

Google Flutter Mobile
Development Quick Start Guide

Get up and running with iOS and Android
mobile app development

Prajyot Mainkar
Salvatore Giordano

BIRMINGHAM - MUMBAI

Google Flutter Mobile Development Quick
Start Guide
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Acquisition Editor: Reshma Raman
Content Development Editor: Mohammed Yusuf Imaratwale
Technical Editor: Diksha Wakode
Copy Editor: Safis Editing
Project Coordinator: Kinjal Bari
Proofreader: Safis Editing
Indexer: Manju Arasan
Graphics: Alishon Mendonsa
Production Coordinator: Melwyn D'sa

First published: March 2019

Production reference: 1290319

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78934-496-7

www.packtpub.com

http://www.packtpub.com

To my mother, Eda Schwartz, and to the memory of my father, Zeev, for their sacrifices and for
exemplifying the power of determination. To my wife, Orit, for being my loving partner

throughout our joint life-journey

– Stefan Rosca

To my sons, Ben and Yoav for showing me how talent and creativity evolve.
To Tsippi and Shlomo Bobbe for their love, support, and inspiration.

– Den Patin

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Prajyot Mainkar is the director of Androcid, a mobile app development company based in
India. The company builds UI/UX and mobile apps for clients. He has been recognized as
an Intel Innovator. Prajyot has been an avid programmer and speaker at over 300 mobile
developer conferences across the globe. including Android Developer Days in Turkey,
Droidcon Greece, Droidcon India, and many more. He is the chairman of the IT & Young
entrepreneurship forum at the Goa Chamber of Commerce and Industry. He has been
awarded the title of Young Entrepreneur of the Year by Business Goa and the GEMS
Trailblazer award for his contributions to the field of information technology. He is on
board as an adviser to many incubation centers across India.

To my parents – Shital (Aai) and Prakash (Baba) Mainkar, and brother, Pramay for
keeping faith in me always and trusting in my work. Their constant support and
inspiration have been the driving fuel all my life. I thank the Almighty for the blessings
and the teachers and inspirational minds in my life whose lessons have always helped me
to grow.

Salvatore Giordano is a 23 year-old software engineer from Italy. He currently works as a
mobile and backend developer in Turin, where he attained a bachelor's degree in computer
engineering. He is member of the Google Developer Group of Turin, where he often gives
talks regarding his experiences. He is really passionate about cutting-edge technologies,
always staying up to date with the latest trends. He has written many articles on Flutter
and contributed to the development of a number of plugins and libraries for the
framework.

Thanks to everyone on the Packt team, who helped me so much. It wasn't an easy journey,
but with the right people, you can achieve anything. Also, thanks to my team at Iakta, who
supported me, and my girlfriend, Beatrice, who pushed me to always do better.

A special thanks to my family, who gave me this lucky, happy life.

Thank you very much Mohammed. Let me know if there is anything else I can do.

About the reviewer
Luka Knezić was an Android developer for five years before discovering Flutter. He has
been using Flutter since the early alpha release and hasn't returned to Android since. Now,
he holds monthly Flutter meetups in Zagreb.

I was using Flutter when it was in its infancy, so I have had the opportunity to see how it
has changed and have contributed to it by submitting issues, and publishing new packages
and plugins. I had learned enough to be able to initiate Flutter meetups in Zagreb, Croatia.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Introducing Flutter 5
The origin of Flutter 5
What is a widget? 6
Comparing Flutter to existing frameworks 6

Native platforms 6
WebView systems 7
Other cross-platform approaches 8
Flutter's approach 9

Why use Flutter? 10
Summary 10

Chapter 2: Getting Started with Flutter 11
Installing Flutter 11

Installing Flutter on Windows 11
Installing Flutter on Mac 12
Installing Flutter on Linux 13

Getting familiar with IDEs 13
Some quick tips for using your desired IDE 14

Exploring a sample app 15
Hot Reload 16
Debugging an application 17

Dart analyzer 18
Dart observatory 18
Visual debugging 18

Material grid variable 20
The showPerformanceOverlay variable 20
Flutter widget inspector 21

Testing a Flutter application 23
Unit testing 23
Widget testing 24
 Integration testing 25

Summary 26

Chapter 3: Widgets, Widgets Everywhere 27
Widgets Catalog 27

Container 28
Image 30
Text 31

Table of Contents

[ii]

Icon 33
RaisedButton 34
Scaffold 35
AppBar 36
PlaceHolder 37
Column 38
Row 40
ListView 42

A note about Row, Column, and ListView 42
Creating widgets 43

Stateless widgets 44
Stateful widgets 44

Routing and navigation 45
Returning a value when navigating 46

Summary 47

Chapter 4: Exploiting the Widgets Variety 48
Constraints in Flutter 48
Introducing animations in Flutter 49

Animation categories 50
Common patterns 50

Using ListView and scrolling widgets 50
ListView 50

Using List<Widget> 51
Using ListView.Builder 52
ListView separated by calling ListView.separated 56
Using ListView.custom constructor 58

Horizontal lists 59
Grid lists 61

Introducing silvers 63
Summary 63

Chapter 5: Widening our Flutter Horizons 64
Networking in Flutter 64

Using packages 65
Adding existing package dependency to an app 65
Upgrading existing package 66

Building a REST service 66
Setting up JSON Server 66
Building a resource file 67
Run the json-server 68

Fetching data from the server 68
Accessibility in Flutter 73

Large font 73
Screen readers 74
Screen contrast 74

Table of Contents

[iii]

Internationalizing Flutter apps 75
Summary 78

Chapter 6: Using a Platform to Power Flutter Apps 79
Using Flutter packages 80

Searching for the package 80
Adding a package dependency to an app 82

Ways to specify package dependencies 83
Adding the code to the file 83

Using platform channels 86
Creating a new Flutter project 88
Creating a Flutter platform client 88
Making changes to MainActivity.Java 91

Building and publishing your own plugin 97
Summary 97

Chapter 7: Firebase - Flutter's Best Friend 99
Connecting with Firebase 100

Creating a Firebase project 100
Registering an app using a package name 103
Downloading and setting up the config file 104
Adding Firebase SDK 105
Verifying the configuration 106

Creating a Cloud Firestore Database 107
Firebase Cloud Messaging 116
Firebase Remote Config 118
Summary 119

Chapter 8: Deploying Flutter Apps 120
Deploying on Android 120

Reviewing the AndroidManifest.xml file 120
The build.gradle configurations 121
Icons within apps 122
Signing the app 123
Using ProGuard 124
Building a release APK 125

Deploying on iOS 126
Registering Bundle ID 126
Generating an application record on App Store connect 126
Verifying the Xcode settings 128
Choosing the app icon 128
Creating the build archive 129

Summary 129

Other Books You May Enjoy 130

Index 133

Preface
Flutter is a cross-platform application development framework developed by Google. It
uses the Dart programming language for its development needs. This book is going to be
your guide to getting started on your cross-platform application development journey, by
helping you understand the basic concepts of Flutter.

Who this book is for
This book is intended for readers who are interested in learning the basic concepts of
Flutter and in learning how to build cross-platform applications.

What this book covers
Chapter 1, Introducting Flutter, covers a brief introduction to Flutter and how this book is
going to serve you as a guide for learning cross-platform application development with
Flutter. We will then move on to where and how Flutter originated. Then, before moving
on to why Flutter is a good option, we will take a look at where Flutter fits in with the
existing world of mobile application development.

Chapter 2, Getting Started with Flutter, covers the installation of the tools needed to use
Flutter and gets readers familiar with IDE, as well as looking at Hot reload, one of the best
features in Flutter. We will then learn about two principal concepts that are required in
every application development workflow—debugging and testing.

Chapter 3, Widgets, Widgets Everywhere, goes through the widget catalog and explains how
to create custom widgets. We will then learn how to route and navigate through these
widgets.

Chapter 4, Exploiting the Widgets Variety, explores the constraints in Flutter and provides an
introduction to animations in Flutter. We will then learn how to use Listview and scrolling
widgets and, at the end of the chapter, will be introduced to silvers.

Chapter 5, Widening our Flutter Horizons, explains how networking plays an important role
in the apps, along with sample code for setting up and running a server for fetching JSON
code. This section will be followed by an understanding of why accessibility is important
and what improvements can developers bring to support accessibility in the app. The
following section is about app support internationalization.

Preface

[2]

Chapter 6, Using a Platform to Power Flutter Apps, explains how to include packages in the
Flutter code, followed by how to include platform-specific channels to support Flutter code.
We will then use the BatteryManager API to understand the battery state of the Android
phone. We will cover some of the best tips to consider before building our own plugin,
followed by how to publish your own plugin on the Flutter Pub site.

Chapter 7, Firebase - Flutter's Best Friend, examines how Firebase can help us build apps
quicker using the Firestore Cloud database. We will also take a look at an example that
captured ListView using the Firestore Cloud database. And finally, we will discuss some of
the use cases as regards using the remote config for your apps.

Chapter 8, Deploying Flutter Apps, covers how to deploy and publish the android and iOS
app on the respective stores.

To get the most out of this book
Before you start reading, some experience of the Dart language will be beneficial, along
with experience in working on Android, iOS, or any mobile development framework.
Finally, a familiarity with object-oriented languages, such as Java and C++, and some
knowledge of OOPS would be extremely useful.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

http://www.packt.com
http://www.packt.com/support
http://www.packt.com

Preface

[3]

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Google- Flutter- Mobile- Development- Quick- Start- Guide. In case
there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in the text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here
is an example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk
in your system."

A block of code is set as follows:

void main() {
debugPaintSizeEnabled=true;
runApp(MyApp());
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

 Center(
child: Container(
decoration: BoxDecoration(border: Border.all()),
height: 200.0,
width: 200.0,
),
),

Any command-line input or output is written as follows:

$ flutter packages get

https://github.com/PacktPublishing/Google-Flutter-Mobile-Development-Quick-Start-Guide
https://github.com/PacktPublishing/Google-Flutter-Mobile-Development-Quick-Start-Guide
https://github.com/PacktPublishing/Google-Flutter-Mobile-Development-Quick-Start-Guide
https://github.com/PacktPublishing/Google-Flutter-Mobile-Development-Quick-Start-Guide
https://github.com/PacktPublishing/Google-Flutter-Mobile-Development-Quick-Start-Guide
https://github.com/PacktPublishing/Google-Flutter-Mobile-Development-Quick-Start-Guide
https://github.com/PacktPublishing/Google-Flutter-Mobile-Development-Quick-Start-Guide
https://github.com/PacktPublishing/Google-Flutter-Mobile-Development-Quick-Start-Guide
https://github.com/PacktPublishing/Google-Flutter-Mobile-Development-Quick-Start-Guide
https://github.com/PacktPublishing/Google-Flutter-Mobile-Development-Quick-Start-Guide
https://github.com/PacktPublishing/Google-Flutter-Mobile-Development-Quick-Start-Guide
https://github.com/PacktPublishing/Google-Flutter-Mobile-Development-Quick-Start-Guide
https://github.com/PacktPublishing/Google-Flutter-Mobile-Development-Quick-Start-Guide
https://github.com/PacktPublishing/Google-Flutter-Mobile-Development-Quick-Start-Guide
https://github.com/PacktPublishing/Google-Flutter-Mobile-Development-Quick-Start-Guide
https://github.com/PacktPublishing/Google-Flutter-Mobile-Development-Quick-Start-Guide
https://github.com/PacktPublishing/Google-Flutter-Mobile-Development-Quick-Start-Guide
https://github.com/PacktPublishing/Google-Flutter-Mobile-Development-Quick-Start-Guide
https://github.com/PacktPublishing/Google-Flutter-Mobile-Development-Quick-Start-Guide
https://github.com/PacktPublishing/Google-Flutter-Mobile-Development-Quick-Start-Guide
https://github.com/PacktPublishing/Google-Flutter-Mobile-Development-Quick-Start-Guide
https://github.com/PacktPublishing/Google-Flutter-Mobile-Development-Quick-Start-Guide
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[4]

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
Introducing Flutter

Flutter is a application development framework from Google for creating cross-platform
mobile applications (in iOS and Android). As mentioned on the official website (https:/ /
flutter.io/), it aims to make the development as easy, quick, and productive as possible.
Things such as Hot Reload, a vast widget catalog, very good performance, and a solid
community contribute to meeting that objective and makes Flutter a pretty good
framework.

This book is going to be a guide for you in your journey from getting started with Flutter to
eventually deploying your applications on it. But, before that, let's have a quick
introduction to Flutter.

In this chapter, we will cover the following:

The origin of Flutter
What is a widget?
Comparing Flutter to existing frameworks

The origin of Flutter
The origin of Flutter was similar to that of a lot of famous software. It was developed at
Google. Initially, Flutter was an experiment, as the developers at Google were trying to
remove a few compatibility supports from Chrome, to try to make it run smoother. After a
few weeks, and after many of the compatibility supports were removed, the developers
found that they had something that rendered 20 times faster than Chrome did and saw that
it had the potential to be something great.

Google had created a layered framework that communicated directly with the CPU and the
GPU in order to allow the developer to customize the applications as much as possible.

https://flutter.io/
https://flutter.io/
https://flutter.io/
https://flutter.io/
https://flutter.io/
https://flutter.io/
https://flutter.io/

Introducing Flutter Chapter 1

[6]

What is a widget?
Everything in Flutter can be created using widgets. Orientation, layout, opacity,
animation... everything is just a widget. It is the main feature of Flutter, and everything
from a simple button to an animation or gesture is done using widgets. And this is great
because it allows the users to choose composition over inheritance, making the construction
of an app as simple as building a Lego tower. All you do is just pick up widgets and put
them together to create an application.

There are a number of fundamental widgets that will help you build an application with
Flutter. All these widgets are cataloged in the Flutter Widget Catalog. Because everything
in Flutter is made up of widgets, the more you learn how to use, create, and compose them,
the better and faster you become at using Flutter. We will be going into much more detail
about widgets and the widget catalog in Chapter 3, Widgets, Widgets Everywhere.

Comparing Flutter to existing frameworks
When speaking of mobile application development, there are many different approaches
that we can find, but, in the end, everything comes down to either a native or a cross-
platform approach. Let's see how different approaches look and work when compared to
Flutter. We will first take a look at the native platforms, and then, before looking at the
cross-platform approach, we will take a look at the WebView system, and finally we will
see where Flutter fits into this mix.

Native platforms
Native frameworks such as Android and iOS SDKs are rock solid. They are the most stable
choice for mobile application development. They have lots of available apps that are deeply
tested and have a large community and openly available tutorials. The following diagram
displays the working of native mobile application development frameworks:

Introducing Flutter Chapter 1

[7]

As we can see in the preceding diagram, the app in this framework talks directly to the
system. This makes the native framework the most powerful choice in terms of
functionality. However, it does have a drawback: you need to learn two different
languages, Kotlin or Java for Android, Obj-C or Swift for iOS and the SDKs. These
languages are used to write two different apps with the same functionalities. Every
modification must be duplicated on both platforms, and the process might not be that
smooth. It is not a good choice for a small team or for someone who needs speed in their
development process.

WebView systems
On the other hand, we have the cross-platform approach, which is famous for being
productive. In this approach, we can get the application for both Android and iOS from a
single code base, just like in Flutter. But every framework has some drawbacks.

Cordova-, Ionic-, PhoneGap-, and WebView-based frameworks in general are good
examples of cross-platform frameworks, and they are especially good solutions for frontend
developers. But these lack in performance, and the app view in these approaches is
composed by a WebView rendering HTML; this means that the app is basically a website.

Introducing Flutter Chapter 1

[8]

The following diagram shows how a WebView-based framework works:

The system uses a bridge to make the switch between JavaScript to the native system. This
process will be too slow, depending on the features you need, which adds another
drawback to this system.

Other cross-platform approaches
Let's take an example of another cross-platform approach to see what could be the
shortcomings of it. Xamarin is the Windows answer to cross-platform development, which
in my opinion is not so convenient, especially in terms of productivity and compiling time.

When looking at other platforms, React Native could be considered as one of the best of the
cross-platform frameworks, but it heavily relies on OEM components.

Lets take a look at the workings of React Native:

Introducing Flutter Chapter 1

[9]

React Native expands the bridge concept in the WebView systems, and uses it not only for
services, but also to build widgets. This is really dangerous in terms of performance; for
example, a component may be built hundreds of times during an animation, but due to the
expanded concept of the bridge, this component may slow down to a great extent. This
could also lead to other problems, especially on Android, which is the most fragmented
operating system.

Flutter's approach
In the previous sections, we took a look at different approaches to mobile application
development. We have briefly seen how these approaches work and their drawbacks. Now
let's take a look at Flutter.

Flutter performs much better in comparison to other solutions, because the application is
compiled AOT (Ahead Of Time) instead of JIT (Just In Time) like the JavaScript solutions.
It also eliminates the concept of the bridge and does not rely on the OEM platform. It does
allow custom components to use all the pixels in the screen. What does this mean? It
basically means that the app displays the same on every version of Android and iOS.

We did take a look at the workings of other approaches, so let's take a look at the workings
of Flutter as well. You can see the way the Flutter framework works as shown in the
following diagram:

Now you can see the difference between other cross-platform approaches and Flutter. As
stated before, Flutter eliminated the bridge and the OEM platform and uses Widgets
Rendering instead to work with the canvas and events. And it uses Platform Channels to
use the services. In addition, it is not difficult to use platform APIs with an asynchronous
messaging system, which means if you need to use a specific Android or iOS feature, you
can do it easily.

Introducing Flutter Chapter 1

[10]

Flutter also makes it possible to create plugins using channels that can be used by every
new developer. So, to put it simply: code once, and use it everywhere!

Why use Flutter?
Flutter is a good option for cross-platform development due to its many features and a few
things that it does differently than other approaches, as we have seen. It is not only a good
option for the developers, but also for users and designers; let's take a look at why this is:

For users, Flutter makes attractive user interfaces for apps, and this enhances the
usage of these apps by the users.
For developers, Flutter makes it easy for the new developers to enter the world of
building mobile apps, as it is very easy to build apps with Flutter. Flutter not
only reduces the time for development of applications, but it also reduces the
cost and complexity of creating an application.
For designers using Flutter, an application can be created using the original
design that was conceived for the application, without compromising on any
aspect of it. Therefore, the original vision of the designer is not changed at the
time of development.

Most important, Flutter is a very useful tool to create mockups and prototypes, which is a
pro, as it is a good point of contact for both designers and developers, two roles often very
distant from each other.

Summary
In this chapter, we first had a quick introduction to Flutter and how this book was going to
serve as a guide for learning cross-platform application development with Flutter. We then
moved on to discussing the origin of Flutter. Then, before moving on to why Flutter is a
good option, we took a look at where Flutter fits in with the existing world of mobile
application development.

Nowadays, mobile development is not really a new world, but Flutter makes it possible to
make it more fun and much quicker. And, by improving the developer workflow, it brings
mobile application development closer to a gameplay.

In the next chapter, we will install the Flutter framework and try to learn as much as
possible from the sample app.

2
Getting Started with Flutter

Before developing any applications, it is ideal to understand the installation process for that
system. In this chapter, we will first look at how to install Flutter on your system and
choose the right IDE. We will then move on to exploring a sample app that displays the
basic Hello World on our screen. Before we look at how to debug and test our application,
we will take a quick look at what Hot Reload is.

To Develop iOS applications, I would recommend using a Mac. We can always use and test
applications only on Android and use macOS when deploying those applications.
However, problems are always around the corner, so testing the application on the
respective platform during building will be highly recommended.

In this chapter, we will will cover the following topics:

Installing Flutter
Choosing a suitable IDE
Exploring a sample application
Hot Reload
Looking at the Flutter tools and how to use them
Writing and executing tests in Flutter

Installing Flutter
Let's get started with our main application and get Flutter installed onto your system.
Depending on the operating system you are using, you can follow the given steps to install
Flutter on your system. We will take a look at installing Flutter on Windows, Mac, and
Linux.

Getting Started with Flutter Chapter 2

[12]

Installing Flutter on Windows
To install Flutter on Windows, follow these steps:

Download Flutter from https:/ /storage. googleapis. com/flutter_ infra/1.
releases/ stable/ windows/ flutter_ windows_ v1. 2.1- stable. zip.
Extract the downloaded file and place it in your desired folder on your system.2.
Locate and run flutter_console.bat to start the installation.3.
We will then need to download and set up Node.js; you can download it from4.
https:// nodejs. org/ en/ download/ .
Finally, we will need to download and install Git For Windows 2.x: https:/ /5.
gitforwindows. org/ .

Installing Flutter on Mac
To install Flutter on Mac, follow these steps:

Download Flutter for Mac from https:/ /storage. googleapis. com/ flutter_1.
infra/releases/ stable/ macos/ flutter_ macos_ v1.2. 1-stable. zip.
Extract the downloaded file and place it in your desired folder on your system2.
using the $ export PATH=`pwd`/flutter/bin:$PATH command.
Run $ flutter doctor to verify that everything is set up in the right way.3.
We then need to download and set up Node.js; you can download it4.
from https:/ /www. npmjs. com/ get-npm.

We will use the following commands: bash, curl, git 2.x, mkdir, rm,
unzip, and which.

Finally, we will need to download and install Git: https:/ / git-scm. com/5.
download/ mac

https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.2.1-stable.zip
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://gitforwindows.org/
https://gitforwindows.org/
https://gitforwindows.org/
https://gitforwindows.org/
https://gitforwindows.org/
https://gitforwindows.org/
https://gitforwindows.org/
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.2.1-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.2.1-stable.zip
https://www.npmjs.com/get-npm
https://www.npmjs.com/get-npm
https://www.npmjs.com/get-npm
https://www.npmjs.com/get-npm
https://www.npmjs.com/get-npm
https://www.npmjs.com/get-npm
https://www.npmjs.com/get-npm
https://www.npmjs.com/get-npm
https://www.npmjs.com/get-npm
https://www.npmjs.com/get-npm
https://www.npmjs.com/get-npm
https://www.npmjs.com/get-npm
https://www.npmjs.com/get-npm
https://git-scm.com/download/mac
https://git-scm.com/download/mac
https://git-scm.com/download/mac
https://git-scm.com/download/mac
https://git-scm.com/download/mac
https://git-scm.com/download/mac
https://git-scm.com/download/mac
https://git-scm.com/download/mac
https://git-scm.com/download/mac
https://git-scm.com/download/mac
https://git-scm.com/download/mac
https://git-scm.com/download/mac

Getting Started with Flutter Chapter 2

[13]

Installing Flutter on Linux
To install Flutter on Linux, follow these steps:

Download Flutter from https:/ /storage. googleapis. com/flutter_ infra/1.
releases/ stable/ linux/ flutter_ linux_ v1. 2.1- stable. tar. xz.
Extract the downloaded file and place it in your chosen folder on your system2.
using $ tar xf ~/Downloads/flutter_linux_v1.2.1-stable.tar.xz.
Then, add Flutter to your path using $ export3.
PATH="$PATH:`pwd`/flutter/bin".
We will then need to download and set up Node.js; you can download it4.
from https:/ /git- scm. com/ download/ linux.

Here are the commands we will use: bash, curl, git 2.x, mkdir, rm,
unzip, which, and xz-utils.

Getting familiar with IDEs
For Flutter, it's best to use Android Studio/IntelliJ or Visual Studio (VS) code
with Mac/Windows as your operating systems. These IDEs are the best you can find for
developing mobile applications. But to use these with Flutter, we will need to use a few
plugins.

We will need a plugin for the Dart compiler, another for code analysis, and another for the
Flutter developer workflow (building, running, and debugging).

These plugins can be installed on both Android studio and VS code. All you need to do is
search for them in the corresponding plugin sections. The IDEs not only provide the option
of these fantastic plugins to support your development. Let's take a look at some quick tips
you can use when developing your application.

https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.2.1-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.2.1-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.2.1-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.2.1-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.2.1-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.2.1-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.2.1-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.2.1-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.2.1-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.2.1-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.2.1-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.2.1-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.2.1-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.2.1-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.2.1-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.2.1-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.2.1-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.2.1-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.2.1-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.2.1-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.2.1-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.2.1-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.2.1-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.2.1-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.2.1-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.2.1-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.2.1-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.2.1-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.2.1-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.2.1-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.2.1-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.2.1-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.2.1-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.2.1-stable.tar.xz
https://git-scm.com/download/linux
https://git-scm.com/download/linux
https://git-scm.com/download/linux
https://git-scm.com/download/linux
https://git-scm.com/download/linux
https://git-scm.com/download/linux
https://git-scm.com/download/linux
https://git-scm.com/download/linux
https://git-scm.com/download/linux
https://git-scm.com/download/linux
https://git-scm.com/download/linux
https://git-scm.com/download/linux
https://git-scm.com/download/linux

Getting Started with Flutter Chapter 2

[14]

Some quick tips for using your desired IDE
When using the Flutter plugin, there is a very good option that can be used while
developing your application; it is called the quickfix option. To use this, press Alt + Enter
(Ctrl + . on VS code) and a popup will be displayed with some quickfixes. Lets take a look at
how it looks on screen. The following screenshot shows what it looks like:

In the preceding screenshot, the quickfix gives an option to add a padding: a center widget,
wrapping it using a column or a row, and wrapping it with a new widget.

This is a very useful option as it will help you save a lot of time during the development of
the application, considering you will be nesting several widgets. While you do this, keeping
the code clean is not an easy task.

Another great thing that can be done using the quickfix option is that you can order the
children in a column to swap a widget with their parents or remove a widget completely
but quickly. The following screenshot shows these options:

Getting Started with Flutter Chapter 2

[15]

Speaking of nesting, a very useful option from the plugin is the presence of some fake
comments at the end of each widget. This helps you understand the tree of the widgets you
are composing at a single glance. The following screenshot shows what those fake
comments look like:

These few tips may not seem very useful at first, but once you start developing applications
with Flutter, they will be essential and will help you work more quickly.

Exploring a sample app
Let's take a look at how the code in Flutter looks and explore its elements. First, let's create
a new project; this way, Flutter-cli will create a sample app for us to explore. Before we start
looking at the code, here is the GitHub repository dedicated to this book: https:/ / github.
com/PacktPublishing/ Flutter- Quick- Start- Guide/ tree/ master/ sample_ app.

The following screenshot shows how the Flutter code looks; let's explore its elements:

As you can see, the entry point of the application is the main function in which you can see
the call to the runApp. This is the first line that is executed; its task is to set up the Flutter
framework and run the selected application. When we set up the application, initially, it is a
normal stateless widget.

https://github.com/PacktPublishing/Flutter-Quick-Start-Guide/tree/master/sample_app
https://github.com/PacktPublishing/Flutter-Quick-Start-Guide/tree/master/sample_app
https://github.com/PacktPublishing/Flutter-Quick-Start-Guide/tree/master/sample_app
https://github.com/PacktPublishing/Flutter-Quick-Start-Guide/tree/master/sample_app
https://github.com/PacktPublishing/Flutter-Quick-Start-Guide/tree/master/sample_app
https://github.com/PacktPublishing/Flutter-Quick-Start-Guide/tree/master/sample_app
https://github.com/PacktPublishing/Flutter-Quick-Start-Guide/tree/master/sample_app
https://github.com/PacktPublishing/Flutter-Quick-Start-Guide/tree/master/sample_app
https://github.com/PacktPublishing/Flutter-Quick-Start-Guide/tree/master/sample_app
https://github.com/PacktPublishing/Flutter-Quick-Start-Guide/tree/master/sample_app
https://github.com/PacktPublishing/Flutter-Quick-Start-Guide/tree/master/sample_app
https://github.com/PacktPublishing/Flutter-Quick-Start-Guide/tree/master/sample_app
https://github.com/PacktPublishing/Flutter-Quick-Start-Guide/tree/master/sample_app
https://github.com/PacktPublishing/Flutter-Quick-Start-Guide/tree/master/sample_app
https://github.com/PacktPublishing/Flutter-Quick-Start-Guide/tree/master/sample_app
https://github.com/PacktPublishing/Flutter-Quick-Start-Guide/tree/master/sample_app
https://github.com/PacktPublishing/Flutter-Quick-Start-Guide/tree/master/sample_app
https://github.com/PacktPublishing/Flutter-Quick-Start-Guide/tree/master/sample_app
https://github.com/PacktPublishing/Flutter-Quick-Start-Guide/tree/master/sample_app
https://github.com/PacktPublishing/Flutter-Quick-Start-Guide/tree/master/sample_app
https://github.com/PacktPublishing/Flutter-Quick-Start-Guide/tree/master/sample_app
https://github.com/PacktPublishing/Flutter-Quick-Start-Guide/tree/master/sample_app
https://github.com/PacktPublishing/Flutter-Quick-Start-Guide/tree/master/sample_app
https://github.com/PacktPublishing/Flutter-Quick-Start-Guide/tree/master/sample_app

Getting Started with Flutter Chapter 2

[16]

Next, we come to the Build method. It is displayed in the previous screenshot as Widget
build(BuildContext context) . The Build method is the one that returns the
MaterialAPP, sets the title, and sets a general theme. In addition to this, the Build method
also sets the routing of an application and the home screen.

Moving on, let's take a look at the following screenshot:

The sample application that we are working on is composed of a Scaffold with a counter
that is incremented with the pressure of a Floating Action Button (FAB). As we can see in
the preceding screenshot, there is no setText here. The counter is described by just one
variable that is updated by the handler of the onPressed action of the FAB.

Let's move on and look at the most important line in the code: line 49 in the previous
screenshot. In Flutter, you use the setState() method to update the UI and sync it with
the underlying variables. In this case, we are incrementing the _counter variable, and, at
the same time, we also want the application to render the text showing the number. These
are a few of the elements you will be able to use when you create a sample project in
Flutter. We'll take a look at one of the best features of Flutter in the next section: Hot
Reload.

Hot Reload
Before you begin the actual development of your application in Flutter, it is good to know
what features of Flutter you can use to make life easier. Hot Reload is one such feature; it
will make development much easier. How is it going to do that? Let's take a look.

Getting Started with Flutter Chapter 2

[17]

To understand how Hot Reload is a blessing, let's consider a normal development flow,
where you are building a tab for setting up a page of your application. When you navigate
to your tab, you find out that a certain text is too small. Usually, you would have to go back
and change the font size in the code and then navigate back to the point and check whether
the size is now correct. If not, you do the same thing again: you go back to change the font
size in the code, come back to the point, and check whether it is now correct. You will have
to do this again and again until you figure out the right font size.

This is very time-consuming and frustrating, right? But in Flutter, we won't have to do this,
because we have the Hot Reload feature. In this particular situation, all you will have to do
is edit the font size and press ⌘+S. Once you do this, your app will show the updated
version of the code! We will not have to recompile or navigate to that specific screen again
and again.

How is that even possible? Hot Reload uses the JIT compiling feature of Dart. The edited
code is injected into the application running in debug mode in a matter of milliseconds,
keeping the state in its memory.

This is an amazing feature for developers, as it changes the way the development workflow
works. You will have the opportunity here to write the code in a different way, and this
helps you make more modifications in your UI code, without being afraid of rigorous work.

Debugging an application
Debugging an application is one of the most important things to learn about when learning
to develop any application. Debugging will help you identify and work on errors in your
code. Errors are always around the corner, and knowing how to deal with them is essential.
To understand debugging in Flutter, we will have to understand these three concepts:

Dart analyzer
Dart observatory
Visual debugging

We will see in detail what they are and how they help with debugging in detail in the
following sections.

Getting Started with Flutter Chapter 2

[18]

Dart analyzer
Dart analyzer checks your Dart code for errors. It is essentially a linter of Dart, a simple
wrapper around the dartanalyzer tool. Dart analyzer is also included in the Flutter
plugin for Android Studio and VS code, so you won't have to worry about including it
separately in your IDE.

We can also create a file named analysis_options.yaml and specify some additional
options that will raise errors/warnings and will help you write better Flutter code.

Dart observatory
The dart observatory is a tool dedicated to debugging and analyzing Flutter apps. To put a
breakpoint and run the app step by step, you can use the help of an IDE. An alternative is
the debugger() statement. This line will break the execution in the point where you put it.
It's also possible to specify a condition, and the app will stop only if the condition is true:

void function(int aNumber) {
 debugger(when: aNumber < 10);
 // ...
 }

When you are running a Flutter application, you will see a line in the console, specifying
the observatory URL. The line will look as follows:

Observatory listening on http://127.0.0.1:8100/

You can perform a number of things by navigating to this URL. You can open the
obeservatory, use it to profile the app, examine the heap, allocate memory, and so on. This
is a really powerful tool; you can find more information on this at https:/ / dart- lang.
github.io/observatory/ .

Visual debugging
There are going to be cases where we will need to debug the layout of our application. We
might need to align some widgets in a particular way, or sometimes we might not know
whether the space between widgets is a margin or padding. In such instances, we will need
to visually debug our application. To debug in such instances, enable
the debugPaintSize option.

https://dart-lang.github.io/observatory/
https://dart-lang.github.io/observatory/
https://dart-lang.github.io/observatory/
https://dart-lang.github.io/observatory/
https://dart-lang.github.io/observatory/
https://dart-lang.github.io/observatory/
https://dart-lang.github.io/observatory/
https://dart-lang.github.io/observatory/
https://dart-lang.github.io/observatory/
https://dart-lang.github.io/observatory/
https://dart-lang.github.io/observatory/
https://dart-lang.github.io/observatory/
https://dart-lang.github.io/observatory/

Getting Started with Flutter Chapter 2

[19]

To do so, set the debugPaintSizeEnabled variable to true as follows:

void main() {
 debugPaintSizeEnabled=true;
 runApp(MyApp());
 }

The following output will be displayed:

As you can see in the previous screenshot, every widget gets colored in and can be easily
distinguished now.

This is a very powerful feature and can help you with visual debugging, especially if you
are not that "pixel perfect" frontend developer.

Getting Started with Flutter Chapter 2

[20]

Material grid variable
Let's take a look at another visual debugging variable: it's called the material grid. Here,
you will declare your MaterialApp by setting debugShowMaterialGrid to true! Your
application will be overlayed by the material pixel grid—which is perfect to study the app
layout. The following is how your application would then look:

The showPerformanceOverlay variable
The next useful option is showPerformanceOverlay. By setting it to true, you will see the
performance of your application displayed in the form of a graph on the upper part of the
graph. There will be two graphs displayed on your screen, as shown in the following
screenshot:

Getting Started with Flutter Chapter 2

[21]

The upper graph shows the time spent by the GPU thread, and the bottom one shows the
time spent by the CPU thread. They will also display whether the app is running at less
than 60Hz; in this case, you might have some performance issues. This feature will help
you understand the performance of your application and to verify whether it is running as
expected.

Be sure to use this feature only in release mode. In debug mode, the
performance is intentionally reduced to have Hot Reload available and
raise more warnings.

Flutter widget inspector
If you are a web developer, you could easily miss the inspect option in many browsers.
Flutter brings it back to you in the form of a Flutter widget inspector. It is yet another
feature that will help you visually debug your application. Let's take a look at a screenshot
that displays it:

This is the Flutter widget inspector that we can find in our Android studio. There are many
options that this feature presents to us; some of them are shortcuts to the features we
mentioned in the visual debugging section. To trigger the inspector, perform the following
steps:

Click on the Select widget option.1.

Getting Started with Flutter Chapter 2

[22]

Then, click on a widget on your device. The widget you click on will be selected2.
and highlighted on the widget tree, as follows:

Once it is triggered and you can see the widget tree, you can take a look at the widget
composition and understand whether there is anything wrong in the layout.

We took a look at debugging and also visually debugging our application. Debugging is a
good way to find out whether there are any errors in your application. Another good way
to find any anomalies or issues in the working of your application is by testing your
application. We'll take a look at testing your Flutter application in the next section.

Getting Started with Flutter Chapter 2

[23]

Testing a Flutter application
As your app gets bigger and bigger, a good set of tests may help you save time, as tests can
find new bugs that could appear with normal modifications. Even performing Test Driven
Development (TDD) is a good idea, as it can help you define a structure of your project
and write less but more efficient code.

In Flutter, there are mainly three kinds of automated testing:

Unit testing
Widget testing
Integration testing

Let's take a look at them in detail.

Unit testing
As the name suggests, a unit test is a type of testing that is used to test a single unit of code.
This small unit could be a function, a method, or a class. Generally, in unit testing, we won't
need to write on a disk, render to a screen, or receive external input. Unit tests must be as
small as possible, so remove any possible external dependencies.

These tests are low maintenance and low in cost, and are very quick in terms of the time
they take to execute. The only drawback of unit testing is that you can never completely
reply on it, as it does not test the system as a whole. For this reason, there are other kinds of
testing that should be used. Let's take a look at how to perform this type of testing:

Import pubspec.yaml into your testing framework, as follows:1.

 dev_dependencies:
 flutter_test:
 sdk: flutter

Write the test code in test/unit_test.dart:2.

 import 'package:test/test.dart';
 void main() {
 test('the answer to the question', () {
 var answer = 42;
 expect(answer, 42);
 });
 }

Getting Started with Flutter Chapter 2

[24]

Run the test by running flutter test test/unit_test.dart in the project3.
folder. Alternatively, you can run flutter test to run all the tests.

Unit tests are run in a local Dart VM with a headless version of the Flutter engine.This
makes the process faster because it doesn't need to boot a real Flutter engine or compile a
real application.

Widget testing
Widget testing is also known as component testing. As its name suggests, it is used for
testing a single widget, and the goal of this test is to verify whether the widget works and
looks as expected.

In addition to this, you can use the WidgetTester utility for multiple things while testing,
such as sending input to a widget, finding a component in the widget tree, verifying values,
and so on.

Let's take a look at how a widget test looks in code:

import 'package:flutter/material.dart';
 import 'package:flutter_test/flutter_test.dart';
void main() {
 testWidgets('my first widget test', (WidgetTester tester) async {
 // You can use keys to locate the widget you need to test
 var sliderKey = UniqueKey();
 var value = 0.0;
 // Tells the tester to build a UI based on the widget tree passed to it
 await tester.pumpWidget(
 StatefulBuilder(
 builder: (BuildContext context, StateSetter setState) {
 return MaterialApp(
 home: Material(
 child: Center(
 child: Slider(
 key: sliderKey,
 value: value,
 onChanged: (double newValue) {
 setState(() {
 value = newValue;
 });
 },
),
),
),
);

Getting Started with Flutter Chapter 2

[25]

 },
),
);
 expect(value, equals(0.0));
 // Taps on the widget found by key
 await tester.tap(find.byKey(sliderKey));
 // Verifies that the widget updated the value correctly
 expect(value, equals(0.5));
 });
 }

While testing, if you need to see the UI, you can always use the debugDumpApp() function
or run the test using flutter tun test/widget_test.dart. In this way, you will also
be able to interact with the widgets during testing.

 Integration testing
Now, let's take a look at integration testing. This type of testing is used for testing the whole
application or a big part of the application. Integration testing can be used to verify that the
app does everything as expected or to test the performance of the code. Integration tests are
run on a real device or an emulator, but they can't be run with a headless version of Dart
VM like as it can in widget testing.

Now, let's get started with writing and running the tests:

Add the flutter_driver package to pubspec:1.

 dev_dependencies:
 flutter_driver:
 sdk: flutter

Enable the Flutter driver extension and add a call to2.
the enableFlutterDriverExtension() function in main.dart.
Run the integration test by using the flutter drive command:3.

 flutter drive --target=my_app/test_driver/my_test.dart

Getting Started with Flutter Chapter 2

[26]

Summary
In this chapter, we have installed the tools to use Flutter; we then became familiar with IDE
for our use and looked at Hot Reload, one of the best features in Flutter. We then learned
about two essential concepts that are required in every application development workflow,
that is, debugging and testing.

These concepts are going to help us get started with Flutter and start building our
applications with it.

In the next chapter we'll dive into the widget world and learn the different kinds of widgets
that the widget catalog holds for us.

3
Widgets, Widgets Everywhere

In Flutter, the concept of widgets is very important. As stated in Chapter 1, Introducing
Flutter, everything in Flutter is a widget. You might have a lot of questions about widgets,
such as "What are the basic types of widgets?", "How do I create one?", "What are some
good example of widgets?", and so on.

In this chapter, we will explore these questions together. We will first take a look at the
widgets catalog and understand the fundamental widgets that will help you build apps
with Flutter. We will also learn how to create custom widgets and then take a look at the
concept of routing and navigating in a Flutter app. All of these topics will be covered in the
following sections:

Widgets Catalog
Creating widgets
Routing and navigation

Widgets Catalog
The Flutter team built this very good website called the Widgets Catalog (https:/ /
flutter.io/widgets/) where you can explore the variety of components that already exist
in Flutter, divided by category. You will be using a lot of these widgets in your
applications, so the more you know about them, the more efficiently you can use them in
your application.

https://flutter.io/widgets/
https://flutter.io/widgets/
https://flutter.io/widgets/
https://flutter.io/widgets/
https://flutter.io/widgets/
https://flutter.io/widgets/
https://flutter.io/widgets/
https://flutter.io/widgets/
https://flutter.io/widgets/

Widgets, Widgets Everywhere Chapter 3

[28]

However, there are a few fundamental widgets listed that will help you get familiar with
the types of widgets you will find in the Widgets Catalog. The following is a list of those
widgets:

Container

Image

Text

Icon

RaisedButton

Scaffold

Appbar

PlaceHolder

Row

Column

ListView

Let's explore these widgets one by one in detail.

Container
This is one of the complex widgets in the catalog. It is used to contain a child widget within
your parent widget, which it does by applying some styling properties on it.

A container makes it possible to apply a variety of features, for example, background color,
aligning the child within the container, setting some constraints to the size of the child, and
applying some decoration or transformation property to the child (for example, you can
rotate a widget). When we look at the amount of things you can do with this widget, it can
be considered a complex widget. But in most cases, we will need only a couple of its
features.

Now, let's take a look at the code to display the widget. The code will look as follows:

Center(
 child: Container(
 decoration: BoxDecoration(border: Border.all()),
 height: 200.0,
 width: 200.0,
),
),

Widgets, Widgets Everywhere Chapter 3

[29]

The following output will be displayed:

Sometimes, you will need to show a widget based on a conditional expression—for
example, in this case:

function getIcon(bool condition) {
 if (condition == true) return Icon(Icons.edit);
 else return Container();
 }

The preceding code shows the conditional expression for a container. It works like most of
the conditional expressions, where if the condition is true, you will get your regular widget.
But if the condition is false, you will get something called a null widget.

Widgets, Widgets Everywhere Chapter 3

[30]

Image
Displaying images on your application is one feature that your app must have. There are
hardly any apps today that lack the functionality to display an image. And, to do this, the
image widget comes into the picture. We can use the following code to use an image
widget:

Center(
 child: Container(
 height: 200.0,
 width: 200.0,
 child:
Image.network("https://flutter.io/images/flutter-mark-square-100.png"),
),
),

The following output will be displayed when you use the preceding code:

Widgets, Widgets Everywhere Chapter 3

[31]

You can explore the several constructors it has to offer, but I suggest that you try and use
them depending on the source you want to use. For example, if you have
an imageProvider, you will use the default constructor, but if you have the image in an
AssetBundle, you should use the Image.asset constructor.

This is an image-displaying widget, and images come in a few different formats. Here's the
list of image formats supported by the image widget:

JPEG

PNG

GIF

Animated GIF

WebP

Animated WebP

BMP

WBMP

Text
This widget is as self-explanatory as the last one. It is used for displaying text on the screen
with a single style. We can also display the text on a single line or multiple lines; this
depends on the layout constraints. The style argument when using this widget is optional.
If the style argument is not provided, the widget will use the style
from enclosing DefaultTextStyle, and if the provided style's TextStyle.inherit
property is true, the given style will be merged with the default one.

The following code can be used for using a text widget:

Center(
 child: Container(
 height: 200.0,
 width: 200.0,
 child: Text("This is a text"),
),
),

Widgets, Widgets Everywhere Chapter 3

[32]

The following screenshot will display how the widget is displayed on the screen:

There may be instances when you want to do more with this text widget. For example, to
apply more than one style (to display some bold words in a line) to text, you can use
the TextSpan.rich constructor, or to add interactivity to the text, you can use use
a GestureDetector.

I would suggest using FlatButton, instead of a text widget for
interactivity.

Widgets, Widgets Everywhere Chapter 3

[33]

Icon
The icon widget is used to draw an icon using the font described in IconData, such as a
material's predefined IconData in the Icon class.

The following code can be used to use the Icon widget:

Center(
 child: Container(
 height: 200.0,
 width: 200.0,
 child: Icon(Icons.flag),
),
),

The following is a screenshot displaying how the Icon widget looks on the screen:

Just like the text widget, we can add interactivity with the Icon widget too. To do that, we
can use GestureDetector.

Widgets, Widgets Everywhere Chapter 3

[34]

RaisedButton
This widget is used to display a simple elevated button. The button is elevated because the
button is based on a material widget whose elevation increases when the button is
pressed. If the onPressed callback is null, then the button will be disabled, and it will
resemble a flat button in disabledColor.

The following code can be used to use the RaisedButton widget:

Center(
 child: Container(
 height: 200.0,
 width: 200.0,
 child: RaisedButton(
 onPressed: () => print("on pressed"),
 child: Text("BUTTON"),
 color: Colors.blue,
),
),
),

The following screenshot will be displayed when you use the preceding code:

Widgets, Widgets Everywhere Chapter 3

[35]

The suggestion is to use RaisedButton to add dimension in otherwise mostly flat layouts.
I would recommend not using such a button in a dialog or a card.

Scaffold
Scaffold is a basic layout structure based on material design. In practice, if you use material
design, every screen of your app will have a Scaffold as its base. The Scaffold widget is
used for showing drawers, snackbars, bottomsheets, floating-action buttons, and so on, by
offering APIs. To display a snackbar or a bottomsheet, you must use Scaffoldstate for
the current context. We can use it via Scaffold.of and use
the ScaffoldState.showSnackbar function.

The following code can be used to display a snackbar using Scaffold:

Center(
 child: Container(
 height: 200.0,
 width: 200.0,
 child: RaisedButton(
 onPressed: () {
 Scaffold.of(context).showSnackBar(SnackBar(
 content: Text("HELLO!"),
));
 },
 child: Text("BUTTON"),
 color: Colors.blue,
),
),
),

Widgets, Widgets Everywhere Chapter 3

[36]

The following is the output that will be displayed using the preceding code:

AppBar
AppBar is basically used as a property of Scaffold, and the majority of Scaffolds have
app bars. The app bar consists of a toolbar and potentially other widgets. For example, it
can host TabBar, FlexibleSpaceBar, or some actions optionally followed by
PopupMenuButton for less common operations.

Widgets, Widgets Everywhere Chapter 3

[37]

The property that's used for AppBar is Scaffold.appBar. It looks as follows:

The preceding diagram displays where each widget will be placed by the appBar
component.

If the leading widget is omitted and Scaffold has a drawer, then appBar will place a
button to open the drawer. If the nearest navigator has any previous routes, a BackButton
will be inserted.

PlaceHolder
PlaceHolder is another widget that explains itself through its name. The
PlaceHolder widget is used for holding a place for a widget. It draws a box that
represents where other widgets will be added later.

The following code can be used for a PlaceHolder widget:

 Center(
 child: Container(
 height: 200.0,
 width: 200.0,
 child: Placeholder(),
),
),

Widgets, Widgets Everywhere Chapter 3

[38]

The preceding code will display the following output:

Column
Column is essential for composing layout in Flutter apps. It displays its children in a vertical
array. The following code can be used for the Column widget:

Center(
 child: Column(
 crossAxisAlignment: CrossAxisAlignment.center,
 mainAxisAlignment: MainAxisAlignment.spaceEvenly,
 children: <Widget>[
 Container(
 height: 20.0,
 width: 20.0,
 color: Colors.red,
),
 Container(
 height: 20.0,

Widgets, Widgets Everywhere Chapter 3

[39]

 width: 20.0,
 color: Colors.green,
),
 Container(
 height: 20.0,
 width: 20.0,
 color: Colors.yellow,
),
],
),
),

The following output will be displayed:

Widgets, Widgets Everywhere Chapter 3

[40]

The Column widget, however, does not support scrolling; for that, we can use ListView.

Note that it will be considered as an error by the system if you have more
children in a column that will fit into the available room. That's because
the column doesn't have the ability to recycle the layout.

Row
The Row widget is similar to the Column widget, but still different. We can say that it is the
horizontal version of column. It draws the children in a horizontal array.

The following code can be used for a Row widget:

enter(
 child: Row(
 crossAxisAlignment: CrossAxisAlignment.center,
 mainAxisAlignment: MainAxisAlignment.spaceEvenly,
 children: <Widget>[
Container(
 height: 20.0,
 width: 20.0,
 color: Colors.red,
),
 Container(
 height: 20.0,
 width: 20.0,
 color: Colors.green,
),
 Container(
 height: 20.0,
 width: 20.0,
 color: Colors.yellow,
),
],
),
),

Widgets, Widgets Everywhere Chapter 3

[41]

The following output will be displayed:

The story in regard to scrolling remains the same as for the Column widget. It is
recommended to use ListView if you want to scroll the children.

Widgets, Widgets Everywhere Chapter 3

[42]

ListView
ListView behaves similar to a column or a row; the only difference is that its children can
be scrolled.

There are three constructors for the ListView widget:

The default takes a list of widgets in its children property. This is a good choice
for small lists because to build it, the list will process every child.
ListView.builder takes an indexed builder to build the children on demand.
This is the choice to pick if you have a large number of children, because every
time the list processes only the visible children.
ListView.custom takes SliverChildDelegate, which provides the ability to
customize more aspects of ListView.

A note about Row, Column, and ListView
Sometimes, it can happen that you get a runtime exception at the time of building a row or
a column that's been placed in another row/column or in any scenario that does not provide
a maximum height constraint.

The problem is that the inner widget should fill all the remaining space, but the outer
widget has no specific size and should fill the available space too. So, they can't understand
where to stop, and then an exception is thrown.

To solve such a problem, you must understand why the inner column/row is receiving
unbounded constraints. Consider the following:

If the column/row is placed in another column/row, you can try to wrap the inner
widget in an expanded widget, indicating that it should take the remaining space
of the outer widget and not all the space it desires
If the widget is placed in a Listview and is wrapped in an expanded or
flexible, then that key is to remove that wrapping widget and to set the size of the
inner widget manually

Widgets, Widgets Everywhere Chapter 3

[43]

Another problem you may have to encounter the yellow-and-black-striped banner as
shown in following screenshot:

This banner indicates that a row or column overflows its size. The solution is to use
ListView and let the content scroll, or just to reduce the size of the children.

Creating widgets
We saw a number of widgets in the previous section, but there might be a possibility that
you don't find the right ready-to-use widget that you want or that you want to combine
more widgets in order to create a reusable group. Therefore, you have to create a custom
widget.

Widgets, Widgets Everywhere Chapter 3

[44]

There are two types of widget in Flutter that you can use to create your own custom
widgets:

Stateless widgets
Stateful widgets

Let's take a look at them in a bit more detail.

Stateless widgets
Stateless widgets remain the same even if the user interacts with them. This kind of widget
has no state, so they can't change according to an internal state. They can only react to
higher widget changes.

To build a stateless widget, we will extend the StatelessWidget abstract class, as follows:

class MyApp extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: 'Flutter Demo',
 theme: ThemeData(
 primarySwatch: Colors.blue,
),
 home: MyHomePage(title: 'Flutter Demo Home Page'),
);
 }
}

Stateful widgets
Stateful widgets are dynamic components that have an internal state to manage. A stateful
widget can react to state changes and change accordingly. The state is stored in a State
object. To create a StatefulWidget, you have to extend the StatefulWidget abstract
class, as shown in the following code:

class MyHomePage extends StatefulWidget {
 MyHomePage({Key key, this.title}) : super(key: key);
 final String title;

 @override
 _MyHomePageState createState() => new _MyHomePageState();
}

Widgets, Widgets Everywhere Chapter 3

[45]

The state will be a class extending the State<T extends StatefulWidget> abstract
class. Let's take a look at example where the widget changes the background color
according to its state. The code for this is as follows:

class _MyHomePageState extends State<MyHomePage> {
 bool value = false;

 @override
 Widget build(BuildContext context) {
 return new Scaffold(
 backgroundColor: value ? Colors.black : Colors.white,
 appBar: new AppBar(
 title: new Text(widget.title),
),
 body: Center(
 child: Switch(
 value: value,
 onChanged: (v) {
 setState(() {
 value = v;
 });
 }),
),
);
 }
}

To trigger the framework to rebuild the widget and apply the changes, you have to call
the setState() function, or it won't see any changes.

Routing and navigation
We've just looked at how to use widgets, but you won't be using just one widget. In a
typical application, it's normal to find more than one screen. When an application has more
than one screen, it is essential for the users to have a clear route to move through those
pages, and to do so routing and navigating through the pages becomes very important for
your application.

To do this, if you are from an Android background, you would use more activities or
fragments, and in iOS, you would create a new viewControllers.

Widgets, Widgets Everywhere Chapter 3

[46]

In the Flutter world, new screens are widgets! To navigate to a new route, we can use the
Navigator.push() function, passing as an argument the current context and a
new MaterialPageRoute:

Within the `FirstScreen` Widget
 onPressed: () {
 Navigator.push(
 context,
 MaterialPageRoute(builder: (context) => SecondScreen()),
);
 }

The SecondScreen will be a normal widget that builds the screen. For example:

class SecondScreen extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 title: Text("Second Screen"),
),
);
 }
 }

To navigate back, we will use another function of the navigator: Navigator.pop(). This
function will remove the current route from the stack of routes that are managed by the
navigator. We can also use this function to return a value to the users when moving
through the screen. Let's take a look at this in detail in the next section.

Returning a value when navigating
Returning a value to the readers when moving from one screen to another screen can
improve the user experience of your application. For example, just a simple welcome on the
screen when opening an app, will increase the user experience. For this purpose, in Flutter,
we have Navigator.pop().

Navigator.pop() takes the current context as an argument, but it has an optional
dynamic argument. This means that you can return any value when popping a screen.

Widgets, Widgets Everywhere Chapter 3

[47]

Taking a look at the return value of Navigator.push(), you can see that it returns
a Future<dynamic>. So, when pushing a new screen, you can wait for the popped return
value. For example:

function getConfirmation(BuildContext context) async {
 return await Navigator.push(context, MaterialPageRoute(
 builder: (context) => ConfirmationScreen(),
) ?? false;
}]

The ConfirmationScreen will be as shown:

class ConfirmationScreen extends StatelessWidget {
 Widget build(BuildContext context) => Scaffold(
 body: ButtonBar(
 children: <Widget>[
 RaisedButton(
 child: Text("OK"),
 onPressed: () => Navigator.pop(context, true),
),
 RaisedButton(
 child: Text("CANCEL"),
 onPressed: () => Navigator.pop(context, false),
),
],
),
);
}

Summary
In this chapter, we went through the widget catalog; this catalog consists of a number basic
widgets that we can start using instantly in our applications without building our own
widgets. It is good to understand these basic widgets, as you will be using them in your
application a lot. But there will be times when you will need a customized widget, to help
you with that we went through stateless and stateful widgets, that will help you customize
your widgets. And, finally, we learned how to navigate and route through those widgets.

What's next? There are more and more widgets you can use to build your apps. In the next
chapter, we'll see some of them that can be used to build beautiful layouts.

4
Exploiting the Widgets Variety

In this chapter, we will first take a look at constraints in Flutter and understand how it will
help in your application development. We will then have a quick introduction to
animations and its categories, and take a look at common patterns in it. Then, we will move
on to using ListView and scrolling widgets, and, finally, have a quick section about
silvers. All these topics will be covered in the following sections:

Constraints in Flutter
Introducing animations in Flutter
Using ListView and scrolling widgets
Introducing silvers

Constraints in Flutter
Every widget in Flutter is rendered by a RenderBox object that takes the constraints given
by the parent and sizes itself within those constraints.

The difference between constraint and size is that the former gives a minimum and
maximum of height and width, while the latter consists of a specific height and width.

There are three kinds of RenderBoxes, distinguished by their behavior as follows:

Those that try to be as big as possible (ListView, Center and so on)
Those that try to be the same size as their children
Those that try to be a particular size (image, text and so on)

As in every rule, we need exceptions.

Exploiting the Widgets Variety Chapter 4

[49]

Some widgets vary their behavior depending on their constructor arguments. For example,
the Container widget tends to be as big as possible, but, if you give it a width (or height), it
tries to be that particular size.

A particular constraint is the unbounded (or infinite) one. In this case, either the maximum
width or height is set to double.INFINITY.

A box that tries to be as big as possible won't work with unbounded constraint, and the
framework will throw an exception.
This can happen within flex boxes (row/column) and scrollable regions (ListView and
other ScrollView subclasses).

A constraint can be tight. This means that it leaves no room for the RenderBox object to
choose a size. An example is the App widget, which forces the view to be as big as the
screen.

Flex boxes (row and columns) behave differently based on whether they are in bounded or
unbounded constraints:

In bounded constraints, they try to be as big as possible in that direction
In unbounded constraints, they try to fit their children in that direction

Introducing animations in Flutter
Animations are one of the important features of a widget. Sometimes, developers think that
animations are not very important, but designers know that a good set of animations can
attract many users. They also contribute to the look and feel of the application, giving it
more personality.

Flutter has a great animation support, making it easy to build nice effects and movements.
Many widgets come with standard motion effects designed in their design specification,
but you can always customize them according to your own need.

Let's take a look at the animation categories, where we will see the two categories the
animations in Flutter are divided into, and then take a look at the common patterns of
animations.

Exploiting the Widgets Variety Chapter 4

[50]

Animation categories
In general, animations are defined in two categories:

Tween animations: Short for in-betweening. In this case, we define the
beginning and ending point, the timeline, and a curve of time and speed. The
framework will do the rest of the work, calculating the transition and executing
it.
Physics-based animations: These types of animations are made with the aim to
represent the real-world behavior.

Common patterns
As a user, you may have noticed that some types of animations are constantly used in most
apps. These types of animations are the common patterns in animation.

In Flutter, you can find three common patterns:

Animated list/grid: A simple list or grid animating when adding/removing an
element.
Shared element transition: This is used when navigating between two pages that
have common elements. For example, an image that shows a thumbnail in one
route and a normal picture in another.
Staggered animation: A sequence of animations that compose a bigger one. They
can be sequential or overlapping.

Using ListView and scrolling widgets
Flutter supports several scrolling widgets, such as Gridview, ListView, and
PageView. Lists are the most commonly used scrolling widgets, and are a scrollable, linear
list of widgets. It enables the display of its children one after another in the scroll direction.

ListView
ListView is a linear list of scrollable items, and is one of the most commonly used widgets.
If you have worked on ListViews in Android or iOS, this will be straightforward. As in
every case, ListView produces child-list items one after another. There are several ways to
build ListViews, so let's take a look at the approaches one-by-one.

Exploiting the Widgets Variety Chapter 4

[51]

Using List<Widget>
The easiest and most standalone way of building ListView is by using an explicit
List<Widget> of children. This method is ideal for lists with a fixed number of children.
Take a look at the following code:

import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 final title = 'Travel Utilities';
 return MaterialApp(
 title: title,
 home: Scaffold(
 appBar: AppBar(
 title: Text(title),

),
 body: ListView(
 children: <Widget>[
 ListTile(
 leading: Icon(Icons.map),
 title: Text('Bookmarked Favorite Locations'),
),
 ListTile(
 leading: Icon(Icons.account_balance_wallet),
 title: Text('Expense Tracker'),
),
 ListTile(
 leading: Icon(Icons.photo_album),
 title: Text('Photo Album'),
),
 ListTile(
 leading: Icon(Icons.add_location),
 title: Text('Places To Visit Nearby'),
),
 ListTile(
 leading: Icon(Icons.audiotrack),
 title: Text('Podcast'),
),
 ListTile(
 leading: Icon(Icons.phone),
 title: Text('Emergency Contacts'),
),

Exploiting the Widgets Variety Chapter 4

[52]

],
),
),
);
 }
}

The following image shows how the preview will look after you run the preceding code:

Using ListView.Builder
The ListView.builder constructor calls for IndexedWidgetBuilder, which helps
developers to build children lists items on demand. This is ideally used for a large or
infinite number of visible children, unlike the ListView constructor. The other difference is
that, while in the case of ListView, all the list items have to be defined first, in this case,
the ListView.builder constructor will create runtimes for the list items as they are
scrolled onto the screen.

Exploiting the Widgets Variety Chapter 4

[53]

Defining ListView.builder is simple and straightforward, as you can see in the
following code block:

ListView.builder(
 itemCount: 100,
 itemBuilder: (context, index) {
 return ListTile(
 title: Text("Index $index"),
); //ListTile
 },
)//ListView.builder

Using the preceding code, you will see a ListView constructor that shows the index of
each item with a text glued to it. The complete code is as follows:

import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 final title = 'ListView Index';

 return MaterialApp(
 title: title,
 home: Scaffold(
 appBar: AppBar(
 title: Text(title),
),
 body:

 ListView.builder(
 itemCount: 100,
 itemBuilder: (context, index) {
 return ListTile(
 title: Text("This is Position: $index"),
); //ListTile
 },
) //ListView.builder
),//Scaffold
);//MaterialApp
 }
}

Exploiting the Widgets Variety Chapter 4

[54]

After you run the code, the app will appear as follows:

Now, we could add a data source to work with. The data source can be messages, search
results, or the sources on the internet that you wish to fetch the data from. We will use
the List<E>.generate constructor to generate values using the following definition:

List<L>.generate(int length,L generator(int index), {bool growable: true})

This creates a list of values with length positions and fills it with values created by calling
generator for each index in the range 0 till length–1 in increasing order. The created list is
fixed unless the value of growable value is set to true.

Exploiting the Widgets Variety Chapter 4

[55]

Here is the complete code using the data source to generate ListView:

import 'package:flutter/material.dart';

void main() {
 runApp(MyApp(
 items: List<String>.generate(100, (i) => "List Item $i"),
));
}

class MyApp extends StatelessWidget {
 final List<String> items;

 MyApp({Key key, @required this.items}) : super(key: key);

 Widget build(BuildContext context) {
 final title = 'ListView Index';

 return MaterialApp(
 title: title,
 home: Scaffold(
 appBar: AppBar(
 title: Text(title),

),
 body:

 ListView.builder(
 itemCount: 100,
 itemBuilder: (context, index) {
 return ListTile(
 title: Text('${items[index]}'),

);//ListTile
 },
)//ListView.builder
),//Scaffold
);//MaterialApp
 }
}

Exploiting the Widgets Variety Chapter 4

[56]

The output of the preceding code is as follows:

ListView separated by calling ListView.separated
In the previous cases of code executions, we saw that even though the ListTiles were
listed, there was no separation among them. To build a divider between the ListTiles, it
also provides a helper constructor for creating a ListView. The constructor
is ListView.separated. This divider is called by the divider class to build a one device
pixel-thick horizontal line, having padding on either side. Dividers can be used in lists,
drawers, or separate content, vertically or horizontally based on the value of the Axis
enum, as specified in the following ListView.separated constructor:

ListView.separated({
Key key,
Axis scrollDirection: Axis.vertical,
bool reverse: false,

Exploiting the Widgets Variety Chapter 4

[57]

ScrollController controller,
bool primary,
ScrollPhysics physics,
bool shrinkWrap: false,
EdgeInsetsGeometry padding,
@required IndexedWidgetBuilder itemBuilder,
@required IndexedWidgetBuilder separatorBuilder,
@required int itemCount,
bool addAutomaticKeepAlives: true,
bool addRepaintBoundaries: true,
bool addSemanticIndexes: true,
double cacheExtent
})

The constructor can be called in the following way:

ListView.separated(
itemCount: 25,
separatorBuilder: (BuildContext context, int index) => Divider(),
itemBuilder: (BuildContext context, int index) {
return ListTile(
title: Text('item $index'),
);
},)

This builds a fixed-length scrollable linear array of list items that are separated by list items
separators. The itemBuilder callback will be called with indices greater than or equal to
0, and less than itemCount. The separator is built after the first item and before the last
item in the list. The separatorBuilder callback will be called with indices greater than or
equal to 0, and less than itemCount 1.

Here is the sample of the ListView constructor using ListView.separated:

import 'package:flutter/material.dart';

void main() {
 runApp(MyApp(
 items: List<String>.generate(100, (i) => "List Item $i"),
));
}

class MyApp extends StatelessWidget {
 final List<String> items;

 MyApp({Key key, @required this.items}) : super(key: key);

https://docs.flutter.io/flutter/widgets/IndexedWidgetBuilder.html
https://docs.flutter.io/flutter/widgets/IndexedWidgetBuilder.html

Exploiting the Widgets Variety Chapter 4

[58]

 Widget build(BuildContext context) {
 final title = 'ListView Index';

 return MaterialApp(
 title: title,
 home: Scaffold(
 appBar: AppBar(
 title: Text(title),

),
 body:

 ListView.separated(
 itemCount: 25,
 separatorBuilder: (BuildContext context, int index) => Divider(),
 itemBuilder: (BuildContext context, int index) {
 return ListTile(
 title: Text('${items[index]}'),
);//ListTile
 },
)//ListView.builder
),//Scaffold
);//MaterialApp
 }
}

Once you run the preceding code, you will see the ListView with separators.

Using ListView.custom constructor
By making use of SilverChildDelegate, this method provides the ability to customize
several aspects of the child model, defining the way in which they are built. The main
parameter required for this is SliverChildDelegate, which builds the items. The types of
SliverChildDelegates are as follows:

SliverChildListDelegate

SliverChildBuilderDelegate

Exploiting the Widgets Variety Chapter 4

[59]

SliverChildListDelegate accepts a direct list of children, while, on the other hand,
SliverChildBuiderDelegate accepts IndexedWidgetBuilder. Take a look at the
ListView.custom constructor:

const ListView.custom({
Key key,
Axis scrollDirection: Axis.vertical,
bool reverse: false,
ScrollController controller,
bool primary,
ScrollPhysics physics,
bool shrinkWrap: false,
EdgeInsetsGeometry padding,
double itemExtent,
@required SliverChildDelegate childrenDelegate,
double cacheExtent,
int semanticChildCount
}
)

Horizontal lists
Once you have received a hands-on with vertical lists, horizontal lists are simple. In this
case, we call the ListView constructor, passing through a horizontal scrollDirection.
This simply overrides the default vertical direction. In this case, we use a
Container widget, which is an easy-to-use widget that combines common painting,
positioning, and sizing widgets. Take a look at the following code:

import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 final title = 'Horizontal List Example';

 return MaterialApp(
 title: title,
 home: Scaffold(
 appBar: AppBar(
 title: Text(title),
),
 body: Container(
 margin: EdgeInsets.symmetric(vertical: 100.0),

Exploiting the Widgets Variety Chapter 4

[60]

 height: 300.0,
 child: ListView(
 scrollDirection: Axis.horizontal,
 children: <Widget>[
 Container(
 width: 120.0,
 color: Colors.orange,

),
 Container(
 width: 120.0,
 color: Colors.white,
),
 Container(
 width: 120.0,
 color: Colors.green,
),
 Container(
 width: 120.0,
 color: Colors.pink,
),
 Container(
 width: 120.0,
 color: Colors.lime,

), // Container
], // <Widget>[]
), //ListView
), //Container
), // Scaffold
); //MaterialApp
 }
 }

Exploiting the Widgets Variety Chapter 4

[61]

The ListView scrollDirection: Axis.horizontal property ensures that the list is
horizontally scrollable. Once you run the code successfully, you will see the following
result:

Grid lists
Just like in the case of horizontal lists, event grid lists are easy to build. It uses
a GridView.count constructor that allows us to specify how many rows and columns we
want on the screen. In the following example, we build 100 widgets that print the value of
the position:

import 'package:flutter/material.dart';

void main() {
 runApp(MyApp());
}

class MyApp extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 final title = 'Grid List Example';

 return MaterialApp(
 title: title,

Exploiting the Widgets Variety Chapter 4

[62]

 home: Scaffold(
 appBar: AppBar(
 title: Text(title),
),
 body: GridView.count(
 // Create a grid with 3 columns.
 crossAxisCount: 3,
 // Generate 100 Widgets that display their positions in the List
 children: List.generate(100, (index) {
 return Center(
 child: Text(
 'Position $index',
 style: Theme.of(context).textTheme.headline,
), // Text
); //Center
 }), //List.Generate
), //GridView.count
), //Scaffold
); // MaterialApp
}
}

The preceding code will produce the following output:

Exploiting the Widgets Variety Chapter 4

[63]

Introducing silvers
We took a look at the ListView, now let's quickly take a look at what silvers are, taking a
quick example from the ListView. Being fancy in your layout can be visually pleasing if
executed well. That's exactly how silver can help you. A silver is a portion of a scrollable
area using which you can bring in custom scrolling into your view. Let's take a simple
example in the form of ListView. If an app bar remains static it can sometimes obstruct the
view, so, in this case, silver can be used to hide the app bar while you scroll.

One thing that has to be noted is that all of the sliver components go
inside CustomScrollView. As a developer, you can then combine your lists of silvers to
build your custom scrollable area.

Summary
At the start of the chapter, we began discussing constraints in Flutter. We then discussed
animations and forms of animation in Flutter. In the next section, we executed some
examples of different types of lists. In the final section, we looked at how we can custom
animate the portion.

In the next chapter, we will widen our Flutter horizon and look at network and accessibility
with Flutter.

5
Widening our Flutter Horizons

In this chapter, we will first discuss networking in Flutter by building a simple application
that fetches data from the server using JSON. Every app is required to have accessibility
features to cater to mass users, and we will cover this in the accessibility options. In the
final section, we will talk about localization for having your app grow globally, supporting
multiple languages.

In this chapter, we will cover the following topics:

Networking in Flutter
Accessibility in Flutter
Internationalizing Flutter apps

Networking in Flutter
Networking is the backbone of any app, and knowing how to make network calls is crucial.
Working with networking calls in Flutter is simple and follows a streamline standard
method. Flutter libraries and methods make it easier for developers to build apps with
networking. This chapter will focus on making networking requests.

Widening our Flutter Horizons Chapter 5

[65]

Using packages
Like many platforms, Flutter supports the use of shared packages that are contributed by
the developers to the Flutter and Dart ecosystem. This facilitates development by making
developers build apps quickly rather than worry about developing the code from scratch.
Some of the most commonly used packages include, but are not limited to: making network
requests (HTTP); using device APIs, such as device information (device_info); finding
information and controlling the camera, including the support for previews of the camera
feed and the captured image (camera); finding and using the location of the device using
GPS coordinates (geolocator); and using third-party platform SDKs (such as Firebase). You
can find the complete list of packages supported by Flutter at https:/ /pub. dartlang. org/
packages.

Adding existing package dependency to an app
Once you have decided on the set of packages that you want to include, follow these steps
to include the dependency. For the purpose of this example, we have chosen HTTP package
to an app. This package contains a set of high-level functions and classes, which can help
developers consume HTTP resources while working on the app, and it is platform
independent. It supports both the command line and the browser:

Create the dependency: Open the pubspec.yaml file located inside your app1.
folder, and add http: under dependencies.
All packages have a version number, specified in their pubspec.yaml file. The
current version of the package is displayed next to the package name. When you
mention Plugin_Name_1:, it is interpreted as Plugin_Name_1: any. This
indicates that any version of the package may be used. It is advisable to use a
specific version to ensure that the app doesn't break when it is updated.

Install the package where the dependency has been added. You can install it by2.
running the flutter packages get command. If you are using Android
Studio/IntelliJ, you can also click the Package Get option in the action ribbon at
the top of pubspecs.yaml. If you are using VS code, click Get Packages located
on the right-hand side of the action ribbon at the top of pubspec.yaml
Include the corresponding import statement in your Dart code. In this case, it is3.
import package:http/http.dart. In case you have missed anything, you can
always cross-check using the Installation tab option on the package page on Pub.
At this point, it is better if you stop and restart the app to avoid errors such4.
as MissingPluginException when using the package.

https://pub.dartlang.org/packages
https://pub.dartlang.org/packages
https://pub.dartlang.org/packages
https://pub.dartlang.org/packages
https://pub.dartlang.org/packages
https://pub.dartlang.org/packages
https://pub.dartlang.org/packages
https://pub.dartlang.org/packages
https://pub.dartlang.org/packages
https://pub.dartlang.org/packages

Widening our Flutter Horizons Chapter 5

[66]

Upgrading existing package
When you run flutter packages get (this will be Packages Get in IntelliJ) for the first
time after adding a package in the pubspec.yaml file, Flutter will save the version found
in the pubspec.lock lockfile file. To upgrade the package, you can run the Flutter
packages upgrade (Upgrade dependencies in IntelliJ). Using this command, Flutter will
retrieve the highest available version of the package. In case you have specified range
constraint in pubspec.yaml, it will fetch the update as per the specification of the
constraint.

Building a REST service
One of the most prominent tasks for developers is to build REST services for the project that
help you gather data in JSON format, which you can reflect on the front-end of the
application. Imagine working on an application, and you want to mock up a REST web
service to get the demo data for you. You could certainly build your backend server using
Node.js, MongoDB, or other platforms, but one of the easiest ways is to use a JSON server.
A JSON server is a simple project that stimulates REST API with CRUD operation. This
project hardly consumes time for the setup, and you can swiftly process the data to ensure
that everything works as expected. It is ideal for developers who are learning to build REST
APIs to understand how the data is processed with a backend for prototyping and
mocking.

Setting up JSON Server
The setup of this project can be found at https:/ /github. com/ typicode/ json- server.
Note that this project builds a full fake REST API for demo purposes only. Before we begin
the setup, ensure that the following components are ready on your system:

Node.js: JSON-Server is built on top of Node.js. If you already have it in place,1.
please ensure to keep it updated. To find out the version of Node, run the node
-v command.
NPM package: NPM stands for Node Package Manager, and comes in handy to2.
easily install, update, configure, and uninstall Node JS platform
modules/packages. Ensure NPM is installed on the system. If not, refer
to https:/ /www. npmjs. com/ get-npm. At this point, it would be ideal to quote that
NPM is a separate project from the Node, and gets updated frequently. To
update NPM, use the sudo npm install npm@latest -g command.

https://github.com/typicode/json-server
https://github.com/typicode/json-server
https://github.com/typicode/json-server
https://github.com/typicode/json-server
https://github.com/typicode/json-server
https://github.com/typicode/json-server
https://github.com/typicode/json-server
https://github.com/typicode/json-server
https://github.com/typicode/json-server
https://github.com/typicode/json-server
https://github.com/typicode/json-server
https://github.com/typicode/json-server
https://github.com/typicode/json-server
https://www.npmjs.com/get-npm
https://www.npmjs.com/get-npm
https://www.npmjs.com/get-npm
https://www.npmjs.com/get-npm
https://www.npmjs.com/get-npm
https://www.npmjs.com/get-npm
https://www.npmjs.com/get-npm
https://www.npmjs.com/get-npm
https://www.npmjs.com/get-npm
https://www.npmjs.com/get-npm
https://www.npmjs.com/get-npm
https://www.npmjs.com/get-npm
https://www.npmjs.com/get-npm

Widening our Flutter Horizons Chapter 5

[67]

cURL: This open source command line enables the transfer of data with URL3.
syntax. If you have cURL installed, use the curl -V command (Note that V is
upper case). In case you need to install cURL, run the brew install curl
command.

The JSON server is available as an NPM package, so we could simply run the following
command to install it:

$ npm install -g json-server

The -g option enables the package to be installed globally on your system. Once you have
installed it successfully, run the command to cross check:

$ json-server -v

Building a resource file
A resource is anything that has data associated with it. For example, if you are working on
a movie review website, movies, reviewers, users, and so on, would be resources. You
could have API endpoints based on these resources. The API endpoints help you to retrieve
or update the data on the server. In this case, we will use the resources as a JSON file. This
JSON file will act as a config and database file for the mock server you set up using json-
server.

Json-server works in a JSON file, and creating a JSON file is simple. Create a new file as
Books.json, populate the following content, and save it. Note that the name of the array
we specified is Movie, so json-server will create the REST APIs based on this name:

{
 "Movie": [
 {
 "id": 1,
 "Movie Name": "Avengers: Infinity War",
 "Year": "2018",
 "Category": "Science Fiction"
 },
 {
 "id": 2,
 "first_name": "Black Panther",
 "Year": "2018",
 "Category": "Science Fiction"
 },
 {
 "id": 3,

Widening our Flutter Horizons Chapter 5

[68]

 "first_name": "Mission: Impossible – Fallout",
 "Year": "2018",
 "Category": "Action"
 },
 {
 "id": 4,
 "first_name": "Annihilation",
 "Year": "2018",
 "Category": "Fantasy"
 }
]
}

Run the json-server
The final step is to run json-server to ensure we have the mock server running locally.
Run the following command:

$ json-server --watch db.json

Congratulations! You have now successfully set up json-server. Open
the http://localhost:3000/ URL to check whether you can see the following. Under
the resources tag, you will be able to see the Movies JSON file we created.

Do not close the terminal, as that will kill json-server. In case your port 3000 is utilized,
you can set options for the new port number in a json-server.json configuration file.

Fetching data from the server
Fetching data from the server is a commonly used feature. It is performed using the HTTP
package that we covered earlier in this chapter. The steps to follow are as follows:

Include the HTTP package and make the network request1.
Convert the response into a custom Dart object2.
Fetch the data and display it using the Flutter3.

Since we have already learned about adding HTTP packages in the Using packages section,
we will now proceed with making a network request. In our next step, we will fetch the
sample JSON content using JSON-Server and the http.get() method.

Widening our Flutter Horizons Chapter 5

[69]

We use the Future function, which is a core Dart class for working with async tasks and,
together with http, it returns the data from a successful http call:

Future<http.Response> fetchPost() {
 return http.get('http://localhost:3000/Movie/1');
}

We now create a Post class that will contain the data from our network requests. To ensure
that we create a proper Post from JSON, we will include a factory constructor. In our
example, we have four categories of data for each array to fetch, namely, id, movieName,
year, and the category:

class Post {
 final int id;
 final String movieName;
 final int year;
 final String category;

 Post({this.id, this.movieName, this.year, this.category});

 factory Post.fromJson(Map<String, dynamic> json) {
 return Post(
 id: json['id'],
 movieName: json['movieName'],
 year: json['year'],
 category: json['category'],
);
 }
}

Next, we will need to update the fetchPost function to return a Future<Post>, for which
we will follow three steps:

First, convert the response body into a JSON Map using the dart:convert1.
package. This package contains encoders and decoders for converting between
different data representations. To use this, you will first have to add the
dependency in your package's pubspec.yaml file:

dependencies: convert: ^2.1.1

Now, use the package:convert/convert.dart import in your dart code.

If we get an OK response from the server with a status code of 200, it means the2.
data is fetched, and you can convert the JSON Map into a Post using
the fromJSON factory.

Widening our Flutter Horizons Chapter 5

[70]

If the response is unexpected, you can flag an error.3.

Here is the piece of code that checks the previously-mentioned cases:

Future<Post> fetchPost() async {
 final response =
 await http.get('http://localhost:3000/Movies/1');

 if (response.statusCode == 200) {
 // If the call to the server was successful, parse the JSON
 return Post.fromJson(json.decode(response.body));
 } else {
 // If that call was not successful, flag an error.
 throw Exception('Failed to load post');
 }
}

In order to fetch the data and display it, we use the FutureBuilder widget that is built
into Flutter, and helps in working easily with async data sources. To make this happen, we
will need two parameters:

The name of the future we want to work with. In our example, we call it
the fetchPost() function.
A builder function that informs Flutter what to render, based on the state of the
Flutter—loading, success, or error:

FutureBuilder<Post>(
 future: post,
 builder: (context, snapshot) {
 if (snapshot.hasData) {
 return Text(snapshot.data.movieName);
 } else if (snapshot.hasError) {
 return Text("${snapshot.error}");
 }

 // By default, show a loading spinner
 return CircularProgressIndicator();
 },
);

Building the code by putting a call to an API in your build() method is convenient, but it's
not recommended. It will make Flutter call the build() method every time when it wants
to change anything in the view, making your app slow due to it making unnecessary
flooded API calls. A better way is to bit the API when the page is initially loaded, and use
StatelessWidget for the same.

Widening our Flutter Horizons Chapter 5

[71]

Using this method, you will make the parent widget responsible for calling the fetch
method, storing its result and then passing it to your widget:

class MyApp extends StatelessWidget {
 final Future<Post> post;

 MyApp({Key key, this.post}) : super(key: key);

This is the complete code that will fetch the JSON content using json-server by reading
Movies.json:

import 'dart:async';
import 'dart:convert';

import 'package:flutter/material.dart';
import 'package:http/http.dart' as http;

Future<Post> fetchPost() async {
 final response =
 await http.get('http://localhost:3000/Movies/1');

 if (response.statusCode == 200) {
 // If the call to the server was successful, parse the JSON
 return Post.fromJson(json.decode(response.body));
 } else {
 // If that call was not successful, throw an error.
 throw Exception('Failed to load post');
 }
}

class Post {
 final int id;
 final String movieName;
 final int year;
 final String category;

 Post({this.id, this.movieName, this.year, this.category});

 factory Post.fromJson(Map<String, dynamic> json) {
 return Post(
 id: json['id'],
 movieName: json['movieName'],
 year: json['year'],
 category: json['category'],
);
 }
}

Widening our Flutter Horizons Chapter 5

[72]

void main() => runApp(MyApp(post: fetchPost()));

class MyApp extends StatelessWidget {
 final Future<Post> post;

 MyApp({Key key, this.post}) : super(key: key);

 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: 'JSON Fetch Data Example',
 theme: ThemeData(
 primarySwatch: Colors.blue,
),
 home: Scaffold(
 appBar: AppBar(
 title: Text('JSON Fetch Data Example'),
),
 body: Center(
 child: FutureBuilder<Post>(
 future: post,
 builder: (context, snapshot) {
 if (snapshot.hasData) {
 return Text(snapshot.data.movieName);
 } else if (snapshot.hasError) {
 return Text("${snapshot.error}");
 }

 // By default, show a loading spinner
 return CircularProgressIndicator();
 },
),
),
),
);
 }
}

At the start of the chapter, we discussed what packages are and how to use them. Once the
packages were set up, we discussed how to build a JSON Server to fetch data for our tests.
In the final section, we glanced through an example of how to fetch the JSON data to the
app, displaying the content of the JSON file we created and ran using the JSON server.

Widening our Flutter Horizons Chapter 5

[73]

Accessibility in Flutter
Making your app accessible to many users could be a great initiative. That also includes
people with disabilities, such as blindness, hearing, voice, or motor impairment. As per the
reports on disability by the World Health Organization, there are over 100 million users
across the globe who face physical challenges in their daily routine. Technology can be
revolutionary in helping people, and that's when building apps catering to their specific
needs can aid them well.

Not all the users use the app in a specifically defined manner, so, a focus on accessibility
will not only help users to download and use the app, but will also propagate to a new
level of users.

Google provides an app to check for accessibility support that is available as accessibility
scanner on Google Play at https:/ / play. google. com/ store/ apps/ details? id= com.
google.android.apps. accessibility. auditor This app enables you to find the
accessibility provide that a developer can do within the app. For iOS, XCode
provides Accessibility Inspector.

Flutter supports three components for accessibility support:

Large font
With age, not many can see the content the way they used to in their youth. Some face
issues in reading the text clearly, especially when developers consider using the default size
without taking into considering factors such as screen size and orientation. One of the
quickest ways to do this is to ensure that the text scales in their accessibility
options consider the device specifications of the consumers.

Flutter has a feature that handles text size calculations automatically. For example, the Text
widget has a textScaleFactor property that allows the scaling of the text. Font size is
multiplied by the textScaleFactor value to determine the new font size that is rendered
on the screen in logical pixels. For example, if the textScaleFactor is 1.5, the text will be
50% larger than the specified font size, as follows:

Text(
 'Hello India, how are you?',
 textAlign: TextAlign.center,
 overflow: TextOverflow.ellipsis,
 style: TextStyle(fontWeight: FontWeight.normal),
 textScaleFactor: 1.5,
)

https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor

Widening our Flutter Horizons Chapter 5

[74]

One point that needs to be kept in mind is that, if you manually set the scale value, the
user’s accessibility settings will be overridden. You have to ensure that the scale-up value
doesn't show up the text to a large extent leading to uninstall of the app. If you do not
specify the value, it will check textScaleFactor for the nearest MediaQuery ancestor
(MediaQueryData.textScaleFactor) or 1.0, if no such ancestor exists. Ensure that you
test the text displays properly at all accessibility settings.

Screen readers
For those who are visually impaired, this accessiblity option can come in handy. It enables
users to receive spoken feedback about the content of the screen. You could turn on
VoiceOver in iOS, or TalkBack in an Android application on your device to navigate
around your app. For example, when using TalkBack, users perform actions using gestures,
and each action is complimented with an audible output that allows users to know that
their gesture trigger was successful. There are three types of gestures in TalkBack: basic
gestures, back-and-forth gestures, and angle gestures. Note that the users should use single
gestures, even finger pressure, and a steady speed to have a seamless experience.

Screen contrast
Specifying background and foreground colors with sufficient color contrast enables better
readability for the users. This ratio ranges from 1 to 21, where 21 means the highest.

The W3C recommends the following:

At least 4.5:1 for smaller text (below 18 point regular, or 14 point bold)
At least 3.0:1 for larger text (18 point and above regular, or 14 point and above
bold)

Accessibility is an important feature and should not be neglected. It ensures that the app is
open to a larger audience, enabling the chances for better application usage. It is equally
important to test the accessibility options before rolling out to the masses.

Widening our Flutter Horizons Chapter 5

[75]

Internationalizing Flutter apps
As the name suggests, if your app will be by the international audience, you will have to
think of providing locale support for the specific language of the target. That means you’ll
need to write the app in a way that your app renders the values like text and layouts
depending on each language or locale that the app supports. Flutter has made it simple by
providing support by classes and widgets. Flutter supports the global localization classes
for about 24 languages.

Before you start the internationalization, dependencies must be added in pubspec.yaml:

dependencies:
 flutter:
 sdk: flutter
 flutter_localizations:
 sdk: flutter

The next step is to import the flutter_localizations library and specify
localizationsDelegates and supportedLocales for MaterialApp. Also, import
package:flutter_localizations/flutter_localizations.dart:

Widget build(BuildContext context) {
 return MaterialApp(
 onGenerateTitle: (BuildContext context) =>
DemoLocalizations.of(context).title,
 localizationsDelegates: [

// ... app-specific localization delegate[s] here

 const DemoLocalizationsDelegate(),
 GlobalMaterialLocalizations.delegate,
 GlobalWidgetsLocalizations.delegate,
],
 supportedLocales: [
 const Locale('en', ''), //Supporting English
 const Locale('hi', ''), // Supporting Hindi
 const Locale('es', ''), // Supporting Spanish
],

The localizationsDelegates list contains the elements that are factories that produce
collections of localized values. GlobalMaterialLocalizations.delegate provides
strings that are localized and other values for the material components library. The default
text direction for the widget library is defined
by GlobalWidgetsLocalizations.delegate.

Widening our Flutter Horizons Chapter 5

[76]

There are three methods to keep an eye on:

.load: This method must return an object that contains a collection of related
resources
.isSupported: If the support for the locale is found, it returns True. Otherwise
it will return False
shouldReload: If this method returns True, then all the app widgets will be
rebuilt after a load of resources

The complete code for your reference is as follows:

import 'dart:async';

import 'package:flutter/material.dart';
import 'package:flutter/foundation.dart' show SynchronousFuture;
import 'package:flutter_localizations/flutter_localizations.dart';

class DemoLocalizations {
 DemoLocalizations(this.locale);

 final Locale locale;

 static DemoLocalizations of(BuildContext context) {
 return Localizations.of<DemoLocalizations>(context, DemoLocalizations);
 }

 static Map<String, Map<String, String>> _localizedValues = {
 'en': {
 'title': 'Locale in English',
 },
 'es': {
 'title': 'Local en españa',
 },
 'hi': {
 'title': 'लोकेल िहंदी म',
 },
 };

 String get title {
 return _localizedValues[locale.languageCode]['title'];
 }
}

class DemoLocalizationsDelegate extends
LocalizationsDelegate<DemoLocalizations> {
 const DemoLocalizationsDelegate();

Widening our Flutter Horizons Chapter 5

[77]

 @override
 bool isSupported(Locale locale) => ['en', 'es',
'hi'].contains(locale.languageCode);

 @override
 Future<DemoLocalizations> load(Locale locale) {
 // Returning a SynchronousFuture here because an async "load" operation
 // isn't needed to produce an instance of DemoLocalizations.
 return SynchronousFuture<DemoLocalizations>(DemoLocalizations(locale));
 }

 @override
 bool shouldReload(DemoLocalizationsDelegate old) => false;
}

class DemoApp extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 title: Text(DemoLocalizations.of(context).title),
),
 body: Center(
 child: Text(DemoLocalizations.of(context).title),
),
);
 }
}

class Demo extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 onGenerateTitle: (BuildContext context) =>
DemoLocalizations.of(context).title,
 localizationsDelegates: [
 const DemoLocalizationsDelegate(),
 GlobalMaterialLocalizations.delegate,
 GlobalWidgetsLocalizations.delegate,
],
 supportedLocales: [
 const Locale('en', ''),
 const Locale('es', ''),
 const Locale('hi', ''),
],

 home: DemoApp(),
);

Widening our Flutter Horizons Chapter 5

[78]

 }
}

void main() {
 runApp(Demo());
}

After you run the code successfully, you will see the output as follows:

Summary
We first discussed how networking plays an important role in the apps, along with sample
code for setting up and running a local server for fetching JSON code. This section was
followed by understanding why accessibility is important, and what improvements
developers can provide to support accessibility in the app. The next section showed how to
make app support internationalization.

In the next chapter, we will discuss how to use platform powers to build apps.

6
Using a Platform to Power

Flutter Apps
With the use of Flutter, you can build for both Android as well as iOS. It uses the Dart
programming language to do so. However, Dart does not compile to Android's Dalvik
bytecode or Objective C bindings on iOS. This indicates that Dart code, by default, does not
have direct access to platform-specific APIs.

Here are a few sets of examples where deeper integration with the host environment might
be needed:

Applications using camera capabilities and geo-tagging features
Reading device information, such as an OS version and device specifications
Reading folders and files from the device
Pushing notifications to the app
Sharing information with other applications
Location tracking
Using sensors
Using persisted preferences

The list continues as per the support provided by the environment. Using Flutter, enabling
the calling of platform-specific APIs, which are available in Java/Kotlin code on Android,
Objective C, or Swift on iOS, is not a difficult task.

In this chapter, we will learn how to include packages, followed by learning how to make
platform-specific calls. We will learn about how to publish our own plugins.

We will cover the following topics in this chapter:

Using Flutter packages
Using platform channels
Building and publishing your own plugin

Using a Platform to Power Flutter Apps Chapter 6

[80]

Using Flutter packages
Flutter's package website lists many packages that help us develop applications faster by
avoiding the need for developing some features from scratch. These packages are either
contributed to by the Flutter team or by developers across the globe who contribute to the
Flutter and Dart ecosystems. You can either use the existing packages by visiting the
publishing site (https:/ /pub. dartlang. org/ https:/ / pub.dartlang. org/), or you can
develop and publish your own packages. We will learn about building our own packages
in the Building your own packages section of this chapter.

Searching for the package
Visit the publishing site to search for the packages you want to use in your app. The home
page displays some of the popular packages that are used by developers. You can search by
keyword to display the results. You may want to look at the weighted score before you opt
to choose a plugin. Searching for either email:@dartlang.org or email:flutter-
dev@googlegroups.com will give the results of the official Flutter packages:

https://pub.dartlang.org/
https://pub.dartlang.org/
https://pub.dartlang.org/
https://pub.dartlang.org/
https://pub.dartlang.org/
https://pub.dartlang.org/
https://pub.dartlang.org/
https://pub.dartlang.org/
https://pub.dartlang.org/
https://pub.dartlang.org/
https://pub.dartlang.org/
https://pub.dartlang.org/
https://pub.dartlang.org/
https://pub.dartlang.org/
https://pub.dartlang.org/
https://pub.dartlang.org/
https://pub.dartlang.org/
https://pub.dartlang.org/
https://pub.dartlang.org/
https://pub.dartlang.org/

Using a Platform to Power Flutter Apps Chapter 6

[81]

Clicking on any of the result items will open the extended preview for the package. In this
case, we are using the url_launcher package, which is an official Dart package that was
developed by the Flutter team. This plugin is used for launching a URL on a mobile
platform such as Android and iOS-supporting web, phone, SMS, and email schemes:

When you click on any of the packages, you will see the name of the plugin, along with its
latest version and its published date. Following that, you will find five tab options, namely
the following:

README.md: Detailed information about the plugin
CHANGELOG.md: Information on the Changelog versions of this plugin with
details of each plugin version
Example: Demonstrates how to use the plugin
Installing: Shows the steps to follow to set up the plugin
Versions: Shows the different versions of the plugin, along with the following
options: Version name (such as 5.0.1), Uploaded date (such as Feb 8, 2019),
Documentation, and Archive

Using a Platform to Power Flutter Apps Chapter 6

[82]

The Flutter plugin for launching a URL on Android and iOS supports web, phone, SMS,
and email schemes.

Adding a package dependency to an app
Once you have decided on the package you want to use, you have to make the program
depend on it. In this case, we are using the url_launcher 5.0.1 package:

Open the pubspec.yaml file located inside your app folder.1.
Check out the Installing tab on the package's page, and where you will have the2.
option of adding dependencies. In this example, we are adding url_launcher:
^5.0.1 under dependencies.
Next, from the Terminal, run the following command, which will install3.
packages from the command line:

flutter packages get

If you are using an editor such as Android Studio/IntelliJ, click Packages get on
the top of pubspec.yaml. In the case of VS code, click Get Packages at the top of
Pubspec.yaml:

The next step is to add the correspondent import snippet to your Dart code:4.

import 'package:url_launcher/url_launcher.dart';

Using a Platform to Power Flutter Apps Chapter 6

[83]

If you want to upgrade to a new version of the package, use the Packages upgrade option.
It could be used in the case where there are new features available in that package you wish
to include in the project. In the case of IntelliJ, the option to choose is Upgrade
dependencies.

Ways to specify package dependencies
There are two ways to specify package dependencies. As we discussed earlier, the package
is added to pubspec.yaml using the shorthand form plugin1:. This means
plugin1:any_version. As a developer, you can always look at CHANGELOG.md or the
recent version of the package's name to add the correct value. To ensure an app does not
break, it is essential to specify a version, which can be done in one of two ways:

Specify the version using range constraints, as follows, in which you specify the1.
minimum and maximum versions:

dependencies:
url_launcher: '>=0.4.1 <5.0.1'

Range constraints using Carat Syntax:2.

dependencies:
url_launcher: '^5.0.1'

Adding the code to the file
Most of the packages give insights on how to include the package components into the
code. The package's Example tab has more information about the code's execution. In our
example, we are using one gradient button to open the URL specified in the code:

import 'package:flutter/material.dart';
import 'package:url_launcher/url_launcher.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {
 @override

 Widget build(BuildContext context) {
 return MaterialApp(
 title: 'Flutter Packages',
 theme: ThemeData(
 primarySwatch: Colors.deepOrange,

Using a Platform to Power Flutter Apps Chapter 6

[84]

),
 home: MyStatelessWidget(),
);
 }
}

class MyStatelessWidget extends StatelessWidget {
 MyStatelessWidget({Key key}) : super(key: key);

 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 title: const Text('Packages in Flutter'),
),
 body: Center(
 child: Column(
 mainAxisSize: MainAxisSize.min,
 children: <Widget>[

 RaisedButton(
 onPressed: _initiateURL,
 textColor: Colors.black,
 padding: const EdgeInsets.all(0.0),
 child: Container(
 decoration: const BoxDecoration(
 gradient: LinearGradient(
 colors: <Color>[
 Colors.green, Colors.yellow, Colors.yellowAccent],

),
),

 padding: const EdgeInsets.all(10.0),
 child: Text('Open Flutter Website'),
),
),
],
),
),
);

 }

 _initiateURL() async {
 const url = 'https://flutter.dev';
 if (await canLaunch(url)) {
 await launch(url);

Using a Platform to Power Flutter Apps Chapter 6

[85]

 } else {
 throw 'Sorry, We could not launch the URL $url';
 }
 }

}

The previous code allows users to simply click on the button and open the Flutter Dev
official website. As you may have noticed, we use the RaisedButton widget and specify
the child property, which allows us to provide gradient to the button.
The _initiateURL() method has a launch function that accepts the URL defined and acts
to parse the specified URL. It also delegates the handling to the underlying system:

Using a Platform to Power Flutter Apps Chapter 6

[86]

Once you have successfully executed the code and clicked on the button, Open Flutter
Website will open the URL specified in the parameter URL. You will see the result on the
screen on the phone's default browser, as follows:

Using platform channels
As mentioned at the start of the chapter, Flutter is a cross-platform framework, and in order
to get access to native APIs, you have to get access to native platform functions. In the case
of Flutter, it does this by creating a platform channel to the native platform. Using these
platform channels, the developers can call the native functions such as device information,
files and folder access, sensor access, camera, shared preferences, and much more.

Using a Platform to Power Flutter Apps Chapter 6

[87]

As shown in the following screenshot, platform channels can be simply imagined to be a
communicating mechanism between your Dart code in Flutter and the platform-specific
code of your host app. This ensures that the host services are invoked by Flutter's Dart
code:

At this point, it is worth noting that you have to set a platform channel for each platform. In
the case of Android, they are called MethodChannels and in iOS, they are known as
FlutterMethodChannels.

At this point, it is important to know the platform data type support and codecs. The
standard platform channels adopt a standard message codec that supports efficient binary
serialization. They are JSON-lookalike. When you send values to and from them,
the serialization and deserialization happen automatically.

The Flutter team at Google has listed (source: https:/ /flutter. dev/ docs/ development/
platform-integration/ platform- channels) the following table, which shows how Dart
values are received on the host platform side, and vice versa:

Dart Android iOS

null null
 nil (NSNull when

nested)
bool java.lang.Boolean NSNumber numberWithBool:

int java.lang.Integer NSNumber numberWithInt:

int, if 32
bits, not
enough

java.lang.Long NSNumber numberWithLong:

https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels

Using a Platform to Power Flutter Apps Chapter 6

[88]

double java.lang.Double NSNumber numberWithDouble:

String java.lang.String NSString

Uint8List byte[]
FlutterStandardTypedData

typedDataWithBytes:

Int32List int[]
FlutterStandardTypedData

typedDataWithInt32:

Int64List long[]
FlutterStandardTypedData

typedDataWithInt64:

Float64List double[]
FlutterStandardTypedData
typedDataWithFloat64:

List java.util.ArrayList NSArray

Map java.util.HashMap NSDictionary

In the following example, we will learn how to use platform channel in Android to
calculate the battery percentage of an Android phone using the Android BatteryManager
API. You can read more about the API here: https:/ / developer. android. com/ reference/
android/os/BatteryManager

Creating a new Flutter project
Please create a new Flutter project. Ensure that the Android SDK path has been set up
properly and included in the project settings.

Creating a Flutter platform client
For understanding the battery level, Android code be written and then passed on to the
Dart code. The applications' state class holds the current state of the app, and we need to
extend it to ensure the current battery state is captured.

For this reason, we will use MethodChannel as the channel comprising of a single platform
method that will return the battery level of the Android phone. The client and the host side
communicate by a unique channel name passed in the channel constructor. In our case, we
have named it call.flutter.io/battery:

import 'dart:async';
import 'package:flutter/material.dart';
import 'package:flutter/services.dart';

...
class _MyHomePageState extends State<MyHomePage> {

https://developer.android.com/reference/android/os/BatteryManager
https://developer.android.com/reference/android/os/BatteryManager
https://developer.android.com/reference/android/os/BatteryManager
https://developer.android.com/reference/android/os/BatteryManager
https://developer.android.com/reference/android/os/BatteryManager
https://developer.android.com/reference/android/os/BatteryManager
https://developer.android.com/reference/android/os/BatteryManager
https://developer.android.com/reference/android/os/BatteryManager
https://developer.android.com/reference/android/os/BatteryManager
https://developer.android.com/reference/android/os/BatteryManager
https://developer.android.com/reference/android/os/BatteryManager
https://developer.android.com/reference/android/os/BatteryManager
https://developer.android.com/reference/android/os/BatteryManager
https://developer.android.com/reference/android/os/BatteryManager
https://developer.android.com/reference/android/os/BatteryManager
https://developer.android.com/reference/android/os/BatteryManager

Using a Platform to Power Flutter Apps Chapter 6

[89]

 static const platform = const MethodChannel('call.flutter.io/battery');

 // Get Android battery level.
}

The next step is to invoke a method on the method channel, and we will use the returned
result (the battery level) to update the value inside setState:

String _batteryLevel = 'Battery Levels are Unknown';

Future<void> _getPhoneBatteryLevel() async {
 String batteryLevel;
 try {
 final int result = await platform.invokeMethod('getBatteryLevel');
 batteryLevel = 'Battery level at $result % .';
 } on PlatformException catch (e) {
 batteryLevel = "Failed to get battery level: '${e.message}'.";
 }

 setState(() {
 _batteryLevel = _getBatteryLevel() asyncbatteryLevel;
 });
}

Finally, replace the build method to have a Button to have the action, onPressed, of
which the result of the battery level would be shown as a Text value.

The complete Main.Dart code is shown here:

import 'package:flutter/material.dart';
import 'package:flutter/services.dart';

import 'dart:async';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: 'Flutter Platform Channel API',
 theme: ThemeData(

 primarySwatch: Colors.yellow,
),

Using a Platform to Power Flutter Apps Chapter 6

[90]

 home: MyHomePage(title: 'Flutter Platform Channel API'),
);
 }
}

class MyHomePage extends StatefulWidget {
 MyHomePage({Key key, this.title}) : super(key: key);

 final String title;

 @override
 _MyHomePageState createState() => _MyHomePageState();
}

class _MyHomePageState extends State<MyHomePage> {

 static const platform = const MethodChannel('call.flutter.io/battery');
 String _batteryLevel = 'Battery Levels are Unknown';

 Future<void> _getPhoneBatteryLevel() async {
 String batteryLevel;
 try {
 final int result = await platform.invokeMethod('getBatteryLevel');
 batteryLevel = 'Battery level at $result % .';
 } on PlatformException catch (e) {
 batteryLevel = "Failed to get battery level: '${e.message}'.";
 }

 setState(() {
 _batteryLevel = batteryLevel;
 });
 }

 @override
 Widget build(BuildContext context) {
 return Material(
 child: Center(
 child: Column(
 mainAxisAlignment: MainAxisAlignment.center,
 children: [

 Text ("Click the button to know your phone battery levels"),
 RaisedButton(
 child: Container(
 decoration: const BoxDecoration(
 gradient: LinearGradient(

Using a Platform to Power Flutter Apps Chapter 6

[91]

 colors: <Color>[Colors.red, Colors.green,
Colors.brown],
),
),
 padding: const EdgeInsets.all(10.0),
 child: Text('Get Phone Battery Level'),
),
 onPressed: _getPhoneBatteryLevel,
 textColor: Colors.white,
 padding: const EdgeInsets.all(0.0),

),
 Text(_batteryLevel),

],
),
),
);
 }
}

Next, we will make changes to the Android code.

Making changes to MainActivity.Java
Navigate to the Android folder inside your project, and locate the MainActivity.java file
in the Java folder in the project view. Next, inside the onCreate method in this file, we
create a MethodChannel and a set a MethodCallHandler inside. Note that the channel
name used should be the same on the Flutter client side, as in our
case: call.flutter.io/battery.

Include the following imports:

package androcid.flutterapp1;

import android.os.Bundle;
import io.flutter.app.FlutterActivity;
import io.flutter.plugins.GeneratedPluginRegistrant;
import io.flutter.plugin.common.MethodCall;
import io.flutter.plugin.common.MethodChannel;
import io.flutter.plugin.common.MethodChannel.MethodCallHandler;
import io.flutter.plugin.common.MethodChannel.Result;

import android.content.ContextWrapper;
import android.content.Intent;
import android.content.IntentFilter;

Using a Platform to Power Flutter Apps Chapter 6

[92]

import android.os.BatteryManager;
import android.os.Build.VERSION;
import android.os.Build.VERSION_CODES;

Next, create a String to hold the channel name:

private static final String CHANNEL = "call.flutter.io/battery";

And, finally, add the MethodChannel method:

new MethodChannel(getFlutterView(), CHANNEL).setMethodCallHandler(
 new MethodCallHandler() {
 @Override
 public void onMethodCall(MethodCall call, Result result) {
 // TODO
 }
 });

In the next step, we have to write the Android onCreate method:

private int getBatteryLevel() {
 int phoneBatteryLevel = -1;
 if (VERSION.SDK_INT >= VERSION_CODES.LOLLIPOP) {
 BatteryManager batteryManager = (BatteryManager)
getSystemService(BATTERY_SERVICE);
 phoneBatteryLevel =
batteryManager.getIntProperty(BatteryManager.BATTERY_PROPERTY_CAPACITY);
 } else {
 Intent intent = new ContextWrapper(getApplicationContext()).
 registerReceiver(null, new
IntentFilter(Intent.ACTION_BATTERY_CHANGED));
 phoneBatteryLevel = (intent.getIntExtra(BatteryManager.EXTRA_LEVEL,
-1) * 100) /
 intent.getIntExtra(BatteryManager.EXTRA_SCALE, -1);
 }

 return phoneBatteryLevel;
 }
}

To use BatteryManager, the minimum API is 21, and hence we use
VERSION_CODES.LOLLIPOP.

Using a Platform to Power Flutter Apps Chapter 6

[93]

Our final step is to complete the onMethodCall method added earlier. Using a single
platform method, getbatteryLevel, you can simply call the Android code written in the
previous step, and revert back the response, both in success as well as error cases using the
response argument, as follows:

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 GeneratedPluginRegistrant.registerWith(this);
 new MethodChannel(getFlutterView(), CHANNEL).setMethodCallHandler(
 new MethodCallHandler() {
 @Override
 public void onMethodCall(MethodCall call, Result result) {

 if (call.method.equals("getBatteryLevel")) {
 int batteryLevel = getBatteryLevel();

 if (batteryLevel != -1) {
 result.success(batteryLevel);
 } else {
 result.error("Currently unavailable", "Battery level not
 available currently.", null);
 }
 } else {
 result.notImplemented();
 }

 }
 });
}

The following is the complete Android code:

package androcid.flutterapp1;

import android.os.Bundle;
import io.flutter.app.FlutterActivity;
import io.flutter.plugins.GeneratedPluginRegistrant;
import io.flutter.plugin.common.MethodCall;
import io.flutter.plugin.common.MethodChannel;
import io.flutter.plugin.common.MethodChannel.MethodCallHandler;
import io.flutter.plugin.common.MethodChannel.Result;
import android.content.ContextWrapper;
import android.content.Intent;
import android.content.IntentFilter;
import android.os.BatteryManager;
import android.os.Build.VERSION;
import android.os.Build.VERSION_CODES;

Using a Platform to Power Flutter Apps Chapter 6

[94]

public class MainActivity extends FlutterActivity {
 private static final String CHANNEL = "call.flutter.io/battery";
 @Override

 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 GeneratedPluginRegistrant.registerWith(this);
 new MethodChannel(getFlutterView(), CHANNEL).setMethodCallHandler(
 new MethodCallHandler() {
 @Override
 public void onMethodCall(MethodCall call, Result result) {

 if (call.method.equals("getBatteryLevel")) {
 int batteryLevel = getBatteryLevel();

 if (batteryLevel != -1) {
 result.success(batteryLevel);
 } else {
 result.error("Currently unavailable", "Battery level not
available currently.", null);
 }
 } else {
 result.notImplemented();
 }

 }
 });
 }

 private int getBatteryLevel() {
 int phoneBatteryLevel = -1;
 if (VERSION.SDK_INT >= VERSION_CODES.LOLLIPOP) {
 BatteryManager batteryManager = (BatteryManager)
getSystemService(BATTERY_SERVICE);
 phoneBatteryLevel =
batteryManager.getIntProperty(BatteryManager.BATTERY_PROPERTY_CAPACITY);
 } else {
 Intent intent = new ContextWrapper(getApplicationContext()).
 registerReceiver(null, new
IntentFilter(Intent.ACTION_BATTERY_CHANGED));
 phoneBatteryLevel = (intent.getIntExtra(BatteryManager.EXTRA_LEVEL,
-1) * 100) /
 intent.getIntExtra(BatteryManager.EXTRA_SCALE, -1);
 }

 return phoneBatteryLevel;
 }
}

Using a Platform to Power Flutter Apps Chapter 6

[95]

After running the code successfully, you will see the following output:

Using a Platform to Power Flutter Apps Chapter 6

[96]

When clicking on the button, the Battery Level of the phone will be displayed:

Using a Platform to Power Flutter Apps Chapter 6

[97]

Building and publishing your own plugin
Plugins play an important role in the Flutter ecosystem. Google developers and open
source contributors have contributed to several published plugins. We have seen in the
Chapter 5, Widening our Flutter Horizons, show to include the plugins in the code. When
building a plugin, here are some of the tips to keep in mind:

Check for existing plugin availability: See whether there are existing plugins1.
available that function the same/similar way, before you code from fresh.
Think Dart: Since Flutter code is written in Dart, it's ideal if the major logic is2.
crafted in Dart, which not only makes it easy to navigate but also processing the
code is easier, across the platform.
Avoid a building platform-specific plugin that is only supports: The developer3.
might be tempted to start building a plugin including every feature they might
desire, but thinking solo-platform might not be such a good idea. Not only will it
confuse the users about its use cases on a specific platform, it will also make the
app behave in an unexpected way.
Avoid building platform-specific API methods: As a developer, you might be4.
tempted to build a platform-specific method, but this can go into overkill. Try
including the platform-specific logic to the plugin itself.
Build for features: Ensure that the plugin you are planning to build has a specific5.
use case providing features, rather than just calling existing APIs. There is
nothing wrong with using an existing native library, but the problem arises when
these APIs don't work as expected across different platforms. Focusing on
features more than on API could help you build better plugins.
Detail out the features and installation properly: When your plugin is6.
published, support the community by giving out more details about the plugin's
features and how they seamlessly include this plugin into their code. The
visibility of the plugin matters, as if the community loves the plugin, they will
rate the plugin higher, thus increasing the visibility. Use examples so that there
are no problems regarding including your plugin.

To publish your own plugin, use the following command:

flutter packages pub publish --dry-run

If there are no errors in the execution, you can execute the following command to publish
the plugin and your plugin will be live in a few minutes:

flutter packages pub publish

Using a Platform to Power Flutter Apps Chapter 6

[98]

Summary
At the start of the chapter, we learned how to include packages in the Flutter code,
followed by how to include platform-specific channels to support Flutter code. We also
used the BatteryManager API to understand the battery state of the Android phone. In
the last section, we covered some of the best tips to consider you build your our own
plugin, followed by how to publish your own plugin.

In the next chapter, we will take a look at how to use Firebase with Flutter.

7
Firebase - Flutter's Best Friend

Building apps using Firebase is one of the fastest-growing technology trends in the world.
Using Firebase, developers can build apps at a rapid pace without managing the
infrastructure, including authentication, storing and syncing data, securely hosting web
assets, and cloud storage. Firebase has a base plan that is free, allowing 1 GB the storage
and 100 simultaneous connections. If you wish to upgrade, you can check out the plans
here: https://firebase. google. com/ pricing/ .

In this chapter, we will cover the following topics:

Connecting with Firebase
Creating the Cloud Firestore database
Firebase Cloud Messaging
Firebase Remote Config

https://firebase.google.com/pricing/
https://firebase.google.com/pricing/
https://firebase.google.com/pricing/
https://firebase.google.com/pricing/
https://firebase.google.com/pricing/
https://firebase.google.com/pricing/
https://firebase.google.com/pricing/
https://firebase.google.com/pricing/
https://firebase.google.com/pricing/
https://firebase.google.com/pricing/
https://firebase.google.com/pricing/
https://firebase.google.com/pricing/

Firebase - Flutter's Best Friend Chapter 7

[100]

Connecting with Firebase
Let's first take a look at how to connect with Firebase. We will first need to ensure whether
the connections to the Firebase are made properly; to do so, follow these steps:

Create a new Flutter project in your IDE or editor1.
Open the file pubspec.yaml file2.
Add the following dependency:3.

dependencies:
 flutter:
 sdk: flutter
 cloud_firestore: ^0.9.5+2 //Add this line

For details of the latest version of the Cloud Firestore plugin for Flutter, visit
the Pub site: https://pub.dartlang.org/packages/cloud_firestore.

Next, to make your connection, in your IDE or using command line run the4.
following:

flutter packages get

Creating a Firebase project
Once the connection has been made, the next step will be to create a Firebase project. So,
let's get started. Follow the given steps to create your project:

Open the website https:/ /firebase. google. com and log in or sign up. You can1.
use your Google credentials to log in here.
Next, click on Add Project.2.

https://pub.dartlang.org/packages/cloud_firestore
https://firebase.google.com
https://firebase.google.com
https://firebase.google.com
https://firebase.google.com
https://firebase.google.com
https://firebase.google.com
https://firebase.google.com
https://firebase.google.com
https://firebase.google.com

Firebase - Flutter's Best Friend Chapter 7

[101]

Once you click this option, you will see the following screen:3.

Add a Project name (for example: Firebase Flutter Demo App in our case).4.
The Project ID gets auto-generated, or you could type a unique project ID of
your own. They are globally unique identifiers.
Select the country in Locations and then proceed to accept the terms and5.
conditions before you click Create project.

Firebase - Flutter's Best Friend Chapter 7

[102]

Click the Create project option, and wait a few seconds before the Firebase6.
console shows the message displayed in the following screenshot:

If your screen shows the Your new project is ready text, as shown in the7.
preceding screenshot, you can click the Continue button.
Once that is done, you will be shown the project settings dashboard of the app as8.
follows:

Choose platform-specific Firebase configurations, based on which app platform9.
you will be building an app for, and click on the respective icon. In our case,
since we are building an Android app, we will click on the Android icon to
proceed.

Firebase - Flutter's Best Friend Chapter 7

[103]

Registering an app using a package name
This step is needed to register your app's platform-specific ID with Firebase. This will
generate configuration files that we will add to our project folders. Note that in the top-
level directory of your Flutter app, iOS and Android are two of the subdirectories that hold
the respective platform-specific configuration files:

In the top-level directory of your Flutter app, you can see subdirectories; called Android
and iOS. Here,you'll find platform-specific configuration files for iOS and Android.

Firebase - Flutter's Best Friend Chapter 7

[104]

The most important field here is the Android package name. This is generally
the applicationId in your app-level build.gradle file. Another way to find the
package name is to follow these steps:

In the Flutter app directory, check the1.
android/app/src/main/AndroidManifest.xml file.
Under the Manifest tag, find the string value of the package, which will be the2.
value of the package name.
In the Firebase dialog, paste the copied package name from step 2 into the3.
Android package name field.

If you are developing the Flutter app for both iOS and Android, you need to register both
the iOS and Android versions within the same Firebase project. But if you are developing it
just for one platform, you can just click one of them.

Next, you can add the App nickname, which is an optional field. There is another optional
field Debug signing certificate SHA-1, which has to be used in the same cases if the app
uses features such as Google Sign in for Authentication, Dynamic Links, and Invites. In this
case, you have to find the debug certificate fingerprint value that you can grab and paste in
the field. Refer to the link here, https:/ /developers. google. com/android/ guides/
client-auth, for understanding how to build client auth. Since, in this example, we are not
using any of these features, we will leave it blank. Click on Register app.

Downloading and setting up the config file
The next part will be to download and set up the config file. Follow the given steps to to
download and set up the config file:

After clicking Register app, the console in this step will generate the google-1.
services.json file. Download this file to your computer.
Once the file has been downloaded, go to your Flutter app directory, and move2.
the google-services.json file that you downloaded previously into the
android/app directory.

https://developers.google.com/android/guides/client-auth
https://developers.google.com/android/guides/client-auth
https://developers.google.com/android/guides/client-auth
https://developers.google.com/android/guides/client-auth
https://developers.google.com/android/guides/client-auth
https://developers.google.com/android/guides/client-auth
https://developers.google.com/android/guides/client-auth
https://developers.google.com/android/guides/client-auth
https://developers.google.com/android/guides/client-auth
https://developers.google.com/android/guides/client-auth
https://developers.google.com/android/guides/client-auth
https://developers.google.com/android/guides/client-auth
https://developers.google.com/android/guides/client-auth
https://developers.google.com/android/guides/client-auth
https://developers.google.com/android/guides/client-auth
https://developers.google.com/android/guides/client-auth

Firebase - Flutter's Best Friend Chapter 7

[105]

After the file has been moved, in the Firebase console, click Next as shown in the3.
following screenshot:

Adding Firebase SDK
Now that we have downloaded and set up the config file, the penultimate step is to add
Firebase SDK to your project. The Google services plugin for Gradle ensures that the JSON
file you downloaded is read. In order to enable Google APIs or Firebase services in your
application, you have to add a google-services dependency. Two minor modifications
are needed to build.gradle files to use the plugin. Take a look at the following:

Project-level build.gradle (<project>/build.gradle):1.

buildscript {
dependencies
{
// Add this line
classpath 'com.google.gms:google-services:4.2.0'
}
}

Firebase - Flutter's Best Friend Chapter 7

[106]

App-level build.gradle (<project>/<app-module>/build.gradle):2.

dependencies {
 // Add this line
 implementation 'com.google.firebase:firebase-core:16.0.1' }
...
// Add to the bottom of the file
apply plugin: 'com.google.gms.google-services'

Click the Sync Now option to complete this process. 3.

Verifying the configuration
Once the previous steps are complete, we have to verify whether your Flutter app is
connected to Firebase. To ensure this, follow these steps:

Build the project and run it on the device connected to your computer.1.
Once the app gets run on the phone, the Firebase console automatically detects2.
the configurations and displays a success message as follows:

After you click Continue to console, you will be taken to the console showing3.
the project name and the other settings:

Firebase - Flutter's Best Friend Chapter 7

[107]

In the next section, we will see how to connect to the Cloud Database.

Creating a Cloud Firestore Database
Once the Firebase-Flutter set up is complete, you are all set to build the app. We will now
set up a Cloud Firestore database and initialize some values. Follow these steps:

Under the Develop option, click on Database.1.
In the panel shown, click Create database:2.

Firebase - Flutter's Best Friend Chapter 7

[108]

After clicking, you will see a pop-up panel: Security rules for Cloud Firestore.3.
Select Start in test mode and enable it:

We select test mode because we want anyone with the database reference to be4.
able to read or write to the database. When you build the production version of
the app, ensure you set up security rules. You can read about these rules
here: https:/ / firebase. google. com/ docs/ reference/ rules/ rules. After
clicking Enable, the Cloud Firestore will be provisioned with security rules and
will be ready for use.

https://firebase.google.com/docs/reference/rules/rules
https://firebase.google.com/docs/reference/rules/rules
https://firebase.google.com/docs/reference/rules/rules
https://firebase.google.com/docs/reference/rules/rules
https://firebase.google.com/docs/reference/rules/rules
https://firebase.google.com/docs/reference/rules/rules
https://firebase.google.com/docs/reference/rules/rules
https://firebase.google.com/docs/reference/rules/rules
https://firebase.google.com/docs/reference/rules/rules
https://firebase.google.com/docs/reference/rules/rules
https://firebase.google.com/docs/reference/rules/rules
https://firebase.google.com/docs/reference/rules/rules
https://firebase.google.com/docs/reference/rules/rules
https://firebase.google.com/docs/reference/rules/rules
https://firebase.google.com/docs/reference/rules/rules
https://firebase.google.com/docs/reference/rules/rules
https://firebase.google.com/docs/reference/rules/rules

Firebase - Flutter's Best Friend Chapter 7

[109]

From the following panel, click Add collection:5.

We presume that we would have just one collection in Firestore, called Votes. A6.
collection is a set of documents that comprise the data:

Click Next.7.
A collection must contain at least one document, which is Cloud Firestore's unit8.
of storage. You can either use an auto-generated ID or have a custom ID. In our
case, we use partyvotes.

Firebase - Flutter's Best Friend Chapter 7

[110]

For the existing Field, enter the value of the name (in our case, it's VoteCount),9.
select the data Type, then enter the Value of partyvotes. Since its an Integer, we
select the number and set its initial value to be 0:

Click Save. 10.
After adding several documents to your collection, your database should look11.
something like this:

Firebase - Flutter's Best Friend Chapter 7

[111]

Firestore is a NoSQL database, which means that we would not be working with rows and
columns. Now we will build the layout of the app. Using the Firestore details, we will
construct the list layout, which will generate the list items runtime based on the values in
the Firestore and read/update the fresh values when tapped on the list item into the
Firestore database. The following is the main.dart file:

import 'package:cloud_firestore/cloud_firestore.dart';
import 'package:flutter/material.dart';

void main() => runApp(MyApp());

// Creating Object to temporary make the list items. We will replace it
when we connect it to Firestore

final party = [
 {"partyname": "BJP", "rating": 1},
 {"partyname": "Congress", "rating": 3},
 {"partyname": "AAP", "rating": 5},
 {"partyname": "Janata Dal Party", "rating": 9},
 {"partyname": "NOTA", "rating": 11},
];

class MyApp extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: 'State Party Elections - Worker Profile',
 home: MyHomePage(),
);
 }
}

class MyHomePage extends StatefulWidget {
 @override
 _MyHomePageState createState() {
 return _MyHomePageState();
 }
}

class _MyHomePageState extends State<MyHomePage> {
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(title: Text('Party Votes')),
 body: _buildBody(context),
);
 }

Firebase - Flutter's Best Friend Chapter 7

[112]

 Widget _buildBody(BuildContext context) {
 // We will add the code here in the next section
 return _buildList(context, party);
 }

 Widget _buildList(BuildContext context, List<Map> snapshot) {
 return ListView(
 padding: const EdgeInsets.only(top: 22.0),
 children: snapshot.map((data) => _buildListItem(context,
data)).toList(),
);
 }

 Widget _buildListItem(BuildContext context, Map data) {
 final result = Record.fromMap(data);

// Adding the padding to ensure enough space is given
 return Padding(
 key: ValueKey(result.name),
 padding: const EdgeInsets.symmetric(horizontal: 15.0, vertical: 7.0),
 child: Container(
 decoration: BoxDecoration(
 border: Border.all(color: Colors.red),
 borderRadius: BorderRadius.circular(6.0),
),
// Showing the list item, with name towards the left and the votes to the
right

 child: ListTile(
 title: Text(record.partyname),
 trailing: Text(record.partyvotes.toString()),
 onTap: () => print(record),
),
),
);
 }
}

class Record {
 final String partyname;
 final int partyvotes;
 final DocumentReference reference;

 Record.fromMap(Map<String, dynamic> map, {this.reference})
 : assert(map['partyname'] != null),
 assert(map['partyvotes'] != null),
 name = map['partyname'],
 votes = map['partyvotes'];

Firebase - Flutter's Best Friend Chapter 7

[113]

 Record.fromSnapshot(DocumentSnapshot snapshot)
 : this.fromMap(snapshot.data, reference: snapshot.reference);

 @override
 String toString() => "Record<$partyname:$partyvotes>";
}

We have the collection ready on Firestore Cloud. In the previous example, we have used
the party object. It's time we now use the Firestore cloud data from our collection to be
shown. We can do that by calling Cloud Firestore using a Firestore.instance reference.
For example, if you wish to call a specific collection from your Firestore Cloud database,
you can use the following command to return a stream of snapshots:

Firestore.instance.collection('collection_name').snapshots()

Streams are of two types: single subscription or broadcast. Streams are responsible for
providing an asynchronous sequence of data. User-generated events and data read from
files are the two data sequences. Now, using StreamBuilder widget, we will inject the
stream of data into the user interface we have created. One of the classic use cases of the
StreamBuilder is that, whenever there is a change in the Firestore values, the list gets
updated automatically.

Look for the _buildBody method in the previous code and replace the content with this
code:

Widget _buildBody(BuildContext context) {
 return StreamBuilder<QuerySnapshot>(
 stream: Firestore.instance.collection('party').snapshots(),
 builder: (context, snapshot) {
 if (!snapshot.hasData) return LinearProgressIndicator();
 return _buildList(context, snapshot.data.documents);
 },
);
}

Adding the preceding snippet will produce some errors. The _buildListItem method
still thinks it's getting a map. Hence, we will need to make a couple of changes.

Firstly, make the method to accept DocumentSnapshot instead of a list of a map:

Widget _buildList(BuildContext context, List<DocumentSnapshot> snapshot)
{
}

Firebase - Flutter's Best Friend Chapter 7

[114]

Secondly, use the constructor Record.fromSnapshot() to build the record. The method's
updated code as follows:

Widget _buildListItem(BuildContext context, DocumentSnapshot data) {
 final result = Record.fromSnapshot(data);

Next, use the onTap: () method to ensure whenever a list item is clicked, the votes are
updated into the Firestore database. Whenever you click List Item, Cloud Firestore notifies
all listeners with the updated snapshot. The app is actively engaged using StreamBuilder,
which acts to update with the new data. For a single user, it is fine, but when you have
multiple users, there is a chance of Race Condition may occur.

The complete code for main.dart is as follows:

import 'package:cloud_firestore/cloud_firestore.dart';
import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: 'State Party Elections - Worker Profile',
 home: MyHomePage(),
);
 }
}

class MyHomePage extends StatefulWidget {
 @override
 _MyHomePageState createState() {
 return _MyHomePageState();
 }
}

class _MyHomePageState extends State<MyHomePage> {
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(title: Text('Party Votes')),
 body: _buildBody(context),
);
 }

 Widget _buildBody(BuildContext context) {
 return StreamBuilder<QuerySnapshot>(

Firebase - Flutter's Best Friend Chapter 7

[115]

 stream: Firestore.instance.collection('party').snapshots(),
 builder: (context, snapshot) {
 if (!snapshot.hasData) return LinearProgressIndicator();

 return _buildList(context, snapshot.data.documents);
 },
);
 }

 Widget _buildList(BuildContext context, List<DocumentSnapshot> snapshot) {
 return ListView(
 padding: const EdgeInsets.only(top: 22.0),
 children: snapshot.map((data) => _buildListItem(context,
data)).toList(),
);
 }

 Widget _buildListItem(BuildContext context, DocumentSnapshot data) {
 final result = Record.fromSnapshot(data);

 return Padding(
 key: ValueKey(result.name),
 padding: const EdgeInsets.symmetric(horizontal: 15.0, vertical:
 7.0),
 child: Container(
 decoration: BoxDecoration(
 border: Border.all(color: Colors.red),
 borderRadius: BorderRadius.circular(6.0),
),
 child: ListTile(
 title: Text(record.name),
 trailing: Text(record.votes.toString()),
 onTap: () => Firestore.instance.runTransaction((transaction)
 async {
 final freshFBsnapshot = await
 transaction.get(record.reference);
 final updated = Record.fromSnapshot(freshFBsnapshot);

 await transaction
 .update(record.reference, {'partyvotes':
 updated.votes + 1});
 }),
),
),
);
 }
}

Firebase - Flutter's Best Friend Chapter 7

[116]

class Record {
 final String partyname;
 final int partyvotes;
 final DocumentReference reference;

 Record.fromMap(Map<String, dynamic> map, {this.reference})
 : assert(map['partyname'] != null),
 assert(map['partyvotes'] != null),
 name = map['partyname'],
 votes = map['partyvotes'];

 Record.fromSnapshot(DocumentSnapshot snapshot)
 : this.fromMap(snapshot.data, reference: snapshot.reference);

 @override
 String toString() => "Record<$partyname:$partyvotes>";
}

Once you run the code, try clicking on List Items and you will see the updates values
mapped on the Firestore Cloud database. You could also try updating the List Item names
(in our case, the Party names) in the Firestore Cloud database, and you will see the List
Item option updating.

Firebase Cloud Messaging
Firebase Cloud Messaging (FCM) is an effective way to drive engagement within the app
using the app notification. Using FCM, you can send two kinds of messages to the client
device:

Notification messages that are directly handled by FCM SDK 1.
Data messages 2.

Both these messages have a maximum payload of 4KB. When sending messages from the
Firebase console, there is a 1,024 character limit. Firebase has Cloud Messaging as well as
In-App messaging, but in this section, we will discuss only Firebase Cloud messaging.

Firebase - Flutter's Best Friend Chapter 7

[117]

In the Firebase console, click on Grow | Cloud Messaging in the left panel. Follow this by
clicking Send your first message. as shown in the following screenshot:

To test the message on your device, FCM tokens are needed. Use the following Android
code to generate these tokens:

FirebaseInstanceId.getInstance().getInstanceId()
 .addOnCompleteListener(new OnCompleteListener<InstanceIdResult>
 () {
 @Override
 public void onComplete(@NonNull Task<InstanceIdResult>
 actionable) {
 if (!actionable.isSuccessful()) {
 Log.w(TAG, "getInstanceId failed",
 actionable.getException());
 return;
 }

 // Get new Instance ID token
 String tokenID = actionable.getResult().getToken();

 // Log and toast
 String message = getString(R.string.msg_token_fmt,
 tokenID);
 Log.d(TAG, message);
 Toast.makeText(MainActivity.this, message,
 Toast.LENGTH_SHORT).show();
 }
 });

Firebase - Flutter's Best Friend Chapter 7

[118]

FCM also allows configuring messages specific to targets such as GeoLocations, versions
of the app, Languages, and User Audiences. This case is ideal when you wish to send
notifications to a specific set of users.

Firebase Remote Config
Using Firebase's Remote Config API, you can make changes to the app without the user
actually downloading an app update. One example of this is when you push a new update
to the app in production, you can show the pop-up message to the user when they launch
the app about the update.

To set up Firebase Remote Config, head over to the Grow tab in the Firebase console and
click on Remote Config as shown in the following screenshot:

Add the Parameter key and the Default value. There is an optional field for adding the
description. Click Add Parameter to proceed. Avoid storing any confidential information in
the remote config. Firebase also allows the setting of conditions for the parameter. For
example, if you want to show a specific welcome message to a user in India and a different
message to a user in the USA, remote configuration can come in handy.

Disclaimer: Some of the code files are are licensed under the Apache 2.0
License and are available on https:/ / firebase. google. com/ docs/
cloud- messaging/ android/ client.

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://firebase.google.com/docs/cloud-messaging/android/client
https://firebase.google.com/docs/cloud-messaging/android/client
https://firebase.google.com/docs/cloud-messaging/android/client
https://firebase.google.com/docs/cloud-messaging/android/client
https://firebase.google.com/docs/cloud-messaging/android/client
https://firebase.google.com/docs/cloud-messaging/android/client
https://firebase.google.com/docs/cloud-messaging/android/client
https://firebase.google.com/docs/cloud-messaging/android/client
https://firebase.google.com/docs/cloud-messaging/android/client
https://firebase.google.com/docs/cloud-messaging/android/client
https://firebase.google.com/docs/cloud-messaging/android/client
https://firebase.google.com/docs/cloud-messaging/android/client
https://firebase.google.com/docs/cloud-messaging/android/client
https://firebase.google.com/docs/cloud-messaging/android/client
https://firebase.google.com/docs/cloud-messaging/android/client
https://firebase.google.com/docs/cloud-messaging/android/client
https://firebase.google.com/docs/cloud-messaging/android/client
https://firebase.google.com/docs/cloud-messaging/android/client

Firebase - Flutter's Best Friend Chapter 7

[119]

Summary
We started this chapter by looking at how Firebase can help us build apps quicker using the
Firestore Cloud database—the NoSQL way to help app developers build apps in real-time.
We also looked at an example that captured ListView with the Firestore Cloud database.
This section was followed by looking at how Cloud messaging works. In the last section,
we discussed some use cases for using Firebase Remote Config for your apps.

In the next chapter, we will take a look at how to deploy your Flutter applications.

8
Deploying Flutter Apps

Deploying the Flutter app is one of the easiest processes to enable developers to prepare the
apps for publishing on app stores. By now, you must have learned Google's mobile app
SDK provides several features to craft high-quality native interfaces on iOS and Android, in
record time.

In this chapter, we will look at the following topics:

Deploying on Android
Deploying on iOS

Deploying on Android
In the course of this book so far, the build that we have built is a debug type. Ideally, this is
used for testing the app before following the steps to produce the release version of the app
to be uploaded. Flutter also allows creating flavors of the app. If you wish to build a
production version of the app you have developed, follow the upcoming steps.

Reviewing the AndroidManifest.xml file
This file holds some of the major global settings of the app that come in handy when
building the production version of the app. It can be located at <app
dir>/android/app/src/main. When you click on the AndroidManifest.xml file, you
will find the snippet in the Application tag shown as follows:

…..
android:name="io.flutter.app.FlutterApplication"
android:label="flutter_app_battery"
android:icon="@mipmap/ic_launcher">
….

Deploying Flutter Apps Chapter 8

[121]

The explanation for the properties visible in the preceding code are as follows:

android.name: This property sets the package name for the app
android.label: This property sets the final name of the app
android:icon: This property sets the launch icon for the app

….
<uses-permission android:name="android.permission.INTERNET"/>
…..

The <uses-permission> tag allows developers to set the permission needed for the
developers in the app. For example, if you wish to use the internet, the preceding property
has to be used, or if you wish to access the camera, <uses-permission
android:name="android.permission.CAMERA"/> has to be used. This will manifest
element for all camera features. The developers can also demand to ask the users for the
permission access in the runtime mode.

The build.gradle configurations
The next step is to review the Gradle build file situated in <app dir>/android/app and
to confirm whether the values entered in the following parameters are correct:

Set the VersionCode and VersionName in the following snippet. Please note
that the VersionCode value should be unique for every uploaded build and that
it is an absolute value. The greatest value the Google Play store allows for
versionCode is 2100000000. On the other hand, VersionName is a string
value. There is no purpose of VersionName to show up the value on the play
store. The string value can be cascaded as a <major>.<minor>.<point>
string—for example, 1.2.2:

…….
…….
def flutterVersionCode =
localProperties.getProperty('flutter.versionCode')
if (flutterVersionCode == null)
{ flutterVersionCode = '1' }
 def flutterVersionName =
localProperties.getProperty('flutter.versionName')
if (flutterVersionName == null)
{ flutterVersionName = '1.0' }
……
……

Deploying Flutter Apps Chapter 8

[122]

applicationId: This is to enable developers to specify the final, unique
application ID.
minSdkVersion and targetSdkVersion: These two values specify the
minimum API level and the target API level on which the app is designed to run
on:

defaultConfig
{ // TODO: Specify your own unique Application ID
(https://developer.android.com/studio/build/application-id.html).
applicationId "deviceinformation.flutterappbattery"
minSdkVersion 16
targetSdkVersion 27
versionCode flutterVersionCode.toInteger()
versionName flutterVersionName
testInstrumentationRunner
"android.support.test.runner.AndroidJUnitRunner"
}

Icons within apps
A trendy, eye-catching icon can be a great trigger for someone to launch the app. By
default, the launcher icon is a default icon. By adhering to the Android Launcher Icon
guidelines, you can build your own icon that can be used for the app's launch trigger from
the mobile screen:

Once your icon files are ready, check the <app1.
dir>/android/app/src/main/res/ directory and place the files in the
respective folders using configuration qualifiers. You can read more about this
here: https:/ / developer. android. com/ guide/ topics/ resources/ providing-
resources#AlternativeResources.
Once you have placed the files in the folders, simply head to2.
AndroidManifest.xml and update the application tag's android:icon
attribute.
To ensure the icon has been replaced, Flutter run and inspect the app icon in3.
the launcher.

https://developer.android.com/guide/topics/resources/providing-resources#AlternativeResources
https://developer.android.com/guide/topics/resources/providing-resources#AlternativeResources
https://developer.android.com/guide/topics/resources/providing-resources#AlternativeResources
https://developer.android.com/guide/topics/resources/providing-resources#AlternativeResources
https://developer.android.com/guide/topics/resources/providing-resources#AlternativeResources
https://developer.android.com/guide/topics/resources/providing-resources#AlternativeResources
https://developer.android.com/guide/topics/resources/providing-resources#AlternativeResources
https://developer.android.com/guide/topics/resources/providing-resources#AlternativeResources
https://developer.android.com/guide/topics/resources/providing-resources#AlternativeResources
https://developer.android.com/guide/topics/resources/providing-resources#AlternativeResources
https://developer.android.com/guide/topics/resources/providing-resources#AlternativeResources
https://developer.android.com/guide/topics/resources/providing-resources#AlternativeResources
https://developer.android.com/guide/topics/resources/providing-resources#AlternativeResources
https://developer.android.com/guide/topics/resources/providing-resources#AlternativeResources
https://developer.android.com/guide/topics/resources/providing-resources#AlternativeResources
https://developer.android.com/guide/topics/resources/providing-resources#AlternativeResources
https://developer.android.com/guide/topics/resources/providing-resources#AlternativeResources
https://developer.android.com/guide/topics/resources/providing-resources#AlternativeResources

Deploying Flutter Apps Chapter 8

[123]

Signing the app
This is one of the key steps before publishing the app on the Google Play store. To publish
the app, signing the app using a digital signature is a key part. Follow these steps to sign
the app:

Create a keystore: If you already have a keystore, skip to step 2. If you wish to1.
build the new keystore, use the KeyTool tool to generate one using this
command-line code:

keytool -genkey -v -keystore ~/appkey.jks -keyalg RSA -keysize 2048
-validity 10000 -alias appkey

KeyTool is part of the Java JDK, which is installed as part of Android Studio.
Ensure you give an absolute path before running the command line. Also note
that the file generated has to be kept private.

Reference keystore from the app: Next, create a file named2.
<app dir>/android/key.properties that contains a reference to your
keystore. Keep this file private. Take a look at this code:

storePassword=<password used in the previous step>
keyPassword=<password used in the previous step>
keyAlias=appkey
storeFile=<location of the key store file, e.g. /Users/<user
name>/appkey.jks>

Configure signing in Gradle: Head to the <app3.
dir>/android/app/build.gradle file and replace android { with the
following code:

def keystoreProperties = new Properties()
def keystorePropertiesFile = rootProject.file('key.properties')
if (keystorePropertiesFile.exists()) {
 keystoreProperties.load(new
FileInputStream(keystorePropertiesFile))
}
android {

Next, remove the following code:4.

buildTypes {
 release {
 // TODO: Add your own signing config for the release build.
 // Signing with the debug keys for now, so `flutter run --
 //release` works.

Deploying Flutter Apps Chapter 8

[124]

 signingConfig signingConfigs.debug
 }
}

Replace it with this code:

signingConfigs {
 release {
 keyAlias keystoreProperties['keyAlias']
 keyPassword keystoreProperties['keyPassword']
 storeFile file(keystoreProperties['storeFile'])
 storePassword keystoreProperties['storePassword']
 }
}
buildTypes {
 release {
 signingConfig signingConfigs.release
 }
}

Once these steps are performed, your app's release builds will be signed automatically.

Using ProGuard
By default, Flutter build generation does not obfuscate or minify Android Host. You may
want to reduce the size of the APK or save the code from reverse engineering. ProGuard is
one such way to protect your code:

Configure ProGuard: Create a new file called /android/app/proguard-1.
rules.pro and add these rules:

#Flutter Wrapper
-keep class io.flutter.app.** { *; }
-keep class io.flutter.plugin.** { *; }
-keep class io.flutter.util.** { *; }
-keep class io.flutter.view.** { *; }
-keep class io.flutter.** { *; }
-keep class io.flutter.plugins.** { *; }

Using the preceding code, you can protect only the engine libraries in Flutter. For
protecting the others, add the code as per your development needs.

Deploying Flutter Apps Chapter 8

[125]

Enable obfuscation and/or minification: Open2.
the /android/app/build.gradle file and locate the buildTypes definition:

 …..
 …..
buildTypes {
 release {
 // TODO: Add your own signing config for the release
build.
 // Signing with the debug keys for now, so `flutter run
--release` works.
 signingConfig signingConfigs.debug
 }
…..
…..

Inside, release the configuration set minifyEnabled and useProguard flags to
true. Note also point ProGuard to the file you have created in step 1. The
refreshed code will look like this:

…
…
buildTypes {
 release {
 signingConfig signingConfigs.release
 minifyEnabled true
 useProguard true
 proguardFiles getDefaultProguardFile('proguard-
android.txt'), 'proguard-rules.pro'
 }
…
…

Building a release APK
Generating a release is just a two-step process after you have successfully completed the
preceding steps. Using the command line, perform the following:

cd <app dir> (note to replace <app dir> with your application's directory1.
path).
Run flutter build apk. This will create a release APK at <app2.
dir>/build/app/outputs/apk/release/app-release.apk.

This build can be published on the Google Play store. Ensure you read the publishing
guidelines before the app is uploaded.

Deploying Flutter Apps Chapter 8

[126]

Deploying on iOS
As in the case of the Google Play store, Apple follows its own app publishing guidelines as
well. Please be sure to read all the information regarding the same, before building the app.
Here is the link you can check to read more details about Apple app publishing: https:/ /
developer.apple. com/ app- store/ review/ . Once the app is submitted, as in the case of
Google as well, Apple will check the app to adhere to its publishing guidelines. Note that
Flutter supports iOS 8.0 and later. This is important to know when we set the Xcode for
build generation.

As in the case of Google, we use the Google Play Developer console. In the case of Apple,
we will use App Store Connect, which was previously known as iTunes. This console is
used to manage your app's life cycle. This console will help you set the app's name,
descriptions, and app screenshots, which will be published along with the app, pricing, and
manage releases.

Registering Bundle ID
Every app that is published on the Apple store has a unique Bundle ID that is identified
with Apple. To register a new Bundle ID for your app, follow these steps:

Open the App IDs page of your Apple developer account.1.
Click on the + icon to create a new Bundle ID.2.
Type an app name and select Explicit App ID, and enter an ID.3.
Select the services your app is going to use and then click Continue.4.
The next step confirms the details. Now, click Register to register your Bundle5.
ID.

Generating an application record on App Store
connect
To register an app on the App Store connect, please follow these steps:

Open Apple App Store connect in your browser and click My Apps.1.
Click on the + icon at the top-left corner of the My Apps page | New App.2.

https://developer.apple.com/app-store/review/
https://developer.apple.com/app-store/review/
https://developer.apple.com/app-store/review/
https://developer.apple.com/app-store/review/
https://developer.apple.com/app-store/review/
https://developer.apple.com/app-store/review/
https://developer.apple.com/app-store/review/
https://developer.apple.com/app-store/review/
https://developer.apple.com/app-store/review/
https://developer.apple.com/app-store/review/
https://developer.apple.com/app-store/review/
https://developer.apple.com/app-store/review/
https://developer.apple.com/app-store/review/
https://developer.apple.com/app-store/review/
https://developer.apple.com/app-store/review/

Deploying Flutter Apps Chapter 8

[127]

Within the pop-up screen, fill out your app's details. In the Platforms section,3.
ensure that iOS is checked. At this point, it is worth mentioning that Flutter does
not, as yet, support tvOS. So, leave that checkbox unchecked. The name of the
app can't be longer than 30 characters. In the SKU section, add a unique ID for
your app that is not visible in the App Store:

Check Create.4.
Navigate to the application details for your app that was created using the5.
previous steps, and select App Information from the sidebar.
Select the Bundle ID in the General Information section.6.

Deploying Flutter Apps Chapter 8

[128]

Verifying the Xcode settings
Verifying build-publishing settings in Xcode is rather simple compared to that in Android
Studio. Firstly, navigate to the target's settings in Xcode and do the following:

Open Runner.xcworkspace in your app's ios folder, in Xcode.1.
Select the Runner project from the Xcode project navigator, which shows up the2.
app's settings. Select the Runner target from the main view's sidebar.
Select the General tab.3.

The displayed information will need your attention to cross-check the important settings;
so in the Identity section, look at the following details:

Display Name: This is the name of the app that will be displayed in the App
Store and anywhere else where the name is used
Bundle Identifier: This is the app ID you registered on App Store Connect, as
discussed in the previous steps

In the Signing the app section, please take a look at the following details:

Automatically manage signing: Defines whether Xcode should automatically
manage app signing and provisioning. By default, it is set to True.
The Team: Select the team associated with your registered Apple Developer
account. If you wish to add some more members, click on Add Account,
followed by updating the settings.

Finally in the Deployment section, check the Deployment Target: that holds the value for
the minimum iOS version your app will support.

Choosing the app icon
As in the case of Android Studio, even in the case of iOS, a placeholder icon is created. If
you wish to have your own icon, please read the iOS app icon guidelines before proceeding
with the following steps:

Select Assets.xcassets in the Runner folder; this will be present in the Xcode1.
project navigator
If your icons are ready, update the placeholder icons with your own app icons2.
that have been generated
To check whether the icon is updated, run your app by using Flutter Run3.

Deploying Flutter Apps Chapter 8

[129]

Creating the build archive
This is the final step for creating the build archive and then uploading it to the Apple Store.
On the command line, follow these steps in your application directory:

Run flutter build iOS to create a release build.1.
Perform this only if your Xcode is below version 8.3. To ensure that Xcode2.
refreshes the release mode configuration, restart your Xcode workspace.

In Xcode, please use these steps to configure the app version and build:

In Xcode, open Runner.xcworkspace in your app's ios folder.1.
Select Product | Scheme | Runner.2.
Select Product | Destination | Generic iOS Device.3.
Select Runner in the Xcode project navigator followed by Runner target in the4.
settings view sidebar.
In the Identity section, update the version and also update the Build identifier5.
to a unique build number. This is used to track the number of the build
uploaded. Each build should have a unique build number.

The final step is to create the build archive and upload it to App Store Connect:

Select the product and then Achieve to product a build archive1.
In the Xcode organizer window in the sidebar | select the iOS app | select the2.
build archive that you just produced
Click the Validate button3.
After the archive is validated, you can click the Upload to App store option4.

If there are any errors, reproduce the build and try to repeat the process again.

Summary
Once you have worked on your awesome app, deployment and publishing are key aspects.
We covered how to publish the android and iOS app on Play Store. It is important to know
that app upload just lists the app. You should also look at the App Store as key techniques
to have a better visibility for the apps.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

React and React Native
Adam Boduch

ISBN: 9781786465658

Craft reusable React components
Control navigation using the React Router to help keep your UI in sync with
URLs
Build isomorphic web applications using Node.js
Use the Flexbox layout model to create responsive mobile designs
Leverage the native APIs of Android and iOS to build engaging applications
with React Native
Respond to gestures in a way that’s intuitive for the user
Use Relay to build a unified data architecture for your React UIs

https://www.packtpub.com/web-development/react-and-react-native

Other Books You May Enjoy

[131]

React Native Cookbook
Crysfel Villa

ISBN: 9781786462558

Build simple and complex UIs using React Native
Create advanced animations for UI components
Build universal apps that run on phones and tablets
Leverage Redux to manage application flow and data
Expose both custom native UI components and application logic to React Native
Integrate with existing native applications on iOS and Android
Deploy your React Native application to the Google Play and Apple App Store
Add automated testing to your React Native application

https://www.packtpub.com/application-development/react-native-cookbook

Other Books You May Enjoy

[132]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
accessibility scanner
 reference 73
accessibility, Flutter
 large font 73
 screen contrast 74
 screen readers 74
Android BatteryManager API
 reference 88
Android
 deploying 120
AndroidManifest.xml file
 reviewing 120
animation categories
 physics-based animations 50
 tween animations 50
animations, in Flutter
 about 49
 categories 50
 common patterns 50
AOT (Ahead Of Time) 9
app icon
 selecting 128
App Store connect
 application record, generating on 126, 127
app
 icons 122
 signing 123, 124
AppBar widget 36
Apple app publishing
 reference 126
application record
 generating, on App Store connect 126, 127
application
 dart analyzer 18
 dart observatory 18

 debugging 17
 visual debugging 18

B
build archive
 creating 129
build.gradle
 configurations 121
Bundle ID
 registering 126

C
Cloud Firestore Database
 creating 107, 108, 110, 111, 113, 114, 116
Column widget 38, 42
component testing 24
constraints
 in Flutter 48
container widget 28, 29
cross-platform
 versus Flutter 8

D
Dart analyzer 18
dart observatory
 about 18
 reference 18
divider class 56

F
Firebase Cloud Messaging (FCM) 116, 118
 reference 118
Firebase project
 app, registering package name used 103, 104
 config file, downloading 104
 config file, setting up 104

[134]

 configuration, verifying 106, 107
 creating 100, 101, 102
 SDK, adding 105
Firebase Remote Config API 118
Firebase Security Rules
 reference 108
Firebase
 about 99
 connecting with 100
 reference 100
Floating Action Button (FAB) 16
Flutter application
 integration testing 25
 internationalizing 75, 76, 78
 testing 23
 unit testing 23
 widget testing 24
Flutter packages
 code, adding to file 83, 85, 86
 dependency, adding to app 82, 83
 reference 80
 searching for 80, 81
 using 80
Flutter platform client
 creating 88, 91
Flutter project
 creating 88
Flutter, for Linux
 download link 13
Flutter, for Mac
 download link 12
Flutter
 accessibility 73
 approaches 9, 10
 comparing, to frameworks 6
 constraints 48
 data, fetching from server 68, 69, 70, 72
 download link 12
 installing 11
 installing, on Linux 13
 installing, on Windows 12
 networking 64
 origin 5
 packages, using 65
 reference 5

 REST service, building 66
 using 10
 versus cross-platform 8
 versus native platforms 6, 7
 versus WebView systems 7

G
grid lists 61

H
horizontal lists 59, 61
Hot Reload 5, 16, 17

I
icon widget 33
icons
 within apps 122
IDE
 about 13
 using 14, 15
images widget 30, 31
inspect 21
iOS
 deploying on 126
iTunes 126

J
JIT (Just In Time) 9
JSON Server
 components 66

L
Linux
 Flutter, installing on 13
ListView widget 42
ListView
 about 50
 List Widget, using 51, 52
 ListView.Builder, using 52, 54
 ListView.custom constructor, using 58
 separating, by calling ListView.separated 56, 58
 using 50

[135]

M
Mac
 Flutter, installing on 12
MainActivity.Java
 changes, making 91, 92, 95
material grid 20

N
native platforms
 versus Flutter 6, 7
networking
 in Flutter 64
Node JS
 download link 12
null widget 29

P
package dependency
 adding, to app 82
 specifying, ways 83
packages, Flutter
 package dependency, adding to app 65
 upgrading 66
PlaceHolder widget 37
platform channels
 using 86, 88
plugin
 building 97
 publishing 97
ProGuard
 using 124

Q
quickfix 14

R
RaisedButton 34
React Native 8
release APK
 building 125
REST service
 building 66
 JSON Server, setting up 66
 json-server, running 68

 resource file, building 67
Row widget 40, 42

S
sample app
 exploring 15, 16
Scaffold widget 35
scrolling widgets
 using 50
silvers 63
stateful widgets 44
stateless widgets 44

T
Test Driven Development (TDD) 23
text widget 31, 32

V
visual debugging
 about 18
 Flutter widget inspector 21, 22
 material grid 20
 showPerformanceOverlay variable 20

W
WebView systems
 versus Flutter 7
widget
 about 6
 creating 43
 navigation 45
 routing 45
 value, returning when navigating 46
Widgets Catalog
 AppBar 36
 building 27
 Column widget 38
 container 28, 29
 icon 33
 image 30, 31
 ListView widget 42
 PlaceHolder 37
 RaisedButton 34
 reference 27

 Row widget 40
 Scaffold 35
 test 32
 text 31
Windows
 Flutter, installing on 12

X
Xamarin 8
Xcode settings
 verifying 128

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introducing Flutter
	The origin of Flutter
	What is a widget?
	Comparing Flutter to existing frameworks
	Native platforms
	WebView systems
	Other cross-platform approaches
	Flutter's approach

	Why use Flutter?
	Summary

	Chapter 2: Getting Started with Flutter
	Installing Flutter
	Installing Flutter on Windows
	Installing Flutter on Mac
	Installing Flutter on Linux

	Getting familiar with IDEs
	Some quick tips for using your desired IDE

	Exploring a sample app
	Hot Reload
	Debugging an application
	Dart analyzer
	Dart observatory
	Visual debugging
	Material grid variable
	The showPerformanceOverlay variable
	Flutter widget inspector

	Testing a Flutter application
	Unit testing
	Widget testing
	 Integration testing

	Summary

	Chapter 3: Widgets, Widgets Everywhere
	Widgets Catalog
	Container
	Image
	Text
	Icon
	RaisedButton
	Scaffold
	AppBar
	PlaceHolder
	Column
	Row
	ListView
	A note about Row, Column, and ListView

	Creating widgets
	Stateless widgets
	Stateful widgets

	Routing and navigation
	Returning a value when navigating

	Summary

	Chapter 4: Exploiting the Widgets Variety
	Constraints in Flutter
	Introducing animations in Flutter
	Animation categories
	Common patterns

	Using ListView and scrolling widgets
	ListView
	Using List<Widget>
	Using ListView.Builder
	ListView separated by calling ListView.separated
	Using ListView.custom constructor

	Horizontal lists
	Grid lists

	Introducing silvers
	Summary

	Chapter 5: Widening our Flutter Horizons
	Networking in Flutter
	Using packages
	Adding existing package dependency to an app
	Upgrading existing package

	Building a REST service
	Setting up JSON Server
	Building a resource file
	Run the json-server

	Fetching data from the server

	Accessibility in Flutter
	Large font
	Screen readers
	Screen contrast

	Internationalizing Flutter apps
	Summary

	Chapter 6: Using a Platform to Power Flutter Apps
	Using Flutter packages
	Searching for the package
	Adding a package dependency to an app
	Ways to specify package dependencies

	Adding the code to the file

	Using platform channels
	Creating a new Flutter project
	Creating a Flutter platform client
	Making changes to MainActivity.Java

	Building and publishing your own plugin
	Summary

	Chapter 7: Firebase - Flutter's Best Friend
	Connecting with Firebase
	Creating a Firebase project
	Registering an app using a package name
	Downloading and setting up the config file
	Adding Firebase SDK
	Verifying the configuration

	Creating a Cloud Firestore Database
	Firebase Cloud Messaging
	Firebase Remote Config
	Summary

	Chapter 8: Deploying Flutter Apps
	Deploying on Android
	Reviewing the AndroidManifest.xml file
	The build.gradle configurations
	Icons within apps
	Signing the app
	Using ProGuard
	Building a release APK

	Deploying on iOS
	Registering Bundle ID
	Generating an application record on App Store connect
	Verifying the Xcode settings
	Choosing the app icon
	Creating the build archive

	Summary

	Other Books You May Enjoy
	Index

