operating system page cache

File system primary cache ZFS ARC

File system secondary cache ZFS L2ARC

Directory cache directory cache, DNLC

inode cache inode cache

Device cache ZFS vdev

Block device cache buffer cache

Figure 8-4 Sequential and random file I/O

8.3 Concepts 329

8.3.4 Prefetch

A common file system workload involves reading a large amount of file data
sequentially, for example, for a file system backup. This data may be too large to fit
in the cache, or it may be read only once and is unlikely to be retained in the cache
(depending on the cache eviction policy). Such a workload would perform rela-
tively poorly, as it would have a low cache hit rate.

Prefetch is a common file system feature for solving this problem. It can detect a
sequential read workload based on the current and previous file I/O offsets, and
then predict and issue disk reads before the application has requested them. This
populates the file system cache, so that if the application does perform the
expected read, it results in a cache hit (the data needed was already in the cache).
An example scenario is as follows, given no data cached to begin with:

1. An application issues a file read(), passing execution to the kernel.

2. The file system issues the read to disk.

3. The previous file offset pointer is compared to the current location, and if
they are sequential, the file system issues additional reads.

4. The first read completes, and the kernel passes the data and execution back
to the application.

5. Any additional reads complete, populating the cache for future application
reads.

This scenario is also illustrated in Figure 8.5, where application reads to offsets 1
and then 2 trigger prefetch of the next three offsets.

When prefetch detection works well, applications show significantly improved
sequential read performance; the disks keep ahead of application requests. When

Figure 8-5 File system prefetch

330 Chapter 8 � File Systems

prefetch detection works poorly, unnecessary I/O is issued that the application does
not need, polluting the cache and consuming disk and I/O transport resources. File
systems typically allow prefetch to be tuned as needed.

8.3.5 Read-Ahead

Historically, prefetch has also been known as read-ahead. More recently, Linux has
adopted the read-ahead term for a system call, readahead(2), that allows appli-
cations to explicitly warm up the file system cache.

8.3.6 Write-Back Caching

Write-back caching is commonly used by file systems to improve write perfor-
mance. It works by treating writes as completed after the transfer to main mem-
ory, and writing them to disk sometime later, asynchronously. The file system
process for writing this “dirty” data to disk is called flushing. An example sequence
is as follows:

1. An application issues a file write(), passing execution to the kernel.

2. Data from the application address space is copied to the kernel.

3. The kernel treats the write() syscall as completed, passing execution back
to the application.

4. Sometime later, an asynchronous kernel task finds the written data and
issues disk writes.

The trade-off is reliability. DRAM-based main memory is volatile, and dirty data
can be lost in the event of a power failure, despite the application believing that
the write completed. It could also be written to disk incompletely, leaving behind
an on-disk state that is corrupted.

If file system metadata becomes corrupted, the file system may no longer load.
Such a state may be recoverable only from system backups, causing prolonged
downtime. Worse, if the corruption affects file contents, which the application
reads and uses, the business may be in jeopardy.

To balance needs for both speed and reliability, file systems can offer write-back
caching by default, and a synchronous write option to bypass this behavior and
write directly to persistent storage devices.

8.3 Concepts 331

8.3.7 Synchronous Writes

A synchronous write completes only when fully written to persistent storage (e.g.,
disk devices), which includes writing any file system metadata changes that are
necessary. These are much slower than asynchronous writes (write-back caching),
since synchronous writes incur disk device I/O latency. Synchronous writes are
used by some applications such as database log writers, where the risk of data cor-
ruption from asynchronous writes is unacceptable.

There are two forms of synchronous writes: individual I/O which is written syn-
chronously, and groups of previous writes which are synchronously committed.

Individual Synchronous Writes

Write I/O is synchronous when a file is opened using the flag O_SYNC or one of
the variants, O_DSYNC and O_RSYNC (which as of Linux 2.6.31 were just
mapped by glib to O_SYNC). Some file systems have mount options to force all
write I/O to all files to be synchronous.

Synchronously Committing Previous Writes

Rather than synchronously writing individual I/O, an application may synchro-
nously commit previous asynchronous writes at checkpoints in their code, using
the fsync() system call. This can improve performance by grouping the synchro-
nous writes.

There are other situations that will commit previous writes, such as closing file
handles, or when there are too many uncommitted buffers on a file. The former is
often noticed when unpacking an archive of many files, especially over NFS.

8.3.8 Raw and Direct I/O

These are other types of I/O that an application may use:
Raw I/O is issued directly to disk offsets, bypassing the file system altogether.

It has been used by some applications, especially databases, that can manage and
cache their own data better than the file system cache. A drawback is administra-
tion difficulties: the regular file system toolset can’t be used for backup/restore or
observability.

Direct I/O allows applications to use a file system but bypass the file system
cache. This is similar to synchronous writes (but without the guarantees that
O_SYNC offers), and it works for reads as well. It isn’t as direct as raw device I/O,
since mapping of file offsets to disk offsets must still be performed by file system
code, and I/O may also be resized to match the size used by the file system for on-

332 Chapter 8 � File Systems

disk layout (its record size). Depending on the file system, this may not only dis-
able read caching and write buffering but may also disable prefetch.

Direct I/O can be used by applications that perform file system backups, to avoid
polluting the file system cache with data that will be read only once. Both raw and
direct I/O can be used to avoid double caching for applications that employ their
own application-level cache in the process heap.

8.3.9 Non-Blocking I/O

Normally, file system I/O will either complete immediately (e.g., from cache), or
after waiting (e.g., for disk device I/O). If waiting is required, the application
thread will block and leave CPU, allowing other threads to execute while it waits.
While the blocked thread cannot perform other work, this typically isn’t a problem
since multithreaded applications can create additional threads to execute while
some are blocked.

In some cases, non-blocking I/O is desirable, such as when avoiding the perfor-
mance or resource overhead of thread creation. Non-blocking I/O may be per-
formed by using the O_NONBLOCK or O_NDELAY flags to the open() syscall,
which cause reads and writes to return an EAGAIN error instead of blocking,
which tells the application to try again later. (Support for this depends on the file
system, which may honor non-blocking only for advisory or mandatory file locks.)

Non-blocking I/O was also discussed in Chapter 5, Applications.

8.3.10 Memory-Mapped Files

For some applications and workloads, file system I/O performance can be improved
by mapping files to the process address space and accessing memory offsets
directly. This avoids the syscall execution and context switch overheads incurred
when calling read() and write() syscalls to access file data. It can also avoid
double copying of data, if the kernel supports direct copying of the file data buffer
to the process address space.

Memory mappings are created using the mmap() syscall and removed using
munmap(). Mappings can be tuned using madvise(), as summarized in Section
8.8, Tuning. Some applications provide an option to use the mmap syscalls (which
may be called “mmap mode”) in their configuration. For example, the Riak data-
base can use mmap for its in-memory data store.

I’ve noticed a tendency to try mmap() to solve file system performance issues
without first analyzing them. If the issue is high I/O latency from disk devices,
avoiding the small syscall overheads with mmap() may accomplish very little,
when the high disk I/O latency is still present and dominates.

8.3 Concepts 333

A disadvantage of using mappings on multiprocessor systems can be the over-
head to keep each CPU MMU in sync, specifically the CPU cross calls to remove
mappings (TLB shootdowns). Depending on the kernel and mapping, these may be
minimized by delaying TLB updates (lazy shootdowns) [Vahalia 96].

8.3.11 Metadata

While data describes the contents of files and directories, metadata describes infor-
mation about them. Metadata may refer to information that can be read from the
file system interface (POSIX) or information needed to implement the file system
on-disk layout. These are called logical and physical metadata respectively.

Logical Metadata

Logical metadata is information that is read and written to the file system by con-
sumers (applications), either

� Explicitly: reading file statistics (stat()), creating and deleting files
(creat(), unlink()) and directories (mkdir(), rmdir())

� Implicitly: file system access timestamp updates, directory modification
timestamp updates

A workload that is “metadata-heavy” typically refers to logical metadata, for exam-
ple, web servers that stat() files to ensure they haven’t changed since caching, at
a much greater rate than actually reading file data contents.

Physical Metadata

Physical metadata refers to the on-disk layout metadata necessary to record all file
system information. The metadata types in use depend on the file system type and
may include superblocks, inodes, blocks of data pointers (primary, secondary, . . .),
and free lists.

Logical and physical metadata are one reason for the difference between logical
and physical I/O.

8.3.12 Logical versus Physical I/O

Although it may seem counterintuitive, I/O requested by applications to the file
system (logical I/O) may not match disk I/O (physical I/O), for several reasons.

File systems do much more than present persistent storage (the disks) as a file-based
interface. They cache reads, buffer writes, and create additional I/O to maintain

334 Chapter 8 � File Systems

the on-disk physical layout metadata that they need to record where everything is.
This can cause disk I/O that is unrelated, indirect, inflated, or deflated as com-
pared to application I/O. Examples follow.

Unrelated

This is disk I/O that is not related to the application and may be due to these
factors:

� Other applications: The disk I/O is from another application.

� Other tenants: The disk I/O is from another tenant (visible via system tools
under some virtualization technologies).

� Other kernel tasks: for example, when the kernel is rebuilding a software
RAID volume or performing asynchronous file system checksum verification
(see Section 8.4, Architecture).

Indirect

This is application I/O that does not have an immediate corresponding disk I/O.
This may be due to these factors:

� File system prefetch: adding additional I/O that may or may not be used by
the application.

� File system buffering: the use of write-back caching to defer and coalesce
writes for later flushing to disk. Some systems may buffer writes for tens of
seconds before writing, which then appear as large, infrequent bursts.

Deflated

This is where the disk I/O is smaller than the application I/O, or even nonexistent.
This may be due to these factors:

� File system caching: satisfying reads from main memory instead of disk.

� File system write cancellation: The same byte offsets are modified multi-
ple times before being flushed once to disk.

� Compression: reducing the data volume from logical to physical I/O.

� Coalescing: merging sequential I/O before issuing them to disk.

� In-memory file system: Content may never be written to disk (e.g., tmpfs).

8.3 Concepts 335

Inflated

In this case the disk I/O is larger than the application I/O. This may be due to
these factors:

� File system metadata: adding additional I/O

� File system record size: rounding up I/O size (inflating bytes), or fragment-
ing I/O (inflating count)

� Volume manager parity: read-modify-write cycles, adding additional I/O

Example

To show how these factors can happen in concert, the following enumerated exam-
ple describes what can happen with a 1-byte application write:

1. An application performs a 1-byte write to an existing file.

2. The file system identifies the location as part of a 128 Kbyte file system
record, which is not cached (but the metadata to reference it is).

3. The file system requests that the record be loaded from disk.

4. The disk device layer breaks the 128 Kbyte read into smaller reads suitable
for the device.

5. The disks perform multiple smaller reads, totaling 128 Kbytes.

6. The file system now replaces the 1 byte in the record with the new byte.

7. Sometime later, the file system requests that the 128 Kbyte dirty record be
written back to disk.

8. The disks write the 128 Kbyte record (broken up if needed).

9. The file system writes new metadata, for example, references (for copy-on-
write) or access time.

10. The disks perform more writes.

So, while the application performed only a single 1-byte write, the disks performed
multiple reads (128 Kbytes in total) and more writes (over 128 Kbytes).

8.3.13 Operations Are Not Equal

As may be clear from the previous sections, file system operations can exhibit dif-
ferent performance based on their type. You can’t tell much about a workload of
“500 operations/s” from the rate alone. Some operations may return from the file
system cache at main memory speeds; others may return from disk and be orders

336 Chapter 8 � File Systems

of magnitude slower. Other determinant factors include whether operations are
random or sequential, reads or writes, synchronous writes or asynchronous writes,
their I/O size, whether they include other operation types, and their CPU execu-
tion cost.

It is common practice to micro-benchmark different file system operations to
determine these performance characteristics. As an example, the results in Table 8.2
are from a ZFS file system, on an Intel Xeon 2.4 GHz multicore processor.

These tests did not involve the storage devices but are a test of the file system
software and CPU speed. Some special file systems never access storage devices.

8.3.14 Special File Systems

The intent of a file system is usually to store data persistently, but there are spe-
cial file system types used for other purposes, including temporary files (/tmp), ker-
nel device paths (/dev), and system statistics (/proc).

8.3.15 Access Timestamps

Many file systems support access timestamps, which record the time that each file
and directory was accessed (read). This causes file metadata to be updated when-
ever files are read, creating a write workload that consumes disk I/O resources.
Section 8.8, Tuning, shows how to turn off these updates.

Some file systems optimize access timestamp writes by deferring and grouping
them to reduce interference with the active workload.

Table 8-2 Example File System Operation Latencies

Operation Average (μs)

open() 2.2

close() 0.7

read() 4 Kbytes (cached) 3.3

read() 128 Kbytes (cached) 13.9

write() 4 Kbytes (async) 9.3

write() 128 Kbytes (async) 55.2

8.4 Architecture 337

8.3.16 Capacity

When file systems fill, performance may degrade for a couple of reasons. When writ-
ing new data, it may take more time to locate the free blocks on disk for computa-
tion, and any disk I/O needed. Areas of free space on disk are likely to be smaller
and more sparsely located, degrading performance due to smaller I/O or random I/O.

How much of a problem this is depends on the file system type, its on-disk layout,
and its storage devices. Various file system types are described in the next section.

8.4 Architecture

This section introduces generic and specific file system architecture, beginning
with the I/O stack, VFS, file system caches and features, common file system types,
volumes, and pools. Such background is useful when determining which file sys-
tem components to analyze and tune. For deeper internals and other file system
topics, refer to source code, if available, and external documentation. Some of these
are listed at the end of this chapter.

8.4.1 File System I/O Stack

Figure 8.6 depicts a general model of the file system I/O stack. Specific compo-
nents and layers depend on the operating system type, version, and file systems
used. See Chapter 3, Operating Systems, for the full diagram.

This shows the path of I/O through the kernel. The path from system calls direct
to the disk device subsystem is raw I/O. The path via VFS and the file system is
file system I/O, including direct I/O which skips the file system cache.

8.4.2 VFS

VFS (the virtual file system interface) provides a common interface for different
file system types. Its location is shown in Figure 8.7.

Some operating systems (including the original SunOS implementation) treat
VFS as two interfaces: VFS and vnode, as was logically divided in the earlier
model of a file system [McDougall 06a]. VFS includes file-system-wide operations,
such as mount and umount. The vnode interface includes VFS inode (vnode) file
operations such as open, close, read, and write.

The terminology used by the Linux VFS interface can be a little confusing, since
it reuses the terms inodes and superblocks to refer to VFS objects—terms that
originated from Unix file system on-disk data structures. The terms used for Linux

338 Chapter 8 � File Systems

on-disk data structures are usually prefixed with their file system type, for exam-
ple, ext4_inode and ext4_super_block. These VFS inodes and VFS superblocks are
in-memory only.

The VFS interface can also serve as a common location for measuring the per-
formance of any file system. Doing this may be possible using operating-system-
supplied statistics or static or dynamic tracing.

Figure 8-6 Generic file system I/O stack

Figure 8-7 Virtual file system interface

8.4 Architecture 339

8.4.3 File System Caches

Unix originally had only the buffer cache to improve the performance of block
device access. Nowadays, Linux and Solaris have multiple different cache types.
This section begins with Solaris-based systems, to discuss the origins of some of
these.

Solaris

An overview of file system caches on Solaris-based systems is shown in Figure 8.8,
showing caches for both UFS and ZFS.

Three of these caches are operating-system-generic: the old buffer cache, the
page cache, and the DNLC. The remainder are file-system-specific and are
explained later.

Old Buffer Cache

Original Unix used a buffer cache at the block device interface to cache disk device
blocks. This was a separate, fixed-size cache and, with the addition of the page cache,
presented tuning problems when balancing different workloads between them, as
well as double caching and synchronization overhead. These problems have largely

Figure 8-8 Solaris file system caches

340 Chapter 8 � File Systems

been addressed by using the page cache to store the buffer cache, an approach intro-
duced by SunOS called the unified buffer cache, as shown in Figure 8.9.

In Solaris, the original (“old”) buffer cache still exists, used only for UFS inode
and file metadata, which are addressed by their block location and not by file. Its
size is dynamic, and access counts are observable from kstat.

The inode cache also grows dynamically, holding at least all inodes for open files
(referenced), and those mapped by the DNLC. A number of additional inodes are
kept cached on an idle queue.

Page Cache

The page cache was introduced during a virtual memory rewrite for SunOS 4 in
1985 and added to SVR4 [Vahalia 96]. It cached virtual memory pages, including
mapped file system pages. It was more efficient for file access than the buffer
cache, which required translation from file offset to disk offset for each lookup.

Multiple file system types use the page cache, including the original consumers
UFS and NFS (but not ZFS). The size of the page cache is dynamic, and it will
grow to use available memory, freeing it again when applications need it.

Pages of memory that are dirty, and are being used for a file system, are writ-
ten to disk by a kernel thread called the file system flush daemon (fsflush), which
periodically scans the entire page cache. If there is a system memory deficit,
another kernel thread, the page-out daemon (pageout, also known as the page
scanner), may also find and schedule dirty pages to be written to disk so that it can
free the memory pages for reuse (see Chapter 7, Memory). For observability,

Figure 8-9 Original and unified buffer cache

8.4 Architecture 341

pageout and fsflush show up as PIDs 2 and 3, even though they are kernel threads,
not processes.

There are two main kernel drivers for the page cache: segvn, to map files to pro-
cess address spaces, and segmap, to cache file system reads and writes. See Chap-
ter 7, Memory, for more details about these and the page scanner.

DNLC

The directory name lookup cache (DNLC) remembers directory-entry-to-vnode
mappings and was developed in the early 1980s by Kevin Robert Elz. It improves
the performance of path name lookups (e.g., via open()) because when a path
name is traversed, each name lookup can check the DNLC for a direct vnode map-
ping, instead of stepping through the directory contents. The DNLC has been
designed for performance and scalability, with entries stored in a hash table, which
is hashed by the parent vnode and directory entry name.

Various capability and performance features have been added to the Solaris
DNLC over the years. The DNLC originally used pointers for the hash chains, and
additional pointers for an LRU list. Solaris 2.4 dropped the LRU pointers, which
avoided LRU list lock contention. LRU behavior was then implemented by freeing
from the tails of the hash chains. Solaris 8 added two new features: negative cach-
ing, which remembers lookups for nonexistent entries, and directory caching, to
deliberately cache entire directories. Negative caching aids the performance of
failed lookups, which commonly occur for library path lookup. Directory caching
improves performance during file creation by obviating the need to scan the direc-
tory to see if the new file name is already in use.

The DNLC size is adjustable using tunables, and the current size and hit and
miss counts are observable from kstat.

Linux

Figure 8.10 gives an overview of file system caches on Linux, showing generic
caches available for standard file system types.

Buffer Cache

Linux originally used a buffer cache as with Unix. Since Linux 2.4, the buffer
cache has been stored in the page cache (hence the dotted border in Figure 8.10)
following the SunOS unified buffer approach, avoiding the double caching and syn-
chronization overhead. The buffer cache functionality still exists, improving the
performance of block device I/O.

The size of the buffer cache is dynamic and is observable from /proc.

342 Chapter 8 � File Systems

Page Cache

The page cache caches virtual memory pages, including file system pages, improv-
ing the performance of file and directory I/O. The size of the page cache is dynamic,
and it will grow to use available memory, freeing it again when applications need it
(along with paging, as controlled by swappiness; see Chapter 7, Memory).

Pages of memory that are dirty (modified) and are for use by a file system are
flushed to disk by kernel threads. Prior to Linux 2.6.32, there was a pool of page
dirty flush (pdflush) threads, between two and eight as needed. These have since
been replaced by the flusher threads (named flush), which are created per device to
better balance the per-device workload and improve throughput. Pages are flushed
to disk for the following reasons:

� After an interval (30 s)

� The sync(), fsync(), or msync() system calls

� Too many dirty pages (dirty_ratio)

� No available pages in the page cache

If there is a system memory deficit, another kernel thread, the page-out dae-
mon (kswapd, also known as the page scanner), may also find and schedule dirty
pages to be written to disk so that it can free the memory pages for reuse (see

Figure 8-10 Linux file system caches

8.4 Architecture 343

Chapter 7, Memory). For observability, the kswapd and flush threads are visible as
kernel tasks from operating system performance tools.

See Chapter 7, Memory, for more details about the page scanner.

Dentry Cache

The dentry cache (Dcache) remembers mappings from directory entry (struct den-
try) to VFS inode, much like the earlier Unix DNLC. This improves the perfor-
mance of path name lookups (e.g., via open()), as when a path name is traversed,
each name lookup can check the Dcache for a direct inode mapping, instead of
stepping through the directory contents. The Dcache entries are stored in a hash
table for fast and scalable lookup (hashed by the parent dentry and directory entry
name).

Performance has been further improved over the years, including with the read-
copy-update-walk (RCU-walk) algorithm [1]. This attempts to walk the path name
without updating dentry reference counts, which were causing scalability issues
due to cache coherency with high rates on multi-CPU systems. If a dentry is
encountered that isn’t in the cache, RCU-walk reverts to the slower reference-
count walk (ref-walk), since reference counts will be necessary during file system
lookup and blocking. For busy workloads, it’s expected that the dentrys will likely
be cached, and so the RCU-walk approach will succeed.

The Dcache also performs negative caching, which remembers lookups for non-
existent entries. This improves the performance of failed lookups, which com-
monly occur for library path lookup.

The Dcache grows dynamically, shrinking via LRU when the system needs more
memory. Its size can be seen via /proc.

Inode Cache

This cache contains VFS inodes (struct inode), each describing properties of a
file system object, many of which are returned via the stat() system call. These
properties are frequently accessed for file system workloads, such as checking per-
missions when opening files, or updating timestamps during modification. These
VFS inodes are stored on a hash table for fast and scalable lookup (hashed by
inode number and file system superblock), although most of the lookups will be
done via the dentry cache.

The inode cache grows dynamically, holding at least all inodes mapped by the
Dcache. When there is system memory pressure, the inode cache will shrink, drop-
ping inodes that do not have associated dentries. Its size can be seen via /proc.

344 Chapter 8 � File Systems

8.4.4 File System Features

Apart from caching, other key file system features that affect performance are
described here.

Block versus Extent

Block-based file systems store data in fixed-size blocks, referenced by pointers
stored in metadata blocks. For large files this can require many block pointers and
metadata blocks, and the placement of blocks may become scattered, leading to
random I/O. Some block-based file systems attempt to place blocks contiguously to
avoid this. Another approach is to use variable block sizes, so that larger sizes can
be used as the file grows, which also reduces the metadata overhead.

Extent-based file systems preallocate contiguous space for files (extents), grow-
ing them as needed. For the cost of space overhead, this improves streaming per-
formance and can improve random I/O performance as file data is localized.

Journaling

A file system journal (or log) records changes to the file system so that in the event
of a system crash, changes can be replayed atomically—either succeeding in their
entirety or failing. This allows file systems to recover to a consistent state quickly.
Non-journaled file systems can become corrupted during a system crash, if data
and metadata relating to a change were incompletely written. Recovering from
such a crash requires walking all file system structures, which can take hours for
large (terabytes) file systems.

The journal is written to disk synchronously, and for some file systems it can be
configured to use a separate device. Some journals record both data and metadata,
which consumes storage I/O resources as all I/O is written twice. Others write only
metadata and maintain data integrity by employing copy-on-write.

There is a file system type that consists of only a journal: a log-structured file
system, where all data and metadata updates are written to a continuous and cir-
cular log. This optimizes write performance, as writes are always sequential and
can be merged to use larger I/O sizes.

Copy-on-Write

A copy-on-write (COW) file system does not overwrite existing blocks but instead
follows these steps:

1. Write blocks to a new location (a new copy).

2. Update references to new blocks.

3. Add old blocks to the free list.

8.4 Architecture 345

This helps file system integrity in the event of a system failure and also improves
performance by turning random writes into sequential ones.

Scrubbing

This is a file system feature that asynchronously reads all data blocks and verifies
checksums, to detect failed drives as early as possible, ideally while the failure is
still recoverable due to RAID. However, scrubbing read I/O can negatively affect
performance, so it should be issued at a low priority.

8.4.5 File System Types

Much of this chapter describes generic characteristics that can be applied to all file
system types. The following sections summarize specific performance features for
commonly used file systems. Their analysis and tuning are covered in later sections.

FFS

Many file systems are based on FFS, which was designed to address issues with
the original Unix file system.1 Some background can help explain the state of file
systems today.

The original Unix file system on-disk layout consisted of a table of inodes, 512-
byte storage blocks, and a superblock of information used when allocating
resources ([Ritchie 74], [Lions 77]). The inode table and storage blocks divided disk
partitions into two ranges, which caused performance issues when seeking
between them. Another issue was the use of the small fixed-block size, 512 bytes,
which limited throughput and increased the amount of metadata (pointers)
required to store large files. An experiment to double this to 1,024 bytes, and the
bottleneck then encountered, was described by [McKusick 84]:

Although the throughput had doubled, the old file system was still using only about four
percent of the disk bandwidth. The main problem was that although the free list was
initially ordered for optimal access, it quickly became scrambled as files were created
and removed. Eventually the free list became entirely random, causing files to have
their blocks allocated randomly over the disk. This forced a seek before every block
access. Although old file systems provided transfer rates of up to 175 kilobytes per sec-
ond when they were first created, this rate deteriorated to 30 kilobytes per second after
a few weeks of moderate use because of this randomization of data block placement.

1. The original Unix file system is not to be confused with later file systems called UFS, which
are based on FFS. There are also different versions of UFS—the term is clearly overloaded!

346 Chapter 8 � File Systems

This excerpt describes free list fragmentation, which decreases performance over
time as the file system is used.

The Berkeley Fast File System (FFS) improved performance by splitting the par-
tition into numerous cylinder groups, shown in Figure 8.11, each with its own inode
array and data blocks. File inodes and data were kept within one cylinder group
where possible, as pictured in Figure 8.12, reducing disk seek. Other related data
was also placed nearby, including the inodes for a directory and its entries. The
design of an inode was similar [Bach 86] (triply indirect blocks are not shown here).

The block size was increased to a 4 Kbyte minimum, improving throughput. This
reduced the number of data blocks necessary to store a file, and therefore the num-
ber of indirect blocks needed to refer to the data blocks. The number of required indi-
rect pointer blocks was further reduced because they were also larger. For space
efficiency with small files, each block could be split into 1 Kbyte fragments.

Figure 8-11 Cylinder groups

Figure 8-12 inode data structure

8.4 Architecture 347

Another performance feature of FFS was block interleaving: placing sequential
file blocks on disk with a spacing between them of one or more blocks [Doeppner
10]. These extra blocks gave the kernel and the processor time to issue the next
sequential file read, as they were more directly involved with controlling the disk
at the time. Without interleaving, the next block may pass the disk head before it
is ready to issue the read, causing latency as it waits for almost a full rotation.

UFS

FFS was introduced in SunOS 1.0 in 1984 as UFS [McDougall 06a]. Various fea-
tures were added to SunOS UFS during the next two decades: I/O clustering, file
system growth, multiterabyte support, logging, direct I/O, snapshots, access con-
trols lists (ACLs,) and extended attributes. Linux currently has support to read
UFS, but not to write it, instead supporting another UFS-like file system (ext3).

Key UFS performance features include the following:

� I/O clustering: This groups data blocks on disk by delaying writes until a
cluster is filled, allowing them to be placed sequentially. When sequential
read workloads are detected, UFS performs prefetch (which it called read-
ahead) by reading these clusters.

� Logging (journaling): for metadata only. This improves boot performance
after a system crash, as log replay can avoid needing to run fsck (file system
check). It may also improve the performance of some write workloads by
coalescing metadata writes.

� Direct I/O: to bypass the page cache and avoid double caching for applica-
tions such as databases.

Configurable features are documented in the mkfs_ufs(1M) man page. For
more about UFS and its internals, see Solaris Internals, 2nd Edition, Chapter 15
[McDougall 06a].

ext3

The Linux extended file system (ext) was developed in 1992 as the first file system
for Linux and its VFS, based on the original Unix file system. The second version,
ext2 in 1993, included multiple timestamps and cylinder groups from FFS. The
third version, ext3 in 1999, includes file system growth and journaling.

Key performance features, including those added since its release, are:

� Journaling: either ordered mode, for metadata only, or journal mode, for
metadata and data. Journaling improves boot performance after a system

348 Chapter 8 � File Systems

crash, avoiding the need to run fsck. It may also improve the performance of
some write workloads by coalescing metadata writes.

� Journal device: An external journal device can be used, so that the journal
workload doesn’t contend with the read workload.

� Orlov block allocator: This spreads top-level directories across cylinder
groups, so that the subdirectories and contents are more likely to be colocated,
reducing random I/O.

� Directory indexes: These add hashed B-trees to the file system for faster
directory lookups.

Configurable features are documented in the MKE2FS(8) man page.

ext4

The Linux ext4 file system was released in 2008, extending ext3 with various fea-
tures and performance improvements: extents, large capacity, preallocation with
fallocate(), delayed allocation, journal checksumming, faster fsck, multiblock
allocator, nanosecond timestamps, and snapshots.

Key performance features, including those added since its release, are

� Extents: Extents improve contiguous placement, reducing random I/O and
increasing the I/O size for sequential I/O.

� Preallocation: Via the fallocate() syscall, this allows applications to pre-
allocate space that is likely contiguous, improving later write performance.

� Delayed allocation: Block allocation is delayed until it is flushed to disk,
allowing writes to group (via the multiblock allocator), reducing fragmentation.

� Faster fsck: Unallocated blocks and inode entries are marked, reducing
fsck time.

Configurable features are documented in the MKE2FS(8) man page. Some of the
features, such as extents, can be applied to ext3 file systems.

ZFS

ZFS was developed by Sun Microsystems and released in 2005, combining the file
system with the volume manager and including numerous enterprise features:
pooled storage, logging, COW, ARC, large capacity, variable-size blocks, dynamic
striping, multiple prefetch streams, snapshots, clones, compression, scrubbing, and
128-bit checksums. Additional features were added in updates, including (some of
these will be explained more in a moment) hot spares, double-parity RAID, gzip
compression, SLOG, L2ARC, user and group quotas, triple-parity RAID, data

8.4 Architecture 349

deduplication, hybrid RAID allocation, and encryption. This feature set has made
ZFS an attractive choice for file servers (filers), which have been developed by Sun/
Oracle and other companies based on the open-sourced ZFS version.

Key performance features, including those added since its release, are

� Pooled storage: All storage devices are placed in a pool, from which file sys-
tems are created. This allows all devices to be used in parallel for maximum
throughput and IOPS. Different RAID types can be used: 0, 1, 10, Z (based on
RAID-5), Z2 (double-parity), and Z3 (triple-parity).

� COW: groups and writes data sequentially.

� Logging: ZFS flushes transaction groups (TXGs) of changes, which succeed
or fail as a whole so that the on-disk format is always consistent. These also
batch writes for improved asynchronous write throughput.

� ARC: The Adaptive Replacement Cache achieves a high cache hit rate by
using multiple cache algorithms at the same time: most recently used (MRU)
and most frequently used (MFU). Main memory is balanced between these
based on their performance, which is known by maintaining extra metadata
(ghost lists) to see how each would perform if it ruled all of main memory.

� Variable block sizes: Each file system has a configurable maximum block
size (record size) that can be picked to match the workload. Smaller sizes are
used for smaller files.

� Dynamic striping: This stripes across all storage devices for maximum
throughput and includes extra devices in the stripe as they are added.

� Intelligent prefetch: ZFS applies different types of prefetch as appropriate:
for metadata, for znodes (file contents), and for vdevs (virtual devices).

� Multiple prefetch streams: Multiple streaming readers on one file can cre-
ate a random I/O workload as the file system seeks between them (this was a
problem in UFS). ZFS tracks individual prefetch streams, allowing new
streams to join them, and issues I/O efficiently.

� Snapshots: Due to the COW architecture, snapshots can be created nearly
instantaneously, deferring the copying of new blocks until needed.

� ZIO pipeline: Device I/O is processed by a pipeline of stages, each stage ser-
viced by a pool of threads to improve performance.

� Compression: Multiple algorithms are supported, which usually reduce per-
formance due to the CPU overhead. The lzjb (Lempel-Ziv Jeff Bonwick) option
is lightweight and can marginally improve storage performance by reducing
I/O load (as it is compressed) at the cost of some CPU.

350 Chapter 8 � File Systems

� SLOG: The ZFS separate intent log allows synchronous writes to be written
to separate devices, avoiding contention with the pool disks workload. Writes
to the SLOG are read only in the event of system failure, for replay. These can
greatly improve the performance of synchronous writes.

� L2ARC: The Level 2 ARC is a second level of cache after main memory,
intended to cache random read workloads on flash-memory-based solid-state
disks (SSDs). It does not buffer write workloads and contains only clean data
that already resides on the storage pool disks. The L2ARC extends the cach-
ing reach of the system, helping avoid the performance cliff when a workload
grows beyond main memory caching. It also provides hysteresis as popula-
tion is slow compared to main memory, and it will contain copies of long-term
data. Should a perturbation pollute the main memory cache, the L2ARC can
recover the “hot” main memory cache state quickly.

� vdev cache: similar to the role of the original buffer cache, ZFS uses sepa-
rate vdev caches per virtual device, which support LRU and read-ahead.
(This may be disabled in some operating systems.)

� Data deduplication: a file-system-level feature that avoids recording multi-
ple copies of the same data. This feature has significant performance implica-
tions, both good (reduced device I/O) and bad (when the hash table no longer
fits in main memory, device I/O is inflated, perhaps significantly). The initial
version is intended only for workloads where the hash table is expected to
always fit in main memory.

The L2ARC and SLOG are part of the ZFS Hybrid Storage Pool (HSP) model, to
intelligently use both read- and write-optimized SSDs in a ZFS storage pool. The
read-optimized SSDs have a price/performance ratio in between main memory and
disk, making them suitable for use as the extra caching tier.

Other minor performance features have been included, such as “Don’t mind the
gap,” to issue larger reads when appropriate, even if small parts (gaps) are not
needed; and hybrid RAID, to support different policies in one pool.

There is a behavior of ZFS that can reduce performance when compared to other
file systems: by default, ZFS issues cache flush commands to the storage devices,
to ensure that writes have completed in the case of a power outage. This is one of
the ZFS integrity features; however, it comes at a cost: it can induce latency for
ZFS operations that must wait for the cache flush, and some workloads can per-
form worse on ZFS when compared to other file systems. ZFS can be tuned to not
perform the cache flush to improve performance; however, as with other file sys-
tems, this introduces the potential of partial writes and data corruption on power
outage, depending on the storage devices used.

8.4 Architecture 351

There are two projects for bringing ZFS to Linux. One is ZFS on Linux, pro-
duced at Lawrence Livermore National Laboratory [2], which is a native kernel
port. The other is ZFS-FUSE, which runs ZFS in user-space, which is expected to
have worse performance due to context-switching overheads.

btrfs

The B-tree file system (btrfs) is based on copy-on-write B-trees. This is a modern
file system and volume manager combined architecture, similar to ZFS, and is
expected to eventually offer a similar feature set. Current features include pooled
storage, large capacity, extents, COW, volume growth and shrinking, subvolumes,
block device addition and removal, snapshots, clones, compression, and CRC-32C
checksums. Development was begun by Oracle in 2007, and it is still in heavy
development and considered unstable.

Key performance features include the following:

� Pooled storage: Storage devices are placed in a volume, from which file sys-
tems are created. This allows all devices to be used in parallel for maximum
throughput and IOPS. Different RAID types can be used: 0, 1, and 10.

� COW: groups and writes data sequentially.

� Online balancing: Objects may be moved between storage devices to bal-
ance their workload.

� Extents: improve sequential layout and performance.

� Snapshots: Due to the COW architecture, snapshots can be created nearly
instantaneously, deferring the copying of new blocks until needed.

� Compression: supports zlib and LZO.

� Journaling: A per-subvolume log tree can be created to journal synchronous
COW workloads.

Planned performance-related features include RAID-5 and 6, object-level RAID,
incremental dumps, and data deduplication.

8.4.6 Volumes and Pools

Historically, file systems were built upon a single disk or disk partition. Volumes
and pools allow file systems to be built upon multiple disks and can be configured
using different RAID strategies (see Chapter 9, Disks).

Volumes present multiple disks as one virtual disk, upon which the file system
is built. When built upon whole disks (and not slices or partitions), volumes iso-
late workloads, reducing performance issues of contention.

352 Chapter 8 � File Systems

Volume management software includes the Logical Volume Manager (LVM) for
Linux-based systems, and the Solaris Volume Manager (SVM). Volumes, or virtual
disks, may also be provided by hardware RAID controllers.

Pooled storage includes multiple disks in a storage pool, from which multiple file
systems can be created. This is shown in Figure 8.13 with volumes for compari-
son. Pooled storage is more flexible than volume storage, as file systems can grow
and shrink regardless of the backing devices. This approach is used by modern file
systems, including ZFS and btrfs.

Pooled storage can use all disk devices for all file systems, improving perfor-
mance. Workloads are not isolated; in some cases, multiple pools may be used to
separate workloads, given the trade-off of some flexibility, as disk devices must be
initially placed in one pool or another.

Additional performance considerations when using either software volume man-
agers or pooled storage include the following:

� Stripe width: matching this to the workload.

� Observability: The virtual device utilization can be confusing; check the
separate physical devices.

� CPU overhead: especially when performing RAID parity computation. This
has become less of an issue with modern, faster CPUs.

� Rebuilding: Also called resilvering, this is when an empty disk is added to a
RAID group (e.g., replacing a failed disk), and it is populated with the neces-
sary data to join the group. This can significantly affect performance as it
consumes I/O resources and may last for hours or even days.

Rebuilding may become a worse problem in the future, as the capacity of storage
devices increases faster than their throughput, increasing rebuild time.

Figure 8-13 Volumes and pools

8.5 Methodology 353

8.5 Methodology

This section describes various strategies and exercises for file system analysis and
tuning. The topics are summarized in Table 8.3.

See Chapter 2, Methodology, for more strategies and the introduction to many of
these.

These may be followed individually or used in combination. My suggestion is to
use the following strategies to start with, in this order: latency analysis, perfor-
mance monitoring, workload characterization, micro-benchmarking, static analy-
sis, and event tracing. You may come up with a different combination and ordering
that works best in your environment.

Section 8.6, Analysis, shows operating system tools for applying these methods.

8.5.1 Disk Analysis

A common strategy has been to ignore the file system and focus on disk perfor-
mance instead. This assumes that the worst I/O is disk I/O, and so by analyzing
only the disks you have conveniently focused on the expected source of problems.

With simpler file systems and smaller caches, this generally worked. Nowadays,
this approach becomes confusing and misses entire classes of issues (see Section
8.3.12, Logical versus Physical I/O).

Table 8-3 File System Performance Methodologies

Methodology Types

Disk analysis observational analysis

Latency analysis observational analysis

Workload characterization observational analysis, capacity planning

Performance monitoring observational analysis, capacity planning

Event tracing observational analysis

Static performance tuning observational analysis, capacity planning

Cache tuning observational analysis, tuning

Workload separation tuning

In-memory file systems tuning

Micro-benchmarking experimental analysis

354 Chapter 8 � File Systems

8.5.2 Latency Analysis

For latency analysis, begin by measuring the latency of file system operations. This
should include all object operations, not just I/O (e.g., include sync()).

operation latency = time (operation completion) - time (operation request)

These times can be measured from one of four nearby layers, as shown in Table 8.4.

Choosing the layer may depend on tool availability. Check the following:

� Application documentation: Some applications already provide file sys-
tem latency metrics, or the capability to enable their collection.

Table 8-4 Targets (Layers) for Analyzing File System Latency

Layer Pros Cons

Application Closest measure of the effect of file
system latency on the application;
can also inspect application context
and determine if latency is occurring
during the application’s primary
function, or if it is asynchronous.

Technique varies between applica-
tions and application software
versions.

Syscall
interface

Well-documented interface. Com-
monly observable via operating sys-
tem tools and static tracing.

Syscalls catch all file system types,
including non-storage file systems
(statistics, sockets), which may be
confusing unless filtered. Adding to
the confusion, there may also be
multiple syscalls for the same file sys-
tem function. For example, for read,
there may be read(), pread(),
read64(), etc., all of which need to
be measured.

VFS Standard interface for all file systems;
one call for file system operations
(e.g., vfs_write())

VFS traces all file system types,
including non-storage file systems,
which may be confusing unless
filtered.

Top of file
system

Target file system type traced only;
some file system internal context for
extended details.

File-system-specific; tracing tech-
nique may vary between file system
software versions (although the file
system may have a VFS-like interface
that maps to VFS, and as such
doesn’t change often).

8.5 Methodology 355

� Operating system tools: Operating systems may also provide metrics, ide-
ally as separate statistics for each file system or application.

� Dynamic tracing: If your system has dynamic tracing, all layers can be
inspected via custom scripts, without restarting anything.

Latency may be presented as

� Per-interval averages: for example, average read latency per second

� Full distributions: as histograms or heat maps; see Section 8.6.18,
Visualizations

� Per-operation latency: listing every operation; see Section 8.5.5, Event
Tracing

For file systems that have a high cache hit rate (over 99%), per-interval averages
can become dominated by cache hit latency. This may be unfortunate when there are
isolated instances of high latency (outliers) that are important to identify but diffi-
cult to see from an average. Examining full distributions or per-operation latency
allows such outliers to be investigated, along with the effect of different tiers of
latency, including file system cache hits and misses.

Once high latency has been found, continue with drill-down analysis into the
file system to determine the origin.

Transaction Cost

Another way to present file system latency is as the total time spent waiting on the
file system during an application transaction (e.g., a database query):

percent time in file system = 100 * total blocking file system latency/application
transaction time

This allows the cost of file system operations to be quantified in terms of applica-
tion performance, and performance improvements to be predicted. The metric may
be presented as the average either for all transactions during an interval, or for
individual transactions.

Figure 8.14 shows the time spent on an application thread that is servicing a
transaction. This transaction issues a single file system read; the application
blocks and waits for its completion, transitioning to off-CPU. The total blocking
time in this case is the time for the single file system read. If multiple blocking I/O
were called during a transaction, the total time is their sum.

As a specific example, an application transaction takes 200 ms, during which it
waits for a total of 180 ms on multiple file system I/O. The time that the application

356 Chapter 8 � File Systems

was blocked by the file system is 90% (100 * 180 ms/200 ms). Eliminating file sys-
tem latency may improve performance by up to 10x.

As another example, if an application transaction takes 200 ms, during which
only 2 ms was spent in the file system, the file system—and the entire disk I/O
stack—is contributing only 1% to the transaction runtime. This result is incredi-
bly useful, as it can steer the performance investigation to the real source of
latency and avoid time wasted investigating where it isn’t.

If the application were issuing I/O as non-blocking, the application can continue
to execute on-CPU while the file system responds. In this case, the blocking file
system latency measures only the time the application was blocked off-CPU.

8.5.3 Workload Characterization

Characterizing the load applied is an important exercise when capacity planning,
benchmarking, and simulating workloads. It can also lead to some of the largest
performance gains by identifying unnecessary work that can be eliminated.

Here are the basic attributes for characterizing the file system workload:

� Operation rate and operation types

� File I/O throughput

� File I/O size

� Read/write ratio

� Synchronous write ratio

� Random versus sequential file offset access

Operation rate and throughput are defined in Section 8.1, Terminology. Synchro-
nous writes and random versus sequential were described in Section 8.3, Concepts.

These characteristics can vary from second to second, especially for timed applica-
tion tasks that execute at intervals. To better characterize the workload, capture

Figure 8-14 Application and file system latency

8.5 Methodology 357

maximum values as well as averages. Better still, examine the full distribution of
values over time.

Here is an example workload description, to show how these attributes can be
expressed together:

On a financial trading database, the file system has a random read workload, averag-
ing 18,000 reads/s with an average read size of 2 Kbytes. The total operation rate is
21,000 ops/s, which includes reads, stats, opens, closes, and around 200 synchronous
writes/s. The write rate is steady while the read rate varies, up to a peak of 39,000
reads/s.

These characteristics may be described in terms of a single file system instance, or
all instances on a system of the same type.

Advanced Workload Characterization/Checklist

Additional details may be included to characterize the workload. These have been
listed here as questions for consideration, which may also serve as a checklist
when studying file system issues thoroughly:

� What is the file system cache hit ratio? Miss rate?

� What are the file system cache capacity and current usage?

� What other caches are present (directory, inode, buffer) and what are their
statistics?

� Which applications or users are using the file system?

� What files and directories are being accessed? Created and deleted?

� Have any errors been encountered? Was this due to invalid requests, or issues
from the file system?

� Why is file system I/O issued (user-level call path)?

� To what degree is the file system I/O application synchronous?

� What is the distribution of I/O arrival times?

Many of these questions can be posed per application or per file. Any of them may
also be checked over time, to look for maximums and minimums, and time-based
variations. Also see Section 2.5.10, Workload Characterization, in Chapter 2,
Methodology, which provides a higher-level summary of the characteristics to mea-
sure (who, why, what, how).

358 Chapter 8 � File Systems

Performance Characterization

The following questions (contrast with the previous workload characterization
questions) characterize the resulting performance of the workload:

� What is the average file system operation latency?

� Are there any high-latency outliers?

� What is the full distribution of operation latency?

� Are system resource controls for file system or disk I/O present and active?

The first three questions may be asked for each operation type separately.

8.5.4 Performance Monitoring

Performance monitoring can identify active issues and patterns of behavior over
time. Key metrics for file system performance are

� Operation rate

� Operation latency

The operation rate is the most basic characteristic of the applied workload, and the
latency is the resulting performance. The value for normal or bad latency depends
on your workload, environment, and latency requirements. If you aren’t sure,
micro-benchmarks of known-to-be-good versus bad workloads may be performed to
investigate latency (e.g., workloads that usually hit from the file system cache ver-
sus those that usually miss). See Section 8.7, Experimentation.

The operation latency metric may be monitored as a per-second average and can
include other values such as the maximum and standard deviation. Ideally, it
would be possible to inspect the full distribution of latency, such as by using a his-
togram or heat map, to look for outliers and other patterns.

Both rate and latency may also be recorded for each operation type (read, write,
stat, open, close, etc.). Doing this will greatly help investigations of workload and
performance changes, by identifying differences in particular operation types.

For systems that impose file-system-based resource controls (e.g., ZFS I/O throt-
tling), statistics can be included to show if and when throttling was in use.

8.5.5 Event Tracing

Event tracing captures details for every file system operation. For observational
analysis, this is the last resort. It adds performance overhead due to the capturing

8.5 Methodology 359

and saving of these details, which are usually written to log files for later inspec-
tion. These log files can contain the following details for each operation:

� File system type

� File system mount point

� Operation type: read, write, stat, open, close, mkdir, . . .

� Operation size (if applicable): bytes

� Operation start timestamp: when the operation was issued to the file system

� Operation completion timestamp: when the file system completed the
operation

� Operation completion status: errors

� Path name (if applicable)

� Process ID

� Application name

The start and completion timestamps allow operation latency to be calculated.
Many tracing frameworks allow calculations to be performed while tracing, so the
latency could be calculated and included in the log. It could also be used to filter
the output, so that only operations slower than a certain threshold are logged. File
system operation rates can reach the millions per second, so filtering may be a
very good idea, when appropriate.

Event tracing may be performed at any of the four layers listed in Section 8.5.2,
Latency Analysis. See Section 8.6, Analysis, for examples.

8.5.6 Static Performance Tuning

Static performance tuning focuses on issues of the configured environment. For file
system performance, examine the following aspects of the static configuration:

� How many file systems are mounted and actively used?

� What is the file system record size?

� Are access timestamps enabled?

� What other file system options are enabled (compression, encryption, . . .)?

� How has the file system cache been configured? Maximum size?

� How have other caches (directory, inode, buffer) been configured?

� Is a second-level cache present and in use?

360 Chapter 8 � File Systems

� How many storage devices are present and in use?

� What is the storage device configuration? RAID?

� Which file system types are used?

� What is the version of the file system (or kernel)?

� Are there file system bugs/patches that should be considered?

� Are there resource controls in use for file system I/O?

Answering these questions can reveal configuration choices that have been over-
looked. Sometimes a system has been configured for one workload, and then repur-
posed for another. This method will revisit those choices.

8.5.7 Cache Tuning

The kernel and file system may use many different caches, including a buffer
cache, directory cache, inode cache, and file system (page) cache. Various caches
were described in Section 8.4, Architecture, which can be tuned as described in
Section 2.5.17, Cache Tuning, in Chapter 2, Methodology. In summary, check
which caches exist, check that they are working, check how well they are working,
check their sizes, then tune the workload for the cache and tune the cache for the
workload.

8.5.8 Workload Separation

Some types of workloads can perform better when configured to use their own file
systems and disk devices. This approach has been known as using “separate spin-
dles,” since creating random I/O by seeking between two different workload loca-
tions is particularly bad for rotational disks (see Chapter 9, Disks).

For example, a database may benefit from having separate file systems and
disks for its log files and its database files.

8.5.9 Memory-Based File Systems

Another configuration approach to improve performance is the use of memory-
based file systems. These are kept in memory so that the file contents are served
as quickly as possible. They are usually deployed only as work-arounds, as many
applications have their own (configurable) application-specific cache in process
memory, which is more efficient to access than going via a file and syscall inter-
face. Memory-based file systems are also often not worth the effort on modern sys-
tems, which employ large file system caches.

8.5 Methodology 361

/tmp

The standard /tmp file system is used to store temporary files and is commonly
configured to be memory-based. For example, Solaris uses tmpfs for /tmp, which is
a memory-based file system backed by swap devices. There is also a tmpfs for
Linux, which is used for a few special file system types.

8.5.10 Micro-Benchmarking

Benchmark tools for file system and disk benchmarking (of which there are many)
can be used to test the performance of different file system types or settings within
a file system, for given workloads. Typical factors that may be tested include

� Operation types: the rate of reads, writes, and other file system operations

� I/O size: 1 byte up to 1 Mbyte and larger

� File offset pattern: random or sequential

� Random-access pattern: uniform random or Pareto distribution

� Write type: asynchronous or synchronous (O_SYNC)

� Working set size: how well it fits in the file system cache

� Concurrency: number of I/O in flight, or number of threads performing I/O

� Memory mapping: file access via mmap(), instead of read()/write()

� Cache state: whether the file system cache is “cold” (unpopulated) or “warm”

� File system tunables: may include compression, data deduplication, and so on

Common combinations include random read, sequential read, random write, and
sequential write.

The most critical factor is often the working set size: the volume of data that is
accessed during the benchmark. Depending on the benchmark, this may be the
total size of the files in use. A small working set size may return entirely from the
file system cache in main memory (DRAM). A large working set size may return
mostly from storage devices (disks). The performance difference can be multiple
orders of magnitude.

Consider the general expectations for different benchmarks, which include the
total size of the files (working set size), in Table 8.5.

Some file system benchmark tools are not clear about what they are testing and
may imply a disk benchmark but use a small total file size and return entirely
from cache instead. See Section 8.3.12, Logical versus Physical I/O, to understand
the difference between testing the file system (logical I/O) and testing the disks
(physical I/O).

362 Chapter 8 � File Systems

Some disk benchmark tools operate via the file system by using direct I/O to
avoid caching and buffering. The file system still plays a minor role, adding code
path overheads and mapping differences between file and on-disk placement. This
is sometimes a deliberate strategy for testing the file system: analyzing worst-case
performance (0% cache hit rate). This strategy is becoming increasingly unrealis-
tic, as applications are more commonly expecting a significant cache hit rate due to
larger memory systems.

See Chapter 12, Benchmarking, for more on this general topic.

8.6 Analysis

This section introduces file system performance analysis tools for Linux- and
Solaris-based operating systems. See the previous section for strategies to follow
when using these.

The tools in this section are listed in Table 8.6.

Table 8-5 File System Benchmark Expectations

System Memory Total File Size Benchmark Expectation

128 Gbytes 10 Gbytes random read 100% cache hits

128 Gbytes 1,000 Gbytes random read mostly disk reads, with ~12%
cache hits

128 Gbytes 10 Gbytes sequential read 100% cache hits

128 Gbytes 1,000 Gbytes sequential read mixture of cache hits (most due
to prefetch) and disk reads

128 Gbytes 10 Gbytes writes mostly cache hits (buffering),
with some blocking on writes
depending on file system
behavior

128 Gbytes 10 Gbytes synchronous writes 100% disk writes

Table 8-6 File System Analysis Tools

Linux Solaris Description

— vfsstat file system statistics, including average latency

— fsstat file system statistics

strace truss system call debuggers

DTrace DTrace dynamic tracing of file system operations, latency

8.6 Analysis 363

This is a selection of tools and capabilities to support the preceding methodol-
ogy section, beginning with system-wide and per-file-system observability, then
operation and latency analysis, and finishing with cache statistics. See the tool
documentation, including man pages, for full references of their features.

While your interest may be in Linux- or Solaris-based systems only, consider the
other operating system tools and the observability that they provide for a different
perspective.

8.6.1 vfsstat

vfsstat(1) is an iostat(1M)-like tool for the VFS level, first developed by Bill
Pijewski for SmartOS. It prints per-interval summaries of file system operations (logi-
cal I/O), including the average latency experienced by the user-level applications. This
information is more relevant to application performance than the statistics from
iostat(1), which show disk I/O (physical I/O), including asynchronous types.

The first line of output is the summary-since-boot, followed by per-second summaries.
The columns include

� r/s, w/s: file system reads and writes per second

� kr/s, kw/s: file system kilobytes read and written per second

free — cache capacity statistics

top top includes memory usage summary

vmstat vmstat virtual memory statistics

sar sar various statistics, including historic

slabtop mdb ::kmastat kernel slab allocator statistics

— fcachestat various cache hit rates and sizes

/proc/meminfo mdb ::memstat kernel memory breakdowns

— kstat various file system and cache statistics

$ vfsstat 1
 r/s w/s kr/s kw/s ractv wactv read_t writ_t %r %w d/s del_t zone
 2.5 0.1 1.5 0.0 0.0 0.0 0.0 2.6 0 0 0.0 8.0 dev (5)
1540.4 0.0 95014.9 0.0 0.0 0.0 0.0 0.0 3 0 0.0 0.0 dev (5)
1991.7 0.0 74931.5 0.0 0.0 0.0 0.0 0.0 4 0 0.0 0.0 dev (5)
1989.8 0.0 84697.0 0.0 0.0 0.0 0.0 0.0 4 0 0.0 0.0 dev (5)
[...]

Table 8-6 File System Analysis Tools (Continued)

Linux Solaris Description

364 Chapter 8 � File Systems

� ractv, wactv: average number of read and write operations in service

� read_t, writ_t: average VFS read and write latency (ms)

� %r, %w: percent of time VFS read and write operations are pending

� d/s, del_t: I/O throttle delays per second, and average delay in microseconds

vfsstat(1) provides information for characterizing the workload as well as
the resulting performance. It also includes information about ZFS I/O throttling,
which is used in SmartOS cloud computing environments to balance tenants.

The previous example shows a read workload of between 1.5 and 2 K reads/s,
and a throughput between 73 and 92 Mbytes/s. The average latency is so small
that it has been rounded down to 0.0 ms. This workload, which is likely returning
from the file system cache, is keeping the file system busy (active) only between
3% and 4% of the time.

8.6.2 fsstat

The Solaris fsstat tool reports various file system statistics:

These can be used for workload characterization and can be examined on a per-
file-system basis. Note that fsstat does not include latency statistics.

8.6.3 strace, truss

Previous operating system tools for measuring file system latency in detail
included the debuggers for the syscall interface, such as strace(1) for Linux and
truss(1) for Solaris. Such debuggers can hurt performance and may be suitable
for use only when the performance overhead is acceptable and other methods to
analyze latency are not possible.

This example shows strace(1) timing reads on an ext4 file system:

$ fsstat /var 1
 new name name attr attr lookup rddir read read write write
 file remov chng get set ops ops ops bytes ops bytes
8.98K 520 177 1.61M 2.26K 3.57M 18.2K 3.78M 6.85G 2.98M 9.10G /var
 0 0 0 0 0 0 0 0 0 1 152 /var
 0 0 0 1 0 3 0 2 24 1 109 /var
 0 0 0 51 0 35 0 0 0 1 14 /var
[...]

$ strace -ttT -p 845
[...]
18:41:01.513110 read(9, "\334\260/\224\356k..."..., 65536) = 65536 <0.018225>

8.6 Analysis 365

The -tt option prints the relative timestamps on the left, and -T prints the sys-
call times on the right. Each read() was for 64 Kbytes, the first taking 18 ms, fol-
lowed by 56 μs (likely cached), then 5 ms. The reads were to file descriptor 9. To
check that this is to a file system (and isn’t a socket), either the open() syscall
will be visible in earlier strace(1) output, or another tool such as lsof(8) can
be used.

8.6.4 DTrace

DTrace can be used to examine file system behavior from the syscall interface,
from the VFS interface, and from within the file system. These abilities support
workload characterization and latency analysis.

The following sections introduce DTrace for file system analysis on Solaris- and
Linux-based systems. Unless noted, the DTrace commands are intended for both
operating systems. A DTrace primer was included in Chapter 4, Observability
Tools.

Operation Counts

Summarizing file system operations by application and by type provides useful
measures for workload characterization.

This Solaris one-liner counts file system operations by application name, using
the fsinfo (file system info) provider:

The output shows that processes named node performed 25,340 file system opera-
tions while tracing. A tick-1s probe can be included to report by-second summa-
ries, allowing rates to be observed.

18:41:01.531646 read(9, "\371X\265|\244\317..."..., 65536) = 65536 <0.000056>
18:41:01.531984 read(9, "\357\311\347\1\241..."..., 65536) = 65536 <0.005760>
18:41:01.538151 read(9, "*\263\264\204|\370..."..., 65536) = 65536 <0.000033>
18:41:01.538549 read(9, "\205q\327\304f\370..."..., 65536) = 65536 <0.002033>
18:41:01.540923 read(9, "\6\2738>zw\321\353..."..., 65536) = 65536 <0.000032>

dtrace -n 'fsinfo::: { @[execname] = count(); }'
dtrace: description 'fsinfo::: ' matched 46 probes
^C
[...]
 fsflush 970
 splunkd 2147
 nginx 7338
 node 25340

366 Chapter 8 � File Systems

The type of operation can be reported by aggregating on probename instead of
execname. For example:

This also shows how a particular application can be examined, in this case filter-
ing on "splunkd".

On Linux, file system operations can be observed from the syscall and fbt pro-
viders, until fsinfo is available. For example, using fbt to trace kernel vfs functions:

The largest number of file system operations during this trace was called by appli-
cations with the name sysbench (a benchmarking tool [3]).

Counting the type of operation by aggregating on probefunc:

This matched a sysbench process while it performed a random read-write bench-
mark, showing the ratio of operations. To strip the vfs_ from the output, instead
of @[probefunc], use @[probefunc + 4] (pointer plus offset).

dtrace -n 'fsinfo::: /execname == "splunkd"/ { @[probename] = count(); }'
dtrace: description 'fsinfo::: ' matched 46 probes
^C
[...]
 read 13
 write 16
 seek 22
 rwlock 29
 rwunlock 29
 getattr 131
 lookup 565

dtrace -n 'fbt::vfs_*:entry { @[execname] = count(); }'
dtrace: description 'fbt::vfs_*:entry ' matched 39 probes
^C
[...]
 sshd 913
 ls 1367
 bash 1462
 sysbench 10295

dtrace -n 'fbt::vfs_*:entry /execname == "sysbench"/ { @[probefunc] = count(); }'
dtrace: description 'fbt::vfs_*:entry ' matched 39 probes
^C
 vfs_write 4001
 vfs_read 5999

8.6 Analysis 367

File Opens

The previous one-liners used DTrace to summarize event counts. The following
demonstrates printing all event data separately, in this case, details for the
open() system call, system-wide:

opensnoop is a DTrace-based tool from the DTraceToolkit; it is included by default in
Oracle Solaris 11 and Mac OS X and is available for other OSs. It provides a certain
view of the file system workload, showing processes, path names, and errors for
open()s, which is useful for both performance analysis and troubleshooting. In this
example, the nginx process encountered a failed open (ERR 2 == file not found).

Other popular DTraceToolkit scripts include rwsnoop and rwtop, which trace
and summarize logical I/O. rwsnoop traces the read() and write() syscalls, and
rwtop uses the sysinfo provider to summarize throughput (bytes).

System Call Latency

This one-liner measures file system latency at the system call interface, summariz-
ing it as a histogram in units of nanoseconds:

opensnoop -ve
STRTIME UID PID COMM FD ERR PATH
2012 Sep 13 23:30:55 45821 24218 ruby 23 0 /var/run/name_service_door
2012 Sep 13 23:30:55 45821 24218 ruby 23 0 /etc/inet/ipnodes
2012 Sep 13 23:30:55 80 3505 nginx -1 2 /public/dev-3/vendor/
2012 Sep 13 23:30:56 80 25308 php-fpm 5 0 /public/etc/config.xml
2012 Sep 13 23:30:56 80 25308 php-fpm 5 0 /public/etc/local.xml
2012 Sep 13 23:30:56 80 25308 php-fpm 5 0 /public/etc/local.xml
[...]

dtrace -n 'syscall::read:entry /fds[arg0].fi_fs == "zfs"/ {
 self->start = timestamp; }
syscall::read:return /self->start/ {
 @["ns"] = quantize(timestamp - self->start); self->start = 0; }'
dtrace: description 'syscall::read:entry ' matched 2 probes
^C
 ns
 value ------------- Distribution ------------- count
 1024 | 0
 2048 | 2
 4096 |@@@@@@ 103
 8192 |@@@@@@@@@@ 162
 16384 | 3
 32768 | 0
 65536 | 0
 131072 | 1
 262144 | 0
 524288 | 1
 1048576 | 3
 2097152 |@@@ 48
 4194304 |@@@@@@@@@@@@@@@@@@@@@ 345
 8388608 | 0

368 Chapter 8 � File Systems

The distribution shows two peaks, the first between 4 and 16 μs (cache hits), and
the second between 2 and 8 ms (disk reads). Instead of quantize(), the avg()
function could be used to show the average (mean). However, that would average
the two peaks, which would be misleading.

This approach traces individual system calls, in this case read(). To capture all
file system operations, all related system calls need to be traced, including vari-
ants of each type (e.g., pread(), pread64()). This can be performed by building a
script to capture all types, or, for a given application, checking which system call
types it uses (via DTrace) and then tracing only those.

This approach also captures all file system activity, including non-storage file
systems such as sockfs. For this one-liner, the file system type was filtered by
checking the value of fds[arg0].fi_fs, which translates the file descriptor
(arg0 for read()) into the file system type (fds[].fi_fs). Other useful filters
can be applied in this context, such as by application name or PID, mount point, or
path name components.

Note that this latency may or may not directly affect application performance, as
mentioned in Section 8.3.1, File System Latency. It depends on whether the latency
is encountered during an application request, or if it is during an asynchronous
background task. You can use DTrace to begin answering this question by capturing
the user-level stack trace for syscall I/O, which may explain why it was performed
(e.g., aggregate using @[ustack(), "ns"]). This can become an advanced activity
depending on the complexity of the application and its source code.

VFS Latency

The VFS interface can be traced, either via a static provider (if one exists) or via
dynamic tracing (the fbt provider).

On Solaris, VFS can be traced via the fop_*() functions, for example:

Unlike the previous syscall example, this shows a fully cached workload. This one-
liner also has broader visibility as it matches all read variants.

dtrace -n 'fbt::fop_read:entry /stringof(args[0]->v_op->vnop_name) == "zfs"/ {
 self->start = timestamp; } fbt::fop_read:return /self->start/ {
 @["ns"] = quantize(timestamp - self->start); self->start = 0; }'
dtrace: description 'fbt::fop_read:entry ' matched 2 probes
^C
 ns
 value ------------- Distribution ------------- count
 512 | 0
 1024 | 12
 2048 |@@@@@@@@@@@@@@@@@@@@@@ 2127
 4096 |@@@@@@@@@@@@@@@@@@ 1732
 8192 | 10
 16384 | 0

8.6 Analysis 369

Other VFS operations can be similarly traced. Listing entry probes:

Note that the fbt provider is considered an unstable interface, so any fbt-based
one-liners or scripts may need updates to match the kernel as it changes (which is
fairly unlikely, as the VFS implementation doesn’t change often).

On Linux, using a DTrace prototype:

This time the predicate matches on the ext4 file system. Peaks for both cache hits
and misses can be seen, with expected latency.

Listing VFS function entry probes:

dtrace -ln 'fbt::fop_*:entry'
 ID PROVIDER MODULE FUNCTION NAME
15164 fbt genunix fop_inactive entry
16462 fbt genunix fop_addmap entry
16466 fbt genunix fop_access entry
16599 fbt genunix fop_create entry
16611 fbt genunix fop_delmap entry
16763 fbt genunix fop_frlock entry
16990 fbt genunix fop_lookup entry
17100 fbt genunix fop_close entry
[...39 lines truncaed...]

dtrace -n 'fbt::vfs_read:entry /stringof(((struct file *)arg0)->
f_path.dentry->d_sb->s_type->name) == "ext4"/ { self->start = timestamp; }
 fbt::vfs_read:return /self->start/ {
 @["ns"] = quantize(timestamp - self->start); self->start = 0; }'
dtrace: description 'fbt::vfs_read:entry ' matched 2 probes
^C
 ns
 value ------------- Distribution ------------- count
 1024 | 0
 2048 |@ 13
 4096 |@@@@@@@@@@@@ 114
 8192 |@@@ 26
 16384 |@@@ 32
 32768 |@@@ 29
 65536 |@@ 23
 131072 |@ 9
 262144 |@ 5
 524288 |@@ 14
 1048576 |@ 6
 2097152 |@@@ 31
 4194304 |@@@@@@ 55
 8388608 |@@ 14
 16777216 | 0

dtrace -ln 'fbt::vfs_*:entry'
 ID PROVIDER MODULE FUNCTION NAME
15518 fbt kernel vfs_llseek entry
15552 fbt kernel vfs_write entry
15554 fbt kernel vfs_read entry

continues

370 Chapter 8 � File Systems

Block Device I/O Stacks

Examining kernel stack traces for block device I/O is a great way to see how file
systems work internally, and the code path that leads to disk I/O. It can also help
explain the cause of additional disk I/O (asynchronous, metadata) beyond the
expected rate for the workload.

Exposing ZFS internals by frequency counting kernel stack traces when block
device I/O is issued:

The output shows stack traces followed by their occurrence counts while tracing.
The top stack shows an asynchronous ZFS I/O (from a taskq thread running the
ZIO pipeline) and a synchronous I/O originating from a read syscall. To gather

15572 fbt kernel vfs_writev entry
15574 fbt kernel vfs_readv entry
15678 fbt kernel vfs_kern_mount entry
15776 fbt kernel vfs_getattr entry
15778 fbt kernel vfs_fstatat entry
[...31 lines truncated...]

dtrace -n 'io:::start { @[stack()] = count(); }'
dtrace: description 'io:::start ' matched 6 probes
^C
[...]

 genunix`ldi_strategy+0x53
 zfs`vdev_disk_io_start+0xcc
 zfs`zio_vdev_io_start+0xab
 zfs`zio_execute+0x88
 zfs`vdev_queue_io_done+0x70
 zfs`zio_vdev_io_done+0x80
 zfs`zio_execute+0x88
 genunix`taskq_thread+0x2d0
 unix`thread_start+0x8

 1070

 genunix`ldi_strategy+0x53
 zfs`vdev_disk_io_start+0xcc
 zfs`zio_vdev_io_start+0xab
 zfs`zio_execute+0x88
 zfs`zio_nowait+0x21
 zfs`vdev_mirror_io_start+0xcd
 zfs`zio_vdev_io_start+0x250
 zfs`zio_execute+0x88
 zfs`zio_nowait+0x21
 zfs`arc_read_nolock+0x4f9
 zfs`arc_read+0x96
 zfs`dsl_read+0x44
 zfs`dbuf_read_impl+0x166
 zfs`dbuf_read+0xab
 zfs`dmu_buf_hold_array_by_dnode+0x189

 zfs`dmu_buf_hold_array+0x78
 zfs`dmu_read_uio+0x5c
 zfs`zfs_read+0x1a3
 genunix`fop_read+0x8b
 genunix`read+0x2a7

 2690

8.6 Analysis 371

further details, each line of these stacks may be traced individually using dynamic
tracing via the DTrace fbt provider.

Exposing ext4 using the same approach:

This path shows a read() syscall triggering a read-ahead by the page cache.

File System Internals

When necessary, latency can be pinpointed in the file system by tracing its imple-
mentation.

Listing ZFS function entry probes on Solaris:

ZFS has a straightforward mapping to VFS, making high-level tracing easy. For
example, tracing ZFS read latency:

dtrace -n 'io:::start { @[stack()] = count(); }'
dtrace: description 'io:::start ' matched 6 probes
^C
[...]

 kernel`generic_make_request+0x68
 kernel`submit_bio+0x87
 kernel`do_mpage_readpage+0x436
 kernel`mpage_readpages+0xd7
 kernel`ext4_readpages+0x1d
 kernel`__do_page_cache_readahead+0x1c7

 kernel`ra_submit+0x21
 kernel`ondemand_readahead+0x115
 kernel`page_cache_async_readahead+0x80
 kernel`generic_file_aio_read+0x48b

 kernel`do_sync_read+0xd2
 kernel`vfs_read+0xb0
 kernel`sys_read+0x4a
 kernel`system_call_fastpath+0x16

 109

dtrace -ln 'fbt:zfs::entry'
 ID PROVIDER MODULE FUNCTION NAME
47553 fbt zfs buf_hash entry
47555 fbt zfs buf_discard_identity entry
47557 fbt zfs buf_hash_find entry
47559 fbt zfs buf_hash_insert entry
47561 fbt zfs buf_hash_remove entry
47563 fbt zfs buf_fini entry
47565 fbt zfs hdr_cons entry
47567 fbt zfs buf_cons entry
[...2328 lines truncated...]

dtrace -n 'fbt::zfs_read:entry { self->start = timestamp; }
 fbt::zfs_read:return /self->start/ {
 @["ns"] = quantize(timestamp - self->start); self->start = 0; }'
dtrace: description 'fbt::zfs_read:entry ' matched 2 probes

continues

372 Chapter 8 � File Systems

The output shows a peak of I/O around 8 μs (cache hits), and another around 4 ms
(cache misses). This works because zfs_read() synchronously blocks on the sys-
call. Deeper into ZFS internals, functions will issue I/O but not block waiting for
its completion, and so measuring I/O time becomes more involved.

ext4 file system internals on Linux can be traced in a similar way:

Some of these functions are synchronous, for example, ext4_readdir(), whose
latency can be measured in the same way as the earlier zfs_read() example.
Other functions are not synchronous, including ext4_readpage() and ext4_
readpages(). To measure their latency, times between I/O issue and completion
will need to be associated and compared. Or trace higher in the stack, as was dem-
onstrated in the VFS example.

Slow Event Tracing

DTrace can print details for every file system operation, just as iosnoop from
Chapter 9, Disks, prints every disk I/O. Tracing at the file system level, however,
can produce a much greater volume of output, since it includes file system cache

^C

 ns
 value ------------- Distribution ------------- count
 512 | 0
 1024 |@ 6
 2048 |@@ 18
 4096 |@@@@@@@ 79
 8192 |@@@@@@@@@@@@@@@@@ 191
 16384 |@@@@@@@@@@ 112
 32768 |@ 14
 65536 | 1
 131072 | 1
 262144 | 0
 524288 | 0
 1048576 | 0
 2097152 | 0
 4194304 |@@@ 31
 8388608 |@ 9
 16777216 | 0

dtrace -ln 'fbt::ext4_*:entry'
 ID PROVIDER MODULE FUNCTION NAME
20430 fbt kernel ext4_lock_group.clone.14 entry
20432 fbt kernel ext4_get_group_no_and_offset entry
20434 fbt kernel ext4_block_in_group entry
20436 fbt kernel ext4_get_group_desc entry
20438 fbt kernel ext4_has_free_blocks entry
20440 fbt kernel ext4_claim_free_blocks entry
20442 fbt kernel ext4_should_retry_alloc entry
20444 fbt kernel ext4_new_meta_blocks entry
[...347 lines truncated...]

8.6 Analysis 373

hits. One way around this is to print only slow operations, which helps in analyz-
ing a particular class of issue: latency outliers.

The zfsslower.d script [4] prints ZFS-level operations slower than a set number
of milliseconds:

This redacted output shows file system operations slower than 10 ms.

Advanced Tracing

Dynamic tracing can explore file systems in more detail when needed for advanced
analysis. To provide an idea of the possibilities, Table 8.7 shows scripts from the
(108-page) File Systems chapter of DTrace [Gregg 11] (these scripts are also avail-
able online [4]).

./zfsslower.d 10
TIME PROCESS D KB ms FILE
2011 May 17 01:23:12 mysqld R 16 19 /z01/opt/mysql5-64/data/xxxxx.ibd
2011 May 17 01:23:13 mysqld W 16 10 /z01/var/mysql/xxxxx.ibd
2011 May 17 01:23:33 mysqld W 16 11 /z01/var/mysql/xxxxx.ibd
2011 May 17 01:23:33 mysqld W 16 10 /z01/var/mysql/xxxxx.ibd
2011 May 17 01:23:51 httpd R 56 14 /z01/home/xxxxx/xxxxx/xxxxx
^C

Table 8-7 Advanced File System Tracing Scripts

Script Layer Description

sysfs.d syscall shows reads and writes by process and mount point

fsrwcount.d syscall counts read/write syscalls by file system and type

fsrwtime.d syscall measures time in read/write syscalls by file system

fsrtpk.d syscall measures file system read time per kilobyte

rwsnoop syscall traces syscall read and writes, with FS details

mmap.d syscall traces mmap() of files with details

fserrors.d syscall shows file system syscall errors

fswho.d VFS summarizes processes and file reads/writes

readtype.d VFS compares logical versus physical file system reads

writetype.d VFS compares logical versus physical file system writes

fssnoop.d VFS traces file system calls using fsinfo

solvfssnoop.d VFS traces file system calls using fbt on Solaris

sollife.d VFS shows file creation and deletion on Solaris

fsflush_cpu.d VFS shows file system flush tracer CPU time

continues

374 Chapter 8 � File Systems

While this degree of observability is incredible, many of these dynamic tracing
scripts are tied to specific kernel internals and will require maintenance to match
changes in newer kernel versions.

As an example of advanced tracing, the following DTraceToolkit script traced
events from multiple layers while a 50 Kbyte file was read from UFS:

fsflush.d VFS shows file system flush statistics

dnlcps.d DNLC shows DNLC hits by process

ufssnoop.d UFS traces UFS calls directly using fbt

ufsreadahead.d UFS shows UFS read-ahead rates for sequential I/O

ufsimiss.d UFS traces UFS inode cache misses with details

zfssnoop.d ZFS traces ZFS calls directly using fbt

zfslower.d ZFS traces slow ZFS reads/writes

zioprint.d ZFS shows ZIO event dump

ziosnoop.d ZFS shows ZIO event tracing, detailed

ziotype.d ZFS shows ZIO type summary by pool

perturbation.d ZFS shows ZFS read/write time during given perturbation

spasync.d ZFS shows storage pool allocator (SPA) sync tracing with details

nfswizard.d NFS summarizes NFS performance client-side

nfs3sizes.d NFS shows NFSv3 logical versus physical read sizes

nfs3fileread.d NFS shows NFSv3 logical versus physical reads by file

tmpusers.d TMP shows users of /tmp and tmpfs by tracing open()

tmpgetpage.d TMP measures whether tmpfs paging is occurring, with I/O time

./fsrw.d
Event Device RW Size Offset Path
sc-read . R 8192 0 /extra1/50k
 fop_read . R 8192 0 /extra1/50k
 disk_io cmdk0 R 8192 0 /extra1/50k
 disk_ra cmdk0 R 8192 8 /extra1/50k
sc-read . R 8192 8 /extra1/50k
 fop_read . R 8192 8 /extra1/50k
 disk_ra cmdk0 R 34816 16 /extra1/50k
sc-read . R 8192 16 /extra1/50k
 fop_read . R 8192 16 /extra1/50k
sc-read . R 8192 24 /extra1/50k
 fop_read . R 8192 24 /extra1/50k
sc-read . R 8192 32 /extra1/50k
 fop_read . R 8192 32 /extra1/50k
sc-read . R 8192 40 /extra1/50k
 fop_read . R 8192 40 /extra1/50k

Table 8-7 Advanced File System Tracing Scripts (Continued)

Script Layer Description

8.6 Analysis 375

The first event was a syscall read (sc-read) of 8 Kbytes, which was processed as a
VFS read (fop_read) and then a disk read (disk_io) followed by a read-ahead of
the next 8 Kbytes (disk_ra). The next syscall read at offset 8 (Kbytes) does not
trigger a disk read, since it is cached, but instead triggers a read-ahead starting at
offset 16 for the next 34 Kbytes—the rest of the 50 Kbyte file. The remaining sys-
calls return from cache, and only the VFS events can be seen.

8.6.5 SystemTap

SystemTap can also be used on Linux systems for dynamic tracing of file system
events. See Section 4.4, SystemTap, in Chapter 4, Observability Tools, and Appen-
dix E for help with converting the previous DTrace scripts.

8.6.6 LatencyTOP

LatencyTOP is a tool for reporting sources of latency, aggregated system-wide and
per process [5]. It was developed for Linux and has since been ported to Solaris-
based systems.

File system latency is reported by LatencyTOP. For example:

The top section is the system-wide summary, and the bottom is for a single
gzip(1) process, which is compressing a file. Most of the latency for gzip(1) is
due to Reading from file at 70.2%, with 27.2% in synchronous write as the
new compressed file is written.

LatencyTOP requires the following kernel options: CONFIG_LATENCYTOP
and CONFIG_HAVE_LATENCYTOP_SUPPORT.

sc-read . R 8192 48 /extra1/50k
 fop_read . R 8192 48 /extra1/50k
sc-read . R 8192 50 /extra1/50k
 fop_read . R 8192 50 /extra1/50k
^C

Cause Maximum Percentage
Reading from file 209.6 msec 61.9 %
synchronous write 82.6 msec 24.0 %
Marking inode dirty 7.9 msec 2.2 %
Waiting for a process to die 4.6 msec 1.5 %
Waiting for event (select) 3.6 msec 10.1 %
Page fault 0.2 msec 0.2 %

Process gzip (10969) Total: 442.4 msec
Reading from file 209.6 msec 70.2 %
synchronous write 82.6 msec 27.2 %
Marking inode dirty 7.9 msec 2.5 %

376 Chapter 8 � File Systems

8.6.7 free

The Linux free(1) command shows memory and swap statistics:

The buffers column shows the buffer cache size, and the cached column shows
the page cache size. The -m option was used to present the output in megabytes.

8.6.8 top

Some versions of the top(1) command include file system cache details. This line
from a Linux top includes the buffer cache size, which is also reported by free(1):

See Chapter 6, CPUs, for more about top(1).

8.6.9 vmstat

The vmstat(1) command, like top(1), also may include details on the file sys-
tem cache. For more details on vmstat(1), see Chapter 7, Memory.

Linux

The following runs vmstat(1) with an interval of 1 to provide one-second
updates:

The buff column shows the buffer cache size, and cache shows the page cache
size, both in kilobytes.

$ free -m
 total used free shared buffers cached
Mem: 868 799 68 0 130 608
-/+ buffers/cache: 60 808
Swap: 0 0 0

Mem: 889484k total, 819056k used, 70428k free, 134024k buffers

$ vmstat 1
procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu-----
 r b swpd free buff cache si so bi bo in cs us sy id wa st
 0 0 0 70296 134024 623100 0 0 1 1 7 6 0 0 100 0 0
 0 0 0 68900 134024 623100 0 0 0 0 46 96 1 2 97 0 0
[...]

8.6 Analysis 377

Solaris

The default output of Solaris vmstat(1) does not show cache sizes but is worth
mentioning here:

The free column is in kilobytes. Since Solaris 9, the page cache is treated as free
memory, and its size is included in this column.

The -p option shows page-in/page-out breakdowns by type:

This allows file system paging to be differentiated from anonymous paging (low
memory). Unfortunately, the file system columns do not currently include ZFS file
system events.

8.6.10 sar

The system activity reporter, sar(1), provides various file system statistics and
may be configured to record these historically. sar(1) is mentioned in various
chapters in this book for the different statistics it provides.

Linux

Executing sar(1) with an interval for reporting current activity:

$ vmstat 1
 kthr memory page disk faults cpu
 r b w swap free re mf pi po fr de sr rm s0 s1 -- in sy cs us sy id
 0 0 36 88812996 3883956 324 3099 5 1 1 0 6 -1546 -0 92 0 28521 79147 37128 5 5 90
 1 0 317 86830644 2981520 23 137 43 2 2 0 0 0 0 1 0 23063 59809 31454 1 3 96
 0 0 317 86826504 2977588 1876 40670 0 0 0 0 0 0 0 0 0 44264 110777 32383 15 10 76
[...]

$ vmstat -p 1 5
 memory page executable anonymous filesystem
 swap free re mf fr de sr epi epo epf api apo apf fpi fpo fpf
 8740292 1290896 75 168 0 0 12 0 0 0 11 0 0 0 0 0
 10828352 3214300 155 42 0 0 0 0 0 0 0 0 0 12931 0 0
 10828352 3221976 483 62 0 0 0 0 0 0 0 0 0 15568 0 0
[...]

sar -v 1
Linux 2.6.35.14-103.fc14.x86_64 (fedora0) 07/13/2012 _x86_64_ (1 CPU)

12:07:32 AM dentunusd file-nr inode-nr pty-nr
12:07:33 AM 11498 384 14029 6
12:07:34 AM 11498 384 14029 6
[...]

378 Chapter 8 � File Systems

The -v option provides the following columns:

� dentunusd: directory entry cache unused count (available entries)

� file-nr: number of file handles in use

� inode-nr: number of inodes in use

There is also a -r option, which prints kbbuffers and kbcached columns for buf-
fer cache and page cache sizes, in kilobytes.

Solaris

Executing sar(1) with an interval and count to report current activity:

The -v option provides inod-sz, showing the inode cache size and maximum.
There is also a -b option to provide statistics on the old buffer cache.

8.6.11 slabtop

The Linux slabtop(1) command prints information about the kernel slab caches,
some of which are used for file system caches:

Without the -o output mode, slabtop(1) will refresh and update the screen.
Slabs may include

$ sar -v 1 1
[...]
03:16:47 proc-sz ov inod-sz ov file-sz ov lock-sz
03:16:48 95/16346 0 7895/70485 0 882/882 0 0/0

slabtop -o
 Active / Total Objects (% used) : 151827 / 165106 (92.0%)
 Active / Total Slabs (% used) : 7599 / 7599 (100.0%)
 Active / Total Caches (% used) : 68 / 101 (67.3%)
 Active / Total Size (% used) : 44974.72K / 47255.53K (95.2%)
 Minimum / Average / Maximum Object : 0.01K / 0.29K / 8.00K

 OBJS ACTIVE USE OBJ SIZE SLABS OBJ/SLAB CACHE SIZE NAME
 35802 27164 75% 0.10K 918 39 3672K buffer_head
 26607 26515 99% 0.19K 1267 21 5068K dentry
 26046 25948 99% 0.86K 2894 9 23152K ext4_inode_cache
 12240 10095 82% 0.05K 144 85 576K shared_policy_node
 11228 11228 100% 0.14K 401 28 1604K sysfs_dir_cache
 9968 9616 96% 0.07K 178 56 712K selinux_inode_security
 6846 6846 100% 0.55K 489 14 3912K inode_cache
 5632 5632 100% 0.01K 11 512 44K kmalloc-8
[...]

8.6 Analysis 379

� dentry: dentry cache

� inode_cache: inode cache

� ext3_inode_cache: inode cache for ext3

� ext4_inode_cache: inode cache for ext4

slabtop(1) uses /proc/slabinfo, which exists if CONFIG_SLAB is enabled.

8.6.12 mdb ::kmastat

Detailed kernel memory allocator statistics on Solaris can be viewed using the
::kmastat in mdb -k, which includes various caches in use by the file systems:

The output is many pages long, showing all of the kernel allocator caches. The
memory in use column can be studied to determine which caches are storing the
most data, providing an insight into kernel memory usage. In this example, 23.5
Gbytes was in use by the ZFS 8 Kbyte file data cache. Allocations to specific caches
can also be dynamically traced if needed, to identify the code path and consumer.

8.6.13 fcachestat

This is an open-source tool for Solaris-based systems that uses the Perl
Sun::Solaris::Kstat library and prints a summary suitable for cache activity analy-
sis on UFS:

> ::kmastat
cache buf buf buf memory alloc alloc
name size in use total in use succeed fail
------------------------------ ----- --------- --------- ------ ---------- -----
kmem_magazine_1 16 7438 18323 292K 90621 0
[...]
zfs_file_data_4096 4K 223 1024 4M 1011 0
zfs_file_data_8192 8K 2964824 3079872 23.5G 8487977 0
zfs_file_data_12288 12K 137 440 5.50M 435 0
zfs_file_data_16384 16K 26 176 2.75M 185 0
[...]
ufs_inode_cache 368 27061 27070 10.6M 27062 0
[...]

~/Dev/CacheKit/CacheKit-0.96> ./fcachestat 1 5
 --- dnlc --- -- inode --- -- ufsbuf -- -- segmap -- -- segvn ---
 %hit total %hit total %hit total %hit total %hit total
 99.45 476.6M 15.35 914326 99.78 7.4M 93.41 10.7M 99.89 413.7M
 70.99 2754 17.52 799 98.71 696 52.51 2510 35.94 2799
 72.64 1356 0.00 371 98.94 377 51.10 1779 35.32 2421
 71.32 1231 0.00 353 96.49 427 47.23 2581 42.37 4406
 84.90 1517 0.00 229 97.27 330 48.57 1748 47.85 3162

380 Chapter 8 � File Systems

The first line is the summary-since-boot. There are five groups of columns for the
various caches and drivers. ufsbuf is the old buffer cache, and segmap and segvn
show the drivers to the page cache. The columns show hit/miss ratio as a percent
(%hit) and total number of accesses (total).

fcachestat may need updating to work properly; it is included here to show what
kinds of information can be made available from the system.2

8.6.14 /proc/meminfo

The Linux /proc/meminfo file provides a summary of memory breakdowns and is
read by tools such as free(1):

This includes the buffer cache (Buffers) and page cache (Cached) and provides
other high-level breakdowns of memory usage by the system. These are covered in
Chapter 7, Memory.

8.6.15 mdb ::memstat

The Solaris ::memstat command for mdb -k provides a high-level breakdown of
Solaris memory usage:

2. fcachestat is part of CacheKit, an experimental collection of cache analysis tools I wrote for
Solaris.

$ cat /proc/meminfo
MemTotal: 49548744 kB
MemFree: 46704484 kB
Buffers: 279280 kB
Cached: 1400792 kB
[...]

> ::memstat
Page Summary Pages MB %Tot
------------ ---------------- ---------------- ----
Kernel 3745224 14629 30%
ZFS File Data 6082651 23760 48%
Anon 2187140 8543 17%
Exec and libs 13085 51 0%
Page cache 71065 277 1%
Free (cachelist) 16778 65 0%
Free (freelist) 461617 1803 4%

Total 12577560 49131
Physical 12577559 49131

8.6 Analysis 381

This includes ZFS File Data as cached by the ARC, and Page cache, which
includes UFS cached data.

8.6.16 kstat

The raw statistics from the previous tools are available from kstat, which can be
accessed via the Perl Sun::Solaris::Kstat library, the C libkstat library, or the
kstat(1) command. The commands in Table 8.8 display groups of file system sta-
tistics, along with the number available (from a recent kernel version).

As an example of one of these:

Table 8-8 kstat Commands for File System Statistics

kstat Command Description Statistics

kstat -n segmap page cache statistics for reads/writes 23

kstat cpu_stat includes page cache statistics for mapped files 90 per CPU

kstat -n dnlcstats DNLC statistics 31

kstat -n biostats old buffer cache statistics 9

kstat -n inode_cache inode cache statistics 20

kstat -n arcstats ZFS ARC and L2ARC statistics 56

kstat zone_vfs per-zone VFS counters 18 per zone

$ kstat -n inode_cache
module: ufs instance: 0
name: inode_cache class: ufs
 cache allocs 772825
 cache frees 973443
 crtime 36.947583642
 hits 139468
 kmem allocs 214347
 kmem frees 206439
 lookup idles 0
 maxsize 70485
 maxsize reached 90170
 misses 772825
 pushes at close 0
 puts at backlist 65379
 puts at frontlist 766776
 queues to free 3148
 scans 485005142
 size 7895
 snaptime 5506613.86119402
 thread idles 722525
 vget idles 0

382 Chapter 8 � File Systems

While kstats can provide a wealth of information, they have historically not
been documented. Sometimes the statistic name is self-descriptive; sometimes it is
necessary to check the kernel source code (if available) to determine what each sta-
tistic is for.

Available statistics also vary between kernel versions. On recent SmartOS/
illumos kernels, the following counters were added:

These count file system operations that have taken longer than the described peri-
ods and record them by zone. This information can be invaluable when tracking
down file system latency on cloud computing environments.

8.6.17 Other Tools

Other tools and observability frameworks may exist for investigating file system
performance and characterizing its usage. These include

� df(1): report file system usage and capacity statistics

� mount(8): can show file system mounted options (static performance tuning)

� inotify: a Linux framework for monitoring file system events

Some file system types have their own specific performance tools, in addition to
those provided by the operating system, for example, ZFS.

ZFS

ZFS comes with zpool(1M), which has an iostat suboption for observing ZFS
pool statistics. It reports pool operation rates (reads and writes) and throughput.

A popular add-on has been the arcstat.pl tool, which reports ARC and L2ARC
size and hit and miss rates. For example:

$ kstat zone_vfs
module: zone_vfs instance: 3
name: 961ebd45-7fcc-4f18-8f90-ba1353 class: zone_vfs

100ms_ops 5
10ms_ops 73
10s_ops 0
1s_ops 1

[...]

$ arcstat 1
 time read miss miss% dmis dm% pmis pm% mmis mm% arcsz c
04:45:47 0 0 0 0 0 0 0 0 0 14G 14G
04:45:49 15K 10 0 10 0 0 0 1 0 14G 14G

8.7 Experimentation 383

The statistics are per interval and are

� read, miss: total ARC accesses, misses

� miss%, dm%, pm%, mm%: ARC miss percent total, demand, prefetch, metadata

� dmis, pmis, mmis: misses for demand, prefetch, metadata

� arcsz, c: ARC size, ARC target size

arcstat.pl is a Perl program that reads statistics from kstat.

8.6.18 Visualizations

The load applied to file systems can be plotted over time as a line graph, to help
identify time-based usage patterns. It can be useful to plot separate graphs for
reads, writes, and other file system operations.

The distribution of file system latency is expected to be bimodal: one mode at
low latency for file system cache hits, and another at high latency for cache misses
(storage device I/O). For this reason, representing the distribution as a single
value—such as a mean, mode, or median—is misleading.

One way to solve this problem is to use a visualization that shows the full distri-
bution, such as a heat map (heat maps were introduced in Chapter 2, Methodol-
ogy). One example is given in Figure 8.15, which shows the passage of time on the
x axis and I/O latency on the y axis.

This heat map shows the file system as a 1 Gbyte file is randomly read. For the
first half of the heat map, a cloud of latency is seen between 3 and 10 ms, which is
likely to reflect disk I/O. The line at the bottom shows the file system cache hits
(DRAM). A little over halfway, the file became fully cached in DRAM, and the disk
I/O cloud vanishes.

This example is from Joyent Cloud Analytics, which allows the file system oper-
ation type to be selected and isolated.

8.7 Experimentation

This section describes tools for actively testing file system performance. See Sec-
tion 8.5.10, Micro-Benchmarking, for a suggested strategy to follow.

04:45:50 23K 81 0 81 0 0 0 1 0 14G 14G
04:45:51 65K 25 0 25 0 0 0 4 0 14G 14G
[...]

384 Chapter 8 � File Systems

When using these tools, it’s a good idea to leave iostat(1) continually run-
ning to confirm that the workload that reaches disk is as expected. For example,
when testing a working set size that should easily fit in the file system cache, the
expectation with a read workload is 100% cache hits, so iostat(1) should not
show disk I/O. iostat(1) is covered in Chapter 9, Disks.

8.7.1 Ad Hoc

The dd(1) command (device-to-device copy) can be used to perform ad hoc tests of
sequential file system performance. The following commands write, then read a 1
Gbyte file named file1 with a 1 Mbyte I/O size:

The Linux version of dd(1) prints statistics on completion.

8.7.2 Micro-Benchmark Tools

There are many file system benchmark tools available, including Bonnie,
Bonnie++, iozone, tiobench, SysBench, fio, and FileBench. A few are discussed
here, in order of increasing complexity. Also see Chapter 12, Benchmarking.

Figure 8-15 File system latency heat map

write: dd if=/dev/zero of=file1 bs=1024k count=1k
read: dd if=file1 of=/dev/null bs=1024k

8.7 Experimentation 385

Bonnie, Bonnie++

The Bonnie tool is a simple C program to test several workloads on a single file,
from a single thread. It was originally written by Tim Bray in 1989 [6]. Usage is
straightforward:

Use -s to set the size of the file to test. By default, Bonnie uses 100 Mbytes, which
has entirely cached on this system:

The output includes the CPU time during each test, which at 100% is an indicator
that Bonnie never blocked on disk I/O, instead always hitting from cache and stay-
ing on-CPU.

There is a 64-bit version called Bonnie-64, which allows larger files to be tested.
There is also a rewrite in C++ called Bonnie++ by Russell Coker [7].

Unfortunately, file system benchmark tools like Bonnie can be misleading,
unless you clearly understand what is being tested. The first result, a putc() test,
can vary based on the system library implementation, which then becomes the tar-
get of the test rather than the file system. See the example in Section 12.3.2,
Active Benchmarking, in Chapter 12, Benchmarking.

fio

The Flexible IO Tester (fio), by Jens Axboe, is a customizable file system bench-
mark tool with many advanced features [8]. Two that have led me to use it instead
of other benchmark tools are

� Nonuniform random distributions, which can more accurately simulate a
real-world access pattern (e.g., -random_distribution=pareto:0.9)

� Reporting of latency percentiles, including 99.00, 99.50, 99.90, 99.95, 99.99

./Bonnie -h
usage: Bonnie [-d scratch-dir] [-s size-in-Mb] [-html] [-m machine-label]

$./Bonnie
File './Bonnie.9598', size: 104857600
Writing with putc()...done
Rewriting...done
Writing intelligently...done
Reading with getc()...done
Reading intelligently...done
Seeker 1...Seeker 3...Seeker 2...start 'em...done...done...done...
 -------Sequential Output-------- ---Sequential Input-- --Random--
 -Per Char- --Block--- -Rewrite-- -Per Char- --Block--- --Seeks---
Machine MB K/sec %CPU K/sec %CPU K/sec %CPU K/sec %CPU K/sec %CPU /sec %CPU
 100 123396 100.0 1258402 100.0 996583 100.0 126781 100.0 2187052 100.0
164190.1 299.0

386 Chapter 8 � File Systems

Here is an example output, showing a random read workload with an 8 Kbyte
I/O size, a 5 Gbyte working set size, and a nonuniform access pattern
(pareto:0.9):

The latency percentiles (clat) clearly show the range of cache hits, up to the
50th percentile in this case, due to their low latency. The remaining percentiles
show the effect of cache misses, including the tail of the queue; in this case, the
99.99th percentile is showing a 63 ms latency.

While these percentiles lack information to really understand what is probably
a multimode distribution, they do focus on the most interesting part: the tail of the
slower mode (disk I/O).

For a similar but simpler tool, you can try SysBench. On the other hand, if you
want even more control, try FileBench.

FileBench

FileBench is a programmable file system benchmark tool, where application work-
loads can be simulated by describing them in its Workload Model Language. This
allows threads with different behaviors to be simulated, and for synchronous
thread behavior to be specified. It ships with a variety of these configurations,
called personalities, including one to simulate the Oracle 9i I/O model. Unfortu-
nately, FileBench is not an easy tool to learn and use and may be of interest only to
those working on file systems full-time.

./fio --runtime=60 --time_based --clocksource=clock_gettime --name=randread --
numjobs=1 --rw=randread --random_distribution=pareto:0.9 --bs=8k --size=5g --
filename=fio.tmp
randread: (g=0): rw=randread, bs=8K-8K/8K-8K/8K-8K, ioengine=sync, iodepth=1
fio-2.0.13-97-gdd8d
Starting 1 process
Jobs: 1 (f=1): [r] [100.0% done] [3208K/0K/0K /s] [401 /0 /0 iops] [eta 00m:00s]
randread: (groupid=0, jobs=1): err= 0: pid=2864: Tue Feb 5 00:13:17 2013
 read : io=247408KB, bw=4122.2KB/s, iops=515 , runt= 60007msec
 clat (usec): min=3 , max=67928 , avg=1933.15, stdev=4383.30
 lat (usec): min=4 , max=67929 , avg=1934.40, stdev=4383.31
 clat percentiles (usec):
 | 1.00th=[5], 5.00th=[5], 10.00th=[5], 20.00th=[6],
 | 30.00th=[6], 40.00th=[6], 50.00th=[7], 60.00th=[620],
 | 70.00th=[692], 80.00th=[1688], 90.00th=[7648], 95.00th=[10304],
 | 99.00th=[19584], 99.50th=[24960], 99.90th=[39680], 99.95th=[51456],
 | 99.99th=[63744]
 bw (KB/s) : min= 1663, max=71232, per=99.87%, avg=4116.58, stdev=6504.45
 lat (usec) : 4=0.01%, 10=55.62%, 20=1.27%, 50=0.28%, 100=0.13%
 lat (usec) : 500=0.01%, 750=15.21%, 1000=4.15%
 lat (msec) : 2=3.72%, 4=2.57%, 10=11.50%, 20=4.57%, 50=0.92%
 lat (msec) : 100=0.05%
 cpu : usr=0.18%, sys=1.39%, ctx=13260, majf=0, minf=42
 IO depths : 1=100.0%, 2=0.0%, 4=0.0%, 8=0.0%, 16=0.0%, 32=0.0%, >=64=0.0%
 submit : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0%
 complete : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0%
 issued : total=r=30926/w=0/d=0, short=r=0/w=0/d=0

8.8 Tuning 387

8.7.3 Cache Flushing

Linux provides a way to flush (drop entries from) file system caches, which may be
useful for benchmarking performance from a consistent and “cold” cache state,
such as after system boot. This mechanism is described very simply in the kernel
source documentation (Documentation/sysctl/vm.txt) as

There is currently no equivalent for Solaris-based systems.

8.8 Tuning

Many tuning approaches have already been covered in Section 8.5, Methodology,
including cache tuning and workload characterization. The latter can lead to the
highest tuning wins by identifying and eliminating unnecessary work. This sec-
tion includes specific tuning parameters (tunables).

The specifics of tuning—the options available and what to set them to—depend
on the operating system version, the file system type, and the intended workload.
The following sections provide examples of what may be available and why they
may need to be tuned. Covered are application calls and two example file system
types: ext3 and ZFS. For tuning of the page cache, see Chapter 7, Memory.

8.8.1 Application Calls

Section 8.3.7, Synchronous Writes, mentioned how performance of synchronous
write workloads can be improved by using fsync() to flush a logical group of
writes, instead of individually when using the O_DSYNC/O_RSYNC open() flags.

Other calls that can improve performance include posix_fadvise() and
madvise(), which provide hints for cache eligibility.

posix_fadvise()

This library call operates on a region of a file and has the function prototype

To free pagecache:
 echo 1 > /proc/sys/vm/drop_caches
To free dentries and inodes:
 echo 2 > /proc/sys/vm/drop_caches
To free pagecache, dentries and inodes:
 echo 3 > /proc/sys/vm/drop_caches

int posix_fadvise(int fd, off_t offset, off_t len, int advice);

388 Chapter 8 � File Systems

The advice may be as shown in Table 8.9.

The kernel can use this information to improve performance, helping it decide
when best to prefetch data, and when best to cache data. This can improve the
cache hit ratio for higher-priority data, as advised by the application. See the man
page on your system for the full list of advice arguments.

posix_fadvise() was used as an example in Section 3.3.4, Differences, in
Chapter 3, Operating Systems, as support may vary depending on the kernel.

madvise()

This library call operates on a memory mapping and has the synopsis

The advice may be as shown in Table 8.10.

As with posix_fadvise(), the kernel can use this information to improve perfor-
mance, including making better caching decisions.

Table 8-9 posix_fadvise() Advice Flags

Advice Description

POSIX_FADV_SEQUENTIAL The specified data range will be accessed sequentially.

POSIX_FADV_RANDOM The specified data range will be accessed randomly.

POSIX_FADV_NOREUSE The data will not be reused.

POSIX_FADV_WILLNEED The data will be used again in the near future.

POSIX_FADV_DONTNEED The data will not be used again in the near future.

int madvise(void *addr, size_t length, int advice);

Table 8-10 madvise() Advice Flags

Advice Description

MADV_RANDOM Offsets will be accessed in random order.

MADV_SEQUENTIAL Offsets will be accessed in sequential order.

MADV_WILLNEED Data will be needed again (please cache).

MADV_DONTNEED Data will not be needed again (don’t need to cache).

8.8 Tuning 389

8.8.2 ext3

On Linux, ext2, ext3, and ext4 file systems can be tuned using the tune2fs(8)
command. Various options can also be set at mount time, either manually with the
mount(8) command, or at boot time in /boot/grub/menu.lst and /etc/fstab. The
options available are in the man pages for tune2fs(8) and mount(8), and the
current settings can be seen using tunefs -l device and mount (no options).

The noatime option can be used with mount(8) to disable file access timestamp
updates, which—if not needed for the file system users—will reduce back-end I/O,
improving overall performance.

A key option with tune2fs(8) for improving performance is

This uses hashed B-trees to speed up lookups in large directories.
The e2fsck(8) command can be used to reindex directories in a file system.

For example:

The other options for e2fsck(8) are related to checking and repairing a file
system.

8.8.3 ZFS

ZFS supports a large number of tunable parameters (called properties) per file sys-
tem, with a smaller number that can be set system-wide (/etc/system).

The file system properties can be listed using the zfs(1) command. For
example:

tune2fs -O dir_index /dev/hdX

e2fsck -D -f /dev/hdX

zfs get all zones/var
NAME PROPERTY VALUE SOURCE
zones/var type filesystem -
zones/var creation Sat Nov 19 0:37 2011 -
zones/var used 60.2G -
zones/var available 1.38T -
zones/var referenced 60.2G -
zones/var compressratio 1.00x -
zones/var mounted yes -
zones/var quota none default
zones/var reservation none default
zones/var recordsize 128K default

continues

390 Chapter 8 � File Systems

The (truncated) output includes columns for the property name, current value, and
source. The source shows how it was set: whether it was inherited from a higher-
level ZFS dataset, the default, or set locally for that file system.

The parameters can also be set using the command and are described
in the man page. Key parameters related to performance are listed in
Table 8.11.

The most important parameter to tune is usually record size, to match the appli-
cation I/O. It usually defaults to 128 Kbytes, which can be inefficient for small ran-
dom I/O. Note that this does not apply to files that are smaller than the record
size, which are saved using a dynamic record size equal to their file length.

Disabling atime can also improve performance (although its update behavior is
already optimized), if those timestamps are not needed.

Example system-wide ZFS tunables are shown in Table 8.12. (The most rele-
vant for performance have varied over time, depending on the ZFS version; the
three in the table may well change again by the time you read this.)

zones/var mountpoint legacy local
zones/var sharenfs off default
zones/var checksum on default
zones/var compression off inherited from zones
zones/var atime off inherited from zones
[...]

Table 8-11 Key ZFS Dataset Tunable Parameters

Parameter Options Description

recordsize 512 to 128 K suggested block size for files

compression on | off | lzjb | gzip |
gzip-[1–9] | zle | lz4

lightweight algorithms (e.g., lzjb) can improve
performance in some situations, by relieving
back-end I/O congestion

atime on | off access timestamp updates (causes some writes
after reads)

primarycache all | none | metadata ARC policy; cache pollution due to low-priority
file systems (e.g., archives) can be reduced by
using “none” or “metadata” (only)

secondarycache all | none | metadata L2ARC policy

logbias latency | throughput advice for synchronous writes: “latency” uses
log devices, whereas “throughput” uses pool
devices

sync standard | always |
disabled

synchronous write behavior

zfs(1M)
zfs(1M)

8.9 Exercises 391

The zfs_txg_synctime_ms and zfs_txg_timeout tunables have had their defaults
reduced over the years so that TXGs were smaller and less likely to contend with
other I/O due to queueing. As with other kernel tunables, check the vendor docu-
mentation for the full list, descriptions, and warnings. Setting these may also be
prohibited by company or vendor policy.

For more about ZFS tuning, you may like to check the “ZFS Evil Tuning Guide” [9].

8.9 Exercises

1. Answer the following questions about file system terminology:

� What is the difference between logical I/O and physical I/O?

� What is the difference between random and sequential I/O?

� What is direct I/O?

� What is non-blocking I/O?

� What is the working set size?

2. Answer the following conceptual questions:

� What is the role of VFS?

� Describe file system latency, specifically where it can be measured from.

� What is the purpose of prefetch (read-ahead)?

� What is the purpose of direct I/O?

3. Answer the following deeper questions:

� Describe the advantages of using fsync() over O_SYNC.

� Describe the pros and cons of mmap() over read()s/write()s.

� Describe reasons why logical I/O becomes inflated by the time it becomes
physical I/O.

Table 8-12 Example System-Wide ZFS Tunable Parameters

Parameter Description

zfs_txg_synctime_ms target TXG sync time, milliseconds

zfs_txg_timeout time-out for TXGs (seconds): sets the lowest rate that they occur

metaslab_df_free_pct percentage for metaslabs to switch behavior and optimize for
space instead of time

392 Chapter 8 � File Systems

� Describe reasons why logical I/O becomes deflated by the time it becomes
physical I/O.

� Explain how file system copy-on-write can improve performance.

4. Develop the following procedures for your operating system:

� A file system cache tuning checklist. This should list the file system caches
that exist, how to check their current size and usage, and hit rate.

� A workload characterization checklist for file system operations. Include how
to fetch each detail, and try to use existing OS observability tools first.

5. Perform these tasks:

� Choose an application, and measure file system operations and latency.
Include

– The full distribution of file system operation latency, not just the average

– The portion of each second that each application thread spends in file sys-
tem operations

� Using a micro-benchmark tool, determine the size of the file system cache
experimentally. Explain your choices when using the tool. Also show the per-
formance degradation (using any metric) when the working set no longer
caches.

6. (optional, advanced) Develop an observability tool that provides metrics for
synchronous versus asynchronous file system writes. This should include their
rate and latency and be able to identify the process ID that issued them, mak-
ing it suitable for workload characterization.

7. (optional, advanced) Develop a tool to provide statistics for indirect and inflated
file system I/O: additional bytes and I/O not issued directly by applications.
This should break down this additional I/O into different types to explain their
reason.

8.10 References

[Ritchie 74] Ritchie, D., and K. Thompson. “The UNIX Time-Sharing
System,” Communications of the ACM 17, no. 7 (July 1974),
pp. 365–75.

[Lions 77] Lions, J. A Commentary on the Sixth Edition UNIX Operating
System. University of New South Wales, 1977.

8.10 References 393

[McKusick 84] McKusick, M., et al. “A Fast File System for UNIX.” ACM
Transactions on Computer Systems (TOC) 2, no. 3 (August
1984).

[Bach 86] Bach, M. The Design of the UNIX Operating System. Prentice
Hall, 1986.

[Vahalia 96] Vahalia, U. UNIX Internals: The New Frontiers. Prentice Hall,
1996.

[McDougall 06a] McDougall, R., and J. Mauro. Solaris Internals: Solaris 10
and OpenSolaris Kernel Architecture. Prentice Hall, 2006.

[Doeppner 10] Doeppner, T. Operating Systems in Depth: Design and Pro-
gramming. Wiley, 2010.

[Gregg 11] Gregg, B., and J. Mauro. DTrace: Dynamic Tracing in Oracle
Solaris, Mac OS X and FreeBSD. Prentice Hall, 2011.

[1] http://lwn.net/Articles/419811, 2010

[2] http://zfsonlinux.org

[3] http://sysbench.sourceforge.net/docs

[4] www.dtracebook.com

[5] https://latencytop.org

[6] www.textuality.com/bonnie

[7] www.coker.com.au/bonnie++

[8] https://github.com/axboe/fio

[9] www.solarisinternals.com/wiki/index.php/ZFS_Evil_Tuning_
Guide

../../../../../lwn.net/Articles/419811
../../../../../zfsonlinux.org/default.htm
../../../../../sysbench.sourceforge.net/docs
../../../../../www.dtracebook.com/default.htm
../../../../../https@latencytop.org/default.htm
../../../../../www.textuality.com/bonnie
../../../../../www.coker.com.au/bonnie++
../../../../../https@github.com/axboe/fio
../../../../../www.solarisinternals.com/wiki/index.php/ZFS_Evil_Tuning_Guide
../../../../../www.solarisinternals.com/wiki/index.php/ZFS_Evil_Tuning_Guide

This page intentionally left blank

395

9
Disks

Disk I/O can cause significant application latency and is therefore an important
target of systems performance analysis. Under high load, disks become a bottle-
neck, leaving CPUs idle as the system waits for disk I/O to complete. Identifying
and eliminating bottlenecks can improve performance and application throughput
by orders of magnitude.

The term disks refers to the primary storage devices of the system. They include
magnetic rotating disks and flash-memory-based solid-state disks (SSDs). The lat-
ter were introduced primarily to improve disk I/O performance, which they do.
However, demands for capacity and I/O rates are also increasing, and flash mem-
ory devices are not immune to performance issues.

This chapter consists of five parts, the first three providing the basis for disk I/O
analysis and the last two showing its practical application to Linux- and Solaris-
based systems. The parts are as follows:

� Background introduces storage-related terminology, basic models of disk
devices, and key disk performance concepts.

� Architecture provides generic descriptions of storage hardware and soft-
ware architecture.

� Methodology describes performance analysis methodology, both observa-
tional and experimental.

396 Chapter 9 � Disks

� Analysis shows disk performance tools for analysis and experimentation on
Linux- and Solaris-based systems, including tracing and visualizations.

� Tuning describes example disk tunable parameters.

The previous chapter covered the performance of file systems built upon disks.

9.1 Terminology

For reference, disk-related terminology used in this chapter includes the following:

� Virtual disk: an emulation of a storage device. It appears to the system as a
single physical disk; however, it may be constructed from multiple disks.

� Transport: the physical bus used for communication, including data trans-
fers (I/O) and other disk commands.

� Sector: a block of storage on disk, traditionally 512 bytes in size.

� I/O: Strictly speaking for disks, this is reads and writes only and would not
include other disk commands. I/O consists of, at least, the direction (read or
write), a disk address (location), and a size (bytes).

� Disk commands: Apart from reads and writes, disks may be commanded to
perform other non-data-transfer commands (e.g., cache flush).

� Throughput: With disks, throughput commonly refers to the current data
transfer rate, measured in bytes per second.

� Bandwidth: This is the maximum possible data transfer rate for storage
transports or controllers.

� I/O latency: time for an I/O operation, used more broadly across the operat-
ing system stack and not just at the device level. Be aware that networking
uses this term differently, with latency referring to the time to initiate an I/O,
followed by data transfer time.

� Latency outliers: disk I/O with unusually high latency.

Other terms are introduced throughout this chapter. The Glossary includes basic
terminology for reference if needed, including disk, disk controller, storage array,
local disks, remote disks, and IOPS. Also see the terminology sections in Chapters
2 and 3.

9.2 Models 397

9.2 Models

The following simple models illustrate some basic principles of disk I/O performance.

9.2.1 Simple Disk

Modern disks include an on-disk queue for I/O requests, as depicted in Figure 9.1.

I/O accepted by the disk may be either waiting on the queue or being serviced.
This simple model is similar to a grocery store checkout, where customers queue to
be serviced. It is also well suited for analysis using queueing theory.

While this may imply a first-come-first-served queue, the on-disk controller can
apply other algorithms to optimize performance. These algorithms could include
elevator seeking for rotational disks (see the discussion in Section 9.4.1, Disk
Types), or separate queues for read and write I/O (especially for flash-memory-
based disks).

9.2.2 Caching Disk

The addition of an on-disk cache allows some read requests to be satisfied from a
faster memory type, as shown in Figure 9.2. This may be implemented as a small
amount of memory (DRAM) that is contained within the physical disk device.

While cache hits return with very low (good) latency, cache misses are still usu-
ally present, returning with high-disk-device latency.

The on-disk cache may also be used to improve write performance, by using it as a
write-back cache. This signals writes as having completed after the data transfer to
cache and before the slower transfer to persistent disk storage. The counter-term is

Figure 9-1 Simple disk with queue

398 Chapter 9 � Disks

the write-through cache, which completes writes only after the full transfer to the
next level.

9.2.3 Controller

A simple type of disk controller is shown in Figure 9.3, bridging the CPU I/O
transport with the storage transport and attached disk devices. These are also
called host bus adaptors (HBAs).

Figure 9-2 Simple disk with on-disk cache

Figure 9-3 Simple disk controller and connected transports

9.3 Concepts 399

Performance may be limited by either of these busses, the disk controller, or the
disks. See Section 9.4, Architecture, for more about disk controllers.

9.3 Concepts

The following are important concepts in disk performance.

9.3.1 Measuring Time

The response time for storage devices (also called disk I/O latency) is the time from
the I/O request to I/O completion. It is composed of service and wait times:

� Service time: the time that an I/O takes to be actively processed (serviced),
excluding time waiting on a queue

� Wait time: the time an I/O was waiting on a queue to be serviced

These are pictured in Figure 9.4, with other terminology.

Response time, service time, and wait time all depend on the location from which
they are measured. The following explains this by describing service time in both
operating system and disk contexts (this is also a simplification):

� In the context of the operating system (the block device interface), service
time may be measured as the time from when an I/O request was issued to
the disk device to the time when the completion interrupt occurred. It
excludes the time waiting in operating system queues and reflects only the
overall performance of the disk device for the requested operation.

Figure 9-4 Disk I/O terminology

400 Chapter 9 � Disks

� In the context of disks, service time refers to the time that the disk took to
actively service the I/O, excluding any time spent waiting on its own on-disk
queue.

The term service time originates from when disks were simpler devices, managed
directly by the operating system, which therefore knew when the disk was actively
servicing I/O. Disks now do their own internal queueing, and the operating system
service time includes time spent waiting on device queues. This operating system
metric may be better described as the “disk response time.”

The term response time can also be applied from different perspectives. For
example, “disk response time” may describe the service time as observed from the
operating system, while “I/O response time,” from the perspective of the applica-
tion, may refer to everything beneath the system call layer (service time, all wait
times, and code path execution time).

Service time from the block device interface is generally treated as a measure of
disk performance (and is what iostat(1) shows); however, you should be aware
that this is a simplification. In Figure 9.6, a generic I/O stack is pictured, which
shows three possible driver layers beneath the block device interface. Any of these
may implement its own queue, or may block on mutexes, adding latency to the I/O.
This latency is included in the service time as measured from the block device
interface.

Calculating Time

Disk service time is typically not observable by the operating system directly; how-
ever, an average disk service time can be inferred using IOPS and utilization:

disk service time = utilization/IOPS

For example, a utilization of 60% and an IOPS of 300 gives an average service time
of 2 ms (600 ms/300 IOPS). This assumes the utilization reflects a single device (or
service center), which can process only one I/O at a time. Disks can typically pro-
cess multiple I/O in parallel.

9.3.2 Time Scales

The time scale for disk I/O can vary by orders of magnitude, from tens of microsec-
onds to thousands of milliseconds. At the slowest end of the scale, poor application
response time can be caused by a single slow disk I/O; at the fastest end, disk I/O
may become an issue only in great numbers (the sum of many fast I/O equaling a
slow I/O).

9.3 Concepts 401

For context, Table 9.1 provides a general idea of the possible range of disk I/O
latencies. For precise and current values, consult the disk vendor documentation,
and perform your own micro-benchmarking. Also see Chapter 2, Methodology, for
time scales other than disk I/O.

To better illustrate the orders of magnitude involved, the Scaled column shows a
comparison based on an imaginary on-disk cache hit latency of one second.

These latencies may be interpreted differently based on the environment require-
ments. While working in the enterprise storage industry, I considered any disk I/O
taking over 10 ms to be unusually slow and a potential source of performance issues.
In the cloud computing industry, there is greater tolerance for high latencies, espe-
cially in web-facing applications that already expect high latency between the net-
work and client browser. In those environments, disk I/O may become an issue only
beyond 100 ms (individually, or in total during an application request).

This table also illustrates that a disk can return two types of latency: one for on-
disk cache hits (less than 100 μs) and one for misses (1–8 ms and higher, depend-
ing on the access pattern and device type). Since a disk will return a mixture of
these, expressing them together as an average latency (as iostat(1) does) can be
misleading, as this is really a distribution with two modes. See Figure 2.22 in
Chapter 2, Methodologies, for an example disk I/O latency distribution as a histo-
gram (measured using DTrace).

9.3.3 Caching

The best disk I/O performance is when there is none. Many layers of the software
stack attempt to avoid disk I/O by caching reads and buffering writes, right down

Table 9-1 Example Time Scale of Disk I/O Latencies

Event Latency Scaled

On-disk cache hit < 100 μs 1 s

Flash memory read ~100 to 1,000 μs
(small to large I/O)

1 to 10 s

Rotational disk sequential read ~1 ms 10 s

Rotational disk random read (7,200 rpm) ~8 ms 1.3 minutes

Rotational disk random read (slow, queueing) > 10 ms 1.7 minutes

Rotational disk random read (dozens in queue) > 100 ms 17 minutes

Worst-case virtual disk I/O (hardware controller,
RAID-5, queueing, random I/O)

> 1,000 ms 2.8 hours

402 Chapter 9 � Disks

to the disk itself. The full list of these is in Table 3.2 of Chapter 3, Operating Sys-
tems, which includes application-level and file system caches. At the disk-device-
driver level and below, they may include the caches listed in Table 9.2.

The block-based buffer cache was described in Chapter 8, File Systems. These
disk I/O caches have been particularly important to improve the performance of
random I/O workloads.

9.3.4 Random versus Sequential I/O

The disk I/O workload can be described using the terms random and sequential,
based on the relative location of the I/O on disk (disk offset). These terms were dis-
cussed in Chapter 8, File Systems, regarding file access patterns.

Sequential workloads are also known as streaming workloads. The term stream-
ing is usually used at the application level, to describe streaming reads and writes
“to disk” (file system).

Random versus sequential disk I/O patterns were important to study during the
era of magnetic rotational disks. For these, random I/O incurs additional latency
as the disk heads seek and the platter rotates between I/O. This is shown in Fig-
ure 9.5, where both seek and rotation are necessary for the disk heads to move
between sectors 1 and 2 (the actual path taken will be as direct as possible). Per-
formance tuning involved identifying random I/O and trying to eliminate it in a
number of ways, including caching, isolating random I/O to separate disks, and
disk placement to reduce seek distance.

Other disk types, including flash-based SSDs, usually perform no differently
between random and sequential I/O patterns. Depending on the disk, there may be
a small difference due to other factors, for example, an address lookup cache that
can span sequential access but not random.

Note that the disk offsets as seen from the operating system may not match the
offsets on the physical disk. For example, a hardware-provided virtual disk may map

Table 9-2 Disk I/O Caches

Cache Example

Device cache ZFS vdev

Block cache buffer cache

Disk controller cache RAID card cache

Storage array cache array cache

On-disk cache disk data controller (DDC) attached DRAM

9.3 Concepts 403

a contiguous range of offsets across multiple disks. Disks may remap offsets in their
own way (via the disk data controller). Sometimes random I/O isn’t identified by
inspecting the offsets but may be inferred by measuring increased service time.

9.3.5 Read/Write Ratio

Apart from identifying random versus sequential workloads, another characteris-
tic measure is the ratio of reads to writes, referring to either IOPS or throughput.
This can be expressed as the ratio over time, as a percentage, for example, “The
system has run at 80% reads since boot.”

Understanding this ratio helps when designing and configuring systems. A sys-
tem with a high read rate may benefit most from adding cache. A system with a
high write rate may benefit most from adding more disks to increase maximum
available throughput and IOPS.

The reads and writes may themselves be different workload patterns: reads may
be random I/O, while writes may be sequential (especially for copy-on-write file
systems). They may also exhibit different I/O sizes.

9.3.6 I/O Size

The average I/O size (bytes), or distribution of I/O sizes, is another workload char-
acteristic. Larger I/O sizes typically provide higher throughput, although for lon-
ger per-I/O latency.

The I/O size may be altered by the disk device subsystem (for example, quantized
to 512-byte blocks). The size may also have been inflated and deflated since the I/O
was issued at the application level, by kernel components such as file systems,

Figure 9-5 Rotational disk

404 Chapter 9 � Disks

volume managers, and device drivers. See the Inflated and Deflated sections in Sec-
tion 8.3.12, Logical versus Physical I/O, in Chapter 8, File Systems.

Some disk devices, especially flash-based, perform very differently with differ-
ent read and write sizes. For example, a flash-based disk drive may perform opti-
mally with 4 Kbyte reads and 1 Mbyte writes. Ideal I/O sizes may be documented
by the disk vendor or identified using micro-benchmarking. The currently used I/O
size may be found using observation tools (see Section 9.6, Analysis).

9.3.7 IOPS Are Not Equal

Because of those last three characteristics, IOPS are not created equal and cannot be
directly compared between different devices and workloads. An IOPS value doesn’t
mean a lot on its own and can’t be used alone to accurately compare workloads.

For example, with rotational disks, a workload of 5,000 sequential IOPS may be
much faster than one of 1,000 random IOPS. Flash-memory-based IOPS are also
difficult to compare, since their I/O performance is often relative to I/O size and
direction (read or write).

To make sense of IOPS, include the other details: random or sequential, I/O size,
read/write. Also consider using time-based metrics, such as utilization and service
time, which reflect resulting performance and can be more easily compared.

9.3.8 Non-Data-Transfer Disk Commands

Disks can be sent other commands besides I/O reads and writes. For example,
disks with an on-disk cache (RAM) may be commanded to flush the cache to disk.
Such a command is not a data transfer; the data was previously sent to the disk
via writes. These commands can affect performance and can cause a disk to be uti-
lized while other I/O wait.

9.3.9 Utilization

Utilization can be calculated as the time a disk was busy actively performing work
during an interval.

A disk at 0% utilization is “idle,” and a disk at 100% utilization is continually
busy performing I/O (and other disk commands). Disks at 100% utilization are a
likely source of performance issues, especially if they remain at 100% for some
time. However, any rate of disk utilization can contribute to poor performance, as
disk I/O is typically a slow activity.

There may also be a point between 0% and 100% (say, 60%) at which the disk’s
performance is no longer satisfactory due to the increased likelihood of queueing,

9.3 Concepts 405

either on disk queues or in the operating system. The exact utilization value that
becomes a problem depends on the disk, workload, and latency requirements. See
the M/D/1 and 60% Utilization section in Section 2.6.5, Queueing Theory, in Chap-
ter 2, Methodology.

To confirm whether high utilization is causing application issues, study the disk
response time and whether the application is blocking on this I/O. The application
or operating system may be performing I/O asynchronously, such that slow I/O is
not directly causing the application to wait.

Note that utilization is an interval summary. Disk I/O can occur in bursts, espe-
cially due to write flushing, which can be disguised when summarizing over longer
intervals. See Section 2.3.11, Utilization, in Chapter 2, Methodology, for a further
discussion about the utilization metric type.

Virtual Disk Utilization

For virtual disks supplied by hardware (e.g., disk controller), the operating system
may be aware only of when the virtual disk was busy but know nothing about the
performance of the underlying disks upon which it is built. This leads to scenarios
where virtual disk utilization, as reported by the operating system, is significantly
different from what is happening on the actual disks (and is counterintuitive):

� Virtual disks that include a write-back cache may not appear very busy dur-
ing write workloads, since the disk controller returns write completions
immediately, despite the underlying disks being busy sometime afterward.

� A virtual disk that is 100% busy, and is built upon multiple physical disks,
may be able to accept more work. In this case, 100% may mean that some
disks were busy all the time, but not all the disks all the time, and therefore
some disks were idle.

For the same reasons, it can be difficult to interpret the utilization of virtual
disks created by operating system software (software RAID). However, the operat-
ing system should be exposing utilization for the physical disks as well, which can
be inspected.

Once a physical disk reaches 100% utilization and more I/O is requested, it
becomes saturated.

9.3.10 Saturation

Saturation is a measure of queued work, beyond what the resource can deliver. For
disk devices, it can be calculated as the average length of the device wait queue in
the operating system (assuming it does queueing).

406 Chapter 9 � Disks

This provides a measure of performance beyond the 100% utilization point. A
disk at 100% utilization may have no saturation (queueing), or it may have a lot,
significantly affecting performance due to the queueing of I/O.

It may be assumed that disks at less than 100% utilization have no saturation.
However, this depends on the utilization interval: 50% disk utilization during an
interval may mean 100% utilized for half that time and idle for the rest. Any inter-
val summary can suffer from similar issues. When it is important to know exactly
what occurred, tracing can be used to examine I/O events.

9.3.11 I/O Wait

I/O wait is a per-CPU performance metric showing time spent idle, when there are
threads on the CPU dispatcher queue (in sleep state) that are blocked on disk I/O.
This divides CPU idle time into time spent with nothing to do, and time spent
blocked on disk I/O. A high rate of I/O wait per CPU shows that the disks may be a
bottleneck, leaving the CPU idle while it waits on them.

I/O wait can be a very confusing metric. If another CPU-hungry process comes
along, the I/O wait value can drop: the CPUs now have something to do, instead of
being idle. However, the same disk I/O is still present and blocking threads,
despite the drop in the I/O wait metric. The reverse has sometimes happened when
system administrators have upgraded application software and the newer version
is more efficient and uses fewer CPU cycles, revealing I/O wait. This can make the
system administrator think that the upgrade has caused a disk issue and made
performance worse, when in fact disk performance is the same, and CPU perfor-
mance is improved.

There are also some subtle issues with how I/O wait was being calculated on
Solaris. For the Solaris 10 release, the I/O wait metric was deprecated and hard-
wired to zero for tools that still needed to display it (for compatibility).

A more reliable metric may be the time that application threads are blocked on
disk I/O. This captures the pain endured by application threads caused by disk I/O,
regardless of what other work the CPUs may be doing. This metric can be mea-
sured using static or dynamic tracing.

I/O wait is still a popular metric on Linux systems, and despite its confusing
nature, it is used successfully to identify a type of disk bottleneck: disks busy, CPUs
idle. One way to interpret it is to treat any wait I/O as a sign of a system bottleneck,
and then tune the system to minimize it—even if the I/O is still occurring concur-
rently with CPU utilization. Concurrent I/O is more likely to be non-blocking I/O,
and less likely to cause a direct issue. Nonconcurrent I/O, as identified by I/O wait, is
more likely to be application blocking I/O, and a bottleneck.

9.4 Architecture 407

9.3.12 Synchronous versus Asynchronous

It can be important to understand that disk I/O latency may not directly affect
application performance, if the application I/O and disk I/O operate asynchro-
nously. This commonly occurs with write-back caching, where the application I/O
completes early, and the disk I/O is issued later.

Applications may use read-ahead to perform asynchronous reads, which may
not block the application while the disk completes the I/O. The file system may ini-
tiate this itself to warm the cache (prefetch).

Even if an application is synchronously waiting for I/O, that application code
path may be noncritical and asynchronous to client application requests.

See Sections 8.3.9, Non-Blocking I/O, 8.3.5, Read-Ahead, 8.3.4, Prefetch, and
8.3.7, Synchronous Writes, in Chapter 8, File Systems, for further explanation.

9.3.13 Disk versus Application I/O

Disk I/O is the end result of various kernel components, including file systems and
device drivers. There are many reasons why the rate and volume of this disk I/O
may not match the I/O issued by the application. These include

� File system inflation, deflation, and unrelated I/O. See Section 8.3.12, Logi-
cal versus Physical I/O, in Chapter 8, File Systems.

� Paging due to a system memory shortage. See Section 7.2.2, Paging, in Chap-
ter 7, Memory.

� Device driver I/O size: rounding up I/O size, or fragmenting I/O.

This mismatch can be confusing when unexpected. It can be understood by learn-
ing the architecture and performing analysis.

9.4 Architecture

This section describes disk architecture, which is typically studied during capacity
planning to determine the limits for different components and configuration
choices. It should also be checked during the investigation of later performance
issues, in case the problem originates from architectural choices rather than the
current load and tuning.

408 Chapter 9 � Disks

9.4.1 Disk Types

The two most commonly used disk types at present are magnetic rotational and
flash-memory-based SSDs. Both of these provide permanent storage; unlike vola-
tile memory, their stored content is still available after a power cycle.

Magnetic Rotational

Also termed a hard disk drive (HDD), this type of disk consists of one or more discs,
called platters, impregnated with iron oxide particles. A small region of these particles
can be magnetized in one of two directions; this orientation is used to store a bit. The
platters rotate, while a mechanical arm with circuitry to read and write data reaches
across the surface. This circuitry includes the disk heads, and an arm may have more
than one head, allowing it to read and write multiple bits simultaneously. Data is
stored on the platter in circular tracks, and each track is divided into sectors.

Being mechanical devices, these perform relatively slowly. With advances in
flash-memory-based technology, SSDs are displacing rotational disks, and it is con-
ceivable that one day rotational disks will be obsolete (along with drum disks and
core memory). In the meantime, rotational disks are still competitive in some sce-
narios, such as economical high-density storage (low cost per megabyte).

The following topics summarize factors in rotational disk performance.

Seek and Rotation

Slow I/O for magnetic rotational disks is usually caused by the seek time for the
disk heads and the rotation time of the disk platter, both of which may take milli-
seconds. Best case is when the next requested I/O is located at the end of the cur-
rently servicing I/O, so that the disk heads don’t need to seek or wait for additional
rotation. As described earlier, this is known as sequential I/O, while I/O that
requires head seeking or waiting for rotation is called random I/O.

There are many strategies to reduce seek and rotation wait time, including

� Caching: eliminating I/O entirely

� File system placement and behavior, including copy-on-write

� Separating different workloads to different disks, to avoid seeking between
workload I/O

� Moving different workloads to different systems (some cloud computing envi-
ronments can do this to reduce multitenancy effects)

� Elevator seeking, performed by the disk itself

� Higher-density disks, to tighten the workload location

� Partition (or “slice”) configuration, for example, short-stroking

9.4 Architecture 409

An additional strategy to reduce rotation wait time only is to use faster disks.
Disks are available in different rotational speeds, including 5,400, 7,200, 10,000

(10 K), and 15,000 (15 K) revolutions per minute (rpm).

Theoretical Maximum Throughput

If the maximum sectors per track of a disk is known, disk throughput can be calcu-
lated using the following formula:

max throughput = max sectors per track * sector size * rpm/60 s

This formula was more useful for older disks that exposed this information accu-
rately. Modern disks provide a virtual image of the disk to the operating system
and expose synthetic values for these attributes.

Short-Stroking

Short-stroking is where only the outer tracks of the disk are used for the work-
load; the remainder are either unused or used for low-throughput workloads (e.g.,
archives). This reduces seek time as head movement is bounded by a smaller
range, and the disk may put the heads at rest at the outside edge, reducing the
first seek after idle. The outer tracks usually also have better throughput due to
sector zoning (see the next section). Keep an eye out for short-stroking when exam-
ining published disk benchmarks, especially those that don’t include price and
where many short-stroked disks may have been used.

Sector Zoning

The length of disk tracks varies, with the shortest at the center of the disk and the
longest at the outside edge. Instead of the number of sectors (and bits) per track
being fixed, sector zoning (also called multiple-zone recording) increases the sector
count for the longer tracks, since more sectors can be physically written. Because
the rotation speed is constant, the longer outside-edge tracks deliver higher
throughput (megabytes per second) than the inner tracks.

Sector Size

The storage industry has developed a new standard for disk devices, called
Advanced Format, to support larger sector sizes, particularly 4 Kbytes. This
reduces I/O computational overhead, improving throughput as well as reducing
overheads for the disk’s per-sector stored metadata. Sectors of 512 bytes can still
be provided by disk firmware via an emulation standard called Advanced Format
512e. Depending on the disk, this may increase write overheads, invoking a read-
modify-write cycle to map 512 bytes to a 4 Kbyte sector. Other performance issues

410 Chapter 9 � Disks

to be aware of include misaligned 4 Kbyte I/O, which span two sectors, inflating
sector I/O to service them.

On-Disk Cache

A common component of these disks is a small amount of memory (RAM) used to
cache the result of reads and to-buffer writes. This memory also allows I/O (com-
mands) to be queued on the device and reordered in a more efficient way. With
SCSI, this is Tagged Command Queueing (TCQ); with SATA, it is called Native
Command Queueing (NCQ).

Elevator Seeking

The elevator algorithm (also known as elevator seeking) is one way a command
queue can improve efficiency. It reorders I/O based on their on-disk location, to
minimize travel of the disk heads. The result is similar to a building elevator,
which does not service floors based on the order in which the floor buttons were
pushed, but rather makes sweeps up and down the building, stopping at the cur-
rently requested floors.

This behavior becomes apparent when inspecting disk I/O traces and finding
that sorting I/O by completion time doesn’t match sorting by start time: I/O are
completing out of order.

While this seems like an obvious performance win, contemplate the following
scenario: A disk has been sent a batch of I/O near offset 1,000, and a single I/O at
offset 2,000. The disk heads are currently at 1,000. When will the I/O at offset
2,000 be serviced? Now consider that, while servicing the I/O near 1,000, more
arrive near 1,000, and more, and more—enough continual I/O to keep the disk
busy near offset 1,000 for 10 s. When will the 2,000 offset I/O be serviced now, and
what is its final I/O latency?

ECC

Disks store an error-correcting code at the end of each sector, so the drive can ver-
ify that the data was read correctly and possibly correct some errors. If the sector
was not read correctly, the disk heads may retry the read on the next rotation (and
may retry several times, varying the location of the head slightly each time). It
may be important to be aware of this in the performance context as a possible
explanation for unusually slow I/O. Investigate operating system and on-disk error
counters to confirm.

Vibration

While disk device vendors were well aware of vibration issues, those issues weren’t
commonly known or taken seriously by the industry. In 2008, while investigating a

9.4 Architecture 411

mysterious performance issue, I conducted a vibration-inducing experiment by
shouting at a disk array while it performed a write benchmark, which caused a
burst of very slow I/O. My experiment was immediately videoed and put on YouTube,
where it went viral, and it has been described as the first demonstration of the
impact of vibration on disk performance [Turner 10]. The video has had over
800,000 views, promoting awareness of disk vibration issues [1]. Based on the
e-mails I’ve had, I also seem to have accidentally spawned an industry in sound-
proofing data centers: you can now hire professionals who will analyze data center
sound levels and improve disk performance by damping vibrations.

Sloth Disks

A current performance issue with some rotational disks is the discovery of what
we’ve named sloth disks. These disks sometimes return very slow I/O, over one sec-
ond, without any reported errors. It might actually be better if such disks reported
a failure instead of taking so long, so that the operating system or disk controllers
could take corrective action, such as offlining the disk in redundant environments
and reporting the failure. Sloth disks are a nuisance, especially when they are part
of a virtual disk presented by a storage array, such that the operating system has
no direct visibility of them, making them harder to identify.

Disk Data Controller

Mechanical disks present a simple interface to the system, implying a fixed sectors-
per-track ratio and a contiguous range of addressable offsets. What actually hap-
pens on the disk is up to the disk data controller—a disk internal microprocessor,
programmed by firmware. How the disk lays out the addressable offsets is up to
the disk, which can implement algorithms including sector zoning. This is some-
thing to be aware of, but it’s difficult to analyze—the operating system cannot see
into the disk data controller.

Solid-State Drives

These are also sometimes called solid-state disks (SSDs), which refers to their use
of solid-state electronics. Storage is in the form of programmable nonvolatile mem-
ory, which typically has much better performance than rotational disks. Without
moving parts, these disks are also physically durable and not susceptible to perfor-
mance issues caused by vibration.

The performance of this disk type is usually consistent across different offsets (no
rotational or seek latency) and predictable for given I/O sizes. The random or
sequential characteristic of workloads matters much less than with rotational disks.
All of this makes them easier to study and do capacity planning for. However, if they

412 Chapter 9 � Disks

do encounter performance pathologies, understanding them can be just as complex
as with rotational disks, due to how they operate internally.

Some SSDs use nonvolatile DRAM (NV-DRAM). Most use flash memory.

Flash Memory

Flash-memory-based SSDs are a type of storage that offers high read perfor-
mance, particularly random read performance that can beat rotational disks by
orders of magnitude. Most are built using NAND flash memory, which uses elec-
tron-based trapped-charge storage media that can store electrons persistently in a
no-power state [Cornwell 12]. The name “flash” relates to how data is written,
which requires erasing an entire block of memory at a time (including multiple
pages, usually 8 KBytes per page) and rewriting the contents. Because of these
write overheads, flash memory has asymmetrical read/write performance: fast
reads and slower writes.

Flash memory comes in different types. Single-level cell (SLC) stores data bits
in individual cells, and multilevel cell (MLC) can store multiple bits per cell (usu-
ally two, which requires four voltage levels). There is also trilevel cell (TLC) for
storing three bits (eight voltage levels). SLC tends to have higher performance
when compared to MLC and is preferred for enterprise use, although it comes at a
higher cost. There is also eMLC, which is MLC with advanced firmware intended
for enterprise use.

Controller

The controller for an SSD has the following task [Leventhal 13]:

� Input: Reads and writes occur per page (usually 8 Kbytes); writes can occur
only to erased pages; pages are erased in blocks of 32 to 64 (256–512 Kbytes).

� Output: emulates a hard drive block interface: reads or writes of arbitrary
sectors (512 bytes or 4 Kbytes).

Translating between input and output is performed by the controller’s flash trans-
lation layer (FTL), which must also track free blocks. It essentially uses its own
file system to do this, such as a log-structured file system.

The write characteristics can be a problem for write workloads, especially when
writing I/O sizes that are smaller than the flash memory block size (which may be
as large as 512 Kbytes). This can cause write amplification, where the remainder
of the block is copied elsewhere before erasure, and also latency for at least the
erase-write cycle. Some flash memory drives mitigate the latency issue by provid-
ing an on-disk buffer (RAM-based) backed by a battery, so that writes can be buff-
ered and written later, even in the event of a power failure.

9.4 Architecture 413

The most common enterprise-grade flash memory drive I’ve used performs opti-
mally with 4 Kbyte reads and 1 Mbyte writes, due to the flash memory layout.
These values vary for different drives and may be found via micro-benchmarking
of I/O sizes.

Given the disparity between the native operations of flash, and the exposed
block interface, there has been room for improvement by the operating system and
its file systems. The TRIM command is an example: it informs the SSD that a
region is no longer in use, allowing the SSD to more easily assemble its pool of free
blocks. (For SCSI, this can be implemented using the UNMAP or WRITE SAME
commands; for ATA, the DATA SET MANAGEMENT command.)

Life Span

There are various problems with NAND flash as a storage medium, including
burnout, data fade, and read disturbance [Cornwell 12]. These can be solved by the
SSD controller, which can move data to avoid problems. It will typically employ
wear leveling, which spreads writes across different blocks to reduce the write
cycles on individual blocks, and memory overprovisioning, which reserves extra
memory that can be mapped into service when needed.

While these techniques improve life span, the SSD still has a limited number of
write cycles per block, depending on the type of flash memory and the mitigation
features employed by the drive. Enterprise-grade drives use memory overprovi-
sioning and the most reliable type of flash memory, SLC, to achieve write cycle
rates of 1 million and higher. Consumer-grade drives based on MLC may offer as
few as 1,000 cycles.

Pathologies

Here are some flash memory SSD pathologies to be aware of:

� Latency outliers due to aging, and the SSD trying harder to extract correct
data (which is checked using ECC)

� Higher latency due to fragmentation (reformatting may fix this by cleaning
up the FTL block maps)

� Lower throughput performance if the SSD implements internal compression

Check for more recent developments with SSD performance features and issues
encountered.

414 Chapter 9 � Disks

9.4.2 Interfaces

The interface is the protocol supported by the drive for communication with the
system, usually via a disk controller. A brief summary of the SCSI, SAS, and SATA
interfaces follows. You will need to check what the current interfaces and sup-
ported bandwidths are, as they change over time as new specifications are devel-
oped and adopted.

SCSI

The Small Computer System Interface was originally a parallel transport bus, using
multiple electrical connectors to transport bits in parallel. The first version, SCSI-1
in 1986, had a data bus width of 8 bits, allowing 1 byte to be transferred per clock,
and delivered a bandwidth of 5 Mbytes/s. This was connected using a 50-pin
Centronics C50. Later parallel SCSI versions used wider data busses and more pins
for the connectors, up to 80 pins, and bandwidths in the hundreds of megabytes.

Since parallel SCSI is a shared bus, there can be performance issues due to bus
contention. For example, a scheduled system backup may saturate the bus with
low-priority I/O. Work-arounds included putting low-priority devices on their own
SCSI bus or controller.

Clocking of parallel busses also becomes a problem at higher speeds, which
along with the other issues (including limited devices and the need for SCSI termi-
nator packs) has led to a switch to the serial version: SAS.

SAS

The Serial Attached SCSI interface is designed as a high-speed point-to-point trans-
port, avoiding the bus contention issues from parallel SCSI. The initial SAS specifica-
tion was 3 Gbits/s, with 6 Gbits/s added in 2009 and 12 Gbits/s in 2012. Link
aggregations are supported, so that multiple ports can combine to deliver higher band-
widths. The actual data transfer rate is 80% of bandwidth, due to 8b/10b encoding.

Other SAS features include dual porting of drives for use with redundant con-
nectors and architectures, I/O multipathing, SAS domains, hot swapping, and com-
patibility support for SATA devices. These features have often favored SAS for
enterprise use, especially with redundant architectures.

SATA

For similar reasons as for SCSI and SAS, the parallel ATA (aka IDE) interface
standard has evolved to become the Serial ATA interface. Created in 2003, SATA
1.0 supported 1.5 Gbits/s; later versions supported 3.0 and 6.0 Gbits/s, and addi-
tional features included native command queueing support. SATA uses 8b/10b
encoding, so the data transfer rate is 80% bandwidth. SATA has been in common
use for consumer desktops and laptops.

9.4 Architecture 415

9.4.3 Storage Types

Storage can be provided to a server in a number of ways; the following sections
describe four general architectures: disk devices, RAID, storage arrays, and
network-attached storage (NAS).

Disk Devices

The simplest architecture is a server with internal disks, individually controlled by
the operating system. The disks connect to a disk controller, which is circuitry on
the main board or an expander card, and which allows the disk devices to be seen
and accessed. In this architecture the disk controller merely acts as a conduit so
that the system can communicate with the disks. A typical personal computer or
laptop has a disk attached in this way for primary storage.

This architecture is the easiest to analyze using performance tools, as each disk
is known to the operating system and can be observed separately.

Some disk controllers support this architecture, where it is called just a bunch of
disks (JBOD).

RAID

Advanced disk controllers can provide the redundant array of independent disks
(RAID) architecture for disk devices (originally the redundant array of inexpensive
disks [Patterson 88]). RAID can present disks as a single big, fast, and reliable vir-
tual disk. These controllers often include an on-board cache (RAM) to improve read
and write performance.

Providing RAID by a disk controller card is called hardware RAID. RAID can
also be implemented by operating system software, but hardware RAID has been
preferred, as CPU-expensive checksum and parity calculations can be performed
more quickly on dedicated hardware. However, advances in processors have pro-
duced CPUs with a surplus of cycles and cores, reducing the need to offload parity
calculations. A number of storage solutions have moved back to software RAID (for
example, using ZFS), which reduces complexity and hardware cost and improves
observability from the operating system.

The following sections describe the performance characteristics of RAID.

Types

Various RAID types are available to meet varying needs for capacity, performance,
and reliability. This summary focuses on the performance characteristics shown in
Table 9.3.

While RAID-0 striping performs the best, it has no redundancy, making it
impractical for most production use.

416 Chapter 9 � Disks

Observability

As described in the earlier section on virtual disk utilization, the use of hardware-
supplied virtual disk devices can make observability more difficult in the operat-
ing system, which does not know what the physical disks are doing. If RAID is sup-
plied via software, individual disk devices can usually be observed, as the
operating system manages them directly.

Read-Modify-Write

When data is stored as a stripe including a checksum, as with RAID-5, write I/O
can incur additional read I/O and compute time. This is because writes that are
smaller than the stripe size require the entire stripe to be read, the bytes modi-
fied, the checksum recalculated, and then the stripe rewritten. Writes that span
the entire stripe can write over the previous contents, without needing to read
them first. Performance in this environment may be improved by balancing the
size of the stripe with the average I/O size of the writes, to reduce the additional
read overhead.

Table 9-3 RAID Types

Level Description Performance

0 (concat.) Drives are filled one at a time. Eventually improves random read perfor-
mance when multiple drives can take part.

0 (stripe) Drives are used in parallel,
splitting (striping) I/O across
multiple drives.

Best random and sequential I/O
performance.

1 (mirror) Multiple drives (usually two)
are grouped, storing identical
content for redundancy.

Good random and sequential read perfor-
mance (can read from all drives simultane-
ously, depending on implementation).
Writes limited by slowest disk in mirror, and
throughput overheads doubled (two drives).

10 A combination of RAID-0
stripes across groups of RAID-1
drives, providing capacity and
redundancy.

Similar performance characteristics to
RAID-1 but allows more groups of drives to
take part, like RAID-0, increasing bandwidth.

5 Data is stored as stripes across
multiple disks, along with
extra parity information for
redundancy.

Poor write performance due to read-modify-
write cycle and checksum calculations.

6 RAID-5 with two parity disks
per stripe.

Similar to RAID-5 but worse.

9.4 Architecture 417

Caches

Disk controllers that implement RAID-5 can mitigate read-write-modify perfor-
mance by use of a write-back cache. These caches may be battery-backed, so that
in the event of a power failure they can still complete buffered writes.

Additional Features

Be aware that advanced disk controller cards can provide advanced features that
can affect performance. It’s a good idea to browse the vendor documentation to be
at least aware of what may be in play. For example, here are a couple of features
from Dell PERC 5 cards:

� Patrol read: Every several days, all disk blocks are read and their check-
sums verified. If the disks are busy servicing requests, the resources given to
the patrol read function are reduced, to avoid competing with the system
workload.

� Cache flush interval: the time in seconds between flushing dirty data in
the cache to disk. Longer times may reduce disk I/O due to write cancellation
and better aggregate writes; however, they may also cause higher read
latency during the larger flushes.

Both of these can have a significant effect on performance.

Storage Arrays

Storage arrays allow many disks to be connected to the system. They use advanced
disk controllers so that RAID can be configured, and they usually provide a large
cache (gigabytes) to improve read and write performance. These caches are also typi-
cally battery-backed, allowing them to operate in write-back mode. A common policy
is to switch to write-through mode if the battery fails, which may be first noticed as
a sudden drop in write performance due to waiting for the read-modify-write cycle.

An additional performance consideration is how the storage array is attached to
the system—usually via an external storage controller card. The card, and the
transport between it and the storage array, will both have limits for IOPS and
throughput. For improvements in both performance and reliability, storage arrays
are often dual-attachable, meaning they can be connected using two physical
cables, to one or two different storage controller cards.

Network-Attached Storage

NAS is provided to the system over the existing network via a network protocol,
such as NFS, SMB/CIFS, or iSCSI, usually from dedicated systems known as NAS

418 Chapter 9 � Disks

appliances. These are separate systems and should be analyzed as such. Some per-
formance analysis may be done on the client, to inspect the workload applied and
I/O latencies. The performance of the network also becomes a factor, and issues can
arise from network congestion and from multiple-hop latency.

9.4.4 Operating System Disk I/O Stack

The components and layers in a disk I/O stack will depend on the operating sys-
tem, version, and software and hardware technologies used. Figure 9.6 depicts a
general model. See Chapter 3, Operating Systems, for the full diagram.

Block Device Interface

The block device interface was created in early Unix for accessing storage devices
in units of blocks, each 512 bytes, and to provide a buffer cache to improve perfor-
mance. The interface still exists in Linux and Solaris today, although the role of
the buffer cache has diminished as other file system caches have been introduced,
as described in Chapter 8, File Systems.

Unix provided a path to bypass the buffer cache, called raw block device I/O (or
just raw I/O), which could be used via character special device files (see Chapter
3, Operating Systems). These files are no longer commonly available by default in
Linux. Raw block device I/O is different from, but in some ways similar to, the
“direct I/O” file system feature, as described in Chapter 8, File Systems.

Figure 9-6 Generic disk I/O stack

9.4 Architecture 419

The block I/O interface can usually be observed from operating system perfor-
mance tools (iostat(1)). It is also a common location for static tracing and more
recently can be explored with dynamic tracing as well. Linux has enhanced this
area of the kernel with additional features that make up a block layer.

Linux

The Linux block layer is pictured in Figure 9.7 ([2], [Bovet 05]).

The elevator layer provides generic capabilities to sort, merge, and batch
requests for delivery. These include the elevator seeking algorithm described ear-
lier to reduce rotation disk head travel (sorting of pending I/O based on their loca-
tion), and methods to merge and coalesce I/O as shown in Figure 9.8.

Figure 9-7 Linux block layer

Figure 9-8 I/O merging types

420 Chapter 9 � Disks

These capabilities achieve higher throughput and lower I/O latency. The I/O
scheduler allows I/O to be queued and reordered (or rescheduled) for optimized
delivery, as determined by an additional scheduling policy. This can further
improve and more fairly balance performance, especially for devices with high I/O
latencies (rotational disks).

Available policies include

� Noop: This doesn’t perform scheduling (noop is CPU-talk for no-operation)
and can be used when the overhead of scheduling is deemed unnecessary (for
example, in a RAMdisk).

� Deadline: attempts to enforce a latency deadline; for example, read and write
expiry times in units of milliseconds may be selected. This can be useful for
real-time systems, where determinism is desired. It can also solve problems of
starvation: where an I/O request is starved of disk resources as newly issued
I/O jump the queue, resulting in a latency outlier. Starvation can occur due to
writes starving reads, and as a consequence of elevator seeking and heavy I/O
to one area of disk starving I/O to another. The deadline scheduler solves this,
in part, by using three separate queues for I/O: read FIFO, write FIFO, and
sorted. For more internals, see [Love 10] and Documentation/block/deadline-
iosched.txt.

� Anticipatory: an enhanced version of deadline, with heuristics to anticipate
I/O performance, improving global throughput. These can include pausing for
milliseconds after reads rather than immediately servicing writes, on the pre-
diction that another read request may arrive during that time for a nearby
disk location, thus reducing overall rotational disk head seeks.

� CFQ: The completely fair queueing scheduler allocates I/O time slices to pro-
cesses, similar to CPU scheduling, for fair usage of disk resources. It also
allows priorities and classes to be set for user processes, via the ionice(1)
command. See Documentation/block/cfq-iosched.txt.

After I/O scheduling, the request is placed on the block device queue to be issued to
the device.

Solaris

The Solaris-based kernel uses a simple block device interface, with queues in the
target driver (sd). Advanced I/O scheduling is typically provided by ZFS, which can
prioritize and merge I/O (including merging across caps). Unlike other file sys-
tems, ZFS is a combined volume manager and file system: it manages its own vir-
tual disk devices and an I/O queue (pipeline).

9.5 Methodology 421

The lower three layers shown in Figure 9.6 use drivers such as

� Target device drivers: sd, ssd

� Multipathing I/O drivers: scsi_vhci, mpxio

� Host bus adaptor drivers: pmcs, mpt, nv_sata, ata

The drivers in use depend on the server hardware and configuration.

9.5 Methodology

This section describes various methodologies and exercises for disk I/O analysis
and tuning. The topics are summarized in Table 9.4.

See Chapter 2, Methodology, for more strategies and the introduction to many of
these.

These methods may be followed individually or used in combination. When
investigating disk issues, my suggestion is to use the following strategies, in this
order: the USE method, performance monitoring, workload characterization,
latency analysis, micro-benchmarking, static analysis, and event tracing.

Section, 9.6, Analysis, shows operating system tools for applying these methods.

Table 9-4 Disk Performance Methodologies

Methodology Types

Tools method observational analysis

USE method observational analysis

Performance monitoring observational analysis, capacity planning

Workload characterization observational analysis, capacity planning

Latency analysis observational analysis

Event tracing observational analysis

Static performance tuning observational analysis, capacity planning

Cache tuning observational analysis, tuning

Resource controls tuning

Micro-benchmarking experimentation analysis

Scaling capacity planning, tuning

422 Chapter 9 � Disks

9.5.1 Tools Method

The tools method is a process of iterating over available tools, examining key met-
rics they provide. While a simple methodology, it can overlook issues for which the
tools provide poor or no visibility, and it can be time-consuming to perform.

For disks, the tools method can involve checking

� iostat: using extended mode to look for busy disks (over 60% utilization),
high average service times (over, say, 10 ms), and high IOPS (depends)

� iotop: to identify which process is causing disk I/O

� dtrace/stap/perf: including the iosnoop(1) tool to examine disk I/O
latency in detail, looking for latency outliers (over, say, 100 ms)

� Disk-controller-specific tools (from the vendor)

If an issue is found, examine all fields from the available tools to learn more con-
text. See Section 9.6, Analysis, for more about each tool. Other methodologies can
also be used, which can identify more types of issues.

9.5.2 USE Method

The USE method is for identifying bottlenecks and errors across all components,
early in a performance investigation. The sections that follow describe how the
USE method can apply to disk devices and controllers, and Section 9.6, Analysis,
shows tools for measuring specific metrics.

Disk Devices

For each disk device, check for

� Utilization: the time the device was busy

� Saturation: the degree to which I/O is waiting in a queue

� Errors: device errors

Errors may be checked first. They can be overlooked because the system func-
tions correctly—albeit more slowly—in spite of disk failures: disks are commonly
configured in a redundant pool of disks designed to tolerate a failure. Apart from
standard disk error counters from the operating system, disk devices may support
a wider variety of error counters that can be retrieved by special tools (for exam-
ple, SMART data).

9.5 Methodology 423

If the disk devices are physical disks, utilization should be straightforward to
find. If they are virtual disks, utilization may not reflect what the underlying
physical disks are doing. See Section 9.3.9, Utilization, for more discussion about
this.

Disk Controllers

For each disk controller, check for

� Utilization: current versus maximum throughput, and the same for opera-
tion rate

� Saturation: the degree to which I/O is waiting due to controller saturation

� Errors: controller errors

Here the utilization metric is not defined in terms of time, but rather in terms of
the limitations of the disk controller card: throughput (bytes per second) and oper-
ation rate (operations per second). Operations are inclusive of read/write and other
disk commands. Either throughput or operation rate may also be limited by the
transport connecting the disk controller to the system, just as it may also be lim-
ited by the transport from the controller to the individual disks. Each transport
should be checked the same way: errors, utilization, saturation.

You may find that the observability tools (e.g., Linux iostat(1)) do not pres-
ent per-controller metrics but provide them only per disk. There are work-arounds
for this: if the system has only one controller, you can determine the controller
IOPS and throughput by summing those metrics for all disks. If the system has
multiple controllers, you will need to determine which disks belong to which and
sum the metrics accordingly.

Performance of disk controllers and transports is often overlooked. Fortunately,
they are not common sources of system bottlenecks, as their capacity typically
exceeds that of the attached disks. If total disk throughput or IOPS always levels
off at a certain rate, even under different workloads, this may be a clue that the
disk controllers or transports are in fact causing problems.

9.5.3 Performance Monitoring

Performance monitoring can identify active issues and patterns of behavior over
time. Key metrics for disk I/O are

� Disk utilization

� Response time

424 Chapter 9 � Disks

Disk utilization at 100% for multiple seconds is very likely an issue. Depending
on your environment, over 60% may also cause poor performance due to increased
queueing.

Increased response time affects performance and can occur due to varying work-
loads or the addition of new competing workloads. The value for “normal” or “bad”
depends on your workload, environment, and latency requirements. If you aren’t
sure, micro-benchmarks of known-to-be-good versus bad workloads may be per-
formed to investigate response time (e.g., random versus sequential, small versus
large I/O, one tenant versus many). See Section 9.7, Experimentation.

These metrics should be examined on a per-disk basis, to look for unbalanced
workloads and individual poorly performing disks. The response time metric may
be monitored as a per-second average and can include other values such as the
maximum and standard deviation. Ideally, it would be possible to inspect the full
distribution of response times, such as by using a histogram or heat map, to look
for latency outliers and other patterns.

If the system imposes disk I/O resource controls, statistics to show if and when
these were in use can also be collected. Disk I/O may be a bottleneck as a conse-
quence of the imposed limit, not the activity of the disk itself.

Utilization and response time show the result of disk performance. More met-
rics may be added to characterize the workload, including IOPS and throughput,
providing important data for use in capacity planning (see the next section and
Section 9.5.11, Scaling).

9.5.4 Workload Characterization

Characterizing the load applied is an important exercise in capacity planning,
benchmarking, and simulating workloads. It can also lead to some of the largest
performance gains, by identifying unnecessary work that can be eliminated.

The following are basic attributes for characterizing disk I/O workload. Collec-
tively, they can provide an approximation of what the disks are asked to perform:

� I/O rate

� I/O throughput

� I/O size

� Random versus sequential

� Read/write ratio

Random versus sequential, the read/write ratio, and I/O size are described in Sec-
tion 9.3, Concepts. I/O rate (IOPS) and I/O throughput are defined in Section 9.1,
Terminology.

9.5 Methodology 425

These characteristics can vary from second to second, especially for applications
and file systems that buffer and flush writes at intervals. To better characterize
the workload, capture maximum values as well as averages. Better still, examine
the full distribution of values over time.

Here is an example workload description, to show how these attributes can be
expressed together:

The system disks have a light random read workload, averaging 350 IOPS with a
throughput of 3 Mbytes/s, running at 96% reads. There are occasional short bursts of
sequential writes, which drive the disks to a maximum of 4,800 IOPS and 560 Mbytes/s.
The reads are around 8 Kbytes in size, and the writes around 128 Kbytes.

Apart from describing these characteristics system-wide, they can also be used to
describe per-disk and per-controller I/O workloads.

Advanced Workload Characterization/Checklist

Additional details may be included to characterize the workload. These have been
listed here as questions for consideration, which may also serve as a checklist
when studying disk issues thoroughly:

� What is the IOPS rate system-wide? Per disk? Per controller?

� What is the throughput system-wide? Per disk? Per controller?

� Which applications or users are using the disks?

� What file systems or files are being accessed?

� Have any errors been encountered? Were they due to invalid requests, or
issues on the disk?

� How balanced is the I/O over available disks?

� What is the IOPS for each transport bus involved?

� What is the throughput for each transport bus involved?

� What non-data-transfer disk commands are being issued?

� Why is disk I/O issued (kernel call path)?

� To what degree is disk I/O application-synchronous?

� What is the distribution of I/O arrival times?

IOPS and throughput questions can be posed for reads and writes separately.
Any of these may also be checked over time, to look for maximums, minimums, and
time-based variations. Also see Section 2.5.10, Workload Characterization, in
Chapter 2, Methodology, which provides a higher-level summary of the characteris-
tics to measure (who, why, what, how).

426 Chapter 9 � Disks

Performance Characterization

For comparison with workload characterization, the following questions character-
ize the resulting performance of the workload:

� How busy is each disk (utilization)?

� How saturated is each disk with I/O (wait queueing)?

� What is the average I/O service time?

� What is the average I/O wait time?

� Are there I/O outliers with high latency?

� What is the full distribution of I/O latency?

� Are system resource controls, such as I/O throttling, present and active?

� What is the latency of non-data-transfer disk commands?

9.5.5 Latency Analysis

Latency analysis involves drilling deeper into the system to find the source of
latency. With disks, this will often end at the disk interface: the time between an I/O
request and the completion interrupt. If this matches the I/O latency at the applica-
tion level, it’s usually safe to assume that the I/O latency originates from the disks,
allowing you to focus your investigation on them. If the latency differs, measuring it
at different levels of the operating system stack will identify the origin.

Figure 9.9 pictures the I/O stack, with the latency shown at different levels of
two I/O outliers, A and B.

The latency of I/O A is similar at each level from the application down to the
disk drivers. This correlation points to the disks (or the disk driver) as the cause of
the latency. This could be inferred if the layers were measured independently,
based on the similar latency values between them.

The latency of B appears to originate at the file system level (locking or queue-
ing?), with the I/O latency at lower levels contributing much less time. Be aware that
different layers of the stack may inflate or deflate I/O, which means the size, count,
and latency will differ from one layer to the next. The B example may be a case of
only observing one I/O at the lower levels (of 10 ms), but failing to account for other
related I/O that occurred to service the same file system I/O (e.g., metadata).

The latency at each level may be presented as

� Per-interval I/O averages: as typically reported by operating system tools

� Full I/O distributions: as histograms or heat maps; see Latency Heat Maps
in Section 9.6.12, Visualizations

� Per-I/O latency values: see the next section, Event Tracing

9.5 Methodology 427

The last two are useful for tracking the origin of outliers and can help identify
cases where I/O has been split or coalesced.

9.5.6 Event Tracing

Event tracing is where information for every I/O event is captured and recorded
separately. For observational analysis, it is the last resort. It adds some perfor-
mance overhead due to the capturing and saving of these details, which are usu-
ally written to log files for later inspection. These log files should contain, at a
minimum, the following details for each I/O:

� Disk device ID

� I/O type: read or write

� I/O offset: disk location

� I/O size: bytes

� I/O request timestamp: when an I/O was issued to the device (also known
as an I/O strategy)

� I/O completion timestamp: when the I/O event completed (completion
interrupt)

� I/O completion status: errors

Figure 9-9 Stack latency analysis

428 Chapter 9 � Disks

Additional details may include, when applicable, PID, UID, application name, file
name, and events for all non-data-transfer disk commands (and custom details for
those commands).

The I/O request and completion timestamps allow disk I/O latency to be calcu-
lated. When reading the log, it can be helpful to sort on each separately for com-
parison—to see how disk I/O is reordered by the device. Arrival distributions can
also be studied from the timestamps.

Because disk I/O is commonly analyzed, static tracepoints are often available for
this purpose, tracing requests and completions. Dynamic tracing may also be used
for advanced analysis, and similar trace logs may be captured for the following:

� Block device driver I/O

� Interface driver commands (e.g., sd)

� Disk device driver commands

Commands means both reads/writes and non-data transfers. See Section 9.6, Anal-
ysis, for examples.

9.5.7 Static Performance Tuning

Static performance tuning focuses on issues of the configured environment. For
disk performance, examine the following aspects of the static configuration:

� How many disks are present? Of which types?

� What version is the disk firmware?

� How many disk controllers are present? Of which interface types?

� Are disk controller cards connected to high-speed slots?

� What version is the disk controller firmware?

� Is RAID configured? How exactly, including stripe width?

� Is multipathing available and configured?

� What version is the disk device driver?

� Are there operating system bugs/patches for any of the storage device drivers?

� Are there resource controls in use for disk I/O?

Be aware that performance bugs may exist in device drivers and firmware,
which are ideally fixed by updates from the vendor.

9.5 Methodology 429

Answering these questions can reveal configuration choices that have been over-
looked. Sometimes a system has been configured for one workload, and then repur-
posed for another. This strategy will revisit those choices.

While working as the performance lead for Sun’s ZFS storage product, the most
common performance complaint I received was caused by a misconfiguration:
using half a JBOD (12 disks) of RAID-Z2 (wide stripes). I learned to ask for config-
uration details first (usually over the phone) before spending time logging in to the
system and examining I/O latency.

9.5.8 Cache Tuning

There may be many different caches present in the system, including application-
level, file system, disk controller, and on the disk itself. A list of these was included
in Section 9.3.3, Caching, which can be tuned as described in Section 2.5.17, Cache
Tuning, in Chapter 2, Methodology. In summary, check which caches exist, check
that they are working, check how well they are working, then tune the workload
for the cache and tune the cache for the workload.

9.5.9 Resource Controls

The operating system may provide controls for allocating disk I/O resources to
processes or groups of processes. These may include fixed limits for IOPS and through-
put, or shares for a more flexible approach. How these work are implementation-
specific and are discussed in Section 9.8, Tuning.

9.5.10 Micro-Benchmarking

Micro-benchmarking disk I/O was introduced in Chapter 8, File Systems, which
explains the difference between testing file system I/O and testing disk I/O. Here
we would like to test disk I/O, which usually means testing via the operating sys-
tem’s device paths, particularly the raw device path if available, to avoid all file
system behavior (including caching, buffering, I/O splitting, I/O coalescing, code
path overheads, and offset mapping differences).

Factors for micro-benchmarking include

� Direction: reads or writes

� Disk offset pattern: random or sequential

� Range of offsets: full disk or tight ranges (e.g., offset 0 only)

430 Chapter 9 � Disks

� I/O size: 512 bytes (typical minimum) up to 1 Mbyte

� Concurrency: number of I/O in flight, or number of threads performing I/O

� Number of devices: single disk tests, or multiple disks (to explore control-
ler and bus limits)

The next two sections show how these factors can be combined to test disk and
disk controller performance. See Section 9.7, Experimentation, for details of the
specific tools that can be used to perform these tests.

Disks

Micro-benchmarking can be performed on a per-disk basis to determine the follow-
ing, along with suggested workloads:

� Maximum disk throughput (megabytes per second): 128 Kbyte reads,
sequential

� Maximum disk operation rate (IOPS): 512-byte reads, offset 0 only

� Maximum disk random reads (IOPS): 512-byte reads, random offsets

� Read latency profile (average microseconds): sequential reads, repeat for
512 bytes, 1 K, 2 K, 4 K, and so on

� Random I/O latency profile (average microseconds): 512-byte reads, repeat
for full offset span, beginning offsets only, end offsets only

These tests can be repeated for writes. The use of “offset 0 only” is intended to
cache the data in the on-disk cache, so that cache access time can be measured.

Disk Controllers

Disk controllers may be micro-benchmarked by applying a workload to multiple
disks, designed to hit limits in the controller. These test may be performed using
the following, along with suggested workloads for the disks:

� Maximum controller throughput (megabytes per second): 128 Kbytes, off-
set 0 only

� Maximum controller operation rate (IOPS): 512-byte reads, offset 0 only

Apply the workload to the disks one by one, watching for limits. It still may take
over a dozen disks to find the limit in a disk controller.

9.6 Analysis 431

9.5.11 Scaling

Disks and disk controllers have throughput and IOPS limits, which can be demon-
strated via micro-benchmarking as described previously. Tuning can improve per-
formance only up to these limits. If more disk performance is needed, and other
strategies such as caching won’t work, the disks will need to scale.

Here is a simple method, based on capacity planning of resources:

1. Determine the target disk workload, in terms of throughput and IOPS. If this
is a new system, see Section 2.7, Capacity Planning, in Chapter 2, Methodol-
ogy. If the system already has a workload, express the user population in
terms of current disk throughput and IOPS, and scale these numbers to the
target user population. (If cache is not scaled at the same time, the disk work-
load may increase, because the cache-per-user ratio becomes smaller, push-
ing more I/O to disk.)

2. Calculate the number of disks required to support this workload. Factor in
RAID configuration. Do not use the maximum throughput and IOPS values
per disk, as this would result in a plan driving disks at 100% utilization, lead-
ing to immediate performance issues due to saturation and queueing. Pick a
target utilization (say, 50%) and scale values accordingly.

3. Calculate the number of disk controllers required to support this workload.

4. Check that transport limits have not been exceeded, and scale transports if
necessary.

5. Calculate CPU cycles per disk I/O, and the number of CPUs required.

The maximum per-disk throughput and IOPS numbers used will depend on their
type and the disk type. See Section 9.3.7, IOPS Are Not Equal. Micro-benchmarking
can be used to find specific limits for a given I/O size and I/O type, and workload
characterization can be used on existing workloads to see which sizes and types
matter.

To deliver the disk workload requirement, it’s not uncommon to find servers
requiring dozens of disks, connected via storage arrays. We used to say, “Add more
spindles.” We may now say, “Add more flash.”

9.6 Analysis

This section introduces disk I/O performance analysis tools for Linux- and Solaris-
based operating systems. See the previous section for strategies to follow when
using them.

432 Chapter 9 � Disks

The tools in this section are listed in Table 9.5.

This is a selection of tools to support Section 9.5, Methodology, beginning with
system-wide statistics, per-process statistics, then drilling down to event tracing
and controller statistics. See the tool documentation, including man pages, for full
references of their features.

9.6.1 iostat

iostat(1) summarizes per-disk I/O statistics, providing metrics for workload
characterization, utilization, and saturation. It can be executed by any user and is
typically the first command used to investigate disk I/O issues at the command
line. The statistics it sources are always maintained by the kernel, so the over-
head of this tool is considered negligible.

The name “iostat” is short for “I/O statistics,” although it might have been bet-
ter to call it “diskiostat” to reflect the type of I/O it reports. This has led to occa-
sional confusion when a user knows that an application is performing I/O (to the
file system) but wonders why it can’t be seen via iostat(1) (the disks).

iostat(1) was written in the early 1980s, and different versions are available
on the different operating systems. It can be added to Linux-based systems via the
sysstat package and is included by default on Solaris-based systems. While its gen-
eral purpose is the same in both, the columns and options differ. Refer to the iostat
man page for your operating system to see what your version supports.

The following sections describe iostat(1) for Linux- and Solaris-based sys-
tems, where the options and output differ slightly. iostat(1) can be executed
with various options, followed by an optional interval and count.

Table 9-5 Disk Analysis Tools

Linux Solaris Description

iostat iostat various per-disk statistics

sar sar historical disk statistics

pidstat, iotop iotop disk I/O usage by process

blktrace iosnoop disk I/O event tracing

DTrace DTrace custom static and dynamic tracing

MegaCli MegaCli LSI controller statistics

smartctl smartctl disk controller statistics

9.6 Analysis 433

Linux

Commonly used iostat(1) options are shown in Table 9.6.

The default behavior is to enable both -c and -d reports; if one is specified on
the command line, the other is disabled. Some older versions included an option for
NFS statistics, -n. Since sysstat version 9.1.3 this was moved to the separate
nfsiostat command.

Without any arguments or options, a summary-since-boot for the -c and -d
reports is printed. It’s covered here as an introduction to this tool; however, you are
not expected to use this mode, as the extended mode covered later is generally
more useful.

By default, iostat shows a summary line for the system including the kernel ver-
sion, host name, date, architecture, and CPU count, and then summary-since-boot
statistics for the CPUs (avg-cpu) and disk devices (under Device:). Each disk
device is shown as a row, with basic details in the columns:

� tps: transactions per second (IOPS)

Table 9-6 Linux iostat Options

Option Description

-c display CPU report

-d display disk report

-k use kilobytes instead of (512-byte) blocks

-m use megabytes instead of (512-byte) blocks

-p include per-partition statistics

-t timestamp output

-x extended statistics

-z skip displaying zero-activity summaries

$ iostat
Linux 3.2.6-3.fc16.x86_64 (prod201) 04/14/13 _x86_64_ (16 CPU)

avg-cpu: %user %nice %system %iowait %steal %idle
 0.03 0.00 0.02 0.00 0.00 99.95

Device: tps kB_read/s kB_wrtn/s kB_read kB_wrtn
sdb 0.01 0.75 0.87 4890780 5702856
sda 1.67 0.43 17.66 2811164 115693005
dm-0 0.22 0.75 0.87 4890245 5702856
dm-1 4.44 0.42 17.66 2783497 115669936
dm-2 0.00 0.00 0.00 5976 22748

434 Chapter 9 � Disks

� kB_read/s, kB_wrtn/s: kilobytes read per second, and written per second

� kB_read, kB_wrtn: total kilobytes read and written

SCSI devices, including tapes and CD-ROMs, are currently not seen by the
Linux version of iostat(1). This has led to work-arounds, including SystemTap’s
iostat-scsi.stp script [3].1 Also note that, while iostat(1) reports block device
reads and writes, it may exclude some other types of disk device commands
depending on the kernel (e.g., see the logic in blk_do_io_stat()).

As mentioned earlier, the -m option can be used to report the output as mega-
bytes. On older versions of iostat(1) (sysstat 9.0.6 and older), the default out-
put used blocks (512 bytes each) instead of kilobytes. The old behavior can be
forced with the following environment variable:

Extended output can be selected by using -x and provides extra columns that
are useful for many of the strategies covered earlier. These extra columns include
IOPS and throughput metrics for workload characterization, utilization and queue
lengths for the USE method, and disk response times for performance character-
ization and latency analysis.

The following output is too wide to fit on a page and is shown with left and right
parts. This example includes -d for disk report only, -k for kilobytes, and -z to
omit lines of all zeros (idle devices):

1. Which, at the time of writing, doesn’t work.

$ POSIXLY_CORRECT=1 iostat
[...]
Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn
[...]

$ iostat -xkdz 1

Linux 3.2.6-3.fc16.x86_64 (prod201) 04/14/13 _x86_64_ (16 CPU)

Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s \ ...
sdb 0.04 1.89 0.01 0.07 1.56 7.86 / ...
sda 0.00 0.00 0.00 0.00 0.00 0.00 \ ...
dm-0 0.00 0.00 0.05 0.10 0.19 0.39 / ...

 \ ...
Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s / ...
sdb 0.00 0.00 230.00 0.00 2292.00 0.00 \ ...

 / ...
Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s \ ...
sdb 0.00 0.00 231.00 0.00 2372.00 0.00 / ...

9.6 Analysis 435

The output columns are

� rrqm/s: read requests placed on the driver request queue and merged per
second

� wrqm/s: write requests placed on the driver request queue and merged per
second

� r/s: read requests issued to the disk device per second

� w/s: write requests issued to the disk device per second

� rkB/s: kilobytes read from the disk device per second

� wkB/s: kilobytes written to the disk device per second

Nonzero counts in the rrqm/s and wrqm/s columns show that contiguous
requests were merged before delivery to the device, to improve performance. This
metric is also a sign of a sequential workload. The r/s and w/s columns show the
requests actually issued to the device.

Here is the remaining output:

The output columns are

� avgrq-sz: average request size in sectors (512 bytes)

� avgqu-sz: average number of requests both waiting in the driver request
queue and active on the device

� await: average I/O response time, including time waiting in the driver
request queue and the I/O response time of the device (ms)

� r_await: same as await, but for reads only (ms)

� w_await: same as await, but for writes only (ms)

� svctm: average (inferred) I/O response time for the disk device (ms)

� %util: percent of time the device was busy processing I/O requests (utilization)

$ iostat -xkdz 1

Linux 3.2.6-3.fc16.x86_64 (prod201) 04/14/13 _x86_64_ (16 CPU)

Device: \ ... \ avgrq-sz avgqu-sz await r_await w_await svctm %util
sdb / ... / 227.13 0.00 41.13 4.51 47.65 0.54 0.00
sda \ ... \ 11.16 0.00 1.40 1.17 2.04 1.40 0.00
dm-0 / ... / 8.00 0.00 12.83 3.61 21.05 0.04 0.00
 \ ... \
Device: / ... / avgrq-sz avgqu-sz await r_await w_await svctm %util
sdb \ ... \ 19.93 0.99 4.30 4.30 0.00 4.30 99.00
 / ... /
Device: \ ... \ avgrq-sz avgqu-sz await r_await w_await svctm %util
sdb / ... / 20.54 1.00 4.33 4.33 0.00 4.33 100.00

436 Chapter 9 � Disks

Since avgrq-sz is after merging, small sizes (16 sectors or less) are an indicator of
a random I/O workload that was unable to be merged. Large sizes may be either
large I/O or a merged sequential workload (indicated by earlier columns).

The most important metric for delivered performance is await. If the applica-
tion and file system use a technique to mitigate write latency (e.g., write-through),
w_await may not matter as much, and you can focus on r_await instead.

For resource usage and capacity planning, %util is important, but bear in mind
it is only a measure of busyness (non-idle time) and may mean little for virtual
devices backed by multiple disks. Those devices may be better understood by the
load applied: IOPS (r/s + w/s) and throughput (rkB/s + wkB/s).

The r_await and w_await columns are newer additions to the iostat(1) tool;
previous versions had just await. The iostat(1) man page warns that the
svctm field will be removed in future versions as the metric is considered to be
inaccurate. (I don’t think it is inaccurate, but I do think it may have misled peo-
ple, since it is an inferred value and not a measurement of device latency.)

Here is another useful combination:

The -t includes the timestamp, which can be useful when comparing the output to
other timestamped sources. The -p ALL includes per-partition statistics.

Unfortunately, the current version of iostat(1) does not include disk errors;
otherwise all USE method metrics could be checked from one tool!

Solaris

Listing options using –h (despite the “illegal option” error):

$ iostat -xkdzt -p ALL 1
Linux 3.2.6-3.fc16.x86_64 (prod201) 04/14/13 _x86_64_ (16 CPU)

04/14/2013 10:50:20 PM
Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s \ ...
sdb 0.00 0.21 0.01 0.00 0.74 0.87 / ...
sdb1 0.00 0.21 0.01 0.00 0.74 0.87 \ ...
[...]

$ iostat -h
iostat: illegal option -- h
Usage: iostat [-cCdDeEiImMnpPrstxXYz] [-l n] [-T d|u] [disk ...] [interval [count]]
 -c: report percentage of time system has spent

 in user/system/wait/idle mode
-C: report disk statistics by controller

 -d: display disk Kb/sec, transfers/sec, avg.
 service time in milliseconds

-D: display disk reads/sec, writes/sec,
 percentage disk utilization

 -e: report device error summary statistics
 -E: report extended device error statistics

-i: show device IDs for -E output

9.6 Analysis 437

This includes -e and -E options to report error counts.
The -I option prints counts instead of the calculated interval summaries; it is

typically used by monitoring software that runs iostat(1) at regular intervals,
and then performs its own calculations on the output to generate summaries.

From left to right, the default output shows terminal (tty) input and output char-
acters (tin, tout), then up to three groups of columns (kps, tps, serv) for disk
devices, then a group for CPU statistics (cpu). On this system, the disk devices
shown are ramdisk1, sd0, and sd1. More devices are not shown in this way, as
iostat(1) attempts to respect 80-character-width output.

The disk device columns are

� kps: kilobytes per second, read and write

� tps: transactions per second (IOPS)

� serv: service time, milliseconds

This example uses -n to use the descriptive /dev names of the disk devices instead
of the kernel instance names, and -z to omit lines of all zeros (idle devices):

 -I: report the counts in each interval,
 instead of rates, where applicable

 -l n: Limit the number of disks to n
 -m: Display mount points (most useful with -p)
 -M: Display data throughput in MB/sec instead of Kb/sec
 -n: convert device names to cXdYtZ format

-p: report per-partition disk statistics
 -P: report per-partition disk statistics only,

 no per-device disk statistics
 -r: Display data in comma separated format

 -s: Suppress state change messages
 -T d|u Display a timestamp in date (d) or unix time_t (u)

-t: display chars read/written to terminals
-x: display extended disk statistics
 -X: display I/O path statistics

 -Y: display I/O path (I/T/L) statistics
 -z: Suppress entries with all zero values

$ iostat
 tty ramdisk1 sd0 sd1 cpu
 tin tout kps tps serv kps tps serv kps tps serv us sy wt id
 0 10 1 0 0 0 0 0 5360 111 1 9 6 0 85

$ iostat -xnz 1
extended device statistics

 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 0.1 0.2 0.7 0.6 0.0 0.0 0.0 0.0 0 0 ramdisk1
 12.3 98.7 315.6 5007.8 0.0 0.1 0.0 0.8 0 2 c0t0d0

continues

438 Chapter 9 � Disks

The output columns are

� r/s, w/s: reads per second, writes per second

� kr/s, kw/s: kilobytes read per second, kilobytes written per second

� wait: average number of requests waiting in the block driver queue

� actv: average number of requests issued and active on the device

� wsvc_t: average time waiting in the block driver queue (ms); wsvc_t is
waiting for service time

� asvc_t: average time active on the device (ms); asvc_t is active service
time, although this is really the average device I/O response time

� %w: percent of time I/O were present in a wait queue

� %b: percent of time I/O were busy (utilization) throughput

Average read or write I/O size is not included (it is available in the Linux version),
but it can easily be calculated by dividing the by the IOPS rate, for example, aver-
age read size = (kr/s) / (r/s).

Another useful combination is

Per-controller statistics are shown with -C, per-partition with -p, and the output is
timestamped using -Td.

Error counters can be added to the output using -e:

extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 1041.7 8.0 1044.7 95.6 0.0 0.7 0.0 0.6 1 65 c0t0d0

extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 1911.9 1.0 1959.4 7.9 0.0 0.6 0.0 0.3 1 55 c0t0d0

extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 746.1 1.0 1016.6 8.0 0.0 0.8 0.0 1.0 0 75 c0t0d0
[...]

$ iostat -xnmpzCTd 1
April 14, 2013 08:44:58 AM UTC

extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 1.5 33.9 146.5 1062.6 0.0 0.0 0.0 1.2 0 1 c0
 0.1 0.0 0.5 0.0 0.0 0.0 0.0 0.1 0 0 c0t0d0
 0.1 0.0 0.5 0.0 0.0 0.0 0.0 0.1 0 0 c0t0d0p0
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.6 0 0 c0t0d0p1
 1.5 33.9 146.0 1062.6 0.0 0.0 0.0 1.2 0 1 c0t1d0
 1.5 33.9 146.0 1062.6 0.0 0.0 0.0 1.2 0 1 c0t1d0s0
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.0 0 0 c0t1d0p0
[...]

9.6 Analysis 439

Unless you have devices that are actively encountering errors, however, having
the per-interval summaries may not be that helpful. To check counts since boot
only, use the -E option for a different iostat output format:

The Soft Errors (s/w in the -e output) are recoverable errors that may cause
performance issues. Hard Errors (h/w from the -e output) are not recoverable by
the disks, although they may be recoverable by the higher-level architecture
(RAID), which allows the system to continue but usually also causes performance
issues (e.g., I/O time-out latency followed by degraded service).

It can be easier to read the error counters using

The USE method can be derived from iostat(1M) using

� %b: shows disk utilization.

� actv: A number greater than one is an indication of saturation: queueing in
the device. For virtual devices that front multiple physical devices, this is
harder to determine (it depends on the RAID policy); an actv greater than
the device count is likely to indicate device saturation.

$ iostat -xnze 1
 extended device statistics ---- errors ---

 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b s/w h/w trn tot device
 0.0 0.0 0.1 0.0 0.0 0.0 0.3 0.6 0 0 0 0 0 0 lofi1
 0.0 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0 0 0 0 0 0 ramdisk1
 0.1 0.0 0.5 0.0 0.0 0.0 0.0 0.1 0 0 0 0 0 0 c0t0d0
 1.5 33.9 146.0 1062.6 0.0 0.0 0.0 1.2 0 1 0 0 0 0 c0t1d0
[...]

$ iostat -En
c1t0d0 Soft Errors: 0 Hard Errors: 0 Transport Errors: 0
Vendor: iDRAC Product: LCDRIVE Revision: 0323 Serial No:
Size: 0.00GB <0 bytes>
Media Error: 0 Device Not Ready: 0 No Device: 0 Recoverable: 0
Illegal Request: 0 Predictive Failure Analysis: 0
c2t0d0 Soft Errors: 0 Hard Errors: 0 Transport Errors: 0
Vendor: iDRAC Product: Virtual CD Revision: 0323 Serial No:
Size: 0.00GB <0 bytes>
Media Error: 0 Device Not Ready: 0 No Device: 0 Recoverable: 0
Illegal Request: 0 Predictive Failure Analysis: 0
[...]

$ iostat -En | grep Hard
c1t0d0 Soft Errors: 0 Hard Errors: 0 Transport Errors: 0
c2t0d0 Soft Errors: 0 Hard Errors: 0 Transport Errors: 0
c2t0d1 Soft Errors: 0 Hard Errors: 0 Transport Errors: 0
c3t0d0 Soft Errors: 0 Hard Errors: 0 Transport Errors: 0
c0t0d0 Soft Errors: 0 Hard Errors: 0 Transport Errors: 0
c0t1d0 Soft Errors: 0 Hard Errors: 0 Transport Errors: 0

440 Chapter 9 � Disks

� wait: A number greater than zero is an indication of saturation: queueing in
the driver.

� errors tot: total error counts.

As described in the earlier Sloth Disks section of Section 9.4.1, Disk Types, there
can be disk issues where the error counters are not incremented. Hopefully this is
rare, and you won’t encounter it. Here is an example screen shot of such an issue:

Note that the disk is 100% busy, yet is not performing I/O (zero counts for r/s and
w/s). This particular example was from an issue with a RAID controller. If this
persists for short durations, multisecond I/O latency is introduced, creating perfor-
mance issues. If it goes on longer, the system can appear to have hung.

9.6.2 sar

The system activity reporter, sar(1), can be used to observe current activity and
can be configured to archive and report historical statistics. It is mentioned in vari-
ous chapters in this book for the different statistics it provides.

The sar(1) disk summary is printed using the -d option, demonstrated in the
following examples with an interval of one second.

Linux

This disk summary output is wide and is included here in two parts:

$ iostat -xnz 1
[...]

extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 0.0 0.0 0.0 0.0 0.0 4.0 0.0 0.0 0 100 c0t0d0

extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 0.0 0.0 0.0 0.0 0.0 4.0 0.0 0.0 0 100 c0t0d0

extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 0.0 0.0 0.0 0.0 0.0 4.0 0.0 0.0 0 100 c0t0d0
[...]

$ sar -d 1
Linux 2.6.32-21-server (prod103) 04/15/2013 _x86_64_ (8 CPU)

02:39:26 AM DEV tps rd_sec/s wr_sec/s avgrq-sz avgqu-sz \ ...
02:39:27 AM dev8-16 0.00 0.00 0.00 0.00 0.00 / ...
02:39:27 AM dev8-0 418.00 0.00 12472.00 29.84 29.35 \ ...
02:39:27 AM dev251-0 0.00 0.00 0.00 0.00 0.00 / ...
02:39:27 AM dev251-1 1559.00 0.00 12472.00 8.00 113.87 \ ...
02:39:27 AM dev251-2 0.00 0.00 0.00 0.00 0.00 / ...
[...]

9.6 Analysis 441

Here are the remaining columns:

Many of the columns are similar to iostat(1) (see the earlier descriptions), with
the following differences:

� tps: device data transfers per second

� rd_sec/s, wr_sec/s: read and write sectors (512 bytes) per second

Solaris

The following runs sar(1) with a 1 s interval to report current activity:

Output columns are similar to iostat(1M) extended mode, with different names.
For example, %busy is iostat(1M)’s %b, and avwait and avserv are called
wsvc_t and asvc_t in iostat(1M).

9.6.3 pidstat

The Linux pidstat(1) tool prints CPU usage by default and includes a -d option
for disk I/O statistics. This is available on kernels 2.6.20 and later. For example:

$ sar -d 1
Linux 2.6.32-21-server (prod103) 04/15/2013 _x86_64_ (8 CPU)

02:39:26 AM \ ... \ await svctm %util
02:39:27 AM / ... / 0.00 0.00 0.00
02:39:27 AM \ ... \ 70.22 0.69 29.00
02:39:27 AM / ... / 0.00 0.00 0.00
02:39:27 AM \ ... \ 73.04 0.19 29.00
02:39:27 AM / ... / 0.00 0.00 0.00
[...]

$ sar -d 1

SunOS prod072 5.11 joyent_20120509T003202Z i86pc 04/15/2013

02:52:30 device %busy avque r+w/s blks/s avwait avserv

02:52:31 sd0 0 0.0 0 0 0.0 0.0
 sd1 0 0.0 0 0 0.0 0.0
 sd2 0 0.0 0 0 0.0 0.0
 sd3 0 0.0 3 33 0.0 0.1
 sd3,a 0 0.0 0 0 0.0 0.0
 sd3,b 0 0.0 3 30 0.0 0.1
[...]

442 Chapter 9 � Disks

Columns include

� kB_rd/s: kilobytes read per second

� kB_wd/s: kilobytes issued for write per second

� kB_ccwr/s: kilobytes canceled for write per second (e.g., overwritten before
flush)

Only superusers (root) can access disk statistics for processes that they do not
own. These are read via /proc/PID/io.

9.6.4 DTrace

DTrace can be used to examine disk I/O events from within the kernel, including
block device interface I/O, I/O scheduler events, target driver I/O, and device driver
I/O. These abilities support workload characterization and latency analysis.

The following sections introduce DTrace for disk I/O analysis, demonstrating
capabilities that should apply to both Linux- and Solaris-based systems. The
examples are taken from a Solaris-based system, unless noted as Linux. A DTrace
primer was included in Chapter 4, Observability Tools.

The DTrace providers used to trace disk I/O include the ones listed in Table 9.7.

$ pidstat -d 1
22:53:11 PID kB_rd/s kB_wr/s kB_ccwr/s Command
22:53:12 10512 3366.34 0.00 0.00 tar
22:53:12 10513 0.00 6051.49 13813.86 gzip

22:53:12 PID kB_rd/s kB_wr/s kB_ccwr/s Command
22:53:13 10512 5136.00 0.00 0.00 tar
22:53:13 10513 0.00 4416.00 0.00 gzip

Table 9-7 DTrace Providers for I/O Analysis

Layer Stable Providers Unstable Providers

Application depends on app pid

System library — pid

System calls — syscall

VFS fsinfo fbt

File system — fbt

Block device interface io fbt

Target driver — fbt

Device driver — fbt

9.6 Analysis 443

Stable providers should always be used as much as possible; however, for the
disk I/O stack there really is only the io provider for serious analysis. Check
whether more stable providers have been released for your operating system for
the other areas. If not, the unstable-interface providers may be used, although
scripts will need updates to match software changes.

io Provider

The io provider provides visibility into the block device interface and can be used
to characterize disk I/O and measure latency. The probes are

� io:::start: An I/O request was issued to the device.

� io:::done: An I/O request completed on the device (completion interrupt).

� io:::wait-start: A thread began waiting on an I/O request.

� io:::wait-done: A thread completed waiting on an I/O request.

Listing these on Solaris:

The MODULE and FUNCTION columns show the location of the probes (and, as an
implementation detail, are not part of the stable interface). Note that on Solaris,
nfs client I/O is also traced via the io provider, as seen by the nfs module probes.

The probes have stable arguments that provide details of the I/O, including

� args[0]->b_count: I/O size (bytes)

� args[0]->b_blkno: device I/O offset (blocks)

� args[0]->b_flags: bitwise flags, including B_READ to indicate read I/O

� args[0]->b_error: error status

� args[1]->dev_statname: device instance name + instance/minor number

dtrace -ln io:::
 ID PROVIDER MODULE FUNCTION NAME
 731 io genunix biodone done
 732 io genunix biowait wait-done
 733 io genunix biowait wait-start
 744 io genunix default_physio start
 745 io genunix bdev_strategy start
 746 io genunix aphysio start
 2014 io nfs nfs4_bio done
 2015 io nfs nfs3_bio done
 2016 io nfs nfs_bio done
 2017 io nfs nfs4_bio start
 2018 io nfs nfs3_bio start
 2019 io nfs nfs_bio start

444 Chapter 9 � Disks

� args[1]->dev_pathname: device path name

� args[2]->fi_pathname: file path name (if known)

� args[2]->fi_fs: file system type

Along with the standard DTrace built-ins, these allow for some powerful one-liners
to be constructed.

Event Tracing

The following traces each disk I/O request, with PID, process name, and I/O size
(bytes):

This one-liner uses a printf() statement to print details for each I/O. The out-
put shows the tar process with PID 22747 issued five I/O, which were either 64 or
128 Kbytes in size. In this case, the application thread was still on-CPU when the
I/O request was made, allowing it to be seen via execname. (There are cases where
this will occur asynchronously, and the kernel, sched, will be identified instead.)

I/O Size Summary

Summarizing disk I/O size by application name:

dtrace -n 'io:::start { printf("%d %s %d", pid, execname,
args[0]->b_bcount); }'

dtrace: description 'io:::start ' matched 6 probes
CPU ID FUNCTION:NAME
 0 745 bdev_strategy:start 22747 tar 65536
 0 745 bdev_strategy:start 22747 tar 65536
 0 745 bdev_strategy:start 22747 tar 131072
 0 745 bdev_strategy:start 22747 tar 131072
 0 745 bdev_strategy:start 22747 tar 131072
[...]

dtrace -n 'io:::start { @[execname] = quantize(args[0]->b_bcount); }'
dtrace: description 'io:::start ' matched 6 probes
^C

 tar
 value ------------- Distribution ------------- count
 2048 | 0
 4096 | 1
 8192 | 0
 16384 | 0
 32768 | 0
 65536 |@@@@ 13
 131072 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 121
 262144 | 0

9.6 Analysis 445

Instead of using DTrace to report the average, minimum, or maximum I/O size,
this one-liner produces a distribution plot to visualize the full distribution. The
value column shows the ranges in bytes, and the count column shows the num-
ber of I/O that were in that range. While tracing, processes named tar performed
121 I/O with sizes between 128 and 256 Kbytes (131,072 to 262,143 bytes). The
kernel (sched) has an interesting distribution (it looks bimodal), one that would
not be well understood via a single average value.

Apart from summarizing by process name (execname), the I/O size can be sum-
marized by

� Device name: using args[1]->dev_statname

� I/O direction (read/write): using args[0]->b_flags & B_READ ?
"read" : "write"

The values to summarize can also be characteristics other than the size
(args[0]->b_count). For example, the location on disk can be examined to mea-
sure I/O seek.

I/O Seek Summary

The I/O seek summary traces the seek distance between successive I/O to the same
device and from the same application, reporting it as histograms by process. This
has become too long for a one-liner and has been implemented as the following
DTrace script (diskseeksize.d):

 sched
 value ------------- Distribution ------------- count
 256 | 0
 512 | 3
 1024 |@@@@@@@ 63
 2048 |@@@@@@@@ 72
 4096 |@@@@@ 46
 8192 |@@@@@ 51
 16384 |@@@ 31
 32768 |@ 5
 65536 | 0
 131072 |@@@@@@@@@@@ 100
 262144 | 0

#!/usr/sbin/dtrace -s

self int last[dev_t];

io:::start
/self->last[args[0]->b_edev] != 0/
{
 this->last = self->last[args[0]->b_edev];

continues

446 Chapter 9 � Disks

This script calculates the distance in sectors between one I/O and the last sec-
tor of the previous I/O (starting offset + size). This is tracked per device, and also
by each thread (using self->), so that workload patterns from different processes
can be separated and studied.

This shows I/O from the fsflush thread, which is usually seeking further than
8,192 blocks. A distribution with a seek distance of mostly 0 would indicate a
sequential workload.

I/O Latency Summary

This script (disklatency.d) traces block I/O start and completion events, summariz-
ing the latency distribution as a histogram:

 this->dist = (int)(args[0]->b_blkno - this->last) > 0 ?
 args[0]->b_blkno - this->last : this->last - args[0]->b_blkno;
 @[pid, curpsinfo->pr_psargs] = quantize(this->dist);
}

io:::start
{
 self->last[args[0]->b_edev] = args[0]->b_blkno +

 args[0]->b_bcount / 512;
}

./diskseeksize.d
dtrace: script './diskseeksize.d' matched 8 probes
^C
 3 fsflush
 value ------------- Distribution ------------- count
 2 | 0
 4 |@ 2
 8 | 0
 16 |@@@@@ 15
 32 | 0
 64 | 0
 128 | 0
 256 | 0
 512 | 0
 1024 | 0
 2048 | 0
 4096 | 0
 8192 | 0
 16384 |@@@@@@@@@ 24
 32768 |@@@@ 13
 65536 |@@@@@ 15
 131072 |@@@@@@@@@@@@ 34
 262144 |@@@ 9
 524288 | 0
[...]

9.6 Analysis 447

A timestamp is recorded on the start probe so that the delta time can be calcu-
lated on completion. The trick to this script is associating the start with end
timestamps, as many may be in flight. An associative array is used, which is
keyed on a unique identifier for the I/O (which happens to be the pointer to the
buffer struct).

Executing:

While tracing, most of the I/O were in the 65,536 to 262,143 ns range (0.07 to
0.26 ms). The slowest was a single I/O in the 16 to 33 ms range. This histogram
output is great for identifying such I/O latency outliers.

Here, the I/O were summarized for all devices. The script can be enhanced to
produce separate histograms per device, or by process ID, or other criteria.

#!/usr/sbin/dtrace -s

io:::start
{

start[arg0] = timestamp;
}

io:::done
/start[arg0]/
{
 @["block I/O latency (ns)"] = quantize(timestamp - start[arg0]);
 start[arg0] = 0;
}

./disklatency.d
dtrace: script './disklatency.d' matched 10 probes
^C

 block I/O latency (ns)
 value ------------- Distribution ------------- count
 2048 | 0
 4096 | 26
 8192 | 0
 16384 | 4
 32768 |@@@@ 227
 65536 |@@@@@@@@@@@@@@@@@ 1047
 131072 |@@@@@@@@@@@@@ 797
 262144 |@@@@ 220
 524288 |@@ 125
 1048576 |@ 40
 2097152 | 18
 4194304 | 0
 8388608 | 0
 16777216 | 1
 33554432 | 0

448 Chapter 9 � Disks

I/O Stacks

An I/O stack frequency counts the calling kernel stack for I/O requests, up to the
block device driver (location of the io:::start probe). On Solaris-based systems:

The output was many pages long and shows the exact code path taken through the
kernel that led to the issuing of disk I/O, followed by the count for each stack. This
is often useful when investigating unexpected additional I/O (asynchronous, meta-
data) beyond the expected rate for the workload. The top stack shows an asynchro-
nous ZFS I/O (from a taskq thread running the ZIO pipeline), and the bottom
shows a synchronous UFS I/O originating from a getdents() syscall.

Here it is on Linux, this time via dynamic tracing of the kernel submit_bio()
function (the io:::start probe is still in development for this prototype):

dtrace -n 'io:::start { @[stack()] = count(); }'
dtrace: description 'io:::start ' matched 6 probes
^C
[...]

 genunix`ldi_strategy+0x4e
 zfs`vdev_disk_io_start+0x170
 zfs`vdev_io_start+0x12
 zfs`zio_vdev_io_start+0x7b
 zfs`zio_next_stage_async+0xae
 zfs`zio_nowait+0x9
 zfs`vdev_queue_io_done+0x68
 zfs`vdev_disk_io_done+0x74
 zfs`vdev_io_done+0x12
 zfs`zio_vdev_io_done+0x1b
 genunix`taskq_thread+0xbc
 unix`thread_start+0x8

 751

 ufs`lufs_read_strategy+0x8a
 ufs`ufs_getpage_miss+0x2b7
 ufs`ufs_getpage+0x802
 genunix`fop_getpage+0x47
 genunix`segmap_fault+0x118
 genunix`fbread+0xc4
 ufs`ufs_readdir+0x14b
 genunix`fop_readdir+0x34
 genunix`getdents64+0xda
 unix`sys_syscall32+0x101

 3255

dtrace -n 'fbt::submit_bio:entry { @[stack()] = count(); }'
dtrace: description 'fbt::submit_bio:entry ' matched 1 probe
^C
[...]

 kernel`submit_bio+0x1
 kernel`mpage_readpages+0x105
 kernel`ext4_get_block
 kernel`ext4_get_block
 kernel`__getblk+0x2c

9.6 Analysis 449

The path shows the ancestry, starting with the syscall interface (at the bottom),
VFS, page cache, and ext4.

Each line of these stacks may be traced individually using dynamic tracing via
the DTrace fbt provider. See Section 9.8, Tuning, for an example of tracing the sd_
start_cmds() function via fbt.

SCSI Events

This script (scsireasons.d) demonstrates tracing at the SCSI layer, reporting I/O
completions with a special SCSI code that describes the reason for completion. Key
excerpts are included here (see the next section for the full script reference):

The script uses an associative array to translate from SCSI reason integers to
human-readable strings. This is referenced during scsi_destroy_pkt(), where
the reason strings are frequency counted. No errors were found while tracing.

 kernel`ext4_readpages+0x1d
 kernel`__do_page_cache_readahead+0x1c7

 kernel`ra_submit+0x21
 kernel`ondemand_readahead+0x115
 kernel`mutex_lock+0x1d
 kernel`page_cache_sync_readahead+0x33
 kernel`generic_file_aio_read+0x4f8

 kernel`vma_merge+0x121
 kernel`do_sync_read+0xd2
 kernel`security_file_permission+0x93

 kernel`rw_verify_area+0x61
 kernel`vfs_read+0xb0
 kernel`sys_read+0x4a
 kernel`system_call_fastpath+0x16

 146

dtrace:::BEGIN
{
 /*
 * The following was generated from the CMD_* pkt_reason definitions
 * in /usr/include/sys/scsi/scsi_pkt.h using sed.
 */
 scsi_reason[0] = "no transport errors- normal completion";
 scsi_reason[1] = "transport stopped with not normal state";
 scsi_reason[2] = "dma direction error occurred";
 scsi_reason[3] = "unspecified transport error";
 scsi_reason[4] = "Target completed hard reset sequence";
 scsi_reason[5] = "Command transport aborted on request";
 scsi_reason[6] = "Command timed out";
[...]
fbt::scsi_destroy_pkt:entry
{
 this->code = args[0]->pkt_reason;
 this->reason = scsi_reason[this->code] != NULL ?

 scsi_reason[this->code] : "";
[...]

450 Chapter 9 � Disks

Advanced Tracing

When needed for advanced analysis, dynamic tracing can explore each layer of the
kernel I/O stack in more detail. To provide an idea of the capabilities, Table 9.8
shows scripts from the (140-page) Disk I/O chapter of DTrace [Gregg 11] (these
scripts are also available online [4]).

While this degree of observability is incredible, these dynamic tracing scripts
are tied to specific kernel internals and will require maintenance to match changes
in newer kernel versions.

./scsireasons.d
Tracing... Hit Ctrl-C to end.
^C
SCSI I/O completion reason summary:

 no transport errors- normal completion 38346

SCSI I/O reason errors by disk device and reason:

 DEVICE ERROR REASON COUNT

Table 9-8 Advanced Storage I/O Tracing Scripts

Script Layer Description

iopattern block shows disk I/O statistics including percent random

sdqueue.d SCSI shows I/O wait queue times as a distribution plot by device

sdretry.d SCSI a status tool for SCSI retries

scsicmds.d SCSI frequency count SCSI commands, with descriptions

scsilatency.d SCSI summarizes SCSI command latency by type and result

scsirw.d SCSI shows various SCSI read/write/sync statistics, including bytes

scsireasons.d SCSI shows SCSI I/O completion reasons and device names

satacmds.d SATA frequency count SATA commands, with descriptions

satarw.d SATA shows various SATA read/write/sync statistics, including bytes

satareasons.d SATA shows SATA I/O completion reasons and device names

satalatency.d SATA summarizes SATA command latency by type and result

idelatency.d IDE summarizes IDE command latency by type and result

iderw.d IDE shows IDE read/write/sync statistics, including bytes

ideerr.d IDE shows IDE command completion reasons with errors

mptsasscsi.d SAS shows SAS SCSI commands with SCSI and mpt details

mptevents.d SAS traces special mpt SAS events with details

mptlatency.d SAS shows mpt SCSI command times as a distribution plot

9.6 Analysis 451

9.6.5 SystemTap

SystemTap can also be used on Linux systems for dynamic tracing of disk I/O
events, and static tracing using its ioblock provider. See Section 4.4, SystemTap, in
Chapter 4, Observability Tools, and Appendix E for help with converting the previ-
ous DTrace scripts.

9.6.6 perf

The Linux perf(1) tool (introduced in Chapter 6, CPUs) provides block trace-
points, which can be traced for some basic information. Listing them:

For example, the following traces block device issues with call graphs so that
stack traces can be inspected. A sleep 10 command is provided as the duration of
tracing.

perf list | grep block:
 block:block_rq_abort [Tracepoint event]
 block:block_rq_requeue [Tracepoint event]
 block:block_rq_complete [Tracepoint event]
 block:block_rq_insert [Tracepoint event]
 block:block_rq_issue [Tracepoint event]
 block:block_bio_bounce [Tracepoint event]
 block:block_bio_complete [Tracepoint event]
 block:block_bio_backmerge [Tracepoint event]
 block:block_bio_frontmerge [Tracepoint event]
 block:block_bio_queue [Tracepoint event]
 block:block_getrq [Tracepoint event]
 block:block_sleeprq [Tracepoint event]
 block:block_plug [Tracepoint event]
 block:block_unplug [Tracepoint event]
 block:block_split [Tracepoint event]
 block:block_bio_remap [Tracepoint event]
 block:block_rq_remap [Tracepoint event]

perf record -age block:block_rq_issue sleep 10
[perf record: Woken up 4 times to write data]
[perf record: Captured and wrote 0.817 MB perf.data (~35717 samples)]
perf report | more
[...]
 100.00% tar [kernel.kallsyms] [k] blk_peek_request
 |

 --- blk_peek_request
 do_virtblk_request
 blk_queue_bio

 generic_make_request
 submit_bio

 submit_bh
 |

 |--100.00%-- bh_submit_read
 | ext4_ext_find_extent
 | ext4_ext_map_blocks

continues

452 Chapter 9 � Disks

The output was many pages long, showing the different code paths that led to
block device I/O. The portion given here is for ext4 directory reads.

9.6.7 iotop

iotop(1) is a version of top that includes a disk I/O column. The first version was
written in 2005 using DTrace for Solaris-based systems [McDougall 06b] as a top-
style version of an earlier psio(1) tool (process status with I/O, which used a pre-
DTrace tracing framework). iotop(1) and its companion, iosnoop(1M), are now
shipped by default on many systems with DTrace, including Mac OS X and Oracle
Solaris 11. An iotop(1) tool is also available for Linux, based on kernel account-
ing statistics [5].

Linux

iotop(1) requires kernel version 2.6.20 (maybe a little earlier depending on back-
port status) or later, and the following kernel options: CONFIG_TASK_DELAY_
ACCT, CONFIG_TASK_IO_ACCOUNTING, CONFIG_TASKSTATS, and CONFIG_
VM_EVENT_COUNTERS.

Usage

Various options are available to customize the output:

 | ext4_map_blocks
 | ext4_getblk
 | ext4_bread
 | dx_probe
 | ext4_htree_fill_tree

 | ext4_readdir
 | vfs_readdir
 | sys_getdents
 | system_call
 | __getdents64

[...]

iotop -h
Usage: /usr/bin/iotop [OPTIONS]
[...]
Options:
 --version show program's version number and exit
 -h, --help show this help message and exit
 -o, --only only show processes or threads actually doing I/O
 -b, --batch non-interactive mode
 -n NUM, --iter=NUM number of iterations before ending [infinite]
 -d SEC, --delay=SEC delay between iterations [1 second]
 -p PID, --pid=PID processes/threads to monitor [all]
 -u USER, --user=USER users to monitor [all]
 -P, --processes only show processes, not all threads
 -a, --accumulated show accumulated I/O instead of bandwidth

9.6 Analysis 453

By default, iotop(1) clears the screen and prints one-second summaries.

Batch Mode

Batch mode (-b) can be used to provide a rolling output (no screen clear); it is dem-
onstrated here with I/O processes only (-o) and an interval of 5 s (-d5):

The output shows the beam.smp process (Riak) performing a disk write workload
of around 10 Mbytes/s.

Other useful options include -a for accumulative I/O instead of interval aver-
ages, and -o to show only those processes performing disk I/O.

Solaris

iotop(1) may already be available under /opt/DTT or /usr/DTT. It’s also avail-
able in the DTraceToolkit (from where it originated).

Usage

The following shows iotop(1) usage:

 -k, --kilobytes use kilobytes instead of a human friendly unit
 -t, --time add a timestamp on each line (implies --batch)
 -q, --quiet suppress some lines of header (implies --batch)

iotop -bod5
Total DISK READ: 4.78 K/s | Total DISK WRITE: 15.04 M/s
 TID PRIO USER DISK READ DISK WRITE SWAPIN IO COMMAND
22400 be/4 root 4.78 K/s 0.00 B/s 0.00 % 13.76 % [flush-252:0]
 279 be/3 root 0.00 B/s 1657.27 K/s 0.00 % 9.25 % [jbd2/vda2-8]
22446 be/4 root 0.00 B/s 10.16 M/s 0.00 % 0.00 % beam.smp -K true ...
Total DISK READ: 0.00 B/s | Total DISK WRITE: 10.75 M/s
 TID PRIO USER DISK READ DISK WRITE SWAPIN IO COMMAND
 279 be/3 root 0.00 B/s 9.55 M/s 0.00 % 0.01 % [jbd2/vda2-8]
22446 be/4 root 0.00 B/s 10.37 M/s 0.00 % 0.00 % beam.smp -K true ...
 646 be/4 root 0.00 B/s 272.71 B/s 0.00 % 0.00 % rsyslogd -n -c 5
[...]

iotop -h
USAGE: iotop [-C] [-D|-o|-P] [-j|-Z] [-d device] [-f filename]
 [-m mount_point] [-t top] [interval [count]]

 -C # don't clear the screen
 -D # print delta times, elapsed, us

 -j # print project ID
 -o # print disk delta times, us
 -P # print %I/O (disk delta times)

 -Z # print zone ID
 -d device # instance name to snoop
 -f filename # snoop this file only

continues

454 Chapter 9 � Disks

Default

By default, the output interval is 5 s, and the usage statistic is given in bytes:

Here, the tar(1) command read about 3 Gbytes during this 5 s interval, from the
sd5 device.

Utilization

The -P option shows disk utilization, and -C prints a rolling output:

This shows that the tar(1) command was making the sd5 disk around 80% busy.

disktop.stp

Another version of iotop(1) was written for SystemTap, called disktop.stp. The
name “disktop” should be an improvement over “iotop,” since “io” is ambiguous,
possibly meaning application-level (VFS) or disk-level. Unfortunately, the disk in
disktop.stp refers to “reading/writing disk from the point of view of user-space” and
does this by tracing VFS. This means the output of disktop.stp may not match
iostat(1) at all, for applications that return heavily from the file system cache.

 -m mount_point # this FS only
 -t top # print top number only
 eg,
 iotop # default output, 5 second samples
 iotop 1 # 1 second samples
 iotop -P # print %I/O (time based)
 iotop -m / # snoop events on filesystem / only
 iotop -t 20 # print top 20 lines only
 iotop -C 5 12 # print 12 x 5 second samples

iotop
2013 Mar 16 08:12:00, load: 1.46, disk_r: 306580 KB, disk_w: 0 KB

 UID PID PPID CMD DEVICE MAJ MIN D BYTES
 0 71272 33185 tar sd5 83 320 R 314855424

iotop -CP 1
Tracing... Please wait.
2013 Mar 16 08:18:53, load: 1.46, disk_r: 55714 KB, disk_w: 0 KB

 UID PID PPID CMD DEVICE MAJ MIN D %I/O
 0 61307 33185 tar sd5 83 320 R 82

2013 Mar 16 08:18:54, load: 1.47, disk_r: 55299 KB, disk_w: 0 KB

 UID PID PPID CMD DEVICE MAJ MIN D %I/O
 0 61307 33185 tar sd5 83 320 R 78
[...]

9.6 Analysis 455

9.6.8 iosnoop

iosnoop(1M) traces all disks simultaneously via the block device interface and
prints a line of output for every disk I/O. Various command-line options are pro-
vided to output extra details, and, since iosnoop(1M) is a short DTrace script, it
can easily be modified to provide more. This tool is useful for the previous tracing
and latency analysis strategies.

Usage

The following shows iosnoop(1) usage:

Tracing Disk I/O

Disk I/O when launching the (uncached) vim text editor:

iosnoop -h
USAGE: iosnoop [-a|-A|-DeghiNostv] [-d device] [-f filename]

 [-m mount_point] [-n name] [-p PID]
 iosnoop # default output

-a # print all data (mostly)
 -A # dump all data, space delimited
 -D # print time delta, us (elapsed)

 -e # print device name
-g # print command arguments
 -i # print device instance
-N # print major and minor numbers

 -o # print disk delta time, us
 -s # print start time, us
-t # print completion time, us

 -v # print completion time, string
 -d device # instance name to snoop
 -f filename # snoop this file only

 -m mount_point # this FS only
 -n name # this process name only
 -p PID # this PID only
 eg,
 iosnoop -v # human readable timestamps
 iosnoop -N # print major and minor numbers
 iosnoop -m / # snoop events on filesystem / only

iosnoop
 UID PID D BLOCK SIZE COMM PATHNAME
 100 6602 R 20357048 4096 bash /usr/opt/sfw/bin/vim
 100 6602 R 20356920 4096 vim /usr/opt/sfw/bin/vim
 100 6602 R 76478 1024 vim /usr/sfw/lib/libgtk-1.2.so.0
 100 6602 R 14848848 4096 vim /usr/sfw/lib/libgtk-1.2.so.0.9.1
[...]
 100 6602 R 20357024 12288 vim /usr/opt/sfw/bin/vim
 100 6602 R 3878942 1024 vim /usr/opt/sfw/share
 100 6602 R 20356944 8192 vim /usr/opt/sfw/bin/vim
 100 6602 R 4062944 1024 vim /usr/opt/sfw/share/terminfo
 100 6602 R 4074064 6144 vim /usr/opt/sfw/share/terminfo/d
 100 6602 R 4072464 2048 vim /usr/opt/sfw/share/terminfo/d/dtterm

continues

456 Chapter 9 � Disks

The columns identify

� PID: process ID

� COMM: process name

� D: direction (R = read, W = write)

� BLOCK: disk block address (sector)

� SIZE: I/O size (bytes)

� PATHNAME: a file system path name, if applicable and known

The preceding example traced a UFS file system, for which the path name will
usually be known. Cases where it won’t be known include UFS on-disk file system
metadata, and currently all ZFS I/O. There is a feature request for adding ZFS
path names to the DTrace io provider, which will be seen by iosnoop(1M). (In the
meantime, ZFS path names may be fetched via dynamic tracing of the kernel.)

Timestamps

The following shows a Riak cloud database (using the Erlang VM, beam.smp).
It is running on ZFS, which is using a virtual disk from a hardware storage
controller.

The wide output has been truncated to fit; the missing columns on the right were
COMM PATHNAME, all of which contained beam.smp <none>.

The output shows a workload of 128 Kbyte reads, with a somewhat random
block address. iostat(1) confirms the result of this workload:

 100 6602 R 20356960 4096 vim /usr/opt/sfw/bin/vim
 100 6602 R 4104304 1024 vim /usr/opt/sfw/share/vim
[...]

iosnoop -Dots
STIME(us) TIME(us) DELTA(us) DTIME(us) UID PID D BLOCK SIZE ...
1407309985123 1407309991565 6441 3231 103 20008 R 1822533465 131072
1407309991930 1407310004498 12567 12933 103 20008 R 564575763 131072
1407310001067 1407310004955 3888 457 103 20008 R 1568995398 131072
1407309998479 1407310008407 9928 3452 103 20008 R 299165216 131072
1407309976205 1407310008875 32670 467 103 20008 R 1691114933 131072
1407310006093 1407310013903 7810 5028 103 20008 R 693606806 131072
1407310006020 1407310014495 8474 591 103 20008 R 693607318 131072
1407310009203 1407310016667 7464 2172 103 20008 R 1065600468 131072
1407310008714 1407310018792 10077 2124 103 20008 R 927976467 131072
1407310017175 1407310023456 6280 4663 103 20008 R 1155898834 131072
[...]

9.6 Analysis 457

What iostat(1) doesn’t show is the variance for the I/O response time, shown
by the iosnoop DELTA(us) column (microseconds). In this sample, I/O took
between 3,888 and 32,670 μs to respond. The DTIME(us) column shows the time
from that I/O completion to the previous disk event, as an estimate of the actual
disk service time on that I/O.

The iosnoop(1M) output is roughly sorted on the completion time, shown by
the TIME(us) column. Note that the start times, STIME(us), are not in exactly
the same order. This is evidence that the disk device has reordered requests. The
slowest I/O (32,670) was issued at 1407309976205, which was before a previously
completed I/O issued at 1407310001067. With rotational disks, the reason for reor-
dering can often be seen by examining the disk address (BLOCK) and considering
the elevator seeking algorithm. It isn’t apparent in this example, which is using a
virtual disk built upon several physical disks, with an offset mapping that is
known only to the disk controller.

On busy production servers, the output of iosnoop(1M) can be hundreds of
lines long from just a few seconds of tracing. This is useful (you can study exactly
what occurred), but it can also be time-consuming to read through. Consider visu-
alizing the output using another tool (such as scatter plots, covered in Section
9.6.12, Visualizations), so that it can be considered more quickly.

9.6.9 blktrace

blktrace(8) is a custom tracing facility for block device I/O events on Linux,
including a kernel component to trace and buffer the data (which was later moved
to tracepoints), and a control and reporting mechanism for user-land tools to use.
These tools include blktrace(8), blkparse(1), and btrace(8).

blktrace(8) enables kernel block driver tracing and retrieves the raw trace
data, which can be processed using blkparse(1) to produce readable output. For
convenience, the btrace(8) tool runs both blktrace(8) and blkparse(1),
such that the following are equivalent:

iostat -xnz 1
[...]

extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 204.9 0.0 26232.2 0.0 0.0 1.2 0.0 6.1 0 74 c0t1d0

blktrace -d /dev/sda -o - | blkparse -i -
btrace /dev/sda

458 Chapter 9 � Disks

Default Output

The following shows the default output of btrace(8) and captures a single disk
read event by the cksum(1) command:

Eight lines of output were reported for this single disk I/O, showing each action
(event) involving the block device queue and the device.

By default, there are seven columns:

1. Device major, minor number

2. CPU ID

3. Sequence number

4. Action time, in seconds

5. Process ID

6. Action identifier (see below)

7. RWBS description: may include R (read), W (write), D (block discard), B (bar-
rier operation), S (synchronous)

These output columns may be customized using the -f option. They are followed
by custom data based on the action.

The final data depends on the action. For example, 184773879 + 8 [cksum]
means an I/O at block address 184773879 with size 8 (sectors), from the process
named cksum.

Action Identifiers

These are described in the blkparse(1) man page:

btrace /dev/sdb
 8,16 3 1 0.429604145 20442 A R 184773879 + 8 <- (8,17) 184773816
 8,16 3 2 0.429604569 20442 Q R 184773879 + 8 [cksum]
 8,16 3 3 0.429606014 20442 G R 184773879 + 8 [cksum]
 8,16 3 4 0.429607624 20442 P N [cksum]
 8,16 3 5 0.429608804 20442 I R 184773879 + 8 [cksum]
 8,16 3 6 0.429610501 20442 U N [cksum] 1
 8,16 3 7 0.429611912 20442 D R 184773879 + 8 [cksum]
 8,16 1 1 0.440227144 0 C R 184773879 + 8 [0]
[...]

 A IO was remapped to a different device
 B IO bounced
 C IO completion
 D IO issued to driver
 F IO front merged with request on queue
 G Get request

9.6 Analysis 459

This list has been included because it also shows the visibility of the blktrace
framework.

Action Filtering

The blktrace(8) and btrace(8) commands can filter actions to show only the
event type of interest. For example, to trace only the D actions (I/O issued), use the
filter option -a issue:

Other filters are described in the blktrace(8) man page, such as trace only
reads (-a read), writes (-a write), or synchronous operations (-a sync).

9.6.10 MegaCli

Disk controllers (host bus adaptors) consist of hardware and firmware that are
external to the system. Operating system analysis tools, even dynamic tracing,
cannot directly observe their internals. Sometimes their workings can be inferred
by observing the input and output carefully (including via static or dynamic ker-
nel tracing), to see how the disk controller responds to a series of I/O.

There are some analysis tools for specific disk controllers, such as LSI’s
MegaCli. The following shows recent controller events:

 I IO inserted onto request queue
 M IO back merged with request on queue
 P Plug request
 Q IO handled by request queue code
 S Sleep request
 T Unplug due to timeout
 U Unplug request
 X Split

btrace -a issue /dev/sdb
 8,16 1 1 0.000000000 448 D W 38978223 + 8 [kjournald]
 8,16 1 2 0.000306181 448 D W 104685503 + 24 [kjournald]
 8,16 1 3 0.000496706 448 D W 104685527 + 8 [kjournald]
 8,16 1 1 0.010441458 20824 D R 184944151 + 8 [tar]
[...]

MegaCli -AdpEventLog -GetLatest 50 -f lsi.log -aALL
more lsi.log
seqNum: 0x0000282f
Time: Sat Jun 16 05:55:05 2012
Code: 0x00000023
Class: 0
Locale: 0x20
Event Description: Patrol Read complete

continues

460 Chapter 9 � Disks

The last two events show that a patrol read (which can affect performance)
occurred between 3:00 and 5:55 a.m. Patrol reads were mentioned in Section 9.4.3,
Storage Types; they read disk blocks and verify their checksums.

MegaCli has many other options, which can show the adaptor information, disk
device information, virtual device information, enclosure information, battery sta-
tus, and physical errors. These help identify issues of configuration and errors.
Even with this information, some types of issues can’t be analyzed easily, such as
exactly why a particular I/O took hundreds of milliseconds.

Check the vendor documentation to see what, if any, interface exists for disk
controller analysis.

9.6.11 smartctl

The disk has logic to control disk operation, including queueing, caching, and error
handling. Similarly to disk controllers, the internal behavior of the disk is not
directly observable by the operating system and instead is usually inferred by
observing I/O requests and their latency.

Many modern drives provide SMART (Self-Monitoring, Analysis and Reporting
Technology) data, which provides various health statistics. The following output of
smartctl(8) on Linux shows the sort of data available (this is accessing the first
disk in a virtual RAID device, using -d megaraid,0):

Event Data:
===========
None

seqNum: 0x000027ec
Time: Sat Jun 16 03:00:00 2012
Code: 0x00000027
Class: 0
Locale: 0x20
Event Description: Patrol Read started
[...]

smartctl --all -d megaraid,0 /dev/sdb
smartctl 5.40 2010-03-16 r3077 [x86_64-unknown-linux-gnu] (local build)
Copyright (C) 2002-10 by Bruce Allen, http://smartmontools.sourceforge.net

Device: SEAGATE ST3600002SS Version: ER62
Serial number: 3SS0LM01
Device type: disk
Transport protocol: SAS
Local Time is: Sun Jun 17 10:11:31 2012 UTC
Device supports SMART and is Enabled
Temperature Warning Disabled or Not Supported
SMART Health Status: OK

Current Drive Temperature: 23 C

9.6 Analysis 461

While this is very useful, it does not have the resolution to answer questions about
individual slow disk I/O, in a similar way to kernel tracing frameworks.

9.6.12 Visualizations

There are many types of visualizations that can help in analyzing disk I/O perfor-
mance. This section demonstrates these with screen shots from various tools. See
Section 2.10, Visualization, in Chapter 2, Methodology, for a discussion about visu-
alization tools in general.

Line Graphs

Performance monitoring solutions commonly graph disk IOPS, throughput, and
utilization measurements over time as line graphs. This helps illustrate time-
based patterns, such as changes in load during the day, or recurring events such as
file system flush intervals.

Note the metric that is being graphed. Averages across all disk devices can hide
unbalanced behavior, including single device outliers. Averages across long time
periods can also hide shorter-term fluctuations.

Drive Trip Temperature: 68 C
Elements in grown defect list: 0
Vendor (Seagate) cache information
 Blocks sent to initiator = 3172800756
 Blocks received from initiator = 2618189622
 Blocks read from cache and sent to initiator = 854615302
 Number of read and write commands whose size <= segment size = 30848143
 Number of read and write commands whose size > segment size = 0
Vendor (Seagate/Hitachi) factory information
 number of hours powered up = 12377.45
 number of minutes until next internal SMART test = 56

Error counter log:
 Errors Corrected by Total Correction Gigabytes Total
 ECC rereads/ errors algorithm processed uncorrected
 fast | delayed rewrites corrected invocations [10^9 bytes] errors
read: 7416197 0 0 7416197 7416197 1886.494 0
write: 0 0 0 0 0 1349.999 0
verify: 142475069 0 0 142475069 142475069 22222.134 0

Non-medium error count: 2661

SMART Self-test log
Num Test Status segment LifeTime LBA_first_err [SK ASC ASQ]
 Description number (hours)
1 Background long Completed 16 3 - [- - -]
2 Background short Completed 16 0 - [- - -]

Long (extended) Self Test duration: 6400 seconds [106.7 minutes]

462 Chapter 9 � Disks

Scatter Plots

Scatter plots are useful for visualizing I/O trace data, which may include thou-
sands of events. The example in Figure 9.10 plots 1,400 I/O events from a produc-
tion MySQL database server, captured using iosnoop and plotted using R.

The scatter plot shows reads (+) and writes (o) based on their completion time (x
axis) and I/O response time (y axis). Other dimensions could be plotted, for exam-
ple, disk block address on the y axis.

A couple of read outliers can be seen here, with latencies over 150 ms. The rea-
son for these outliers was previously not known. This scatter plot, and others that
included similar outliers, showed that they occur after a burst of writes. The writes
have low latency since they returned from a RAID controller write-back cache,
which will write them to the device after returning the completions. It is sus-
pected that the reads are queueing behind the device writes.

This scatter plot showed a single server for a few seconds. Multiple servers or
longer intervals can capture many more events, which merge together when plot-
ted and become difficult to read. At that point, consider using a heat map (see the
Latency Heat Maps section later in the chapter).

Offset Heat Maps

Figure 9.11 shows a heat map (more properly called a column quantization) to
visualize the disk I/O access pattern.

Disk offset (block address) is shown on the y axis, and time on the x axis. Each
pixel is colored based on the number of I/O that fell in that time and latency range,
darker colors for larger numbers. The workload visualized was a file system
archive, which creeps across the disk from block 0. Darker lines indicate a sequen-
tial I/O, and lighter clouds indicate random I/O.

Figure 9-10 Scatter plot of disk read and write latency

9.6 Analysis 463

This visualization was introduced in 1995 with taztool by Richard McDougall.
This screen shot is from DTraceTazTool, a DTrace version of taztool I wrote in
2006. Disk I/O offset heat maps later appeared in other tools, including Sun ZFS
Storage Appliance Analytics, Joyent Cloud Analytics, and seekwatcher (Linux).

Latency Heat Maps

Another use of heat maps is to show the full distribution of I/O latency [Gregg
10b], as in Figure 9.12.

The y axis shows I/O response time (latency), and the x axis shows the passage
of time. The workload visualized was experimental, applying sequential reads to
multiple disks one by one to explore bus and controller limits. The resulting heat
map was unexpected (it has been described as a pterodactyl) and shows the infor-
mation that would be missed when only considering averages. This particular
screen shot is from Analytics on the Oracle ZFS Storage appliance.

Utilization Heat Maps

Per-device utilization may also be shown as a heat map, so that device utilization
balance and individual outliers can be identified; see Figure 9.13.

Figure 9-11 DTraceTazTool

464 Chapter 9 � Disks

Device utilization is on the y axis, time on the x axis, and the number of devices
at the utilization and time range shown by the color darkness (darker means
more). This heat map shows that many devices are idle or near idle (the dark area
at the bottom), and a group of devices has similar utilization that varies between
about 20% and 50%. On the top right is a dark line showing that some devices
have hit 100%. (This particular visualization is interactive, so those pixels can be
clicked to reveal the hosts and devices responsible.)

Figure 9-12 Disk latency pterodactyl

Figure 9-13 Utilization heat map

9.7 Experimentation 465

I created this visualization type to help identify single hot disks, including sloth
disks, described earlier. This screen shot is from Joyent Cloud Analytics, which is
showing disk device utilization across a cloud of over 200 physical servers.

9.7 Experimentation

This section describes tools for actively testing disk I/O performance. See Section
9.5.10, Micro-Benchmarking, for a suggested methodology to follow.

When using these tools, it’s a good idea to leave iostat(1) continually run-
ning so that any result can be immediately double-checked.

9.7.1 Ad Hoc

The dd(1) command (device-to-device copy) can be used to perform ad hoc tests of
sequential disk performance. For example, testing sequential read with a 1 Mbyte
I/O size:

The dd(1) version on Solaris-based systems does not currently print this summary.
Ideally, the disk device path will be character special so that the requested

workload is applied directly. Solaris-based systems provide these by default, under
/dev/rdsk. On Linux, the raw(8) command (where available) can create character
special versions, under /dev/raw. If the block special file is used instead, take buff-
ering into account.

Sequential write can be tested similarly; however, beware of destroying all data
on disk, including the master boot record and partition table!

9.7.2 Custom Load Generators

To test custom workloads, you can write your own load generator and measure
resulting performance using iostat(1). A custom load generator can be a short C
program that opens the device path and applies the intended workload. On Linux,
the block special devices files can be opened with O_DIRECT, to avoid buffering. If
you use higher-level languages, try to use system-level interfaces that also avoid
buffering (e.g., sysread() in Perl).

dd if=/dev/sda1 of=/dev/null bs=1024k count=1k
1024+0 records in
1024+0 records out
1073741824 bytes (1.1 GB) copied, 7.44024 s, 144 MB/s

466 Chapter 9 � Disks

9.7.3 Micro-Benchmark Tools

Available disk benchmark tools include, for example, hdparm(8) on Linux:

The -T option tests cached reads, and -t tests disk device reads. The results show
the dramatic difference between on-disk cache hits and misses.

Do study the tool documentation to understand any caveats, and see Chapter 12,
Benchmarking, for more background on micro-benchmarking. Also see Chapter 8,
File Systems, for tools that test disk performance via the file system, for which
many more are available.

9.7.4 Random Read Example

As an example experiment, a custom tool was written to perform a random 8
Kbyte read workload of a disk device path. From one to five instances of the tool
were run concurrently, with iostat(1) running. Results for Linux- and Solaris-
based systems follow.

Linux

Write columns, which were zeros, have been removed:

Note the stepped increases in avgqu-sz, and the increased latency of await.

hdparm -Tt /dev/sdb

/dev/sdb:
 Timing cached reads: 16718 MB in 2.00 seconds = 8367.66 MB/sec
 Timing buffered disk reads: 846 MB in 3.00 seconds = 281.65 MB/sec

Device: rrqm/s r/s rkB/s avgrq-sz avgqu-sz await svctm %util
sda 878.00 234.00 2224.00 19.01 1.00 4.27 4.27 100.00
[...]
Device: rrqm/s r/s rkB/s avgrq-sz avgqu-sz await svctm %util
sda 1233.00 311.00 3088.00 19.86 2.00 6.43 3.22 100.00
[...]
Device: rrqm/s r/s rkB/s avgrq-sz avgqu-sz await svctm %util
sda 1366.00 358.00 3448.00 19.26 3.00 8.44 2.79 100.00
[...]
Device: rrqm/s r/s rkB/s avgrq-sz avgqu-sz await svctm %util
sda 1775.00 413.00 4376.00 21.19 4.01 9.66 2.42 100.00
[...]
Device: rrqm/s r/s rkB/s avgrq-sz avgqu-sz await svctm %util
sda 1977.00 423.00 4800.00 22.70 5.04 12.08 2.36 100.00

9.8 Tuning 467

Solaris

The same experiment, from a Solaris-based system:

Note the stepped increases in actv, and the increased latency of asvc_t. This is
testing a virtual disk device backed by a RAID card, which allows for many concur-
rent I/Os (it has an sd_max_throttle of 256; see Section 9.8.1, Operating System
Tunables). Physical disk devices have a lower concurrency setting and will queue
the I/O in the driver sooner, ramping the wait column instead of the actv column.

9.8 Tuning

Many tuning approaches were covered in Section 9.5, Methodology, including cache
tuning, scaling, and workload characterization, which can help you identify and
eliminate unnecessary work. Another important area of tuning is the storage config-
uration, which can be studied as part of a static performance tuning methodology.

The sections that follow show different areas that can be tuned: the operating
system, disk devices, and disk controller. Available tunable parameters vary
between versions of an operating system, models of disks, disk controllers, and
their firmware; see their respective documentation. While changing tunables can
be easy to do, the default settings are usually reasonable and rarely need much
adjusting.

9.8.1 Operating System Tunables

These include ionice(1), resource controls, and kernel tunable parameters.

 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 176.0 249.0 1407.9 3044.7 0.0 1.0 0.0 2.5 0 100 c0t1d0
[...]
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 306.0 275.0 2448.1 2819.6 0.0 2.0 0.0 3.5 0 100 c0t1d0
[...]
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 437.9 265.9 3503.2 2209.5 0.0 3.0 0.0 4.3 0 100 c0t1d0
[...]
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 531.0 267.0 4248.3 2985.7 0.0 4.0 0.0 5.1 0 100 c0t1d0
[...]
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 625.2 178.8 5001.4 1059.1 0.0 5.0 0.0 6.2 0 100 c0t1d0

468 Chapter 9 � Disks

ionice

On Linux, the ionice(1) command can be used to set an I/O scheduling class
and priority for a process. The scheduling classes are identified numerically:

� 0, none: no class specified, so the kernel will pick a default—best effort, with
a priority based on the process nice value.

� 1, real-time: highest-priority access to the disk. If misused, this can starve
other processes (just like the RT CPU scheduling class).

� 2, best effort: default scheduling class, supporting priorities 0–7, with 0 the
highest.

� 3, idle: disk I/O allowed only after a grace period of disk idleness.

Here is example usage:

This puts process ID 1623 in the idle I/O scheduling class. This may be desirable
for long-running backup jobs, so that they are less likely to interfere with the pro-
duction workload.

Resource Controls

Modern operating systems provide resource controls for managing disk or file sys-
tem I/O usage in custom ways.

For Linux, the container groups (cgroups) block I/O (blkio) subsystem provides
storage device resource controls for processes or process groups. This can be a pro-
portional weight (like a share) or a fixed limit. Limits can be set for read and write
independently, and for either IOPS or throughput (bytes per second).

Some Solaris-based systems with ZFS have ZFS I/O throttling, which throttles
I/O at the file system level (not the disk level) and can be set per zone. This is
described in Chapter 11, Cloud Computing.

Tunable Parameters

Example operating system tunables are

� /sys/block/sda/queue/scheduler (Linux): to select the I/O scheduler pol-
icy: noop, deadline, an (anticipatory), cfq. See the earlier descriptions of these
in Section 9.4, Architecture.

ionice -c 3 -p 1623

9.8 Tuning 469

� sd_max_throttle (Solaris): This regulates the maximum number of com-
mands that can be in flight to an sd storage device. It may make sense to
increase this for virtual devices that are backed by storage arrays of multiple
disks, which can support more in-flight commands.

Information for tuning sd_max_throttle can be obtained by profiling the num-
ber of active commands, to see how close it is to the limit. For example (from a pro-
duction cloud environment):

This shows the current active value of sd_max_throttle to be 256, and the highest
rate of I/O is only in the 8–15 range. If queueing makes more sense on the storage
devices, this does not need to be tuned.

As with other kernel tunables, check the vendor documentation for the full list,
descriptions, and warnings. Setting these may also be prohibited by company or
vendor policy.

9.8.2 Disk Device Tunables

On Linux, the hdparm(8) tool can set various disk device tunables. On Solaris,
the format(1M) command can be used.

9.8.3 Disk Controller Tunables

The available disk controller tunable parameters depend on the disk controller
model and vendor. To give you an idea of what these may include, the following
shows some of the settings from a Dell PERC 6 card, viewed using the MegaCli
command:

dtrace -n 'fbt::sd_start_cmds:entry {
@[args[0]->un_throttle] = quantize(args[0]->un_ncmds_in_transport); }'

dtrace: description 'fbt::sd_start_cmds:entry ' matched 1 probe
^C

 256
 value ------------- Distribution ------------- count
 -1 | 0
 0 |@@@@@@@@@@@ 3983
 1 |@@@@@@@@@@ 3582
 2 |@@@@@@@@@ 3269
 4 |@@@@@@@ 2553
 8 |@@@@ 1286
 16 | 0

470 Chapter 9 � Disks

Each setting has a reasonably descriptive name and is described in more detail in
the vendor documentation.

9.9 Exercises

1. Answer the following questions about disk terminology:

� What are IOPS?

� What is disk I/O response time?

� What is the difference between service time and wait time?

� What is a latency outlier?

� What is a non-data-transfer disk command?

2. Answer the following conceptual questions:

� Describe disk utilization and saturation.

� Describe the performance differences between random and sequential
disk I/O.

� Describe the role of an on-disk cache for read and write I/O.

3. Answer the following deeper questions:

� Explain why utilization (percent busy) of virtual disks can be misleading.

� Explain why the “I/O wait” metric can be misleading.

MegaCli -AdpAllInfo -aALL
[...]
Predictive Fail Poll Interval : 300sec
Interrupt Throttle Active Count : 16
Interrupt Throttle Completion : 50us
Rebuild Rate : 30%
PR Rate : 0%
BGI Rate : 1%
Check Consistency Rate : 1%
Reconstruction Rate : 30%
Cache Flush Interval : 30s
Max Drives to Spinup at One Time : 2
Delay Among Spinup Groups : 12s
Physical Drive Coercion Mode : 128MB
Cluster Mode : Disabled
Alarm : Disabled
Auto Rebuild : Enabled
Battery Warning : Enabled
Ecc Bucket Size : 15
Ecc Bucket Leak Rate : 1440 Minutes
Load Balance Mode : Auto
[...]

9.10 References 471

� Describe performance characteristics of RAID-0 (striping) and RAID-1
(mirroring).

� Describe what happens when disks are overloaded with work, including the
effect on application performance.

� Describe what happens when the storage controller is overloaded with work
(either throughput or IOPS), including the effect on application performance.

4. Develop the following procedures for your operating system:

� A USE method checklist for disk resources (disks and controllers). Include
how to fetch each metric (e.g., which command to execute) and how to inter-
pret the result. Try to use existing OS observability tools before installing or
using additional software products.

� A workload characterization checklist for disk resources. Include how to
fetch each metric, and try to use existing OS observability tools first.

5. Describe disk behavior visible in this Linux iostat output alone:

6. (optional, advanced) Develop a tool to trace all disk commands except for reads
and writes. This may require tracing at the SCSI level.

9.10 References

[Patterson 88] Patterson, D., G. Gibson, and R. Kats. “A Case for Redundant
Arrays of Inexpensive Disks.” ACM SIGMOD, 1988.

[Bovet 05] Bovet, D., and M. Cesati. Understanding the Linux Kernel,
3rd Edition. O’Reilly, 2005.

[McDougall 06b] McDougall, R., J. Mauro, and B. Gregg. Solaris Performance
and Tools: DTrace and MDB Techniques for Solaris 10 and
OpenSolaris. Prentice Hall, 2006.

$ iostat -x 1
[...]
avg-cpu: %user %nice %system %iowait %steal %idle
 3.23 0.00 45.16 31.18 0.00 20.43

Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s avgrq-sz
avgqu-sz await r_await w_await svctm %util
vda 39.78 13156.99 800.00 151.61 3466.67 41200.00 93.88
11.99 7.49 0.57 44.01 0.49 46.56
vdb 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00

472 Chapter 9 � Disks

[Gregg 10b] Gregg, B. “Visualizing System Latency,” Communications of
the ACM, July 2010.

[Love 10] Love, R. Linux Kernel Development, 3rd Edition. Addison-
Wesley, 2010.

[Turner 10] Turner, J. “Effects of Data Center Vibration on Compute Sys-
tem Performance.” USENIX, SustainIT’10.

[Gregg 11] Gregg, B., and J. Mauro. DTrace: Dynamic Tracing in Oracle
Solaris, Mac OS X and FreeBSD. Prentice Hall, 2011.

[Cornwell 12] Cornwell, M. “Anatomy of a Solid-State Drive,” Communica-
tions of the ACM, December 2012.

[Leventhal 13] Leventhal, A. “A File System All Its Own,” ACM Queue,
March 2013.

[1] www.youtube.com/watch?v=tDacjrSCeq4

[2] http://lwn.net/Articles/332839

[3] http://sourceware.org/systemtap/wiki/WSiostatSCSI

[4] www.dtracebook.com

[5] http://guichaz.free.fr/iotop

../../../../../www.youtube.com/watch@v=tDacjrSCeq4
../../../../../lwn.net/Articles/332839
../../../../../sourceware.org/systemtap/wiki/WSiostatSCSI
../../../../../www.dtracebook.com/default.htm
../../../../../guichaz.free.fr/iotop

473

10
Network

As systems become more distributed, especially with cloud computing environ-
ments, the network plays a bigger role in performance. Apart from improving net-
work latency and throughput, another common task is to eliminate latency
outliers, which can be caused by dropped packets.

Network analysis spans hardware and software. The hardware is the physical
network, which includes the network interface cards, switches, routers, and gate-
ways (these typically have software too). The system software is the kernel proto-
col stack, typically TCP/IP, and the behavior of each protocol involved.

The network is often blamed for poor performance, given the potential for con-
gestion. This chapter will show how to figure out what is really happening, which
may exonerate the network so that analysis can move on.

This chapter consists of five parts, the first three providing the basis for net-
work analysis, and the last two showing its practical application to Linux- and
Solaris-based systems. The parts are as follows:

� Background introduces network-related terminology, basic models, and key
network performance concepts.

� Architecture provides generic descriptions of physical network components
and the network stack.

� Methodology describes performance analysis methodologies, both observa-
tional and experimental.

474 Chapter 10 � Network

� Analysis shows network performance tools for analysis and experimentation
on Linux- and Solaris-based systems.

� Tuning describes example tunable parameters.

10.1 Terminology

For reference, network-related terminology used in this chapter includes the
following:

� Interface: The term interface port refers to the physical network connector.
The term interface or link refers to the logical instance of a network interface
port, as seen and configured by the OS.

� Packet: The term packet typically refers to an IP-level routable message.

� Frame: a physical network-level message, for example, an Ethernet frame.

� Bandwidth: the maximum rate of data transfer for the network type, usu-
ally measured in bits per second. “10 GbE” is Ethernet with a bandwidth of
10 Gbits/s.

� Throughput: the current data transfer rate between the network endpoints,
measured in bits per second or bytes per second.

� Latency: Network latency can refer to the time it takes for a message to
make a round trip between endpoints, or the time required to establish a con-
nection (e.g., TCP handshake), excluding the data transfer time that follows.

Other terms are introduced throughout this chapter. The Glossary includes basic
terminology for reference, including client, Ethernet, host, RFC, server, SYN, ACK.
Also see the terminology sections in Chapters 2 and 3.

10.2 Models

The following simple models illustrate some basic principles of networking and
network performance. Section 10.4, Architecture, digs much deeper, including
implementation-specific details.

10.2.1 Network Interface

A network interface is an operating system endpoint for network connections; it is
an abstraction configured and managed by the system administrators.

10.2 Models 475

A network interface is pictured in Figure 10.1. Network interfaces are mapped
to physical network ports as part of their configuration. Ports connect to the net-
work and typically have separate transmit and receive channels.

10.2.2 Controller

A network interface card (NIC) provides one or more network ports for the system
and houses a network controller: a microprocessor for transferring packets between
the ports and the system I/O transport. An example controller with four ports is
pictured in Figure 10.2, showing the physical components involved.

The controller either is provided as a separate card or is built into the system
board.

Figure 10-1 Network interface

Figure 10-2 Network controller

476 Chapter 10 � Network

10.2.3 Protocol Stack

Networking is accomplished by a stack of protocols, each layer of which serves a
particular purpose. Two stack models are shown in Figure 10.3, with example
protocols.

Lower layers are drawn wider to indicate protocol encapsulation. Sent mes-
sages move down the stack from the application to the physical network. Received
messages move up.

Note that the Ethernet standard also describes the physical layer, and how cop-
per or fiber is used.

While the TCP/IP stack has become standard, it can be useful to consider the
OSI model as well. The OSI session layer, for example, is commonly present in
TCP/IP stacks as BSD sockets. The “layer” terminology is from OSI, where Layer 3
refers to the network protocols.

10.3 Concepts

The following are a selection of important concepts in networking and network
performance.

10.3.1 Networks and Routing

A network is a group of connected hosts, related by network protocol addresses. Hav-
ing multiple networks—instead of one giant worldwide network—is desirable for a
number of reasons, particularly scalability. Some network messages will broadcast to
all neighboring hosts. By creating smaller subnetworks, such broadcast messages can

Figure 10-3

10.3 Concepts 477

be isolated locally so they do not create a flooding problem at scale. This is also the
basis for isolating the transmission of regular messages to only the networks between
source and destination, making more efficient usage of network infrastructure.

Routing manages the delivery of messages, called packets, across these net-
works. The role of routing is pictured in Figure 10.4.

From the perspective of host A, the localhost is host A itself. All other hosts pic-
tured are remote hosts.

Host A can connect to host B via the local network, usually driven by a network
switch (see Section 10.4, Architecture). Host A can connect to host C via router 1,
and to host D via routers 1, 2, and 3. Since network components such as routers are
shared, contention from other traffic (e.g., host C to host E) can hurt performance.

Connections between pairs of hosts involve unicast transmission. Multicast
transmission allows a sender to transmit to multiple destinations simultaneously,
which may span multiple networks. This must be supported by the router configu-
ration to allow delivery.

The address information needed to route packets is contained in an IP header.

10.3.2 Protocols

Network protocol standards, such as those for IP, TCP, and UDP, are a necessary
requirement for communication between systems and devices. Communication is
performed by transferring messages called packets, typically by encapsulation of
payload data.

Network protocols have different performance characteristics, arising from the
original protocol design, extensions, or special handling by software or hardware.

Figure 10-4 Network routing

478 Chapter 10 � Network

For example, the different versions of the IP protocol, IPv4 and IPv6, may be
processed by different kernel code paths and can exhibit different performance
characteristics.

Often, there are also system tunable parameters that can affect protocol perfor-
mance, by changing settings such as buffer sizes, algorithms, and various timers.
These differences for specific protocols are described in later sections.

The size of the packets and their payload also affects performance, with larger
sizes improving throughput and reducing packet overheads. For TCP/IP and
Ethernet, packets can be between 54 and 9,054 bytes, including the 54 bytes (or
more, depending on options or version) of protocol headers, which encapsulate the
data.

10.3.3 Encapsulation

Encapsulation adds metadata to a payload at the start (a header), at the end (a
footer), or both. This doesn’t change the payload data, though it does increase the
total size of the message slightly, which costs some overhead for transmission.

Figure 10.5 shows an example of encapsulation for a TCP/IP stack with Ethernet.

E.H. is the Ethernet header, and E.F. is the optional Ethernet footer.

10.3.4 Packet Size

Packet size is usually limited by the network interface maximum transmission
unit (MTU) size, which for many Ethernet networks is configured to be 1,500
bytes. Ethernet supports larger packets (frames) of up to approximately 9,000
bytes, termed jumbo frames. These can improve network throughput performance,
as well as latency of data transfers, by requiring fewer packets.

The confluence of two components has interfered with the adoption of jumbo
frames: older network hardware and misconfigured firewalls. Older hardware that
does not support jumbo frames can either fragment the packet using the IP

Figure 10-5 Network protocol encapsulation

10.3 Concepts 479

protocol or respond with an ICMP “can’t fragment” error, letting the sender know
to reduce the packet size. Now the misconfigured firewalls come into play: there
have been ICMP-based attacks in the past (including the “ping of death”), to which
some firewall administrators have responded by blocking all ICMP. This prevents
the helpful “can’t fragment” messages from reaching the sender and causes net-
work packets to be silently dropped once their packet size increases beyond 1,500.
To avoid this problem, many systems stick to the 1,500 MTU default.

The performance of 1,500 MTU frames has been improved by network interface
card features, including TCP offload and large segment offload. These send larger
buffers to the network card, which can then split them into smaller frames using
dedicated and optimized hardware. This has, to some degree, narrowed the gap
between 1,500 and 9,000 MTU network performance.

10.3.5 Latency

Latency is an important metric for network performance and can be measured in
different ways, including name resolution latency, ping latency, connection latency,
first-byte latency, round-trip time, and connection life span. These are described as
measured by a client connecting to a server.

Name Resolution Latency

When establishing connections to remote hosts, a host name is usually resolved to
an IP address, for example, by DNS resolution. The time this takes can be mea-
sured separately as name resolution latency. Worst case for this latency involves
name resolution time-outs, which can take tens of seconds.

Sometimes name resolution isn’t necessary for the application to function and
can be disabled to avoid this latency.

Ping Latency

This is the time for an ICMP echo request to echo response, as measured by the
ping(1) command. This time is used to measure network latency between hosts,
including hops in between, and is measured as the time needed for a packet to
make a round trip. It is in common use because it is simple and often readily avail-
able: many operating systems will respond to ping by default.

Example ping latencies are shown in Table 10.1. To better illustrate the orders
of magnitude involved, the Scaled column shows a comparison based on an imagi-
nary localhost ping latency of one second.

On the receiving side, the ICMP echo request is usually processed in interrupt
context and returned immediately, minimizing the additional time spent execut-
ing kernel code. On the sending side, a little extra time may be included due to

480 Chapter 10 � Network

timestamps being measured from user-land, such that kernel context switching
and kernel code path time are included.

Connection Latency

Connection latency is the time to establish a network connection, before any data
is transferred. For TCP connection latency, this is the TCP handshake time. Mea-
sured from the client, it is the time from sending the SYN to receiving the corre-
sponding SYN-ACK. Connection latency might be better termed connection
establishment latency, to clearly differentiate it from connection life span.

Connection latency is similar to ping latency, although it exercises more kernel
code to establish a connection and includes time to retransmit any dropped pack-
ets. The TCP SYN packet, in particular, can be dropped by the server if its backlog
is full, causing the client to retransmit the SYN. This occurs during the TCP hand-
shake, so connection latency includes retransmission latency, adding one or more
seconds.

Connection latency is followed by first-byte latency.

First-Byte Latency

Also known as time to first byte (TTFB), first-byte latency is the time from when
the connection has been established to when the first byte of data is received. This
includes the time for the remote host to accept a connection, schedule the thread
that services it, and for that thread to execute and send the first byte.

While ping and connection latency measures the latency incurred by the net-
work, first-byte latency includes the think time of the target server. This may
include latency if the server is overloaded and needs time to process the request
(e.g., TCP backlog) and to schedule the server (CPU run-queue latency).

Table 10-1 Example Ping Latencies

From To Via Latency Scaled

Localhost localhost kernel 0.05 ms 1 s

Host host (same subnet) 10 GbE 0.2 ms 4 s

Host host (same subnet) 1 GbE 0.6 ms 12 s

Host host (same subnet) Wi-Fi 3 ms 1 minute

San Francisco New York Internet 40 ms 13 minutes

San Francisco United Kingdom Internet 81 ms 27 minutes

San Francisco Australia Internet 183 ms 1 hour

10.3 Concepts 481

Round-Trip Time

Round-trip time describes the time for a network packet to make a round trip
between the endpoints.

Connection Life Span

Connection life span is the time from when a network connection is established to
when it is closed. Some protocols use a keep-alive strategy, extending the duration
of connections so that future operations can use existing connections and avoid the
overheads and latency of connection establishment.

10.3.6 Buffering

Despite various network latencies that may be encountered, network throughput
can be sustained at high rates by use of buffering on the sender and receiver.
Larger buffers can mitigate the effects of higher round-trip times by continuing to
send data before blocking and waiting for an acknowledgment.

TCP employs buffering, along with a sliding send window, to improve through-
put. Network sockets also have buffers, and applications may employ their own in
addition, to aggregate data before sending.

Buffering can also be performed by external network components, such as
switches and routers, in an effort to improve their own throughput. Unfortunately,
the use of large buffers on these components can lead to an issue called buffer
bloat, where packets are queued for long intervals. This causes TCP congestion
avoidance on the hosts, which throttles performance. Features have been added to
the Linux 3.x kernels to address this problem (including byte queue limits, CoDel
queue management [Nichols 12], and TCP small queues), and there is a website
for discussing the issue [1].

The function of buffering (or large buffering) may be best served by the end-
points—the hosts—and not the intermediate network nodes, following a principle
called end-to-end arguments [Saltzer 84].

10.3.7 Connection Backlog

Another type of buffering is for the initial connection requests. TCP implements a
backlog, where SYN requests can queue in the kernel before being accepted by the
user-land process. When there are too many TCP connection requests for the pro-
cess to accept in time, the backlog reaches a limit and SYN packets are dropped, to
be later retransmitted by the client. The retransmission of these packets causes
latency for the client connect time.

Measuring backlog drops is one way to measure network connection saturation.

482 Chapter 10 � Network

10.3.8 Interface Negotiation

Network interfaces may operate with different modes, autonegotiated with the
other endpoint. Some examples are

� Bandwidth: for example, 10, 100, 1,000, 10,000 Mbits/s

� Duplex: half or full duplex

These examples are from Ethernet, which tends to use round base-10 numbers for
bandwidth limits. Other physical-layer protocols, such as SONET, have a different
set of possible bandwidths.

Network interfaces are usually described in terms of their highest bandwidth
and protocol, for example, 1 Gbit/s Ethernet (1 GbE). This interface may, however,
autonegotiate to lower speeds if needed. This can occur if the other endpoint can-
not operate faster, or to accommodate physical problems with the connection
medium (bad wiring).

Full-duplex mode allows bidirectional simultaneous transmission, with sepa-
rate paths for both transmit and receive that can operate at full bandwidth. Half-
duplex mode allows only one direction at a time.

10.3.9 Utilization

Network interface utilization can be calculated as the current throughput over the
maximum bandwidth. Given variable bandwidth and duplex due to autonegotia-
tion, calculating this isn’t as straightforward as it sounds.

For full duplex, utilization applies to each direction and is measured as the cur-
rent throughput for that direction over the current negotiated bandwidth. Usually
it is just one direction that matters most, as hosts are commonly asymmetric: serv-
ers are transmit-heavy, and clients are receive-heavy.

Once a network interface direction reaches 100% utilization, it becomes a bottle-
neck, limiting performance.

Some operating system performance tools report activity only in terms of pack-
ets, not bytes. Since packet size can vary greatly (as mentioned earlier), it’s not
possible to relate packet counts to byte counts for calculating either throughput or
(throughput-based) utilization.

10.3.10 Local Connections

Network connections can occur between two applications on the same system.
These are localhost connections and use a virtual network interface: loopback.

10.4 Architecture 483

Distributed application environments are often split into logical parts that commu-
nicate over the network. These can include web servers, database servers, and applica-
tion servers. If they are running on the same host, their connections are to localhost.

Connecting via IP to localhost is the IP sockets technique of inter-process com-
munication (IPC). Another technique is Unix domain sockets (UDS), which create
a file on the file system for communication. Performance may be better with UDS,
as the kernel TCP/IP stack can be bypassed, skipping kernel code and the over-
heads of protocol packet encapsulation.

For TCP/IP sockets, the kernel may detect the localhost connection after the
handshake, and then shortcut the TCP/IP stack for data transfers, improving per-
formance. This approach has been called TCP fusion on Solaris-based systems.

10.4 Architecture

This section introduces network architecture: protocols, hardware, and software.
These have been summarized as background for performance analysis and tuning,
with a focus on performance characteristics. For more details, including general net-
working topics, see networking texts ([Stevens 93], [Hassan 03]), RFCs, and vendor
manuals for networking hardware. Some of these are listed at the end of the chapter.

10.4.1 Protocols

In this section, the performance characteristics of TCP and UDP are summarized.

TCP

The Transmission Control Protocol (TCP) is a commonly used Internet standard
for creating reliable network connections. TCP is specified by [RFC 793] and later
additions.

In terms of performance, TCP can provide a high rate of throughput even on
high-latency networks, by use of buffering and a sliding window. TCP also employs
congestion control and a congestion window set by the sender, so that it can main-
tain a high but also appropriate rate of transmission across different and varying
networks. Congestion control avoids sending too many, which would cause conges-
tion and a performance breakdown.

Following is a summary of TCP performance features, including additions since
the original specification:

� Sliding window: This allows multiple packets up to the size of the window
to be sent on the network before acknowledgments are received, providing

484 Chapter 10 � Network

high throughput even on high-latency networks. The size of the window is
advertised by the receiver to indicate how many packets it is willing to
receive at that time.

� Congestion avoidance: to prevent sending too much data and causing satu-
ration, which can cause packet drops and worse performance.

� Slow-start: Part of TCP congestion control, this begins with a small conges-
tion window and then increases it as acknowledgments (ACKs) are received
within a certain time. When they are not, the congestion window is reduced.

� Selective acknowledgments (SACKs): allow TCP to acknowledge discon-
tinuous packets, reducing the number of retransmits required.

� Fast retransmit: Instead of waiting on a timer, TCP can retransmit dropped
packets based on the arrival of duplicate ACKs. These are a function of
round-trip time and not the typically much slower timer.

� Fast recovery: This recovers TCP performance after detecting duplicate
ACKs, by resetting the connection to perform slow-start.

In some cases these are implemented by use of extended TCP options added to
the protocol header.

Important topics for TCP performance include the three-way handshake, dupli-
cate ACK detection, congestion control algorithms, Nagle, delayed ACKs, SACK,
and FACK.

Three-Way Handshake

Connections are established using a three-way handshake between the hosts. One
host passively listens for connections; the other actively initiates the connection.
To clarify terminology: passive and active are from [RFC 793]; however, they are
commonly called listen and connect respectively, after the socket API. For the cli-
ent/server model, the server performs listen and the client performs connect.

The three-way handshake is pictured in Figure 10.6.

Figure 10-6 TCP three-way handshake

10.4 Architecture 485

Connection latency from the client is indicated, which completes when the final
ACK is sent. After that, data transfer may begin.

This figure shows best-case latency for a handshake. A packet may be dropped,
adding latency as it is timed out and retransmitted.

Duplicate ACK Detection

Duplicate ACK detection is used by the fast retransmit and fast recovery algo-
rithms. It is performed on the sender and works as follows:

1. The sender sends a packet with sequence number 10.

2. The receiver replies with an ACK for sequence number 11.

3. The sender sends 11, 12, and 13.

4. Packet 11 is dropped.

5. The receiver replies to both 12 and 13 by sending an ACK for 11, which it is
still expecting.

6. The sender receives the duplicate 11 ACKs.

Duplicate ACK detection is also used by both the TCP Reno and Tahoe conges-
tion avoidance algorithms.

Congestion Control: Reno and Tahoe

These algorithms for congestion control were first implemented in 4.3BSD:

� Reno: triple duplicate ACKs trigger: halving of the congestion window, halv-
ing of the slow-start threshold, fast retransmit, and fast recovery

� Tahoe: triple duplicate ACKs trigger: fast retransmit, halving the slow-start
threshold, congestion window set to one maximum segment size (MSS), and
slow-start state

Some operating systems (e.g., Linux and Oracle Solaris 11) allow the algorithm
to be selected as part of system tuning. Newer algorithms that have been devel-
oped for TCP include Vegas, New Reno, and Hybla.

Nagle

This algorithm [RFC 896] reduces the number of small packets on the network by
delaying their transmission to allow more data to arrive and coalesce. This delays
packets only if there is data in the pipeline and delays are already being encountered.

The system may provide a tunable parameter to disable Nagle, which may be
necessary if its operation conflicts with delayed ACKs.

486 Chapter 10 � Network

Delayed ACKs

This algorithm [RFC 1122] delays the sending of ACKs up to 500 ms, so that mul-
tiple ACKs may be combined. Other TCP control messages can also be combined,
reducing the number of packets on the network.

SACK and FACK

The TCP selective acknowledgment (SACK) algorithm allows the receiver to
inform the sender that it received a noncontiguous block of data. Without this, a
packet drop would eventually cause the entire send window to be retransmitted, to
preserve a sequential acknowledgment scheme. This harms TCP performance and
is avoided by most modern operating systems that support SACK.

SACK has been extended by forward acknowledgments (FACK), which are sup-
ported in Linux by default. FACKs track additional state and better regulate the
amount of outstanding data in the network, improving overall performance
[Mathis 96].

UDP

The User Datagram Protocol (UDP) is a commonly used Internet standard for
sending messages, called datagrams, across a network [RFC 768]. In terms of per-
formance, UDP provides

� Simplicity: Simple and small protocol headers reduce overheads of computa-
tion and size.

� Statelessness: lower overheads for connections and transmission.

� No retransmits: These add significant latencies for TCP connections.

While simple and often high-performing, UDP is not intended to be reliable, and
data can be missing or sent out of order. This makes it unsuitable for many types
of connections. UDP also has no congestion avoidance and can therefore contrib-
ute to congestion on the network.

Some services, including versions of NFS, can be configured to operate over TCP
or UDP as desired. Others that perform broadcast or multicast data may be able to
use only UDP.

10.4.2 Hardware

Networking hardware includes interfaces, controllers, switches, and routers. An
understanding of their operation is useful, even if any of these components is man-
aged by other staff (network administrators).

10.4 Architecture 487

Interfaces

Physical network interfaces send and receive messages, called frames, on the
attached network. They manage the electrical, optical, or wireless signaling
involved, including the handling of transmission errors.

Interface types are based on Layer 2 standards, each providing a maximum
bandwidth. Higher-bandwidth interfaces typically provide lower latency, although
also higher cost. This is often a key choice when designing new servers, to balance
the price of the server with the desired network performance.

For Ethernet, choices include wired or optical, and maximum speeds of 1 Gbit/s
(1 GbE), 10 GbE, 40 GbE, or 100 GbE. Numerous vendors manufacture Ethernet
interface controllers, although your operating system may not have driver support
for some of them.

Interface utilization can be examined as the current negotiated bandwidth
divided by the current throughput. Most interfaces have separate channels for
transmit and receive, and when operating in full-duplex mode, each channel utili-
zation must be studied separately.

Controllers

Physical network interfaces are provided to the system via controllers, either built
into the system board or provided via expander cards.

Controllers are driven by microprocessors and attach to the system via an I/O
transport (e.g., PCI). Either of these can become the limiter for network through-
put or IOPS.

For example, a dual 10 GbE network interface card is connected to a four-channel
PCI express (PCIe) Gen 2 slot. The card has a maximum bandwidth of 2 x 10 GbE
= 20 Gbits/s. The slot has a maximum bandwidth of 4 x 4 Gbits/s = 16 Gbits/s.
Therefore, network throughput on both ports will be limited by PCIe Gen 2 band-
width, and it will not be possible to drive them both at line rate at the same time (I
also know this from practice!).

Switches, Routers

Switches provide a dedicated communication path between any two connected hosts,
allowing multiple transmissions between pairs of hosts without interference. This
technology replaced hubs (and before that, shared physical busses: e.g., thick-
Ethernet coaxial cable), which shared all packets with all hosts. This sharing led to
contention when hosts transmitted simultaneously, which could be identified by the
interface as a collision using a “carrier sense multiple access with collision detec-
tion” (CSMA/CD) algorithm, which would exponentially back off and retransmit
until successful. Such behavior led to performance issues under load. With the use of

488 Chapter 10 � Network

switches this is behind us, but observability tools still have collision counters—even
though these usually occur only due to errors (negotiation or bad wiring).

Routers deliver packets between networks and use network protocols and rout-
ing tables to determine efficient delivery paths. Delivering a packet between two
cities may involve a dozen or more routers, plus other network hardware. The rout-
ers and routes are usually configured to update dynamically, so that the network
can automatically respond to network and router outages, and to balance load.
This means that at a given point in time, no one can be sure what path a packet is
actually taking. With multiple paths possible, there is also the potential for pack-
ets to be delivered out of order, which can cause TCP performance problems.

This element of mystery on the network is often blamed for poor performance:
perhaps heavy network traffic—from other unrelated hosts—is saturating a router
between the source and destination? Network administration teams are therefore
frequently required to exonerate their infrastructure. They can do so using
advanced real-time monitoring tools to check all routers and other network compo-
nents involved.

Both routers and switches include microprocessors, which themselves can
become performance bottlenecks under load. As an extreme example, I once found
that an early 10 GbE switch could drive no more than 11 Gbits/s in total across all
ports, due to its limited CPU capacity.

Others

Your environment may include other physical network devices, such as hubs,
bridges, repeaters, and modems. Any of these can be a source of performance bot-
tlenecks and dropped packets.

10.4.3 Software

Networking software includes the network stack, TCP, and device drivers. Topics
related to performance are discussed in this section.

Network Stack

The components and layers involved depend on the operating system type, ver-
sion, protocols, and interfaces in use. Figure 10.7 depicts a general model, showing
the software components.

On modern kernels the stack is multithreaded, and inbound packets can be pro-
cessed by multiple CPUs. The mapping of an inbound packet to a CPU may be per-
formed in different ways: it may be based on a hash of the source IP address, to
evenly spread out load; or it may be based on the CPU where the socket was most
recently processed, to benefit from CPU cache warmth and memory locality. Both

10.4 Architecture 489

Linux- and Solaris-based systems have different frameworks to support this
behavior.

Linux

On Linux systems, the TCP, IP, and generic net driver software are core kernel
components, with device drivers as additional modules. Packets are passed
through these kernel components as the struct sk_buff data type.

Figure 10.8 shows the generic net driver in more detail, including the New API
(NAPI) interface, which improves performance by coalescing interrupts.

High packet rates can be achieved by engaging multiple CPUs to process pack-
ets and the TCP/IP stack. Various methods for this have been documented for the
Linux 3.7 kernel (Documentation/networking/scaling.txt), which are

Figure 10-7 Generic network IP stack

490 Chapter 10 � Network

� RSS: Receive Side Scaling: for modern NICs that support multiple queues
and can hash packets to different queues, which are in turn processed by dif-
ferent CPUs by interrupting them directly. This hash may be based on the IP
address and TCP port numbers, so that packets from the same connection
end up being processed by the same CPU.

� RPS: Receive Packet Steering: a software implementation of RSS, for
NICs that do not support multiple queues. This involves a short interrupt
service routine to map the inbound packet to a CPU for processing. A similar
hash can be used to map packets to CPUs, based on fields from the packet
headers.

� RFS: Receive Flow Steering: This is similar to RPS, but with affinity for
where the socket was last processed on-CPU, to improve CPU cache hit rates
and memory locality.

� Accelerated Receive Flow Steering: This achieves RFS in hardware, for
NICs that support this functionality. It involves updating the NIC with flow
information so that it can determine which CPU to interrupt.

� XPS: Transmit Packet Steering: For NICs with multiple transmit queues,
this supports transmission by multiple CPUs to the queues.

Without a CPU load-balancing strategy for network packets, an NIC may inter-
rupt one CPU only, which can reach 100% utilization and become a bottleneck.

Mapping interrupts to CPUs based on factors such as cache coherency, as is
done by RFS, can noticeably improve network performance. This can also be
accomplished by the irqbalancer process, which assigns interrupt request (IRQ)
lines to CPUs.

Figure 10-8 Linux lower-level network stack

10.4 Architecture 491

Solaris

On Solaris-based systems, the sockets layer is the sockfs kernel module, and the
TCP, UDP, and IP protocols are combined into the ip module. Packets are passed
through the kernel as message blocks, mblk_t. The lower-level stack is shown in
more detail in Figure 10.9 [McDougall 06a].

The GLDv3 software also improves performance using vertical perimeters: a per-
CPU synchronization mechanism that is associated with a connection, avoiding the
need for locks for each data structure in the network stack. This uses an abstrac-
tion called a serialization queue (squeue), which handles each connection.

High packet rates can be achieved by enabling IP fanout, which load-balances
inbound packets across multiple CPUs.

Network stack internals were recently simplified by Erik Nordmark in the
Solaris IP Datapath Refactoring project. This description of the state of the previ-
ous stack, including performance [2], comes from that project:

The IP datapaths are extremely hard to follow. . . . That makes it hard to even fix bugs
in that code, let alone getting it to perform. This has resulted in improving perfor-
mance by creating numerous fast paths, which are subsets of the full datapaths. This
further makes maintenance of the code a hazardous activity.

This project was integrated in snv_122 and reduced the IP code by 34,000 out of
140,000 lines.

Figure 10-9 Solaris lower-level network stack

492 Chapter 10 � Network

TCP

The TCP protocol was described earlier. This section describes performance fea-
tures of the kernel TCP implementation: backlog queues and buffers.

Bursts of connections are handled by using backlog queues. There are two such
queues, one for incomplete connections while the TCP handshake completes (also
known as the SYN backlog), and one for established sessions waiting to be
accepted by the application (also known as the listen backlog). These are pictured
in Figure 10.10.

Only one queue was used in earlier kernels, and it was vulnerable to SYN floods.
A SYN flood is a type of DoS attack that involves sending numerous SYNs to the lis-
tening TCP port from bogus IP addresses. This fills the backlog queue while TCP
waits to complete the handshake, preventing real clients from connecting.

With two queues, the first can act as a staging area for potentially bogus connec-
tions, which are promoted to the second queue only once the connection is estab-
lished. The first queue can be made long to absorb SYN floods and optimized to
store only the minimum amount of metadata necessary.

The length of these queues can be tuned independently (see Section 10.8, Tun-
ing). The second can also be set by the application as the backlog argument to
listen().

Data throughput is improved by using send and receive buffers associated with
the socket. These are pictured in Figure 10.11.

Figure 10-10 TCP backlog queues

10.5 Methodology 493

For the write path, the data is buffered in the TCP send buffer, and then sent to
IP for delivery. While the IP protocol has the capability to fragment packets, TCP
tries to avoid this by sending data as MSS-size segments to IP. This means the
unit of (re-)transmission matches the unit of fragmentation; otherwise a dropped
fragment would require retransmission of the entire prefragmented packet. This
approach can also improve TCP/IP stack efficiency, as it avoids fragmentation and
assembly of regular packets.

The size of both the send and receive buffers is tunable. Larger sizes improve
throughput performance, at the cost of more main memory spent per connection.
One buffer may be set to be larger than the other if the server is expected to per-
form more sending or receiving. The Linux kernel will also dynamically increase
the size of these buffers based on the connection activity.

Network Device Drivers

The network device driver usually has an additional buffer—a ring buffer—for
sending and receiving packets between kernel memory and the NIC.

A performance feature that has become more common with the introduction of
10 GbE networking is the use of interrupt coalescing mode. Instead of interrupting
the kernel for every arrived packet, an interrupt is sent only when either a timer
(polling) or a certain number of packets is reached. This reduces the rate at which
the kernel communicates with the NIC, allowing larger transfers to be buffered,
resulting in greater throughput, though at some cost in latency. On Solaris-based
kernels, this is called dynamic polling.

10.5 Methodology

This section describes various methodologies and exercises for network analysis
and tuning. Table 10.2 summarizes the topics.

See Chapter 2, Methodology, for more strategies and the introduction to many of
these.

Figure 10-11 TCP send and receive buffers

494 Chapter 10 � Network

These may be followed individually or used in combination. My suggestion is to
use the following strategies to start with, in this order: performance monitoring,
the USE method, static performance tuning, and workload characterization.

Section 10.6, Analysis, shows operating system tools for applying these methods.

10.5.1 Tools Method

The tools method is a process of iterating over available tools, examining key met-
rics they provide. It may overlook issues for which the tools provide poor or no visi-
bility, and it can be time-consuming to perform.

For networking, the tools method can involve checking

� netstat -s: Look for a high rate of retransmits and out-of-order packets.
What constitutes a “high” retransmit rate depends on the clients: an
Internet-facing system with unreliable remote clients should have a higher
retransmit rate than an internal system with clients in the same data center.

� netstat -i: Check interface error counters (specific counters depend on the
OS version).

� ifconfig (Linux version only): Check “errors,” “dropped,” “overruns.”

� Throughput: Check the rate of bytes transmitted and received—on Linux,
via ip(8); on Solaris, via nicstat(1) or dladm(1M). High throughput may
hit line rate for the negotiated speed and be limited. It could also cause con-
tention and delays between network users on the system.

Table 10-2 Network Performance Methodologies

Methodology Types

Tools method observational analysis

USE method observational analysis

Workload characterization observational analysis, capacity planning

Latency analysis observational analysis

Performance monitoring observational analysis, capacity planning

Packet sniffing observational analysis

TCP analysis observational analysis

Drill-down analysis observational analysis

Static performance tuning observational analysis, capacity planning

Resource controls tuning

Micro-benchmarking experimental analysis

10.5 Methodology 495

� tcpdump/snoop: While these can be expensive in terms of the CPU cost,
using them for short periods may be enough to see who is using the network
and identify unnecessary work that can be eliminated.

� dtrace/stap/perf: for selected packet inspection between the application
and the wire, including examining kernel state.

If an issue is found, examine all fields from the available tools to learn more con-
text. See Section 10.6, Analysis, for more about each tool. Other methodologies can
also be used, which can identify more types of issues.

10.5.2 USE Method

The USE method is for quickly identifying bottlenecks and errors across all compo-
nents. For each network interface, and in each direction—transmit (TX) and
receive (RX)—check for

� Utilization: the time the interface was busy sending or receiving frames

� Saturation: the degree of extra queueing, buffering, or blocking due to a
fully utilized interface

� Errors: for receive: bad checksum, frame too short (less than the data link
header) or too long, collisions (unlikely with switched networks); for trans-
mit: late collisions (bad wiring)

Errors may be checked first, since they are typically quick to check and the easiest
to interpret.

Utilization is not commonly provided by operating system or monitoring tools
directly. It can be calculated as the current throughput divided by the current
negotiated speed, for each direction (RX, TX). The current throughput should be
measured as bytes per second on the network, including all protocol headers.

For environments that implement network bandwidth limits (resource con-
trols), as occurs in some cloud computing environments, network utilization may
need to be measured in terms of the imposed limit, in addition to the physical
limit.

Saturation of the network interface is difficult to measure. Some network buff-
ering is normal, as applications can send data much more quickly than an inter-
face can transmit it. It may be possible to measure as the time application threads
spend blocked on network sends, which should increase as saturation increases.
Also check if there are other kernel statistics more closely related to interface satu-
ration, for example, Linux “overruns” or Solaris “nocanputs.”

496 Chapter 10 � Network

Retransmits at the TCP level are usually readily available as statistics and can
be an indicator of network saturation. However, they are measured across the net-
work between the server and its clients and could be occurring at any hop.

The USE method can also be applied to network controllers, and the transports
between them and the processors. Since observability tools for these components
are sparse, it may be easier to infer metrics based on network interface statistics
and topology. For example, if network controller A houses ports A0 and A1, the net-
work controller throughput can be calculated as the sum of the interface through-
puts A0 + A1. With a known maximum throughput, utilization of the network
controller can then be calculated.

10.5.3 Workload Characterization

Characterizing the load applied is an important exercise when capacity planning,
benchmarking, and simulating workloads. It can also lead to some of the largest
performance gains by identifying unnecessary work that can be eliminated.

The following basic attributes for characterizing network workload can,
together, provide an approximation of what the network is asked to perform:

� Network interface throughput: RX and TX, bytes per second

� Network interface IOPS: RX and TX, frames per second

� TCP connection rate: active and passive, connections per second

The terms active and passive were described in the Three-Way Handshake sec-
tion of Section 10.4.1, Protocols.

These characteristics can vary over time, as usage patterns change throughout the
day. Monitoring over time is described in Section 10.5.5, Performance Monitoring.

Here is an example workload description, to show how these attributes can be
expressed together:

The network throughput varies based on users and performs more writes (TX) than
reads (RX). The peak write rate is 200 Mbytes/s and 210,000 packets/s, and the peak
read rate is 10 Mbytes/s with 70,000 packets/s. The inbound (passive) TCP connection
rate reaches 3,000 connections/s.

Apart from describing these characteristics system-wide, they can also be
expressed per interface. This allows interface bottlenecks to be determined, if the
throughput can be observed to have reached line rate. If network bandwidth lim-
its (resource controls) are present, they may throttle network throughput before
line rate is reached.

10.5 Methodology 497

Advanced Workload Characterization/Checklist

Additional details may be included to characterize the workload. These have been
listed here as questions for consideration, which may also serve as a checklist
when studying CPU issues thoroughly:

� What is the average packet size? RX, TX?

� What is the protocol breakdown? TCP versus UDP?

� What TCP/UDP ports are active? Bytes per second, connections per second?

� Which processes are actively using the network?

The sections that follow answer some of these questions. See Chapter 2, Methodol-
ogy, for a higher-level summary of this methodology and the characteristics to mea-
sure (who, why, what, how).

10.5.4 Latency Analysis

There are various times (latencies) that can be studied to help understand and
express network performance. They include network latency—a slightly ambigu-
ous term that is usually used to refer to connection initialization time. The vari-
ous network latencies are summarized in Table 10.3.

Table 10-3 Network Latencies

Latency Description

System call send/receive latency time for the socket read/write calls

System call connect latency for connection establishment; note that some applica-
tions perform this as a non-blocking syscall

TCP connection initialization time time for the three-way handshake

TCP first-byte latency time between the connection establishment and
receiving the first data byte

TCP connection duration time from established to closed

TCP retransmits if present, can add thousands of milliseconds of
latency to network I/O

Network round-trip time time for a packet to travel from client to server and
back

Interrupt latency time from a network controller interrupt for a received
packet to when it is serviced by the kernel

Inter-stack latency time for a packet to move through the kernel TCP/IP
stack

498 Chapter 10 � Network

Some of these latencies were described in detail in Section 10.3, Concepts.
Latency may be presented as

� Per-interval averages: best performed per client/server pair, to isolate dif-
ferences in the intermediate network

� Full distributions: as histograms or heat maps

� Per-operation latency: listing details for each event, including source and
destination IP addresses

A common source of issues is the presence of latency outliers caused by TCP
retransmits. These can be identified using full distributions or per-operation
latency tracing, including by filtering for a minimum latency threshold.

10.5.5 Performance Monitoring

Performance monitoring can identify active issues and patterns of behavior over
time. It will capture variations in the number of active end users, the timed activ-
ity including distributed system monitoring, and application activities including
backups over the network.

Key metrics for network monitoring are

� Throughput: network interface bytes per second for both receive and trans-
mit, ideally for each interface

� Connections: TCP connections per second, as another indication of network
load

� Errors: including dropped packet counters

� TCP retransmits: also useful to record for correlation with network issues

� TCP out-of-order packets: can also cause performance problems

For environments that implement network bandwidth limits (resource controls), as
occurs in some cloud computing environments, statistics related to the imposed
limits may also be collected.

10.5.6 Packet Sniffing

Packet sniffing (aka packet capture) involves capturing the packets from the net-
work, so that their protocol headers and data can be inspected on a packet-by-
packet basis. For observational analysis this may be the last resort, as it can be
expensive to perform in terms of CPU and storage overhead. Network kernel code

10.5 Methodology 499

paths are typically cycle-optimized, since they need to handle up to millions of
packets per second and are sensitive to any extra overhead. To attempt to reduce
this overhead, ring buffers may be used by the kernel to pass packet data to the
user-level trace tool via a shared memory map—for example, the Linux PF_RING
option instead of the per-packet PF_PACKET [Deri 04].

A packet capture log can be created on the server, and then analyzed using
other tools. Some tools print only the contents; others perform higher-level analy-
sis of the packet data. While reading through a packet capture log can be time-
consuming, it can also be very illuminating—showing exactly what is occurring on
the network, and the latency between pairs of packets. This makes it possible to
apply both the workload characterization and latency analysis methodologies.

Packet capture logs can contain the following for each packet:

� Timestamp

� Entire packet, including

– All protocol headers (e.g., Ethernet, IP, TCP)

– Partial or full payload data

� Metadata: number of packets, number of drops

As an example of packet capture, the following shows the default output of the
tcpdump tool:

This output has a line summarizing each packet, including details of the IP
addresses, TCP ports, and other TCP header details.

Because packet capture can be a CPU-expensive activity, most implementations
include the ability to drop events instead of capturing them when overloaded. The
count of dropped packets may be included in the log.

tcpdump -ni eth4
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth4, link-type EN10MB (Ethernet), capture size 65535 bytes
01:20:46.769073 IP 10.2.203.2.22 > 10.2.0.2.33771: Flags [P.], seq
4235343542:4235343734, ack 4053030377, win 132, options [nop,nop,TS val 328647671 ecr
2313764364], length 192
01:20:46.769470 IP 10.2.0.2.33771 > 10.2.203.2.22: Flags [.], ack 192, win 501,
options [nop,nop,TS val 2313764392 ecr 328647671], length 0
01:20:46.787673 IP 10.2.203.2.22 > 10.2.0.2.33771: Flags [P.], seq 192:560, ack 1,
win 132, options [nop,nop,TS val 328647672 ecr 2313764392], length 368
01:20:46.788050 IP 10.2.0.2.33771 > 10.2.203.2.22: Flags [.], ack 560, win 501,
options [nop,nop,TS val 2313764394 ecr 328647672], length 0
01:20:46.808491 IP 10.2.203.2.22 > 10.2.0.2.33771: Flags [P.], seq 560:896, ack 1,
win 132, options [nop,nop,TS val 328647674 ecr 2313764394], length 336
[...]

500 Chapter 10 � Network

Apart from the use of ring buffers, packet capture implementations commonly allow
a filtering expression to be supplied by the user and perform this filtering in the ker-
nel. This reduces overhead by not transferring unwanted packets to user level.

10.5.7 TCP Analysis

Apart from what was covered in Section 10.5.4, Latency Analysis, other specific
TCP behavior can be investigated, including

� Usage of TCP send/receive buffers

� Usage of TCP backlog queues

� Kernel drops due to the backlog queue being full

� Congestion window size, including zero-size advertisements

� SYNs received during a TCP TIME-WAIT1 interval

The last behavior can become a scalability problem when a server is connecting
frequently to another on the same destination port, using the same source and des-
tination IP addresses. The only distinguishing factor for each connection is the cli-
ent source port—the ephemeral port—which for TCP is a 16-bit value and may be
further constrained by operating system parameters (minimum and maximum).
Combined with the TCP TIME-WAIT interval, which may be 60 s, a high rate of
connections (more than 65,536 during 60 s) can encounter a clash for new connec-
tions. In this scenario, a SYN is sent while that ephemeral port is still associated
with a previous TCP session that is in TIME-WAIT, and the new SYN may be
rejected if it is misidentified as part of the old connection (a collision). To avoid this
issue, the Linux kernel attempts to reuse or recycle connections quickly (which
usually works well).

10.5.8 Drill-Down Analysis

The internals of the kernel networking stack can be investigated as needed, drill-
ing down through the layers that process the packets to the network interface
driver. The internals are complex, and this is a time-consuming activity.

Reasons to perform it include

� Checking if network tunable parameters need adjusting (instead of modify-
ing them experimentally)

1. While [RFC 793] uses TIME-WAIT, it is often written (and programmed) as TIME_WAIT.

10.5 Methodology 501

� Confirming that kernel network performance features are taking effect,
including, for example, CPU fanout and interrupt coalescing

� Explaining kernel-dropped packets

This typically involves using dynamic tracing to inspect the execution of the ker-
nel network stack functions.

10.5.9 Static Performance Tuning

Static performance tuning focuses on issues of the configured environment. For
network performance, examine the following aspects of the static configuration:

� How many network interfaces are available for use? Are currently in use?

� What is the maximum speed of the network interfaces?

� What is the current negotiated speed of the network interfaces?

� Are network interfaces negotiated as half or full duplex?

� What MTU is configured for the network interfaces?

� Are network interfaces trunked?

� What tunable parameters exist for the device driver? IP layer? TCP layer?

� Have any tunable parameters been changed from the defaults?

� How is routing configured? What is the default gateway?

� What is the maximum throughput of network components in the data path
(all components, including switch and router backplanes)?

� Is forwarding enabled? Is the system acting as a router?

� How is DNS configured? How far away is the server?

� Are there known performance issues (bugs) with the version of the network
interface firmware?

� Are there known performance issues (bugs) with the network device driver?
Kernel TCP/IP stack?

� Are there software-imposed network throughput limits present (resource con-
trols)? What are they?

The answers to these questions may reveal configuration choices that have been
overlooked.

The last question is especially relevant for cloud computing environments,
where network throughput may be limited.

502 Chapter 10 � Network

10.5.10 Resource Controls

The operating system may provide controls to limit network resources for types of
connections, processes, or groups of processes. These may include the following
types of controls:

� Network bandwidth limits: a permitted bandwidth (maximum through-
put) for different protocols or applications, applied by the kernel.

� IP quality of service (QoS): the prioritization of network traffic, performed
by network components (e.g., routers). This can be implemented in different
ways: the IP header includes type-of-service (ToS) bits, including a priority;
those bits have since been redefined for newer QoS schemes, including Differ-
entiated Services [RFC 2474]. There may be other priorities implemented by
other protocol layers, for the same purpose.

Your network may have a mix of traffic that can be classified as low- or high-priority.
Low-priority may include the transfer of backups and performance-monitoring traffic.
High-priority may be the traffic between the production server and clients. Either
resource control scheme can be used to throttle the low-priority traffic, producing more
favorable performance for the high-priority traffic.

How these work is implementation-specific and is discussed in Section 10.8,
Tuning.

10.5.11 Micro-Benchmarking

There are many benchmark tools for networking. They are especially useful when
investigating throughput issues for a distributed application environment, to con-
firm that the network can at least achieve the expected network throughput. If it
cannot, network performance can be investigated for the network micro-benchmark
tool, which is typically much less complex and faster to debug than the application.
After the network has been tuned to the desired speed, attention can return to the
application.

Typical factors that may be tested include

� Direction: send or receive

� Protocol: TCP or UDP, and port

� Number of threads

� Buffer size

� Interface MTU size

10.6 Analysis 503

Faster network interfaces, such as 10 Gbits/s, may require multiple client
threads to be driven to maximum bandwidth.

An example network micro-benchmark tool, iperf, is introduced in Section
10.7.1, iperf.

10.6 Analysis

This section introduces network performance analysis tools for Linux- and Solaris-
based operating systems. See the previous section for strategies to follow when
using them.

The tools in this section are listed in Table 10.4.

This is a selection of tools and capabilities to support Section 10.5, Methodology,
beginning with system-wide statistics, then drilling down to packet sniffing and
event tracing. See the tool documentation, including man pages, for full references
for their features.

10.6.1 netstat

The netstat(8) command reports various types of network statistics, based on
the options used. It is like a multi-tool with several different functions. These
include the following:

Table 10-4 Network Analysis Tools

Linux Solaris Description

netstat netstat various network stack and interface statistics

sar — historical statistics

ifconfig ifconfig interface configuration

ip dladm network interface statistics

nicstat nicstat network interface throughput and utilization

ping ping test network connectivity

traceroute traceroute test network routes

pathchar pathchar determine network path characteristics

tcpdump snoop/tcpdump network packet sniffer

Wireshark Wireshark graphical network packet inspection

DTrace, perf DTrace TCP/IP stack tracing: connections, packets, drops, latency

504 Chapter 10 � Network

� (default): lists connected sockets

� -a: lists information for all sockets

� -s: network stack statistics

� -i: network interface statistics

� -r: lists the route table

Other options can modify the output, including -n to not resolve IP addresses to
host names, and -v for verbose details where available.

The output of netstat(8) varies slightly between operating systems.

Linux

Here is an example of netstat(8) interface statistics:

The columns include the network interface (Iface), MTU, and a series of metrics
for receive (RX-) and transmit (TX-):

� OK: packets transferred successfully

� ERR: packet errors

� DRP: packet drops

� OVR: packet overruns

The packet drops and overruns are indications of network interface saturation and
can be examined along with errors as part of the USE method.

The -c continuous mode can be used with -i, which prints these cumulative
counters every second. This provides the data for calculating the rate of packets.

Here is an example of netstat(8) network stack statistics (truncated):

$ netstat -i
Kernel Interface table
Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flg
eth0 1500 0 933760207 0 0 0 1090211545 0 0 0 BMRU
eth3 1500 0 718900017 0 0 0 587534567 0 0 0 BMRU
lo 16436 0 21126497 0 0 0 21126497 0 0 0 LRU
ppp5 1496 0 4225 0 0 0 3736 0 0 0 MOPRU
ppp6 1496 0 1183 0 0 0 1143 0 0 0 MOPRU
tun0 1500 0 695581 0 0 0 692378 0 0 0 MOPRU
tun1 1462 0 0 0 0 0 4 0 0 0 PRU

$ netstat -s
Ip:
 2195174600 total packets received
 1896 with invalid headers
 996084485 forwarded

10.6 Analysis 505

 4315 with unknown protocol
 0 incoming packets discarded
 1197785508 incoming packets delivered
 1786035083 requests sent out
 11 outgoing packets dropped
 589 fragments dropped after timeout
 465974 reassemblies required
 232690 packets reassembled ok
[...]
Tcp:
 102171 active connections openings
 126729 passive connection openings
 11932 failed connection attempts
 19492 connection resets received
 27 connections established
 627019277 segments received
 325718869 segments send out
 346436 segments retransmited
 5 bad segments received.
 24172 resets sent
Udp:
 12331498 packets received
 35713 packets to unknown port received.
 0 packet receive errors
 67417483 packets sent
TcpExt:
 1749 invalid SYN cookies received
 2665 resets received for embryonic SYN_RECV sockets
 7304 packets pruned from receive queue because of socket buffer overrun
 2565 ICMP packets dropped because they were out-of-window
 78204 TCP sockets finished time wait in fast timer
 67 time wait sockets recycled by time stamp
 901 packets rejects in established connections because of timestamp
 2667251 delayed acks sent
 2897 delayed acks further delayed because of locked socket

Quick ack mode was activated 255240 times
 1051749 packets directly queued to recvmsg prequeue.
 4533681 bytes directly in process context from backlog
 953003585 bytes directly received in process context from prequeue
 372483184 packet headers predicted
 695654 packets header predicted and directly queued to user
 14056833 acknowledgments not containing data payload received
 235440239 predicted acknowledgments
 64430 times recovered from packet loss by selective acknowledgements
 167 bad SACK blocks received
 Detected reordering 60 times using FACK
 Detected reordering 132 times using SACK
 Detected reordering 36 times using time stamp
 40 congestion windows fully recovered without slow start
 366 congestion windows partially recovered using Hoe heuristic
 10 congestion windows recovered without slow start by DSACK
 60182 congestion windows recovered without slow start after partial ack
 252507 TCP data loss events
 TCPLostRetransmit: 1088
 1 timeouts after reno fast retransmit
 9781 timeouts after SACK recovery
 337 timeouts in loss state
 125688 fast retransmits
 2191 forward retransmits
 8423 retransmits in slow start
 122301 other TCP timeouts
 598 SACK retransmits failed
 1 times receiver scheduled too late for direct processing
 5543656 packets collapsed in receive queue due to low socket buffer
[...]

506 Chapter 10 � Network

The output lists various network statistics, mostly from TCP, that are grouped by
their protocol. Fortunately, many of these have long descriptive names, so their
meaning may be obvious. Unfortunately, the output is inconsistent and includes
spelling errors, which is a nuisance when processing this text programmatically.

A number of performance-related metrics have been highlighted in bold, to show
the kind of information that is available. Many of these require an advanced
understanding of TCP behavior, including the newer features and algorithms that
have been introduced in recent years. Here are some example metrics to look for:

� A high rate of forwarded versus total packets received: check that the server
is supposed to be forwarding (routing) packets.

� Passive connection openings: this can be monitored to show load in terms of
client connections.

� A high rate of segments retransmitted versus segments sent out: can show an
unreliable network. This may be expected (Internet clients).

� Packets pruned from the receive queue because of socket buffer overrun:
This is a sign of network saturation and may be fixable by increasing socket
buffers—provided there are sufficient system resources for the application to
keep up.

Some of the statistic names include typos. These can be problematic to simply
fix, if other monitoring tools have been built upon the same output. Such tools
should be better served by reading the /proc sources for these statistics, which are
/proc/net/snmp and /proc/net/netstat. For example:

These /proc/net/snmp statistics are also for the SNMP management information
bases (MIBs), which provide further documentation for what each statistic is sup-
posed to be. Extended statistics are in /proc/net/netstat.

An interval, in seconds, can be used with netstat(8) so that it continually
prints the cumulative counters every interval. This output could then be post-
processed to calculate the rate of each counter.

$ grep ^Tcp /proc/net/snmp
Tcp: RtoAlgorithm RtoMin RtoMax MaxConn ActiveOpens PassiveOpens AttemptFails
EstabResets CurrEstab InSegs OutSegs RetransSegs InErrs OutRsts
Tcp: 1 200 120000 -1 102378 126946 11940 19495 24 627115849 325815063 346455 5 24183

10.6 Analysis 507

Solaris

Here is an example of netstat(1M) interface statistics:

The columns include the network interface (Name), MTU, network (Net/Dest),
interface address (Address), and a series of metrics:

� Ipkts: input packets (received)

� Ierrs: input packet errors

� Opkts: output packets (transmitted)

� Oerrs: output packet errors (for example, a late collision)

� Collis: packet collisions (unlikely to happen nowadays, with buffered
switches)

� Queue: always zero (hard-coded, historic)

If an interval is provided (in seconds) as an argument, the output summarizes a
single interface over time. A -I option can be used to specify which interface is
shown.

Here is an example of netstat(1M) network stack statistics (truncated):

$ netstat -i
Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis Queue
lo0 8232 loopback localhost 40 0 40 0 0 0
ixgbe0 1500 headnode headnode 4122107616 0 4102310328 0 0 0
external0 1500 10.225.140.0 10.225.140.4 7101105 0 4574375 0 0 0
devnet0 1500 10.3.32.0 10.3.32.4 6566405 0 3895822357 0 0 0

Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis
lo0 8252 localhost localhost 40 0 40 0 0

$ netstat -s

RAWIP rawipInDatagrams = 184 rawipInErrors = 0
 rawipInCksumErrs = 0 rawipOutDatagrams = 937
 rawipOutErrors = 0

UDP udpInDatagrams =664557 udpInErrors = 0
 udpOutDatagrams =677322 udpOutErrors = 0

TCP tcpRtoAlgorithm = 4 tcpRtoMin = 400
 tcpRtoMax = 60000 tcpMaxConn = -1

tcpActiveOpens =967141 tcpPassiveOpens = 3134
 tcpAttemptFails =110230 tcpEstabResets = 183
 tcpCurrEstab = 7 tcpOutSegs =78452503
 tcpOutDataSegs =69720123 tcpOutDataBytes =3753060671

tcpRetransSegs = 12265 tcpRetransBytes =10767035
 tcpOutAck =19678899 tcpOutAckDelayed =10664701

continues

508 Chapter 10 � Network

The output lists various network statistics, grouped by protocol. Many of the
names of these statistics are based on SNMP networking MIBs, which explain
what they are for.

A number of performance-related metrics have been highlighted in bold, to show
the kind of information that is available. Many of these require an advanced
understanding of modern TCP behavior. Metrics to look for are those similar to the
Linux metrics mentioned earlier, as well as

� tcpListenDrop and tcpListenDropQ0: These show the number of
dropped packets for the socket listen backlog and the SYN backlog, respec-
tively. A growing number of tcpListenDrops indicates more connection
requests than the application can accept. This may be fixable in one of two
ways: by increasing the backlog length (tcp_conn_req_max_q), allowing larger
bursts of connections to queue; and/or by configuring greater system
resources for the application.

The metrics reported are read from kstat, which can be accessed using the libkstat
interface.

An interval can also be provided, which prints the summary-since-boot followed
by interval summaries. Each summary shows the statistics for that interval
(unlike the Linux version), so that rates are apparent. For example:

 tcpOutUrg = 0 tcpOutWinUpdate = 3679
 tcpOutWinProbe = 0 tcpOutControl =1833674
 tcpOutRsts = 1935 tcpOutFastRetrans = 23
 tcpInSegs =50303684
 tcpInAckSegs = 0 tcpInAckBytes =3753841314
 tcpInDupAck =974778 tcpInAckUnsent = 0
 tcpInInorderSegs =57165053 tcpInInorderBytes =813978589

tcpInUnorderSegs = 1789 tcpInUnorderBytes =106836
tcpInDupSegs = 1880 tcpInDupBytes =121354

 tcpInPartDupSegs = 0 tcpInPartDupBytes = 0
 tcpInPastWinSegs = 0 tcpInPastWinBytes = 0
 tcpInWinProbe = 1 tcpInWinUpdate = 0
 tcpInClosed = 40 tcpRttNoUpdate = 0
 tcpRttUpdate =32655394 tcpTimRetrans = 16559
 tcpTimRetransDrop = 218 tcpTimKeepalive = 25489
 tcpTimKeepaliveProbe= 2512 tcpTimKeepaliveDrop = 150

tcpListenDrop = 0 tcpListenDropQ0 = 0
 tcpHalfOpenDrop = 0 tcpOutSackRetrans = 7262

IPv4 ipForwarding = 1 ipDefaultTTL = 255
ipInReceives =3970771620 ipInHdrErrors = 0

 ipInAddrErrors = 0 ipInCksumErrs = 2
ipForwDatagrams =3896325662 ipForwProhibits = 0

 ipInUnknownProtos = 4 ipInDiscards = 188
 ipInDelivers =74383918 ipOutRequests =91980660
 ipOutDiscards = 1122 ipOutNoRoutes = 2
[...]

10.6 Analysis 509

This shows the rate of TCP connections, active and passive, per second.

10.6.2 sar

The system activity reporter, sar(1), can be used to observe current activity and
can be configured to archive and report historical statistics. It is introduced in
Chapter 4, Observability Tools, and mentioned in other chapters as appropriate.

The Linux version provides network statistics via the following options:

� -n DEV: network interface statistics

� -n EDEV: network interface errors

� -n IP: IP datagram statistics

� -n EIP: IP error statistics

� -n TCP: TCP statistics

� -n ETCP: TCP error statistics

� -n SOCK: socket usage

Statistics provided include those shown in Table 10.5.

netstat -s 1 | grep tcpActiveOpens
 tcpActiveOpens =11460494 tcpPassiveOpens = 783
 tcpActiveOpens = 224 tcpPassiveOpens = 0
 tcpActiveOpens = 193 tcpPassiveOpens = 0
 tcpActiveOpens = 53 tcpPassiveOpens = 1
 tcpActiveOpens = 216 tcpPassiveOpens = 0
[...]

Table 10-5 Linux sar Network Statistics

Option Statistic Description Units

-n DEV rxpkt/s received packets packets/s

-n DEV txpkt/s transmitted packets packets/s

-n DEV rxkB/s received kilobytes Kbytes/s

-n DEV txkB/s transmitted kilobytes Kbytes/s

-n EDEV rxerr/s received packet errors packets/s

-n EDEV txerr/s transmitted packet errors packets/s

-n EDEV coll/s collisions packets/s

-n EDEV rxdrop/s received packets dropped (buffer full) packets/s

continues

510 Chapter 10 � Network

Many of the statistic names include the direction and units measured: rx for
“received,” i for “input,” seg for “segments,” and so on. See the man page for the
full list, which includes statistics for ICMP, UDP, NFS, and IPv6 and also notes
some equivalent SNMP names (e.g., ipInReceives for irec/s).

This example prints TCP statistics every second:

The output shows a passive connection rate (inbound) of around 30/s.
The network interface statistics column (NET) lists all interfaces; however, often just

one is of interest. The following example uses a little awk(1) to filter the output:

-n EDEV txdrop/s transmitted packets dropped (buffer full) packets/s

-n EDEV rxfifo/s received packets FIFO overrun errors packets/s

-n EDEV txfifo/s transmitted packets FIFO overrun errors packets/s

-n IP irec/s input datagrams (received) datagrams/s

-n IP fwddgm/s forwarded datagrams datagrams/s

-n IP orq/s output datagram requests (transmit) datagrams/s

-n EIP idisc/s input discards (e.g., buffer full) datagrams/s

-n EIP odisc/s output discards (e.g., buffer full) datagrams/s

-n TCP active/s new active TCP connections (connect()) connections/s

-n TCP passive/s new passive TCP connections (listen()) connections/s

-n TCP iseg/s input segments (received) segments/s

-n TCP oseg/s output segments (received) segments/s

-n ETCP atmptf/s active TCP connection fails connections/s

-n ETCP retrans/s TCP segments retransmitted segments/s

-n SOCK totsck total sockets in use sockets

-n SOCK ip-frag IP fragments currently queued fragments

-n SOCK tcp-tw TCP sockets in TIME-WAIT sockets

$ sar -n TCP 1
Linux 3.5.4joyent-centos-6-opt (dev99) 04/22/2013 _x86_64_ (4 CPU)

09:36:26 PM active/s passive/s iseg/s oseg/s
09:36:27 PM 0.00 35.64 4084.16 4090.10
09:36:28 PM 0.00 34.00 3652.00 3671.00
09:36:29 PM 0.00 30.00 3229.00 3309.00
09:36:30 PM 0.00 33.33 3291.92 3310.10
 [...]

Table 10-5 Linux sar Network Statistics (Continued)

Option Statistic Description Units

10.6 Analysis 511

This shows network throughput for transmit and receive. In this case, both direc-
tions have a rate of over 2 Mbytes/s.

The Solaris version of sar(1) does not currently provide network statistics
(use netstat(1M), nicstat(1), and dladm(1M) instead).

10.6.3 ifconfig

The ifconfig(8) command allows network interfaces to be manually configured.
It can also list the current configuration of all interfaces, which can be useful dur-
ing static performance tuning, to check how the system, network, and routes are
configured.

The Linux version includes statistics with the output:

The counters are the same as those described by the earlier netstat -i command.
txqueuelen is the length of the transmit queue for the interfaces. Tuning this

value is described in the man page:

It is useful to set this to small values for slower devices with a high latency (modem
links, ISDN) to prevent fast bulk transfers from disturbing interactive traffic like tel-
net too much.

On Linux, ifconfig(8) is now considered obsolete, replaced by the ip(8)
command. On Solaris, various functionality of ifconfig(1M) has also become
obsolete, replaced by the ipadm(1M) and dladm(1M) commands.

$ sar -n DEV 1 | awk 'NR == 3 || $3 == "eth0"'
09:36:06 PM IFACE rxpck/s txpck/s rxkB/s txkB/s rxcmp/s txcmp/s rxmcst/s
09:36:07 PM eth0 4131.68 4148.51 2628.52 2512.07 0.00 0.00 0.00
09:36:08 PM eth0 4251.52 4266.67 2696.05 2576.82 0.00 0.00 0.00
09:36:09 PM eth0 4249.00 4248.00 2695.03 2574.10 0.00 0.00 0.00
09:36:10 PM eth0 3384.16 3443.56 2149.98 2060.31 0.00 0.00 0.00
[...]

$ ifconfig
eth0 Link encap:Ethernet HWaddr 00:21:9b:97:a9:bf
 inet addr:10.2.0.2 Bcast:10.2.0.255 Mask:255.255.255.0
 inet6 addr: fe80::221:9bff:fe97:a9bf/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:933874764 errors:0 dropped:0 overruns:0 frame:0
TX packets:1090431029 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:584622361619 (584.6 GB) TX bytes:537745836640 (537.7 GB)

 Interrupt:36 Memory:d6000000-d6012800

eth3 Link encap:Ethernet HWaddr 00:21:9b:97:a9:c5
[...]

512 Chapter 10 � Network

10.6.4 ip

The Linux ip(8) command can be used to configure network interfaces and routes,
and to observe their state and statistics. For example, showing link statistics:

The counters are the same as those described by the earlier netstat -i com-
mand, with the addition of receive (RX) and transmit (TX) bytes. This would allow
throughput to be easily observed; however, ip(8) currently does not provide a way
to print per-interval reports (use sar(1)).

10.6.5 nicstat

Originally written for Solaris-based systems, the open-source nicstat(1) utility
prints network interface statistics, including throughput and utilization. nicstat(1)
follows the style of the traditional resource statistic tools, iostat(1M) and
mpstat(1M). Versions have been written in both C and Perl, and for both Solaris-
based systems and Linux [3].

For example, here is output for version 1.92 on Linux:

$ ip -s link
1: lo: mtu 16436 qdisc noqueue state UNKNOWN
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 RX: bytes packets errors dropped overrun mcast
 1200720212 21176087 0 0 0 0
 TX: bytes packets errors dropped carrier collsns
 1200720212 21176087 0 0 0 0
2: eth0: mtu 1500 qdisc mq state UP qlen 1000
 link/ether 00:21:9b:97:a9:bf brd ff:ff:ff:ff:ff:ff
 RX: bytes packets errors dropped overrun mcast
 507221711 933878009 0 0 0 46648551
 TX: bytes packets errors dropped carrier collsns
 876109419 1090437447 0 0 0 0
3: eth1: mtu 1500 qdisc noop state DOWN qlen 1000
[...]

nicstat -z 1
 Time Int rKB/s wKB/s rPk/s wPk/s rAvs wAvs %Util Sat
01:20:58 eth0 0.07 0.00 0.95 0.02 79.43 64.81 0.00 0.00
01:20:58 eth4 0.28 0.01 0.20 0.10 1451.3 80.11 0.00 0.00
01:20:58 vlan123 0.00 0.00 0.00 0.02 42.00 64.81 0.00 0.00
01:20:58 br0 0.00 0.00 0.00 0.00 42.00 42.07 0.00 0.00
 Time Int rKB/s wKB/s rPk/s wPk/s rAvs wAvs %Util Sat
01:20:59 eth4 42376.0 974.5 28589.4 14002.1 1517.8 71.27 35.5 0.00
 Time Int rKB/s wKB/s rPk/s wPk/s rAvs wAvs %Util Sat
01:21:00 eth0 0.05 0.00 1.00 0.00 56.00 0.00 0.00 0.00
01:21:00 eth4 41834.7 977.9 28221.5 14058.3 1517.9 71.23 35.1 0.00
 Time Int rKB/s wKB/s rPk/s wPk/s rAvs wAvs %Util Sat
01:21:01 eth4 42017.9 979.0 28345.0 14073.0 1517.9 71.24 35.2 0.00

10.6 Analysis 513

The first output is the summary-since-boot, followed by interval summaries. The
interval summaries show that the eth4 interface is running at 35% utilization
(this is reporting the highest current utilization from either the RX or TX direc-
tions) and is reading at 42 Mbytes/s.

The fields include the interface name (Int), the maximum utilization (%Util), a
value reflecting interface saturation statistics (Sat), and a series of statistics pre-
fixed with r for “read” (receive), and w for “write” (transmit):

� KB/s: kilobytes per second

� Pk/s: packets per second

� Avs/s: average packet size, bytes

Various options are supported in this version, including -z to skip lines of zeros
(idle interfaces) and -t for TCP statistics.

nicstat(1) is particularly useful for the USE method, as it provides utiliza-
tion and saturation values.

10.6.6 dladm

On Solaris-based systems, the dladm(1M) command can provide interface statis-
tics including packet and byte rates, error rates, and utilization, and it can also
show the state of physical interfaces.

Showing network traffic on the ixgbe0 interface each second:

The first line of output is the total-since-boot, followed by the per-second summa-
ries (-i 1). The output shows this interface is currently receiving and transmit-
ting at about 500 Kbytes/s. dladm show-link –S provides an alternate output
showing kilobyte rates, packet rates, and a %Util column.

$ dladm show-link -s -i 1 ixgbe0
LINK IPACKETS RBYTES IERRORS OPACKETS OBYTES OERRORS
ixgbe0 8442628297 5393508338540 0 8422583725 6767471933614 0
ixgbe0 1548 501475 0 1538 476283 0
ixgbe0 1581 515611 0 1592 517697 0
ixgbe0 1491 478794 0 1495 479232 0
ixgbe0 1590 566174 0 1567 477956 0
[...]

514 Chapter 10 � Network

Listing the state of physical interfaces:

This is useful for static performance tuning, to check that the interfaces have nego-
tiated to their fastest speed.

Prior to dladm(1M), these attributes were checked using ndd(1M).

10.6.7 ping

The ping(8) command tests network connectivity by sending ICMP echo request
packets. For example:

The output includes the round-trip time (rtt) for each packet and has a summary
showing various statistics. Since the timestamps are measured by the ping(8)
command itself, they are inclusive of some CPU code path execution time between
fetching the timestamp and performing network I/O.

The Solaris version requires a -s option to send continuous packets in this way.
The ICMP packets used may be treated by routers at a lower priority than

application protocols, and latency may show higher variance than usual.

10.6.8 traceroute

The traceroute(8) command sends a series of test packets to experimentally
determine the current route to a host. This is performed by increasing the IP pro-
tocol time to live (TTL) by one for each packet, causing the sequence of gateways to

$ dladm show-phys
LINK MEDIA STATE SPEED DUPLEX DEVICE
ixgbe0 Ethernet up 10000 full ixgbe0
ixgbe1 Ethernet up 10000 full ixgbe1
igb0 Ethernet unknown 0 half igb0
igb1 Ethernet unknown 0 half igb1
igb2 Ethernet unknown 0 half igb2
igb3 Ethernet unknown 0 half igb3

ping www.joyent.com
PING www.joyent.com (165.225.132.33) 56(84) bytes of data.
64 bytes from 165.225.132.33: icmp_req=1 ttl=239 time=67.9 ms
64 bytes from 165.225.132.33: icmp_req=2 ttl=239 time=68.3 ms
64 bytes from 165.225.132.33: icmp_req=3 ttl=239 time=69.6 ms
64 bytes from 165.225.132.33: icmp_req=4 ttl=239 time=68.1 ms
64 bytes from 165.225.132.33: icmp_req=5 ttl=239 time=68.1 ms
^C
--- www.joyent.com ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4005ms
rtt min/avg/max/mdev = 67.935/68.443/69.679/0.629 ms

../../../../../www.joyent.com/default.htm
../../../../../www.joyent.com/default.htm
../../../../../www.joyent.com/default.htm

10.6 Analysis 515

the host to reveal themselves by sending ICMP time exceeded response messages
(provided a firewall doesn’t block them).

For example, testing the current route between a host in California and a tar-
get in Virginia:

Each hop shows a series of three RTTs, which can be used as a coarse source of
network latency statistics. As with ping(8), the packets used are low-priority and
may show higher latency than for other application protocols.

The path taken can also be studied as part of static performance tuning. Net-
works are designed to be dynamic and responsive to outages. Performance may
have degraded as the path has changed.

traceroute(8) was first written by Van Jacobson. He later created an amaz-
ing tool called pathchar.

10.6.9 pathchar

pathchar is similar to traceroute(8) but includes the bandwidth between hops
[4]. This is determined by sending a series of network packet sizes many times and
performing statistical analysis. Here is example output:

traceroute www.joyent.com
 1 165.225.148.2 (165.225.148.2) 0.333 ms 13.569 ms 0.279 ms
 2 te-3-2.car2.Oakland1.Level3.net (4.71.202.33) 0.361 ms 0.309 ms 0.295 ms
 3 ae-11-11.car1.Oakland1.Level3.net (4.69.134.41) 2.040 ms 2.019 ms 1.964 ms
 4 ae-5-5.ebr2.SanJose1.Level3.net (4.69.134.38) 1.245 ms 1.230 ms 1.241 ms
 5 ae-72-72.csw2.SanJose1.Level3.net (4.69.153.22) 1.269 ms 1.307 ms 1.240 ms
 6 ae-2-70.edge1.SanJose3.Level3.net (4.69.152.80) 1.810 ms ae-1-
60.edge1.SanJose3.Level3.net (4.69.152.16) 1.903 ms 1.735 ms
 7 Savvis-Level3.Dallas3.Level3.net (4.68.62.106) 1.829 ms 1.813 ms 1.900 ms
 8 cr2-tengig0-7-3-0.sanfrancisco.savvis.net (204.70.206.57) 3.889 ms 3.839 ms 3.805 ms
 9 cr2-ten-0-15-3-0.dck.nyr.savvis.net (204.70.224.209) 77.315 ms 92.287 ms 77.684 ms
10 er2-tengig-1-0-1.VirginiaEquinix.savvis.net (204.70.197.245) 77.144 ms 77.114 ms
77.193 ms
11 internap.VirginiaEquinix.savvis.net (208.173.159.2) 77.373 ms 77.363 ms 77.445 ms
12 border10.pc1-bbnet1.wdc002.pnap.net (216.52.127.9) 77.114 ms 77.093 ms 77.116 ms
13 joyent-3.border10.wdc002.pnap.net (64.94.31.202) 77.203 ms 85.554 ms 90.106 ms
14 165.225.132.33 (165.225.132.33) 77.089 ms 77.097 ms 77.076 ms

pathchar 192.168.1.10
pathchar to 192.168.1.1 (192.168.1.1)
 doing 32 probes at each of 64 to 1500 by 32
 0 localhost
 | 30 Mb/s, 79 us (562 us)
 1 neptune.test.com (192.168.2.1)
 | 44 Mb/s, 195 us (1.23 ms)
 2 mars.test.com (192.168.1.1)
2 hops, rtt 547 us (1.23 ms), bottleneck 30 Mb/s, pipe 7555 bytes

../../../../../www.joyent.com/default.htm

516 Chapter 10 � Network

Unfortunately, pathchar somehow missed becoming popular (perhaps because
the source code was not released, as far as I know), and it is difficult to find a
working version for modern operating systems. It was also very time-consuming to
run, taking tens of minutes depending on the number of hops, although methods
have been proposed to reduce this time [Downey 99].

10.6.10 tcpdump

Network packets can be captured and inspected using the tcpdump(8) utility.
This can either print packet summaries on STDOUT, or write packet data to a file
for later analysis. The latter is usually more practical: packet rates can be too high
to follow their summaries in real time.

Dumping packets from the eth4 interface to a file in /tmp:

The output notes how many packets were dropped by the kernel instead of being
passed to tcpdump(8), as occurs when the rate of packets is too high.

Inspecting packets from a dump file:

Each line of output shows the time of the packet (with microsecond resolution), its
source and destination IP addresses, and TCP header values. By studying these,
the operation of TCP can be understood in detail, including how advanced fea-
tures are working for your workload.

tcpdump -i eth4 -w /tmp/out.tcpdump
tcpdump: listening on eth4, link-type EN10MB (Ethernet), capture size 65535 bytes
^C273893 packets captured
275752 packets received by filter
1859 packets dropped by kernel

tcpdump -nr /tmp/out.tcpdump
reading from file /tmp/out.tcpdump, link-type EN10MB (Ethernet)
02:24:46.160754 IP 10.2.124.2.32863 > 10.2.203.2.5001: Flags [.], seq
3612664461:3612667357, ack 180214943, win 64436, options [nop,nop,TS val 692339741
ecr 346311608], length 2896
02:24:46.160765 IP 10.2.203.2.5001 > 10.2.124.2.32863: Flags [.], ack 2896, win
18184, options [nop,nop,TS val 346311610 ecr 692339740], length 0
02:24:46.160778 IP 10.2.124.2.32863 > 10.2.203.2.5001: Flags [.], seq 2896:4344, ack
1, win 64436, options [nop,nop,TS val 692339741 ecr 346311608], length 1448
02:24:46.160807 IP 10.2.124.2.32863 > 10.2.203.2.5001: Flags [.], seq 4344:5792, ack
1, win 64436, options [nop,nop,TS val 692339741 ecr 346311608], length 1448
02:24:46.160817 IP 10.2.203.2.5001 > 10.2.124.2.32863: Flags [.], ack 5792, win
18184, options [nop,nop,TS val 346311610 ecr 692339741], length 0
[...]

10.6 Analysis 517

The -n option was used to not resolve IP addresses as host names. Various other
options are available, including printing verbose details where available (-v), link-
layer headers (-e), and hex-address dumps (-x or -X). For example:

During performance analysis, it can be useful to change the timestamp column
to show delta times between packets (-ttt), or elapsed time since the first packet
(-ttttt).

An expression can also be provided to describe how to filter packets (see pcap-
filter(7)), to focus on the packets of interest. This is performed in-kernel for
efficiency (except on Linux 2.0 and older).

Packet capture is expensive to perform, in terms of both CPU cost and storage.
If possible, use tcpdump(8) only for short periods to limit the performance cost.

tcpdump(8) can be added to Solaris-based systems, should there be a reason
not to use the snoop(1M) utility.

10.6.11 snoop

While tcpdump(8) has been ported to Solaris-based systems, the default tool for
packet capture and inspection is snoop(1M). It behaves similarly to tcpdump(8)
and can also create packet capture files for later inspection. With snoop(1M), the
packet capture files follow the [RFC 1761] standard.

For example, capturing packets on the ixgbe0 interface to a file in /tmp:

tcpdump -enr /tmp/out.tcpdump -vvv -X
reading from file /tmp/out.tcpdump, link-type EN10MB (Ethernet)
02:24:46.160754 80:71:1f:ad:50:48 > 84:2b:2b:61:b6:ed, ethertype IPv4 (0x0800),
length 2962: (tos 0x0, ttl 63, id 46508, offset 0, flags [DF], proto TCP (6), length
2948)
 10.2.124.2.32863 > 10.2.203.2.5001: Flags [.], cksum 0x667f (incorrect ->
0xc4da), seq 3612664461:3612667357, ack 180214943, win 64436, options [nop,nop,TS val
692339741 ecr 346311608], length 289
6
 0x0000: 4500 0b84 b5ac 4000 3f06 1fbf 0a02 7c02 E.....@.?.....|.
 0x0010: 0a02 cb02 805f 1389 d754 e28d 0abd dc9f _...T......
 0x0020: 8010 fbb4 667f 0000 0101 080a 2944 441d f.......)DD.
 0x0030: 14a4 4bb8 3233 3435 3637 3839 3031 3233 ..K.234567890123
 0x0040: 3435 3637 3839 3031 3233 3435 3637 3839 4567890123456789
[...]

snoop -d ixgbe0 -o /tmp/out.snoop
Using device ixgbe0 (promiscuous mode)
46907 ^C

518 Chapter 10 � Network

The output includes the packets received so far. It can be useful to suppress this
using quiet mode (-q), so that the output doesn’t cause additional network pack-
ets when executed over a network session.

Inspecting packets from a dump file:

The output contains a single line per packet, beginning with a packet ID num-
ber, a timestamp (in seconds, with microsecond resolution), source and destination
IP addresses, and other protocol details. Resolution of IP addresses to host names
was disabled using -r.

For performance investigations, the timestamps can be modified as needed. By
default, they are delta timestamps, showing the time between packets. The -ta
option prints absolute time: wall clock. The -tr option prints relative times: the
delta to the first packet.

The -V option prints semiverbose output, including a line per protocol stack layer:

The -v (lowercase) option prints full-verbose output, often producing a page of
output for each packet:

snoop -ri /tmp/out.snoop
 1 0.00000 10.2.0.2 -> 10.2.204.2 TCP D=5001 S=33896 Ack=2831460534
Seq=3864122818 Len=1448 Win=46 Options=<nop,nop,tstamp 2333449053 694358367>
 2 0.00000 10.2.0.2 -> 10.2.204.2 TCP D=5001 S=33896 Ack=2831460534
Seq=3864124266 Len=1448 Win=46 Options=<nop,nop,tstamp 2333449053 694358367>
 3 0.00002 10.2.0.2 -> 10.2.204.2 TCP D=5001 S=33896 Ack=2831460534
Seq=3864125714 Len=1448 Win=46 Options=<nop,nop,tstamp 2333449053 694358367>
[...]

snoop -ri /tmp/out.snoop -V

 1 0.00000 10.2.0.2 -> 10.2.204.2 ETHER Type=0800 (IP), size=1514 bytes
 1 0.00000 10.2.0.2 -> 10.2.204.2 IP D=10.2.204.2 S=10.2.0.2 LEN=1500,
ID=35573, TOS=0x0, TTL=63
 1 0.00000 10.2.0.2 -> 10.2.204.2 TCP D=5001 S=33896 Ack=2831460534
Seq=3864122818 Len=1448 Win=46 Options=<nop,nop,tstamp 2333449053 694358367>

 2 0.00000 10.2.0.2 -> 10.2.204.2 ETHER Type=0800 (IP), size=1514 bytes
 2 0.00000 10.2.0.2 -> 10.2.204.2 IP D=10.2.204.2 S=10.2.0.2 LEN=1500,
ID=35574, TOS=0x0, TTL=63
 2 0.00000 10.2.0.2 -> 10.2.204.2 TCP D=5001 S=33896 Ack=2831460534
Seq=3864124266 Len=1448 Win=46 Options=<nop,nop,tstamp 2333449053 694358367>

[...]

snoop -ri /tmp/out.snoop -v
ETHER: ----- Ether Header -----
ETHER:
ETHER: Packet 1 arrived at 8:07:54.31917
ETHER: Packet size = 1514 bytes
ETHER: Destination = 84:2b:2b:61:b7:62,

10.6 Analysis 519

Only the first packet was included in this example. snoop(1M) has been pro-
grammed to understand how to parse many protocols, allowing for quick command-
line investigations for a variety of network traffic.

An expression can also be provided to describe how to filter packets (see the
snoop(1M) man page) to focus on the packets of interest. As much as possible, the
filtering is performed in-kernel for efficiency.

ETHER: Source = 80:71:1f:ad:50:48,
ETHER: Ethertype = 0800 (IP)
ETHER:
IP: ----- IP Header -----
IP:
IP: Version = 4
IP: Header length = 20 bytes
IP: Type of service = 0x00
IP: xxx. = 0 (precedence)
IP: ...0 = normal delay
IP: 0... = normal throughput
IP:0.. = normal reliability
IP: 0. = not ECN capable transport
IP: 0 = no ECN congestion experienced
IP: Total length = 1500 bytes
IP: Identification = 35573
IP: Flags = 0x4
IP: .1.. = do not fragment
IP: ..0. = last fragment
IP: Fragment offset = 0 bytes
IP: Time to live = 63 seconds/hops
IP: Protocol = 6 (TCP)
IP: Header checksum = cb1e
IP: Source address = 10.2.0.2, 10.2.0.2
IP: Destination address = 10.2.204.2, 10.2.204.2
IP: No options
IP:
TCP: ----- TCP Header -----
TCP:
TCP: Source port = 33896
TCP: Destination port = 5001
TCP: Sequence number = 3864122818
TCP: Acknowledgement number = 2831460534
TCP: Data offset = 32 bytes
TCP: Flags = 0x10
TCP: 0... = No ECN congestion window reduced
TCP: .0.. = No ECN echo
TCP: ..0. = No urgent pointer
TCP: ...1 = Acknowledgement
TCP: 0... = No push
TCP:0.. = No reset
TCP:0. = No Syn
TCP:0 = No Fin
TCP: Window = 46
TCP: Checksum = 0xe7b4
TCP: Urgent pointer = 0
TCP: Options: (12 bytes)
TCP: - No operation
TCP: - No operation
TCP: - TS Val = 2333449053, TS Echo = 694358367
TCP:
[...]

520 Chapter 10 � Network

Note that by default snoop(1M) captures the entire packet, including all the
payload data. This can be truncated on capture using -s to set the snap length.
Many versions of tcpdump(8) will truncate by default.

10.6.12 Wireshark

While tcpdump(8) and snoop(1M) work fine for casual investigations, for deeper
analysis they can be time-consuming to use at the command line. The Wireshark
tool (formerly Ethereal) provides a graphical interface for packet capture and
inspection and can also import packet dump files from either tcpdump(8) or
snoop(1M) [5]. Useful features include identifying network connections and their
related packets, so that they can be studied separately, and also translation of hun-
dreds of protocol headers.

10.6.13 DTrace

DTrace can be used to examine network events from within the kernel and appli-
cations, including socket connections, socket I/O, TCP events, packet transmission,
backlog drops, TCP retransmits, and other details. These abilities support work-
load characterization and latency analysis.

The following sections introduce DTrace for network analysis, demonstrating
capabilities that should apply to both Linux- and Solaris-based systems. Many of
the examples are from a Solaris-based system, with some from Linux. A DTrace
primer was included in Chapter 4, Observability Tools.

The DTrace providers used to trace the network stack include those in Table 10.6.

Table 10-6 DTrace Providers for Network Analysis

Layer Stable Providers Unstable Providers

Application depends on app pid

System library — pid

System calls — syscall

Socket — fbt

TCP tcp, mib fbt

UDP udp, mib fbt

IP ip, mib fbt

Link layer — fbt

Device driver — fbt

10.6 Analysis 521

It is desirable to use the stable providers, but they may not yet be available on
your operating system and DTrace version. If not, the unstable-interface providers
may be used, although scripts will require updates to match software changes.

Socket Connections

Socket activity can be traced via application functions that perform networking, the
system socket libraries, the syscall layer, or in the kernel. The syscall layer is usually
preferable, as it well documented, low-overhead (kernel-based), and system-wide.

Counting outbound connections via connect():

This one-liner frequency counts the number of connect() syscalls. The most in
this case was by processes named haproxy, which called connect() 22 times. If
desired, other details can be included in the output, including the PID, process
arguments, and connect() arguments.

Counting inbound connections via accept():

In this case, processes named node accepted the most connections, with 24 in total.
Both kernel- and user-level stacks can be inspected during socket events to

show why they were performed, as part of workload characterization. For exam-
ple, the following traces connect() user-level stacks for processes named ssh:

dtrace -n 'syscall::connect:entry { @[execname] = count(); }'
dtrace: description 'syscall::connect:entry ' matched 1 probe
^C

 ssh 1
 node 16
 haproxy 22

dtrace -n 'syscall::accept:return { @[execname] = count(); }'
dtrace: description 'syscall::accept:return ' matched 1 probe
^C

 sshd 2
 unicorn 5
 beam.smp 12
 node 24

dtrace -n 'syscall::connect:entry /execname == "ssh"/ { ustack(); }'
dtrace: description 'syscall::connect:entry ' matched 1 probe
CPU ID FUNCTION:NAME
 1 1011 connect:entry

 libc.so.1`__so_connect+0x15
 libsocket.so.1`connect+0x23
 ssh`timeout_connect+0x20

continues

522 Chapter 10 � Network

The arguments to these syscalls can also be inspected. This requires a little
more effort than usual from DTrace, because the interesting information is in a
struct that must be copied from user- to kernel-space and then dereferenced. This
is performed by the soconnect.d script (from [Gregg 11]):

 ssh`ssh_connect+0x1b7
 ssh`main+0xc83
 ssh`_start+0x83

^C

#!/usr/sbin/dtrace -s

#pragma D option quiet
#pragma D option switchrate=10hz

/* If AF_INET and AF_INET6 are "Unknown" to DTrace, replace with numbers: */
inline int af_inet = AF_INET;
inline int af_inet6 = AF_INET6;

dtrace:::BEGIN
{
 /* Add translations as desired from /usr/include/sys/errno.h */
 err[0] = "Success";
 err[EINTR] = "Interrupted syscall";
 err[EIO] = "I/O error";
 err[EACCES] = "Permission denied";
 err[ENETDOWN] = "Network is down";
 err[ENETUNREACH] = "Network unreachable";
 err[ECONNRESET] = "Connection reset";
 err[EISCONN] = "Already connected";
 err[ECONNREFUSED] = "Connection refused";
 err[ETIMEDOUT] = "Timed out";
 err[EHOSTDOWN] = "Host down";
 err[EHOSTUNREACH] = "No route to host";
 err[EINPROGRESS] = "In progress";

 printf("%-6s %-16s %-3s %-16s %-5s %8s %s\n", "PID", "PROCESS", "FAM",
"ADDRESS", "PORT", "LAT(us)", "RESULT");

}

syscall::connect*:entry
{
 /* assume this is sockaddr_in until we can examine family */
 this->s = (struct sockaddr_in *)copyin(arg1, sizeof (struct sockaddr));
 this->f = this->s->sin_family;
}

syscall::connect*:entry
/this->f == af_inet/
{

self->family = this->f;
 self->port = ntohs(this->s->sin_port);
 self->address = inet_ntop(self->family, (void *)&this->s->sin_addr);

self->start = timestamp;
}

syscall::connect*:entry
/this->f == af_inet6/
{
 /* refetch for sockaddr_in6 */

10.6 Analysis 523

Here is example output:

This traces connect() syscalls, printing a line of output to summarize them. The
latency of the syscall is included, and the error code (errno) returned by the sys-
call (RESULT) translated as a string. The error code is often “In progress,” which
occurs for non-blocking connect().

Apart from connect() and accept(), the socket() and close() syscalls
can also be traced. This allows the file descriptor (FD) to be seen on creation, and
the duration of the socket to be measured by the time difference.

Socket I/O

After establishing a socket, subsequent read and write events can be traced at the sys-
tem call layer based on the file descriptor. This can be performed in one of two ways:

� Associative array of socket FDs: This involves tracing syscall::socket:return
and building an associative array, for example, is_socket[pid, arg1] = 1;.
The array can be checked in the predicate for future I/O syscalls to identify
which FDs are sockets. Remember to clear the values on syscall::close:entry.

 this->s6 = (struct sockaddr_in6 *)copyin(arg1,
 sizeof (struct sockaddr_in6));

self->family = this->f;
 self->port = ntohs(this->s6->sin6_port);
 self->address = inet_ntoa6((in6_addr_t *)&this->s6->sin6_addr);

self->start = timestamp;
}

syscall::connect*:return
/self->start/
{
 this->delta = (timestamp - self->start) / 1000;
 this->errstr = err[errno] != NULL ? err[errno] : lltostr(errno);
 printf("%-6d %-16s %-3d %-16s %-5d %8d %s\n", pid, execname,
 self->family, self->address, self->port, this->delta, this->errstr);
 self->family = 0;
 self->address = 0;
 self->port = 0;
 self->start = 0;
}

./soconnect.d
PID PROCESS FAM ADDRESS PORT LAT(us) RESULT
13489 haproxy 2 10.2.204.18 8098 32 In progress
13489 haproxy 2 10.2.204.18 8098 2 Already connected
65585 ssh 2 10.2.203.2 22 701 Success
3319 node 2 10.2.204.26 80 35 In progress
12585 haproxy 2 10.2.204.24 636 24 In progress
13674 haproxy 2 10.2.204.24 636 62 In progress
13489 haproxy 2 10.2.204.18 8098 33 In progress
[...]

524 Chapter 10 � Network

� The state of fds[].fi_fs, if available on your version of DTrace. This is a
text string description of the file system type. Since sockets map to VFS, their
I/O is associated with a virtual socket file system.

The following one-liners use the latter approach.
Counting socket reads by execname, via either read() or recv():

This output shows that, while tracing, processes named node read from sockets
1,218 times using either of those syscalls.

Counting socket writes by execname, via either write() or send(), is the fol-
lowing one-liner:

Note that your operating system may use variants of these system calls (e.g.,
readv()), which should also be traced.

The size of the I/O can also be examined, by tracing the return probes for each
syscall.

Socket Latency

Given the ability to trace socket events at the syscall layer, the following measure-
ments can be performed as part of latency analysis:

� Connect latency: for synchronous syscalls, the time in connect(). For non-
blocking I/O, the time from issuing connect() to when either poll() or
select() (or other syscall) reports that the socket is ready.

� First-byte latency: the time from issuing connect() or the return from
accept(), and when the first data byte is received via any of the I/O sys-
calls for that socket.

dtrace -n 'syscall::read:entry,syscall::recv:entry
/fds[arg0].fi_fs == "sockfs"/ { @[probefunc] = count(); }'

dtrace: description 'syscall::read:entry,syscall::recv:entry ' matched 2 probes
^C

 master 2
 sshd 16
 beam.smp 82
 haproxy 208
 node 1218

dtrace -n 'syscall::write:entry,syscall::send:entry
 /fds[arg0].fi_fs == "sockfs"/ { @[probefunc] = count(); }'

10.6 Analysis 525

� Socket duration: the time from socket() to close() for the same file
descriptor. To focus more on the connection duration, it can be timed from
connect() or accept().

These can be performed either as long one-liners or as scripts. They can also be
performed from other network stack layers, including TCP.

Socket Internals

The kernel internals for sockets can be traced using the fbt provider. For example,
on Linux, listing functions that begin with sock_:

The output has been truncated—it listed over 100 probes. Each of these can be
traced individually, along with its arguments and a timestamp, to answer arbi-
trary questions about socket behavior.

TCP Events

As with sockets, the kernel internals for TCP can be traced using the fbt provider.
However, a stable tcp provider has been developed (originally by me) and may be
available on your system. The probes are as shown in Table 10.7.

dtrace -ln 'fbt::sock*:entry'
 ID PROVIDER MODULE FUNCTION NAME
21690 fbt kernel sock_has_perm entry
36306 fbt kernel socket_suspend entry
36312 fbt kernel socket_reset entry
36314 fbt kernel socket_setup entry
36316 fbt kernel socket_early_resume entry
36328 fbt kernel socket_shutdown entry
36330 fbt kernel socket_insert entry
[...]

Table 10-7 DTrace tcp Provider Probes

TCP Probe Description

accept-established An inbound connection was accepted (a passive open).

connect-request An outbound connection was initiated (an active open).

connect-established An outbound connection has been established (three-way
handshake completed).

accept-refused A connection request was denied (closed local port).

connect-refused A connection request was denied (closed remote port).

continues

526 Chapter 10 � Network

Most of these provide arguments showing protocol header details and internal
kernel state, including the “cached” process ID. The process name, usually traced
using the DTrace execname built-in, may not be valid, as kernel TCP events may
occur asynchronously to the process.

Frequency counting accepted TCP connections (passive) with remote IP address
and local port:

While tracing, host 10.2.204.30 connected to TCP local port 636 five times.
Similar latencies can be traced using the TCP probes, as described in the ear-

lier Socket Latency section, using combinations of the TCP probes.
Listing the TCP probes:

The MODULE and FUNCTION fields show the (unstable) location of the probe in the
kernel code, which can be traced using the fbt provider for further details.

send A segment was sent (IP may map segments directly to
packets).

receive A segment was received (IP may map segments directly to
packets).

state-change A session encountered a state change (details in the probe
arguments).

dtrace -n 'tcp:::accept-established {
@[args[3]->tcps_raddr, args[3]->tcps_lport] = count(); }'

dtrace: description 'tcp:::accept-established ' matched 1 probe
^C

 10.2.0.2 22 1
 10.2.204.24 8098 4
 10.2.204.28 636 5
 10.2.204.30 636 5

dtrace -ln 'tcp:::'
 ID PROVIDER MODULE FUNCTION NAME
 1810 tcp ip tcp_input_data accept-established
 1813 tcp ip tcp_input_data connect-refused
 1814 tcp ip tcp_input_data connect-established
 1827 tcp ip tcp_xmit_early_reset accept-refused
 1870 tcp ip tcp_input_data receive
 1871 tcp ip tcp_input_listener receive
[...]

Table 10-7 DTrace tcp Provider Probes (Continued)

TCP Probe Description

10.6 Analysis 527

Packet Transmission

To investigate kernel internals beyond the tcp provider, and also when the tcp pro-
vider is not available, the fbt provider can be used. This is one of those cases where
dynamic tracing makes something possible—which is better than impossible—but
not necessarily easy! The internals of the network stack are complicated, and it
can take a beginner many days to become familiar with the code paths.

A quick way to navigate through the stack is to trace a deep event and then
examine its stack backtrace. For example, on Linux, tracing ip_output() with
stack:

Each line identifies a kernel function that can be traced separately. This requires
examining the source code to determine the role of each function and its argu-
ments.

For example, given that the fourth argument to tcp_sendmsg() is the size in
bytes, it can be traced using

dtrace -n 'fbt::ip_output:entry { @[stack(100)] = count(); }'
dtrace: description 'fbt::ip_output:entry ' matched 1 probe
^C
[...]

 kernel`ip_output+0x1
 kernel`ip_local_out+0x29
 kernel`ip_queue_xmit+0x14f
 kernel`tcp_transmit_skb+0x3e4
 kernel`__kmalloc_node_track_caller+0x185

 kernel`sk_stream_alloc_skb+0x41
 kernel`tcp_write_xmit+0xf7
 kernel`__alloc_skb+0x8c
 kernel`__tcp_push_pending_frames+0x26

 kernel`tcp_sendmsg+0x895
 kernel`inet_sendmsg+0x64
 kernel`sock_aio_write+0x13a
 kernel`do_sync_write+0xd2
 kernel`security_file_permission+0x2c

 kernel`rw_verify_area+0x61
 kernel`vfs_write+0x16d
 kernel`sys_write+0x4a
 kernel`sys_rt_sigprocmask+0x84
 kernel`system_call_fastpath+0x16

 639

dtrace -n 'fbt::tcp_sendmsg:entry { @["TCP send bytes"] = quantize(arg3); }'
dtrace: description 'fbt::tcp_sendmsg:entry ' matched 1 probe
^C

 TCP send bytes
 value ------------- Distribution ------------- count
 16 | 0
 32 |@@@@@@@@ 154
 64 |@@@ 54

continues

528 Chapter 10 � Network

This one-liner used the quantize() action to summarize the TCP send segment
size as a power-of-two distribution plot. Most of the segments were between 128
and 511 bytes.

Longer one-liners and sophisticated scripts can be written, such as for investi-
gating TCP retransmits and backlog drops.

Retransmit Tracing

Studying TCP retransmits can be a useful activity for investigating network
health. While this has historically been performed by using sniffing tools to dump
all packets to a file for post-inspection, DTrace can examine retransmits in real
time, and with low overhead. The following script for the Linux 3.2.6 kernel traces
the tcp_retransmit_skb() function and prints useful details:

Here is example output:

 128 |@@@@@@@@@@@@@@@@@@@ 375
 256 |@@@@@@@@@ 184
 512 | 2
 1024 | 1
 2048 | 3
 4096 | 4
 8192 | 0

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN { trace("Tracing TCP retransmits... Ctrl-C to end.\n"); }

fbt::tcp_retransmit_skb:entry {
 this->so = (struct sock *)arg0;
 this->d = (unsigned char *)&this->so->__sk_common.skc_daddr;
 printf("%Y: retransmit to %d.%d.%d.%d, by:", walltimestamp,
 this->d[0], this->d[1], this->d[2], this->d[3]);
 stack(99);
}

./tcpretransmit.d
Tracing TCP retransmits... Ctrl-C to end.
2013 Feb 23 18:24:11: retransmit to 10.2.124.2, by:

 kernel`tcp_retransmit_timer+0x1bd
 kernel`tcp_write_timer+0x188
 kernel`run_timer_softirq+0x12b
 kernel`tcp_write_timer
 kernel`__do_softirq+0xb8
 kernel`read_tsc+0x9
 kernel`sched_clock+0x9
 kernel`sched_clock_local+0x25
 kernel`call_softirq+0x1c
 kernel`do_softirq+0x65
 kernel`irq_exit+0x9e

10.6 Analysis 529

This includes the time, the destination IP address, and the kernel stack trace—
which helps explain why the retransmit occurred. For more detail, each of the
functions in the kernel stack can be traced separately.

Similar scripts have been developed for SmartOS, as part of a toolkit for operators
of the cloud [6]. These include tcpretranssnoop.d, which has the following output:

This shows the destination IP addresses for TCP retransmits (redacted in this out-
put) and includes the kernel TCP state.

Backlog Drops

This final example script is also from the SmartOS toolkit of TCP scripts and is
used to estimate whether backlog tuning is necessary and will be effective. This is
a longer script and is provided as an example of advanced analysis.

 kernel`smp_apic_timer_interrupt+0x6e
 kernel`apic_timer_interrupt+0x6e

[...]

./tcpretranssnoop.d
TIME TCP_STATE SRC DST PORT
2012 Sep 8 03:12:12 TCPS_ESTABLISHED 10.225.152.20 10.225.152.189 40900
2012 Sep 8 03:12:12 TCPS_ESTABLISHED 10.225.152.20 10.225.152.161 62450
2012 Sep 8 03:12:12 TCPS_FIN_WAIT_1 10.225.152.20 10.88.122.66 54049
2012 Sep 8 03:12:12 TCPS_ESTABLISHED 10.225.152.24 10.40.254.88 34620
2012 Sep 8 03:12:12 TCPS_ESTABLISHED 10.225.152.30 10.249.197.234 3234
2012 Sep 8 03:12:12 TCPS_ESTABLISHED 10.225.152.37 10.117.114.41 49700
[...]

#!/usr/sbin/dtrace -s

#pragma D option quiet
#pragma D option switchrate=4hz

dtrace:::BEGIN
{
 printf("Tracing... Hit Ctrl-C to end.\n");
}

fbt::tcp_input_listener:entry
{
 this->connp = (conn_t *)arg0;
 this->tcp = (tcp_t *)this->connp->conn_proto_priv.cp_tcp;
 self->max = strjoin("max_q:", lltostr(this->tcp->tcp_conn_req_max));
 self->pid = strjoin("cpid:", lltostr(this->connp->conn_cpid));
 @[self->pid, self->max] = quantize(this->tcp->tcp_conn_req_cnt_q);
}

mib:::tcpListenDrop
{

this->max = self->max;
continues

530 Chapter 10 � Network

The script uses both the unstable fbt provider to fetch TCP state, and the mib pro-
vider to count when drops have occurred.

Here is example output:

When Ctrl-C is hit, a summary is printed showing cached process IDs (cpid), the
current maximum length of the socket backlog (max_q), and a distribution plot
showing the length of the backlog, measured when new connections were added.

The output shows that PID 11504 has had 34 backlog drops, and the maximum
backlog length is 128. The distribution shows that most of the time the backlog
length was 0, with only a fraction pushing the queue to its maximum. This is a
candidate for increasing the queue length.

this->pid = self->pid;
 this->max != NULL ? this->max : "";
 this->pid != NULL ? this->pid : "";
 @drops[this->pid, this->max] = count();
}

fbt::tcp_input_listener:return
{
 self->max = 0;
 self->pid = 0;
}

dtrace:::END
{
 printf("tcp_conn_req_cnt_q distributions:\n");
 printa(@);

printf("tcpListenDrops:\n");
 printa(" %-32s %-32s %@8d\n", @drops);
}

./tcpconnreqmaxq-pid.d
Tracing... Hit Ctrl-C to end.
^C
tcp_conn_req_cnt_q distributions:

 cpid:11504 max_q:128
 value ------------- Distribution ------------- count
 -1 | 0
 0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 7279
 1 |@@ 405
 2 |@ 255
 4 |@ 138
 8 | 81
 16 | 83
 32 | 62
 64 | 67
 128 | 34
 256 | 0

tcpListenDrops:
 cpid:11504 max_q:128 34

10.6 Analysis 531

This backlog queue is typically tuned only when drops occur, which is visible via
the tcpListenDrops counter from netstat -s. This DTrace script allows drops to
be predicted and the tuning to be applied before the drops become a problem.

Here is another example output:

In this case, the backlog is usually at its limit of 128. This suggests that the applica-
tion is overloaded and doesn’t have sufficient resources (CPU, usually) to keep up.

More Tracing

Dynamic tracing can explore networking in other ways and in more detail when
needed. To provide an idea of the capabilities, Table 10.8 shows scripts from the
(158-page) Network Lower-Level Protocols chapter of DTrace [Gregg 11]. These
scripts are also online [7].

 cpid:16480 max_q:128
 value ------------- Distribution ------------- count
 -1 | 0
 0 |@@@@@@@ 1666
 1 |@@ 457
 2 |@ 262
 4 |@ 332
 8 |@@ 395
 16 |@@@ 637
 32 |@@@ 578
 64 |@@@@ 939
 128 |@@@@@@@@@@@@@@@@@ 3947
 256 | 0

Table 10-8 Advanced Network Tracing Scripts

Script Layer Description

soconnect.d socket traces client socket connect()s showing process and host

soaccept.d socket traces server socket accept()s showing process and host

soclose.d socket traces socket connection duration: connect() to
close()

socketio.d socket shows socket I/O by process and type

socketiosort.d socket shows socket I/O by process and type, sorted by process

so1stbyte.d socket traces connection and first-byte latency at the socket layer

sotop.d socket status tool to list the busiest sockets

soerror.d socket identifies socket errors

ipstat.d IP IP statistics every second

continues

532 Chapter 10 � Network

Also in the DTrace book is a chapter on Application Level Protocols, which pro-
vides many more scripts for tracing NFS, CIFS, HTTP, DNS, FTP, iSCSI, FC, SSH,
NIS, and LDAP.

ipio.d IP IP send/receive snoop

ipproto.d IP IP encapsulated prototype summary

ipfbtsnoop.d IP trace IP packets: demonstration of fbt tracing

tcpstat.d TCP TCP statistics every second

tcpaccept.d TCP summarizes inbound TCP connections

tcpacceptx.d TCP summarizes inbound TCP connections, resolving host
names

tcpconnect.d TCP summarizes outbound TCP connections

tcpioshort.d TCP traces TCP sends/receives live with basic details

tcpio.d TCP traces TCP sends/receives live with flag translation

tcpbytes.d TCP sums TCP payload bytes by client and local port

tcpsize.d TCP shows TCP send/receive I/O size distribution

tcpnmap.d TCP detects possible TCP port scan activity

tcpconnlat.d TCP measures TCP connection latency by remote host

tcp1stbyte.d TCP measures TCP first-byte latency by remote host

tcp_rwndclosed.d TCP identifies TCP receive window zero events, with latency

tcpfbtwatch.d TCP watches inbound TCP connections

tcpsnoop.d TCP traces TCP I/O with process details

udpstat.d UDP UDP statistics every second

udpio.d UDP traces UDP sends/receives live with basic details

icmpstat.d ICMP ICMP statistics every second

icmpsnoop.d ICMP traces ICMP packets with details

superping.d ICMP improves accuracy of ping’s round-trip times

xdrshow.d XDR shows external data representation (XDR) calls and calling
functions

macops.d MAC counts media access control (MAC) layer operations by
interface and type

ngesnoop.d driver traces nge driver Ethernet events live

ngelink.d driver traces changes to nge link status

Table 10-8 Advanced Network Tracing Scripts (Continued)

Script Layer Description

10.6 Analysis 533

While this degree of observability is incredible, some of these dynamic tracing
scripts are tied to specific kernel internals and will require maintenance to match
changes in newer kernel versions. Others are based on specific DTrace providers,
which may not yet be available on your operating system.

10.6.14 SystemTap

SystemTap can also be used on Linux systems for dynamic tracing of file system
events. See Section 4.4, SystemTap, in Chapter 4, Observability Tools, and Appen-
dix E for help with converting the previous DTrace scripts.

10.6.15 perf

The LPE toolset, introduced in Chapter 6, CPUs, can also provide some static and
dynamic tracing of network events. It can be useful for identifying the stack trace
that led to network activity in the kernel, as was previously demonstrated using
DTrace for packet transmission and retransmit tracing. More advanced tools can
also be developed using post-processing.

As an example, the following uses perf(1) to create a dynamic tracepoint for
the tcp_sendmsg() kernel function, and then traces it for 5 s along with call
graphs (stack traces):

The output showed the stack trace for sshd which led to the kernel calling tcp_
sendmsg(), to send data over a TCP connection.

perf probe --add='tcp_sendmsg'
Add new event:
 probe:tcp_sendmsg (on tcp_sendmsg)
[...]
perf record -e probe:tcp_sendmsg -aR -g sleep 5
[perf record: Woken up 1 times to write data]
[perf record: Captured and wrote 0.091 MB perf.data (~3972 samples)]
perf report --stdio
[...]
Overhead Command Shared Object Symbol
........
#
 100.00% sshd [kernel.kallsyms] [k] tcp_sendmsg
 |

 --- tcp_sendmsg
 sock_aio_write
 do_sync_write

 vfs_write
 sys_write
 system_call
 __GI___libc_write

534 Chapter 10 � Network

There are also some tracepoint events that are predefined for networking:

The skb tracepoints are for socket buffer events, and net is for network devices.
These can also be useful for network investigations.

10.6.16 Other Tools

Other Linux network performance tools include

� strace(1): to trace socket-related syscalls and examine the options used
(note that strace(1) has high overhead)

� lsof(8): list open files by process ID, including socket details

� ss(8): socket statistics

� nfsstat(8): NFS server and client statistics

� iftop(8): summarize network interface throughput by host (sniffer)

� /proc/net: contains many network statistics files

For Solaris:

� truss(1): to trace socket-related syscalls and examine the options used
(note that truss(1) has high overhead)

� pfiles(1): to examine the sockets in use by a process, including options
and socket buffer sizes

� routeadm(1M): to check the state of routing and IP forwarding

� nfsstat(1M): NFS server and client statistics

� kstat: provides more statistics from the network stack and network device
drivers (many of them undocumented outside the source code)

There are also many network monitoring solutions, either based on SNMP or
running their own custom agents.

perf list
[...]
 skb:kfree_skb [Tracepoint event]
 skb:consume_skb [Tracepoint event]
 skb:skb_copy_datagram_iovec [Tracepoint event]
 net:net_dev_xmit [Tracepoint event]
 net:net_dev_queue [Tracepoint event]
 net:netif_receive_skb [Tracepoint event]
 net:netif_rx [Tracepoint event]

10.7 Experimentation 535

10.7 Experimentation

Beyond ping(8), traceroute(8), and pathchar (covered earlier), other experi-
mental tools for network performance analysis include micro-benchmarks. These
can be used to determine the maximum throughput between hosts, which can be
used to help identify if end-to-end network throughput is a problem when debug-
ging application performance issues.

There are many network micro-benchmarks to pick from. This section demon-
strates iperf, which is popular and easy to use. Another one worth mentioning is
netperf, which can also test request/response performance [8].

10.7.1 iperf

iperf is an open-source tool for testing maximum TCP and UDP throughput. It
supports a variety of options, including parallel mode: where multiple client
threads will be used, which can be necessary to drive a network to its limit. iperf
must be executed on both the server and the client.

For example, executing iperf on the server:

This increased the socket buffer size to 128 Kbytes (-l 128k), from the default of
8 Kbytes.

The following was executed on the client:

$ iperf -s -l 128k
--
Server listening on TCP port 5001
TCP window size: 85.3 KByte (default)
--

iperf -c 10.2.203.2 -l 128k -P 2 -i 1 -t 60
--
Client connecting to 10.2.203.2, TCP port 5001
TCP window size: 48.0 KByte (default)
--
[4] local 10.2.124.2 port 41407 connected with 10.2.203.2 port 5001
[3] local 10.2.124.2 port 35830 connected with 10.2.203.2 port 5001
[ID] Interval Transfer Bandwidth
[4] 0.0- 1.0 sec 6.00 MBytes 50.3 Mbits/sec
[3] 0.0- 1.0 sec 22.5 MBytes 189 Mbits/sec
[SUM] 0.0- 1.0 sec 28.5 MBytes 239 Mbits/sec
[3] 1.0- 2.0 sec 16.1 MBytes 135 Mbits/sec
[4] 1.0- 2.0 sec 12.6 MBytes 106 Mbits/sec
[SUM] 1.0- 2.0 sec 28.8 MBytes 241 Mbits/sec
[...]
[4] 0.0-60.0 sec 748 MBytes 105 Mbits/sec
[3] 0.0-60.0 sec 996 MBytes 139 Mbits/sec
[SUM] 0.0-60.0 sec 1.70 GBytes 244 Mbits/sec

536 Chapter 10 � Network

This used the following options:

� -c host: connect to the host name or IP address

� -l 128k: use a 128 Kbyte socket buffer

� -P 2: run in parallel mode with two client threads

� -i 1: print interval summaries every second

� -t 60: total duration of the test: 60 s

The final line shows the average throughput during the test, summed across all
parallel threads: 244 Mbits/s.

The per-interval summaries can be inspected to see the variance over time. The
--reportstyle C option can be used to output CSV, so that it can then be
imported by other tools, such as graphing software.

10.8 Tuning

Network tunable parameters are usually already tuned to provide high perfor-
mance. The network stack is also usually designed to respond dynamically to dif-
ferent workloads, providing optimum performance.

Before trying tunable parameters, it can be worthwhile to first understand net-
work usage. This may also identify unnecessary work that can be eliminated, lead-
ing to much greater performance wins. Try the workload characterization and
static performance tuning methodologies, using the tools in the previous section.

Available tunables vary between versions of an operating system. See their doc-
umentation. The sections that follow provide an idea of what may be available and
how they are tuned; they should be treated as a starting point to revise based on
your workload and environment.

10.8.1 Linux

Tunable parameters can be viewed and set using the sysctl(8) command and
written to /etc/sysctl.conf. They can also be read and written from the /proc file sys-
tem, under /proc/sys/net.

For example, to see what is currently available for TCP, the parameters can be
searched for the text tcp from sysctl(8):

sysctl -a | grep tcp
[...]
net.ipv4.tcp_timestamps = 1
net.ipv4.tcp_window_scaling = 1

10.8 Tuning 537

On this kernel (3.2.6-3) there are 63 containing tcp and many more under net.,
including parameters for IP, Ethernet, routing, and network interfaces.

Examples of specific tuning are in the following sections.

Socket and TCP Buffers

The maximum socket buffer size for all protocol types, for both reads (rmem_max)
and writes (wmem_max), can be set using

The value is in bytes. This may need to be set to 16 Mbytes or higher to support
full-speed 10 GbE connections.

Enabling autotuning of the TCP receive buffer:

Setting the auto-tuning parameters for the TCP read and write buffers:

Each has three values: the minimum, default, and maximum number of bytes to
use. The size used is autotuned from the default. To improve TCP throughput, try
increasing the maximum value. Increasing minimum and default will consume
more memory per connection, which may not be necessary.

TCP Backlog

First backlog queue, for half-open connections:

net.ipv4.tcp_sack = 1
net.ipv4.tcp_retrans_collapse = 1
net.ipv4.tcp_syn_retries = 5
net.ipv4.tcp_synack_retries = 5
net.ipv4.tcp_max_orphans = 65536
net.ipv4.tcp_max_tw_buckets = 65536
net.ipv4.tcp_keepalive_time = 7200
[...]

net.core.rmem_max = 16777216
net.core.wmem_max = 16777216

tcp_moderate_rcvbuf = 1

net.ipv4.tcp_rmem = 4096 87380 16777216
net.ipv4.tcp_wmem = 4096 65536 16777216

tcp_max_syn_backlog = 4096

538 Chapter 10 � Network

Second backlog queue, the listen backlog, for passing connections to accept():

Both of these may need to be increased from their defaults, for example, to 4,096
and 1,024, or higher, to better handle bursts of load.

Device Backlog

Increasing the length of the network device backlog queue, per CPU:

This may need to be increased, such as to 10,000, for 10 GbE NICs.

TCP Congestion Control

Linux supports pluggable congestion-control algorithms. Listing those currently
available:

Some may be available but not currently loaded. For example, adding htcp:

The current algorithm may be selected using

TCP Options

Other TCP parameters that may be set include

net.core.somaxconn = 1024

net.core.netdev_max_backlog = 10000

sysctl net.ipv4.tcp_available_congestion_control
net.ipv4.tcp_available_congestion_control = cubic reno

modprobe tcp_htcp
sysctl net.ipv4.tcp_available_congestion_control
net.ipv4.tcp_available_congestion_control = cubic reno htcp

net.ipv4.tcp_congestion_control = cubic

net.ipv4.tcp_sack = 1
net.ipv4.tcp_fack = 1
net.ipv4.tcp_tw_reuse = 1
net.ipv4.tcp_tw_recycle = 0

10.8 Tuning 539

SACK and the FACK extensions may improve throughput performance over high-
latency networks, at the cost of some CPU.

The tcp_tw_reuse tunable allows a TIME-WAIT session to be reused when it
appears safe to do so. This can allow higher rates of connections between two
hosts, such as between a web server and a database, without hitting the 16-bit
ephemeral port limit with sessions in TIME-WAIT.

tcp_tw_recycle is another way to reuse TIME-WAIT sessions, although not
as safe as tcp_tw_reuse.

Network Interface

The TX queue length may be increased using ifconfig(8), for example:

This may be necessary for 10 GbE NICs. The setting can be added to /etc/rc.local so
that it is applied during boot.

Resource Controls

The container groups (cgroups) network priority (net_prio) subsystem can be used
to apply a priority to outgoing network traffic, for processes or groups of processes.
This can be used to favor high-priority network traffic, such as production load,
over low-priority traffic, such as backups or monitoring. The configured priority
value is translated to an IP ToS level (or updated scheme that uses the same bits)
and included in the packets.

10.8.2 Solaris

Historically, tunable parameters were either set and viewed using the ndd(1M)
command, or set via /etc/system and viewed using mdb(1). These are now being
migrated to the ipadm(1M) command, which is a unified and flexible utility for
managing IP stack properties.

For example, listing properties using ipadm(1M):

ifconfig eth0 txqueuelen 10000

ipadm show-prop
PROTO PROPERTY PERM CURRENT PERSISTENT DEFAULT POSSIBLE
ipv4 forwarding rw on on off on,off
ipv4 ttl rw 255 -- 255 1-255
ipv6 forwarding rw off -- off on,off
ipv6 hoplimit rw 255 -- 255 1-255
ipv6 hostmodel rw weak -- weak strong,

 src-priority,
 weak

continues

540 Chapter 10 � Network

You would usually begin by finding the correct version of the Solaris Tunable
Parameters Reference Manual for your Solaris version (for example, [9]). This man-
ual provides instructions for key tunable parameters, including what type they
are, when to set them, the defaults, and the valid ranges.

Examples of common tuning follow. For those that show the ndd(1M) versions,
map them to ipadm(1M) as they become available. Also check first if tuning is pro-
hibited by company or vendor policy before making changes.

Buffers

Setting various tunables for buffer sizes:

tcp_max_buf sets the maximum socket buffer size that can be set using
setsockopt(). tcp_cwnd_max is the maximum TCP congestion window. Increas-
ing both of these can help improve network throughput performance.

The tcp_xmit_hiwat and tcp_recv_hiwat parameters set the default send
and receive TCP window sizes. These are now also available in ipadm(1M) as
send_maxbuf and recv_maxbuf.

ipv4 hostmodel rw src-priority -- weak strong,
 src-priority,

 weak
icmp recv_maxbuf rw 8192 -- 8192 4096-65536
icmp send_maxbuf rw 8192 -- 8192 4096-65536
tcp ecn rw passive -- passive never,passive,

 active
tcp extra_priv_ports rw 2049,4045 -- 2049,4045 1-65535
tcp largest_anon_port rw 65535 -- 65535 1024-65535
tcp recv_maxbuf rw 128000 -- 128000 2048-1073741824
tcp sack rw active -- active never,passive,

 active
tcp send_maxbuf rw 49152 -- 49152 4096-1073741824
tcp smallest_anon_port rw 32768 -- 32768 1024-65535
tcp smallest_nonpriv_port rw 1024 -- 1024 1024-32768
udp extra_priv_ports rw 2049,4045 -- 2049,4045 1-65535
udp largest_anon_port rw 65535 -- 65535 1024-65535
udp recv_maxbuf rw 57344 -- 57344 128-1073741824
udp send_maxbuf rw 57344 -- 57344 1024-1073741824
udp smallest_anon_port rw 32768 -- 32768 1024-65535
udp smallest_nonpriv_port rw 1024 -- 1024 1024-32768
[...]

ndd -set /dev/tcp tcp_max_buf 16777216
ndd -set /dev/tcp tcp_cwnd_max 8388608
ndd -set /dev/tcp tcp_xmit_hiwat 1048576
ndd -set /dev/tcp tcp_recv_hiwat 1048576

10.8 Tuning 541

TCP Backlog

Tuning the backlog queues:

The _q0 parameter is for the half-open queue, and the _q parameter is for the lis-
ten backlog. Both of these may need to be increased from their defaults, such as to
4,096 and 1,024, to better handle bursts of load.

TCP Options

There are a few ways to tune around the issue of frequent connections between the
same hosts, and a clash of reused ephemeral ports while the sessions are still in
TIME-WAIT:

� tcp_smallest_anon_port can be reduced to 10,000 and lower on the client,
to increase the ephemeral port range used. This usually helps only a little.

� tcp_time_wait_interval could be reduced from the default 60,000 (units
are milliseconds), so that TIME-WAIT sessions are recycled more quickly.
However, this is generally regarded as forbidden by the RFCs (see [RFC 1122]
in particular).

� tcp_iss_incr can be reduced, which helps the kernel detect new sessions
and automatically recycle TIME-WAIT sessions. (This was added to the
illumos kernel.)

Other TCP options to tune include tcp_slow_start_initial—often set to
the highest permissible value, so that TCP sessions more quickly reach high
throughput.

Network Device

Enabling IP squeue fanout can improve performance by spreading network load
across all CPUs:

The default behavior is to associate connections with the CPU that handled their
creation, which may result in an uneven distribution of connections to CPUs, with
some CPUs hitting 100% utilization, and therefore becoming a bottleneck.

ndd -set /dev/tcp tcp_conn_req_max_q0 4096
ndd -set /dev/tcp tcp_conn_req_max_q 1024

set ip:ip_squeue_fanout=1

542 Chapter 10 � Network

Resource Controls

The dladm(1M) tool can set various properties on the network interfaces, includ-
ing maxbw to set its maximum bandwidth. This can be applied to virtual inter-
faces, as is commonly used by guest tenants for cloud computing, making this
property a mechanism to throttle them.

The flowadm(1M) tool (added by the Crossbow project) has finer controls. It can
be used to define flows, which may match on transports (TCP) and ports, and include
properties such as maxbw and priority. Priority can be set to “low,” “normal,”
“high,” or “rt” (real time). These can be used to favor high-priority network traffic,
such as production load, over low-priority traffic, such as backups or monitoring.

Solaris-based systems also have IP QoS (IPQoS) support for applying priorities
to network packets, configured using ipqosconf(1M).

10.8.3 Configuration

Apart from tunable parameters, the following configuration options may also be
available for tuning network performance:

� Ethernet jumbo frames: Increasing the default MTU from 1,500 to ~9,000
can improve network throughput performance, if the network infrastructure
supports jumbo frames.

� Link aggregation: Multiple network interfaces can be grouped together so
that they act as one with the combined bandwidth. This requires switch sup-
port and configuration to work properly.

� Socket options: The buffer size can be tuned by the application using
setsockopt(), increasing it (up to the system limits described earlier) for
improved throughput performance.

These are common to both operating system types.

10.9 Exercises

1. Answer the following questions about network terminology:

� What is the difference between bandwidth and throughput?

� What is TCP connection latency?

� What is first-byte latency?

� What is round-trip time?

10.10 References 543

2. Answer the following conceptual questions:

� Describe network interface utilization and saturation.

� What is the TCP listen backlog, and how is it used?

� Describe the pros and cons of interrupt coalescing.

3. Answer the following deeper questions:

� For a TCP connection, explain how a network frame (or packet) error could
hurt performance.

� Describe what happens when a network interface is overloaded with work,
including the effect on application performance.

4. Develop the following procedures for your operating system:

� A USE method checklist for network resources (network interfaces and con-
trollers). Include how to fetch each metric (e.g., which command to execute)
and how to interpret the result. Try to use existing OS observability tools
before installing or using additional software products.

� A workload characterization checklist for network resources. Include how to
fetch each metric, and try to use existing OS observability tools first.

5. Perform these tasks (may require use of dynamic tracing):

� Measure first-byte latency for outbound (active) TCP connections.

� Measure TCP connect latency. The script should handle non-blocking
connect() calls.

6. (optional, advanced) Measure TCP/IP inter-stack latency for RX and TX. For
RX, this measures time from interrupt to socket read; for TX, the time from
socket write to device transmit. Test under load. Can additional information be
included to explain the cause of any latency outliers?

10.10 References

[Saltzer 84] Saltzer, J., D. Reed, and D. Clark. “End-to-End Arguments in
System Design,” ACM TOCS, November 1984.

[Stevens 93] Stevens, W. R. TCP/IP Illustrated, Volume 1. Addison-Wesley,
1993.

[Mathis 96] Mathis, M., and J. Mahdavi. “Forward Acknowledgement:
Refining TCP Congestion Control.” ACM SIGCOMM, 1996.

544 Chapter 10 � Network

[Downey 99] Downey, A. “Using pathchar to Estimate Internet Link Char-
acteristics.” ACM SIGCOMM, October 1999.

[Hassan 03] Hassan, M., and R. Jain. High Performance TCP/IP Network-
ing. Prentice Hall, 2003.

[Deri 04] Deri, L. “Improving Passive Packet Capture: Beyond Device
Polling,” Proceedings of SANE, 2004.

[McDougall 06a] McDougall, R., and J. Mauro. Solaris Internals: Solaris 10
and OpenSolaris Kernel Architecture. Prentice Hall, 2006.

[Gregg 11] Gregg, B., and J. Mauro. DTrace: Dynamic Tracing in Oracle
Solaris, Mac OS X and FreeBSD. Prentice Hall, 2011.

[Nichols 12] Nichols, K., and V. Jacobson. “Controlling Queue Delay,” Com-
munications of the ACM, July 2012.

[RFC 768] User Datagram Protocol, 1980.

[RFC 793] Transmission Control Protocol, 1981.

[RFC 896] Congestion Control in IP/TCP Internetworks, 1984.

[RFC 1122] Requirements for Internet Hosts—Communication Layers,
1989.

[RFC 1761] Snoop Version 2 Packet Capture File Format, 1995.

[RFC 2474] Definition of the Differentiated Services Field (DS Field) in the
IPv4 and IPv6 Headers, 1998.

[1] www.bufferbloat.net

[2] http://hub.opensolaris.org/bin/view/Project+ip-refactor/

[3] https://blogs.oracle.com/timc/entry/nicstat_the_solaris_and_
linux

[4] ftp://ftp.ee.lbl.gov/pathchar

[5] www.wireshark.org

[6] https://github.com/brendangregg/dtrace-cloud-tools

[7] www.dtracebook.com

[8] www.netperf.org/netperf

[9] http://docs.oracle.com/cd/E23824_01/html/821-1450/index.html

../../../../../www.bufferbloat.net/default.htm
../../../../../hub.opensolaris.org/bin/view/Project+ip-refactor/default.htm
../../../../../https@blogs.oracle.com/timc/entry/nicstat_the_solaris_and_linux
../../../../../https@blogs.oracle.com/timc/entry/nicstat_the_solaris_and_linux
../../../../../www.wireshark.org/default.htm
../../../../../https@github.com/brendangregg/dtrace-cloud-tools
../../../../../www.dtracebook.com/default.htm
../../../../../www.netperf.org/netperf
../../../../../docs.oracle.com/cd/E23824_01/html/821-1450/index.html

545

11
Cloud Computing

The rise of cloud computing solves some problems in the field of performance while
posing others. Clouds are commonly built upon virtualization technologies, allow-
ing multiple operating system instances, or tenants, to share one physical server.
This means that there can be resource contention: not just from other processes, as
has been the norm in Unix, but also from other entire operating systems. Isolating
the performance effects of each tenant is critical, as is identifying when poor per-
formance is caused by other tenants.

This chapter discusses the performance of cloud computing environments and
consists of three parts:

� Background presents general cloud computing architecture and the perfor-
mance implications thereof.

� OS virtualization is where a single kernel manages the system, creating
virtual OS instances that are isolated from each other. This section uses
SmartOS Zones as an example implementation.

� Hardware virtualization is where a hypervisor manages multiple guest
operating systems, each running its own kernel with virtualized devices. This
section uses Xen and KVM as examples.

Example technologies are included to discuss performance characteristics of the
different types of virtualization. For full documentation of their usage, and that of
other virtualization technologies, see their respective online documentation.

546 Chapter 11 � Cloud Computing

Cloud environments that do not use virtualization (bare-metal systems only)
can be treated as distributed systems and analyzed using techniques described in
the previous chapters. For virtualized systems, this chapter supplements the mate-
rial that was covered earlier.

11.1 Background

Cloud computing allows computing resources to be delivered as a service, scaling
from small fractions of a server to multiserver systems. There are various types,
depending on how much of the software stack is installed and configured. This
chapter focuses on the most basic: infrastructure as a service (IaaS), which pro-
vides operating systems as server instances. Example IaaS providers include
Amazon Web Services (AWS), Rackspace, and Joyent.

Server instances are typically virtualized systems that can be created and
destroyed in minutes (or fractions of a minute) and immediately put into produc-
tion use. A cloud API is commonly provided so that this provisioning can be auto-
mated by another program.

To summarize cloud terminology, cloud computing describes a dynamic provi-
sioning framework for server instances. Multiple server instances run as guests of
a physical host system. The guests are also called tenants, and the term multi-
tenancy is used to describe their effects on their neighbors. The host is managed by
the cloud operators. The guests (tenants) are managed by the customers who pur-
chased them.

Cloud computing has implications for a number of performance topics: price/
performance ratio, architecture, capacity planning, storage, and multitenancy.
These are summarized in the following sections.

11.1.1 Price/Performance Ratio

There are numerous public cloud providers who sell cloud server instances, typi-
cally by the hour and priced based on the memory (DRAM) size of the instance,
with an 8 Gbyte instance costing roughly eight times as much as a 1 Gbyte
instance. Other resources, such as CPUs, are scaled and priced according to the
memory size. The result can be a consistent price/performance ratio, with some
discounts to encourage the use of larger systems.

Some providers allow you to pay a premium for a larger allotment of CPU
resources (a “high-CPU instance”). Other resource usage may also be monetized,
such as network throughput and storage.

11.1 Background 547

11.1.2 Scalable Architecture

Enterprise environments have traditionally used a vertical scalability approach for
handling load: building larger single systems (mainframes). This approach has its
limitations. There is a practical limit to the physical size to which a computer can
be built (which may be bounded by the size of elevator doors or shipping contain-
ers), and there are increasing difficulties with CPU cache coherency as the CPU
count scales. The solution to these limitations has been to scale load across many
(perhaps small) systems; this is called horizontal scalability. In enterprise, it has
been used for computer farms and clusters, especially with high-performance com-
puting (HPC).

Cloud computing is also based on horizontal scalability. An example environ-
ment is shown in Figure 11.1, which includes load balancers, web servers, applica-
tion servers, and databases.

Each environment layer is composed of one or more server instances running in
parallel, with more added to handle load. Instances may be added individually, or
the architecture may be divided into vertical partitions, where a group composed of
database servers, application servers, and web servers is added as a single unit.

The most difficult layer to execute in parallel is the database layer, due to the
traditional database model where one database instance must be primary. Data for
these databases, such as MySQL, can be split logically into groups called shards,

Figure 11-1 Cloud architecture: horizontal scaling

548 Chapter 11 � Cloud Computing

each of which is managed by its own database (or primary/secondary pair). More
recent database architectures, such as Riak, handle parallel execution dynami-
cally, spreading load over available instances.

With the per-server instance size typically being small, say, 1 Gbyte (on physi-
cal hosts with 128 Gbytes and more of DRAM), fine-grained scaling can be used to
attain optimum price/performance, rather than investing up front in huge systems
that may remain mostly idle.

11.1.3 Capacity Planning

In enterprise environments, servers can be a significant infrastructure cost, both
for the hardware and for service contract fees that may last for years. It can also
take months for new servers to be put into production: time spent in approvals,
waiting for part availability, shipping, racking, installing, and testing. Capacity
planning is critically important, so that appropriately sized systems can be pur-
chased: too small means failure, too large is costly (and, with service contracts,
may be costly for years to come). Capacity planning can also help predict increases
in demand well in advance, so that lengthy purchasing procedures can be com-
pleted in time.

Cloud computing is very different. Server instances are inexpensive and can be
created and destroyed almost instantly. Instead of spending time planning what
may be needed, companies can increase server instances as needed, in reaction to
real load. This can also be done automatically via the cloud API, based on metrics
from performance monitoring software. A small business or start-up can grow from
a single small instance to thousands, without a detailed capacity planning study as
would be expected in enterprise environments.

For growing start-ups, another factor to consider is the pace of code changes.
Sites commonly update their production code weekly, or even daily. A capacity
planning study taking weeks and, because it is based on a snapshot of perfor-
mance metrics, may be out of date by the time it is completed. This differs from
enterprise environments running commercial software, which may change no more
than a few times per year.

Activities performed in the cloud for capacity planning include

� Dynamic sizing: automatically adding and removing server instances

� Scalability testing: purchasing a large cloud environment for a short dura-
tion, in order to test scalability versus synthetic load (this is a benchmarking
activity)

11.1 Background 549

Bearing in mind the time constraints, there is also the potential for modeling scal-
ability (similar to enterprise studies) to estimate how actual scalability falls short
of where it theoretically should be.

Dynamic Sizing

Automatically adding server instances can solve the need to quickly respond to
load, but it also risks overprovisioning, as pictured in Figure 11.2. For example, a
DoS attack may appear as an increase in load, triggering an expensive increase in
server instances. There is a similar risk with application changes that regress per-
formance, requiring more instances to handle the same load. Monitoring is impor-
tant to verify that these increases make sense.

Some clouds can also reduce their size when load drops. For example, in Decem-
ber 2012, Pinterest reported cutting costs from $54/hour to $20/hour by automati-
cally shutting down its cloud systems after hours [1]. Similar immediate savings
can also be a result of performance tuning, where the number of instances required
to handle load has been reduced.

Some cloud architectures (see Section 11.2, OS Virtualization) can dynamically
allocate more CPU resources instantly, if they are available, using a strategy called
bursting. This can be provided at no extra cost and is intended to help prevent
overprovisioning by providing a buffer during which the increased load can be
checked to determine if it is real and likely to continue. If so, more instances can be
provisioned so that resources are guaranteed going forward.

Any of these techniques should be considerably more efficient than enterprise
environments—especially those with a fixed size chosen to handle expected peak
load for the lifetime of the server; such servers may run mostly idle.

Figure 11-2 Dynamic sizing

550 Chapter 11 � Cloud Computing

11.1.4 Storage

A cloud server instance typically has some local storage, served from local disks,
for temporary files. This local storage is volatile and is destroyed when the server
instance is destroyed. For persistent storage, an independent service is typically
used, which provides storage to instances as either a

� File store: for example, files over NFS

� Block store: such as blocks over iSCSI

� Object store: over an API, commonly HTTP-based

These are network-attached, and both the network infrastructure and storage
devices are shared with other tenants. For these reasons, performance can be
much less reliable than with local disks. Both of these setups are pictured in Fig-
ure 11.3.

The increased latency for network storage access is typically mitigated by using
in-memory caches for frequently accessed data.

Some storage services allow an IOPS rate to be purchased when reliable perfor-
mance is desired (e.g., AWS EBS Provisioned IOPS volume).

11.1.5 Multitenancy

Unix is a multitasking operating system, designed to deal with multiple users and
processes accessing the same resources. Later additions by BSD, Solaris, and
Linux have provided resource limits and controls to share these resources more
fairly, and observability to identify and quantify when there are performance
issues involving resource contention.

Figure 11-3 Cloud storage

11.2 OS Virtualization 551

Cloud computing differs in that entire operating system instances coexist on the
same physical system. Each guest is its own isolated operating system: guests can-
not observe users and processes from other guests on the same host—that would
be an information leak—even though they share the same physical resources.

Since resources are shared among tenants, performance issues may be caused
by noisy neighbors. For example, another guest on the same host might perform a
full database dump during your peak load, interfering with your disk and network
I/O. Worse, a neighbor could be evaluating the cloud provider by executing micro-
benchmarks that deliberately saturate resources in order to find their limit.

There are some solutions to this problem. Multitenancy effects can be controlled
by resource management: setting operating system resource controls that provide
performance isolation (also called resource isolation). This is where per-tenant limits
or priorities are imposed for the usage of system resources: CPU, memory, disk or file
system I/O, and network throughput. Not all cloud technologies have provided all of
these, especially disk I/O limits. ZFS I/O throttling was developed for the Joyent
public cloud, specifically for the noisy-disk-neighbor problem.

Apart from limiting resource usage, being able to observe multitenancy conten-
tion can help cloud operators tune the limits and better balance tenants on avail-
able hosts. The degree of observability depends on the virtualization type: OS
virtualization or hardware virtualization.

11.2 OS Virtualization

OS virtualization partitions the operating system into instances that act like sepa-
rate guest servers and can be administrated and rebooted independently of the
host. These provide high-performance server instances for cloud customers, and
high-density servers for cloud operators. OS-virtualized guests are pictured in Fig-
ure 11.4, using terminology from Solaris Zones.

Figure 11-4 Operating system virtualization

552 Chapter 11 � Cloud Computing

The global zone is pictured in this figure; this refers to the host OS, which can
see all the guest zones (which are also called non-global zones).

This approach has origins in the Unix chroot(8) command, which isolates a
process to a subtree of the Unix global file system (changes the top level, “/”). In
1998, FreeBSD developed this further as FreeBSD jails, providing secure compart-
ments that act as their own servers. In 2005, Solaris 10 included a version called
Solaris Zones, with various resource controls. Via OpenSolaris and later SmartOS,
zones have been put into production for the Joyent public cloud. More recently,
there have been OS virtualization projects for Linux, including lxc Linux Contain-
ers [2] and Open Virtuozzo (OpenVZ) [3]. OpenVZ is supported by Parallels, Inc.,
and requires a modified Linux kernel [4].

A key difference from hardware virtualization technologies is that only one ker-
nel is running. This has the following advantages:

� There is little or no performance overhead for guest application I/O, as guest
applications can perform syscalls directly to the host kernel.

� Memory allocated to the guest can be used entirely for guest applications—
there is no extra kernel tax, from either an OS hypervisor or other guest
kernels.

� There is a unified file system cache—no double caching by both host and
guest.

� All guest processes are observable from the host, allowing performance issues
involving their interaction (including resource contention) to be debugged.

� CPUs are real CPUs; assumptions by adaptive mutex locks remain valid.

And there are disadvantages:

� Any kernel panic affects all guests.

� Guests cannot run different kernel versions.

To run different kernel versions and different operating systems, you need hard-
ware virtualization (covered in Section 11.3, Hardware Virtualization). Operating
system virtualization can fulfill this need to some degree, by providing alternate
system call interfaces. An example of this was Solaris lx Branded Zones, which
provided a Linux syscall interface and application environment under a Solaris
kernel.

The following sections describe OS virtualization specifics: overhead, resource
controls, and observability. This content is based on a public cloud that has seen
many years of production use (and is also likely the largest OS virtualized cloud

11.2 OS Virtualization 553

worldwide): the Joyent SmartOS implementation of Zones. This information
should be generally applicable to all implementations of OS virtualization, with
most differences relating to how resource controls are configured. Linux lxc Con-
tainers can use cgroups, for example, for uses similar to those described here.

11.2.1 Overhead

Understanding when and when not to expect performance overhead from virtual-
ization is important in investigating cloud performance issues. This performance
overhead can be summarized by describing the overhead for CPU execution, the
overhead for performing I/O, and effects from other tenants.

CPU

The CPU execution overhead while a thread is running in user mode is zero. No
synchronous emulation or simulation is required—threads run on-CPU directly,
until they either yield or are preempted.

While not frequently called—and therefore not performance-sensitive—activities
such as listing system state from the kernel may incur some extra CPU overhead
as other tenant statistics are filtered. This includes the reading of /proc by status
tools (e.g., prstat(1M), top(1)) that step over all process entries, including other
tenants, but return only the filtered list. The kernel code for this, from pr_
readdir_procdir(), is

This was measured on current systems and was found to cost an extra 40 μs per
1,000 process entries. For an infrequent activity, this cost is negligible. (If it were
to cost more, the kernel code would be changed.)

 /*
 * Loop until user's request is satisfied or until all processes

 * have been examined.
 */
 while ((error = gfs_readdir_pred(&gstate, uiop, &n)) == 0) {
 uint_t pid;
 int pslot;
 proc_t *p;

 /*
* Find next entry. Skip processes not visible where

 * this /proc was mounted.
 */

 mutex_enter(?dlock);
 while (n < v.v_proc &&

 ((p = pid_entry(n)) == NULL || p->p_stat == SIDL ||
(zoneid != GLOBAL_ZONEID && p->p_zone->zone_id != zoneid) ||

 secpolicy_basic_procinfo(CRED(), p, curproc) != 0))
 n++;

554 Chapter 11 � Cloud Computing

I/O

The I/O overhead is zero, unless extra features have been configured. For the
basics of virtualization to work, no extra layer in the software stack is necessary.
This is shown in Figure 11.5, which compares the I/O path of Unix processes to
that of Zones.

The following shows two kernel stack traces (obtained using DTrace) for trans-
mitting network packets, for both the host (bare-metal) and a guest:

These are identical. An extra layer would usually appear as extra frames in the
stack.

Figure 11-5 Unix process and Zones I/O path

Host: Guest:
 mac`mac_tx+0xda mac`mac_tx+0xda
 dld`str_mdata_fastpath_put+0x53 dld`str_mdata_fastpath_put+0x53
 ip`ip_xmit+0x82d ip`ip_xmit+0x82d
 ip`ire_send_wire_v4+0x3e9 ip`ire_send_wire_v4+0x3e9
 ip`conn_ip_output+0x190 ip`conn_ip_output+0x190
 ip`tcp_send_data+0x59 ip`tcp_send_data+0x59
 ip`tcp_output+0x58c ip`tcp_output+0x58c
 ip`squeue_enter+0x426 ip`squeue_enter+0x426
 ip`tcp_sendmsg+0x14f ip`tcp_sendmsg+0x14f
 sockfs`so_sendmsg+0x26b sockfs`so_sendmsg+0x26b
 sockfs`socket_sendmsg+0x48 sockfs`socket_sendmsg+0x48
 sockfs`socket_vop_write+0x6c sockfs`socket_vop_write+0x6c
 genunix`fop_write+0x8b genunix`fop_write+0x8b
 genunix`write+0x250 genunix`write+0x250
 genunix`write32+0x1e genunix`write32+0x1e
 unix`_sys_sysenter_post_swapgs+0x14 unix`_sys_sysenter_post_swapgs+0x14

11.2 OS Virtualization 555

For file system access, the zones may be configured to be mounted on loopback
file systems, which themselves are mounted upon the host file systems. This strat-
egy is used for the sparse-root zones model: a way to share read-only files (e.g., /usr/
bin) between zones. If loopback file systems are used, a small amount of CPU over-
head is incurred for file system I/O.

Other Tenants

The presence of other running tenants is likely to have a number of effects that
hinder performance, unrelated to the virtualization technology:

� CPU caches may have a lower hit ratio, as other tenants are consuming and
evicting entries.

� CPU execution may be interrupted for short periods for other tenant devices
(e.g., network I/O) performing interrupt service routines.

� There may be contention for system resources (e.g., disks, network inter-
faces) from other tenants who are using them.

The last factor is managed by resource controls. While some of these factors exist in a
traditional multiuser environment, they are much more prevalent in cloud computing.

11.2.2 Resource Controls

While the OS virtualization infrastructure manages security between neighbors,
resource controls manage performance. Table 11.1 describes the areas of resource
control and uses the Joyent public cloud configuration of SmartOS Zones as exam-
ples. These have been categorized into limits and priorities, which are set per guest
by the cloud operator or software.

Limits are a ceiling value of resource consumption. Priorities steer resource con-
sumption, to balance usage between neighbors based on an importance value.
Either is used as appropriate—for some resources, that means both.

Table 11-1 OS Virtualization Example Resource Controls

Resource Priority Limit

CPU FSS caps

Memory capacity rcapd/zoneadmd VM limit

File system I/O ZFS I/O throttling —

File system capacity — ZFS quotas, file system limits

Disk I/O see file system I/O —

Network I/O flow priority bandwidth limits

556 Chapter 11 � Cloud Computing

CPU

Because an OS-virtualized guest can “see” all physical CPUs on the system
directly, it can sometimes be allowed to consume 100% of CPU resources. For sys-
tems that run with mostly idle CPUs, this allows other guests to make use of that
CPU, particularly for servicing short spikes in demand. Joyent calls this ability
bursting; it helps cloud customers deal with short-term heavy demand without
costly overprovisioning.

CPU Caps

Caps can put a limit on guest CPU usage, preventing bursting, and are expressed
in terms of total CPU percentage. Some customers prefer this, as it provides a con-
sistent performance expectation that can simplify capacity planning.

For other customers, per Joyent’s default settings, the CPU cap is automatically
increased to a multiple of the customer’s expected share (for example, eight times).
This allows the guest to burst if CPU resources are available. Should the guest
keep bursting for hours or days (as identified by monitoring), the customer can be
encouraged to upgrade the guest size so that the consumed CPU can be allocated
reliably, instead of depending on bursting.

This can cause a problem when customers are unaware that they are bursting
and may do so for weeks. At some point, another CPU-hungry tenant arrives who
also consumes spare idle CPU, leaving less available for the first tenant, who expe-
riences a drop in performance and may be unhappy about it. The situation is simi-
lar to flying economy for a month, but having been lucky enough to always have an
entire row to yourself. Then you board a full flight.

Expectations can be kept in check by disabling bursting as described earlier—
like putting sacks of potatoes in the spare seats, so that no passenger gets used to
having the extra room. Your customers may prefer that you manage expectations
by letting them know that they are bursting, rather than disabling the ability.

CPU Shares

Shares can be used via the fair-share scheduler (FSS) to divide CPU resources
appropriately among guests. Shares can be allocated arbitrarily and are used to cal-
culate the amount of CPU a busy guest will get at a given time, using the formula

guest CPU = all CPUs x guest shares/total busy shares on system

Consider a system with 100 shares, allocated to several guests. At one moment,
only guests A and B want CPU resources. Guest A has 10 shares, and guest B has
30 shares. Guest A can therefore use 25% of the total CPU resources on the sys-
tem: all CPUs x 10/(10 + 30).

11.2 OS Virtualization 557

For Joyent, each guest is given a number of shares equal to its memory size in
megabytes (and, therefore, relative to price paid). Systems twice the size cost twice
as much and therefore get twice as many CPU shares. This ensures that CPU
resources are divided fairly among those who need them and have paid for them.
CPU caps are also used to put a limit on bursting, so that expectations do not get
too out of hand.

Memory Capacity

There are two types of memory resources, each with its own strategy for resource
control: main memory (RSS) and virtual memory (VM). These also use the resource
controls facility, described by the resource_controls(5) man page [5], which
provides a set of tunable parameters for resource controls.

Main Memory

Limiting main memory is trickier than it sounds—imposing a hard limit is against
expectations. Once a Unix system uses more main memory than is available, it
begins paging (see Chapter 7, Memory).

This behavior is replicated for the guest in SmartOS by a thread in the per-zone
administration daemon, zoneadmd. It pages out a guest early based on its mem-
ory resource control, zone.max-physical-memory. It will also maintain the tar-
get memory size by throttling page-ins using delays, to allow page-out to catch up.

This function was previously performed by the resource capping daemon, rcapd,
which was a single process for all zones (and did not scale when there were many
zones).

Virtual Memory

The resource control property for virtual memory is zone.max-swap, which is
checked synchronously during allocation (malloc()). For Joyent, this is set to
twice the main memory size. Once the limit is reached, allocations fail (“Out of
memory” errors).

File System I/O

To address the issue of disk I/O from noisy neighbors, I/O is controlled at the file
system level in a ZFS feature called I/O throttling, developed by Joyent’s Bill
Pijewski. This allocates shares to zones, similarly to FSS for CPUs, balancing I/O
resources more fairly among tenants.

It works by proportionally throttling tenants who are performing the most disk
I/O, to reduce their contention with other tenants. The actual throttle mechanism
is to inject delays on the completion of the I/O, before returning to user-space. At

558 Chapter 11 � Cloud Computing

this time, threads have usually blocked waiting for the I/O to complete, and the
injection of extra latency is experienced as slightly slower I/O.

File System Capacity

Local file systems have a hard capacity limit: the total available space provided by
the mapped storage devices. It is usually desirable to subdivide this capacity for
the guests on the system, which can be done using

� Virtual volumes of a limited size

� File systems that support quotas (e.g., ZFS)

Network file systems and storage can also provide limits for file system capacity,
which for cloud providers is usually tied to pricing.

Disk I/O

Current SmartOS Zones control disk I/O via access to the file system. See the ear-
lier File System I/O section.

Network I/O

Since each zone is configured with its own virtual network interface, throughput
can be limited using the maxbw (maximum bandwidth) link property from
dladm(1M). Finer control of network I/O is possible using flowadm(1M), which
can set both maxbw and priority values and can match traffic based on trans-
port type and port. Joyent currently does not limit network I/O (all infrastructure
is 10 GbE, and there is usually an abundance of bandwidth available) and so only
sets these resource controls manually, if there is an abuser on the network.

11.2.3 Observability

With OS virtualization, the underlying technology by default allows everyone to
see everything; limits must be imposed to prevent inadvertent security leaks.
These limits are, at least:

� As a guest, /proc shows only processes in the guest.

� As a guest, netstat lists session information only for guest-owned sessions.

� As a guest, file system tools show only guest-owned file systems.

� As a guest, other zones cannot be listed via zone administration tools.

� As a guest, kernel internals cannot be inspected (no DTrace fbt provider or
mdb -k).

11.2 OS Virtualization 559

The host operator can see everything: processes, TCP sessions, and file systems
in both the host OS and all guests. And from the host, guest activity can be
observed directly—without logging in to each.

The following sections demonstrate observability tools available for the host and
those available for the guests and describe a strategy for analyzing performance.
SmartOS and its observability tools are used to demonstrate the kinds of informa-
tion that should be available from OS virtualization.

Host

When logged in to the host, all system resources (CPUs, memory, file system, disk,
network) can be inspected using the tools covered in previous chapters. There are
two additional factors to examine when using zones:

� Statistics per zone

� Effect of resource controls

Examining statistics per zone is sometimes provided by a -Z option. For example:

The first column shows the zone name (truncated to fit).
The prstat(1M) command also supports the -Z option:

global# ps -efZ
ZONE UID PID PPID C STIME TTY TIME CMD

 global root 0 0 0 Oct 03 ? 0:01 sched
 global root 4 0 0 Oct 03 ? 0:16 kcfpoold
 global root 1 0 0 Oct 03 ? 0:07 /sbin/init
 global root 2 0 0 Oct 03 ? 0:00 pageout
 global root 3 0 0 Oct 03 ? 952:42 fsflush
[...]
72188ca0 0000101 16010 12735 0 00:43:07 ? 0:00 pickup -l -t fifo -u
b8b2464c root 57428 57427 0 Oct 21 ? 0:01 /usr/lib/saf/ttymon
2e8ba1ab webservd 13419 13418 0 Oct 03 ? 0:00 /opt/local/sbin/nginx ...
2e8ba1ab 0001003 13879 12905 0 Oct 03 ? 121:25 /opt/local/bin/ruby19 ...
2e8ba1ab root 13418 1 0 Oct 03 ? 0:00 /opt/local/sbin/nginx ...
d305ee44 0000103 15101 15041 0 Oct 03 ? 6:07 /opt/riak/lib/os_mon-2...
8bbc4000 root 10933 1 0 Oct 03 ? 0:00 /usr/sbin/rsyslogd -c5 -n
[...]

global# prstat -Zc 1
 PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP
 22941 root 40M 23M wait 1 0 38:01:38 4.0% node/4
 22947 root 44M 25M wait 1 0 23:20:56 3.9% node/4
 15041 103 2263M 2089M sleep 59 0 168:09:53 0.9% beam.smp/86
[...]
ZONEID NPROC SWAP RSS MEMORY TIME CPU ZONE
 21 23 342M 194M 0.4% 0:28:48 7.9% b8b2464c-55ed-455e-abef-bd...
 6 21 2342M 2109M 4.3% 180:29:09 0.9% d305ee44-ffaf-47ca-a558-89...
 16 2 1069M 1057M 2.1% 107:03:45 0.3% 361f610e-605a-4fd3-afa4-94...

continues

560 Chapter 11 � Cloud Computing

The top section (truncated) shows a process list as usual, with the highest CPU
consumer at the top. The bottom section is a per-zone summary, showing

� SWAP: total zone virtual memory size

� RSS: total zone resident set size (main memory usage)

� MEMORY: main memory consumed, as a percentage of system-wide resources

� CPU: CPU consumed, as a percentage of system-wide resources

� ZONE: zone name

This is a system used for cloud computing (called a compute node), which hosts
over a dozen dynamically created zones. Each zone has an automatically gener-
ated UUID as its zone name (the b8b2464c . . .).

The zonememstat(1M) tool shows per-zone memory usage:

This includes

� CAP(MB): the configured resource control limit

� NOVER: the number of times a zone has exceeded the limit

� POUT(MB): total data that has been paged out to keep a zone to its limit

An increasing value in POUT(MB) is usually a sign that a guest’s applications
have been misconfigured and are trying to use more memory than the guest has
available, so the applications are being paged out by rcapd or zoneadmd.

Information for the other resource controls (CPU, ZFS I/O throttling, and net-
work caps) can be retrieved from kstat(1M) and prctl(1).

If need be, further analysis can be performed from the host, including examin-
ing guest application call stacks and internals. The host administrator can iden-
tify the root cause of any performance issue, without logging in to the guest.

 15 2 1066M 1054M 2.1% 104:16:33 0.3% 25bedede-e3fc-4476-96a6-c4...
 19 2 1069M 1055M 2.1% 105:23:21 0.3% 9f68c2c8-75f8-4f51-8a6b-a8...
Total: 391 processes, 1755 lwps, load averages: 2.39, 2.31, 2.24

global# zonememstat
ZONE RSS(MB) CAP(MB) NOVER POUT(MB)

 global 156 - - -
 8bbc4000-5abd-4373-b599-b9fdc9155bbf 242 2048 0 0
 d305ee44-ffaf-47ca-a558-890c0bbef508 2082 2048 369976 9833581
 361f610e-605a-4fd3-afa4-94869aeb55c0 1057 2048 0 0
 476afc21-2751-4dcb-ae06-38d91a70b386 1055 2048 0 0
 9f68c2c8-75f8-4f51-8a6b-a894725df5d8 1056 2048 0 0
 9d219ce8-cf52-409f-a14a-b210850f3231 1151 2048 0 0
 b8b2464c-55ed-455e-abef-bd1ea7c42020 48 1024 0 0
[...]

11.2 OS Virtualization 561

Guest

The guest should see only specific details of its processes and activity. Observabil-
ity tools modified to do this are described as zone-aware. The /proc file system, as
used by ps(1) and prstat(1M), contains processes only for that zone, making
those tools zone-aware.

Shared system resources may be observable from the guests, so long as private
details are not leaked. For example, guests can observe all physical CPUs and disks
directly (mpstat(1M), iostat(1M)) and system-wide memory usage (vmstat(1M)).

For example, checking disk I/O on an idle zone:

This can be confusing for people new to OS virtualization—why are the disks
busy? This is because iostat(1) is showing the physical disks, including activity
from other tenants. Such commands are called system-wide (i.e., not zone-aware).

To check the disk usage caused by this zone alone, statistics from the VFS level
can be examined:

This confirms that the zone is (almost) idle—reading 4.5 Kbytes/s (which is proba-
bly cached by the file system and not causing any disk I/O).

The mpstat(1M) is also system-wide:

This shows all the physical CPUs, including activity from other tenants.

zone# iostat -xnz 1
extended device statistics

 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 526.4 3.0 65714.8 27.7 0.0 0.9 0.0 1.7 1 88 sd5

extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 963.0 1.0 75528.5 8.1 0.0 1.1 0.0 1.1 1 89 sd5
[...]

zone# vfsstat 1
 r/s w/s kr/s kw/s ractv wactv read_t writ_t %r %w d/s del_t zone
 1.2 1.4 6.8 17.7 0.0 0.0 0.0 0.1 0 0 0.8 81.6 b8b2464c (21)
45.3 0.0 4.5 0.0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 b8b2464c (21)
45.3 0.0 4.5 0.0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 b8b2464c (21)
[...]

zone# mpstat 1
CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
 0 1 0 0 456 177 564 10 32 17777 0 99347 53 20 0 27
 1 0 0 4 1025 437 4252 155 185 28337 0 62321 42 19 0 40
 2 0 0 1 5169 2547 3457 34 74 7037 0 28110 14 8 0 78
 3 1 0 1 400 161 798 102 127 47442 0 82525 63 23 0 14
 4 1 0 0 308 138 712 23 52 31552 0 49330 38 15 0 48
[...]

562 Chapter 11 � Cloud Computing

The prstat -Z summary is one way to show only the guest’s CPU usage (other
guests are not listed when run from a non-global zone):

There are also counters from kstat that show CPU usage, along with the limits.
Ultimately, this physical resource observability provides the guests with useful

statistics for performance analysis, which may help them rule out some types of
issues (including noisy neighbors). This is an important difference from hardware
virtualization, which hides physical resources from the guests.

Strategy

Previous chapters have covered analysis techniques for the physical system
resources and included various methodologies. These can be followed for host oper-
ators, and to some extent by the guests, bearing in mind the limitations men-
tioned previously. For guests, high-level resource usage is typically observable, but
drilling down into the kernel is not possible.

Apart from the physical resources, cloud limits imposed by resource controls
should also be checked, by both the host operators and guest tenants. Since these
limits, where present, are encountered long before the physical limits, they are
more likely to be in effect and can be checked first.

Since many traditional observability tools were created before resource controls
existed (e.g., top(1) and prstat(1M)), they do not include resource control infor-
mation by default, and users may forget to check them with the other tools that do.

Here are some comments and strategies for checking each resource control:

� CPU: For caps, current CPU usage can be compared to the cap value.
Encountering the cap causes threads to wait while in the runnable state,
which can be observed as scheduler latency. This can be confusing at first, as
the physical system may have substantial idle CPU.

� Memory: For main memory, check current usage against the limit. Once the
limit has been reached, page-out will occur from zoneadmd. This may be
noticed as anonymous paging and thread time spent in data faults. This can
also be confusing at first, since the system pager may not be active (no sr
seen by vmstat), and the physical system may have plenty of free memory.

� File system I/O: A high rate of I/O may be throttled, causing small increases
in average latency. This can be observed by using the vfsstat(1M) tool.

zone# prstat -Zc 1
[...]
ZONEID NPROC SWAP RSS MEMORY TIME CPU ZONE
 21 22 147M 72M 0.1% 0:26:16 0.0% b8b2464c-55ed-455e-abef-bd...

11.3 Hardware Virtualization 563

� File system capacity: This should be observable as for any other file sys-
tem (including using df(1M)).

� Disk I/O: See file system I/O.

� Network I/O: Check current network throughput against the bandwidth
limit, if configured. Encountering the limit causes network I/O latency to
increase, as tenants are throttled to their cap.

For SmartOS Zones, a USE method checklist has been developed, analyzing the
resource controls first, and then the physical resources [6].

Monitoring Software

It should be noted that many monitoring tools written for stand-alone systems have
yet to develop support for OS virtualization. Customers attempting to use these in
the guests may find that they appear to work but are in fact showing physical sys-
tem resources, based on the same counters on which these tools have always been
based. Without support to observe the cloud resource controls, these tools may
falsely report that systems have headroom, when in fact they have hit resource lim-
its. They may also show high resource usage that is in fact due to other tenants.

11.3 Hardware Virtualization

Hardware virtualization creates system virtual machine instances, which can run
entire operating systems, including their kernels. Types of hardware virtualiza-
tion include the following:

� Full virtualization—binary translations: provides a complete virtual sys-
tem composed of virtualized hardware components onto which an unmodified
operating system can be installed. Pioneered by VMware for the x86 plat-
form in 1998, this uses a mixture of direct processor execution and binary
translations of instructions when needed [7]. The performance overhead for
this was often acceptable for the savings provided by server consolidation.

� Full virtualization—hardware-assisted: provides a complete virtual sys-
tem composed of virtualized hardware components onto which an unmodified
operating system can be installed. This uses processor support to execute vir-
tual machines more efficiently, specifically the AMD-V and Intel VT-x exten-
sions introduced in 2005–2006.

� Paravirtualization: provides a virtual system that includes an interface for
guest operating systems to efficiently use host resources (via hypercalls),

564 Chapter 11 � Cloud Computing

without needing full virtualization of all components. For example, arming a
timer usually involves multiple privileged instructions that must be emu-
lated by the hypervisor. This can be simplified into a single hypercall for a
paravirtualized guest. Paravirtualization may include the use of a para-
virtual network device driver by the guest for passing packets more effi-
ciently to the physical network interfaces in the host. While performance is
improved, this relies on guest OS support for paravirtualization (which
Windows has historically not provided).

Another type, hybrid virtualization, uses both hardware-assisted virtualization
with some paravirtualization calls when those are more efficient, with the aim of
delivering the best performance. The most common targets for paravirtualization
are virtual devices such as networking cards and storage controllers.

Virtual machines are created and executed by a hypervisor, which may be imple-
mented in software, firmware, or hardware.

Hardware-virtualized guests are pictured in Figure 11.6.

This shows two types of hypervisors [Goldberg 73]:

� Type 1 executes directly on the processors, and not as kernel- or user-level
software of another host. Hypervisor administration may be performed by a
privileged guest (pictured here as the first on the system: number 0), which
can create and launch new guests. Type 1 is also called native hypervisor or
bare-metal hypervisor. This hypervisor includes its own CPU scheduler for
guest VMs.

Figure 11-6 Hardware virtualization

11.3 Hardware Virtualization 565

� Type 2 is executed by the host OS kernel and may be composed of kernel-
level modules and user-level processes. The host OS has privileges to admin-
ister the hypervisor and launch new guests. This hypervisor is scheduled by
the host kernel scheduler.

There are many different implementations of hardware virtualizations. Key
examples are:

� VMware ESX: First released in 2001, VMware ESX is an enterprise product
for server consolidation and is a key component of the VMware vSphere cloud
computing product. Its hypervisor is a microkernel that runs on the bare
metal, and the first virtual machine is called the service console, which can
administer the hypervisor and new virtual machines.

� Xen: First released in 2003, Xen began as a research project at the University
of Cambridge and was later acquired by Citrix. Xen is a type 1 hypervisor that
runs paravirtualized guests for high performance; support was later added for
hardware-assisted guests for unmodified OS support (Windows). Virtual
machines are called domains, with the most privileged being dom0, from which
the hypervisor is administered and new domains launched. Xen is open source
and can be launched from Linux. (Versions have existed for Solaris; however,
Oracle is now favoring Oracle VM Server instead.) The Amazon Elastic Com-
pute Cloud (EC2) and Rackspace Cloud are based on Xen.

� KVM: This was developed by Qumranet, a start-up that was bought by Red
Hat in 2008. KVM is a type 2 hypervisor, executing as a kernel module. It
supports hardware-assisted extensions and, for high performance, uses para-
virtualization for certain devices where supported by the guest OS. To create
a complete hardware-assisted virtual machine instance, it is paired with a
user process called QEMU (Quick Emulator). QEMU was originally a high-
quality open-source type 2 hypervisor via binary translation, written by
Fabrice Bellard. KVM is open source and has been ported to illumos and
FreeBSD. The Linux and Windows instances of the Joyent public cloud use
KVM (the SmartOS instances use OS virtualization). Google also uses KVM
to drive the Google Compute Engine [8].

The following sections describe hardware virtualization topics: overhead,
resource controls, and observability. These differ based on the implementation, of
which there are more than the three listed previously. Check your implementation
for specifics.

566 Chapter 11 � Cloud Computing

11.3.1 Overhead

Hardware virtualization is accomplished in various ways by the hypervisor. These
hardware virtualization techniques add overhead for the guest OS whenever it
tries to access hardware: commands must be translated from virtual to physical
devices. These translations must be understood when studying performance; they
can differ depending on the type and implementation of hardware virtualization.
The differences can be summarized by describing the overheads for CPU execu-
tion, memory mapping, performing I/O, and effects from other tenants.

CPU

In general, the guest applications execute directly on the processors, with CPU-
bound applications approaching the performance of a bare-metal system. Overheads
may be encountered when making privileged processor calls, accessing hardware,
and mapping main memory.

Following are the different hardware virtualization types:

� Binary translation: Guest kernel instructions that operate on physical
resources are identified and translated. Binary translation was used before
hardware-assisted virtualization was available. Without hardware support
for virtualization, the scheme used by VMware involved running a virtual
machine monitor (VMM) in processor ring 0 and moving the guest kernel to
ring 1, which had previously been unused (applications run in ring 3, and
most processors provide four rings). Because some guest kernel instructions
assume they are running in ring 0, in order to execute from ring 1 they need
to be translated, calling into the VMM so that virtualization can be applied.
This translation is performed during runtime.

� Paravirtualization: Instructions in the guest OS that must be virtualized
are replaced with hypercalls to the hypervisor. Performance can be improved
if the guest OS is modified to optimize the hypercalls, making it aware that it
is running on virtualized hardware.

� Hardware-assisted: Unmodified guest kernel instructions that operate on
hardware are handled by the hypervisor, which runs a VMM at a ring level
below 0. Instead of translating binary instructions, the guest kernel privi-
leged instructions are forced to trap to the higher-privileged VMM, which can
then emulate the privilege to support virtualization [Adams 06].

Hardware-assisted virtualization is generally preferred, depending on the
implementation and workload, while paravirtualization is used to improve the per-
formance of some workloads (especially I/O) if the guest OS supports it.

11.3 Hardware Virtualization 567

As an example of implementation differences, VMware’s binary translation
model has been heavily optimized over the years, and as they wrote in 2007 [7]:

Due to high hypervisor to guest transition overhead and a rigid programming model,
VMware’s binary translation approach currently outperforms first generation hard-
ware assist implementations in most circumstances. The rigid programming model in
the first generation implementation leaves little room for software flexibility in man-
aging either the frequency or the cost of hypervisor to guest transitions.

The rate of transitions between the guest and hypervisor, as well as the time
spent in the hypervisor, can be studied as a metric of CPU overhead. These events
are commonly referred to as guest exits, as the virtual CPU must stop executing
inside the guest when this happens. Figure 11.7 shows CPU overhead related to
guest exits inside KVM.

The figure shows the flow of guest exits between the user process, the host ker-
nel, and the guest. The time spent outside of the guest-handling exits is the CPU
overhead of hardware virtualization; the more time spent handling exits, the
greater the overhead. When the guest exits, a subset of the events can be handled
directly in the kernel. Those that cannot must leave the kernel and return to the
user process; this induces even greater overhead compared to exits that can be
handled by the kernel.

Figure 11-7 Hardware virtualization CPU overhead

568 Chapter 11 � Cloud Computing

For example, with the KVM implementation used by Joyent, these overheads
can be studied via their guest exits, which are mapped in the source code to the fol-
lowing functions (from kvm_vmx.c):

While the names are terse, they may provide an idea of the reasons a guest may
call into a hypervisor, incurring CPU overhead.

One common guest exit is the halt instruction, usually called by the idle thread
when the kernel can find no more work to perform (which allows the processor to
operate in low-power modes until interrupted). It is handled by handle_halt()
(kvm_vmx.c), included here to provide an idea of the code involved:

static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
 [EXIT_REASON_CR_ACCESS] = handle_cr,
 [EXIT_REASON_DR_ACCESS] = handle_dr,
 [EXIT_REASON_CPUID] = handle_cpuid,
 [EXIT_REASON_MSR_READ] = handle_rdmsr,
 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
 [EXIT_REASON_HLT] = handle_halt,
 [EXIT_REASON_INVLPG] = handle_invlpg,
 [EXIT_REASON_VMCALL] = handle_vmcall,
 [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
 [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
 [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
 [EXIT_REASON_VMPTRST] = handle_vmx_insn,
 [EXIT_REASON_VMREAD] = handle_vmx_insn,
 [EXIT_REASON_VMRESUME] = handle_vmx_insn,
 [EXIT_REASON_VMWRITE] = handle_vmx_insn,
 [EXIT_REASON_VMOFF] = handle_vmx_insn,
 [EXIT_REASON_VMON] = handle_vmx_insn,
 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
 [EXIT_REASON_WBINVD] = handle_wbinvd,
 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
};

static int
handle_halt(struct kvm_vcpu *vcpu)
{

skip_emulated_instruction(vcpu);
return (kvm_emulate_halt(vcpu));

}

11.3 Hardware Virtualization 569

which calls kvm_emulate_halt() (kvm_x86.c):

As with many guest exit types, the code is kept small to minimize CPU overhead.
This example begins with the KVM_VCPU_KSTAT_INC() macro, which sets a kstat
counter so that the rate of halts can be observed. (This is a port from the Linux
version, which sets a built-in counter for the same purpose.) The remaining code
performs the hardware emulation required for this privileged instruction. These
functions can be studied using DTrace on the hypervisor, to track their type and
the duration of their exits.

Virtualizing hardware devices such as the interrupt controller and high-resolution
timers also incur some CPU (and a small amount of DRAM) overhead.

Memory Mapping

As described in Chapter 7, Memory, the operating system works with the MMU to
create page mappings from virtual to physical memory, caching them in the TLB to
improve performance. For virtualization, mapping a new page of memory (page
fault) from the guest to the hardware involves two steps:

1. Virtual-to-guest physical translation, as performed by the guest kernel

2. Guest-physical-to-host-physical (actual) translation, as performed by the
hypervisor VMM

The mapping, from guest virtual to host physical, can then be cached in the TLB,
so that subsequent accesses can operate at normal speed—not requiring addi-
tional translation. Modern processors support MMU virtualization, so that map-
pings that have left the TLB can be recalled more quickly in hardware alone (page
walk), without calling into the hypervisor. The feature that supports this is called
extended page tables (EPT) on Intel and nested page tables (NPT) on AMD [9].

Without EPT/NPT, another approach to improve performance is to maintain
shadow page tables of guest-virtual-to-host-physical mappings, which are managed

int
kvm_emulate_halt(struct kvm_vcpu *vcpu)
{
 KVM_VCPU_KSTAT_INC(vcpu, kvmvs_halt_exits);

 if (irqchip_in_kernel(vcpu->kvm)) {
 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;

 return (1);
 } else {

 vcpu->run->exit_reason = KVM_EXIT_HLT;
 return (0);
 }
}

570 Chapter 11 � Cloud Computing

by the hypervisor and then accessed during guest execution by overwriting the
guest’s CR3 register. With this strategy, the guest kernel maintains its own page
tables, which map from guest virtual to guest physical, as normal. The hypervisor
intercepts changes to these page tables and creates equivalent mappings to the host
physical pages in the shadow pages. Then, during guest execution, the hypervisor
overwrites the CR3 register to point to the shadow pages.

Memory Size

Unlike OS virtualization, there are some additional consumers of memory when
using hardware virtualization. Each guest runs its own kernel, which consumes a
small amount of memory. The storage architecture may also lead to double cach-
ing, where both the guest and host cache the same data.

I/O

A key cost of virtualization is the overhead for performing device I/O. Unlike CPU
and memory I/O, where the common path can be set up to execute in a bare-metal
fashion, every device I/O must be translated by the hypervisor. For high-frequency
I/O, such as 10 Gbit/s networking, a small degree of overhead per I/O (packet) can
cause a significant overall reduction in performance.

I/O overhead may be mitigated to some extent by using paravirtualization,
where guest kernel drivers have been modified to operate efficiently in the virtual-
ized environment, coalescing I/O and performing fewer device interrupts to reduce
the hypervisor overhead.

Another technique is PCI pass-through, which assigns a PCI device directly to
the guest, so it can be used as it would on a bare-metal system. PCI pass-through
can provide the best performance of the available options, but it reduces flexibility
when configuring the system with multiple tenants, as some devices are now
owned by guests and cannot be shared. This may also complicate live migration
[10].

There are some technologies to improve the flexibility of using PCI devices with
virtualization, including Single Root I/O Virtualization (SR-IOV) and Multi Root I/O
Virtualization (MR-IOV). These terms refer to the number of root complex PCI
topologies that are exposed, providing hardware virtualization in different ways.
Their usage depends on hardware and hypervisor support.

As examples of device I/O, Xen (type 1 hypervisor) and KVM (type 2 hypervisor)
are pictured in Figure 11.8.

GK is “guest kernel,” and domU on Xen runs the guest OS. Some of these arrows
indicate the control path, where components inform each other, either synchro-
nously or asynchronously, that more data is ready to transfer. The data path may

11.3 Hardware Virtualization 571

be implemented in some cases by shared memory and ring buffers. There are vari-
ations of these technologies. In this figure, both are pictured using I/O proxy pro-
cesses (typically the QEMU software), which are created per guest VM.

The number of steps in the I/O path, both control and data, is critical for perfor-
mance: the fewer, the better. In 2006 the KVM developers compared a privileged-
guest system like Xen with KVM and found that KVM could perform I/O using half
as many steps (five versus ten, although the test was performed without paravirtu-
alization so does not reflect most modern configurations) [11].

Xen improves its I/O performance using a device channel—an asynchronous
shared memory transport between dom0 and the guest domains (domU). This
avoids the CPU and bus overhead of performing an extra copy of I/O data as it is
passed between the doms. It may also use separate doms for performing I/O, as
described in Section 11.3.2, Resource Controls.

A paravirtualized guest driver may be used in either case to improve I/O perfor-
mance, which can apply optimum buffering and I/O coalescing for the virtualized I/O
path.

Other Tenants

As with OS virtualization, the presence of other tenants can cause the CPU caches
to be less warm, and guest runtime interruptions may occur while other tenants
are scheduled and serviced, including device interrupts. Contention for resources
can be managed by resource controls.

Figure 11-8 Xen and KVM I/O path

572 Chapter 11 � Cloud Computing

11.3.2 Resource Controls

As part of the guest configuration, CPU and main memory are typically config-
ured with resource limits. The hypervisor software may also provide resource con-
trols for network and disk I/O.

For type 2 hypervisors, the host OS ultimately controls the physical resources,
and resource controls (if any) available from the OS may also be applied to the
guests, in addition to the controls the hypervisor provides.

For example, Joyent configures KVM guests to run inside SmartOS Zones,
allowing the resource controls listed in Section 11.2, OS Virtualization, to be
applied, including ZFS I/O throttling. This is in addition to the KVM limits, provid-
ing more options and flexibility for controlling resource usage. It also encapsulates
each KVM instance in its own highly secure zone, providing multiple boundaries of
security protection—a technique called double-hull virtualization.

What’s available depends on the hypervisor software, type, and, for type 2
hypervisors, the host OS. See Section 11.2, OS Virtualization, for the kinds of
resource controls that may be available from the host OS. The following sections
describe resource controls from the Xen and KVM hypervisors, as examples.

CPU

CPU resources are usually allocated to guests as virtual CPUs (vCPUs). These are
then scheduled by the hypervisor. The number of vCPUs assigned coarsely limits
CPU resource usage.

For Xen, a fine-grained CPU quota for guests can be applied by a hypervisor
CPU scheduler. Schedulers include ([Cherkasova 07], [Matthews 08])

� Borrowed virtual time (BVT): a fair-share scheduler based on the alloca-
tion of virtual time, which can be borrowed in advance to provide low-latency
execution for real-time and interactive applications

� Simple earliest deadline first (SEDF): a real-time scheduler that allows
runtime guarantees to be configured, with the scheduler giving priority to the
earliest deadline

� Credit-based: supports priorities (weights) and caps for CPU usage, and
load balancing across multiple CPUs

For KVM, fine-grained CPU quotas can be applied by the host OS, for example,
when using the host kernel fair-share scheduler described earlier. On Linux, this
could be applied using the cgroup CPU bandwidth controls.

There are limitations on how either technology can respect guest priorities. A
guest’s CPU usage is typically opaque to the hypervisor, and guest kernel thread prior-
ities cannot typically be seen or respected. For example, a Solaris kernel periodically

11.3 Hardware Virtualization 573

scanning memory using the background fsflush daemon may have the same hypervi-
sor priority as a critical application server in another guest.

For Xen, CPU resource usage can be further complicated by high-I/O workloads
that consume extra CPU resources in dom0. The back-end driver and I/O proxy in
the guest domain alone may consume more than their CPU allocation but are not
accounted for [Cherkasova 05]. A solution has been to create isolated driver
domains (IDDs), which separate out I/O servicing for security, performance isola-
tion, and accounting. This is pictured in Figure 11.9.

The CPU usage by IDDs can be monitored, and the guests can be charged for
this usage. From [Gupta 06]:

Our modified scheduler, SEDF-DC for SEDF-Debt Collector, periodically receives feed-
back from XenMon about the CPU consumed by IDDs for I/O processing on behalf of
guest domains. Using this information, SEDF-DC constrains the CPU allocation to
guest domains to meet the specified combined CPU usage limit.

A more recent technique used in Xen is stub domains, which run a mini OS.

Memory Capacity

Memory limits are imposed as part of the guest configuration, with the guest see-
ing only the set amount of memory. The guest kernel then performs its own opera-
tions (paging, swapping) to remain within its limit.

In an effort to increase flexibility from the static configuration, VMware devel-
oped what is referred to as a balloon driver [Waldspurger 02]. It is able to reduce the
memory consumed by the running guest by “inflating” a balloon module inside it,
which consumes guest memory. This memory is then reclaimed by the hypervisor for

Figure 11-9 Xen with isolated driver domains

574 Chapter 11 � Cloud Computing

use by other guests. The balloon can also be deflated, returning memory to the guest
kernel for use. During this process, the guest kernel executes its normal memory
management routines to free memory (e.g., paging). VMware, Xen, and KVM all
have support for balloon drivers.

File System Capacity

Guests are provided with virtual disk volumes from the host, which are created
during guest configuration from a pool of storage disks (using ZFS) to be the size
desired. From these disk volumes, the guest creates file systems and manages its
own space, limited by the configured volume size. The exact details for doing this
depend on the virtualization software and storage configuration.

Device I/O

Resource controls by hardware virtualization software have historically focused on
controlling CPU usage, which can indirectly control I/O usage.

Network throughput may be throttled by external dedicated devices or, in the
case of type 2 hypervisors, by host kernel features. For example, the illumos ker-
nel supports network bandwidth resource controls, which could in theory be
applied to guest virtual network interfaces. Linux has network bandwidth con-
trols from cgroups, which could be used in a similar way.

Network performance isolation for Xen has been studied, with the following con-
clusion [Adamczyk 12]:

. . . when the network virtualization is considered, the weak point of Xen is its lack of
proper performance isolation.

The authors of [Adamczyk 12] also propose a solution for Xen network I/O
scheduling, which adds tunable parameters for network I/O priority and rate. If
you are using Xen, check whether this or a similar technology has been made
available.

Disk and file system I/O techniques are also in development for hardware virtu-
alization. Check your software version for what is available, and, for type 2 hyper-
visors, also check what resource controls are made available by the host operating
system. For example, Joyent’s KVM guests are disk I/O throttled using the ZFS I/O
throttling technology described earlier.

11.3.3 Observability

What is observable depends on the type of hypervisor and the location from which
the observability tools are launched. In general:

11.3 Hardware Virtualization 575

� From the privileged guest (type 1) or host (type 2): All physical
resources should be observable using standard OS tools, and I/O from the I/O
proxies. Per-guest resource usage statistics should be made available from the
OS or virtualization software. Guest internals, including their processes, can-
not be observed directly.

� From the guests: Physical resources and their usage are not generally
observable. Virtualized resources and their usage by the guest can be seen.

From the privileged guest or host, physical resource usage can be observed at a
high level: utilization, saturation, errors, IOPS, throughput, I/O type. These fac-
tors can usually be expressed per guest, so that heavy users can be quickly identi-
fied. Details of which guest processes are performing I/O and their application call
stacks cannot be observed directly. These can be observed by logging in to the
guest (provided a means to do so is authorized and configured, e.g., SSH) and
using the observability tools that the guest OS provides.

To identify the root cause of a guest performance issue, the cloud operator may
need to log in to both the privileged guest or host and the guest and execute
observability tools from both. Tracing the path of I/O becomes complex due to the
steps involved and may also include analysis of the hypervisor and the I/O proxy.

From the guest, physical resource usage may not be observable at all. This may
tempt the guest customers to blame mysterious performance issues on physical
resources being used by invisible noisy neighbors. To give cloud customers peace of
mind (and reduce support tickets), information about physical resource usage
(redacted) may be provided via other means, including SNMP or a cloud API.

The following sections demonstrate observability tools that can be used from differ-
ent locations and describe a strategy for analyzing performance. Xen and KVM are
used to demonstrate the kind of information that virtualization software may provide.

Privileged Guest/Host

All system resources (CPUs, memory, file system, disk, network) should be observ-
able using the tools covered in previous chapters.

KVM

For type 2 hypervisors, the guest instances are visible within the host OS. For
example, with KVM on SmartOS:

global# prstat -c 1
 PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP
 46478 root 1163M 1150M cpu6 1 0 9:40:15 5.2% qemu-system-x86/5
 4440 root 9432K 4968K sleep 50 0 136:10:38 1.1% zoneadmd/5

continues

576 Chapter 11 � Cloud Computing

The QEMU processes are the KVM guests, which include threads for each vCPU
and threads for I/O proxies. Their CPU usage can be seen in the prstat(1M) out-
put above, and per-vCPU usage can be examined using other prstat(1M) options
(-mL). Mapping QEMU processes to their guest instance names is usually a mat-
ter of examining their process arguments (pargs(1)) to read the -name option.

Another important area for analysis is guest vCPU exits. The types of exits that
occur can show what a guest is doing: whether a given vCPU is idle, performing I/O,
or performing compute. On Linux, this information is collected and can be accessed
through the debugfs file system, and by using tools such as perf(1). On SmartOS,
this information is collected in kstats and can be summarized with the kvmstat(1)
tool.

The first two fields identify the vCPU inside a specific virtual machine. The remain-
ing columns describe the total number of exits, breaking them down into general cate-
gories. The last few columns describe other activity on the vCPU. kvmstat(1)
describes the columns in its help message:

� pid: identifier of the process controlling the virtual CPU

� vcpu: virtual CPU identifier relative to its virtual machine

� exits: virtual machine exits for the virtual CPU

� haltx: virtual machine exits due to the HLT instruction

� irqx: virtual machine exits due to a pending external interrupt

� irqwx: virtual machine exits due to an open interrupt window

� iox: virtual machine exits due to an I/O instruction

� mmiox: virtual machine exits due to memory-mapped I/O

� irqs: interrupts injected into the virtual CPU

 15041 103 2279M 2091M sleep 60 0 168:40:09 0.4% beam.smp/87
 37494 root 1069M 1055M sleep 59 0 105:35:52 0.3% qemu-system-x86/4
 37088 root 1069M 1057M sleep 1 0 107:16:27 0.3% qemu-system-x86/4
 37223 root 1067M 1055M sleep 59 0 94:19:31 0.3% qemu-system-x86/7
 36954 root 1066M 1054M cpu7 59 0 104:28:53 0.3% qemu-system-x86/4
[...]

host# kvmstat 1
 pid vcpu | exits : haltx irqx irqwx iox mmiox | irqs emul eptv
 12484 0 | 8955 : 551 2579 316 1114 0 | 1764 3510 0
 12484 1 | 2328 : 253 738 17 248 0 | 348 876 0
 12484 2 | 2591 : 262 579 14 638 0 | 358 837 0
 12484 3 | 3226 : 244 1551 19 239 0 | 343 960 0
 28275 0 | 196 : 12 75 1 0 82 | 14 107 0
 [...]

11.3 Hardware Virtualization 577

� emul: instructions emulated in the kernel

� eptv: extended page table violations

While it may not be easy for an operator to directly see inside a guest virtual
machine, examining the exits lets you characterize how the overhead of hardware
virtualization may or may not be affecting a tenant. If you see a low number of
exits and a high percentage of those are haltx, you know that the guest CPU is
fairly idle. On the other hand, if you have a high number of I/O operations, inter-
rupts being both generated and injected into the guest, it is very likely that the
guest is doing I/O over its virtual NICs and disks.

Xen

For type 1 hypervisors, the guest vCPUs exist in the hypervisor and are not visible
from the privileged guest (dom0) using standard OS tools. For Xen, the xentop(1)
tool can be used instead:

The fields include

� CPU(%): CPU usage percentage (sum for multiple CPUs)

� MEM(k): main memory usage (Kbytes)

� MEM(%): main memory percentage of system memory

� MAXMEM(k): main memory limit size (Kbytes)

� MAXMEM(%): main memory limit as a percentage of system memory

� VCPUS: count of assigned vCPUs

� NETS: count of virtualized network interfaces

� NETTX(k): network transmit (Kbytes)

� NETRX(k): network receive (Kbytes)

� VBDS: count of virtual block devices

xentop
xentop - 02:01:05 Xen 3.3.2-rc1-xvm
2 domains: 1 running, 1 blocked, 0 paused, 0 crashed, 0 dying, 0 shutdown
Mem: 50321636k total, 12498976k used, 37822660k free CPUs: 16 @ 2394MHz
 NAME STATE CPU(sec) CPU(%) MEM(k) MEM(%) MAXMEM(k) MAXMEM(%) VCPUS NETS
NETTX(k) NETRX(k) VBDS VBD_OO VBD_RD VBD_WR SSID
 Domain-0 -----r 6087972 2.6 9692160 19.3 no limit n/a 16 0
0 0 0 0 0 0 0
Doogle_Win --b--- 172137 2.0 2105212 4.2 2105344 4.2 1 2
0 0 2 0 0 0 0
[...]

578 Chapter 11 � Cloud Computing

� VBD_OO: virtual block device requests blocked and queued (saturation)

� VBD_RD: virtual block device read requests

� VBD_WR: virtual block device write requests

The xentop output is updated every 3 s by default and is selectable using -d
delay_secs.

Advanced Observability

For extended hypervisor analysis, there are a number of options. On Linux,
perf(1) provides tracepoints for both KVM and Xen, which can be used to inves-
tigate various events. Listing example Xen tracepoints:

There is also the xentrace(8) tool, which can retrieve a log of fixed event
types from the hypervisor, which can then be viewed using xenanalyze. The log can
be used to investigate scheduling issues with the hypervisor and CPU scheduler
used.

For KVM, DTrace can be used to inspect internals of the hypervisor in custom
ways, including the kvm kernel host driver and the QEMU process, the host ker-
nel scheduler, the host device drivers, and interactions with other tenants.

For example, the following output of a DTrace script (kvmexitlatency.d [12])
traces KVM guest exit latency and prints a distribution plot for each type:

perf list
[...]
 xen:xen_mc_batch [Tracepoint event]
 xen:xen_mc_issue [Tracepoint event]
 xen:xen_mc_entry [Tracepoint event]
 xen:xen_mc_entry_alloc [Tracepoint event]
 xen:xen_mc_callback [Tracepoint event]
 xen:xen_mc_flush_reason [Tracepoint event]
 xen:xen_mc_flush [Tracepoint event]
 xen:xen_mc_extend_args [Tracepoint event]
 xen:xen_mmu_set_pte [Tracepoint event]
[...]

./kvmexitlatency.d
Tracing KVM exits (ns)... Hit Ctrl-C to stop
^C

 EXIT_REASON_CPUID
 value ------------- Distribution ------------- count
 1024 | 0

 2048 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 31
 4096 |@ 1
 8192 | 0
[...]

11.3 Hardware Virtualization 579

All of the exits in this example were 64 μs and faster, with most between 2 μs and
16 μs.

Advancing hypervisor observability is an ongoing process, with tools such as
perf(1) and DTrace expanding the limits of what can be seen. An example of this
is CR3 profiling.

CR3 Profiling

Thanks to Intel’s VT-x instruction set for hardware-assisted virtualization, every
vCPU has a virtual machine control structure (VMCS). The VMCS contains copies
of the vCPU’s register state, which DTrace can query. Every process on the system
has its own address space and set of page tables describing the virtual-to-physical
memory translations. The root of this page table is stored in the register CR3.

Using the DTrace profile provider, you can sample the CR3 register from a guest
virtual machine. If a particular CR3 value is frequently seen, you know that a spe-
cific process is very active on the CPU in the guest. Although this CR3 value can-
not currently be mapped to something human-readable (such as the process name),
its numeric value does uniquely identify a process in the guest, which can be used
to understand general system trends.

Figure 11.10, from Joyent’s Cloud Analytics, is an example of visualizing CR3
samples and shows the guest kernel scheduling activity of two CPU-bound
processes.

This visualization is a subsecond-offset heat map, which paints vertical col-
umns each second with sampled data. On the right is a distorted checkerboard pat-
tern, showing that two different CR3s were alternating on-CPU, which is due to
the two different guest processes.

 EXIT_REASON_APIC_ACCESS
 value ------------- Distribution ------------- count
 2048 | 0
 4096 | 125
 8192 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 11416
 16384 |@@ 687
 32768 | 3
 65536 | 0

 EXIT_REASON_IO_INSTRUCTION
 value ------------- Distribution ------------- count
 2048 | 0
 4096 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 32623
 8192 |@ 987
 16384 | 7
 32768 | 0

580 Chapter 11 � Cloud Computing

Guest

From the guest, only the virtual devices can be seen. The most interesting metric
is latency, showing how the device is responding given virtualization, limits, and
other tenants. Metrics such as percent busy are difficult to interpret without know-
ing what the underlying device is.

The vmstat(8) command on Linux includes a column for CPU percent stolen
(st), which is a rare example of a virtualization-aware statistic:

In this example, a Xen guest with an aggressive CPU limiting policy was tested.
For the first 4 s, over 90% of CPU time was in user mode of the guest, with a few
percent stolen by other tenants. This behavior then begins to change aggressively,
with most of the CPU time stolen by other tenants.

Figure 11-10 Visualizing guest vCPU CR3 register values

$ vmstat 1
procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu-----
 r b swpd free buff cache si so bi bo in cs us sy id wa st
 1 0 0 107500 141348 301680 0 0 0 0 1006 9 99 0 0 0 1
 1 0 0 107500 141348 301680 0 0 0 0 1006 11 97 0 0 0 3
 1 0 0 107500 141348 301680 0 0 0 0 978 9 95 0 0 0 5
 3 0 0 107500 141348 301680 0 0 0 4 912 15 99 0 0 0 1
 2 0 0 107500 141348 301680 0 0 0 0 33 7 3 0 0 0 97
 3 0 0 107500 141348 301680 0 0 0 0 34 6 100 0 0 0 0
 5 0 0 107500 141348 301680 0 0 0 0 35 7 1 0 0 0 99
 2 0 0 107500 141348 301680 0 0 0 48 38 16 2 0 0 0 98
[...]

11.4 Comparisons 581

Strategy

Previous chapters have covered analysis techniques for the physical system
resources, which can be followed by the administrators of the physical systems, to
look for bottlenecks and errors. Resource controls imposed on the guests can also
be checked, to see if guests are consistently at their limit and should be informed
and encouraged to upgrade. Not much more can be identified by the administra-
tors without logging in to the guests, which may be necessary for any serious per-
formance investigation.

For the guests, the tools and strategies for analyzing resources covered in previ-
ous chapters can be applied, bearing in mind that the resources in this case are
virtual. Some resources may not be driven to their limits, due to unseen resource
controls by the hypervisor or contention from other tenants. Ideally, the cloud soft-
ware or vendor provides a means for customers to check redacted physical resource
usage, so that they can investigate performance issues further on their own. If not,
contention and limits may have to be deduced from increases in I/O and CPU
scheduling latency. Such latency can be measured either at the syscall layer or in
the guest kernel.

11.4 Comparisons

Comparing technologies can help you better understand them, even if you are not
in a position to change the technology used by your company. The three technolo-
gies discussed in this chapter are compared in Table 11.2.

Table 11-2 Comparing Virtualization Technology Performance Attributes

Attribute OS Virtualization
Hardware
Virtualization, Type 1

Hardware
Virtualization, Type 2

CPU
performance

high high (with CPU
support)

high (with CPU
support)

CPU allocation flexible (FSS +
“bursting”)

fixed to vCPU limit fixed to vCPU limit

I/O throughput high (no intrinsic
overhead)

low or medium (with
paravirtualization)

low or medium (with
paravirtualization)

I/O latency low (no intrinsic
overhead)

usually some (I/O proxy
overhead)

usually some (I/O proxy
overhead)

Memory access
overhead

none some (EPT/NPT or
shadow page tables)

some (EPT/NPT or
shadow page tables)

continues

582 Chapter 11 � Cloud Computing

While this table will become out-of-date as more features are developed for
these virtualization technologies, it will still serve to show the kinds of things to
look for, even as entirely new virtualization technologies are developed that fit
none of these categories.

Virtualization technologies are often compared using micro-benchmarking, to
see which performs the best. Unfortunately, doing this overlooks observability
capabilities, which can lead to the largest performance gains of all (by making it
possible to identify and eliminate unnecessary work). Consider the following com-
mon scenario: A new cloud customer misconfigures an application such that it con-
sumes too much main memory and is paged or swapped out. With OS
virtualization, this can easily be pinpointed by the cloud administrators (see the
earlier zonememstat(1M) command), who can also see the processes responsible,
the application stack traces, and often the configuration files as well—identifying
the root cause without logging in to the guest. For hardware virtualization, the
cloud administrators see disk I/O from a guest, which may appear like any other

Memory loss none some (extra kernels,
page tables)

some (extra kernels,
page tables)

Memory
allocation

flexible (unused
guest memory used
for file system
cache)

fixed (and possible
double caching)

fixed (and possible
double caching)

Resource
controls

many (depends
on OS)

some (depends on
hypervisor)

most (OS + hypervisor)

Observability:
from the host

highest
(see everything)

low (resource usage,
hypervisor statistics)

medium (resource
usage, hypervisor statis-
tics, OS inspection of
hypervisor)

Observability:
from the guest

medium (see every-
thing permitted,
including some
physical resource
stats)

low (guest only) low (guest only)

Hypervisor
complexity

low (OS partitions) high (complex
hypervisor)

medium

Different OS
guests

usually no (some-
times possible with
syscall translation)

yes yes

Table 11-2 Comparing Virtualization Technology Performance Attributes (Continued)

Attribute OS Virtualization
Hardware
Virtualization, Type 1

Hardware
Virtualization, Type 2

11.5 Exercises 583

disk I/O and be mistaken for normal activity. That the guest has run out of mem-
ory and is paging or swapping is not identifiable without logging in to the guest,
which requires authentication.

Another factor to consider is maintenance complexity. This is lowest in OS virtu-
alization, where there is only one kernel to maintain. For paravirtualization, main-
tentance is high, as the guest OS must provide paravirtualization support,
requiring kernel changes.

For the Joyent public cloud, we prefer OS virtualization (Zones) for the high per-
formance and observability it delivers, as long as our customers’ applications can
run on SmartOS. We use KVM with paravirtualization when other guest operat-
ing systems are needed (Linux, Windows), knowing that performance is likely to be
much poorer for I/O-bound workloads. We tried Xen but have replaced it with the
Joyent KVM port.

11.5 Exercises

1. Answer the following questions about virtualization terminology:

� What is the difference between the host and the guest?

� What is a tenant?

� What is a hypervisor?

2. Answer the following conceptual questions:

� Describe the role of performance isolation.

� Describe the performance overheads with hardware virtualization (either
type).

� Describe the performance overheads with OS virtualization.

� Describe physical system observability from a hardware-virtualized guest
(either type).

� Describe physical system observability from an OS-virtualized guest.

3. Choose a virtualization technology and answer the following for the guests:

� Describe how a memory limit is applied, and how it is visible from the guest.
(What does the system administrator see when guest memory is exhausted?)

� If there is an imposed CPU limit, describe how it is applied and how it is vis-
ible from the guest.

� If there is an imposed disk I/O limit, describe how it is applied and how it is
visible from the guest.

584 Chapter 11 � Cloud Computing

� If there is an imposed network I/O limit, describe how it is applied and how
it is visible from the guest.

4. Develop a USE method checklist for resource controls. Include how to fetch
each metric (e.g., which command to execute) and how to interpret the result.
Try to use existing OS observability tools before installing or using additional
software products.

11.6 References

[Goldberg 73] Goldberg, R. P. Architectural Principles for Virtual Computer
Systems (Thesis). Harvard University, 1972.

[Waldspurger 02] Waldspurger, C. “Memory Resource Management in VMware
ESX Server,” Proceedings of the 5th Symposium on Operating
Systems Design and Implementation, 2002.

[Cherkasova 05] Cherkasova, L., and R. Gardner. “Measuring CPU Overhead
for I/O Processing in the Xen Virtual Machine Monitor.”
USENIX ATEC’05.

[Adams 06] Adams, K., and O. Agesen. “A Comparison of Software and
Hardware Techniques for x86 Virtualization.” ASPLOS’06.

[Gupta 06] Gupta, D., L. Cherkasova, R. Gardner, and A. Vahdat.
“Enforcing Performance Isolation across Virtual Machines in
Xen.” ACM/IFIP/USENIX Middleware’06.

[Cherkasova 07] Cherkasova, L., D. Gupta, and A. Vahdat. “Comparison of the
Three CPU Schedulers in Xen.” ACM SIGMETRICS, 2007.

[Matthews 08] Matthews, J., et al. Running Xen: A Hands-On Guide to the
Art of Virtualization. Prentice Hall, 2008.

[Adamczyk 12] Adamczyk, B., and A. Chydzinski. “Performance Isolation
Issues in Network Virtualization in Xen,” International Jour-
nal on Advances in Networks and Services, 2012.

[1] http://highscalability.com/blog/2012/12/12/pinterest-cut-costs-
from-54-to-20-per-hour-by-automatically.html

[2] http://lxc.sourceforge.net

[3] http://openvz.org

[4] http://lwn.net/Articles/524952/

../../../../../highscalability.com/blog/2012/12/12/pinterest-cut-costsfrom-54-to-20-per-hour-by-automatically.html
../../../../../highscalability.com/blog/2012/12/12/pinterest-cut-costsfrom-54-to-20-per-hour-by-automatically.html
../../../../../lxc.sourceforge.net/default.htm
../../../../../openvz.org/default.htm
../../../../../lwn.net/Articles/524952/default.htm

11.6 References 585

[5] http://illumos.org/man/5/resource_controls

[6] http://dtrace.org/blogs/brendan/2012/12/19/the-use-method-
smartos-performance-checklist/

[7] www.vmware.com/files/pdf/VMware_paravirtualization.pdf

[8] https://developers.google.com/compute/docs/faq#whatis

[9] http://corensic.wordpress.com/2011/12/05/virtual-machines-
virtualizing-virtual-memory/

[10] http://wiki.xen.org/wiki/Xen_PCI_Passthrough

[11] KVM: Kernel-based Virtualization Driver. Qumranet
Whitepaper, 2006

[12] https://github.com/brendangregg/dtrace-cloud-tools

../../../../../illumos.org/man/5/resource_controls
../../../../../dtrace.org/blogs/brendan/2012/12/19/the-use-methodsmartos-performance-checklist/default.htm
../../../../../dtrace.org/blogs/brendan/2012/12/19/the-use-methodsmartos-performance-checklist/default.htm
../../../../../www.vmware.com/files/pdf/VMware_paravirtualization.pdf
../../../../../https@developers.google.com/compute/docs/faq#whatis
../../../../../corensic.wordpress.com/2011/12/05/virtual-machinesvirtualizing-virtual-memory/default.htm
../../../../../corensic.wordpress.com/2011/12/05/virtual-machinesvirtualizing-virtual-memory/default.htm
../../../../../wiki.xen.org/wiki/Xen_PCI_Passthrough
../../../../../https@github.com/brendangregg/dtrace-cloud-tools

This page intentionally left blank

587

12
Benchmarking

There are lies, damn lies and then there are performance measures.

—Anon et al., “A Measure of Transaction Processing Power” [Anon 85]

Benchmarking tests performance in a controlled manner, allowing choices to be
compared and performance limits to be understood—before they are encountered
in production. These limits may be system resources, software limits in a virtual-
ized environment (cloud computing), or limits in the target application. Previous
chapters have explored these components, describing the types of limits present
and the tools used to analyze them.

Previous chapters have also introduced tools for micro-benchmarking, which
investigate limits using simple artificial workloads. Other types of benchmarking
include client workload simulations, which attempt to replicate a client usage pat-
tern, and trace replays. Whichever type you use, it’s important to analyze the
benchmark so that you can confirm what is being measured. Benchmarks tell you
only how fast the system can run the benchmark; it’s up to you to understand the
result and determine how it applies to your environment.

This chapter discusses benchmarking in general, providing advice and method-
ologies to help you avoid common mistakes and accurately test your systems. This
is also useful background when you need to interpret the results from others,
including vendor and industry benchmarks.

588 Chapter 12 � Benchmarking

12.1 Background

This section describes benchmarking activities and effective benchmarking and
summarizes common mistakes as the “sins of benchmarking.”

12.1.1 Activities

Benchmarking may be performed for the following reasons:

� System design: comparing different systems, system components, or applica-
tions. For commercial products, benchmarking may provide data to aid a pur-
chase decision, specifically the price/performance ratio of the available options.
In some cases, results from published industry benchmarks can be used, which
avoids the need for customers to execute the benchmarks themselves.

� Tuning: testing tunable parameters and configuration options, to identify
those that are worth further investigation with the production workload.

� Development: for both non-regression testing and limit investigations dur-
ing product development. Non-regression testing may be an automated bat-
tery of performance tests that run regularly, so that any performance
regression can be discovered early and quickly matched to the product
change. For limit investigations, benchmarking can be used to drive products
to their limit during development, in order to identify where engineering
effort is best spent to improve product performance.

� Capacity planning: determining system and application limits for capacity
planning, either to provide data for modeling performance, or to find capacity
limits directly.

� Troubleshooting: to verify that components can still operate at maximum
performance, for example, testing maximum network throughput between
hosts to check whether there may be a network issue.

� Marketing: determining maximum product performance for use by market-
ing (also called benchmarketing).

In enterprise environments, benchmarking during proof of concepts can be an
important exercise before investing in expensive hardware and may be a process
that lasts several weeks. This includes the time to ship, rack, and cable systems,
and then to install operating systems before testing.

In cloud computing environments, resources are available on demand, without an
expensive initial investment in hardware. These environments still, however,
require some investment when choosing which application programming language to

12.1 Background 589

use, and which database, web server, and load balancer to run. Some of these choices
can be difficult to change down the road. Benchmarking can be performed to investi-
gate how well these choices can scale when required. The cloud computing model
also makes benchmarking easy: a large-scale environment can be created in min-
utes, used for a benchmark run, and then destroyed, all at very little cost.

12.1.2 Effective Benchmarking

Benchmarking is surprisingly difficult to do well, with many opportunities for
mistakes and oversights. As summarized by the paper “A Nine Year Study of File
System and Storage Benchmarking” [Traeger 08]:

In this article we survey 415 file system and storage benchmarks from 106 recent
papers. We found that most popular benchmarks are flawed and many research
papers do not provide a clear indication of true performance.

The paper also makes recommendations for what should be done; in particular,
benchmark evaluations should explain what was tested and why, and they should
perform some analysis of the system’s expected behavior.

The essence of a good benchmark has also been summarized as [Smaalders 06]

� Repeatable: to facilitate comparisons

� Observable: so that performance can be analyzed and understood

� Portable: to allow benchmarking on competitors and across different prod-
uct releases

� Easily presented: so that everyone can understand the results

� Realistic: so that measurements reflect customer-experienced realities

� Runnable: so that developers can quickly test changes

Another characteristic must be added when comparing different systems with the
intent to purchase: the price/performance ratio. The price can be quantified as the
five-year capital cost of the equipment [Anon 85].

Effective benchmarking is also about how you apply the benchmark: the analy-
sis and the conclusions drawn.

Benchmark Analysis

When using benchmarks, you need to understand

� What is being tested

� What the limiting factor or factors are

590 Chapter 12 � Benchmarking

� Any perturbations that might affect the results

� What conclusions may be drawn from the results

These needs require a deep understanding of what the benchmark software is
doing, how the system is responding, and how the results relate to the destination
environment.

Given a benchmark tool and access to the system that runs it, these needs are
best served by performance analysis of the system while the benchmark is run-
ning. A common mistake is to have junior staff execute the benchmarks, then to
bring in performance experts to explain the results after the benchmark has com-
pleted. It is best to engage the performance experts during the benchmark so they
can analyze the system while it is still running. This may include drill-down analy-
sis to explain and quantify the limiting factor.

The following is an interesting example of analysis:

As an experiment to investigate the performance of the resulting TCP/IP implementa-
tion, we transmitted 4 Megabytes of data between two user processes on different
machines. The transfer was partitioned into 1024 byte records and encapsulated in 1068
byte Ethernet packets. Sending the data from our 11/750 to our 11/780 through TCP/IP
takes 28 seconds. This includes all the time needed to set up and tear down the connec-
tions, for an user-user throughput of 1.2 Megabaud. During this time the 11/750 is CPU
saturated, but the 11/780 has about 30% idle time. The time spent in the system pro-
cessing the data is spread out among handling for the Ethernet (20%), IP packet pro-
cessing (10%), TCP processing (30%), checksumming (25%), and user system call
handling (15%), with no single part of the handling dominating the time in the system.

This describes checking the limiting factors (“the 11/750 is CPU saturated”1), then
explains details of the kernel components causing them. As an aside, being able to
perform this analysis and summarize kernel time so neatly is an unusual skill
today, even with advanced tools such as DTrace. This quote is from Bill Joy while
he was developing the original BSD TCP/IP stack in 1981! [1]

Apart from using a given benchmark tool, you may find it more effective to
develop your own custom benchmark software, or at least custom load generators.
These can be kept short, focusing on only what is needed for your test, making
them quick to analyze and debug.

In some cases you don’t have access to the benchmark tool or the system, as when
reading benchmark results from others. Consider the previous items based on the
materials available, and, in addition, ask, What is the system environment? How is
it configured? You may be permitted to ask the vendor to answer these questions as
well. See Section 12.4, Benchmark Questions, for more vendor questions.

1. 11/750 is short for VAX-11/750, a minicomputer manufactured by DEC in 1980.

12.1 Background 591

12.1.3 Benchmarking Sins

The following sections provide a quick checklist of specific issues to avoid, and how
to avoid them. Section 12.3, Methodology, describes how to perform benchmarking.

Casual Benchmarking

To do benchmarking well is not a fire-and-forget activity. Benchmark tools provide
numbers, but those numbers may not reflect what you think, and your conclusions
about them may therefore be bogus.

Casual benchmarking: you benchmark A, but actually measure B, and conclude you’ve
measured C.

Benchmarking well requires rigor to check what is actually measured and an
understanding of what was tested to form valid conclusions.

For example, many tools claim or imply that they measure disk performance but
actually test file system performance. The difference between these two can be
orders of magnitude, as file systems employ caching and buffering to substitute
disk I/O with memory I/O. Even though the benchmark tool may be functioning
correctly and testing the file system, your conclusions about the disks will be
wildly incorrect.

Understanding benchmarks is particularly difficult for the beginner, who has no
instinct for whether numbers are suspicious or not. If you bought a thermometer
that showed the temperature of the room you’re in as 1,000 degrees Fahrenheit,
you’d immediately know that something was amiss. The same isn’t true of bench-
marks, which produce numbers that are probably unfamiliar to you.

Benchmark Faith

It may be tempting to believe that a popular benchmarking tool is trustworthy,
especially if it is open source and has been around for a long time. The misconcep-
tion that popularity equals validity is known as argumentum ad populum logic
(Latin for “appeal to the people”).

Analyzing the benchmarks you’re using is time-consuming and requires exper-
tise to perform properly. And, for a popular benchmark, it may seem wasteful to
analyze what surely must be valid.

The problem isn’t even necessarily with the benchmark software—although
bugs do happen—but with the interpretation of the benchmark’s results.

Numbers without Analysis

Bare benchmark results, provided with no analytical details, can be a sign that the
author is inexperienced and has assumed that the benchmark results are trustworthy

592 Chapter 12 � Benchmarking

and final. Often, this is just the beginning of an investigation, and one that finds the
results were wrong or confusing.

Every benchmark number should be accompanied by a description of the limit
encountered and the analysis performed. I’ve summarized the risk this way:

If you’ve spent less than a week studying a benchmark result, it’s probably wrong.

Much of this book focuses on analyzing performance, which should be carried
out during benchmarking. In cases where you don’t have time for careful analysis,
it is a good idea to list the assumptions that you haven’t had time to check and
include them with the results, for example:

� Assuming the benchmark tool isn’t buggy

� Assuming the disk I/O test actually measures disk I/O

� Assuming the benchmark tool drove disk I/O to its limit, as intended

� Assuming this type of disk I/O is relevant for this application

This can become a to-do list, if the benchmark result is later deemed important
enough to spend more effort on.

Complex Benchmark Tools

It is important that the benchmark tool not hinder benchmark analysis by its own
complexity. Ideally, the program is open source so that it can be studied, and short
enough that it can be read and understood quickly.

For micro-benchmarks, it is recommended to pick those written in the C pro-
gramming language. For client simulation benchmarks, it is recommended to use
the same programming language as the client, to minimize differences.

A common problem is one of benchmarking the benchmark—where the result
reported is limited by the benchmark software itself. Complex benchmarks suites
can make this difficult to identify, due to the sheer volume of code to comprehend
and analyze.

Testing the Wrong Thing

While there are numerous benchmark tools available to test a variety of work-
loads, many of them may not be relevant for the target application.

For example, a common mistake is to test disk performance—based on the avail-
ability of disk benchmark tools—even though the target environment workload is
expected to run entirely out of file system cache and not be related to disk I/O.

Similarly, an engineering team developing a product may standardize on a partic-
ular benchmark and spend all its performance efforts improving performance as

12.1 Background 593

measured by that benchmark. If it doesn’t actually resemble customer workloads,
however, the engineering effort will optimize for the wrong behavior [Smaalders 06].

A benchmark may have tested an appropriate workload once upon a time but
hasn’t been updated for years and so is now testing the wrong thing. The article
“Eulogy for a Benchmark” describes how a version of the SPEC SFS industry
benchmark, commonly cited during the 2000s, was based on a customer usage
study from 1986 [2].

Ignoring Errors

Just because a benchmark tool produces a result doesn’t mean the result reflects a
successful test. Some—or even all—of the requests may have resulted in an error.
While this issue is covered by the previous sins, this one in particular is so com-
mon that it’s worth singling out.

I was reminded of this during a recent benchmark of web server performance.
Those running the test reported that the average latency of the web server was too
high for their needs: over one second, on average. Some quick analysis determined
what went wrong: the web server did nothing at all during the test, as all requests
were blocked by a firewall. All requests. The latency shown was the time it took for
the benchmark client to time-out and error.

Ignoring Variance

Benchmark tools, especially micro-benchmarks, often apply a steady and consis-
tent workload, based on the average of a series of measurements of real-world
characteristics, such as at different times of day or during an interval. For exam-
ple, a disk workload may be found to have average rates of 500 reads/s and 50
writes/s. A benchmark tool may then either simulate this rate, or simulate the
ratio of 10:1 reads/writes, so that higher rates can be tested.

This approach ignores variance: the rate of operations may be variable. The
types of operations may also vary, and some types may occur orthogonally. For
example, writes may be applied in bursts every 10 s (asynchronous write-back data
flushing), whereas synchronous reads are steady. Bursts of writes may cause real
issues in production, such as by queueing the reads, but are not simulated if the
benchmark applies steady average rates.

Ignoring Perturbations

Consider what external perturbations may be affecting results. Will a timed sys-
tem activity, such as a system backup, execute during the benchmark run? For the
cloud, a perturbation may be caused by unseen tenants on the same system.

A common strategy for ironing out perturbations is to make the benchmark runs
longer—minutes instead of seconds. As a rule, the duration of a benchmark should

594 Chapter 12 � Benchmarking

not be shorter than one second. Short tests might be unusually perturbed by
device interrupts (pinning the thread while performing interrupt service rou-
tines), kernel CPU scheduling decisions (waiting before migrating queued threads
to preserve CPU affinity), and CPU cache warmth effects. Try running the bench-
mark test several times and examining the standard deviation. This should be as
small as possible, to ensure repeatability.

Also collect data so that perturbations, if present, can be studied. This might
include collecting the distribution of operation latency—not just the total runtime
for the benchmark—so that outliers can be seen and their details recorded.

Changing Multiple Factors

When comparing benchmark results from two tests, be careful to understand all
the factors that are different between the two.

For example, if two hosts are benchmarked over the network, is the network
between them identical? What if one host was more hops away, over a slower net-
work, or over a more congested network? Any such extra factors could make the
benchmark result bogus.

In the cloud, benchmarks are sometimes performed by creating instances, test-
ing them, and then destroying them. This creates the potential for many unseen
factors: instances may be created on faster or slower systems, or on systems with
higher load and contention from other tenants. It is recommended to test multiple
instances and take the average (or better, record the distribution) to avoid outliers
caused by testing one unusually fast or slow system.

Benchmarking the Competition

Your marketing department would like benchmark results showing how your prod-
uct beats the competition. This is usually a bad idea, for reasons I’m about to
explain.

When customers pick a product, they don’t use it for 5 minutes; they use it for
months. During that time, they analyze and tune the product for performance, per-
haps shaking out the worst issues in the first few weeks.

You don’t have a few weeks to spend analyzing and tuning your competitor. In
the time available, you can only gather untuned—and therefore unrealistic—
results. The customers of your competitor—the target of this marketing activity—
may well see that you’ve posted untuned results, so your company loses credibility
with the very people it was trying to impress.

If you must benchmark the competition, you’ll want to spend serious time tuning
their product. Analyze performance using the techniques described in earlier chap-
ters. Also search for best practices, customer forums, and bug databases. You may

12.1 Background 595

even want to bring in outside expertise to tune the system. Then make the same
effort for your own company before you finally perform head-to-head benchmarks.

Friendly Fire

When benchmarking your own products, make every effort to ensure that the top-
performing system and configuration have been tested, and that the system has
been driven to its true limit. Share the results with the engineering team before
publication; they may spot configuration items that you have missed. And if you
are on the engineering team, be on the lookout for benchmark efforts—either from
your company or from contracted third parties—and help them out.

Consider this hypothetical situation: An engineering team has worked hard to
develop a high-performing product. Key to its performance is a new technology
that they have developed that has yet to be documented. For the product launch, a
benchmark team has been asked to provide the numbers. They don’t understand
the new technology (it isn’t documented), they misconfigure it, and then they pub-
lish numbers that undersell the product.

Sometimes the system may be configured correctly but simply hasn’t been
pushed to its limit. Ask the question, What is the bottleneck for this benchmark?
This may be a physical resource, such as CPUs, disks, or an interconnect, that has
been driven to 100% and can be identified using analysis. See Section 12.3.2,
Active Benchmarking.

Another friendly fire issue is when benchmarking older versions of the software
that has performance issues that were fixed in later versions, or on limited equip-
ment that happens to be available, producing a result that is not the best possible
(as may be expected by a company benchmark).

Misleading Benchmarks

Misleading benchmark results are common in the industry. Often they are a result
of either unintentionally limited information about what the benchmark actually
measures or deliberately omitted information. Often the benchmark result is tech-
nically correct but is then misrepresented to the customer.

Consider this hypothetical situation: A vendor achieves a fantastic result by
building a custom product that is prohibitively expensive and would never be sold
to an actual customer. The price is not disclosed with the benchmark result, which
focuses on non–price/performance metrics. The marketing department liberally
shares an ambiguous summary of the result (“We are 2x faster!”), associating it in
customers’ minds with either the company in general or a product line. This is a
case of omitting details in order to favorably misrepresent products. While it may
not be cheating—the numbers are not fake—it is lying by omission.

596 Chapter 12 � Benchmarking

Such vendor benchmarks may still be useful for you as upper bounds for perfor-
mance. They are values that you should not expect to exceed (with an exception for
cases of friendly fire).

Consider this different hypothetical situation: A marketing department has a bud-
get to spend on a campaign and wants a good benchmark result to use. They engage
several third parties to benchmark their product and pick the best result from the
group. These third parties are not picked for their expertise; they are picked to deliver
a fast and inexpensive result. In fact, non-expertise might be considered advanta-
geous: the greater the results deviate from reality, the better. Ideally one of them devi-
ates greatly in a positive direction!

When using vendor results, be careful to check the fine print for what system
was tested, what disk types were used and how many, what network interfaces
were used and in which configuration, and other factors. For specifics to be wary of,
see Section 12.4, Benchmark Questions.

Benchmark Specials

A type of sneaky activity—which in the eyes of some is considered a sin and thus
prohibited—is the development of benchmark specials. This is when the vendor
studies a popular or industry benchmark, and then engineers the product so that it
scores well, while disregarding actual customer performance. This is also called
optimizing for the benchmark.

The notion of benchmark specials became known in 1993 with the TPC-A bench-
mark, as described on the Transaction Processing Performance Council (TPC) his-
tory page [3]:

The Standish Group, a Massachusetts-based consulting firm, charged that Oracle had
added a special option (discrete transactions) to its database software, with the sole
purpose of inflating Oracle’s TPC-A results. The Standish Group claimed that Oracle
had “violated the spirit of the TPC” because the discrete transaction option was some-
thing a typical customer wouldn’t use and was, therefore, a benchmark special. Oracle
vehemently rejected the accusation, stating, with some justification, that they had fol-
lowed the letter of the law in the benchmark specifications. Oracle argued that since
benchmark specials, much less the spirit of the TPC, were not addressed in the TPC
benchmark specifications, it was unfair to accuse them of violating anything.

TPC added an anti-benchmark special clause:

All “benchmark special” implementations that improve benchmark results but not
real-world performance or pricing, are prohibited.

As TPC is focused on price/performance, another strategy to inflate numbers
can be to base them on special pricing—deep discounts that no customer would

12.2 Benchmarking Types 597

actually get. Like special software changes, the result doesn’t match reality when a
real customer purchases the system. TPC has addressed this in its price require-
ments [4]:

TPC specifications require that the total price must be within 2% of the price a cus-
tomer would pay for the configuration.

While these examples may help explain the notion of benchmark specials, TPC
addressed them in its specifications many years ago, and you shouldn’t necessar-
ily expect them today.

Cheating

The last sin of benchmarking is cheating: sharing fake results. Fortunately, this is
either rare or nonexistent; I’ve not seen a case of purely made-up numbers being
shared, even in the most bloodthirsty of benchmarking battles.

12.2 Benchmarking Types

A spectrum of benchmark types is pictured in Figure 12.1, based on the workload
they test. The production workload is also included in the spectrum.

The following sections describe the three benchmarking types: micro-benchmarks,
simulations, and trace/replay. Industry-standard benchmarks are also discussed.

12.2.1 Micro-Benchmarking

Micro-benchmarking uses artificial workloads that test a particular type of opera-
tion, for example, performing a single type of file system I/O, database query, CPU
instruction, or system call. The advantage is the simplicity: narrowing the number
of components and code paths involved results in an easier target to study and
allows performance differences to be root-caused quickly. Tests are also usually
repeatable, because variation from other components is factored out as much as

Figure 12-1 Benchmark types

598 Chapter 12 � Benchmarking

possible. Micro-benchmarks are also usually quick to test on different systems.
And because they are deliberately artificial, micro-benchmarks are not easily con-
fused with real workload simulations.

For micro-benchmark results to be consumed, they need to be mapped to the
target workload. A micro-benchmark may test several dimensions, but only one or
two may be relevant. Performance analysis or modeling of the target system can
help determine which micro-benchmark results are appropriate, and to what
degree.

Example micro-benchmark tools mentioned in previous chapters include, by
resource type,

� CPU: UnixBench, SysBench

� Memory I/O: lmbench (in Chapter 6, CPUs)

� File system: Bonnie, Bonnie++, SysBench, fio

� Disk: hdparm

� Network: iperf

There are many, many more benchmark tools available. However, remember the
warning from [Traeger 08]: “Most popular benchmarks are flawed.”

You can also develop your own. Aim to keep them as simple as possible, identify-
ing attributes of the workload that can be tested individually. (See Section 12.3.6,
Custom Benchmarks, for more about this.)

Design Example

Consider designing a file system micro-benchmark to test the following attributes:
sequential or random I/O, I/O size, and direction (read or write). Table 12.1 shows
five sample tests to investigate these dimensions, along with the reason for each
test.

Table 12-1 Sample File System Micro-Benchmark Tests

Test Intent

1 sequential 512-byte reads to test maximum (realistic) IOPS

2 sequential 128-Kbyte reads to test maximum read throughput

3 sequential 128-Kbyte writes to test maximum write throughput

4 random 512-byte reads to test the effect of random I/O

5 random 512-byte writes to test the effect of rewrites

12.2 Benchmarking Types 599

More tests can be added as desired. All of these tests are multiplied by two addi-
tional factors:

� Working set size: the size of the data being accessed (e.g., total file size):

– Much smaller than main memory: so that the data caches entirely in the
file system cache, and the performance of the file system software can be
investigated

– Much larger than main memory: to minimize the effect of the file system
cache and drive the benchmark toward testing disk I/O

� Thread count: assuming a small working set size:

– Single-threaded to test file system performance based on the current CPU
clock speed

– Multithreaded—sufficient to saturate all CPUs—to test the maximum per-
formance of the system: file system and CPUs

These can quickly multiply to form a large matrix of tests. There are statistical
analysis techniques to reduce the required set to test.

Creating benchmarks that focus on top speeds has been called sunny day perfor-
mance testing. So that issues are not overlooked, you also want to consider cloudy
day performance testing, which involves testing nonideal situations, including con-
tention, perturbations, and workload variance.

12.2.2 Simulation

Many benchmarks simulate customer application workloads (and are sometimes
called macro-benchmarks). These may be based on workload characterization of
the production environment (see Chapter 2, Methodology) to determine the charac-
teristics to simulate. For example, it may be found that a production NFS work-
load is composed of the following operation types and probabilities: reads, 40%;
writes, 7%; getattr, 19%; readdir, 1%; and so on. Other characteristics can also be
measured and simulated.

Simulations can produce results that resemble how clients will perform with the
real-world workload, if not closely, at least close enough to be useful. They can
encompass many factors that would be time-consuming to investigate using micro-
benchmarking. Simulations can also include the effects of complex system interac-
tions that may be missed altogether when using micro-benchmarks.

The CPU benchmarks Whetstone and Dhrystone, introduced in Chapter 6,
CPUs, are examples of simulations. Whetstone was developed in 1972 to simulate
scientific workloads of the time. Dhrystone, from 1984, simulates integer-based

600 Chapter 12 � Benchmarking

workloads of the time. The SPEC SFS benchmark, mentioned earlier, is another
workload simulation.

A workload simulation may be stateless, where each server request is unrelated
to the previous request. For example, the NFS server workload described previ-
ously may be simulated by requesting a series of operations, with each operation
type chosen randomly based on the measured probability.

A simulation may also be stateful, where each request is dependent on client
state, at minimum the previous request. It may be found that NFS reads and
writes tend to arrive in groups, such that the probability of a write when the previ-
ous operation was a write is much higher than if it were a read. Such a workload
can be better simulated using a Markov model, by representing requests as states
and measuring the probability of state transitions [Jain 91].

A problem with simulations is that they can ignore variance, as described in
Section 12.1.3, Benchmarking Sins. Customer usage patterns can also change over
time, requiring these simulations to be updated and adjusted to stay relevant.
There may be resistance to this, however, if there are already published results
based on the older benchmark version, which would no longer be usable for com-
parisons with the new version.

12.2.3 Replay

A third type of benchmarking involves attempting to replay a trace log to the tar-
get, testing its performance with the actual captured client operations. This
sounds ideal—as good as testing in production, right? It is, however, problematic:
when characteristics and delivered latency change on the server, the captured cli-
ent workload is unlikely to respond naturally to these differences, which may
prove no better than a simulated customer workload. When too much faith is
placed in it, it can be worse.

Consider this hypothetical situation: A customer is considering upgrading stor-
age infrastructure. The current production workload is traced and replayed on the
new hardware. Unfortunately, performance is worse, and the sale is lost. The prob-
lem: the trace/replay operated at the disk I/O level. The old system housed 10 K
rpm disks, and the new system houses slower 7,200 rpm disks. However, the new
system provides 16 times the amount of file system cache and faster processors.
The actual production workload would have improved, as it would have returned
largely from cache—which was not simulated by replaying disk events.

While this is a case of testing the wrong thing, other subtle timing effects can
mess things up, even with the correct level of trace/replay. As with all bench-
marks, it is crucial to analyze and understand what’s going on.

12.2 Benchmarking Types 601

12.2.4 Industry Standards

Industry-standard benchmarks are available from independent organizations,
which aim to create fair and relevant benchmarks. These are usually a collection of
different micro-benchmarks and workload simulations that are well defined and
documented and must be executed under certain guidelines so that the results are
as intended. Vendors may participate (usually for a fee), which provides the ven-
dor with the software to execute the benchmark. Their result usually requires full
disclosure of the configured environment, which may be audited.

For the customer, these benchmarks can save a lot of time, as benchmark results
may already be available for a variety of vendors and products. The task for you,
then, is to find the benchmark that most closely resembles your future or current
production workload. For current workloads, this may be determined by workload
characterization.

The need for industry-standard benchmarks was made clear by a 1985 paper
titled “A Measure of Transaction Processing Power” by Jim Gray and others [Anon
85]. It described the need to measure price/performance ratio and detailed three
benchmarks that vendors could execute, called Sort, Scan, and DebitCredit. It also
suggested an industry-standard measure of transactions per second (TPS), based
on DebitCredit, which could be used much like miles per gallon for cars. Jim Gray
and his work later encouraged the creation of the TPC [DeWitt 08].

Apart from the TPS measure, others that have been used for the same role
include

� MIPS: millions of instructions per second. While this is a measure of perfor-
mance, the work that is performed depends on the type of instruction, which
may be difficult to compare between different processor architectures.

� FLOPS: floating-point operations per second—a similar role to MIPS, but for
workloads that make heavy use of floating-point calculations.

Industry benchmarks typically measure a custom metric based on the bench-
mark, which serves only for comparisons with itself.

TPC

The TPC creates and administers various industry benchmarks, with a focus on
database performance. These include

� TPC-C: a simulation of a complete computing environment where a popula-
tion of users executes transactions against a database.

602 Chapter 12 � Benchmarking

� TPC-DS: a simulation of a decision support system, including queries and
data maintenance.

� TPC-E: an online transaction processing (OLTP) workload, modeling a bro-
kerage firm database with customers who generate transactions related to
trades, account inquiries, and market research.

� TPC-H: a decision support benchmark, simulating ad hoc queries and con-
current data modifications.

� TPC-VMS: The TPC Virtual Measurement Single System allows other
benchmarks to be gathered for virtualized databases.

TPC results are shared online [5] and include price/performance.

SPEC

The Standard Performance Evaluation Corporation (SPEC) develops and pub-
lishes a standardized set of industry benchmarks, including

� SPEC CPU2006: a measure of compute-intensive workloads. This includes
CINT2006 for integer performance, and CFP2006 for floating-point
performance.

� SPECjEnterprise2010: a measure of full-system performance for Java
Enterprise Edition (Java EE) 5 or later application servers, databases, and
supporting infrastructure.

� SPECsfs2008: a simulation of a client file access workload for NFS and com-
mon Internet file system (CIFS) servers (see [2]).

� SPECvirt_sc2010: For virtualized environments, this measures the perfor-
mance of the virtualized hardware, the platform, and the guest operating sys-
tem and application software.

SPEC’s results are shared online [6] and include details of how systems were
tuned and a list of components, but not usually price.

12.3 Methodology

This section describes methodologies and exercises for performing benchmarking,
whether micro-benchmarking, simulations, or replays. The topics are summarized
in Table 12.2.

12.3 Methodology 603

12.3.1 Passive Benchmarking

This is the fire-and-forget strategy of benchmarking—where the benchmark is exe-
cuted and then ignored until it has completed. The main objective is the collection
of benchmark data. This is how benchmarks are commonly executed and is
described as its own methodology for comparison with active benchmarking.

These are some example passive benchmarking steps:

1. Pick a benchmark tool.

2. Run it with a variety of options.

3. Make a slide deck of the results.

4. Hand the slides to management.

Problems with this approach have been discussed previously. In summary, the
results may be

� Invalid due to benchmark software bugs

� Limited by the benchmark software (e.g., single-threaded)

� Limited by a component that is unrelated to the benchmark target (e.g., a
congested network)

� Limited by configuration (performance features not enabled, not a maximum
configuration)

� Subject to perturbations (and not repeatable)

� Benchmarking the wrong thing entirely

Table 12-2 Benchmark Analysis Methodologies

Methodology Types

Passive benchmarking experimental analysis

Active benchmarking observational analysis

CPU profiling observational analysis

USE method observational analysis

Workload characterization observational analysis

Custom benchmarks software development

Ramping load experimental analysis

Sanity check observational analysis

Statistical analysis statistical analysis

604 Chapter 12 � Benchmarking

Passive benchmarking is easy to perform but prone to errors. When performed
by the vendor, it can create false alarms that waste engineering resources or cause
lost sales. When performed by the customer, it can result in poor product choices
that haunt the company later on.

12.3.2 Active Benchmarking

With active benchmarking, you analyze performance while the benchmark is run-
ning—not just after it’s done—using other tools. You can confirm that the bench-
mark tests what it says it tests, and that you understand what that is. Active
benchmarking can also identify the true limiters of the system under test, or of the
benchmark itself. It can be very helpful to include specific details of the limit
encountered when sharing the benchmark results.

As a bonus, this can be a good time to develop your skills with performance
observability tools. In theory, you are examining a known load and can see how it
appears from these tools.

Ideally, the benchmark can be configured and left running in steady state, so
that analysis can be performed over a period of hours or days.

Example

As an example, let’s look at the first test of the Bonnie++ micro-benchmark tool. It
is described on its home page [7]:

Bonnie++ is a benchmark suite that is aimed at performing a number of simple tests
of hard drive and file system performance.

The first test is “Sequential Output” and “Per Chr” and was executed on two dif-
ferent operating systems for comparison.

Fedora/Linux (under KVM virtualization):

SmartOS/illumos (under OS virtualization):

bonnie++
[...]
Version 1.03e ------Sequential Output------ --Sequential Input- --Random-

-Per Chr- --Block-- -Rewrite- -Per Chr- --Block-- --Seeks--
Machine Size K/sec %CP K/sec %CP K/sec %CP K/sec %CP K/sec %CP /sec %CP
9d219ce8-cf52-40 2G 52384 23 47334 3 31938 3 74866 67 1009669 61 +++++ +++
[...]

bonnie++
Version 1.03e ------Sequential Output------ --Sequential Input- --Random-

-Per Chr- --Block-- -Rewrite- -Per Chr- --Block-- --Seeks--

12.3 Methodology 605

So SmartOS is 3.1x faster. If we were to stop right here, that would be passive
benchmarking.

Given that Bonnie++ is a “hard drive and file system performance” benchmark,
we can begin by checking the workload that was performed.

Running iostat(1M) on SmartOS to check disk I/O:

The disks begin idle, then show variable write throughput during the benchmark
(kw/s), at a rate much lower than what Bonnie++ reported as its K/sec result.

Running vfsstat(1M) on SmartOS to check file system I/O (VFS-level):

Now the throughput is consistent with the Bonnie++ result. The IOPS, however,
are not: vfsstat(1M) shows the writes are about 128 Kbytes each (kw/s / w/s),
and not “Per Chr.”

Using truss(1) on SmartOS to investigate the writes to the file system (ignor-
ing the overhead of truss(1) for the moment):

This confirms that Bonnie++ is performing 128 Kbyte file system writes.

Machine Size K/sec %CP K/sec %CP K/sec %CP K/sec %CP K/sec %CP /sec %CP
smartos1.local 2G 162464 99 72027 86 65222 99 251249 99 2426619 99 +++++ +++
[...]

$ iostat -xnz 1
[...]
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device

 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device

 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 0.0 668.9 0.0 82964.3 0.0 6.0 0.0 8.9 1 60 c0t1d0

 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 0.0 419.0 0.0 53514.5 0.0 10.0 0.0 23.8 0 100 c0t1d0
[...]

$ vfsstat 1
 r/s w/s kr/s kw/s ractv wactv read_t writ_t %r %w d/s del_t zone
[...]
 45.3 1514.7 4.5 193877.3 0.0 0.1 0.0 0.0 0 6 412.4 5.5 b8b2464c
 45.3 1343.6 4.5 171979.4 0.0 0.1 0.0 0.1 0 7 1343.6 14.0 b8b2464c
 45.3 1224.8 4.5 156776.9 0.0 0.1 0.0 0.1 0 6 1157.9 12.2 b8b2464c
 45.3 1224.8 4.5 156776.9 0.0 0.1 0.0 0.1 0 6 1157.9 12.2 b8b2464c

write(4, "\001020304050607\b\t\n\v".., 131072) = 131072
write(4, "\001020304050607\b\t\n\v".., 131072) = 131072
write(4, "\001020304050607\b\t\n\v".., 131072) = 131072

606 Chapter 12 � Benchmarking

Using strace(1) on Fedora for comparison:

This shows that Fedora is performing 4 Kbyte file system writes, whereas SmartOS
was performing 128 Kbyte writes.

With more analysis (using DTrace), this was seen to be buffering of putc() in
the system library, with each operating system defaulting to a different buffering
size. As an experiment, Bonnie++ on Fedora was adjusted to use a 128 Kbyte buf-
fer (using setbuffer()), which improved its performance by 18%.

Active performance analysis determined various other characteristics of how
this test was performed, providing a better understanding of the result [8]. The
conclusion was that it was ultimately limited by single-threaded CPU speed and
spent 85% of its CPU time in user mode.

Bonnie++ is not an unusually bad benchmark tool; it has served people well on
many occasions. I picked it for this example (and also chose the most suspicious of
its tests to study) because it’s well known, I’ve studied it before, and findings like
this are not uncommon. But it is just one example.

It should be noted that a newer experimental version of Bonnie++ has changed
the “Per Chr” test to actually perform 1-byte file system I/O. Comparing results
between different Bonnie++ versions, for this test, will show significant differ-
ences. For more about Bonnie++ performance analysis, see the article by Roch
Bourbonnais on “Decoding Bonnie++” [9].

12.3.3 CPU Profiling

CPU profiling of both the benchmark target and the benchmark software is worth
singling out as a methodology, because it can result in some quick discoveries. It is
often performed as part of an active benchmarking investigation.

The intent is to quickly check what all the software is doing, to see if anything
interesting shows up. This can also narrow your study to the software components
that matter the most: those in play for the benchmark.

Both user- and kernel-level stacks can be profiled. User-level CPU profiling was
introduced in Chapter 5, Applications. Both were covered in Chapter 6, CPUs, with
examples in Section 6.6, Analysis, including flame graphs.

Example

A disk micro-benchmark was performed on a proposed new system with some dis-
appointing results: disk throughput was worse than on the old system. I was asked

write(3, "\0\1\2\3\4\5\6\7\10\t\n\v\f\r\16\17\20\21\22\23\24"..., 4096) = 4096
write(3, "\0\1\2\3\4\5\6\7\10\t\n\v\f\r\16\17\20\21\22\23\24"..., 4096) = 4096
write(3, "\0\1\2\3\4\5\6\7\10\t\n\v\f\r\16\17\20\21\22\23\24"..., 4096) = 4096

12.3 Methodology 607

to find out what was wrong, with the expectation that either the disks or the disk
controller was inferior and should be upgraded.

I began with the USE method (Chapter 2, Methodology) and found that the
disks were not very busy, despite that being the point of the benchmark test. There
was some CPU usage, in system-time (the kernel).

For a disk benchmark, you might not expect the CPUs to be an interesting tar-
get for analysis. Given some CPU usage in the kernel, I thought it was worth a
quick check to see if anything interesting showed up, even though I didn’t expect it
to. I profiled and generated the flame graph shown in Figure 12.2.

Browsing the stack frames showed that 62.17% of CPU samples included a func-
tion called zfs_zone_io_throttle(). I didn’t need to read the code for this
function, as its name was enough of a clue: a resource control, ZFS I/O throttling,
was active and artificially throttling the benchmark! This was a default setting on
the new system (but not the older system) and had been overlooked when the
benchmark was performed.

12.3.4 USE Method

The USE method was introduced in Chapter 2, Methodology, and is described in
chapters for the resources it studies. Applying the USE method during benchmarking

Figure 12-2 Flame graph profiling of kernel-time

608 Chapter 12 � Benchmarking

can ensure that a limit is found. Either some component, hardware or software,
has reached 100% utilization, or you are not driving the system to its limit.

An example of using the USE method was described in Section 12.3.2, Active
Benchmarking, where it helped discover that a disk benchmark was not working
as intended.

12.3.5 Workload Characterization

Workload characterization was also introduced in Chapter 2, Methodology, and dis-
cussed in later chapters. This methodology can be used to determine how well a
given benchmark relates to a current production environment by characterizing
the production workload for comparison.

12.3.6 Custom Benchmarks

For simple benchmarks, it may be desirable to code the software yourself. Try to
keep the program as short as possible, to avoid complexity that hinders analysis.

The C programming language is usually a good choice, as it maps closely to
what is executed—although think carefully about how compiler optimizations will
affect your code: the compiler may elide simple benchmark routines if it thinks the
output is unused and therefore unnecessary to calculate. It may be worth disas-
sembling the compiled binary to see what will actually be executed.

Languages that involve virtual machines, asynchronous garbage collection, and
dynamic runtime compilation can be much more difficult to debug and control with
reliable precision. You may need to use such languages anyway, if it is necessary to
simulate client software written in them.

Writing custom benchmarks can also reveal subtle details about the target that
can prove useful later on. For example, when developing a database benchmark,
you may discover that the API supports various options for improving perfor-
mance that are not currently in use in the production environment, which was
developed before the options existed.

Your software may simply generate load (a load generator) and leave the mea-
surements for other tools. One way to perform this is to ramp load.

12.3.7 Ramping Load

This is a simple method for determining the maximum throughput a system can han-
dle. In involves adding load in small increments and measuring the delivered through-
put until a limit is reached. The results can be graphed, showing a scalability profile.

12.3 Methodology 609

This profile can be studied visually or by using scalability models (see Chapter 2,
Methodology).

As an example, Figure 12.3 shows how a file system and system scale with
threads. Each thread performs 8 Kbyte random reads on a cached file, and these
were added one by one.

This system peaked at almost half a million reads per second. The results were
checked using VFS-level statistics, which confirmed that the I/O size was 8 Kbytes,
and that at peak over 3.5 Gbytes/s was transferred.

The load generator for this test was written in Perl and is short enough to
include entirely as an example:

Figure 12-3 Ramping file system load

#!/usr/bin/perl -w
#
randread.pl - randomly read over specified file.

use strict;

my $IOSIZE = 8192; # size of I/O, bytes
my $QUANTA = $IOSIZE; # seek granularity, bytes

die "USAGE: randread.pl filename\n" if @ARGV != 1 or not -e $ARGV[0];
continues

610 Chapter 12 � Benchmarking

This uses sysread() to call the read() syscall directly and avoid buffering.
This was written to micro-benchmark an NFS server and was executed in paral-

lel from a farm of clients, each performing random reads on an NFS-mounted file.
The results of the micro-benchmark (reads per second) were measured on the NFS
server, using nfsstat(1M) and other tools.

The number of files used and their combined size were controlled (this forms the
working set size), so that some tests could return entirely from cache, and others
from disk. (See Design Example in Section 12.2.1, Micro-Benchmarking.)

The number of instances executing on the client farm was incremented one by
one, to ramp up the load until a limit was reached. This was also graphed to study
the scalability profile, along with resource utilization (USE method), confirming
that a resource had been exhausted. In this case it was CPU resources, which initi-
ated another investigation to improve performance further.

I used this program and this approach to find the limits in the Oracle ZFS Storage
Appliance (formally the Sun ZFS Storage Appliance [10]). These limits were used as
the official results—which to the best of our knowledge set world records. I also had a
similar set of software written in C, but it wasn’t needed in this case: I had an abun-
dance of client CPUs, and while the switch to C reduced their utilization, it didn’t
make a difference for the result as the same bottleneck was reached on the target.
Other, more sophisticated benchmarks were also tried, as well as other languages, but
they could not improve upon these results.

When following this approach, measure latency as well as the throughput, espe-
cially the latency distribution. Once the system approaches its limit, queueing
delays may become significant, causing latency to increase. If you push load too high,
latency may become so high that it is no longer reasonable to consider the result as
valid. Ask yourself if the delivered latency would be acceptable to a customer.

For example: You use a large array of clients to drive a target system to 990,000
IOPS, which responds with an average I/O latency of 5 ms. You’d really like it to
break 1 million IOPS, but the system is already reaching saturation. By adding
more and more clients, you manage to scrape past 1 million IOPS; however, all

my $file = $ARGV[0];
my $span = -s $file; # span to randomly read, bytes
my $junk;

open FILE, "$file" or die "ERROR: reading $file: $!\n";

while (1) {
 seek(FILE, int(rand($span / $QUANTA)) * $QUANTA, 0);

sysread(FILE, $junk, $IOSIZE);
}

close FILE;

12.3 Methodology 611

operations are now heavily queued, with average latency of over 50 ms (which is
not acceptable)! Which result do you give marketing? (Answer: 990,000 IOPS.)

12.3.8 Sanity Check

This is an exercise for checking a benchmark result by investigating whether any
characteristic doesn’t make sense. It includes checking whether the result would
have required some component to exceed its known limits, such as network band-
width, controller bandwidth, interconnect bandwidth, or disk IOPS. If any limit
has been exceeded, it is worth investigating in more detail. In most cases, this
exercise ultimately discovers that the benchmark result is bogus.

Here’s an example: An NFS server is benchmarked with 8 Kbyte reads and is
reported to deliver 50,000 IOPS. It is connected to the network using a single 1 Gbit/s
Ethernet port. The network throughput required to drive 50,000 IOPS x 8 Kbytes =
400,000 Kbytes/s, plus protocol headers. This is over 3.2 Gbits/s—well in excess of
the 1 Gbit/s known limit. Something is wrong!

Results like this usually mean the benchmark has tested client caching and not
driven the entire workload to the NFS server.

I’ve used this calculation to identify numerous bogus benchmarks, which have
included the following throughputs over a 1 Gbit/s interface [11]:

� 120 Mbytes/s

� 200 Mbytes/s

� 350 Mbytes/s

� 800 Mbytes/s

� 1.15 Gbytes/s

These are all throughputs in a single direction. The 120 Mbyte/s result may be
fine—a 1 Gbit/s interface should reach around 119 Mbytes/s. The 200 Mbyte/s
result is possible only if there was heavy traffic in both directions and this was
summed; however, these are single-direction results. The 350 Mbyte/s and beyond
results are bogus.

When you’re given a benchmark result to check, look for what simple sums you
can perform on the provided numbers to discover such limits.

If you have access to the system, it may be possible to further test results by con-
structing new observations or experiments. This can follow the scientific method: the
question you’re testing now is whether the benchmark result is valid. From this,
hypotheses and predictions may be drawn and then tested for verification.

612 Chapter 12 � Benchmarking

12.3.9 Statistical Analysis

Statistical analysis is a process for the collection and study of benchmark data. It
follows three phases:

1. Selection of the benchmark tool, its configuration, and system performance
metrics to capture

2. Execution of the benchmark, collecting a large dataset of results and metrics

3. Interpretation of the data with statistical analysis, producing a report

Unlike active benchmarking, which focuses on analysis of the system while the
benchmark is running, statistical analysis focuses on analyzing the results. It is
also different from passive benchmarking, in which no analysis is performed at all.

This approach is used in environments where access to a large-scale system may
be both time-limited and expensive. For example, there may be only one “max con-
fig” system available, but many teams want access to run tests at the same time,
including

� Sales: during proof of concepts, to run a simulated customer load to show
what the max config system can deliver

� Marketing: to get the best numbers for a marketing campaign

� Support: to investigate pathologies that arise only on the max config sys-
tem, under serious load

� Engineering: to test the performance of new features and code changes

� Quality: to perform non-regression testing and certifications

Each team may have only a limited time to run its benchmarks on the system, but
much more time to analyze the results afterward.

As the collection of metrics is expensive, make an extra effort to ensure that
they are reliable and trustworthy, to avoid having to redo them later if a problem
is found. Apart from checking how they are generated technically, you can also col-
lect more statistical properties so that problems can be found sooner. These may
include statistics for variation, full distributions, error margins, and others (see
Section 2.8, Statistics, in Chapter 2, Methodology). When benchmarking for code
changes or non-regression testing, it is crucial to understand the variation and
error margins, in order to make sense of a pair of results.

Also collect as much performance data as possible from the running system
(without harming the result due to the collection overhead), so that forensic analy-
sis can be performed afterward on this data. Data collection may include the use of

12.4 Benchmark Questions 613

tools such as sar(1), third-party products, and custom tools that dump all statis-
tics available.

For example, on Linux, a custom shell script may copy the contents of the /proc
statistic files before and after the run. Everything possible can be included, in case
it is needed. Such a script may also be executed at intervals during the bench-
mark, provided the performance overhead is acceptable. Other statistical tools may
also be used to create logs.

On Solaris-based systems, kstat -p can be used to dump all kernel statistics,
which can be recorded before and after the run and also at intervals. This output is
easy to parse and can be imported into a database for advanced analysis.

Statistical analysis of results and metrics can include scalability analysis and
queueing theory to model the system as a network of queues. These topics were
introduced in Chapter 2, Methodology, and are the subject of separate texts ([Jain
91], [Gunther 97], [Gunther 07]).

12.4 Benchmark Questions

If a vendor gives you a benchmark result, there are a number of questions you can
ask to better understand and apply it to your environment. The goal is to deter-
mine what is really being measured and how realistic or repeatable the result is.

The hardest question may be: Can I reproduce the result myself?
The benchmark result may be from an extreme hardware configuration (e.g.,

DRAM disks), special-case tuning (e.g., striped disks), a stroke of luck (not repeat-
able), or a measurement error. Any of these can be determined if you are able to
run it in your own data center and perform your own analysis: active benchmark-
ing. This does, however, consume a lot of your time.

Here are some other questions that may be asked:

� In general:

– What was the configuration of the system under test?

– Was a single system tested, or is this the result of a cluster of systems?

– What is the cost of the system under test?

– What was the configuration of the benchmark clients?

– What was the duration of the test?

– Is the result an average or a peak? What is the average?

– What are other distribution details (standard deviation, percentiles, or full
distribution details)?

– What was the limiting factor of the benchmark?

614 Chapter 12 � Benchmarking

– What was the operation success/fail ratio?

– What were the operation attributes?

– Were the operation attributes chosen to simulate a workload? How were
they selected?

– Does the benchmark simulate variance, or an average workload?

– Was the benchmark result confirmed using other analysis tools? (Provide
screen shots.)

– Can an error margin be expressed with the benchmark result?

– Is the benchmark result reproducible?

� For CPU/memory-related benchmarks:

– What processors were used?

– Were any CPUs disabled?

– How much main memory was installed? Of what type?

– Were any custom BIOS settings used?

� For storage-related benchmarks:

– What is the storage device configuration (how many were used, their type,
RAID configuration)?

– What is the file system configuration (how many were used, and their
tuning)?

– What is the working set size?

– To what degree did the working set cache? Where did it cache?

– How many files were accessed?

� For network-related benchmarks:

– What was the network configuration (how many interfaces were used,
their type and configuration) ?

– What TCP settings were tuned?

When studying industry benchmarks, many of these questions may be answered
from the disclosure details.

12.5 Exercises

1. Answer the following conceptual questions:

� What is a micro-benchmark?

12.6 References 615

� What is working set size, and how might it affect the results of storage
benchmarks?

� What is the reason for studying the price/performance ratio?

2. Choose a micro-benchmark and perform the following tasks:

� Scale a dimension (threads, I/O size, . . .) and measure performance.

� Graph the results (scalability).

� Use the micro-benchmark to drive the target to peak performance, and ana-
lyze the limiting factor.

12.6 References

[Anon 85] Anon et al. “A Measure of Transaction Processing Power,” Data-
mation, April 1, 1985.

[Jain 91] Jain, R. The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simulation,
and Modeling. Wiley, 1991.

[Gunther 97] Gunther, N. The Practical Performance Analyst. McGraw-Hill,
1997.

[Smaalders 06] Smaalders, B. “Performance Anti-Patterns,” ACM Queue 4, no. 1
(February 2006).

[Gunther 07] Gunther, N. Guerrilla Capacity Planning. Springer, 2007.

[DeWitt 08] DeWitt, D., and C. Levine. “Not Just Correct, but Correct and
Fast,” SIGMOD Record, 2008.

[Traeger 08] Traeger, A., E. Zadok, N. Joukov, and C. Wright. “A Nine Year
Study of File System and Storage Benchmarking,” ACM Trans-
actions on Storage, 2008.

[1] http://www.rfc-editor.org/rfc/museum/tcp-ip-digest/tcp-ip-
digest.v1n6.1

[2] http://dtrace.org/blogs/bmc/2009/02/02/eulogy-for-a-benchmark/

[3] www.tpc.org/information/about/history.asp

[4] www.tpc.org/information/other/pricing_guidelines.asp

[5] www.tpc.org

../../../../../www.rfc-editor.org/rfc/museum/tcp-ip-digest/tcp-ipdigest.v1n6.1
../../../../../www.rfc-editor.org/rfc/museum/tcp-ip-digest/tcp-ipdigest.v1n6.1
../../../../../dtrace.org/blogs/bmc/2009/02/02/eulogy-for-a-benchmark/default.htm
../../../../../www.tpc.org/information/about/history.asp
../../../../../www.tpc.org/information/other/pricing_guidelines.asp
../../../../../www.tpc.org/default.htm

616 Chapter 12 � Benchmarking

[6] www.spec.org

[7] www.coker.com.au/bonnie++/

[8] http://dtrace.org/blogs/brendan/2012/10/23/active-benchmarking/

[9] https://blogs.oracle.com/roch/entry/decoding_bonnie

[10] http://dtrace.org/blogs/brendan/2009/05/26/performance-testing-
the-7000-series-part-3-of-3/

[11] www.beginningwithi.com/comments/2009/11/11/brendan-gregg-
at-frosug-oct-2009/

../../../../../www.spec.org/default.htm
../../../../../www.coker.com.au/bonnie++/default.htm
../../../../../dtrace.org/blogs/brendan/2012/10/23/active-benchmarking/default.htm
../../../../../https@blogs.oracle.com/roch/entry/decoding_bonnie
../../../../../dtrace.org/blogs/brendan/2009/05/26/performance-testingthe-7000-series-part-3-of-3/default.htm
../../../../../dtrace.org/blogs/brendan/2009/05/26/performance-testingthe-7000-series-part-3-of-3/default.htm
../../../../../www.beginningwithi.com/comments/2009/11/11/brendan-greggat-frosug-oct-2009/default.htm
../../../../../www.beginningwithi.com/comments/2009/11/11/brendan-greggat-frosug-oct-2009/default.htm

617

13
Case Study

This chapter is a systems performance case study: the story of a real-world perfor-
mance issue, from initial report to final resolution. This particular issue occurred
in a production cloud computing environment; I chose it as a routine example of
systems performance analysis.

My intent in this chapter is not to introduce new technical content but to use story-
telling to show how tools and methodologies may be applied in practice, in a real
work environment. This should be especially useful for beginners who have yet to
work on real-world systems performance issues, providing an over-the-shoulder view
of how an expert approaches them, a commentary on what that expert might be
thinking during the analysis, and why. This isn’t necessarily documenting the best
approach possible, but rather why one approach was taken.

All names have been changed to protect the innocent. Any resemblance to real
servers, online or offline, is purely coincidental.

13.1 Case Study: The Red Whale

You’ve got mail!

Hey, Brendan, I know we keep context switching here, but if you get the chance tomor-
row, could you take a look at this NiftyFy server? It may be consistent with some of
your existing findings on performance. Nathan took a look but couldn’t determine the
cause.

618 Chapter 13 � Case Study

So began an e-mail from James, a sales rep, who copy-and-pasted the help desk
ticket into the e-mail. I was a little irritated; I was trying to solve two other cases
at the same time and didn’t want the distraction.

I work at Joyent, a cloud computing provider. While I work in engineering, I’m
also the final point of escalation for performance issues from our support and oper-
ations teams. Customer problems can arise with just about any application or
database running on SmartOS Zones, or KVM instances of Linux or Windows.

I decided to hop on this new issue immediately and look at it for 15 minutes or
so, hoping to find some quick answer. If it looked like it might take longer, I’d need
to compare its priority with that of the other cases I was working on.

The first step was to read the help desk ticket for the problem statement.

13.1.1 Problem Statement

The problem statement described software versions and configuration and com-
mented on CPU usage variability. The customer had only recently moved onto
Joyent SmartMachines (SmartOS Zones) and was surprised to find that they could
use system tools to observe the physical CPUs, including the utilization rate
caused by all tenants in combination.

I scanned their description to find out the following:

� What made them think there was a performance problem?

� Could their problem (if any) be expressed in terms of latency or runtime?

The answer to the first question would tell me how real the issue might be, and I
could use the second to double-check the issue myself. Many tickets turn out to be
just confusion about a system metric, rather than a real application issue, so veri-
fying this early on can save time. However, the answers to these two questions are
not always available to begin with.

From the customer description I learned that they were using some application
called Redis, and

� The traceroute(1M) command was used to test the network route and
latency to the server, and it was reporting packet drops.

� Sometimes Redis returned with latency over one second.

The customer suspected that these two findings were related. However, that
first detail suggested to me that the issue was not, in fact, real: on these systems,
traceroute(1M) defaults to the UDP protocol, which is permitted by design to be
unreliable, and so network infrastructure may drop those packets to favor more

13.1 Case Study: The Red Whale 619

important TCP packets. If they had been using a TCP-based test, packet drops
should not occur or would be negligible.

The second point was useful—something I could measure.
Based on previous cases with similar details, I could guess that my final conclu-

sion would be one of the following, and I could even predict the likelihood of each:

� 60%: traceroute(1M) dropped packets are a red herring, and the one-second
Redis latency turns out to be normal for some application-level reason.

� 30%: traceroute(1M) dropped packets are a red herring. There is an
entirely different issue causing the one-second Redis latency.

� 10%: traceroute(1M) dropped packets are related to the issue—the net-
work actually is dropping packets.

That first, most likely (60%) outcome is the sort that ends with “Oh, yeah, it’s sup-
posed to do that.” It may be new to the customer, as they were just learning Redis,
but it would be obvious to a Redis expert.

13.1.2 Support

The ticket history included details of how Joyent support had analyzed the issue.
When they learned that the customer was using a third-party monitoring tool to
analyze Redis performance, they asked for access to it and confirmed that the
latency sometimes spiked as high as reported. They also tried to reproduce packet
drops using traceroute(1M) but were unable to. They noted that the source loca-
tion might be relevant if traceroute(1M) takes different network paths, some
less reliable than others (which is a good guess). They tried it from different loca-
tions but were still unable to reproduce the packet drops.

Nathan on the operations team then took a look. He set up curl(1) to mea-
sure latency, using a nearby host as a client to minimize the network components
involved. By calling curl(1) in a loop, he was eventually able to catch an instance
of over 200 ms latency—not the one second expected, but still much greater than
the normal, which he had found to be less than 1 ms while testing. In other words:
an outlier.

He also used his own ad hoc checklist to quickly run through the system. He
found that the CPUs were fine, with plenty of idle headroom, and that network I/O
was moderate but not causing a problem. For a couple of reasons, it was looking
less and less as if the problem might be caused by network packet drops:

� Nathan tested using a nearby client in the same data center. For the 200 ms
outlier to be caused by packet drops on faulty or saturated network equipment,

620 Chapter 13 � Case Study

there would have to be problems with the switches and routers within our
data center—which, given their reliability, seemed unlikely.

� 200 ms of latency is too short for a TCP retransmit on these systems.

As an aside, there are two specific latencies that shout “TCP retransmit!”: 1.125 s,
and 3.375 s. These odd numbers are due to a weird piece of kernel TCP code (in
tcp_init_values() in the illumos kernel) that inflates the values of 1 s and 3 s
slightly. We probably should fix that code—it has confused customers in the past,
and that’s not a good thing. On the other hand, those odd numbers have often been
useful, their weird values quickly suggesting TCP retransmits: “I have these 3.4 s
outliers . . .” In this case, however, TCP retransmits were clearly not the culprit—
200 ms is way too short.

While this probably ruled out TCP retransmits (unless, for me, there was an
unknown-unknown with the way they operate), it didn’t rule out the network.
Nathan’s data center test meant that network problems were less likely, but I was
aware that they were still a possibility.

13.1.3 Getting Started

I sent a chat message to James to say I’d look at the issue right away. James told
me what he’d like me to do: at this point, the suspicion was that Redis itself was to
blame, and that our server was fine. James was ready to push the issue back to the
customer but wanted me to double-check that the system was OK, perhaps by
using some of the newer DTrace scripts I had recently developed and used success-
fully. As I’ve done before, I’d hand my findings to James, and he’d handle communi-
cation with the customer and support, letting me focus on the issue.

I hadn’t finished reading the support history, but I logged in to the target sys-
tem (SmartOS) to try a couple of commands, just in case it happened to be a dead-
obvious issue. My first command was tail /var/adm/messages, a useful habit
I’ve had since I was a sysadmin, as it can find certain issues immediately. It didn’t
show anything alarming.

I then picked a statistics command to run based on the mentioned dropped net-
work packets: netstat -s 1 | grep tcp. This begins with a screenful of statis-
tics showing the summary-since-boot values, and then prints another screenful
every second. The summary-since-boot was

TCP tcpRtoAlgorithm = 4 tcpRtoMin = 400
 tcpRtoMax = 60000 tcpMaxConn = -1
 tcpActiveOpens = 31326 tcpPassiveOpens =1886858
 tcpAttemptFails = 36 tcpEstabResets = 6999
 tcpCurrEstab = 474 tcpOutSegs =4822435795

13.1 Case Study: The Red Whale 621

I looked at this for several seconds, particularly tcpListenDrop, tcpListenDropQ0,
and tcpRetransSegs. Those rates did not look unusual. I left the command run-
ning in the window, showing the per-interval summaries, while I finished reading
the support ticket in the help desk system (it was several pages long). It struck me
that I didn’t know if I should be seeing the issue right away or not.

I asked James how often the high-latency Redis requests were happening. He
said, “All the time.” Not the answer I was after! I wanted this to be quantified a lit-
tle better, to help make sense of the rolling netstat(1M) output. Should I expect
to see them every second, minute, or hour? James didn’t know but said he’d get
back to me.

I finished reading the support ticket and brought up a couple more terminal
windows to log in to the system in parallel, while a few thoughts ran through my
mind:

� “This might not be a good use of my time. Nathan is a veteran performance
analyst, and the others in support appear to have conducted a reasonable
investigation. This feels a bit like fishing—hoping one of my special DTrace
tools can catch another issue. I’ll spend, say, 15 minutes taking a serious look
at the system, and if I find nothing, I’ll hand it back to James.”

� “On the other hand, I’ll get to use these DTrace tools on another real issue
and develop them further. There is much more I want to do with TCP observ-
ability, and this is an opportunity to do that. However, tool development isn’t
a higher priority than the other customer issues I need to work on, so this
should probably wait.”

� “Uh, what is Redis anyway?”

 tcpOutDataSegs =1502467280 tcpOutDataBytes =320023296
 tcpRetransSegs = 10573 tcpRetransBytes =3223066
 tcpOutAck =89303926 tcpOutAckDelayed =43086430
 tcpOutUrg = 0 tcpOutWinUpdate = 1677
 tcpOutWinProbe = 0 tcpOutControl =3842327
 tcpOutRsts = 9543 tcpOutFastRetrans = 0
 tcpInSegs =6142268941
 tcpInAckSegs = 0 tcpInAckBytes =300546783
 tcpInDupAck =1916922 tcpInAckUnsent = 0
 tcpInInorderSegs =904589648 tcpInInorderBytes =3680776830
 tcpInUnorderSegs = 0 tcpInUnorderBytes = 0
 tcpInDupSegs = 3916 tcpInDupBytes =175475
 tcpInPartDupSegs = 0 tcpInPartDupBytes = 0
 tcpInPastWinSegs = 0 tcpInPastWinBytes = 0
 tcpInWinProbe = 0 tcpInWinUpdate = 0
 tcpInClosed = 3201 tcpRttNoUpdate = 0
 tcpRttUpdate =909252730 tcpTimRetrans = 10513
 tcpTimRetransDrop = 351 tcpTimKeepalive =107692
 tcpTimKeepaliveProbe= 3300 tcpTimKeepaliveDrop = 0
 tcpListenDrop = 127 tcpListenDropQ0 = 0
 tcpHalfOpenDrop = 0 tcpOutSackRetrans = 15
 tcpInErrs = 0 udpNoPorts = 579

622 Chapter 13 � Case Study

I was drawing a blank on what Redis actually was. I’d heard of it before but
couldn’t remember what it did. Was it an application server, database, load bal-
ancer? I felt like an idiot. I wanted to know what it did, at a high level, as context
for the various statistics I was about to examine.

I first took a look on the system using ps(1), to see if some detail of the Redis
process or its arguments would be a reminder. I found a process called “redis-
server” but that didn’t ring a bell. A quick Internet search for Redis (Google) was
more fruitful, giving me the answer in less than a minute (from Wikipedia): Redis
is a key-value store, designed to run fast out of main memory only [1].

Now the problem statement sounded more serious: if this was in-memory, what
kind of performance issue would sometimes cause it to take over one second?

This brought back memories of unusual kernel scheduler bugs, where threads
could be blocked in the runnable state for that long. I could DTrace the kernel
scheduler again and figure this out, but that’s time-consuming. I should check that
the system has a kernel version that includes those fixes.

13.1.4 Choose Your Own Adventure

There were several different directions I could take at this point:

� Study the netstat statistics, most of which I had yet to read. By now, netstat
had been running for a few minutes and had printed around 10,000 individ-
ual statistics. It was printing numbers faster than I could read them. I could
spend 10 minutes or so trying to read as much as possible, in the hope of find-
ing something to investigate further.

� Use my DTrace network tools and develop them further. I could pick out
events of interest from the kernel, including retransmits and packet drops,
and just print the relevant details. This could be quicker than reading net-
stat and might expose areas not covered by the netstat statistics. I also
wanted to develop these tools further, for use with other customers, and to
share them publicly.

� Browse the bug database for the previous kernel scheduler issues, find out
the kernel versions they were fixed in, and then check that the system was
running a kernel version with those fixes. I could also investigate possible
new kernel scheduler issues using DTrace. This type of issue had caused one-
second database queries in the past.

� Take a step back and check overall system health, to rule out any bottlenecks
to begin with. This could be done using the USE method and should take only
a few minutes for the key combinations.

13.1 Case Study: The Red Whale 623

� Create a theoretical model of Redis using queueing theory and use it to model
latency versus load: to determine when one-second latencies can occur natu-
rally due to the tail of the wait queue. This might be interesting, but it could
be very time-consuming.

� Look for an online Redis bug database and search for known performance
issues, especially one-second latencies. Perhaps there was a community forum
or IRC channel I could ask on too.

� Use DTrace to dive into Redis internals, starting with the read latency and
then drilling down. I could take my zfsslower.d-style script and have it trace
Redis reads instead, using the DTrace pid provider. That way, I could provide
a latency argument and only trace reads slower than, say, 500 ms. That
would be a good starting point for drilling down.

One path I wasn’t contemplating was to characterize the load to Redis, in case
the one-second reads were simply big reads and should be expected to take that
long. For example, unknown to the customer, a user of their database might have
begun to do occasional 1 Gbyte reads, which would show up as latency spikes in
the customer’s monitoring software. I had ruled this out because Nathan had
tested with curl(1), and he had found that latency could increase with normal-
size reads.

I picked the USE method. It had proven useful in the past as a starting point for
performance issues. It would also help James explain to the customer that we took
the issue seriously and had completed our own systems health check.

13.1.5 The USE Method

As introduced in Chapter 2, Methodology, the USE method is a way to check sys-
tem health, identifying bottlenecks and errors. For each resource, I’d check three
metrics: utilization, saturation, and errors. For the key resources (CPU, memory,
disks, network) there would be only a dozen metrics to check, which beat the
10,000 that I had from netstat(1M) so far.

CPU

I ran fmdump(1M) to see if there were any CPU errors, to take those off the table
immediately. There were not.

I then checked system-wide CPU utilization and saturation using columns from
vmstat(1M), and then per CPU using mpstat(1M). They looked fine: plenty of
idle headroom, and no single hot CPUs.

In case the customer had hit the cloud-imposed CPU limit, I checked their usage
and limit using kstat(1M). They were well under it.

624 Chapter 13 � Case Study

Memory

Physical error types should have already shown up in the previous fmdump(1M),
so I moved to utilization and saturation.

I had also previously run vmstat 1 while investigating the system-wide CPU
usage and had noticed that there was plenty of free main memory and virtual
memory system-wide, and that the page scanner was not running (a measure of
saturation).

I ran vmstat -p 1 to check anonymous paging, which can occur due to cloud-
imposed limits even when the system has memory headroom. The anonymous
page-ins column, api, was nonzero!

Anonymous page-ins occur when an application has grown too large for main
memory (or a limit) and has been paged out to the physical swap device (or, as
Linux calls it, swapped out). A page of memory must then be read back in as the
application needs it. This adds significant disk I/O latency, instead of just main
memory I/O latency, and can seriously injure application performance. One-second
reads, and worse, could easily be due to anonymous page-ins.

Single metrics alone don’t usually confirm performance issues (with the excep-
tion of many error types). Anonymous page-ins, however, are a very good single
indicator of a real issue, almost confirming the issue immediately. I still wanted to
double-check and used prstat -mLc to check per-thread microstates (from the
thread state analysis methodology):

$ vmstat -p 1
 memory page executable anonymous filesystem
 swap free re mf fr de sr epi epo epf api apo apf fpi fpo fpf
 60222344 10272672 331 756 2728 688 27 0 0 0 2 5 5 4 2723 2723
 48966364 1023432 208 1133 2047 608 0 0 0 0 168 0 0 0 2047 2047
 48959268 1016308 335 1386 3981 528 0 0 0 0 100 0 0 0 3981 3981
[...]

$ prstat -mLcp `pgrep redis-server` 1
 PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/LWPID
 28168 103 0.2 0.7 0.0 0.0 0.0 0.0 99 0.0 41 0 434 0 redis-server/1
 28168 103 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0 0 0 0 redis-server/3
 28168 103 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0 0 0 0 redis-server/2
Total: 1 processes, 3 lwps, load averages: 5.01, 4.59, 4.39
 PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/LWPID
 28168 103 0.0 0.0 0.0 0.0 98 0.0 1.8 0.0 15 0 183 0 redis-server/1
 28168 103 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0 0 0 0 redis-server/3
 28168 103 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 1 0 0 0 redis-server/2
Total: 1 processes, 3 lwps, load averages: 5.17, 4.66, 4.41
 PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/LWPID
 28168 103 0.2 0.3 0.0 0.0 75 0.0 24 0.0 24 0 551 0 redis-server/1
 28168 103 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0 0 0 0 redis-server/3
 28168 103 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0 0 0 0 redis-server/2
[...]

13.1 Case Study: The Red Whale 625

The high percentage in DFL, data fault time, showed that for some seconds a Redis
server thread was spending most of its time waiting for these page-ins from disk—
I/O that would normally be served from main memory.

Checking memory limits:

While the current memory usage (RSS) was below the limit (CAP), the other col-
umns showed evidence that they had exceeded the limit frequently: 45,091 times
(NOVER), resulting in 974,165 Mbytes of total data paged out (POUT).

This looked like a routine case of a misconfigured server, especially since the
customer had just moved Redis to this cloud. Perhaps they didn’t update the con-
fig file to keep its size within the new limit. I sent a message to James.

While the memory issue was severe, I had yet to prove that it was the issue
causing the one-second latency. Ideally, I’d measure Redis read time and express
time synchronously blocked on DFL as a ratio of that. If a one-second read is spend-
ing 99% of its time blocked on DFL, we’ve confirmed why the read is slow and can
then examine Redis memory configuration to put our finger on the root cause.

Before that, I wanted to finish running through the USE method checklist. Per-
formance issues often come in multiples.

Disks

An iostat -En showed there were no errors. An iostat -xnz 1 showed that
utilization was low (%b), and there was no saturation (wait).

I left iostat(1M) running for a while to look for variation and saw a burst of
writes:

$ zonememstat -z 1a8ba189ba
 ZONE RSS CAP NOVER POUT

 1a8ba189ba 5794MB 8192MB 45091 974165MB

$ iostat -xnz 1
[...]

extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 42.6 3.0 27.4 28.4 0.0 0.0 0.0 0.5 0 2 sd1

extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 62.2 2128.1 60.7 253717.1 0.0 7.7 0.0 3.5 3 87 sd1

extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 3.0 2170.6 2.5 277839.5 0.0 9.9 0.0 4.6 2 100 sd1

extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 8.0 2596.4 10.0 295813.9 0.0 9.0 0.0 3.4 3 100 sd1

extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 251.1 1.0 217.0 8.0 0.0 0.7 0.0 2.9 0 66 sd1

626 Chapter 13 � Case Study

For ZFS, which batches writes into transaction groups (TXGs), this behavior is
normal. The application file system I/O operates asynchronously and isn’t affected
by the busy disk—at least, not usually. There are some cases when the application
I/O could become blocked on the TXG.

The disk I/O seen here might not be caused by Redis anyway; it might be com-
ing from another tenant on the system, especially since Redis is an in-memory
database.

Network

Network interfaces looked fine; I checked them using netstat -i and nicstat:
no errors, low utilization, no saturation.

13.1.6 Are We Done?

Having a very strong lead with memory usage, and needing to return to other
work, I handed the matter back to James: “It looks like a memory configuration
issue—they’re getting blocked on anonymous page-ins.” I included the screen
shots. It looked as if this was a quickly resolved issue after all.

A little later James relayed messages from the customer:

� “Are you sure it’s related to memory? The memory config seems fine.”

� “The one-second reads are still happening.”

� “They happen every 5 minutes or so” (answering my earlier question).

Am I sure?! If the customer had been in the room with me, I’d have struggled
not to sound indignant. It was very obvious that there was a serious memory issue.
You have apis and up to 98% DFL—the system is in memory hell. Yes, I’m sure!

Well, come to think of it . . . I was sure there was a serious memory issue. But I
hadn’t actually proved that it was the issue causing the read latency. Finding mul-
tiple issues isn’t uncommon in this line of work. Was it possible that there was
another issue that was actually causing the read latency, and this memory paging
issue was a red herring? More like a red whale!

The customer’s comment about it happening every 5 minutes was also inconsis-
tent with the memory issue. When I looked earlier, the DFL time was happening
almost every second. This suggested that there might indeed be a second issue.

13.1 Case Study: The Red Whale 627

13.1.7 Take 2

Ideally, I wanted a tool that showed

� Redis read latency

� A breakdown of synchronous time components, showing where most of the
time was spent during the read

I’d run that, find the slow one-second reads, and then see what the largest compo-
nent of those reads was. If it was the memory issue, this tool would show that most
of the time was spent waiting on an anonymous page-in.

I could start browsing the Redis online documentation to see if such a tool
existed. If it did, it might take a bit of time to learn it, and to get permission from
the customer to run it. It’s usually quicker to take a read-only peek using DTrace
from the global zone.

DTrace would need to measure Redis read latency. This was before the Redis
DTrace provider existed, so I’d have to roll my own technique, based on how Redis
works internally. Problem was, I had no idea how Redis works internally—not too
long ago I’d forgotten what it even was. This type of internals knowledge is some-
thing you’d expect only a Redis developer or expert to have at the ready.

How to figure out Redis quickly? Three approaches sprang to mind:

� Examine syscalls using the DTrace syscall provider, and try to figure out
Redis read latency from there. There are often clever ways to find such infor-
mation, such as tracing accept() to close() latency on a socket, or exam-
ining send() and recv() data. It would depend on the syscalls used.

� Examine Redis internals using the DTrace pid provider. This would require
tracing Redis internals, which I knew nothing about. I could read the source
code, but that would be time-consuming. A quicker way is usually to go stack
fishing: start with the syscalls servicing client I/O, and print the user-level
stacks (DTrace ustack() action) to see the code path ancestry. Instead of
thousands of lines of source code, this gives me a glimpse of the actual in-use
functions that are performing work, and I can then study only those.

� Examine Redis internals using the DTrace pid provider, but go stack fishing
by profiling user-level stacks at 97 Hz (e.g., with the DTrace profile pro-
vider), instead of I/O-based. I could take this data and generate a flame
graph, to quickly get a sense of commonly taken code paths.

628 Chapter 13 � Case Study

13.1.8 The Basics

I decided to start by seeing what syscalls were available:

There were a lot of gtime()s, pollsys()s, and write()s. The pollsys()
shows that Redis is not using event ports, because if it were, it would be using
portfs(). This rang a bell. Another engineer had encountered it before, and the
Redis developers had rolled the fix, improving performance. I told James about
this, although I recalled that event ports provided roughly a 20% performance
improvement, whereas I was currently chasing down a one-second outlier.

A single forksys() looked odd, but something that infrequent could be moni-
toring (forking a process to then execute system stat commands). The fdstat()
and fdsync() calls from this output were even more suspicious. These are usu-
ally file system calls; I thought Redis was in-memory only. If the file system is on
the scene, so are disks, which could certainly be causing high latency.

13.1.9 Ignoring the Red Whale

To confirm that the disks were in play, and ignoring the memory issue for the
moment, I decided to check the file system type of the syscalls. These calls may be
to a pseudo file system, such as sockfs, and not a disk-based file system like ZFS.

dtrace -n 'syscall:::entry /execname == "redis-server"/ {
@[probefunc] = count(); }'

dtrace: description 'syscall:::entry ' matched 238 probes
CPU ID FUNCTION:NAME
^C

 brk 1
 fdsync 1
 forksys 1
 lwp_self 1
 rename 1
 rexit 1
 times 1
 waitsys 1
 accept 2
 setsockopt 2
 llseek 2
 lwp_sigmask 2
 fcntl 3
 ioctl 3
 open64 3
 getpid 8
 close 11
 fstat64 12
 read 2465
 write 3504
 pollsys 15854
 gtime 183171

13.1 Case Study: The Red Whale 629

To confirm that they might be contributing enough latency to add up to one sec-
ond, I would also measure their latency.

I quickly wrote a number of DTrace one-liners. These included the following:

Counting the file system type of, say, the write() syscalls, for processes
named "redis-server" (there is only one on this system):

Measuring the latency of all the syscalls, as a sum (nanoseconds):

The first piece showed me that most of the time the writes were to "sockfs", the
network. Sometimes they were indeed to "zfs".

The second one-liner showed that there were sometimes hundreds of millisec-
onds of latency in syscalls such as write(), fdsync(), and poll(). The poll()
latency might be normal (waiting for work—I’d have to check file descriptors and
user-level stacks), but the others, especially fdsync() were suspicious.

13.1.10 Interrogating the Kernel

At this point, I ran a series of quick custom DTrace one-liners, to answer various
questions about the kernel. This included moving from the syscall layer to the VFS
layer, traced using the fbt provider, where I could examine other kernel internals
via the probe arguments.

This quickly grew to the following one-liner, which was starting to be long
enough to be made into a script:

syscall::write:entry /execname == "redis-server"/ { @[fds[arg0].fi_fs] =
count(); }

syscall:::entry /execname == "redis-server"/ { self->ts = timestamp; }
syscall:::return /self->ts/ { @[probefunc] = sum(timestamp - self->ts);
 self->ts = 0; }

dtrace -n 'fbt::fop_*:entry /execname == "redis-server"/ {
self->ts = timestamp; }

fbt::fop_*:return /self->ts/ { @[probefunc] = sum(timestamp - self->ts);
self->ts = 0; }

fbt::fop_write:entry /execname == "redis-server"/ {
@w[stringof(args[0]->v_op->vnop_name)] = count(); }

tick-15s { printa(@); trunc(@); printa(@w); trunc(@w); }'
[...]
 7 69700 :tick-15s
 fop_addmap 4932
 fop_open 8870

continues

630 Chapter 13 � Case Study

It prints a couple of summaries every 15 s. The first shows the VFS-level calls used
by Redis, with the sum of their latency in nanoseconds. In the 15 s summary, only
42 ms was spent in fop_poll(), and 9 ms in fop_write(). The second sum-
mary shows the file system type of the writes—for this interval they were all
"sockfs", the network.

About every 5 minutes, the following happened:

The first interval output shows an increase in fop_write() time, reaching 317
ms during the 15 s interval, and also 2,981 zfs writes. The second interval shows
493 ms in write(), and 625 ms in fsync().

 fop_rwlock 1444580
 fop_rwunlock 1447226
 fop_read 2557201
 fop_write 9157132
 fop_poll 42784819

 sockfs 323
[...]

 7 69700 :tick-15s
 fop_ioctl 1980
 fop_open 2230
 fop_close 2825
 fop_getsecattr 2850
 fop_getattr 7198
 fop_lookup 24663
 fop_addmap 32611
 fop_create 80478
 fop_read 2677245
 fop_rwunlock 6707275
 fop_rwlock 12485682
 fop_getpage 16603402
 fop_poll 44540898
fop_write 317532328

 sockfs 320
zfs 2981

 7 69700 :tick-15s
 fop_delmap 4886
 fop_lookup 7879
 fop_realvp 8806
 fop_dispose 30618
 fop_close 95575
 fop_read 289778
 fop_getpage 2939712
 fop_poll 4729929
 fop_rwunlock 6996488
 fop_rwlock 14266786
 fop_inactive 15197222
fop_write 493655969
fop_fsync 625164797

 sockfs 35
zfs 3868

13.1 Case Study: The Red Whale 631

Determining the ZFS file that is being written and synced is trivial, and I’d
already discovered it using one of my favorite DTrace scripts:

The output showed many 128 Kbyte writes to a temp-10718.rdb file. I man-
aged to run ls(1) on it before it was deleted, to see its size:

If it was too short-lived for ls(1), I could have used DTrace to trace the file infor-
mation. (I’ve already written a script to do that, sollife.d; see Chapter 5 of the
DTrace book [Gregg 11].)

The file names contain dump and temp-. And they were over 800 Mbytes, which
was fsync()ed. This sounded like a bad idea.

13.1.11 Why?

Writing an 800+ Mbyte temporary file, then fsync()ing it, with the combined
latency taking well over one second, sounded like it could certainly be a source of
Redis latency. The frequency—every 5 minutes—matched the customer’s description.

An Internet search found the following explanation for the temporary files, writ-
ten by Didier Spezia [2]:

RDB is like a snapshot of the memory, written to disk. During a BGSAVE operation,
Redis writes a temporary file. Once the file is complete and fsync’d, it is renamed as
the real dump file. So in case of crash during the dump, the existing file is never
altered. All the recent changes are lost, but the file itself is always safe and can never
be corrupted.

I also learned that Redis can fork() this BGSAVE operation, so that it can run
in the background. I had seen a forksys() earlier but hadn’t checked it.

The Redis Wikipedia page shed a bit more light [3]:

Persistence is reached in two different ways: One is called snapshotting, and is a semi-
persistent durability mode where the dataset is asynchronously transferred from

zfsslower.d 1
TIME PROCESS D KB ms FILE
2012 Jul 21 04:01:12 redis-server W 128 1 /zones/1a8ba189ba/root/var/db/
redis/temp-10718.rdb

ls -lh /zones/1a8ba189ba/root/var/db/redis/
total 3473666
-rw-r--r-- 1 103 104 856M Jul 21 04:01 dump.rdb
-rw-r--r-- 1 103 104 6 Jul 18 01:28 redis.pid
-rw-r--r-- 1 103 104 856M Jul 21 04:07 temp-12126.rdb

632 Chapter 13 � Case Study

memory to disk from time to time. Since version 1.1 the safer alternative is an
append-only file (a journal) that is written as operations modifying the dataset in
memory are processed. Redis is able to rewrite the append-only file in the background
in order to avoid an indefinite growth of the journal.

This suggested that the behavior could be changed dramatically, from a dump to a
journal. Checking the Redis configuration file:

Oh, so there’s the origin of the 5-minute interval.
And there’s more:

################################ SNAPSHOTTING #################################
#
Save the DB on disk:
#
save
#
Will save the DB if both the given number of seconds and the given
number of write operations against the DB occurred.
#
In the example below the behaviour will be to save:
after 900 sec (15 min) if at least 1 key changed
after 300 sec (5 min) if at least 10 keys changed
after 60 sec if at least 10000 keys changed
#
Note: you can disable saving at all commenting all the "save" lines.

save 900 1
save 300 10
save 60 10000
[...]

############################## APPEND ONLY MODE ###############################
[...]
The fsync() call tells the Operating System to actually write data on disk
instead to wait for more data in the output buffer. Some OS will really flush
data on disk, some other OS will just try to do it ASAP.
#
Redis supports three different modes:
#
no: don't fsync, just let the OS flush the data when it wants. Faster.
always: fsync after every write to the append only log . Slow, Safest.
everysec: fsync only if one second passed since the last fsync. Compromise.
#
The default is "everysec" that's usually the right compromise between
speed and data safety. It's up to you to understand if you can relax this to
"no" that will will let the operating system flush the output buffer when
it wants, for better performances (but if you can live with the idea of
some data loss consider the default persistence mode that's snapshotting),
or on the contrary, use "always" that's very slow but a bit safer than
everysec.
#
If unsure, use "everysec".

appendfsync always
appendfsync everysec
appendfsync no

13.2 Comments 633

I sent this to the customer via James and didn’t hear back regarding this issue
again.

13.1.12 Epilogue

So, while dealing with this problem, I found three performance issues and was able
to send actionable suggestions back to the customer:

� Memory paging: Reconfigure the application to stay within the memory
limit (it may then be discovered that the memory issue was caused by the
fork() and BGSAVE operation).

� pollsys(): Upgrade the Redis software to the version that uses event ports,
for a performance improvement.

� BGSAVE configuration: Redis calls fsync() on an 800+ Mbyte file every 5
minutes for persistence, which is the likely cause of the outliers and can be
tuned to behave very differently.

I’m still amazed that there was an even worse issue than the memory paging.
Usually, once I find that much DFL time, the customer finds and fixes the config
and I don’t hear back.

I also chatted with the other engineers at Joyent about it, so we stay current
with performance issues. One of them already had experience with Redis and said,
“That’s just a bad config. Redis is supposed to be serving small object stores—like a
name service—not 800 Mbyte databases.”

My 60% hunch earlier was right: “Oh, yeah, it’s supposed to do that.” I now
know more details for the next time I encounter Redis, and perhaps then I’ll get to
act on some of my earlier ideas, including writing a script to trace Redis read time
and express synchronous latency breakdowns.

(Update: Yes, Redis and I met again, and I wrote those scripts: redislat.d to
summarize Redis latency, and redisslower.d trace outliers [4].)

13.2 Comments

This case study showed my thought process during a performance investigation,
how I might typically apply the tools and methodologies that I described in previ-
ous chapters, and the order in which I used them. It also described some addi-
tional characteristics of the practice of performance analysis, including these:

� It’s normal to know little about the target application to begin with, but you
can quickly find out more and develop expertise.

634 Chapter 13 � Case Study

� Making mistakes and taking wrong turns, and then getting back on track, is
routine during performance analysis.

� Finding multiple issues before you hit on the issue is also normal.

� And all of this happens under time pressure!

For a beginner, feeling lost when you’re studying a performance issue can be dis-
couraging. This feeling, too, is normal: you will feel lost, you will make mistakes,
and you will often be wrong. Quoting Niels Bohr, a Danish physicist:

An expert is a person who has made all the mistakes that can be made in a very nar-
row field.

By telling you stories like this one, I hope to reassure you that mistakes and
wrong turns are normal (even for the best of us) and to show you some techniques
and methodologies to help you find your way.

13.3 Additional Information

For more case studies in systems performance analysis, check the bug database (or
ticketing system) at your company for previous performance-related issues, and
the public bug databases for the applications and operating system you use. These
issues often begin with a problem statement and finish with the final fix. Many
bug database systems also include a timestamped comments history, which can be
studied to see the progression of analysis, including hypotheses explored and
wrong turns taken.

Some systems performance case studies are published from time to time, for
example, as on my blog [5]. Technical journals with a focus on practice, such as
ACM Queue [6], also often use case studies as context when describing new techni-
cal solutions to problems.

13.4 References

[Gregg 11] Gregg, B., and J. Mauro. DTrace: Dynamic Tracing in Oracle Solaris,
Mac OS X and FreeBSD. Prentice Hall, 2011.

[1] http://redis.io

[2] https://groups.google.com/forum/?fromgroups=#!searchin/redis-db/
temporary$20file/redis-db/pE1PloNh20U/4P5Y2WyU9w8J

../../../../../redis.io/default.htm
../../../../../https@groups.google.com/forum/@fromgroups=#!searchin/redis-db/temporary$20file/redis-db/pE1PloNh20U/4P5Y2WyU9w8J
../../../../../https@groups.google.com/forum/@fromgroups=#!searchin/redis-db/temporary$20file/redis-db/pE1PloNh20U/4P5Y2WyU9w8J

13.4 References 635

[3] http://en.wikipedia.org/wiki/Redis

[4] https://github.com/brendangregg/dtrace-cloud-tools

[5] http://dtrace.org/blogs/brendan

[6] http://queue.acm.org

../../../../../en.wikipedia.org/wiki/Redis
../../../../../https@github.com/brendangregg/dtrace-cloud-tools
../../../../../dtrace.org/blogs/brendan
../../../../../queue.acm.org/default.htm

This page intentionally left blank

637

Appendix A
USE Method: Linux

This appendix [1] contains a checklist for Linux derived from the USE method.
This is a method for checking system health, identifying common resource bottle-
necks and errors, introduced in Chapter 2, Methodology. Later chapters (5, 6, 7, 9,
10) described it in specific contexts and introduced tools to support its use.

Performance tools are often enhanced and new ones are developed, so you
should treat this as a starting point that will need updates. New observability
frameworks and tools can also be developed to specifically make following the USE
method easier.

Physical Resources

Component Type Metric

CPU utilization per CPU: mpstat -P ALL 1, us + sy + st; sar -P
ALL, %idle

system-wide: vmstat 1, us + sy + st; sar -u, %user +
%nice + %system + any other on-CPU states

per process: top, %CPU; htop, CPU%; ps -o pcpu;
pidstat 1, %CPU

per kernel thread: top/htop (K to toggle), where VIRT == 0
(heuristic)

continues

638 Appendix A � USE Method: Linux

CPU saturation system-wide: vmstat 1, r > CPU count1; sar -q,
runq-sz > CPU count; dstat -p, run > CPU count

per process: /proc/PID/schedstat 2nd field (sched_info.run_
delay); getdelays.c, CPU2; perf sched latency (shows
average and maximum delay per schedule); dynamic
tracing, e.g., SystemTap schedtimes.stp queued(us)3

CPU errors perf (LPE) if processor-specific error events (CPC) are
available; e.g., AMD64’s “04Ah Single-bit ECC Errors
Recorded by Scrubber”4

Memory
capacity

utilization system-wide: free -m, Mem: (main memory), Swap:
(virtual memory); vmstat 1, free (main memory),
swap (virtual memory); sar -r, %memused; dstat -m,
free; slabtop -s c for kmem slab usage

per process: top/htop, RES (resident main memory), VIRT
(virtual memory), Mem for system-wide summary

Memory
capacity

saturation system-wide: vmstat 1, si/so (swapping); sar -B,
pgscank + pgscand (scanning); sar -W

per process: getdelays.c, SWAP2; 10th field (min_flt) from
/proc/PID/stat for minor fault rate, or dynamic tracing5;
dmesg | grep killed (OOM killer)

Memory
capacity

errors dmesg for physical failures; dynamic tracing, e.g., uprobes
for failed malloc()s (DTrace/SystemTap)

Network
interfaces

utilization ip -s link, RX/TX tput / max bandwidth; sar -n DEV,
rx/tx kB/s / max bandwidth; /proc/net/dev, bytes RX/TX
tput/max

Network
interfaces

saturation ifconfig, overruns, dropped6; netstat -s,
segments retransmited; sar -n EDEV, *drop/s,
*fifo/s; /proc/net/dev, RX/TX drop; dynamic tracing of
other TCP/IP stack queueing

Network
interfaces

errors ifconfig, errors, dropped6; netstat -i, RX-ERR/
TX-ERR; ip -s link, errors; sar -n EDEV all; /proc/
net/dev, errs, drop; extra counters may be under /sys/
class/net/ . . . ; dynamic tracing of driver function returns

Storage
device I/O

utilization system-wide: iostat -xz 1, %util; sar -d, %util;
per process: iotop; /proc/PID/sched
se.statistics.iowait_sum

Storage
device I/O

saturation iostat -xnz 1, avgqu-sz > 1, or high await; sar
-d same; LPE block probes for queue length/latency;
dynamic/static tracing of I/O subsystem (including LPE
block probes)

Storage
device I/O

errors /sys/devices/ . . . /ioerr_cnt; smartctl; dynamic/static
tracing of I/O subsystem response codes7

Component Type Metric

Physical Resources 639

1. The r column reports those threads that are waiting and threads that are running on-CPU. See the
vmstat(1) description in Chapter 6, CPUs.

2. Uses delay accounting; see Chapter 4, Observability Tools.

Storage
capacity

utilization swap: swapon -s; free; /proc/meminfo SwapFree/
SwapTotal; file systems: df -h

Storage
capacity

saturation not sure this one makes sense—once it’s full, ENOSPC

Storage
capacity

file systems:
errors

strace for ENOSPC; dynamic tracing for ENOSPC; /var/
log/messages errs, depending on FS; application log errors

Storage
controller

utilization iostat -xz 1, sum devices and compare to known IOPS/
tput limits per card

Storage
controller

saturation see storage device I/O saturation, . . .

Storage
controller

errors see storage device I/O errors, . . .

Network
controller

utilization infer from ip –s link (or sar, or /proc/net/dev) and
known controller max tput for its interfaces

Network
controller

saturation see network interfaces, saturation, . . .

Network
controller

errors see network interfaces, errors, . . .

CPU
interconnect

utilization LPE (CPC) for CPU interconnect ports, tput/max

CPU
interconnect

saturation LPE (CPC) for stall cycles

CPU
interconnect

errors LPE (CPC) for whatever is available

Memory
interconnect

utilization LPE (CPC) for memory busses, tput/max; or CPI greater than,
say, 10; CPC may also have local versus remote counters

Memory
interconnect

saturation LPE (CPC) for stall cycles

Memory
interconnect

errors LPE (CPC) for whatever is available

I/O
interconnect

utilization LPE (CPC) for tput/max if available; inference via known
tput from iostat/ip/ . . .

I/O
interconnect

saturation LPE (CPC) for stall cycles

I/O
interconnect

errors LPE (CPC) for whatever is available

Component Type Metric

640 Appendix A � USE Method: Linux

3. There is also the sched:sched_process_wait tracepoint for perf(1); be careful about overheads when
tracing, as scheduler events are frequent.

4. There aren’t many error-related events in the recent Intel and AMD processor manuals.
5. This can be used to show who is consuming memory and leading to saturation, by seeing who is

causing minor faults. This should be available in htop(1) as MINFLT.
6. Dropped packets are included as both saturation and error indicators, since they can occur due to

both types of events.
7. This includes tracing functions from different layers of the I/O subsystem: block device, SCSI, SATA,

IDE, . . . Some static probes are available (LPE scsi and block tracepoint events); otherwise use
dynamic tracing.

General notes: uptime “load average” (or /proc/loadavg) wasn’t included for CPU metrics since Linux
load averages include tasks in the uninterruptable I/O state.
LPE: Linux Performance Events is a powerful observability toolkit that reads CPC and can also use
dynamic and static tracing. Its interface is the perf(1) command. It was introduced in Chapter 6,
CPUs.
CPC: CPU performance counters. See Chapter 6, CPUs, and their usage with perf(1).
I/O interconnect: This includes the CPU-to-I/O controller busses, the I/O controller(s), and device bus-
ses (e.g., PCIe).
Dynamic tracing: allows custom metrics to be developed. See Chapter 4, Observability Tools, and the
examples in later chapters. Dynamic tracing tools for Linux include LPE, DTrace, SystemTap, and
LTTng.
For any environment that imposes resource controls (e.g., cloud computing), check USE for each
resource control. These may be encountered—and limit usage—before the hardware resource is fully
utilized.

Software Resources

Component Type Metric

Kernel mutex utilization with CONFIG_LOCK_STATS=y, /proc/lock_stat holdtime-
total / acquisitions (also see holdtime-min,
holdtime-max)1; dynamic tracing of lock functions or
instructions (maybe)

Kernel mutex saturation with CONFIG_LOCK_STATS=y, /proc/lock_stat waittime-
total / contentions (also see waittime-min,
waittime-max); dynamic tracing of lock functions or
instructions (maybe); spinning shows up with profiling
(perf record -a -g -F 997 ..., oprofile, DTrace,
SystemTap)

Kernel mutex errors dynamic tracing (e.g., recursive mutex enter); other errors
can cause kernel lockup/panic, debug with kdump/crash

User mutex utilization valgrind --tool=drd --exclusive-
threshold=... (held time); dynamic tracing of lock-to-
unlock function time

Reference 641

1. Kernel lock analysis used to be via lockmeter, which had an interface called lockstat.

Reference

[1] http://dtrace.org/blogs/brendan/2012/03/07/the-use-method-linux-performance-
checklist

User mutex saturation valgrind --tool=drd to infer contention from held
time; dynamic tracing of synchronization functions for wait
time; profiling (oprofile, PEL, . . .) user stacks for spins

User mutex errors valgrind --tool=drd various errors; dynamic tracing of
pthread_mutex_lock() for EAGAIN, EINVAL, EPERM,
EDEADLK, ENOMEM, EOWNERDEAD, . . .

Task capacity utilization top/htop, Tasks (current); sysctl kernel.threads-
max, /proc/sys/kernel/threads-max (max)

Task capacity saturation threads blocking on memory allocation; at this point the
page scanner should be running (sar -B, pgscan*), else
examine using dynamic tracing

Task capacity errors “can’t fork()” errors; user-level threads: pthread_
create() failures with EAGAIN, EINVAL, . . . ; kernel:
dynamic tracing of kernel_thread() ENOMEM

File descriptors utilization system-wide: sar -v, file-nr versus /proc/sys/fs/
file-max; dstat --fs, files; or just /proc/sys/fs/file-nr

per process: ls /proc/PID/fd | wc -l vs ulimit -n

File descriptors saturation this one may not make sense

File descriptors errors strace errno == EMFILE on syscalls returning file
descriptors (e.g., open(), accept(), . . .)

Component Type Metric

../../../../../dtrace.org/blogs/brendan/2012/03/07/the-use-method-linux-performancechecklist
../../../../../dtrace.org/blogs/brendan/2012/03/07/the-use-method-linux-performancechecklist

This page intentionally left blank

643

Appendix B
USE Method: Solaris

This appendix [1] contains a checklist for Solaris-based systems derived from the
USE method, for the same reason, and with the same caveats, as Appendix A.

Physical Resources

Component Type Metric

CPU utilization per CPU: mpstat 1, usr + sys

system-wide: vmstat 1, us + sy

per process: prstat -c 1 (CPU == recent), prstat -mLc
1 (USR + SYS)

per kernel thread: lockstat -Ii rate, DTrace profile
stack()

CPU saturation system-wide: uptime, load averages; vmstat 1, r; DTrace
dispqlen.d (DTT) for a better vmstat r

per process: prstat -mLc 1, LAT

CPU errors fmadm faulty; cpustat (CPC) for whatever error counters
are supported (e.g., thermal throttling)

continues

644 Appendix B � USE Method: Solaris

Memory
capacity

utilization system-wide: vmstat 1, free (main memory), swap
(virtual memory)

per process: prstat -c, RSS (main memory), SIZE (virtual
memory)

Memory
capacity

saturation system-wide: vmstat 1, sr (scanning: bad now), w (has
swapped: was very bad); vmstat -p 1, api (anonymous
page-ins == pain), apo

per process: prstat -mLc 1, DFL; DTrace anonpgpid.d
(DTT), vminfo:::anonpgin on execname

Memory
capacity

errors fmadm faulty and prtdiag for physical failures; fmstat
-s -m cpumem-retire (ECC events); DTrace failed
malloc()s

Network
interfaces

utilization nicstat1; kstat; dladm show-link -s -i 1
interface

Network
interfaces

saturation nicstat; kstat for whatever custom statistics are available
(e.g., “nocanputs,” “defer,” “norcvbuf,” “noxmtbuf”);
netstat -s, retransmits

Network
interfaces

errors netstat -I, error counters; dladm show-phys;
kstat for extended errors, look in the interface and “link”
statistics (there are often custom counters for the card);
DTrace for driver internals

Storage
device I/O

utilization system-wide: iostat -xnz 1, %b

per process: iotop (DTT)

Storage
device I/O

saturation iostat -xnz 1, wait; DTrace iopending (DTT), sdqueue.d
(DTB)

Storage
device I/O

errors iostat -En; DTrace I/O subsystem, e.g., ideerr.d (DTB),
satareasons.d (DTB), scsireasons.d (DTB), sdretry.d (DTB)

Storage
capacity

utilization swap: swap -s; file systems: df -h; plus other commands
depending on file system type

Storage
capacity

saturation not sure this one makes sense—once it’s full, ENOSPC

Storage
capacity

errors DTrace; /var/adm/messages file system full messages

Storage
controller

utilization iostat -Cxnz 1, compare to known IOPS/tput limits per
card

Storage
controller

saturation look for kernel queueing: sd (iostat wait again), ZFS zio
pipeline

Storage
controller

errors DTrace the driver, e.g., mptevents.d (DTB); /var/adm/
messages

Component Type Metric

Physical Resources 645

1. https://blogs.oracle.com/timc/entry/nicstat_the_solaris_and_linux
2. http://dtrace.org/blogs/brendan/2009/09/22/7410-hardware-update-and-analyzing-the-hypertransport/
General notes:
lockstat(1M) and plockstat(1M) are DTrace-based since Solaris 10 FCS. See Chapter 5, Applications.
vmstat r: This is coarse as it is updated only once per second.
CPC: CPU performance counters. See Chapter 6, CPUs, and their usage with cpustat(1M).
Memory capacity utilization: interpreting vmstat’s free has been tricky across different Solaris ver-
sions due to different ways it was calculated [McDougall 06b]. It will also typically shrink as the kernel
uses unused memory for caching (ZFS ARC). See Chapter 7, Memory.
DTT: DTraceToolkit scripts [2].
DTB: DTrace book scripts [3].
I/O interconnect: This includes the CPU-to-I/O controller busses, the I/O controller(s), and device bus-
ses (e.g., PCIe).
Dynamic tracing (DTrace) allows custom metrics to be developed, live and in production. See Chapter 4,
Observability Tools, and the examples in later chapters.
For any environment that imposes resource controls (e.g., cloud computing), check USE for each resource
control. These may be encountered—and limit usage—before the hardware resource is fully utilized.

Network
controller

utilization infer from nicstat and known controller max tput

Network
controller

saturation see network interfaces, saturation

Network
controller

errors kstat for whatever is there/DTrace

CPU
interconnect

utilization cpustat (CPC) for CPU interconnect ports, tput/max (e.g.,
see the amd64htcpu script 2)

CPU
interconnect

saturation cpustat (CPC) for stall cycles

CPU
interconnect

errors cpustat (CPC) for whatever is available

Memory
interconnect

utilization cpustat (CPC) for memory busses, tput/max; or CPI greater
than, say, 10; CPC may also have local versus remote
counters

Memory
interconnect

saturation cpustat (CPC) for stall cycles

Memory
interconnect

errors cpustat (CPC) for whatever is available

I/O
interconnect

utilization busstat (SPARC only); cpustat for tput/max if available;
inference via known tput from iostat/nicstat/. . .

I/O
interconnect

saturation cpustat (CPC) for stall cycles

I/O
interconnect

errors cpustat (CPC) for whatever is available

Component Type Metric

../../../../../https@blogs.oracle.com/timc/entry/nicstat_the_solaris_and_linux
../../../../../dtrace.org/blogs/brendan/2009/09/22/7410-hardware-update-and-analyzing-the-hypertransport/default.htm

646 Appendix B � USE Method: Solaris

Software Resources

Component Type Metric

Kernel mutex utilization lockstat -H (held time); DTrace lockstat provider

Kernel mutex saturation lockstat -C (contention); DTrace lockstat provider;
spinning shows up with dtrace -n 'profile-997
{ @[stack()] = count(); }'

Kernel mutex errors lockstat -E, e.g., recursive mutex enter (other errors
can cause kernel lockup/panic, debug with mdb -k)

User mutex utilization plockstat -H (held time); DTrace plockstat provider

User mutex saturation plockstat -C (contention); prstat -mLc 1, LCK;
DTrace plockstat provider

User mutex errors DTrace plockstat and pid providers, for EAGAIN, EINVAL,
EPERM, EDEADLK, ENOMEM, EOWNERDEAD . . . ; see
pthread_mutex_lock(3C)

Process capacity utilization sar -v, proc-sz; kstat, unix:0:var:v_proc for
max, unix:0:system_misc:nproc for current; DTrace
(`nproc vs `max_nprocs)

Process capacity saturation not sure this makes sense; you might get queueing on
pidlinklock in pid_allocate(), as it scans for available
slots once the table gets full

Process capacity errors “can’t fork()” messages

Thread capacity utilization user level: kstat, unix:0:lwp_cache:buf_inuse for
current, prctl -n zone.max-lwps -i zone ZONE
for max

kernel: mdb -k or DTrace, nthread for current, limited
by memory

Thread capacity saturation threads blocking on memory allocation; at this point the
page scanner should be running (vmstat sr), else
examine using DTrace/mdb

Thread capacity errors user level: pthread_create() failures with EAGAIN,
EINVAL, . . .

kernel: thread_create() blocks for memory but won’t
fail

File descriptors utilization system-wide: no limit other than main memory

per process: pfiles versus ulimit or prctl -t
basic -n process.max-file-descriptor PID; a
quicker check than pfiles is ls /proc/PID/fd | wc -l

References 647

General notes:
lockstat/plockstat can drop events due to load; try using a limited set of probes with DTrace directly.
File descriptor utilization: While other OSs have a system-wide limit, Solaris does not.

References

[McDougall 06b] McDougall, R., J. Mauro, and B. Gregg. Solaris Performance
and Tools: DTrace and MDB Techniques for Solaris 10 and
OpenSolaris. Prentice Hall, 2006.

[1] http://dtrace.org/blogs/brendan/2012/03/07/the-use-
method-linux-performance-checklist

[2] www.brendangregg.com/dtrace.html#DTraceToolkit

[3] www.dtracebook.com

File descriptors saturation this one may not make sense

File descriptors errors truss or DTrace (better) to look for errno == EMFILE on
syscalls returning file descriptors (e.g., open(),
accept(), . . .)

Component Type Metric

../../../../../dtrace.org/blogs/brendan/2012/03/07/the-usemethod-linux-performance-checklist
../../../../../dtrace.org/blogs/brendan/2012/03/07/the-usemethod-linux-performance-checklist
../../../../../www.brendangregg.com/dtrace.html#DTraceToolkit
../../../../../www.dtracebook.com/default.htm

This page intentionally left blank

649

Appendix C
sar Summary

This is a summary of key options and metrics from the system activity reporter,
sar(1). You can use this to jog your memory of which metrics are under which
options. See the man page for the full list.

sar(1) is introduced in Chapter 4, Observability Tools, and selected options are
summarized in later chapters (6, 7, 8, 9, 10).

Linux

Option Metrics Description

-P ALL %user %nice %system %iowait %steal %idle per-CPU utilization

-u %user %nice %system %iowait %steal %idle CPU utilization

-q runq-sz CPU run-queue size

-B pgpgin/s pgpgout/s fault/s majflt/s
pgfree/s pgscank/s pgscand/s pgsteal/s
%vmeff

paging statistics

-H hbhugfree hbhugused huge pages

-r kbmemfree kbmemused kbbuffers kbcached
kbcommit %commit kbactive kbinact

memory utilization

-R frpg/s bufpg/s campg/s memory statistics

continues

650 Appendix C � sar Summary

Some sar(1) options may require kernel features enabled (e.g., huge pages), and
some metrics were added in later versions of sar(1) (version 10.0.2 is shown here).

Solaris

The version for Solaris-based systems is long overdue for an update; I hope it
has been done by the time you read this.

-S kbswpfree kbswpused kbswpcad swap utilization

-W pswpin/s pswpout/s swapping statistics

-v dentused file-nr inode-nr kernel tables

-d tps rd_sec/s wr_sec/s avgrq-sz avgqu-sz
await svctm %util

disk statistics

-n DEV rxpck/s txpck/s rxkB/s txkB/s network interface
statistics

-n EDEV rxerr/s txerr/s coll/s rxdrop/s txdrop/s
rxfifo/s txfifo/s

network interface
errors

-n IP irec/s fwddgm/s orq/s IP statistics

-n EIP idisc/s odisc/s IP errors

-n TCP active/s passive/s iseg/s oseg/s TCP statistics

-n ETCP atmptf/s retrans/s TCP errors

-n SOCK totsck ip-frag tcp-tw socket statistics

Option Metrics Description

-u %usr %sys %idl CPU utilization

-q runq-sz %runocc run-queue statistics

-g pgout/s pgpgout/s pgfree/s pgscan/s paging statistics 1

-p atch/s pgin/s pgpgin/s pflt/s vflt/s
slock/s

paging statistics 2

-k sml_mem lg_mem ovsz_alloc kernel memory

-r freemem freeswap unused memory

-w swpin/s swpout/s swapping statistics

-v inod-sz inode size

-d %busy avque r+w/s blks/s avwait avserv disk statistics

Option Metrics Description

651

Appendix D
DTrace One-Liners

This appendix contains some handy DTrace one-liners. Apart from being useful in
themselves, they can help you learn DTrace, one line at a time. Some of these were
demonstrated in previous chapters. Many may not work right away; they may
depend on the presence of certain providers, or on a specific kernel version.

See Chapter 4, Observability Tools, for an introduction to DTrace.

syscall Provider

List syscall provider entry probes:

Count syscalls by process name:

 Count syscalls by syscall name:

dtrace -ln syscall:::entry

dtrace -n 'syscall:::entry { @[execname] = count(); }'

dtrace -n 'syscall:::entry { @[probefunc] = count(); }'

652 Appendix D � DTrace One-Liners

Count syscalls by syscall name, for process ID 123:

Count syscalls by syscall name, for all processes named "httpd":

Trace exec() return by time and process name:

Trace file open()s with process name and path name:

Trace file open()s with process name and path name (Oracle Solaris 11):

Count read syscall variants in use:

Count read() syscalls by file system type:

Count write() syscalls by file system type:

dtrace -n 'syscall:::entry /pid == 123/ { @[probefunc] = count(); }'

dtrace -n 'syscall:::entry /execname == "httpd"/ { @[probefunc] = count(); }'

dtrace -n 'syscall::exec*:return { printf("%Y %s", walltimestamp, execname); }'

dtrace -n 'syscall::open:entry { printf("%s %s", execname, copyinstr(arg0)); }'

dtrace -n 'syscall::openat:entry { printf("%s %s", execname, copyinstr(arg1)); }'

dtrace -n 'syscall::*read*:entry { @[probefunc] = count(); }'

dtrace -n 'syscall::read:entry { @[fds[arg0].fi_fs] = count(); }'

dtrace -n 'syscall::write:entry { @[fds[arg0].fi_fs] = count(); }'

syscall Provider 653

Count read() syscalls by file descriptor path name:

Summarize read() requested size as a power-of-two distribution, by process name:

Summarize read() returned size as a power-of-two distribution, by process name:

Summarize total read() returned bytes, by process name:

Summarize read() latency as a power-of-two distribution, for "mysqld" processes:

Summarize read() CPU time, for "mysqld" processes:

Summarize read() latency as a linear distribution from 0 to 10 ms with a step of
1, for "mysqld" processes:

dtrace -n 'syscall::read:entry { @[fds[arg0].fi_pathname] = count(); }'

dtrace -n 'syscall::read:entry { @[execname, "req (bytes)"] = quantize(arg2); }'

dtrace -n 'syscall::read:return { @[execname, "rval (bytes)"] = quantize(arg1); }'

dtrace -n 'syscall::read:return { @[execname] = sum(arg1); }'

dtrace -n 'syscall::read:entry /execname == "mysqld"/ { self->ts = timestamp; }
 syscall::read:return /self->ts/ { @["ns"] =
 quantize(timestamp - self->ts); self->ts = 0; }'

dtrace -n 'syscall::read:entry /execname == "mysqld"/ { self->v = vtimestamp; }
 syscall::read:return /self->v/ { @["on-CPU (ns)"] =
 quantize(vtimestamp - self->v); self->v = 0; }'

dtrace -n 'syscall::read:entry /execname == "mysqld"/ { self->ts = timestamp; }
 syscall::read:return /self->ts/ { @["ms"] =
 lquantize((timestamp - self->ts) / 1000000, 0, 10, 1); self->ts = 0; }'

654 Appendix D � DTrace One-Liners

Summarize read() latency as a power-of-two distribution, for reads to ZFS files:

Count socket accept() by process name:

Count socket connect() by process name:

Trace socket connect() with process name and user-level stack trace:

Count socket reads, via read() or recv(), by process name:

Count socket writes, via write() or send(), by process name:

Count brk()s (heap extensions) with user-level stacks, for "mysqld":

dtrace -n 'syscall::read:entry /fds[arg0].fi_fs == "zfs"/ { self->ts = timestamp; }
 syscall::read:return /self->ts/ { @["ns"] =
 quantize(timestamp - self->ts); self->ts = 0; }'

dtrace -n 'syscall::accept:return { @[execname] = count(); }'

dtrace -n 'syscall::connect:entry { @[execname] = count(); }'

dtrace -n 'syscall::connect:entry { trace(execname); ustack(); }'

dtrace -n 'syscall::read:entry,syscall::recv:entry
 /fds[arg0].fi_fs == "sockfs"/ { @[execname] = count(); }'

dtrace -n 'syscall::write:entry,syscall::send:entry
 /fds[arg0].fi_fs == "sockfs"/ { @[execname] = count(); }'

dtrace -n 'syscall::brk:entry /execname == "mysqld"/ { @[ustack()] = count(); }'

profile Provider 655

proc Provider

Trace new processes with process name and arguments:

Count process-level events:

Trace process signals:

profile Provider

Sample kernel stacks at 997 Hz:

Sample kernel stacks at 997 Hz, top ten only:

Sample kernel stacks, five frames only, at 997 Hz:

Sample kernel on-CPU functions at 997 Hz:

dtrace -n 'proc:::exec-success { trace(curpsinfo->pr_psargs); }'

dtrace -n 'proc::: { @[probename] = count(); }'

dtrace -n 'proc:::signal-send /pid/ { printf("%s -%d %d", execname,
 args[2], args[1]->pr_pid); }'

dtrace -n 'profile-997 /arg0/ { @[stack()] = count(); }'

dtrace -n 'profile-997 /arg0/ { @[stack()] = count(); } END { trunc(@, 10); }'

dtrace -n 'profile-997 /arg0/ { @[stack(5)] = count(); }'

dtrace -n 'profile-997 /arg0/ { @[func(arg0)] = count(); }'

656 Appendix D � DTrace One-Liners

Sample kernel on-CPU modules at 997 Hz:

Sample user stacks at 97 Hz, for PID 123:

Sample user stacks at 97 Hz, for all processes named "sshd":

Sample user stacks at 97 Hz, for all processes on the system (include process name
in output):

Sample user stacks at 97 Hz, top ten only, for PID 123:

Sample user stacks, five frames only, at 97 Hz, for PID 123:

Sample user on-CPU functions at 97 Hz, for PID 123:

Sample user on-CPU modules at 97 Hz, for PID 123:

dtrace -n 'profile-997 /arg0/ { @[mod(arg0)] = count(); }'

dtrace -n 'profile-97 /arg1 && pid == 123/ { @[ustack()] = count(); }'

dtrace -n 'profile-97 /arg1 && execname == "sshd"/ { @[ustack()] = count(); }'

dtrace -n 'profile-97 /arg1/ { @[execname, ustack()] = count(); }'

dtrace -n 'profile-97 /arg1 && pid == 123/ { @[ustack()] = count(); }
 END { trunc(@, 10); }'

dtrace -n 'profile-97 /arg1 && pid == 123/ { @[ustack(5)] = count(); }'

dtrace -n 'profile-97 /arg1 && pid == 123/ { @[ufunc(arg1)] = count(); }'

dtrace -n 'profile-97 /arg1 && pid == 123/ { @[umod(arg1)] = count(); }'

sched Provider 657

Sample user stacks at 97 Hz, including during system time when the user stack is
frozen (typically on a syscall), for PID 123:

Sample which CPU a process runs on, at 97 Hz, for PID 123:

sched Provider

Summarize on-CPU time as a power-of-two distribution, for "sshd":

Summarize off-CPU time (blocked) as a power-of-two distribution, for "sshd":

Count off-CPU events showing kernel stack trace, for "sshd":

Count off-CPU events showing user stack trace, for "sshd":

dtrace -n 'profile-97 /pid == 123/ { @[ustack()] = count(); }'

dtrace -n 'profile-97 /pid == 123/ { @[cpu] = count(); }'

dtrace -n 'sched:::on-cpu /execname == "sshd"/ { self->ts = timestamp; }
 sched:::off-cpu /self->ts/ { @["ns"] = quantize(timestamp - self->ts);
 self->ts = 0; }'

dtrace -n 'sched:::off-cpu /execname == "sshd"/ { self->ts = timestamp; }
 sched:::on-cpu /self->ts/ { @["ns"] = quantize(timestamp - self->ts);
 self->ts = 0; }'

dtrace -n 'sched:::off-cpu /execname == "sshd"/ { @[stack()] = count(); }'

dtrace -n 'sched:::off-cpu /execname == "sshd"/ { @[ustack()] = count(); }'

658 Appendix D � DTrace One-Liners

fbt Provider

Count VFS calls (Linux):

Count VFS calls (Linux) for processes named "mysqld":

Count VFS calls (Solaris-based systems; use the fsinfo provider for stability):

List ext4_*() function calls:

Count ext4_*() function calls:

Count ZFS function calls (matching on the zfs kernel module):

Summarize zio_checksum_generate() latency as a power-of-two distribution:

dtrace -n 'fbt::vfs_*:entry'

dtrace -n 'fbt::vfs_*:entry /execname == "mysqld"/ { @[probefunc] = count(); }'

dtrace -n 'fbt::fop_*:entry { @[probefunc] = count(); }'

dtrace -ln 'fbt::ext4_*:entry'

dtrace -n 'fbt::ext4_*:entry { @[probefunc] = count(); }'

dtrace -n 'fbt:zfs::entry { @[probefunc] = count(); }'

dtrace -n 'fbt::zio_checksum_generate:entry { self->ts = timestamp; }
 fbt::zio_checksum_generate:return /self->ts/ { @["ns"] =
 quantize(timestamp - self->ts); self->ts = 0; }'

pid Provider 659

Summarize zio_checksum_generate() CPU time:

Summarize VFS call latency (Solaris) for processes named "mysqld":

Summarize kernel stack traces leading to tcp_sendmesg():

Summarize kernel slab allocations by cache name and kernel stack (Solaris-based
systems):

pid Provider

List all functions from the loaded libsocket library, for PID 123:

Count libsocket function calls, for PID 123:

Summarize malloc() request size, as a power-of-two distribution, for PID 123:

dtrace -n 'fbt::zio_checksum_generate:entry { self->v = vtimestamp; }
 fbt::zio_checksum_generate:return /self->v/ { @["on-CPU (ns)"] =
 quantize(vtimestamp - self->v); self->v = 0; }'

dtrace -n 'fbt::fop_*:entry /execname == "mysqld"/ { self->ts = timestamp; }
 fbt::fop_*:return /self->ts/ { @["ns"] =
 quantize(timestamp - self->ts); self->ts = 0; }'

dtrace -n 'fbt::tcp_sendmsg:entry { @[stack()] = count(); }'

dtrace -n 'fbt::kmem_cache_alloc:entry {
 @[stringof(args[0]->cache_name), stack()] = count(); }'

dtrace -ln 'pid$target:libsocket::entry' -p 123

dtrace -n 'pid$target:libsocket::entry { @[probefunc] = count(); }' -p 123

dtrace -n 'pid$target::malloc:entry { @["req bytes"] = quantize(arg0); }' -p 123

660 Appendix D � DTrace One-Liners

Summarize malloc() request size, as a power-of-two distribution, with user-level
stack trace, for PID 123:

io Provider

Summarize block I/O sizes, as a power-of-two distribution:

Summarize block I/O sizes, as a power-of-two distribution, with process name
(valid only for some synchronous code paths):

Count block I/O by kernel stack trace (reason):

Summarize block I/O latency, as a power-of-two distribution:

sysinfo Provider

Count CPU cross calls by process name:

dtrace -n 'pid$target::malloc:entry {
 @["req bytes, for:", ustack()] = count(); }' -p 123

dtrace -n 'io:::start { @["bytes"] = quantize(args[0]->b_bcount); }'

dtrace -n 'io:::start { @[execname] = quantize(args[0]->b_bcount); }'

dtrace -n 'io:::start { @[stack()] = count(); }'

dtrace -n 'io:::start { ts[arg0] = timestamp; }
 io:::done /this->ts = ts[arg0]/ { @["ns"] =
 quantize(timestamp - this->ts); ts[arg0] = 0; }'

dtrace -n 'sysinfo:::xcalls { @[execname] = count(); }'

ip Provider 661

Count CPU cross calls by kernel stack trace:

Summarize syscall read sizes, as a power-of-two distribution, by process name:

 Summarize syscall write sizes, as a power-of-two distribution, by process name:

vminfo Provider

Count minor faults by process name:

Count minor faults by user stack trace for processes named "mysqld":

Count anonymous page-ins by PID and process name:

ip Provider

Count received IP packets by host address:

dtrace -n 'sysinfo:::xcalls { @[stack()] = count(); }'

dtrace -n 'sysinfo:::readch { @dist[execname] = quantize(arg0); }'

dtrace -n 'sysinfo:::writech { @dist[execname] = quantize(arg0); }'

dtrace -n 'vminfo:::as_fault { @[execname] = sum(arg0); }'

dtrace -n 'vminfo:::as_fault /execname == "mysqld"/ { @[ustack()] = count(); }'

dtrace -n 'vminfo:::anonpgin { @[pid, execname] = count(); }'

dtrace -n 'ip:::receive { @[args[2]->ip_saddr] = count(); }'

662 Appendix D � DTrace One-Liners

Summarize IP send payload size, as a power-of-two distribution, by destination

tcp provider

Trace inbound TCP connections by remote address:

Count inbound connections with remote address and local port:

Count refused inbound connections with remote address and local port:

Count outbound connections by remote address and remote port:

Count TCP received packets by remote address:

Count TCP sent packets by remote address:

dtrace -n 'ip:::send { @[args[2]->ip_daddr] = quantize(args[2]->ip_plength); }'

dtrace -n 'tcp:::accept-established { trace(args[3]->tcps_raddr); }'

dtrace -n 'tcp:::accept-established {
 @[args[3]->tcps_raddr, args[3]->tcps_lport] = count(); }'

dtrace -n 'tcp:::accept-refused {
 @[args[2]->ip_daddr, args[4]->tcp_sport] = count(); }'

dtrace -n 'tcp:::connect-established {
 @[args[3]->tcps_raddr , args[3]->tcps_rport] = count(); }'

dtrace -n 'tcp:::receive { @[args[2]->ip_saddr] = count(); }'

dtrace -n 'tcp:::send { @[args[2]->ip_daddr] = count(); }'

udp provider 663

Summarize sent IP payload size, as a power-of-two distribution:

Count TCP events by type:

udp provider

Count UDP received packets by remote address:

Count UDP sent packets by remote port:

dtrace -n 'tcp:::send { @[args[2]->ip_daddr] = quantize(args[2]->ip_plength); }'

dtrace -n 'tcp::: { @[probename] = count(); }'

dtrace -n 'udp:::receive { @[args[2]->ip_saddr] = count(); }'

dtrace -n 'udp:::send { @[args[4]->udp_dport] = count(); }'

This page intentionally left blank

665

Appendix E
DTrace to SystemTap

This appendix is a brief guide to converting DTrace one-liners and scripts to Sys-
temTap. Both DTrace and SystemTap were introduced in Chapter 4, Observability
Tools, which you should study as background.

Selected differences in functionality, terminology, probes, built-in variables, and
functions are listed here. Several one-liners are then converted as examples.

For an additional reference, see “Translating Exiting [sic] DTrace Scripts into
SystemTap Scripts” on the SystemTap wiki [1]. This wiki page also shows conver-
sions of one-liners (some of my own) as examples.

Functionality

SystemTap has very similar functionality to DTrace (by design). Here are some
key differences you’ll encounter when porting scripts:

DTrace SystemTap Description

probename probe probename Probes require a probe keyword.

probe { var[a] =

global var;

probe { var[a] =

Some variable types, such as associa-
tive arrays, need to be predeclared as
“global.”

continues

666 Appendix E � DTrace to SystemTap

These changes are demonstrated in the later examples.

Terminology

Probes

self->var var[tid()] SystemTap does not have thread-
local variables (self->). The same
functionality is accomplished using
an associative array, keyed on the
thread ID.

/predicate/ { … { if (test) { … } Instead of predicates, SystemTap can
use conditionals in the probe action.

@a = count(x);

…

printa(@a);

a <<< x;

…

print(count(a));

Instead of aggregations tied to a
function (e.g., count), SystemTap
uses statistic aggregations (<<<) that
are later processed as desired.

arg0 … argN

args[0] … args[N]

depends on tapset DTrace probes have a standard set of
argument variables and a typed
array; SystemTap provides custom
typed variables depending on the
tapset and probe (see [2]).

DTrace SystemTap

provider tapset

aggregation statistic aggregation (although it does more)

DTrace SystemTap

BEGIN begin

END end

syscall:::entry syscall.*

syscall:::return syscall.*.return

syscall::read:entry syscall.read

DTrace SystemTap Description

Built-in Variables 667

Built-in Variables

syscall::read:return syscall.read.return

proc:::exec-success process.begin

sched:::on-cpu scheduler.cpu_on

sched:::off-cpu scheduler.cpu_off

profile:::profile-100 timer.profile

profile:::tick-10s timer.s(10)

fbt::foo:entry kernel.function("foo")

fbt::foo:return kernel.function("foo").return

io:::start ioblock.request

io:::done ioblock.end

DTrace SystemTap

execname execname()

uid uid()

pid pid()

cpu cpu()

timestamp gettimeofday_ns()

vtimestamp N/A

walltimestamp gettimeofday_s()

arg0..N custom variable (see tapset docs [2])

args[0]..[N] custom variable (see tapset docs [2])

curthread task_current()

probename N/A

probefunc probefunc()

probemod probemod()

curpsinfo->pr_psargs cmdline_str()

$target target()

DTrace SystemTap

668 Appendix E � DTrace to SystemTap

Functions

Example 1: Listing syscall Entry Probes

DTrace:

SystemTap:

Example 2: Summarize read() Returned Size

DTrace:

DTrace SystemTap

copyinstr() user_string()

stack() print_backtrace()

ustack() print_ubacktrace()

quantize() @hist_log()

lquantize() @hist_linear()

exit(status) exit()

dtrace -ln syscall:::entry
ID PROVIDER MODULE FUNCTION NAME
 24 syscall nosys entry
 26 syscall rexit entry
 28 syscall read entry
 30 syscall write entry
[...]

stap -l 'syscall.*'
syscall.accept
syscall.access
syscall.acct
syscall.add_key
[...]

dtrace -n 'syscall::read:return { @bytes = quantize(arg1); }'
dtrace: description 'syscall::read:return ' matched 1 probe
^C

Example 2: Summarize read() Returned Size 669

DTrace summarizes arg1, the return of the read() syscall. For SystemTap,
this is a custom variable from the syscall.read.return probe, which should be
documented in the SystemTap Tapset Reference Manual [2]. Another way to find
probes is to list them with the -L option, which shows the probes and their types:

The output includes $return:long and $count:size_t, both of which sound
promising. Currently, $count is not documented in the tapset reference, tapset
source [3], or SystemTap Language Reference [4]. It is mentioned in the System-
Tap Beginners Guide [5]: it is the requested size. $return is the returned value:
the actual bytes read in this case, which is what we’ll use here.

SystemTap, default output:

The default output is a terse description of the statistic aggregation. This might
include the details you want (count, min, max, sum, avg). Since we’d like the
power-of-two distribution, we will need to print it using the @histlog() function.

SystemTap, power-of-two distribution:

 value ------------- Distribution ------------- count
 -2 | 0
 -1 | 1
 0 | 0
 1 |@@@@@@@@@@@@@@@@@@@ 94
 2 |@@@@ 22
 4 | 0
 8 | 0
 16 |@ 5
 32 |@@@@@@@@@@@ 56
 64 | 1
 128 | 1
 256 |@ 4
 512 |@@@ 15
 1024 | 0

stap -L syscall.read.return
syscall.read.return name:string retstr:string $return:long int $fd:unsigned int
$buf:char* $count:size_t

stap -e 'global bytes; probe syscall.read.return { bytes <<< $return; }'
^Cbytes @count=125 @min=-11 @max=1027 @sum=10935 @avg=87

stap -e 'global bytes; probe syscall.read.return { bytes <<< $return; }
 probe end { print(@hist_log(bytes)); }'
^Cvalue |-- count
 -32 | 0
 -16 | 0
 -8 |@@@@@@@@@@@@@@@@@@@ 19

continues

670 Appendix E � DTrace to SystemTap

This is now equivalent to the DTrace version. The SystemTap ASCII histogram
makes greater use of the horizontal range, showing more detail.

Example 3: Count syscalls by Process Name

DTrace:

SystemTap, default output:

In this case, the variable is an associative array of statistic aggregations. The
default output of SystemTap does show what we are after—the syscall name and

 -4 | 0
 -2 | 0
 -1 | 0
 0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 32
 1 |@@@@@@@@@@@@@@@@@@@@@@@@@ 25
 2 |@@@@@@@@@@@@@ 13
 4 |@ 1
 8 | 0
 16 |@ 1
 32 |@@@@@@@@@@@@@@@@@@@@@@@@@@@ 27
 64 |@ 1
 128 |@ 1
 256 |@@@@@@@@ 8
 512 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 36
 1024 |@@@ 3
 2048 | 0
 4096 | 0

dtrace -n 'syscall:::entry { @[execname] = count(); }'
dtrace: description 'syscall:::entry ' matched 233 probes
^C

 svc.configd 1
 mysqld 10
 sshd 59
 dtrace 1108
 gzip 12105
 tar 33833

stap -e 'global ops; probe syscall.* { ops[execname()] <<< 1; }'
^Cops["date"] @count=18686 @min=1 @max=1 @sum=18686 @avg=1
ops["tar"] @count=16652 @min=1 @max=1 @sum=16652 @avg=1
ops["gzip"] @count=1323 @min=1 @max=1 @sum=1323 @avg=1
ops["stapio"] @count=370 @min=1 @max=1 @sum=370 @avg=1
ops["stap"] @count=4 @min=1 @max=1 @sum=4 @avg=1
ops["rsyslogd"] @count=4 @min=1 @max=1 @sum=4 @avg=1
ops["rs:main Q:Reg"] @count=4 @min=1 @max=1 @sum=4 @avg=1
ops["rpcbind"] @count=2 @min=1 @max=1 @sum=2 @avg=1

Example 4: Count syscalls by syscall Name, for Process ID 123 671

the count—but is a little hard to read. It can be formatted using printf() in a
loop, stepping over each key from the associative array.

SystemTap, formatted output:

This is now equivalent, and the printf() can be customized further if desired.
Note the use of “+” in foreach (k in agg+): this iterates over the statistic
aggregation in ascending value order. Use “-” for descending, and nothing if the
order is unimportant.

The examples that follow use the default output of statistic aggregations and
also show the commands only. Add code, like that shown in Example 2 and Exam-
ple 3 to produce readable output when desired.

Example 4: Count syscalls by syscall Name, for Process ID 123

DTrace:

SystemTap:

This uses probefunc(), which prints the kernel function name where the probe is
located (e.g., “sys_write” for write()). You can change probefunc() to name,
which produces just the syscall names (e.g., “write” for write(), although the
Language Reference suggests this might work only most of the time).

stap -e 'global agg; probe syscall.* { agg[execname()] <<< 1; }
 probe end { foreach (k in agg+) {
 printf("%-36s %8d\n", k, @count(agg[k])); } }'
^Cstap 4
rsyslogd 4
rs:main Q:Reg 4
sshd 74
stapio 148
gzip 70091
tar 83697

dtrace -n 'syscall:::entry /pid == 123/ { @[probefunc] = count(); }'

stap -e 'global ops; probe syscall.* { if (pid() == 123) {
 ops[probefunc()] <<< 1; } }'

672 Appendix E � DTrace to SystemTap

Example 5: Count syscalls by syscall Name, for
"httpd" Processes

DTrace:

SystemTap:

Example 6: Trace File open()s with Process Name and
Path Name

DTrace:

SystemTap:

Example 7: Summarize read() Latency for "mysqld" Processes

DTrace:

dtrace -n 'syscall:::entry /execname == "httpd"/ { @[probefunc] = count(); }'

stap -e 'global ops; probe syscall.* { if (execname() == "httpd") {
 ops[probefunc()] <<< 1; } }'

dtrace -n 'syscall::open:entry { printf("%s %s", execname, copyinstr(arg0)); }'

stap -e 'syscall.open { printf("%s %s", execname(), user_string($filename)); }'

Note

I’ve never actually seen this work.

dtrace -n 'syscall::read:entry /execname == "mysqld"/ { self->ts = timestamp; }
 syscall::read:return /self->ts/ { @["ns"] =
 quantize(timestamp - self->ts); self->ts = 0; }'

Example 8: Trace New Processes with Process Name and Arguments 673

SystemTap:

SystemTap, using @entry:

@entry is not currently documented in the SystemTap Language Reference, but it
does appear in some examples. It is used here to fetch the result of
gettimeofday_ns() from the entry to this system call, so that the latency can be
calculated.

It is important to be aware of which probes are traced, and which variables are
used, when estimating the overhead of a script. For @entry to work, I assume that
it auto-instantiates a syscall.read entry probe which calls gettimeofday_ns(),
stores the result in a thread-associated variable, and frees it after use.

Example 8: Trace New Processes with Process Name and
Arguments

DTrace:

SystemTap:

The probe locations may not be at exactly the same point during new process exe-
cution, but this should be close enough.

stap -ve 'global t, s; probe syscall.read { if (execname() == "mysqld") {
 t[tid()] = gettimeofday_ns(); } }
 probe syscall.read.return { if (t[tid()]) {
 s <<< gettimeofday_ns() - t[tid()]; delete t[tid()]; } }
 probe end { printf("ns\n"); print(@hist_log(s)); }'

stap -e 'global s; probe syscall.read.return { if (execname() == "mysqld") {
 s <<< gettimeofday_ns() - @entry(gettimeofday_ns()); } }
 probe end { printf("ns\n"); print(@hist_log(s)); }'

dtrace -n 'proc:::exec-success { trace(curpsinfo->pr_psargs); }'

stap -e 'probe process.begin { printf("%s\n", cmdline_str()); }'

674 Appendix E � DTrace to SystemTap

Example 9: Sample Kernel Stacks at 100 Hz

DTrace:

SystemTap:

References

[1] http://sourceware.org/systemtap/wiki/PortingDTracetoSystemTap

[2] http://sourceware.org/systemtap/tapsets

[3] /usr/share/systemtap/tapset

[4] http://sourceware.org/systemtap/langref/langref.html

[5] https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_
Linux/5/html-single/SystemTap_Beginners_Guide

dtrace -n 'profile-100 { @[stack()] = count(); }'

stap -e 'global s; probe timer.profile { s[backtrace()] <<< 1; }
 probe end { foreach (i in s+) { print_stack(i);
 printf("\t%d\n", @count(s[i])); } }'

../../../../../sourceware.org/systemtap/wiki/PortingDTracetoSystemTap
../../../../../sourceware.org/systemtap/tapsets
../../../../../sourceware.org/systemtap/langref/langref.html
../../../../../https@access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/5/html-single/SystemTap_Beginners_Guide
../../../../../https@access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/5/html-single/SystemTap_Beginners_Guide

675

Appendix F
Solutions to Selected
Exercises

The following are suggested solutions to selected exercises.

Chapter 2—Methodology

Q. What is latency?

A. A measure of time, usually time waiting for something to be done. In the IT
industry, it is used differently depending on context.

Chapter 3—Operating Systems

Q. List the reasons why a thread would leave the CPU.

A. Blocked on I/O, blocked on a lock, call to yield, expired time slice, preempted by
another thread, device interrupt, exiting.

Chapter 6—CPUs

Q. Calculate the load average . . .

A. 34

676 Appendix F � Solutions to Selected Exercises

Q. Describe CPU behavior visible from this Solaris-based screen shot alone.

A. There are many mysqld threads from the same process (multithreaded) on-
CPU, which are spending most of their time sleeping or blocked on locks—
which might be normal (it depends on how mysqld waits for work). The most
interesting detail is the CPU run-queue latency time (LAT) of between 5% and
11% per thread, which is evidence of CPU saturation. The load averages of 32
and beyond should be compared to the CPU count and CPU quota available to
mysqld (if resource controls are present), as the fix is either more CPUs, more
CPU quota, or tuning mysqld to consume less CPU—which may involve mov-
ing some work to a different system. The USR/SYS breakdown is around 2.5/1%,
which for over 10 K syscalls/s (SCL) seems reasonable.

Chapter 7—Memory

Q. Using Unix terminology, what is the difference between paging and swapping?

A. Paging is the movement of small pages; swapping is the movement of entire
processes.

Q. Describe memory utilization and saturation.

A. For memory capacity, utilization is the amount that is in use and not available,
measured against the total usable memory. This can be presented as a percent-
age, similar to file system capacity. Saturation is a measure of the demand for
available memory beyond the size of memory, which usually invokes a kernel
routine to free memory to satisfy this demand.

Chapter 8—File Systems

Q. What is the difference between logical I/O and physical I/O?

A. Logical I/O is to the file system interface; physical I/O is to the storage devices
(disks).

Q. Explain how file system copy-on-write can improve performance.

A. Since random writes can be written to a new location, they can be grouped (by
increasing I/O size) and written out sequentially. Both of these factors usually
improve performance, depending on the storage device type.

Chapter 11—Cloud Computing 677

Chapter 9—Disks

Q. Describe what happens when disks are overloaded with work, including the
effect on application performance.

A. The disks run at a continual high utilization rate (up to 100%) and a degree of
saturation (queueing). Their I/O latency is increased due to the likelihood of
queueing (which can be modeled). If the application is performing file system or
disk I/O, the increased latency may hurt application performance, provided it is
a synchronous I/O type: reads, or synchronous writes. It must also occur dur-
ing a critical application code path, such as while a request is serviced, and not
an asynchronous background task (which may only indirectly cause poor appli-
cation performance). Usually back pressure from the increased I/O latency will
keep the rate of I/O requests in check and not cause an unbounded increase in
latency.

Chapter 11—Cloud Computing

Q. Describe physical system observability from an OS-virtualized guest.

A. Depending on the host kernel implementation, the guest can see high-level
metrics of all physical resources, including CPUs and disks, and notice when
they are utilized by other tenants. Any metric that would be considered an
information leak is blocked by the kernel. For example, utilization for a CPU
may be observable (say, 50%), but not the process IDs and names from other
tenants that are causing it.

This page intentionally left blank

679

Appendix G
Systems Performance
Who’s Who

It can be useful at times to know who created the technologies that we use. This is
a list of who’s who in the field of systems performance, based on the Linux- and
Solaris-related technologies in this book. Identifying everyone properly is a diffi-
cult task, and this is the first attempt do so, inspired by the Unix who’s who list in
[Libes 89]. Apologies to those who are missing or misappropriated. For those wish-
ing to dig further into the people and history, see the references in the Bibliogra-
phy, the names listed in the Linux source code, and the authors in the illumos
repository.

John Allspaw: capacity planning [Allspaw 08].

Jens Axboe: CFQ I/O Scheduler, fio, blktrace, per backing device write-back.

Jeff Bonwick: invented kernel slab allocation, co-invented user-level slab alloca-
tion, co-invented ZFS, kstat, first developed mpstat.

Tim Bray: authored the Bonnie disk I/O micro-benchmark, known for XML.

Bryan Cantrill: father of DTrace; Solaris kernel hi-res cyclics; debunked Solaris
n:m implementation; authored Oracle ZFS Storage Appliance Analytics.

Rémy Card: primary developer for the ext2 and ext3 file systems.

Nadia Yvette Chambers: Linux hugetlbfs.

Guillaume Chazarain: iotop(1) for Linux.

680 Appendix G � Systems Performance Who’s Who

Adrian Cockcroft: performance books ([Cockcroft 95], [Cockcroft 98]), Virtual
Adrian (SE Toolkit).

Tim Cook: nicstat(1) for Linux, and enhancements.

Alan Cox: Linux network stack performance.

Mathieu Desnoyers: Linux Trace Toolkit (LTTng), Linux Trace Toolkit Viewer
(LTTV), kernel tracepoints, main author of userspace RCU.

Srikar Dronamraju: Linux uprobes.

Frank Ch. Eigler: lead developer for SystemTap.

Kevin Robert Elz: DNLC.

Roger Faulkner: wrote /proc for UNIX System V, thread implementation for
Solaris, and the truss(1) system call tracer.

Thomas Gleixner: Various Linux kernel performance work including hrtimers.

Sebastien Godard: sysstat package for Linux, which contains numerous perfor-
mance tools including iostat(1), mpstat(1), pidstat(1), nfsiostat(1),
cifsiostat(1), and an enhanced version of sar(1), sadc(8), sadf(1) (see the
metrics in Appendix C).

Brendan Gregg: nicstat(1), psio, DTraceToolkit (original iosnoop, iotop,
rwtop, tcptop, dtruss, execsnoop, etc.), original DTrace ip, tcp, udp, javascript
providers, ZFS L2ARC; USE method, TSA method, etc.; latency, utilization, and
subsecond-offset heat maps, flame graphs; books: [McDougall 06b], [Gregg 11],
this one.

Dr. Neil Gunther: Universal Scalability Law, ternary plots for CPU utilization,
performance books [Gunther 97].

Van Jacobson: traceroute(8), pathchar, TCP/IP performance.

Raj Jain: systems performance theory [Jain 91].

Jerry Jelinek: Solaris Zones.

Bill Joy: vmstat(1), BSD virtual memory work, TCP/IP performance, FFS.

Vamsi Krishna S: kprobes.

Christoph Lameter: SLUB allocator.

William LeFebvre: wrote the first version of top(1), inspiring many other tools.

John Levon: OProfile, DTrace ustack helper for Python.

Systems Performance Who’s Who 681

Mike Loukides: first book on Unix systems performance [Loukides 90], which
either began or encouraged the tradition of resource-based analysis: CPU, mem-
ory, disk, network.

Robert Love: Linux kernel performance work, including for preemption.

Marshall Kirk McKusick: FFS, work on BSD.

David S. Miller: Linux network stack improvements.

Cary Millsap: Method R.

Ingo Molnar: O(1) scheduler, completely fair scheduler, voluntary kernel preemp-
tion, ftrace, perf, and work on real-time preemption, mutexes, futexes, scheduler
profiling, work queues.

Andrew Morton: fadvise, read-ahead.

Mike Muuss: ping(8).

Shailabh Nagar: Delay accounting, taskstats.

Dave Pacheco: DTrace ustack helper for V8/Node.js.

Rich Pettit: SE Toolkit.

Nick Piggin: Linux scheduler domains.

Bill Pijewski: vfsstat(1M), ZFS I/O throttling.

Dennis Ritchie: Unix, and its original performance features: process priorities,
swapping, buffer cache, etc.

Tom Rodriguez: DTrace ustack helper for Java.

Steven Rostedt: adaptive spinning mutexes, ftrace, KernelShark.

Rusty Russell: original futexes, various Linux kernel work.

Eric Saxe: Solaris kernel performance improvements.

Michael Shapiro: co-created DTrace, Solaris /proc enhancements.

Balbir Singh: Linux memory resource controller, delay accounting, taskstats,
cgroupstats, CPU accounting.

Ken Thompson: Unix, and its original performance features: process priorities,
swapping, buffer cache, etc.

Linus Torvalds: the Linux kernel and numerous core components necessary for
systems performance, Linux I/O scheduler.

682 Appendix G � Systems Performance Who’s Who

Arjan van de Ven: latencytop, PowerTOP, irqbalance, work on Linux scheduler
profiling.

Dag Wieers: dstat.

Peter Zijlstra: adaptive spinning mutex implementation, hardirq callbacks
framework, other Linux performance work.

683

Glossary

ACK TCP acknowledgment.

adaptive mutex A mutex (mutual exclusion) synchronization lock type. See
Chapter 5, Applications.

address A memory location.

address space A virtual memory context. See Chapter 7, Memory.

aggregation A grouping of data. The term is usually used in the DTrace/
SystemTap context, referring to a grouping of data into buckets.

API Application programming interface.

application A program, typically user-level.

array A set of values. This is a data type for programming languages.

associative array A data type for programming languages where values are
referenced by an arbitrary key, which may be a text string.

AT&T The American Telephone and Telegraph Company, which included Bell
Laboratories, where Unix was developed.

balanced system A system without a bottleneck.

BSD Berkeley Software Distribution, a derivative of Unix.

684 Glossary

buffer A region of memory used for temporary data.

C The C programming language.

cache hit A request for data that can be returned from the contents of the cache.

cache miss A request for data that was not found in the cache.

cache warmth See Hot, Cold, and Warm Caches in Section 2.3.14, Caching, in
Chapter 2, Methodology.

client A consumer of a network service, referring to either the client host or the
client application.

command A program executed at the shell.

concurrency See Section 5.2.5, Concurrency and Parallelism, in Chapter 5,
Applications.

CPI Cycles per instruction. See Chapter 6, CPUs.

CPU Central processing unit. This term refers to the set of functional units that
execute instructions, including the registers and arithmetic logic unit (ALU). It is
now often used to refer to either the processor or a virtual CPU.

CPU cross call A call by a CPU to request work from others on a multi-CPU sys-
tem. Cross calls can be for system-wide events such as CPU cache coherency. See
Chapter 6, CPUs.

CPU cycle A unit of time based on the clock rate of the processor: for 2 GHz, each
cycle is 0.5 ns. A cycle itself is an electrical signal, the rising or falling of voltage,
used to trigger digital logic.

cross call See CPU cross call.

CTSS Compatible Time-Sharing System, one of the first time-sharing systems.

D The programming language supported by DTrace and processed by dtrace(1M)
and libdtrace(3LIB). It was inspired by the C and awk programming languages.

debuginfo file A Linux kernel symbol and debug information file, used by debug-
gers and profilers.

DEC Digital Equipment Corporation.

disk A physical storage device. Also see HDD and SSD.

disk controller A component that manages directly attached disks, making them
accessible to the system, either directly or mapped as virtual disks. Disk controllers

Glossary 685

may be built into the system main board, included as expansion cards, or built into
storage arrays. They support one or more storage interface types (e.g., SCSI,
SATA, SAS) and are also commonly called host bus adaptors (HBAs), along with
the interface type, for example, SAS HBA.

DRAM Dynamic random-access memory, a type of volatile memory in common use
as main memory.

dynamic tracing Instrumentation of live software by dynamically changing the
loaded instructions. See Chapter 4, Observability Tools.

ECC Error-correcting code. An algorithm for detecting errors and fixing some
error types (usually single-bit errors).

Ethernet A set of standards for networking at the physical and data link layers.

expander card A physical device (card) connected to the system, usually to
provide an additional I/O controller.

file descriptor An identifier for a program to use in referencing an open file.

fsck The file system check command is used to repair file systems after system
failure, such as due to a power outage or kernel panic, and is a process that can
take a long time (hours).

HDD Hard disk drive, a rotational magnetic storage device. See Chapter 9, Disks.

Hertz (Hz) Cycles per second.

host A system connected to the network.

I/O Input/output.

illumos An active fork of the OpenSolaris kernel. It is used by (among others)
Joyent SmartOS and OmniTI OmniOS.

IOPS I/O operations per second, a measure of the rate of I/O.

IPC Inter-process communication, a means for processes to exchange data.
Sockets are an IPC mechanism.

IRIX A Unix-derived operating system by Silicon Graphics, Inc. (SGI).

IRQ Interrupt request, a hardware signal to the processor to request work. See
Chapter 3, Operating Systems.

kernel level The context of the kernel, in the kernel address space, and with the
kernel (or privileged) CPU mode.

686 Glossary

local disks Disks that are connected directly to the server and are managed by
the server. These include disks that are internal to the server case and those
attached directly via a storage transport.

logical processor Another name for a virtual CPU. See Chapter 6, CPUs.

LRU Least recently used. See Section 2.3.14, Caching, in Chapter 2, Methodology.

main board The circuit board that houses the processors and system intercon-
nect; also called the system board.

major fault A memory access fault that was serviced from storage devices (disks).
See Chapter 3, Operating Systems.

minor fault A memory access fault that was serviced from main memory. See
Chapter 3, Operating Systems.

mysqld The daemon for the MySQL database.

operation rate Operations per interval (e.g., operations per second), which may
include non-I/O operations.

parallel See Section 5.2.5, Concurrency and Parallelism, in Chapter 5, Applica-
tions.

PC Program counter, a CPU register that points to the currently executing
instruction.

PDP Programmed Data Processor, a minicomputer series made by Digital Equip-
ment Corporation (DEC).

POSIX Portable Operating System Interface, a family of related standards by the
IEEE to define a Unix API. This includes a file system interface as used by appli-
cations, provided via system calls or system libraries built upon system calls.

process An operating system abstraction of a running program.

processor ring A protection mode for the CPU.

real-time workload One that has fixed latency requirements, usually low
latency.

registers Small storage locations on a CPU, used directly from CPU instructions
for data processing.

remote disks Disks (including virtual disks) that are used by a server but are
connected to a remote system.

Glossary 687

RFC Request for Comments, a document created by the network community to
share networking standards and best practices.

ROI Return on investment, a business metric.

RX Receive (used in networking).

sector A data unit size for storage devices, commonly 512 bytes or 4 Kbytes. See
Chapter 9, Disks.

server In networking, a network host that provides a service for network clients,
such as an HTTP or database server. The term server can also refer to a physical
system.

SmartOS An illumos kernel-based operating system, engineered for cloud com-
puting use, that includes DTrace, ZFS, Zones, and KVM. See Chapter 11, Cloud
Computing.

Solaris A Unix-derived operating system originally developed by Sun Microsys-
tems. It is popular for enterprise use and is known for scalability, for reliability,
and for introducing innovative features such as DTrace, ZFS, and Zones. Since the
acquisition of Sun by Oracle Corporation, it has been renamed Oracle Solaris.

SONET Synchronous optical networking, a physical layer protocol for optical
fibers.

SPARC A processor architecture (from scalable processor architecture).

SSD Solid-state drive, a storage device typically based on flash memory. See
Chapter 9, Disks.

stack A group (stack) of functions and registers maintained by the CPU for track-
ing program state. These are often inspected as part of performance analysis, par-
ticularly CPU profiling.

static tracing Instrumentation of software with precompiled probe points. See
Chapter 4, Observability Tools.

storage array A collection of disks housed in an enclosure, which can then be
attached to a system. Storage arrays typically provide various features to improve
disk reliability and performance.

SUT System under test.

SYN TCP synchronize.

syscall System call. See Chapter 3, Operating Systems.

688 Glossary

task A Linux runnable entity, which may be a process, a thread from a multi-
threaded process, or a kernel thread. See Chapter 3, Operating Systems.

TENEX TEN-EXtended operating system, based on TOPS-10 for the PDP-10.

thread An executable context that can be scheduled to run on a CPU. The kernel
has multiple threads, and a process contains one or more. See Chapter 3, Operat-
ing Systems.

throughput For network communication devices, throughput commonly refers to
the data transfer rate in either bits per second or bytes per second. Throughput
may also refer to I/O completions per second (IOPS) when used with statistical
analysis, especially for targets of study.

tunable Short for tunable parameter.

TX Transmit (used in networking).

user level The context of processes, in user-space with user mode.

VMS Virtual Memory System, an operating system by DEC.

x86 A processor architecture based on the Intel 8086.

689

Bibliography

[Amdahl 67] Amdahl, G. “Validity of the Single Processor Approach to
Achieving Large Scale Computing Capabilities.” AFIPS, 1967.

[Corbató 68] Corbató, F. J. A Paging Experiment with the Multics System.
MIT Project MAC Report MAC-M-384, 1968.

[Graham 68] Graham, B. “Protection in an Information Processing Utility,”
Communications of the ACM, May 1968.

[Denning 70] Denning, P. “Virtual Memory,” ACM Computing Surveys
(CSUR) 2, no. 3 (1970).

[Saltzer 70] Saltzer, J., and J. Gintell. “The Instrumentation of Multics,”
Communications of the ACM, August 1970.

[Bobrow 72] Bobrow, D., et al. “TENEX: A Paged Time Sharing System for
the PDP-10*,” Communications of the ACM, March 1972.

[Goldberg 73] Goldberg, R. P. Architectural Principles for Virtual Computer
Systems (Thesis). Harvard University, 1973.

[Myer 73] Myer, T. H., J. R. Barnaby, and W. W. Plummer. TENEX Exec-
utive Manual. Bolt, Baranek and Newman, Inc., April 1973.

[Ritchie 74] Ritchie, D., and K. Thompson. “The UNIX Time-Sharing
System,” Communications of the ACM 17, no. 7 (July 1974),
pp. 365–75.

690 Bibliography

[Knuth 76] Knuth, D. “Big Omicron and Big Omega and Big Theta,” ACM
SIGACT News, 1976.

[Lions 77] Lions, J. A Commentary on the Sixth Edition UNIX Operating
System. University of New South Wales, 1977.

[Peterson 77] Peterson, J., and T. Norman. “Buddy Systems,” Communica-
tions of the ACM, 1977.

[Thompson 78] Thompson, K. UNIX Implementation. Bell Laboratories, 1978.

[Babaoglu 79] Babaoglu, O., W. Joy, and J. Porcar. Design and Implementa-
tion of the Berkeley Virtual Memory Extensions to the UNIX
Operating System. Computer Science Division, Department of
Electrical Engineering and Computer Science, University of
California, Berkeley, 1979.

[Hinnant 84] Hinnant, D. “Benchmarking UNIX Systems,” BYTE maga-
zine 9, no. 8 (August 1984).

[McKusick 84] McKusick, M., et al. “A Fast File System for UNIX,” ACM
Transactions on Computer Systems (TOC) 2, no. 3 (August
1984).

[Saltzer 84] Saltzer, J., D. Reed, and D. Clark. “End-to-End Arguments in
System Design. ACM TOCS, November 1984.

[Anon 85] Anon et al. “A Measure of Transaction Processing Power,”
Datamation, April 1, 1985.

[Bach 86] Bach, M. J. The Design of the UNIX Operating System. Pren-
tice Hall, 1986.

[Patterson 88] Patterson, D., G. Gibson, and R. Kats. “A Case for Redundant
Arrays of Inexpensive Disks.” ACM SIGMOD, 1988.

[Libes 89] Libes, D., and S. Ressler. Life with UNIX: A Guide for Every-
one. Prentice Hall, 1989.

[Loukides 90] Loukides, M. System Performance Tuning. O’Reilly, 1990.

[Jain 91] Jain, R. The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simula-
tion, and Modeling. Wiley, 1991.

[Stevens 93] Stevens, W. R. TCP/IP Illustrated, Volume 1. Addison-Wesley,
1993.

Bibliography 691

[Bonwick 94] Bonwick, J. “The Slab Allocator: An Object-Caching Kernel
Memory Allocator.” USENIX, 1994.

[Goodheart 94] Goodheart, B., and J. Cox. The Magic Garden Explained:
The Internals of UNIX System V Release 4, an Open Systems
Design. Prentice Hall, 1994.

[Cockcroft 95] Cockcroft, A. Sun Performance and Tuning. Prentice Hall,
1995.

[Cantrill 96] Cantrill, B. Runtime Performance Analysis of the M-to-N
Scheduling Model (Thesis). Brown University, 1996.

[Mathis 96] Mathis, M., and J. Mahdavi. “Forward Acknowledgement:
Refining TCP Congestion Control.” ACM SIGCOMM, 1996.

[Vahalia 96] Vahalia, U. UNIX Internals: The New Frontiers. Prentice Hall,
1996.

[Gunther 97] Gunther, N. The Practical Performance Analyst. McGraw-Hill,
1997.

[Knuth 97] Knuth, D. The Art of Computer Programming, Volume 1,
Fundamental Algorithms, 3rd Edition. Addison-Wesley, 1997.

[Wong 97] Wong, B. Configuration and Capacity Planning for Solaris
Servers. Prentice Hall, 1997.

[Cockcroft 98] Cockcroft, A., and R. Pettit. Sun Performance and Tuning:
Java and the Internet. Prentice Hall, 1998.

[Downey 99] Downey, A. “Using pathchar to Estimate Internet Link Char-
acteristics.” ACM SIGCOMM, October 1999.

[Elling 00] Elling, R. Static Performance Tuning. Sun Blueprints, 2000.

[Bonwick 01] Bonwick, J., and J. Adams. “Magazines and Vmem: Extend-
ing the Slab Allocator to Many CPUs and Arbitrary
Resources.” USENIX, 2001.

[Mauro 01] Mauro, J., and R. McDougall. Solaris Internals: Core Kernel
Architecture. Prentice Hall, 2001.

[Musumeci 02] Musumeci, G. D., and M. Loukides. System Performance Tun-
ing, 2nd Edition. O’Reilly, 2002.

692 Bibliography

[Waldspurger 02] Waldspurger, C. “Memory Resource Management in VMware
ESX Server,” Proceedings of the 5th Symposium on Operating
Systems Design and Implementation, 2002.

[Hassan 03] Hassan, M., and R. Jain. High Performance TCP/IP Network-
ing. Prentice Hall, 2003.

[Millsap 03] Millsap, C., and J. Holt. Optimizing Oracle Performance.
O’Reilly, 2003.

[Cantrill 04] Cantrill, B., M. Shapiro, and A. Leventhal. “Dynamic Instru-
mentation of Production Systems.” USENIX, 2004.

[Deri 04] Deri, L. “Improving Passive Packet Capture: Beyond Device
Polling,” Proceedings of SANE, 2004.

[Gorman 04] Gorman, M. Understanding the Linux Virtual Memory
Manager. Prentice Hall, 2004.

[Neville-Neil 04] Neville-Neil, G. V., and M. K. McKusick. The Design and
Implementation of the FreeBSD Operating System. Addison-
Wesley, 2004.

[Bovet 05] Bovet, D., and M. Cesati. Understanding the Linux Kernel,
3rd Edition. O’Reilly, 2005.

[Bulpin 05] Bulpin, J., and I. Pratt. “Hyper-Threading Aware Process
Scheduling Heuristics.” USENIX, 2005.

[Cherkasova 05] Cherkasova, L., and R. Gardner. “Measuring CPU Overhead
for I/O Processing in the Xen Virtual Machine Monitor.”
USENIX ATEC’05.

[Corbet 05] Corbet, J., A. Rubini, and G. Kroah-Hartman. Linux Device
Drivers, 3rd Edition. O’Reilly, 2005.

[Eigler 05] Eigler, F. Ch., et al. Architecture of systemtap: A Linux Trace/
Probe Tool, 2005. http://sourceware.org/systemtap/
archpaper.pdf.

[Adams 06] Adams, K., and O. Agesen. “A Comparison of Software and
Hardware Techniques for x86 Virtualization.” ASPLOS’06.

[Cantrill 06] Cantrill, B. “Hidden in Plain Sight,” ACM Queue, 2006.

[Gupta 06] Gupta, D., L. Cherkasova, R. Gardner, and A. Vahdat.
“Enforcing Performance Isolation across Virtual Machines in
Xen.” ACM/IFIP/USENIX Middleware’06.

../../../../../sourceware.org/systemtap/archpaper.pdf
../../../../../sourceware.org/systemtap/archpaper.pdf

Bibliography 693

[McDougall 06a] McDougall, R., and J. Mauro. Solaris Internals: Solaris 10
and OpenSolaris Kernel Architecture. Prentice Hall, 2006.

[McDougall 06b] McDougall, R., J. Mauro, and B. Gregg. Solaris Performance
and Tools: DTrace and MDB Techniques for Solaris 10 and
OpenSolaris. Prentice Hall, 2006.

[Otto 06] Otto, E. Temperature-Aware Operating System Scheduling
(Thesis). University of Virginia, 2006.

[Schlossnagle 06] Schlossnagle, T. Scalable Internet Architectures. Sams Pub-
lishing, 2006.

[Singh 06] Singh, A. Mac OS X Internals: A Systems Approach. Addison-
Wesley, 2006.

[Smaalders 06] Smaalders, B. “Performance Anti-Patterns,” ACM Queue 4,
no. 1 (February 2006).

[Cherkasova 07] Cherkasova, L., D. Gupta, and A. Vahdat. “Comparison of the
Three CPU Schedulers in Xen.” ACM SIGMETRICS, 2007.

[Gove 07] Gove, D. Solaris Application Programming. Prentice Hall,
2007.

[Gunther 07] Gunther, N. Guerrilla Capacity Planning. Springer, 2007.

[Allspaw 08] Allspaw, J. The Art of Capacity Planning. O’Reilly, 2008.

[DeWitt 08] DeWitt, D., and C. Levine. “Not Just Correct, but Correct and
Fast,” SIGMOD Record, 2008.

[Matthews 08] Matthews, J., et al. Running Xen: A Hands-On Guide to the
Art of Virtualization. Prentice Hall, 2008.

[Ruggiero 08] Ruggiero, J. Measuring Cache and Memory Latency and CPU
to Memory Bandwidth. Intel (Whitepaper), 2008.

[Traeger 08] Traeger, A., E. Zadok, N. Joukov, and C. Wright. “A Nine Year
Study of File System and Storage Benchmarking,” ACM
Transactions on Storage, 2008.

[Intel 09] An Introduction to the Intel QuickPath Interconnect. Intel,
2009.

[Doeppner 10] Doeppner, T. Operating Systems in Depth: Design and Pro-
gramming. Wiley, 2010.

694 Bibliography

[Gregg 10a] Gregg, B. “Performance Visualizations.” USENIX LISA
invited talk, 2010.

[Gregg 10b] Gregg, B. “Visualizing System Latency,” Communications of
the ACM, July 2010.

[Love 10] Love, R. Linux Kernel Development, 3rd Edition. Addison-
Wesley, 2010.

[Turner 10] Turner, J. “Effects of Data Center Vibration on Compute
System Performance.” USENIX, SustainIT’10.

[Gregg 11] Gregg, B., and J. Mauro. DTrace: Dynamic Tracing in Oracle
Solaris, Mac OS X and FreeBSD. Prentice Hall, 2011.

[Adamczyk 12] Adamczyk, B., and A. Chydzinski. “Performance Isolation
Issues in Network Virtualization in Xen,” International Jour-
nal on Advances in Networks and Services, 2012.

[Cornwell 12] Cornwell, M. “Anatomy of a Solid-State Drive,” Communica-
tions of the ACM, December 2012.

[Intel 12] Intel 64 and IA-32 Architectures Software Developer’s Man-
ual, Combined Volumes 1, 2A, 2B, 2C, 3A, 3B, and 3C. Intel,
2012.

[Nichols 12] Nichols, K., and V. Jacobson. “Controlling Queue Delay,”
Communications of the ACM, July 2012.

[Gregg 13] Gregg, B. “Thinking Methodically about Performance,”
Communications of the ACM, February 2013.

[Intel 13] Intel 64 and IA-32 Architectures Software Developer’s Man-
ual, Volume 3B, System Programming Guide, Part 2. Intel,
2013.

[Leventhal 13] Leventhal, A. “A File System All Its Own,” ACM Queue,
March 2013.

[RFC 546] TENEX Load Averages for July 1973, August 1973.
http://tools.ietf.org/html/rfc546.

[RFC 768] User Datagram Protocol, 1980.

[RFC 793] Transmission Control Protocol, 1981.

[RFC 896] Congestion Control in IP/TCP Internetworks, 1984.

../../../../../tools.ietf.org/html/rfc546

Bibliography 695

[RFC 1122] Requirements for Internet Hosts—Communication Layers,
1989.

[RFC 1589] A Kernel Model for Precision Timekeeping, 1994.

[RFC 1761] Snoop Version 2 Packet Capture File Format, 1995.

[RFC 2474] Definition of the Differentiated Services Field (DS Field) in the
IPv4 and IPv6 Headers, 1998.

This page intentionally left blank

697

Index

Numbers
10 GbE networking, 493
32-bit/64-bit architecture, word size and,

198–199

A
Accelerated receive flow steering, Linux network

stack, 493
accept()

DTrace for socket connections, 521
function of key system calls, 95

Access timestamps, 336
Accounting

Linux delay accounting, 130–131
process accounting, 132
Solaris microstate accounting, 131

ACKs (acknowledgements)
defined, 683
delayed, 486
duplicate ACK detection, 485
in TCP three-way handshake, 484

Actions
DTrace, 138–139
SystemTap, 146

Active benchmarking, 604–606
Active TCP connection rate

in TCP three-way handshakes, 484
workload characterization of, 496

Activities, performance activities in order of
execution, 3–4

Ad hoc checklists, 38–39
Ad hoc experimentation

testing CPU performance, 255
testing disk performance, 465
testing file system performance, 384

Adaptive mutex locks
defined, 683
lock analysis and, 183
types of synchronization primitives, 161

Adaptive spinning mutexes, 161
Address space, 266, 683
Addresses, 683
Advanced tracing. see Dynamic tracing
Agents, for monitoring, 76
Aggregation

converting DTrace to SystemTap, 669, 671
defined, 683
DTrace, 177
as variable type/overhead, 139

Aggregation variables, DTrace, 139–141
Algorithms

associativity and, 202–203
Big O notation analyzing complexity of,

156–158
cache management, 31–32
CSMA/CD, 487
elevator seeking and, 397, 410, 419, 457

698 Index

Algorithms (continued)
hashing, 162
RCU-walk (read-copy-update-walk), 343
scheduling, 212
TCP congestion control, 102, 485–486, 538
thread management, 99

Allocators
improving performance of multithreaded

applications, 318
for memory usage, 272, 286–287
for page management in Linux, 281
tracing allocation, 308–311
types of, 287–289

Amdahl's Law of Scalability, 60–61
Analysis

appropriate level of, 22–23
benchmarking and, 589–592
drill-down analysis, 50–51

Analysis, application-related
Big O notation applied to, 156–158
drill-down analysis, 182
lock analysis, 182–185
overview of, 167–168
syscall analysis, 173
thread-state analysis, 168–171

Analysis, CPU-related
checking scheduler latency, 245–246
DTrace and, 236–238
examining CPC (cpustat), 249–250
Linux performance tools in, 250
load averages and, 224–226
monitoring top running processes, 231–234
multiprocessor statistics (mpstat), 227–229
overview of, 224
perf analysis of, 243–244
perf documentation, 249
printing CPU usage by thread or process

(pidstat), 234
profiling kernel with DTrace, 236–237
profiling processes with perf, 245
profiling system with perf, 244–245
profiling user with DTrace, 238–240
reporting on CPU usage (time,ptime),

235–236
reporting on system activity (sar), 230
Solaris performance tools, 251
summarizing CPU cycle behavior with perf

stat, 246–247
SystemTap analysis of, 243
tracing CPU cross calls, 241
tracing functions, 240–241
tracing interrupts, 241–242
tracing scheduler tracing, 242–243

tracing software with perf, 247–249
uptime analysis, 224–225
viewing process status (ps), 230–231
virtual memory statistics (vmstat), 226–227
visualizations, 251–254

Analysis, disk-related
counting I/O requests, 448–449
of disk controllers, 459–460
dynamic tracing, 450
event tracing, 444
event tracing applied to SCSI events, 449–450
examining events with DTrace, 442–443
heat maps, 462–465
io provider (DTrace) for visibility of block

device interface, 443–444
line charts/graphs, 461
overview of, 431–432
perf, 451–452
printing statistics with pidstat, 441–442
reporting/archiving current activity (sar),

440–441
scatter plots, 462
summarizing I/O seek distances, 445–446
summarizing I/O size, 444–445
summarizing latency, 446–447
summarizing per-disk statistics (iostat), 432
summarizing per-disk statistics on Linux,

433–436
summarizing per-disk statistics on Solaris,

436–440
SystemTap, 451
top analysis of (disktop.stp), 454
top analysis of (iotop), 452–454
tracing block device events on Linux

(blktrace), 457–459
tracing with iosnoop, 455–457
viewing health statistics with smartctl,

460–461
visualizations, 461

Analysis, file system-related
analyzing file system cache with, 376–377
analyzing file system statistics with sar,

377–378
analyzing file systems (kstat), 381–382
analyzing kernel memory usage on Solaris

systems, 379
analyzing kernel slab caches related to file

systems, 378–379
of block device I/O stacks, 370–371
debugging syscall interface on Linux, 364–365
DTrace and, 365
dynamic tracing, 373–375
file system statistics, 364

Index 699

LatencyTOP tool, 375
measuring system latency with DTrace,

367–368
measuring VFS latency with DTrace, 368–370
memory summary using mdb::memstat,

380–381
memory summary with /proc/meminfo, 380
operation counts with DTrace, 365–366
other tools, 382–383
overview of, 362–363
printing cache activity on UFS using

fcachestat, 379–380
showing statistics with free, 376
summarizing event counts with DTrace, 367
SystemTap analysis of, 375
tracing slow events, 372–373
tracing ZFS read latency, 371–372
of virtual file system statistics, 363–364
visualizations, 383

Analysis, memory-related
allocation tracing, 308–311
fault tracing, 311–312
kernel memory usage on Solaris systems

(kmastat), 302–303
list of performance tools, 312–314
mapping process memory (pmap), 306–308
overview of, 295
page-out daemon tracing, 312
process status (ps), 304–305
slab cache usage (slabtop), 302
system activity reporters (sar), 298–301
SystemTap, 312
top running processes on Linux (top), 305
top running processes on Solaris (prstat),

305–306
virtual memory statistics (vmstat), 295–298

Analysis, network-related
capturing and inspecting packets (snoop),

517–520
capturing and inspecting packets (tcpdump),

516–517
configuring network interfaces and routes

(ip), 512
configuring network interfaces (ifconfig),

511
DTrace for examining network events,

520–533
experimental tools, 535–536
other Linux and Solaris tools, 534
perf for static and dynamic tracing of

network events, 533–534
printing network interface statistics

(nicstat), 512–513

providing interface statistics on Solaris
(dladm), 513–514

reporting on network activity (sar), 509–511
reporting on network statistics (netstat),

503–509
SystemTap for tracing file system events, 533
testing network connectivity (ping), 514
testing routes and bandwidth between routes

(pathchar), 515–516
testing routes (traceroute), 514–515
Wireshark tool for packet capture and

analysis, 520
Anonymous memory, 266
Anonymous page-ins, 624, 626–627
Anonymous paging, 268–269
Anticipatory I/O latency policy, 420
Anti-methodologies

blame-someone-else, 38
random change, 37
streetlight, 36–37

API, 683
Application calls, tuning file systems and, 387–388
Application servers, in cloud architecture, 547
Applications

basics of, 153–155
breakpoint tracing on Linux (strace),

173–175
breakpoint tracing on Solaris (truss),

176–177
buffered tracing, 177–179
buffering, 159
caching, 158
compiled languages and, 164–165
concurrency and parallelism, 160–162
CPU profiling, 171–173
disk I/O vs. application I/O, 407
exercises and references, 186–187
garbage collection, 166–167
interpreted languages, 165–166
I/O profiling, 180–181
I/O sizing, 158–159
methodologies, 167–168
non-blocking I/O, 162–163
observability eliminating unnecessary work,

156
optimizing common code path, 156
overview of, 153
performance objectives, 155–156
polling, 159–160
processor binding, 163
programming languages and, 163–164
static performance tuning, 185–186
tuning targets, 22

700 Index

Applications (continued)
USE method applied to, 181–182
virtual machines and, 166
workload characterization applied to, 181

apptrace, for investigating library calls on
Solaris, 182

Architecture
cloud computing, 547–548
load vs. architecture in analysis of

performance issues, 24
Architecture, CPU-related

cache, 200–204
CPCs (CPU performance counters), 206–208
hardware, 199
idle threads, 213
interconnects, 204–206
MMU (memory management unit), 204
NUMA groups, 214
overview of, 191, 199
processor resource-aware, 214
processors, 199–200
schedulers, 209–210
scheduling classes, 210–213
software, 209

Architecture, disk-related
interfaces, 414
magnetic rotational disks, 408–411
operating system disk I/O stack, 418–421
overview of, 407
solid-state disks, 411–413
storage types, 415–418

Architecture, file system-related
btrfs, 351
buffer cache, 339–341
cache types, 339
COW (copy-on-write) strategy, 344
dentry (Dcache) cache, 343
DNLC (directory lookup cache), 341
ext3 and ext 4, 347–348
features, 344–345
FFS, 345–347
inode cache, 343
I/O stack model, 337
overview of, 337
page cache, 340–343
types of, 345
UFS (Unix File System), 347
VFS (virtual file system), 337–338
volumes and pools, 351–352
ZFS, 348–351

Architecture, memory-related
allocators, 286–289
busses, 274–276

free lists, 280–281
hardware, 273
heap growth and, 286
main memory, 273–274
methods for freeing memory, 278–280
MMU (memory management unit), 276–277
overview of, 272–273
page scanning for freeing memory, 282–284
process address space, 284–285
reaping for freeing memory, 281–282
software, 278

Architecture, network-related
hardware, 486–488
protocols, 483–486
software, 488–493

Arguments, DTrace, 137
argumentum ad populum logic, 597
Arithmetic mean, 70
Array, 683
The Art of Capacity Planning (Allspaw), 66
Associative arrays

converting DTrace to SystemTap, 665–666, 670
defined, 683
I/O latency and, 447
SCSI events and, 449
socket I/O and, 523
as variable type/overhead, 138–140, 143

Associativity, CPU cache and, 202–203
Asynchronous operations, disk I/O and, 407
AT&T (American Telephone and Telegraph

Company), 683
Available swap, virtual memory and, 271–272
Averages

over time, 71
plotting statistical values, 77–78
types of, 70–71

B
Backlog

connection, 481
tracing backlog drops with DTrace, 529–531

Backlog queues, TCP
analysis of usage, 500
overview of, 492–493
tuning on Linux, 537–538
tuning on Solaris, 541

Balanced system, 683
Balloon driver, resource controls in hardware

virtualization, 573–574
Bandwidth

defined, 396
interface types based on, 487

Index 701

networking terminology, 474
resource controls for network limits, 502

Baseline statistics, 54
Benchmarking

active benchmarking, 604–606
activities, 588–589
analysis, 589–590
applying micro-benchmarking to file systems,

361–362
casual approach to, 591
changing multiple factors in, 594–595
cheating, 597
cloud computing use in simulation, 57–58
complex tools for, 592
CPU profiling, 606–607
custom benchmarks, 608
exercises and references, 614–616
faith issues, 591
friendly fire, 595
ignoring errors and variance, 593
ignoring perturbations, 593–594
industry-standard benchmarks, 601–602
methodologies, 602–603
micro-benchmarking, 56–57, 502–503, 597–599
misleading benchmarks, 595–596
numbers without analysis, 591–592
overview of, 587
passive benchmarking, 603–604
ramping load, 608–611
replay, 600
sanity check, 611
simulation, 599–600
sins, 596–597
statistical analysis, 612–613
SysBench tool, 255
testing effect of software change, 12
testing wrong thing, 592–593
USE method, 607–608
workload characterization, 608
workload characterization as input for, 49–50

BGSAVE configuration, 631–633
Big O notation, applied to performance analysis,

156–158
Bimodal distributions, in statistics, 73
Binaries, in compiled languages, 164
Binary translation, 566–567
Binding

CPU binding, 222
process binding, 259
processor binding, 163

BIOS, tuning, 260
Blame-someone-else anti-method, 38

blktrace
system-wide tracing, 118
tracing block device events on Linux,

457–459
Block devices

analyzing block device I/O stacks, 370–371
device drivers for, 103
interface, 418–421
io provider (DTrace) for visibility of block

device interface, 443–444
tracing events on Linux (blktrace), 118,

457–459
Block interface, 103
Block store, for persistent storage, 550
Bonnie/Bonnie++ benchmarking tool, 385,

604–606
Borrowed virtual time (BVT), hypervisor CPU

scheduler, 572
Bottlenecks

checking resource bottlenecks, 10
complexity of systems and, 5
defined, 16
lock analysis and, 182
resource limits and, 66–67
USE method for identifying, 422

Breakpoint tracing
on Linux (strace), 173–175
on Solaris (truss), 176–177

brk(), system calls, 96
Broadcast messages, 476–477
BSD (Berkeley Software Distribution)

defined, 683
memory management, 98
resource controls, 104

btrfs file system, 351
Buckets

hash table, 162
heat map ranges, 79

Buffers/buffering
block devices and buffer cache, 103
buffer bloat, 481
buffer cache, 103, 339–341
buffer size and performance trade-offs, 21
buffered tracing, 177–179
connection backlog, 481
defined, 684
for improving application performance, 159
networks and, 481
ring, 493
TCP, 492–493
tuning Linux socket and TCP, 537
tuning on Solaris, 540

702 Index

Bursting
dynamic sizing in cloud with, 549
resource controls in OS virtualization, 556

Busses, memory, 274–276
BVT (borrowed virtual time), hypervisor CPU

scheduler, 572
Bytecode, virtual machine instruction set, 166
Bytes, I/O size in, 403

C
C programming language, 684
Cache/caching

algorithms for cache management, 31–32
analyzing file system cache with top, 376
analyzing file system cache with vmstat,

376–377
analyzing kernel slab caches, 378–379
buffer cache, 103
cache coherency, 158, 203–204
cache hit, 684
cache layers for disk I/O, 101–102
cache line size, 203
cache miss, 31, 684
cache tuning, 360
cache warmth, 192, 684
CPU memory cache, 191–192
defined, 16
disk cache, 397–398
disk I/O performance and, 401–402
file system cache, 11, 271, 325–326
file systems, 327–328, 339–343
flushing system cache, 387
hot, cold, and warm caches, 32
for improving application performance, 158
overview of, 30–31
printing cache activity on UFS using

fcachestat, 379–380
RAID and, 417
second-level cache, 326
tuning, 55–56
tuning disk cache, 429
write-back caching, 330

cachegrind profiling tool, 119
Callouts, scheduled kernel routines, 88
Capacity, file system, 337
Capacity planning

activities in systems performance, 2
benchmarking during, 588
cloud computing and, 8, 548–549
factor analysis, 68
overview of, 65–66

resource analysis and, 33
resource limits and, 66–67
scaling solutions and, 69, 223, 431

Capacity resources, main memory as, 45
Capacity-based utilization, 28–29
Caps, CPU, 556
Carrier sense multiple access with collision

detection (CSMA/CD), 487
CAS (column address strobe), in measuring

access time of main memory, 273
Cascading failures, system complexity and, 5
Case study. see Redis application, as

troubleshooting case study
Casual benchmarking issues, 591
CFQ (completely fair scheduler), I/O latency

policies, 420
cgroups (control groups), resource management

options in Linux, 104, 318
Challenges, in performance engineering

complexity of systems, 5–6
multiplicity of performance issues, 6
overview of, 4
subjective nature of performance, 5

Change management, software change case
study, 11–13

Character interface, device drivers providing, 103
Cheating, benchmarking and, 597
chroot, 552
Circular buffers, 159
Clause-local variables, DTrace, 139
Client, 684
clock() routine, kernel and, 88–89
Clock rate, CPUs, 193
close(), system calls, 95
Cloud Analytics. see Joyent Cloud Analytics
Cloud Analytics, Joyent, 81
Cloud API, 546
Cloud computing

background, 546
benchmarking in, 588–589
capacity planning, 548–549
comparing technologies, 581–583
defined, 546
exercise solutions, 677
exercises and references, 583–585
hardware virtualization. see Hardware

virtualization
multitenancy, 550–551
OS virtualization. see OS virtualization
overview of, 8–9, 545–546
price/performance ratio, 546
scalable architecture, 547–548

Index 703

simulating enterprise systems using, 57–58
storage, 550
USE method and, 48

Cloudy day performance testing, benchmarks for,
599

Code, optimizing common code path in
applications, 156

Coefficient of variation (CoV), 72
Coherence, visualization of scalability profiles, 59
Cold cache, 32
Collisions, interface identifying, 487
Column address strobe (CAS), in measuring

access time of main memory, 273
Command, 684
Comparisons of virtualization technologies,

581–583
Compatible Time-Sharing System (CTSS), 684
Competition, benchmarking the, 594–595
Compiled languages, 164–165
Compilers

CPU compiler options, 256
improving CPU runtime, 199
optimizing, 164–165

Completely fair scheduler (CFQ), I/O latency
policies, 420

Completion, targets for workload analysis, 34
Complexity of systems, 5–6
Concurrency

application performance and, 160–162
defined, 684

Configuration, tuning network performance, 542
Congestion avoidance, 483, 485
Congestion control, TCP

algorithms for, 485–486
defined, 483
tuning on Linux, 538

Congestion window
analysis of size, 500
defined, 483

connect(), system calls, 95, 520–522
Connect latency, networks, 480, 524
Connection backlog, networks, 481
Connection life span, networks, 481
Connections

local network, 482–483
performance monitoring of TCP, 498

Contention, visualization of scalability profiles, 59
Context switch

defined, 86
between user mode and kernel mode, 89

Control unit (control logic), at heart of CPU, 200
Controllers, disk. see Disk controllers

Controllers, network
as networking hardware component, 487
overview of, 475
USE method for analyzing, 496

Copy-on-write (COW) strategy, 93, 344
Core, 190
Counters

CPCs (CPU performance counters), 206–208
CPU performance, 131
overview of, 116
system-wide and per-process, 117

CoV (coefficient of variation), 72
COW (copy-on-write) strategy, 93, 344
CPCs (CPU performance counters)

checking memory bus load, 293
CPU cycle analysis, 219–220
tools for examining, 249–250
types of CPU hardware, 206–208

CPI (cycles per instruction)
CPU cycle analysis, 219–220
CPU metrics, 194–195
PICs (performance instrumentation counters)

and, 249–250
CPU affinity, 163, 192
CPU cache

associativity and, 202–203
cache coherency, 203–204
cache line size, 203
for improving memory access performance, 276
latency and, 202
overview of, 200–202

CPU counters. see CPCs (CPU performance
counters)

CPU cross calls
defined, 684
DTrace analysis of, 241
preemption and, 103

CPU cycles
clock rate and, 193
defined, 684

CPU instructions
CPI (cycles per instruction)/IPC (instructions

per cycle) metrics, 194–195
defined, 190
instruction pipeline, 194
instruction sets, 193–194
instruction width, 194
micro-benchmarking, 222

CPU mode
analysis of time in user mode or kernel mode,

196
determining CPU mode of application, 154

704 Index

CPU mode (continued)
kernel mode, 88–89
user mode, 89

CPU profiling, 171–173, 606–607
CPUs (central processing units)

affinity, 163, 192
analysis, 214, 224
architecture, 191, 199
associativity and, 202–203
binding, 222
cache. see CPU cache
checking resource controls, 562
clock rate, 193
comparing virtualization technology

performances, 581
compiler optimization, 199
compiler options, 256
counters. see CPCs (CPU performance

counters)
cpusets, 259
cpustat, 249–250
cross calls, 103, 684
cycle analysis, 219–220
cycles, 193, 684
defined, 684
determining CPU mode, 154
exercise solutions, 675–676
exercises and references, 260–263
experimentation, 254–255
factor analysis, 68
garbage collection and, 167
hardware, 199
idle threads, 213
instructions. see CPU instructions
interconnects, 204–206
I/O wait as performance metric, 406
latency and, 202
Linux performance tools, 250
load averages in analyzing, 224–226
memory cache, 191–192
micro-benchmarking, 222–223
MMU (memory management unit), 204
mode. see CPU mode
multiprocessing/multithreading, 197–198
multiprocessor statistics (mpstat), 227–229
multiprocessor support, 103
NUMA groups, 214
overhead in hardware virtualization, 566–569
overhead in OS virtualization, 553
overview of, 189–190
parallelism and, 160
performance counters, 131

performance monitoring, 220
performance trade-offs between memory and, 21
pidstat analysis, 234
preemption, 196
price/performance ratio in cloud computing,

546
priority inversion, 196–197
priority tuning, 221–222
process binding, 259
processor binding, 163
processor options, 260
processors and, 199–200
profiling, 171–173, 218–219, 606–607
prstat analysis, 232–234
ps analysis, 230–231
resource controls, 222, 260, 556–557
run queues, 192–193
sar analysis, 230
saturation and, 196
scaling, 223–224
scheduler class tuning, 258
schedulers, 98–99, 209–210, 257–258
scheduling classes, 210–213
scheduling priority and class, 256–257
software, 209
Solaris performance tools, 251
static performance tuning, 220–221
surface plots for per-CPU utilization, 80–81
SystemTap analysis of, 243
terminology regarding, 190
time,ptime analysis, 235–236
time scales of CPU cycles, 20
tools method, 215
top analysis, 231–232
tuning, 214, 256
uptime analysis, 224–225
USE method, 216, 623
utilization measurement, 195
virtual CPUs. see vCPUs (virtual CPUs)
visualizations, 251–254
vmstat analysis, 226–227
word size, 198–199
workload characterization applied to, 216–218

CPUs, DTrace analysis of
cross calls, 241
function tracing, 240–241
interrupts, 241–242
kernel profiling, 236–237
one-liners, 237–238
overview of, 236
scheduler tracing, 242–243
user profiling, 238–240

Index 705

CPUs, perf analysis of
checking scheduler latency, 245–246
documentation, 249
overview of, 243–244
process profiling, 245
software tracing, 247–249
stat command for summarizing CPU cycle

behavior, 246–247
system profiling, 244–245

cpusets, creating CPU sets in Linux, 259
cpusets, Linux, 222
cpustat, for system-wide analysis, 249–250
cputrack, for process analysis, 249
CR3 profiling, for observability in hardware

virtualization, 579–580
Credit-based hypervisor CPU scheduler, 572
Cross calls, CPU

defined, 684
DTrace analysis of, 241
preemption and, 103

CSMA/CD (carrier sense multiple access with
collision detection), 487

CTSS (Compatible Time-Sharing System), 684
Custom benchmarks, 608
CV (coefficient of variation). see CoV (coefficient

of variation)
Cycles, CPU

CPI (cycles per instruction) metric, 194–195
cycle analysis, 219–220, 293
resource controls, 222
summarizing CPU cycle behavior, 246–247

Cycles per instruction. see CPI (cycles per
instruction)

Cyclic page cache, Solaris methods for freeing
memory, 279

D
D programming language, 137, 684
Data rate, throughput and, 16
Database servers, in cloud architecture, 547
Databases

performance tuning targets, 22
sharding, 69

Datagrams, sending with UDP, 486
Dcache (Dentry) cache, 343
DDR SDRAM (double data rate synchronous

dynamic random-access memory), 274
Deadlines, I/O latency policies, 420
debuginfo file, 245, 684
DEC (Digital Equipment Corporation), 684
Decayed averages, 71

Degradation of performance, for nonlinear
scalability, 25–26

Delay accounting, Linux, 130–131, 170
Delayed ACKs algorithm, for TCP congestion

control, 486
Demand paging, 269–270
Denial-of-service (DoS) attacks, 49
Dentry (Dcache) cache, 343
Development, benchmarking during, 588
Device backlog queue, tuning on Linux, 538
Device drivers, 103
Device I/O, 574
df, analyzing file systems, 382
Diagnosis cycle, 41
Digital Equipment Corporation (DEC), 684
Direct I/O file systems, 331–332
Directory lookup cache (DNLC), 341
Directory organization, 99–100
Disk controllers

analyzing with MegaCli, 459–460
defined, 684–685
magnetic rotational disks, 411
micro-benchmarking, 430
overview of, 398–399
scaling solutions, 431
SSDs (solid-state disks), 412–413
tuning with MegaCli, 469–470
USE method for checking, 423

Disk devices
storage devices, 415
tuning, 469
USE method for checking, 422–423

Disk heads, on hard disks, 408
Disk I/O. see also I/O (input/output)

analyzing block device I/O stacks, 370–371
vs. application I/O, 407
cache, 401–402
cache layers, 101–102
characterizing disk I/O workload, 424–425
counting I/O requests (I/O stack frequency),

448–449
event tracing, 427–428, 442–444
I/O wait, 406
IOPS (I/O per second), 404
latency, 399–401
micro-benchmarking, 361–362, 429–430
observability in OS virtualization, 561
operating system disk I/O stack, 418
printing statistics with pidstat, 441–442
random vs. sequential, 402–403
resource controls, 558, 563
scatter plots, 78

706 Index

Disk I/O (continued)
simple model for I/O requests, 397
sizing, 403–404
slow disk case study, 9–11
summarizing disk I/O size, 444–445
summarizing I/O seek distances, 445–446
summarizing I/O size, 444–445
summarizing latency, 446–447
summarizing per-disk statistics (iostat), 432
summarizing per-disk statistics on Linux,

433–436
summarizing per-disk statistics on Solaris,

436–440
time measurements (response time, service

time, and wait time), 399–400
time scales, 400–401
top analysis of (disktop.stp), 454
top analysis of (iotop), 452–454
tracing with (iosnoop), 455–457
USE method applied to, 625–626
workload characterization, 424–426

Disk offset, random vs. sequential I/O and, 402–403
Disks

analysis of, 353, 431–432
analyzing disk controllers with MegaCli,

459–460
architecture, 407
block device interface, 418–421
caching, 397–398
command for non-data transfer, 404
controller for, 398–399
counting I/O requests (I/O stack frequency),

448–449
defined, 684
disk I/O caches, 401–402
disk I/O vs. application I/O, 407
dynamic tracing, 450
event tracing, 427–428
event tracing applied to disk I/O, 444
event tracing applied to SCSI events, 449–450
examining disk I/O events with DTrace,

442–443
exercise solutions, 677
exercises and references, 470–472
experimentation, 465–467
heat maps, 462–465
interfaces, 414
io provider (DTrace) for visibility of block

device interface, 443–444
I/O sizing, 403–404
I/O wait, 406
IOPS (I/O per second), 404
latency analysis, 426–427

line charts/graphs, 461
magnetic rotational disks, 408–411
methodologies, 421
micro-benchmarking, 429–430
NAS (network-attached storage), 417–418
operating system disk I/O stack, 418
overview of, 395–396
perf analysis of, 451–452
performance monitoring, 423–424
printing disk I/O statistic with pidstat,

441–442
RAID architecture, 415–417
random vs. sequential I/O, 402–403
read/write ratio, 403
reporting/archiving current activity (sar),

440–441
resource controls, 429
saturation, 405–406
scaling solutions, 431
scatter plots, 462
simple model for I/O requests, 397
solid-state disks, 411–413
static performance tuning, 428–429
storage arrays, 417
storage devices, 415
storage types, 415
storing file system content, 100
summarizing disk I/O latency, 446–447
summarizing disk I/O seek distances,

445–446
summarizing disk I/O size, 444–445
summarizing per-disk I/O statistics (iostat),

432
summarizing per-disk I/O statistics on Linux,

433–436
summarizing per-disk I/O statistics on

Solaris, 436–440
synchronous vs. asynchronous operation and,

407
SystemTap, 451
terminology regarding, 396
time measurements (response time, service

time, and wait time), 399–400
time scales for disk I/O, 400–401
tools method, 422
top analysis of disk I/O (disktop.stp), 454
top analysis of disk I/O (iotop), 452–454
tracing block device events on Linux

(blktrace), 457–459
tracing disk I/O with (iosnoop), 455–457
tunables of disk controllers, 469–470
tunables of disk devices, 469
tunables of operating system, 467–469

Index 707

tuning, 467
tuning cache, 429
types of, 408
USE method, 422–423
utilization, 404–405
viewing health statistics with smartctl,

460–461
visualizations, 461
workload characterization, 424–426

disktop.stp, for top analysis of disks with
SysTap, 454

Dispatcher-queue latency, 192
Distribution, of file system latency, 383
Distribution of data

multimodal distributions, 73–74
standard deviation, percentiles, and

medians, 72
dladm

for network analysis, 513–514
replacing ifconfig on Solaris, 511

DNLC (directory lookup cache), 341
DNS latency, 19
Documentation/resources

DTrace, 143–144
SystemTap, 149

Dom0, Xen, 557
Domains, Xen, 557
DoS (denial-of-service) attacks, 49
Double data rate synchronous dynamic random-

access memory (DDR SDRAM), 274
Double-hull virtualization, 572
DRAM (dynamic random-access memory)

as common type of main memory, 273
defined, 685

Drill-down analysis
analyzing and tuning applications, 182
overview of, 50–51
reasons to perform, 500–501

DTrace
actions, 138–139
advanced observability for KVM with, 578–579
analysis phase of drill-down analysis, 51
arguments, 137
built-in variables, 137–138
cloud-wide analysis tool, 81
CR3 profiling in, 579–580
D language and, 137
documentation and resources, 143–144
DTraceToolkit, 143
dynamic tracing with, 7–8
overhead, 143
overview of, 133–134
probes, 135–136

profiling tools, 119
providers, 136
scripts, 141–143
static and dynamic tracing with, 134
system-wide tracing, 118
variable types, 139–141

DTrace, analyzing applications
buffered tracing, 177
CPU profiling, 171–173
drill-down analysis, 182
I/O profiling, 180–181

DTrace, analyzing CPUs
cross calls, 241
function tracing, 240–241
interrupts, 241–242
kernel profiling, 236–237
one-liners, 237–238
overview of, 236
profiling, 218–219
scheduler tracing, 242–243
user profiling, 238–240

DTrace, analyzing disks
counting I/O requests (I/O stack frequency),

448–449
dynamic tracing, 450
event tracing, 444
event tracing applied to SCSI events, 449–450
examining disk I/O events, 442–443
io provider for visibility of block device

interface, 443–444
summarizing disk I/O seek distances,

445–446
summarizing disk I/O size, 444–445
summarizing disk latency, 446–447

DTrace, analyzing file systems
advanced tracing, 373–375
block device I/O stacks, 370–371
measuring system latency, 367–368
measuring VFS latency, 368–370
operation counts, 365–367
overview of, 365
summarizing event counts, 367
tracing slow events, 372–373
tracing ZFS read latency, 371–372

DTrace, analyzing memory
allocation tracing, 308–311
fault tracing, 311–312
for tracing page-out daemon, 312

DTrace, analyzing networks
advanced network tracking scripts, 531–533
backlog drops, 529–531
network providers, 520–521
overview of, 495

708 Index

DTrace, analyzing networks (continued)
packet transmission, 527–528
retransmit tracing, 528–529
socket connections, 521–523
socket internals, 525
socket I/O, 523–524
socket latency, 524–525
TCP events, 525–526

DTrace, analyzing Redis application
interrogating kernel, 629–631
measuring file system syscalls, 628–629
measuring read latency, 627
selecting kernel events for investigation,

622–623
DTrace, converting to SystemTap

built-in variables, 667
count syscalls by process name, 670–671
count syscalls by syscall name, 671–672
functionality, 665–666
functions, 668
listing syscall entry probes, 668
overview of, 665
probes, 666–667
references, 674
sample kernel stacks at 100 hz, 674
summarize read() latency for "mysqld"

processes, 672–673
summarize read() returned size, 668–670
terminology, 666
trace file open()s with process name/path

name, 672
trace new processes with process name/

arguments, 673
DTrace: Dynamic Tracing in Oracle Solaris,

Mac OS X and Free BSD (Gregg), 143
DTrace one-liners

allocation tracing and, 310–311
buffered tracing and, 177–179
converting to SystemTap. see DTrace,

converting to SystemTap
fbt provider, 658–659
io provider, 660
ip provider, 661–662
overview of, 141
pid provider, 659–660
proc provider, 655
profile provider, 655–657
sampling CPU usage, 237–238
sched provider, 657
syscall provider, 651–654
sysinfo provider, 660–661
tcp provider, 662

udp provider, 663
vminfo provider, 661

dtruss
buffered tracing, 177
system-wide tracing, 118

Duplicate ACK detection, TCP, 485
Dynamic priority, scheduling classes and, 210
Dynamic random-access memory (DRAM)

as common type of main memory, 273
defined, 685

Dynamic sizing, in cloud capacity planning, 549
Dynamic ticks, 88
Dynamic tracing

analyzing disks, 450–451
analyzing file systems, 373–375
applying to slow disk case study, 10
defined, 685
DTrace options, 134–135
as performance metric, 7–8

Dynamic Tracing Guide, 143

E
ECC (error-correcting code)

defined, 685
magnetic rotational disks, 410

Elevator seeking
algorithm, 397, 419–420, 457
magnetic rotational disks and, 410

Encapsulation, 478
End-to-end arguments, for buffering, 481
Enterprise systems, cloud computing simulating,

57–58
Entire stack, defined in terms of systems

performance, 1
EPT (extended page tables), 569
Erlang's C formula, 62
Error-correcting code (ECC)

defined, 685
magnetic rotational disks, 410

Errors
analyzing, 495
applying USE method to applications,

181–182
applying USE method to CPUs, 216
benchmarking, 593
interpreting metrics, 48
passive benchmarking and, 604
performance monitoring of, 498
USE method and, 42–43

etc (configuration files), in top-level directories,
100

Index 709

Ethereal, 520
Ethernet

defined, 685
physical network interfaces and, 487

Event tracing. see also Tracing
disk I/O events, 427–428, 442–444
file system events, 358–359
overview of, 53–54
SCSI events, 449–450
slow events, 372–373
TCP events, 525–526

Event-based concurrency, 160
Exceptions, kernel handling, 89
exec()

function of key system calls, 95
in process execution, 93

execsnoop
buffered tracing, 177
system-wide tracing, 118

Expander card, 685
Experimentation

experimental analysis, 57
experimental tools, 535–536
quantifying performance issues, 70
testing CPU performance, 254–255

Experimentation, disk-related
ad hoc tests of sequential performance, 465
custom load generators, 465
micro-benchmarking tools, 466
random read example, 466–467

Experimentation, file system-related
ad hoc tests of sequential performance, 384
cache flushing, 387
micro-benchmarking tools, 384–386
overview of, 383–384

ext file systems
architecture of, 347–348
exposing ext4 file system internals, 371–372
tuning, 389

Extended page tables (EPT), 569

F
FACK (forward acknowledgement) algorithm,

486, 539
Factor analysis

in capacity planning, 68
changing multiple benchmark factors, 594

Fair-share scheduler, CPU, 572
Fair-share scheduler (FSS), for CPU shares, 556
False sharing, hash tables and, 162
Fast recovery, TCP, 484
Fast retransmit, TCP, 484

fbt provider, DTrace
one-liners for, 658–659
tracing socket internals, 525
tracing TCP events, 525–526

fcachestat, printing cache activity on UFS,
379–380

FFS, 345–347
File descriptor

defined, 685
examining software resources, 48

File store, for persistent storage, 550
File system cache, 11, 271, 325–326
File system check. see fsck (file system check)
File systems

access timestamps, 336
ad hoc tests of sequential performance, 384
analysis tools, 362–363
analyzing (ksat), 381–382
analyzing file system cache with vmstat,

376–377
analyzing file system statistics with sar,

377–378
analyzing kernel memory usage on Solaris

systems, 379
analyzing kernel slab caches related to file

systems, 378–379
application calls for tuning, 387–388
architecture, 337
block device I/O stacks, 370–371
btrfs, 351
buffer cache, 339–340, 341
cache flushing, 387
cache tuning, 360
cache types, 339
caching, 327–328
capacity, 337
causes of slow disks, 11
checking capacity, 563
checking resource controls, 562
checking syscalls, 628–629
COW (copy-on-write) strategy, 344
debugging syscall interface, 364–365
dentry (Dcache) cache, 343
disk analysis, 353
DNLC (directory lookup cache), 341
DTrace analysis of, 365
dynamic tracing, 373–375
event tracing, 358–359
exercise solutions, 676
exercises and references, 391–393
experimentation, 383–384
ext, 347–348
features, 344–345

710 Index

File systems (continued)
FFS, 345–347
file system cache, 11, 271, 325–326
file system statistics (fsstat), 364
free analysis, 376
inode cache, 343
interfaces, 325
I/O stack model, 101, 337
latency, 327, 354–356
LatencyTOP tool, 375
logical vs. physical I/O, 333–335
measuring system latency with DTrace,

367–368
measuring VFS latency with DTrace, 368–370
memory summary using mdb::memstat,

380–381
memory summary with /proc/meminfo, 380
memory-based, 360–361
memory-mapped files, 332–333
metadata, 333
methodologies, 353
micro-benchmarking, 361–362, 384–386,

598–599
non-blocking I/O, 332
operation counts with DTrace, 365–366
operation performance and, 335–336
organization of files, 99
other tools, 382–383
overhead in OS virtualization, 555
overview of, 99–100, 323
page cache, 340–341, 342–343
paging, 268
performance monitoring, 358
performance tuning targets, 22
prefetch feature, 329–330
printing cache activity on UFS using

fcachestat, 379–380
random vs. sequential I/O, 328
raw and direct I/O, 331–332
record size and performance trade-offs, 21
resource controls, 557–558, 574
second-level cache, 326
special, 336
static performance tuning, 359–360
summarizing event counts with DTrace, 367
synchronous writes, 331
SystemTap analysis of, 375
terminology regarding, 324
top analysis, 376
tracing slow events, 372–373
tracing ZFS read latency, 371–372
tuning, 387, 389–391
types of, 345

UFS (Unix File System), 347
VFS (virtual file system), 100–101, 337–338
virtual file system statistics (vfsstat),

363–364
visualizations, 383
volumes and pools, 351–352
workload characterization, 356–358
workload separation, 360
write-back caching, 330
ZFS, 348–351

FileBench, 386
fio (Flexible IO Tester), 385–386
First-byte latency, 480, 524
Five Whys, in drill-down analysis, 51
Flame graphs, 253–254
Flash disks, 402
Flash-memory, 412
Flexible IO Tester (fio), 385–386
Floating-point operations per second (FLOPS),

601
FLOPS (floating-point operations per second),

601
fmdump, checking CPU with USE method, 623
fop_write() time, interrogating kernel, 630
fork() system call

creating processes, 93
function of, 95

Forward acknowledgement (FACK) algorithm,
486, 539

Fragmentation, as cause of slow disks, 11
Frames

defined, 474
physical network interfaces sending, 487

free command, showing memory and swap
statistics, 376

Free lists
defined, 278
freeing memory, 280–281

FreeBSD jails, OS virtualization and, 552
Freeing memory

free lists, 280–281
overview of, 278–280
page scanning for, 282–284
reaping for, 281–282

Friendly fire issues, benchmarks, 595
Front-side bus, in Intel processors, 204–205
fsck (file system check)

defined, 685
journaling avoiding need for, 348
Linux ext4 file system with faster, 348
log replay avoiding need for, 347

FSS (fair-share scheduler), for CPU shares, 556
fsstat, for file system statistics, 364

Index 711

fsync(), 630–633
Full distribution latency, 498
Full virtualization, in hardware virtualization,

555
Full-duplex mode, 482
Fully preemptable kernels, 104
Functional block diagrams, in USE method, 45
Functional unit, CPU processing instructions,

193–194
Functions, DTrace to SystemTap, 668

G
Garbage collection, 166–167
gbd, in per-process tracing, 119
Geometric mean, 70–71
GLDv3 software, 491
glibc allocator, 288
Global zone, in OS virtualization, 551–552
Google Compute Engine, 557
Guests

comparing virtualization technology
complexity, 582

exits mitigating hardware virtualization
overhead, 567–569

limits in OS virtualization, 558
multiple server instances running as, 546
multitenancy and, 551
observability in hardware virtualization, 580
observability in hardware virtualization for

privileged guest/host, 576–577
observability in OS virtualization, 561–562
resource controls in OS virtualization, 555–558
zones in OS virtualization, 551–552

Gunther, Dr. Neil, 61

H
halt instruction, mitigating hardware

virtualization overhead, 568–569
handle_halt(), mitigating hardware

virtualization overhead, 568
Hardware

events, 206
monitoring resource limits, 66
thread, 190

Hardware, CPU-related
cache, 200–204
CPCs (CPU performance counters), 206–208
interconnects, 204–206
MMU (memory management unit), 204
overview of, 199
processors, 199–200

Hardware, memory-related
busses, 274–276
main memory, 273–274
MMU (memory management unit), 276–277
overview of, 273

Hardware, network-related
controllers, 487
interfaces, 487
others, 488
overview of, 486
switches and routers, 487–488

Hardware virtualization
comparing virtualization technology

performances, 581
hardware-assisted virtualization, 566
hypervisors and, 564–565
implementations of, 565
observability, 574–581
OS virtualization vs., 552
overhead, 566–571
resource controls, 572–574
types of, 563–564

Harmonic mean, 70–71
Hash collisions, 162
Hash tables, 161–162
HBAs (host bus adaptors). see Disk controllers
HDD (hard disk drives). see Magnetic rotational

disks
hdparm, for setting disk device tunables, 469
Heap growth, 286
Heat maps

in CPU visualization, 251–252
in file system visualization, 383
latency heat maps, 463
offset heat maps, 462–463
subsecond-offset heat maps, 252–253
utilization heat maps, 463–465
for visualizations, 79–80

Hertz (Hz), 685
High-priority traffic, resource controls for, 502
Histograms, for visualization, 73–74
Historical statistics, archiving and reporting,

509–511
Hit ratio, of cache, 30–31
Horizontal scaling

cloud architecture based on, 547–548
scaling solutions, 69

Host bus adaptors (HBAs). see Disk controllers
Hosts

comparing virtualization technology
complexity, 582

defined, 685
guests of physical, 546

712 Index

Hosts (continued)
observability in hardware virtualization for

privileged guest/host, 576–577
observability in OS virtualization, 559–560
switches providing communication path

between, 487
Hot cache, 32
HT (HyperTransport) interconnect, 205
httpd processes, 672
Hubs, 487
Huge pages, Linux

MPSS (multiple page size support), 277
tuning multiple page sizes, 317–318

Hybrid virtualization, hardware virtualization,
556

HyperTransport (HT) interconnect, 205
Hypervisors

advanced observability of, 578–579
analyzing hardware virtualization overhead,

567
comparing complexity of virtualization

technologies, 582
observability in hardware virtualization,

575–578
types of, 556–557

Hz (hertz), 685

I
IaaS (infrastructure as a service), 546
ICMP

“can’t fragment” error, 479
ping latency in, 479–480
testing network connectivity, 514

Identification, in drill-down analysis, 50
Idle memory, 278
Idle threads

load balancing and, 210
prioritization of, 213

ifconfig
network analysis with, 494
overview of, 511
tuning network interface on Linux, 539

Ignoring errors, issues in benchmarking, 593
Ignoring perturbations, issues in benchmarking,

593–594
Ignoring variance, issues in benchmarking, 593
illumos, 685
Industry-standard benchmarks

overview of, 56
SPEC, 602
TPC, 601–602
understanding, 601

Infrastructure as a service (IaaS), 546
Inode cache, 343
inotify, in analyzing file systems, 382
Instructions, CPU. see CPU instructions
Instructions per cycle (IPC), CPU metric,

194–195
Intel VTune Amplifier XE profiling tool, 119
Interconnects, for multiprocessor architectures,

204–206
Interfaces

block device, 418–421
defined, 474
disk, 414
file system, 325
io provider (DTrace) for visibility of block

device interface, 443–444
negotiation, 482
netstat statistics for, 504–509
physical network, 487
utilization, 487

Interpreted languages, 165–166
Inter-process communication (IPC)

connecting via IP to localhost with IP sockets,
483

defined, 685
interrupt coalescing mode, 10 GbE networking,

493
Interrupt latency, 92
Interrupt priority level (IPL), 92–93
Interrupt request (IRQ), 490, 685
Interrupt service routine, 92
Interrupt threads, 92
Interrupts

CPU cross calls, 103
defined, 86
DTrace analysis of, 241–242
IPL (interrupt priority level), 92–93
IRQ (interrupt request), 490, 685
overview of, 91–92

I/O (input/output). see also Disk I/O
analyzing block device I/O stacks, 370–371
analyzing sockets with DTrace, 523–524
comparing virtualization technologies, 581
CPU-bound vs. I/O bound, 99
defined, 396
I/O latency, 396, 420
I/O profiling, 180–181
I/O sizing, 158–159, 403–404
I/O stack, 101, 337
I/O throttling, 557
I/O wait as performance metric, 406
IOPS (I/O per second), 7
logical vs. physical I/O, 333–335

Index 713

mitigating hardware virtualization overhead,
570–571

non-blocking I/O, 162–163, 332
overhead in OS virtualization, 554–555
random vs. sequential I/O, 328
raw and direct I/O, 331–332
resource controls, 557–558, 574
resources studied as queueing systems, 45
slow disk case study, 9–11

io provider, DTrace
one-liners for, 660
for visibility of block device interface,

443–444
ioctl(), function of key system calls, 96
ionice, for scheduling and prioritizing

processes, 468
IOPS (I/O per second)

calculating disk service time, 400
characterizing disk I/O workload, 424–425
defined, 16, 685
factors in comparing devices and workloads,

404
limitations as latency metric, 7
metrics of systems performance, 27
in micro-benchmarking disks, 430
purchasing rate for network storage, 550
read/write ratio and, 403

iosnoop
system-wide tracing, 118
tracing disk I/O with, 455–457
tracing storage device with, 53

iostat
checking disks, 625–626
summarizing per-disk I/O statistics, 432
summarizing per-disk I/O statistics on Linux,

433–436
summarizing per-disk I/O statistics on

Solaris, 436–440
system-wide counters, 117

iotop, top analysis of disks, 452–454
ip, 491, 511–512
IP header, 477
IP protocol, 478–479
ip provider, DTrace, 661–662
IP QoS (Quality of Service), resource controls for,

502
IP sockets, inter-process communication and, 483
IP stack, tuning in Solaris, 539–540
ipadm

replacing ifconfig on Solaris, 511
tuning with, 539–540

IPC (instructions per cycle), CPU metric,
194–195

IPC (inter-process communication)
connecting via IP to localhost with IP sockets,

483
defined, 685

iperf experimental tool, for network analysis,
535–536

IPL (interrupt priority level), 92–93
IRIX, 685
IRQ (interrupt request), 490, 685
irqbalancer process, 490

J
JBOD (just a bunch of disks), 415
Jiffies, unit of time in Linux, 89
Joyent Cloud Analytics, 81, 383
Joyent public cloud

OS virtualization, 552
resource controls in OS virtualization,

555–558
using KVM hardware virtualization, 557, 565

Joyent SmartOS, 553
Jumbo frames

for packet size, 478
tuning network performance with, 542

Just a bunch of disks (JBOD), 415

K
Keep-alive strategy, for network connections, 481
Kendall's notation, in categorizing factors of

queueing systems, 63–64
Kernel

analyzing memory usage, 379
clock, 88–89
comparing Solaris and Linux, 112–113
defined, 86
DTrace to SystemTap conversion example, 674
execution, 88
file system support, 99
interrogating in Redis case study, 629–631
Linux-based, 109–112
mode, 88–89, 154, 196
overview of, 87
preemption, 103–104
profiling, 236–237
schedulers, 98–99
selecting events for investigation, 622
Solaris-based, 106–109
stacks, 90–91, 674
tracing, 131
Unix kernel, 106
versions, 105

714 Index

Kernel level, 685
Kernel mode

analysis of time in, 196
determining CPU mode of application, 154
overview of, 88–89

Kernel-space, 86
kmastat, analyzing kernel memory usage on

Solaris systems, 302–303, 379
Knee point

modeling scalability, 57
in scalability, 24–25
visualizing scalability profiles, 60

Known workloads, verifying observations, 150
Known-knowns, in performance analysis, 26
Known-unknowns, in performance analysis, 26
kstat (kernel statistics)

analyzing file systems, 381–382
checking CPU, 623
overview of, 127–130

kswapd, page-out daemon in Linux, 282–283
KVM

advanced observability in, 578–579
observability in hardware virtualization for

privileged guest/host, 575–577
kvm_emulate_halt(), mitigating hardware

virtualization overhead, 569

L
Language virtual machines, 166
Large segment offload, improving performance of

MTU frames, 479
Latency

analysis in general, 51–52
application performance objectives, 155
vs. completion time, 78–80
connection latency, 480–481
CPU cache latency, 202
defined, 16, 474
disk analysis, 426–427
disk I/O latency, 399–401
distribution of, 73
DTrace to SystemTap example, 672–673
in expressing application performance, 35
in extreme environments, 23
file system analysis, 354–356
file system latency, 327
first-byte latency, 480
heat maps of, 463
interrupt latency, 92
I/O latency policies, 420
line chart visualization of, 77
main memory and, 273

measuring, 27, 479
name resolution and, 479
network analysis and, 497–498
network storage access increasing, 550
overview of, 18–19
perf for checking scheduler latency, 245–246
as performance metric, 6–7
ping latency, 479–480
ramping load and measuring, 610–611
reporting on file system latency, 375
round-trip time and, 481
scheduler latency, 192
in slow disk case study, 10
socket analysis, 524–525
summarizing disk latency with DTrace,

446–447
targets for workload analysis, 34
tick latency, 88
time scale of, 19–20

Latency, in Redis application
causes of read latency, 626–627
measuring file system syscalls, 628–629
problem statement, 618–619

Latency outliers
baseline statistics and, 54
defined, 396
garbage collection and, 167

LatencyTOP tool, 375
Layer terminology, of protocol stack, 476
Leak detection, 293–294
Least recently used (LRU)

cache management algorithm, 31
defined, 686

LFU (least frequently used), cache management
algorithm, 31

lgrps (locality groups), Solaris, 214
libc allocator, 288
libumem slab allocator, 288, 309–310
Limits, in OS virtualization, 555, 558
Line charts

applied to disks, 461
for visualizations, 77–78

Linear scalability, 59
Link aggregation, tuning network performance

with, 542
Linux

analyzing file system cache, 376
analyzing file system statistics, 377–378
block device interface and, 419–420
breakpoint tracing on, 173–175
comparing Solaris and Linux kernels,

112–113
configuring network interfaces, 511

Index 715

CPU performance tools, 250
debugging syscall interface, 364–365
delay accounting, 130–131
flushing system cache, 387
free lists, 281
freeing memory, 279
history of Linux kernel, 109–110
huge pages, 277, 317–318
interface statistics, 504–506
investigating library calls, 182
kernel versions and syscall counts, 105
load averages in uptime analysis, 226
lxc containers in OS virtualization, 552
mapping process memory, 307–308
measuring VFS latency with DTrace, 369–370
memory management, 98
memory performance tools, 312–313
memory summary with /proc/meminfo, 380
monitoring, 120
network analysis tools, 503
network stack, 489–490
observability sources, 121
other network performance tools, 534
overcommit supported by, 270
page scanning methods, 282–283
performance features of Linux kernel,

110–112
/proc file system, 122–124
process binding, 259
process status (ps), 304
processor sets, 222
profiling tools, 119
resource control groups (cgroups), 104
resource controls, 260, 318
scheduler options, 257
scheduling and prioritizing processes

(ionice), 468
scheduling classes, 211–212
scheduling domains, 214
scheduling priority and class, 256
setting disk device tunables (hdparm), 469
slab cache usage (slabtop), 302
summarizing per-disk I/O statistics (iostat),

433–436
/sys file system, 126–127
system activity reporters (sar), 299–300,

440–441, 509–511, 649–650
thread-state analysis in, 170
time sharing on, 210
top analysis of disk I/O (iotop), 452–453
tracing block device events on (blktrace),

457–459
tuning, 536–539

tuning memory, 315–316
tuning multiple page sizes, 317
USE method checklist for physical resources,

637–641
USE method checklist for software resources,

641–642
virtual memory statistics (vmstat), 296–297
voluntary kernel preemption in, 104

Linux Performance Events (LPE). see perf
Listen backlog, TCP, 492
Little's Law, 62
Live patching, of kernel address space, 135
LNU (not frequently used), cache management

algorithm, 32
Load. see Workload
Load averages, in analyzing CPUs, 224–226
Load balancing

cloud architecture, 547
idle threads and, 210
key functions of CPU scheduler, 209
scaling solutions and, 69

Load generators
in disk-related experimentation, 465
micro-benchmarking with, 56

Local connections
network, 482–483
networks, 482–483

Local disks, 686
Local memory, 274
Localhost

connections, 482
defined, 477

Lock analysis, analyzing and tuning applications,
182–185

lockstat, 183, 185
Logical CPU, 190
Logical I/O, 333–335
Logical processor, 686
Logs/logging

applications, 154
packet capture logs, 498–500
system logs, 118

Loopback, localhost connections using, 482
Low-priority traffic, resource controls for, 502
LPE (Linux Performance Events). see perf
LRU (least recently used)

cache management algorithm, 31
defined, 686

LSI MegaCli
analyzing disk controllers, 459–460
tuning disk controllers, 469–470

ltrace, investigating library calls on Linux, 182
lx Branded Zones, 552

716 Index

lxc Linux Containers, in OS virtualization, 552
lxproc, Linux-like proc on Solaris, 126

M
Macro-benchmarks, 599. see also Simulations
madvise(), application calls, 388
Magnetic rotational disks

defined, 685
overview of, 408
types of disks, 395

Main board (or system board), 686
Main memory

architecture, 273–274
busses, 274–276
as capacity resources, 45
checking resource controls, 562
defined, 266
DRAM, 273
oversubscription of, 267
utilization and saturation, 271–272

Maintenance, comparing virtualization
technologies for, 583

Major fault, 686
malloc, in allocation tracing, 308
Marketing, benchmarking during, 588
Markov model, of stateful workload simulation,

600
Markovian arrivals, (M/D/1,M/M/1, M/M/c, and

M/G/1), 64–65
Maximum transmission unit (MTU)

improving frame performance, 479
limiting packet size, 478

mdb, Solaris
analyzing kernel memory usage (kmastat),

302–303, 379
per-process tracing, 119
setting tunable parameters, 539
summarizing memory usage (memstat),

380–381
Mean, in statistics, 70–71
Medians

plotting, 77–78
in statistics, 72

MegaCli
analyzing disk controllers, 459–460
tuning disk controllers, 469–470

meminfo, memory summary with /proc/
meminfo, 380

Memory
allocators, 272, 286–289
analysis tools, 295
architecture, 272–273

busses, 274–276
characterizing usage of, 291–292
checking resource controls, 562
comparing virtualization technology

performance overhead, 581–582
CPU memory cache, 191–192
cycle analysis, 293
demand paging, 269–270
DTrace for allocation tracing, 308–311
DTrace for fault tracing, 311–312
DTrace for tracing page-out daemon, 312
exercise solutions, 676
exercises and references, 319–321
file system cache and, 271
free lists, 280–281
freeing, 278–280
growth, 166–167
hardware, 273
heap growth and, 286
improving performance of multithreaded

applications, 318
kernel memory on Solaris systems (kmastat),

302–303
leak detection, 293–294
main memory, 273–274
managing, 97–98
mapping process memory (pmap), 306–308
methodologies, 289
micro-benchmarking, 294–295
micro-benchmarking to check memory access,

223
mitigating hardware virtualization overhead,

569–570
MMU (memory management unit), 276–277
overcommit support in Linux, 270
overview of, 265–266
page scanning for freeing, 282–284
paging, 268–269
performance monitoring, 293
performance tools for analyzing, 312–314
performance trade-offs between CPU and, 21
primary, secondary, and virtual, 97
process address space and, 284–285
process status (ps), 304–305
reaping for freeing memory, 281–282
regulating access to, 161
resource controls, 294
resource controls in hardware virtualization,

573–574
resource controls in OS virtualization, 556
resource controls in tuning, 318
showing statistics with free, 376
slab cache usage (slabtop), 302

Index 717

software, 278
static performance tuning, 294
swapping, 271
system activity reporters (sar), 298–301
SystemTap, 312
terminology regarding, 266
tools method, 289–290
top running processes, 305–306
tunable parameters, 314–317
tuning multiple page sizes, 317–318
USE method for improving performance,

290–291
utilization and saturation, 271–272
virtual memory, 267–268
virtual memory statistics (vmstat), 295–298
word size and, 272

Memory, in Redis application case study
checking for memory errors, 624–625
conclusions regarding, 626–627
epilogue, 633

Memory locality, NUMA system, 192
Memory management unit. see MMU (memory

management unit)
Memory nodes, 274
Memory-based file systems, 360–361
Memory-mapped files, 332–333
memstat, memory summary using

mdb::memstat, 380–381
Metadata, 333
Method R, in performance analysis, 52
Methodologies

ad hoc checklists, 38–39
anti-methods, 36–38
baseline statistics, 54
cache tuning, 55–56
capacity planning, 65–69
categorizing types of, 35–36
cloud computing and, 48
diagnosis cycle, 41
drill-down analysis, 50–51
event tracing, 53–54
exercise solutions, 675
exercises and references, 82–83
Five Whys, 51
functional block diagrams in USE method, 45
interpreting metrics, 48
latency analysis, 51–52
Method R, 52
metrics of USE method, 43–47
micro-benchmarking, 56–57
modeling, 17–18, 57–64
monitoring, 74–76
overview of, 15

problem statement, 39
resource lists in USE method, 44–45
scientific method, 39–41
software resource examination, 47–48
static performance tuning, 55
statistics, 69–74
tools method, 41–42
USE method, 42–43
visualizations, 76–81
workload characterization, 49–50

Methodologies, application-related
breakpoint tracing, 173–177
buffered tracing, 177–179
CPU profiling, 171–173
drill-down analysis applied to, 182
I/O profiling, 180–181
lock analysis applied to, 182–185
overview of, 167–168
static performance tuning, 185–186
syscall analysis, 173
thread-state analysis, 168–171
USE method, 181–182
workload characterization, 181

Methodologies, benchmark-related
active benchmarking, 604–606
CPU profiling, 606–607
custom benchmarks, 608
overview of, 602–603
passive benchmarking, 603–604
ramping load, 608–611
sanity check, 611
statistical analysis, 612–613
USE method, 607–608
workload characterization, 608

Methodologies, CPU-related
CPU binding, 222
cycle analysis, 219–220
micro-benchmarking, 222–223
overview of, 214–215
performance monitoring, 220
priority tuning, 221–222
profiling, 218–219
resource controls, 222
scaling, 223–224
static performance tuning, 220–221
tools method, 215
USE method, 216
workload characterization, 216–218

Methodologies, disk-related
cache tuning, 429
event tracing, 427–428
latency analysis, 426–427
micro-benchmarking, 429–430

718 Index

Methodologies, disk-related (continued)
overview of, 421
performance monitoring, 423–424
resource controls, 429
scaling solutions, 431
static performance tuning, 428–429
tools method, 422
USE method, 422–423
workload characterization, 424–426

Methodologies, file system-related
cache tuning, 360
disk analysis, 353
event tracing, 358–359
latency analysis, 354–356
memory-based, 360–361
micro-benchmarking, 361–362
overview of, 353
performance monitoring, 358
static performance tuning, 359–360
workload characterization, 356–358
workload separation, 360

Methodologies, memory-related
characterizing memory usage, 291–292
cycle analysis, 293
leak detection, 293–294
micro-benchmarking, 294–295
overview of, 289
performance monitoring, 293
resource controls, 294
static performance tuning, 294
tools method, 289–290
USE method, 290–291

Methodologies, network performance
drill-down analysis, 500–501
latency analysis, 497–498
micro-benchmarking, 502–503
packet sniffing, 498–500
performance monitoring, 498
resource controls, 501
static performance tuning, 501
TCP analysis, 500
tools method, 494–495
USE method, 495–496
workload characterization, 496–497

Metrics. see also Statistics
application, 154
CPI (cycles per instruction), 194–195
disk I/O, 423–424
dynamic tracing and, 7–8
latency as, 6–7
quantifying performance issues, 6
for resource analysis, 33
types of, 27

of USE method, 43–48
verifying observations, 150–151
for workload analysis, 35

MFU (most frequently used), cache management
algorithm, 31

M/G/1 Markovian arrivals, 64
Micro-benchmarking

applying to CPUs, 222–223
applying to disks, 429–430
applying to file systems, 361–362
comparing virtualization technologies with,

582
design example, 598–599
in determining speed of main memory,

294–295
in disk-related experimentation, 466
network analysis with, 502–503, 535
overview of, 56–57
tools, 384–386
understanding, 597–598
variance in, 593

Microprocessors, 488. see also CPUs (central
processing units); Processors

Microstate accounting, Solaris, 131, 170–171
Millions of instructions per second (MIPS),

industry benchmark metric, 601
Minor fault, 686
MIPS (millions of instructions per second),

industry benchmark metric, 601
Mirroring, RAID-1, 416
Misleading issue, in benchmarking, 595–596
M/M/1 Markovian arrivals, 64
M/M/c Markovian arrivals, 64
MMU (memory management unit)

mitigating hardware virtualization memory
mapping overhead, 569

overview of, 276–277
virtual to physical address translation, 204

Models, network-related
controller, 475
network interface, 474–475
protocol stack, 476

Models/modeling
creating theoretical model of Redis

application, 623
first steps in performance engineering, 2
I/O stack model, 101
Markov model in workload simulation, 600
non-blocking I/O model, 162–163
overview of, 57
queuing model, 17–18
queuing theory, 61–65
scalability and, 60–62

Index 719

simulating enterprise systems using cloud
computing, 57–58

sparse-root zones model, 555
SUT (system under test), 17
visual identification, 58–60
wireframe models, 80

Model-specific registers (MSR), 207
Monitoring

baseline statistics and, 54
CPU performance, 220
disk performance, 423–424
in drill-down analysis, 50
events, 206
file system performance, 358
key metrics for, 498
memory metrics, 293
network analysis with, 498
overview of, 74
software in OS virtualization, 555
summary-since-boot values and, 76
third-party products for, 76
time-based patterns, 74–76
tools, 120

Most frequently used (MFU), cache management
algorithm, 31

Most recently used (MRU), 31
mount, analyzing file systems, 382
Mount points, directory, 99
Mounting file system, to directory, 99
MPSS (Multiple page size support), 277
mpstat

analyzing CPUs, 227–229
checking for CPU errors in Redis application,

623
observability in OS virtualization, 561
system-wide counters, 117

MR-IOV (Multi Root I/O Virtualization), 570–571
MRU (most recently used), 31
MSR (model-specific registers), 207
mtmalloc allocator, 288
MTU (maximum transmission unit)

improving frame performance, 479
limiting packet size, 478

Multi Root I/O Virtualization (MR-IOV), 570–571
Multicast transmission, 477
Multichannel architecture, in memory buses,

275–276
Multimodal distributions, in statistics, 73–74
Multiple page size support (MPSS), 277
Multiprocessors. see also CPUs (central

processing units)
CPU scalability and, 197–198
interconnects for, 204–206

multiprocessor statistics (mpstat), 227–229
parallelism and, 160
support for, 103

Multitenancy, 546, 550–551
Multithreading

allocators for improving performance, 318
CPU scalability and, 197–198
lock analysis applied to, 182–183
overview of, 160
scaling hardware, 190

Mutex (MUTually EXclusive) locks
examining software resources, 47
types of synchronization primitives, 161

mysqld, 672–673, 686

N
Nagle algorithm, for TCP congestion control,

485–486
name resolution latency, 479
NAS (network-attached storage), 417–418
Native (bare-metal) hypervisor, 556
ndd, Solaris, 539
Nested page tables (NPT), 569
netstat

checking Redis application for network errors,
626

interface statistics on Linux, 504–506
interface statistics on Solaris, 507–509
investigating Redis application performance

issues, 620–622
network analysis with, 494
overview of, 503–504
studying statistics for areas to investigate,

622
system-wide counters, 117

Network devices
drivers, 493
tuning on Solaris, 541

Network interface, 102
checking Redis application for network errors,

626
negotiation, 482
overview of, 474–475
tuning on Linux, 539
utilization, 482
workload characterization of, 496

Network interface card. see NIC (network
interface card)

Network I/O, 563. see also Disk I/O
Network latency, 497
Network packets. see Packets
Network protocols, 102

720 Index

Network stack
Linux, 489–490
overview of, 488–489
Solaris, 491

Network-attached storage (NAS), 417–418
Networks/networking

advanced network tracking, 531–533
analysis, 503
buffering, 481
capturing and inspecting packets (snoop),

517–520
capturing and inspecting packets (tcpdump),

516–517
configuring network interfaces, 511
configuring network interfaces and routes

(ip), 512
connection backlog, 481
drill-down analysis, 500–501
DTrace analysis of backlog drops, 529–531
DTrace analysis of packet transmission,

527–529
DTrace analysis of sockets, 521–525
DTrace analysis of TCP events, 525–526
DTrace network providers, 520–521
encapsulation, 478
exercises and references, 542–544
experimental tools, 535–536
hardware, 486–488
interface negotiation, 482
latency, 479–481
latency analysis, 497–498
local connections, 482–483
methodologies, 493–494
micro-benchmarking, 502–503
models, 474–476
other performance tools, 534
overview of, 102
packet size, 478–479
packet sniffing, 498–500
perf for static and dynamic event tracing,

533–534
performance monitoring, 498
printing network interface statistics

(nicstat), 512–513
protocols, 477–478, 483–486
providing interface statistics on Solaris

(dladm), 513–514
reporting on network activity (sar), 509–511
reporting on network statistics (netstat),

503–509
resource controls, 502

routing, 476–477
software, 488–493
static performance tuning, 501
statistics, 509–511
SystemTap analysis of file system events, 533
TCP analysis, 500
terminology, 474
testing network connectivity (ping), 514
testing routes and bandwidth between routes

(pathchar), 515–516
testing routes (traceroute), 514–515
tools method, 494–495
tuning Linux, 536–539
tuning Solaris, 539–542
USE method, 495–496
utilization, 482
Wireshark tool for packet capture and

analysis, 520
workload characterization, 496–497

NFS, 100
NIC (network interface card)

housing network controller, 475
improving performance of MTU frames, 479
overview of, 102

nice, for scheduling priority and class, 256–257
nicstat

checking Redis application for network errors,
626

network analysis tool, 512–513
nmap(), function of key system calls, 96
Nodes, 274
Noisy neighbors, 551
Non-blocking I/O, 162–163, 332
Non-idle time, utilization and, 29
Non-regression testing, testing hardware or

software changes, 11
Non-uniform memory access. see NUMA (non-

uniform memory access)
Noop (no-operation) policy, I/O latency, 420
Normal distribution, 72
Not frequently used (LNU), cache management

algorithm, 32
NPT (nested page tables), 569
NUMA (non-uniform memory access)

groups for scheduling and memory placement,
214

interconnects and, 204–206
main memory architecture, 273–274
memory locality and, 192

Numbers without analysis, benchmark issues,
591–592

Index 721

O
Object store, persistent storage, 550
Objectives, application performance

Big O notation applied to performance
analysis, 156–158

optimizing common code path, 156
overview of, 155–156
role of observability in eliminating

unnecessary work, 156
Objectives, in performance engineering, 2
Observability

comparing virtualization technology
performances, 582–583

eliminating unnecessary work in applications,
156

in hardware virtualization, 574–581
in OS virtualization, 558–563
OSs (operating systems) and, 104
in quantifying performance issues, 69–70
of RAID disks, 415–416

Observability tools
baseline statistics and, 54
counters, 116–117
DTrace tool. see DTrace
exercises and references, 151
identification process in drill-down analysis, 50
Linux delay accounting, 130–131
Linux /proc files, 122–124
Linux /sys file system, 126–127
monitoring tools, 120
overview of, 115
perf, 149
/proc file system, 121
profiling tools, 119–120
Solaris kstat files, 127–130
Solaris microstate accounting, 131
Solaris /proc files, 124–126
sources of performance statistics, 120–121,

131–133
SystemTap. see SystemTap
tracing tools, 118–119
types of, 116
verifying observations, 150–151

Offset heat maps, 462–463
On-disk cache, magnetic rotational disks, 410
One-liners

DTrace. see DTrace one-liners
SystemTap, 146–148

OOM (out of memory), 266
OOM (out of memory) killer

freeing memory, 279
searching for out of memory, 290

open(), function of key system calls, 95
Open VZ (Open Virtuozzo), 552
opensnoop

analyzing file systems, 367
buffered tracing, 177

Operation counts, applying DTrace to file
systems, 365–366

Operation performance, in file systems, 335–336
Operation rate

defined, 686
throughput and, 16

Operation time, latency and, 18
Oprofile profiling tool, 119
Optimizing, for the benchmark, 596–597
Oracle Solaris Studio profiling tools, 119
OS virtualization

comparing virtualization technologies, 581
observability and, 558–563
overhead of, 553–555
overview of, 48
partitioning in, 551–553
resource controls, 555–558

OSI model, 476
OSs (operating systems)

caching, 101–102
comparing Solaris and Linux kernels, 112–113
device drivers, 103
disk I/O stack, 418–421
exercise solutions, 675
exercises and references, 113–114
file systems, 99–101
interrupts and interrupt threads, 91–92
IPL (interrupt priority level), 92–93
kernel, 87–89, 105
kernel preemption, 103–104
Linux-based kernels, 109–112
memory management, 97–98
micro-benchmarking operations, 223
multiprocessor support, 103
networking and, 102
observability and, 104
overview of, 85
processes, 93–95
resource management, 104
schedulers, 98–99
Solaris-based kernels, 106–109
stacks, 89–91
system calls, 95–96
terminology regarding, 86
tuning, 467–469
Unix kernel, 106
virtual memory, 97

722 Index

Out of memory (OOM), 266
Out of memory (OOM) killer

freeing memory, 279
searching for out of memory, 290

Outliers
in heat maps, 79
latency outliers, 54, 167
in statistics, 74

Overcommit
defined, 268
Linux supported, 270

Overhead
comparing virtualization technologies, 581
DTrace, 143
hardware virtualization, 566–571
OS virtualization, 553–555
of performance metrics, 27
SystemTap, 148
tick overhead, 88

Overprovisioning, dynamic sizing in cloud and, 549
Oversubscription, of main memory, 267

P
Packet drops, in Redis application

investigating, 620–622
Joyent analysis of, 619–620
in problem statement, 618–619

Packets
capture and inspection with snoop, 517–520
capture and inspection with tcpdump,

516–517
capture logs, 498–500
communicating by transferring, 478
defined, 474
event tracing, 53
managing, 477
monitoring out-of-order, 498
reducing overhead of, 478
round-trip time of, 481
router role in delivery, 488
size of, 478–479
sniffing, 115, 132, 498–500
tracing transmission, 527–528

Padding hash locks, 162
Page cache, 279, 340–343
Page faults

defined, 266
page mapping and, 269–270
tracing, 311–312

Page scanning
checking with tools method, 290
for freeing memory, 282–284

Page tables, reading, 204
Page-out daemon

page scanning methods, 282–283
tracing, 312

Pages
as memory unit, 266
MPSS (multiple page size support), 277
tuning multiple page sizes, 317–318

Paging
anonymous paging, 268–269
defined, 266
demand paging, 269–270
file system paging, 268
moving small units of memory, 97–98, 267
Solaris methods for freeing memory, 279
thread-state analysis and, 170
tools method for checking, 290

PAPI (Processor Application Programmers
Interface), 207

Parallelism
application performance and, 160–162
defined, 686
lock analysis applied to, 182–183

Paravirtualization, hardware virtualization
defined, 566
mitigating I/O overhead, 570–571
overview of, 555–556

Passive benchmarking, 603–605
Passive TCP connection rate, 484, 496
pathchar, for network analysis, 515–516
pbind, process binding in Solaris, 259
PC (program counter), 686
PCI pass-through, 570–571
PDP (Programmed Data Processor), 686
Percentiles, in statistics, 72, 77–78
perf

advanced observability with, 577–578
analysis phase of drill-down analysis, 51
analyzing CPUs, 243–244
analyzing disks, 451–452
analyzing networks, 495
block trace points in disk analysis, 451–452
checking scheduler latency, 245–246
documentation, 249
drill-down analysis, 182
overview of, 149, 243, 533–534
profiling with, 119, 244–245
subcommands, 243
summarizing CPU cycle behavior (stat),

246–247
system-wide tracing with, 118
tools method for checking memory, 290
tracing software, 247–249

Index 723

Performance engineers, 2
Performance instrumentation counters (PICs),

206, 249–250
Performance isolation

cloud computing and, 9
resource controls in cloud computing for, 551

Performance monitoring units (PMU), 206
Per-interval average latency, 498
Per-operation latency, 498
Per-process observability tools

counters, 117
Linux /proc file system, 122–123
overview of, 116
profiling, 119
Solaris /proc files, 124–126
tracing, 118–119, 131

Perspectives
overview of, 32
performance analysis, 4
resource analysis, 33–34
workload analysis, 34–35

Perturbations, benchmarking, 593–594
Physical I/O, 333–335
Physical resources

USE method checklist in Linux, 637–640
USE method checklist in Solaris, 643–645

PICs (performance instrumentation counters),
206, 249–250

PID (process ID), 93–94
pid provider, DTrace, 659–660
pidstat

analyzing CPU usage by process or thread, 234
printing disk I/O statistics, 441–442

ping, analyzing network connectivity, 514
Ping latency, 479–480
Pluggable device drivers, 103
pmap (mapping process memory), 117, 306–308
PMU (performance monitoring units), 206
Point-in-Time recommendations, for

performance, 23
Policies

I/O latency, 420
scheduling, 210, 212

poll() syscall, 159–160
pollsys(), 628, 633
Pools

file systems, 351–352
observing ZFS pool statistics, 382–383

POSIX (Portable Operating System Interface)
standard, 99, 686

posix_fadvise(), application calls, 387–388
Preemption

high priority threads and, 196

kernel, 103–104
key functions of CPU scheduler, 209
triggering in Linux and Solaris, 210

Prefetch feature, file systems, 329–330
Price/performance ratio

cloud computing and, 546
comparing benchmarking systems, 589
industry-standard benchmarks measuring, 601

printf(), 670–672
Prioritization

inheritance in Solaris, 197
resource controls in hardware virtualization,

572–573
resource controls in OS virtualization, 555
scheduling classes, 210–211, 256–257
scheduling processes, 256–257
threads and priority inversion, 196–197
tuning priorities, 221–222

Privileged guest/host, observability in hardware
virtualization, 575–578

probefunc(), 671–672
Probes

CPU scheduler, 242
DTrace, 135–136
DTrace to SystemTap, 666–667
SystemTap, 145

Problem statement
overview of, 39
for Redis application case study, 618–619

/proc file system
Linux, 122–124
Solaris, 124–126
sources of performance statistics, 121

proc provider, DTrace, 655
Process address space, 284–285
Process binding, 222, 259
Process ID (PID), 93–94
Process virtual machines, 166
Processes

creating, 93
defined, 86, 686
DTrace to SystemTap examples, 671–673
environment, 94–95
life cycle of, 94
monitoring. see ps (process status)
moving between main and secondary memory,

97–98
multiple, 160
process accounting, 132
running in user mode, 89
scheduling, 98–99, 256–257
viewing top running. see top (top running

processes on Linux)

724 Index

Processor Application Programmers Interface
(PAPI), 207

Processor ring, 686
Processors. see also CPUs (central processing

units)
binding, 163
CPUs and, 199–200
defined, 86, 190
microprocessors, 488
MSR (model-specific registers), 207
multiprocessor support, 103
multiprocessors. see Multiprocessors
options, 260
parallelism and, 160
processor groups, 214
processor sets, 222
virtual processor, 190
word size, 198–199

Process/thread capacity, examining software
resources, 48

/proc/meminfo, providing summary of memory,
380

procsystime, for buffered tracing, 177
profile provider, DTrace, 655–657
Profiling

CPU profiling, 171–173, 218–219
DTrace applied to kernel profiling, 236–237
I/O profiling, 180–181
perf for process profiling, 245
perf for system profiling, 244–245
sampling and, 30
tools, 119–120
types of observability tools, 116
user profiling, 238–240
visualization of scalability profiles, 59

Program counter (PC), 686
Programmed Data Processor (PDP), 686
Programming languages

compiled languages, 164–165
garbage collection, 166–167
interpreted languages, 165–166
micro-benchmarking higher-level languages,

223
overview of, 163–164
virtual machines and, 166

Proof of concepts, benchmarking and, 588
Protocols, network

overview of, 102
performance characteristics of, 477–478
performance features of TCP, 483–484
protocol stack, 476

Providers, DTrace, 135–136

Providers, IaaS, 546
prstat (top running processes in Solaris)

analyzing CPUs, 232–234
analyzing memory usage, 290
checking Redis application for memory errors,

624
monitoring top running processes, 305–306
observability in OS virtualization, 562

ps (process status)
analyzing CPUs, 230–231
analyzing memory usage, 304–305
per-process counters, 117

psrset, creating CPU sets in Solaris, 259
ptime, reporting on CPU usage, 235–236
public cloud providers, 546

Q
QEMU (Quick Emulator), KVM

advanced observability with, 578–579
observability in hardware virtualization for

privileged guest/host, 576
overview of, 557

QPI (Quick Path Interconnect), 205–206
Quantification, of performance issues, 6, 69–70
quantize() action, DTrace, 528
Queries, latency analysis applied to, 51–52
Queueing model, 17–18
Queueing networks, 61
Queueing systems

applied to M/D/1, 64–65
commonly studied, 64
I/O resources studied as, 45
Kendall's notation applied to categorizing

factors of, 63
modeling hardware and software components,

61–62
Queueing theory

creating theoretical model of Redis
application, 623

overview of, 61–65
statistical analysis of, 613

Queues, TCP backlog, 492
Quick Emulator (QEMU), KVM. see QEMU

(Quick Emulator), KVM
Quick Path Interconnect (QPI), 205–206

R
RAID (redundant array of independent disks)

cache, 417
observability of, 415–416

Index 725

overview of, 415
read-modify-write, 416
types of, 415–416

RAM
factor analysis, 68
as primary memory, 97

Ramping load, benchmark analysis methodology,
608–611

Random change anti-method, 37
Random disk I/O workload, 402–403, 424–425
Random I/O, 328
Raw (character) devices, 103
Raw I/O, 331–332, 418
read()

DTrace to SystemTap examples, 668–670,
672–673

function of key system calls, 95
Reads. see RX (receive)
Read/write (RW) synchronization primitive, 161
Read/write ratio, disks, 403, 424–425
Real-time workload, 686
Reaping

defined, 278
for freeing memory, 281–282

Receive. see RX (receive)
Receive buffers, TCP, 492–493, 500
Receive flow steering (RFS), Linux network

stack, 493
Receive packet steering (RPS), Linux network

stack, 493
Receive side scaling (RSS), Linux network stack,

493
Redis application, as troubleshooting case study

additional information, 634
checking for CPU errors, 623
checking for disk errors, 625–626
checking for memory errors, 624–625
checking for network errors, 626
comments on process, 633–634
DTrace for measuring read latency, 627–629
DTrace interrogation of kernel, 629–631
getting started in problem solving, 620–622
overview of, 617
problem statement, 618–619
reasons for read latency, 631–633
references, 634–635
review of performance issues found, 633
reviewing available syscalls, 628
selecting approach to, 623

Redundant array of independent disks. see RAID
(redundant array of independent disks)

Registers, 686

Remote disks, 686
Remote hosts, 477
Remote memory, 274
Reno algorithm, for TCP congestion control, 485
Replay, benchmarking as, 600
Reporting/archiving current activity. see sar

(system activity reporter)
Request for Comments (RFC), 687
Requests, targets for workload analysis, 34
Resident memory, 266
Resident set size (RSS), of allocated main

memory, 270, 557
Resource analysis

overview of, 33–34
perspectives for performance analysis, 4

Resource controls
allocating disk I/O resources, 429
allocating memory, 294
comparing virtualization technologies, 582
for CPU in OS virtualization, 556–557
CPUs and, 222
for CPUs in hardware virtualization, 572–573
for disk I/O in OS virtualization, 558
for file system I/O in OS virtualization,

557–558
managing disk or file system I/O, 468
for memory capacity in OS virtualization,

557
for multitenancy effects, 551
network analysis with, 502
for network I/O in OS virtualization, 558
observability and, 558–563
resource management options in OSs, 104
strategies for checking, 562–563
tuning CPUs, 260
tuning memory, 318
tuning on Linux, 539
tuning on Solaris, 542

Resource controls facility, 557
Resource isolation, in cloud computing, 551
Resources

capacity planning and, 66–67
cloud computing and limits on, 48
examining software resources, 47–48
management options in OSs, 104
resource list step of USE method, 44–45
USE method and, 42

Response time
defined, 16
latency and, 18, 35
monitoring disk performance, 423–424
for storage devices, 399–400

726 Index

Retransmits, TCP
monitoring, 498
tracing, 528–529

Return on investment (ROI), 22, 687
RFC (Request for Comments), 687
RFS (receive flow steering), Linux network stack,

493
Ring buffers, 159, 493
ROI (return on investment), 22, 687
Roles, in systems performance, 2–3
Round-trip time

defined, 481
determining route to host, 514–515
testing network connectivity, 514

Routers
buffering with, 481
overview of, 488

Routing, on networks, 476–477
RPS (receive packet steering), Linux network

stack, 493
RSS (receive side scaling), Linux network stack,

493
RSS (resident set size), of allocated main

memory, 270, 557
Run queues

defined, 190
overview of, 192–193
schedulers and, 98

Run-queue latency, 192
RW (read/write) synchronization primitive, 161
rwsnoop, analyzing file systems, 367
rwtop, analyzing file systems, 367
RX (receive)

advanced workload characterization/checklist,
497

defined, 687
network analysis with USE method, 495
workload characterization of, 496

S
SACK (selective acknowledgement) algorithm

for congestion control, 486
TCP and, 484
tuning TCP on Linux, 539

Sampling, profiling and, 30
Sanity check, in benchmark analysis, 611
sar (system activity reporter)

analyzing CPUs, 230
analyzing file systems, 377–378
analyzing memory, 298–301
key options and metrics, 649–650
monitoring with, 120

overview of, 509–511
reporting/archiving disk activity, 440–441
system-wide counters, 117

SAS (Serial Attached SCSI), 414
SATA (Serial ATA), 414
Saturation

analyzing CPUs, 196, 216
analyzing disk devices, 405–406
analyzing main memory, 271–272
analyzing networks with USE method, 495
checking Redis application for memory errors,

624–625
defined, 16
indicating with netstat on Linux, 504–506
interpreting metrics of USE method, 48
measuring network connections, 481
memory metrics, 293
metrics, 43, 181–182
overview of, 29–30
USE method and, 42

Saturation point, scalability and, 25
Scalability

Amdahl's Law of Scalability, 60–61
capacity planning and, 69
cloud computing, 547–548
under increasing load, 24–26
lock analysis and, 182
modeling in analysis of, 57
multiple networks providing, 476–477
multiprocessing/multithreading and,

197–198
statistical analysis of, 613
Universal Scalability Law, 61
visualization of scalability profiles, 59–60

Scalability ceiling, 60
Scaling methods

applied to CPUs, 223–224
capacity planning and, 69

Scatter plots
applied to disks, 462
for visualizations, 78–79

sched provider, DTrace, 657
Schedulers

class tuning, 258
config options, 257–258
defined, 190
hypervisor CPU, 572
key functions of CPU scheduler, 209–210
latency, 192, 196
overview of, 98–99
perf for checking scheduler latency, 245–246
priority and class schedules, 256–257
tracing, 242–243

Index 727

Scheduling classes
kernel support for, 99
managing runnable threads, 210–213
in real-time, 221

Scheduling domains, Linux, 214
Scientific method, 39–41
Scripts, DTrace

advanced network tracking, 531–533
overview of, 141–143

SCSI (Small Computer System Interface)
interface, 414
tracing SCSI events, 449–450

Second-level cache, 326
Sectors

defined, 687
disk, 396
magnetic rotational disks, 409–410

SEDF (simple earliest deadline first), hypervisor
CPU scheduler, 572

Seek and rotation time, magnetic rotational
disks, 408–409

Segments
defined, 266
of process address space, 285

Selective acknowledgement algorithm. see SACK
(selective acknowledgement) algorithm

Self-Monitoring Analysis and Reporting
Technology (SMART), 460

Send buffers, TCP, 492–493, 500
Sequential I/O

characterizing disk I/O workload, 424–425
disk I/O workload, 402–403
overview of, 328

Serial ATA (SATA), 414
Serial Attached SCSI (SAS), 414
Serialization queue (Squeue), GLDv3 software,

491
Server instances

cloud capacity planning with, 548–549
cloud computing provisioning framework for,

546
defined, 546
dynamic sizing in cloud, 549

Servers, 687
Service time

response time and, 16
for storage devices, 399–400

Shadow page tables, 569–570
Shards

defined, 547–548
scaling solution for databases, 69

Shares, CPU, 556–557

Shell scripts, 165
Short-stroking, magnetic rotational disks,

409–410
Shrinking, freeing memory with, 278
Simple earliest deadline first (SEDF), hypervisor

CPU scheduler, 572
Simple Network Monitoring Protocol (SNMP),

50, 76
Simulations

as benchmarking type, 599–600
inputs for simulation benchmarking, 49–50
workload, 57

Single Root I/O Virtualization (SR-IOV), 570–571
Slab allocator, 287, 310
slabtop (slab cache usage)

analyzing kernel slab caches related to file
systems, 378–379

analyzing slab cache usage in Linux, 302
Sliding window, TCP, 483–484
Sloth disks, magnetic rotational disks, 411
Slow-start, TCP, 484
Slub allocator, 288
Small Computer System Interface (SCSI)

interface, 414
tracing SCSI events, 449–450

SMART (Self-Monitoring Analysis and Reporting
Technology), 460

smartctl, viewing disk health statistics,
460–461

SmartOS see also: Solaris
backlog drops, 529–531
defined, 687
resource controls in OS virtualization, 555
retransmit tracing, 529
Zones, 48

SMP (symmetric multiprocessing), 103, 273
SNMP (Simple Network Monitoring Protocol),

50, 76
snoop

network analysis with, 495
overview of, 517–520
system-wide tracing, 118

Sockets
analyzing connections, 521–523
analyzing duration, 524
analyzing internals, 525
analyzing I/O, 523–524
analyzing latency, 524–525
options for tuning network performance, 542
tuning buffers on Linux, 537

sockfs kernel module, Solaris, 491
soconnect.d script, 522–523

728 Index

Software
change management case study, 11–13
monitoring in OS virtualization, 555
monitoring resource limits, 66
tracing, 247–249

Software, CPU-related
idle threads, 213
NUMA groups, 214
overview of, 209
processor resource-aware, 214
schedulers, 209–210
scheduling classes, 210–213

Software, memory-related
free lists, 280–281
methods for freeing memory, 278–280
overview of, 278
page scanning for freeing memory, 282–284
reaping for freeing memory, 281–282

Software, network-related
Linux network stack, 489–490
network device drivers, 493
network stack, 488–489
Solaris network stack, 491
TCP protocol, 492–493

Software resources
examining in USE method, 47–48
USE method checklist in Linux, 641–642
USE method checklist in Solaris, 646–647

Software stack, diagram of, 1–2
Solaris

analysis tools, 503
analyzing file system cache, 377
analyzing file system statistics, 378
analyzing kernel memory usage, 302–303, 379
block device interface and, 420–421
breakpoint tracing on, 176–177
comparing Solaris and Linux kernels,

112–113
configuring network interfaces, 511
CPU performance tools, 251
debugging syscall interface, 364
defined, 687
dynamic polling, 493
fault tracing, 311
free lists, 281
freeing memory on, 279
history of Solaris kernel, 106–107
interface statistics, 507–509
investigating library calls, 182
kernel versions and syscall counts, 105
lgrps (locality groups), 214
mapping process memory, 307
measuring VFS latency, 368–369

memory performance tool, 313
memory summary, 380–381
microstate accounting, 131
monitoring, 120
network analysis tools, 503
network stack, 491, 493
observability sources, 121
other network performance tools, 534
page scanning methods, 283–284
performance features of Solaris kernel,

107–109
printing cache activity on UFS, 379–380
priority inheritance feature, 197
/proc file system, 124–126
process binding, 259
process status, 304–305
processor sets, 222
profiling tools, 119
resource controls, 104, 260, 318
scheduler options, 257–258
scheduling classes, 212–213
scheduling priority and class, 256–257
sources of performance statistics, 127–130
summarizing per-disk I/O statistics, 436–440
system activity reporter, 300–301, 441, 650
TCP fusion on, 483
thread-state analysis, 170–171
time sharing on, 210
top analysis of disk I/O, 453–454
top running processes, 562, 624
tuning, 539–542
tuning memory, 316–317
tuning multiple page sizes, 317–318
USE method checklist in, 646–647
virtual memory statistics, 297–298
visibility of block device interface, 443–444
zones in OS virtualization, 552

Solaris IP Datapath Refactoring project, 491
Solaris Performance and Tools (McDougall), 50
Solaris Tunable Parameters Reference Manual,

539
Solid-state disks. see SSDs (solid-state disks)
SONET (synchronous optical networking), 687
Sources, of performance statistics

Linux delay accounting, 130–131
Linux /proc files, 122–124
Linux /sys file system, 126–127
other sources, 131–133
overview of, 120–121
/proc file system, 121
Solaris kstat files, 127–130
Solaris microstate accounting, 131
Solaris /proc files, 124–126

Index 729

SPARC, 687
Sparse-root zones model, for overhead in OS

virtualization, 555
SPEC (Standard Performance Evaluation

Corporation), 602
Speedup

calculating, 19
estimating maximum in approach to latency,

6–7
Spin locks

lock analysis and, 183
types of synchronization primitives, 161

Squeue (serialization queue), GLDv3 software,
491

SR-IOV (Single Root I/O Virtualization), 570–571
SSDs (solid-state disks)

architecture of, 411–413
defined, 687
random vs. sequential I/O and, 402
types of disks, 395

Stable providers, DTrace, 520–521
Stack fishing, 627
Stacks

CPU profiling, 171–173
defined, 687
how to read, 90
overview of, 89–90
user and kernel stacks, 90–91

Stalled execution, of CPU instructions, 194
Standard deviation, in statistics, 72, 77–78
Standard Performance Evaluation Corporation

(SPEC), 602
Standards, industry-standard benchmarks,

601–602
stap

analyzing memory, 290
analyzing networks, 495

stat
function of key system calls, 95
for summarizing CPU cycle behavior,

246–247
Stateful workload simulation, 600
Stateless workload simulation, 600
Static performance tuning

checking applications, 185–186
checking CPUs, 220–221
checking disks, 428–429
checking file systems, 359–360
checking memory performance, 294
checking networks, 501
overview of, 55, 501

Static priority, scheduling classes and, 210
Static probes, 8

Static tracing
defined, 687
with DTrace, 134

Statistics
analyzing benchmark data, 612–613
averages, 70–71
baselines, 54
CoV (coefficient of variation), 72
means, 71
multimodal distributions and, 73–74
outliers, 74
overview of, 69
quantifying performance issues, 69–70
standard deviation, percentiles, and medians,

72
Storage

cloud computing for, 550
as performance tuning target, 22

Storage arrays, 417, 687
Storage devices

disks, 415
I/O stack for storage-device based file

systems, 101
NAS (network-attached storage), 417–418
overview of, 415
RAID architecture, 415–417
response, service, and wait times, 399–400
as secondary memory, 97
storage arrays, 417, 687
storing file system content, 100

strace
analysis phase of drill-down analysis, 51
breakpoint tracing on Linux, 173–175
debugging syscall interface on Linux, 364–365
in event tracing, 54
per-process tracing, 118

Streaming disk I/O workload, 402–403
Streetlight anti-method, 36–37
Striping, RAID-0, 415–416
Stub domains, Xen, 573
Summary-since-boot values, for monitoring, 76
Sun Microsystems DTrace tool. see DTrace
Sunny day performance testing, benchmarks for,

599
Super-serial model, 61
Surface plots, for visualizations, 80–81
SUT (system under test), modeling, 17
Swap area, 266
Swapping

defined, 266
Linux methods for freeing memory, 279
moving processes between main and

secondary memory, 97–98

730 Index

Swapping (continued)
overview of, 271
showing swap statistics with free, 376
Solaris methods for freeing memory, 279
thread-state analysis and, 170
tools method for checking, 290

Switches
buffering with, 481
overview of, 487–488

Symmetric multiprocessing (SMP), 103, 273
SYN

backlog, 492
defined, 687

Synchronization primitives, 161
Synchronous operations, disk I/O and, 407
Synchronous optical networking (SONET), 687
Synchronous writes, 331
/sys file system, Linux, 126–127
SysBench tool, for micro-benchmarking, 255, 386
Syscall (system calls)

analysis, 173
breakpoint tracing on Linux, 173–175
breakpoint tracing on Solaris, 176–177
buffered tracing, 177–179
in creating/executing processes, 93
debugging syscall interfaces, 364–365
defined, 86
kernel versions and, 105
list of key, 95–96
measuring system latency with DTrace,

367–368
observability sources, 132
overview of, 173
performance tuning targets and, 22
polling with poll() syscall, 159–160

syscall (system calls)
DTrace to SystemTap examples, 668–672
examining Redis application, 627–629

syscall provider, DTrace, 651–654
sysctl, tuning Linux, 536–537
sysinfo provider, DTrace, 660–661
System activity reporter. see sar (system activity

reporter)
System administrators, 33
System calls. see Syscall (system calls)
System design, benchmarking during, 588
System logging, 118
System performance case study. see Redis

application, as troubleshooting case study
System performance metrics, 27
System timer interrupt, 88
System under test (SUT), modeling, 17

System virtual machine instances, 555
Systems performance, introduction

activities, 3–4
challenging aspect of, 4
cloud computing and, 8–9
complexity of systems, 5–6
dynamic tracing, 7–8
latency and, 6–7
multiplicity of performance issues, 6
overview of, 1–2
perspectives, 4
roles, 2–3
slow disk case study, 9–11
software change case study, 11–13
subjective nature of performance, 5
who's who in, 679–682

SystemTap
actions and built-ins, 146
analyzing memory, 312
analyzing networks, 533
converting DTrace to. see DTrace, converting

to SystemTap
documentation and resources, 149
drill-down analysis, 182
dynamic tracing of disks, 451
dynamic tracing of file system events, 533
dynamic tracing of file systems, 375
examples, 146–148
overhead, 148
overview of, 144–145
probes, 145
profiling tools, 119
system-wide tracing, 118
tapsets, 145–146
top analysis of disks (disktop.stp), 454
tracing scheduler events, 243

System-wide commands, 561
System-wide observability tools

counters, 117
Linux /proc file system, 123
overview of, 116
profiling, 119
Solaris kstat files, 127–130
tracing, 118

T
Tahoe algorithm, for TCP congestion control, 485
Tapsets, grouping SystemTap probes, 145–146
Tasklets, interrupt handling and, 92
Tasks, 86, 688
taskset, process binding in Linux, 259

Index 731

TCP (Transmission Control Protocol)
advanced workload characterization/checklist,

497
analyzing networks, 500
backlog queues, 492–493
buffers, 481, 492–493
congestion control, 485
connection latency, 19, 480, 484–485
event tracing, 525–526
improving performance of MTU frames with

TCP offload, 479
performance features of, 483–484
performance monitoring, 498
retransmits in Redis application, 620
three-way handshakes, 484
tuning backlog queue on Linux, 537–538
tuning backlog queue on Solaris, 541
tuning buffers on Linux, 537
tuning congestion control on Linux, 538
tuning options on Linux, 538–539
tuning options on Solaris, 541

TCP data transfer time, 19
TCP fusion, Solaris, 483
tcp provider, DTrace, 662
tcp_retransmit_skb() function, DTrace, 528
tcp_sendmsg(), DTrace, 527–528
tcp_tw_recycle, tuning TCP on Linux, 539
tcp_tw_reuse, tuning TCP on Linux, 539
tcpdump

network analysis with, 495
overview of, 516–517
packet-by-packet inspection with, 53
system-wide tracing, 118
timestamp used with, 54

TCP/IP sockets, 483
TCP/IP stack, 102, 476
tcpListenDrop, netstat, 508
tcpListenDropQ0, netstat, 508
Teams, roles in systems performance, 2
Technologies, comparison of virtualization,

581–583
Tenants

defined, 546
mitigating hardware virtualization overhead,

571–572
overhead in OS virtualization, 555
resource controls in hardware virtualization,

571
TENEX, 688
Thread pools, examining software resources, 47
Thread-local variables, DTrace, 139
Thread-state analysis

in Linux, 170

overview of, 168
six states, 168–169
in Solaris, 170–171
testing effect of software change, 13
two states, 168

Threads/threading
defined, 86, 688
idle threads, 213
interrupt threads, 92
load vs. architecture in analysis of

performance issues, 24
lock analysis applied to multithreaded

applications, 182–183
multiple threads, 160
preemption, 103–104, 196
priority inversion, 196–197
processes containing one or more threads, 93
schedulers and, 98
scheduling classes managing runnable

threads, 210–213
state analysis. see Thread-state analysis

Three-way handshakes, TCP, 484
Throttle, on resources, 49
Throughput

application performance objectives, 155
defined, 16, 688
disk I/O workload, 424–425
disk terminology, 396
magnetic rotational disks, 409
metrics of systems performance, 27
micro-benchmarking in determination of, 430
network analysis with, 494
networking terminology, 474
performance monitoring of, 498
ramping load and measuring, 610
read/write ratio and, 403
workload characterization of, 496

Tick latency, 88
Tick overhead, 88
Ticks, kernel clock, 88
time, reporting on CPU usage, 235–236
Time scales, in analyzing performance, 19–20
Time series, statistics over time, 74
Time sharing

key functions of CPU scheduler, 209
on Linux and Solaris, 210

Time slices (time quantum), CPU time, 210
Time to first byte (TTFB) latency, 480
Time to live (TTL), determining current route to

host with traceroute, 514–515
Time-based metrics, latency as, 19
Time-based patterns, monitoring, 74–76
Time-based utilization, 28

732 Index

Timestamps
access timestamps, 336
in event tracing, 54
iosnoop, 456–457

TIME-WAIT sessions, tuning TCP on Linux, 539
TLB (translation lookaside buffer)

CPU cache options, 277
tuning multiple page sizes and, 317

tmp (temporary files), in top-level directories,
100

/tmp file system, 361
Tools method

applied to CPUs, 215
applied to disks, 422
applied to memory, 289–290
applied to networks, 494–495
overview of, 41–42

top (top running processes on Linux)
analyzing CPUs, 231–232
analyzing file system cache, 376
analyzing memory, 290
monitoring, 305
per-process counters, 117

TPC (Transaction Processing Performance
Council), 596–597, 601–602

TPS (transactions per second), 601
Trace file, DTrace to SystemTap example, 672
Trace log replay, 600
traceroute

applying to Redis application, 618–619
determining current route to host with

traceroute, 514–515
pathchar vs., 515–516

Tracing
analyzing file systems, 373–375
block device events on Linux (blktrace),

457–459
breakpoint tracing on Linux, 173–175
breakpoint tracing on Solaris, 176–177
buffered tracing, 177–179
disk I/O events, 427–428, 442–444
disks with iosnoop, 455–457
event tracing, 53–54
file systems events, 358–359
function tracing, 240–241
memory allocation tracing, 308–311
memory fault tracing, 311–312
page-out daemon, 312
perf for software tracing, 247–249
per-process observability tools, 131
scheduler events, 242–243
SCSI events, 449–450
slow events, 372–373

static and dynamic, 134–135
tools, 118–119

Tracing, dynamic
analyzing disks, 450
analyzing file systems, 373–375
applying to slow disk case study, 10
DTrace options, 134–135
as performance metric, 7–8

Trade-offs, in performance, 20–21
Transaction Processing Performance Council

(TPC), 596–597, 601–602
Transactions per second (TPS), 601
Translation lookaside buffer (TLB)

CPU cache options, 277
tuning multiple page sizes and, 317

Translation storage buffer (TSB), CPU cache
and, 204

Transmission Control Protocol. see TCP
(Transmission Control Protocol)

Transmit (TX). see TX (transmit)
Transmit packet steering (XPS), 493
Transport bus, physical bus used for

communication, 396
Traps, 86
truss

analysis phase of drill-down analysis, 51
breakpoint tracing on Solaris, 176–177
debugging syscall interface on Solaris, 364
in event tracing, 54
per-process tracing, 118

TSB (translation storage buffer), CPU cache and,
204

TTFB (time to first byte) latency, 480
TTL (time to live), determining current route to

host with traceroute, 514–515
Tuning

benchmarking during, 588
cache tuning, 55–56, 360
overview of, 21–22
static performance tuning. see Static

performance tuning
Tuning, application-related

static performance tuning, 185–186
targets of, 22

Tuning, CPU-related
compiler options, 256
exclusives CPU sets (cpuset), 259
overview of, 256
process binding, 259
processor options (BIOS), 260
resource controls, 260
scheduler options, 257–258
scheduling priority and class, 256–257

Index 733

Tuning, disk-related
disk controllers, 469–470
disk devices, 469
operating system, 467–469
overview of, 467
tunable parameters of operating system,

467–469, 688
Tuning, file system-related

application calls, 387–388
overview of, 387
tuning ext systems, 389
tuning ZFS systems, 389–391

Tuning, memory-related
allocators for improving performance of

multithreaded applications, 318
overview of, 314
resource controls, 318
tunable parameters, 314–317
tunable parameters in memory tuning,

314–317
tuning multiple page sizes, 317–318

Tuning, network-related
Linux, 536–539
overview of, 536
Solaris, 539–542

TX (transmit)
advanced workload characterization/checklist,

497
defined, 688
network analysis with USE method, 495
workload characterization of, 496

Type 1 hypervisor, 556
Type 2 hypervisor, 557

U
UDP (User Datagram Protocol), 486, 497
udp provider, DTrace, 663
UDS (Unix domain sockets), 483
UFS (Unix File System)

architecture, 347
printing cache activity, 379–380
storing file system content, 100

UID (user ID), 94
UMA (uniform memory access)

interconnects and, 204–206
main memory architecture, 273

Unicast transmission, 477
Universal Scalability Law (USL), 61
Unix

history and Unix kernel, 106
memory management, 98
overhead in OS virtualization, 554

resource controls, 104
schedulers, 98

Unix domain sockets (UDS), 483
Unix File System. see UFS (Unix File System)
Unknown-unknowns, in performance analysis, 26
Unstable providers, DTrace, 520–521
uptime analysis, in analyzing CPUs, 224–225
USE method

analyzing and tuning applications, 181–182
analyzing CPUs, 216
analyzing disks, 422–423
analyzing memory, 290–291
analyzing networks, 495–496
applying to Redis application, 623–626
benchmark analysis with, 607–608
checking resource bottlenecks, 10
checking software resources, 47–48
checking system health, 622
cloud computing and, 48
creating resource list, 44–45
functional block diagrams in, 45
Linux checklist for, 637–641
metrics, 43–48
overview of, 42–43
procedure flow in, 44
Solaris checklist for, 643–647

User Datagram Protocol (UDP), 486, 497
User ID (UID), 94
User level, 688
User mode

analysis of time in, 196
determining CPU mode of application, 154
user programs running in, 89

User stacks, 90–91
User-level CPU profiling

benchmark analysis, 606–607
calculating with prstat, 234

User-space, 86
USL (Universal Scalability Law), 61
usr (user programs and libraries), in top-level

directories, 100
Ustack helpers, in DTrace, 172
Utilization

analyzing applications with USE method,
181–182

analyzing CPUs with USE method, 216
analyzing networks with USE method, 495
application performance objectives, 155
averages over time, 71
capacity-based, 28–29
checking Redis application for memory errors,

624–625
of CPUs, 195

734 Index

Utilization (continued)
defined, 16
of disk devices, 404–405
heat maps visualizing, 251–252, 463–465
of interfaces and, 487
interpreting metrics of USE method, 48
of main memory, 271–272
M/D/1 mean response time vs., 64–65
memory metrics, 293
monitoring disk performance, 423–424
of networks, 482
non-idle time and, 29
overview of, 27
resource analysis focus on, 33
saturation and, 29–30
in slow disk case study, 10–11
in software change case study, 12–13
surface plots for per-CPU utilization, 80–81
systems performance metrics, 27
time-based, 28
USE method and, 42–43
of virtual disks, 405

V
var (varying files), in top-level directories, 100
Variables, DTrace

built-in, 137–138, 667
types of, 139–141

Variance
benchmarking, 593
CoV (coefficient of variation), 72

vCPUs (virtual CPUs)
CR3 profiling, 579–580
resource controls in hardware virtualization,

572
Vertical perimeters, GLDv3 software, 491
Vertical scaling, 69
VFS (virtual file system), 337–338

interrogating kernel, 629–631
measuring latency with DTrace, 368–370
statistics, 363–364

vfsstat, for virtual file system statistics,
363–364, 562

Vibration issues, magnetic rotational disks,
410–411

Virtual disks
defined, 396
utilization, 405

Virtual machine control structure (VMCS),
579–580

Virtual machines (VMs), 166
Virtual memory

available swap, 271–272
defined, 266
OSs (operating systems) and, 97
overview of, 267–268
states, 270
vmstat analysis, 226–227

Virtual Memory System (VMS), 688
Virtual memory (VM), 557
Virtual processor, 190
Virtualization

as basis of cloud computing, 8–9
hardware virtualization. see Hardware

virtualization
OS virtualization. see OS virtualization
technologies, 581–583

Visual identification, in modeling, 58–60
Visualizations

of CPUs, 251–254
of disks, 461
of distributions, 73–74
of file systems, 383
functional block diagrams used in USE

method, 45
heat maps for, 79–80, 462–465
line charts for, 77–78, 461
overview of, 76
scatter plots for, 78–79, 462
surface plots for, 80–81
tools for, 81–82

VM (virtual memory), 557
VMCS (virtual machine control structure),

579–580
vminfo provider, DTrace, 661
VMs (virtual machines), 166
VMS (Virtual Memory System), 688
vmstat (virtual memory statistics)

analyzing CPUs, 226–227
analyzing file system cache, 376–377
analyzing memory, 295–298
checking available memory, 290
checking Redis application for memory errors,

624
observability of guest in hardware

virtualization, 580
system-wide counters, 117

VMware ESX, 557
Volumes, file system, 351–352
Voluntary kernel preemption, in Linux, 104
VTune Amplifier XE profiling tool, 119

Index 735

W
Wait time, for storage devices, 399–400
Warm cache, 32
Web servers, in cloud architecture, 547
Wireframe models, 80
Wireshark, for network analysis, 520
Word size

memory performance and, 272
processor design and, 198–199

Work queues, interrupt handling and, 92
Working set size, micro-benchmarking and, 361
Workload

analysis, 4, 34–35
benchmark analysis by ramping, 608–611
CPU-bound vs. I/O bound, 99
defined, 16
latency analysis, 51–52
load vs. architecture in analysis of

performance issues, 24
planning capacity for. see Capacity planning
scalability under increasing load, 24–26
separation, 360
simulating, 57

Workload characterization
advanced checklist, 497
analyzing and tuning applications, 181
applied to CPUs, 216–218
applied to disk I/O, 424–426
applied to file system, 356–358
applied to networks, 496–497
benchmark analysis methodology, 608
overview of, 49–50
studying workload requests, 34

Workload simulator, testing effect of software
change, 11–12

write(), function of key system calls, 95
Write-back cache, 330, 397
Writes. see TX (transmit)
Write-through cache, 398

X
x86, 688
Xen

advanced observability in, 578–579
hardware virtualization, 557
observability in hardware virtualization for

privileged guest/host, 577–578
xentop tool, 577–578
xentrace tool, 578
XPS (transmit packet steering), 493

Z
ZFS

architecture, 348–351
exposing internals, 370–371
observing pool statistics, 382–383
tracing read latency, 371–372
tracing slow events, 372–373
tuning, 389–391

ZFS ARC, Solaris methods for freeing memory,
279

zoneadmd property, 557
Zone-aware commands, 561
Zone-aware observability tools, 561
zone.max-physical-memory, 557
zone.max-swap property, 557
Zones, Joyent public cloud, 552, 554–555

This page intentionally left blank

Written by key contributors to the DTrace community, DTrace teaches
by example, presenting scores of commands and easy-to-adapt, down-
loadable D scripts. These concise examples generate answers to real and
useful questions, and serve as a starting point for building more complex
scripts. Using them, you can start making practical use of DTrace imme-
diately, whether you�re an administrator, developer, analyst, architect,
or support professional.

PEARSONALWAYS LEARNING

For more information and sample content visit
informit.com/title/9780132091510

Available in print and eBook formats

Comprehensive and Authoritative Guide
to Making the Most of DTrace in any

Supported UNIX Environment

ISBN-13: 978-0-13-209151-0

Register the Addison-Wesley, Exam
Cram, Prentice Hall, Que, and
Sams products you own to unlock
great benefi ts.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.
You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall

Professional, Que, and Sams. Here you will gain access to quality and trusted content and

resources from the authors, creators, innovators, and leaders of technology. Whether you’re

looking for a book on a new technology, a helpful article, timely newsletters, or access to

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock
the following benefi ts:

• Access to supplemental content,
including bonus chapters,
source code, or project fi les.

• A coupon to be used on your
next purchase.

Registration benefi ts vary by product.
Benefi ts will be listed on your Account
page under Registered Products.

informit.com/register

THIS PRODUCT

 InformIT is a brand of Pearson and the online presence
for the world’s leading technology publishers. It’s your source
for reliable and qualified content and knowledge, providing
access to the top brands, authors, and contributors from
the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seek-
ing timely and relevant information and tutorials? Looking for expert opin-
ions, advice, and tips? InformIT has the solution.

• Learn about new releases and special promotions by
subscribing to a wide variety of newsletters.
Visit informit.com/newsletters.

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author articles and sample chapters at
informit.com/articles.

• Access thousands of books and videos in the Safari Books
Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the
hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?
Connect with Pearson authors and editors via RSS feeds, Facebook,

Twitter, YouTube, and more! Visit informit.com/socialconnect.

* Available to new subscribers only. Discount applies to the Safari Library and is valid for � rst
12 consecutive monthly billing cycles. Safari Library is not available in all countries.

Try Safari Books Online FREE for 15 days
Get online access to Thousands of Books and Videos

FREE 15-DAY TRIAL + 15% OFF*

informit.com/safaritrial

Feed your brain
Gain unlimited access to thousands of books and videos about technology,
digital media and professional development from O�Reilly Media,
Addison-Wesley, Microsoft Press, Cisco Press, McGraw Hill, Wiley, WROX,
Prentice Hall, Que, Sams, Apress, Adobe Press and other top publishers.

See it, believe it
Watch hundreds of expert-led instructional videos on today�s hottest topics.

WAIT, THERE’S MORE!
Gain a competitive edge
Be first to learn about the newest technologies and subjects with Rough Cuts
pre-published manuscripts and new technology overviews in Short Cuts.

Accelerate your project
Copy and paste code, create smart searches that let you know when new
books about your favorite topics are available, and customize your library
with favorites, highlights, tags, notes, mash-ups and more.

Activate your FREE Online Edition at
informit.com/safarifree

STEP 1: Enter the coupon code: JBIANXA.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have diffi culty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

Your purchase of Systems Performance includes access to a free online edition for 45 days
through the Safari Books Online subscription service. Nearly every Prentice Hall book is
available online through Safari Books Online, along with thousands of books and videos from
publishers such as Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, O’Reilly
Media, Que, Sams, and VMware Press.

Safari Books Online is a digital library providing searchable, on-demand access to thousands
of technology, digital media, and professional development books and videos from leading
publishers. With one monthly or yearly subscription price, you get unlimited access to learning
tools and information on topics including mobile app and software development, tips and tricks
on using your favorite gadgets, networking, project management, graphic design, and much more.

FREE
Online Edition

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	Acknowledgments
	About the Author
	Chapter 1 Introduction
	1.1 Systems Performance
	1.2 Roles
	1.3 Activities
	1.4 Perspectives
	1.5 Performance Is Challenging
	1.5.1 Performance Is Subjective
	1.5.2 Systems Are Complex
	1.5.3 There Can Be Multiple Performance Issues

	1.6 Latency
	1.7 Dynamic Tracing
	1.8 Cloud Computing
	1.9 Case Studies
	1.9.1 Slow Disks
	1.9.2 Software Change
	1.9.3 More Reading

	Chapter 2 Methodology
	2.1 Terminology
	2.2 Models
	2.2.1 System under Test
	2.2.2 Queueing System

	2.3 Concepts
	2.3.1 Latency
	2.3.2 Time Scales
	2.3.3 Trade-offs
	2.3.4 Tuning Efforts
	2.3.5 Level of Appropriateness
	2.3.6 Point-in-Time Recommendations
	2.3.7 Load versus Architecture
	2.3.8 Scalability
	2.3.9 Known-Unknowns
	2.3.10 Metrics
	2.3.11 Utilization
	2.3.12 Saturation
	2.3.13 Profiling
	2.3.14 Caching

	2.4 Perspectives
	2.4.1 Resource Analysis
	2.4.2 Workload Analysis

	2.5 Methodology
	2.5.1 Streetlight Anti-Method
	2.5.2 Random Change Anti-Method
	2.5.3 Blame-Someone-Else Anti-Method
	2.5.4 Ad Hoc Checklist Method
	2.5.5 Problem Statement
	2.5.6 Scientific Method
	2.5.7 Diagnosis Cycle
	2.5.8 Tools Method
	2.5.9 The USE Method
	2.5.10 Workload Characterization
	2.5.11 Drill-Down Analysis
	2.5.12 Latency Analysis
	2.5.13 Method R
	2.5.14 Event Tracing
	2.5.15 Baseline Statistics
	2.5.16 Static Performance Tuning
	2.5.17 Cache Tuning
	2.5.18 Micro-Benchmarking

	2.6 Modeling
	2.6.1 Enterprise versus Cloud
	2.6.2 Visual Identification
	2.6.3 Amdahl’s Law of Scalability
	2.6.4 Universal Scalability Law
	2.6.5 Queueing Theory

	2.7 Capacity Planning
	2.7.1 Resource Limits
	2.7.2 Factor Analysis
	2.7.3 Scaling Solutions

	2.8 Statistics
	2.8.1 Quantifying Performance
	2.8.2 Averages
	2.8.3 Standard Deviations, Percentiles, Median
	2.8.4 Coefficient of Variation
	2.8.5 Multimodal Distributions
	2.8.6 Outliers

	2.9 Monitoring
	2.9.1 Time-Based Patterns
	2.9.2 Monitoring Products
	2.9.3 Summary-since-Boot

	2.10 Visualizations
	2.10.1 Line Chart
	2.10.2 Scatter Plots
	2.10.3 Heat Maps
	2.10.4 Surface Plot
	2.10.5 Visualization Tools

	2.11 Exercises
	2.12 References

	Chapter 3 Operating Systems
	3.1 Terminology
	3.2 Background
	3.2.1 Kernel
	3.2.2 Stacks
	3.2.3 Interrupts and Interrupt Threads
	3.2.4 Interrupt Priority Level
	3.2.5 Processes
	3.2.6 System Calls
	3.2.7 Virtual Memory
	3.2.8 Memory Management
	3.2.9 Schedulers
	3.2.10 File Systems
	3.2.11 Caching
	3.2.12 Networking
	3.2.13 Device Drivers
	3.2.14 Multiprocessor
	3.2.15 Preemption
	3.2.16 Resource Management
	3.2.17 Observability

	3.3 Kernels
	3.3.1 Unix
	3.3.2 Solaris-Based
	3.3.3 Linux-Based
	3.3.4 Differences

	3.4 Exercises
	3.5 References

	Chapter 4 Observability Tools
	4.1 Tool Types
	4.1.1 Counters
	4.1.2 Tracing
	4.1.3 Profiling
	4.1.4 Monitoring (sar)

	4.2 Observability Sources
	4.2.1 /proc
	4.2.2 /sys
	4.2.3 kstat
	4.2.4 Delay Accounting
	4.2.5 Microstate Accounting
	4.2.6 Other Observability Sources

	4.3 DTrace
	4.3.1 Static and Dynamic Tracing
	4.3.2 Probes
	4.3.3 Providers
	4.3.4 Arguments
	4.3.5 D Language
	4.3.6 Built-in Variables
	4.3.7 Actions
	4.3.8 Variable Types
	4.3.9 One-Liners
	4.3.10 Scripting
	4.3.11 Overheads
	4.3.12 Documentation and Resources

	4.4 SystemTap
	4.4.1 Probes
	4.4.2 Tapsets
	4.4.3 Actions and Built-ins
	4.4.4 Examples
	4.4.5 Overheads
	4.4.6 Documentation and Resources

	4.5 perf
	4.6 Observing Observability
	4.7 Exercises
	4.8 References

	Chapter 5 Applications
	5.1 Application Basics
	5.1.1 Objectives
	5.1.2 Optimize the Common Case
	5.1.3 Observability
	5.1.4 Big O Notation

	5.2 Application Performance Techniques
	5.2.1 Selecting an I/O Size
	5.2.2 Caching
	5.2.3 Buffering
	5.2.4 Polling
	5.2.5 Concurrency and Parallelism
	5.2.6 Non-Blocking I/O
	5.2.7 Processor Binding

	5.3 Programming Languages
	5.3.1 Compiled Languages
	5.3.2 Interpreted Languages
	5.3.3 Virtual Machines
	5.3.4 Garbage Collection

	5.4 Methodology and Analysis
	5.4.1 Thread State Analysis
	5.4.2 CPU Profiling
	5.4.3 Syscall Analysis
	5.4.4 I/O Profiling
	5.4.5 Workload Characterization
	5.4.6 USE Method
	5.4.7 Drill-Down Analysis
	5.4.8 Lock Analysis
	5.4.9 Static Performance Tuning

	5.5 Exercises
	5.6 References

	Chapter 6 CPUs
	6.1 Terminology
	6.2 Models
	6.2.1 CPU Architecture
	6.2.2 CPU Memory Caches
	6.2.3 CPU Run Queues

	6.3 Concepts
	6.3.1 Clock Rate
	6.3.2 Instruction
	6.3.3 Instruction Pipeline
	6.3.4 Instruction Width
	6.3.5 CPI, IPC
	6.3.6 Utilization
	6.3.7 User-Time/Kernel-Time
	6.3.8 Saturation
	6.3.9 Preemption
	6.3.10 Priority Inversion
	6.3.11 Multiprocess, Multithreading
	6.3.12 Word Size
	6.3.13 Compiler Optimization

	6.4 Architecture
	6.4.1 Hardware
	6.4.2 Software

	6.5 Methodology
	6.5.1 Tools Method
	6.5.2 USE Method
	6.5.3 Workload Characterization
	6.5.4 Profiling
	6.5.5 Cycle Analysis
	6.5.6 Performance Monitoring
	6.5.7 Static Performance Tuning
	6.5.8 Priority Tuning
	6.5.9 Resource Controls
	6.5.10 CPU Binding
	6.5.11 Micro-Benchmarking
	6.5.12 Scaling

	6.6 Analysis
	6.6.1 uptime
	6.6.2 vmstat
	6.6.3 mpstat
	6.6.4 sar
	6.6.5 ps
	6.6.6 top
	6.6.7 prstat
	6.6.8 pidstat
	6.6.9 time, ptime
	6.6.10 DTrace
	6.6.11 SystemTap
	6.6.12 perf
	6.6.13 cpustat
	6.6.14 Other Tools
	6.6.15 Visualizations

	6.7 Experimentation
	6.7.1 Ad Hoc
	6.7.2 SysBench

	6.8 Tuning
	6.8.1 Compiler Options
	6.8.2 Scheduling Priority and Class
	6.8.3 Scheduler Options
	6.8.4 Process Binding
	6.8.5 Exclusive CPU Sets
	6.8.6 Resource Controls
	6.8.7 Processor Options (BIOS Tuning)

	6.9 Exercises
	6.10 References

	Chapter 7 Memory
	7.1 Terminology
	7.2 Concepts
	7.2.1 Virtual Memory
	7.2.2 Paging
	7.2.3 Demand Paging
	7.2.4 Overcommit
	7.2.5 Swapping
	7.2.6 File System Cache Usage
	7.2.7 Utilization and Saturation
	7.2.8 Allocators
	7.2.9 Word Size

	7.3 Architecture
	7.3.1 Hardware
	7.3.2 Software
	7.3.3 Process Address Space

	7.4 Methodology
	7.4.1 Tools Method
	7.4.2 USE Method
	7.4.3 Characterizing Usage
	7.4.4 Cycle Analysis
	7.4.5 Performance Monitoring
	7.4.6 Leak Detection
	7.4.7 Static Performance Tuning
	7.4.8 Resource Controls
	7.4.9 Micro-Benchmarking

	7.5 Analysis
	7.5.1 vmstat
	7.5.2 sar
	7.5.3 slabtop
	7.5.4 ::kmastat
	7.5.5 ps
	7.5.6 top
	7.5.7 prstat
	7.5.8 pmap
	7.5.9 DTrace
	7.5.10 SystemTap
	7.5.11 Other Tools

	7.6 Tuning
	7.6.1 Tunable Parameters
	7.6.2 Multiple Page Sizes
	7.6.3 Allocators
	7.6.4 Resource Controls

	7.7 Exercises
	7.8 References

	Chapter 8 File Systems
	8.1 Terminology
	8.2 Models
	8.2.1 File System Interfaces
	8.2.2 File System Cache
	8.2.3 Second-Level Cache

	8.3 Concepts
	8.3.1 File System Latency
	8.3.2 Caching
	8.3.3 Random versus Sequential I/O
	8.3.4 Prefetch
	8.3.5 Read-Ahead
	8.3.6 Write-Back Caching
	8.3.7 Synchronous Writes
	8.3.8 Raw and Direct I/O
	8.3.9 Non-Blocking I/O
	8.3.10 Memory-Mapped Files
	8.3.11 Metadata
	8.3.12 Logical versus Physical I/O
	8.3.13 Operations Are Not Equal
	8.3.14 Special File Systems
	8.3.15 Access Timestamps
	8.3.16 Capacity

	8.4 Architecture
	8.4.1 File System I/O Stack
	8.4.2 VFS
	8.4.3 File System Caches
	8.4.4 File System Features
	8.4.5 File System Types
	8.4.6 Volumes and Pools

	8.5 Methodology
	8.5.1 Disk Analysis
	8.5.2 Latency Analysis
	8.5.3 Workload Characterization
	8.5.4 Performance Monitoring
	8.5.5 Event Tracing
	8.5.6 Static Performance Tuning
	8.5.7 Cache Tuning
	8.5.8 Workload Separation
	8.5.9 Memory-Based File Systems
	8.5.10 Micro-Benchmarking

	8.6 Analysis
	8.6.1 vfsstat
	8.6.2 fsstat
	8.6.3 strace, truss
	8.6.4 DTrace
	8.6.5 SystemTap
	8.6.6 LatencyTOP
	8.6.7 free
	8.6.8 top
	8.6.9 vmstat
	8.6.10 sar
	8.6.11 slabtop
	8.6.12 mdb ::kmastat
	8.6.13 fcachestat
	8.6.14 /proc/meminfo
	8.6.15 mdb ::memstat
	8.6.16 kstat
	8.6.17 Other Tools
	8.6.18 Visualizations

	8.7 Experimentation
	8.7.1 Ad Hoc
	8.7.2 Micro-Benchmark Tools
	8.7.3 Cache Flushing

	8.8 Tuning
	8.8.1 Application Calls
	8.8.2 ext3
	8.8.3 ZFS

	8.9 Exercises
	8.10 References

	Chapter 9 Disks
	9.1 Terminology
	9.2 Models
	9.2.1 Simple Disk
	9.2.2 Caching Disk
	9.2.3 Controller

	9.3 Concepts
	9.3.1 Measuring Time
	9.3.2 Time Scales
	9.3.3 Caching
	9.3.4 Random versus Sequential I/O
	9.3.5 Read/Write Ratio
	9.3.6 I/O Size
	9.3.7 IOPS Are Not Equal
	9.3.8 Non-Data-Transfer Disk Commands
	9.3.9 Utilization
	9.3.10 Saturation
	9.3.11 I/O Wait
	9.3.12 Synchronous versus Asynchronous
	9.3.13 Disk versus Application I/O

	9.4 Architecture
	9.4.1 Disk Types
	9.4.2 Interfaces
	9.4.3 Storage Types
	9.4.4 Operating System Disk I/O Stack

	9.5 Methodology
	9.5.1 Tools Method
	9.5.2 USE Method
	9.5.3 Performance Monitoring
	9.5.4 Workload Characterization
	9.5.5 Latency Analysis
	9.5.6 Event Tracing
	9.5.7 Static Performance Tuning
	9.5.8 Cache Tuning
	9.5.9 Resource Controls
	9.5.10 Micro-Benchmarking
	9.5.11 Scaling

	9.6 Analysis
	9.6.1 iostat
	9.6.2 sar
	9.6.3 pidstat
	9.6.4 DTrace
	9.6.5 SystemTap
	9.6.6 perf
	9.6.7 iotop
	9.6.8 iosnoop
	9.6.9 blktrace
	9.6.10 MegaCli
	9.6.11 smartctl
	9.6.12 Visualizations

	9.7 Experimentation
	9.7.1 Ad Hoc
	9.7.2 Custom Load Generators
	9.7.3 Micro-Benchmark Tools
	9.7.4 Random Read Example

	9.8 Tuning
	9.8.1 Operating System Tunables
	9.8.2 Disk Device Tunables
	9.8.3 Disk Controller Tunables

	9.9 Exercises
	9.10 References

	Chapter 10 Network
	10.1 Terminology
	10.2 Models
	10.2.1 Network Interface
	10.2.2 Controller
	10.2.3 Protocol Stack

	10.3 Concepts
	10.3.1 Networks and Routing
	10.3.2 Protocols
	10.3.3 Encapsulation
	10.3.4 Packet Size
	10.3.5 Latency
	10.3.6 Buffering
	10.3.7 Connection Backlog
	10.3.8 Interface Negotiation
	10.3.9 Utilization
	10.3.10 Local Connections

	10.4 Architecture
	10.4.1 Protocols
	10.4.2 Hardware
	10.4.3 Software

	10.5 Methodology
	10.5.1 Tools Method
	10.5.2 USE Method
	10.5.3 Workload Characterization
	10.5.4 Latency Analysis
	10.5.5 Performance Monitoring
	10.5.6 Packet Sniffing
	10.5.7 TCP Analysis
	10.5.8 Drill-Down Analysis
	10.5.9 Static Performance Tuning
	10.5.10 Resource Controls
	10.5.11 Micro-Benchmarking

	10.6 Analysis
	10.6.1 netstat
	10.6.2 sar
	10.6.3 ifconfig
	10.6.4 ip
	10.6.5 nicstat
	10.6.6 dladm
	10.6.7 ping
	10.6.8 traceroute
	10.6.9 pathchar
	10.6.10 tcpdump
	10.6.11 snoop
	10.6.12 Wireshark
	10.6.13 DTrace
	10.6.14 SystemTap
	10.6.15 perf
	10.6.16 Other Tools

	10.7 Experimentation
	10.7.1 iperf

	10.8 Tuning
	10.8.1 Linux
	10.8.2 Solaris
	10.8.3 Configuration

	10.9 Exercises
	10.10 References

	Chapter 11 Cloud Computing
	11.1 Background
	11.1.1 Price/Performance Ratio
	11.1.2 Scalable Architecture
	11.1.3 Capacity Planning
	11.1.4 Storage
	11.1.5 Multitenancy

	11.2 OS Virtualization
	11.2.1 Overhead
	11.2.2 Resource Controls
	11.2.3 Observability

	11.3 Hardware Virtualization
	11.3.1 Overhead
	11.3.2 Resource Controls
	11.3.3 Observability

	11.4 Comparisons
	11.5 Exercises
	11.6 References

	Chapter 12 Benchmarking
	12.1 Background
	12.1.1 Activities
	12.1.2 Effective Benchmarking
	12.1.3 Benchmarking Sins

	12.2 Benchmarking Types
	12.2.1 Micro-Benchmarking
	12.2.2 Simulation
	12.2.3 Replay
	12.2.4 Industry Standards

	12.3 Methodology
	12.3.1 Passive Benchmarking
	12.3.2 Active Benchmarking
	12.3.3 CPU Profiling
	12.3.4 USE Method
	12.3.5 Workload Characterization
	12.3.6 Custom Benchmarks
	12.3.7 Ramping Load
	12.3.8 Sanity Check
	12.3.9 Statistical Analysis

	12.4 Benchmark Questions
	12.5 Exercises
	12.6 References

	Chapter 13 Case Study
	13.1 Case Study: The Red Whale
	13.1.1 Problem Statement
	13.1.2 Support
	13.1.3 Getting Started
	13.1.4 Choose Your Own Adventure
	13.1.5 The USE Method
	13.1.6 Are We Done?
	13.1.7 Take 2
	13.1.8 The Basics
	13.1.9 Ignoring the Red Whale
	13.1.10 Interrogating the Kernel
	13.1.11 Why?
	13.1.12 Epilogue

	13.2 Comments
	13.3 Additional Information
	13.4 References

	Appendix A: USE Method: Linux
	Physical Resources
	Software Resources
	Reference

	Appendix B: USE Method: Solaris
	Physical Resources
	Software Resources
	References

	Appendix C: sar Summary
	Linux
	Solaris

	Appendix D: DTrace One-Liners
	syscall Provider
	proc Provider
	profile Provider
	sched Provider
	fbt Provider
	pid Provider
	io Provider
	sysinfo Provider
	vminfo Provider
	ip Provider
	tcp provider
	udp provider

	Appendix E: DTrace to SystemTap
	Functionality
	Terminology
	Probes
	Built-in Variables
	Functions
	Example 1: Listing syscall Entry Probes
	Example 2: Summarize read() Returned Size
	Example 3: Count syscalls by Process Name
	Example 4: Count syscalls by syscall Name, for Process ID 123
	Example 5: Count syscalls by syscall Name, for "httpd" Processes
	Example 6: Trace File open()s with Process Name and Path Name
	Example 7: Summarize read() Latency for "mysqld" Processes
	Example 8: Trace New Processes with Process Name and Arguments
	Example 9: Sample Kernel Stacks at 100 Hz
	References

	Appendix F: Solutions to Selected Exercises
	Chapter 2—Methodology
	Chapter 3—Operating Systems
	Chapter 6—CPUs
	Chapter 7—Memory
	Chapter 8—File Systems
	Chapter 9—Disks
	Chapter 11—Cloud Computing

	Appendix G: Systems Performance Who’s Who
	Glossary
	A
	B
	C
	D
	E
	F
	H
	I
	K
	M
	O
	P
	R
	S
	T
	V
	X

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

