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Preface

It seems incredible to us that it is now 18 years since our book was first published. We have 
been amazed at how well the book has been received and thankful for the kind words tutors and 
students alike have said about it. In this seventh edition of the book we have kept true to our 
vision for the book to provide conceptual explanations of statistical concepts without making 
you suffer through the formulae. We have built upon the strengths of the previous editions and 
updated our examples from the literature, updated some of the practical exercises, provided 
reflections from authors of published research and responded, with revised explanations, to a 
number of reviewers who kindly provided feedback on the sixth edition.

We wrote this book primarily for our students, most of whom disliked mathematics, and could 
not understand why they had to learn mathematical formulae when their computer software 
performed the calculations for them. They were not convinced by the argument that working 
through calculations gave them an understanding of the test – neither were we. We wanted them 
to have a conceptual understanding of statistics and to enjoy data analysis. Over the past 20 years 
we have had to adapt our teaching to large groups of students, many of whom have no formal 
training in mathematics. We found it was difficult to recommend some of the traditional statistics 
textbooks – either they were full of mathematical formulae, and perceived by the students as dull 
or boring, or they were simple, statistical cookbook recipes, which showed them how to perform 
calculations, but gave them no real understanding of what the statistics meant. We therefore 
decided to write this book, which seeks to give students a conceptual understanding of statistics 
while avoiding the distraction of formulae and calculations.

Another problem we found with recommending statistics textbooks was the over-reliance on 
the probability value in the interpretation of results. We found it difficult to convince them to 
take effect size, and confidence intervals, into consideration when the textbooks that were 
available made no mention of the debates around hypothesis testing, but simply instructed 
students to say p 6 0.05  is significant and p 7 0.05  is not significant! We hope in writing this 
book that students will become more aware of such issues.

We also wanted to show students how to incorporate the results of their analysis into 
laboratory reports, and how to interpret results sections of journal articles. Until recently, 
statistics books ignored this aspect of data analysis. Of course, we realise that the way we have 
written our example ‘results sections’ will be different from the way that other psychologists 
would write them. Students can use these sections to gain confidence in writing their own 
results, and hopefully they will build on them, as they progress through their course.

We have tried to simplify complex, sometimes very complex, concepts. In simplifying, there 
is a trade-off in accuracy. We were aware of this when writing the book, and have tried to be as 
accurate as possible, while giving the simplest explanation. We are also aware that some students 
do not use SPSS (an IBM company*) for their data analysis. IBM® SPSS® Statistics, however, 

*SPSS was acquired by IBM in October 2009.
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is the most commonly used statistical package for the social sciences, and this is why the text 
is tied so closely to SPSS. Students not using this package should find the book useful anyway. 
This edition of the book has been updated for use with SPSS version 23 and earlier.

As with the sixth edition of the book we have included information about the authors of 
articles which we have drawn upon in the writing of this book – and have included photos of 
them where possible – strictly with their permission, of course. We also asked them why they 
had chosen their particular research topic, and whether they had encountered any problems in 
the running of the experiment/study. We thought this would enrich the text. Although we have 
updated many examples from the literature, we have left in some early studies because they 
illustrate exactly the points made in the text. Some reviewers thought there should be more 
challenging activities and/or multiple choice questions. Therefore, we have added activities 
which are based on examples from the literature, and require students to interpret the material, 
in their own words. They can then compare their interpretation with the authors’ 
interpretation.

We hope that students who read the book will not only learn from it, but also enjoy our 
explanations and examples. We also hope that as a result of reading this book students will feel 
confident in their ability to perform their own statistical analyses.

How to use this book
To help you get the most from this book we thought that it would be useful to provide a brief 
overview of the book and of the structure of the chapters. The best way to use the book if you 
are new to statistics in psychology or if you have been away from statistics for a long while is 
to work your way through the chapters from Chapter 1 onwards. The most important chapters 
to read and ensure that you understand fully are the first five chapters as these provide you with 
the core concepts for comprehending the main statistical techniques covered later in the book. 
If you spend the time and effort on these opening chapters then you will be rewarded by having 
a better understanding of what the statistical tests are able to tell us about our data. We cannot 
stress enough the importance of such an understanding for appropriate use of statistical 
techniques and for your ability to understand and critique others’ use of such techniques.

The chapters that follow these opening chapters generally explain the concepts underlying 
specific types of tests as well as how to conduct and interpret the findings from these. We start 
off with the more basic tests which look at the fewest possible variables (‘variables’ will be 
explained in Chapter 1) and then using these as a basis we move on to the more complex tests 
later in the book. In some ways it might be better to read about a basic type of test, say simple 
correlations (see Chapter 6), and then move on to the more complex versions of these tests, say 
regression and multiple regression (see Chapter 12). As another example, start with simple tests 
of differences between two groups (in Chapter 7) and then move on to tests of differences 
between more than two groups (Chapters 10 and 11). However, often statistics modules don’t 
follow this sort of pattern but rather cover all of the basic tests first and only then move on to 
the complex tests. In such a learning pattern there is the danger that to some extent some of the 
links between the simple and complex tests may get lost.

Rather disappointingly we have read some reviews of the book which focus entirely on the 
step-by-step guides we give to conducting the statistical analyses with SPSS for Windows (now 
called SPSS Statistics). We would like to stress that this book is not simply a ‘cookbook’ for 
how to run statistical tests. If used appropriately you should come out with a good understanding 
of the statistical concepts covered in the book as well as the skills necessary to conduct the 
analyses using SPSS Statistics. If you already have a conceptual understanding of the statistical 
techniques covered in the book then by all means simply follow the step-by-step guide to 
carrying out the analyses, but if you are relatively new to statistics you should ensure that you 
read the text so that you understand what the statistical analyses are telling you.
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There are a number of features in this book to help you learn the concepts being covered 
(in technical terms these are called ‘pedagogic’ features). These are explained below, but before 
we explain these we will give you a general overview of what to expect in each chapter.

In each chapter we will highlight what is to come and then we will explain the statistical 
concepts underlying the particular topics for that chapter. Once we have covered the statistical 
concepts you will be given step-by-step guides to conducting analyses using SPSS Statistics. 
Towards the end of each chapter you will be provided with a means of testing your knowledge, 
followed by some pointers to further reading. We will now describe some of the features found 
in the chapters in more detail.

At the beginning of every chapter there is a Chapter overview. These overviews provide you 
with information about what is contained in each chapter and what you should have achieved 
from working through it. Sometimes we will also highlight what you need to know beforehand 
to be able to get the most from the chapter. You should make sure that you read these (it is very 
easy to get into the habit of not doing this) as they will set the scene for you and prepare your 
mind for the concepts coming up in the book.

At the end of each chapter there are Summaries which outline the main concepts that were 
covered. These are important for consolidating what you have learnt and help put the concepts 
learnt later in the chapter back in the context of the earlier concepts. You will also find SPSS 

Statistics exercises, activities and multiple choice questions. We cannot stress enough the 
importance of working through these when you finish each chapter. They are designed to test 
your knowledge and to help you actively work with the information that you have learnt. 
The best way to learn about things is to do them. The answers to the multiple choice questions 
are also provided at the very end of each chapter so that you can check your progress. If you 
have answered questions incorrectly go back and read the relevant part of the chapter to ensure 
that you have a good understanding of the material. The answers to the SPSS Statistics exercises 
are provided at the end of the book. Check these and if you have different answers go back and 
try to work out where you might have gone wrong. Often it might be that you have input the 
data incorrectly into SPSS Statistics. There are additional multiple choice questions and SPSS 
Statistics exercises on the companion website and so please do make use of these also.

Within each chapter there are a number of features designed to get you thinking about what 
you have been reading. There are Discussion points which help you to explore different ideas 
or theories in more detail. There are also a number of Activity boxes which provide additional 
opportunities for you to test your understanding of the theories and ideas being discussed. It is 
important to complete the activities as we have placed these to ensure that you are actively 
engaging with the material. Our experience has shown that actively working with material helps 
learning (and makes reading more enjoyable). You will also find a number of Example boxes 
where we provide a concrete example of what we are discussing. Providing such concrete 
examples helps students understand the concepts more easily. There are also lots of examples 

from the psychological literature which show how active psychology researchers use the 
statistical techniques which have been covered in the chapters.

Where appropriate we have included as many diagrams and pictures as we can as these 
will help you to understand (and remember) the text more easily. The thought of giving you 
endless pages of text without breaking it up is not worth thinking about. This would probably 
lead to a lot of Zzzzzz. On a serious note though, remember that the pictures are not there to 
be pretty nor just to break up the text. Please consult these along with reading the text and this 
will help you learn and understand the concept under discussion. Occasionally in the book you 
will come across Caution boxes. These are there to warn you of possible problems or issues 
related to certain techniques or statistical concepts. These are useful in many ways as they are 
designed to help you to understand some of the limits of statistical tests and they serve as a 
reminder that we have to think carefully about how we analyse our data.

Where in a chapter we want to show you how to use SPSS Statistics we provide annotated 

screenshots. These will show you which buttons to click in SPSS Statistics as well as how and 
where to move information around to get the analyses that you want. Finally, at the end of each 
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chapter there is a Reference section. In this we will provide details of all the other authors’ 
works that we have mentioned within the chapter. This is pretty much what you should do when 
writing up your own research. Some of the references will provide the details of the examples 
from the literature that we have presented and some will be examples of potentially useful 
further reading. You can follow up these as and when you choose to. Sometimes it is good to 
follow up the examples from the research literature as you can then see the context to the exam-
ple analyses that we present. Also, by looking at how the experts present their research you can 
better learn how to present your research.

Companion website
We would urge you to make as much use as possible of the resources available to you on the 
companion website. When you get on to the site you will see that it is broken down into 
resources for each chapter. For each chapter you will find SPSS Statistics dataset files which 
are simply the data for the examples that we provide in each chapter. You can access these to 
ensure that you have input data correctly or so that you can carry out the same analyses that we 
present in each chapter to make sure that you get the same results. Also, on the website you will 
find additional multiple choice questions. If you find that you have made mistakes in the 
multiple choice questions provided in the book you should go back through the chapter and try 
to make sure that you fully understand the concepts presented. It wouldn’t make sense for you 
to then test yourself using the same multiple choice questions and so we have provided the 
additional ones on the companion website. As another means of testing yourself and to help 
you actively learn we provide additional SPSS Statistics exercises for each chapter and a 
step-by-step guide to the analysis to conduct on this data and how to interpret the output.

Finally, you will find links to interesting and useful websites which are relevant to the 
concepts being covered in each chapter.
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The chapter overview gives you a feel for what 

will be covered and what you should have learnt 

by the end of the topic.

Caution boxes highlight possible problems you may 

encounter or issues for consideration.

 9.1 Frequency (categorical) data

The tests you have used so far have involved calculations on sets of scores obtained from par-

ticipants. Sometimes, however, we have categorical data (i.e. data in the form of frequency 

counts). For example, let’s imagine that we ask a sample of farmers (actually 544 of them) which 

of four pig pictures they prefer for a ‘save our bacon’ campaign. We would simply record how 

many chose picture 1, how many chose picture 2, and so on. The data would be frequency 

counts. Table 9.1 shows the sort of results we might obtain.

CHAPTER OVERVIEW

Earlier, in Chapter 6, you learnt how to analyse the relationship between two variables, using Pearson’s 

r. This test was useful in giving a measure of the association between two continuous variables. You 

have seen how to represent such relationships on scattergrams, or scatterplots. You learnt what was 

meant by a correlation coefficient, and that r is a natural effect size. This chapter also discusses 

relationships, or associations, but this time we are going to discuss how to analyse relationships 

between categorical variables.

The measure of association that we are going to discuss in this chapter, x2 or chi-square (pronounced 

kye-square), measures the association between two categorical variables. You also learnt about 

categorical variables (in Chapter 1). If, for instance, we classify people into groups based on which 

colour blouse or shirt they are wearing, this is a categorical category. In the same way, if we classify 

people by ethnic group, religion or the country in which they live, these are all categorical judgements; 

it does not make sense to order them numerically. In this chapter then, you will learn how to:

■ analyse the association between categorical variables

■ report another measure of effect (Cramer’s V)

■ report the results of such analyses.

The analyses of the relationships between categorical variables include the following:

■ Frequency counts shown in the form of a table – explained later in the book.

■ Inferential tests, which show us whether the relationship between the variables is likely to have been due 
to sampling error, assuming the null hypothesis is true.

■ Effect size: x2 can be converted to a statistic called Cramer’s V – this is interpreted in the same way as any 
other correlation coefficient. Luckily, this is available through SPSS.

Measures of association 9
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The emboldened row shows the probability of obtaining a value of 0.94 when the null 
hypothesis is assumed to be true - 66% for a two-tailed hypothesis, and 31% for a one-tailed 
hypothesis.

The textual part of your report might read as follows:

Since 50% of the cells had an expected frequency of less than 5, the appropriate statistical 

test was Fisher’s Exact Probability. This gave p = 0.66 for a two-tailed hypothesis. The value 

of Cramer’s V was 0.10, showing that the relationship between smoking and drinking was 

almost zero. The conclusion, therefore, is that there is no evidence to suggest an association 

between drinking and smoking.

A 2 * 2 x2 square is easy to work out by hand once you are used to it, but we will not ask 

you to do it. The instructions on how to perform a 2 * 2 x2 analysis on SPSS were given earlier 

(see page 301).

Symmetric Measures

Nominal by Nominal

N of  Valid Cases

Phi

Cramer’s V

Value

2.097

.097

100

Approximate

Significance

.332

.332

This is the

measure of effect

You cannot tell how many people are going to fall into each category when you start your study, 

so you need to obtain far more participants than you think you need, to make sure you have 

enough participants in each cell.

x2 is always positive (because a squared number is always positive).

Whereas DF roughly equates to the number of participants in most statistical analyses, it does 

not in x2, as DF is calculated by number of rows minus 1 (r - 1) multiplied by number of 

columns minus 1 (c - 1). In this case, you can see that a 2 * 2 x2 will always have DF = 1 

because (r - 1) = (c - 1) = (2 - 1) = (2 - 1) = 1.

Caution!

Activity 9.5

Cramer’s V is:

(a) A measure of difference
(b) A correlation coefficient
(c) An equivalent statistic to Fisher’s Exact Probability Test
(d) A CV value
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Definition

Exploratory data analyses are where we explore the data that we have collected in order to describe it 
in more detail. These techniques simply describe our data and do not try to draw conclusions about any 
underlying populations.

Then you need to click on the Statistics button and select the mode from the next dialogue box along 
with any other measures of central tendency you require – see the screenshot below:

 3.4 Graphically describing data

Once you have finished a piece of research, it is important that you get to know your data. One 

of the best ways of doing this is through exploratory data analyses (EDA). EDA essentially 

consist of exploring your data through graphical techniques. It is used to get a greater under-

standing of how participants in your study have behaved. The importance of such graphical 

techniques was highlighted by Tukey in 1977 in a classic text called Exploratory Data Analysis. 

Tukey considered exploring data to be so important that he wrote 688 pages about it! Graphi-

cally illustrating your data should, therefore, be one of the first things you do with it once you 

have collected it. In this section we will introduce you to the main techniques for exploring your 

data, starting with the frequency histogram. We will then go on to explain stem and leaf plots 

and box plots.

 3.4.1 Frequency histogram

The frequency histogram is a useful way of graphically illustrating your data. Often researchers 

are interested in the frequency of occurrence of values in their sample data. For example, if you 

collected information about individuals’ occupations, you might be interested in finding out how 

many people were in each category of employment. To illustrate the histogram, consider a fre-

quency histogram for the set of data collected in a study by Armitage and Reidy (unpublished). 
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Activity boxes provide you with opportunities to 

test your understanding as you go along.

SPSS sections guide you through how to use the 

software for each process, with annotated, full-

colour screenshots to demonstrate what should be 

happening on screen.

Definitions explain the key terms you need to 

understand statistics.



Guided tour xxi

Personal reflection boxes bring statistics to life through 

interviews with researchers, showing their important role 

in psychological discoveries.
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Personal reflection

Manna Alma, PhD
University Medical Center Groningen, Department of Health Sciences, Com-
munity and Occupational Medicine, The Netherlands
ARTICLE: The effectiveness of a multidisciplinary group rehabilitation program 
on the psychosocial functioning of elderly people who are visually impaired

Manna Alma says:

‘
Vision loss and its consequences on daily functioning require substantial psychosocial adjustment, 

a process many visually impaired persons are struggling with. The psychosocial impact of vision loss is 
profound, evidenced by deleterious effects on emotional adaptation, an elevated risk for depression, a 
high level of emotional distress, reduced mental health and a decline in life satisfaction. The psychoso-
cial needs of those who are visually impaired should be part of their rehabilitation. Therefore, we devel-
oped a multidisciplinary group rehabilitation program, Visually Impaired Elderly Persons Participation 
– VIPP, which aims to promote adaptation to vision loss and to improve social functioning. In that paper, 
we described the results of a pilot study on the impact of VIPP on psychosocial functioning of the visu-
ally impaired elderly. For a convincing estimation of the change in psychosocial functioning a rand-
omized controlled trial is preferable. Since the pilot study was a first step in investigating the 
effectiveness of the VIPP-program, we used a single group pretest–posttest design. The results showed 
an increase in psychosocial functioning directly after the program. For some of the outcome measures 
the improvement appeared to be a temporary effect and was followed by a decline during the six 
months following the intervention. However, the six-months follow-up measure still indicated positive 
effects compared to baseline. This pilot study was a first step toward documenting the effect of VIPP 
on psychosocial functioning. Although the results are preliminary because of the small sample size and 
the research design, the results are promising.

’

Example from the literature

The effectiveness of a multidisciplinary group rehabilitation program on 
the psychosocial functioning of elderly people who are visually impaired

Alma et al. (2013) carried out a group rehabilitation programme for visually impaired older people. They 
measured 29 people on psychosocial variables before an intervention. The intervention consisted of 20 
weekly meetings which included practical training and education. The participants were measured at 
three time-points (baseline, halfway, immediately after the completion of the intervention, and at six-
month follow-up). This, then, is a pre-post design, suitable for repeated-measures ANOVA. The authors 
state that they used Eta squared as a measure of effect size (ES).

The table of results is reproduced below. Note that the second column shows whether the overall 
ANOVAs are statistically significant. The five columns to the right shows the F values and effect sizes 
for pairwise comparisons.
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CHAPTER 3 Descriptive statistics 93

 5. The standard deviation is equal to:

(a) The variance

(b) The square root of the variance

(c) The variance squared

(d) The variance divided by the number of scores

 6. What is the relationship between sample size and sampling error?

(a) The larger the sample size, the larger the sampling error

(b) The larger the sample size, the smaller the sampling error

(c) Sample size equals sampling error

(d) None of the above

 7. The mode is:

(a) The frequency of the most common score divided by the total number of scores

(b) The middle score after all the scores have been ranked

(c) The most frequently occurring score

(d) The sum of all the scores divided by the number of scores

 8. In box plots, an extreme score is defined as:

(a) A score that falls beyond the inner fence

(b) A score that falls between the hinges and the inner fence

(c) A score that falls between the inner fence and the adjacent score

(d) A score that falls between the two hinges

 9. A normal distribution should have which of the following properties?

(a) Bell-shaped

(b) Symmetrical

(c) The tails of the distribution should meet the x-axis at infinity

(d) All of the above

 10. If you randomly select a sample of 20 pandas (sample A), then select a sample of 300 pandas  

(sample B) and calculate the mean weight for each sample, which is likely to give a better estimate of 

the population mean weight?

(a) Sample A

(b) Sample B

(c) Both will give equally good estimates of the population mean

(d) Neither will give a good estimate of the population mean

 11. What sort of relationship is indicated by a scattergram where the points cluster around an imaginary 

line that goes from the bottom left-hand corner to the top right-hand corner?

(a) Positive

(b) Negative

(c) Bimodal

(d) Flat
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Multiple choice questions at the end of each chapter 

allow you to test your knowledge.

Examples from the literature highlight a key piece 

of research in the area.
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You might be wondering why we have to input the data differently for different designs. The 

reason is that each row on the data input screen represents the information from one participant. 

If you have a between-participants design, you need to let SPSS know what each participant’s 

score was and also which group they were in. When you have a within-participants design, each 

participant performs under two conditions and therefore has two scores. You need to let SPSS 

know what both of these scores are. Because each participant performs in both groups, you do 

not need to let SPSS know their group with a grouping variable. You can therefore tell the dif-

ference between within- and between-participants designs by looking for a grouping variable. 

If there is one, then it is a between-participants design.

You should notice from the screenshot that we have set up two variables, one for the dog 

condition and one for the no-dog condition. Also, because we do not have a grouping variable, 

we do not have to give group ‘value’ labels for any variables in the Variable View screen. Setting 

up the variables with such a design is therefore more straightforward than with between- 

participants designs.

Summary

In this chapter we have introduced you to the SPSS 
statistical package. You have learnt:

• how to use the tutorials

• how to set up variables in the Variable View part 
of the interface.

• about using Labels and Value Labels to make the 
output clearer.

• how to input data for correlational, within-
participants and between-participants designs.

• that the use of a grouping variable is important 
for between-participants designs.

Discover the website at www.pearsoned.co.uk/dancey where you can test your knowledge with  multiple 
choice questions and activities, discover more about topics using the links to relevant websites, and 
explore the interactive flowchart designed to help you find the right method of analysis.

SPSS exercises

The answers to all exercises in the book can be found in the Answers section at the end of the book.

Exercise 1

Dr Genius has conducted a study comparing memory for adjectives with that for nouns. She randomly 
allocates 20 participants to two conditions. She then presents to one of the groups of 10 participants a 
list of 20 adjectives and to the other group a list of 20 nouns. Following this, she asks each group to try 
to remember as many of the words they were presented with as possible. She collects the following data:

Adjectives: 10, 6, 7, 9, 11, 9, 8, 6, 9, 8
Nouns: 12, 13, 16, 15, 9, 7, 14, 12, 11, 13

 1. What is the IV in this study?
 2. What is the DV?
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Chapter summaries enable you to revise the main points 

of the chapter after you’ve read it.

Numerous examples in each chapter illustrate the 

key points.

CHAPTER 15 Introduction to multivariate analysis of variance (MANOVA) 487

Example

Let us assume that we have conducted the well-being study described earlier in this chapter but we have 
decided to use only two indices of well-being, Happiness and Optimism. We have then obtained the 
appropriate data (see Table 15.1) from 12 people who are regular churchgoers and 12 who are atheists.

Churchgoers Atheists

Happiness Optimism Happiness Optimism

4.00 3.00 5.00 3.00

5.00 4.00 4.00 4.00

5.00 8.00 8.00 5.00

6.00 7.00 9.00 4.00

6.00 6.00 7.00 2.00

6.00 5.00 6.00 3.00

7.00 6.00 7.00 4.00

7.00 6.00 5.00 3.00

7.00 5.00 6.00 2.00

8.00 5.00 4.00 4.00

8.00 7.00 5.00 5.00

9.00 4.00 6.00 3.00

X = 6.50 X = 5.5 X = 6.00 X = 3.50

SD = 1.45 SD = 1.45 SD = 1.54 SD = 1.00

95% CI = 5.58–7.42 95% CI = 4.58–6.42 95% CI = 5.02–6.98 95% CI = 2.86–4.14

Table 15.1 Data for the well-being experiment

Before we conduct the MANOVA we need to look at descriptive statistics in order to ensure that the 
assumptions for MANOVA are not violated.

We should initially establish that the data for each DV for each sample are normally distributed. For 
this we can get SPSS to produce box plots, histograms or stem and leaf plots. The box plots for the data 
in Table 15.1 are presented in Figure 15.1.

You can see from these box plots that for both DVs in both conditions the distributions are approxi-
mately normal. These findings, along with the fact that we have equal numbers of participants in each 
condition, mean that we can continue with our MANOVA with some confidence that we do not have 
serious violations of the assumption of multivariate normality.

The second assumption, that of homogeneity of variance–covariance matrices, is assessed by looking 
at the MANOVA printout, and therefore we will go through this shortly.

Before we conduct the MANOVA it is instructive to look at the plots of the means and 95% confidence 
intervals around the means for the two DVs separately (see Figure 15.2).
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SPSS exercises at the end of each chapter give you an 

opportunity to test yourself using real data.

http://www.pearsoned.co.uk/dancey
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 1.1 Why teach statistics without mathematical 
formulae?

Statistics as a topic tends to strike fear into the hearts and minds of most social science students 
and a good many lecturers too. Understanding statistical concepts should, however, be no more 
difficult than understanding any other theoretical concept (for example, the concept of intelli-
gence). In fact, one would think that understanding a very concrete concept such as the arith-
metical mean would be a good deal easier than understanding a rather vague psychological 
concept such as ‘an attitude’. Yet, every year, it seems that the majority of students, who appar-
ently grasp many non-statistical concepts with consummate ease, struggle to understand statis-
tics. Our view is that most people are fearful of statistics because the concepts are lost in the 
mathematical formulae. We therefore seek to explain statistics in a conceptual way without 
confusing students with unnecessary mathematical formulae – unnecessary, that is, in these 
days of statistical computer packages. If students wish to learn these formulae to enhance their 
knowledge, what better platform to have than a conceptual understanding of statistics?

Statistics tend to have a bad reputation, as this quote often attributed to former British Prime 
Minister Benjamin Disraeli illustrates: ‘There are three sorts of lies: lies, damned lies and 
statistics.’ It is not the statistics that are at fault, however, but rather the way they are used. 
After all, we do not usually blame the gun for killing someone but the person who pulled the 
trigger. All too often, particularly in politics, statistics are quoted out of context or even used 
selectively. This problem is clearly illustrated in a letter from Ed Humpherson, the Director 

CHAPTER OVERVIEW

In trying to explain how to use and understand statistics it is perhaps best to start by outlining the 

principal factors in designing research. We will therefore describe the most important aspects of 

research design with a view to explaining how they influence the use of statistics. In this chapter, 

therefore, we aim to teach you about the following:

■ variables: continuous, discrete and categorical

■ independent and dependent variables

■ correlational, experimental and quasi-experimental designs

■ between-participant and within-participant designs.

Variables and 

research design 1
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General for regulations at the UK Statistics Authority to Siobhan Carey who was Head of 
Profession for Statistics at the UK Government Department for Business, Innovation and 
Skills, sent on 16 February 2016 (you can find this letter on the site by typing ‘Carey’ in the 
search box on the homepage). In this letter Ed Humpherson is seen to reprimand the Minister 
of State Joseph Johnson for the use of complex statistics relating to poor performing UK 
universities which were not clearly defined and had not been previously published. Ed 
Humpherson notes that because there was a lack of clarity with these statistics that it was not 
clear that the proportion of poorly performing universities was high as was implied by Joseph 
Johnson. The letter concludes with the following: ‘The Authority would ask that you raise this 
with your colleagues and take steps to ensure that future such references to statistics are sup-
ported by publication with sufficient commentary and guidance as to enable informed debate.’ 
This clearly indicates an expectation that statistics be used within an appropriate context and 
be clearly defined and explained. The letter from Ed Humpherson, along with other letters 
relating to the official use of statistics in the UK, can be found at the UK Statistics Authority 
website (www.statisticsauthority.gov.uk). This is a really good website as it provides insights 
into how politicians use and often misuse statistics. Another good website about statistics and 
research is ‘Sense About Science’ (www.senseaboutscience.org). This site provides lots of 
useful information with the intention of helping people better understand science and scientific 
findings. One part of the site, the ‘For the record’ section, highlights examples of poor repre-
sentations of scientific research in the news. A recent example of this was a study reported in 
the national UK media (e.g. Daily Mail and The Daily Telegraph). The findings from the 
original unpublished study were presented at an academic conference in the US and found 
differences between mice born to mothers exposed to the vapours from e-cigarettes and those 
born to mothers exposed just to clean air. The study was reported in the media as providing 
evidence that using e-cigarettes during pregnancy is as bad as, or even worse than, smoking 
cigarettes. On the ‘Sense About Science’ website, Professor Peter Hajek clearly outlines the 
problems with the reporting of this study. He states that this was an unpublished study and so 
the data cannot be checked and verified and, more fundamentally, the study did not compare 
the mice exposed to e-cigarette vapour with those exposed to tobacco smoke, and so the com-
parisons with smoking cigarettes used in the headlines and the newspaper articles themselves 
were unjustified.

These examples show some of the problems with understanding and reporting of research 
based upon statistics. Yet politicians and the national media are happy to rely on poorly reported 
statistics to help colour our judgments about a whole range of issues for their own purposes. 
We should point out that this is not just a problem for politicians actually in government, it is 
widespread among politicians. This is even acknowledged in a report by the UK’s Statistics 
Commission which was the forerunner to the UK Statistics Authority. In this report (2008) the 
Commission states:

Statistics have been, and always will be, used selectively by politicians and commentators in 
the course of public debate. The selection and emphasis of particular statistical information 
to favour, or contest, a policy argument has to be tolerated as part of the political process. It 
is essential however that, to balance the politically selective use of statistics, the figures 
themselves, with full explanation, should be equally accessible and understandable to every-
one. There should also be public corrections of manifestly misleading interpretations.

These examples clearly illustrate the importance of viewing statistics in the correct context. If 
we say to you, for example, that the average (mean) height of the adult male is 5 ft 8 in (173 cm), 
this may be meaningful for British men but not necessarily for men from African pygmy tribes 
where the average height can be as low as 4 ft 9 in (145 cm). We believe that being able to inter-
pret statistics and whether or not they have been used appropriately is a very important life skill, 
particularly in the age of the internet and the widespread availability of information (good and 
bad in quality) about every aspect of life.

http://www.statisticsauthority.gov.uk
http://www.senseaboutscience.org
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 1.2 Variables

We have explained a very important aspect of statistics: that they are only meaningful in a 
context. But what is it that statistics actually do? Essentially, statistics give us information about 
factors that we can measure. In research the things that we measure are called variables.

Variables are the main focus of research in science. A variable is simply something that can 
vary: that is, it can take on many different values or categories. Examples of variables are 
 gender, typing speed, top speed of a car, number of reported symptoms of an illness,  temperature, 
attendances at rock festivals (e.g. the Download festival), level of anxiety, number of goals 
scored in football matches, intelligence, number of social encounters while walking your dog, 
amount of violence on television, occupation, number of cars owned, number of children per 
family and favourite colours. These are all things that we can measure and record and that vary 
from one situation or person to another.

But why are we interested in variables? We are generally interested in variables because we 
want to understand why they vary as they do. In order to achieve such understanding we need 
to be able to measure and record the changes in these variables in any given situation.

 1.2.1 Characteristics of variables

You will notice from the examples of variables above that they have different characteristics. 
Whereas you can measure temperature in terms of Fahrenheit or Celsius and put a number to it, 
you cannot meaningfully do this for type of occupation. This represents one important 
characteristic of variables: that is, how they actually change. At one end of the spectrum we have 
variables that are said to be continuous: that is, they can take any value within a given range. Or, 
more accurately, the variable itself doesn’t change in discrete jumps. A good example of a 
continuous variable is temperature. This is because you could measure the temperature as, say, 
40 °C or you could measure it more accurately as, say, 40.2558 °C. Another less obvious example 
is the measurement of the amount of violence on television. We could measure this in terms of 
the amount of time that violence appears on screen per day. If measured in this way, in terms of 
time, the variable could take on any value in terms of seconds or parts of seconds (e.g. 1000 s 
or 1000.1235672 s per day). The only limitation in the precision of measurement of such 
variables is the accuracy of the measuring instrument. With continuous variables there is an 
assumption that the underlying variable itself is continuous, even if the way in which we measure 
it is not. Of the examples given earlier, temperature, level of anxiety, top speed of a car, typing 
speed and intelligence could be regarded as continuous whereas the rest could not (see Table 1.1).

Continuous Discrete Categorical

■ Temperature

■ A car’s top speed

■ Typing speed

■ Intelligence

■ Level of anxiety

■ Number of reported symptoms of an illness

■ Number of cars owned

■ Number of goals scored in a football match

■ Number of social encounters while walking your 
dog

■ Attendances at heavy rock festivals

■ Number of children in a family

■ Gender

■ Occupation

■ Favourite colour

■ Type of fast food restaurant

Table 1.1 Examples of continuous, discrete and categorical variables
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A variable could also be discrete: that is, it can take on only certain discrete values within 
the range. An example of such a variable is the reported number of symptoms of an illness that 
a person has. These can only be recorded in terms of presence or absence of symptoms and 
therefore in terms of whole symptoms present. Another example would be if we chose to meas-
ure the amount of violence on television in terms of the number of violent incidents per week. 
In such a case, we could only report the number of discrete violent incidents. We could not use 
it to measure in terms of fractions of a violent incident; therefore violence on television meas-
ured this way is termed a discrete variable. Of the examples given earlier, the most obvious 
discrete variables are number of reported symptoms of an illness, number of social encounters 
while walking your dog, attendance at a rock festival, number of cars owned, number of children 
per family and number of goals scored in a game of football.

One problem that arises when thinking about continuous and discrete variables is confusing 
the underlying variable with how it is measured. A variable may in theory be continuous, but 
the way we measure it will always be discrete, no matter how accurate we are. We could measure 
anxiety (a theoretically continuous variable) using a questionnaire (e.g. the State–Trait Anxiety 
Inventory; Spielberger et al., 1983) where the total score on the questionnaire gives an indica-
tion of a person’s level of anxiety. Total scores on this questionnaire can only increase in whole 
units, say from 38 to 39 or from 61 to 62. Thus, the way we have measured anxiety is discrete 
whereas the underlying variable is assumed to be continuous.

Additionally, often when analysing discrete variables they are treated as if they were continuous. 
Many of the statistical tests that we use assume that we have continuous variables. Often when a 
discrete variable can take on many different values within a range (e.g. attendances at heavy rock 
festivals) they can reasonably be treated as if they were continuous for the sake of statistical testing.

Another type of variable is a categorical variable. This is where the values that the variables can 
take are categories. A good example is gender, which has only two values that it can take: male or 
female. Categorical variables can also sometimes have many possible values, as in type of occupa-
tion (e.g. judges, teachers, miners, grocers, civil servants). When dealing with categorical data we 
have an infinite number of variables that we might wish to investigate. We could, if we wished to, 
categorise people on the basis of whether or not they ate chocolate sponge with tomato ketchup at 
6.30 this morning. The only obvious examples of categorical variables given in our list of variables 
described at the beginning of this section are occupation, gender and favourite colour.

Try to ensure that you understand the different types of variable that you are measuring, as 
this is important when deciding how to analyse data.

 1.2.2 Dichotomising continuous and discrete variables

It is often the case that researchers convert continuous or discrete variables into categorical vari-
ables. For example, we might wish to compare the spatial ability of tall and short people. We could 
do this by comparing people who are over 6 ft 4 in (193 cm) with those under 4 ft 10 in (147 cm) 
on a spatial ability test. Thus, we have chosen points on the continuous scale (height) and decided 
to compare those participants who score above and below these points (see Figure 1.1).

Another example might be to compare the memory ability of anxious and non-anxious 
individuals. We could measure anxiety levels using a questionnaire; this is a continuous variable 
measured on a discrete scale. For example, the Hospital Anxiety and Depression Scale has an 

Definitions

Continuous variables can take on absolutely any value within a given range.

Discrete variables can only take on certain discrete values in a range.

Categorical variables are those in which we simply allocate people to categories.
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anxiety scale that ranges from 0 to 21. To convert this to a categorical variable we would simply 
compare those who score above a certain value (say, 11) with those who score below this value.

This dichotomising (dividing into two categories) of continuous and discrete variables is 
quite common in psychology as it enables us to find out if there are differences between groups 
who may be at the extremes of the continuous or discrete variables (e.g. tall and short people). 
We do not, however, recommend such a practice as it reduces the sensitivity of your statistical 
analyses. There is a good discussion of such problems in Streiner (2002), in Maxwell and 
Delaney (1993) and more recently in Altman and Royston (2007). We mention this here only 
so that you are aware that it happens in the research literature and so that you will understand 
what the researchers have done.

Discussion point

Dichotomising continuous variables

Why do researchers dichotomise variables? Streiner (2002) highlights the point that many decisions in 
psychology, psychiatry and medicine are binary decisions. Binary decisions are those where there are 
two choices, such as whether or not a person has a mental disorder, whether or not a person has a 
specific disease, whether a person should be hospitalised or whether a person should be released from 
hospital. It is often argued that because clinicians have to make such binary decisions, it is legitimate 
to investigate variables in a binary way. Such reasoning is used to support the widespread practice of 
dichotomising continuous variables.

Streiner argues that we do not have to view the sorts of decision that clinicians make as binary. He 
suggests that it would be better to think of mental illness, for example, as being on a continuum: the 
more symptoms you have, the more affected you are. We should then measure such constructs on 
continua rather than dichotomising them. That is, rather than using questionnaires to categorise indi-
viduals we could use the questionnaires to get a measure of where they fall on a continuum. Such 

Continuous variable

Tall Short

Height (feet)

6

4

2

Categorical variable

Figure 1.1 Illustration of the conversion of continuous variables into categorical variables
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information can then be utilised in our decisions for treating individuals, etc. It is interesting to note 
that the latest version of the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) has moved 
much more to seeing mental disorders on a continuum rather than as categorical.

An example may illustrate dichotomisation better. We suggested earlier that we could categorise 
individuals as anxious or non-anxious on the basis of their scores on a questionnaire. Researchers 
investigating anxiety sometimes utilise questionnaires in this way. Those participants who score high 
on the questionnaire are classed as high in anxiety whereas those who have low scores are classed as 
low in anxiety. The ‘median-split’ method is often used in this regard, where those participants who 
score above the median are categorised as anxious and those who score below the median as non-
anxious (e.g. Takács et al., 2015).

Streiner argues that the practice of dichotomising continuous variables tends to lead to research 
that is low in power (we cover power further in Chapters 5 and 8). The reason for this is that it results 
in us losing a lot of information about participants. For example, suppose two individuals score 20 and 
38 on an anxiety inventory and that we come to classify them both as low in anxiety (they both fall 
below the median). In any subsequent analyses based upon this categorisation, both of these partici-
pants are treated as being identical in terms of their anxiety levels (i.e. they are both non-anxious). 
According to our questionnaire, however, there is a very large difference between them in terms of their 
actual anxiety levels. Treating these two individuals as the same in terms of anxiety level does not seem 
to make sense. It would be much more sensible to try to include their actual anxiety scores in any 
 statistical analyses that we conduct.

Additionally, we may find that there is a larger difference in terms of anxiety between the two 
participants classed as non-anxious than there is between two participants where one is classed as 
anxious and one is not. For example, suppose our median is 39: all those scoring above 39 are classed 
as anxious and those who score below 39 are non-anxious. We can see here that the non-anxious person 
who has a score of 38 has much more in common with an anxious person whose score is 41 than they 
do with another non-anxious person who has a score of 20. Yet in any subsequent analyses the participants 
with scores of 20 and 38 are classified as identical in terms of anxiety and these are classed as equally 
different from the person who has a score of 41. This just does not make any sense.

Streiner also highlights research that has shown that analyses using dichotomous variables are about 
67% as efficient as analyses using the original continuous/discrete measures. This is an incredible loss of 
sensitivity in the study. It means that you are only two-thirds as likely to detect relationships among variables 
if you dichotomise continuous variables. This is a serious handicap to conducting research. Moreover, loss 
of power is not the only problem that arises when dichotomising variables. Maxwell and Delaney (1993) 
have shown that such a practice can actually lead to spurious findings arising from statistical analyses.

Therefore, we advise you against dichotomising continuous variables.

Activity 1.1

Which of the following are continuous, which are discrete and which are categorical?

• Wind speed
• Types of degree offered by a university
• Level of extroversion
• Makes of car
• Division in which football teams play
• Number of chess pieces ‘captured’ in a chess game
• Weight of giant pandas
• Number of paintings hanging in art galleries

The correct answers can be found at the end of the book.
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 1.3 Levels of measurement

Another way of distinguishing between variables or scales is in terms of the level of measure-

ment. There are four levels of measurement and these vary as a function of the way in which 
the variables are measured. The four different levels are:

Nominal
1

Ordinal
2

Interval
3

Ratio
4

At the lowest level of measurement are nominal scales. These are in effect categorical variables 
in that they represent different categories, but they also have the characteristic that there is no 
particular order that can be given to the categories. A good example of a nominal scale is gender, 
which has two categories, male and female. You should be able to see that there is no logical way 
of ordering these two categories in terms of magnitude. Another example would be ethnic group: 
again we can categorise people in terms of their ethnic group but we could not put these groups 
in any particular order – they are simply different categories. When dealing with nominal-level 
measures, we are simply assigning people to categories and the data we obtain are in the form of 
frequency counts. Frequency counts simply tell us how many people we have in each category.

At the next level of measurement we have ordinal scales. Quite often in psychology we use 
ratings scales to measure participants’ responses. For example, we might want to know how 
nervous a person is just before they take part in a study we are running. We could use a scale 
like that presented below to gauge how nervous they are.

I’m cool, man!

1 2 3 4 5

Whoa, this is

getting serious!

I’m a quivering

wreck!

Using such a scale we can place participants in some sort of order in terms of how nervous 
they are prior to the study (hence ordinal scale). I would be able to say that someone who put 
a circle around the ‘1’ was less nervous than someone who put a circle around the ‘3’ or around 
the ‘5’. One of the drawbacks with such scales is that we cannot say that the difference between 
‘1’ and ‘2’ on the scale is the same as the difference between ‘3’ and ‘4’ on the scale or that the 
difference between ‘I’m cool, man!’ and ‘Whoa, this is getting serious!’ is the same as the dif-
ference between ‘Whoa, this is getting serious!’ and ‘I’m a quivering wreck!’ Thus we do not 
have equal intervals on the scale.

At the interval level of measurement, we are able to put scores in some sort of order of 
magnitude and we also have equal intervals between adjacent points on the scale (hence interval 

scale). A good example of an interval scale is one of the commonly used scales to measure 
temperature, such as Centigrade or Fahrenheit. On such scales we can say that the difference 
between 1 and 2 degrees is the same as the difference between 9 and 10 degrees or between 99 
and 100 degrees. We have equal intervals between adjacent points on the scales. The disadvan-
tage of such scales is that there is no absolute zero on them. Thus whilst there are zero points 
on both the Centigrade and Fahrenheit scales these are arbitrary zero points – they do not equate 
to zero temperature. The zero point on the Centigrade scale was chosen as it was the point at 
which water freezes, and the zero point on the Fahrenheit scale is equally arbitrary. When we 
reach zero on these scales we cannot say that there is no heat or no temperature.
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Because of this we cannot say that 4 °C is half as warm as 8 °C or that 40 °C is twice as hot 
as 20 °C. In order to make such statements we would need a measuring scale that had an abso-
lute rather than an arbitrary zero point. A good example from the psychological literature is 
anxiety which is usually measured through questionnaires such as the Spielberger State-Trait 
Anxiety Inventory. A zero score on this questionnaire doesn’t mean that a person has absolutely 
no anxiety and we cannot say that a person with a score of 40 is twice as anxious as a person 
with a score of 20.

The final level of measurement is the ratio scale. Ratio scales have all the features of interval-
level data but with the addition of having an absolute zero point. For example, if I wanted to 
measure how long it took you to read this paragraph, I would start the timer going when you 
started at the beginning of the paragraph and then stop it when you had read the last word of 
the paragraph. Here we have a scale where the intervals between adjacent points are equal: that 
is, the difference between 1 and 2 seconds is the same as that between 79 and 80 seconds. We 
also have a zero point which is an absolute zero. The point where you are just preparing to start 
reading the paragraph is zero in terms of time spent reading the paragraph. Another example 
of a ratio scale is speed of a car. When the car is not moving it has zero speed (an absolute zero 
point) and the difference between 9 and 10 k.p.h. is the same as that between 29 and 30 k.p.h. 
The useful point about having an absolute zero is that we can form ratios using such scales 
(hence ratio scales). Thus, I can say that a car moving at 100 k.p.h. is moving twice as fast as 
one moving at 50 k.p.h. Or a person who read this paragraph in 30 seconds read it twice as fast 
as someone who read it in 60 seconds.

Levels of measurement are important as they can have an influence on what sorts of statisti-
cal test we can use to analyse our data. Usually, we can only use the most sensitive statistical 
techniques (called parametric tests) when we have either interval- or ratio-level data. If we have 
nominal- or ordinal-level data, we have to make do with the less sensitive non-parametric tests 
(we cover the conditions for using different types of test in more detail in Chapter 5).

Definitions

Ratio scales have equal intervals between adjacent scores on the scale and an absolute zero.

Interval scales have equal intervals between adjacent scores but do not have an absolute zero.

Ordinal scales have some sort of order to the categories (e.g. in terms of magnitude) but the intervals 
between adjacent points on the scale are not necessarily equal.

Nominal scales consist of categories that are not ordered in any particular way.

 1.4 Research designs

There are many different statistical techniques that we use to analyse the data we have collected 
in research. We will be introducing you to some of the most widely used in this book as well as 
providing you with an understanding of the factors which determine which statistical technique 
should be used in a given situation.

One of the biggest factors in determining which statistical tests you can use to analyse your 
data is the way you have designed your study. There are several ways to design a study and the 
way you do so can have a great influence on the sorts of statistical procedure that are available 
to you. Sometimes researchers wish to look for differences between two groups of participants 
on a particular variable and at other times they might want to see if two variables are related in 
some way. An example of a study which investigated differences between conditions is the 
research reported by Guéguen and Ciccotti (2008). In this study the researchers were interested 
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in whether or not dogs facilitate social interactions and helping behaviours among adults. The 
researchers ran four different studies where male and female researchers walked with and 
without dogs. In two studies the researcher approached people and asked for some money, in 
another study the researcher dropped some coins to see if people would help to pick them up 
and in a final study a male researcher approached females in the street and asked them for their 
phone numbers. In each study the researcher did the tasks both with and without dogs. In all 
four studies they found that helping behaviours were higher when the researcher had a dog than 
when they didn’t have a dog. An example of research looking for relationships would be the 
study reported by Antonacopoulos and Pychyl (2014). In this research they were interested in 
the relationship between dog walking and mental health. Through an online questionnaire they 
discovered that talking with others whilst walking a dog was related to how lonely people felt 
such that increases in talking to others was associated with decreased loneliness. The statistical 
tests that we would use in these examples are called difference tests and correlational tests 
respectively. The way you design your study will influence which of these sorts of test you can 
use. In the following sections we will take you through several ways of designing studies and 
indicate which sorts of test are available to the researcher conducting such studies.

 1.4.1 Extraneous and confounding variables

Above we described a study by Guéguen and Ciccotti (2008) about the effects of walking with 
a dog on social interactions and helping behaviours. If you think about this study you may 
realise that there are factors other than owning a dog that could also affect the social encounters 
people have when they are out with their dogs. Other factors might include shyness of the 
walker, attractiveness of the walker, gender of the walker, breed of dog and a whole host of other 
variables. These are all factors that the researcher might not have accounted for but which may 
have influenced the social interactions; they are called extraneous variables. In any research 
situation, whether in chemistry, physics or psychology, account has to be taken of extraneous 
variables. If extraneous variables are overlooked, the conclusions that may be drawn from the 
studies may be unreliable. Thus, in the dog-walking example, if the extraneous variables just 
described had not been controlled, we would not be able to say for certain that any differences 
in social interactions were due to the ownership of a dog. The differences may have been due 
to any one or a combination of the extraneous variables just described. The main reason for 
conducting research under laboratory conditions is to try to control extraneous variables as 
much as possible. You will find that many of the research issues that we describe in this chapter 
are designed to reduce extraneous variables.

You have to be aware that for any given variable that you measure there will be a number of 
other variables that may be related to it (see Figure 1.2, for example). When we conduct a study 
such as the dog and social interaction one, we cannot be certain that it is being with (or without) 
a dog that has led to a change in social interactions. Thus we need to try to eliminate the other 
variables (extraneous variables) as possible reasons for our observed changes in social interac-
tions. We do this by trying to control these other variables: for example, by trying to match our 
dog and no dog participants as much as possible on shyness, attractiveness and gender. Also, 
we could ensure that all participants are out with the same type of dog and that they are out at 
the same time and on the same day of the week. Once we have controlled these other variables 
then we may be more confident in our conclusions that being out with a dog influences the 
number of social interactions a person will have.

Definition

Extraneous variables are those variables that might have an impact on the other variables that we are 
interested in but we may have failed to take these into account when designing our study.
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A specific type of extraneous variable is one that is correlated with both of the main variables 
that we are interested in. Such a variable is called a confounding variable or simply a confound. 
For example, let us suppose that we were interested in sex differences in the ability to throw a 
ball successfully through a basketball hoop. Let us assume that we have run a study and found 
that the males have scored more than the females. We might conclude from this that males are 
better than females at scoring in basketball. One problem with this is that there could be a 
potential relationship between both the sex of participants and ability to score in basketball and 
height. It might be that tall people are better at scoring at basketball and it also tends to be the 
case that males are taller than females. It thus could simply be the height of participants rather 
than their sex that has determined their scoring ability in our study. Height would in this case 
be a confounding variable.

Definition

A confounding variable is a specific type of extraneous variable that is related to both of the main 
 variables that we are interested in.

 1.4.2 Correlational designs

We stated earlier that the major goal of science is to understand variables. More specifically, 
we wish to understand how and why certain variables are related to each other. Perhaps the 
simplest way to examine such relationships between variables is by use of correlational designs. 
In such a design we measure the variables of interest and then see how each variable changes 
in relation to the changes in the other variables. An example might help to illustrate this. A 
recently published review by Gnambs (2015) examined the personality factors that related to 
being good at computer programming. They found unsurprisingly that programming ability was 

Walking with

or without a

dog 

Gender

Attractiveness 

Type of dog

you walk

Day of the week

and time of day

you walk 

Shyness 

Number of social

interactions while

walking in the park

Figure 1.2 Illustration of the variables that may influence the number of social interactions a 
person has in the park
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related to intelligence and also introversion which perhaps conforms to the stereotypes for 
computer programmers. However, the personality characteristics which were most strongly 
related to programming ability were openness and conscientiousness. Thus, this research 
showed that as personality (openness, conscientiousness and introversion) changed, so did 
programming ability; these variables are said to co-vary. You should note that the terms ‘related’, 
‘correlated’ and ‘co-varied’ are often used interchangeably.

Another excellent example of research conducted using correlational designs is that into the 
relationship between smoking and cancer. It has generally been found that, as smoking increases, 
so does the incidence of cancer. Therefore there is a relationship between number of cigarettes 
smoked and the chances of getting cancer.

If you have used a correlational design then the sorts of statistical technique you will prob-
ably use will be the Pearson product moment correlation coefficient, or perhaps Spearman’s 
rho correlation coefficient. (These are covered in Chapters 6 and 16 respectively.)

Definition

Correlational designs are those that investigate relationships between variables.

 1.4.3 Causation

The issue of causation is a tricky one in science and even more so when we use correlational 
designs. One of the important aims of science is to establish what causes things to happen. In 
all branches of science, researchers are trying to discover causal relationships between variables. 
For example, Newton produced an elegant theory to explain what causes apples to fall to the 
ground: he established a causal relationship between the falling apple and gravity. In much 
research in psychology we are also trying to establish such causal relationships. When we use 
correlational designs, however, it is difficult to establish whether a change in one variable causes 
a change in another variable. The reason for this is that in such designs we are simply observing 
and recording changes in variables and trying to establish whether they co-vary in some mean-
ingful way. Because we are merely observing how variables change, it is difficult (though not 
impossible) to establish the causal relationships among them. To be able to do this more easily 
we need to be able to manipulate one variable (change it systematically) and then see what effect 
this has on the other variables. We will discuss this approach further in the next section.

One of the golden rules of correlational designs is that we cannot infer causation from cor-

relations. The smoking industry has used this weakness of correlations to claim that there is no 
direct evidence that smoking causes cancer. Strictly speaking, they may be correct, because the 
studies have mainly been correlational. But given the amount of research that has substantiated 
a relationship between smoking and cancer, one would be foolish to ignore the research and 
trust the people who are making a profit from selling tobacco.

Finding that statistics anxiety and procrastination are related (see Figure 1.3), as did Dunn 
(2014), does not tell us much about the causal relationship between these two variables. It could 
be that increases in statistics anxiety cause increases in procrastination or maybe changes in 
procrastination cause changes in statistics anxiety. Alternatively, there might be other variables, 
such as neuroticism, that cause changes in both statistics anxiety and academic procrastination 
(see Figure 1.4). You can see, therefore, that establishing that a relationship exists between two 
variables does not necessarily tell us much about cause and effect.

Another example of this limitation in correlational designs is the relationship between 
 anxiety and depression. It has been found in a great many studies that anxiety and depression 
are highly related (see Clark and Watson, 1991). People who report high levels of anxiety also 
report high levels of depression. Could we say, then, that depression causes anxiety or anxiety 
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causes depression? No, we could not. It is quite likely that some intervening variable links these 
two mood states. In fact, it has been found that anxiety and depression have a common general 
distress element to them and it is this that explains the large relationship between them 
(see  Figure   1.5   ).  

 It is possible to assess causal relationships using correlational designs, but these situations 
are much more complex than the simple correlational designs indicated in this section and 
involve measuring the variables at various time points (e.g. cross-lagged designs).  

    1.4.4  The experimental design 

 In order for us to establish causal relationships between variables more easily we need to 
manipulate one of the variables systematically and see what affect it has on the other variables. 
Such a process is essentially that undertaken in  experimental designs.  

 One of the most widely used designs in science is the experimental design, also called the 
 true experiment.  If you think back to the typical experiment you conducted or read about in 
chemistry or physics at school, this epitomises the experimental design. For example, we might 
want to see what happens to sodium when we expose it to air and compare this with when it is 
exposed to water. We would observe a slow reaction in the ‘air’ condition (the shiny surface of 
the sodium becomes dull) and a rapid reaction in the ‘water’ condition (the sodium fizzes about 
the surface of the water and may ignite). In an experiment we have one variable that we are 
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  Figure 1.3         Relationship between statistics anxiety and procrastination   
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  Figure 1.4         Possible causal relationships between neuroticism, statistics anxiety and procrastination   
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measuring (the state of the sodium, called the dependent variable), and we wish to find out what 
effect another variable, called the independent variable (e.g. what sodium is exposed to), has 
on it. The variable manipulated by the experimenter is called the independent variable (IV): 
that is, its value is not dependent upon (is independent of) the other variables being investigated. 
The other variable in such an experiment is called the dependent variable (DV). It is called the 
dependent variable because it is assumed to be dependent upon the value of the IV. Indeed, the 
purpose of the experiment is to establish or dismiss such dependence.

We can conduct such research in psychology: for example, we could find out whether dog 
walking influences the number of social encounters. If we conducted this study we could get a 
group of individuals and randomly allocate them to walking with a dog and walking alone. We 
might predict that walking with a dog would lead to more social encounters than walking alone. 
We have thus set up a hypothesis that we could test with statistics analyses.

Definition

A research hypothesis is our prediction of how specific variables might be related to one another or 
how groups of participants might be different from each other.

Let us assume that we have conducted the above experiment and have found that the dog 
walkers have more social encounters than the walkers without dogs. It thus looks like we will 
have support for our prediction. However, there are a number of other factors that may have led 
to a difference in the number of social encounters between the two conditions (see Figure 1.2). 
How do we know that the difference we observe has been caused by our manipulation of the 
independent variable rather than one of the possible extraneous variables? The answer is that 
we don’t know. We can, though, limit the impact of the extraneous variables upon our study by 
randomly allocating the participants to the conditions of our IV. By randomly allocating partici-
pants to conditions, we can reduce the probability that the two groups differ on things like 
shyness, attractiveness and gender, and thus eliminate these as possible causes of the difference 
in number of social encounters between our groups. If we randomly allocate participants to 
conditions, we can be more confident in our ability to infer a causal relationship between the 

General distress

No direct
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Figure 1.5 Illustration of the common elements shared by anxiety and depression and the 
absence of a causal link between them
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IV and the DV (walking with/without a dog and number of social encounters). It is this element 
of random allocation that makes experimental designs so useful for determining causal relation-
ships among variables.

Thus, one of the major defining features of an experimental design is the random allocation 
of participants to conditions. To employ random allocation in the dog-walking example above, 
we could give each person who is participating a random number generated on a computer. We 
could then ask all those students whose number is below a certain number to walk with a dog 
and all those above the number to walk without a dog. In this way we would then have randomly 
allocated the participants to each of the two conditions. A good example of a study that has 
utilised an experimental design is one by Barner et al. (2016), which investigated the effects of 
using a ‘mental abacus’ technique on arithmetic task performance. They randomly allocated 
five- to seven-year-old children to one of two conditions. They either had three hours per week 
extra tuition in mathematics using the mental abacus technique or three hours of additional 
traditional mathematics. They assessed mathematical performance over three years and found 
that those children given the mental abacus training performed better on the arithmetic tasks 
than those given the extra traditional tuition.

Of course, random allocation is most useful in controlling interpersonal factors such as shy-
ness. There are other factors relating to experimental design that cannot be controlled by random 
allocation of participants to conditions. Take another look at Figure 1.2 and you will notice that 
extraneous variables such as time of day and type of dog would not be controlled by random 
allocation of participants to conditions of the IV. These are issues that would need to be 
addressed through other aspects of experimental design, such as ensuring that a variety of types 
of dog were used in the study and that both conditions were run at the same time of day and on 
the same days of the week.

Definition

Experimental designs are those where the experimenter manipulates one variable called the independ-
ent variable (IV) to see what effect this has upon another variable called the dependent variable (DV). 
In experimental designs we are usually looking for differences between conditions of the IV. A hallmark 
of experimental designs is random allocation of participants to the conditions of the IV.

 1.4.5 Quasi-experimental designs

Often in psychology we want to look at variables that we cannot directly manipulate. If we want 
to compare males and females in some way, we cannot manipulate the group to which each 
participant belongs. We cannot randomly allocate participants to the male and female condi-
tions; they are already either male or female. We therefore, strictly speaking, do not have an 
experimental design. To highlight the fact that such designs are not strictly experimental, they 
are called quasi-experimental designs.

As an example, suppose we conducted the dog-walking study above and we wanted to try to 
remove gender as an extraneous variable. We could conduct a follow-up study where we try to 
find out whether females have more social encounters when walking (without dogs) than males. 
You can see that in this study the participants are not randomly allocated to conditions; they 
were already either female or male. We thus have a quasi-experimental design. If we found that 
the females had more social encounters than males, then we could argue that being female is 
more likely to encourage social interaction than being male.

One of the problems with quasi-experiments is that, because participants are not randomly 
allocated to the various conditions that make up the IV, we cannot be certain that our manipula-
tion of the IV (or, should we say, pseudo-manipulation) is responsible for any differences 
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between the various conditions. That is, it is harder to infer causation from quasi-experimental 
designs than from experimental designs. For instance, in the previous example, it could be that 
there is some other factor beyond gender that distinguishes the two groups (size, for example). 
It could be that females are seen as less threatening because they tend to be smaller than males. 
Thus, an important confounding variable has crept into our study. Because of the increased risk 
of extraneous and confounding variables associated with quasi-experimental designs, experi-
mental studies are to be preferred whenever they are possible.

If you are ever unsure whether you are dealing with an experimental or a quasi-experimental 
design, then look for random allocation of participants to conditions. If it is not a feature of the 
design, then you are most likely dealing with a quasi-experimental design.

If you have used an experimental or a quasi-experimental design then some of the statistical 
techniques that are available to you are the t-test, the Mann–Whitney U test, the Wilcoxon test 
and analysis of variance (ANOVA). These are all covered later in this book.

Definition

Quasi-experimental designs involve seeing if there are differences on the dependent variable (DV) 
between conditions of the independent variable (IV). Unlike experimental designs there is not random 
allocation of participants to the various conditions of the IV.

 1.4.6 Overview of research designs

We have now described three major research designs and how they influence the different types 
of statistical analysis we can use. Table 1.2 gives a brief summary of the main features of these 
designs along with the types of statistical test that would be appropriate to use with such 
designs.

Activity 1.2

The following is an extract from the abstract of a paper published by van Elk (2015):

Previous studies have shown that one’s prior beliefs have a strong effect on 
 perceptual decision making and attentional processing. The present study extends 
these findings by investigating how individual differences in paranormal and con-
spiracy beliefs are related to perceptual and attentional biases. Two field studies 
were conducted in which visitors of a paranormal fair conducted a perceptual 
 decision-making task (i.e. the face/house categorization task; Experiment 1) or a 
visual attention task (i.e. the global/local processing task; Experiment 2). In the first 
experiment it was found that skeptics compared to believers more often incorrectly 
categorized ambiguous face stimuli as representing a house, indicating that 
 disbelief rather than belief in the paranormal is driving the bias observed for the 
categorization of ambiguous stimuli. In the second experiment, it was found that 
skeptics showed a classical ‘global-to-local’ interference effect, whereas believers 
in conspiracy theories were characterized by a stronger ‘local-to-global interfer-
ence effect’. The present study shows that individual differences in paranormal and 
conspiracy beliefs are associated with perceptual and attentional biases, thereby 
extending the growing body of work in this field indicating effects of cultural 
 learning on basic perceptual processes.

What sort of design is this study?
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 1.5 Between-participants and within-participants designs

Another important feature of research designs is whether you get each participant to take part 
in more than one condition. Suppose we return to our example of dog walking and social 
encounters. Here we have an experiment where the IV is whether the participants are walking 
a dog and the DV is the number of social encounters.

How would you allocate participants to the conditions in such an experiment? You will recall 
that we suggested that the best thing to do would be to allocate participants randomly to the 
dog-walking and no-dog conditions. There is an alternative, however, and that is to get each 
participant to walk both with a dog and again without a dog.

The former procedure is called a between-participants design (also sometimes known as an 
independent or unrelated design); the latter is called a within-participants design (sometimes 
called a repeated measures or related design). When deciding which of these designs to use, 
you should bear in mind the advantages and disadvantages of each.

 1.5.1 Within-participants designs

The main advantage of using within-participants designs is that you are able to control for many 
inter-individual confounding variables. When you use different groups of people in each condi-
tion, you run the risk of there being some variable other than your IV that also distinguishes 
between your groups. You would, if this happened, potentially have a confounding variable. 
When you use a within-participants design, you have much greater control over such variables. 
Because you have the same people in all your conditions of the IV, there will be much less 
confounding variation between your conditions. By and large the same person will bring the 
same problems or qualities to all conditions of your IV.

Designs Characteristics Statistical test

Experimental ■ Manipulated IV

■ Random allocation of participants to 
groups

■ Analysis by comparison between 
groups

■ t-tests

■ ANOVA

■ Mann–Whitney U test

Quasi-experimental ■ Pseudo-manipulation of IV

■ Non-random allocation of 
participants

■ Analysis by comparison between 
groups

■ t-tests

■ ANOVA

■ Mann–Whitney U test

■ Wilcoxon

Correlational ■ Investigates the degree to which 
variables co-vary

■ Cannot infer causation from 
correlations

■ Analysed using correlation tests

■ Linear Regression

■ Pearson’s product 
moment correlation

■ Spearman’s rho

Table 1.2 Overview of the main features of the various research designs
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A second very attractive point about using within-participants designs is that you need to 
find fewer participants in order to complete your research. For example, if you have two condi-
tions and you would like a minimum of 12 people per condition, you would need 24 people if 
you used a between-participants design, but only 12 with a within-participants design. As you 
can probably imagine, if you are conducting a costly piece of research, this is an important 
consideration.

A final positive for within-participant designs is related to a topic that we cover in more 
detail in Chapter 8. Within-participant designs tend to have more statistical power than between-
participant designs. That is they are more likely to detect an effect that we are looking for in the 
population.

Definition

Within-participant designs have the same participants in every condition of the independent variable 
(IV). Each participant performs under all conditions in the study.

It is not, however, all rosy in the within-participants garden. If you think about the dog-
walking study being run as a within-participants design, you might be able to identify some 
possible problems. It could be the case that, if you use the same people in both conditions, other 
people out walking may recognise the walkers in the study and may feel more able to approach 
and interact with them. Thus, in the second condition the participants may have more social 
encounters because of familiarity rather than whether they had a dog. They may also start to 
get bored or tired when completing the walk in the second condition, which may also have an 
effect on the number of social encounters they have. These factors are thus confounding vari-
ables and could make the data difficult to interpret. Any differences in social encounters that 
you find between your two conditions may be due to these factors rather than the experimental 
manipulation of the IV. These are called order effects.

Definition

Order effects are a consequence of within-participants designs whereby completing the conditions in 
a particular order leads to differences in the dependent variable that are not a result of the manipula-
tion of the independent variable (IV). Differences between the conditions of the IV might be due to 
practice, fatigue or boredom rather than to the experimenter’s manipulation of the IV.

One way to eliminate order effects is to introduce counterbalancing into your design. In 
counterbalancing you get one half of your participants to complete the first condition followed 
by the second condition. You then get the other half of your participants to do the two condi-
tions in the opposite order, second condition followed by the first condition. To introduce 
counterbalancing in the dog-walking study, you could get half of the participants to walk with 
a dog first and then without the dog. You could then get the other half of the participants to 
walk first without the dog and then with the dog. Any practice, fatigue or boredom effects 
would thus be spread across both conditions of the IV and would therefore no longer constitute 
a confounding variable (see Figure 1.6). You also still have each participant undertaking the 
walk under both conditions and have therefore retained all the advantages of using a within-
participants design.

A good example of a study which used counterbalancing was one reported by Chernyak 
and Sobel (2016). In this study the authors were interested in whether or not young children 
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blindly accept the punishments for naughty behaviour by adults. In a lovely design they got 
children to build towers out of bricks along with a puppet. The children and the puppet were 
both supposed to receive an award of stickers for building the towers. The puppet then either 
knocked over the tower by accident or did so on purpose. The adult experimenter had their 
back to the child and puppet when the towers were knocked over and punished the puppet by 
giving all of the reward stickers to the children. What they found was that when the puppet 
knocked over the tower by accident the children were more likely to share their stickers with 
the puppet than when the tower was knocked over on purpose. This was a within-participants 
design and the researchers counterbalanced the order in which the puppets knocked over the 
towers such that one group of children had the tower knocked over on purpose first followed 
by accidentally and another group had the tower knocked over accidentally first followed by 
on purpose.

One half of

children

Other half of

children

Tower knocked over

accidentally

Tower knocked over

on purpose

Tower knocked over

on purpose

Tower knocked over

accidentally

Another limitation of within-participants designs is that having participants take part in both 
conditions means that they are more likely to realise the purpose of the experiment. This is a 
problem because participants usually want to do what the experimenter wants them to and so 
may perform how they believe they should do rather than how they would normally have done. 
These are called demand effects. The reason why this is more likely in a within-participants 
design is that each participant is exposed to more of the experimental procedure than in the 
equivalent between-participants design. To a certain extent counterbalancing can also reduce 
but not necessarily eliminate such demand effects.

A further problem associated with within-participants designs is that you cannot use them 
in many quasi-experimental designs. For example, if you wanted to compare social encounters 
experienced by males and females while out walking, you could not use a within-participants 
design. You cannot have one person being both male and female on two separate occasions, and 
so one person cannot take part in both conditions (unless, of course, they have a sex change 
between taking part in the two conditions).

Within-participants design without counterbalancing

Within-participants design with counterbalancing

All participants

Other half of

participants

One half of

participants

Walking with

the dog

Walking without

the dog

All order effects

in the ‘no dog’

condition

Walking without

the dog

Walking with

the dog

Order effects

spread evenly

across both

conditions

Walking with

the dog

Walking without

the dog

Figure 1.6 Illustration of the way order effects can be eliminated using counterbalancing
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 1.5.2 Between-participants designs

One of the important features of between-participants designs is that because you have different 
groups of participants in each condition of the IV, each participant is less likely to get bored, 
tired or frustrated with the study. As a result, they are more likely to perform at an optimum 
level throughout. In a similar vein, your research is going to be less susceptible to practice 
effects and the participants are less likely to work out the rationale for the study. Between-
participants designs therefore reduce order and demand effects, and you can, to a large extent, 
eliminate these factors as extraneous variables from your study.

On the negative side, you will need more participants than you would for a completely 
within-participants design. Also, if you use different participants in each condition, you lose a 
certain degree of control over the inter-participant confounding variables. For example, suppose 
we conducted the dog-walking study described in the previous section as a between-participants 
design. What if we did find that walking a dog leads to more social encounters? Before we can 
accept this at face value, we have to ensure that there are no confounding variables. An impor-
tant confounding variable in such a study might be the shyness of the walkers. It could be the 
case that, by chance, those in the no-dog condition were more shy and therefore it could be this 
variable that led to the lack of social encounters. If we had done this experiment as a within-
participants design, we would have been able to control this confounding variable as each person 
walks with and without a dog. This means that the overall level of shyness is the same under 
both conditions and is thus not a confounding variable.

From the above discussion it can be seen that one of the problems of between-participants 
designs is that different people bring different characteristics to the experimental setting. When 
we are randomly allocating participants to conditions, we might, by chance, allocate all partici-
pants with one characteristic to one group, and this might confound our results. The statistical 
techniques that we describe in this book allow us to make decisions as to whether or not we can 
eliminate such confounds as explanations for our findings.

Definition

Counterbalancing is where you systematically vary the order in which participants take part in the 
various conditions of the independent variable (IV). Counterbalancing would be introduced into a 
study where you have a within-participants design.

Activity 1.3

How would you introduce counterbalancing into the following study?

A study is conducted that tests the effects of instructions emphasising speed or those 
emphasising accuracy on performance in a mirror drawing task. Participants are asked 
to trace the outline of a star using mirror drawing equipment. The time taken to com-
plete the tracing of the star and the number of errors are recorded. Participants are 
required to undertake the mirror drawing task under both sets of instructions.

Definition

Between-participants designs have different groups of participants in each condition of the  independent 
variable (IV). Thus, the group of participants in one condition of the IV is different from the participants 
in another condition of the IV.
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Table 1.3 gives a summary of the advantages and disadvantages of within- and between- 
participants designs. It should be apparent that the advantages of within-participants designs tend 
to be disadvantages in between-participants designs and vice versa. When deciding upon a design 
for some research, your decision about which to use needs to take these factors into account.

Design Advantages Disadvantages

Between-participants ■ Relative absence of practice and 
fatigue effects

■ Participants less likely to work out the 
purpose of the study

■ Need more participants

■ There is not as much control of 
confounding variables between 
conditions

Within-participants ■ Need fewer participants

■ Greater control of confounding 
variables between conditions

■ Increased likelihood of practice or 
fatigue effects

■ Participants more likely to guess the 
purpose of the study

Table 1.3 Summary of the advantages and disadvantages of between- and within-participants designs

Activity 1.4

How would you design a study to investigate a causal relationship between caffeine 
and mathematical ability?

Summary

In this first chapter we have introduced you to the 
basic concepts for an understanding of research 
and research design. You have learnt that:

• Variables vary in terms of precision. That is, they 
can be:

– continuous, taking on any value within a given 
range (e.g. 10 or 10.2365)

– discrete, able to take on only certain specified 
values within a given range (e.g. 9 or 10)

– categorical, where the values that a variable 
can take on are categories rather than purely 
numerical values (e.g. gender, male or female).

• There are three main research designs:

– Correlational designs examine relationships 
between variables and do not, strictly 
speaking, have IVs and DVs. You cannot infer 
causation from correlations.

– Experimental designs involve the random 
allocation of participants to the conditions  
of the IV.

– Quasi-experimental designs involve 
investigating intact groups such as males  
and females and therefore do not use  
random allocation of participants to 
conditions.

• In experiments the independent variable (IV) is 
manipulated by the experimenter to see how it 
affects the dependent variable (DV).

• Between-participants designs are those where 
we have different participants allocated to each 
condition of the IV.

• Within-participants designs are those where 
each participant is measured under all 
conditions of the IV.
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 1. Which of the following constitute continuous variables?

(a) Number of times a score of 180 is achieved in a darts match
(b) Gender
(c) Temperature
(d) All of the above

 2. Experimental designs are characterised by:

(a) Fewer than two conditions
(b) No control condition
(c) Random allocation of participants to conditions
(d) None of the above

 3. In a study with gender as the manipulated variable, the IV is:

(a) Within participants
(b) Correlational
(c) Between participants
(d) None of the above

 4. Which of the following are true of correlational designs?

(a) They have no IV or DV
(b) They look at relationships between variables
(c) You cannot infer causation from correlations
(d) All of the above

 5. Which of the following could be considered as categorical variables?

(a) Gender
(b) Brand of baked beans
(c) Hair colour
(d) All of the above

 6. Between-participants designs can be:

(a) Either quasi-experimental or experimental
(b) Only experimental
(c) Only quasi-experimental
(d) Only correlational

Multiple choice questions

Discover the website at www.pearsoned.co.uk/dancey where you can test your knowledge with multiple 
choice questions and activities, discover more about topics using the links to relevant  websites, and 
explore the interactive flowchart designed to help you find the right method of analysis.

http://www.pearsoned.co.uk/dancey
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 7. Which of the following statements are true of experiments?

(a) The IV is manipulated by the experimenter
(b) The DV is assumed to be dependent upon the IV
(c) They are difficult to conduct
(d) Both (a) and (b) above

 8. Quasi-experimental designs have:

(a) An IV and a DV
(b) Non-random allocation of participants to conditions
(c) No IV or DV
(d) Both (a) and (b) above

 9. A continuous variable can be described as:

(a) Able to take only certain discrete values within a range of scores
(b) Able to take any value within a range of scores
(c) Being made up of categories
(d) None of the above

 10. Which of the following are problems associated with within-participants designs?

(a) There is an increased likelihood of practice or fatigue effects
(b) Participants are more likely to guess the nature of the experiment
(c) They cannot be used with quasi-experimental designs
(d) All of the above

 11. According to Streiner (2002), how efficient are studies that dichotimise continuous variables when 
compared with studies that do not?

(a) 100%
(b) 95%
(c) 67%
(d) 50%

 12. A researcher has just conducted a correlational study investigating the relationship between the amount 
of alcohol drunk by fans of the home team before a football match and the number of goals scored by 
the home team. They found that there was a relationship between the two variables. Which of the 
 following statements are valid?

(a) The amount of alcohol drunk was related to the home team’s ability to score goals, but we cannot 
say it caused the team to score the goals

(b) The home team’s ability to score goals is related not to the amount of alcohol but to the amount 
of cheering by the drunken fans

(c) The increase in the amount of alcohol drunk caused an increase in the number of goals scored
(d) All of the above

 13. In a within-participants design with two conditions, if you do not use counterbalancing of the condi-
tions then your study is likely to suffer from:

(a) Order effects
(b) Effects of time of day
(c) Lack of participants
(d) All of the above
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 14. You have conducted a study that shows that the earlier people get up, the more work they get done. 
Which of the following are valid conclusions?

(a) There is not necessarily a causal relationship between getting up early and amount of work done
(b) People who get up early have a need to get more work done
(c) Getting up early is the cause of getting more work done
(d) Both (b) and (c) above

 15. Which of the following designs is least likely to enable us to establish causal relationships between 
variables?

(a) Experimental design
(b) Quasi-experimental design
(c) Correlational design
(d) Within-participants design

 16. Demand effects are possible confounding variables where:

(a) Participants behave in the way they think the experimenter wants them to behave
(b) Participants perform poorly because they are tired or bored
(c) Participants perform well because they have practised the experimental task
(d) None of the above

 17. Suppose you wanted to conduct a study to see if depressed individuals bite their nails more than non-
depressed individuals. Which of the following would be the best way to proceed?

(a) Measure participants’ depression with a questionnaire and ask them to give a rating of how much 
they bite their nails. Then classify participants as ‘depressed’ or ‘non-depressed’ on the basis of their 
questionnaire scores. We could then see if there was a difference in how much they bit their nails

(b) As per (a) above but don’t divide the participants into two groups; use actual depression scores in 
the analyses and see if there is a relationship between depression and biting nails

(c) This sort of study is impossible to carry out and so we couldn’t proceed with it
(d) None of the above

 18. Which of the following might be suitable IVs in a quasi-experimental study?

(a) Gender
(b) Whether or not someone had Generalised Anxiety Disorder
(c) Students versus non-students
(d) All of the above

 19. In within-participants designs, order effects occur when:

(a) Participants get tired in later conditions
(b) Participants perform equally well in all conditions
(c) Participants have trouble obtaining their drinks at the bar
(d) None of the above

 20. Which of the following are problems associated with dichotomising continuous variables?

(a) Loss of experimental power
(b) Spurious effects may occur
(c) There is a serious loss of information
(d) All of the above
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 2.1 Basics

One of the first things that you need to know is that the bulk of the SPSS instruction in this 
edition of the book refers to version 23 of the software. However, you should not be too con-
cerned if you have an earlier version such as 22, 21, 20 or even as early as version 16, as there 
are not too many differences between these older versions and the latest one in terms of running 
analyses. Where there are important differences, we will alert you to these in the text. In fact, 
one difference in regard to version 18 is that it is actually called PASW Statistics 18 rather than 
SPSS version 18.

 2.2 Starting SPSS

When you start up SPSS, you will be presented with a dialog box with a range of options for 
what you want to do with SPSS.

CHAPTER OVERVIEW

In this chapter we present a broad overview of the main features of SPSS. It is important that you 

understand the main features of SPSS, as this will ensure that you are easily able to follow the SPSS 

instructions we give later in the book. In this chapter, therefore, we aim to teach you about the 

following:

■ starting SPSS

■ using the tutorials and help features

■ setting up variables and changing variable characteristics

■ saving data to data files.

Introduction to SPSS

2
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The first thing you need to decide is whether you want to open an existing datafile, input some 
new data or run the tutorials available in SPSS. We recommend if you are new to SPSS that you 
run a tutorial. To do this you should select a tutorial from the panel in the lower right of the 
opening dialog box. We suggest that you select and run the Introduction tutorial and so you 
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should select this and then click on the OK button. This will open an internet browser and send 
you to the SPSS online help pages:

You will notice that in the left-hand pane there is a list of help topics. The tutorials are listed 
here. If you click on the Tutorial option it will expand the tutorial list: 
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In this way you can find the specific help topic or tutorial that you are after quickly.
The right-hand pane is the reading pane. Here will be the information provided about each 

help topic. You will see that it has automatically opened the introductory tutorial. In the reading 
pane, once you have read the information you can either click on the Next link or click on a 
particular topic listed here to move through the tutorial:

Wherever you see this icon:  you can expand the topic by clicking on it:

You will see that the tutorial system has a number of topics for you to run through. These are 
all very useful and it will pay you to go through them as you get more familiar with SPSS. For 
now we recommend that you run through the Introduction tutorial before moving on.
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Read the text on the first page and then click on the Next link to move forward to the next 
page. You will be presented with a page that looks like this:

This explains about sample data files which you can use to practice using SPSS. Take a look 
through these initial tutorial topics and some of the others listed in the left-hand pane.

You should bear in mind that you can also access the tutorials at any time during an SPSS 
session by clicking on the Help menu and selecting the Tutorial from there.
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When you click on the Help menu you will notice a number of other options that you can 
choose: for example, Statistics Coach and Case Studies. These are very useful help features and 
we will cover these in later chapters where it is more appropriate to introduce them.

 2.3 Working with data

To open an existing file, select the file or click on the Open another file item in the Recent files 
section from the initial SPSS dialogue box. You should then select the relevant file and press OK 
to continue. If you are already in SPSS and you want to open a datafile, simply click on the File 
menu and select Open and then Data (see below). You then select the relevant file and click 
OK to continue.
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If you want to enter new data and have the initial SPSS dialogue box open, select the New 

Dataset option in the New Files box and click on OK. Once you click on OK, you will be pre-
sented with the following screen:

You may find that the active window is too small to display all the information available. You 
can increase the size of the active window by clicking on the Minimise/Condense/Enlarge but-
tons ( / / ) in the top right-hand corner of the active window. Here the  button will minimise 
the active window,  will condense an enlarged window, and  will enlarge a condensed win-
dow. Minimising the active window changes it to an icon at the bottom of the screen, whereas 
condensing the window will leave the window open but reduce its size. If the window is already 
condensed, you can see more information in it if you enlarge it by clicking the  button. If the 
window is already in its enlarged state and you need to see more information, you can scroll 
through the contents of the active window by clicking on the up and down scrolling arrows.

 2.4 Data entry

Before you can carry out any analysis, you need to enter your data. You will notice that there 
are cells arranged in columns and rows. Each row of data that you input will represent the data 
from one participant and each column represents the data from one variable. For example, sup-
pose we have run a study looking at the relationship of statistics anxiety to procrastination. Let 
us assume that we have the following data to input:

Participants: P1 P2 P3 P4 P5 P6
Statistics anxiety: 55 59 48 60 62 50
Procrastination: 125 132 94 110 140 96
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The first thing to do is to set up the variables in SPSS. To set up variable names and other fea-
tures of variables you need to select the Variable View tab at the bottom of the screen. The screen 
will change so that you can set up the variables in your data file.

On the Variable View screen, the rows now represent variables and the columns some format-
ting feature of the variable. You need to input the name of each variable in the first column, 
headed Name. Click on the first row in this column and type in the variable name. We have two 
variables to set up: the statistics anxiety and procrastination variables. Type in the first variable 
name: call it StatisticsAnxiety. You have to stick with the following rule when naming 
variables:

• The name should not be longer than 32 characters (e.g. StatisticsAnxiety).

Once you have typed the variable name into the first cell, click on the next cell down and type 
in the variable name for the procrastination variable. 
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You will notice that there are a number of other characteristics of variables that can be adjusted 
and we will take you through more of these as we work through the book. In older versions of 
SPSS, where there was a big restriction on the number of characters in the variable name, it was 
important to make use of the Label feature in the variable view. In this column, for each variable 
you can type in a much more meaningful description of the variables and these labels will be 
printed on any statistical output. This feature is very useful as it makes the output much easier to 
read. This is less important in the latest versions of SPSS (17 and later), as the length of variable 
names allows you to create meaningful names. However, we would still recommend that you use 
the Label option, as you can include spaces and other punctuation marks to make the names even 
clearer. To use the Label feature, simply click on the relevant cell and type in your label. So, for 
example, for the StatisticsAnxiety variable you could type in ‘Statistics Anxiety Score’:

The variables have now been set up, so you can move on to entering the data. To be able to 
do this you need to select the Data View tab and this will present you with the following screen:
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You should notice that the first two columns are headed StatisticsAnxiety and Procrastina-

tion. In fact you will probably see that the variable names on this screen are printed across two 
lines if they are long variable names. If you move the mouse cursor over one of the column 
headings, the full variable name as typed by you in the Label column of the Variable View tab 
will be displayed. If you want the column headings to be displayed in full, you will have to make 
the columns wider. You do this by moving the mouse cursor over the right-hand edge of the 
column heading box and then dragging the column edge so that it becomes wider and displays 
the whole variable name.

Remember that in the Data View screen, columns refer to variables and rows refer to partici-
pants. Therefore all the data for StatisticsAnxiety will be input into the first column and that for 
Procrastination into the second column. Go ahead and enter the data we presented earlier. Once 
you have done this, the screen should resemble the one that follows:

You can see here that the data have been input.

 2.5 Saving your data

Once you have entered all of your data, it is a good idea to save it as a datafile. This will avoid 
having to type it all in again should you wish to do more analyses later. To save your file, you 
should move the mouse cursor over the File menu and click the left mouse button. The following 
menu will then be displayed:
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Move the mouse pointer and click on the Save As . . . option, and the following dialogue box 
will appear. It is called a dialogue box because this is where you tell SPSS what to do. You 
should simply type the filename in the relevant box and click on the Save . . . button. Your file 
will then be saved into this file.

Remember that your datafiles should be named in the following way:

• The first part is a name that is meaningful for you (e.g. Stats Anxiety & Procrastination).

• The second part should always be .sav for a datafile (this is called the file extension).

• The first and second parts are always separated by a full-stop.

Thus we have called our file Stats Anxiety & Procrastination.sav. Actually, you do not even 
have to type in the .sav part of the name, as SPSS will automatically do this for you. Whenever 
you see filenames ending in .sav you can be reasonably confident that they are SPSS datafiles. 
If you forget what you have called a file, look for files with the .sav file extension.



Statistics without maths for psychology36

 2.6 Inputting data for between-participants and 
within-participants designs

We have just described how to input and save your data into SPSS. You should recall that in 
Chapter 1 we introduced you to a number of different research designs. You need to be aware 
that data from different research designs need to be input into SPSS in different ways. In the 
previous section we have described the appropriate way of setting up variables and inputting 
data for correlational designs. If you wish to input data for a between-participants design, you 
should proceed as follows. Let us assume that we have just conducted a dog-walking study as 
a between-participants design, where one group of participants go walking in the park with a 
dog and another group go walking without a dog. Suppose we have recorded the following 
numbers of social encounters in each condition:

Walking with a dog: 9 7 10 12 6 8
Walking without a dog: 4 5 3 6 5 1

In this design, walking with or without a dog is the IV and the number of social encounters is the 
DV. When entering the data into SPSS, we need to set up one variable for the IV and one for the 
DV. The first thing you need to do then is to name the variables on the Variable View screen. When 
setting up variables, the IV variable is the one you need to pay most attention to, as it is the one 
that many students find hard to deal with. When we have different groups of people in each condi-
tion of the IV, we need to set up a grouping variable in SPSS. This simply lets SPSS know which 
of the two groups each participant was in. Set up the variables as in the following illustration:

If we leave the variable set up as it stands, you might find the printouts difficult to interpret, 
as they will not display any labels for the different conditions of the IV. It is therefore a good 
idea to input details of the names of each condition of the IV. To provide SPSS with this 
 information, you simply click on the cell in the DogwalkingGroup row in the Values column. 
You will be presented with the following dialogue box. (In earlier versions you should notice 
that when you click on the cell in the column headed Values, an ellipsis (a grey box with three 
dots in it) appears. This indicates that you can add further information to this column. Click on 
the ellipsis and you will obtain the relevant dialogue box.)
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We have two conditions for the IV for which we need to assign group numbers. We will label 
the ‘walking with a dog’ group as group 1 and the ‘walking without a dog’ group as group 2 
(this is an arbitrary decision). Type a 1 into the Value box and Walking with a dog in the Value 

Label box. Once you have done this, click Add and you will see that the details appear in the 
bottom box. Now type a 2 in the Value box and Walking without a dog in the Value Label box 
and click Add. The dialogue box should look like this:

Click on OK and you will be returned to the Data View screen. Whenever you want to let 
SPSS know the names of your groups, you can do so by adding the information to the Values 
column.

We have now set up the variables. To enter the actual data, click on the Data View tab. When 
we come to input our data into the DogWalkingGroup column, if the person was in the with a 

dog group then we input a 1 in the column, if the person was in the without a dog group we 
input a 2 in the column. You can therefore see that our first column of data will contain only 1s 
and 2s.

In the second column we simply input each person’s number of social encounters, as this is 
our DV. You should be able to tell from looking at the input screen that participant number 4 
was in the walking with a dog group (1) and had 12 social encounters. Participant number 12 
was in the walking without a dog group (2) and had a lonely walk with only one social 
encounter.
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When you do this, you will see that the data screen changes so that it displays the value labels 
in the first column rather than the numbers that you typed in. You can change the display back 
to numbers if you wish by clicking again on the Value Label icon.

If you wish, you can change the way that SPSS displays the information in the grouping 
variable column. Once you have used the Values feature to indicate which group is which, you 
can get SPSS to display the labels that you have given each group in the Data Entry window. 
To do this you simply click on the icon that looks a bit like a road sign ( ) with the ‘1’ and ‘A’ 
in it towards the right-hand end of the toolbar:
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You should note that if you wish to add new data to this file, you should still type numbers into 
the first column. SPSS will automatically change them to the relevant label for you.

 2.7 Within-participants designs

When we have within-participants designs, we have to input the data in a different way. If we 
stick with the dog-walking example above but think of it as a within-participants design, each 
person would complete the walking in both the dog and no-dog conditions. The data for such a 
study would look something like that shown below:
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You might be wondering why we have to input the data differently for different designs. The 
reason is that each row on the data input screen represents the information from one participant. 
If you have a between-participants design, you need to let SPSS know what each participant’s 
score was and also which group they were in. When you have a within-participants design, each 
participant performs under two conditions and therefore has two scores. You need to let SPSS 
know what both of these scores are. Because each participant performs in both groups, you do 
not need to let SPSS know their group with a grouping variable. You can therefore tell the dif-
ference between within- and between-participants designs by looking for a grouping variable. 
If there is one, then it is a between-participants design.

You should notice from the screenshot that we have set up two variables, one for the dog 
condition and one for the no-dog condition. Also, because we do not have a grouping variable, 
we do not have to give group ‘value’ labels for any variables in the Variable View screen. Setting 
up the variables with such a design is therefore more straightforward than with between- 
participants designs.

Summary

In this chapter we have introduced you to the SPSS 
statistical package. You have learnt:

• how to use the tutorials

• how to set up variables in the Variable View part 
of the interface.

• about using Labels and Value Labels to make the 
output clearer.

• how to input data for correlational, within-
participants and between-participants designs.

• that the use of a grouping variable is important 
for between-participants designs.

Discover the website at www.pearsoned.co.uk/dancey where you can test your knowledge with  multiple 
choice questions and activities, discover more about topics using the links to relevant websites, and 
explore the interactive flowchart designed to help you find the right method of analysis.

SPSS exercises

The answers to all exercises in the book can be found in the Answers section at the end of the book.

Exercise 1

Dr Genius has conducted a study comparing memory for adjectives with that for nouns. She randomly 
allocates 20 participants to two conditions. She then presents to one of the groups of 10 participants a 
list of 20 adjectives and to the other group a list of 20 nouns. Following this, she asks each group to try 
to remember as many of the words they were presented with as possible. She collects the following data:

Adjectives: 10, 6, 7, 9, 11, 9, 8, 6, 9, 8
Nouns: 12, 13, 16, 15, 9, 7, 14, 12, 11, 13

 1. What is the IV in this study?
 2. What is the DV?

http://www.pearsoned.co.uk/dancey
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 3. Is this a between- or within-participants design?
 4. Is it an experimental, quasi-experimental or correlational design?
 5. Enter the data into SPSS in the appropriate manner for the design of the experiment and save your 

data to a file.

Exercise 2

Using the data from Exercise 1:

• If you input the data as a within-participants design, then input it now as a between-participants 
design.

• If you input the data as a between-participants design, then input it now as a within-participants 
design.

Save the data to a file using a different filename.



 3.1 Samples and populations

We have explained that statistics are essentially ways of describing, comparing and relating 
variables (see Chapter 1). When producing such statistics, we have to be aware of an important 
distinction between samples and populations. When psychologists talk about populations, they 
do not necessarily mean the population of a country or town; they are generally referring to 
distinct groups of people: for example, all individuals with autism or all men who are left-
footed. In statistical terms, a population can even refer to inanimate objects: for example, the 
population of Ford cars.

CHAPTER OVERVIEW

Earlier (in Chapter 1) we outlined some important factors in research design. In this chapter we will 

be explaining the basic ways of handling and analysing data collected through quantitative research. 

These are descriptive statistics. An important step for anyone trying to understand statistical analyses 

is to gain a good grounding in the basics. Therefore, we will explain to you a number of basic statistical 

concepts which will help you to understand the more complex analyses presented later in the book. 

By the end of this chapter, you should have a good understanding of the following:

■ samples and populations

■ measures of central tendency (e.g. the mean)

■ graphical techniques for describing your data (e.g. the histogram)

■ the normal distribution

■ measures of variability in data (e.g. the standard deviation).

These are all important concepts, which will pop up in various guises throughout the book, and so it 

is important to try to understand them. Look at these as the initial building blocks for a conceptual 

understanding of statistics.

Descriptive statistics

3

Definitions

A population consists of all possible people or items who/which have a particular characteristic.

A sample refers to a selection of individual people or items from a population.
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A sample is simply a selection of individuals from the population (see Figure 3.1). Research-
ers use samples for a number of reasons, chiefly that samples are cheaper, quicker and more 
convenient to examine than the whole population. Imagine that we wanted to see if statistics 
anxiety was related to procrastination, as Dunn (2014) has done. We could simply measure 
everyone’s levels of statistics anxiety and procrastination and observe how strongly they were 
related to each other. This would, however, be prohibitively expensive. A more convenient way 
is to select a number of individuals randomly from the population and find the relationship 
between their statistics anxiety and procrastination levels. We could then generalise the findings 
from this sample to the population. We use statistics, more specifically inferential statistics, to 
help us generalise from the sample to the whole population.

When conducting research, we have to ensure that we know which population is relevant and 
choose our sample from that population. It is of no use conducting a study using a sample of 
males if the target population includes both sexes, and it is pointless conducting a study using 
a sample of tarantulas if the target population is zebras.

The ability to generalise findings from a sample to the population is vitally important in 
research. Mostly when conducting studies researchers are more interested in the population 
than they are the sample of participants in their particular study. They are usually only interested 
in what their samples can tell them about the populations. Thus, Dunn (2014) was not especially 
interested in the 101 people who took part in the study, but was interested in what these partici-
pants could tell them about statistics anxiety in the population. It is important therefore that we 
ensure that any samples used in our research are truly representative of the target population. 
A simple example will illustrate some of the problems. Imagine that some researchers want to 
find out if walking a dog leads to more social encounters than walking without a dog. They 
decide to go to their nearest park and follow a number of dog owners and non-owners to count 
the number of social interactions they have. They find that non-owners tend to have more social 
encounters than dog owners do. They conclude that having a dog is bad for your social life. Is 
this correct? We do not really know the answer to this from the research as described. It might 
be correct, but they may not have used an appropriate sample upon which to base their conclu-
sions: they may have a sampling problem. The problem with this is that the dog owners they 

Figure 3.1 Illustration of several samples of five faces taken from a population of faces

One possible

sample of five faces

Population

of faces
Another possible

sample of five faces

Another possible

sample of five faces
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followed may, for example, have all been very shy, and it is this rather than having a dog that 
explains the difference in social encounters. There are many ways in which the researchers could 
have failed to obtain representative samples. There could be experimenter bias, where the 
experimenters subconsciously chose to follow people who help support their hypothesis. 
There could be issues to do with the time of day at which people walk their dogs: for example, 
people walking dogs early in the morning may be in a hurry in order to get to work and thus 
may be less sociable. Certain dogs may lead to fewer social interactions (e.g. walking with a pit 
bull terrier).

As researchers we have to be aware of all these possibilities when designing our research in 
order to ensure such problems do not arise. We want to be able to generalise from our sample 
to the wider populations and therefore we want to avoid problems with the design that reduce 
our ability to do this. Many of the finer points of research design are attempts to ensure that we 
are able to generalise. The researchers in the above example could, of course, have gone to many 
different parks and followed many people on many occasions. In this way they would ensure 
that their samples are much more representative of the population.

The previous example illustrates a very important point, which is that our ability to gener-
alise from samples to populations is dependent upon selecting samples that are truly representa-
tive of the target population.

We have now introduced you to the distinction between samples and populations. You will 
find when you read textbooks on statistics that statisticians have different ways of describing 
samples and populations. Strictly speaking, statistics describe samples. So if you calculate an 
average or mean for a sample, it is a statistic. If you calculate the mean for a population, how-
ever, you should call it a parameter. While statistics describe samples, parameters describe 
populations. Thus a population mean is a parameter and a sample mean is a statistic. This is a 
technical distinction and one that need not worry you unduly, as long as you realise that there 
are differences between the statistical techniques that describe samples and those that describe 
populations. Typically, we use sample statistics to estimate population parameters. More specifi-
cally, however, we tend to use descriptive statistics to describe our samples and inferential 

statistics to generalise from our samples to the wider populations.

Definition

Parameters are descriptions of populations whereas statistics are descriptions of samples. We often 
use sample statistics as estimations of population parameters. For example, we often try to estimate 
the population mean (a parameter) from the sample mean (a statistic).

Activity 3.1

If you wanted to find out which group, football fans or rugby fans, were least intelli-
gent, which of the following samples would be most suitable?

• A group of people who are both football and rugby fans
• A random sample of people from the general population
• One group of football fans and one group of rugby fans
• One group of males and one group of females
• A group of psychology students
• A group of chimpanzees
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 3.2 Measures of central tendency

The first and perhaps most common form of descriptive statistics that you will come across are 
measures of central tendency. A measure of central tendency of a set of data gives us an indica-
tion of the typical score in that dataset. There are three different measures of central tendency 
that are typically used to describe our data. We will begin with the most popular of these, the 
mean, which may be known to many of you as the average.

Definition

Measures of central tendency give us an indication of the typical score in our sample. It is effectively an 
estimate of the middle point of our distribution of scores.

 3.2.1 Mean

The mean is easily calculated by summing (adding up) all the scores in the sample and then 
dividing by the number of scores in the sample. The mean of the sample of these four scores 
5, 6, 9, 2 will be:

5 + 6 + 9 + 2

4
= 5.5

As another example, if we obtained the following dataset, 2, 20, 20, 12, 12, 19, 19, 25, 20, 
we would calculate the mean as follows:

• We would add the scores to get 149.

• We would then divide this by 9 (which is the number of scores we have in the sample) to get 
a mean of 16.56.

2 + 20 + 20 + 12 + 12 + 19 + 19 + 25 + 20

9
= 16.56

This gives us an indication of the typical score in our sample. It is quite difficult simply to use 
the mean of a sample as an estimate of the population mean. The reason for this is that we are 
never certain how near to the population mean is our sample mean, although there are  techniques 
we can use to help us in this regard, e.g. confidence intervals (see section 4.5).

Definition

The mean is the sum of all the scores in a sample divided by the number of scores in that sample.

 3.2.2 Median

A second measure of central tendency is the median, which is officially defined as the value 
that lies in the middle of the sample: that is, it has the same number of scores above as below it. 
The median is calculated by ranking all the scores and taking the one in the middle. For the data 
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used above to illustrate the calculation of the mean (2, 20, 20, 12, 12, 19, 19, 25, 20), we rank 
the data by putting them in ascending order, from lowest to highest score thus:

Scores:

Ranks:

Ranking positions:

2

1

1

12

2.5

2

12

2.5

3

19

4.5

4

19

4.5

5

20

7

6

20

7

7

20

7

8

25

9

9

The mean of these

two gives a rank of 2.5

The mean of these

three gives a rank of 7

Definition

Ranking is where we arrange a set of scores in ascending order and then assign a position number 
(rank) to each one.

Scores:

Ranks:

2

1

12

2

12

3

19

4

19

5

20

6

20

7

20

8

25

9

The middle rank

The median score

You can see that we have arranged the scores in ascending order (top row) and assigned each score 
a rank (bottom row). Thus, the lowest score gets a rank of 1, the next lowest a rank of 2, and so on.

Strictly speaking, however, when we have two or more scores the same (as in the above 
example), the ranks we assign to the equal scores should be the same. Therefore, ranks given 
to the data presented above should actually be as follows:

You can see here that all the scores that are equal have the same rank as each other. We work 
out the ranking in such cases by taking the mean of the ranking positions that these scores 
occupy, as illustrated above.

In order to find the median, we need to locate the score that is in the middle of this ranked 
list. We have nine scores, therefore the middle score here is the fifth one (it has four scores 
below it and four scores above). The median is thus 19, which is the fifth score in the list.

In the above example, it was easy to work out the median as we had an odd number of scores. 
When you have an odd number of scores there is always one score that is the middle one. This 
is not the case, however, when we have an even number of scores. If we add the score of 26 to 
the above list, we now have an even number of scores.

Scores:

Ranks:

Ranking positions:

12

2.5

2

2

1

1

12

2.5

3

19

4.5

4

4.5

5

20

7

6

20

7

7

20

7

8

25

9

9

26

10

10

19

The mid-point is

between these two ranks

We therefore have to

take the average of

these two middle scores
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In such a situation the median will be between the two middle scores: that is, between the 
fifth and sixth scores. Our median is, in this case, the average of the two scores in the fifth and 
sixth positions: (19 + 20) , 2 = 19.5.

Definition

The median is the middle score/value once all scores in the sample have been put in rank order.

 3.2.3 Mode

A third measure of central tendency is the mode, which is simply the most frequently occurring 
score. In the set of scores given above to illustrate the mean and median, the mode would be 
20, which is the most frequently occurring score.

2 12 12 19 19 20 20 20 2625

Most frequently occurring score is the mode

Definition

The mode is the most frequently occurring score in a sample.

Activity 3.2

For practice work out the mean, median and mode for the following sets of scores:

(a) 12, 23, 9, 6, 14, 14, 12, 25, 9, 12
(b) 1, 4, 5, 6, 19, 1, 5, 3, 16, 12, 5, 4
(c) 32, 56, 91, 16, 32, 5, 14, 62, 19, 12

 3.2.4 Which measure of central tendency should you use?

We have described to you three different measures of central tendency: that is, three measures 
of the typical score in a sample. The question remains, however, which of these should you use 
when describing your data? The answer to this question is that it depends upon your data.

The important point to keep in mind when choosing a measure of central tendency is that it 
should give you a good indication of the typical score in your sample. If you have reason to 
suspect that the measure of central tendency you have used does not give a good indication of 
the typical score, then you have probably chosen the wrong one. After you have calculated your 
measure of central tendency compare it to the scores in your sample and satisfy yourself that it 
looks representative of the scores as a whole.

The mean is the most frequently used measure of central tendency and it is the one you 
should use once you are satisfied that it gives a good indication of the typical score in your 
sample. It is the measure of choice because it is calculated from the actual scores themselves, 
not from the ranks, as is the case with the median, and not from frequency of occurrence, as is 
the case with the mode.
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There is a problem with the mean, however. Because the mean uses all the actual scores in 
its calculation, it is sensitive to extreme scores. Take a look at the following set of scores:

1 2 3 4 5 6 7 8 9 10

The mean from this set of data is 5.5 (as is the median). If we now change one of the scores and 
make it slightly more extreme, we get the following:

1 2 3 4 5 6 7 8 9 20

The mean from this set of data is now 6.5, while the median has remained as 5.5. If we make 
the final score even more extreme, we might get the following:

1 2 3 4 5 6 7 8 9 100

We now get a mean of 14.5, which is obviously not a good indication of the typical score in this 
set of data (the majority of scores are considerably below 14.5). As we have the same number 
of scores in each of these sets of data and we have changed only the highest score, the median 
has remained as 5.5. The median is thus a better measure of central tendency in the latter two 
cases. This example illustrates the need for you to check your data for extreme scores (we will 
be introducing one way of doing this later in this chapter) before deciding upon which measure 
of central tendency to use. In the majority of cases though you will probably find that it is 
acceptable to use the mean as your measure of central tendency.

If you find that you have extreme scores and you are unable to use the mean, then you 
should use the median. The median is not sensitive to extreme scores, as the above example 
illustrated. The reason for this is that it is simply the score that is in the middle of the other 
scores when they are put in ascending order. The procedure for locating the median score does 
not depend upon the actual scores themselves beyond putting them in ascending order. So the 
top score in our example could be 10, 20, 100 or 100 million and the median still would not 
change. It is this insensitivity to extreme scores that makes the median useful when we cannot 
use the mean.

As the mode is simply the most frequently occurring score, it does not involve any calcula-
tion or ordering of the data. It thus can be used with any type of data. One of the problems with 
the median and mean is that there are certain types of data for which they cannot be used. When 
we have categories such as occupation as a variable, it does not make sense to rank these in 
order of magnitude. We therefore cannot use the mean or the median to find the typical occupa-
tion in our sample. If you have this sort of data, you have no choice but to use the mode. When 
using the mode, however, you need to make sure that it really is giving you a good indication 
of the typical score. Take a look at the following sets of data:

1 2 2 2 2 2 2 2 3 4 5 6 7 8
1 2 2 3 4 5 6 7 8 9 10 11 12

The mode in both of these cases would be ‘2’. You should note that the first set of data contains 
many more 2s than any other score. The mode in this case would be a suitable measure 
of the central tendency, as it is a reasonable indication of the typical score. In the second set of 
data, 2 would again be the mode because it is the most frequently occurring score. In this case, 
however, it is not such a good indicator of the typical score because its frequency of occurrence 
is only just greater than all the other scores. So in this case we should probably not choose the 
mode as our measure of central tendency. Sometimes you may find that none of the measures 
of central tendency is appropriate. In such situations you will just have to accept that there are 
no typical scores in your samples.
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 3.2.5 The population mean

The measures of central tendency we have just described are useful for giving an indication of 
the typical score in a sample. Suppose we wanted to get an indication of the typical score in a 
population. We could in theory calculate the population mean (a parameter) in a similar way to 
the calculation of a sample mean: obtain scores from everyone in the population, sum them and 
divide by the number in the population. In practice, however, this is generally not possible. Can 
you imagine trying to measure the levels of procrastination and statistics anxiety of everyone 
in the world? We therefore have to estimate the population parameters from the sample 
statistics.

One way of estimating the population mean is to calculate the means for a number of samples 
and then calculate the mean of these sample means. Statisticians have found that this gives a 
close approximation of the population mean.

Why does the mean of several sample means approximate the population mean? Imagine 
randomly selecting a sample of people and measuring their IQ. For many IQ tests it has been 
found that the population mean for IQ is 100. It could be that, by chance, when obtaining your 
sample you have selected mainly geniuses and that the mean IQ of the sample is 150. This is 
clearly way above the population mean of 100. We might select another sample that happens to 
have a mean IQ of 75, again not near the population mean. It is evident from these examples 
that the sample mean need not be a close approximation of the population mean. However, if 
we calculate the mean of these two sample means, we get a much closer approximation to the 
population mean:

75 + 150

2
= 112.5

The mean of the sample means (112.5) is a better approximation of the population mean 
(100) than either of the individual sample means (75 and 150). When we take several samples 
of the same size from a population, some will have a mean higher than the population mean 
and some will have a lower mean. If we calculated the mean of all these sample means, it would 
be very close to 100, which is the population mean. This tendency of the mean of sample means 
to closely approximate the population mean is extremely important for your understanding of 
statistical techniques that we cover later in this book, so you should ensure that you understand 
it well at this stage. (You should also bear this in mind when we discuss the Central Limits 
Theorem in Chapter 4.) Knowing that the mean of the sample means gives a good approxima-
tion of the population mean is important, as it helps us generalise from our samples to our 
population.

Activity 3.3

Which measure of central tendency would be most suitable for each of the following 
sets of data?

(a) 1 23 25 26 27 23 29 30
(b) 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 4 50
(c) 1 1 2 3 4 1 2 6 5 8 3 4 5 6 7
(d) 1 101 104 106 111 108 109 200



Statistics without maths for psychology50

 3.3 Sampling error

Before reading this section you should complete Activity 3.4.

Activity 3.4

Above is a diagram containing pictures of many giant pandas. Each giant panda has a number that 
indicates its IQ score. To illustrate the problems associated with sampling error, you should complete 
the following steps and then read the sampling error section. Imagine that this picture represents the 
population of giant pandas. The mean IQ score of this population is 100. We want you to randomly select 
ten samples from this population. Each sample should contain only two pandas. In order to do this, we 
advise you to get a pencil and wave it over the picture with your eyes closed. With your free hand, move 
the book around. When ready let the tip of the pencil hit the page of the book. See which panda the 
pencil has selected (if you hit a blank space between pandas, select the panda nearest to where your 
pencil falls). Make a note of the IQ of the panda that you have selected and do this twice for each 
sample. You should repeat this process ten times so that you have ten samples of two pandas drawn 
from the population of pandas. We realise that this doesn’t actually represent random selection from 
the population, but it will do for now to illustrate a point we wish to make.

We would now like you to repeat this whole process, but this time selecting samples of ten pandas 
each time. Once you have done this, calculate the mean for each of the samples that you have selected 
(all the two-panda samples and all the ten-panda samples).

You may now continue to read the section relating to sampling error.
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One of the problems with sampling from populations is that systematic errors may affect our 
research and, as a result, make it difficult to interpret. For this reason, statistical error due to 
sampling is perhaps the biggest problem that we face when estimating population parameters 
from sample statistics. Whenever we select a sample from a population, there will be some 
degree of uncertainty about how representative the sample actually is of the population. Thus, 
if we calculate a sample statistic, we can never be certain of the comparability of it to the 
equivalent population parameter. The degree to which such sample statistics differ from the 
equivalent population parameter is the degree of sampling error. Why should there be such an 
error, and how can we minimise it?

Sampling error occurs simply because we are not using all the members of a target popu-
lation. Once you start to use samples, you will get some degree of sampling error. For 
example, supposing we wanted to measure the IQs of giant pandas. If we went out and 
tested all the pandas in the world, we would calculate the mean population IQ directly. We 
have tested the entire population and therefore the mean that we calculate will be the popu-
lation mean.

Now suppose we tested only 90% of the population. We have effectively selected a sample. 
The mean we calculate from this sample will be a good estimate of the population mean, but it 
will not necessarily be exactly the same. Because we have not tested all the pandas, we are likely 
either to overestimate or to underestimate the population mean.

The fact that we have selected so many pandas means that, by chance, we are likely to select 
pandas from both extremes of the distribution. That is, we are likely to select both clever and 
not so clever pandas in the same sample. You should have seen from completing Activity 3.4 
that when you selected samples containing ten pandas, all the samples contained pandas whose 
IQs were above and below the mean. Thus with relatively large sample sizes (compared to the 
population), our samples are highly likely to contain clever and not so clever pandas. The sam-
ple mean is therefore likely to be a fairly good estimate of the population mean. Consequently, 
if we take lots of such samples, the degree of sampling error for each sample is likely to be 
quite small.

Let us now assume that we are researchers with very little money and as a result we can 
only afford to take sample sizes consisting of two pandas. What effect will this reduction 
in sample size have on the degree of sampling error? Again referring to Activity 3.4, you 
will probably have noticed that in some of the samples you selected, both of the pandas had 
IQs greater than the population mean. This will lead to your sample mean being an 
overestimation of the population mean. You will also have found that in some of your 
samples both of your pandas had IQs lower than the population mean. Your sample mean 
in these cases will be an underestimate of the population mean. With such small sample 
sizes it is thus much more likely that the entire sample will be either more clever or less 
clever than the population mean. In such cases the sample mean will be a poor estimate of 
the population mean. We therefore have a much greater degree of sampling error with these 
small sample sizes.

As you increase your sample size, you increase the probability that you will choose pandas 
that fall both above and below the population mean within the same sample. You also decrease 
the likelihood that all the selected pandas are from the extremes of the distribution. You there-
fore decrease the degree of sampling error. You should have noticed from Activity 3.4 that the 
means calculated from the two-panda samples varied quite a lot, with some being considerably 
different to the population mean, whereas for the ten-panda samples the sample means were 
probably pretty good estimates of the population mean. Thus, in general, the larger the samples, 
the closer the sample mean will be to the population mean.
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A further example may make this point clearer. Suppose that everybody in the population 
was classified as tall, medium height or short. Suppose that you randomly select two people 
from the population. You should be able to see that there are a number of combinations possible 
for the height of the people selected and these are:

Combination: 1 2 3 4 5 6 7 8 9

Person 1: Short Short Short Medium Medium Medium Tall Tall Tall

Person 2: Short Medium Tall Short Medium Tall Short Medium Tall

You should be able to see that the probability of randomly selecting two short people from the 
population is 1 in 9 and the probability of selecting two people the same height is 1 in 3. Thus 
it is quite likely with a sample size of two that both will be classified as the same height. Now 
let us randomly select a sample of three people from the population. Here are the possible 
combinations this time:

Person 1 Person 2 Person 3 Person 1 Person 2 Person 3 Person 1 Person 2 Person 3

Short Short Short Medium Short Short Tall Short Short

Short Short Medium Medium Short Medium Tall Short Medium

Short Short Tall Medium Short Tall Tall Short Tall

Short Medium Short Medium Medium Short Tall Medium Short

Short Medium Medium Medium Medium Medium Tall Medium Medium

Short Medium Tall Medium Medium Tall Tall Medium Tall

Short Tall Short Medium Tall Short Tall Tall Short

Short Tall Medium Medium Tall Medium Tall Tall Medium

Short Tall Tall Medium Tall Tall Tall Tall Tall

Now you can see that there are 27 different possible combinations of heights for a sample 
of three people. In only one out of the 27 combinations are all the participants short and in 
only three out of 27 (1 in 9) are all the participants the same size. You should, therefore, be 
able to see that when you increase the sample size, the likelihood of all participants being 
above the mean or all being below the mean is reduced and as a result so is the degree of 
sampling error.

Definition

When we select a sample from a population and then try to estimate the population parameter from 
the sample, we will not be entirely accurate. The difference between the population parameter and the 
sample statistic is the sampling error.
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SPSS: obtaining measures of central tendency

To obtain measures of central tendency from SPSS, you need to input your data as described in  
section 2.7 and then click on the Analyze menu.

When you have displayed the Analyze menu, click on the Descriptive Statistics option and then select 
the Explore . . . option of the final menu. You will then get the following dialogue box:

There are other options for displaying descriptive statistics, but the Explore option is more flexible. The 
Explore option allows you to access a wider range of descriptive statistical techniques and so is a useful 
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option to get familiar with. You will notice that there are a number of features in this dialogue box, 
including:

• variables list
• box for dependent variables (Dependent List)
• box for grouping variables (Factor List)
• Display options (at the bottom left)
• various option buttons (Statistics, Plots, Options).

To obtain measures of central tendency, move the two variables to the Dependent List box by high-
lighting them in the variables list box and then clicking on the right-facing arrow by the Dependent List 
box. You will see the variables move over to this box. See below:

To obtain the relevant descriptive statistics, you should select the Statistics option (the middle one of 
the set of Display options) and then click on the OK button to obtain the measures of central  tendency. 
When you do so, you will get the following output from SPSS:

Explore
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You will notice from the SPSS printout that you are presented with a lot of information. Do not worry 
too much if you do not understand most of it at this stage; we will explain it later in the book. For now, 
you should notice that for the two variables you can see the mean and median displayed. If you want 
the mode, you should try using the Frequencies . . . option from the Analyze. . . Descriptives menus rather 
than the Explore . . . option. Once you get the Frequencies dialogue box open, highlight the two variables 
and click on the arrow to move them to the Variable(s) box:
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Definition

Exploratory data analyses are where we explore the data that we have collected in order to describe it 
in more detail. These techniques simply describe our data and do not try to draw conclusions about any 
underlying populations.

Then you need to click on the Statistics button and select the mode from the next dialogue box along 
with any other measures of central tendency you require – see the screenshot below:

 3.4 Graphically describing data

Once you have finished a piece of research, it is important that you get to know your data. One 
of the best ways of doing this is through exploratory data analyses (EDA). EDA essentially con-
sists of exploring your data through graphical techniques. It is used to get a greater understanding 
of how participants in your study have behaved. The importance of such graphical techniques 
was highlighted by Tukey in 1977 in a classic text called Exploratory Data Analysis. Tukey con-
sidered exploring data to be so important that he wrote 688 pages about it! Graphically illustrating 
your data should, therefore, be one of the first things you do with it once you have collected it. 
In this section we will introduce you to the main techniques for exploring your data, starting with 
the frequency histogram. We will then go on to explain stem and leaf plots and box plots.

 3.4.1 Frequency histogram

The frequency histogram is a useful way of graphically illustrating your data. Often researchers are 
interested in the frequency of occurrence of values in their sample data. For example, if you 
collected information about individuals’ occupations, you might be interested in finding out how 
many people were in each category of employment. To illustrate the histogram, consider a frequency 
histogram for the set of data collected in a 2011 study by Armitage and Reidy (unpublished).  
In this study investigating the fear of blood, the researchers asked participants to indicate from a 
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list of seven colours which was their favourite. The histogram representing the data is shown in 
Figure 3.2. You should be able to see from Figure 3.2 that people in this sample rated blue as being 
their favourite colour most often and white as their favourite least often.

The frequency histogram is a good way for us to inspect our data visually. Often we wish to 
know if there are any scores that might look a bit out of place. The histogram in Figure 3.3 
represents hypothetical scores on a depression questionnaire. You can see from the histogram 
that the final score is much greater than the other scores. Given that the maximum score on this 
particular depression scale is only 63, we can see from the histogram that we must have made 
an error when inputting our data. Such problems are easier to spot when you have graphed your 
data. You should, however, be aware that the interpretation of your histogram is dependent upon 
the particular intervals that the bars represent. The histogram in Figure 3.3 has bars representing 
intervals of 1 on the depression scale. That is, each bar represents one particular score on the 
questionnaire (e.g. a score of 9 on the questionnaire). Figure 3.4 shows how the depression score 
data would look with bars representing intervals of 5. The bars here represent groups of 5 scores, 
e.g. scores of 1 to 5 or scores of 16 to 20. The width of bars is often referred to as the bin width. 
We can adjust the width of the bins to ensure that the histogram provides a concise overview 
of the distribution of scores in your sample. Thus, in Figure 3.4 we have adjusted the bins to 
represent intervals of 5 rather than 1.

Figure 3.2 Frequency histogram showing frequency with which people rated colours as being their 
favourites (Armitage and Reidy, unpublished)

Favourite colour

Fr
e

q
u

e
n

cy

80

60

40

20

0
Red Green Brown Black White Blue Yellow

Definition

The frequency histogram is a graphical means of representing the frequency of occurrence of each 
score on a variable in our sample. The x-axis contains details of each score on our variable and the y-axis 
represents the frequency of occurrence of those scores.
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The frequency histogram is also useful for discovering other important characteristics of 
your data. For example, you can easily see what the mode is by looking for the tallest bar in 
your chart. Thus from Figure 3.3 we can see that the mode for the sample of depression scores 
is 5. In addition, your histogram gives you some useful information about how the scores are 
spread out: that is, how they are distributed. The way that data are distributed is important, as 
you will see when we come to discuss the normal distribution later in this chapter. The distribu-
tion of data is also an important consideration in the use of the inferential statistics discussed 
later in the book. We can see from the histogram of the depression questionnaire data (see 
Figure 3.3) that there is a concentration of scores in the 5 to 7 region and then the scores tail 
off above and below these points.

Figure 3.3 Histogram of the depression questionnaire data
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Figure 3.4 Histogram of the depression data grouped in intervals of 5
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The best way of generating a histogram by hand is to rank the data first, as described earlier 
in the chapter for working out the median. You then simply count up the number of times each 
score occurs in the data; this is the frequency of occurrence of each score. This frequency is 
then plotted on a chart as above.

Activity 3.5

Given the following histogram, try to answer these questions:

(a) What is the mode?
(b) What is the least frequent score?
(c) How many people had a score of 5?
(d) How many people had a score of 2?

This activity illustrates how useful histograms can be for getting to know, or exploring, 
your data.
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Mean 5 4.6

N 5 23.00

 3.4.2 Stem and leaf plots

Stem and leaf plots are similar to frequency histograms in that they allow you to see how the 
scores are distributed. However, they also retain the values of the individual observations. 
Developed by Tukey (1977), they tend to be a lot easier to draw by hand than the histogram. 
The stem and leaf plot for the data we used to illustrate the calculation of the mean, median and 
mode (2, 12, 12, 19, 19, 20, 20, 20, 25) is presented in Figure 3.5.

Definition

Stem and leaf plots are similar to histograms but the frequency of occurrence of a particular score is 
represented by repeatedly writing the particular score itself rather than drawing a bar on a chart.
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You can see that, in the example of Figure 3.5, the scores have been grouped in tens: the first 
line contains the scores from 0 to 9, the next line from 10 to 19 and the last line 20 to 29. There-
fore, in this case the stem indicates the tens (this is called the stem width) and the leaf the units. 
You can see that a score of 2 is represented as 0 in the tens column (the stem) and 2 in the units 
column (the leaf), whilst 25 is represented as a stem of 2 and a leaf of 5.

The stem and leaf plot in Figure 3.6 comes from these scores: 1, 1, 2, 2, 2, 5, 5, 5, 12, 12, 
12, 12, 14, 14, 14, 14, 15, 15, 15, 18, 18, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 28, 
28, 28, 28, 28, 28, 28, 32, 32, 33, 33, 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 42, 42, 
42, 43, 43, 44. You can see from Figure 3.6 that the stem and leaf plot provides us with a concise 
way of presenting lots of data. Sometimes, however, the above system of blocking the tens is 
not very informative. Take a look at Figure 3.7, which shows the stem and leaf plot for the 
depression data that we presented in histogram form (Figure 3.3) earlier.

Figure 3.7 does not give us much information about the distribution of scores, apart from 
the fact that they are mostly lower than 20. An alternative system of blocking the scores is to 
do so in groups of five (e.g. 0–4, 5–9, 10–14, 15–19, etc.). The stem and leaf plot for the depres-
sion data grouped this way is presented in Figure 3.8. This gives a much better indication of the 
distribution of scores. You can see that we use a full stop (.) following the stem to signify the 
first half of each block of ten scores (e.g. 0–4) and an asterisk (*) to signify the second half of 
each block of ten scores (e.g. 5–9).

Figure 3.5 Example of a stem and leaf plot
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Figure 3.6 Stem and leaf plot for a larger set of data
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Figure 3.7 Stem and leaf plot for depression data grouped in blocks of ten
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 3.4.3 Box plots

Even though we can see that there is an extreme score in the depression example, it is often the 
case that the extreme scores are not so obvious. Tukey (1977), however, developed a graphical 
technique called the box plot or box and whisker plot, which gives us a clear indication of 
extreme scores and, like the stem and leaf plots and histogram, tells us how the scores are 
distributed.

Figure 3.8 Stem and leaf plot for the depression data grouped in blocks of five
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Definition

Box plots enable us to easily identify extreme scores as well as seeing how the scores in a sample are 
distributed.

Although you can get the computer to produce box and whisker plots, we will describe to 
you how to produce a box and whisker plot for the following data so that you know how to 
interpret them (the box plot for these data is presented in Figure 3.9 later):

2 20 20 12 12 19 19 25 20

• First, find the median score as described above. This was position 5 (the actual median score 
was 19, but once the data had been ranked, the score was in position 5).

2 12 12 19 19 20 20 20 25

Median score in 5th

ranked position

• Then calculate the hinges. These are the scores that cut off the top and bottom 25% of the 
data (which are called the upper and lower quartiles): thus 50% of the scores fall within 
the hinges. The hinges form the outer boundaries of the box (see Figure 3.9). We work out 
the position of the hinges by adding 1 to the median position and then dividing by 2 
(remember that our median is in position 5) thus:

5 + 1

2
= 3
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• The upper and lower hinges are, therefore, the third score from the top and the third score 
from the bottom of the ranked list, which in the above example are 20 and 12 respectively.
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Figure 3.9 Example of a box plot
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• From these hinge scores we can work out the h-spread, which is the range of the scores 
between the two hinges. The score on the upper hinge is 20 and the score on the lower hinge 
is 12, therefore the h-spread is 8 (20 minus 12).

• We define extreme scores as those that fall one-and-a-half times the h-spread outside the 
upper and lower hinges. The points one-and-half times the h-spread outside the upper and 
lower hinges are called inner fences. One-and-a-half times the h-spread in this case is 12: that 
is, 1.5 * 8. Therefore any score that falls below 0 (lower hinge, 12, minus 12) or above 32 
(upper hinge, 20, plus 12) is classed as an extreme score.

• The scores that fall between the hinges and the inner fences and that are closest to the inner 
fence are called adjacent scores. In our example, these scores are 2 and 25, as 2 is the closest 
score to 0 (the lower inner fence) and 25 is closest to 32 (the upper inner fence). These are 
illustrated by the cross-bars on each of the whiskers (see Figure 3.9).

• Any extreme scores (those that fall outside the upper and lower inner fences) are shown on 
the box plot.

You can see from Figure 3.9 that the h-spread is indicated by the box width (from 12 to 20) and 
that there are no extreme scores. The lines coming out from the edge of the box are called whisk-
ers, and these represent the range of scores that fall outside the hinges but are within the limits 
defined by the inner fences. Any scores that fall outside the inner fences are classed as extreme 

scores (also called outliers). You can also see from Figure 3.9 that we have no scores outside the 
inner fences, which are 0 and 32. The inner fences are not necessarily shown on the plot.  
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The lowest and highest scores that fall within the inner fences (adjacent scores 2 and 25) are 
indicated on the plots by the cross-lines on each of the whiskers.

If we now add a score of 33 to the dataset illustrated in Figure 3.9, the box plot will resemble 
that shown in Figure 3.10. You should notice that there is a score that is marked ‘10’. This is 
telling us that the tenth score in our dataset (which has a value of 33) is an extreme score. That 
is, it falls outside the inner fence of 32. We might want to look at this score to see why it is so 
extreme; it could be that we have made an error in our data entry.

Definition

Outliers or extreme scores are those scores in our sample that are a considerable distance either higher 
or lower than the majority of the other scores in the sample.

Figure 3.10 Box plot illustrating an extreme score
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The box plot illustrated in Figure 3.11 represents the data from the hypothetical depression 
scores presented earlier in the chapter. You can see from this that the obvious extreme score (the 
score of 64) is represented as such; however, there are less obvious scores that are extreme, the 
scores of 18 and 23. This clearly indicates that it is not always possible to spot which scores are 
extreme, and thus the box plot is an incredibly useful technique for exploring your data.

Why is it important to identify outlying scores? You need to bear in mind that many of the 
statistical techniques that we discuss in this book involve the calculation of means. You should 
recall that earlier (see section 3.2.4) we discussed how the mean is sensitive to extreme scores. 
We thus need to be aware of whether or not our data contain such extreme scores if we are to 
draw the appropriate conclusions from the statistical analyses that we conduct.

Strictly speaking, we should not use most of the inferential statistical techniques in this book 
if we have extreme scores in our data. There are, however, ways of dealing with extreme scores. 
If you find that you have extreme scores, you should take the following steps:

• Check that you have entered the data correctly.

• Check that there is nothing unusual about the outlying (extreme) score. For example, do you 
recall from testing the person whether they looked as though they understood the instructions 
properly. Did they complete your questionnaire properly? Is there any reason to think that 
they didn’t complete the task(s) properly?



Statistics without maths for psychology64

– If you have a good reason then you can remove the participant (case) from the analysis. 
However, when you report your data analyses you should report the fact that you have 
removed data and the reason why you have removed the data.

• If there is nothing unusual about the participant that you can identify apart from their 
extreme score, you should probably keep them in the analyses. It is legitimate, however, to 
adjust their score so that it is not so extreme and thus doesn’t unduly influence the mean. 
Why is this so?

– Remember, if you are using the mean then you must be interested in the typical score in 
a group. Clearly, an extreme score is not a typical score and so it is legitimate to adjust it 
to bring it more in line with the rest of the group. To do this we adjust the extreme score 
so that it is one unit above the next highest score in the sample which is not an extreme 
score. In this way the participant is still recognised as having the highest score in the 
sample, but their score is now having less of an impact upon the mean and thus less impact 
on our inferential statistical analyses.

– As an example, refer to the depression scores we presented earlier (see Figure 3.11). Let 
us suppose that we had only one extreme score in this sample (the score of 64) and that 
this is a valid score (for the sake of illustration we will ignore the other two outliers in this 
sample). To adjust the extreme score we would find the highest score that is not extreme. 
In this case that is a score of 13. We would therefore adjust the extreme score so that it is 
one greater than 13. Our extreme score is therefore adjusted to 14.

• Of course, if you make such adjustments to the scores, you need to report exactly what you 
have done when you come to write up the research, so that your readers know that your 
analyses are based upon some adjusted scores.

We are not able to give a full discussion of this here but you can find a good account of it in 
Tabachnick and Fidell (2013).

Figure 3.11 Box plot for the questionnaire data illustrating several extreme scores
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Activity 3.6

Given the following box plot:

(a) What is the median?
(b) How many extreme scores are there?
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Example from the literature

Perceptions of eye-gaze directions of rotated faces

It is rare for researchers to refer to box plots in their published articles, although we would presume 
that they do examine them before using many of the statistical techniques covered in this book. It is 
even rarer for researchers to actually present box plots in published articles. An exception to this is a 
recent paper published by Otsuka et al. (2015). In this paper the authors report a study in which they 
were interested in how participants perceive the eye-gaze direction of faces. They had a number of 
conditions including a three-dimensional representation of upright and inverted faces and also condi-
tions which just had eyes with no face. The authors present box plots to illustrate the difference between 
the perceived eye-gaze directions among the various conditions. The figure below represents an extract 
of the box plots that they present. From this you can see that they had one high and one low outlier 
for the upright normal faces condition and two high outliers for the inverted eye-only condition.
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SPSS: generating graphical descriptives

To obtain histograms, stem and leaf plots and box plots using SPSS, you can use the Explore dialogue 
box. You should proceed as described earlier for obtaining measures of central tendency. If you wish to 
obtain measures of central tendency and the graphical descriptive, you should select the Both option 
at the bottom left of the dialogue box (Display options). If, however, you only want to obtain graphical 
descriptives, you should select the Plots option (see below):

You should then click on the Plots button to specify which plots you want displayed. When you click on 
Plots, you will be presented with the following dialogue box:

The default selections are for Boxplots and Stem-and-leaf plots. To obtain frequency histograms too, 
select the option in this dialogue box and click on the Continue button. You will then be returned to the 
main dialogue box, where you should click on OK to obtain the plots. You will be presented with the 
output shown in Figure 3.12.
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You will be presented with a histogram, followed by the stem and leaf plot and finally the box plot. We have 
only presented the output for the with a dog condition here. SPSS will also give you the output for the 
without a dog condition. You should note that SPSS may be set up to give you different bar intervals from 
those presented above, so you need to check what the bar intervals are on the output that SPSS gives you. 
You should note that in Figure 3.12 SPSS has given us a histogram with bar intervals (bin widths) of 1.

Figure 3.12 Graphical descriptives as part of the output when using the Explore command in SPSS.
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 3.5 Scattergrams

A useful technique for examining the relationship between two variables is to obtain a scat-
tergram. An example of a scattergram can be seen in Figure 3.13 for the statistics anxiety and 
procrastination data presented in section 2.4. These data are presented again below:

Statistics anxiety score: 55 59 48 60 62 50
Procrastination score: 125 132 94 110 140 96

A scattergram plots the scores of one variable on the x-axis and the other variable on the 
y-axis. Figure 3.13 gives scores for procrastination on the x-axis and statistics anxiety on 
the y-axis. It gives a good illustration of how the two variables may be related. We can see 
from the scattergram that, generally, as statistics anxiety increases so does procrastination. Thus 
there seems to be a relationship between the two variables. The scores seem to fall quite close 
to an imaginary line running from the bottom-left corner to the top-right corner of the 
scattergram. We call this a positive relationship.

Definition

A scattergram gives a graphical representation of the relationship between two variables. The scores 
on one variable are plotted on the x-axis and the scores on another variable are plotted on the y-axis.

Suppose that when you conducted your statistics anxiety study you found that, as statistics 
anxiety increased, procrastination decreased. What do you think the resulting scattergram would 
look like? You might find that it resembled the one presented in Figure 3.14.

You can now see from the scattergram in Figure 3.14 that, as procrastination increases,  statistics 
anxiety decreases. The scores appear to cluster around an imaginary line running from the top-left 
corner to the bottom-right corner of the scattergram. We would call this a negative relationship.

Figure 3.13 Scattergram for the statistics anxiety and procrastination data presented in Chapter 2
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What would the scattergram look like if there were no discernible relationship between statistics 
anxiety and procrastination? The scattergram presented in Figure 3.15 gives an indication of 
what this might look like.

You can see that the arrangement of points in the scattergram illustrated in Figure 3.15 
appears to be fairly random. Scattergrams are thus a very useful tool for examining relationships 
between variables and will be discussed in more detail in Chapter 6.

Figure 3.14 Scattergram indicating that, as statistics anxiety decreases, procrastination increases
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Figure 3.15 Scattergram indicating no relationship between statistics anxiety and procrastination
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Activity 3.7

Given the following scattergram, what would be the most sensible conclusion about 
the relationship between the price of petrol and driver satisfaction?
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SPSS: generating scattergrams

To obtain a scattergram using SPSS, you should click on the Graphs menu, select the Legacy Dialogs 
option and then select the Scatter/Dot . . . option. You will be presented with the following option box:
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You should select the Simple Scatter option (which is the default selection) and click on the Define button. 
You will then be presented with a dialogue box where you can select various options for your scattergram.

Move one variable to the Y Axis box and one other variable to the X Axis box using the buttons and 
then click on OK to obtain the scattergram. The graph should be similar to the one presented earlier 
(see Figure 3.13).

 3.6 Sampling error and relationships between variables

You should recall that earlier in the chapter (see section 3.3) we explained the problems associated 
with sampling error. There we indicated that because of sampling error our sample mean need 
not necessarily be a good indicator of the population mean. You should note that sampling error is 
not restricted to circumstances where we wish to estimate the population mean. It is also an important 
concern when investigating relationships between variables. Suppose we conduct a study relating 
statistics anxiety to procrastination, and suppose that (unknown to us) there is actually no relationship 
between these two variables in the population. For the sake of illustration, let us assume that there 
are only 50 people in the population. The scattergram in Figure 3.16, therefore, represents the pattern 
of scores in the population. If we took two different samples from this population, one containing 
only three people and one containing 20 people, we might get scattergrams that look like 

Figure 3.16 Scattergram of the population of procrastination and statistics anxiety scores
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Figure 3.17(a) and (b). In these scattergrams we can see that there does not appear to be a relationship 
between the two variables. As procrastination increases, there is no consistent pattern of change in 
statistics anxiety. In this case, our samples are good representations of the underlying population.

If we now select two more samples (one containing three people and one containing 20 
people), we might obtain the scattergrams shown in Figure 3.18(a) and 3.18(b). In this case, in 
the three-person sample we might conclude that there is a negative relationship between the two 
variables. As statistics anxiety decreases, procrastination increases. In the 20-person sample, 
however, the suggestion is again that there is no real relationship between the two variables. You 
can see that here the smaller sample does not accurately reflect the pattern of the underlying 
population, whereas the larger sample does.

Finally, if we select two more samples we might get the pattern illustrated in Figure 3.19(b). 
Here you should be able to see that there does not appear to be a relationship between statistics 

Figure 3.17 Scattergrams illustrating no relationship between statistics anxiety and procrastination suggested by the 
three- and 20-person samples
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Figure 3.18 Scattergrams illustrating a negative relationship between statistics anxiety and procrastination 
suggested by the three-person sample but not the 20-person sample
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anxiety and procrastination in the three-person sample but there does appear to be a relationship 
in the 20-person sample. If you look at Figure 3.19, you should see that there appears to be a 
pattern for the 20-person sample that suggests as procrastination increases so does statistics 
anxiety. In this case the larger sample does not accurately represent the underlying population, 
whereas the smaller sample does.

You should note that you are much less likely to get the patterns indicated in Figure 3.19 
than those in Figures 3.17 and 3.18. As we indicated earlier in the chapter, when you have larger 
sample sizes the samples are much more likely to be accurate representations of the underlying 
population. Although the scenario illustrated by Figure 3.19(b) is quite unlikely, it can occur 
and therefore we have to be careful when trying to generalise from samples to populations.

The main point of the above illustration is that the conclusions we draw from sample data 
are subject to sampling error. We can rarely be certain that what is happening in the sample 
reflects what happens in the population. Indeed, as the above scattergrams illustrate, our sample 
data can deceive us. They can show a pattern of scores that is completely different from the 
pattern in the underlying population. The larger the sample we take from the population, 
 however, the more likely it is that it will reflect that population accurately.

 3.7 The normal distribution

We have now presented you with four useful techniques for graphically illustrating your data. Why 
is it so important to do this? It is certainly not so that software giants can sell you fancy computer 
software. It is because the way that our data are distributed is important. Many of the statistical 
tests you will be presented with in this book make assumptions about how your data are distrib-
uted. That is, the tests are valid only if your data are distributed in a certain way. One of the most 
important patterns of data distribution that you will come across is the normal distribution.

The curves illustrated in Figure 3.20 are all normal distributions. In everyday life, many 
variables such as height, weight, shoe size, anxiety levels and exam marks all tend to be nor-
mally distributed: that is, if they were plotted as a frequency histogram they would all tend to 
look like the curves in Figure 3.20. In our research we can use this information to make assump-
tions about the way that populations are distributed. It is for this reason that many of the most 

Figure 3.19 Scattergrams illustrating a positive relationship between statistics anxiety and procrastination suggested 
by the 20-person sample but not the three-person sample
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powerful statistical tools we use assume that the populations from which our samples are drawn 
are normally distributed.

For a distribution to be classed as normal it should have the following characteristics:

• It should be symmetrical about the mean.

• The tails should meet the x-axis at infinity.

• It should be bell-shaped.

All the distributions in Figure 3.20 are normal; even though they are not exactly the same, they 
have the characteristics described above. You can see that they differ in terms of how spread out 
the scores are and how peaked they are in the middle. You will also notice that, when you have 
a normal distribution, the mean, median and mode are exactly the same. Another important 
characteristic of the normal distribution is that it is a function of its mean and standard deviation 
(we explain standard deviations later in this chapter). What this means is that, once we have the 
mean and standard deviation, we can plot the normal distribution by putting these values into 
a formula. We will not present the formula here; you just need to remember that the normal 
distribution can be plotted by reference to its mean and standard deviation.

Figure 3.20 Normal distributions
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Definition

A normal distribution is a distribution of scores that is peaked in the middle and tails off symmetrically 
on either side of the peak. The distribution is often said to be ‘bell-shaped’. For a perfectly normal 
distribution, the mean, median and mode will be represented by the peak of the curve.
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As we pointed out earlier, when many naturally occurring variables are plotted, they are 
found to be normally distributed. It is also generally found that the more scores from such 
variables you plot, the more like the normal distribution they become. A simple example may 
serve to illustrate this. If you randomly selected ten men and measured their heights in inches, 
the frequency histogram might look something like Figure 3.21(a). It is clear that this does 
not much resemble the normal distributions illustrated in Figure 3.20. If we select an addi-
tional ten men and plot all 20 heights, the resulting distribution might look like Figure 3.21(b), 
again not too much like a normal distribution. You can see, however, that as we select more 

Figure 3.21 Histograms showing the progression to a normal distribution as more people are sampled

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

60–61 64–65 68–69 72–73 76–77

60–61 64–65 68–69 72–73 76–77

60–61 64–65 68–69 72–73 76–77

60–61 64–65 68–69 72–73 76–77

60–61 64–65 68–69 72–73 76–77

Fr
e

q
u

e
n

cy
Fr

e
q

u
e

n
cy

Fr
e

q
u

e
n

cy

Fr
e

q
u

e
n

cy
Fr

e
q

u
e

n
cy

0

0.5

1

1.5

2

2.5

3

3.5

4

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0

5

10

15

20

25

0

1

2

3

4

5

6

7

8

9

10

(c) 30 men

(a) 10 men (b) 20 men

(d) 50 men

(e) 100 men

With 30 men the

distribution is starting

to look more normal

Nothing like

a normal

distribution

With 100 men we now

have a distribution

that is normal



Statistics without maths for psychology76

and more men and plot the heights, the histogram becomes a closer approximation to the 
normal distribution (Figures 3.21(c) to (e)). By the time we have selected 100 men, you can 
see that we have a perfectly normal distribution. Obviously we have made these data up to 
illustrate a point, but in general this is what happens with many variables that you will come 
across.

We have given you an indication of what the normal distribution looks like; however, you 
need to be aware that there is not just one single normal distribution. As indicated in 
 Figure 3.20, normal distributions represent a family of distributions. These distributions all 
have the characteristics of normal distributions (bell-shaped, symmetrical about the mean, 
etc.), but they differ from one another in terms of how spread out they are and how peaked or 
flat they are.

 3.8 Variation or spread of distributions

We have introduced you to measures of central tendency, which give us an indication of the 
typical score in a sample. Another important aspect of a sample or population of scores is how 
spread out they are. Or, to put it another way, how much variation there is in your sample or 
population.

Definition

Variance or variation of scores indicates the degree to which the scores on a variable are different from 
one another.

 3.8.1 The range

One simple way of getting an indication of the spread of scores is to compare the minimum 
score with the maximum score in the sample or population. This is known as the range. The 
range is simply the difference between the minimum and maximum scores. For example, the 
range for the depression scores in Figure 3.3 is 64: that is, 64 minus 0. In that example the low-
est score is 0 and the highest score is 64, so the range is 64.

Although the range tells us about the overall range of scores, it does not give us any 
indication of what is happening in between these scores. For example, take a look at the two 
distributions in Figure 3.22. These histograms were generated from two sets of data which 
have the same mean (16) and the same minimum and maximum scores (5 and 27). They 
both therefore have the same range, which is 22 (27 minus 5). They are, however, totally 
different distributions; the scores in distribution B are packed tightly around the mean 
whereas the scores in distribution A are generally more spread out. Ideally, we need to have 
an indication of the overall shape of the distribution and how much the scores vary from 
the mean. Therefore, although the range gives a crude indication of the spread of the scores, 
it does not really tell us much about the overall shape of the distribution of the sample  
of scores.

Definition

The range is the highest score in a sample minus the lowest score.
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 3.8.2 Standard deviation

A more informative measure of the variation in data is the standard deviation (SD). One of the 
problems with the range is that it does not tell us what is happening with the scores between 
the minimum and maximum scores. The SD, however, does give us an indication of what is 
happening between the two extremes. The reason why the SD is able to do this is that it tells us 
how much all the scores in a dataset vary around the mean. The SD is a very important concept, 
so it is worth the effort spent now getting to understand it. It is important because it forms the 
basis of many of the statistical techniques we use to analyse our data.

The SD is a measure of how much the scores in your sample vary around the mean. Each 
score in a sample will deviate from the mean by some amount. If we subtract the mean from each 
score, we get an indication of how far each score in the sample is from the mean. As with any 
group of scores, we could then find the mean of the deviations from the mean. This mean, called 
the mean deviation, gives us an indication of how much the group as a whole differs from the 
sample mean. To calculate the mean deviation, we have to sum the individual deviations and 
divide by the number of scores we have. There is a problem with such a procedure, however. The 
problem relates to the fact that the mean is a measure of central tendency (middle or typical 
score). As a result, approximately half of the deviations from the mean will be negative deviations 
(the scores will be less than the mean) and half will be positive deviations (the scores will be 
greater than the mean). If we sum these deviations, we will get zero. This is illustrated below:

Figure 3.22 Distributions with the same mean, minimum and maximum scores but which have very different 
distributions around the mean
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This is not a very informative indication of how the whole group is deviating from the mean, 
as for every sample we will get zero. A way out of this dilemma is to square each of the devia-
tions from the mean; this eliminates all negative values (a negative number squared gives a 
positive value, e.g. -52

= 25). We can then calculate the mean of these squared deviations to 
give an indication of the spread of the whole group of scores. The resultant statistic is known 
as the variance. The problem with the variance is that it is based upon the squares of the devia-
tions and thus it is not expressed in the same units as the actual scores themselves. It is expressed 
in the square of the unit of measurement. For example, if we had a set of scores expressed in 
seconds, the variance would be expressed in seconds2. To achieve a measure of deviation from 
the mean in the original units of measurement, we have to take the square root of the variance, 
which gives us the standard deviation.

Definition

The standard deviation is the degree to which the scores in a dataset deviate around the mean. It is an 
estimate of the average deviation of the scores from the mean. The standard deviation is the square-
root of the variance.

Definition

The variance is the average squared deviation of scores in a sample from the mean.

A simple example will illustrate this. Suppose that we have the following group of scores 
collected from a study into the number of chocolate bars eaten by people each week: 1, 4, 5, 6, 
9, 11. To work out the standard deviation, we proceed as follows:

• First, calculate the mean, which is 6.

• The deviation of each score from the mean is: -5, -2, -1, 0, 3, 5 (if we add these up, you 
see that we get zero).

• We therefore need to square these deviations to get rid of the negative values, which gives 
us these scores: 25, 4, 1, 0, 9, 25.

• Next, we calculate the mean of these scores, which is 10.67, i.e. 64 , 6,  which gives us our 
variance.

• Finally, we work out the standard deviation by taking the square root of the variance, which 
gives us 3.27.
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The standard deviation figure of 3.27 is useful as it gives us an indication of how closely the 
scores are clustered around the mean. Generally, you will find that nearly 70% of all scores fall 
within 1 standard deviation of the mean. In the above example the standard deviation is 3.27: 
this tells us that the majority of the scores in this sample are within 3.27 units above or below 
the mean. That is, nearly 70% of participants would eat between 2.73 (the mean, 6, minus 3.27) 
and 9.27 (6 plus 3.27) chocolate bars per week. The standard deviation is useful when you want 
to compare samples using the same scale. Suppose we took a second sample of scores and now 
had a standard deviation of 6.14. If we compare this with the SD of 3.27 from the initial exam-
ple, it suggests that the participants in the initial sample tend to be more closely clustered around 
the mean than those in the second sample.

If you calculate the standard deviation in the way just shown, you will obtain a standard 
deviation that is specific to your sample. This is called a sample standard deviation. Usually, 
however, we are interested in a measure of variation which is an estimate of the underlying 
population. The problem with the sample standard deviation is that it tends to be an under 
estimate of the population standard deviation. We therefore usually report a slightly modified 
version of the sample standard deviation when we are trying to generalise from our sample 
to the underlying population. The only difference between this modified standard deviation 
and the sample standard deviation is that, instead of dividing the sum of the squared devia-
tions from the mean by the number of observations, we divide by the number of observations 
minus 1. Thus, in the above example, instead of dividing 64 by 6, we would divide it by 
5 (6 - 1). This would give us a standard deviation of 3.58. You will find when you use SPSS 
that the standard deviation reported in the output is the modified version rather than the 
sample standard deviation. Therefore, if you typed the data used in the above example into 
SPSS and ran some descriptive statistics, you would find that the standard deviation is given 
as 3.58 rather than 3.27.

Activity 3.8

Below is a table of means and standard deviations reported in a study by Latu  
et al. (2013) in which they examined the length of time participants spoke to a 
virtual audience when asked to do a persuasive speech against a proposed increase 
in university student fees. The researchers were interested in whether or not 
participants were influenced by the presence of powerful political figures in the 
form of a poster on the wall. The overall mean length of speech in seconds and 
standard deviation for three of the four conditions are presented below. Which of 
these conditions has the greatest amount of variation around the mean? How 
might you describe the pattern of variations around the mean across the three 
conditions?

Poster: Mean (seconds) SD

Control (no poster) 210.05 77.92

Angela Merkel 256.20 68.11

Bill Clinton 202.94 78.88
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SPSS: obtaining measures of variation

To obtain measures of variation using SPSS, you should follow the instructions presented earlier for 
generating measures of central tendency. If you use the Explore dialogue box as previously described, 
you will generate a printout similar to that presented below:

Explore

You can see that the printout contains the range, variance and standard deviation.

Case Processing Summary

Cases

N Percent N Percent N

Valid Missing Total

Percent

6

6

100.0%

100.0%

0

0

0.0%

0.0%

6

6

100.0%

100.0%

WalkingWithDog

WalkingWithoutDog

0.88192

0.845

1.741

0.73030

0.845

1.741

Mean

95% Confidence Interval

for Mean

5% Trimmed Mean

Median

Variance

Std. Deviation

Minimum

Maximum

Range

Interquartile Range

Skewness

Kurtosis

Mean

95% Confidence Interval

for Mean

5% Trimmed Mean

Median

Variance

Std. Deviation

Minimum

Maximum

Range

Interquartile Range

Skewness

Kurtosis

WalkingWithDog

Descriptives

Lower Bound

Upper Bound

Lower Bound

Upper Bound

Std. Error

8.6667

6.3996

10.9337

8.6296

8.5000

4.667

2.16025

6.00

12.00

6.00

3.75

0.463

20.300

4.0000

2.1227

5.8773

4.0556

4.5000

3.200

1.78885

1.00

6.00

5.00

2.75

20.943

0.586

Statistic

WalkingWithoutDog

Variance,
SD and
Range
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 3.9 Other characteristics of distributions

We have now covered ways to measure the spread of distributions. The other way in which 
distributions can differ from one another is in terms of how peaked or flat they are. The degree 
of peakedness or flatness is known as the kurtosis of the distribution. If a distribution is highly 
peaked, it is said to be leptokurtic; if the distribution is flat it is said to platykurtic. A distribu-
tion that is between the more extremes of peakedness and flatness is said to be mesokurtic (see 
Figure 3.23).

Definition

The kurtosis of a distribution is a measure of how peaked the distribution is. A flat distribution is called 
platykurtic, a very peaked distribution is called leptokurtic, and a distribution between these extremes 
is called mesokurtic.

You need not worry unduly about kurtosis at this stage of your statistical careers. We 
introduce it here for two reasons. First, for completeness: we want you to have a fairly 
comprehensive knowledge of the normal distributions and how they can differ from one 
another. Second, when you get SPSS to run descriptive statistics, you will see a measure of 
kurtosis on the output. When you come across this, you will now know what it refers to: 
positive values of kurtosis on the output suggest that the distribution is leptokurtic, whereas 
negative values suggest that it is platykurtic. A zero value tells you that you have a mesokurtic 
distribution. If you take a look back at the SPSS output we presented on the previous page  
you will see that for the WalkingWithDog condition there is a kurtosis value of -0.30, that is, 
the distribution is slightly flat, whereas the value of the WalkingWithoutDog condition is 
0.566, a slightly more peaked distribution.

Figure 3.23 Normal distributions varying in terms of their peakedness and flatness

Platykurtic

Leptokurtic

Mesokurtic
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 3.10 Non-normal distributions

Although many variables, when plotted, roughly approximate the normal distribution, you will 
often find that variables deviate from this shape of distribution. Often such deviations from 
normal are the result of sampling error. It is important to check the shape of your distributions, 
as most of the statistical techniques described in this book make the assumption that the data 
you are analysing are normally distributed. You can check the shape of the distributions by 
generating histograms. If you find that your data deviate markedly from the normal distribu-
tion, you should consider using one of the statistical techniques that do not make the assump-
tion of normally distributed data. These are called distribution-free or non-parametric tests 
(and are covered in Chapter 16). The following descriptions illustrate some of the more com-
mon ways in which a distribution you may come across will deviate from the normal 
distribution.

 3.10.1 Skewed distributions

The most often observed deviations from normality are the result of skewness. The distribu-
tions presented below are skewed distributions (Figure 3.24). You can see that in comparison 
with the normal distribution they are not symmetrical. The distribution that has an extended 
tail to the right is known as a positively skewed distribution (Figure 3.24(a)). The distribution 
that has an extended tail to the left is known as a negatively skewed distribution 
(Figure 3.24(b)).

Figure 3.24 Positively and negatively skewed distributions
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If you come across badly skewed distributions, you should be cautious about using the mean 
as your measure of central tendency, as the scores in the extended tail will be distorting your 
mean. In such cases you are advised to use the median or mode, as these will be more  representative 
of the typical score in your sample.

As with kurtosis, the output you get from SPSS for descriptive statistics also gives a measure 
of skewness. Here a positive value suggests a positively skewed distribution, whereas a negative 
value suggests a negatively skewed distribution. A value of zero tells you that your distribution 
is not skewed in either direction. If you look back at the output shown above, you can see that 
we have a skewness value of 0.46 for the ‘WalkingWithDog’ condition, indicating a small posi-
tive skew. We also have a value of -0.94 for the ‘WalkingWithoutDog’ condition, indicating 
quite a large negative skew for these data. Values of skewness around about 1 (or -1) suggest 
deviations from normality which are too extreme for us to use many of the statistical techniques 
covered in this book.

 3.10.2 Bimodal distributions

Occasionally you may come across a distribution like the one represented in Figure 3.25. This 
is known as a bimodal distribution. Essentially it has two modes, although in most cases the 
two humps of the distribution will not be equal in height. This is clearly a non-normal distribu-
tion. If you come across such a distribution you should look closely at your sample, as there 
may be some factor that is causing your scores to cluster around the two modal positions. It 
might be the case that you have to treat these as two separate populations. If all seems in order, 
you should report that the distribution is bimodal and report the two modes.

Definition

Skewed distributions are those where the peak is shifted away from the centre of the distribution and 
there is an extended tail on one of the sides of the peak. A negatively skewed distribution is one where 
the peak has been shifted to the right towards the high numbers on the scale and the tail is pointing 
to the low number (or even pointing to the negative numbers). A positively skewed distribution has the 
peak shifted left, towards the low numbers, and has the tailed extended towards the high numbers.

Definition

A bimodal distribution is one that has two pronounced peaks. It is suggestive of there being two distinct 
populations underlying the data.

A nice recent example of bimodally distributed data is presented by Partington et al. (2013). 
In this study the researchers were interested in the influence of being in a university sports 
club on hazardous drinking. They recorded whether or not participants were in a university 
sports club and measured alcohol consumption using the Alcohol Use Disorders Identification 
Test (AUDIT; Saunders et al., 1993). When the researchers examined the distribution of 
AUDIT scores, they found that it was bimodal. There appeared to be two groups of partici-
pants; those with an AUDIT score of zero (light drinkers) and those with higher AUDIT scores 
(i.e. heavier drinkers). Because of the bimodal distribution of AUDIT scores the researchers 
correctly chose to use non-parametric statistical tests (we cover these sorts of tests in 
Chapter 16).
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Figure 3.25 Bimodal distribution
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Personal reflection

Dr Sarah Partington
Department of Sport, Exercise and Rehabilitation
Faculty of Health and Life Sciences
University of Northumbria

ARTICLE: The relationship between sport participation and drinking behaviour 
among students at English Universities (Partington et al., 2013)

Dr Partington says:

“Alcohol has long been associated with sport, whether through alcohol sponsorship of sports events, 
the consumption of alcohol during the celebration of victory or the drowning of sorrows after defeat. 
As we work in Sport and Exercise Science, we were particularly interested in alcohol consumption 
amongst athletes in general and student athletes in particular.

Research has shown that excessive alcohol consumption can be detrimental to athletic performance. 
Logic would therefore dictate that university athletes would not engage in hazardous and harmful 
drinking and would consume less alcohol than their non-athlete peers. Anecdotal evidence from our 
own institution, in conjunction with anecdotal reports from our colleagues at other UK institutions, 
seemed to indicate the opposite.
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We have now shown you what the normal distribution looks like and illustrated some of the 
ways in which actual distributions can deviate from normality. Because the normal distribution 
is so important in statistics, one of the main aims of illustrating your data graphically is to see 
whether they are normally distributed. Perhaps the best graphical techniques for establishing 
whether or not your data are normally distributed are histograms and stem and leaf plots. If 
you take another look at Figure 3.21(e), you will see an example of a histogram showing a 
normal distribution. On the other hand, Figure 3.3 is an example of a distribution that is 
slightly positively skewed. Compare it with Figure 3.24(a) and you will see that they are 
 similar in shape.

One of the limitations of box plots is that it is often more difficult to tell when a distribution 
deviates from normality, but as a guide Figures 3.26(a) to (c) give examples of box plots 
 illustrating normally and non-normally distributed data.

Figure 3.26(a) was generated from normally distributed data (1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 
5, 6, 6, 7) and shows that the median is in the centre of the box and we have whiskers of equal 
length coming from each side of the box. Also there are no outliers.

Figure 3.26(b) was generated from negatively skewed data (1, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 
5, 5, 5, 5) and shows that the median is shifted upwards in the box and is right near the top edge. 
Also there is no whisker coming out of the top of the box. This is an extreme example but 

Previous research into student athlete drinking in the US, New Zealand and France painted an ambigu-
ous picture. Some studies demonstrated that student athletes drank less than students not engaged in 
university sport, whilst other studies found that student athletes drank significantly more. With no UK 
data available we had no idea what the actual situation was for university athletes in England. These 
ambiguous findings raised an interesting question for us in relation to alcohol intervention, namely, is 
participation in university sport a protective factor against or a risk factor for hazardous and harmful 
drinking?

The primary aim of our study was to compare alcohol consumption of university sport participants with 
students not engaged in university sport participation. A secondary aim was to explore some sport 
specific characteristics (type and level) which may have an impact on the alcohol–sport relationship. 
We used the Alcohol Use Disorders Identification Test (AUDIT) to measure drinking behaviour and 
alcohol-related problems.

The AUDIT scores for the whole sample were bimodal due to the fact that some students did not drink 
at all, either because they were lifelong abstainers or were currently abstaining for a variety of reasons. 
Those who participated in university sport had significantly higher AUDIT scores than those students 
not participating in university sport. University sport participants consumed greater quantities of 
alcohol, drank more frequently, consumed greater quantities of alcohol on a typical drinking occasion, 
binge drank more often and were more at risk for alcohol-related harm than their non-athlete peers. 
Interestingly, further analysis revealed that, while there were no significant differences in relation to 
competitive level, there was a significant difference between team sports players and athletes who 
participated in individual sports.

Team sports players were found to drink significantly more than those participating in individual sports. 
In fact our results suggested that the difference in AUDIT scores and hence alcohol-related risk 
between sport and non-sport participants can be explained mainly, although not entirely, by the 
 drinking behaviour of those playing team sports. Our findings led us to conclude that student athletes 
in England and more specifically team sport athletes may be an ‘at risk group’ for alcohol-related 
problems.”
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Figure 3.26 Box plots illustrating (a) normally distributed, (b) negatively skewed and (c) bimodally 
distributed data
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whenever the median is shifted towards one edge of the box and you have a shortened or no 
whisker coming from that edge, you should suspect that you have skewed data.

Finally, Figure 3.26(c) was generated from bimodally distributed data (1, 2, 2, 3, 3, 3, 3, 3, 
4, 4, 5, 5, 5, 5, 5, 6, 6, 7). Surprisingly, it looks exactly like Figure 3.26(a) and is a good illustra-
tion of the caution you should exercise when trying to interpret whether you have normally 
distributed data from box plots. This is why the histogram and, to a certain extent, stem and leaf 
plots are better for assessing whether you have normally distributed data. Thankfully, bimodally 
distributed data are not too common in research, so box plots can give a reasonable indication 
of the way your data are distributed.
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Activity 3.9

Which of the following distributions are normal and which are not?

(a)

(b)

(c)

(d)

Example from the literature

Maths anxiety and working memory in school children

Even though we would expect that all researchers using the statistical techniques covered in this book 
would examine histograms, it is quite rare to find researchers referring to histograms in published 
reports. A nice exception to this is an article published by Ramirez et al. (2013). In this paper the 
researchers report a study investigating the influence of working memory and maths anxiety on maths 
achievements in primary school children. They asked participants to undertake a number of working 
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SPSS: displaying the normal curve on histograms

It is quite useful to get SPSS to display a normal distribution on your histograms to help you decide 
whether your data are normally distributed. Unfortunately, it is not possible to do this using the Explore 
dialogue box. In order to do this, you should generate histograms using the Graphs menu instead of the 
Analyze menu. When you click on the Graphs menu and the select the Legacy Dialogs option you should 
notice that there are options for all the graphical descriptive techniques that we have shown you:

memory tasks and also complete a Child Maths Anxiety Questionnaire (CMAQ) developed by the 
researchers. In their analysis of the CMAQ the researchers present a histogram of scores on this ques-
tionnaire and report that it is approximately normally distributed.

For a slightly more recent article take a look at the paper published by Haaker et al. (2015) in which 
they present a histogram of Spielberger State-Trait Anxiety Inventory (STAI) scores for their sample of 
377 participants.
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Select the Histogram . . . option and you will be presented with the following dialogue box. To generate 
a histogram with a normal curve on it, you should move the relevant variable to the Variable box. You 
should then select the option that states Display normal curve. When you have made the correct 
 selection, click on OK to generate the histogram. The resulting histogram will contain the normal curve, 
as indicated in Figure 3.27.

You can see from the histogram that the set of data that we have used is not very close to the 
normal curve.
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 3.11 Writing up your descriptive statistics

Although it is good practice to examine the distribution of your data, you will find that most 
researchers do not routinely report the findings of such examinations. Typically, if your 
distributions deviate from normality, it is a good idea to report this fact. If the distributions 
are approximately normal in shape, it is up to you whether you report this. Whether or not 
you report the shape of your distribution, you should always examine this, as the shape of 
your distribution has a bearing on the sorts of statistical technique you can use to analyse 
your data.

If you wish to mention the way that your data are distributed, the following is perhaps how 
you should report your descriptive statistics. In a study conducted by Reidy and Keogh (1997), 
anxious and non-anxious individuals were compared on their interpretation of ambiguous infor-
mation. There was also an examination of gender differences in such interpretations. We might 
present the descriptive statistics as follows:

There were 98 students in the study. The mean numbers of positive and negative  interpretations 
were 10.06 and 7.95 respectively. The number of positive and negative interpretations given 
by males and females was compared. Table 3.1 shows the means and standard  deviations for 
these two groups. The table shows that the males offered more negative interpretations than 
the females and about the same number of positive interpretations. Both genders gave more 
positive interpretations than they did negative interpretations. The standard deviations show 
that the males had slightly more variability in terms of their positive and negative interpreta-
tions. Examination of box and whisker plots revealed that the distributions were  approximately 
normally distributed and that there were no extreme scores.

Females Males

Positive interpretations 10.20 (2.32) 9.91 (3.01)

Negative interpretations 7.27 (2.99) 8.62 (3.55)

Table 3.1 Mean number of positive and negative interpretations shown by males and females 
(standard deviations in parentheses)

Summary

In this chapter we have introduced you to ways of 
exploring and describing your data. We have 
highlighted the fact that it is important to become 
familiar with your data by using a number of 
descriptive statistical techniques, and we explained 
how to use and interpret such techniques. Thus, 
you have learnt:

• How to calculate means, medians and modes in 
order to get an indication of the typical score in a 
sample (these are measures of central tendency).

• Sampling errors occur when we take samples 
from populations, and the larger the samples  

we take, the lower will be the degree of sampling 
error.

• That there are a number of graphical techniques 
that help us to become more familiar with how 
our data are distributed, including:

– frequency histograms

– stem and leaf plots

– box plots

– scattergrams.

• What the normal distribution looks like and why 
it is important in statistics.
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• That there are a number of ways in which data 
that you gather can deviate from the normal 
distribution, including:

– negatively skewed distributions

– positively skewed distributions

– bimodal distributions.

• That an important feature of any distribution is 
the degree to which the scores are spread out 
and that the most important measure of this is 
called the standard deviation.

• That the standard deviation is the degree to which 
the scores in a distribution deviate from the mean.

Discover the website at www.pearsoned.co.uk/dancey where you can test your knowledge with multiple 
choice questions and activities, discover more about topics using the links to relevant websites, and 
explore the interactive flowchart designed to help you find the right method of analysis.

SPSS exercises

Exercise 1

You are given the job of finding out whether or not changing the lighting in an office from normal fluo-
rescent lighting to red lighting will increase the alertness of data inputters and thereby decrease the 
number of errors they make. When you do this, you find that 20 data inputters decrease their number 
of errors per day by the following amounts:

22, 22, 12, 10, 42, 19, 20, 19, 20, 21, 21, 20, 30, 28, 26, 18, 18, 20, 21, 19

 1. What is the IV in this study?
 2. What is the DV in this study?
 3. Use SPSS to generate a box plot for the above set of scores.

(a) Are the data normally distributed?
(b) Are there any outliers shown on the box plot? If yes, which score(s) is (are) the outlier(s)?
(c) Using SPSS, what is the mean of the above set of scores? What is the standard deviation?

Exercise 2

A group of final-year students decides to see if the lecture material in Dr Boering’s lectures can be made 
more memorable. They decide that the best way to do this would be to take hallucinogenic drugs during 
the lectures. At the end of term there was an exam and those students who took drugs during the 
lecture obtained the following marks (%):

23, 89, 62, 11, 76, 28, 45, 52, 71, 28

Those students in the class who did not take hallucinogenic drugs obtained the following marks:

45, 52, 68, 74, 55, 62, 58, 49, 42, 57

 1. What is the IV in this study?
 2. What is the DV? Is the DV continuous, discrete or categorical?
 3. Use SPSS to plot histograms for the two sets of data and then answer the following:

(a) Are the two sets of scores normally distributed?
(b) Use SPSS to calculate the mean and standard deviations for both sets of scores. Which group 

has the highest mean? Which group has the greater variability in their scores?

http://www.pearsoned.co.uk/dancey
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 1. Which one of the following represents the best estimate of the population mean?

(a) The sample mean
(b) The mean of several sample means
(c) The mode of several sample means
(d) The median of several sample means

 2. If you obtained a sample of data that was relatively normally distributed and had no extreme scores, 
which measure of central tendency would you opt for?

(a) Mode
(b) Median
(c) Mean
(d) None of the above

 3. Which of the following measures of central tendency are sensitive to extreme scores?

(a) Mode
(b) Median
(c) Mean
(d) None of the above

 4. Given the following graph, how would you describe the distribution?

(a) Normal
(b) Positively skewed
(c) Negatively skewed
(d) Bimodal

Multiple choice questions
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 5. The standard deviation is equal to:

(a) The variance
(b) The square root of the variance
(c) The variance squared
(d) The variance divided by the number of scores

 6. What is the relationship between sample size and sampling error?

(a) The larger the sample size, the larger the sampling error
(b) The larger the sample size, the smaller the sampling error
(c) Sample size equals sampling error
(d) None of the above

 7. The mode is:

(a) The frequency of the most common score divided by the total number of scores
(b) The middle score after all the scores have been ranked
(c) The most frequently occurring score
(d) The sum of all the scores divided by the number of scores

 8. In box plots, an extreme score is defined as:

(a) A score that falls beyond the inner fence
(b) A score that falls between the hinges and the inner fence
(c) A score that falls between the inner fence and the adjacent score
(d) A score that falls between the two hinges

 9. A normal distribution should have which of the following properties?

(a) Bell-shaped
(b) Symmetrical
(c) The tails of the distribution should meet the x-axis at infinity
(d) All of the above

 10. If you randomly select a sample of 20 pandas (sample A), then select a sample of 300 pandas  
(sample B) and calculate the mean weight for each sample, which is likely to give a better estimate of 
the population mean weight?

(a) Sample A
(b) Sample B
(c) Both will give equally good estimates of the population mean
(d) Neither will give a good estimate of the population mean

 11. What sort of relationship is indicated by a scattergram where the points cluster around an imaginary 
line that goes from the bottom left-hand corner to the top right-hand corner?

(a) Positive
(b) Negative
(c) Bimodal
(d) Flat
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 12. What is the mean of the following set of scores: 5, 7, 10, 12, 18, 20, 24, 22, 24, 25?

(a) 145
(b) 17.2
(c) 16.7
(d) 167

 13. If you have a negatively skewed distribution then:

(a) The mean, median and mode are equal
(b) The right-hand tail is extended
(c) The left-hand tail is extended
(d) None of the above

 14. A perfectly normal distribution:

(a) Is bell-shaped, symmetrical and has tails that approach the x-axis at infinity
(b) Is only applicable for normal people
(c) Has equal mean, median and modes
(d) (a) and (c) above

 15. When you have categorical variables and are simply counting the frequency of occurrence of each 
category, your measure of central tendency should be:

(a) Mode
(b) Median
(c) Mean
(d) None of the above

 16. Given the following set of data (8, 7, 9, 12, 14, 10, 14, 11, 13, 14), what are the mean, median and 
mode?

(a) 11.2, 11.5, 14
(b) 112, 12, 14
(c) 10, 5, 14
(d) 10, 12, 14

 17. If a distribution is described as platykurtic, then it is:

(a) Very peaked
(b) Very flat
(c) Bimodal
(d) Very thin

 18. Having calculated the variance of a set of data with 12 participants to be 36, what would the standard 
deviation be?

(a) 36
(b) 1296
(c) 6
(d) 3
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 19. Which of the following statements are true?

(a) Parameters describe samples and statistics describe populations
(b) Statistics describe samples and populations
(c) Parameters describe populations and statistics describe samples
(d) Both (a) and (b) above

 20. Given the following graph, how would you describe the distribution?

(a) Normal
(b) Positively skewed
(c) Negatively skewed
(d) Bimodal
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 4.1 Probability

For an understanding of statistics you will need to understand the concept of probability. This 
should not be as difficult as it may seem, as probability is a common element of everyday life. 
Every time you toss a coin you are dealing with probabilities. Every time you roll a die or buy 
a lottery ticket, you are involved with probabilities. We hear about probabilities all the time in 
the news: for example, if you smoke cigarettes you greatly increase the probability that you will 
contract lung cancer. Similarly (and this one I like – JR), if you drink beer in moderation, you 
reduce the risk of coronary heart disease (e.g. see Klatsky, 2015).

CHAPTER OVERVIEW

In Chapters 1 and 3 we introduced you to the important aspects of experimental design and the initial 

processes of data analysis. In this chapter we will start you off on the road to drawing conclusions 

from your data. We will build upon your knowledge of samples and populations to explain how we 

are able to generalise our findings from samples to populations. We will show you how we use sample 

data to help us draw conclusions about our populations. That is, we will introduce you to inferential 

statistics. First we will give a brief introduction to the world of probabilities. We will then show how 

we can use probability distributions such as the standard normal distribution to draw inferences from 

sample data. Therefore in this chapter you will learn about:

■ probability and conditional probability

■ applying probability to research

■ the standard normal distribution

■ sampling distributions

■ point and interval estimates of population parameters

■ the standard error and confidence intervals

■ error bar charts.

Probability, sampling  

and distributions 4

Definition

Probability refers to the likelihood of a particular event of interest occurring.

news:for
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It is clear from the above examples that probabilities are an important aspect of everyday 
life. Let us now take a look at some of these examples in more detail. If you toss a coin, what 
is the probability of it landing with the heads side upwards? There is a 1 in 2 probability of 
getting heads when you toss a coin. This means that one in every two tosses of the coin is likely 
to turn out with heads being the exposed side of the coin. Usually, probabilities are expressed 
in the form of a decimal number ranging from 0 to 1, where 0 means that the event definitely 

will not happen and 1 means that the event definitely will happen.

Activity 4.1

Which of these events has a probability of 0 (or very close to 0) and which has a prob-
ability of 1 (or very close to 1)?

(a) Night following day
(b) All politicians telling us the truth all the time
(c) Your finding a cheque for a million pounds in the pages of this book
(d) A wood fire being extinguished if you pour water on it
(e) Authors having to extend the deadline for sending in manuscripts for books

To calculate the probability of an event occurring, such as tossing a coin, we simply divide the 
number of occurrences of the desired outcomes by the total number of possible outcomes. Thus, 
in the case of tossing the coin there is one desired outcome (heads) but two possible outcomes 
(heads or tails). The probability of getting heads is therefore 1 , 2 (or 0.5). You will also some-
times see probabilities expressed in terms of percentages. Such a format is often more familiar 
to people and helps them understand probabilities better. To calculate the percentage from the 
decimal you simply multiply it by 100. Therefore, the probability of obtaining heads when tossing 
a coin is 50% (0.5 * 100). The probability of 0 is 0% and a probability of 1 is 100%.

Activity 4.2

 1. Express the following probabilities as percentages:

(a) 0.25
(b) 0.99
(c) 1 , 3
(d) 2 , 10

 2. Express the following probabilities as decimals:

(a) 1 , 8
(b) 12 , 20
(c) 30%
(d) 14%

Let us now turn our attention to rolling the die. When we roll a die, what is the probability 
of our rolling a 6? Here we have one desired outcome (a 6) and six possible outcomes (1, 2, 3, 
4, 5 or 6) and so we have a probability of 1 , 6 or 0.1667 of rolling a 6. What is the probability 
of rolling a 1 or a 2? Here we have two desired outcomes (1 or 2) and six possible outcomes, 
therefore the probability is 2 , 6 or 0.3333.

Try to work out the probability of rolling an even number (the answer is in the ‘Answers’ 
section of the book).
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 4.1.1 Conditional probabilities

For the purpose of research in psychology, we need an understanding not only of probability 
but also of conditional probability. A conditional probability is the probability of some event 
taking place, which is dependent upon something else. For example, the probability of Arsenal 
winning a cup final this year might be 70% if they had all their players fit, but might be only 
30% if they had most of their strikers injured. These are conditional probabilities in that they 
are dependent upon the fitness of the Arsenal team. Another example of a conditional probabil-
ity is the probability of someone buying this statistics book. Ordinarily, given that there are 
probably at least 99 other texts on the market, the probability of someone buying this book 
would be about 1 in 100 (or 1%). If a tutor recommends it, however, then the probability may 
change to about 1 in 5 (or 20%). This latter probability is a conditional probability; it is the 
probability of someone buying the book conditional upon a tutor recommending it. We men-
tioned two examples of conditional probabilities earlier in the chapter. The probability of con-
tracting cancer if you smoke cigarettes is a conditional probability, as is the probability of 
coronary heart disease if you drink moderate amounts of beer. Try to ensure that you understand 
what conditional probabilities are, as you will come across them more in Chapter 5 when we 
explain hypothesis testing.

Definition

A conditional probability is the probability of a particular event happening if another event (or set of 
conditions) has also happened.

 4.1.2 Applying probabilities to data analyses: inferential statistics

Inferential statistics are techniques employed to draw conclusions from your data. When we 
conduct research we typically want to draw some conclusions about what we are observing: 
that is, we want to make inferences. The reason why we investigate the relationship between 
mental health and procrastination or that between cigarette smoking and short-term memory is 
to understand them better. Similarly, the reason why we would conduct a study on people who 
eat chocolate sponge with tomato ketchup at 6.30 in the morning is that we want to know why 
on earth they do it (the ‘munchies’ perhaps). To answer such questions we need to draw conclu-
sions from our research data.

Activity 4.3

Which of the following are conditional probabilities?

(a) The probability of being struck by lightning while playing golf
(b) The probability of winning the Lottery
(c) The probability of winning an Olympic gold medal if you do no training
(d) The probability of getting lung cancer if you smoke
(e) The probability of rolling a 6 on a die
(f) The probability of finding a ten pound note in the pages of this book
(g) The probability of manned flight to Mars within the next ten years
(h) The probability of having coronary heart disease if you drink moderate levels  

of beer
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Given the following description of events, what conclusion are you likely to draw?

On a busy afternoon in the centre of Wolverhampton, a man was seen sprinting around a 
corner and running along the High Street. He was obviously in a hurry and did not care that 
he knocked people out of his way. About three seconds later a policewoman also came run-
ning around the corner and up the High Street.

One likely conclusion from this description is that the policewoman is trying to catch up with 
and arrest the person running in front of her. In the majority of cases this would be a reasonable 
conclusion to draw from the description above. However, it could be that the policewoman is 
following a plain clothes officer and they are both rushing to the scene of a crime.

You can see how easy it is to jump to the wrong conclusion in real-life events. The same sorts 
of error can arise in psychological research because we are trying to draw conclusions from 
statistical analyses. Remember, when we test a sample of individuals we are generally doing so 
to enable us to draw conclusions about the population from which the sample was drawn. If we 
wanted to find out whether mental health was related to procrastination, we would randomly 
select a sample of individuals and get measures of these two variables. From these data we 
would then try to make some inferences about the relationship between the two variables in the 
population. This is what we use inferential statistical techniques for. It is, however, possible that 
we may draw the wrong conclusions from our statistical analyses. This is because the statistical 
techniques we use in order to draw conclusions about underlying populations are based upon 
probabilities. We therefore need to be constantly aware of the fallibility of such techniques.

Example from the literature

Psychology placements and career benefits

In a study published by Moores and Reddy (2012) they investigated the potential career benefits of 
psychology students taking a placement year. For a part of the study the researchers contacted 
 psychology alumni and asked them to complete a questionnaire measuring career satisfaction and 
career success. They also recorded whether or not the students had been on a placement whilst at the 
university. The researchers used inferential statistical techniques to establish that for the psychology 
students there was no association between taking a placement and the type of employment six months 
after graduation. They did though show that graduates who went on placements reported higher levels 
of career satisfaction than those who did not. This is a great paper because the authors take the time 
to explain to the reader what the statistical tests mean, which is not that common in published papers. 
(It is also a really good example of the use of some of the non-parametric statistical techniques that 
we cover in Chapter 16.)

Personal reflection

Article: ‘No regrets? Measuring the career benefits of 
a psychology placement year’
Dr Liz Moores and Mr Peter Reddy, School of Life and 
Health Sciences, Aston University, Birmingham, UK
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Dr Moores and Mr Reddy say:

“Although we are both strong proponents of the placement year, we were interested in conducting 
this study to investigate whether it really was delivering what it promised for psychology students. A 
previous study (Reddy and Moores, 2006) had illustrated the benefits of the placement year in terms 
of academic performance, but what really matters in the longer term is whether students are successful 
in obtaining good jobs and whether they feel satisfied with their own career progress. Firstly we ana-
lysed data obtained from the Destination of Leavers from Higher Education (DLHE) survey, which is 
given to all graduates in the UK around six months post-graduation. These data showed that Aston 
University psychology graduates obtaining 2.1 classified degrees were more likely to have found 
 graduate-level work if they had done a placement. In an additional survey of Aston University  psychology 
alumni (that we designed and conducted ourselves) this pattern of employment persisted from 
18 months to six and a half years post-graduation. These survey data also showed that placement 
programme alumni were more satisfied with their careers, but did not earn significantly more. We hope 
that these findings will be useful both to policy makers and to individual students deciding whether or 
not to invest in a placement year.”

 4.2 The standard normal distribution

We have explained what we mean by probability and also, in Chapter 3, described to you the 
family of distributions known as the normal distributions. We would now like to explain an 
even more important distribution known as the standard normal distribution (see Figure 4.1). 
As is indicated in Figure 4.1, the standard normal distribution (SND) is a normally shaped 
distribution with a mean of zero and a standard deviation of 1. Because of these and other 
characteristics, the SND is a very useful distribution. Using this distribution we are able to 
compare scores from different samples, compare different scores from the same samples and 
much, much more.

In order to use the standard normal distribution for analysing our data, we often transform 
the scores in our samples to standard normal scores. This is achieved by subtracting the mean 
from each score in your sample and then dividing by the standard deviation. The result is called 

Figure 4.1 The standard normal distribution

23 22 21 0 1 2 3

Mean of 0, standard 

deviation of 1
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a z-score. The z-score is expressed in standard deviation units: that is, the z-score tells us how 
many standard deviations above or below the mean our score is. If you have a negative z-score 
then your score is below the mean; if you have a positive z-score then your score is above the 
mean. Thus, a z-score of 1 tells us that it falls one standard deviation above the mean.

An example may help you to understand. The mean for IQ scores for many IQ tests is 100 
and the standard deviation is 15. If you had an IQ score of 135, your z-score would be:

135 - 100

15
= 2.33

This tells us that your score is 2.33 standard deviations above the mean.

Definition

z-scores are also called standardised scores. You can convert any score from a sample into a z-score 
by subtracting the sample mean from the score and then dividing by the standard deviation.

Definition

A probability distribution is a mathematical distribution of scores where we know the probabilities 
associated with the occurrence of every score in the distribution. We know what the probability is of 
randomly selecting a particular score or set of scores from the distribution.

Once we have converted our scores into z-scores, we can use the SND in a number of useful 
ways. The SND is known as a probability distribution. The beauty of probability distributions 
is that there is a probability associated with each particular score from the distribution. That 
is, we know the probability of randomly selecting any particular score from the distribution. 
We also know the probability of obtaining a score between any two values from the distribu-
tion (e.g. a score between -1 and +1). An important characteristic of probability distributions 
is that the area under the curve between any specified points represents the probability of 
obtaining scores within those specified points. For example, the probability of obtaining 
scores between -1 and +1 from the standard normal distribution is about 68% (see  Figure 4.2). 
This means that 68% of the total area under the standard normal curve falls between -1 and 
+1 standard deviations from the mean. We should emphasise that the probability being 
referred to here is the probability of randomly selecting scores from the distribution. Thus, 
there is a 68% probability of randomly selecting a score between -1 and +1. Similarly, the 
probability of obtaining a score between -1.96 and +1.96 from the distribution is 95% (see 
Figure 4.3).

Because of these characteristics we can use the SND to work out the probability of obtaining 
scores within any section of the distribution. We could work out the probability of obtaining a 
z-score of 2 or above in the SND or we could find the probability of obtaining a z-score between 
1 and 2. You will notice that extreme z-scores, say above 2 and below -2, have a much smaller 
chance of being obtained than scores in the middle of the distribution. That is, the areas of the 
curve above 2 and below -2 are small in comparison with the area between -1 and 1 (see 
Figure 4.4). We can relate this to more concrete variables such as men’s height. If you think 
about scores falling above 2 and below -2 as the extremes of men’s height, say above 6 ft 7 in 
(about 2.0 m) and below 4 ft 7 in (1.4 m), it is clear that we are much less likely to find men 
above and below these heights than, say, men between 5 ft 5 in (1.65 m) and 6 ft (1.83 m).
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Figure 4.2 Percentage of the curve falling between -1 and +1 standard deviations

68% probability of randomly

selecting a score between these scores

Shaded area represents

68% of total area

under the curve

21 and 11 standard

deviations from the mean

23 22 21 0 1 2 3

Figure 4.3 Percentage of the curve falling between -1.96 and +1.96 standard deviations
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21.96 and 11.96

standard deviations

from the mean

95% probability of obtaining

a score between these scores

Shaded area represents

95% of the total area

under the curve
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Fortunately, when working with the standard normal distribution, we do not have to work 
out the areas under the curve and convert them into probabilities; they have already been cal-
culated for us and are conveniently listed in statistical tables for us to use. (If you look at 
Appendix 1 at the back of the book, you will see such a table.)

Figure 4.4 Areas in the middle and the extremes of the standard normal distribution

23 22 21 0 1 2 3

Area in the middle portion is

greater than the extremes

Definition

The standard normal distribution is the distribution of z-scores. It is a normally shaped probability 
distribution which has a mean (as well as median and mode) of zero and a standard deviation of 1.

Another useful feature of the SND is that we can use it to calculate the proportion of the 
population who would score above or below your score. Remember, when we are talking about 
proportions here, we want to think about the area under the standard normal curve. This is where 
we need to consult the standard normal distribution tables found in many statistical texts (see 
Appendix 1). If we look at Figure 4.5, we can see that the IQ score of 135 is 2.33 standard 
deviations above the mean, as we calculated earlier. The shaded area represents the proportion 
of the population who would score less than someone with an IQ of 135. The unshaded area 
represents those with an IQ greater than this.

To find out what proportion of the population would score less than you, we can consult the 
standard normal distribution table. The normal distribution tables tend to come in different 
formats but the information in them is essentially the same. (An extract from Appendix 1 can 
be seen in Table 4.1.)

We can see from this that the values in the column headed ‘Proportion below score’ represent 
the proportion of the area under the curve below any particular z-scores. The table shows us 
that the proportion falling below the z-score of 2.33 is 0.9901. This means that 99.01% of the 
area under the curve falls below the IQ score of 135. If you wanted to know what proportion of 
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Figure 4.5 Normal distribution showing the proportion of the population with an IQ of less than 135 
(z-score of 2.33)

100

IQ

135

Mean of 100

Proportion of the curve

below our score

2.33 SDs above

the mean
99.01%

Details for the z-score of 2.33 Proportion of curve falling below your score

z-score Proportion below score Proportion above score

2.31 0.9896 0.0104

2.32 0.9898 0.0102

2.33 0.9901 0.0099

2.34 0.9904 0.0096

2.35 0.9906 0.0094

Table 4.1 Extract from the statistical table giving details of the standard normal distribution

the curve was above this IQ score, you could simply subtract the above proportion from 1. 
In this case you will find that 0.0099 of the curve is above your score, or less than 1%. This 
value is presented in the table in the ‘Proportion above score’ column.

You should note that the tables tend to contain only details of positive z-scores: that is, those 
that fall above the mean. If you have a negative z-score, you simply use the same tables but 
disregard the negative sign of the z-score to find the relevant areas above and below your score. 
However, because your score is below the mean, the proportion given in the ‘Proportion below 
score’ column now tells you the proportion of the curve that is above your score (see 
Figure 4.6).

Another example should help to make the calculation of such proportions clearer. Suppose 
that you had an off-day when you took your IQ test and only scored 95. What percentage of the 
population falls below your score?

We can convert this score to a z-score, thus:

95 - 100

15
= -0.33
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Figure 4.6 Illustration of proportions of the curve below positive z-scores and above negative 
z-scores

IQ

Positive z-score

2.33 IQ

Negative z-score

22.33

Larger portion below

your z-score

Larger portion above

your z-score

99.01%99.01%

Figure 4.7 Proportion of the population scoring above and below an IQ score of 95

95 IQ

62.93%

Mean of 10037.07% falling

below your score

z-score Proportion 
below score

Proportion 
above score

0.31 0.6217 0.3783

0.32 0.6255 0.3745

0.33 0.6293 0.3707

0.34 0.6331 0.3669

0.35 0.6368 0.3632

Table 4.2 Extract from z-score table giving details of the proportion falling above and below a 
z-score of 0.33

As your z-score is negative we have 
to look in the ‘Proportion below 
score’ column to find the proportion 
of the distribution above your score 
and vice versa.

You can see here that we now have a negative z-score. If we consult the SND tables (see Table 4.2), 
we find that the proportion below your score is 0.3707 (37.07%). If you look at  Figure 4.7, you 
can see that, as your score is below the mean, the smaller portion will be that which is below your 
score. Therefore the tables tell us that 37.07% of the population score below and 62.93% score 
above your IQ. (Remember when consulting Appendix 1 for negative z-scores that the proportion 
below your score will be found in the ‘Proportion above score’ column and vice versa.)
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 4.2.1 Comparing across populations

Another way that we can use the standard normal distribution is to compare across different situ-
ations. For example, suppose you were unsure about your future career but knew you would like 
to do pottery or weightlifting. You decide to take a course in each and see how you perform before 
deciding which career to choose. At the end of the courses, you find that you were graded with 
65% for pottery and 45% for weightlifting. On the face of it, you might feel justified in pursuing 
a career as a potter rather than a weightlifter. Have you made the correct decision? To get a better 
idea, you need to compare yourself with the others in your groups. You might find that you are 
worse at pottery in comparison with the rest of the group than you are at weightlifting. To make 
such comparisons you need to convert your grades to z-scores. Let us suppose that the mean and 
standard deviation for pottery are 56% and 9% respectively and for weightlifting 40% and 4%. 
Your z-score for pottery would work out to be 1 and for weightlifting it would be 1.25.

65 - 56

9
 = 1          

45 - 40

4
 = 1.25

z-score for pottery   z-score for weightlifting

This tells us that you were 1 standard deviation above the mean in pottery and 1.25 standard 
deviations above the mean for weightlifting. You are, therefore, comparatively better at weightlift-
ing than pottery. Consequently, you would perhaps be better off choosing weightlifting as a career.

Activity 4.4

If you have a negative z-score, does it fall above or below the mean? With a negative 
z-score do the majority of the population score higher or lower than you?

Example from the literature

Changes in children’s BMI predicts teachers’ perceptions of reading and 
maths ability

In an interesting recent study by Kenney et al. (2015) researchers compared the children’s maths and 
reading performance as well as teachers’ perceptions of maths and reading ability across a three-year 
period (from fifth to eighth grade). They were interested in whether children’s body mass index (BMI) 
across the three-year period was related to maths and reading performance as well as to teachers’ 
perceptions of maths and reading ability. As the study was over three years the researchers calculated 
z-scores for BMI in each year. They found that a change in BMI z-scores across the three years was not 
associated with any change in maths or reading ability. However, an increase in BMI z-scores across the 
three years was associated with reduced teacher perceptions of maths ability for males and reading 
ability for females.

Activity 4.5

Suppose that your marks in Mathematics and English are 65% and 71% respectively. 
Which is your better subject in comparison with the others in your group if the group 
means and SDs are 60 and 5 (Mathematics) and 65 and 7 (English)?
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 4.3 Applying probability to research

We explained earlier in this chapter that the probability of some event happening can be 
expressed as a decimal or as a percentage. For example, when you roll a die you have a 0.1667 
(16.67%) probability of rolling a 1. Similarly, if there was a probability of 0.05 (or 5%) of hav-
ing an accident while driving your car, this would mean that in approximately one drive in every 
20 you would probably have an accident. Such a probability may be dependent upon some other 
factor, such as using a mobile phone while driving. If this were the case, we would state that 
there was a probability of 5% of your having an accident while driving your car when you are 
also using your mobile phone. This latter statement of probability is a conditional probability. 
The probability of 5% of having an accident when driving your car is conditional upon your 
driving while using the mobile phone.

You might be thinking, this is all very well but what has a knowledge of probability got to 
do with applying statistics to research? In research we usually generalise from samples to popu-
lations. As discussed earlier (in section 3.3), whenever we use samples we are prone to sampling 
error. This means that we do not know whether the pattern of results we find in our samples 
accurately reflects what is happening in the populations or is simply the result of sampling error. 
It would be useful if we were able to work out a probability which allows us to decide whether 
our pattern of findings is likely to be a genuine effect in the population or simply arose due to 
sampling error. If there is only a small chance that random sampling error by itself produced 
our pattern of results, we may wish to conclude that the samples accurately reflect the 
populations.

One of the simplest ways of applying probabilities to research and of estimating popula-
tion parameters from sample statistics is to calculate confidence intervals. In the following 
sections we will explain the important concepts necessary for calculating confidence 
 intervals and explain why they are useful for drawing conclusions from research. We will 
describe sampling distributions and highlight some important characteristics of these. 
 Following this, we will explain how we can use sampling distributions of the mean to work 
out how good an estimate a sample mean is of a population mean, through the use of 
 confidence intervals.

 4.4 Sampling distributions

If you think back to Chapter 3, we explained that you could use the mean of the sample as an 
estimate of the mean of the population. We also explained that, if you took many samples and 
took the mean of the means of these samples, then this would be a better estimate of the popula-
tion mean than the individual means (see section 3.2.5). Additionally, we observed that as larger 
samples are more likely to include individuals who score above the mean as well as those who 
score below the population mean that such samples give better estimates of the population 
mean. Thus, the larger the samples we obtain, the better estimate we can get of the population 
mean.

When you plot sample statistics from all of your samples as a frequency histogram, you 
get something called the sampling distribution. Thus, if you plotted the sample means of 
many samples from one particular population, you would have plotted the sampling distri-

bution of the mean. An interesting property of sampling distributions is that, if they are 
plotted from enough samples, they are always approximately normal in shape. And, gener-
ally, the larger the samples we take, the nearer to normal the resulting sampling distribution 
will be. This finding is encapsulated in the Central Limit Theorem, which states that as the 
size of the samples we select increases, the nearer to the population mean will be the mean 
of these sample means and the closer to normal will be the distribution of the sample 
means.
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Perhaps surprisingly, the sampling distribution of the mean will be normal in shape, no mat-
ter how the overall population is distributed. The population could be skewed in some way or 
bimodally distributed or even be flat and we would still find that the sampling distributions 
would be normally distributed.

The following example will serve to illustrate this. Imagine that, when you were born, some-
body started rolling a die and recording the numbers. This person rolled the die once every two 
seconds for the whole of your life, which we will assume is about 80 years (not a particularly 
interesting thing for someone to do, but there we go). Now if we plotted the distribution of all 
the rolls of the die (the population of all the rolls of the die in your lifetime), it would probably 
look something like the distribution in Figure 4.8.

Because each number on the die has an equal probability of occurring (1 in 6), we would 
expect each number to have appeared with roughly equal frequency in your lifetime. Thus the 
population of rolls of the die in your lifetime has a flat or uniform distribution. Assuming that 
the numbers have occurred with equal frequency, the mean of the population of rolls is 3.5. If 
we now randomly select five samples of ten rolls of the die from this population, we might 
obtain the following:

Definition

A sampling distribution is a hypothetical distribution. It is where you have selected an infinite number 
of samples from a population and calculated a particular statistic (e.g. a mean) for each one. When you 
plot all these calculated statistics as a frequency histogram, you have a sampling distribution.

1, 5, 1, 2, 6, 6, 4, 1, 4, 6

1, 2, 2, 2, 6, 5, 3, 3, 6, 4

4, 2, 1, 6, 6, 5, 3, 5, 5, 2
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4, 2, 1, 1, 2, 6, 6, 5, 3, 4

mean 5 3.6

mean 5 3.4

mean 5 3.9

mean 5 3.0

mean 5 3.4

Rolls of

the die

Figure 4.8 Histogram showing the distribution of the population of rolls of the die
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You can see that the means are relatively good approximations to the population mean of 3.5, 
although they do vary quite considerably. However, if we calculate the mean of the means, we 
find that it is an even better approximation of the population mean:

3.6 + 3.4 + 3.9 + 3 + 3.4

5
= 3.46

Now let us plot these sample means as a frequency distribution (or frequency histogram): that 
is, plot a sampling distribution – see Figure 4.9.

You can see from Figure 4.9 that the distribution is not as flat as that of the population of 
rolls of the die. This is better illustrated, however, if we take more samples of ten rolls of the 
die. The graph in Figure 4.10 is the sampling distribution of 100 such sample means.

Figure 4.9 Histogram showing the distribution of the means from the five samples of ten rolls of 
the die drawn from the population of rolls of the die
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Figure 4.10 Histogram showing the distribution of the means from the 100 samples of ten rolls of 
the die drawn from the population of rolls of the die
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You can see that, even though the population has a flat distribution, the sampling distribution 
of the mean is approximately normal in shape. This would be the case for any sampling distribu-
tion that you cared to plot.

Activity 4.6

Go to the UK National Lottery website (www.national-lottery.co.uk) and have a look at 
the previous Lotto draw results. To find these click on the Check Results link at the top 
of the homepage and then click on the Draw history link for the Lotto game. These 
lottery draws represent random sampling from a population. The population consists 
of the 49 balls in the draw and each draw represents a sample size of seven (six balls 
plus the bonus ball). Look at the most recent five draws and for each calculate the 
mean of the balls drawn. How do these compare with the mean from the population 
of balls (the mean is 25)? Plot these as a frequency histogram. Is this flat? Now calcu-
late the means of each of the last 30 draws and plot these as a frequency histogram. 
Does this look like a flat distribution?

 4.5 Confidence intervals and the standard error

Although we know that the sample mean is an approximation of the population mean, generally 
we are not sure how good an approximation it is. This is where confidence intervals help us.

Because the sample mean is a particular value or point along a variable, it is known as a point 

estimate of the population mean. It represents one point on a variable and because of this we 
do not know whether our sample mean is an underestimation or an overestimation of the popula-
tion mean. Also we do not really know how close to the population mean our mean is. It would 
therefore be useful if we had some way of knowing approximately where on the variable the 
population mean lies. Fortunately, we do have some way of working this out by the calculation 
of confidence intervals. Confidence intervals of the mean are interval estimates of where the 
population mean may lie. That is, they provide us with a range of scores (an interval) within 
which we can be confident that the population mean lies.

Definition

A point estimate is a single figure estimate of an unknown number whereas an interval estimate is a 
range within which we think the unknown number will fall. Usually in statistical terms the unknown 
number that we are estimating is a population parameter such as the population mean. A confidence 
interval is a statistically determined interval estimate of a population parameter.

For example, suppose we gave a sample of people the Beck Depression Inventory (BDI: Beck 
et al., 1961). The questionnaire measures depression and scores can range from 0 to 63. Let us 
suppose that the mean of our sample on the BDI is 10.72. We do not know from this information 
how near our sample mean is to the population mean (see Figure 4.11(a)). It would be very 
useful if we could give an indication of how near this figure was to the population mean. Let 
us think about this situation logically. As the minimum score on the questionnaire is 0 and the 
maximum is 63, we can be 100% confident that the population mean lies somewhere between 
these two scores (see Figure 4.11(b)). This is a confidence interval. It is, though, not really that 

http://www.national-lottery.co.uk
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informative. We can use characteristics of sampling distributions to narrow this range down 
further, although we also reduce the degree of confidence that we can have concerning whether 
the interval we specify is likely to contain the population mean. We usually set up 95% 
 confidence intervals and you will find that it is often the case that such intervals can be quite 
narrow (depending upon the size of your samples). In our example, you can see that we are 95% 
 confident that the population mean lies somewhere between 2.72 and 18.72 (see Figure 4.11(c)). 
This is considerably more precise than stating that it lies between 0 and 63. This gives us a much 
better feel for where the population mean may lie in relation to our sample mean.

You should note, however, that because we are still only using estimates of population 
 parameters it is not guaranteed that the population mean will fall within this range. We therefore 
have to give an expression of how confident we are that the range we calculate contains the 

Figure 4.11 Illustration of the way in which confidence intervals help in deciding where the 
population may be in relation to the sample mean
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population mean. Hence the term ‘confidence intervals’. Strictly speaking confidence intervals 
don’t give us a range within which the population parameter lies but instead they tell us that if 
we replicated a study say 100 times then in so many out of this 100 the confidence interval we 
calculate would contain the population parameter.

Previously we described how sampling distributions tend to be normally distributed. We also 
informed you that the mean of the sampling distribution of the mean is a very good approximation 
of the population mean. Such knowledge ensures that, regardless of the shape of the population 
distribution, we always know what the sampling distribution of the mean will look like. This is 
important as it gives us some very important insights into the population from sample statistics.

You know that the normal distribution is a function of its mean and standard deviation (see 
Chapter 3). This means that if we know the standard deviation and the mean, we can plot a 
normal curve from this information by putting it into a formula. Given that the sampling 
 distribution of the mean is normally distributed, it must also be a function of its mean and 
standard deviation. Consequently, once we know the mean and standard deviation of the sam-
pling distribution of the mean, we could easily plot it. We can then use this information to help 
us calculate confidence intervals.

Suppose we have the sampling distribution shown in Figure 4.12. The question mark in 
Figure 4.12 indicates that we do not know the value of the population mean (which is approxi-
mated by the mean of the sample means). Now, let’s say we selected a sample and obtained the 
sample mean. Given that we do not know what the population mean is, we cannot be certain 
where in the distribution our sample mean will fall; it could be above, below or even exactly 
equal to the population mean (see Figure 4.13).

How do we go about tackling the difficult problem of identifying how close the population 
mean is to the sample mean? First of all, we need to make use of the sampling distribution of 
the mean. We have previously explained two important characteristics of the sampling distribu-
tion of the mean:

• It is always approximately normally distributed.

• Its mean is a very good approximation to the population mean.

These two features mean that we can plot a normal distribution that we know contains a good 
approximation of the population mean. We can then use the characteristics of normal distribu-
tions to estimate how far our sample mean is from the population mean. Let us assume that 
Figure 4.14 is an example of such a sampling distribution.

Figure 4.12 Sampling distribution with unknown mean of sample means

?
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Figure 4.14 Sample mean is a certain number of standard deviations above or below the 
population mean

?

Sample mean could be above, below or

equal to the population mean

23 22 21 1 2 3

Figure 4.13 Whereabouts of a sample mean in relation to the population mean is unknown

?

Sample mean could be above, below or

equal to the population mean

We can see from Figure 4.14 that the sample mean is going to be a certain number of standard 
deviations above or below the population mean. Also, looking at the distribution, we can be 
fairly confident that the sample mean will fall in the area between -3 and +3 standard devia-
tions, as this accounts for most of the scores in the distribution. In fact if we look at the z-scores 
from the normal distribution, we can calculate the probability of a score falling in the area 
within -3 and +3 standard deviations. This probability works out to be 99.74%. This suggests 
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that we can be 99.74% confident that the sample mean will be in the area enclosed by -3 and 
+3 standard deviations. Now suppose, as is usually the case, that we want to be 95% confident 
that a certain area of the curve contains the sample mean. We work out this area again by refer-
ring to our z-scores. In section 4.2 we informed you that 95% of the area under the standard 
normal distribution falls within -1.96 and +1.96 standard deviations (see Figure 4.15). Thus, 
we can be 95% confident of the sample mean falling somewhere between -1.96 and +1.96 
standard deviations from the population mean.

Now let us suppose for the sake of illustration that the sample mean is somewhere above the 
population mean. If we draw the distribution around the sample mean instead of the population 
mean, we see the situation illustrated in Figure 4.16.

Figure 4.15 Percentage of curve (95%) falling between -1.96 and +1.96 standard deviations

95% confident that the sample

mean falls within this region

?23 22 21 1 2 3

Figure 4.16 Location of population mean where distribution is drawn around sample mean

?

Curve shifted up so that it

is around the sample mean

Population mean Sample mean

23 22 21 1 2 3X
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We can now apply the same logic as we have just done for predicting where the sample 
mean is in relation to the population mean. We can be fairly confident that the population 
mean falls somewhere within 1.96 standard deviations below the sample mean. Similarly, 
if the sample mean is below the population mean, we can be fairly confident that the popu-
lation mean is within 1.96 standard deviations above the sample mean (see Figure 4.17). 
Consequently, we can be fairly confident (95% confident) that the population mean is 
within the region 1.96 standard deviations above or below the sample mean. The trick here 
is to find a normal distribution where we know what the standard deviation is and that also 
has a mean that is equal to the population mean. Fortunately, we already know about a 
sampling distribution which has the population mean as the mean and is normally distrib-
uted: it is the sampling distribution of the mean, if you recall from section 4.4. Remember, 
if we take a large number of samples of equal size and for each sample calculate a mean, 
when we plot these sample means they will be normally distributed. We also know that the 
mean of all these sample means will be a very good estimate of the population mean. If 
we also know the standard deviation of this normal distribution, we can then use the same 
logic as we have applied earlier (see Figures 4.14 to 4.17) in order to try to estimate where 
the population mean might be in relation to the sample mean. To do this, all we need to 
know is the sample mean and the standard deviation of the sampling distribution of the 
mean. So, how do we go about calculating the standard deviation of the sampling 
 distribution of the mean?

 4.5.1 Standard error

The standard deviation of the sampling distribution of the mean is an extremely important 
concept and is usually called the standard error. The standard error, therefore, is a measure 
of the degree to which the sample means deviate from the mean of the sample means. Given 
that the mean of the sample means is also a close approximation of the population mean, the 
standard error of the mean must also tell us the degree to which the sample means deviate 

Figure 4.17 Distribution drawn around the sample mean when it falls below the population mean
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The problem we face here is a bit like the chicken and egg situation. If we knew the standard 
error then we could see how good an estimate our sample mean is of the population mean. 
However, in order to calculate the standard error of the mean, we would have to select many 
samples from the population and then calculate the standard deviation of the means of these 
samples. This is not very helpful if we simply want to estimate the location of the population 
mean from the mean of one sample. Fortunately, statisticians have found that we can estimate 
the standard error quite easily from our sample statistics.

We explained earlier that sampling error is related to sample size (see section 3.3). The 
larger the sample size, the lower the sampling error. We explained that large samples tend to 
give means that are better estimates of population means. That is, they will not vary too much 
from the population mean. The means of small samples tend to vary a lot from the population 
mean. You should recall that the measure of the degree of variation around the mean is the 
standard deviation. The standard deviation of sample means is called the standard error. Thus, 
for large sample sizes the standard error will tend to be less than that for small sample sizes. 
This means, therefore, that the standard error is also related to sample size. Consequently, for 
any given population, the larger the samples that we select, the lower the standard error. 
 Conveniently, it has been shown that if, for any given sample, we divide the standard deviation 
by the square root of the sample size, we get a good approximation of the standard error.

From any of our samples we can calculate a sample mean and standard deviation. Since we 
know that the standard error is approximately the standard deviation divided by the square root 
of the sample size, we can also calculate the standard error. The standard error is the standard 
deviation of the sampling distribution of the mean. Consulting standard normal distribution 
tables, we see that 95% of scores fall between 1.96 standard deviations above and below the 
mean. Applying this to the sampling distribution of the mean, we can therefore be 95% 
 confident that the mean of the sampling distribution is within 1.96 standard deviations from 
the sample mean. Therefore the mean of the sampling distribution must lie within the region 
1.96  *  the standard error away from the sample mean. Given that the mean of the sampling 
distribution of the mean is a good approximation of the population mean, we can be 95% 
 confident also that the  population mean lies within the region 1.96  *  the standard error away 
from the sample mean.1

1 It should be noted that calculations of 95% confidence intervals are usually achieved by reference to the 
t-distribution rather than the SND as we have done here (we cover the t-distribution in more detail in  Chapter 7). 
The reason for this is that when we have small sample sizes (which is often the case in psychology) the 
 sampling distribution of the mean more accurately reflects the t-distribution rather than the SND. We have 
explained confidence intervals by reference to the SND here as this is the probability distribution that you are 
so far most familiar with.

Definition

The standard error refers to the standard deviation of a particular sampling distribution. In the context 
of the sampling distribution of the mean, the standard error is the standard deviation of all of the 
sample means.

from the population mean. Consequently, once we are able to calculate the standard error, 
we can use this information to find out how good an estimate our sample mean is of the 
population mean.
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An example may serve to clarify this for you. If we have the following sample data from 
a study (2, 5, 6, 7, 10, 12), we can calculate the mean and standard deviation, which are 7 
and 3.58 respectively. The first step is to work out the standard error. Recall that the standard 
error is simply the standard deviation of the sample divided by the square root of the sample 
size. The sample size here is 6 and thus the square root of this is 2.45. If we divide the 
 standard deviation (3.58) by this, we get 1.46. Our standard error is therefore 1.46. To  
work out the 95% confidence interval, we now have to multiply the standard error by 1.96, 
which gives us 2.86. Our confidence interval is calculated as the mean{ the standard  
error * 1.96,  therefore in our example the confidence interval is 7 {  2.86 (or 4.14 to 9.86; 
see Figure 4.18(a)).

Our 95% confidence interval is quite a large range considering that the scores themselves 
only range from 2 to 12. The reason that our confidence interval is so large is that we have 
a small sample size. For the sake of illustration, let us assume that we obtained the same 
mean and standard deviation with a sample size of 100. In this case the square root of the 
sample size would now be 10. If we divide our standard deviation (3.58) by this, we get the 
standard error of 0.358. We can now multiply this standard error by 1.96 to set up our 95% 
confidence interval. When we do this, we find that our population mean should fall in the 
region that is 0.70 units above and below the mean (7). This now gives us a better estimate 
of where the population mean may lie than the mean of the sample and that it is likely to fall 
between 6.30 and 7.70. This represents a much narrower range of scores and gives us a much 
clearer indication of where the population mean may be (see Figure 4.18(b)). Actually, what 
the confidence interval tells us is that if we were to replicate our study 100 times then in 95 
out of those 100 replications the confidence interval we calculate would contain the 
 population mean.

From this we can see the importance of sample size when trying to estimate population 
parameters from sample statistics. Generally, the larger the sample size, the better the estimate 
of the population we can get from it.

Figure 4.18 Confidence intervals with sample sizes of 6 and 100
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It may help to clarify what we have just explained by summarising it here:

• A sample mean is a point estimate and we don’t know how close it is to the population mean.

• If we calculate confidence intervals around our sample mean, we can get a good idea of how 
close it is to the population mean.

• To calculate confidence intervals, we need to make use of sampling distributions.

• If we take lots of samples from a population and plot the means of the samples as a frequency 
histogram, we will have produced a sampling distribution of the mean.

• Sampling distributions tend to be normal in shape.

• The mean of the sampling distribution of the mean is a very good estimate of the population 
mean.

• The standard deviation of the sampling distribution of the mean tells us how much our  samples 
tend to vary around the population mean.

• The standard deviation of the sampling distribution is called the standard error and is 
 approximately equal to the standard deviation of a sample divided by the square root of the 
sample size.

• We know that 1.96 standard deviations above and below the mean encompasses 95% of the 
standard normal distribution.

• Using this information, we can generalise to our sampling distributions, which tend to be 
normal in shape.

• Thus, we say that we are 95% confident that the population mean will be within 1.96 standard 
deviations (sampling distribution standard deviations) from our sample mean.

• The sampling distribution standard deviation is the standard error, so we multiply this by 
1.96 to get our confidence interval.

• We say that we are 95% confident that the population mean will be within the region 1.96 *  
the standard error above and below our sample mean.

Remember though that the strict meaning of 95% confidence intervals is that if we replicated 
our study 100 times then in 95 out those 100 the confidence interval we have calculated for 
them would contain the population mean.

Activity 4.7

Below is an extract from a table presented in a paper by Sim (2015) in which they 
investigated the impact of an intervention involving humour on behavioural problems 
and a range of other variables for children with long-term illnesses. The table contains 
the means and SDs for the behavioural problems before and after the intervention for 
the intervention group as well as a control group. Take a look at the table and for each 
variable and each condition calculate the standard error. There were 17 participants 
in the intervention group and 16 in the control group.

Intervention group Control group

Variable Mean SD Mean SD

Pre-intervention behavioural 
problems

65.06 12.15 63.81 13.10

Post-intervention behavioural 
problems

58.12 8.57 63.56 10.98
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SPSS: obtaining confidence intervals

It is fairly simple to obtain confidence intervals for the mean from SPSS. You need to follow the advice 
given earlier for descriptive techniques by selecting the Explore dialogue box:

Move the relevant variables to the Dependent List box and click on the Display: Statistics option. To 
ensure that you generate confidence intervals, you should click on the Statistics button. You will then 
be presented with the following dialogue box:

You should notice that SPSS is set up to generate 95% confidence intervals as the default. If you wish 
to generate confidence intervals other than 95%, you should adjust the percentage to that which you 
desire. Ordinarily, however, you will not have to adjust this as you will usually be expected to generate 
95% confidence intervals. Once you are happy that you have selected all the correct options, click on 
Continue followed by OK to generate the printout. An example printout can be seen below:

Explore

Cases

Valid

6 100.0%

Missing

0 0.0%

Total

6

6 100.0% 0 0.0% 6 100.0%

100.0%

N Percent N Percent N Percent

Statistics Anxiety Score

Procrastination Score

Case Processing Summary
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Statistics Anxiety Score Mean

95% Confidence

Interval for Mean

5% Trimmed Mean

Median

Variance

Std. Deviation

Minimum

Maximum

Range

Interquartile Range

Skewness

Kurtosis

Statistic

55.6667

49.7055

61.6279

55.7407

57.0000

32.267

5.68038

48.00

62.00

14.00

11.00

2.426

21.832

Std. Error

2.31900

.845

1.741

Lower Bound

Upper Bound

Descriptives

Confidence

interval is

49.71 to 61.63

Procrastination Score Mean

95% Confidence

Interval for Mean

5% Trimmed Mean

Median

Variance

Std. Deviation

Minimum

Maximum

Range

Interquartile Range

Skewness

Kurtosis

116.1667

96.0742

136.2591

116.0741

117.5000

366.567

19.14593

94.00

140.00

46.00

38.50

2.048

22.083

.845

1.741

Lower Bound

Upper Bound

7.81629

 4.6 Error bar charts

An extremely useful means of presenting confidence intervals in your research reports is to 
generate error bar charts. These simply display your means as a point on a chart and a vertical 
line through the mean point that represents the confidence interval. The larger the confidence 
interval, the longer the line is through the mean. Figure 4.19 shows the error bar charts for the 
confidence intervals that we have just calculated.

From Figure 4.19 it is easy to see the difference between the confidence intervals when the 
sample size is increased from 6 to 100.

Definition

An error bar chart is a graphical representation of confidence intervals around the mean.
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Figure 4.19 Error bar chart showing the means and confidence intervals for sample sizes six and 100
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Figure 4.20 Error bar chart showing overlapping confidence intervals for boys and girls in a 
mathematics exam
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 4.7 Overlapping confidence intervals

Suppose we wanted to see if two population means differed from each other. We could use confidence 
intervals to guide us. For example, imagine you wanted to see whether girls were better than boys in 
mathematics exams. You give a sample of students of each gender a mathematics exam. From these 
samples you calculate confidence intervals and obtain the error bar charts shown in Figure 4.20.

What would we be able to make of this? We can be 95% confident that the population means 
are within the intervals indicated in the chart. As there is substantial overlap between the two sets 
of confidence intervals, we cannot be sure whether there is a difference in the population means. 
It seems likely that there is no real difference in the populations, or at the very least we cannot tell 
from our samples if such a difference exists. It might be that boys have a higher population mean 
than girls. Or it could be that girls have a higher population mean than boys. Or it could be that 
the population means of girls and boys are equal. We just do not know from the confidence inter-
vals presented in Figure 4.20 and therefore we cannot draw any firm conclusions from these data.

Now suppose we obtained the confidence intervals shown in Figure 4.21. What should the con-
clusion be? In this case we can see that the confidence intervals do not overlap. We can be 95% 
 confident that both population means fall within the intervals indicated and therefore do not 
overlap.
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This would suggest that there is a real difference between the population means. It would there-
fore appear that the population of girls do better at maths than the population of boys. You can 
see that examining confidence intervals gives us a fair idea of the pattern of means in the popu-
lations. You should also have noticed here that in this section when describing these confidence 
intervals we have been constantly referring to the population means rather than focusing on our 
sample means. This clearly illustrates the magical nature of confidence intervals to draw our 
attention back to what is of most interest to us the population parameters (in this case the popu-
lation means).

Figure 4.21 Error bar chart illustrating non-overlapping confidence intervals for boys and girls in 
the mathematics exam
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Activity 4.8

In which of the following error bar charts is there likely to be a real difference between the populations 
from which the two groups displayed were sampled?
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SPSS: generating error bar charts

To generate error bar charts in SPSS you should click on the Graphs and Legacy Dialogs menus and 
then select the Error Bar . . . option. You will be presented with the following dialogue box:

From the dialogue box the options you choose will depend upon the design of your study. If you have 
used a within-participants design and want to compare two (or more) variables, select the Simple and 
the Summaries of separate variables options. Click on Define and you will be presented with the follow-
ing dialogue box:

Move the relevant variables over to the Error Bars box as shown and click on OK to generate the error 
bar chart. The chart should resemble that shown in Figure 4.22.

You can see from the error bar chart that there are separate error bars for each condition of the 
within-participants variable.
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If you want to generate error bar charts and you have used a between-participants design,  
you should select the Simple and Summaries for groups of cases options in the initial options screen 
(see below):

Figure 4.22 Error bar chart for the statistics anxiety and procrastination example study
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Click on Define and you will be presented with a slightly different dialogue box from that presented for 
within-participants designs:

You will notice that there is a box for the dependent variable (Variable) and a separate box for the 
grouping variable (Category Axis). Move the dependent variable to the Variable box and the indepen-
dent variable to the Category Axis box and click on OK to generate the error bar chart. It should resemble 
that shown in Figure 4.23.

Figure 4.23 Error bar chart for the dog-walking study as a between-participants design
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 4.8 Confidence intervals around other statistics

We have illustrated confidence intervals around the mean to demonstrate the use of this tech-
nique. You should note that we are not restricted to means when working with confidence 
intervals. We can calculate confidence intervals for a number of different statistics, including 
the actual size of a difference between two means, correlation coefficients and t-statistics. (We 
will explain these in more detail in Chapters 6 and 7.) Basically, where a point estimate exists 
it is usually possible to calculate an interval estimate.

You should note that if you are investigating differences between groups, the confidence 
interval of the magnitude of the difference between the groups is very useful. If the confidence 
interval includes zero, it suggests that there is likely to be no difference between your groups 
in the population. (This is explained further in Chapter 7.)

Example from the literature

The effectiveness of relaxing music in controlling sports competitive anxiety

In a nicely presented study by Elliott et al. (2014) the researchers compared the effects of relaxing 
music, non-relaxing music and no music on sports competitive anxiety. They recruited university 
 students and informed them that they would have to perform a sports task under competition condi-
tions in front of an audience. They measured anxiety twice before the intervention (relaxing music, 
non-relaxing music or no music) and again after the intervention, just before the participants thought 
that they would be undertaking the sports activity. Their statistical analyses found no differences 
between the three conditions on the anxiety experienced by the participants prior to undertaking a 
competitive task. All interventions lead to a reduction in anxiety prior to competing. The researchers 
present 90% confidence intervals which demonstrate the positive effects the interventions had on 
anxiety prior to competing.

Summary

In this chapter we have explained a number of 
important concepts that form the foundation for a 
thorough understanding of statistics. More 
specifically, you have learnt that:

• Probabilities can be represented in terms of odds 
(e.g. 1 in 5), decimals (0.2) or percentages (20%).

• Conditional probabilities are probabilities 
associated with events which are conditional 
upon other factors.

• We can use the standard normal distribution and 
z-scores to work out the proportion of a 
population that falls above or below a certain 
score or which falls between two scores.

• If we take many samples from a population and 
plot the means of these samples as a frequency 
histogram, we have plotted a sampling 
distribution of the mean.

• The more samples we take and the larger the 
sample sizes, the more likely the sampling 
distribution of the mean is to approximate the 
normal distribution, no matter how the 
population itself is distributed.

• The standard deviation of the sampling 
distribution of the mean is the standard error, 
and this gives us an indication of how much the 
sample means deviate from the population mean.
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SPSS exercises

Exercise 1

In the local dental surgery, Nurse Nasher and Dr Payne decide that they want to try to reduce the 
anxiety levels of patients coming for treatment. They decide that the best way to do this would be 
to soundproof both of their waiting rooms so that the waiting patients cannot hear the screams of 
those being treated. They want to make sure that the soundproofing does reduce dental anxiety, so 
they soundproof only one waiting room and compare the dental anxiety of patients put in that 
waiting room with those sent to the non-soundproofed room. Patients are randomly allocated to 
one of the waiting rooms when they arrive and are asked to fill in a dental anxiety questionnaire 
while they are waiting. The dental anxiety questionnaire gives a score based on many aspects of 
anxiety about going to the dentists: the higher the score, the higher the level of dental anxiety. 
Nurse Nasher and Dr Payne predict that there will be a difference in anxiety scores between the 
patients from the two waiting rooms. The following are the dental anxiety scores of the patients 
from each of the waiting rooms:

Soundproofed Not soundproofed

12 16

11 26

8 20

4 21

3 19

13 20

10 22

10 18

9 20

11 17

• The standard error is roughly equal to the 
standard deviation of a sample divided by the 
square root of the size of the sample, and it can 
be used in conjunction with z-scores to calculate 
confidence intervals.

• Confidence intervals give an interval within 
which we can be, say, 95% confident that the 
population mean falls.

• We can conveniently illustrate confidence 
intervals using error bar charts.

Discover the website at www.pearsoned.co.uk/dancey where you can test your knowledge with multiple 
choice questions and activities, discover more about topics using the links to relevant websites, and 
explore the interactive flowchart designed to help you find the right method of analysis.

http://www.pearsoned.co.uk/dancey
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 1. Is this a between- or within-participants design?
 2. Input the data from the table above into SPSS and obtain the following statistics for each group:

• the mean
• the standard deviation
• the standard error
• 95% confidence intervals.

 3. (a) Use SPSS to generate error bar charts for each group.
(b) Convert the first score in each condition into a z-score.

Exercise 2

Dr Doolittle has finally given up all pretence of being able to speak to animals and has decided to 
become an experimental animal psychologist. He is particularly interested in finding out whether or 
not cats are more intelligent than dogs. He develops an intelligence test specifically for the task, and 
tests samples of cats and dogs. He has been careful not to bias the test in any way and quite rightly 
claims to have developed a test that is not species bound: that is, it could be used with any species. 
Dr Doolittle predicts that there will be a difference between the intelligence scores of cats and dogs. 
The scores for cats and dogs are given in the table below.

Cats Dogs

95 116

100 112

104 102

78 96

130 89

111 124

89 131

114 117

102 107

97 110

 1. What sort of design is this study, quasi-experimental or experimental?
 2. Is it a between-participants or a within-participants design?
 3. Input the data above into SPSS and use the package to generate the following statistics for each 

group:

• the mean
• the standard deviation
• the standard error
• 95% confidence intervals.

 4. (a) Use SPSS to generate error bar charts for each group.
(b) Convert the first score in each condition into a z-score.
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 1. What is the probability 1 in 5 expressed as a percentage?

(a) 14%
(b) 25%
(c) 20%
(d) 32%

 2. What is the relationship between sample size and sampling error?

(a) The larger the sample size, the larger the sampling error
(b) The larger the sample size, the smaller the sampling error
(c) Sample size equals sampling error
(d) None of the above

 3. If we have a 95% confidence interval of 3{2, what does it mean?

(a) The population mean is definitely between 1 and 5
(b) We are 95% sure that the population mean falls between 3 and 2
(c) We are 95% sure that the population mean falls between 1 and 5
(d) None of the above

 4. What are the scores in the standard normal distribution?

(a) Extreme scores
(b) z-scores
(c) Scores in standard deviation units
(d) Both (b) and (c) above

 5. The standard error is:

(a) The square root of the mean
(b) The square of the standard deviation
(c) The standard deviation divided by the mean
(d) The standard deviation divided by the square root of the number of participants in the sample

 6. If you have a probability of 33%, what is it expressed as a decimal?

(a) 0.033
(b) 0.33
(c) 0.23
(d) 0.133

 7. The standard error tells us:

(a) The degree to which our sample means differ from the mean of the sample means
(b) The degree to which our sample means differ from the population mean
(c) The degree to which the standard deviation differs from the population mean
(d) Both (a) and (b) above

Multiple choice questions
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 8. What would we multiply the standard error by to help us get our 95% confidence intervals?

(a) 95
(b) The square root of the sample size
(c) The standard deviation
(d) 1.96

 9. If you had a z-score of 2.33, this would tell you that:

(a) Your score was 2.33 standard deviations above the mean
(b) Your score was 2.33 standard deviations below the mean
(c) There was a probability of 2.33 of obtaining a score greater than your score
(d) There was a probability of 2.33 of obtaining a score less than your score

 10. If an event has a probability of 95% of occurring, what does this mean?

(a) The event is likely to occur 5 times out of every 100
(b) The event is likely to occur 95 times out of every 100
(c) The event is likely to occur 95 times out of every 95
(d) None of the above

 11. Which career should you choose if your weightlifting and pottery scores are as follows?

Weightlifting: Your score is 52 (sample mean = 55, SD = 12)
Potter: Your score is 50 (sample mean = 58, SD = 32)

(a) Weightlifting
(b) Pottery
(c) Either as you are equally good compared with the populations
(d) Neither because you are useless at both

 12. Which of the following statements are true in reference to inferential statistics?

(a) They merely describe our data
(b) We are able to use them to draw conclusions about populations from sample data
(c) They are used simply to make psychology look scientific
(d) We are able to use them to draw conclusions about samples from populations

 13. If you obtain a score of 13 on an anxiety questionnaire and you know that the population mean and 
standard deviation are 20 and 5 respectively, what is your z-score?

(a) -2.33
(b) -1.4
(c) 1.33
(d) 0

 14. If you have a population of scores that has a flat (i.e. not normal) distribution, the distribution of many 
sample means will be:

(a) Flat
(b) Bimodal
(c) Negatively skewed
(d) Normal
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 15. Which of the following gives the best estimate of the population mean?

(a) Sample mean
(b) The mean of several sample means
(c) The standard deviation
(d) The standard error

 16. For a set of data we find that we have a standard deviation of 42 and a sample size of 16. What is the 
standard error?

(a) 0.339
(b) 2.95
(c) 21.68
(d) 10.5

 17. If you draw 100 samples from a population and plot all their means as a frequency histogram, then you 
have a:

(a) Mean distribution
(b) Skewed distribution
(c) Sampling distribution
(d) None of the above

 18. Given a standard error of 5.2 with a sample size of 9, what is the standard deviation?

(a) 1.73
(b) 15.6
(c) 46.8
(d) 0.556

 19. Which of these could you not generate confidence intervals for?

(a) A mean
(b) A correlation coefficient
(c) The mean difference between scores
(d) None of the above

 20. If we have a negatively skewed population, what shape will the sampling distribution of the mean of 
samples drawn from this population be?

(a) Negatively skewed
(b) Positively skewed
(c) Normal
(d) It is not possible to tell
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1. c, 2. b, 3. c, 4. d, 5. d, 6. b, 7. d, 8. d, 9. a, 10. b, 11. c, 12. b, 13. b, 14. d, 15. b, 16. d, 17. c, 18. b,  
19. d, 20. c
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 5.1 Another way of applying probabilities to research: 
hypothesis testing

Suppose we were interested in examining the relationship between number of hours spent 
studying per week and exam grades. We would perhaps predict that the more time spent studying 
per week, the higher the exam grades. Here we have set up a prediction that we would then test 
by conducting a study. In this study we could randomly select a number of students and record 
how many hours they spent per week studying and find out if it is related to their final exam 
grade. According to our prediction, we would expect the population of scores to resemble that 
in the population illustrated in Figure 5.1. Here you can see there is a trend indicating that as 
the number of hours studied increases, so do exam grades. Let us assume that this is the pattern 
in the underlying population. One of the problems we face when conducting research is that 
when we select samples from populations we might not get a sample that accurately reflects 
that population. If you think back (to Chapter 3), we explained that due to sampling error the 
samples might not resemble the population. Figure 5.1 illustrates three samples taken from the 
population presented therein. You should notice that even though there is a positive relationship 
in the population of scores, two of the samples do not reflect this. In fact, one of the samples 
(sample (a)) actually suggests a negative relationship between hours studied and exam 
performance (as number of hours spent studying increases, exam performance decreases). 
Another of the samples (sample (b)) suggests that there is no relationship between the two 

CHAPTER OVERVIEW

In Chapter 4 we started you off on the road to using inferential statistics. In this chapter we will move 

a little further down the road and explain how we can apply our knowledge of probabilities and sam-

pling distributions to testing the hypotheses that we set up in our research. More specifically, we will 

be explaining the following:

■ the logic of hypothesis testing

■ statistical significance and how it relates to probabilities

■ how probability distributions form the basis of statistical tests

■ the problems associated with basing conclusions on probabilities (i.e. Type I and Type II errors)

■ one-tailed and two-tailed hypotheses

■ how to choose the appropriate test to analyse your data.

Hypothesis testing and 

statistical significance 5
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variables. The remaining sample accurately reflects the underlying population by suggesting a 
positive relationship between the two variables. The point to note here is that, even though there 
is a relationship in the underlying population, the sample we select might not reflect this.

Now take a look at Figure 5.2. In this example there is no relationship between amount of time 
spent studying and exam performance in the underlying population. Again, we have presented three 
samples that have been selected from the population. Yet again, only one of the samples (sample (b)) 
accurately reflects the population. The fact is that, due to sampling error, the samples we select 
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Figure 5.1 Scattergrams illustrating possible samples selected from a population with a positive relationship between 
number of hours spent studying and exam grades
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might not be a true reflection of the underlying population. From any particular population, each 
of the patterns of sample scores we have presented will have a greater or lesser probability of being 
selected and this probability will depend on the size of the sample we select. Thus, for the 
population in Figure 5.1 we are more likely to get a pattern resembling that observed in sample (c) 
than those in samples (a) and (b), particularly with reasonably large sample sizes. And for the 
population presented in Figure 5.2 we are more likely to get the pattern resembling that in sample 
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Figure 5.2 Scattergrams illustrating possible samples selected from a population with no relationship between 
number of hours spent studying and exam grades
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Definition

The p-value is the probability of obtaining the pattern of results we found in our study if there was no 
relationship between the variables in which we were interested in the population.

(b) than the ones in samples (a) and (c). You need to be aware, though, that sometimes simply due 
to sampling error we are likely to get patterns of scores in our samples that do not accurately reflect 
the underlying population.

One of the problems we face when conducting research is that we do not know the pattern of 
scores in the underlying population. In fact, our reason for conducting the research in the first place 
is to try to establish the pattern in the underlying population. We are trying to draw conclusions 
about the populations from our samples. Essentially, we are in a situation akin to that illustrated in 
Figure 5.3. In this figure everything above the dashed line relates to what we have observed in our 
study and everything below the line is unknown to us. From the pattern of data we observe in our 
sample, we have to try to decide what the pattern may look like in the population. There may be 
an infinite number of possible patterns that reflect the population; however, we have given only 
two of these in the figure. From our sample we have to decide what we think the population is like. 
This is where we would use inferential statistical tests. Effectively what we do is observe the pattern 
of scores in the sample and decide which is the most plausible pattern in the population. Thus, 
given the pattern observed in the sample in Figure 5.3 (the scattergram above the dashed line), we 
might argue that the pattern in population (b) is much more plausible than that shown in population 
(a). As is illustrated by Figures 5.1 and 5.2, however, the samples need not be an accurate reflection 
of the population. We therefore need some means of deciding, from the evidence presented by our 
sample data, what the most plausible pattern in the population might be.

Our statistical tests help us in this decision, but they do so in a way that is not very intuitive. 
What our statistical tests do is calculate a probability value, called the p-value. This probability 
tells us the likelihood of us obtaining our pattern of results due to sampling error if there is no 
relationship between our variables in the population. For example, they would tell us the prob-
ability of our obtaining the pattern of scores in the sample in Figure 5.3 if they came from popu-
lation (a). If the pattern in our sample is highly unlikely to have arisen due to sampling error if 
the population resembles (a), we might reasonably conclude that the population resembles that 
in (b). You should note that this probability value is a conditional probability. It is the probability 
of obtaining your sample data if there was no relationship between the variables in the popula-
tion (see section 4.1.1 for more on conditional probabilities).

Hypothesis testing is often seen as a competition between two hypotheses. It is seen as a 
competition between our research hypothesis (that there is a relationship between study hours 
and exam grade in the population) and something called the null hypothesis (that there is no 
relationship between the two variables in the population). Thus, the process of hypothesis testing 
resembles Figure 5.3. We need to decide between populations (a) and (b). In this case, population 
(a) represents the case if the null hypothesis were true and population (b) represents the case if 
the research hypothesis were true. The statistical tests we use tell us how likely it is that we 
would get our pattern of data if the null hypothesis were true. In Figure 5.3, we would probably 
find that the pattern of data in the sample would be highly unlikely to occur as the result of 
sampling error if they were drawn from a population resembling (a) where there is no relationship 
between hours spent studying per week and exam grade. In fact, the probability turns out to be 
less than 1 in 1000. In this case, it would make more sense to conclude that the data came from 
a population that resembles that illustrated in (b).

Now, let’s have a look at the scenario represented by Figure 5.4. Remember that everything 
above the dashed line is what we observe from our study and everything below the line is 
unknown to us. Here you should be able to see that the sample appears to suggest that there is 



Statistics without maths for psychology138

no discernible relationship between number of hours spent studying and exam grade. Intuitively, 
we would expect that this sample has come from a population resembling that shown in (a) rather 
than that shown in (b). However, again referring to Figure 5.1, you should be able to see that even 
when there is a relationship between two variables in the population we have the possibility that 
one will not be observed in our sample. This absence of a relationship in the sample would be 
the result of sampling error. So again in this case we could use inferential statistical tests to help 
us choose between the two hypotheses: the null hypothesis represented by population (a) or the 
research hypothesis represented by population (b). The statistical test would inform us of 
the probability that we would obtain the pattern in our sample illustrated in Figure 5.4 if the 
population resembled the pattern shown in (a): that is, if the null hypothesis were true. In this 
case we would find that there is a high probability of obtaining the pattern observed in our sample 
if the null hypothesis were true. In fact, there is a 61% probability of obtaining this pattern from 

Figure 5.3 Scattergrams illustrating alternative underlying populations when a relationship is observed in a sample
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a population resembling that shown in (a). In this case we would probably decide that the 
population does in fact resemble population (a) rather than population (b). There are other issues 
that we would need to address, however, before we could come to this conclusion, such as 
whether we had enough participants in our sample (see section 5.9 and Chapter 8).

 5.2 Null hypothesis

We have just slipped a very important concept past you, which needs further explanation. The 
null hypothesis is very important to the process of hypothesis testing. We explained earlier that 
the probability we calculate in statistical testing is based upon the assumption that there is no 
relationship between the two variables in the population. This assumption is the null hypothesis. 

Figure 5.4 Scattergrams illustrating alternative underlying populations when no relationship is observed in a sample
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You may find when reading psychological journals that the authors suggest that the null 
hypothesis could not be rejected. This simply indicates that the statistical probability they 
calculated meant that it was likely that the null hypothesis was the more sensible conclusion. If 
you read about researchers rejecting the null hypothesis, it means that the probability of 
obtaining their findings if the null hypothesis were true is so small that it makes more sense to 
believe in the research hypothesis. As we indicated earlier in this section, this illustrates the 
competition between our null and research hypotheses. The importance of the null hypothesis 
is reflected by the fact that this whole approach to conducting research is called null hypothesis 

testing (NHT) or null hypothesis significance testing (NHST).

If the research hypothesis (often called the experimental or alternate hypothesis) states that 
there will be a relationship between two variables, then the null hypothesis states that there is 
absolutely no relationship between the two variables. Similarly, if you are interested in 
comparing groups of people, where the research hypothesis states that there will be a difference 
between two groups, the null hypothesis states that there is no difference between them.

Definition

The research hypothesis is our prediction of how two variables might be related to each other. Alternatively, 
it might be our prediction of how specified groups of participants might be different from each other or 
how one group of participants might be different when performing under two or more conditions.

Definition

The null hypothesis always states that there is no effect in the underlying population. By effect we might 
mean a relationship between two or more variables, a difference between two or more different popula-
tions or a difference in the responses of one population under two or more different conditions.

 5.3 Logic of null hypothesis testing

If you understand the preceding sections, you should have no problems with grasping the 
general logic behind hypothesis testing, which is as follows:

• Formulate a hypothesis.

• Measure the variables involved and examine the relationship between them.

• Calculate the probability of obtaining such a relationship if there were no relationship in the 
population (if the null hypothesis were true).

• If this calculated probability is small enough, it suggests that the pattern of findings is 
unlikely to have arisen by chance and so probably reflects a genuine relationship in the 
population.

Put another way, if there is no real relationship in the population, you are unlikely to find a 
relationship in your randomly selected sample. Therefore, if you do find a relationship in your 
sample, it is likely to reflect a relationship in your population. It is important that you understand 
this, so take your time and ensure that you follow what we have just said.

Hypothesis testing is not restricted to the investigation of relationships between variables. If we 
are interested in studying differences between groups, we can also test hypotheses. The logic is 
broadly the same as that outlined for relationships above. For example, suppose we set up a study 
where we gave students two types of structured study, which differed only in the amount of time 
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the students were required to study. In one group the students studied for 40 hours per week and 
the other group studied for ten hours per week (this is the independent variable). We might hypoth-
esise that the 40-hour group would achieve higher exam marks than the ten-hour group. This would 
be our research hypothesis. Our null hypothesis would be that there would be no difference between 
the two groups in their exam grades in the population. Once we have collected the data, we could 
then see if there is a difference between the two study groups. If a difference did exist, we would 
then need to work out the probability of obtaining such a difference by sampling error alone: that 
is, the probability of obtaining a difference of the size observed if the null hypothesis were true. 
If this probability is low, then it makes more sense to assume that the difference was due to the 
manipulation of the independent variable rather than to sampling error alone.

Discussion point

Criticisms against null hypothesis testing

Although null hypothesis testing is the dominant approach to research in psychology, today there is 
growing concern that it is inadequate in terms of providing useful insights into the variables that 
psychologists wish to investigate. For example, referring to hypothesis testing, Loftus (1991) says, ‘I find 
it difficult to imagine a less insightful means of transiting from data to conclusions’. Loftus (1991, 1996) 
describes many problems associated with the use of hypothesis testing, but we will highlight two here. 
If you wish to read more, there are two references at the end of this chapter.

One of the main problems highlighted by Loftus relates to the null hypothesis. When we are looking 
for a difference between two conditions, we have to calculate the probability of obtaining our difference 
by chance if the null hypothesis is true. Remember, the null hypothesis states that there is no difference 
between the two conditions. The problem with the null hypothesis is that in few instances, in any 
science, will there be no difference between two conditions. It is quite unusual to find two things that 
are exactly equal, even in physics, and so to base our probability judgements on such a null hypothesis 
may be seriously misleading. This is just the gist of the point made by Loftus, but it serves to illustrate 
one of the criticisms raised by him.

The second problem that Loftus highlights is that, although we may report with some confidence that 
we have found a genuine difference between our two conditions and report the size of the difference, 
psychologists usually say very little about the underlying population means of the two conditions. Loftus 
argues that hypothesis testing lures us away from thinking about the population means. He suggests 
that we can avoid this trap by routinely reporting confidence intervals in our research reports. For a more 
recent contribution to the debate concerning null hypothesis testing and confidence intervals, see Denis 
(2003). More recently still Cummings (2014) has gone on record as suggesting that we should abandon 
NHST completely. He describes what he calls an eight-step ‘new statistics’ approach which has no place 
for NHST. Although this paper has been quite heavily criticised (e.g. see Savalei and Dunn, 2015) it is a 
really good paper as it has lots of useful guidance on how best to present your statistics to ensure that 
they are clearly understood by your audience. Perhaps politicians should be made to read this!

Activity 5.1

Take a look at this statement from a paper published by Nyroos et al. (2015):

How are these emotional-cognitive profiles related to mathematical achieve - 
ment?

Try to work out what the null hypothesis would be in this case.
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 5.4 The significance level

Many of you, at this point, may be thinking that this is all well and good but how do we decide 
that the probability we calculate in null hypothesis testing is small enough for us to reject the 
null hypothesis? This is an excellent question and one that does not have a definitive answer. 
Most psychologists and indeed most reputable psychology journals use the convention that a 
probability of 5% is small enough to be a useful cut-off point. That is, given that the null 
hypothesis is true, if the probability of a given effect is less than 5% (0.05 or 1 in 20) then we 
have provided reasonable support for our research hypothesis. This cut-off probability is often 

Activity 5.2

Which of the following descriptions represents a good summary of the logic behind 
hypothesis testing?

(a) We measure the relationship between the variables from our sample data. If it is 
large, there must be a genuine relationship in the population.

(b) We measure the relationship between the variables from our sample and then find 
the probability that such a relationship will arise due to sampling error alone. 
If such a probability is large, we can conclude that a genuine relationship exists in 
the population.

(c) We measure the relationship between the variables from our sample and then find 
the probability that such a relationship will arise due to sampling error alone. If 
such a probability is small, we can conclude that a genuine relationship exists in 
the population.

(d) We measure the relationship between the variables from our sample and then 
work out the probability of obtaining such a relationship by sampling error alone 
if the null hypothesis were true. If the probability is small, we can conclude that a 
genuine relationship exists in the population.

Even though there are such criticisms levelled at the process of hypothesis testing, it does not mean 
that we should abandon this approach completely; rather, we need to have a thorough understanding 
of what it means to engage in hypothesis testing. This is what we hope to give you in this book. There-
fore, alongside the statistical tests that help us test our hypothesis (e.g. the t-test) you should, as Loftus 
suggests, routinely report descriptive statistics and confidence intervals. One useful way of presenting 
confidence intervals is by generating error bar charts and presenting these in your reports. We have 
shown you what these are like earlier (see Chapter 4).

In another more recent critique of NHST, Branch (2014) discusses what he sees as the malignant side 
effects of relying on p-values for the advancement of psychological knowledge. One of his principal 
criticisms (and there are many others) is that the p-value provides us with no evidence of the replicability 
of the experimental findings and we agree with him on this point. The p-value only provides us with the 
probability of obtaining our pattern of data if the null hypothesis were true. It doesn’t say anything directly 
about how reliable or replicable the findings are. Branch suggests a number of ways for researchers to 
evaluate this which are largely based upon much greater use of exploratory statistical techniques such as 
those advocated by Tukey (1977). Interestingly, Branch highlights the importance of looking at individual 
scores in samples and also comparing across individuals to see what they can tell us about the replicability 
of the effect(s) were are examining. It is a really good paper and we advise you to have a read for yourself.
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called alpha (α). What this means is that, if you conduct a study 20 times, only once in those 20 
studies would a relationship (or difference) as large as the one you observe come out by chance, 
if the null hypothesis were true. Given such a low probability, we can conclude with reasonable 
confidence that a real relationship (or difference) exists in the populations under investigation. 
The probability associated with each statistical test is often called the p-value. When this is 
printed on your SPSS output, it will be printed as a decimal and, as with all probabilities 
expressed as a decimal, it ranges from 0 to 1.

Definitions

The p-value for a particular inferential statistical test is the probability of finding the pattern of results 
in a particular study if the relevant null hypothesis were true. This is a conditional probability.

Alpha (α) is the criterion for statistical significance that we set for our analyses. It is the probability 
level that we use as a cut-off below which we are happy to assume that our pattern of results is so 
unlikely as to render our research hypothesis as more plausible than the null hypothesis.

Definition

When we find that our pattern of research results is so unlikely as to suggest that our research hypoth-
esis is more plausible than the null hypothesis, we state that our findings are statistically significant. 
When we find that our pattern of data is highly probable if the null hypothesis were true, we state that 
our findings are not significant.

In many journals you will typically see researchers reporting their findings as significant or 
not significant. On the assumption of the null hypothesis being true, if the probability of obtain-
ing an effect due to sampling error is less than 5%, then the findings are said to be ‘significant’. 
If this probability is greater than 5%, then the findings are said to be ‘non-significant’. This 
way of thinking about your analysis has, however, come in for a good deal of criticism in recent 
years. One main problem is that usually significant results are more likely to be published in 
peer-review journals than non-significant results. The significance of a test thus becomes very 
important which leads to a focus on the p-value to the detriment of focusing on the size of the 
effect we are looking for. For a fuller discussion of this please see the next discussion point.

The conventional view today is that we should report exact probability levels for our test 
statistics (the exact p-value or α) and shift away from thinking in terms of whether or not the 
findings are statistically significant. Therefore, when reporting the results of your analyses you 
should report the exact probability values that are associated with your findings. We have pre-
sented the significant/non-significant view here so that you will know what it means when you 
come across such statements in journal articles.

We recommend that you use the 5% level of α as a rough guide to what has traditionally been 
seen as an acceptable probability of your findings being due to sampling error. Therefore, if you find 
that your p-value is a lot less than the 5% level, you can be reasonably confident that this is generally 
acceptable as indicating support for your research hypothesis. However, you should report the actual 
p-value and evaluate your findings in terms of effect size (see Chapter 8) and your error bar charts.
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 5.5 Statistical significance

As suggested previously, when reading an article from a psychological journal or listening to 
eminent and not-so-eminent psychologists describe their research, you will often hear/read the 
word ‘significant’. Psychologists say things like:

. . . being married, having a HRO, and depression were significant correlates
(Polshkova et al., 2016)

As hypothesized, academic hope, academic self-efficacy, and engagement all demonstrated 
significant associations with the number of semesters enrolled and annual cumulative GPAs

(Gallagher et al., 2016)

Among the relationship variables, only the number of close friends was found to be 
significant.

(Chui and Wong, 2016)

What are we to make of statements such as these? In everyday life we interpret the word 
‘significant’ to mean considerable, critical or important. Does this mean that Polshkova et al. 
found considerable correlations among the variables of being married, having a high-risk 
occupation (HRO) and depression? Or that Gallagher et al. found critical relationships between 
academic hope and number of semesters enrolled? Or perhaps Chui and Wong found that only 
number of close friends was crucially related to happiness? In fact, they do not necessarily mean 
this. They are merely stating that what they found was statistically significant. Statistical 
significance is different from psychological significance. Just because a statistically significant 
difference is found between two samples of scores, it does not mean that it is necessarily a large 
or psychologically significant difference. For example, in the study by Reddy and Moores 
(2006) cited in Chapter 4 there was a significant impact of a placement year on final-year 
marks. However, the placement year only accounts for between 3% and 5% of the differences 
between the two groups and this is not necessarily a psychologically significant difference 
(we will explain this further in Chapter 8).

As we have already explained, the probability we calculate in inferential statistics is simply 
the probability that such an effect would arise if there were no difference between the underlying 
populations. This does not necessarily have any bearing on the psychological importance of the 
finding. The psychological importance of a finding will be related to the research question and 
the theoretical basis of that research. One of the main problems with the p-value is that it is 

Activity 5.3

Suppose you have conducted a study looking for a difference between males and 
females on preference for action films. When you run your study, you find that there 
is a 0.005 probability of the difference you observe arising due to sampling error.

How often is such a difference likely to arise by sampling error alone?

(a) 1 in 5000
(b) 1 in 2000
(c) 1 in 500
(d) 1 in 200
(e) 1 in 100

Suppose the probability was 0.01: which of the above is true in this situation?
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related to sample size. If, therefore, a study has a large number of participants, it could yield a 
statistically significant finding with a very small effect (relationship between two variables or 
difference between two groups). It is up to individual authors (and their audiences) to determine 
the psychological significance of any findings. Remember, statistical significance does not 

equal psychological significance.

Discussion point

Why report the exact p-value (α)?

There is quite a debate going on in psychology concerning the use of the alpha criterion of significance. 
The generally accepted criterion of significance (p 60.05) is coming under increasing criticism. There 
is nothing intrinsically wrong with the 5% cut-off, yet it has been argued that the pursuance of this as 
the Holy Grail in psychology is distorting the legitimate goals of psychological research. The problem 
with the 5% criterion is that we are often led to believe that just because some effect is statistically 
significant then it is psychologically significant, or even that it is a large or important effect. In fact, if 
we look at this criterion logically, we can see the folly of this way of thinking. Suppose, for example, that 
you conducted a study looking at the relationship between statistics anxiety and procrastination. You 
find that, as statistics anxiety increases, so does procrastination. You find that the probability of obtain-
ing such a relationship, if there really was no relationship in the population, is 4.9%. As this is less than 
the traditional 5%, you conclude that this is a real relationship between statistics anxiety and procras-
tination. You then conduct a follow-up study (being the good researcher that you are) and again find 
a relationship between statistics anxiety and procrastination. This time, however, you find that the 
probability of such a relationship, given that the null hypothesis is true, is 5.1%. What are we to make 
of this? Do you now conclude that there is no real relationship between statistics anxiety and procras-
tination? You can see that there is only 0.2% difference in the probability values between these two 
studies. So it does not really make sense to argue that the sizes of the relationship in the two studies 
are different. Yet, in all probability, the first of these would get published in a psychological journal and 
the second would not.

One of the big problems with the p-value is that it is related to sample size. We could have two studies 
where one has a very small p-value (say, 0.001) and one has quite a large p-value (say, 0.15). Yet we 
would not be able to say that the first study shows a large effect (strong relationship or large difference 
between conditions) and the second study a small effect. In fact it could be the reverse situation 
because it might simply be the case that the first study has a very large sample size and the second a 
small one. Even very small effects will lead to significant statistical results with very large sample sizes.

How can we get around this problem? The best approach to this is to try to get a measure of the 
magnitude of the experimental effect: that is, to get information about the size of the relationship 
between statistics anxiety and procrastination. If you were looking for differences between groups, 
you would get a measure of the size of the difference between your groups. This is called the mag-
nitude of effect or effect size. A more detailed description of effect size can be found in Chapter 8. 
The preferred course of action when reporting your research findings is to report the exact probabil-
ity level and the effect size. For example, you should report the probability level (e.g. p = 0.027) and 
the effect size (e.g. r = 0.70, r 2

= 0.49 or d = 0.50). In this way, whenever someone reads about your 
research, he or she can get a fuller picture of what you have found. You should note that r is a cor-
relation coefficient and indicates the strength of a relationship between variables (we explain this 
more in the next chapter); d is a measure of magnitude of effect used for differences between groups 
(and is explained in Chapter 7). There is a very accessible discussion of effect sizes provided by Clark-
Carter (2003).
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 5.6 The correct interpretation of the p-value

It is important to understand that the p-value is a conditional probability. That is, you are assessing 
the probability of an event’s occurrence, given that the null hypothesis is true. The p-value that 
you will observe on any computer printout represents this probability. It does not represent the 
probability that the relationship you observed simply occurred by chance. It represents the 
probability of the relationship occurring by chance if the null hypothesis were true. It is said to 
be a conditional probability. It is conditional upon the null hypothesis being true. A good 
discussion of the problems caused by misinterpreting what the p-value represents is given by 
Dracup (1995); however, we have summarised the main points in the discussion below. If you 
wish to read the original discussion, the reference is given at the end of the chapter.

Discussion point

Misinterpretation of the significance level (α)

Dracup (1995) has given a good discussion of the problems associated with the misinterpretation of 
the rationale behind hypothesis testing.

Many students new to statistics, and indeed those who perhaps should know better, equate the sig-
nificance level (α) with the actual size of the experimental effect. The lower the significance level, the 
stronger, for example, the relationship between two variables. This is not what is meant by the signifi-
cance of a finding. Alpha simply gives an indication of the likelihood of finding such a relationship if the 
null hypothesis were true. It is perhaps true that the stronger the relationship, the lower the probability 
that such a relationship would be found if the null hypothesis were true, but this is not necessarily so.

Dracup also highlights the fact that many statistical textbooks equate α with the probability that the 
null hypothesis is true. This is incorrect, as is clearly illustrated by Dracup. Alpha is the probability that 
we will get a relationship of an obtained magnitude if the null hypothesis were true. It is not the 
probability of the null hypothesis being true.

Related to this latter point, once someone has fallen into the trap of interpreting α as the probability 
of the null hypothesis being true, it is a relatively easy and convenient step to suggest that 1 - α must 
be the probability that the research hypothesis is true. Thus, if we set α at the traditional 5% level and 
find a significant relationship, these people would assume that there is a 95% probability that the 
research hypothesis is true. This is incorrect. In fact, we do not know what the probability is that 
the research hypothesis is correct; our α probability is conditional upon the null hypothesis being true 
and has nothing to do with the truth or falsity of the research hypothesis.

It is important to remember that what we have just explained about relationships is also relevant 
when looking for differences between groups. Thus, the p-value is the probability of finding a difference 
between two groups if the null hypothesis (no difference in the population) were true.

Similar misunderstandings of the p-value have been more recently covered in the paper we referred 
to earlier by Branch (2014).

Activity 5.4

Imagine that you have conducted two separate studies and found a relationship 
between head size and IQ in study 1 and head size and shoe size in study 2. The prob-
ability of observing the relationship in study 1 by chance if the null hypothesis were 
true is found to be 0.04, whereas in study 2 the probability is 0.001. Which of these 
findings is the more important psychologically?
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 5.7 Statistical tests

Imagine you are investigating the relationship between number of hours spent studying and 
exam performance. Now suppose you have conducted a study and have found a pattern of scores 
similar to that given in the sample presented at the top of Figure 5.3. How do you go about 
calculating the probability that such a relationship is due to sampling error if the null hypothesis 
were true? This is where we need to use inferential statistical tests such as the Pearson product 
moment correlation coefficient (see Chapter 6). If you had conducted a study that examined 
the difference between two conditions of an independent variable, you would use a test such as 
the t-test to calculate your probability. In the rest of this section we hope to give a conceptual 
understanding of what statistical tests actually do.

When we look at the relationship between two variables (e.g. hours spent studying and exam 
grade), we are able to calculate a measure of the size or strength of the relationship (this is covered 
in more detail in the next chapter). Once we have a measure of the strength of a relationship, we 
need to find out the probability of obtaining a relationship of such strength by sampling error 
alone if the null hypothesis were true. In order to calculate the probability, we can make use of 
the probability distributions (see Chapter 4). Earlier we told you that the probability of obtaining 
any particular score from probability distributions is known. For example, the probability of 
obtaining a z-score of 1.80 or higher is only 3.8%. If we are able to convert the information we 
have about the strength of a relationship into a score from a probability distribution, we can then 
find the probability of obtaining such a score by chance. This would then give us an indication 
of the probability of obtaining the relationship we observe in our study by sampling error 
(by chance) if no such relationship really existed in the population. This is basically what 
significance testing involves. Converting the data from our samples into scores from probability 
distributions enables us to work out the probability of obtaining such data by chance factors alone. 
We can then use this probability to decide which of the null and experimental hypotheses is the 
more sensible conclusion. It should be emphasised here that these probabilities we calculate are 
based upon the assumption that our samples are randomly selected from the population.

Figure 5.5 shows the standard normal distribution and illustrates that the probability of obtaining 
scores in the extremes of the distribution is very small. You should remember that when looking at 
probability distributions the area under the graph represents probability. The larger the area above 
a positive score, the greater the probability of obtaining such a score or one larger. Similarly, the 
larger the area below a negative score, the greater the probability of obtaining that score or one 
smaller. Thus, once we have converted the degree of relationship between the variables into a score 
from a probability distribution, we can work out the probability of obtaining such a score by chance. 
If the score is in either of the two regions indicated in Figure 5.5, then we can conclude that the 
relationship is unlikely to have arisen by chance – that is, it is unlikely to have been the result of 
sampling error if the null hypothesis were true.

Of course if we were investigating differences between groups we could also use probability 
distributions to find out the probability of finding differences of the size we observe by chance 
factors alone if the null hypothesis were true. In such a case we would convert the difference 
between the two groups of the independent variable into a score from a probability distribution. 
We could then find out the probability of obtaining such a score by sampling error if no 
difference existed in the population. If this probability is small, then it makes little sense to 
propose that there is no difference in the population and that the difference between our samples 
is the result of sampling error alone. It makes more sense to suggest that the difference we 
observed represents a real difference in the population. That is, the difference has arisen owing 
to our manipulation of the independent variable.

It is important to note that when we convert our data into a score from a probability 
distribution, the score we calculate is called the test statistic. For example, if we were interested 
in looking for a difference between two groups, we could convert our data into a t-value (from 
the t-distribution). This t-value is called our test statistic. We then calculate the probability of 
obtaining such a value by chance factors alone and this represents our p-value.
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If your p-value (α) is 5% then you will have a 1 in 20 chance of making a Type I error. This 
is because the p-value is the probability of obtaining an observed effect, given that the null 
hypothesis is true. It is the probability of obtaining an effect as a result of sampling error alone 
if the null hypothesis were true. We argued that if this is small enough then it is unlikely that 
the null hypothesis is true. But as the above case illustrates, we can be mistaken; we can make 
a Type I error. Therefore the p-value also represents the probability of your making a Type I 
error. If your p-value is 5%, it means that you have a 5% probability of making a Type I error 

 5.8 Type I error

Suppose we conducted some research and found that, assuming the null hypothesis is true, the 
probability of finding the effect we observe is small – as would be the case represented in Figure 5.3. 
In this case we would feel confident that we could reject the null hypothesis. Now suppose there 
really is no such effect in our population and we have stumbled across a chance happening. We have 
obviously made a mistake if we conclude that we have support for our prediction. Statisticians would 
say that in rejecting the null hypothesis in this case we have made a Type I (one) error.

Definition

A Type I error is where you decide to reject the null hypothesis when it is in fact true in the underlying 
population. That is, you conclude that there is an effect in the population when no such effect really exists.

23 22 21 0 1 2 3

Scores in the extremes of the distribution

have a low probability of occurring

Figure 5.5 Diagram illustrating the extreme scores in a distribution
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 5.8.1 Replication

Suppose you run a study and find a relationship that has an associated probability of occurring 
if the null hypothesis were true of 0.01 (or 1%). In all likelihood you would be happy to reject 
the null hypothesis and claim that you had support for your research hypothesis. How confident 
could you be that there was a genuine relationship in the population? The answer to this question 
is difficult and in some respects depends upon the background to your research. If your study 
was the first in its field, you might be wise to treat your findings with a degree of caution. 
Remember, we are dealing with probabilities here, not certainties. Even if your findings had a 
small probability of occurring if the null hypothesis were true, that possibility is still there. 
When we take samples from populations each sample will be slightly different, and the 
differences between them are down to sampling error (we came across this previously in 
Chapter 3). It could be that you have been unfortunate enough that, owing to sampling error, 
the pattern you found is that 1 time in 100 when this arises. In other words, you would have 
been wrong to reject the null hypothesis. How should we proceed in such a situation? What you 
should do is try to replicate your findings by running another study. If you find the same sort 
of pattern and a similar probability of obtaining such a pattern if the null hypothesis were true, 
then you could be much more confident in your findings. Replication is one of the cornerstones 
of science. If you observe a phenomenon once, it may be a chance occurrence; if you see it on 
two, three, four or more occasions, you can be more certain that it is a genuine phenomenon.

Example from the literature

Trustworthiness of politicians

A really nice example of authors considering the possibility that their results are due to a Type I error 
is one published by Combs and Keller (2010). In this paper they published the findings from three stud-
ies which examined factors affecting the perceived trustworthiness of politicians. In particular the 
authors examined the effects of politicians acting against their own self-interest (e.g. praising an oppo-
nent) on perceptions of trustworthiness. In their first study, as well as considering the issue of acting 
against self-interest the authors included a measure of whether the politicians being considered (these 
were hypothetical politicians) were affiliated to the political party supported by the participants. 
 Contrary to expectation it was found that party similarity was negatively related to trustworthiness. In 
the discussion to this study the authors consider an explanation for this unexpected effect. They sug-
gested that in such hypothetical situations perhaps participants have higher standards for the politi-
cians than for real politicians. They also suggest that: ‘At the same time, it is also possible that the 
significant negative association in Study 1 was a Type I error, and thus caution should be taken in 
interpreting this finding.’

This is refreshing as authors are usually very reluctant to consider the possibility that their findings 
could be the result of Type I errors (not in public anyway).

if you reject the null hypothesis. Although this probability is small, it is still possible for it to 
occur. We can relate this to the National Lottery. There is only about a 1 in 14 million probability 
of your winning the Lottery if you pick one line of numbers. Even though this represents a tiny 
chance of winning, the possibility still exists, which is why people keep playing it. So beware, 
even if you find you have a p-value of only 0.001% there is still a very small probability of your 
making a Type I error if you decide to reject the null hypothesis.
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 5.9 Type II error

There is another sort of error that you can make when using the hypothesis testing approach to 
research and it is called a Type II (two) error. A Type II error is where you fail to reject the null 
hypothesis when it is, in fact, false.

Definition

A Type II error is where you conclude that there is no effect in the population when in reality there is an 
effect in the population. It represents the case when you do not reject the null hypothesis when in fact 
you should do because in the underlying population the null hypothesis is not true.

Activity 5.5

Which of the following represent Type I and which represent Type II errors?

(a) You find in your study that a relationship exists between amount of tea drunk per 
day and amount of money won on the Lottery. You conclude that to win the 
Lottery you need to drink lots of cups of tea

(b) You find in a study that there is no difference between the speed at which 
cheetahs and tortoises run. You conclude that tortoises are as fast as cheetahs

(c) You find in a study that there is a relationship between standard of living and annual 
income. However, because the probability associated with the relationship is 0.5, you 
conclude that there is no relationship between standard of living and annual income.

Suppose you wanted to see if there was a relationship between the amount of alcohol consumed 
and a person’s coordination. You conduct a study and find that there is a large probability, say 
0.8 (80%), that the relationship you observed in your sample arose by chance. You would, 
therefore, have to conclude that there is no relationship between alcohol and coordination. Would 
this be the correct conclusion? Clearly, this is an incorrect finding, as most evidence tells us that 
alcohol impairs our coordination. This is why we have drink–driving laws. In this case we would 
have made a Type II error: we have rejected the research hypothesis when it is in fact true.

The same sorts of error can occur when investigating differences between groups. Suppose 
that you conducted a study to see if people can cover 100m faster in a swimming pool or on a 
running track. Once you have analysed your data, you find that there is a large probability that, 
if the null hypothesis were true, the difference you found was the result of sampling error. You 
therefore conclude that there is no difference in the times taken to complete 100m on land or 
in water in the general population. You would clearly have made a Type II error.

In our research, because we are never 100% certain that we can reject the null hypothesis or 
100% certain that we can accept the null hypothesis, we are likely to make errors some of the time. 
These are our Type I and Type II errors. You should recall from earlier that the probability of making 
a Type I error is denoted as α. The probability of making a Type II error is denoted as β (beta).

If you found yourself in the situations described above where you have made Type II errors, 
you might ask yourself why, if there is a real relationship or difference in the population, you 
failed to detect it in your study. There are a number of reasons for this sort of outcome. The first 
is that, owing to chance factors, you may have selected people who have an unnatural tolerance 
of alcohol (or people who were truly as quick in the pool as on the track). More than likely, 
however, you will have had a poorly designed study or the sample sizes were too small. Factors 
such as these affect the sensitivity of your research to detect real differences in populations. The 
ability of a study to reject a null hypothesis when it is, in fact, false is said to be the power of 
the study and is calculated as 1 - β. (We say a lot more about power in Chapter 8.)
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 5.10 Why set 𝛂 at 0.05?

You may be wondering why we have a cut-off for α of 0.05. Who determined that 0.05 was an 
appropriate cut-off for allowing us to reject the null hypothesis, rather than say 0.2 or 0.001? 
Although this is a fairly arbitrary cut-off, there is a rationale behind it. Let us have a look at the 
situations where we set α at 0.2 and 0.001 respectively. If we set α at 0.2, we would be tolerating 
a Type I error in one case in every five. This is a very liberal criterion for significance. In one 
case in every five we would reject the null hypothesis when it is in fact true. On the positive 
side, we would be much less likely to make a Type II error. That is, we would be much less likely 
to accept the null hypothesis when it is false. With such a liberal criterion for significance, we 
are generally going to reject the null hypothesis more often and therefore are more likely to 
reject it when it is false (as well as more likely to reject it when it is true). This means a lower 
probability of a Type II error.

So, how about setting our α at 0.001? Here we are much less likely to make a Type I error. 
We are only likely to reject the null hypothesis when it is true one time in every thousand. This 
is a very conservative criterion for significance. On the face of it, this would appear to be a very 
good thing. After all, we don’t want to incorrectly reject the null hypothesis, and so why not set 
a conservative criterion for significance? The problem here is that, although we reduce the 
probability of making a Type I error, we also increase the probability of not rejecting the null 
hypothesis when it is false. We increase the probability of making a Type II error. The reason 
for this is that with such a conservative criterion for significance, there are going to be fewer 
times when we reject the null hypothesis. Therefore, we are going to increase the likelihood of 
not rejecting the null hypothesis when it is false.

When setting our criterion for significance, we therefore need to strike the right balance 
between making Type I and Type II errors. In most situations an α of 0.05 provides this balance. 
You should note that there are sometimes other considerations which should determine the level 
at which you set your criterion for significance. For example, if we were testing a new drug, we 
should be much more conservative, as the consequence of making a Type I error could be very 
serious indeed. People may be given drugs that have nasty side-effects and yet not be effective 
in treating what they are supposed to treat. Another situation where you may want to set a 
different criterion for significance is where you conduct many statistical analyses on the same 
set of data. (This is covered in more detail in section 10.5.)

 5.11 One-tailed and two-tailed hypotheses

Earlier in this chapter we described a possible study investigating the relationship between 
number of hours spent studying per week and final examination grade (see section 5.1). We made 
the prediction (hypothesised) that, as hours of study increased, so would exam grades. Here we 
have made what we call a directional hypothesis. We have specified the exact direction of the 
relationship between the two variables: we suggested that, as study hours increased, so would 
exam grades. This is also called a one-tailed hypothesis. In this case we were sure of the nature 
of the relationship and we could thus make a prediction as to the direction of the relationship. 
However, it is often the case in psychology (and other disciplines) that we are not sure of the 
exact nature of the relationships we wish to examine. For example, suppose we wanted to 
investigate the relationship between anxiety and memory for negative information. Previous 
research in this area has yielded a number of contradictory findings. Mogg, Mathews and 
Weinman (1987) found that anxious individuals remember fewer negative words than non-
anxious individuals, whereas Reidy (2004) found that anxious individuals tend to remember more 
negative than positive information. Here, then, we are not quite sure of the nature of the 
relationship between anxiety and memory for negative words. We therefore would want to predict 
only that there was a relationship between the two variables without specifying the exact nature 



Statistics without maths for psychology152

Definition

A one-tailed hypothesis is one where you have specified the direction of the relationship between 
variables or the difference between two conditions. It is also called a directional hypothesis.

A two-tailed hypothesis is one where you have predicted that there will be a relationship between variables 
or a difference between conditions, but you have not predicted the direction of the relationship between 
the variables or the difference between the conditions. It is also called a bi-directional hypothesis.

23 22 21 0 1 2 3

Area in the middle portion is

greater than the extremes

Figure 5.6 Scores in the extremes have lower probability of occurrence than scores in the middle 
of the distribution

You might be thinking to yourselves that these are bizarre terms to associate with these forms 
of hypotheses. Hopefully, all will become clear in the following explanation. To understand why 
we use the terms one- and two-tailed hypotheses you need to refer back to what we have taught 
you about distributions.

Previously we explained that a normal distribution and other probability distributions have 
tails at their extremes (see Figure 5.5). The probability of obtaining scores from these extremes 
(from the tails) is small compared with that of obtaining scores from the middle of the 
distribution (see Figure 5.6). For example, coming across a man who is 8ft (244cm) tall is highly 
unlikely, and this would thus be in the upper tail of the distribution of men’s height.

You now need to think back to what we told you about statistical tests. We explained that we 
can use probability distributions to help us calculate the probability of a difference or a relationship 
occurring as a result of sampling error if one does not exist in the population. As an example, we 
showed you how we can use the standard normal distribution in such cases. We pointed out that, 
after we have transformed our sample details into a score from the distribution (remember, this is 
called our test statistic), we could work out the probability of obtaining such a score as a result of 
sampling error. If this probability is small, we could argue with some confidence that we have a 
genuine relationship between our variables: that is, the relationship was not due to sampling error.

of this relationship. In making such a prediction, we are stating that we think there will be a 
relationship, but are not sure whether as anxiety increases memory for negative words will 
increase or decrease. Here we have made what we call a bi-directional prediction, better known 
as a two-tailed hypothesis.
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If you look at Figure 5.7, you will see that we have indicated the areas within the distribution 
where the probability of obtaining such a score is small. These scores are located in the extremes 
(the tails) of the distribution.

When we go through the process of calculating the relevant score from our sample 
information, we are working with some measure of the strength of the relationship between the 
two. Suppose we have two studies, Study 1 and Study 2, both investigating the relationship 
between statistics anxiety and procrastination (see Table 5.1).

In both of these studies we might want to see if statistics anxiety and procrastination are 
related in some way. You should notice from the table that in each study there appears to be a 
relationship between statistics anxiety and procrastination. In Study 1, as the scores for statistics 
anxiety increase, so do those for procrastination. In this case when we calculate the score from 
the probability distribution, we would probably obtain a value from the right-hand tail of the 

23 22 21 1 2 30

Scores in the tails

of the distribution

Lower tail Upper tail

Low scores in

stats anxiety

associated with

high scores in

procrastination

result in a score

in this tail

High scores in

stats anxiety

associated with

high scores in

procrastination

result in a score

in this tail

Figure 5.7 Illustration of scores in the tails of the distribution

Study 1 Study 2

Statistics anxiety Procrastination Statistics anxiety Procrastination

1 2 1 18

2 4 2 16

3 6 3 14

4 8 4 12

5 10 5 10

6 12 6 8

7 14 7 6

8 16 8 4

9 18 9 2

Table 5.1 Data for statistics anxiety and procrastination in Studies 1 and 2
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distribution (see Figure 5.7). If, on the other hand, as the values for statistics anxiety increased, 
the values for procrastination decreased (as in Study 2), then the resulting score we calculated 
would be in the left-hand tail of the distribution. This example illustrates the fact that the 
direction of the relationship between your variables determines the tail of the distribution in 
which the resulting score will be located.

When we do not predict the direction of the relationship between statistics anxiety and 
procrastination, we are simply predicting that the score we calculate will fall in either one of 
the two tails. Hence, we have made a two-tailed prediction. If, on the other hand, we predict 
that, as the scores for statistics anxiety increase, so would the scores for procrastination, then 
we are predicting that the score we calculate will fall in the right-hand tail only. We have made 
a one-tailed prediction. That is, we are predicting the tail from which the score we calculate will 
be obtained.

If you make a two-tailed prediction, the calculated score can fall in either tail. Now suppose 
that we are sticking with convention and using the 5% significance level as our cut-off for 
rejecting the null hypothesis (we do not recommend that you use such a cut-off; we are merely 
using this to illustrate a point). We will be able to reject the null hypothesis only if there is 5% 
probability or less of obtaining our calculated score. Figure 5.8 shows that in either tail we take 
calculated scores that have a 2.5% probability of being obtained: that is, 5% divided between 
the two tails.

If we make a one-tailed prediction, we accept scores in only one of the tails and therefore 
our 5% probability region is all in the one tail: that is, it is not divided between the two tails. 
This effectively means that we can reject the null hypothesis for a greater number of scores in 
that tail than we can for a two-tailed test (see Figure 5.9).

Figures 5.8 and 5.9 illustrate the importance of being sure whether you have made a one- or 
two-tailed prediction. In the following chapters, when we come to describe how to carry out 
the various statistical tests using SPSS you will notice that there are options that allow us to 
calculate one- and two-tailed probabilities (p-values) for these statistics. If, however, you have 
obtained a p-value for a two-tailed test and you want to know the corresponding probability for 
a one-tailed test, all you need to do is halve your p-value. For example, if you obtained a p-value 
of 0.03 for a two-tailed test, the equivalent value for a one-tailed test would be 0.015. Similarly, 
if you obtained a p-value for a one-tailed test, to work out the equivalent probability for a two-
tailed test you simply double the one-tailed probability. Note that you double the p-value, not 

23 22 21 0 1 2 3

2.5%2.5%

Figure 5.8 Areas (coloured) representing the regions where scores may fall for two-tailed hypotheses
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the actual test statistic (e.g. correlation coefficient or t-value). The test statistic remains the same 
for both one- and two-tailed tests on the same set of data.

We should point out that, although we have illustrated the distinction between one-tailed and 
two-tailed predictions with reference to relationships between variables, you can also have both 
types of prediction when investigating differences between conditions. Essentially, there are 
two ways that any two conditions (conditions A and B) can be different: that is, condition A has 
higher scores than condition B, or condition B has higher scores than condition A.

When making a two-tailed prediction about differences between two conditions, we have 
only to specify that a difference exists between them. We do not have to specify which condi-
tion will have the higher scores. If we make a one-tailed prediction, we would predict which 
of the above scenarios is most appropriate: that is, which condition will have the higher scores. 
(We do not intend to go into any more detail here, as this is covered in greater depth in 
Chapter 7.)

23 22 21 0 1 2 3

5%

Figure 5.9 Area (coloured) representing the region where scores may fall for one-tailed hypotheses

Activity 5.6

Which of the following are one-tailed hypotheses and which are two-tailed?

(a) It is predicted that females will have higher empathy scores than males
(b) It is predicted that, as annual salary increases, so will the number of tomatoes 

eaten per week
(c) It is predicted that there will be a relationship between length of hair in males and 

number of criminal offences committed
(d) It is predicted that football fans will have lower IQ scores than opera fans
(e) It is predicted that there will be a relationship between the number of books read 

per week and range of vocabulary
(f) It is predicted that there will be a difference between middle-class parents and 

working-class parents in their preferences for children wearing school uniforms
(g) It is predicted that as anxiety increases the number of units of alcohol drank per 

week will also increase
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Most of the statistical techniques that we describe in this book make assumptions about the 
populations from which our data are drawn. Because population characteristics are called 
parameters (see Chapter 3), these tests are sometimes called parametric tests. Because the tests 
make these assumptions, we have to ensure that our data also meet certain assumptions before 
we can use such statistical techniques. The assumptions are described in the following sections.

 5.12 Assumptions underlying the use of statistical tests

In the preceding sections and chapters of the book, we have introduced the basic concepts 
underlying statistical testing. In the remainder of the book we will be explaining a wide range 
of statistical tests suitable for a number of different research designs. However, many of these 
tests require that a number of assumptions be met before they can be legitimately applied to 
sample data. When our data do not meet these assumptions we usually have to use the tests that 
do not require such assumptions to be met.

Definition

Many statistical tests that we use require that our data have certain characteristics. These characteristics 
are called assumptions.

Definition

Many statistical tests are based upon the estimation of certain parameters relating to the underlying 
populations in which we are interested. These sorts of test are called parametric tests. These tests make 
assumptions that our samples are similar to underlying probability distributions such as the standard 
normal distribution.

Definition

Where statistical tests do not make assumptions about the underlying distributions or estimate the 
particular population parameters, these are called non-parametric or distribution-free tests.

There are statistical techniques that do not make assumptions about the populations from 
which our data are drawn, but these are not used as frequently as the parametric tests. Because 
they do not make assumptions about the populations, they are called non-parametric tests. They 
are also often called distribution-free tests. (We cover such tests in Chapter 16 of this book.)

Assumptions underlying parametric tests

1. The scale upon which we measure the outcome or dependent variable should be at least 
interval level. This assumption means that any dependent variables that we have should be 
measured on an interval- or ratio-level scale or, if we are interested in relationships between 
variables, the variables of interest need to measured using either interval- or ratio-level scales 
of measurement. Remember we covered levels of measurement in Chapter 1 (see section 1.3).
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2. The populations from which the samples are drawn should be normally distributed. Parametric 
tests assume that we are dealing with normally distributed data. Essentially this assumption 
means that we should always check that the data from our samples are roughly normally dis-
tributed before deciding to use parametric tests. We have already told you how to do this using 
box plots, histograms or stem and leaf plots. If you find that you have a large violation of this 
assumption, there are ways to transform your data legitimately so that you can still make use 
of parametric tests. For example, if you have positively skewed data you can transform all the 
scores in your skewed variable by calculating the square-root of each score. It has been shown 
that when we do this it can eliminate positive skew and leave your variable much more nor-
mally distributed. Some students think that this is simply changing your data and so cheating. 
However, this is not the case. All you are doing is converting the variable to a different scale 
of measurement. It is akin to converting temperature scores from Centigrade to Fahrenheit. As 
you are doing the same transformation for all scores on the variable it is entirely legitimate. 
Let us try a transformation using the statistics anxiety and procrastination data that we have 
used in previous chapters. To transform a variable using SPSS you need to use the Transform 
and Compute Variable option. When you select these you will be presented with the following 
dialog box:

You will notice that there are two boxes of interest; the Target Variable box and the Numeric 

Expression box. What we are going to do is take the square-root of each score of a variable 
(we will use the procrastination variable here) and then record this in a new variable (the target 
variable). Thus first of all we need to give the new variable a name. One useful way to keep 
track of the transformations that you have done on a variable is to call the target variable the 
same name as the original variable but just put ‘Sqrt’ at the beginning. So if our original 
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We then need to focus on the Numeric Expression box. In this box we are going to tell SPSS 
how to transform the original variable. In our case we need to tell SPSS to take the square-root 
of the original variable. You can do this in two ways. If you not sure then follow these steps. You 
should notice that down the right-hand side of the dialog box there is box of Function groups. 
If you click on the Arithmetic one you will see a list of functions appear in the box below:

If you scroll down you will see a function called Sqrt. Select it and then click on the up arrow next 
to the box. You will notice in the Numeric Expression box that the expression ‘SQRT(?)’ appears. 

variable is called ‘Procrastination’ the target variable will be called ‘SqrtProcrastination’. So 
type the new variable name into the target variable box:
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Now you can select the variable that you want to transform from the variable list and click 
on the arrow next to that list. You will then see that the numeric expression changes so that 
your variable name is now inside the brackets, e.g. ‘SQRT(Procrastination)’. Instead of doing 
all the clicking though you can simply type the ‘SQRT(Procrastination)’ expression directly. 

Once you have done this click on OK and take a look at the data file. You should see that 
SPSS has set up a new variable which contains scores that are square-roots of the original 
scores. You can then check these square-roots to see if they are normally distributed. If they 
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are you can proceed with the parametric tests. If they are not you might have to consider an 
alternative transformation or use one of the non-parametric tests covered in Chapter 16. The 
other transformations are beyond the scope of this book, however, you should consult other 
more advanced texts. Howell (2013) gives a very good overview of such transformations. 
For your guidance, the distributions in Figure 5.10(a) and (b) are probably close enough to 
normal for you to use parametric tests. If your distributions are more like those in 
Figure 5.10(c) and (d), however, you should consider transforming your data.

3. The third assumption that we cover here is only relevant for designs where you are looking 
at differences between conditions. This assumption is that the variances of the populations 
should be approximately equal. This is sometimes referred to as the assumption of 
homogeneity of variances. If you remember, when we explained how to calculate the standard 
deviation (in Chapter 3), we told you that you calculate the variance as a step on the way to 
calculating the standard deviation. More specifically, we informed you that the standard 
deviation is the square root of the variance. In practice, we cannot check to see if our 
populations have equal variances and so we have to be satisfied with ensuring that the 
variances of our samples are approximately equal. You might ask: what do you mean by 

approximately equal? The general rule of thumb for this is that, as long as the largest variance 
that you are testing is not more than three times the smallest, we have roughly equal variances. 
We realise that this is like saying that a man and a giraffe are roughly the same height, but 
this does illustrate the reasonable amount of flexibility involved in some of these assumptions. 
Generally, a violation of this assumption is not considered to be too catastrophic as long as 
you have equal numbers of participants in each condition. If you have unequal sample sizes 
and a violation of the assumption of homogeneity of variance, you should definitely use a 
distribution-free test (see Chapter 16).
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4. The final assumption is that we have no extreme scores. The reason for this assumption is 
easy to understand when you consider that many parametric tests involve the calculation of 
the mean as a measure of central tendency. If you think back to Chapter 3, you will recall 
that we explained that the mean is very sensitive to extreme scores and when these are present 
it is best to use some other measure of central tendency. If extreme scores distort the mean, 
it follows that any parametric test that uses the mean will also be distorted. We thus need to 
ensure that we do not have extreme scores. (If you find that you have extreme scores, you 
should see Chapter 3 for a discussion of what to do about them.)

Given that there are these assumptions underlying the use of parametric tests, you might ask: 
why bother with them? Parametric tests are used very often in psychological research because 
they are more powerful tests. That is, if there is a difference in your populations, or a relation-
ship between two variables, the parametric tests are more likely to find it, provided that the 
assumptions for their use are met. Parametric tests are more powerful because they use more 
of the information from your data. Their formulae involve the calculation of means, standard 
deviations and some measure of error variance (these will be explained in the relevant chapters). 
Distribution-free or non-parametric tests, however, are based upon the rankings or frequency 
of occurrence of your data rather than the actual data themselves. Because of their greater 
power, parametric tests are preferred whenever the assumptions have not been grossly 
violated.

In this and previous chapters we have explained the important basic concepts for a good 
understanding of the most frequently used statistical tests. In addition to this we have presented 
you with a number of descriptive statistical techniques and some advice about when to use 
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them. The preceding paragraphs have also presented advice on the criteria for choosing 
between various inferential statistical techniques. Before you move on to the nitty-gritty of 
the various inferential statistics, it is perhaps a good idea to review all such advice and 
therefore we present it here in summary form. Figure 5.11 gives a rough pictorial guide to the 
way your design will affect your choice of statistics. It should be stressed that this flowchart 
represents a general overview of the issues we have covered in the preceding chapters and 
should be used as such. Whenever you are uncertain as to which tests your data legitimately 
allow you to use, we recommend that you use the flowchart in conjunction with the advice 
given previously.

SPSS: Statistics Coach

Another useful feature of SPSS is the Statistics Coach. You can use the Statistics Coach (in place of the 
decision chart on page 162) to find out which sorts of analysis you should be doing on your data. You 
start the Statistics Coach through the Help menu:

When you select the Statistics Coach it will open a new web browser. Once the Statistics Coach starts, 
you will be presented with a screen that asks you what you want to do. You are given a number of 
options to choose from, such as Summarize, describe, or present data, and Compare groups for 
significant differences.



Statistics without maths for psychology164

On the left-hand side of the screen you will be presented with the contents of the Statistics Coach. 
You can navigate through the coach by topic if you wish, or you can simply click on the option in the 
right-hand pane. Towards the top right-hand part of the screen are buttons to navigate your way through 
the Statistics Coach. Be careful with these buttons, as they can throw you out of the sequence of 
questions you are answering to find out which analysis you need to carry out. To query the coach, you 
simply click on one of the options in the right-hand pane. As an example, we have selected the Compare 
groups for significant differences option.

You should then answer the relevant questions presented on the screens. You do this simply by clicking 
on the relevant option in the right-hand pane and this will take you to the next question.
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There will be a series of such screens for each type of analysis that you might want to carry out. Keep 
answering the questions presented to you.
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Once you have answered the final question for a particular test, the coach will present a screen which 
tells you which test you need and how to run the test. It will also tell you whether there are any particular 
assumptions underlying the use of the test, such as having normally distributed data.
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Summary

In this chapter we have gone further into the 
realms of inferential statistics and have laid the 
final foundations for you to tackle the most 
frequently used inferential statistical techniques in 
psychology today. You have learnt the following:

• The logic behind hypothesis testing and 
statistical significance.

• The null hypothesis represents no effect and 
as such represents the converse of the 
experimental hypothesis.

• How we can use probability distributions to work 
out the probability that the effects in our 
research are due to sampling error if the null 
hypothesis were true.

• Although hypothesis testing is the major 
research method in psychology there is growing 
concern over its inability to establish meaningful 
conclusions from our data.

• As a result of this we have suggested several ways 
of supplementing the results of your hypothesis 
testing with more meaningful statistics, for 
example effects sizes and confidence intervals.

• In hypothesis testing there are two general sorts of 
errors (Type I and Type II errors) that you could make 
when drawing conclusions from your analyses:

– Type I errors are when you reject the null 
hypothesis when it is, in fact, true. 

– Type II errors are when you fail to reject the 
null hypothesis when it is false.

• What it means to make directional (one-tailed) 
and non-directional (two-tailed) predictions and 
how these are related to probability distributions.

– Two-tailed predictions are those where we 
predict a difference between two conditions 
(or a relationship between two variables) but 
do not specify the direction of the difference 
(or relationship). 

– One-tailed predictions are those where we 
specify the direction of a predicted difference 
(or relationship).

We hope that by this stage you have a good 
conceptual understanding of descriptive and 
inferential statistical approaches to analysing your 
data. In the remaining chapters, with the 
exception of Chapter 8, we will describe specific 
statistical tests in much more detail. However, you 
should always bear in mind when reading these 
chapters that these tests are based upon the 
concepts we have introduced to you in these 
opening chapters.

SPSS exercises

Exercise 1

Professor Yob is interested in crowd violence during football matches. She thinks that crowd violence 
is the result of uncomfortable seating in stadia. She therefore modifies two different stadia in England. 
In one stadium she puts in seating that is tightly packed and generally uncomfortable. In the other 
stadium she installs seating that is very comfortable, with lots of leg room and plenty of space between 
adjacent seats. She organises it so that one football club plays half of its games at one stadium and half 
of its games at the other stadium. She follows a group of 12 yobs who support the club and records 

Discover the website at www.pearsoned.co.uk/dancey where you can test your knowledge with multiple 
choice questions and activities, discover more about topics using the links to relevant websites, and 
explore the interactive flowchart designed to help you find the right method of analysis.

http://www.pearsoned.co.uk/dancey
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the number of times each one gets arrested or thrown out of each stadium. She predicts that there will 
be more arrests and ejections from the stadium with uncomfortable seating and obtains the data shown 
in Table 5.2.

 1. Is this a between-participants or a within-participants design?
 2. What sort of variable has Professor Yob measured: discrete or continuous?

(a) What is the IV?
(b) What is the DV?

 3. Is the prediction one-tailed or two-tailed?
 4. What is the null hypothesis?
 5. Input the data into SPSS and generate the following for each condition:

• error bar charts
• the mean
• the standard deviation
• the standard error
• 95% confidence intervals.

 6. Convert the first score from each condition into a z-score.

Exercise 2

Dr Pedantic has a passion for language and his particular dislike is the use of split infinitives (e.g. ‘to boldly 
go where no man has gone before’ contains a split infinitive, whereas ‘to go boldly where no man has gone 
before’ does not). He blames the popularity of Star Trek in the 1970s for the proliferation of split infinitives 
in journals reporting research. He therefore selects 12 researchers in psychology who have published 
research in journals before and after the Star Trek series was first televised. He goes through the last 20 
publications of each researcher before Star Trek was televised and the first 20 publications after Star Trek 
was televised and counts the number of split infinitives used. He predicts that the number of split infinitives 
will be greatest in the journals published after Star Trek was televised and obtains the data shown in Table 5.3.

Yob Uncomfortable seating Comfortable seating

1 8 3

2 5 2

3 4 4

4 6 6

5 4 2

6 8 1

7 9 6

8 10 3

9 7 4

10 8 1

11 6 4

12 7 3

Table 5.2 Number of arrests for each yob at the comfortable and uncomfortable stadia
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 1. Is this a between-participants or a within-participants design?
 2. What sort of variable has Dr Pedantic measured: categorical, discrete or continuous?

(a) What is the IV?
(b) What is the DV?

 3. Is the prediction one-tailed or two-tailed?
 4. What is the null hypothesis?
 5. Input the data into SPSS and generate the following for each condition:

• error bar charts
• the mean
• the standard deviation
• the standard error
• 95% confidence intervals.

 6. Convert the first score from each condition into a z-score.

Researcher Before Star Trek After Star Trek

1 2 2

2 3 5

3 1 6

4 0 2

5 1 1

6 2 2

7 1 3

8 0 1

9 3 2

10 0 3

11 1 4

12 1 2

Table 5.3 Number of split infinitives used by researchers before and after the Star Trek series was originally shown

 1. A Type II error occurs when:

(a) The null hypothesis is not rejected when it should be
(b) The null hypothesis is rejected when it should be
(c) The null hypothesis is rejected when it should not have been
(d) The null hypothesis is not rejected when it should not have been

Multiple choice questions
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 2. What is the basis or logic of inferential statistical tests?

(a) To work out the probability of obtaining an effect due to sampling error when the null hypothesis 
is true

(b) To work out the probability of obtaining an effect due to sampling error when the null hypothesis 
is false

(c) To work out the probability of making a Type II error
(d) All of the above

 3. If you obtain a one-tailed p-value of 0.02, the equivalent two-tailed p-value is:

(a) 0.01
(b) 0.04
(c) 0.02
(d) 0.4

 4. If you predict that two variables A and B will be related, what is the null hypothesis?

(a) That there is no relationship between A and B
(b) That A will be greater than B
(c) That there is no difference between A and B
(d) None of the above

 5. The power of an experiment is:

(a) α

(b) The ability of the experiment to reject the null hypothesis if it is, in fact, false
(c) The sensitivity of participants to your experimental manipulation
(d) All of the above

 6. When we predict that condition A will be greater than condition B, we have made:

(a) A one-tailed prediction
(b) A two-tailed prediction
(c) A uni-directional prediction
(d) Both (a) and (c) above

 7. The probability that an effect has arisen due to sampling error given that the null hypothesis is true is 
denoted as:

(a) Negligible
(b) β
(c) α

(d) None of the above

 8. If you obtain a two-tailed p-value of 0.02, the equivalent one-tailed p-value would be:

(a) 0.01
(b) 0.04
(c) 0.02
(d) 0.4
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 9. If we predict that there will be a difference between condition A and condition B, we have made:

(a) A one-tailed prediction
(b) A two-tailed prediction
(c) A null prediction
(d) Both (b) and (c) above

 10. If you obtain a p-value of 4%, what does this mean?

(a) The probability that the null hypothesis is true is 4%
(b) The probability that the null hypothesis is false is 4%
(c) The probability of obtaining the effect you have due to sampling error if the null hypothesis were 

true is 4%
(d) All of the above

 11. If you predict that there will be a difference between condition A and condition B, what is the null 
hypothesis?

(a) That condition A will be greater than condition B
(b) That condition B will be greater than condition A
(c) That condition A will be related to condition B
(d) That there will be no difference between conditions A and B

 12. If we reject the null hypothesis when it is, in fact, true then we have:

(a) Made a Type I error
(b) Made a Type II error
(c) Made scientific progress
(d) Both (b) and (c) above

 13. Which of the following are the assumptions underlying the use of parametric tests?

(a) The data should be normally distributed
(b) The samples being tested should have approximately equal variances
(c) You should have no extreme scores
(d) All of the above

 14. A Type II error means:

(a) We have rejected the null hypothesis when it is, in fact, true
(b) We have accepted the experimental hypothesis when it is false
(c) We have accepted the null hypothesis when it is, in fact, false
(d) None of the above

 15. A researcher has conducted a study on reaction times with 20 participants in each of two conditions. 
She finds that the variance for the first condition is 2 seconds and for the second condition is  
14  seconds. Which of the following statements is true?

(a) She should not use parametric tests because she has failed to meet the assumption of homogeneity 
of variance

(b) She has completely met all of the assumptions underlying the use of parametric tests
(c) She has failed to meet the assumption of homogeneity of variance but could use parametric tests 

because she has equal sample sizes
(d) None of the above
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 16. How do we denote power?

(a) α

(b) β
(c) 1 - α

(d) 1 - β

 17. Why do we usually set our criterion for significance at 0.05?

(a) This is the traditional level used by most psychologists
(b) This represents a good balance between making Type I and Type II errors
(c) It is easier to get significant results with this α
(d) Both (a) and (b) above

 18. When we convert our data into a score from a probability distribution, what do we call the value we 
obtain?

(a) Significant
(b) Not significant
(c) The test statistic
(d) The power of the study

 19. Imagine we conduct two studies. In study A we have 1000 participants and obtain a p-value of 0.01, 
whereas in study B we have only 20 participants and a p-value of 0.05. In which of these two studies 
is there the larger effect?

(a) Study A
(b) Study B
(c) The effect is the same in each study
(d) We cannot answer this question from the information we have been given

 20. If you find in a study that your p-value is 0.05, what is the probability of the alternative hypothesis 
being true?

(a) 0.05
(b) 1 minus 0.05
(c) We cannot work out the probability of the alternative hypothesis being true
(d) None of the above
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CHAPTER OVERVIEW

In the first five chapters we have given you the basic building blocks that you will need to understand 

the statistical analyses presented in the remainder of the book. It is important that you understand 

all the concepts presented in those chapters, and you can get a good measure of your understanding 

by trying the activities and multiple choice questions presented throughout the text and at the end 

of each chapter. If you find that there are certain things that you do not understand, it is very much 

worth your while going back to the relevant chapter and making sure that you have grasped each 

concept fully. Once you feel confident that you have mastered these concepts, you will be ready to 

tackle the more demanding statistical analyses presented from now on. Having a thorough 

understanding of these earlier concepts will smooth the way through the remainder of the book. In 

the first five chapters, you were introduced to the idea of looking at relationships between variables: 

for example, the relationship between hours spent studying and performance in examinations. 

Psychologists often wish to know whether there is a significant relationship or association between 

two variables. This is the topic of this chapter. You will need to have an understanding of the following:

■ one- and two-tailed hypotheses (Chapter 5)

■ statistical significance (Chapter 5)

■ confidence intervals (Chapter 4).

In this chapter we will discuss ways in which we can analyse relationships or associations between 

variables. In the previous chapter we talked about the relationship between time spent studying and 

exam performance. The way to find out whether such a relationship exists is to take a number of 

students and record how many hours per unit of time (e.g. per week) they spend studying, and then 

later take a measure of their performance in the examinations. We would then have two sets of data 

(or two variables). Correlational analysis gives us a measure of the relationship between them. In the 

previous chapter we suggested that we are able to calculate a measure of the strength of a relation-

ship: correlational analysis gives such a measure.

Here we will discuss the following:

■ the analysis and reporting of studies using correlational analysis

■ r – a natural effect size

■ confidence limits around r.

Correlational analysis: 

Pearson’s r 6
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 6.1 Bivariate correlations

When we are considering the relationship between two variables, this is called bivariate 
correlation. If the two variables are associated, they are said to be co-related (correlated). This 
means they co-vary; as the scores on one variable change, scores on the other variable change 
in a predictable way. In other words, the two variables are not independent.

 6.1.1 Drawing conclusions from correlational analyses

A correlational relationship cannot automatically be regarded as implying causation. Recall that 
in Chapter 1 we suggested that you cannot imply causation from correlations. That is, if a 
significant association exists between the two variables, this does not mean that x causes y or, 
alternatively, that y causes x. For instance, consider the following. It has been shown that there 
is a significant positive relationship between the salaries of Presbyterian ministers in 
Massachusetts and the price of rum in Havana. Now it is clearly inappropriate in this case to 
argue that one variable causes the other. Indeed, as Huff (1973), who supplied this example, 
observed, it is not necessary to infer causation because the more obvious explanation is that 
both figures are growing because of the influence of a third factor – the worldwide rise in the 
price level of practically everything!

Statistical analysis can show us whether two variables are correlated, but the analysis itself 
cannot tell us the reasons why they are correlated – we have to do this work ourselves! Let’s 
assume that two variables, x and y, are correlated. This could be because:

• the variation in scores on y have been caused by the variation in scores on x (i.e. x has  
caused y)

• the variation in scores on x have been caused by the variation in scores on y (i.e. y has  
caused x)

• the correlation between x and y can be explained by the influence of a third variable, z (or 
even by several variables)

• the correlation between them is purely chance.

As an example of the last, on one occasion we asked our students to perform a correlational 
analysis on several variables. When doing this on the computer, it is very easy mistakenly to 
include variables that are not relevant. One of our students included ‘participant number’ with 
the other variables, in error of course. She then showed us that ‘participant number’ had a high 
positive correlation with self-esteem, one of the other variables. Now there was no real relation-
ship between these variables. It is as well, therefore, always to bear in mind the possibility that 
the relationship revealed by a correlational analysis may be spurious. Francis Galton (1822–
1911) was a cousin of Charles Darwin. Although Galton invented correlation, Karl Pearson 
(1857–1936) developed it, discovering spurious correlations (a statistical relationship only – not 
due to a real relationship between the two variables, as just explained). He found many instances 
of spurious correlations. It is up to the researcher to determine whether statistically significant 
correlations are meaningful and important (rather than just statistically significant) – and to 
rule out chance factors.

The exploration of relationships between variables may include the following steps:

1. Inspection of scattergrams (see below).
2. A statistical test called Pearson’s r, which shows us the magnitude and degree of the relation-

ship, and the likelihood of such a relationship occurring by sampling error, given the truth 
of the null hypothesis.

3. Confidence limits around the test statistic r, where appropriate.
4. Interpretation of the results.
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 6.1.2 Purpose of correlational analysis

The purpose, then, of performing a correlational analysis is to discover whether there is a 
meaningful relationship between variables, which is unlikely to have occurred by sampling 
error (assuming the null hypothesis to be true), and unlikely to be spurious. The null hypoth-
esis is that there is no real relationship between the two variables. This is not the only informa-
tion, however, that a correlational analysis provides. It also enables us to determine the 
following:

• the direction of the relationship – whether it is positive, negative or zero

• the strength or magnitude of the relationship between the two variables – the test statistic, 
called the correlation coefficient, varies from 0 (no relationship between the variables) to 1 
(perfect relationship between the variables).

These two points are discussed in greater detail below.

 6.1.3 Direction of the relationship

Positive

High scores on one variable (which we call x) tend to be associated with high scores on the 
other variable (which we call y); conversely, low scores on variable x tend to be associated with 
low scores on variable y.

Negative

High scores on one variable are associated with low scores on the other variable.

Zero

Zero relationships are where there is no linear (straight-line) relationship between the two 
variables. (What precisely is meant by the term ‘linear relationship’ will be explained later. For 
now, just assume that no linear relationship means no relationship between the two variables.)

Now think about the direction of the relationships in the examples given above.

Number of hours spent studying and performance in examinations

You would expect that the number of hours spent studying would have a positive relationship 
with examination performance – the more hours a student spends studying, the better the 
performance.

Cigarette smoking in ecstasy users

Fisk, Montgomery and Murphy (2009) found that in a sample of ecstasy users, there was a 
positive correlation between the number of cigarettes smoked and the number of reported 
adverse reactions.

 6.1.4 Perfect positive relationships

We have already said that, in positive relationships, high scores on one variable are associ-
ated with high scores on the other, and vice versa. This can be seen by plotting the scores on 
a graph called a scattergram, or scatterplot. When performing a bivariate correlation, we 
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have two sets of scores. When we plot the scores on a scattergram, we assign one variable 
to the horizontal axis – this is always called x. We assign the other variable to the vertical 
axis – this is always called y. It does not matter which variable we assign to x or which 
 variable to y.

To construct a scattergram, we take each person’s score on x and y, and plot where the two 
meet. Each datapoint consists of two scores (x and y). You were introduced to the construction 
of scattergrams (using SPSS) (in section 3.5) here we go into greater detail.

A perfect positive relationship is depicted in the scattergram in Figure 6.1. A perfect 
relationship is where all the points on the scattergram would fall on a straight line. For 
instance, think of your age plotted against your sister’s age. (Of course, this is an unrealistic 
example. No one would really want to correlate their age with their sister’s age – it is just an 
example.) In the example above, we have assumed that your sister is four years older than 
you. We have allotted your sister’s age to the vertical axis (y) and your age to the horizontal 
axis (x), and for each pair of ages we have put one point on the scattergram. It should be 
immediately obvious that the relationship is positive: as you grow older, so does your sister. 
The relationship must be perfect as well: for every year that you age, your sister ages one year 
as well.

An important point to note is that the above example shows that you cannot draw any 
inferences about cause when performing a correlation. After all, your age increase does not 
cause your sister’s age to increase; neither does her growing older cause you to age!

 6.1.5 Imperfect positive relationships

Imagine that we have a number of students whom we have measured on IQ and percentage 
marks in an exam. We want to see whether there is a relationship between IQ and exam marks. 
This does not mean that we are saying IQ causes students’ exam marks; nor does it mean that 
the exam marks they achieved somehow had an effect on their IQ. Both high (or low) IQ and 
high (or low) exam marks could have been ‘caused’ by all sorts of factors – crammer courses, 
IQ practice tests, motivation, to mention just a few.

We decide to allot IQ to the vertical axis (y) and exam marks to the horizontal axis (x). Each 
student has two scores, an IQ score and an exam mark. However, each student contributes only 
one ‘point’ on the scattergram, as you can see in Figure 6.2.
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You can see from this scattergram that high IQs tend to be associated with high exam scores, 
and low IQ scores tend to be associated with low exam scores. Of course, in this instance the 
correlation is not perfect. But the trend is there, and that is what is important. That is, although 
the dots do not fall on a straight line, this is still a positive linear relationship because they form 
a discernible pattern going from the bottom left-hand corner to the top right-hand corner.
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Figure 6.2 Scattergram of IQ and exam marks

Activity 6.1

Try to think of some bivariate positive relationships. Are your examples likely to be 
perfect relationships? Discuss your examples with others. Do you agree with each 
other on whether your examples are good ones?

 6.1.6 Perfect negative relationships

Again, because this relationship is perfect, the points on the scattergram would fall on a straight 
line. Each time x increases by a certain amount, y decreases by a certain, constant, amount.

Imagine a vending machine, selling coffee. Each drink costs £1.00. Assume that at the begin-
ning of the day, the machine is filled with just ten paper cups. Assuming, of course, that the 
vending machine works as it should (that is, the machine accepts your money, the cup actually 
descends properly, the money stays in, it gives you the right change, etc.) then each time some-
one puts in £1.00, a cup is ejected (and hopefully filled with coffee), and one fewer cup remains. 
This can be seen in Figure 6.3.

As you can see, with a perfect negative linear relationship the dots still fall on a straight line, 
but this time they go from the top left-hand corner down to the bottom right-hand corner.

 6.1.7 Imperfect negative relationships

With an imperfect negative linear relationship the dots do not fall on a straight line, but they 
still form a discernible pattern going from the top left-hand corner down to the bottom right-
hand corner. For example, suppose we had collected data on attendances at cricket matches and 
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the amount of rainfall. The resulting scattergram might look something like Figure  6.4. 
Generally, the trend is for attendance at cricket matches to be lower when rainfall is higher.

 6.1.8 Non-linear relationships

Note that, if a relationship is not statistically significant, it may not be appropriate to infer that 
there is no relationship between the two variables. This is because, as we have said before, a cor-
relational analysis tests to see whether there is a linear relationship. Some relationships are not 
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linear. An example of such a relationship is that between arousal and performance. Although we 
would expect a certain level of arousal to improve sports performance, too much arousal could 
lead to a detriment in performance. Such a relation is described by the Yerkes–Dodson law (Yerkes 
and Dodson, 1908). This law predicts an inverted curvilinear relationship between arousal and 
performance. At low levels of arousal, performance (e.g. athletic performance) will be lower than 
if arousal was a bit higher. There is an ‘optimum’ level of arousal, at which performance will be 
highest. Beyond that, arousal actually decreases performance. This can be represented as shown 
in Figure 6.5.

The same relationship can be represented by the scattergram in Figure 6.6, which shows a 
curvilinear relationship: that is, x increases with y up to a certain extent, and then decreases 
with y. The point we are trying to make is that here there is undoubtedly a relationship between 
x and y, but the correlation coefficient would not be statistically significant because there is 
not a linear (straight-line) relationship. For this reason, you should really always look at a scat-
tergram before you carry out your analysis, to make sure that your variables are not related in 
this way, because, if they are, there is not much point in using the techniques we are describing 
in this chapter.
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Figure 6.5 The inverted-U hypothesis (Yerkes–Dodson law, 1908)
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Figure 6.6 Scattergram illustrating a curvilinear relationship between x and y
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 6.1.9 The strength or magnitude of the relationship

The strength of a linear relationship between the two variables is measured by a statistic called 
the correlation coefficient, also known as r, which varies from 0 to -1, and from 0 to +1. There 
are, in fact, several types of correlational test. The most widely used are Pearson’s r (named 
after Karl Pearson, who devised the test) and Spearman’s rho (Eta2 and Cramer’s V are two we 
mention in passing). The full name of Pearson’s r is Pearson’s product moment correlation; this 
is a parametric test and the one we will be discussing in this chapter. You will remember that, 
in order to use a parametric test, we must meet certain assumptions (see section 5.12). The most 
important assumption is that data are drawn from a normally distributed population. If you 
have large numbers of participants, this assumption is likely to be met. If you have reason to 
believe that this is not the case, you should use the non-parametric equivalent of Pearson’s r, 
which is called Spearman’s rho (see section 16.1).

In Figure 6.1 above, the relationship is represented by +1: plus because the relationship is 
positive, and 1 because the relationship is perfect. In Figure 6.3 above, the relationship is -1: 
minus because the relationship is negative, and 1 because the relationship is perfect.

Remember: +1 = perfect positive relationship
-1 = perfect negative relationship

Figure 6.7 shows you the various strengths of the correlation coefficients.
Figure 6.7 puts over the idea that -1 is just as strong as +1. Just because a relationship is 

negative does not mean that it is less important, or less strong, than a positive one. As we have 
said before (but repetition helps), a positive relationship simply means that high scores on x 
tend to go with high scores on y, and low scores on x tend to go with low scores on y, whereas 
a negative relationship means that high scores on x tend to go with low scores on y.

Activity 6.2

Which is the most sensible conclusion? The correlation between beginning salary and 
current salary is:

(a) Negative
(b) Positive
(c) Zerov
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You can see that we have assigned verbal labels to the numbers – these are only guides. 
A correlation of 0.9 is a strong one. Obviously the nearer to 1 (+  or -) a correlation coefficient 
is, the stronger the relationship. The nearer to 0 (meaning no relationship), the weaker the 
correlation. Correlations of 0.4 to 0.6 are moderate. The correlation coefficient measures how 
closely the dots cluster together.

Figure 6.7 Illustration of the strength of positive and negative correlation coefficients
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Activity 6.3

A correlation coefficient of +0.2 is considered:

(a) Zero
(b) Weak
(c) Moderate
(d) Strong

The scattergrams in Figures  6.8 and 6.9 give you some idea of what the correlation 
coefficients mean.

Walsh et al. (2009) used correlational analyses in order to see whether attachment anxiety 
and attachment avoidance were related to mindfulness. Mindfulness is a state of mind whereby 
a person attends to the present (rather than the past or the future). A person who is mindful tries 
to ‘live in the present’ and focus on the immediate experience. This should reduce worry and 
rumination.

The scattergram in Figure 6.8 shows that as attachment anxiety increases, attachment 
avoidance increases. The correlation is weak–moderate.
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The correlation between trait anxiety and mindfulness shows that there is a moderate negative 
association between trait anxiety and mindfulness (see Figure 6.9).

If a correlation is zero, the dots may appear to be random, and there is no discernible pattern. 
Thus there is no relationship between x and y.

Figure 6.8 Scattergram showing the correlation between attachment anxiety and attachment 
avoidance (n = 127, r = +0.363, p 6 0.001)
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Figure 6.9 Scattergram showing the correlation between trait anxiety and mindfulness 
(n = 132, r = -0.542, p 6  0.001)
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Figure 6.10 shows that there is no association between parental nurturance (mother) and 
openness (n = 136; r = 0.080; p = 0.355).

Data correlating (n = 136; r = +0.473; p   6  0.001) scores for parental nurturance (mother) 
and parental nurturance (father) are represented in Figure 6.11. There is a moderately strong 
positive relationship between these two variables.

Figure 6.10 Scattergram showing the correlation between parental nurturance (mother) and 
openness (n = 136, r = +0.080)
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Figure 6.11 Scattergram showing the correlation between mother’s nurturance and father’s 
nurturance (n = 136; r = +0.473)

5.00

4.00

3.00

2.00

1.00

1.00 2.00 3.00 4.00 5.00

Pa
re

n
ta

l n
u

rt
u

ra
n

ce
 (

m
o

th
e

r)

Parental nurturance (father)



CHAPTER 6 Correlational analysis: Pearson’s r 185

There is a moderate negative association between trait anxiety and attentional control and 
(n = 136; r = -0.445; p  6  0.001) (see Figure 6.12).

Activity 6.4

Have a look at the following scattergrams. Consider whether, just by looking at them, 
you can tell:

(a) The direction of the relationship (positive, negative or zero)
(b) The magnitude of the relationship (perfect, strong, weak or zero)

It is sometimes difficult to tell – which is when a test statistic like Pearson’s r comes in handy!
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Figure 6.12 Scattergram showing the correlation between attentional control and trait anxiety 
(n = 136; r = -0.445)
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Think about this. Does going to church stop you getting pregnant?

There are about 118,000 teenage pregnancies a year, and half of all single parents are under 
25. The UK has the highest divorce rate in Europe and the most teenage pregnancies, though 
other countries are coming up fast. The only reason detectable by statistics is connected to 
church-going. Britain’s attendance figures began to drop before other countries, and every-
where as church attendance falls, divorce and single parenthood rise.

(Polly Toynbee, Radio Times, 20–26 March 1993)

Let’s look at a perfect relationship again (Figure 6.13). Imagine that this represents the 
relationship between the scores on two tests, Test 1 and Test 2. The fact that this is a perfect 
correlation means that the relative position of the participants is exactly the same for each test. 
In other words, if Sharmini has the top score on Test 1 (in the above example it is 23) she will 
also have scored the top score on Test 2 (130). Conversely, the participant who has the lowest 
score on Test 1 will also have the lowest score on Test 2.

Now, as we said previously, perfect relationships are rare, but the same reasoning applies 
with imperfect relationships. That is, in order to calculate a correlation coefficient it is necessary 
to relate the relative position of each participant on one variable to their relative position on the 
second variable.
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Figure 6.13 Perfect linear relationship
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Example: temperature and ice-cream sales

Let’s imagine that we have carried out a correlational analysis on a number of ice-cream cones bought 
from a van outside your college, and temperature. We ask the vendor, called Sellalot, how many ice-
cream cones have been sold each day. We take the measurements over 20 days. Now we need to know 
whether the number of ice-cream cones sold varies along with the temperature. We would expect that, 
according to previous literature, ice-cream sales would increase as temperature rises. This is a one-tailed 
hypothesis. The data are given in Table 6.1.

Now is it quite easy to see how to plot scattergrams by hand, although when you have many scores 
this could be tedious. Naturally, SPSS performs this task better than we can! (Instructions for how to 
obtain scattergrams were given to you in section 3.5.)

Ice-cream cones sold Temperature Ice-cream cones sold Temperature

1000 26 550 14

950 22 600 19

870 19 700 21

890 20 750 22

886 19 800 22

900 21 850 24

560 17 950 22

550 16 1050 26

400 12 1000 26

500 13 1000 26

Table 6.1 Data for the number of ice-cream comes sold on days with different temperatures
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From the scattergram in Figure 6.14 we can see that temperature and number of ice-cream cones 
sold are related. It is obviously not a perfect correlation, but just by looking at the data we can see that 
it is positive.

Figure 6.14 Scatterplot of the ice-cream cone data

1100

1000

900

800

700

600

500

400

300
10 12 14 16 18 20 22 24 26 28

Temperature

Ic
e

-c
re

a
m

 s
a

le
s

SPSS: bivariate correlations – Pearson’s r

Now we want to know the value of the correlation coefficient and the associated probability, so again we 
turn to SPSS. Our data have already been entered into SPSS, so now we select Analyze, Correlate, Bivariate:



CHAPTER 6 Correlational analysis: Pearson’s r 189

This brings you to the following dialogue box:

Move both variables from the left-hand side to the right-hand side. Make sure the Pearson and One-
tailed options are selected. Then click on OK. This will obtain your results.

Let’s look at the output from SPSS. The important results for your write-ups are:

• the correlation coefficient r; this shows us how strongly our variables relate to each other, and in 
what direction

• the associated probability level, letting us know the likelihood of our correlation coefficient arising 
by sampling error, assuming the null hypothesis to be true.

Results are given in the form of a matrix. A matrix is simply a set of numbers arranged in rows and 
columns. The correlation matrix is an example of a square symmetric matrix. You should find that each 
variable correlates perfectly with itself (otherwise something is amiss!). You will also note that results 
are given twice: each half of the matrix is a mirror image of itself. This means you have to look at one 
half (of the diagonal) only. SPSS also lets us know the number of pairs for each variable. You can see 
from the output below that the point where our variable ICECREAM meets our variable TEMP gives us 
the information we need. The first line gives us the correlation coefficient – it is usual for us to give this 
correct to two decimal places. The achieved significance level is given on the second line, and the third 
line confirms how many pairs we have in the analysis. Remember that, when SPSS gives a row of zeros, 
change the last zero to a 1 and use the 6  sign (i.e. p 6 0.001, n = 20). Note that our correlation coef-
ficient is positive – as temperature rises, so does the sale of ice-creams.

Correlations

.893**

.000

20

1

20

.

Ice cream

1

20

.

.893**

**. Correlation is significant at the 0.01 level (2-tailed).

.000

20

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

Ice cream

Temperature

This is the achieved significance level. Remember that, when SPSS gives a row

of zeros, change the last one to a ‘1’ and use the , sign, i.e. p , .001

The correlation coefficient (r) is given in the cell where

‘ice cream’ meets ‘temperature’, i.e. r 5 10.89

Temperature
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These results tell us that the sales of ice-cream cones are positively and strongly related to the 
temperature. The textual part of our analysis might therefore read as follows:

The relationship between sales of ice-cream and outside temperature was found to be positively and 
strongly related (r = +0.89, p 6 0.001). Thus as temperature rises, so does the sale of ice-cream.

This is all we can say at the moment, but as the chapter progresses you will see that we can add to this.

Activity 6.5

Look at the following output from SPSS:

Which association is the strongest?

(a) Attachment avoidance and attachment anxiety
(b) Mindfulness and trait anxiety
(c) Mindfulness and attachment anxiety

Correlations

1

127

.353

.000

127

–.317

.000

127

.310

.000

127

.211

.019

123

.353

.000

127

1

127

–.247

.005

127

.223

.012

127

.129

.155

123

–.317

.000

127

–.247

.005

127

1

127

–.328

.000

127

–.083

.359

123

.310
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127
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.012

127

–.328
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127

1

127

.004

.962
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–.083
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.004
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123

1

123

Attachment

anxiety

Attachment

avoidance Mindfulness Trait Anxiety age

Attachment anxiety

Attachment

avoidance

Mindfulness

Trait Anxiety

age

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation
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N

 6.1.10 Variance explanation of the correlation coefficient

The correlation coefficient (r) is a ratio between the covariance (variance shared by the two 
variables) and a measure of the separate variances.

By now you should have a good idea of what a correlation coefficient means. For instance, 
if we tell you that two variables are associated at 0.9, you could probably draw the scattergram 
pretty well. Similarly, if we tell you to draw a scattergram representing a 0.1 association, you 
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could probably do that fairly accurately as well. But there is another way of visualising what these 
coefficients mean, a way that will be very useful to you later on, when we go on to regression 
analysis. Let’s take an example of number of hours of sunshine, and temperature (this example 
originated from Alt, 1990). These two variables are positively associated: the more hours of 
sunshine, the higher the temperature. When two variables are correlated, we say that they ‘share’ 
variance. For instance, the following circles represent sunshine hours and temperature.

Sunshine Temperature

Correlation (r) Correlation squared (r 2) Variance accounted for

0.0 0.0 0.00 (0%)

0.1 0.12 0.01 (1%)

0.2 0.22 0.04 (4%)

0.3 0.32 0.09 (9%)

0.4 0.42 0.16 (16%)

0.5 0.52 0.25 (25%)

0.6 0.62 0.36 (36%)

0.7 0.72 0.49 (49%)

0.8 0.82 0.64 (64%)

0.9 0.92 0.81 (81%)

1.0 1.02 1.00 (100%)

Table 6.2 Table demonstrating the relationship between correlations and squared correlations

We have drawn these circles, representing sunshine and temperature, as if they are independent, 
but they are not independent. They share a lot of variance. How much variance do they share? 
The test statistic, a correlation coefficient, will give us the answer. We have already said that 
the correlation coefficient goes from 0 to +1, and 0 to -1. By squaring the correlation coef-
ficient, you know how much variance, in percentage terms, the two variables share. Look at 
Table 6.2.

Remember, negative correlations, when squared, give a positive answer. So -0.4 squared 
(-0.4 *   -0.4) = 0.16. So 16% of the variance has been accounted for by a correlation of -0.4, 
just the same as if the correlation is +0.4. If you have a correlation of 0.9, you have accounted 
for (explained) 81% of the variance. A Venn diagram will make this clearer. If two variables 
were perfectly correlated, they would not be independent at all. The two circles for x and y 
would lie on top of each other, just as if you had two coins on top of each other:
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The two variables would correlate +1.00, and all the variability in the scores of one variable 
could be accounted for by the variability in the scores of the other variable. Take sunshine 
hours and temperature, which we can assume to be correlated 0.9 (81%). The two circles look 
like this:

81%9.5% 9.5%

Remember, if 81% is shared variance, then 19% is not shared: it is what is known as unique 
variance -9.5% is unique to sunshine, and 9.5% is unique to temperature. If the shared variance 
is significantly greater than the unique variances, r will be high. If the unique variances are 
significantly greater than the shared variance, r will be low.

r =
a measure of shared variance

a measure of the separate variances

The shaded part (81%) is the variance they share. In other words, 81% of the variation in 
number of hours of sunshine can be explained by the variation in temperature. Conversely, 81% 
of the variation in temperature can be accounted for by reference to the variation in number of 
hours of sunshine -19% is ‘unexplained’: that is, the variation in scores must be due to other 
factors as well.

Activity 6.6

Look at the scattergram below:

Which is the most sensible conclusion? The two variables show a:

(a) Moderate positive correlation
(b) Moderate negative correlation
(c) Strong negative correlation
(d) Zero correlation
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Take the case of number of inches of rainfall and attendance at cricket matches. Here we 
would expect a negative relationship: the more rain, the fewer people attending. Assume that 
the relationship is -0.3. This means that 9% (-0.3 * -0.3 = +0.09) of the variance has been 
explained (see Figure 6.15).

As another example (see Figure 6.16), assume that we measure and weigh a class of 
schoolchildren, and that height and weight correlate by 0.7. How much of the variance has 
been accounted for? We multiply 0.7 by 0.7 = 0.49 (49%): this means that nearly half of the 
variation in the scores of height can be explained by the variation in weight. Conversely, 
nearly half of the variation in weight can be accounted for by reference to the variation in 
height.

This means, of course, that 51% is unexplained: that is, 51% is explainable by reference to 
other factors, perhaps age, genetics and environmental factors. A correlation coefficient can 
always be squared to give you the ‘variance explained’ (r squared). Similarly, if you know r2, 
you can use the square-root button on your calculator to give you the correlation coefficient, 
r (although this will not tell you the direction of the relationship). You should be able to see 
by this that a correlation of 0.4 is not twice as strong as a correlation of 0.2. A correlation of 
0.4 means that 16% of the variance has been explained, whereas 0.2 means that only 4% has 
been explained. So a correlation of 0.4 is, in fact, four times as strong as 0.2. A correlation 

Figure 6.15 Diagram illustrating the amount of shared variance between two variables
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Figure 6.16 A further illustration of shared variance
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There is a (perhaps fictitious!) correlation between amount of ice-cream eaten and feelings 
of great happiness (+0.85). How much variation in the happiness scores can be explained by 
the amount of ice-cream eaten? How much variance is left unexplained?

 6.1.11 Statistical significance and psychological importance

In the past, some people were more concerned about ‘significance’ than about the size of the 
correlation or the amount of variance explained. Sometimes people used to say that they had a 
highly significant correlation: they remembered the probability value (for instance, 0.005) but 
forgot the size of the correlation. The probability value means very little without reporting the 
r value. The correlation coefficient tells you how well the variables are related, and the 
probability value is the probability of that value occurring by sampling error.

So when you report your findings, report the correlation coefficient and think about whether 
r is meaningful in your particular study, as well as the probability value. Do not use the 
probability value on its own. Remember, statistical significance does not necessarily equal 
psychological significance (see Chapters 5 and 8 for further information).

Activity 6.7

When you are assessing the strength and significance of a correlation coefficient, it 
is important to look at:

(a) The significance level
(b) The value of the correlation coefficient
(c) Both (a) and (b)
(d) Neither (a) nor (b)

Example: ice-creams and temperature revisited

Now you know about variance explained, we can adjust the textual part of our results to include it. The 
textual part of our analysis might now read as follows:

The sale of ice-cream cones was strongly associated with temperature; as temperature rises, so does 
the sale of ice-creams. The r of 0.89 showed that 79% of the variation in ice-cream sales was 
accounted for by the variation in the temperature. The associated probability level of p 6 .001 
showed that such a result is highly unlikely to have arisen by sampling error alone.1

1 This really means ‘by sampling error, assuming the null hypothesis to be true’. Although you probably won’t 
want to say this in your lab reports, you should always bear in mind that this is what the probability value 
means.

coefficient is a good measure of effect size and can always be squared in order to see how 
much of the variation in scores on one variable can be explained by reference to the other 
variable.
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Activity 6.8

Look at the following scattergram:

This shows that the variables show a:

(a) Strong negative association
(b) Moderate positive association
(c) Moderate negative association
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Example: cognitive function in people with chronic illness

A study was carried out in which correlations between cognitive measures and illness variables were 
obtained. The measures were: IQ (both verbal and performance); a Stroop2 score, duration of illness in 
years and a depression measure. The hypotheses were two-tailed. Seventy participants provided data, 
and the results were as shown in the table.

The first row gives the r values, the second line gives the associated probability values, and the third 
gives the numbers of participants in each condition.

The textual part of your report might be written as follows:

As expected, verbal and performance IQ were strongly and positively related and a moderate correla-
tion was found between duration of illness and depression. More interesting, however, was the find-
ing that depression was related to verbal IQ (r = -0.33, p = 0.006) but not performance IQ 
(r = -0.09, p = 0.44). Depression was also related to the Stroop measure – the more depressed the 
participant was, the more incongruent their scores (r = 0.27, p = 0.022).

You can also obtain a matrix of scattergrams through SPSS (see Figure 6.17). At a first glance, this 
looks confusing. However, it is interpreted in the same way as the correlational table above.

You really need to look at one half of the matrix only, as one half is a mirror image of the other. The 
scattergram for any two variables is shown at the square where they meet. So follow an imaginary verti-
cal line upwards from ‘duration of illness’ and follow an imaginary horizontal line from ‘verbal IQ’ and 
this will result in the scattergram which plots ‘duration of illness’ against ‘verbal IQ’.

2 The traditional Stroop test involves colour words (red, blue, yellow, green) being written in either a congruent 
colour (e.g. the word ‘red’ is printed in red ink) or an incongruent colour (e.g. the word ‘red’ is printed in blue 
ink). Participants typically take longer to name colours in the incongruent condition. Taking the difference in 
the reaction times between the two conditions gives the Stroop score reported in this study.
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Figure 6.17 
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SPSS: obtaining a scattergram matrix

To obtain matrices, open up your data file, then select Graphs, Scatter:

Next select Matrix, Define:

Move the variables that you wish to be included from the left-hand side of the dialogue box to the right 
by using the button. Click OK.
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Press OK: this will obtain the matrices.

Example: IQ and test scores

If you run a correlational analysis on several variables, you will obtain output such as that below, which 
is in the form of a correlational matrix:

Correlations

1.000

.

24

.5741

.002

24

.0641

.383

24

.0143

.474

24

–.1428

.253

24

.5741

.002

24

1.000

.

24

.0598

.391

24

.0281

.448

24

–.2502

.119

24

.0641

.383

24

.0598

.391

24

1.000

.

24

.9952

.000

24

–.2153

.156

24

.0143

.474

24

.0281

.448

24

.9952

.000

24

1.000

.

24

–.2188

.156

24

.1428

.253

24

.2502

.119

24

–.2153

.156

24

.2188

.152

24

1.000

.

24

iq mathemat score1 score2 score3

IQ

mathemat

score1

score2

score3

Pearson Correlation

Sig. (1-tailed)

N

Pearson Correlation

Sig. (1-tailed)

N

Pearson Correlation

Sig. (1-tailed)

N

Pearson Correlation

Sig. (1-tailed)

N

Pearson Correlation

Sig. (1-tailed)

N
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 6.1.12 Confidence intervals around r

Rosnow and Rosenthal (1996) give the procedure for constructing 95% confidence limits (two-
tailed p = 0.05) around r. The following is based on their text:

1. Consult a table to transform r to Fisher’s Zr (see Appendix 2).
2. Multiply 1/U(n - 3) by 1.96.
3. Find the lower limit of the confidence interval by subtracting the result in 2 above from the 

figure in 1.
4. Find the upper limit of the confidence interval by adding the result of 2 above to the figure in 1.
5. Consult a similar table to transform the lower and upper Zr values back to r values.

So far we have been talking about the correlation between two variables, without taking any 
other variables into account. This sort of correlation is called a zero-order correlation.

Although we have correlated five variables with each other, we have only ten correlations to look at. 
This is because we ignore the correlations along the diagonals: these are r = 1.00, as each variable 
correlates perfectly with itself. Also, each half is a mirror image of the other, so we need only look at 
one half. We have emboldened the top half so that it is easier for you to see.

The output shows r and the exact probability of that particular correlation coefficient occurring by 
sampling error, assuming the null hypothesis to be true. It also gives the number of pairs of observations.

In this example, the mathematics score has a positive association with IQ (r = 0.57). This is a moderate 
correlation, but the association has an exact probability of p = 0.002: that is, there is only a small chance 
(0.2%) that this correlation has arisen by sampling error. The number of observations was 24.

If you look along the top row of the matrix, you will see that score1, score2 and score3 have rs that 
are all approximately zero. This means that there is no linear relationship between the variables, and 
this is confirmed by the probability values.

If you now look at the point at which score1 meets score2, you will see that there is a very strong, 
almost perfect relationship between them, showing that score1 and score2 must be measuring a very 
similar ability (r = 0.9952). The associated probability level (p 6 0.001) shows that this result is unlikely 
to have arisen by sampling error, assuming the null hypothesis to be true. SPSS calculates the p-values 
to a number of decimal places (the user can change the settings so that the values are given to four 
decimal places as above (r = 0.9952) or to three decimal places (e.g. r = 0.995) or to any number). This 
is the same with p-values. (Remember that, when SPSS gives p as p 6 0.000, you need to change the 
last zero to 1, and use the 6  sign as follows: p 6 0.001)

Example

Let’s try it for a correlation coefficient of +0.29 for an analysis with 133 people: that is, r = 0.29, n = 133.

1. We consult the table, which shows an r of 0.29 converts to Zr of 0.299.
2. Multiply 1/U130 by 1.96.
 Thus multiply 1 , 11.40 by 1.96.
 Thus multiply 0.0877 by 1.96 = 0.1719.
3. Subtract 0.1719 from 0.299 = 0.1271 – this is the Zr lower confidence limit.
4. Add 0.1719 to 0.299 = 0.4709 – this is the Zr upper confidence limit.
5. Convert the figures in 3 and 4 to r (from Zr). From tables,

 Zr = 0.1271 S r = 0.126
 Zr = 0.4709 S r = 0.440

Although the sample correlation coefficient is +0.29, we are 95% confident that the true population 
correlation coefficient is somewhere between 0.126 and 0.440.
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 6.2 First- and second-order correlations

Take our example of height and weight being highly correlated in children. A moment’s thought 
will show you that age is correlated with both of these variables. We could run a correlational 
analysis on these three variables, to confirm this.

We have emboldened the three correlation coefficients. You can see that all three variables are 
strongly related to each other.

If we want to discover the association between height and weight without the effect of age, 
we would have to find a sample of children who were all born on exactly the same day. If this 
was not possible, we could get rid of the age effect by ‘partialling out’ (removing the influence 
of) age, by statistical means. This is also known as ‘holding age constant’. We correlate height 
and weight while getting rid of the effects of age; r would then be showing us the correlation 
between height and weight when the influence of age is removed.

A Scotsman, G. Udny Yule (1871–1951), developed partial correlations. Conceptually, par-
tial correlations can be explained by looking at overlapping circles of variance. In the following 
diagram you can see that the relationship between height and weight (with age not partialled 
out) is a + b.

This relates to the full correlation between height and weight. However, part of the relationship 
between height and weight is due to age – the part represented by b alone. If the influence of 
age were removed (the area b), the correlation between height and weight would be reduced, as 
it would then be represented by a alone. This is a partial correlation – a correlation between two 
variables, with one (in this case) partialled out.3

3 This is a conceptual explanation, rather than a mathematical one. Thus mathematical accuracy is lost in the 
interests of conceptual understanding. The actual formula for calculating partial correlations is given by 
r2
= a  /(a + height) or a  /(a + weight).

a

b
c

height weight

age

** Correlation is significant at the 0.01 level (1-tailed).

Correlations

HEIGHT WEIGHT AGE

1.000

.

10

.834

.001

10

.970

.000

10

.834

.001

10

1.000

.

10

.802

.003

10

.970

.000

10

.802

.003

10

1.000

.

10

HEIGHT

WEIGHT

AGE

Pearson Correlation

Sig. (1-tailed)

N

Pearson Correlation

Sig. (1-tailed)

N

Pearson Correlation

Sig. (1-tailed)

N
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SPSS: partial correlations – Pearson’s r

It is easy in SPSS to partial out a variable. The instructions are as follows.
After entering your data, choose Analyze, Correlate, Partial:

The following dialogue box is obtained:

We move height and weight to the right-hand Variables box, and move the variable that we wish to 
partial out (in this case, age) to the Controlling for box.

It would also be useful for us to know the value of the correlation coefficient for age and weight 
without controlling for age, so that we can compare the two. This is achieved by selecting Options, which 
gives you the dialogue box below. Check Zero-order correlations and press Continue.
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This brings you back to the Partial Correlations dialogue box, where you can click OK.
When partial correlations are obtained, the degrees of freedom (normally N-2) are given instead of 

N. As there are ten children in the study, the degrees of freedom for the correlation between height 
and weight would be 8. However, note that for height and weight with age partialled out, the degrees 
of freedom are reduced by 1.

There are two parts to the table. The first part gives the relationship between the variables, without 
partialling out any other variable. The second part gives the correlation between height and weight 
with age partialled out.

You can see that the correlation between height and weight has been reduced from 0.94 to 0.55 
(correct to two decimal places). Thus we can see that, in this small sample, the association between 
height and weight was partially due to age. If the correlation of 0.94 had not been reduced when we 
partialled out age, this would have suggested that the association between height and weight is not 
affected by age.

In this case, we have partialled out one variable. This is called a first-order correlation. If we partialled 
out the effects of two variables, we would be performing a second-order correlation, and so on.

How does the program (the formula) do this? Basically, it correlates age with height. Then it correlates 
age with weight. Then these figures are ‘removed’ from the height–weight correlation. This removes 
the influence of age from the correlation coefficient.
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Activity 6.9

Look at the following results, taken from a study by Arroll et al. (2012):

(a) What is the zero-order correlation between Dizziness and Depression?
(b) What is the value of the correlation between Dizziness and Depression with Illness 

Intrusiveness partialled out?
(c) What can you conclude from this?

a. Cells contain zero-order (Pearson) correlations.

Correlations

Control Variables Depression Dizziness Illness intrusiveness

1.000

.

0

.522

.000

72

.410

.000

72

1.000

.

0

.339

.001

71

.822

.000

72

1.000

.

0

.002

.000

72

.330

001

71

1.000

.

0

.420

.000

72

.212

.000

72

1.000

.

0

Depression

Dizziness

Depression

Dizziness

Illness intrusiveness

-none-a

total of illness

intrusiveness

Correlation

Significance (2-tailed)

df

Correlation

Significance (2-tailed)

df

Correlation

Significance (2-tailed)

df

Correlation

Significance (2-tailed)

df

Correlation

Significance (2-tailed)

df

Example from the literature

Sexting as an intervention: relationship; satisfaction and motivation 
considerations

Parker et al. (2013) wanted to research the effects of sexting (sending explicitly sexual texts) on 
relationship satisfaction, and the conditions under which sexting occurs in adult romantic 
relationships. Their sample was 86 people, 44 of whom were married or living together and 42 who 
were in a dating relationship. They took various measures (see below) and carried out different 
analyses.

For the purposes of this correlational analysis, however, we reproduce the paragraph below, which 
relates to the correlational analysis (p. 7):

Pearson correlation was used to determine the relation, if any, between age of the participant, 
relationship length, sexting, and sexual motivations. Some significant correlations emerged. Age of 
the participant was negatively correlated with hedonism (r = - .35, p = .03), intimacy 
(r = - .33, p = .05), coping (r = - .35, p = .04), and insecurity (r = - .32, p = .05). Additionally, length 
of the relationship was negatively correlated with sexting (r = - .25, p = .03).
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The authors also state (p. 9):

A few findings from the current investigation were surprising. Age of the participant was found to 
be negatively correlated with hedonism, intimacy, coping, and insecurity. Additionally, the length of 
the relationship was found to be negatively correlated with sexting behaviors. These results may be 
explained in part by the relatively small sample size of the study.

Personal reflection

Dr Karina L. Allen, MPsych (Clinical), PhD
School of Psychology, The University of Western Australia, and Centre for Child 
Health Research, Telethon Institute for Child Health Research, The University of 
Western Australia

ARTICLE: Evaluation of a new measure of mood intolerance, the Tolerance of 
Mood States Scale (TOMS): Psychometric properties and associations with eat-
ing disorder symptoms, in Eating Behaviors (Allen, McLean and Byrne, 2012).

Dr Allen says:

“Mood intolerance (also referred to as distress intolerance) has received a considerable amount of 
attention in the theoretical literature. In the eating disorder field, mood intolerance is cited as a possible 
contributor to eating disorder symptoms and it is targeted in some forms of cognitive-behaviour ther-
apy for eating disorders. However, this theoretical attention has not been matched by empirical 
research: very few studies have tested the hypothesised associations between mood intolerance and 
eating disorder symptoms directly. When we set about addressing this, we were confronted with the 
lack of empirically validated mood intolerance measures. This informed our decision to develop a new 
measure of the construct. The final TOMS was the result of a process of item development, exploratory 
factor analysis, confirmatory factor analysis, and correlational analysis. To our surprise, we failed to 
provide support for the reliability or validity of a scale focusing on self-reported ability to tolerate 
intense mood states. Self-reported tolerance of mood did not relate to level of emotional distress, dif-
ficulties with impulsivity, or the tendency to eat in response to emotions. Instead, our final measure 
focuses on how an individual reacts to intense moods, particularly their tendency to react by engaging 
in maladaptive behaviours. Scores on this final measure correlated moderately and significantly with 
depressive, anxiety and stress symptoms, impulsivity, and emotional eating. We are now using the TOMS 
in research on eating disorders, as well as research on alcohol misuse and perfectionism.”
Example from the literature

Evaluation of a new measure of mood intolerance, the Tolerance of Mood 
States Scale (TOMS): Psychometric properties and associations with 
eating disorder symptoms

Allen, McLean and Byrne (2012) carried out research on eating disorder symptoms in which they aimed 
to validate a new measure, the Tolerance of Mood States (TOMS). There were two TOMS scales, which 
relate to the different ways people react to a range of mood states, e.g. sadness, anxiety, guilt etc. As 
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part of this study, they examined relationships between TOMS scores and different measures of eating 
disorder symptoms. Their sample consisted of 227 first-year psychology students.

Table 6.3 reproduces some of the variables they included in their table of correlations.

Notice that the researchers have decided to use a criterion p value of 6 .0023, instead of p 6 .05. 
This practice reduces the likelihood of a Type I error, and is used when multiple comparisons are made 
(see pp. 307–8).

TOMS Scale 2

General Eating

Emotional Eating Scale-II:

Depression - .04 .45*

Anger - .14 .24*

Anxiety - .18 .14

Positive effect .06 - .14

DASS

Depression .48* .34*

Anxiety .45* .26*

Stress .43* .31*

Eating Disorder Inventory .51* .23*

* Alpha was set at 6 .0023, in light of the multiple correlations

Table 6.3 Correlations between scores on the TOMS Scale 2 and those on the Emotional Eating Scale II and 
Depression Anxiety Stress Scales (DASS)

Example from the literature

The influence of Facebook addiction on study habits of  
college students.

Lacida, A. P. and Murcia, J. V. B (2015) investigated whether there was a significant relationship between 
Facebook addiction and the study habits of 252 students. The researchers used the Bergen Facebook 
Addiction Scale (BFAS), which had six core features of addiction: salience, mood modification, tolerance, 
withdrawal, conflict and relapse. They correlated these scales with five core features of the Study Habits 
questionnaire. The five features were time-management, test-taking, note-taking, reading and writing. 
(Electronic copy available at: http://ssrn.com/abstract=2617158)

http://ssrn.com/abstract=2617158
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The table of correlations is reproduced below:

The authors also calculated an overall correlation coefficient between addiction to Facebook and 
study habits.

Study habits

Time management Test-taking Note-taking Reading Writing Overall

Facebook 
addiction

-0.151* -0.206 -0.254* -0.161* 0.121* -0.230*

Salience -0.142 -0.124* -0.178* 0.063 -0.115 -0.161*

Tolerance 0.081 -0.191* -0.197* -0.107 -0.136* -0.183*

Mood 
modification

-0.146* -0.193* -0.196* -0.140* -0.118* -0.204*

Relapse -0.145* -0.161* -0.227* -0.153* 0.063 -0.193*

Withdrawal -0.125* -0.161* -0.215* -0.169* 0.098 -0.196*

Conflict -0.130* -0.208* -0.267* -0.169* 0.089 -0.222*

* p 6 0.05

Table 6.4 Correlation analysis showing the relationship between the elements of Facebook addiction 
and study habits of college students

Activity 6.10

Look at Table 6.4 above.

(a) Which of the six BFAS scales has the weakest correlation of the overall study 
habits score with salience/tolerance/mood modfication/relapse/withdrawal/
conflict.

(b) Overall, which of the six BFAS scales has the strongest relationship with overall 
study habits? Is the relationship positive or negative. State what this means.

(c) Complete the following:

The authors calculated an overall coefficient between Facebook addiction and 
study habits (r = . . . . . ), which shows that the higher the addiction to Face-
book, the. . . . . (worse/better) the study habits of the students.

Example from the literature

Age-related differences in recognition memory for items and associations: 
contribution of individual differences in working memory and metamemory

Bender and Raz (2012) carried out a study on memory (working memory and meta memory) and ageing. 
They studied 100 healthy adults aged 21 to 79 to examine the role of working memory and beliefs about 
memory strategies on differential relations of age with recognition of items and associations. As part of 
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the study, participants were presented with a list of 26 word-pairs, followed by recognition testing. 
Participants could try to memorise the word pairs by various techniques, some of which were ‘shallow’ 
(e.g. using rhyming, reading or saying the pairs in their mind, or simple repetition). Others used deep 
encoding techniques (e.g. giving words a personal meaning, using visual imagery). Bender and Raz 
measured the preference for these different techniques (memory strategy efficacy beliefs).

The authors produce the table below, which shows zero-order (full) correlations between the 
variables under the diagonal, and partial correlations about the diagonal.

So, for instance, the full correlation between Association Hit Rate (Assoc.HR) and Working Memory 
(WM) is shown below the diagonal, and is + .44. With age partialled out (above the diagonal) this 
correlation reduces to + .33, which shows some of the relationship between Association Hit Rate and 
Working Memory is due to age. 

They concluded that maladaptive beliefs about memory combined with reduced cognitive function 
accounted for the differences in memory which was commonly attributed to ageing. They say (p. 695):

Partialing out age from all variables resulted in minor reduction of correlations between two indices 
of memory for associations and endorsement of deep and shallow encoding strategies (see Table 
for partial correlations). Somewhat greater reduction was observed in associations between WM 
and memory variables, although in that case, the correlations remain significant.

Thus, even with age variance removed, WM and beliefs about strategy effectiveness were indepen-
dently associated with recognition memory for word associations.

Variable Age WM Shallow Deep Item 
HR

Association 
HR

Item 
FAR

Association 
FAR

Age —

WM - .48*** — .26* .17 .17 .33*** - .03 - .31**

Shallow 
strategy

.15 - .29* — - .02 - .22* - .31** .05 .24*

Deep 
strategy

- .19 .24 - .05 — .02 .35*** - .09 - .31**

Item HR - .16 .23 - .24 - .05 — .27** 0.13 - .06

Assoc. HR - .36*** .44 - .33** .30* .30** — - .15 - .35***

Item FAR .21* - .13 .08 - .16 - .16 - .21* — .20

Association 
FAR

.26** - .39*** .26** - .34* - .09 - .40*** .24* —

Note. Zero-order correlations are below the main diagonal; partial correlations (controlling for age) are below the 
main diagonal. WM = working memory; HR = hit rate; FAR = false alarm rate.

* p 6  .05. ** p 6  .01. *** p 6  .001.

Table 6.5 Zero-order and partial correlations among age, working memory, strategy beliefs, and memory
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 6.3 Patterns of correlations

You should be able to see just by looking at a correlational matrix that patterns of correlations 
arise. For instance, look at the following correlational matrix:

If you look carefully, you can see that the variables that share most variance with each other 
have to do with quality of life – satisfaction with relationships and life. This is one pattern that 
you can see emerging from the data. These variables have correlated with each other; they form 
a natural ‘group’. The other two variables, ‘felt sad’ and ‘had crying spells’, also correlate with 
each other (0.442) – but not with the other variables – so this shows a second pattern. So, from 
these six variables, we can distinguish two distinct patterns. Obviously in this example, with so 
few variables, the patterns are relatively easy to distinguish.

Psychologists who are designing or checking the properties of questionnaires make use of 
this ‘patterning’ to cluster variables together into groups. This is useful where a questionnaire 
has been designed to measure different aspects of, say, personality or quality of life. In the 
example above, the variables in the first group are questions that made up a subscale of a quality 
of life (QOL) questionnaire. A questionnaire might have several questions relating to ‘family 
life’ (i.e. one subscale) and several others relating to ‘financial situation’ and perhaps another 
that could be called ‘sex life’. The QOL questionnaire consists of these different subscales.

Using patterns of correlations to check that each set of questions ‘hangs together’ gives them 
confidence in their questionnaires. Psychologists do not, of course, simply look at correlational 
matrices. They use a technique called factor analysis, which effectively does the same thing, 
only better! (This is discussed in greater detail in Chapter 14.)

 .672

Correlations

family

relationships

relationship with spouse

family relationships 1.000

other social relationships

relationship

with spouse

1.000

other social

relationships

.547

.689

1.000

felt sad

.321

.236

.165

satisfied

with life

.500

.508

.584

had crying

spells

.119

.072

2.010

felt sad 1.000 .224 .442

less satisfied with life 1.000 2.117

had crying spells 1.000

Variables

that ‘hang’

Two variables that

relate to each other but

not to the others
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Summary

• If two variables are correlated, then they are not 
independent – as the scores on one variable 
change, scores on the other variable change in a 
predictable way.

• Correlations can be positive (high scores on x 
tend to be associated with high scores on y, and 
low scores on x tend to be associated with low 
scores on y); negative (high scores on x are 
associated with low scores on y); or zero (no 
linear relationship).

• Correlation coefficients range from -1 (perfect 
negative correlation) through zero to +1 
(perfect positive correlation).

• Pearson’s r is a parametric correlation 
coefficient; r is a natural effect size; r can be 
squared in order to give a measure of the 
variance explained, expressed in percentage 
terms.

• Confidence limits can be constructed around 
Pearson’s r. If the sample r is found to be 0.5, and 
the confidence limits are 0.4 to 0.6 (95% limits), 
we can be 95% confident that, in the population, 
r would be found to be within the range 0.4 to 0.6.

• Looking at patterns of correlations within a 
matrix can show us which variables ‘hang 
together’ – this is important in psychometrics.

Discover the website at www.pearsoned.co.uk/dancey where you can test your knowledge with multiple 
choice questions and activities, discover more about topics using the links to relevant websites, and 
explore the interactive flowchart designed to help you find the right method of analysis.

http://www.pearsoned.co.uk/dancey
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SPSS exercise

Enter the following data into SPSS:

Analyse the data:

 1. Obtain a zero-order correlation between STIGMA and QOL.
 2. Obtain a correlation between STIGMA and QOL, partialling out the effects of illness intrusiveness. 

Use a one-tailed hypothesis.

Case Summaries

STIGMAIllness intrusivenessQOL

26.00

30.00

23.00

43.00

48.00

20.00

39.00

40.00

25.00

28.00

64.00

33.00

33.00

34.00

73.00

20.00

37.00

20.00

40.00

21.00

20

5.00

1.00

2.00

4.00

3.00

2.00

1.00

6.00

3.00

3.00

4.00

2.00

2.00

3.00

7.00

1.00

5.00

6.00

2.00

2.00

20

48.00

99.00

78.00

47.00

87.00

68.00

94.00

66.00

70.00

67.00

62.00

85.00

78.00

87.00

53.00

79.00

62.00

79.00

83.00

86.00

20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Total N
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 1. If 36% of the variation in scores on y has been accounted for by scores on x, how much variance is 
unexplained?

(a) 64%
(b) 36%
(c) 6%
(d) 0.6%

 2. If two variables are totally independent, then the correlation between them is:

(a) -0.1
(b) -1.00
(c) +1.00
(d) zero

Questions 3 to 5 relate to the following table of results:

 3. Of those below, which two variables show the strongest relationship?

(a)  ‘QOL’ and ‘family relationships’
(b)  ‘QOL’ and ‘age’
(c)  ‘mood’ and ‘QOL’
(d)  ‘mood’ and ‘age’

 4. Which correlation is the weakest?

(a)  ‘QOL’ and ‘age’
(b)  ‘mood’ and ‘age’
(c)  ‘family relationships’ and ‘age’
(d)  ‘family relationships’ and ‘mood’

 5. What is the achieved significance level of ‘family relationships’ and ‘mood’?

(a)  60.001
(b)  = 0.011
(c)  = 0.912
(d)  60.01

Multiple choice questions

Correlations

family relationshipsqolmoodage

–.106

.264

112

–.328

.000

117

–.598

.000

115

1.000

.

118

–.093

.332

111

.463

.000

115

1.000

.

116

–.598

.000

115

–.011

.912

112

1.000

.

118

.463

.000

115

–.328

.000

117

1.000

.

113

–.011

.912

112

–.093

.332

111

–.106

.264

112

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

age

mood

QOL

family relationships
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 6. If you have a correlation coefficient of 0.5, how much variance is left unexplained?

(a) 25%
(b) 50%
(c) 75%
(d) None of the above

 7. Someone who runs a correlational analysis says that an effect size of 64% has been found. What value 
of r did they obtain?

(a) +0.8
(b) -0.8
(c) 0.8, but we cannot tell whether the value is positive or negative
(d) 0.64

 8. If you have a correlation coefficient of 0.4, how much variance is left unexplained?

(a) 16%
(b) 40%
(c) 84%
(d) None of the above

 9. Length of time working at the computer and poor eyesight are negatively correlated. What should we 
conclude?

(a) People with poor eyesight are more likely to spend long hours working at the computer
(b) Working for long hours is likely to cause a deterioration of eyesight
(c) A particular type of personality may be more likely both to have poor eyesight and to work long 

hours at the computer
(d) Any of the above are possible – correlation does not imply causation

 10. Look at the following scattergram:

Which is the most sensible answer? The variables show a correlation of:

(a) +1.00
(b) -1.00
(c) +0.7
(d) -0.7
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Correlations
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 11. Look at the following scattergram:

Which is the most sensible answer? The variables show a correlation of:

(a) -1.0
(b) -0.1
(c) +1.00
(d) +0.1

Questions 12 and 13 relate to the following table of results:

 12. Of the following, which two variables show the strongest relationship?

(a) ‘family relationships’ and ‘relationship with spouse’
(b) ‘satisfied with life’ and ‘family relationships’
(c) ‘family relationships’ and ‘other social relationships’
(d) ‘felt sad’ and ‘had crying spells’
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symptoms

depression
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beliefs

external

beliefs

a b c d
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Cell a1

Scattergram

relating to

symptoms and

depression

 13. Which correlation is the weakest?

(a)  ‘family relationships’ and ‘relationship with spouse’
(b)  ‘family relationships’ and ‘other social relationships’
(c)  ‘other social relationships’ and ‘had crying spells’
(d)  ‘satisfied with life’ and ‘had crying spells’

 14. A correlation of -0.5 has been found between height and weight in a group of schoolchildren. How 
much of the variance in height can be explained by weight, in percentage terms?

(a) 5%
(b) 50%
(c) 25%
(d) None of the above

 15. A researcher wishes to look at the relationship between motivation and examination performance. 
However, she has reason to believe that IQ influences both of these variables and decides to obtain 
partial correlations. Which of the following options is most sensible? She should perform a correlation 
between:

(a) Motivation and IQ controlling for examination performance
(b) Motivation and examination performance controlling for IQ
(c) IQ and examination performance controlling for motivation
(d) None of the above options is sensible

Questions 16 and 17 relate to the following matrix. The cells have been labelled:
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 16. Which cell relates to the scattergram between ‘internal beliefs’ and ‘external beliefs’?

(a) d1
(b) d2
(c) d3
(d) d4

 17. The cell c3 relates to:

(a) Intrusiveness and internal beliefs
(b) Intrusiveness and external beliefs
(c) Intrusiveness and symptoms
(d) Depression and symptoms

 18. A positive relationship means:

(a) An important relationship exists
(b) As scores on x rise, scores on y fall
(c) As scores on x rise, so do those on y
(d) High scores are frequent on x and y

 19. If a correlation coefficient has an associated probability value of 0.02, then:

(a) Our hypothesis is obviously true
(b) Our results are important
(c) There is only a 2% chance that our results are due to sampling error, assuming the null hypothesis 

to be true
(d) There is only a 2% chance that our results are correct

 20. SPSS prints the following: p = .0000. How should this be reported?

(a) 60.001
(b) 60.0001
(c) 70.001
(d) 70.0001
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CHAPTER OVERVIEW

In the previous chapter, you were introduced to the idea of looking at how scores on one variable 

related to scores on another variable, and for this analysis you learnt about the parametric statistical 

test, Pearson’s r. In this chapter, however, we will be looking at the differences between scores in two 

conditions. For instance, you could compare the memory ability of spider-phobics and non-phobics 

to see how they differ. Such a design is called a between-participants, independent or unrelated 

design, since one group of participants gives scores in one condition and a different group of people 

gives scores in a different condition. On the other hand, one group of participants may perform in 

both conditions: for instance, one group of participants learn both high-frequency words and low-

frequency words. They are then measured by the amount of recalled words. This is called a within-

participants, repeated measures or related design, because the same people perform in both 

conditions. In this chapter we are going to discuss the analyses of two conditions by using the para-

metric test called the t-test. We are particularly interested in the differences between the two groups: 

specifically, the difference between the mean of the two groups.

In this chapter we are going to show you how to analyse the data from such designs. Since the 

t-test is a parametric test, you must remember that your data need to meet the normal assumptions 

for parametric tests – that is, the data have been drawn from a population that is normally distributed. 

We tend to assume this is the case when your sample data are normally distributed. If you have reason 

to think this is not the case, then you need to use the non-parametric equivalents of the t-test 

(described in Chapter 16).

To enable you to understand the tests presented in this chapter you will need to have an under-

standing of the following concepts:

■ the mean, standard deviation and standard error (Chapter 3)

■ z-scores and the normal distribution (Chapter 4)

■ assumptions underlying the use of parametric tests (Chapter 5)

■ probability distributions like the t-distribution (Chapter 5)

■ one- and two-tailed hypotheses (Chapter 5)

■ statistical significance (Chapter 5)

■ confidence intervals (Chapter 4).

Analyses of differences 

between two conditions: 

the t-test 7
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 7.1 Analysis of two conditions

The analysis of two conditions includes the following:

1. Descriptive statistics, such as means or medians, and standard deviations; confidence inter-
vals around the mean of both groups separately, where this is appropriate; graphical illustra-
tions such as box and whisker plots and error bars.

2. Effect size – this is a measure of the degree to which differences in a dependent variable are 
attributed to the independent variable.

3. Confidence limits around the difference between the means.
4. Inferential tests – t-tests discover how likely it is that the difference between the conditions 

could be attributable to sampling error, assuming the null hypothesis to be true.

 7.1.1 Analysis of differences between two independent groups

Twenty-four people were involved in an experiment to determine whether background noise 
(music, slamming of doors, people making coffee, etc.) affects short-term memory (recall of 
words). Half of the sample were randomly allocated to the NOISE condition, and half to the 
NO NOISE condition. The participants in the NOISE condition tried to memorise a list of 20 
words in two minutes, while listening to pre-recorded noise through earphones. The other par-
ticipants wore earphones but heard no noise as they attempted to memorise the words. Imme-
diately after this, they were tested to see how many words they recalled. The numbers of words 
recalled by each person in each condition are as shown in Table 7.1.

NOISE NO NOISE

5.00 15.00

10.00 9.00

6.00 16.00

6.00 15.00

7.00 16.00

3.00 18.00

6.00 17.00

9.00 13.00

5.00 11.00

10.00 12.00

11.00 13.00

9.00 11.00

g = 87a g = 166

X
-
= 7.3b X

-
= 13.8

SD = 2.5 SD = 2.8

a g  represents the total of the column
b X

-
 represents the mean (average)

Table 7.1 Raw data for NOISE/NO NOISE conditions
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 7.1.2 Descriptive statistics for two-group design

The first thing to do is to obtain descriptive statistics through the Explore procedure in SPSS 
(see section 3.3). You can then gain insight into the data by looking at graphical illustrations, 
such as box and whisker plots and/or histograms. Summary statistics such as the means, stand-
ard deviations and confidence intervals are available through SPSS, which gives you the results 
in the form of tables. (These statistics are also given as part of the output when you analyse the 
data by using the t-test procedure.)

You can see in Table 7.2 that the means differ, in the expected direction. Participants in the 
NO NOISE condition recalled a mean of 13.8 words, while those in the NOISE condition 
recalled a mean of 7.3. People in the NO NOISE condition showed slightly more variability, as 
indicated by the standard deviations.

 7.1.3 Confidence limits around the mean

The means you have obtained, for your sample, are point estimates. These sample means are 
the best estimates of the population means. If, however, we repeated the experiment many times, 
we would find that the mean varied from experiment to experiment. For example, the sample 
mean for the NO NOISE condition is 13.8. If we repeat the experiment, we might find that the 
sample mean is 13.3. If you repeated the experiment many times, the best estimate of the popu-
lation mean would then be the mean of all the sample means. It should be obvious, however, 
that our estimate could be slightly different from the real population mean difference: thus it 
would be better, instead of giving a point estimate, to give a range. This is more realistic than 
giving a point estimate.

The interval is bounded by a lower limit (12.1 in this case) and an upper limit (15.6 in the 
above example). These are called confidence limits, and the interval that the limits enclose is 
called the confidence interval. (You came across these in Chapter 4.) The confidence limits let 
you know how confident you are that the population mean is within a certain interval: that is, 
it is an interval estimate for the population (not just your sample).

Why are confidence limits important? When we carry out experiments or studies, we want 
to be able to generalise from our particular sample to the population. We also want to let our 
readers have a full and accurate picture of our results. Although our sample mean of the NOISE 
condition is 7.3, telling the reader that ‘we are 95% confident that the population mean falls 
between 5.7 and 8.8’ gives more information, and is more realistic, than simply reporting our 
sample mean. Confidence intervals are being reported more and more in journal articles, so it 
is important for you to be able to understand them.

 7.1.4 Confidence intervals between NOISE and NO NOISE conditions

For the noise condition, we estimate (with 95% confidence) that the population mean is within 
the range (interval) of 5.7 and 8.8. This can be represented graphically, as shown in 
Figure 7.1.

NOISE NO NOISE

X
-

SD 95% CI X
-

SD 95% CI

7.3 2.5 5.7–8.8 13.8 2.8 12.1–15.6

Table 7.2 Mean, standard deviation and 95% confidence limits for NOISE/NO NOISE conditions
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 7.1.5 Measure of effect

We can also take one (sample) mean from the other, to see how much they differ:

7.3 - 13.8 = -6.5

This score on its own, however, tells us very little. If we converted this score to a standardised 

score, it would be much more useful. The raw score (the original score) is converted into a 
z-score. The z-score is a standardised score, giving a measure of effect which everyone can 
easily understand. This measure of effect is called d; d measures the extent to which the two 
means differ, in terms of standard deviations. This is how we calculate it:

d =

x1 - x2

mean SD

This means that we take one mean away from the other (it does not matter which is which – 
ignore the sign) and divide it by the mean standard deviation.

Step 1: find mean sample SD

SD of condition 1 + SD of condition 2

2
=

2.5 + 2.8

2
= 2.65

Step 2: find d

x1 - x2

mean SD
=

7.3 - 13.8

2.65
=

6.5

2.65
= 2.45

In this case, our means differ by 2.45 standard deviations. This is a very large effect size, an 
effect size not often found in psychological research.

 7.1.6 The size of the effect

The effect size here, d, is expressed in standard deviations. Think of the normal curve of 
distribution:

9
5

%
 C

I

18

16

14

12

10

8

6

4

N = 12
NOISE

12
NO NOISE

Figure 7.1 95% confidence limits for NOISE and NO NOISE conditions
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Z-scores are standardised so that the mean is zero and the standard deviation is 1. You can 
see that, if the means differed by 0.1, they would differ by only a tenth of a standard deviation. 
That is quite small, on our scale of 0 to 3. If the means differed by 3 standard deviations, that 
would be a lot, using the scale of 0 to 3. There is no hard and fast rule about what constitutes 
small and large effects. Cohen (1988) gave the following guidelines:

Effect size d Percentage of overlap (%)

Small 0.2 85

Medium 0.5 67

Large 0.8 53

When there is little difference between our groups, the scores will overlap substantially. The 
scores for the groups can be plotted separately: for instance, scores for the NOISE condition 
can be plotted and will tend to be normally distributed. Scores for the NO NOISE condition 
can also be plotted, and will tend to be normally distributed. If there is little difference between 
them, the distributions will overlap:

23 22 21 110 12 13

68.2%

95.5%
99.7%

If there is a large difference between the two groups, then the distributions will be further apart:

This is what is meant by the percentage of overlap. This measure of effect enables us to interpret 
our findings in a meaningful way. The exact extent of the overlap is given in the table below:
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d Percentage of overlap (%)

0.1 92

0.2 85

0.3 79

0.4 73

0.5 67

0.6 62

0.7 57

0.8 53

0.9 48

1.0 45

1.1 42

1.2 37

1.3 35

1.4 32

1.5 29

Effect sizes are discussed further in Chapter 8.

Calculate the effect size of a two-group test using the following figures:

• Group 1: mean = 50, SD = 10
• Group 2: mean = 70, SD = 5

Activity 7.1

 7.1.7 Inferential statistics: the t-test

The t-test is used when we have two conditions. The t-test assesses whether there is a statistically 
significant difference between the means of the two conditions.

The independent t-test is used when the participants perform in only one of two conditions: 
that is, an independent, between-participants or unrelated design. The related or paired t-test is 
used when the participants perform in both conditions: that is, a related, within-participants or 
repeated measures design.

The t-test was devised by William Gossett in 1908. Gossett worked for Guinness, whose 
scientists were not allowed to publish results of their scientific work, so Gossett published 
results using his new test under the name of Student, which is why, of course, you will see it 
referred to in statistical books as Student’s t.

Look again at our raw data for the NOISE/NO NOISE condition (Table 7.3). The first thing 
you should note is that participants vary within conditions. In the NOISE condition, the scores 
range from 3 through to 11. In the NO NOISE condition, the scores range from 9 to 18 (this 
within-participants variance can be thought of as variance within each column). You should recall 
(from Chapter 3) that the standard deviation is a measure of variance – the larger the standard 
deviation, the more the scores vary, within the condition. The participants differ between the 
conditions too. You can see that scores of the NO NOISE condition, in general, are higher than 
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those in the NOISE condition – the means confirm our visual experience of the data. This is the 
between-participants variance, and can be thought of as the variance between the columns.

We want to know whether the differences between the means of our groups are large enough 
for us to be able to conclude that the differences are due to our independent variable – that is, 
our NOISE/NO NOISE manipulation. This is accomplished by performing mathematical cal-
culations on our data. The formula for the t-test (not given here) results in a test statistic, which 
we call ‘t’. The t-test is basically a ratio between a measure of the between-groups variance and 
the within-groups variance. The larger the variance between the groups (columns), compared 
with the variance within the groups (rows), the larger the t-value.

Once we have calculated the t-value, we (or rather the computer) can find the probability of 
obtaining such a t-value by chance (sampling error) if the null hypothesis were true. That is, if 
there were no differences between the NOISE condition and the NO NOISE condition, how 
likely is it that our value of t would be found?

If there were no real differences between the NOISE and the NO NOISE conditions, and we 
took repeated samples, most of the differences would fall around the zero mark (mean of NOISE 
condition and mean of NO NOISE condition would be almost the same). Sometimes, however, 
we would find a value larger than zero (maybe, for instance, participants in the NOISE condi-
tion would actually do better than participants in the NO NOISE condition). Sometimes we 
would find a very large difference. These differences are often chance differences, which arise 
just because we have used different samples each time – we say that these differences arise due 
to sampling error. The differences that we might find if we took repeated samples can be plotted 
as shown in Figure 7.2 (this is another example of a sampling distribution).

If there were no difference between the means of our particular experiment, it would be more 
likely that our t would fall in the middle region than in one of the ‘tails’ of the sampling distribu-
tion. This is because we know, through the Central Limit Theorem, that most of our obtained 
values will fall in the middle range (see section 4.4). It would be rare (but possible) for our t to 
be found in the extreme edges of the tail as shown above. That is, if we performed 100 repeated 
NOISE/NO NOISE experiments, using different samples, in a small percentage of experiments 
we would find a t that falls in the extreme edges of the distribution. If, in practice, we obtain a 

NOISE NO NOISE

5.00 15.00

10.00 9.00

6.00 16.00

6.00 15.00

7.00 16.00

3.00 18.00

6.00 17.00

9.00 13.00

5.00 11.00

10.00 12.00

11.00 13.00

9.00 11.00

g = 87 g = 166

X
-
= 7.3 X

-
= 13.8

SD = 2.5 SD = 2.8

Table 7.3 Raw data for NOISE/NO NOISE conditions
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2 It is more important for you to report the confidence interval for the difference between the means than it is 
for you to report the confidence interval for both means separately.

that is found in one of these tails, then we conclude that it is unlikely to have arisen purely by 
sampling error. We can put a figure on this ‘unlikeliness’ as well. Each obtained t-value comes 
with an exact associated probability level. If, for instance, our obtained t has an associated prob-
ability level of 0.03,1 we can say that, assuming the null hypothesis to be true, a t-value such as 
the one we obtained in our experiment would be likely to have arisen in only 3 occasions out of 
100. Therefore we conclude that there is a difference between conditions that cannot be explained 
by sampling error. As you have seen in Chapter 5, this is what is meant by ‘statistical signifi-
cance’. This does not necessarily mean that our finding is psychologically important, or that we 
have found a large effect size. We have to take into consideration our descriptive statistics and 
any measure of effect sizes, confidence intervals, etc. that we have also computed.

1 Often psychologists call this achieved significance level (ASL), and we use these terms interchangeably in 
this book.

Activity 7.2

What does the independent t-test examine?

(a) The difference between the median values for each condition
(b) The differences between the variances for each condition
(c) The differences between the mean scores for each condition

y

0 0 x

Most differences

are 0

Figure 7.2 Sampling distribution

 7.1.8 Output for independent t-test

In our experiment, the dependent variable is the number of words correctly recalled, and the 
independent variable is NOISE (either NOISE condition, or NO NOISE condition). All good 
computer packages, such as SPSS, will give the following information:

• Means of the two conditions and the difference between them. What you want to know is 
whether the difference between the two means is large enough to be important (not only 
‘statistically significant’, which tells you the likelihood of your test statistic being obtained, 
given that the null hypothesis is true).

• Confidence intervals: SPSS, using the t-test procedure, gives you confidence limits for the 
difference between the means.2 The difference between means, for your sample, is a point 
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estimate. This sample mean difference is the best estimate of the population mean difference. 
If, however, we repeated the experiment many times, we would find that the mean difference 
varied from experiment to experiment. The best estimate of the population mean would then 
be the mean of all these mean differences. It is obviously better to give an interval estimate, 
as explained before. Confidence limits let you know how confident you are that the popula-

tion mean difference is within a certain interval. That is, it is an interval estimate for the 
population (not just for your sample).

• t-value: the higher the t-value, the more likely it is that the difference between groups is not 
the result of sampling error. A negative value is just as important as a positive value. The 
positive/negative direction depends on how you have coded the groups. For instance, we have 
called condition 1 NOISE and condition 2 NO NOISE. This was obviously an arbitrary deci-
sion; we could just as well have called condition 1 NO NOISE and condition 2 NOISE – this 
would result in exactly the same t-value, but it would have a different sign (plus or minus).

• p-value: this is the probability of your obtained t-value having arisen by sampling variation, 
or error, given that the null hypothesis is true. This means that your obtained t is under an 
area of the curve that is uncommon – by chance, you would not expect your obtained t-value 
to fall in this area. The p-value shows you the likelihood of this arising by sampling error. 
For instance, p = 0.001 means that there is only one chance in a thousand of this result aris-
ing from sampling error, given that the null hypothesis is true.

• Degrees of freedom (DF): for most purposes and tests (but not all), degrees of freedom 
roughly equate to sample size. For a related t-test, DF are always 1 less than the number of 
participants. For an independent t-test, DF are (n - 1) + (n - 1),3 so for a sample size of 
20 (10 participants in each group) DF = 18 (i.e. 9 + 9). For a within-participants design with 
sample size of 20, DF = 19. DF should always be reported in your laboratory reports or 
projects, along with the t-value, p-value and confidence limits for the difference between 
means. Degrees of freedom are usually reported in brackets, as follows: t (87) = 0.78. This 
means that the t-value was 0.78, and the degrees of freedom 87.

• Standard deviations: this gives you the standard deviation for your sample (see Chapter 3).

• Standard error of the mean (SEM): this is used in the construction of confidence intervals 
(see Chapter 4).

3 n is the number of participants in each group.

Degrees of freedom
This is a mathematical term that is often used in formulae for our statistical tests. There are mathematical 
definitions that are not useful for most psychologists, and there are working definitions: for example, DF 

refers to the number of individual scores that can vary without changing the sample mean. Examples can 

help illustrate the concept. For instance, if we ask you to choose two numbers at random, with no con-

straints, then you have two degrees of freedom. If we ask you to choose two numbers that must add up to 

10, however, then once you have chosen the first number, e.g. 7, the other is fixed: it is 3, and you have 

no choice in the matter. Thus the degrees of freedom are reduced to 1.

Let’s take a non-mathematical example. Imagine you are hosting an important dinner party and you need 

to seat ten people; a knowledge of where the first nine sit will determine where the tenth person sits – you 

would be free to decide where the first nine sit, and the tenth would be known, by a knowledge of the first 

nine (DF, then, is 10 - 1 = 9). Imagine now that you are hosting a very old-fashioned formal dinner party, 

where you have five women and five men, and you need to sit each woman next to a man. In this case a 

knowledge of where the first four pairs sit (eight people) leads to the last pair (a man and a woman) being 

determined (DF, then, is 10 - 2 = 8).
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 7.1.9 Assumptions to be met in using t-tests

The t-test is a parametric test, which means that certain conditions about the distribution of the 
data need to be in force: that is, data should be drawn from a normally distributed population 
of scores. We assume this is the case if our sample scores are normally distributed. You can tell 
whether your data are skewed by looking at histograms. In the past, in order to be able to use a 
t-test you would have been instructed to use interval data only. However, for many years now 
psychologists have used t-tests for the analysis of data from Likert-type scales (where variables 
have been rated on a scale of, say, 1 to 7).

The t-test is based on the normal curve of distribution. Thus, we assume that the scores of 
our groups, or conditions, are each normally distributed. The larger the sample size, the more 
likely you are to have a normal distribution. As long as your data are reasonably normally 
distributed, you do not need to worry, but if they are severely skewed, you need to use a non-
parametric test (see Chapter 16).

At this stage, we recommend a simple eyeballing of the histograms for each variable (these 
can be obtained from the SPSS Frequencies program). You should do this for each group sepa-
rately. Figures 7.3 to 7.6 are guidelines.  

Remember that in using the t-test we compare a difference in means, and if our data are 
skewed, the mean may not be the best measure of central tendency.

In the past, psychologists were advised to perform a t-test only when the variances between 
the two groups were similar. This is because, in calculating part of the formula (for the t-test), 
the variances for the two groups are added together and averaged. If the variances are very 
unequal, the ‘average’ obtained will not be representative of either of the conditions. SPSS, 
however, uses a slightly different method of calculating a t-value when the variances are 
 unequal, allowing you therefore to use the t-test under these conditions.

When we have different numbers of participants in the two groups, taking a simple average 
of the two variances might be misleading because the formula would give the two groups equal 

Activity 7.3

It is easy to become confused sometimes when psychologists use several different 
names for the same thing. What are the alternative names for within-participants 
designs? What are the alternative names for between-participants designs?

This is because, as can be seen in our dinner party example, we are free to vary all the 
numbers but one, in order to estimate the mean. The last number is determined by a knowl-
edge of the others. The formulae we use in calculations often incorporate this restriction.

Of course, psychologists are usually busy doing psychology, not going to dinner parties. 
So a more useful way of thinking about degrees of freedom is to say that DF are the number 
of observations made, minus the number of parameters which are estimated. When calculat-
ing statistical tests, we often have to ‘estimate’ figures. Once we have to estimate a mean, 
we lose one degree of freedom. (This is why you often have to divide by n-1 rather than 
n.) The more measures you have to estimate, the more you reduce your degrees of freedom. 
DF is a result of both the number of participants in the analysis, and the number of variables. 
It’s not easy to find a statistical textbook that explains DF well, or shows you the relevance 
of DF. Dr Chong Ho Yu gives one of the best explanations of DF that we have seen, but 
much of the explanation is based on concepts which you will learn in Chapter 12, so we 
will be talking more about DF there. If you wish to hear and see Dr Chong Ho Yu’s Degrees 
of Freedom tutorial on the web, the site address is given at the end of this chapter (Yu, 2003).
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Figure 7.3 Slight positive skew
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Figure 7.5 Strong positive skew
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weighting, when in fact one group might consist of more participants. In this case we would 
use a weighted average. The weighted average for the sample (called the pooled variance esti-
mate) is used in order to obtain a more accurate estimate of the population variance.

If your data are extremely skewed and you have very small participant numbers, you will 
need to consider a non-parametric test (see Chapter 16). This is because non-parametric tests 
do not make assumptions about normality.

 7.1.10 t-test for independent samples

Let’s use our example of the NOISE/NO NOISE experiment to go through the SPSS instruc-
tions and output for a t-test for independent samples.

SPSS: for an independent t-test

Open your datafile. First you should set up a file suitable for independent designs. You have been shown 
how to do this in the SPSS section in Chapter 1, so please refer back to this.

This opens the Independent-Samples T Test dialogue box, as follows:
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This gives the Define Groups dialogue box:

You then have to give the value you have assigned to the groups: that is, if you have coded women as 
0 and men as 1, then sex (0, 1) is the correct format. In our example, however, our groups are coded as 
1 and 2. Click on Continue. This brings you back to the previous dialogue box; you can then click on 
Options. This gives you the following options box. It is here that you can change your confidence level, 
from 95% to 90%, for instance.
Click on Continue, and then OK.

The results will appear in the output window. Most outputs give you more information than you need; 
at first glance, it might look like a jumble of numbers. However, you will soon learn to pick out what 
really matters for your particular experiment or study. Some of the output will simply tell you what you 
already know. For instance, in the first section of the output below we are given the following:

• the name of the two conditions
• the number of cases in each condition
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• the mean of each condition
• the standard deviation and standard error of the mean of the two conditions.

The above information can be scanned quite quickly; this information is already known to us. Once we 
know what to disregard, our output is fairly easy to read. These are the group statistics that appear first 
in the output:

The next section of the output is what really interests us:

One of the things you will notice is that SPSS uses a test called Levene’s Test for Equality of Variances. 
This is used to test whether the conditions have equal variances. Equal variances across conditions is 
called ‘homogeneity of variance’. Some statistical tests such as the t-test assume that variances are 
equal across groups or samples. Levene’s test can be used to verify that assumption. The t-test gives 
two sets of results – one to use when we have met the assumption (i.e. variances are similar) and one 
to use when we have failed to meet this assumption (i.e. variances are different). Levene’s test provides 
us with an F-value, which you have not come across yet, but it is a test statistic just like t – in fact when 
DF = 1, t2

= F or t = 2F. So if t = 3, then you know that this is equal to an F-value of 9. (You will come 
across the F-test statistic later, in Chapter 10.)

Levene’s test is a test of homogeneity of variances that does not rely on the assumption of normality. 
In making our decision as to whether we have met the assumption of equal variances, we need to look 
at the p-value given alongside the F-value. Consistent with the traditional convention, we should con-
clude that our variances are different (unequal) if this p-value is less than 0.05. If the p-value is greater 
than 0.05 then we assume that our variances are roughly equal. SPSS uses a criterion value of p  6   0.05 

Independent Samples Test

SCORE Equal

variances

assumed

Equal

variances

not assumed

F

.177

Levene’s

Test for

Equality of

Variances

Sig.

.678

t

26.137

26.137

df

22

21.776

Sig.

(2-tailed)
Lower Upper

.000

.000

Mean

Difference

26.58333

26.58333

Std.

Error

Difference

1.07279

1.07279

28.80817

28.80950

t-test for Equality of Means

95% Confidence

Interval of the

Difference

24.35850

24.35717

This shows that the variances

are not significantly different

(p 5 0.678) so we use the

equal variances assumed

part of the output,

as indicated by SPSS

Usually we give exact

probabilities. When SPSS

prints a row of zeros, however,

change the last figure to

a '1' and use the

'p,' sign. Thus p , 0.001

This is the

difference

between

the means

.79614

Group Statistics

Group

13.8333 2.7579112no noise

.719067.2500 2.4908912noise

Std. Error MeanMean Std. DeviationN

Score
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to decide whether the variances are equal. Obviously this decision is subject to the same constraints 
outlined for hypothesis testing (in Chapter 5). For simplicity, however, we will adhere to the SPSS crite-
rion, as explained above.

The textual part of the results might be reported as follows:

Participants in the NOISE condition recalled fewer words (X
-
= 7.3 = 7.3, SD = 2.5) than in the NO 

NOISE condition (X
-
= 7.8, SD = 2.8). The mean difference between conditions was 6.58, which is a 

large effect size (d = 2.45); the 95% confidence interval for the estimated population mean differ-
ence is between 4.36 and 8.81. An independent t-test revealed that, if the null hypothesis were true, 
such a result would be highly unlikely to have arisen (t (22) = 6.14; p 6 0.001). It was therefore 
concluded that noise affects short-term memory, at least in respect of recall of words.

Example: need for cognition

Some people spend a lot of time actively engaged in problem solving. Others do not. There are large 
individual differences in people’s tendency to engage in and enjoy this ‘cognitive activity’. This individual 
difference dimension is called need for cognition (NEEDCOG). In the following section of the output, 
men and women were compared on this dimension. There were far more men in the study. The means 
look similar, as do the standard deviation and the standard error of the mean.

Here is the next section of the output:

Independent Samples Test

NEEDCOG Equal

variances

assumed

Equal

variances

not

assumed

F

Levene’s

Test for

Equality of

Variances

Sig. t

2.94

2.97

df

728

631.3914.577 .000

Sig.

(2-tailed)

.346

.330

Mean

Difference

2.6700

2.6700

Std.

Error

Difference

.710

.688

22.064

22.020

t-test for Equality of Means

95%

Confidence

Interval

of the

Difference

.724

.680

The variances here are significantly

different, i.e. not equal, so we use the

‘equal variances not assumed’ row

p 5 0.33 – thus there is a 33% chance of these

results being obtained by sampling error alone,

assuming the null hypothesis to be true

.498

Group Statistics

63.1586 8.484290Women

.47462.4886 9.942440Men

Std. Error MeanMean Std. DeviationN

NEEDCOG

Men and women
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Example from the literature

The effect of deception on specific hand gestures

This study (Hillman, Vrij and Mann, 2012) comes under the area of Forensic Psychology, and focuses on 
whether truth tellers (N = 20) and liars (N = 20) differ in the frequency of speech prompting and 
rhythmic pulsing gestures. Speech prompting gestures occur when the person is trying to think of what 
to say next. These gestures might accompany filler words such as ‘um’ or ‘so . . . ’. Rhythmic pulsing 
gestures are not linked to speech content itself, but flow with the pitch and tone of speech. The research-
ers state that these flowing movements can be described as fidgeting or fiddling with one’s own hands.

The study was complex and it is not possible to go into a lot of detail here. In order to understand 
the textual explanation below, however, it is important to know the hypotheses that the researchers 
wanted to test. These are (p. 339):

We expect liars to make more speech prompting movements than truth tellers (Hypothesis 1).
. . .  we expect truth tellers to make more rhythmic pulsing gestures than liars (Hypothesis 2).

However, note that in the researchers’ explanation of the differences between liars and truth tellers, 
they have given us a wealth of information: means, standard deviations, p values and, more importantly, 
effect sizes (see Chapter 8).

In support of Hypothesis 1, liars (M = 4.32, SD = 6.77) used significantly more speech prompting 
gestures than truth tellers (M = 0.97, SD = 2.31), t (23) = 2.09, p 6  .05 (one-tailed), d = .66. In align-
ment with Hypothesis 2, truth tellers (M = 9.99, SD = 13.34) made more rhythmic pulsing gestures 
than liars (M = 5.24, SD = 7.4). The difference was not statistically significant, t (30) = 1.39, p = .087 
(one-tailed) (p. 342).

You can see then, that Hypothesis 1 was confirmed. The groups differed by 0.66 of a standard devia-
tion, and that the difference was statistically significant at less than p 6  .05. Although the difference 
between means in the statistics relating to Hypothesis 2 was not statistically significant at p 6  .05. (it 
was .087), the authors tell us why they think the differences between the two groups are important:

However, since statistical power was low (.39), there is a risk of a Type II error. In such cases, examin-
ing effect sizes becomes relevant. The effect size was moderate (d = .44), which means that the 
difference between liars and truth tellers was meaningful (Cohen, 1988).

What the authors are really saying is that although the difference in means is not statistically signifi-
cant, the effect size is good enough for us to conclude that the difference is meaningful, especially as the 
study is not likely to have a Type I error (concluding that there is a real finding when really there is not).

You can see that the mean difference between conditions is 0.67. The variances between the two 
groups differ significantly, so we use the ‘equal variances not assumed’ row. This shows a t-value of 
-0.97. The confidence interval shows that we are 95% confident that the population mean difference 
is between -2.02 and 0.68: in other words, a very large range. The confidence interval includes zero, 
which means, if we repeat the study with a different sample, the women might score higher than the 
men (as in this case, where the mean difference is -0.67), the men might score higher than the women, 
or there might be absolutely no difference at all (zero). This is obviously not good enough for us, and 
we have to conclude that the groups do not differ on NEEDCOG. This is borne out by the small t-value 
(0.97) and the associated significance level of p = 0.33. This means that, assuming the null hypothesis 
to be true, we have a 33% chance of finding the t-value of 0.97.

Remember that the minus sign when obtaining a t is equivalent to a plus sign. In other words, 
a t of, say, -5 is equivalent to a value of +5.

CAUTION!
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Example from the literature

A comparative study on the attitudes and uses of music by adults with 
visual impairments and those who are sighted

This study, carried out in South Korea by Hye Young Park et al. (2015), investigated attitudes towards, 
and uses of, music among people with visual impairments compared with those who are sighted.

Sixty-three visually impaired and 74 sighted people completed a 30-question survey on music atti-
tudes and use. The researchers carried out independent t-tests to discover whether the visually impaired 
participants differed significantly from the sighted participants on measures of ‘intrapersonal attitude’, 
‘interpersonal attitude’ and ‘communal attitude’.

As part of the study, the authors state that, ‘Significant differences in attitudes toward music between 
visually impaired and sighted participants were shown via a t-test. For total score of attitudes toward 
music, the visually impaired participants demonstrated significantly higher (more positive) values than 
sighted participants (t = 2.11, df = 135, p = .01). In the interpersonal (t = 1.74, df = 135, p = .04) and 
communal (t = 1.79, df = 135, p = .03) categories, there were significant differences between the two 
groups’ (p. 311).

Activity 7.4

The article above included some demographic characteristics of the participants. Look 
at the characteristics and statistical information for ‘age’.

Look at the following information, then calculate the effect size for ‘age’.

Visually impaired Not visually impaired statistics

M SD M SD t p

31.00 6.96 28.01 5.68 1.058 0.29

 7.1.11 Related t-test

The related t-test is also known as the paired t-test; these terms are interchangeable. The related 
t-test is used when the same participants perform under both conditions (see earlier in the 
chapter). The formula for this test is similar, not surprisingly, to the independent t-test. However, 
the related t-test is more sensitive than the independent t-test. This is because each participant 
performs in both conditions, and so each participant can be tested against him- or herself. If we 
have 20 people in a related design (20 people taking part in both conditions), we would need 
40 in an unrelated design (20 in each condition). So the formula for the related t-test takes into 
account the fact that we are using the same participants. If you compare an independent and 
related t-test using the same dataset, you will find that the related t-test gives a result with a 
higher associated probability value – this is because the comparison of participants with them-
selves gives rise to a reduced within-participants variance, leading to a larger value of t.

Imagine that we want to find out whether different types of visualisation help pain control. 
To make it simple, assume there are two types of visualisation:

• imagine performing an exciting t-test (statistics condition)

• imagine lying on a sunny beach, drinking cocktails (beach condition).

Participants sit down, and are taken through the visualisation as they plunge their hands into ice-
cold water. Although we have not tried this, we are assured it is very painful. The dependent vari-
able is the number of seconds that our participants are able to keep their hands in the iced water. 
Now, as we are running this as a within-participants design (because it is more sensitive), we 
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cannot simply have the participants doing one condition, then the other (this might lead to order 
effects, or it might be that no one returns for the second condition!). Therefore half the participants 
do condition A, then condition B, and half do condition B, then A (see counterbalancing, Chap-
ter 1). Now some people might think that our hypothesis is one-tailed, because they might think 
that visualising lying on a sunny beach would help with pain control more than thinking about 
statistics. However, we advise you to determine whether your hypothesis is one- or two-tailed on 
the basis of previous research, not just a hunch you have! Since there is no research on this topic 
(as far as we know), we are going to have a two-tailed hypothesis. The data are shown in Table 7.4.

Participant Statistics condition Beach condition

1 5 7

2 7 15

3 3 6

4 6 7

5 10 12

6 4 12

7 7 10

8 8 14

9 8 13

10 15 7

Table 7.4 Time (seconds) hands kept in water for each condition

SPSS: two samples repeated-measures design –  
paired t-test

Open your datafile. Choose the Paired-Samples T Test from the Compare Means menu:
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To select a pair of variables:

1. Click on the first variable.
2. Click on the second variable.
3. Click on the right facing arrow to move the pair over.

Click on Options, if wanted (see above), then click on Continue within that dialogue box. Then click 
on OK. Your results will appear in the output window.

First of all, we obtain the group statistics. This gives the usual descriptive statistics: the mean, number 
of participants, standard deviation and standard error of the mean.
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The next section of the output provides us with a correlation between the two conditions:

This shows that there is no relationship between scores in the BEACH condition and scores in the 
STATISTICS condition (r = 0.07, which is very weak indeed).

Then we come to the paired sample statistics:
Although we can see, oddly enough, that participants in the BEACH condition did keep their hands 

in the iced water longer (mean = 10.3 seconds, as opposed to the mean of the STATISTICS condition, 
7.3 seconds), the analysis gave us a t-value of 2.06, with an associated probability level of 0.069. The 
confidence interval is wide – we can say, with 95% confidence, that the true population mean dif-
ference is somewhere within the interval -0.287 and 6.827. This means that we cannot really be 
sure, if we repeated the study, that the beach visualisation would have given the better result. There-
fore we have to conclude that there is no evidence to suggest that this type of visualisation affects 
pain control.

Part of your textual analysis might read:

Although it can be seen that participants in the BEACH condition held their hands in ice-cold water 
for a mean of 10.3 seconds, as opposed to the mean of 7.3 in the STATISTICS condition, the 95% 
confidence limits show us that, if we repeated the experiment, the population mean difference 
between the conditions would lie somewhere between -0.287 and 6.287. Thus we cannot be sure 
that, in the population, the beach visualisation would give the better result (t (9) = 2.06; p = 0.07).

1.05462

Paired Samples Statistics

10 3.3350010.3000Beach

1.0754810 3.400987.3000Stats

Std. Error MeanN Std. DeviationMean

Pair 1

Paired Samples Correlations

.84910 .070stats & beach

Sig.N Correlation

Pair 1

Paired Samples Test

Pair 1 stats - beach

Mean

Difference between

mean of beach

condition (10.3)

and mean of

statistics condition

(7.3) is 3.

The confidence intervals

show that we are 95%

confident that the population

mean difference lies

somewhere between

26.287 and 0.287.

p 5 0.07

23.00000

Paired differences

Std.

Deviation

4.59468

Std. Error

Mean

1.45297

Lower

26.28684

95% Confidence

Interval of the

Difference

Upper

.28684

t

22.065

df

9

Sig.

(2-tailed)

.069
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Example: the verbal and performance IQ of people with chronic illness

A study was carried out comparing the verbal IQ (VIQ) and the performance IQ (PIQ) of people with 
chronic illness. In a normal population you would expect the two IQ measures to be similar. The popula-
tion mean IQ is 100.

SPSS provides us with a correlation between the two conditions:

As would be expected, there is a strong and positive relationship between the two IQ measures.
Remember to scan the first part of the output, which confirms how many pairs you have, and the 

names of the variables:

It can immediately be seen that the verbal IQ of the group is lower than their performance IQ.

In this case, our sample mean paired difference (between verbal and performance IQ) is 14.23. Regarding 
the population mean difference, we are 95% confident that the value falls between 11.03 and 17.42.

t (39) = -9.01 has an associated p-value of p 6 0.001, which means that, assuming the null 
hypothesis to be true, such a value would have occurred less than once in 1000 times. This is so unlikely 
that we conclude that the differences between the verbal and performance IQ of the group are unlikely 
to have arisen by sampling error.

Paired Samples Statistics

1.90350

2.03457

94.8750

109.1000

12.03880

12.86777

verbal iq

performance iq

Std. Error MeanMean Std. Deviation

40

40

N

Pair 1

Paired Samples Correlations

.00040 .680verbal iq & performance iq

Sig.N Correlation

Pair 1

Activity 7.5

Look at the following printout, which relates to the next two questions:

Paired Samples Test

Pair 1 verbal iq 2
performance iq

Mean

214.2250

Paired differences

Std.

Deviation

9.98842

Std. Error

Mean

1.57931

Lower

217.4195

95% Confidence

Interval of the

Difference

Upper

211.0305

t

29.007

df

39

Sig.

(2-tailed)

.000

3.520

Group Statistics

23.9000 11.13010Con2

.177815.6000 5.62110Con1

Std. Error MeanMean Std. DeviationN

Memory

condition
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Paired Samples Correlations

.00710 .786Con1 and Con2

Sig.N Correlation

Pair 1

Paired Samples Test

Pair 1 Con1 and Con2

Mean

28.3000

Paired differences

Std.

Deviation

7.558

Std. Error

Mean

2.390

Lower

213.707

95% Confidence

Interval of the

Difference

Upper

22.893

t

23.47

df

9

Sig.

(2-tailed)

.007

 1. The value of the test statistic is:

(a) 0.007
(b) 8.30
(c) 3.47

 2. The difference between the mean of condition 1 and 2 is:

(a) 8.3
(b) 7.558
(c) 2.390

Example from the literature

Health-related behaviours and medication adherence in patients with 
hepatitis C

Batool and Kausar (2015) hypothesised that there are likely to be significant changes in the pre- and 
post-diagnostic health-related behaviours of patients with hepatitis C. The sample was 100 patients 
diagnosed with hepatitis C. A questionnaire was used to assess these behaviours, in particular the 
researchers assessed medication adherence of the patients.

They used paired t-tests to analyse their results (p. 179).

Variables M (SD) t(99) p
95% CI
UL LL Cohen’s d

Pair 1 Exercise behaviour (pre) 1.38 (0.76) 0.48 -0.6 .25

Exercise behaviour (post) 1.65 (1.02) 2.54 .01

Pair 2 Diet behaviour(pre) 5.50 (2.48) -4.26 -3.15 1.32

Diet behaviour (post) 9.26 (1.34) 13.17 .001

Pair 3 Eating behaviour (pre) 18.01 (4.65) -5.98 -3.93 .96

Eating behaviour (post) 22.97 (2.90) 9.61 .001

Pair 4 Tiredness (pre) 1.93 (1.40) -1.15 1.87 .82

Tiredness (post) 3.44 (1.38) 8.23 .001

Pair 5 Drug behaviour (pre) 4.80 (0.96) - .26 - .02 2.33

Drug behaviour (post) 4.94 (.23) 2.32 .05
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The authors have given us all the information needed to assess their study: means, standard devia-
tions, the t values, exact probability levels, confidence intervals (upper limit and lower limit) and the 
effect size.

They say that apart from one result, they have demonstrated significant improvements in health-
related behaviours between pre-diagnosis and post- diagnosis.

Results demonstrated significant improvement in pre- and post-diagnosis health-related behaviours 
in patients with hepatitis C. Their exercise related and eating behaviours significantly improved post- 
diagnosis. However, they were feeling significantly more tired than they used to pre-diagnosis.

Activity 7.6

Look at the table above.

(a) Which result was the one which didn’t show improvement between pre- and 
post-diagnosis?

(b) Which pair showed the strongest effect size between pre- and post-diagnosis?

Multiple testing
If you perform several tests within one study or experiment, then some of your inferential statistical analy-
ses will give rise to results with low associated probability levels (e.g. 0.001) by sampling error alone. To 
allow for this, we recommend that you interpret your results in the light of this knowledge. The easiest 
way to do this is to divide 0.05 (the traditional criterion variable for significance) by the number of tests 

you are performing (in any one study), and then interpret your ASL accordingly.

So if, in your experiment, you carry out three t-tests, then:

ASL =

0.05

3
= 0.0167

Any ASL 7 0.0167 may be due to sampling error. Remember, however, that interpreting significance 

levels is just one piece of information contributing to the interpretation of your results. There are also effect 

sizes and confidence intervals.

Summary

• Confidence limits allow you to infer with a 
certain degree of confidence (usually 95%) that 
a population mean (or difference between 
means) falls within a certain range.

• d, an effect size, gives the magnitude of 
difference between two independent means, 
expressed in standard deviations.

• t-tests allow us to assess the likelihood of 
having obtained the observed differences 

between the two groups by sampling error: for 
example, p = 0.03 means that, if we repeated 
our experiment 100 times using different 
samples, then assuming no real difference 
between conditions, we would expect to find 
our pattern of results three times, by sampling 
error alone.

• t-tests are suitable for data drawn from a normal 
population – they are parametric tests.
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SPSS exercise

Twenty schoolchildren (ten boys and ten girls) have been measured on number of episodes of illness 
in one year, performance in a test at the beginning of the year, and performance in a similar test at the 
end of the year. Enter the following data into SPSS. Code the boys as group 1, and the girls as group 2.

Group Episodes of illness Test at beginning of year Test at end of year

1 24 13 16

1 20 16 20

1  8 7 18

1 12 30 35

1  5 5 5

1 24 10 15

1  0 9 10

1  8 15 24

1 20 18 30

1 24 20 27

2  7 18 17

2 30 14 10

2  2 20 20

2 10 9 10

2 18 13 9

2  9 13 16

2 20 10 1

2 10 16 14

2 15 5 6

2  8 7 14

Assume that data are drawn from a normally distributed population.

 1. Perform an independent t-test between boys and girls on ‘episodes of illness’, and on the end of 
year test.

 2. Calculate the effect size, d, where appropriate.
 3. Imagine that your friend does not understand the output you have obtained, nor does the friend 

know about effect sizes or confidence intervals. Write a few paragraphs explaining the meaning of 
the results to your friend.

 4. Perform a repeated-measures t-test on performance on the test at the beginning of the year and 
the end of the year. Give a written explanation of the meaning of your results to your friend. The 
prediction is that the group will perform better at the end of the year.

Discover the website at www.pearsoned.co.uk/dancey where you can test your knowledge with multiple 
choice questions and activities, discover more about topics using the links to relevant websites, and 
explore the interactive flowchart designed to help you find the right method of analysis.

http://www.pearsoned.co.uk/dancey
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 1. The DF for an independent t-test analysis with 20 participants in each condition is:

(a) 38
(b) 20
(c) 40
(d) 68

 2. For a paired t-test with 40 participants, the appropriate DF is:

(a) 20
(b) 39
(c) 38
(d) None of these

 3. For an independent t-test with 15 participants in each condition, the appropriate DF is:

(a) 28
(b) 14
(c) 30
(d) 15

 4. One hundred students were tested on their anxiety before and after an anxiety counselling session. 
Scores are drawn from a normally distributed population. Which statistical test is the most 
appropriate?

(a) Independent groups t-test
(b) Related measures t-test
(c) Levene’s test
(d) None of these

 5. The most important assumption to meet when using a t-test is:

(a) The variation in scores should be minimal
(b) Scores should be drawn from a normally distributed population
(c) Conditions should have equal means
(d) All of the above

 6. The higher the t-value, the more likely it is that the differences between groups are:

(a) A result of sampling error
(b) Not a result of sampling error
(c) Similar to each other
(d) None of the above

 7. A t-value of -5 is:

(a) Less important than a value of +5
(b) More important than a value of +5
(c) Equivalent to a value of +5
(d) Less significant than a value of +5

Multiple choice questions
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Questions 8 to 10 relate to the following tables of results:

 8. The difference between the means of the groups is (correct to one decimal place):

(a) 0.41
(b) 0.69
(c) 0.96
(d) 0.76

 9. The variances of the two groups are:

(a) Indeterminate
(b) Unequal
(c) Assumed to be equal
(d) Skewed

 10. What can you conclude from the results?

(a) There are no statistically significant differences or important differences between the two groups
(b) There is a statistically significant difference but it is not important
(c) There is an important difference between the two groups but it is not statistically significant
(d) There are both statistically significant and important differences between the groups

 11. The effect size for independent groups, d, can be calculated by:

(a) (mean 1 - mean 2) , mean SD
(b) (mean 1 + mean 2) , mean SD
(c) (mean 1 - mean 2) , SEM
(d) (mean 1 + mean 2) , SEM

Independent Samples Test

Total of

stigma

Equal

variances

assumed

Equal

variances

not

assumed

F

.755

Levene’s

Test for

Equality of

Variances

Sig.

.387

t

2.408

2.406

df

113

107.199

Sig.

(2-tailed)

.684

.686

Mean

Difference

2.9592

2.9592

Std.

Error

Difference

2.3493

2.3632

25.6136

25.6439

t-test for Equality of Means

95%

Confidence

Interval of the

Difference

Lower Upper

3.6951

3.7255

Group Statistics

1.5386

1.7937

33.8710

34.8302

12.1149

13.0586

62

53

1.00

2.00

Std. Error MeanMean Std. DeviationN

Total of stigma

SEX
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 12. If the 95% confidence limits around the mean difference (in a t-test) are 10.5 - 13.0, we can conclude 
that, if we repeat the study 100 times, then:

(a) Our results will be statistically significant 5 times
(b) Our results will be statistically significant 95 times
(c) 95% of the time, the population mean difference will be between 10.5 and 13.00; 5% of the time, 

the population mean difference will be outside this range
(d) 5% of the time, the population mean difference will be between 10.5 and 13.00; 95% of the time, 

the population mean difference will be outside this range

 13. In an analysis using an unrelated t-test, you find the following result:

  Levene’s Test for Equality of Variances: F = 0.15, p = 0.58

  This shows that the variances of the two groups are:

(a) Dissimilar
(b) Similar
(c) Exactly the same
(d) Indeterminate

 14. In the SPSS output, if p = 0.000, then you should report this as:

(a) = 0.000
(b) = 0.0001
(c) 60.001
(d) 60.0001

 15. In an independent t-test, you would use the ‘equal variances not assumed’ part of the output when 
Levene’s test is:

(a) Above a criterion significance level (e.g. p 7 0.05)
(b) Below a criterion significance level (e.g. p 6 0.05)
(c) When numbers of participants are unequal in the two conditions
(d) When you have skewed data

 16. For a within-participants design using 20 people, the degrees of freedom are:

(a) 20
(b) 38
(c) 19
(d) 40

 17. Levene’s test is:

(a) A test of heterogeneity that relies on the assumption of normality
(b) A test of homogeneity that relies on the assumption of normality
(c) A test of heterogeneity that does not rely on the assumption of normality
(d) A test of homogeneity of variances that does not rely on the assumption of normality

Read the following excerpt from a results section of a journal article (Ratcliff et al., 2003), then answer 

question 18:

The changes in mean scores on all tests between Wave 4 and Wave 5 were statistically significant 

based on the paired t-test (all of the p values 6 .001, except MMSE, p = .012; Word List Learning, 

Delayed Recall, p = .009; Boston Naming, p = .019).
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 18. Why are ‘all of the p values’ reported as p 6 0.001, when the other named variables have been 
reported with the exact probability values?

(a) The researchers could not work out the exact probability values
(b) The significance level in their statistical program calculated p = 0.000
(c) The unnamed variables are not as significant
(d) All of the above

Questions 19 and 20 relate to the following table:

 19. Which row would the researcher use to interpret the independent t-test results?

(a) The equal variances row
(b) The unequal variances row

 20. Generalising to the population, what sign would the expected t-value take?

(a) Positive
(b) Negative
(c) It could be either positive or negative

Independent Samples Test

Serious

economic

consequences

Equal

variances

assumed

Equal

variances

not

assumed

F

.113

Levene’s

Test for

Equality of

Variances

Sig.

.738

t

.923

.882

df

106

16.607

Sig.

(2-tailed)

.358

.391

Mean

Difference

.5258

.5258

Std.

Error

Difference

.56951

.59644

2.60327

2.73481

t-test for Equality of Means

95%

Confidence

Interval of the

Difference

Lower Upper

1.65494

1.78649
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CHAPTER OVERVIEW

Previously you learnt to describe and analyse the relationships between variables and also to analyse 

the differences between two conditions. In those chapters, we encouraged you to use different 

methods of analysis in order to make sense of the data, and to give your readers (usually your lectur-

ers who are marking your work) as full a picture as possible. Thus we encouraged you to describe your 

data, by using graphical illustrations, measures of central tendency and variability; we gave you a 

simple method by which you could calculate an effect size, and we introduced you to confidence 

intervals (CIs). We also encouraged you to report the achieved significance level (exact probability 

figure, ASL).

In this chapter, we are going to discuss the concepts above in greater depth. We are going to discuss 

the issues surrounding the reporting of probability levels, and we will introduce a new concept – the 

concept of power. Power is the ability to detect a significant effect, where one exists. It is the ability 

that the test has to reject the null hypothesis correctly. It is important to have an understanding  

of such issues before you run your own experiments and studies, which is why we are introducing 

them now.

In this chapter, you will learn about:

■ the relationship between power, effect size and probability levels

■ the factors influencing power

■ issues surrounding the use of criterion significance levels.

To enable you to understand the issues discussed in this chapter, you will need to have understood 

correlational analysis (Chapter 6) and the analyses of differences between two groups using the t-test 

(Chapter 7).

Issues of significance

8

 8.1 Criterion significance levels

As noted earlier in the book, it was common practice for many years simply to report probability 
values as being 60.05 or 70.05. This convention arose partly because, prior to the advent of 
powerful computer packages such as SPSS, the exact probability could not be  determined easily. 
However, there are good reasons why the exact probability should always be reported.

For example, imagine that you run an experiment, analyse it and find an associated probabil-
ity value of 0.049. Subsequently, you decide to replicate the experiment, but this time you find 
a probability level of 0.051. To report the first study as being ‘significant’ at the 60.05 level 
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and the second study as being ‘non-significant’ at the 70.05 level is misleading, particularly 
given the fact that when you carry out a study there is always a certain amount of error (see 
section 5.4). That is, if you re-run the experiment you might well find an associated probability 
value of 0.06, or 0.04. Similarly, as Howell (2010) observes, is it reasonable to treat 0.051 and 
0.75 as being equally non-significant by reporting them both as 70.05? Moreover, should 0.049 
and 0.00001 be thought of as being equally significant by reporting them both as p 6 0.05?

Furthermore, an additional problem associated with the 70.05/60.05 approach is that it 
tends to lead to a sort of ‘mind-set’ in which the 0.05 cut-off point is regarded as a rule that 
must never be broken. Consequently, people tend to assume that if a result is below this thresh-
old it must be important, and if it is above this threshold it is of no interest. The problem is that 
this cut-off point was always intended simply as a guideline, not a cut-and-dried rule, because 
it was appreciated that statistical significance is not always equated with importance. This is 
because statistical significance is affected by sample size, as we will see later. Marewski and 
Olsson (2009) liken using the criterion value of p 6 0.05 to a ritual which is used just because 
it has always been used, much like other rituals such as this (p. 49):

Papua New Guinea, in the 1940s: some of the Eastern tribes sprinkle their blood on the soil 
each spring. Their reason: they just do whatever their ancestors did, otherwise something 
terrible will happen. This ritual is hard to abolish.

Although exact p-values provide more information than reporting 60.05 or 70.05, the conven-
tion of using criterion probability values has its supporters, many of whom believe that the 
conventional method of reporting p-values provides a common standard for evaluating statisti-
cal claims. However, as Rosnow and Rosenthal (1989) said:

Surely God loves the 0.06 nearly as much as the 0.05.

The exact probability level lets your reader know the likelihood of your results having been 
obtained by sampling error, given that the null hypothesis is true. The probability level is one 
piece of information to be taken into account in interpreting your results. We are not arguing 
against reporting probability values! As Macdonald (1997) says:

Data should be seen as evidence to be used in psychological arguments and statistical sig-
nificance is just one measure of its quality. It restrains researchers from making too much of 
findings which could otherwise be explained by chance.

In 1993 Geoffrey Loftus wrote that ‘a picture is worth a thousand p values’. In this paper, he 
advocated using graphs, barcharts and other pictures, and demonstrated that such methods are 
extremely helpful to readers trying to make sense of the data. He has recently written another 
article on this topic (Fidler and Loftus, 2009). It seems that in the intervening years, many 
academics in different fields of work (not just psychology) still use a criterion of p 6 0.05 for 
‘significance’ without giving information about the size of the effect, and in some cases, authors 
omit the test statistic entirely.

Personal reflection

From Professor Geoffrey Loftus
Department of Psychology
University of Washington
Seattle, USA



Statistics without maths for psychology248

“I am, by nature, sufficiently dimwitted that I can only understand some concept when it’s presented 
to me in an extremely clear and straightforward manner. So I felt pretty confused when I first learned 
about statistical hypothesis testing as a Brown University undergraduate in 1966, and felt only margin-
ally less confused when I learned about it again as a Stanford University graduate student in 1969. To 
me, hypothesis testing seemed complicated, unintuitive, misleading, and, in general, a profoundly indi-
rect way of trying to unveil what a data set was trying to tell you. So was there a reasonable alternative 
to deal with the inevitable statistical error that accompanies data collection? Yes! I began, in my early 
years, to figure out that the process of plotting data accompanied by confidence intervals seemed to 
accomplish the same thing as hypothesis testing but in a manner that was clearer, more intuitive, and 
more straightforward. I noticed, meanwhile, that other sciences – Physics, say – made zero use of 
hypothesis testing as a means of transiting from data to conclusions, while at the same time making 
considerable use of confidence intervals. To me this constituted an important clue about why there 
seemed to be a lot of progress in those sciences, compared to a lot of confusion, misunderstanding, 
and backfilling in Psychology. I didn’t do much about this personal angst beyond whining to my col-
leagues and stubbornly refusing to carry out hypothesis testing in my own research articles until 1991 
when I was asked by Contemporary Psychology to review a marvelous book about the history of statis-
tics called The Empire of Chance. I entitled my CP review ‘On the tyranny of hypothesis testing in the 
social sciences’ and used the review (as is so subtly suggested by its title) as a vehicle to articulate all 
that that I found lacking in current statistical practice within Psychology. Over the intervening two 
decades, I’ve taken a more active role, issuing forth talks, articles, and chapters bemoaning the preva-
lence of hypothesis testing and suggesting alternatives, particularly the use of data plots and confi-
dence intervals. During the mid-1990s, I agreed to serve a four-year term as editor of Memory and 
Cognition primarily so that I could try to directly influence the nature of data analysis in at least one 
major psychological journal – to slash the reliance on hypothesis testing while ramping up the reliance 
on plotting data with accompanying confidence intervals (this attempt met with mixed results). In 1994 
I published, with Mike Masson, an article in which we described a new use of confidence intervals in 
within-subjects designs. I became increasingly strident in crafting my refusals to requests from editors 
that I include hypothesis testing in manuscripts that I’d submitted to their journals. I could go on and 
on here, but there’s not space for it. My nutshell summary of my general feelings is, I think, best captured 
in a soliloquy which I always deliver at some point to the undergraduates in an advanced statistics 
course that I teach yearly. Roughly speaking, it goes like this:

OK, everyone listen up. For the next few minutes, what I’m going to say is really important. So please 
stop texting, web surfing, newspaper reading, or anything else besides listening to me. OK? Here we go. 
In the kinds of experiments that we do in Psychology, we would ideally like to find out the values of 
population parameters – typically, although not always, we would like to determine, as best we can, the 
pattern of population means over the conditions in our experiment. We can’t determine exactly what 
these population parameters are because all experiments are bedeviled by statistical error which 
obscures them. Statistical analysis is largely designed to address this problem in one way or another. 
The most prevalent such analysis technique is hypothesis testing, whose main goal is to conclude, if 
possible, that a set of population means does not conform to one specific pattern, namely, ‘they’re all 
the same’. If we make this conclusion, that is if we ‘reject the null hypothesis’, we don’t get very far 
because the hypothesis testing process doesn’t readily provide us with any idea about which of the 
infinite set of possible alternatives to ‘they’re all the same’ is the correct one. If on the other hand we 
don’t make this conclusion, then we’re sorely tempted to make the error of concluding, either implicitly 
or explicitly, that the population means are all the same. In short, hypothesis testing at best provides 
us (sort of) with one instance of what the pattern of population means that we’re seeking isn’t, and at 
worst just leads us astray. A second analysis technique is to plot your sample means with associated 
confidence intervals around them. This technique provides you, immediately, intuitively, and directly, 
with two critical pieces of information. First the pattern of sample means that you observe constitutes 
your best estimate of the corresponding pattern of population means which is exactly what you’re 
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The debate relating to the use of exact or criterion probability levels is just a small part of a 
larger controversy relating to the place of Null Hypothesis Significance Testing (NHST) in 
psychology. The controversy is not new – it has been going on for over 50 years, and eminent 
psychologists and statisticians can be found on both sides of the debate.

In April 2015, The Psychologist reported that the journal Basic and Applied Social Psychology 
had banned the use of p-values in this journal. They also seem to have banned the use of 
confidence intervals. The editors stated that the ban will increase the quality of submitted 
articles and increase creativity. They now require larger sample sizes and strong descriptive 
statistics. Although some psychologists think this is a good move, others strongly disagree. 
Morris and colleagues at the University of Northampton wrote a long reply in the May edition 
of The Psychologist, justifying the use of confidence intervals. saying that confidence intervals 
give valuable probabilistic information about the true location of the population mean. They 
followed this with an article in the June edition (Smith and Morris, 2015) which explored the 
usefulness of confidence intervals. However, confidence intervals are actually based on NHST, 
as we know. Breanne Chryst, writing a letter in the August edition of The Psychologist, states 
that CIs are not particularly interesting because they don’t mean what most psychologists think 
they mean.

So the debate continues. For now, it’s safer to report as much as you can in your results 
 sections: descriptive statistics, test statistics (e.g. t values), exact probability values, confidence 
intervals, and effect sizes! These will be discussed in the following sections.

There are many journal articles relating to this topic, and if you wish to read further, we 
suggest you look at Fidler and Loftus (2009), Cummings (2014) and Savalei and Dunn (2015).

seeking. Second, the confidence intervals provide you with a sense of how seriously you should take 
this pattern of sample means as an estimate of the underlying pattern of population means. Small 
confidence intervals: take it seriously. Large confidence intervals: don’t take it so seriously and go out 
to collect some more data. Notice that plotting the means with the confidence intervals tells you pretty 
much everything you’d find out by carrying out a hypothesis test. The reverse, however, doesn’t hold. 
So it’s up to you to choose between these techniques (or invent others if you feel creative). Any 
 questions? OK, go back to whatever you were doing.”

Personal reflection

Professor Robert Rosenthal
University of California

Professor Robert Rosenthal began his academic career at the University of California and University 
of North Dakota before moving to Harvard in 1962, where he stayed for 36 years. In 1992 he became 
chairman of the psychology department. In 1999 he and his wife then moved back to California. His 
research includes the investigation of self-fulfilling prophecies, in particular the effect of teachers’ 
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expectations on students. However, he has also published work in the statistical field and, with other 
quantitative scholars, was on the APA’s Board of Scientific Affairs’ Task Force on Statistical 
Inference.

The many awards he has won include the 2003 Gold Medal Award for Life Achievement in the 
 Science of Psychology of the American Psychological Foundation.

Professor Rosenthal is still passionate about psychology (and statistics!). In the concluding paragraph 
of a chapter which he contributed to in a recent book (Rosenthal, 2008), he says:

“Of course, much of what we really wanted to know is still not known. But perhaps that’s not too bad. 
It’s true that finding the answer is the outcome we want, but the looking itself, when it’s done with as 
good colleagues and as good students as I’ve had – that’s not so bad either.”

Professor Rosenthal has been arguing against over-reliance on the p-value for around 
46 years! We asked him if he thought that things have improved lately in this respect. He told 
us, ‘I think things may now be a bit better than they were, but the enshrinement of the 
.05 continues to slow the progress of our field’ (Rosenthal, 2006). Professor Rosenthal wrote 
a poem about the p-value, and uses it in his teaching and lectures (see Activity 8.1).

Activity 8.1

I. The problem
Oh, t is large and p is small
That’s why we are walking tall.
What it means we need not mull
Just so we reject the null.
Or chi-square large and p near nil
Results like that, they fill the bill.
What if meaning requires a poll?
Never mind, we’re on a roll!
The message we have learned too well?
Significance! That rings the bell!

II. The implications
The moral of our little tale?
That we mortals may be frail
When we feel a p near zero
Makes us out to be a hero.
But tell us then is it too late?
Can we perhaps avoid our fate?
Replace that wish to null-reject
Report the size of the effect.
That may not insure our glory
But at least it tells a story
That is just the kind of yield
Needed to advance our field.
 (Robert Rosenthal, 1991)

Why do you think Rosenthal wrote this poem? What is he trying to tell us?
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 8.2 Effect size

You learnt, in Chapters 6 and 7, ways of calculating an effect size. An effect size is the magni-
tude of the difference between conditions, or the strength of a relationship. There are different 
ways of calculating effect sizes. You learnt of a natural effect size (a correlation coefficient) 
and how to calculate the size of the difference between means, in terms of standard deviations 
(d). In other words, by how many standard deviations did the means differ? Remember how 
easy it is to calculate d:

x1 - x2

mean SD

As mentioned above, d is the distance between the two means in terms of standard deviations. 
If there is a large overlap between the two groups, the effect size will be relatively small, and 
if there is a small overlap, the effect size will be relatively large.

Sometimes the effect size is easy to calculate (as in the case of two conditions); at other times 
it may be more difficult. Report the effect size, however, when you can. Sometimes psycholo-
gists know the size of the effect that they are looking for, based on a knowledge of previous 
work in the area. Statisticians have given us guidelines (remember – guidelines, not rules) as 
to what constitutes a ‘small’ effect or a ‘large’ effect, as we learnt in the previous chapter. These 
are guidelines developed by Cohen (1988):1

Effect size d Percentage of overlap (%)

Small 0.20 85

Medium 0.50 67

Large 0.80 53

There are other measures of effect, and these are covered later. However, d is widely reported 
and understood, so it is important that you understand how to calculate and interpret it. Robert 
Rosenthal and his colleague Ralph Rosnow are still writing articles to show academics how 
much better it is to report the test statistics, the exact p-value, the direction of the effect and 
enough information that readers are given the fullest picture of the results. If you wish to learn 
more about why you should use effect sizes, when to use them and how to use them, see Rosnow 
and Rosenthal (2009).

 8.3 Power

Sometimes you will hear people say things like ‘the t-test is more powerful than a Mann– 
Whitney’ or ‘repeated-measures tests have more power’. But what does this really mean? 
Power is the ability to detect a significant effect, where one exists. And you have learnt that 
by ‘effect’ we mean a difference between means, or a relationship between variables. Power 
is the ability of the test to find this effect. Power can also be described as the ability to reject 
the null hypothesis when false. Power is measured on a scale of 0 to +1, where 0 = no power  
at all. If your test had no power, you would be unable to detect a difference between means, 
or a relationship between variables; 0.1, 0.2 and 0.3 are low power values; 0.8 and 0.9 are high 
power values.

1A table giving the percentage overlap for d values 0.1 to 1.5 was given earlier (in section 7.1.6).
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What do the figures 0.1, 0.2, etc. mean?

• 0.1 means you have only a 10% chance of finding an effect if one exists. This is hopeless. 
Imagine running a study (costing time and money!) knowing that you would be so unlikely 
to find an effect.

• 0.7 means that you have a 70% chance of finding an effect, where one exists. Therefore you 
have a good chance of finding an effect. This experiment or study would be worth spending 
money on.

• 0.9 means that you have a 90% chance of finding an effect. This rarely happens in psycho-
logical research.

You can see, then, that if your power is 0.5, you have only a 50:50 chance of finding an effect, 
if one exists, which is really not good enough.

You can probably see that we should find out about our power level before the experiment 
or study is run, as there is not much point doing all that work, finding nothing and then realising 
that we had only a small chance of finding an effect.

 8.4 Factors influencing power

• The size of the effect you expect to find.

• The criterion significance level (i.e. the value of the significance level at which you are 
prepared to accept that results are probably not due to sampling error).

• The numbers of participants in the study.

• The type of statistical test you use.

• Whether the design is between-participants or within-participants.

• Whether the hypothesis is one- or two-tailed.

 8.4.1 Size of the effect

For calculating a power value, you need to have an idea of the effect size that you are looking 
for. How do you know this before carrying out the study or experiment? If there is past research 
in the area, you can look at the journal articles and try to find out the effect sizes found by the 
researchers. Sometimes authors will have given effect sizes; sometimes you will be able to 
calculate them. Past research is a good guide to the sort of effect you might find. If there is no 
past research in the area (unlikely), you can fall back on Cohen’s values (Cohen, 1988). In 
psychology, small to medium effect sizes are more likely than large effect sizes.

A large effect size will be easier to detect than a small effect size. You will need more power 
to find small effect sizes.

 8.4.2 Criterion significance level

This is the probability level that you are willing to accept as the likelihood that the results were due 
to sampling error. Let’s say that Betty Beech decides to be reasonably strict, and will consider 
interpreting her results only if the associated probability level is 0.02. If her ASL does not reach this 
level, she is going to interpret any effect as ‘probably being due to sampling error’. This means that 
her result will be interpreted only if it falls into the tail of the distribution shown in Figure 8.1.

Adam Ash, however, decides (for reasons best known to himself!) that he will interpret his 
results if the associated probability level is 0.16. If his ASL does not reach this level, he will 
interpret his result as being ‘probably due to sampling error’. This means that his result will be 
interpreted if it falls into the tail of the distribution shown in Figure 8.2.2

2One-tailed hypothesis.
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It should be evident that Adam Ash stands a much greater chance of finding an effect, since 
he has been more lax with his criterion.

When psychologists need to use a criterion significance level, they should choose it carefully. 
Normally this varies from 0.01 to 0.05, but it can be as high as 0.10, depending on the type of 
experiment or study they are running. Choosing a criterion value should be a mindful act; the 
p 6 0.05 should be chosen carefully, not just selected because that is how it’s always been done.

Figure 8.1 Normal distribution, showing area under the curve

0.0215

23 22 21 0 1 2 3

p 5 0.02

Figure 8.2 Normal distribution, showing area under the curve

0.1359

23 22 21 0 1 2 3

p 5 0.16

2.186

Group Statistics

13.6667 3.7863no noise

.5009.5000 .7072noise

Std. Error MeanMean Std. DeviationN

SCORE

noise and no noise

Activity 8.2

A power level of 0.7 means that a researcher has:

(a) 49% chance of finding an effect
(b) 7% chance of finding an effect
(c) 70% chance of finding an effect

 8.4.3 Number of participants

The larger the sample size, the greater the power. You may have heard people say that, if you 
have a large sample size, you have a greater chance of a statistically significant result. This 
seems strange, since whether we declare a result ‘statistically significant’ seems to depend on 
sample size. This is, of course, a problem of relying too heavily on associated probability values, 
rather than on effect sizes and confidence intervals.

We can see this by using an example. Let’s say that we are looking at the differences between 
the noise and no-noise groups in the examples in Chapter 7, using five participants.
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There are so few participants in this study that, although it looks as if there is quite a difference 
between means (4.17 – and in the expected direction), this could have just been due to sampling 
error. It makes intuitive sense to think that, if we repeated this study with another five 
 participants, they could have totally different scores, just by chance. Consequently, you have to 
find a much larger difference between the groups with this number of participants for your 
confidence intervals to be narrower and for the associated probability value to be lower. If you 
use a larger number of participants in each group, you would find that the test is declared 
 ‘statistically significant’ with a smaller difference between the groups. In the present example, 
the confidence interval is wide. The mean population difference is expected (95% confidence) 
to be between 13.225 and +4.892. This means we are confident that, if we repeated the 
 experiment, the mean of the noise group might be larger than the no-noise group (-), the 
 no-noise group might be larger than the noise group (+), or they might be equal (0). This is 
similar to saying we are confident that it might be good, bad or neutral weather tomorrow. Not 
much use at all. With so few participants, we have low power – if an effect exists, we are unlikely 
to find it, because any effect just might have been due to sampling error.

Let’s repeat the study, this time using 216 participants.

Independent Samples Test

SCORE Equal

variances

assumed

Equal

variances

not assumed

F

5.660

Levene’s

Test for

Equality of

Variances

Sig.

.098

t

21.46

21.86

df

3

2.20

Sig.

(2-tailed)

.239

.192

Mean

Difference

24.1667

24.1667

Std.

Error

Difference

2.846

2.242

213.225

213.012

t-test for Equality of  Means

95%

Confidence

Interval of  the

Difference

4.892

4.678

.347

Group Statistics

12.9623 3.570106No noise

.3209.1364 3.355110Noise

Std. Error MeanMean Std. DeviationN

SCORE

noise and no noise

Independent Samples Test

SCORE Equal

variances

assumed

Equal

variances

not assumed

F

1.024

Levene’s

Test for

Equality of

Variances

Sig.

.313

t

28.12

28.11

df

214

211.92

Sig.

(2-tailed)

.000

.000

Mean

Difference

23.8259

23.8259

Std.

Error

Difference

.471

.472

24.755

24.756

t-test for Equality of  Means

95%

Confidence

Interval of  the

Difference

22.897

22.896
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This time, the difference between the means is actually smaller: 3.82. However, using so many 
participants means that we are much more certain that the result is not just due to chance, or 
sampling error. If we repeated the study with another 216 people, we have a lot more confidence 
that we would get similar results. This time the confidence intervals show us that we are con-
fident that the difference lies between 4.8 and 2.9 (remember, if both signs are negative we can 
ignore the sign). That is, we can be 95% confident that the population figure for the no-noise 
condition will be significantly higher than for the noise condition. With more participants, we 

have a greater likelihood of detecting a significant effect; we can be more certain that the effect 

is due to something other than sampling error.
However, notice that our result has become ‘more significant’ if you home in on the signifi-

cance level only. Has it really become more significant, even though the mean difference is 
smaller? The answer is no. We have more confidence in our ability to generalise to the wider 
population, using a greater number of participants, but, in a way, finding a larger difference 
with a smaller number of participants is more impressive because it is harder to find an effect 
with small participant numbers. Obviously, using five participants as in our first example is 
both unrealistic and not useful, because we cannot generalise, and using so few participants 
means that our results stand a high chance of being obtained by sampling error alone. 
 Demonstrating that statistical significance depends on sample size is important because it shows 
you that statistical significance does not necessarily mean practical or psychological  importance. 
This is why you need other ways of assessing the importance of your study – such as effect sizes 
and confidence intervals.

Activity 8.3

A researcher runs an experiment with a large number of participants, and power is 
0.9. She finds no effect at all. Which is the most sensible conclusion?

(a) There is an effect but she did not have enough power to find it.
(b) She had enough power to find an effect, so it seems likely that there really is no 

effect.

 8.4.4 Type of statistical test

Parametric tests are more powerful than non-parametric tests, provided that you meet the 
assumptions. Thus a t-test is more likely to find an effect than its non-parametric equivalent 
(see Chapter 16), provided that you have met the assumptions for a parametric test.

 8.4.5 The design

Repeated-measures designs increase power because they reduce within-participants variability, 
as each participant acts as his or her own control. Consider a repeated-measures design rather 
than an independent design if you can.

 8.4.6 One- or two-tailed test

If a one-tailed test is appropriate, then use it. Two-tailed hypotheses require larger sample sizes 
than one-tailed to compensate for the loss of power.
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 8.5 Calculating power

The actual power level (e.g. 0.7) for a particular study or experiment can be calculated by the 
following:

1. Number of participants in the study.
2. Effect size you are looking for.
3. A criterion probability value (e.g. p = 0.10).

Say you decide to run a two-group, independent design, to be analysed with a between- 
participants t-test (two-tailed). You are thinking of running ten participants in each group and 
are looking for a medium effect size. Since you know 1, 2 and 3 above, you can calculate power. 
Often, we do not need to hand calculate because there are computer programs or textbooks that 
provide tables (e.g. Stevens, 2009). For our example, we find that, with only ten participants in 
each group, we have a less than 20% chance of finding an effect, if one exists. Knowing this 
before we carry out our study, we can, if it is possible, increase the number of participants in 
the study. To have a good chance of finding an effect (e.g. power = 0.7), we will need to find 
100 participants (50 in each group) for our study!

Now, if you run a study without calculating power, and then find a significant effect, it was 
obvious that you had enough power. After all, if you did not have enough power, you would not 
have found an effect. Therefore, after the experiment, a knowledge of power is more important 
when you do not find an effect. This is because then you cannot be sure whether (a) there was 
really no effect, or (b) there was an effect, but you did not have enough power to find it.

Power calculations for all sorts of statistical tests can be found in Howell (2010). The more 
complex the statistical analysis, the more complex the power calculations. However, hand cal-
culations are becoming less common with the advent of good statistical packages for power, 
especially online programs.

Example from the literature

Predicting resistance to health education messages for cannabis use:  
the role of rebelliousness, autic mastery, health value and ethnicity

Boddington and McDermott (2013) describe calculating power for their study (p. 6):

Power calculation
A calculation was performed using ‘G*Power 3.1’ (Faul et al., 2009) with the type of test specified as 
multiple regression. Employing a medium effect size (.15), a significance level of p = .05, with five 
predictor variables (the greatest number of predictor variables used in one single regression) the 
power achieved was 89%. Therefore this study had sufficient power to detect an effect if one existed.

 8.5.1 Calculating the number of participants required

It follows from the above that, if you know (a) the power level you want, (b) the effect size and 
(c) the criterion significance level, then you will find (d) how many participants you need for 
the study or experiment you intend running. In fact, a knowledge of three of any one of these 
four parameters will enable you to calculate the fourth. However, students need most often to 
determine how many participants they need for a particular study. It might be thought that the 
best idea is to forget all these calculations and just run as many participants as you can, 
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but normally this cannot be done. Often it would not be possible to finance such costly studies. 
Sometimes your participants are a minority population (e.g. children with brain damage or 
people with unusual health problems). In this case, it is often difficult to study large numbers 
of participants.

Anyway, why run hundreds of participants when it is not necessary? As long as you have 
enough participants, power-wise, you need not obtain more. Imagine a person who has heard 
about =bigger sample = more power> and runs 2000 participants. In this case, a minute effect 
will be declared statistically significant at the p = 0.0001. This is a case of statistical signifi-
cance, but no practical significance. In such cases, a tiny effect (either a small difference 
between means, or a weak relationship between variables) will have a low associated probability 
level. This is why you need to look at measures of effects, and confidence intervals, as well as 
probability levels.

The power calculations given in Howell (2010), for example, would enable you to calculate 
how many participants you would need for various types of statistical analysis. However, an 
easier way perhaps, if you decide to hand calculate, is to look at Kraemer and Thieman (1987), 
who show you how to calculate how many participants you will need for various types of 
 analysis. A more up-to-date book (but with a higher difficulty level), is by Christopher 
 Aberson (2010).

There are also online statistical power programs such as PASS and GPOWER. You will be 
able to find information on various different power packages by Googling using keywords such 
as ‘online power analysis’; some of these can be downloaded free of charge. Some statistical 
texts (such as Stevens, 2009) give useful power tables. SPSS gives you power values for some 
tests: for instance, the factorial ANOVA test (which you will learn about in Chapter 10) includes 
an estimate of power. However, in other cases you will probably need to use a program such as 
PASS or GPOWER, or an online power calculator. For those of you who like to hand calculate, 
see Howell (2010) or Kraemer and Thieman (1987).

Sometimes psychologists tell us why they have chosen a certain sample size: for example, 
Rowe, Lavender and Turk (2006) designed a study comparing participants with Down’s 
 syndrome with learning disabled participants without Down’s syndrome. In the ‘participants’ 
 section they note that ‘a sample size of 26 was required to achieve a power level of 0.80 
 (Bilkman and Rog, 2008), assuming an effect size of 0.80.’

Rowe et al. are informing us that they assume a large effect size, and in wanting a power level 
of 0.80, they have calculated a sample size of 26 (using information from Bilkman and Rog).

 8.5.2 The importance of power when no effect has been found

As we mentioned previously, power is particularly important when the effect size that we find 
is small or non-existent. This is because we cannot tell whether there really is an effect and 
we have failed to find it, or whether there really is no effect. When you have small effect 
sizes, therefore, you need to be able to report the power level that you had. In reporting find-
ings that have no statistical significance, some psychologists report how many participants 
would be needed to find an effect. In cases where the number of participants needed to find 
an effect is truly enormous (and in most cases it would be unreasonable to expect  psychologists 
to run thousands of participants), this implies that the effect size is so small that there really 

is no effect.
This means that power is important both before a study is carried out, and afterwards. You 

should determine the probability of correctly rejecting the null hypothesis before you begin 
your study, so that you do not waste your time finding hundreds of participants, when fewer 
would suffice. You need to carry out power afterwards so as to determine whether any non-
significant results were likely to be due to low power, or whether it is really likely that there are 
no significant differences between the groups. For a good article on power and related topics, 
see Osborne (2008).
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Activity 8.4

Use a search engine on the Internet to find some power programs that you can either 
download or use online.

Example from the literature

The effect of deception on specific hand gestures

Hillman, Vrij and Mann (2012) looked at hand gestures in liars and truth tellers, in the context of 
 Forensic Psychology (see Chapter 7).

Section 8.5.2 shows the importance of power when no effect has been found.
Hillman et al. hypothesised that truth tellers would make more rhythmic pulsing gestures than liars 

(see Chapter 7). However, the difference between the two groups was not statistically significant, 
although the effect size was moderate (.44).

The researchers stated that as the sample size was small (N = 40), post hoc statistical power  analyses 
were carried out. As you know, a power of 0.7 and above is an acceptable power level. Hillman et al. 
note that in order to detect a moderate effect in this study, 64 participants were needed. However, they 
had only 40 participants, and power was only 0.39. This means there was only a 39% chance of finding 
a moderate effect, if such an effect existed. They believe that the study was predisposed,  therefore, to 
a Type II error (failure to find a difference). The authors believe that the fact they actually found a 
moderate effect, given these conditions, means that it is likely that there really is a meaningful differ-
ence between the two means. The authors are placing importance on power and effect size, rather 
than simply using probability values, as a guide to psychological importance.

 8.6 Confidence intervals

Imagine that you ask people to estimate how many students are in the first year of a typical 
psychology BSc undergraduate degree course. Quite often you would get a reply like ‘140 give 
or take 5 either way’. In other words, people will produce both a point estimate and an interval 
estimate. The 140 is their best guess (i.e. a point estimate), and the ‘5 either way’ is an attempt to 
give a range within which they are fairly certain the correct number falls (i.e. an interval estimate).

The significance of the above is that parametric tests generally involve calculating point 
estimates of the population mean and population variance. The sample means that we obtain are 
point estimates of the population means. If we repeated the experiment, however, it is unlikely 
that we would obtain exactly the same sample means again, and this, of course, means that our 
estimates could be slightly different from the real population means. It would  obviously be help-
ful, therefore, to obtain an interval estimate within which we could be fairly certain our popula-
tion means fall. This is what confidence intervals around the mean, which are available under 
the Explore command in SPSS, provide. (Confidence intervals were introduced in  section 4.5.)

Earlier you saw that confidence intervals could be constructed around Pearson’s r (see 
 Chapter 6). You also saw that they could be constructed around means (for the independent 
t-test) and around the difference between means (for the paired t-test) (see Chapter 7). Later 
(Chapter 12), you will see that we can construct confidence intervals around regression lines. 
For some statistical tests, where SPSS does not provide confidence intervals, it is not easy to 
calculate them. We suggest that, at this stage, you do not worry too much on the occasion when 
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you find you cannot calculate them. Report them when you can, however – they will be very 
informative to your readers.

Obviously a narrow confidence interval is far more useful than a wide one. The more power 
your test has (as discussed above), the narrower your confidence intervals will be.

Example from the literature

Health complaints and unemployment: the role of self-efficacy in a 
prospective cohort study

Zenger et al. (2013) conducted a study which included examining the influence of self-efficacy on 
health complaints. Participants answered questionnaires at two timepoints, seven years apart. The 
questionnaires included the General Self-efficacy questionnaire (Schwarzer and Jerusalem, 1995), the 
Symptom Checklist-9 (Klaghofer and Brähler, 2001) and the Giessen Subjective Complaint List-24 
 (GBB-24) (Brähler, Hinz and Scheer, 2008). The Symptom Checklist-9 covers a broad range of 
 psychological impairments, and the GBB-24 consists of four subscales: exhaustion, gastrointestinal 
complaints, limb complaints and heart-related complaints.

The authors divided the participants into three groups according to their self-efficacy scores at Time 
1 (low, medium or high). They then looked to see whether these groups differed in physical and 
 psychological complaints at Time 2. The authors say: ‘Due to the fact that results of the groups with 
medium and high self-efficacy were nearly equal, both groups were combined and contrast with the 
low-level group by calculating effect sizes (Cohen’s d) of the mean differences.’

These are given in the following table (p. 105):

Calculated effect sizes and confidence intervals of mean differences between low and medium/high self-efficacy

Effect size Confidence interval

GBB exhaustion 0.39 0.17–0.61

GBB gastrointestinal 0.41 0.19–0.63

GBB limb 0.27 0.05–0.49

GBB heart-related 0.36 0.14–0.58

GBB sum score 0.42 0.20–0.64

SCL-9 sum score 0.54 0.32–0.77

So the mean difference between the groups in exhaustion was 0.39 SD, and generalising to the 
 population, the effect size is 95% likely to fall between 0.17 and 0.61 SD.

• There are several issues to be taken into 
consideration when designing and running your 
own studies and experiments. These issues 
include power, effect size, probability value, 
number of participants, type of design and 
statistical test.

• Power is the ability of the statistical test to  
find a significant effect, where one exists. 
Power is on a scale of 0 (no power) through  
to 1.0 (100% power). Thus 0.5 power would 
mean that you have a 50% chance of finding  
a significant effect, where one exists.

Summary
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• It is important to take such issues into 
consideration before running your study or 
experiment, so that you can maximise your 
chances of finding an effect. It is not cost 
effective to run a study that has little chance  
of finding a significant effect. This means that 

you should think carefully about your design:  
for instance, whether it is an independent or 
repeated-measures design, and the numbers  
of potential participants in the study.

• It is important to report effect sizes and 
confidence intervals when you can.

Discover the website at www.pearsoned.co.uk/dancey where you can test your knowledge with multiple 
choice questions and activities, discover more about topics using the links to relevant websites, and explore 
the interactive flowchart designed to help you find the right method of analysis.

 1. The narrower the confidence intervals:

(a) The more confidence you can place in your results
(b) The less you can rely on your results
(c) The greater the chance that your results were due to sampling error
(d) None of the above

 2. Statistical significance:

(a) Is directly equivalent to psychological importance
(b) Does not necessarily mean that results are psychologically important
(c) Depends on sample size
(d) Both (b) and (c) above

 3. All other things being equal, repeated-measures designs:

(a) Have exactly the same power as independent designs
(b) Are often less powerful than independent designs
(c) Are often more powerful than independent designs
(d) None of the above

 4. All other things being equal:

(a) The more sample size increases, the more power decreases
(b) The more sample size increases, the more power increases
(c) Sample size has no relationship to power
(d) The more sample size increases, the more indeterminate the power

 5. Power is the ability to detect:

(a) A statistically significant effect where one exists
(b) A psychologically important effect where one exists
(c) Both (a) and (b) above
(d) Design flaws

Multiple choice questions

http://www.pearsoned.co.uk/dancey
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 6. Effect size is:

(a) The magnitude of the difference between conditions
(b) The strength of a relationship or association
(c) Both of these
(d) Neither of these

 7. Sample means are:

(a) Point estimates of sample means
(b) Interval estimates of population means
(c) Interval estimates of sample means
(d) Point estimates of population means

 8. All other things being equal, the more powerful the statistical test:

(a) The wider the confidence intervals
(b) The more likely the confidence interval will include zero
(c) The narrower the confidence interval
(d) The smaller the sample size

 9. Power can be calculated by a knowledge of:

(a) The statistical test, the type of design and the effect size
(b) The statistical test, the criterion significance level and the effect size
(c) The criterion significance level, the effect size and the type of design
(d) The criterion significance level, the effect size and the sample size

 10. A power level of 0.3 means:

(a) You have a 30% chance of detecting an effect
(b) You have a 49% chance of detecting an effect
(c) You have a 70% chance of detecting an effect
(d) You have a 0.7% chance of detecting an effect

 11. Look at the following output for an independent t-test:

Independent Samples Test

Equal

variances

assumed

Equal

variances

not assumed

F

34.863

Levene’s

Test for

Equality of

Variances

Sig.

.000

t

26.807

26.807

df

38

19.000

Sig.

(2-tailed)

.000

.000

Mean

Difference

227.7000

227.7000

Std.

Error

Difference

4.0692

4.0692

235.9377

236.2169

t-test for Equality of  Means

95%

Confidence

Interval of  the

Difference

219.4623

219.1831

Lower Upper
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Paired Samples Test

Pair 1 congruent-errors

2 neutral-errors

Mean

2.1500

Paired differences

Std.

Deviation

.7647

Std. Error

Mean

8.550E-02

Lower

2.3202

95% Confidence

Interval of the

Difference

Upper

.02

t

21.754

df

79

Sig.

(2-tailed)

.083

80

80

N

7.951E-02

Paired Samples Statistics

.7111neutral-errors

2.963E-02.2651congruent-errors

Std. Error Mean

.2250

7.500E-02

Mean Std. Deviation

Pair 1

Paired Samples Correlations

.83680 2.024congruent-errors & neutral-errors

Sig.N Correlation

Pair 1

Which is the most appropriate answer?
We can be 95% confident that:

(a) The population mean difference is 27.7
(b) The population mean difference will fall between 36.21 and 19.18
(c) The population mean will fall between 19.46 and 35.93
(d) The results will be important

 12. A researcher has found a correlation coefficient of r = +0.30, CI(95%) = -0.2 - (+0.7). Which is 
the most sensible conclusion? We are 95% confident that the population regression line would be:

(a) Positive (+0.30)
(b) Zero
(c) Negative (-0.2)
(d) Between -0.2 and +0.7

 13. Look at the following output from a paired t-test analysis:

Which is the most sensible answer?

(a) The sample mean difference is 0.15, and we are 95% confident that the population mean difference 
will fall between 0.32 and 0.02

(b) The sample mean difference is 0.76, and we are 95% confident that the population mean difference 
will fall between 0.32 and 0.02

(c) The sample mean difference is 0.15, and we are 95% confident that the population mean difference 
will fall between 0.15 and 0.17

(d) The results are important

 14. It is more important to know the power of a study when:

(a) The study has large participant numbers and is statistically significant
(b) The study has large participant numbers and is not statistically significant
(c) The study has small participant numbers and is statistically significant
(d) The study has small participant numbers and is not statistically significant
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 15. Relative to large effect sizes, small effect sizes are:

(a) Easier to detect
(b) Harder to detect
(c) As easy to detect
(d) As difficult to detect

 16. What are your chances of finding an effect (if one exists) when power = 0.6?

(a) 50:50
(b) 60:40
(c) 40:60
(d) 60:60

 17. Confidence intervals around a mean value give you:

(a) A range within which the population mean is likely to fall
(b) A range within which the sample mean is likely to fall
(c) A point estimate of the population mean
(d) A point estimate of the sample mean

 18. As your statistical test grows more powerful, does your confidence interval become:

(a) Wider
(b) Narrower
(c) It makes no difference

 19. If d = 0.89, then the effect size is said to be:

(a) Zero
(b) Weak
(c) Moderate
(d) Strong

 20. When is a knowledge of power more important?

(a) When you find an effect
(b) When you don’t find an effect
(c) It makes no difference
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 9.1 Frequency (categorical) data

The tests you have used so far have involved calculations on sets of scores obtained from par-
ticipants. Sometimes, however, we have categorical data (i.e. data in the form of frequency 
counts). For example, let’s imagine that we ask a sample of farmers (actually 544 of them) which 
of four pig pictures they prefer for a ‘save our bacon’ campaign. We would simply record how 
many chose picture 1, how many chose picture 2, and so on. The data would be frequency 
counts. Table 9.1 shows the sort of results we might obtain.

CHAPTER OVERVIEW

Earlier, in Chapter 6, you learnt how to analyse the relationship between two variables, using Pearson’s 

r. This test was useful in giving a measure of the association between two continuous variables. You 

have seen how to represent such relationships on scattergrams, or scatterplots. You learnt what was 

meant by a correlation coefficient, and that r is a natural effect size. This chapter also discusses 

relationships, or associations, but this time we are going to discuss how to analyse relationships 

between categorical variables.

The measure of association that we are going to discuss in this chapter, x2 or chi-square (pronounced 

kye-square), measures the association between two categorical variables. You also learnt about 

categorical variables (in Chapter 1). If, for instance, we classify people into groups based on which 

colour blouse or shirt they are wearing, this is a categorical category. In the same way, if we classify 

people by ethnic group, religion or the country in which they live, these are all categorical judgements; 

it does not make sense to order them numerically. In this chapter then, you will learn how to:

■ analyse the association between categorical variables

■ report another measure of effect (Cramer’s V)

■ report the results of such analyses.

The analyses of the relationships between categorical variables include the following:

■ Frequency counts shown in the form of a table – explained later in the book.

■ Inferential tests, which show us whether the relationship between the variables is likely to have been due 
to sampling error, assuming the null hypothesis is true.

■ Effect size: x2 can be converted to a statistic called Cramer’s V – this is interpreted in the same way as any 
other correlation coefficient. Luckily, this is available through SPSS.

Measures of association 9
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You can see, then, that most farmers preferred picture 2. These are frequency counts, so it 
does not make sense to give any other descriptive statistics.

The above example is known as a one-variable x2, because we have only one variable. The 
variable is ‘pig pictures’; it has four levels (picture 1 to picture 4).

Note here that each participant can contribute only one count – if you prefer picture 2, you 
cannot be counted for another category. Categorical data here involve being in one category and 
one category only; no participant is allowed to be in more than one category. You can see that 
this makes sense. If we were talking about religion, or ethnic group, for instance, and a person 
was classified as Catholic, then he or she could not be classified as Salvation Army as well.

With frequency counts, the data are not scores, they are the number of participants who fall 
into a certain category. x2 is particularly appropriate for such data. It is a measure of a relationship, 
or an association, and was developed by Karl Pearson in 1900. It enables us to see whether the 
frequency counts we obtain when asking participants which category they are in are significantly 
different from the frequency counts we would expect by chance.1 This will be clarified below.

The measures of association that we are going to discuss in this chapter are as follows:

• One-variable x2 (goodness-of-fit test) – used when we have one variable only, as in the 
example above.

• x2 test for independence: 2 * 2 – used when we are looking for an association between two 
variables, with two levels (e.g. the association between drinking alcohol [drinks/does not 
drink] and smoking [smokes/does not smoke]). Hence the description 2 * 2.

• x2 test for independence: r * c – used when we are looking for an association between two 
variables, where one has two levels (smokes/does not smoke) and the other has more than 
two levels (heavy drinker, moderate drinker, does not drink). This is called an r * 2, because 
there are several rows and two columns.

1 x2 tests can be regarded as testing for an association or difference between categories – it depends on the way 
the problem is framed.

150 220 60 114

Picture 1 Picture 2 Picture 3 Picture 4

Table 9.1 Numbers of farmers expressing preferences for pictures of pigs

Activity 9.1

Measures of association test for a relationship between two or more variables. This 
means the design is:

(a) Repeated-measures
(b) Between-participants
(c) Correlational

0
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 9.2 One-variable x2 or goodness-of-fit test

This test enables us to discover whether a set of obtained frequencies differs from an expected 
set of frequencies. Usually the expected frequencies are the ones that we expect to find if the 
null hypothesis is true, but if we want to, we can compare our observed frequencies with any 
set of frequencies: we can then see how good the fit is. Details on how to do this follow. In this 
case we have one variable only. Working through the calculations for the one-variable test will 
enable you to understand the rationale underlying the x2 2 * 22 table and the r * c tables.

2 SP now gives two sorts of significance test for crosstabs and non-parametric tests. Asymp. Sig. stands for 
AsymptoticSS Significance and is based on large samples. Exact Sig. is used when the dataset is small, 
unbalanced or does not meet the assumption of normality.

Example: preference for chocolate bars

A sample of 110 people were asked which of four chocolate bars they preferred. The numbers of people 
choosing the different bars were recorded in Table 9.2.

We want to find out whether some brands (or one brand) are preferred over others. If they are not, 
then we should expect roughly the same number of people in each category. There will not be exactly 
the same number of people in each category, but they should be near enough equal. Another way of 
saying this is: if the null hypothesis is true, and some brands are not preferred more than others, then 
all brands should be equally represented.

We have said that we expect roughly equal numbers in the categories, if the null hypothesis is true.

Chocolate A Chocolate B Chocolate C Chocolate D

20 people 60 people 10 people 20 people

Table 9.2 Number of people preferring different types of chocolate bar

20 + 60 + 10 + 20 = 110 people altogether
There are 110 people, and four categories. If the null hypothesis is true then we should expect 

110 , 4 to be in each category, so:

110

4
= 27.5

This is because, if all brands of chocolate are equally popular, we would expect roughly equal numbers 
of people in each category – the numbers of people should be evenly distributed throughout the 
brands. (Of course, it is impossible to have 27.5 people; but for the purposes of calculating the test 
statistic, we don’t worry about minor details such as this!)

The numbers that we find in the various categories are called the observed frequencies.
The numbers that we expect to find in the categories, if the null hypothesis is true (all brands are 

equally popular), are the expected frequencies.
What x2 does is to compare the observed frequencies with the expected frequencies. If all brands 

of chocolate are equally popular, the observed frequencies will not differ much from the expected 
frequencies. If, however, the observed frequencies differ a lot from the expected frequencies, then it 
is likely that all brands are not equally popular. It is often difficult to tell just by looking at the data. The 
chocolate-bar data are reproduced in Table 9.3, showing the way in which people usually set out data 
suitable for x2.
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 9.2.1 How do we find out whether the observed and expected 
frequencies are similar?

1. Take the expected frequencies away from the observed frequencies:

Observed Expected = Difference

 20 27.5 = -7.5

 60 27.5 = 32.5

 10 27.5 = -17.5

 20 27.5 = -7.5

110 110

We ignore the sign (plus or minus) because we are interested in the absolute value of the 
differences. (In fact, squaring the numbers, as in step 2, gets rid of the negative signs anyway.)

2. Square all the numbers:

7.52
= 56.25

32.52
= 1056.25

-17.52
= 306.25

-7.52
= 56.25

Frequencies Chocolate A Chocolate B Chocolate C Chocolate D

Observed 20 60 10 20

Expected 27.5 27.5 27.5 27.5

Table 9.3 Observed and expected frequencies for people preferring different types of chocolate bar

Activity 9.2

What’s wrong with the following? One hundred people were asked: which is the  
best-looking cat from those below? The observed frequencies are below:

50 25 15 10 10
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3. Divide these figures by a measure of variance (this is similar to what happens in the t-test, 
or Pearson’s r). In this case the measure of variance is the expected frequencies (27.5).

56.25

27.5
= 2.05

1056.25

27.5
= 38.41

306.25

27.5
= 11.14

56.25

27.5
= 2.05

4. The figures are then added to give:

Total = 53.65
So x2 is 53.65 (53.7).

The degrees of freedom (DF) is one less than the number of categories, so in this case 
DF = 3. We need to know this, for it is usual to report the DF, along with the value of x2 and 
the associated probability level.

The x2 value of 53.65 is rounded up to 53.7. This value is then compared with the value that 
would be expected, for a x2 with 3 DF, if the null hypothesis were true (i.e. all brands are preferred 
equally). We do not have to make this comparison, as the statistical package does it for us.

SPSS: one-variable x2

If you have your data in the form of frequency counts in a table such as the one we have used for the 
example above, then you can enter data for the chocolate bars into SPSS as follows:

Whenever we enter the data in this way, and perform x2, we have to weight the cases by the 
frequency count. This is done in order to ‘tell’ SPSS that our data are in the form of frequency counts 
(rather than raw data), and is accomplished as follows:
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This opens the Weight Cases dialogue box, below:

Then move Frequency from the left box to the Frequency Variable box by clicking on the button. 
Click on OK. Now click on Analyze, Nonparametric tests, Legacy Dialogs and Chi-square as follows:



CHAPTER 9 Measures of association 271

This opens the Chi-square dialogue box, as follows:

Click on Options if you wish, and then OK. The results will appear in the output window.

 9.2.2 Output for one-variable x2

For a one-variable x2, it is important to report the value of the test statistic, the degrees of 
freedom, and associated probability level. However, the first section of the x2 output confirms 
our calculations in section 9.2.1:

The second section of the output gives our test statistics:

Total

204.00

110

27.5 27.5

chocolate

2.00

3.00

Observed N

20

10

1.00

60

Expected N

27.5

27.5

27.5

Residual

27.5

217.5

32.5

Test Statistics

df

Asymp. Sig.

Exact Sig.

Point Probability

chocolate

53.636
a

.000

.000

.000

Chi-Square

3

a. 0 cells (.0%) have expected frequencies less than 5.

The minimum expected cell frequency is 27.5.

p , 0.001 which means that

assuming the null hypothesis is

true, our x2 is only likely to have

arisen less than once in 1000 times

and thus is extremely unlikely!
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The textual part of the results might read:

The x2 value of 53.6, DF = 3was found to have an associated probability value of 0.0001. This 
means that, if the null hypothesis were true, such a value would rarely occur (once in ten 
thousand). Thus we can accept that there is a significant difference between the observed and 
expected frequencies, and can conclude that all brands of chocolate are not equally popular. The 
table below shows that more people prefer chocolate B (60) than the other bars of chocolate.

Frequencies Chocolate A Chocolate B Chocolate C Chocolate D

Observed 20 60 10 20

Expected 27.5 27.5 27.5 27.5

Although our conclusion is that people do prefer some brands rather than others (not all 
brands are equally liked), we can say more than this: we can look at the table and say which 
brands are preferred – that is, we can talk about the direction of the difference, i.e. chocolate B 
is preferred more than the other chocolate bars.

 9.2.3 Comparing observed frequencies with any set of expected 
frequencies

Sometimes we want to compare our observed frequencies with a particular set of expected 
frequencies. For instance, researchers have found that left-handed people are over-represented 
in people with Inflammatory Bowel Disease (IBD). That is, the prevalence of left-handers is 
higher than would be expected in that sample of people. Let’s assume that we tested 150 people 
with IBD and found the following:

Right-handed Left-handed

Observed 120 30

Expected under the null hypothesis 75 75

If you simply divided 150 by 2 in order to find the expected frequencies under the null 
hypothesis, you would end up with 75. It should be immediately apparent that we do not expect 
there to be equal numbers of people who are right- and left-handed in the population, because 
we know that there are far fewer left-handed people in the population than right-handers. The 
real expected frequencies are the ones that we know from previous research that exist in the 
population. There is also a sex difference in handedness – the prevalence of left-handedness is 
greater in men than women. This means that men and women cannot be included together in 
one group. Approximately 10% of women are left-handed.

We decided to see whether there was a greater prevalence of left-handedness in women with 
Irritable Bowel Syndrome (IBS) rather than IBD. Three hundred and seventeen women were 
given a questionnaire that included questions on handedness; 268 of them were right-handed, 
and 49 were left-handed. As we expect 90% of women to be right-handed, then we would expect 
285.3 of our sample to be right-handed (90% of 317 = 285.3).This means that we would expect 
31.7 of them to be left-handed (317 - 285.3 = 31.7).

Right Left

n n

Observed 268 49

Expected 285.3 31.7
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We actually found that only 268 were right-handed, representing 84.5% of the total of 317, 
and 49 were left-handed, representing 15.5% of the total, rather than the 10% that we would 
expect to find.

SPSS: one-variable x2 – using frequencies different 
from those expected under the null hypothesis

Open up the datafile. Select Data, Weight Cases:

This opens up the Weight Cases dialogue box, as follows:

Check the Weight cases by option, and move the Frequency variable from the left to the right, then 
click on OK. This brings you back to the original datafile.
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Select Analyze, Nonparametric Tests, Legacy Dialogs, Chi-square:

This opens the Chi-square Test dialogue box, as follows:

Make sure the correct variable (in this case Handedness) is moved from the left to the Test Variable 
List. Note that under Expected Values you can choose All categories equal (which is what we would use 
normally; it’s the default) or Values (which means we choose the expected values ourselves). In this 
case, check Values and type in the expected frequency of the first category (right hand), which is 285.3. 
Then click on Add:
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Type in the expected frequency of the second category (left hand), which is 31.7, and click on Add:

Finally, click on OK:
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This produces a simple output:

This shows that there is a significant difference between the observed and the expected frequencies.

217.3

17.3

285.3

31.7

handed

ResidualExpected NObserved N

268

49

317

1.00

2.00

Total

Test Statistics

df

Asymp. Sig.

Exact Sig.

Point Probability

Handed

10.490
a

.001

.002

.001

Chi-Square

1

a. 0 cells (0.0%) have expected frequencies less than 5.

The minimum expected cell frequency is 31.7.

 9.3 x2 test for independence: 2 * 2

x2 enables us to discover whether there is a relationship or association between two categorical 
variables (e.g. the association between smoking [smokes/does not smoke] and drinking [drinks/
does not drink]). These are categorical data because we are not asking about how many cigarettes 
people smoke, or how much alcohol they drink. We are simply asking whether they smoke and 
drink. Such a design would look like Table 9.4.

This type of contingency table is called a 2 * 2 because there are two rows and two columns.

Drink Do not drink

Smoke

Do not smoke

Table 9.4 2 * 2 contingency table

Example: association between smoking and drinking

Is there a relationship between smoking cigarettes and drinking alcohol in students? If there is no significant 
association, we conclude that the variables are independent of each other. (It is possible to ask each student 
how many cigarettes they smoke per week and how many units of alcohol they drink per week. In this case, 
you could use Pearson’s r, as you would have continuous data.) If you simply asked the following questions:

(a) How many of you smoke and drink?
(b) How many smoke but do not drink?
(c) How many do not smoke but do drink?
(d) How many abstain from both?
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you would not have interval, or ordinal, data. You would have frequencies: that is, the number of students 
in each group. Here we will be considering measuring an association when you have frequency, or 
categorical, data.

So we are using smoking and drinking as categorical data (i.e. we are not considering how many 
cigarettes they smoke, or how much alcohol they are consuming; we are simply asking which of the four 
categories they fall into).

You can represent this as a 2 * 2 table. Imagine that we have asked 110 students the above 
questions. Each student can fall into only one group. Thus we have four groups. We count the numbers 
of students falling into the groups, and write it in the form of a table (Table 9.5). Each ‘box’ is called a 
cell. We code the groups: (1) those who drink, (2) those who do not drink; (1) those who smoke, 
(2) those who do not smoke. We could, however, just as easily code it the other way round, and we do 
not have to use 1 and 2 as codes. Often psychologists use 0 and 1.

We have chosen to call the cells by letters. Cell A is for people who both smoke and drink; cell D is 
for people who do neither. Thus:

Group 1: 50 (cell A)
Group 2: 20 (cell B)
Group 3: 15 (cell C)
Group 4: 25 (cell D)

The data can be written as shown in Table 9.6.

So, in smoke category 1 (do smoke) with drink category 1 (do drink) there are 50 students. This is 
represented by the 2 * 2 contingency table as cell A.

Note that no participant can be in more than one cell. This is important. Categories are mutually 
exclusive.

Smoke (coded 1) Do not smoke (coded 2)

Drink (coded 1) 50 (A) 15 (C)

Do not drink (coded 2) 20 (B) 25 (D)

Table 9.5 2 * 2 contingency table with labelled codings

Smoke Drink Frequency

1 1 50

1 2 20

2 1 15

2 2 25

Table 9.6 Data table with codings
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 9.3.1 The rationale for 2 * 2 chi-square

The test calculates the expected frequencies in the cells. In other words, there are 110 students. 
The test calculates how many we can expect to find in each cell, if there is really no relationship 
between smoking and drinking (i.e. the null hypothesis is true).

The expected frequencies for each cell are computed in a way similar to the one-variable 
case of x2, except that, since we have different numbers of people who smoke and drink, the 
expected frequencies in the cells will be different.

The resulting x2 value is compared with the value that would be expected to have arisen if 
the null hypothesis were true (i.e. there really is no association between the two variables). Your 
computer package calculates this for you. This is the meaning of the probability value – it is 
the probability of your particular value of x2 having arisen, assuming the null hypothesis is 
true.

We have to tell you now that the frequencies listed above are unrealistic. Now, we are more 
likely to get the following (Table 9.7).

The trouble with this is that x2 has an assumption: you must not have more than 25% of cells 
(in this case, 25% of 4 = 1) with an expected frequency of less than 5. We cannot tell by looking 
at the table whether we have broken this assumption. SPSS will alert you to this problem, 
however, and proceed to calculate Fisher’s Exact Probability Test for you; luckily, because the 
calculations can be tedious. Fisher’s test is appropriate only for 2 * 2 tables, however.

This test can be used instead of x2 when the assumption is broken, because the formula is 
not sensitive to small expected frequencies.

Activity 9.3

Decide whether the following situations are best suited to Pearson’s r or x2.
The relationships between:

(a) Height (cm) and weight (kg)
(b) Distance run (metres) and time taken (minutes and seconds)
(c) A person’s body shape and occupational level (professional, clerical, manual)
(d) Length of finger and length of toe (cm)
(e) Handedness (right or left) and spatial ability (excellent, average, hopeless)

Smoke Do not smoke

Drink 60 34

Do not drink 5 1

Table 9.7 2 * 2 contingency table

These are the observed frequencies

¶¶
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Activity 9.4

If you wish to test the hypothesis that students prefer Galaxy chocolate above Mars, 
Milky Way or Star Bars, which sort of analysis would be most appropriate?

(a) x2 2 * 2 test of independence
(b) x2 2 * 4 test of independence
(c) One-variable x2

(d) None of the above

SPSS: 2 * 2x2

Weight your cases by following the same instructions as for the one-variable x2. Then choose Analyze, 
Descriptive Statistics and Crosstabs:

This brings up the following dialogue box:
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Move drink over to the Row(s) box and smoke over to the Columns box. Click on Statistics. This gives 
you the following dialogue box:

You can then check the statistics you require, by checking Chi-square and Cramer’s V (via the Phi and 
Cramer’s V box).

Click on Continue (this brings you back to the previous dialogue box). If you want cell display, click 
on Cells. This gives you the following:

Click on the options you require. You can choose to have a table of observed and expected frequencies 
on their own, or you can select to have row, column and total percentages. Click on Continue. Once 
back to the Crosstabs dialogue box, click on OK. Your results will appear in the output window. Try 
running this analysis using the frequencies in Table 9.7. This is the output for the observed and expected 
frequencies for that analysis:
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 9.3.2 Output for 2 * 2 x2

The output of x2 will give you information that is superfluous to your needs, so, as in previous 
tests, you learn to glance over it quite quickly. The first part of the output reproduces your 2 * 2 
table: just glance at this to make sure it is correct.

x2 statistics

SPSS prints out several lines of statistics. However, the one you need is the first one listed. This 
is called Pearson, and you need to report the value of (Pearson’s) x2, the degrees of freedom 
and the associated probability level.

Cramer’s V

This is a measure of effect used for tests of association; it is a correlation coefficient, interpreted 
in the same way as Pearson’s r.

This output uses the following data:

• 50 people both smoke and drink

• 15 people drink but do not smoke

• 20 people smoke but do not drink

• 25 people abstain from both.

The first section of the output confirms the categories and frequencies:

This shows we have broken one of the assumptions of chi-square. That is, that there should not be 
more than 25% of cells with an expected frequency of less than 5. We have two cells where the expected 
frequencies are below 5. In this case we would probably want to increase the sample size. You might 
have to include considerably more participants in the study, to solve this problem.

drink * smoke Crosstabulation

smoke

1.00 2.00 Total

Total

drink 1.00 Count

Expected Count

Count

Expected Count

Count

Expected Count

2.00

60 34 94

61.1 32.9 94.0

5 1 6

3.9 2.1 6.0

65 35 100

65.0 35.0 100.0
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DO YOU DRINK* DO YOU SMOKE CROSSTABULATION

The next section of the output gives the test statistics:

You need to read the Pearson’s chi-square row, which is the emboldened one above. Our x2 
value is 12.12, DF = 1, p 6 0.001. So the probability of obtaining a x2 of this magnitude is 
very remote – less than 1 in a 1000 chance… therefore we conclude that there is an association 
between smoking and drinking – in students anyway.

Our output also gives Cramer’s V: this shows an effect size of 0.33. If you square 0.33, you 
will obtain a value of 0.1089. Thus nearly 11% of the variation in frequency counts of smoking 
can be explained by drinking.

Count

smoke

1.00 2.00
Total

Total

drink 1.00

2.00

50 15 65

20 25 45

70 40 110

drink * smoke Crosstabulation

Chi-Square Tests

x2 5 12.12

Pearson’s chi-square

Continuity Correctionb

Likelihood Ratio

df

1

1

1

Asymptotic

Significance

(2-sided)

.000

 .001

 .000

Exact Sig.

(2-sided)

Exact Sig.

(1-sided)

Fisher’s Exact Test .001 .001

Linear-by-Linear Association 1 .001

N of  Valid Cases

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 16.36.

b. Computed only for a 2 3 2 table

Value

12.121a

10.759

12.153

12.011

110

Symmetric measures

Nominal by Nominal

Value

.332

.332

Asymptotic

Standardized Errora

Approximate

Tb

Approximate

Significance

Interval by Interval .332 .092 3.657 .000c

Ordinal by Ordinal .332

.000

.000

.000c.092 3.657

N of  Valid Cases

a. Not assuming the null hypothesis.

b. Using the asymptotic standard error assuming the null hypothesis.

c. Based on normal approximation.

Phi

Cramer’s V

Pearson’s R

Spearman Correlation

110
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In your report, you would show the frequency counts in the form of a 2 * 2 crosstabulation 
table, and also give the x2 value, DF and associated probability level.

The textual part of your report might read as follows:

A 2 * 2 x2 was carried out to discover whether there was a significant relationship between 
smoking and drinking. The x2 value of 12.12 had an associated probability value of 
60.001, DF = 1, showing that such an association is extremely unlikely to have arisen as a 
result of sampling error. Cramer’s V was found to be 0.33 – thus nearly 11% of the variation 
in frequencies of smoking can be explained by drinking. It can therefore be concluded that 
there is a significant association between smoking and drinking.

Have you broken the assumptions for x
2
?

If you have, then Fisher’s Exact Probability Test will be on your output, and the line saying Cells 

with expected frequency 6 5 will tell you the percentage of cells that you have with an expected 
frequency of less than 5.

In this case, instead of reporting the values in the paragraph above, you report the exact 
probability level given by Fisher’s (e.g. Fisher’s Exact Probability = 0.66). Fisher’s does not 
have a value like a t-test or x2. The following output shows you what to expect if you have more 
than 25% of cells with an expected frequency of less than 5.

The first section of the output is simply the categories and frequency values:

DO YOU DRINK* DO YOU SMOKE CROSSTABULATION

We then have the test statistics:

Count

smoke

1.00 2.00
Total

Total

drink 1.00

2.00

60 34 94

5 1 6

65 35 100

drink * smoke Crosstabulation

Chi-Square Tests

Pearson Chi-Square

Continuity Correctionb

Likelihood Ratio

df

1

1

1

Asymptotic

Significance

(2-sided)

.332

 .596

 .304

Exact Sig.

(2-sided)

Exact Sig.

(1-sided)

Fisher’s Exact Test .662 .312

Linear-by-Linear Association 1 .334

N of  Valid Cases

a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 2.10.

b. Computed only for a 2 3 2 table

Value

.943a

.281

1.057

.934

100

Warning: assumptions broken, therefore use

Fisher’s Exact Test (the emboldened row)
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The emboldened row shows the probability of obtaining a value of 0.94 when the null 
hypothesis is assumed to be true - 66% for a two-tailed hypothesis, and 31% for a one-tailed 
hypothesis.

The textual part of your report might read as follows:

Since 50% of the cells had an expected frequency of less than 5, the appropriate statistical 
test was Fisher’s Exact Probability. This gave p = 0.66 for a two-tailed hypothesis. The value 
of Cramer’s V was 0.10, showing that the relationship between smoking and drinking was 
almost zero. The conclusion, therefore, is that there is no evidence to suggest an association 
between drinking and smoking.

A 2 * 2 x2 square is easy to work out by hand once you are used to it, but we will not ask 
you to do it. The instructions on how to perform a 2 * 2 x2 analysis on SPSS were given earlier 
(see page 301).

Symmetric Measures

Nominal by Nominal

N of  Valid Cases

Phi

Cramer’s V

Value

2.097

.097

100

Approximate

Significance

.332

.332

This is the

measure of effect

You cannot tell how many people are going to fall into each category when you start your study, 
so you need to obtain far more participants than you think you need, to make sure you have 
enough participants in each cell.
x2 is always positive (because a squared number is always positive).

Whereas DF roughly equates to the number of participants in most statistical analyses, it does 
not in x2, as DF is calculated by number of rows minus 1 (r - 1) multiplied by number of 
columns minus 1 (c - 1). In this case, you can see that a 2 * 2 x2 will always have DF = 1 
because (r - 1) = (c - 1) = (2 - 1) = (2 - 1) = 1.

Caution!

Activity 9.5

Cramer’s V is:

(a) A measure of difference
(b) A correlation coefficient
(c) An equivalent statistic to Fisher’s Exact Probability Test
(d) A CV value



CHAPTER 9 Measures of association 285

 9.4 x2 test of independence: r : c

What if you have more than two levels? It is perfectly possible to have more rows and columns. 
We still have two categorical variables, but this time we have more categories to choose from. 
x2 can handle this quite easily. Let’s assume, staying with our smoke/drink example, that we 
have three levels of smoke: heavy smokers, light smokers and non-smokers. We could also have 
heavy drinkers, light drinkers and teetotallers (see Table 9.8).

This is a 3 * 3 contingency table, for obvious reasons. The calculations are worked out in 
exactly the same way as we have described for the 2 * 2 table. The degrees of freedom, 
however, will be different.

Remember: DF = (c - 1) * (r - 1)
So: 2 * 2 = 4

It is also possible to have more than three levels (e.g. 6 * 4 or 7 * 3), but interpretation 
then becomes a problem. We do not just want to say ‘there is a significant relationship between 
variable A and variable B’. We would also like to be able to say something about the direction 
of the relationship. For instance, in our smoke/drink example, we could see, from looking at 
the cells, that the significant relationship referred to the positive association between drinking 
and smoking. When we have larger contingency tables, it can be difficult to disentangle all the 
various relationships.

Also, for the test statistic to be reliable, remember:

• No more than 25% of cells should have an expected frequency of less than 5.

• No cell should contain less than 1 (if they do, you may be able to collapse cells, i.e. ex-smokers 
and smokers could be added together to form one group; however, sometimes it is not 
possible to collapse cells in this way, because the cells do not have enough in common).

You may be wondering why we have to meet these assumptions. It is because we assume that 
we are sampling from a normal population. If the expected cell sizes are so small, it is unlikely 
that we are sampling from a normal population. Our test statistic will be unreliable unless we 
meet the assumptions.

Check that participants do not appear in more than one cell. Remember that we are checking 
to see if the numbers of participants in each cell are independent – obviously they will not be 
if they are the same participants! So the same participants must not respond more than once. 
The total of the cell frequencies must equal the number of participants.

There is no reason why the x2 test cannot be used with quantitative variables – it is just that, 
with quantitative data, other tests, such as the parametric ones, will be more powerful.

Heavy smokers Light smokers Non-smokers

Heavy drinkers

Light drinkers

Teetotallers

Table 9.8 3 * 3 contingency table
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 9.4.1 x2: a one- or two-tailed test?

There are debates among statisticians as to whether we should use one- or two-tailed tests. You 
cannot go wrong if you use a two-tailed test, because you are less likely to declare a result 
significant when using such a test. Some people think you should always use a two-tailed 
hypothesis when using x2. The test itself is one-tailed: the x2 value will be the same whether 
the figures look like this:

Like this:

The sampling distribution of x2 is always positive. That is, because x2 value is a squared 
figure, it is always positive. This is what we mean by saying that the test itself is one-tailed: it 
gives you values only in the positive range – it is impossible to obtain a negative x2 value.

However, your hypothesis can be two-tailed (there is an association, but you are not predicting 
the direction of the association) or, more likely, one-tailed (you predict the direction of the asso-
ciation, e.g. smoking and cancer are related in a positive way or, in a one-variable x2, brand A 
chocolate is preferred significantly more often than the other brands). However, one-tailed tests 
should be formulated on the basis of previous theory – not just because you felt that chocolate 
A was better than all the other bars. Some people feel that if we use a one-tailed test, and then 
the relationship is found to be opposite to the one we are predicting, then we have ‘lost out’, but 
of course that is the case with any one-tailed prediction (see section 5.11, for more on this).

If we have good reason to specify a direction of the association, then it is quite valid to use 
a one-tailed hypothesis, but you must decide before you do your analysis (i.e. you have to think 
carefully about whether your hypothesis is one- or two-tailed before the study).

Activity 9.6

True or false?

(a) x2 needs to have equal numbers of participants in each cell
(b) Each participant must contribute to every cell
(c) You must have 650% of your cells with an expected frequency of 5 in order to 

perform x2

(d) The same participant can count in more than one category

40 15

22 36

15 36

40 22

or this:

36 22

15 40

22 40

36 15

or this:
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Personal reflection

Doctoral Candidate and NSF Graduate Research Fellow Daniel Sullivan, M.A.
Department of Psychology
University of Kansas

ARTICLE: Collectivism and the meaning of suffering (Sullivan, Landau, Kay and 
Rothschild, 2012)

Daniel Sullivan says:

“For this particular study, we were looking at whether one group of people – namely, parents in the 
US – might differentially interpret one form of suffering – namely, the suffering of children – based 
on whether they were in a more collectivist or individualist mindset. I wanted a method that would 
make this issue very real for our parent participants; I wanted to relate the suffering of children back 
to their own personal experience. Of course, parents sometimes make children suffer through 
punishments, so could there be a way to realistically examine in the lab the circumstances under which 
parents might be more willing to do this? My wife grew up in a state where corporal punishment of 
children in schools is legal, and she told me that her parents had to make a choice when she entered 
school as to whether she would be suspended or spanked in the event that she got into trouble. I had 
not personally experienced this, but it immediately struck me as an interesting way to make this issue 
real for the parents in my study: make them choose whether their own child would be punished 
corporally or not. In this case, the stats followed the method. I found an interesting method to engage 
my participants, and then decided the Chi-square would be one appropriate technique for analyzing 
the resulting data.”

Example from the literature

Collectivism and the meaning of suffering

Sullivan, Landau, Kay and Rothschild (2012) focused on the way individuals and communities interpret 
suffering. A person, or a particular community, might interpret an instance of suffering by believing the 
suffering was just a chance event (having a car crash and happening to be in the wrong place at the 
wrong time) or they might believe the suffering is a punishment because the sufferer has contravened 
social norms, e.g. that having HIV or AIDS is a punishment for being promiscuous. The authors state 
that collectivist cultures will be more likely to interpret suffering repressively than will individualist 
cultures. As part of this study, parents of at least one child were recruited into the study. Parents were 
assessed as to whether they were ‘individualist self-construal’ or ‘collectivist self-construal’. They were 
then measured as to their support for corporal punishment in schools. Then the parents were presented 
with a forced choice asking them which they would allow their own child to receive (in the event of 
some major misdemeanour). The choice was either suspension from school, or corporal punishment. 
The results are as follows:
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Sometimes in the literature you will find researchers who have used Yates’ correction for 
continuity. This is a slight adjustment to the formula, used when we have small expected 
frequencies, in a 2 * 2 table. In the late 1980s, psychologists were routinely advised to use Yates’ 
correction, but now many people feel it is unreasonable and unnecessary to do this (see Howell, 
2010, for debate on this issue). You will sometimes see a x2 value, corrected for continuity. We 
recommend that, as introductory students, you do not worry about such corrections when you 
carry out your own analysis. Note, however, that some of the journal articles you read will report 
the use of Yates’ correction.

Choice Condition

Individualist self-construal Collectivist self-construal

Suspension 46 41

Corporal punishment 8 18

The authors carried out a 2 * 2 chi-square test. They said (p. 1035): ‘We obtained a significant result, 
x2 (1) = 3.92, p = .05 c participants overwhelmingly preferred suspension for their child over 
corporal punishment (77% chose suspension). Importantly, however, the number of participants who 
chose corporal punishment in the collectivist self-construal condition was more than double the 
number who chose corporal punishment in the individualist self-construal condition.’

Activity 9.7

Using the information in the authors’ 2 * 2 contingency table, run the analysis in 
SPSS. Check your results with the authors. Using this information, write a few brief 
sentences interpreting the results – you should be able to add some of your own 
interpretation to that of the authors!

Example from the literature

3 * 2 chi-square: Everyday memory in children with developmental 
coordination disorder (DCD)

Chen et al. (2013) investigated the everyday memory function in children with DCD, and explored the 
specific profile of everyday memory across different domains. They evaluated 19 children with DCD and 
19 typically developing (TD) children by measuring their everyday memory performance using the 
Rivermead Behavioral Memory Test for Children (RBMT). Based on their scores, children were categorised 
as 0 (impaired), 1 (borderline) and 2 (normal). The two groups were children with DCD and children 
categorised as TD. The authors wanted to see whether the range of the RBMT scores (normal, borderline 
or impaired) was significantly different for the two groups. Their table is reproduced as follows:
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The distribution of the total profile scores of the RBMT-C for normal, borderline and impaired ranges in both 
groups (p. 691)

Range Developmental coordination disorder 
(n = 19)

Typically developing children 
(n = 19)

N % N %

Normal 9 47.4 18 94.6

Borderline 9 47.4 1 5.3

Impaired 1 5.3 0 0

Note. RBMT-C, Rivermead Behavioral Memory Test for Children
p = .006

The authors say that the frequencies of children with DCD and typically developing children were 
significantly different at p = 0.006. They do not tell us the chi-square value.

Activity 9.8

Borghi and colleagues (2016) sought to evaluate whether occupational therapists’ 
communications change with experience. Groups of occupational therapists who had 
different levels of experience were studied. Role playing with simulated clients was 
the focus of the study. The content of the words used by occupational therapists 
(called ‘utterances’) were analysed and coded. In this example we are interested only 
in the use of the one-variable chi-square which was used to analyse the total utterances 
of the 85 role-plays analysed from the categories in each of the groups. The categories 
are listed below in the first column. There were three groups (columns two, three and 
four) with a total of 5511 utterances altogether.

Categories Second-year 
OT students

Final-year OT 
students

Professional 
OTs

Total

Process 521 571 603 1695

Personal 119 118 103 340

Occupational 
therapy

514 550 626 1690

Medical 25 46 63 134

Psychosocial 284 282 277 843

Emotional 322 239 248 809

Total 1785 1806 1920 5511

Table 9.9 frequencies of total utterances pronounced by therapists during the 85 role-plays 
analysed
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Discover the website at www.pearsoned.co.uk/dancey where you can test your knowledge with multiple 
choice questions and activities, discover more about topics using the links to relevant websites, and explore 
the interactive flowchart designed to help you find the right method of analysis.

The one-variable chi-square will tell us whether the 5511 utterances were 
distributed fairly evenly or not. Thus the figures used in the one variable chi-square 
will be the last row.

Carry out a one-variable chi-square analysis using the three categories in the last 
row (1785, 1806, 1920). Give a brief interpretation of the meaning of the results. 
Check your results with those of the authors in the Answers section.

Summary

• For the analysis of relationships between 
categorical variables, x2 is the appropriate 
inferential statistic.

• A one-variable x2 (or goodness-of-fit test) has 
one variable with several levels. The test shows 
whether the frequencies in the cells are 
significantly different from what we would 
expect, assuming the null hypothesis to be true.

• A x2 test for independence shows whether there 
is a significant association between two variables 
(with two or more levels). The test statistic results 

from a calculation showing the degree by which 
the observed frequencies in the cells are different 
from the frequencies we would expect, assuming 
the null hypothesis to be true (i.e. no relationship).

• x2 has certain assumptions (see section 9.3.1). If 
these are broken, then for a 2 * 2 table, Fisher’s 
Exact Probability Test can be performed. This is 
done automatically in SPSS.

• x2 can be converted to Cramer’s V (a correlation 
coefficient) to give a measure of effect. This is 
performed automatically in SPSS.

SPSS exercises

Exercise 1

Use the data from Sullivan et al. (2012) on page 310 in order to perform a 3 * 2 x2 on SPSS. Do your 
results match theirs?

Exercise 2

Perform a 2 * 2 analysis on your computer package.

Smoke Do not smoke

Drink

Do not drink

http://www.pearsoned.co.uk/dancey
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Is there a relationship between drinking and smoking in your class?

 1. What is the x2 value?
 2. What is the probability value?
 3. What do the results tell you?

Exercise 3

Thirty-three people were given an animal preference questionnaire and classified as to whether they 
preferred mice, spiders, bats or snakes. The results were as follows:

Mice Spiders Bats Snakes

10 8 11 4

 1. What are the expected frequencies for the four cells?
 2. What is the x2 value?
 3. What is the probability value?
 4. What can you conclude from the results?

Exercise 4

Perform a x2 on the following data:

Smoke Do not smoke

Drink 70 32

Do not drink   7   1

Report the results and explain what they mean.

Discussion point

x2 or t-test?

Look at the following newspaper cuttings and decide for each whether you would use x2 or t-test.

A: And there’s a chance of rain on Thursdays

From Professor MJ
Sir, NP (Letters, 24th July) attempts to explain GN’s findings (Letters, 22nd July) that Thursday is 

the wettest day of the week. No explanation is needed. The variation in the figures for the seven days 
is purely random, as any statistician can assure you.

The total rainfall for all seven days is 938.9, giving an average of 134.13. This average is the 
expected figure for each day if rainfall is distributed equally over the seven days. A chi-square test 
may be used to compare the seven observed figures with the expected one. The resultant chi-square 
value of 1.28 for 6 degrees of freedom is far too small to demonstrate any significant difference from 
expectation. In fact, chance would produce this amount of difference at least 95 times out of 100.

Yours faithfully,



Statistics without maths for psychology292

B: The wettest day of the week put to test

From Mr AF
Sir, It may seem impertinent for a simple graduate to criticise his betters, but surely Professor MJ 

has used the wrong statistical test in his letter (27 July). The chi-square test is used to test frequencies 
of occurrence. In this case we have interval data and should use a t-test, requiring a knowledge of 
the standard deviations of the sets of data. Notwithstanding this, the result will probably be similar.

In my view, Thursday is the wettest day as it is the first day of a Test Match. The selectors use this 
information to pick four seamers who then prove woefully inadequate for the remaining four dry days.

Yours faithfully,

 1. Fisher’s Exact Probability Test is used when:

(a) The calculations for x2 are too difficult
(b) You have more than 25% of cells with expected frequencies of less than 5 in a 2 * 2 design
(c) You have more than 25% of cells with expected frequencies of less than 5 in a 3 * 2 contingency 

table
(d) You have non-categorical data

 2. Cramer’s V is:

(a) A victory sign made after performing Cramer’s statistical test
(b) A measure of effect based on standardised scores
(c) A correlational measure of effect converted from x2

(d) A measure of difference

Questions 3 to 5 relate to the following output:

DAY OF WEEK* SEX CROSSTABULATION

Multiple choice questions

Count

SEX

men women

Total

Total

day of  week tuesday am

wednesday am

evening

21 210 231

43

25

127 170

99 124

89 436 525
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 3. How many women were in the Tuesday morning group?

(a) 127
(b) 43
(c) 99
(d) 210

 4. Pearson’s x2 has an associated probability of:

(a) 60.001
(b) 0.00004
(c) 0.00124
(d) None of these

 5. The number of people in this analysis is:

(a) 231
(b) 170
(c) 124
(d) 525

 6. 290 people are asked which of five types of cola they prefer. Results are as follows:

Coca Cola Pepsi Diet Coke Cheapo Pepsi Lite

67 83 77 6 57

What are the expected frequencies for the cells:

(a) 57
(b) 58
(c) 290
(d) None of the above

 7. Look at the following output:

Linear-by-Linear Association 1 .001

N of  Valid Cases

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 21.02.

10.429

525

Chi-Square Tests

Pearson Chi-Square

Likelihood Ratio

df

2

2

Asymp. Sig. (2-sided)

.000

 .000

Value

19.450a

20.208

Linear-by-Linear Association 1 .0000514.3521

Chi-Square Tests

Pearson Chi-Square

Likelihood Ratio

df

1

1

Asymp. Sig. (2-sided)

.00050

 .00004

Value

14.3212

14.3722
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observed

expected

Psychobiology

15

Cognitive Psychology

50

Statistics

72

Child development

31

x2 has an associated probability of:

(a) 0.00005
(b) 0.00004
(c) 0.00200
(d) 0.00050

 8. Look at the following table:

What is the value of the expected frequencies?

(a) 32
(b) 50
(c) 42
(d) 25

 9. A one-variable x2 is also called:

(a) Goodness-of-fit test
(b) x2 test of independence
(c) x2 4 * 2
(d) 2 * 2 x2

 10. The value of x2 will always be:

(a) Positive
(b) Negative
(c) High
(d) It depends

 11. The Yates’ correction is sometimes used by researchers when:

(a) Cell sizes are huge
(b) Cell sizes are small
(c) They analyse data from 2 * 2 contingency tables
(d) Both (b) and (c) above

Questions 12 to 14 relate to the following (partial) output, which is the result of a x2 analysis investigating 

the association between body shape and type of sports played:

Linear-by-Linear Association 1 .00049

N of  Valid Cases

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 21.02.

12.162

525

Chi-Square Tests

Pearson Chi-Square

Likelihood Ratio

df

9

9

Asymp. Sig. (2-sided)

.00796

 .01055

Value

22.305a

21.516
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162 84 57 94 88

a. Not assuming the null hypothesis.

b. Using the asymptotic standard error assuming the null hypothesis.

.09943 .00796Cramer’s V

 12. The x2 value is:

(a) 12.162
(b) 21.516
(c) 22.305
(d) 525

 13. The x2 value has an exact probability level of:

(a) 0.0004
(b) 0.05
(c) 0.01055
(d) 0.00796

 14. The value of Cramer’s V is:

(a) 0.05
(b) 0.008
(c) 0.099
(d) 0.010

 15. Look at the following 2 * 2 contingency table, taken from 150 participants:

Drink tea Drink coffee

Feel terrific 70 50

Feel lousy 30 80

There is something wrong with the above, in that the numbers in the cells should:

(a) Add up to 150
(b) Add up to 100
(c) Be equal
(d) Be analysed by a 4 * 3 x2

 16. 485 people are asked which of five types of bird pictures they prefer to be put on a ‘stop all wars’ 
campaign. Results are as follows:
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What are the expected frequencies for the cells?

(a) 79
(b) 97
(c) 485
(d) 5

 17. In order to find out the effect size after performing a x2 analysis, we:

(a) convert Cramer’s V to x2

(b) convert x2 to Cramer’s V
(c) square the x2 value
(d) convert x2 to Fisher’s Z

 18. Look at the following table.

Anxious Not anxious

Dreadful job 210 150

Wonderful job  62  52

This is called a:

(a) 2 * 2 contingency table
(b) 3 * 2 contingency table
(c) 1 * 2 chi-square table
(d) 2 * 2 chi-square table

 19. The general purpose for which a 2 * 2 x2 analysis is used is to discover whether:

(a) There is a significant association between two categorical variables
(b) There is an association between two continuous variables
(c) Two groups of participants differ on two variables
(d) None of the above

 20. If you are performing a 4 * 4 x2 analysis and find you have broken the assumptions, then you need to:

(a) Look at the results for a Fisher’s exact probability test
(b) Look to see whether it is possible to collapse categories
(c) Investigate the possibility of a t-test
(d) Give up
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1. b, 2. c, 3. d, 4. a, 5. d, 6. b, 7. d, 8. c, 9. a, 10. a, 11. d, 12. c, 13. d, 14. c, 15. a, 16. b, 17. b, 18. a,  
19. a, 20. b
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CHAPTER OVERVIEW

In previous chapters you learnt how to compare two conditions, and how to analyse relationships 

between two variables. As part of these analyses you learnt how to report effect sizes, confidence 

intervals and achieved significance levels (ASLs). You now have all the tools you need to go on to a 

more complicated analysis – the analysis of three or more conditions. You are used to the idea of 

comparing two conditions (see Chapter 7), and the analysis of three or more conditions is just an 

extension of this. Instead of the t-tests, for two conditions, we now have ANOVA (for three or more 

conditions). ANOVA is the parametric equivalent of the t-test, for more than two groups. ANOVA is 

an acronym for Analysis of Variance. As in the t-test, you need to meet certain assumptions in order 

to be able to perform ANOVA. You will recognise these from your work on the t-test:

■ Scores must be drawn from a normally distributed population. We assume this is the case if our sample 
data show a normal distribution: the more participants we have in the study, the more likely it is that 
the distribution will be normal (see section 3.7).

■ There must be homogeneity of variance. This means that the variances are similar for the different 
groups. SPSS will test for this. In the case of the independent ANOVA, the test is called Levene’s Test. In 
the case of the repeated-measures ANOVA, it is F Max.

■ In a repeated-measures analysis, there is an additional assumption – that of sphericity. However, there 
is an adjustment used in repeated-measures ANOVA when this assumption has been violated. The 
adjustment is called the Greenhouse–Geisser Epsilon, and is given routinely in SPSS.

ANOVA is relatively robust in respect of these assumptions, so that small violations (e.g. you have 

normally distributed data, equal numbers of scores in the conditions but variances are not equal) 

mean that you can still go ahead. (Within-participants ANOVA is not robust to violations of sphericity, 

however, which is why the F must be routinely adjusted to take account of this.) If you have small 

numbers of participants, your data are skewed, and if you have unequal numbers of scores in the 

different conditions, you must consider performing a non-parametric equivalent of ANOVA (covered 

in Chapter 16).

In this chapter you will:

■ gain a conceptual understanding of what is meant by the analysis of variance

■ learn how to analyse data by the use of parametric ANOVAs

■ learn about an overall measure of effect (partial eta2)

■ learn how to present your results graphically.

Analysis of differences 

between three or more 

conditions 10
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The analysis of three or more conditions includes the following:

■ descriptive statistics, such as means, confidence intervals where appropriate, medians and standard 
 deviations; and graphical illustrations such as box and whisker plots

■ effect size – the magnitude of the difference between the conditions, called d, and an overall measure 
of effect, partial eta2 (η2)

■ inferential tests: a statistical test called Analysis of Variance (ANOVA) evaluates how likely it is that 
any differences between the conditions are due to sampling error.

 10.1 Visualising the design

It is easy to visualise an analysis of the differences between three or more groups by  representing 
it as shown in Table 10.1.

This is called a one-way design, because we have one factor – Factor A. This has three 
levels – A1, A2, A3. We can tell this is a between-groups design because each participant 
appears under only one level (e.g. Participant 1 (P1) appears only under the A1 condition).

Table 10.2 is also a one-way design1 because there is only one factor (called A). Factor A has 
three levels, or conditions (A1, A2, A3). You can tell that the design is repeated-measures 
because each participant is shown to give a score under each level (e.g. P1 appears under A1, 
A2 and A3, as do Participants 2 to 10).

ANOVA looks to see whether there are differences in the means of the groups. It does this 
by determining the grand mean2 and seeing how different each of the individual means is from 
the grand mean.

1 Although sometimes a repeated-measures one-way design such as this is, confusingly, known as a two-way. 
This is because the repetition of participants over all conditions is itself called a factor.

2 The grand mean is the mean of the means, e.g. (M1 + M2 + M3)/3.

A1 A2 A3

P1 P11 P21

P2 P12 P22

. . .

. . .

. . .

. . .

. . .

. . .

. . .

P10 P20 P30

Table 10.1 Independent participants (between-groups)

Three levels (or conditions) 
of one factor (Factor A)
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There are two types of ANOVA:

• Independent ANOVA (used when the participants perform in only one condition of several, 
i.e. an independent or between-participants design).

• Related ANOVA (used when the participants perform in all conditions, i.e. a related or 
within-participants design).

Related and independent ANOVAs test whether there is a significant difference between some 
or all of the means of the conditions by comparing them with the grand mean.

ANOVA is the t-test, generalised to more than two groups, and because of this, there is a 
direct relationship between them; in fact, if you use ANOVA on two conditions, the results will 
be equivalent to those obtained using a t-test.

 10.2 Meaning of analysis of variance

Analysis of variance (ANOVA), as the name suggests, analyses the different sources from which 
variation in the scores arises. Look at the scores in Table 10.3.

You will note that scores do not vary at all in the first condition. The variance is greater in 
the second condition, and even greater in the third.

 10.2.1 Between-groups variance

ANOVA looks for differences between the means of the groups. When the means are very dif-
ferent, we say that there is a greater degree of variation between the conditions. If there were 
no differences between the means of the groups, then there would be no variation. This sort of 
variation is called between-groups variation: for example, you can see from Table 10.3 that the 
means vary from 9 to 22.2.

Between-groups variation arises from:

• Treatment effects: When we perform an experiment, or study, we are looking to see that the 
differences between means are big enough to be important to us, and that the differences 
reflect our experimental manipulation. The differences that reflect the experimental 
 manipulation are called the treatment effects.

A1 A2 A3

P1 P1 P1

P2 P2 P2

. . .

. . .

. . .

. . .

. . .

. . .

. . .

P10 P10 P10

Table 10.2 Repeated measures (within-participants)
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• Individual differences: Each participant is different, therefore participants will respond dif-
ferently, even when faced with the same task. Although we might allot participants randomly 
to different conditions, sometimes we might find, say, that there are more motivated partici-
pants in one condition, or they are more practised at that particular task. So sometimes 
groups vary because of the unequal distribution of participants.

• Experimental error: Most experiments are not perfect. Sometimes experimenters fail to give 
all participants the same instructions; sometimes the conditions under which the tasks are 
performed are different, for each condition. At other times, equipment used in the experiment 
might fail, etc. Differences due to errors such as these contribute to the variability.

The between-groups variance can be thought of as variation between the columns. In the 
scores above, there is variation between the columns.

 10.2.2 Within-groups variance

Another source of variance is the differences or variation within a group. This can be thought 
of as variation within the columns. You can see from the scores above that condition 1, A1, has 
no variation within it; all the participants have scored the same: 9. Condition 2, A2, has little 
variation. Condition 3, A3, has much more variation. We have given these scores in order to 
illustrate variation – we might not want to perform ANOVA on data like these, because one of 
the assumptions of ANOVA (see later) is that the variances in each group are similar. This is 
because the formula for ANOVA takes the variances of each group and calculates an average. 
It only makes sense to use such an average if the groups are similar.

Within-groups variation arises from:

• Individual differences: In each condition, even though participants have been given the same 
task, they will still differ in scores. This is because participants differ among themselves – 
they have different abilities, knowledge, IQ, personality and so on. Each group, or condition, 
is bound to show variability – thus the scores in condition 1, A1, above are unrealistic.

• Experimental error: This has been explained above.

 10.2.3 Partitioning the variance

As you know, the purpose of ANOVA is to discover whether there are differences in the means 
of the groups, and it does this by first calculating a grand mean, and then looking to see how 

A1 A2 A3

9 15 21

9 15 25

9 16 17

9 15 22

9 16 26

X
-
= 9 X

-
= 15.4 X

-
= 22.2

Table 10.3 Scores for participants in three conditions

Variation between the groups (9 to 22.2)

Variation within the third 
group (from 17 through to 26)

y
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
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different each of the individual means is from the grand mean. This is done by what is known 
as partitioning the variance, as explained below. The variability in scores both across the groups 
and within the groups represents the total variance, and there are two sources that will determine 
this total variability – between-groups influences and within-groups influences. What ANOVA 
does is to partition this total variability into these two components. In order to do this, ANOVA 
has to estimate how much variability is contributed by each of these components:

Total variance
Between-groups variance
Within-groups variance

1. First, ANOVA calculates the mean for each of the three groups.
2. Then it calculates the grand mean (the three means are added together, then divided by 3).
3. For each group separately, the total deviation of each individual’s score from the mean of the 

group is calculated. This is the within-groups variation.
4. Then the deviation of each group mean from the grand mean is calculated. This is the 

between-groups variation.

As you can see, these calculations involve the grand mean. For instance, the total variance of a 
group describes the distance between the grand mean and the furthest score (see Figure 10.1). 
The total variance can then be partitioned into that due to differences between the means of the 
groups (between-groups variance) and that due to random error: that is, they are not manipu-
lated by the experimenter (within-participants variance).

This is done for each of the groups. Approximately speaking, the final calculations involve 
finding an average of the three groups’ between-groups variance, the within-groups variance 
and the total variance. The test statistic, F, is a ratio between the between-groups variance and 
the within-groups variance.

Between-groups variance , within-groups variance = F ratio

Figure 10.1 Three-group design showing partition of variance and distances from grand mean

Mean 1 Mean 2 Mean 3

Grand

mean Total variance

for group 2

Total variance

for group 1

Between-groups

variance for group 1

Within-groups

variance
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As we said earlier, the F test has a direct relationship to the t-test. In fact when we have only 
two conditions,

t2 = F

When we conduct our experiment, we hope that the within-groups variance is minimal – 
because this way, our F ratio will be larger. When the between-groups variance is very much 
larger than the within-groups variance, the F-value is large and the likelihood of such a result 
occurring by sampling error decreases.

In Figure 10.1 you can see that there is a lot of overlap between groups 2 and 3, suggesting 
that they do not differ from each other. Group 1, however, shows no overlap with groups 2 and 3. 
The grey vertical line is the grand mean (simply the three means added up and divided by 3). The 
distribution of scores on the left is for group 1. The total variance for group 1 starts at the edge 
of the distribution and finishes at the grand mean. This can be broken down into between-groups 
variance (from the mean of group 1 to the grand mean) and within-groups variance (from the 
edge of the distribution to the group mean).

You should be able to see that the total variance for both groups 2 and 3 is far smaller. The 
distance from the individual means of group 2 and group 3 to the grand mean (the between-
groups variance) is much smaller than the distance from group 1’s mean to the grand mean.

In Figure 10.2 you can see that there is a lot of overlap between the three groups, and that 
none of the individual group means will be far from the grand mean. The effect is small.

In Figure 10.3, you can see that there is a much smaller area of overlap, and that the individual 
group means will be much further from the grand mean. The effect will be larger.

The larger the (average) between-groups variance is in relation to the (average) within-groups 
variance, the larger the F ratio. This shows us that one (or more) of the individual group means 
is significantly different from the grand mean. It does not tell us which means are significantly 
different: this will require a further test.

Activity 10.1

Consider a design that has four independent conditions. Think of some reasons why 
scores in the different conditions might be different from each other. Then consider 
some of the reasons why participants might vary within each group.

Figure 10.2 Schematic representation of a small one-way effect

Variation within

each group

Variation between

each group

Means of the three groups
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Figure 10.3 Schematic representation of a large one-way effect

Means of the groups

Differences between

the groups

Example: alcohol and driving ability

Thirty-six people took part in an experiment to discover the effects of alcohol on driving ability. They 
were randomly assigned to three conditions: placebo (no alcohol), low alcohol and high alcohol. The 
non-alcoholic drink looked and tasted exactly the same as the other drinks(!). Participants were weighed 
and given the appropriate amount of drink. Thus the design is an independent one (between-
participants). After half an hour of drinking, participants drove in a simulator for ten minutes, and the 
number of errors made was automatically registered by the computer. Data were as shown in Table 10.4.

Placebo Low alcohol High alcohol

5 5 8

10 7 10

7 9 8

3 8 9

5 2 11

7 5 15

11 6 7

2 6 11

3 4 8

5 4 8

6 8 17

6 10 11

Σ = 70a Σ = 74 Σ = 123.00

X
- 

e = 5.83b X
-
 = 6.17 X

-
 = 10.25

SD = 2.69 SD = 2.33 SD = 3.05

a Σ = total
b X

-
e = mean

Table 10.4 Data in three alcohol conditions
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SPSS: performing a one-way ANOVA

Enter data in the usual way: save datafile. Select Analyze, Compare Means and One-Way ANOVA.

This brings you to the following dialogue box:
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If you want post-hoc tests, click on the Post Hoc box (post-hoc tests are explained in section 10.6):

Check the test you require, then click on Continue. Click on Options if you require descriptive statistics 
for each condition.

Then click on Continue, then OK. Your results will appear in the output window.
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 10.3 Descriptive statistics

The descriptive statistics option gives standard deviations, and confidence limits around the 
means. Look at Table 10.5.

The means appear to be different; the variances are similar. Let’s look at the means plotted 
on a graph, with the confidence intervals around the means – see Figure 10.4.

Although the means of the placebo group (5.83) and the low alcohol group (6.17) are slightly 
different, the confidence intervals overlap substantially. Thus any difference we see between 
the means could be due to sampling error. After all, the confidence limits for the placebo tell 
us that we are 95% confident that the population mean is between 4.12 and 7.54; the confidence 
limits for the low alcohol group tell us that we are 95% confident that the population mean for 
this group is 4.69–7.65. Thus, if we ran the experiment again on a different sample, we might 
find that the means were exactly the same!

The mean of the high alcohol group is much higher than the other two means, but, more 
importantly, the confidence interval of this group does not overlap at all with groups 1 and 2. 
Thus we can already see that any effect is between the high alcohol group and the other two 
groups.

The test statistics for a one-way independent ANOVA are as follows:

Placebo Low alcohol High alcohol

X
-

5.83 6.17 10.25

SD 2.69 2.33 3.05

CI 4.12–7.54 4.69–7.65 8.31–12.19

Table 10.5 Descriptive statistics and confidence limits for three alcohol conditions

Figure 10.4 95% confidence limits around the means

HIGHALC LOWALC PLACEBO

12 12 12
2

4

6

8

10

12

14

N 5

95%

Confidence

Limits
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ErrorsMade

Test of Homogeneity of Variances

Levene

Statistic

.215

df1

2

df2

33

Sig.

.808

Shows the variation of the three groups

are not significantly different from each

other, therefore we have met the

assumption of homogeneity of variance

The ‘group’ row is the between-groups

statistics, and is the row of interest. Our

analysis shows us F(2,33) 5 9.92, p , 0.001.

ErrorsMade
ANOVA

Between-groups

Within-groups

Total

Sum of

Squares

145.167

241.583

386.750

df

2

33

35

Mean Square

72.583

7.321

F

9.915

Sig.

.000

 10.3.1 ONEWAY

In journal articles, you will see that the F-value (9.9), the degrees of freedom (2,33) and the 
associated probability (here p 6 0.001) are always reported in the text. It is useful to report 
the overall size of the differences between the groups; however, SPSS does not have an option 
for this using the procedure described above (Analysis, Compare Means, Oneway). If you follow 
the procedure for ANOVA (described in Chapter 11), you will get the same results as presented 
above but SPSS will also compute partial η2 (eta2) automatically under the ANOVA procedure. 
Partial eta2 for the above example is 0.375. Thus 37.5% of the variation in the scores on driving 
ability is accounted for by the amount of alcohol consumed.

We now have a fair bit of information about the effect of alcohol on driving errors. Although 
it looks as if the differences between the groups are between the high alcohol condition and the 
other groups (rather than between placebo and low alcohol), ANOVA does not test for such 
comparisons. ANOVA lets us know whether there is a difference between some (or all) of the 
conditions, but that is as far as it goes. We can, however, obtain a further statistical test in order 
to confirm our belief that the differences that exist are between the high alcohol group and the 
others.

Multiple comparison procedures are used to assess which group means differ from means 
in the other groups.

 10.4 Planned comparisons

Researchers can usually predict which means will differ from other means, and often such 
comparisons are planned in advance. These comparisons are usually carried out after the overall 
F ratio has shown that there are significant differences between two or more of the means. 
Although there are several tests for making such comparisons, we recommend you make your 
planned comparisons by using the t-test, since you are already familiar with this.
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 10.5 Controlling for multiple testing

Often researchers want to make several comparisons after running a one-way ANOVA. If you 
carry out multiple comparisons, then, as stated on page 239, you increase the likelihood of a 
Type I error. In order to take into consideration multiple testing, you need to be stricter about 
the criterion used for declaring a result statistically significant. One way to control for multiple 
testing is to divide an acceptable probability value (e.g. 0.05) by the number of comparisons 
you wish to make. Thus, if you decide to make three pairwise comparisons, you divide 0.05 by 
3. This gives you a value of 0.016. You then accept as statistically significant a probability level 
of less than 0.016. This avoids a Type I error.

 10.6 Post-hoc tests

Sometimes researchers explore differences between the various sets of means without having 
specified these on the basis of theory. There are many post-hoc tests available to use, and these 
vary according to their power and ability to produce a Type I error – that is, they differ according 
to the extent to which they are liberal or conservative (these terms were explained in 
section 5.10). When we perform post-hoc tests using SPSS, we do not have to correct for a Type 
I error (as explained in the paragraph above) because the tests available have been corrected to 
account for multiple testing. When you are making a large number of comparisons, you should 
choose a post-hoc test that is more conservative. Such a test is called the Tukey honestly 
significant difference (HSD) test. A test that tends to be more liberal is called the least significant 
difference (LSD) test. Full discussion of these tests is not within the scope of this book; 
interested students are referred to Howell (2010) – or a search on the internet.

If we (or rather our statistical package) perform a Tukey HSD on our alcohol data, we obtain 
the following:

Dependent Variable: ErrorsMade

Tukey HSD

(J) Group

low alcohol

high alcohol

Std.

Error

1.10459

1.10459

1.10459

Sig.

.951

.951

.001

95% Confidence Interval

Lower Bound

placebo 22.3771 3.0438

high alcohol 1.10459  .002

low alcohol

* The mean difference is significant at the 0.05 level.

Mean Difference

(I–J)

2.33333

.33333

24.41667*

24.08333*

placebo 1.10459

1.10459

.001

.002

23.0438

27.1271

26.7938

1.7062

1.3729

Upper Bound

2.3771

21.7062

21.3729

7.1271

6.7938

4.41667*

4.08333*

(I) Group

placebo

low alcohol

high alcohol

Multiple Comparisons

This shows that there is a statistically significant difference between the placebo and high 
alcohol group, and between the low and high alcohol groups (emboldened). There is obviously 
no difference between the placebo and low alcohol group. You can now calculate the effect size, 
d, for the differences between the two conditions, in exactly the same way as you did for the 
t-test (see section 7.1.6). Just to remind you, the formula is as follows:

Mean of condition 1 - Mean of condition 3

Mean SD
=

5.83 - 10.25

Mean SD
=

-4.42

Mean SD
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So for conditions 1 and 3, the effect size is:

Mean SD =

2.69 + 3.05

2
= 2.87

Effect size =
-4.42

2.87
= 1.54

Therefore the means of the placebo and high alcohol condition differ by 1.54 of a standard 
deviation; and this is statistically significant. If you calculate the effect size for the low and high 
alcohol conditions, you will find that they also differ by 1.54 SD. Calculation of the effect size 
for the placebo and low alcohol condition leads to a figure of 0.135. Thus these conditions differ 
by approximately one-seventh of a standard deviation. Such a difference could be due to sam-
pling error. We now have plenty of information to write our report. The textual part of the analy-
sis might be written as follows:

Descriptive statistics (Table X)3 show that there were more errors made in the high alcohol 
condition than in the other two conditions. A one-way analysis of variance showed that any 
differences between conditions were unlikely to have arisen by sampling error, assuming the 
null hypothesis to be true. F(2,33) = 9.92, p 60.001 represented an effect size (partial  
eta2) of 0.375, showing that nearly 38% of the variation in driving errors can be accounted 
for by differing levels of alcohol. A post-hoc test (Newman–Keuls) confirmed that the dif-
ferences between conditions 1 and 3, and 2 and 3 (both effect sizes (d) = 1.54) were unlikely 
to have arisen by sampling error. There was no significant difference between the placebo 
and low alcohol conditions (effect size (d) = 0.14).

3You should refer your readers to the table where you give your descriptive statistics.

Activity 10.2

In calculating an effect size between two conditions in a one-way ANOVA, you obtain 
an effect size (d) of 0.490. The conclusion is that the means differ by:

(a) About half a standard deviation
(b) About a quarter of a standard deviation
(c) 4.9 standard deviations
(d) None of the above

Example from the literature

End-of-life care during and after an acute hospitalisation in older patients 
with cancer, end-stage organ failure, or frailty

Huijberts et al. (2015) investigated differences in geriatric conditions, advance care planning and health 
care utilisation in patients with cancer, organ failure, or frailty, who died within one year after acute 
hospitalisation.

They had three categories of patients: cancer, end-stage organ failure or frailty.
As part of that study, they looked at the differences in health care utilisation in the last month prior 

to death. Here is the table which they produced (p. 80).
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Total 
(N = 306)

Cancer 
(N = 151)

End-stage organ 
failure (N = 98)

Frail 
(N = 57)

P value

Hospitalisation % 24.2 30.5 17.3 17.5  0.03

Day care in hospital %  4.1  6.6  2.0  0.0  0.05

Outpatient visits % 38.2 49.0 27.6 28.1 60.001

Total % 41.7 53.0 29.6 31.6 60.001

Activity 10.3

Look at the above table.
In general, which patients had the highest rate of health care consumption?

Example from the literature

Age and autobiographical memory

Sometimes you will see that authors use ANOVA for two groups. A two-group ANOVA is equivalent to a 
t-test (as stated in Chapter 7). Sometimes it is useful to use an ANOVA, as SPSS calculates an effect size, 
partial eta2, which is useful. Autobiographical memories are memories of events from one’s own per-
sonal past. Sometimes these memories arise spontaneously (involuntary) and sometimes they are a 
result of deliberately being recalled (voluntary). Schlagman et al. (2009) studied these effects in young 
(n = 44) and older (n = 38) people.

Their table of results, which include comparing the two groups on general health and demographic 
variables, and cognitive variables, is given as follows:

Mean scores (standard deviations in parentheses) of background variables as a function of age (young vs older) 
(Schlagman et al., 2009)

Group

Variable Young, n = 44 Older, n = 38 F (1, 80) Effect size (η2 
p)

General health  3.70 (0.58) 3.92 (0.54) 3.01 .036

Health (self vs peers)  3.50 (0.73) 3.79 (0.74) 3.16 .038

Mood  3.31 (0.48) 3.39 (0.56) 0.49 .00

SCOLP, Language Capacity 45.64 (5.27) 54.79 (8.10) 37.73** .32

SCOLP, Speed of Comprehension 63.45 (16.62) 67.45 (14.10) 1.54 .02

Immediate free recall test  5.95 (1.14) 5.08 (1.56) 8.49* .10

Years in education 14.73 (1.25) 12.74 (3.28) 13.84** .15

Note. Right-hand columns present results of one-way analyses of variance on means with age-group as the 
independent variable (F values and effect sizes). SCOLP = Speed and Capacity of Language-Processing test.
* p 6  .05,** p 6  .001.
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The authors have used the criterion probability levels 0.05 and 0.001. Why not give exact p-values? 
However, the effect sizes are very informative. This shows, for instance, that the groups differed signifi-
cantly in ‘years in education’ (F = 13.84, p 6 0.001), the group membership accounting for 15% of the 
variation in scores on this variable (p. 400).

 10.7 Repeated-measures ANOVA

The repeated-measures ANOVA consists of one group of participants performing under all the 
conditions. You will remember that, for the independent design, we partitioned the variance into 
two parts:

• between-groups variance

• within-groups variance.

When we carry out a repeated-measures design, we can further partition the within-groups 
variance as follows:

1. The variability in scores due to individual differences.
2. The variability due to random error.

Between-groups variance

Individual differences variance

Residual variance

We can measure (1) above because, in the repeated-measures design, each participant is tested 
under all conditions. Thus we can compare each participant’s overall score (scores on all condi-
tions added up) with the other participants’ overall scores.

You will probably remember that the F ratio for our independent groups design was a ratio:

F =

Between-groups variance

Within-groups variance

The between-groups variance was made up of variation due to treatment effects, individual 
differences and experimental error. In a repeated-measures design, there is no between-groups 
variation due to individual differences, as the participants in each group are one and the same. 
The formula for calculating F in repeated-measures designs takes into account the fact that the 
participants are the same in each condition. Variation due to individual differences (which we 
can measure; see above) are removed from both the top and bottom of the equation; this tends 
to give rise to a more sensitive and powerful statistical test:

F =

Between-groups variance

Within-groups variance (with individual differences removed)

Let’s now imagine a situation where we re-run our alcohol experiment as a repeated-measures 
design. This means that each person will perform the task in all three conditions (placebo, low 
and high alcohol). It would not make sense for each person to perform all the conditions in one 
day, so the participants will have to be tested, say, every Monday for three weeks. In order to 
offset practice and order effects, the conditions will have to be counterbalanced. This is a more 
powerful design than the between-participants experiment, as each participant acts as their own 
control. We will assume that the scores, however, are the same (see Table 10.6).

The analysis starts in the same way as the between-participants design, with descriptive 
statistics and graphical illustrations.
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Participant Placebo Low alcohol High alcohol

1 5 5 8

2 10 7 10

3 7 9 8

4 3 8 9

5 5 2 11

6 7 5 15

7 11 6 7

8 2 6 11

9 3 4 8

10 5 4 8

11 6 8 17

12 6 10 11

Σ 70 74 123

Table 10.6 Data from participants in three alcohol groups

SPSS: instructions for repeated-measures ANOVA

From the menus, choose Analyze, General Linear Model and Repeated Measures:
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This brings you to the following dialogue box:

Change ‘Factor 1’ to a sensible name – in this case we have called the factor AlcoholGroup – and insert 
the number of levels. Since we have PLACEBO, LOW and HIGH doses, we have three levels. Then press 
the Add button. Then click on Define.

Move the variables on the left, one at a time, into the Within-Subjects Variables box on the right. In the 
example, Placebo is moved first, into the number one position, LowAlcohol is moved into the second 
position, and HighAlcohol the third. This represents our three levels. Then press Options. (Ignore the 
Between-Subjects Factor(s) and the Covariates buttons, as we are not interested in these for our 
analysis.)
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This gives you the following dialogue box:

Make sure that you check Compare main effects. You are then given a choice of three tests: LSD, Bonfer-
roni or Sidak. We suggest you use Bonferroni, which corrects for the number of pairwise tests that you 
are carrying out (see Chapter 7).

You can then check the options you require. Here we have asked for descriptives, effect size, means 
and power. The confidence intervals are given routinely. Then press Continue. This brings you back to 
the Repeated Measures ANOVA dialogue box. Press OK. Your results will appear in the output window.

 10.7.1 Sphericity

In ANOVA we start from the assumption that the conditions are independent. In repeated-
measures designs, however, we use the same participants in each condition, which means there 
is likely to be some correlation between the conditions. If you have three conditions, then there 
are three bivariate correlations: condition 1 vs condition 2, condition 2 vs condition 3, and 
condition 1 vs condition 3. We make the assumption that these correlations are similar. Thus 
we assume that all of the covariances are similar. The assumption of sphericity holds when the 
variance of the difference between the estimated means for any pair of groups is the same as 
for any other pair. Since this assumption is unlikely to be met, and violations of sphericity are 
detrimental to the accuracy of ANOVA, we recommend that you routinely interpret the ‘Green-
house–Geisser’ row of the output. In other words, it’s better to assume that we have broken the 
assumption. The Greenhouse–Geisser works (as you can see from the output in section 10.7.2) 
by adjusting the degrees of freedom. This correction formula makes our test more stringent, so 
that, even if we have broken the assumption of sphericity, we are less likely to make a Type I 
error.
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 10.7.2 Output for ANOVA

We have emboldened the row of interest. The degrees of freedom look odd in the SPSS output 
because they are given to several decimal places. The degrees of freedom, instead of being given 
as 2,22 (for the sphericity assumed rows) are given as 1.833 and 20.164. Don’t use such preci-
sion in reporting your degrees of freedom when using the Greenhouse–Geisser rows – just 
round them to whole numbers – in this case, 2,20. Here you will see that F = 10.83, and 
p = 0.001. The effect size, rounded up, is 50%. Therefore 50% of the variation in scores meas-
uring driving ability is accountable by the different amounts of alcohol consumed.

.496

Measure: MEASURE_1

.496

.496

.496

.001

.001

.001

.007

10.826

10.826

10.826

10.826

72.583

79.194

72.583

145.167

6.705

7.135

6.705

13.409

2

1.833

2.000

1.000

22

20.164

22.000

11.000

145.167

145.167

145.167

145.167

147.500

147.500

147.500

147.500

alcoholGroup

Partial Eta

 SquaredSig.F

Mean

Squaredf

Type III Sum

of SquaresSource

error

(alcoholGroup)

Sphericity

Assumed

Greenhouse–

Geisser

Huynh-Feldt

Lower-bound

Sphericity

Assumed

Greenhouse–

 Geisser

Huynh-Feldt

Lower-bound

Note that F(1.83, 20.16)

5 10.83, p 5 0.001

Use the Greenhouse–Geisser row

Tests of Within-Subjects Effects

 10.7.3 Post-hoc tests/planned

This is the output obtained under the Compare main effects option, using Bonferroni:

Estimates

Measure: MEASURE_1

Std. Error

.777

.672

.880

95% Confidence Interval

Lower BoundMean

5.833

6.167

10.250

4.123

4.687

8.313

Upper Bound

7.543

7.646

12.187

AlcoholGroup

1

2

3

The table above shows the mean score for each of the conditions, plus the 95% confidence 
limits.
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The table above compares each condition with every other condition, giving the mean dif-
ference between every pair, the standard error, the probability value and the 95% confidence 
limits around the mean difference.

The first row compares 1 (placebo) with 2 (low alcohol). The mean difference is 0.333. This 
is not statistically significant at any acceptable criterion value. This row also compares level 1 
(placebo) with level 3 (high alcohol). The difference here is 4.417, and the associated probabil-
ity level is 0.011. Have a go at interpreting the rest of the table yourself.

Measure: MEASURE_1

Sig.a

1.000

.011

95% Confidence Interval

for Differencea

Lower Bound

Mean

Difference

(I–J)

22.939

27.790

Upper Bound

2.272

21.043

(I) AlcoholGroup

Based on estimated marginal means

* The mean difference is significant at the .05 level.
aAdjustment for multiple comparisons: Bonferroni.

1

(J) AlcoholGroup

2

3

Std. Error

.924

1.196

1.000

.007

  .333

24.083*

 2.333

  24.417*

22.272

26.997

2.939

21.170

2 1

3

.924

1.033

.011

.007

4.417*

4.083*

1.043

1.170

7.790

6.997

3 1

2

1.196

1.033

Pairwise Comparisons

Activity 10.4

Think about what the confidence limits are telling us. How would you explain the 
meaning of the confidence interval of the mean difference to a friend who did not 
understand the output?

The write-up is similar to the independent groups ANOVA. This time, however, we can say:

A repeated-measures ANOVA was carried out on the driving data. Assumptions of normality 
and homogeneity of variance were met. Using the Greenhouse–Geisser correction, results 
showed that there was a significant overall difference between conditions (F(2,20) 
10.83, p = 0.001); an overall effect size of 0.496 (partial η2) showed that 50% of the variation 
in error scores can be accounted for by differing levels of alcohol. Pairwise comparisons 
showed that the difference between the placebo and the low alcohol condition was minimal 
(mean difference 0.333, p = 1.00) whereas the difference between the placebo and the high 
alcohol condition was large (mean difference = 4.42, p = 0.011, CI(95%)1.04-7.79). There 
was also a significant difference between the low and the high alcohol conditions 
(mean difference = 4.08, p = 0.007, CI(95%)1.17-7.00). It can therefore be concluded that 
the more alcohol is consumed, the greater the number of driver errors.



Statistics without maths for psychology318

Personal reflection

Manna Alma, PhD
University Medical Center Groningen, Department of Health Sciences, Com-
munity and Occupational Medicine, The Netherlands

ARTICLE: The effectiveness of a multidisciplinary group rehabilitation program 
on the psychosocial functioning of elderly people who are visually impaired

Manna Alma says:

“Vision loss and its consequences on daily functioning require substantial psychosocial adjustment, 
a process many visually impaired persons are struggling with. The psychosocial impact of vision loss is 
profound, evidenced by deleterious effects on emotional adaptation, an elevated risk for depression, a 
high level of emotional distress, reduced mental health and a decline in life satisfaction. The psychoso-
cial needs of those who are visually impaired should be part of their rehabilitation. Therefore, we devel-
oped a multidisciplinary group rehabilitation program, Visually Impaired Elderly Persons 
Participation – VIPP, which aims to promote adaptation to vision loss and to improve social functioning. 
In that paper, we described the results of a pilot study on the impact of VIPP on psychosocial function-
ing of the visually impaired elderly. For a convincing estimation of the change in psychosocial function-
ing a randomized controlled trial is preferable. Since the pilot study was a first step in investigating the 
effectiveness of the VIPP-program, we used a single group pretest–posttest design. The results showed 
an increase in psychosocial functioning directly after the program. For some of the outcome measures 
the improvement appeared to be a temporary effect and was followed by a decline during the six 
months following the intervention. However, the six-months follow-up measure still indicated positive 
effects compared to baseline. This pilot study was a first step toward documenting the effect of VIPP 
on psychosocial functioning. Although the results are preliminary because of the small sample size and 
the research design, the results are promising.”
Example from the literature

The effectiveness of a multidisciplinary group rehabilitation program on 
the psychosocial functioning of elderly people who are visually impaired

Alma et al. (2013) carried out a group rehabilitation programme for visually impaired older people. They 
measured 29 people on psychosocial variables before an intervention. The intervention consisted of 
20 weekly meetings which included practical training and education. The participants were measured 
at three time-points (baseline, halfway, immediately after the completion of the intervention, and at 
six-month follow-up). This, then, is a pre-post design, suitable for repeated-measures ANOVA. The 
authors state that they used Eta squared as a measure of effect size (ES).

The table of results is reproduced below. Note that the second column shows whether the overall 
ANOVAs are statistically significant. The five columns to the right shows the F values and effect sizes 
for pairwise comparisons.
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Comparison of the mean scores of the psychosocial outcome measures at pretest (T0), halfway (T1), posttest (T2) 
and at six-months follow-up (T3)

Outcome 
measure

ANOVA T0-T1 T1-T2 T2-T3 T0-T2 T0-T3

Fa
η2 Fb ES Fb ES Fb ES Fb ES Fb ES

Adaptation 7.73*** 0.24 15.33** 0.62 0.93 0.19  1.93 0.27 12.13** 0.57 10.41** 0.54

Helplessness 2.80* 0.10  1.60 0.25 0.01 0.02  2.96 0.33  1.80 0.26  9.68** 0.53

Self-Efficacy 4.90** 0.16  2.41 0.30 1.36 0.23 12.68*** 0.58  7.94*** 0.50  0.51 0.14

Mental Health 1.83 0.07  0.32 0.11 3.69 0.36  1.89 0.27  4.45* 0.39  1.22 0.22

Fear of Failing 
Generic

1.53 0.06  0.09 0.06 0.63 0.17  3.59 0.35  0.96 0.20  0.87 0.18

Fear of Failing 
Vision-specific

1.95 0.07  8.27** 0.50 2.03 0.27  0.06 0.05  1.55 0.24  1.89 0.27

a Degrees of freedom of the F-statistic were (3,75).
b Degrees of freedom of the F-statistic were (1,25).
* p 6 0.05;** p 6 0.01;*** p 6 0.001.

Activity 10.5

Look again at the table above. Complete the authors’ interpretation by filling in the 
gaps. Check your answers in the Answers section:

The authors state: ‘The one-way repeated measures ANOVA (see Table) showed sta-
tistical significant differences for three of the five outcome measures. Large interven-
tion effects were found for adaptation to vision loss (η2

= 0.24, p 6  001) and .......... 
(name of variable) (η2

= 0.16, p 6 ......... and a medium effect for ............ (name of vari-
able) (η2

= ........ p 6 .046). There were medium effects for ......... (name of variable) (η2

= ........ p 6 .15), a generic fear of falling (η2
= ........ p 6 .22), and ................ (name of 

variable) (η2
= ........ p 6  ........., although not statistically significant.’

Summary

• ANOVAs allow us to test for differences between 
three or more conditions.

• ANOVAs are suitable for data drawn from a 
normal population – they are parametric tests.

• ANOVAs allow us to assess the likelihood of 
having obtained an observed difference between 
some or all of the conditions by sampling error.

• Planned or post-hoc tests show us which 

conditions differ significantly from any of the 
other conditions.

• Partial eta2 is a correlation coefficient that can 
be used as a measure of effect in ANOVA. It lets 
us know, in percentage terms, how much 
variance in the scores of the dependent variable 
can be accounted for by the independent 
variable.
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Discover the website at www.pearsoned.co.uk/dancey where you can test your knowledge with multiple 
choice questions and activities, discover more about topics using the links to relevant websites, and explore 
the interactive flowchart designed to help you find the right method of analysis.

SPSS exercises

Exercise 1

At the local university, students were randomly allocated to one of three groups for their laboratory 
work – a morning group, an afternoon group and an evening group. At the end of the session they were 
given 20 questions to determine how much they remembered from the session.

Enter the data from Table 10.7 into SPSS, analyse it by the use of ONEWAY (which is in the Compare 
Means menu), and obtain the results. Perform a post-hoc test. Copy down the important parts of the 
printout. Interpret your results in terms of the experiment. Were there differences between the groups, 
and, if so, in which direction?

Morning Afternoon Evening

P1 15 P11 14 P21 13

P2 10 P12 13 P22 12

P3 14 P13 15 P23 11

P4 15 P14 14 P24 11

P5 17 P15 16 P25 14

P6 13 P16 15 P26 11

P7 13 P17 15 P27 10

P8 19 P18 18 P28  9

P9 16 P19 19 P29  8

P10 16 P20 13 P30 10

Table 10.7 Data from morning, afternoon and evening laboratory groups

Exercise 2

There is some evidence to show that smoking cannabis leads to short-term memory loss and reduced 
ability in simple tasks. Seven students, smokers who normally did not take cannabis, were recruited to 
answer difficult arithmetic questions, under four different conditions. In the placebo condition they 
smoked a herbal mixture, which they were told was cannabis. In condition 2 they smoked a small amount 
of cannabis, increasing to a large amount in condition 4. Students were required to smoke cannabis 
alone. To avoid practice effects, there were four different arithmetic tests, all at the same level of dif-
ficulty. To avoid the effects of order and fatigue, the order in which participants took the tests was 
counterbalanced. Results are shown in Table 10.8.

http://www.pearsoned.co.uk/dancey
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Enter the data into SPSS, analyse with a repeated-measures ANOVA, and write up the results in the 
appropriate manner.

Participant number Placebo Low dose Medium dose High dose

1 19 16 8 7

2 14 8 8 11

3 18 17 6 3

4 15 16 17 5

5 11 14 16 7

6 12 10 9 8

7 11 9 5 11

Table 10.8 Effect of cannabis smoking on fatigue

 1. Parametric one-way independent ANOVA is a generalisation of:

(a) The paired t-test
(b) The independent t-test
(c) x2

(d) Pearson’s r

Questions 2 to 4 are based on the following information:

Alice, a third-year student, noticed that she and her friends learnt more statistics when they were in 
Madame MacAdamia’s class than in Professor P. Nutt’s. They could not determine whether this was 
due to the style of the teaching or the content of the lectures, which differed somewhat. For her third-
year project, therefore, she persuaded three statistics lecturers to give the same statistics lecture, but 
to use their usual lecturing styles. First-year students were allotted randomly to the three different 
lecturers, for one hour. At the end of the lecture, they were tested on their enjoyment of the lecture 
(ENJOYMENT), and also on what they had learnt in the lecture (KNOWLEDGE). Alice then con-
ducted a one-way ANOVA on the results. This is the SPSS printout for ENJOYMENT:

Multiple choice questions

ANOVA

ENJOYMENT

14513892.5548

.614147.2154 .4893294.4308

Sig.Mean Square Fdf

Between Groups

96.490414313798.1240Within Groups

Total

Sum of  Squares
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 2. Which is the most appropriate conclusion?

(a) There are statistically significant differences between the three groups of students on 
ENJOYMENT

(b) There are important differences between the three groups but these are not statistically 
significant

(c) There are no statistical or important differences between the three groups
(d) No conclusions can be drawn

 3. The following is also given with the above printout:

What can you conclude from this?

(a) The variances of the groups are significantly different from each other
(b) The variances of the groups are similar
(c) The variances are heterogeneous
(d) None of the above

 4. Here are the results for the KNOWLEDGE questionnaire, which the students completed after their 
one-hour lecture:

ANOVA

KNOWLEDGE

1461593.2789

.005755.1550 5.35572110.3100

Sig.Mean Square Fdf

Between Groups

10.29841441482.9689Within Groups

Total

Sum of Squares

Descriptives

ENJOYMENT

62.9091

62.90631.00

61.20412.00

3.00

Mean

Test of  Homogeneity of  Variances

ENJOYMENT

.2671432

Sig.df2

1.3343

df1Levene Statistic
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Descriptives

KNOWLEDGE

12.3235

10.57811.00

10.04082.00

3.00

Mean

Cashew

P.Nutt

MacAdamia

Which is the most sensible conclusion?

(a) There are significant differences between the groups on KNOWLEDGE; specifically, Colin 
Cashew’s group retained more of the lecture than the other two groups

(b) There are significant differences between the groups on KNOWLEDGE; specifically, Madame 
MacAdamia’s group retained more of the lecture than Professor P. Nutt’s group

(c) There are significant differences between all of the groups on KNOWLEDGE; specifically, 
Professor P. Nutt’s group retained more of the lecture than the other two groups

(d) There are no significant differences between the groups on KNOWLEDGE

 5. The F-ratio is a result of:

(a) Within-groups variance/between-groups variance
(b) Between-groups variance/within-groups variance
(c) Between-groups variance * within-groups variance
(d) Between-groups variance + within-groups variance

 6. The relationship between the F-ratio and t-value is explained by:

(a) t3 = F

(b) F2
= t

(c) t2 = F

(d) f 3 = t

 7. Professor P. Nutt is examining the differences between the scores of three groups of participants. If the 
groups show homogeneity of variance, this means that the variances for the groups:

(a) Are similar
(b) Are dissimilar
(c) Are exactly the same
(d) Are enormously different

 8. Differences between groups, which result from our experimental manipulation, are called:

(a) Individual differences
(b) Treatment effects
(c) Experiment error
(d) Within-participants effects
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 9. Herr Hazelnuss is thinking about whether he should use a related or unrelated design for one of his 
studies. As usual, there are advantages and disadvantages to both. He has four conditions. If, in a 
related design, he uses ten participants, how many would he need for an unrelated design?

(a) 40
(b) 20
(c) 10
(d) 100

 10. Individual differences within each group of participants are called:

(a) Treatment effects
(b) Between-participants error
(c) Within-participants error
(d) Individual biases

 11. Dr Colin Cashew allots each of 96 participants randomly to one of four conditions. As Colin Cashew 
is very conscientious, he meticulously inspects his histograms and other descriptive statistics, and finds 
that his data are perfectly normally distributed. In order to analyse the differences between the four 
conditions, the most appropriate test to use is:

(a) One-way between-groups ANOVA
(b) t-test
(c) Pearson’s r
(d) Repeated-measures ANOVA

 12. The assumption of sphericity means that:

(a) The variances of all the sample groups should be similar
(b) The variances of the population difference scores should be the same for any two conditions
(c) The variances of all the population difference scores should be similar
(d) The variances of all the sample groups should be dissimilar

 13. If, in an analysis of variance, you obtain a partial eta2 of 0.52, then how much of the variance in scores 
on the dependent variable can be accounted for by the independent variable?

(a) 9%
(b) 52%
(c) 25%
(d) 27%

 14. Calculating how much of the total variance is due to error and the experimental manipulation is called:

(a) Calculating the variance
(b) Partitioning the variance
(c) Producing the variance
(d) Summarising the variance

 15. The following is output relating to a post-hoc test, after a one-way ANOVA:



CHAPTER 10 Analysis of differences between three or more conditions 325

.566

.566

.566

.566

Tests of Within-Subjects Effects

Measure: MEASURE_1

.007

.030

.029

.031

7.821

7.821

7.821

7.821

271.429

529.947

522.395

542.857

34.706

67.762

66.796

69.413

2

1.024

1.039

1.000

12

6.146

6.235

6.000

542.857

542.857

542.857

542.857

416.476

416.476

416.476

416.476

FACTOR1

Partial Eta

 SquaredSig.F

Mean

Squaredf

Type III Sum

of  SquaresSource

Error

(FACTOR1)

Sphericity Assumed

Greenhouse–Geisser

Huynh-Feldt

Lower-bound

Sphericity Assumed

Greenhouse–Geisser

Huynh-Feldt

Lower-bound

Multiple Comparisons

Dependent Variable: Current Salary

Tukey HSD

(J) Employment

Category

Custodial

Manager

Std. Error

$2,023.76

$1,228.35

$2,023.76

Sig.

.276

.276

.000

95%

Confidence

Interval

Lower Bound

Clerical 2$1,642.74 $7,843.44

Manager $2,244.41 .000

Custodial

* The mean difference is significant at the .05 level.

Mean

Difference

(I–J)

2$3,100.35

$3,100.35

2$36,139.26*

2$33,038.91*

Clerical $1,228.35

$2,244.41

.000

.000

2$7,843.44

2$39,018.15

2$38,299.13

$33,260.37

$27,778.69

Upper Bound

$1,642.74

2$33,260.37

2$27,778.69

$39,018.15

$38,299.13

$36,139.26*

$33,038.91*

(I) Employment

Category

Clerical

Custodial

Manager

Which groups differ significantly from each other?

(a) Clerical and custodial occupations only
(b) Custodial and manager occupations only
(c) Manager and clerical occupations only
(d) Manager and clerical plus manager and custodial

 16. Look at the following output, which relates to a repeated-measures ANOVA with three conditions. 
Assume sphericity has been violated.

Which is the most appropriate statement?
The difference between the conditions represented by:

(a) F(2,12) = 7.82, p = 0.007
(b) F(1,6) = 7.82, p = 0.030
(c) F(2,12) = 7.82, p = 0.030
(d) F(1.6) = 7.82, p = 0.031



Statistics without maths for psychology326

 17. Which is the most appropriate answer? The effect size is:

(a) 5.7%
(b) 57%
(c) 0.57%
(d) 5%

Questions 18 to 20 relate to the output below, which shows a repeated-measures ANOVA with three levels. 

Assume sphericity has been violated.

 18. Which is the most appropriate statement?

(a) F(2,12) = 5.62, p = 0.020
(b) F(1,6) = 5.62, p = 0.051
(c) F(2,12) = 5.62, p = 0.049
(d) F(1,6) = 5.62, p = 0.055

Pairwise Comparisons

Measure: MEASURE_1

Sig.a

.058

.184

95% Confidence Interval

for Differencea

Lower Bound

Mean

Difference

(I–J)

211.857

23.429

224.146

28.339

Upper Bound

.431

1.482

(I)COND

Based on estimated marginal means

a. Adjustment for multiple comparisons: Bonferroni.

1

(J)COND

2

3

Std. Error

3.738

1.494

.058

.339

11.857

8.429

2.431

27.514

24.146

24.371

2 1

3

3.738

4.849

.184

.399

3.429

28.429

21.482

224.371

8.339

7.514

3 1

2

1.494

4.849

Tests of Within-Subjects Effects

Measure: MEASURE_1

.019

.051

.049

.055

5.624

5.624

5.624

5.624

260.619

485.940

466.251

521.238

46.341

86.406

82.905

92.683

2

1.073

1.118

1.000

12

6.436

6.708

6.000

521.238

521.238

521.238

521.238

556.095

556.095

556.095

556.095

COND

Sig.F

Mean

Squaredf

Type III Sum

of  SquaresSource

Error

(COND)

Sphericity Assumed

Greenhouse–Geisser

Huynh-Feldt

Lower-bound

Sphericity Assumed

Greenhouse–Geisser

Huynh-Feldt

Lower-bound
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 19. Which two conditions show the largest difference?

(a) 1 and 2
(b) 2 and 3
(c) 1 and 4
(d) They are identical

 20. Assuming that the null hypothesis is true, the difference between conditions 1 and 2 has a:

(a) 5% chance of arising by sampling error
(b) 6% chance of arising by sampling error
(c) 19% chance of arising by sampling error
(d) 20% chance of arising by sampling error
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 11.1 Introduction

We explained, in Chapter  10, how we can use analysis of variance (ANOVA) to test for 
differences between groups when we have more than two conditions of the IV. One of the most 
useful aspects of ANOVA, though, is that it allows us to analyse the effects of two or more IVs 
on a DV in one analysis. Such analyses are often called factorial ANOVAs. In addition to this, 
we can use ANOVA to find out if there is an interactive effect of our two variables on the DV: 
that is, whether one IV may behave differently in the two conditions of the second IV. You should 
note that ANOVA is not restricted to just two IVs. You could, if you so wished, have three or 
four or more IVs. The more IVs you have, however, the harder it becomes to interpret any 
interactive effects there are between them. Once we have shown you how to interpret interactions, 
you will begin to appreciate how difficult it could get if we had a lot of IVs.

A simple example should illustrate what the factorial ANOVA offers us. Suppose we 
conducted a study to investigate context-dependent memory. A classic study was conducted by 
Godden and Baddeley in 1975 where they demonstrated context-dependent memory (for a more 
recent study on context-dependent memory see Bloch and Vakil, 2015). Context-dependent 
memory is where memory for information is best when the surroundings at recall match the 
surroundings at encoding. In their study, Godden and Baddeley presented divers with lists of 
words to remember. Crucially, the divers were tested both on land and under water to see what 
effects the different places had on recall. There were two independent variables in this 

CHAPTER OVERVIEW

Earlier, in Chapter  10, we introduced you to one of the most widely used statistical tests in 

psychology today, the analysis of variance (ANOVA). In this chapter we aim to:

■ teach you about an extension of the one-way ANOVA to include two or more IVs

■ describe three different ANOVA designs, each with two IVs:

– the first ANOVA will have two between-participants IVs

– the second will have two within-participants IVs

– the third will have one between- and one within-participants IV

■ explain, with all these designs, how the variance is allocated between the various conditions and 
how we might evaluate the degree of interaction between our two IVs

■ illustrate how we can break down interaction effects to find out precisely how one IV is interacting 
with the second IV; such analyses are called simple effects.

Analysis of variance with 

more than one IV 11
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study: place of encoding (on land vs under water) and place of recall (on land vs under water). 
Godden and Baddeley found memory for the words was best when the place at recall matched 
the place at encoding. Thus, word lists that were first encoded under water were best recalled 
under water and those that were encoded on land were best recalled on land. In a similar study 
by Reidy and Richards (1997) anxious and non-anxious people were presented with a mixture 
of negative and neutral words to read. A little while later they were asked to recall as many of 
the words as they could. It was found that the anxious participants recalled more negative than 
neutral words whereas there was no difference in number of negative and neutral words recalled 
by the non-anxious participants. If we wanted to replicate this study we could perhaps have two 
groups of participants, those who are anxious and those who are not anxious. We could also 
have two memory tasks, one where they have to remember negative words and one where they 
have to remember positive words. We might examine a number of effects in this study:

• Will there be an overall difference between anxious and non-anxious participants in the 
number of words recalled?

• Will memory be best for negative words or neutral words?

• Will there be difference between anxious and non-anxious participants in the type of words 
best remembered?

The first two of these questions refer to what are called main effects. These refer to the overall 
effect of each of the IVs on the DV: that is, the overall effect of anxiety on memory, regardless 
of which type or words they are recalling, or the overall effect of word type on memory 
regardless of whether a person is anxious or not. The third question above, which relates to the 
potential different patterns of memory for negative and neutral words by anxious and non-
anxious participants is called the interaction between the two IVs. Thus, we have three effects 
that we are interested in and ANOVA allows us to test all three of these in one analysis.

The interaction between variables is a little difficult to get your head around. It is akin to the 
old adage of the whole is more than the sum of its parts. When there is an interaction the IVs 
analysed together uncover a different pattern of variation in the DV than when the IVs are 
analysed separately. For example, most people would agree that the individual members of Led 
Zeppelin did not produce the same quality of songs when recording alone compared with when 
they recorded together. We might suggest that when they came together something magical 
happened which was not there when they recorded independently, there was a significant 
interaction between them.

 11.2 Sources of variance

As the name of the test suggests, we use ANOVA to analyse all the possible sources of variance 
in our studies. When we measure participants on some DV, we will get variation in their scores. 
Some of this variation will be attributable to the IVs, some of it will be attributable to the 
interaction between the IVs and some of it will be error variance. The purpose of ANOVA is to 
try to identify how much of the total variation in scores is accounted for by each of these factors 
(see Figure 11.1). Figure 11.1 shows that when we have two IVs, variation in the DV can be 
attributed to the two IVs separately and the interaction between them. Any variation that is not 
accounted for by these factors is said to be error variance.

We explained, in Chapter 10, that the one-way ANOVA assesses the degree to which the vari-
ance between conditions is greater than the variance within conditions. We explained that, if the 
between-conditions variance was considerably larger than within-conditions, then we could con-
clude that the between-groups difference was not due to sampling error. We suggested that in 
such a situation the difference between groups could probably be attributed to our manipulation 
of the IV. The logic of analysing more than one variable is similar to that of the one-way ANOVA. 
We essentially divide (or partition) the total variance into that which represents the two IVs 
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separately and that which is attributable to the interaction between these IVs; we then compare 
these sources of variance with the within-conditions (or error) variance. These analyses allow 
us to assess the likelihood of a particular effect being the result of sampling error.

We suggested earlier that ANOVA allows us to analyse even more than two IVs in one 
analysis. In Figure 11.2 you can see how we would divide up the variation if we had three IVs. 
It is apparent from this diagram that there are many more sources of variation that we have to 
identify (there are many more slices to the pie). In fact, with the addition of only one IV we 
double the number of sources of variation that we have to analyse. Thus, the complexity of the 
analysis is increased dramatically when we include more IVs (compare Figures 11.1 and 11.2 
with the pie chart in section 10.2.3). In such designs it also becomes much more difficult to 
interpret the interactions between all the IVs. So, for those of you thinking of doing an 
experiment investigating the effects of age, gender, social class, anxiety and intelligence on 
ability to abseil and analysing the data using ANOVA, think again. Such an analysis is unwieldy 
and would prove extremely difficult to interpret. There are better ways of analysing such data, 
for example multiple regression (see Chapter 12), although there are drawbacks even to this.

We should point out that the partitioning of the variation illustrated in Figures 11.1 and 11.2 
represents the case for completely between-participants designs only. When we have any within-
participants IVs in the analyses, things get a lot more complicated. We will cover such designs 
later in this chapter.

Figure 11.1 Pie chart illustrating the sources of variation in the DV for a study with two IVs

IV1

IV2

Interaction

Error

Activity 11.1

See if you can work out the various sources of variance when you have four IVs 
(variable A, variable B, variable C and variable D).

Figure 11.2 Pie chart illustrating the various sources of variation in the DV for a study with three IVs

IV1

IV2

IV3
Interaction IVs 1 & 2

Interaction IVs 1 & 3

Interaction IVs 2 & 3

Interaction IVs 1, 2 & 3

Error
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 11.3 Designs suitable for factorial ANOVA

Various designs are suitable for factorial analysis of variance. The key feature of such designs 
is that they have only one DV and two or more IVs. In this chapter we will be explaining the 
rationale for three types of factorial ANOVA, those with:

• two between-participants IVs

• two within-participants IVs

• one between-participants IV and one within-participants IV.

All the ANOVAs we describe in this chapter will have IVs with two conditions. For example, 
in the anxiety and memory study described earlier, we might have two anxiety conditions 
(anxious and non-anxious) and two word conditions (negative and neutral words). If this study 
were a completely between-participants design, the allocation of participants to conditions 
would look something like that shown in Table 11.1.

We could conduct the same study as a totally within-participants design. In such a study, 
each participant would have to take part in all four conditions (see Table 11.2).

Anxiety conditions

Word type Anxious Non-anxious

Negative P1 P4

P2 P5

P3 P6

. . .  . . . 

Neutral P7 P10

P8 P11

P9 P12

. . .  . . . 

Table 11.1 Allocation of participants to conditions in a completely between-participants design

Anxiety conditions

Word type Anxious Non-anxious

Negative P1 P1

P2 P2

P3 P3

. . .  . . . 

Neutral P1 P1

P2 P2

P3 P3

. . .  . . . 

Table 11.2 Allocation of participants to conditions in a completely within-participants design



Statistics without maths for psychology332

Finally, we might have one IV, say the anxiety one, as a between-participants variable and 
the other, word type, as a within-participants variable. The allocation of participants to 
conditions in such a study is illustrated in Table 11.3.

 11.4 ANOVA terminology

Often in the literature you will see ANOVA designs expressed as a 2 * 3 ANOVA or a 3 * 4 
ANOVA, or perhaps a 4 * 3 * 2 ANOVA.

Such terminology simply tells you how many IVs were used (indicated by how many numbers 
are displayed) and how many conditions in each.

• In the first example, 2 * 3 ANOVA, there were two IVs, the first with two conditions and 
the second with three conditions.

• In the second example, 3 * 4 ANOVA, there were two IVs, one with three conditions, the 
other with four conditions.

• In the final example, 4 * 3 * 2 ANOVA, there were three IVs, one with four conditions, 
one with three conditions and one with two conditions.

How would you describe the following analysis: a 4 * 4 * 2 * 2 * 2 * 5 * 6 ANOVA? 
The official answer to the question is that it has seven IVs, one with six conditions, one with five 
conditions, two with four conditions and three with two conditions. However, we would describe 
such an analysis as crazy because it would be extremely difficult to interpret an interaction 
between all of these IVs. Remember, we explained that increasing the number of IVs dramatically 

Anxiety conditions

Word type Anxious Non-anxious

Negative P1 P4

P2 P5

P3 P6

. . .  . . . 

Neutral P1 P4

P2 P5

P3 P6

. . .  . . . 

Table 11.3 Allocation of participants to conditions in one between-participants (exam conditions) 
and one within-participants (revision conditions) design

2 3 3 ANOVA

3 3 4 ANOVA

4 3 3 3 2 ANOVA

Two IVs, one with 2 conditions and one with 3 conditions

Two IVs, one with 3 conditions

and one with 4 conditions

Three IVs, one with 4 conditions, one with 3 conditions and one with 2 conditions
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increases the number of sources of variance in a design. It is perhaps for such reasons that we 
very rarely see published work that has analysed data using ANOVA with more than three IVs.

We should also note here that using many IVs in ANOVA means that we are testing many different 
effects against many different null hypotheses. We therefore have to bear in mind the increased 
probability of making Type I errors. An example should help to illustrate this. Suppose you conducted 
a study with four IVs (A, B, C and D). If you conducted ANOVA on these data, you would be testing 
15 different effects against their corresponding null hypothesis (main effects of A, B, C and D plus 
11 interactions between these IVs). In doing this you would be drastically increasing the family-wise 
error rate and thus increasing the probability of making a Type I error. We should therefore use 
common sense when deciding how to analyse the data from complex pieces of research.

Activity 11.2

Referring back to the explanation given at the beginning of section 11.4, have a go at 
describing the following designs:

(a) A 6 * 2 ANOVA
(b) A 3 * 3 * 3 ANOVA
(c) A 4 * 2 * 4 * 2 ANOVA
(d) A 2 * 2 * 2 * 2 * 2 ANOVA

Activity 11.3

Referring to Table 11.4, give your interpretation of the confidence intervals.

 11.5 Two between-participants independent variables

Let us return to the example experiment outlined previously concerning anxiety and memory. 
Some invented data from such an experiment are presented in Table 11.4.

 11.5.1 Initial analyses

As with the one-way ANOVA, you need to run some exploratory data analyses to check that 
the assumptions for ANOVA are met. Some initial statistical analyses (mean, SD and 95% 
confidence intervals) are presented along with the hypothetical data in Table 11.4. We can see 
from these analyses that the condition with the poorest recall was the anxious participants 
recalling neutral words (mean = 9.65) and best memory performance was by the anxious 
participants recalling neutral words (mean = 14.75). The means for the non-anxious participants 
recall of neutral and negative words were in between these two extremes (means of 13.20 and 
12.1 respectively). We can also see that the standard deviations for all conditions are quite similar 
and thus we can be reasonably confident that the assumption of homogeneity of variance has not 
been violated with these data.

The next stage of our exploratory data analyses should involve obtaining some plots to 
establish whether our data are normally distributed. We can look at this using histograms, stem 
and leaf plots or box plots. Let us assume that we have generated such plots and are satisfied 
that we have no violations of assumptions underlying the use of parametric tests (remember, 
ANOVA is such a test). We can therefore proceed to analyse our data using ANOVA.
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 11.5.2 Sources of variance

How do we work out the sources of variance when this is a completely between-groups design? 
If you look at the predictions, you can see that we have already identified three possible sources 
of variance:

1. The main effect due to anxiety conditions.
2. The main effect due to word type conditions.
3. The interaction between these two factors.

Are there any other sources of variance? If you think back to Chapter 10, you should recall that, 
for a one-factor between-participants design, there were two sources of variance: the between-
groups variance and the within-groups (or error) variance. That is, we had one source of variance 
due to the between-groups factor and one due to differences between the participants within 

Word type

Anxiety group

Anxious Non-anxious

Negative 19 12 16 17

14 10 8 15

17 16 14 14

13 17 10 16

10 19 14 12

13 17 11 16

12 19 13 13

15 10 3 3

15 13 15 7

19 15 16 9

Mean = 14.75; SD = 3.09
95% CI: 13.30–16.20

Mean = 12.10; SD = 4.22
95% CI: 10.13–14.07

Neutral 9 10 17 9

4 7 9 11

10 9 16 14

15 8 16 12

1 14 16 6

16 7 18 13

13 9 19 10

8 8 12 12

9 12 6 16

9 15 13 19

Mean = 9.65; SD = 3.73
95% CI: 7.90–11.40

Mean = 13.20; SD = 3.94
95% CI: 11.36–15.04

Table 11.4 Number of negative and neutral words recalled by anxious and non-anxious participants.
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Between-Subjects Factors

Anxiety Group

Word type

1.00

2.00

1.00

2.00

Anxious

Non-anxious

Negative

Neutral

Value Label N

40

40

40

40

Dependent Variable: No of words recalled

a. R Squared 5 .204 (Adjusted R Squared 5 .172)

Tests of Between-Subjects Effects

Corrected Model

Intercept

AnxietyGroup

WordType

AnxietyGroup

*WordType

Error

Total

Corrected Total

Source

Type III Sum

of  Squares

276.250

12350.450

4.050

80.000

Partial Eta

Squared

.204

.920

.004

.069

df

3

1

1

1

Mean Square

92.083

12350.450

4.050

80.000

F

6.484

869.669

.285

5.633

Sig.

.001

.000

.595

.020

a

192.200 192.200

14.2011079.300

13706.000

1355.550

1

76

80

79

13.534 .000 .151

each condition. In the two-IV design we also have to take account of such variations between 
the participants within each condition. Consequently, as in the one-factor design, we have an 
extra source of variance relating to within-groups or error variation. We therefore have the 
following sources of variance:

• variance due to the effects of anxiety conditions on memory performance (main effect of 
anxiety)

• variance due to the effects of word type on memory performance (main effect of word type)

• variance due to the interaction between these two factors

• variance due to difference between participants within each condition (error variance).

When you carry out a completely between-groups ANOVA, you will get a printout that looks 
like the one below for the anxiety and memory data.

If you look at the printout for this analysis, you will notice that we have the same information 
beside each entry as the ANOVA tables presented in Chapter 10. For each source of variance 
we have the sum of squares, the degrees of freedom (DF), the mean square, the F-value and the 
exact probability p (Sig.). You should recall that, to calculate the F-value, we simply divide the 
mean square for each source of variance relating to the IVs by the mean square error. Remember, 
in Chapter 10 we explained that the mean square is simply a measure of variance. Thus, in this 
analysis you can see that for the main effect of word type when we divide the mean square (80) 
by that for the error term (14.201) we get the F-value of 5.633. You can also see that the main 
effect of anxiety has an associated F-value of 0.285 (4.05 , 14.201) and for the interaction there 
is an associated F-value of 13.534 (192.2 , 14.201).

You can see from the printout that we have a probability of 0.020 associated with the main 
effect of word type, 0.595 associated with the main effect of anxiety and 0.000 associated with 
the interaction (remember that p = 0.000 in SPSS means p 6 0.001). This tells us that, if the 
null hypotheses were true, we would be highly unlikely to get the observed main effect of word 
type and the interaction. What does all this mean? It is always a good idea when trying to 
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understand what has happened in these more complex experimental designs to illustrate the 
means graphically. Following the recommendations of Loftus (1996), we have generated an 
error bar chart for the data in this example; this is presented in Figure 11.3. You should note 
that SPSS does not put in the solid lines linking the pairs of means. We have included these 
lines to help you understand the nature of the interaction between the two IVs.

The joining line that is shifted slightly to the left in Figure 11.3 represents recall of negative 
words, whereas the other joining line (shifted slightly to the right) represents recall of neutral 
words. The points on the left-hand ends of the two joining lines represent the recall performance 
for anxious people and those on the right-hand ends recall performance for non-anxious people. 
We can see here, although it is perhaps not too obvious (we have drawn line graphs to make 
this more obvious, see Figure 11.4), that whilst there is very little difference overall in recall 
between anxious and non-anxious participants, there is a bigger difference overall in the recall 
of negative and neutral words. These are the two main effects.

Perhaps the best way to visualise main effects when you have equal numbers of participants in 
each group is to mark a point halfway along each line for the main effect of word type 
(see Figure 11.4). The vertical difference between these two points represents the actual difference 
between the means for negative and neutral word recall, ignoring the anxiety conditions IV. This 
represents the main effect of the word type IV. For the anxiety IV you should mark a point halfway 
between the points on the right-hand end of the lines and another point between the points at the 
left-hand end of the lines. The vertical difference between these points represents the actual 
difference between the anxious and non-anxious participants, ignoring the word type IV. This 
represents the main effect of the anxiety IV. Remember, you can use this simple visual technique 
only when you have equal sample sizes. If you had different numbers of participants in each group, 
you would have to calculate the means for the main effects and then draw them on the graph.

How do we interpret the interaction? If you have a significant interaction, you can initially 
interpret the interaction visually using the graph. Figure 11.5 shows that for anxious participants 
recall was better for negative words. There is the opposite pattern for non-anxious, although the 
difference is much smaller. The alternative interpretation is that anxious participants recalled 

Figure 11.3 Error bar chart for the anxiety group and word type conditions
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Figure 11.4 Line graph illustrating the main effects of word type and anxiety group IVs
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Figure 11.5 Line graph illustrating the interaction between word type and anxiety group IVs
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more negative words than non-anxious participants but fewer neutral words. These are both 
valid ways of interpreting the above data and are essentially saying exactly the same thing.

 11.5.3 Interactions between variables

One of the golden rules of ANOVA is that, once you find a significant interaction, you should 
proceed to explore that interaction further. What does it mean to have an interaction between 
two variables? If you have two variables, each with two conditions, an interaction is where one 
variable behaves differently in each condition of the other variable. The memory example that 
we have been working with so far in this chapter is a classic example of an interaction. We have 
a different pattern of findings for anxious as we do for non-anxious participants. In fact we 
have the opposite pattern of means in these two conditions. Another example from the anxiety 
literature would be the finding that highly anxious individuals tend to direct their attention to 
negative stimuli in the environment, whereas non-anxious individuals direct attention away 
from negative stimuli (Mogg and Bradley, 1999). Here there is an interaction between the 
anxiety variable and the attention variable. A useful way of seeing whether you have an 
interaction between two variables is to generate line graphs. Take a look at the graphs illustrated 
in Figure 11.6.

Figure 11.6 shows that, when there is no interaction between two variables, the lines that 
represent the word type variable are parallel. When we observe such parallel lines (or nearly 
parallel lines) we can be sure that we do not have an interaction between two variables. What 
do the parallel lines tell us? If you compare the recall of negative words with recall of neutral 
words in all three examples given in Figure 11.6, you should see that there is better recall of 
negative words. That is, we have the same pattern of results in both of the anxiety conditions, 
whereby recall of negative words is better than recall of neutral words.

What does an interaction look like in graph form? Take a look at the graphs in Figure 11.7.
The graphs in Figure 11.7 illustrate the various patterns of lines that suggest you have an 

interaction. The key feature you should note about each of the graphs in Figure 11.7 is that the 
two lines are not parallel. Looking at each graph, we see that there is a different pattern of 
findings in each of the two anxiety conditions. In graph (a) we can see that anxious people recall 
more negative than neutral words whereas we find the opposite pattern for non-anxious people. 
In graph (b) we see no real difference in the recall of negative and neutral words for anxious 
participants whereas for non-anxious participants negative words are recalled a lot better than 
neutral words. Graph (c) shows the opposite to (b) in that there is no difference in recall for 
non-anxious participants whereas anxious participants have better recall of negative compared 
to neutral words. Moving on to graph (d), we see that anxious participants recalled fewer negative 
words than non-anxious participants but recalled the an equal number of neutral words  

Figure 11.6 Graphs illustrating no interactions between variables
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to non-anxious participants. Graph (e) shows the opposite effect the anxious participants now 
recall more negative words than the non-anxious participants.

You should bear in mind that you cannot tell just by looking at line graphs whether or not 
you have a significant interaction between your IVs. The line graphs will give you an indication 
of this; however, you need to consult the ANOVA printout to find out if there is a significant 
interaction. You should, therefore, use the line graphs in association with the ANOVA printout 
to help you understand your pattern of findings.

 11.5.4 Interpretation of main effects when there are significant interactions

You should be careful when interpreting main effects when you have significant interactions. 
They should be interpreted only if they are meaningful and/or they are interesting in the context 
of the research conducted. If they are not meaningful or interesting, it is perhaps best to 
concentrate on interpreting the interaction. There are difficulties for researchers when they 
interpret significant main effects in the presence of significant interactions. For example, the 
graph in Figure 11.7(b) might lead to an ANOVA revealing a main effect of word type. However, 
the graph suggests that there is no difference in the recall of negative and neutral words for the 
anxious participants, but there is a large difference in the recall of negative and neutral words 
for the non-anxious participants. Clearly there is not an effect of word type in all of the anxiety 
conditions. Therefore you should be wary of interpreting the main effect in such a way. For 
there to be a genuine global main effect of word type condition, it would have to influence for 
both anxious and non-anxious participants in the same way. The graph would probably resemble 
that shown in Figure 11.7(d) rather than (b). If we simply relied upon the SPSS printout, we 
might conclude that we have a global main effect of word type when, in fact, if Figure 11.7(b) 
is anything to go by, we do not. It is therefore very important to examine the graphical 
illustrations of your findings as well as the SPSS printout. To quote Howell (2006):

Figure 11.7 Graphs illustrating the pattern of lines for interaction
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 11.5.5 Simple effects

The various scenarios illustrated above highlight the importance of graphically illustrating your 
data to help you understand what has happened with your main effects and interactions. If you 
do get a significant interaction, you then need to find out what is really happening in each of 
your conditions. You can do this by analysing the simple effects (sometimes called simple main 

effects). A simple effect is the difference between any two conditions of one IV in one of the 
conditions of another IV. Thus, I might analyse the difference in recalling negative and neutral 
words by the anxious participants. This would be an analysis of a simple effect. Usually, we 
have already made a prediction about how these cell means will differ and we can use these 
predictions to guide which simple effect analyses we should carry out. Simple effect analyses 
are equivalent to t-tests but involve the calculation of F-values, and you can get SPSS to calcu-
late them for you. However, in order for us to explain how to get SPSS to do this we would have 
to teach you the SPSS Syntax Language.1 Such a task is beyond the scope of this book and so 
we recommend that you simply get SPSS to calculate t-tests for the simple effects you require. 
For the data presented in Table 11.4 (the initial between-participants analyses that we presented 
in this chapter) the simple effect t-tests are as follows:

1 You could use the method recommended by Howell (2006). This involves running separate one-way ANOVAs 
on each simple effect and then recalculating the F-ratios using the mean square error from the original analysis 
in place of the one calculated for the simple effect.

Group Statisticsa

a. Anxiety Group 5 Anxious

No of  words recalled

Std. Error

MeanWord type

Negative

Neutral

N Mean Std. Deviation

.69158

.83438

20

20

14.7500

9.6500

3.09286

3.73145

Activity 11.4

Which of the following graphs suggest an interaction and which do not?

Mean number of driving errors
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0

No alcohol

(a)

 Alcohol

30
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0
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(b)

 Alcohol

30

20

10

0

No alcohol

(c)

 Alcohol

No caffeine
Caffeine

Among the points we should emphasise in our discussion of simple effects 
is that the experimenter must examine her data carefully. Plotting the data 
and considering what they mean is an important, if not the most important, 
part of an appropriate analysis of any set of data.



CHAPTER 11 Analysis of variance with more than one IV 341

Independent Samples Testa

a. Anxiety Group 5 Anxious

No of  words
recalled 

Levene’s Test

for Equality

of  Variances t-test for Equality of  Means

95% Confidence

Interval of  the

Difference

Equal variances

assumed

Equal variances

not assumed

F

.100

Sig.

.753

t

4.706

df

38

Sig.

(2-tailed)

.000

Mean

Difference

5.10000

Std. Error

Difference

1.08373

Lower Upper

2.90610

2.90362 7.296385.10000.00636.7364.706 1.08373

7.29390

The output above provides the test of the first simple effect. It tests the difference in the 
number of negative and neutral words recalled by the anxious participants. The means that it is 
comparing are indicated in Figure 11.8 (a) by the arrow. The t-test tells us that the difference in 
recall of negative and neutral words for anxious participants has an associated value of 
t (38) = 4.71, p 6  0.001 and is significant. We have stated that p is less than 0.001 because SPSS 
has displayed the p-value as 0.000. This means that the actual p-value is less than 0.001, but 
SPSS cannot display such a value. We therefore cannot present the exact p-value as we have 
advised you to do when writing up your results. When you come across this in your analyses, 
report the p-value as we have done above.

The second simple effect analysis is presented below:

Group Statisticsa

a. Anxiety Group 5 Non-anxious

No of words recalled

Std. Error

MeanWord type

Negative

Neutral

N Mean Std. Deviation

.94284

.88139

20

20

12.1000

13.2000

4.21651

3.94168

Independent Samples Testa

a. Anxiety Group 5 Non-anxious 

No of words
recalled

Levene’s Test

for Equality

of  Variances t-test for Equality of  Means

95% Confidence

Interval of  the

Difference

Equal variances

assumed

Equal variances

not assumed

F

.049

Sig.

.825

t

2.852

df

38

Sig.

(2-tailed)

.399

Mean

Difference

21.10000

21.10000

Std. Error

Difference

1.29065

Lower Upper

23.71279

23.71318.39937.8292.852 1.29065

1.51279

1.51318

This t-test shows us that there is no significant difference between the recall of negative and 
neutral words for the non-anxious participants. The relevant details are t (38) = 0.85, p = 0.399. 
This analysis is illustrated in Figure 11.8(b).
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The test of the difference between anxious and non-anxious participants in their recall of 
negative words is printed below. This t-test examines the two means indicated in 
Figure 11.8(c).

Group Statisticsa

a. Word type 5 Negative

No of  words recalled

Std. Error

MeanAnxiety Group

Anxious

Non-anxious

N Mean Std. Deviation

.69158

.94284

20

20

14.7500

12.1000

3.09286

4.21651

Figure 11.8 Error bar charts illustrating the testing of various simple effects
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Group Statisticsa

a. Word type 5 Neutral

No of  words recalled

Std. Error

MeanAnxiety Group

Anxious

Non-anxious

N Mean Std. Deviation

.83438

.88139

20

20

9.6500

13.2000

3.73145

3.94168

Independent Samples Testa

a. Word type 5 Neutral

No of words
recalled

Levene’s Test

for Equality

of  Variances t-test for Equality of  Means

95% Confidence

Interval of  the

Difference

Equal variances

assumed

Equal variances

not assumed

F

.372

Sig.

.546

t

22.925

df

38

Sig.

(2-tailed)

.006

Mean

Difference

23.55000

Std. Error

Difference

1.21368

Lower Upper

26.00697

26.00721 21.0927923.55000.00637.88622.925 1.21368

21.09303

Independent Samples Testa

a. Word type 5 Negative

Levene’s Test

for Equality

of  Variances t-test for Equality of  Means

95% Confidence

Interval of  the

Difference
Sig.

(2-tailed)

.029

Mean

Difference

2.65000

Std. Error

Difference

1.16929

Lower Upper

.28290

.27587 5.024132.65000.030 1.16929

5.01710No of words
recalled

Equal variances

assumed

Equal variances

not assumed

F

1.554

Sig.

.220

t

2.266

df

38

34.8562.266

The printout shows that there is a significant difference between the anxious and non-anxious 
participants in recall of negative words. The relevant details are: t (38) = 2.27, p = 0.029.

The final simple effect analysis is presented below. This t-test examines the difference 
between the anxious and non-anxious participants in recall for neutral words (see Figure 11.8(d)). 
The analysis suggests that there is a significant difference between the two anxiety groups in 
this case. The relevant details are: t (38) = 2.93, p = 0.006.

You should be able to see that the two anxiety groups differ in their recall of negative and neutral 
words and this is unlikely to be due to sampling error, given that the null hypotheses are true. 
For the word type IV, however, you should be able to see that there is only a significant difference 
for the anxious participants.

In practice you should be careful when conducting simple effects analyses, as the more simple 
effects you calculate, the higher your family-wise error rates will be. In Chapter 10 we explained 
that the family-wise error rate relates to the overall error rate you have if you conduct many 
analyses. By conducting many analyses you have an increased probability of making a Type 
I error, so you should be selective in the simple effects analyses you conduct. Generally, when 
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you have conducted an experiment that is of the factorial ANOVA design, you will have made 
some sort of prediction (as we have) about the interactive effects of your two IVs. You should use 
these predictions to guide you in your choice of simple effects analyses. Such analyses are often 
called planned or a priori comparisons. When your comparisons are post hoc or you are making 
many comparisons, you need to make some adjustment to your α (remember this is called a 
Bonferroni adjustment, see the section on post-hoc testing in Chapter 10). As we have examined 
all possible simple effects in the printout presented here, we should really set our criterion for 
significance at 0.0125: that is, 0.05 , 4 (this is our Bonferroni adjusted α). When we do this we 
find that the simple effect of the anxiety IV for negative words is now non- significant (  p = 0.029), 
so we would want to treat this difference as possibly due to sampling error.

Activity 11.5

Which of the following describe simple effects?

(a) The difference between chewing gum and no chewing gum in the talking 
condition

(b) The overall difference between the tea and non-tea drinking groups
(c) The effects of noise in only the mathematics exam
(d) The effects of cognitive behaviour therapy on the fear responses of all groups of 

participants

 11.5.6 Effect size

The calculation of effect size is similar to the case of the one-way analysis of variance described 
in Chapter 10. As stated previously, there are several measures of effect size in ANOVA designs; 
however, as SPSS presents you with partial eta-squared (η2) this is the one we will explain here.

Partial η2 is easily requested through SPSS for both between-participants designs and within-
participants designs. You should note from the printout that the partial η2 estimates do not add 
up to 1, as partial η2 is in fact a ratio of the effect sum of squares to the effect sum of squares 
plus the error sum of squares:

Partial η2
=

SSeffect

SSeffect + SSerror

For the main effect of word type (see the printout on page 335), the partial η2 (0.069) is calculated 
from:

Partial η2
=

80.00

80.00 + 1079.3
All the partial η2 details given in the ANOVA printout (on page 335) are calculated in a similar 
way. These analyses tell us that 6.9% of the variation in exam grades is accounted for by our 
manipulation of the revision conditions. Partial η2 is useful for a global measure of magnitude 
of effect. If, however, you are interested in the magnitude of the difference between two 
conditions (the size of a simple effect) then you could use d as we have suggested in Chapter 10.

 11.5.7 Writing up these analyses

When you have conducted such an analysis, you might write it up as follows:

The means and 95% confidence intervals for the negative and neutral words recalled by anxious 
and non-anxious participants are presented in Figure 11.9. This suggests that for anxious participants 
there is likely to be a difference in recall of negative and neutral words in the population as there is 
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no overlap of the 95% CIs. However, for non-anxious participants there appears to be little 
difference in their recall of negative and neutral words with considerable overlap of the 95% CIs.

The numbers of words recalled were analysed using a factorial analysis of variance with two 
between-participants factors of anxiety group (anxious vs non-anxious) and word type (negative 
vs neutral). This analysis revealed that the main effects due to word type was significant 
(F  (1,76) = 5.63, p = 0.020, partial η2

= 0.069) whereas the main effect of anxiety group was 
not significant (F   (1,76) = 0.29, p = 0.595, partial η2

= 0.004). Additionally, the interaction 
between anxiety group and word type was significant (F   (1,76) = 13.53, p 6 0.001,
partial η2

= 0.15). This interaction was further investigated using t-tests. Given that there were 
four tests of simple effects, the criterion for significance was adjusted to 0.0125. These analyses 
showed that the difference between the anxious and non-anxious participants for neutral words 
was significant (t   (38) = 2.93, p = 0.006), whereas for negative words this difference was not 
significant (t   (38) = 2.27, p = 0.029). The difference in recall of negative and neutral words 
for the non-anxious participants was not significant (t   (38) = 0.85, p = 0.399) whereas for the 
anxious participants this difference was significant (t   (38) = 4.71, p 6  0.001). These analyses 
suggest that anxious participants have better recall of negative than neutral words (means of 
14.75 and 9.65 respectively). They also suggest that anxious and non-anxious participants only 
differed in recall of neutral words (means of 9.65 and 13.20, respectively).

Figure 11.9 Error bar chart illustration means and 95% CIs for the number of words recalled in the 
various combinations of the anxiety group and word type conditions
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Example from the literature

Effects of anger in negotiations

A good example of research using a completely between-participants design is a recent study by Gülçay 
and Cangöz (2016) who examined the effects of perspective taking and emotional content on memory 
for features of scenes using an eye-tracking methodology. They were particularly interested in the impact 
of perspective and emotional content on memory for both central and peripheral features of each scene. 
For the perspective taking manipulation they asked participants to view the series of photographs either 
passively (observer perspective) or by identifying closely with the main character in the series of 
photographs (own perspective condition). Each participant was shown just one sequence of photographs 
which represented either a negative, positive or neutral storyline. Subsequent to this they were asked to 
recall peripheral and central features of the photographs through the completion of a guided free recall 
task. The authors analysed the memory for central and peripheral features separately. They analysed the 
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data using a 3 * 2 ANOVA with emotional content (negative vs positive vs neutral) as on IV and 
perspective (own vs observer) as the second IV. Here is how they report the ANOVA (p.6):

All analysis for memory and eye-tracking measurements were carried out by 3 (Emotional Content: 
Positive, Negative, Neutral) *  2 (Participants’ perspective: Own perspective, observer perspective) 
between-subjects factorial ANOVA. Post-hoc comparisons were run with Bonferroni correction for 
significant main and interaction effects. In post-hoc comparisons Bonferroni test was used for equal 
variances and Games-Howell test was used for non-equal variances.

Memory Results
Central details. According to ANOVA results there is significant main effect of emotional content 
(F (2, 96) = 19.01, p 6 . 001, ηp

2
= 0.28) and of participants’ perspective (F (1, 96) = 8.08, 

p 6 .01, ηp
2
= 0.08) and a significant interaction effect between emotional content and parti cipants’ 

perspective (F (2, 96) = 3.83, p 6 .05, ηp
2
= 0.07) on remembering central details of the event. 

Means, standard deviations and post-hoc comparisons are shown at Table 1.

We haven’t presented their Table 1 here but it shows that only one of the post-hoc pairwise comparisons 
was significant and that was the difference between the own and observer perspective conditions for 
positive photographs.

This is a well presented study in terms of the results as it not only provides information about the 
Bonferroin adjustments but also includes the partial eta-square (ηp

2) effect sizes which is still unusual 
in our experience.

SPSS: analysis of two between-participants factors

Setting up the variables

As with all analyses, the first thing you need to do is input your data. The way to do this is illustrated below:
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Remember, when setting up a datafile for two between-groups IVs you will need to set up two grouping 
variables containing the numbers representing the group to which each participant belongs. Thus, if 
participant 21 is non-anxious and in the negative word recall condition, they will have a ‘2’ in the Anxiety-
Group column and a ‘1’ in the WordType column. Someone in the anxious group recalling neutral words 
would have a ‘1’ in the AnxietyGroup column and a ‘2’ in the WordType column, and someone non-anxious 
and recalling neutral words would have a ‘2’ in both columns. The third variable that you need to set up 
is for the DV and simply contains each person’s score: in this case, number of words recalled.

Obtaining descriptive statistics for each group of participants

The initial part of your analyses will be to obtain descriptive statistics for each group of participants. 
We have four groups of participants, but it is not a straightforward procedure to get the descriptive 
statistics for the four groups separately. In order to do this we need to split our datafile into two parts, 
one containing all the data for the anxious participants and one containing the data for non-anxious 
participants. Once we have done this, we have to run our descriptive statistics on the recall scores for 
the word type IV. SPSS will give us the descriptive statistics for the two word type conditions for each 
part of the split datafile: that is, separately for the anxious and non-anxious participants. In this way 
we can get all our descriptive statistics for each of our four groups of participants.

The first step therefore is to get SPSS to split the file into two parts. You can do this by clicking on 
the Data, Split File option:

Once you do this, you will be presented with the following dialogue box:
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You will need to select the Organize output by groups option and then move the AnxietyGroup variable 
to the Groups Based on box. Once you have done this, you should click on the OK button. Your file is 
now effectively split into two: those data for anxious participants and then for the non-anxious 
participants. Any analyses you now conduct will be carried out on both parts of the file separately. 
Therefore the next step is to get SPSS to produce descriptive statistics for us. You should set up the 
Analyze, Descriptive Statistics, Explore dialogue box as follows:

When SPSS carries out these analyses it will produce two lots of descriptive statistics, one lot for anx-
ious participants and one for non-anxious participants. In this way, you will have obtained the descriptive 
statistics (including box plots and histograms) for all four groups in the study.

When you have obtained the descriptive statistics for each of the four groups, you will want to 
conduct the ANOVA on all the data. You will therefore need to tell SPSS to unsplit the datafile. If you did 
not do this, you would find that SPSS tries to run the analysis on the two parts of the file separately, 
which would be incorrect. Therefore, you need to let SPSS know that it has to use all of the data together 
for the ANOVA. To do this you need to return to the Data, Split File dialogue box and reselect the Analyze 
all cases, do not create groups option as shown below:

Running the ANOVA

To get SPSS to run the ANOVA you need to select the General Linear Models and Univariate options 
from the Analyze menu.
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Once you have the Univariate dialogue box on the screen, move the DV and IVs across to the relevant 
boxes so that it resembles that shown in the screenshot. If you want to get information about effect 
sizes for each of your main effects and interaction, you should then click on the Options button. Doing 
this will give you the following dialogue box:

Select the Estimates of effect size option and click on Continue to return to the main ANOVA dialogue 
box. You should note that, if you select the Descriptive statistics option here, SPSS will display means 
and standard deviations as part of the ANOVA printout (and you do not need to split the file for this). 
Click on the OK button and SPSS will run the analysis for you. You should then be presented with a 
printout that is similar to that shown in the original analyses earlier (see page 335).

To investigate your simple effects, you will need to carry out t-tests. However, it is not as straight-
forward as simply conducting t-tests on your DV between the two groups in each of your IVs. Remem-
ber, in simple effects analyses we are looking for the effects of one of our IVs in one condition of the 
other IV. Thus, the first two t-tests we might conduct are to look at the difference between the anxious 
and non-anxious participants in the number of negative and neutral words they recalled. We therefore 
need to let SPSS know that we want to split the file into two parts again. This time we would divide it 
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on the basis of the WordType variable and so we would set up the Data, Split File dialogue box as 
follows:

Once you have done this, click on OK and the file will be split again. You can then run your independent 
t-tests with the AnxietyGroup variable as the IV and Recall variable as the DV. SPSS will conduct t-tests 
for both negative and neutral word types.

You will then need to conduct more t-tests to examine the difference in the recall of negative and 
neutral words for anxious and then non-anxious participants. You will therefore need to go back to the 
Data, Split File dialogue box and move the AnxietyGroup variable into the Groups Based on box instead 
of the Revision variable. Once this has been done you will be able to conduct independent t-tests with 
WordType as the IV and Recall as the DV.

Remember, when you have finished your analyses of simple effects, you should tell SPSS to unsplit 
the file again so that any subsequent analyses you conduct will be based upon all of your data.

Generating the error bar charts

In order to generate the appropriate error bar charts, you should select the Error Bar ... option from the 
Graphs, Legacy Dialogs menus. You will be presented with the following dialogue box:
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You will need to select the Clustered and Summaries for groups of cases options and then click on 
the Define button. You will be presented with a dialogue box resembling that shown below. You should 
move the Recall variable to the Variable box, the AnxietyGroups variable to the Category Axis box and 
the WordType variable to the Define Clusters by box. Then click on the OK button to generate the error 
bar chart. You should be presented with a chart similar to that presented in Figure 11.9.

 11.6 Two within-participants variables

We have shown you how ANOVA handles two between-participants variables and the interaction 
between these in one analysis; we will now move on to the case of two within-participants 
variables. We will remain with the same study and data as those used in the between-
participants example so that we can highlight the important differences between the two types 
of analysis. The distribution of participants is now as shown in Table 11.5. Compare this with 
the previous completely between-participants design (Table 11.4).

You should be able to see that we have 20 participants taking part but each person has 
contributed a score in each of the cells in the table: that is, they have each taken part in all four 
conditions. Obviously this would mean that we would have to test each participant when they 
were not anxious and then again when they were anxious.

We have the same data as for the completely between-participants design, which means that the 
assumptions underlying the use of parametric tests are also met in the within-participants design. 
You should note, however, that this is only the case because we have only two conditions for each 
of our IVs. If we had more than two conditions in any of the within-participant IVs, we would have 
to check also that the data do not violate the additional assumption of sphericity by consulting the 
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Mauchly test of sphericity on the ANOVA printout. Remember, we explained that this was one of 
the assumptions underlying the use of within-participants ANOVA (see Chapter 10).

 11.6.1 Sources of variance

When we conduct ANOVA we are trying to identify the possible sources of variance in our data. 
If you think back to when we explained about the sources of variance for a completely between-
participants design, we suggested that the variance that was due to individual differences within 
each condition was classed as the error variance. When we have a within-participants design we 
have a constant source of variance due to using the same participants in each condition (this was 
explained in Chapter 10). Because we have this constant source of variance due to having the 
same participants in each condition, we can subtract this from the error variance and as a result 
reduce the error term (this is often called partialling out). Why do we need to partial out this 
common participant effect from the error term? When we have between-participants designs, 
one of the assumptions of the statistical tests (one that we have not covered because it relates to 
the formulae, etc.) is that the data from each condition should be independent of the data from 
all other conditions. This is why such designs are also called ‘independent’ designs. This simply 
means that the conditions should be uncorrelated. Now this is a reasonable assumption for such 
designs. It is not such a reasonable assumption for within-participants designs. In such designs 
the conditions do tend to be correlated. For example, those participants who have generally good 

Neutral words Negative words

Participants Non-anxious Anxious Non-anxious Anxious

1 17 9 16 19

2 9 4 8 14

3 16 10 14 17

4 16 15 10 13

5 16 1 14 10

6 18 16 11 13

7 19 13 13 12

8 12 8 3 15

9 6 9 15 15

10 13 9 16 19

11 9 10 17 12

12 11 7 15 10

13 14 9 14 16

14 12 8 16 17

15 6 14 12 19

16 13 7 16 17

17 10 9 13 19

18 12 8 3 10

19 16 12 7 13

20 19 15 9 15

Table 11.5 Distribution of scores to conditions in the completely within-participants design
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memory ability will tend to score highly across both word type conditions. Similarly, those who 
have poorer memory ability will tend to have lower scores across the word type conditions. Now 
this is not necessarily the case for every study conducted, but it is true for a great many. 
Therefore, the assumption of independence of conditions is lost for such designs.

How do we go about solving such a problem? The answer to this is to remove statistically 
the consistent effects of participants across all conditions. Once this is achieved, the conditions 
will effectively be independent of each other and the analyses can continue. A useful feature of 
this statistical manipulation is that it also tends to reduce the error term. This means that in a 
great many cases the mean square for the effect is compared against a lower mean square for 
the error than would be the case for the equivalent between-participants analysis. The result of 
this procedure is that it often has the effect of making within-participants analyses more 
powerful than the equivalent between-participants analyses.

You will notice from the example output presented below, that for the within-participants 
analysis there is much more output given by SPSS than for the totally between-participants 
analysis. The most important table in this output to focus on is the ‘Tests of Within-Subjects 
Effects’ table. You should also notice that even within this table there are many more entries 
than in the table for the between-participants design. The reason for this is simply that we test 
each main effect and interaction against its own error term. That is, in within-participants 
designs, because we have the same participants in each condition, we are able to calculate the 
degree of error associated with each effect, whereas in the completely between-participants 
analysis we are able to calculate only the overall amount of error.

GENERAL LINEAR MODEL

Within-Subjects Factors

Measure:MEASURE_1

1

2

1

2

WordType

1

2

Dependent VariableAnxietyGroup

NonAnxNeut

AnxNeut

NonAnxNeg

AnxNeg

Multivariate Testsa

a. Design: Intercept

 Within Subjects Design: WordType 1 AnxietyGroup 1 WordType * AnxietyGroup 

b. Exact statistic 

Pillai’s Trace

Wilks’ Lambda

Hotelling’s Trace

Roy’s Largest Root

Pillai’s Trace

Wilks’ Lambda

Hotelling’s Trace

Roy’s Largest Root

Pillai’s Trace

Wilks’ Lambda

Hotelling’s Trace

Roy’s Largest Root

Value

Hypothesis

dfFEffect

WordType

AnxietyGroup

WordType * 

AnxietyGroup

Sig.

Partial Eta

SquaredError df

.170

.830

.204

.204

.017

.983

.018

.018

.571

.429

1.332

1.332

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

3.883b

3.883b

3.883b

3.883b

.337b

.337b

.337b

.337b

25.307b

25.307b

25.307b

25.307b

.064

.064

.064

.064

.568

.568

.568

.568

.000

.000

.000

.000

.170

.170

.170

.170

.017

.017

.017

.017

.571

.571

.571

.571

19.000

19.000

19.000

19.000

19.000

19.000

19.000

19.000

19.000

19.000

19.000

19.000
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Tests of Within-Subjects Effects

Measure: MEASURE_1

Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Type Ill Sum

of  Squares

Mean

SquaredfSource

WordType

Error(WordType)

AnxietyGroup

Error(AnxietyGroup)

WordType * AnxietyGroup

Error
(WordType
* AnxietyGroup)

Sig.

Partial Eta

SquaredF

80.000

80.000

80.000

80.000

391.500

391.500

391.500

391.500

4.050

4.050

4.050

4.050

228.450

228.450

228.450

228.450

192.200

192.200

192.200

192.200

144.300

144.300

144.300

144.300

80.000

80.000

80.000

80.000

20.605

20.605

20.605

20.605

4.050

4.050

4.050

4.050

12.024

12.024

12.024

12.024

192.200

192.200

192.200

192.200

7.595

7.595

7.595

7.595

1

1.000

1.000

1.000

19

19.000

19.000

19.000

1

1.000

1.000

1.000

19

19.000

19.000

19.000

1

1.000

1.000

1.000

19

19.000

19.000

19.000

.064

.064

.064

.064

.568

.568

.568

.568

.000

.000

.000

.000

.170

.170

.170

.170

.017

.017

.017

.017

.571

.571

.571

.571

3.883

3.883

3.883

3.883

.337

.337

.337

.337

25.307

25.307

25.307

25.307

Mauchly’s Test of Sphericitya

Measure:MEASURE_1

Tests the null hypothesis that the error covariance matrix of  the orthonormalized transformed

dependent variables is proportional to an identity matrix.

b. May be used to adjust the degrees of  freedom for the averaged tests of  significance.

 Corrected tests are displayed in the Tests of  Within-Subjects Effects table.

a. Design: Intercept

 Within Subjects Design: WordType 1 AnxietyGroup 1 WordType * AnxietyGroup

Within Subjects

Effect

Lower-

bound

Huynh-

Feldt

Epsilonb

Greenhouse-

Geisser

Approx.

Chi-Square df Sig.

Mauchly’s

W

WordType

AnxietyGroup

WordType * 

AnxietyGroup

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

.000

.000

.000

0

0

0

.

.

.

1.000

1.000

1.000
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Tests of Within-Subjects Contrasts

Measure: MEASURE_1

WordType

Linear

Linear

Linear

Linear

AnxietyGroup

Linear

Linear

Linear

Linear

Type Ill Sum

of  Squares

Mean

SquaredfSource

WordType

Error(WordType)

AnxietyGroup

Error(AnxietyGroup)

WordType * AnxietyGroup

Error
(WordType * AnxietyGroup)

Sig.

Partial Eta

SquaredF

80.000

391.500

4.050

228.450

192.200

144.300

80.000

20.605

4.050

12.024

192.200

7.595

1

19

1

19

1

19

.064

.568

.000

.170

.017

.571

3.883

.337

25.307

Tests of Between-Subjects Effects

Measure: MEASURE_1

Transformed Variable: Average

Type Ill Sum

of  Squares Mean SquaredfSource

Intercept

Error

Sig.

Partial Eta

SquaredF

12350.450

315.050

12350.450

16.582

1

19

.000 .975744.830

Activity 11.6

How is the partial η2 calculated for each effect in the above printout?

Essentially, in a within-participants design, ANOVA analyses each main effect as if it were a 
one-way ANOVA. It therefore calculates the overall amount of variability associated with each 
main effect (this will include all sources of variance, including error). ANOVA then subtracts from 
this overall variance the amount of the variability that can be attributed to the main effect and the 
amount of variability that can be attributed to the consistent effect of participants. The remaining 
variability is the variance that is unaccounted for and is, therefore, the error term. This is exactly 
the same procedure, as was explained in Chapter 10, for the within-participants one-way ANOVA.

The rationale for the calculation of the interaction is similar to that explained for the between-
participants ANOVA earlier. After we have calculated the main effects and their error terms, 
there will probably be some that can be attributed to the interaction plus its error term. Once 
we have calculated the sum of squares for the interaction itself and for its error term, we can 
calculate the F-ratio. As a result of the calculations involved in the fully within-participants 
ANOVA, you will notice on the printout that there is a separate error term for each of the main 
effects and the interaction.

In order to calculate the F-values in the within-participants design, we have to divide the 
variance attributable to each effect (mean squareeffect) by the error variance (mean squareerror) 
that has been calculated for that effect. Thus, from the above printout, you can see that the 
F-value for the main effect of anxiety group is:

4.05 , 12.02 = 0.337
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You will also notice from the above printout that the overall number of degrees of freedom 
has been reduced from 76 in the between-participants design to 19 in this design. The reason 
for this is that we have only 20 participants in the latter example, whereas we have 80 people 
(20 in each condition) in the between-participants design.

 11.6.2 Simple effects

The same advice about graphing your data in between-participants designs is applicable to 
within-participants designs. We have the same data as the example given for the between-
participants design and so you should consult Figure 11.3 for the error bar chart for these data. 
The calculation of simple effects should be guided by the advice given earlier in this chapter 
and is essentially equivalent to the calculations of simple effects for the completely between-
participants design. However, we have to use related t-tests instead of independent t-tests. The 
results of these analyses are presented below:

Paired Samples Correlations

.185

.162

.706

.536

20

20

20

20

.309

.325

2.090

.147

Non-anxious neutral
words & Anxious neutral
words

Non-anxious negative
words & Anxious negative
words

Non-anxious neutral
words & Non-anxious
negative words

Anxious neutral words &
Anxious negative words

Sig.CorrelationN

Pair 1

Pair 2

Pair 3

Pair 4

Paired Samples Statistics

.88139

.83438

.94284

.69158

.88139

.94284

.83438

.69158

20

20

20

20

20

20

20

20

3.94168

3.73145

4.21651

3.09286

3.94168

4.21651

3.73145

3.09286

13.2000

9.6500

12.1000

14.7500

13.2000

12.1000

9.6500

14.7500

Non-anxious neutral
words

Anxious neutral words

Non-anxious negative
words

Anxious negative words

Non-anxious neutral
words

Non-anxious negative
words

Anxious neutral words

Anxious negative words

Std. Error MeanMean Std. DeviationN

Pair 1

Pair 2

Pair 3

Pair 4
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Paired Samples Test

Pair 1

Pair 2

Pair 3

Pair 4

Non-anxious neutral
words – Anxious neutral
words

Non-anxious negative
words – Anxious negative
words

Non-anxious neutral
words – Non-anxious
negative words

Anxious neutral words –
Anxious negative words

Mean

3.55000

22.65000

1.10000

25.10000

Paired Differences

Std.

Deviation

4.51285

4.34408

6.02538

4.48272

Std. Error

Mean

1.00910

.97137

1.34732

1.00237

Lower

1.43792

24.68309

21.71997

27.19798

95% Confidence

Interval of the

Difference

Upper

5.66208

2.61691

3.91997

23.00202

t

3.518

22.728

.816

25.088

df

19

19

19

19

Sig.

(2-tailed)

.002

.013

.424

.000

It can be seen from the above printout that:

• the simple effect for anxious and non-anxious participants for neutral words (see Figure 11.8(d)) 
has an associated t-value of t (19) = 3.52, p = 0.002

• the simple effect for anxious and non-anxious participants for negative words (see Figure 11.8(c)) 
has an associated t-value of t (19) = 2.73, p = 0.013

• the simple effect for the recall of negative and neutral words for non-anxious participants 
(see Figure 11.8(b)) has an associated t-value of t (19) = 0.82, p = 0.424

• the simple effect for the recall of negative and neutral words for anxious participants 
(see Figure 11.8(a)) has an associated t-value of t (19) = 5.09, p 6  0.001

These analyses tell us again that three of the simple effects analyses are significant at the 0.05 
level. However, if we use the more conservative criterion for significance of  0 .0 1 2 5  (0 .0 5 ,4 ), 
we have to argue that the second simple effect reported is also not significant, although it is 
very close to reaching statistical significance. If you compare the p-value reported above for 
the second simple effect with that reported when the data were analysed as a completely 
between-participants design, you should be able to see that in the current analyses the p-value 
is closer to reaching significance at the p = 0.0125 level (p = 0.013 compared with 0.029 for 
the between-participants analysis).

It is important to recognise that for designs that include within-participants factors, the analyses 
of simple effects can get complicated. The explanation for this is beyond the scope of this book, 
so for now it is enough that you understand what simple effects are. You should also be wary of 
conducting too many analyses from one set of data, so that you keep the family-wise error rate to 
a minimum. If you wish to find out more about how the error terms for within-participants simple 
effects are determined, you should consult one of the texts suggested at the end of this chapter.

 11.6.3 Effect size

The most suitable measure of effect sizes for within-participants designs is again the partial 
eta-squared (partial η2). You can see from the printout on page 354 that the partial η2 for the 
main effect of word type is 0.17, for the main effect of anxiety group it is 0.017 and for the 
interaction it is 0.571.
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 11.6.4 Writing up these analyses

The write-up for these analyses will essentially be the same as for the completely between-
participants example given earlier in this chapter. All you will need to do is alter the description 
of the ANOVA design, thus:

. . . The words recalled were analysed with a repeated-measures ANOVA with two within-partic-
ipants factors of anxiety group (anxious vs non-anxious) and word type (negative vs neutral) . . . 

The remainder of the write-up will be the same except that you will need to change the F, p and 
t values. You would also need to remember to refer to related t-tests rather than independent 
t-tests when describing the simple effects analyses.

Example from the literature

The effects of bared teeth on detecting happy and angry faces

A neat study presented by Lo and Cheng (2015) investigated the effects of facial features on the 
detection of angry and happy faces. The authors point out that we have a strong bias towards 
noticing happy and angry faces compared with other types of emotional faces. The authors were 
particularly interested in whether the detection of these emotions was enhanced when expressed 
with bared teeth. They argued that the appearance of these emotions are exaggerated if a person 
expresses them through bared teeth and thus they should be detected more easily. They required 
participants to look at arrays of faces, some of which were arrays of identical faces and others were 
arrays where one face was expressing a different emotion to the remainder. Participants simply had 
to decide whether or not all faces were identical. The photographs used in the arrays portrayed either 
angry, happy or neutral faces. The emotions were expressed either with bared teeth or with a closed 
mouth. The authors analysed the data using a within-participants ANOVA and here is how they 
presented their findings:

A two-way analysis of variance (ANOVA) for reaction time was conducted. To minimise the effect of 
the outliers, reaction times that fell outside of two standard deviations above or below the mean 
were dropped from the analysis. Around 2% of the collected data were therefore removed. The main 
effects of emotion type and face type were found to be significant,  F (1, 310) = 40.30, F (1, 310) = 37.82 
respectively, p-values 6 .01. The reaction times of detecting angry faces (M = 1398 seconds) were 
significantly shorter than detecting happy faces (M = 1477 seconds). Furthermore, faces with teeth 
shown were detected faster (M = 1402 seconds) than faces without teeth shown (M = 1473 
seconds). The interaction effect was also found to be significant, F (2, 310) = 15.72, p 6 .05. 
Because of the significant interaction effect, a planned follow-up analysis was conducted. No 
significant difference in reaction times was found between the angry face condition (M = 1403 
seconds) and the angry face with teeth condition (M = 1392 seconds), t = 1.91, p = .12. On the 
other hand, reaction time was significantly shorter in the happy face with teeth condition (M = 1412 
seconds) than in the happy face condition (M = 1543 seconds) (t = 7.21, p 6 .05). This indicated 
that prominent facial features were more facilitative in detecting happy faces than angry faces.

You will notice that the authors report removing outliers from the analysis. This is common in 
research which involves the analyses of reaction times. You will also notice that for the significant 
results the authors use the convention of ‘p 6 .05’ rather than reporting the actual p-value. We 
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recommend that you report the actual p-value for all effects. Finally, note that the authors have not 
conducted all simple effects analyses as we did but rather just tested the pairs of means that they 
were originally interested in (these are called planned comparisons). Strictly speaking they should 
have use a Bonferroni corrected α here which would have been 0.025 (0.05 , 2). However, it looks 
from the t-value of the significant effect that this would have been significant at this adjusted α 
anyway.

SPSS: ANOVA with two within-participants factors

In the completely within-participants design we have four scores for each person, so we have to set up 
four variables in the datafile (see below):

In this example we have named the variables as follows:

• NonAnxNeut = Non-anxious participants recall of neutral words
• AnxNeut = Anxious participants recall of neutral words
• NonAnxNeg = Non-anxious participants recall of negative words
• AnxNeg = Anxious participants recall of negative words
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Once you have entered the data, click on the Analyze menu, followed by General Linear Model, followed 
by Repeated Measures:

Once you have selected Repeated Measures you will be presented with the following dialogue box. 
This should be familiar to you, as it is the same procedure as for the one-way within-participants 
ANOVA:
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When you name your within-participants variables, you need to remember which one you named first, 
as this is important when you define each variable in the following dialogue box:

When you move the variables across to the relevant boxes, you need to do so in the correct order. This 
is why you need to remember the order in which you defined the variables in the previous dialogue box. 
In the Within-Subjects Variables box you can see that each entry has a two-digit code after it: for 
example, (1,2). This code informs us that this particular entry represents the first condition of variable 
1 and the second condition of variable 2. Remember, we defined WordType as the first variable and 
AnxietyGroup as the second variable. If you find that you cannot remember the order in which you 
named the variables, SPSS gives you a reminder near the top of the dialogue box. Consequently, each 
code represents the following conditions:

• (1,1) = Neutral words/Non-anxious
• (1,2) = Neutral words/Anxious
• (2,1) = Negative words/Non-anxious
• (2,2) = Negative words/Anxious

The variables therefore have to be moved into the appropriate slot in the Within-Subjects Variables 
box. When you are satisfied that you have moved the relevant variables across, you should click on the 
Options button and check the Effect Size option as you did with the between-participants design above. 
Click on the Continue button and then the OK button to run the analysis. You should then be presented 
with output that is similar to that presented earlier.

The simple effects analyses are a bit more straightforward than for the completely between-
participants design. In the completely within-participants design we do not have to tell SPSS to split 
the file because every participant has contributed data to each condition. We therefore simply have 
to tell SPSS which two variables should go into each t-test (remember, we will be using related 
t-tests). So, if we wanted to examine the difference between the anxious and non-anxious participants 
in their recall of negative words, we would conduct a related t-test on the NonAnxNeg and AnxNeg 
variables. If we wanted to examine the difference in recall of negative and neutral words for the 
non-anxious participants, we would conduct a related t-test on the NonAnxNeut and NonAnxNeg 
variables.
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 11.7 One between- and one within-participants variable

The final design we will be covering in this chapter is a mixture of between-participants and 
within-participants designs. Such an analysis is often called a split-plot or a mixed-design 
ANOVA. We will be sticking with the word recall example, but this time we will assume that 
the anxiety group IV is a between-participants factor and the word type IV is assessed as a 
within-participants factor. The allocation of participants to conditions and their scores on the 
exam are presented in Table 11.6.

Given that we are using the same data as the previous two analyses, we can assume that we 
have met the assumptions underlying the use of parametric tests. Again, this is the case because 
we have only two conditions in our within-participants IV. If we had more than two conditions, 
we would need to ensure that we had not violated the assumption of sphericity.

As with the two previous ANOVAs, the first thing we need to think about is the possible sources 
of variance in the split-plot design. You can see from the printout for the current analysis that the 
between-participants IV has its own error term. The analysis of the between-participants IV is 
similar to conducting a one-way ANOVA on that factor, ignoring the within-participants IV.

Non-anxious Anxious

Participants Neutral 
words

Negative 
words

Participants Neutral 
words

Negative 
words

1 17 16 21 9 19

2 9 8 22 4 14

3 16 14 23 10 17

4 16 10 24 15 13

5 16 14 25 1 10

6 18 11 26 16 13

7 19 13 27 13 12

8 12 3 28 8 15

9 6 15 29 9 15

10 13 16 30 9 19

11 9 17 31 10 12

12 11 15 32 7 10

13 14 14 33 9 16

14 12 16 34 8 17

15 6 12 35 14 19

16 13 16 36 7 17

17 10 13 37 9 19

18 12 3 38 8 10

19 16 7 39 12 13

20 19 9 40 15 15

Table 11.6 Distribution of scores to conditions in the split-plot design
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Within-Subjects Factors

Measure: MEASURE_1

1

2

Dependent
Variable

WordType

Neutral

Negative

Between-Subjects Factors

1.00

2.00

AnxietyGroup

Value Label N

Non-anxious

Anxious

20

20

Multivariate Testsa

b. Exact statistic

a. Design: Intercept 1 AnxietyGroup

 Within Subjects Design: WordType

Pillai’s Trace

Wilks’ Lambda

Hotelling’s Trace

Roy’s Largest Root

Pillai’s Trace

Wilks’ Lambda

Hotelling’s Trace

Roy’s Largest Root

Value

Hypothesis

dfFEffect

WordType

WordType *

AnxietyGroup

Sig.

Partial Eta

SquaredError df

.144

.856

.168

.168

.288

.712

.405

.405

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

6.403b

6.403b

6.403b

6.403b

15.382b

15.382b

15.382b

15.382b

.016

.016

.016

.016

.000

.000

.000

.000

.144

.144

.144

.144

.288

.288

.288

.288

38.000

38.000

38.000

38.000

38.000

38.000

38.000

38.000

Mauchly’s Test of Sphericitya

Measure: MEASURE_1

Tests the null hypothesis that the error covariance matrix of  the orthonormalized transformed

dependent variables is proportional to an identity matrix.

b. May be used to adjust the degrees of  freedom for the averaged tests of  significance.

 Corrected tests are displayed in the Tests of  Within-Subjects Effects table.

a. Design: Intercept 1 AnxietyGroup 

 Within Subjects Design: WordType

Within Subjects

Effect

Lower-

bound

Huynh-

Feldt

Epsilonb

Greenhouse-

Geisser

Approx.

Chi-Square df Sig.Mauchly’s W

WordType 1.0001.0001.000.000 0 .1.000
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The within-participants part of the ANOVA is divided into three parts: the main effect of the 
word type IV, the interaction between the word type and anxiety group factors, and the error 
term for this part of the analysis. Thus, in the split-plot design we have one error term for the 
between-participants part of the analysis and one error term for the within-participants part of 
the analysis. The interaction between anxiety group (between-participants) and word type 
(within-participants) is part of the within-participants printout because it has a within-
participants component. That is, one of the interaction terms (word type) is within-participants. 
Why then do we not have a separate error term for the interaction and the main effect of the 
within-participants factor (exam conditions)? Remember, in the fully within-participants design 
example we had a separate error term for each of the main effects and the interaction. We have 
different error terms because we are able to separate out (partial out) the consistent difference 
between participants for each main effect and also for the combination of our main effects. 
Because the interaction in a split-plot ANOVA has a between-participants element to it, that 

Tests of Within-Subjects Contrasts

Measure:MEASURE_1

WordType

Linear

Linear

Linear

Type Ill Sum

of  Squares

Mean

SquaredfSource

WordType

WordType * AnxietyGroup

Error(WordType)

Sig.

Partial Eta

SquaredF

80.000

192.200

474.800

80.000

192.200

12.495

1

1

38

.016

.000

.144

.288

6.403

15.382

Tests of Within-Subjects Effects

Measure:MEASURE_1

Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Type III Sum

of  Squares

Mean

SquaredfSource

WordType

WordType * AnxietyGroup

Error(WordType)

Sig.

Partial Eta

SquaredF

80.000

80.000

80.000

80.000

80.000

80.000

80.000

80.000

192.200

192.200

192.200

192.200

474.800

474.800

474.800

474.800

12.495

12.495

12.495

12.495

192.200

192.200

192.200

192.200

1

1.000

1.000

1.000

1

1.000

1.000

1.000

38

38.000

38.000

38.000

.016

.016

.016

.016

.000

.000

.000

.000

.144

.144

.144

.144

.288

.288

.288

.288

6.403

6.403

6.403

6.403

15.382

15.382

15.382

15.382

Tests of Between-Subjects Effects

Measure: MEASURE_1

Transformed Variable: Average

Intercept

AnxietyGroup

Error

Source

Type III Sum

of  Squares

12350.450

4.050

604.500

df

1

1

38

Mean Square

12350.450

4.050

15.908

F

776.372

.255

Sig.

.000

.617

Partial Eta

Squared

.953

.007
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means we have different participants in some of the combinations of factors and thus we cannot 
globally separate out the consistent influence of each participant. We can only do this overall 
for the single within-participants factor in this design and thus it is this error term which 
represents our best estimate of the error for the within-participants elements of such designs.

You can see from the above split-plot printout that the main effect of the word type factor 
has an F-value of 6.40 (80.00 , 12.495) with an associated probability of p = 0.016. The main 
effect of the anxiety group has an F-value of 0.26 (4.05 , 15.91) with an associated probability 
of p = 0.617. And finally, the interaction has an F-value of 15.38 (192.2 , 12.495) with a prob-
ability of p  6  0 .0 0 1 .

 11.7.1 Simple effects

Simple effects analyses are similar to those described above for the between- and within-
participants designs. Again, you should be aware of the problems with family-wise error rates 
and also the fact that, for any designs containing within-participants factors, the error terms are 
not straightforward. As in the previous examples, you should stick to examining your simple 
effects using t-tests. The t-tests for these data are presented below. You should notice that in 
the split-plot design, because we have both between- and within-participants variables, you will 
need to use both the independent and related t-tests. To be able to run the two related t-tests 
comparing the two word types with each of the anxiety conditions, you are going to have to 
split the data file using the AnxietyGroups variable.

Paired Samples Statisticsa

a. AnxietyGroup 5 Non-anxious

.88139

.94284

20

20

3.94168

4.21651

13.2000

12.1000

Neutral words

Negative words

Std. Error MeanMean Std. DeviationN

Pair 1

Paired Samples Correlationsa

a. AnxietyGroup 5 Non-anxious

.86920 2.039Neutral words &
Negative words

Sig.CorrelationN

Pair 1

a. AnxietyGroup 5 Non-anxious

Paired Samples Testa

Pair 1 Neutral words – 
Negative words

Mean

1.10000

Paired Differences

Std.

Deviation

5.88397

Std. Error

Mean

1.31569

Lower

21.65378

95% Confidence

Interval of the

Difference

Upper

3.85378

t

.836

df

19

Sig.

(2-tailed)

.414
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Paired Samples Statisticsa

a. AnxietyGroup 5 Anxious

.83438

.69158

20

20

3.73145

3.09286

9.6500

14.7500

Neutral words

Negative words

Std. Error MeanMean Std. DeviationN

Pair 1

Paired Samples Correlationsa

a. AnxietyGroup 5 Anxious

.12820 .352Neutral words & Negative
words

Sig.CorrelationN

Pair 1

Group Statistics

.88139

.83438

.94284

.69158

13.2000

9.6500

12.1000

14.7500

3.94168

3.73145

4.21651

3.09286

20

20

20

20

Non-anxious

Anxious

Non-anxious

Anxious

Std. Error MeanAnxietyGroup Std. DeviationMeanN

Neutral words

Negative words

a. AnxietyGroup 5 Anxious

Paired Samples Testa

Pair 1 Neutral words – Negative
words

Mean
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These t-tests reveal that:

• the difference in negative and neutral word recall for the anxious participants has a t-value 
of t (19) = 5.82, p 6  0.001 (see Figure 11.8(a))

• the difference in negative and neutral word recall for the non-anxious participants has a 
t-value of t (19) = 0.84, p = 0.414 (see Figure 11.8(b))

• the difference between anxious and non-anxious participants for negative words has an 
associated t-value of t (38) = 2.27, p = 0.029 (see Figure 11.8(c))

• the difference between anxious and non-anxious participants for neutral words has a t-value 
of t (38) = 2.93, p = 0.061 (see Figure 11.8(d)).

As we have the same data as in the previous two examples, it is no surprise that all these 
t-tests give a similar pattern to that observed previously. There is a significant difference 
between negative and neutral word recall for the anxious participants; there is also a significant 
difference between anxious and non-anxious participants in the recall of neutral words. The 
other simple effects are not significant, assuming our criterion for significance has been 
adjusted to 0.0125 to take account of multiple testing.

 11.7.2 Effect size

The most suitable measure of effect sizes for split-plot design is again the partial eta-squared 
(partial η2). You can see from the printout on page 364 that the partial η2 for the main effect of 
anxiety group is 0.007, for the main effect of word type it is 0.144 and for the interaction it is 0.288.

Activity 11.7

Calculate Cohen’s d for the four simple effects comparisons above.

 11.7.3 Writing up these analyses

The write-up for the split-plot analyses will be similar to that for the between-participants 
analyses presented earlier. All you will need to do is change the description of the ANOVA 
design and the way you describe the t-tests. The following is how you might describe the 
ANOVA design:

. . . The number of words recalled were analysed with a split-plot ANOVA with anxiety group 
(anxious vs non-anxious) as the between-participants factor and word type (negative vs 
neutral) as the within-participants factor . . . 

Example from the literature

Biofeedback in smartphone application helps to reduce stress

An interesting study by Dillon et al. (2016) utilised a biofeedback system in tandem with smartphone 
games to see what effect the biofeedback would have on the stress responses associated with game 
playing. They found that participants in the biofeedback condition exhibited significantly lower stress 
levels and significantly lower heart-rates after playing the smartphone games than did the non-bio-
feedback control group. Here is how they reported their ANOVA:

The means and standard deviations for all treatment conditions are shown in Table 1. All assumptions 
were met and therefore it was appropriate to continue with a mixed factorial ANOVA. A 2 * 2 mixed 
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factorial ANOVA showed a significant main effect of time, F(1,48) D = 60.89, p 6  0.001, η2
p

 
=

 0.56, 
such that there was a significant reduction in stress levels over time, as measured from the pre-
gaming time (M = 5.01, SD = 1.94) to post gaming (M = 3.27, SD = 1.97). There was no significant 
main effect of game F (1,48) = 2.07, p 7  0.05.
 There was a significant interaction between time and game type, F (1,48) = 14.19,
p 6  0.001, η2

p
 
=

 0.23 (see Figure 1). Paired sample t-tests were used as post hoc analysis  
to identify the source of the interaction. Participants who played the biofeedback games had a 
statistically significant decrease in stress levels [Mean Before = 5.08 (SD = 2.05); Mean After =
2.5 (SD = 1.68), t (24) = 7.48, p 6 0.001, two-tailed]. Participants who played the control  
application game also had a reduction in stress levels but to a lesser amount [Mean Before =
4.94 (SD = 1.86), Mean After = 4.04 (SD = 1.97), t (24) = 3.18, p 6  0.01, two-tailed]. These results 
indicate that the biofeedback applications ‘Relax and Race’ and ‘The Loom’ were more effective at 
reducing self-reported levels of stress in participants compared to the ‘Flow Free’ game.

You can see here that the authors report two of their post hoc t-tests but don’t report any Bonferroni 
adjustment of α. It is good that they have reported the partial eta-squares for the main ANOVA. They 
could perhaps have presented the Cohen’s d for the simple effects analyses.

SPSS: ANOVA with one between-participants factor and 
one within-participants factor

The datafile for a split-plot design is, not surprisingly, a combination of the between-participants and 
the within-participants design. We have to set up one grouping variable for the between-participants 
factor of anxiety group and two variables representing the two conditions of the word type IV (Negative 
and Neutral). The datafile should therefore look like that below:
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Click on Analyze, General Linear Model and Repeated Measures to set up the analysis. This time you only 
need to set up one within-participants variable using the first dialogue box:

Click on the Define button and set up the variables as below:

When you have set up the variable click on Options to select effect size analyses and click on OK to 
run the analysis. The printout should look like the one shown above.

When you come to investigate your simple effects, you need to bear in mind that one of the variables 
is a between-participants variable (in our case it is the AnxietyGroup variable). Therefore, if you wish to 
examine the difference between the recall of negative and neutral words, in each of the anxiety condi-
tions, you need to tell SPSS to split the file using the AnxietyGroup variable (Data, Split File). We have 
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Summary

In this chapter we have explained:

• how factorial ANOVA is an extension of the one-
way ANOVA (that we covered in Chapter 10)

• how we can analyse data from a study that 
includes two or more IVs using factorial ANOVA

• the sources of variance for the following three 
designs:

– two between-participants variables

– two within-participants variables

– one between-participants and one within-
participants variable (split-plot design)

• how to examine the interaction between two IVs 
using the following:

– error bar charts

– line graphs

– simple effects analyses

• how SPSS gives partial η2 as the measure of 
effect size in factorial ANOVA, and that this is 
simply a ratio of the effect sum of squares to the 
effect sum of squares plus the error sum of 
squares

• that when we have a completely within-
participants design, the main effects and 
interactions have their own error terms

• that a priori and post-hoc analyses of simple 
effects can be conducted using t-tests

• that when conducting more than one post-hoc 
(or a priori) comparison, you should adjust your 
α by dividing 0.05 by the number of comparisons 
being made.

explained how to do this earlier in the chapter. You would then conduct related t-tests on the Negative 
and Neutral variables. If you wanted to examine the difference between the two anxiety conditions 
separately for negative and then neutral words you would not need to split the file but to run an inde-
pendent t-test with AnxietyGroup as the IV and Negative as the first DV and Neutral as the second DV. 
It is worth reiterating here that you should be careful when you use the split-file option. You should 
make sure you unsplit the file after you have done your analyses so that any future analyses will be 
conducted on all your data. Thus, you should unsplit the file before you conduct the independent t-tests.

SPSS exercises

Exercise 1

A researcher, Dr Bod, is interested in examining whether academic ability has fallen in the last 20 years. 
She therefore decides to compare the A-level performance of a sample of students who took the exams 
in 2016 and a sample who took them in 1996. Each student had taken an examination in both English 

Discover the website at www.pearsoned.co.uk/dancey where you can test your knowledge with multiple 
choice questions and activities, discover more about topics using the links to relevant websites, and explore 
the interactive flowchart designed to help you find the right method of analysis.

http://www.pearsoned.co.uk/dancey
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and Mathematics. In order to ensure that the exams are marked to the same criteria, she employs 
examiners to remark a sample of exams from each year group. The new marks awarded to each student 
for Mathematics and English are given in the table below:

Students from 1996 Students from 2016

Mathematics English Mathematics English

67 62 67 63

52 73 49 67

45 41 48 42

58 51 61 52

59 62 54 51

81 59 55 54

61 65 51 55

55 57 49 52

60 58 53 51

57 60 56 48

51 63 51 50

60 61 50 52

 1. What sort of design is this study?
 2. What are the IVs and DV?
 3. Input the data into SPSS and conduct an ANOVA.
 4. What are the F-values and associated probabilities for each main effect and any interactions?
 5. Are there any effects that are probably not due to sampling error? If there are, which are they?
 6. Which of the above effects has the largest magnitude of effect?

Exercise 2

A researcher, Dr Kid, is interested in whether boys and girls differ in the ability to perceive colours. She 
thinks that girls will be better than boys at perceiving differences in colours from a very early age. She 
therefore tests two different age groups (5-year-olds and 11-year-olds) on a standard colour perception 
test and compares the performance (marked out of 10) of boys and girls. The data are presented below:

5-year-olds 11-year-olds

Boys Girls Boys Girls

4 6 4 8

3 5 2 9

4 6 3 9

5 4 4 8

9 6 7 7
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5-year-olds 11-year-olds

Boys Girls Boys Girls

1 7 5 10

0 8 4 9

2 6 3 10

3 5 2 8

3 4 2 6

4 6 4 9

5 3 5 8

 1. What sort of design is this?
 2. What are the IVs and DV?
 3. Input the data into SPSS and conduct an ANOVA.
 4. What are the F-values and associated probabilities of the main effects and any interactions?
 5. Are any of these effects probably not due to sampling error? Which ones?
 6. What are the magnitudes of effects for the main effects and interactions?
 7. Conduct simple effects analyses to find out if there was any improvement in colour perception with 

age for the boys and then do the same analysis for the girls.

 1. How would you describe a 2 * 2 * 4 ANOVA?

(a) One IV with three conditions
(b) One IV with four conditions and one IV with two conditions
(c) One IV with four conditions and two IVs with two conditions
(d) One IV with 16 conditions

 2. ANOVA is useful for:

(a) Teasing out the individual effects of factors on an IV
(b) Analysing data from research with more than one IV and one DV
(c) Analysing correlational data
(d) All of the above

 3. What are the various sources of variance in an ANOVA with two between-participants IVs?

(a) Variance attributable to the populations
(b) Variance attributable to the two IVs and the error
(c) Variance attributable to the two IVs, the interaction between the two IVs and the error
(d) Both (a) and (c) above

Multiple choice questions
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 4. Partial η2 is:

(a) A measure of the magnitude of the probability that the effects are due to sampling error
(b) A measure of magnitude of effect used with ANOVA
(c) A left-wing terrorist organisation
(d) Both (a) and (b) above

 5. When generating error bar charts for a study with two between-participants IVs, each with two condi-
tions, which combination of options should you select in SPSS?

(a) Simple along with Summaries of groups of cases

(b) Simple along with Summaries of separate variables

(c) Clustered along with Summaries of groups of cases

(d) Clustered along with Summaries of separate variables

Questions 6 to 9 relate to the following printout:

 6. What is the obvious conclusion from this printout?

(a) That there is a main effect of AREA and an interaction, which are probably not due to sampling 
error

(b) That there is only an interaction between the two IVs, which is probably not due to sampling error
(c) That there are no main effects or interactions
(d) Both (a) and (b) above

 7. What is the p-value for the main effect of CARBUS?

(a) 0.003
(b) 9.945
(c) 0.101
(d) None of the above

Tests of Between-Subjects Effects

Dependent Variable: Driving errors

a. R Squared 5 .659 (Adjusted R Squared 5 .630)

Source

Corrected Model

Intercept

CARBUS

AREA

CARBUS * AREA

Error

Total

Corrected Total

Eta Squared

.659

.930

.101

.216

.607

Type III Sum

of  Squares

84.600

577.600

4.900

12.100

67.600

43.800

706.000

128.400

df

3

1

1

1

1

36

40

39

Mean Square

28.200

577.600

4.900

12.100

67.600

1.217

F

23.178

474.740

4.027

9.945

55.562

Sig.

.000

.000

.052

.003

.000

a

Between-Subjects Factors

CARBUS

AREA

1.00

2.00

1.00

2.00

N

20

20

20

20

Value Label

Cars

buses

Town

Country
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 8. How is the F-value for the interaction calculated?

(a) 4.900 , 12.100
(b) 12.100 , 67.600
(c) 67.600 , 1.217
(d) None of the above

 9. How much variation in driving errors is accounted for by the interaction between CARBUS and AREA?

(a) 93%
(b) 5.2%
(c) 60.7%
(d) 65.9%

 10. Look at the following error bar chart. What would be the sensible conclusion?

(a) That there are main effects of the two IVs and an interaction, which are probably not attributable 
to sampling error

(b) That there are no main effects or interactions
(c) That there is only one main effect
(d) That there are two main effects, which are probably not attributable to sampling error, but no 

interaction

 11. How many effects are we comparing against their respective null hypotheses in a 2 * 2 ANOVA?

(a) 1
(b) 2
(c) 3
(d) 4

 12. The Mauchley sphericity test is:

(a) A test of the assumption that the standard errors of the difference between means of the within-
participants variables are equal

(b) A test that the data used in ANOVA are rounded in nature
(c) A well-known test developed at a well-known London psychiatric hospital
(d) None of the above
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 13. How would you describe a 2 * 3 * 5 * 7 * 7 ANOVA?

(a) Sensible
(b) An ANOVA with two variables with three conditions, five variables with seven conditions and 

seven variables with one condition
(c) An ANOVA with one variable with two conditions, one variable with three conditions, one variable 

with five conditions and two variables with seven conditions
(d) Both (a) and (c) above

 14. What are the sources of variance in a completely within-participants design with two IVs?

(a) Main effect of IV1 plus error, main effect of IV2 plus the error, interaction between IV1 and IV2 
plus error

(b) Main effects of IV1, IV2 and the interaction between these two plus the error
(c) Main effects of IV1, IV2 and the interaction between these two
(d) None of the above

 15. Partial η2 is:

(a) A measure of the power of your analyses
(b) Equal to η2

(c) Usually much greater than η2

(d) A measure of magnitude of effect

 16. What is the definition of a simple effect?

(a) The effect of one variable on another
(b) The difference between two conditions of one IV at one level of another IV
(c) The easiest way to get a significant result
(d) All of the above

 17. If you had an MS for your main effect of 12.4 and an MS for the error term of 3.1, what would your 
F-value be?

(a) 6.2
(b) 4.1
(c) 3.1
(d) 4

 18. If you had a completely within-participants design, with each IV having two conditions, how would 
you examine the simple effects?

(a) With independent t-tests, being careful to select the correct participants using the Split File com-
mand in SPSS

(b) With independent t-tests, taking care to adjust the α to keep the familywise error rate low
(c) With related t-tests, taking care to adjust the α to keep the familywise error rate low
(d) None of the above

 19. How many effects are we comparing against their respective null hypotheses in a 2 * 2 * 2 ANOVA?

(a) 3
(b) 5
(c) 7
(d) 8
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 20. If you have a 2 * 2 between-participants design, what should be the first step before generating 
descriptive statistics in SPSS?

(a) Transform your data
(b) Split the datafile
(c) Conduct t-tests
(d) Conduct correlational analyses
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 12.1 The purpose of linear regression

Psychologists are interested in using linear regression in order to discover the effect of one 
variable (which we denote by x) on another (which we denote by y). It is similar to simple 
correlational analysis, but while correlational analysis allows us to conclude how strongly two 
variables relate to each other (both magnitude and direction), linear regression will answer the 
question ‘By how much will y change, if x changes?’ In other words, if x changes by a certain 
amount, we will be able to estimate how much y will change.

Imagine we have data on the amount of diet cola bought and the price of diet cola. Now, if 
the price of diet cola becomes high enough, the sales of diet cola will decrease (people will 
swap to a cheaper alternative). A simple correlational analysis will show us that the price of 
diet cola and sales of diet cola are negatively correlated – we are able to say, then, that as the 
price increases, sales decrease. But we cannot tell by how much sales will decrease, for any 
given price rise. Psychologists use linear regression in order to be able to assess the effect that 
x has on y. Linear regression analysis results in a formula (a regression equation) that we can 
use to predict exactly how y will change, as a result of a change in x. For instance, we would be 
able to say something like: if the price of cola rises by 50%, sales will fall by 40%.

Since linear regression gives us a measure of the effect that x has on y, the technique allows us 
to predict y, from x. In our example above, if we know by how much diet cola sales decrease, as 
a result of every penny increase, then we are able to predict diet cola sales, from price. In an 

CHAPTER OVERVIEW

Regression analysis is an extension of correlational analysis, which we covered in Chapter 6, so if you 

feel you have forgotten some of this material, it is probably best to go back and read that chapter. In 

the first part of this chapter we will be showing you how to assess the effect of one variable (x) on 

another variable (y). This is called bivariate linear regression. In the latter part of the chapter we will 

be showing you how to assess the effect of several variables (labelled x1, x2, and so on) on another 

variable (y). This is called multiple regression.

In this chapter you will:

■ learn how to assess the relationship between a dependent variable and one or more explanatory 
variables

■ learn how to predict a person’s score on the criterion variable by a knowledge of their scores on one 
or more explanatory variables

■ learn how to use confidence limits when analysing data by the use of multiple regression.

Regression analysis

12
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experimental situation, psychologists can use linear regression to suggest that a score on one 
variable influenced the score on the other variable. In this way they try to infer causal relationships.

Linear regression could be used to:

• assess the effect of stress on symptoms of the common cold (e.g. runny nose, sore throat, 
cough)

• predict children’s mathematical ability from a measure of their reading ability.

When you carry out a linear regression, you proceed in exactly the same way as with a 
correlational design: that is, the two variables are examined to see if there is a linear relationship 
(a relationship that can be best described by a straight line) between them (see Chapter 6). This 
is explained further below.

For instance, consider the example of the relationship between marks in a mock statistics 
exam and marks in the final statistics exam. There is a positive relationship between these two 
variables: people who do well in the mock exam tend to do well in the final exam. The relationship 
is not perfect, of course; some people will do really well in the mock, but perform badly in the 
final, and some who do badly in the mock will do well in the final. In order to carry out a 
regression analysis, we would collect data on the mock exam score and the final exam score 
for all the students in a particular year. If the relationship was positive and sufficiently strong 
to be predictive, then in the next year’s set of students we could look at the scores from their 
mock exam and be able to have a good idea of how they would do in the final exam. Thus we 
could identify those students in danger of failing (before they have taken their final exam!) and 
perhaps offer additional support. This is an example of when psychologists would use the 
regression equation in order to predict.

Psychologists do not usually use linear regression in order to predict in a new sample. 
The results of the regression analysis, however, will show the amount of change in y as a result 
of change in x. In the above example, performance in the mock exam does not actually cause 
the scores in the final exam. However, performance in the mock precedes performance in the 
final exam – both are related in a predictive, temporal sense. As mentioned previously, sometimes 
psychologists are able to suggest causal relationships by using this method. It is difficult to state 
that changes in one variable ‘cause’ changes in another, however, even when the two events occur 
at different time points, because another intervening variable may be influencing scores on both 
variables. This, of course, is a limitation of correlational designs.

 12.1.1 Explanatory and criterion variables

The variable that is being predicted is called a criterion or dependent variable (DV). This is 
also called y.1 The variable that is predicting the DV is, not surprisingly, called the predictor 
(or explanatory) variable (IV); this is also called x.

Sometimes the explanatory variables are called ‘independent’ variables. It can be a bit 
confusing, however, to call the variables ‘independent’ and ‘dependent’ because, of course, 
we are not manipulating the IV at all. For instance, we do not assign the students to groups. 
Studies using linear regression are correlational designs (i.e. you are looking to see whether the 
two variables are related, rather than looking for a difference between conditions, as we did in 
Chapter 7). In this chapter, then, we call the variables that predict, or explain, scores on the 
dependent variable, the explanatory variables.

 12.1.2 The regression line

If you have understood the chapter on correlation (Chapter 6), you should not have too much 
trouble with regression, because the two are very similar: for example, correlational analysis 

1 An actual value of y is simply represented by y, but a predicted value is labelled.
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gives us a measure that represents how closely the data points are clustered around an 
(imaginary) line. It does not give us a measure of how much y changes as a result of x, and 
therefore it does not allow us to predict a person’s score on y from x. As previously mentioned, 
linear regression does – because, instead of an imaginary line, we draw (well, the computer does!) 
a real line.

Look at the data in Table 12.1.
We can plot these marks on a graph, just as we did with the data in previous examples 

(see Chapter 6). It is conventional to call the predictor variable x, as we use the x-axis on the 
graph, and to call the criterion variable y, as we use the y-axis.

You can probably tell, just by looking at the scatterplot in Figure 12.1, that there is a positive 
correlation between x and y (actually + 0.9), but all you can say at this point is that, as marks 
in the mock exam increase, marks in the final exam increase. The dots cluster quite tightly 
around an imaginary line, but how can we predict a person’s final mark from his or her marks 
in the mock exam? The answer, of course, is linear regression. Linear regression is a method 
by which we fit a straight line to the data. This line is drawn in the best place possible – that is, 
no other line would fit as well. This is why it is called the line of best fit – we talk about this 
more in the following paragraphs (see Figure 12.2).

Once we have a straight line representing the data, we can go further than just saying ‘as x 
increases, y increases’. We can actually say that ‘for every one unit change in x, y changes by 

% marks in mock (predictor) x % marks in final (criterion) y

50 55

30 20

60 59

75 78

40 55

90 70

15 20

19 15

64 60

80 84

Table 12.1 Percentage of marks in mock and final examination

Figure 12.1 Scatterplot of mock and final examination scores
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a certain amount’. In the above example, we are able to say: ‘for every 20-mark increase in the 
mock exam, marks in the final exam increase by 18’.

Look at Figure 12.2. We can use the line to predict a person’s score on y, from x. A person 
with a score of 60 on x is predicted to have a score of 59 on y. In fact, if you look at the person 
(Mena) with a score of 60 on x you will see that she has scored 59 on y – so the line was good 
at predicting for Mena. On the other hand, Jack, who has scored 90 on x, is predicted to score 
86 on y, but he has scored only 70 on y. So the prediction for Jack is not so good. But the line 
will provide the best prediction possible, for the participants in general.

You may be wondering how we were able to work out the figures for the above: that is, how 
did we know that final marks increase by 18, for every 20-mark increase in the mock? Although 
we could work this out mathematically, it is simpler to get SPSS to do it. The slope of the line 
(called b) gives us a measure of how much y changes as x changes. The larger the value of b, 
the steeper the slope. Using a straight line, as above, allows us to predict a person’s score on y, 
from x. You could not do that with a simple correlation. The trick is to draw the line in the right 
place! (However, unlike us, SPSS doesn’t have a problem with this . . .)

Figure 12.2 Scatterplot with line of best fit
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SPSS: drawing the line of best fit

Choose Graphs, then Scatter/Dot:
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You need to choose the correct scattergram from four options: choose Simple Scatter:

Both the predictor and criterion variables are moved from the variable list on the left to the appropriate 
boxes on the right-hand side:

After clicking on OK, your output will be shown as below. Make sure you double-click on the graph.
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This will enable you to choose the chart options:

We now make sure we have chosen the Fit Line at Total box:

Ensuring that the Linear option is selected will then give the line of best fit:
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 12.1.3 Predicting from a straight line

In the next couple of sections we are going to look at how you can use a straight line to predict 
one variable from another. We will make it easy by starting with perfect relationships.

Perfect relationships – positive

Here we start with what you know already (Figure  12.3). You will immediately see that 
 Figure 12.3 shows a perfect positive correlation. A straight line is drawn through the datapoints. 
Because the correlation is perfect, it is possible for the straight line to pass through every 
datapoint. The line of best fit here fits the data perfectly.

Every time x increases by 1, y increases by 10. (Make sure you confirm this by looking at 
Figure 12.3.) The 0 is where the line intersects the y-axis. This means that, when a person 
scores 0 on x, they score 0 on y too.

You can see from the above table, too, that y increases by 10, with every unit change in x 
(i.e. 1). Note that this is a constant change.

The amount by which y changes, when x changes by 1, is known as b: b is the slope, or tilt, 
of the straight line.

 12.1.4 The regression equation

When we perform a linear regression analysis, we obtain a regression equation, which shows 
the way in which y changes as a result of change in x. From this formula, we can calculate 
someone’s score on y from their score on x. The general formula looks like this:

y = bx + a

or

y = a + bx

Activity 12.1

Have a go at explaining how regression analysis differs from simple correlation. What 
extra information does regression analysis give you?

Figure 12.3 Plot of x with y
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What this means is that, for any individual, y can be predicted by a value denoting the slope of 
the line multiplied by their particular score on x, added to a value denoted by a.

• y is the variable to be predicted

• x is the score on the variable x

• b is the value for the slope of the line

• a is the value of the constant: that is, the place where the straight line intercepts the y-axis 
(also called the intercept).

The regression equation shows us the way in which y changes as a result of x changing. The 
steeper the slope (called b), the more y changes as a result of x. So the slope is an important 
part of your results, when reporting them in laboratory reports. In the regression equation below, 
the slope of the line is 10. This means that, every time x increases by 1 unit, y changes by 10. 
This is useful in itself, but as we have said previously, the regression allows you to predict. The 
equation below shows that y is able to be predicted by multiplying a person’s score on x by b, 
which is 10, and then adding the constant, a (which is, in this case, zero).

In our example above, a = 0 (starting point on the graph, intercept, constant) and b = 10. So:

y 5 a 1 10x

In this case a 5 0 (when

a person scores 0 on x,

he or she scores 0 on y)

This value (10) is known as b:

every time x increases by 1

unit, y increases by 10 units

If we now tell you that a person has a score of 7 on x, then you will be able to predict his or her 
score on y.

y 5 0 1 (10    7) 5 70

* means multiply

So a person who scores 7 on x is predicted to score 70 on y. If you look at the graph above, you 
will be able to confirm this.

Of course, it is easy to predict a person’s score when all the points fall on a straight line. You 
always get it right! Some students become confused at this point, wondering why we are trying 
to predict a score when we know it already! However, if our regression equation was able to 
predict with a high degree of accuracy, this shows that we could use our equation in another 
sample, for whom we did not have information on y. This is rather like insurance companies, 
who have information to show that younger male drivers have more road accidents than other 
groups of people. When you try to buy car insurance for the first time, the company does not 
need to know how brilliantly you drive – your age and whether you are male or female will be 
noted in order to predict how likely it is that you will have an accident and cost the company 
money (there is no point in insisting you are an outlier!). Luckily (for us), lecturers over 40 will 
have cheaper premiums – even if they drive horrendously.

Activity 12.2

What is someone’s predicted score on y when their score on x = 20? Assume a = 5 
and b = 2.
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Residuals

If we use our line of best fit to predict a person’s score, unless we have a perfect relationship we 
will always make some errors. Look at the line of best fit for Burpacoke (see Figure 12.8 later). 
Some datapoints are on the line, but others are further away. These represent errors of prediction.

If we use our line of best fit to predict sales for each price, then we will obtain a predicted 
sales figure. For this sample, we can compare it with the actual sales figures. If our line of best 
fit is really good for predicting, then the differences between the actual and predicted figures 
will be small; if the line of best fit is not good at predicting, then the differences will be large. 
The differences between the actual scores and predicted scores are called residuals. Residuals 
are particularly important in multiple regression, so we will come across them again later in 
this chapter. SPSS gives you an output of residuals statistics; if you want to go further into the 
subject, there are many books with more advanced chapters on linear regression.

If there was no relationship between x and y, y could not be predicted by x at all and the line 
would be drawn as horizontal. In a case where x and y are not related at all, any line of best fit 
would be just as good as any other line, but it is conventional in this case for b to be drawn as 
a horizontal line, thus b = 0.

Figure 12.4 shows that x and y are not related at all (zero correlation -r = 0); y is not able 
to be predicted by x (b = zero).

Perfect relationships – negative

It is not only in the case of positive relationships that we can predict. There are negative 
relationships too. For example, assume that x = number of hours watching television per night. 
Assume also that y is marks in a test at the end of the school week. Figure 12.5 is the graph 
(data are fictitious!). It can be seen that, as the number of television hours watched increases, 
marks in the test decrease. The relationship is perfect: that is, the straight line is able to be drawn 
in such a way that it goes through every datapoint.

If you look at Figure 12.5, you will see that y decreases by 3 every time x increases by 1. 
Look at the following data:

Figure 12.4 Zero relationship
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Here you can see that, every time x increases by 1, y decreases by 3. You can also see that 
the line of best fit has intercepted the y-axis at 18.

• ŷ = predicted marks in a test

• x = number of television hours watched

• a = 18

• b = 3

So:

Figure 12.5 Plot of x with y
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When x is 0, y 5 18;

therefore the

intercept is 18

ŷ 518 2 (3x)

and this is b

This (18) is a

Minus sign 5 negative relationship

If we tell you that a person had watched 3.5 hours of television per night, what would you 
predict as the test score? You can find out from the graph, of course, by using a ruler upwards 
from 3.5 on the x-axis to the straight line, and then using a ruler horizontally until it meets 
the y-axis. However, you do not need to look at the graph; you can work it out from the 
formula:

ŷ = 18 - (3x)

So:

ŷ = 18 - (3 * 3.5)

The brackets show us that the sum inside the bracket should be calculated first. So:

18 - (3 * 3.5) = 18 - 10.5

= 7.5
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Thus a person who watches 3.5 hours of television per night is predicted to score 7.5 in the test.
The minus sign means that it is a negative relationship: as one variable (x) increases, the 

other (y) decreases.

The intercept

In Figure 12.6, the line has started at 5. (This means that a person who has scored 0 on x would 
be predicted to score 5 on y. Of course, sometimes it would be impossible to score 0 on x – if 
x were IQ, for instance. But we won’t worry about this for now!) For every value of x, y increases 
by 5. So the formula you need in order to predict is:

ŷ = 5 + 5x

If a person has a score of 3 on x, the predicted score on y will be:

ŷ = 5 + (5 * 3)
= 5 + 15
= 20

So an x of 3 leads to a prediction of 20 on y. Check this by looking at the graph (Figure 12.6). 
Remember that a is also called the constant, and sometimes the intercept. The figure that is 
multiplied by x, as you have seen before, is called b; b is the slope of the line:

ŷ 5 5 1 5x

b 5 5

a 5 5

Non-perfect relationships

As we noted earlier, it is easy to predict from a perfect relationship because you always get it 
right. Consider, however, the following graph of a non-perfect relationship (Figure 12.7).

Figure 12.6 Plot of x against y
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Here we cannot draw the straight line in such a way as to pass through every datapoint. 
It looks as if it would be impossible to predict y from x. It is possible, however. The line will 
not be perfect, as it will not pass through every datapoint, but if we could draw the line in the 
best place possible, it might have predictive power.

What you need to do is to draw the line in the best place possible: that is, the place where 
the maximum number of dots will be nearest the line – this will be the place that provides 
the ‘best fit’ to the scores. The straight line must be drawn so that it will be as near as 
possible to the datapoints. This is difficult to do, by guesstimating. Most people try to draw 
the line through the ‘middle’ of the datapoints. But sometimes it is difficult to tell where the 
middle is.

As an exercise, you are going to try guesstimating the line of best fit. Normally, you will not 
need to do this because your computer package will calculate the line for you, and can even 
draw the line in!

Assume a = 5. This means that your line must intercept the y-axis at 5 (see above). If you 
want to, draw the line in, using a light pencil line. Obviously there are many different lines 
you could draw. You have to try to draw the ‘best’ line. If you are working with other people, 
look to see if your line is in the same position as theirs: in other words, have they chosen the 
same straight line through the points as you have? Chances are, they haven’t. So, at this point, 
we cannot tell what the formula (called the regression equation) will be, but we can write 
the formula anyway, using letters instead of numbers. One value we do know, though, is a. 
This is the starting point on the graph, the point at which the line intercepts the y-axis. 
So at this point:

ŷ = 5 + bx

or

ŷ = bx + 5

It doesn’t matter which; they are equivalent.
Note that we use the positive sign (+) in the general formula, and in the equation for this 

example, since we know the relationship is positive. However, if the relationship between x and 
y were negative (and thus the value of b would be negative) the =+ > sign would change to a 
minus sign.

Figure 12.7 Plot of x with y
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Example: sales of diet cola

Let’s go back to our example of diet cola. There are lots of alternative diet drinks, so if the price of ours, 
called Burpacoke, goes up too much, people will buy something else. The manufacturers of Burpacoke 
did some research and found the data shown in Table 12.2.

First, let’s look at the scatterplot (Figure 12.8).
It can be clearly seen that there is a negative correlation between the price of Burpacoke and 

the sales figures. When the relationship between x and y is not perfect, we have to select from all the 
possible straight lines that could be drawn through the scores, as you have tried to do previously. 
We need the line that gives the best fit through the data. There are several methods by which the line 

Table 12.2 Price and sales of Burpacoke

Price per bottle Thousands of sales

80 500

81 500

82 499

83 498

84 497

85 450

86 445

87 440

88 439

89 438

90 400

91 380

92 370

93 360

94 330

Figure 12.8 Plot of sales against price
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of best fit can be calculated. One way, used by SPSS, is to minimise the vertical distances from the 
datapoints and the line. This is called the least-squares regression line. In the above example, the line of 
best fit has been drawn in by SPSS.

All the scores in Figure 12.8 are clustered around the line – the line, then, will be able to predict well. 
It ‘fits’ the data well. The formula used enables the line to be drawn in the best possible place (i.e. it will 
give us the best prediction possible). That is why it is called the line of best fit.

The data are not usually so accommodating, though. Look at Figure 12.9.
In this scatterplot, you can see that the dots do not cluster quite as closely to the line as in  

Figure 12.8. Here the line is in the best place possible – any other line would not be so good at predicting. 
But you can see that it will not be as good as Figure 12.8 because the distances from the dots to the 
line are greater.

Once the line of best fit has been drawn, we can predict from it, as explained above.

Figure 12.9 Plot of sales against price
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Activity 12.3

Which regression line gives the better prediction, (a) or (b)?
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 12.1.5 How do you know the values of a and b?

You could work out the values of a and b by a formula, given in most chapters of statistics books 
dealing with regression. However, most people use statistical packages such as SPSS to calculate 
linear regression. In writing this book we wanted to keep mathematical calculations to a 
minimum, so the formula is not included here. If you want to know how a and b are calculated, 
however, you will need to go to another textbook – we recommend several in the References 
sections at the end of every chapter.

When you perform regression analyses using a computer package, you obtain all the 
necessary information for writing your results section. SPSS gives you the correlation between 
x and y, and the figures for a (the intercept, or constant) and b (the slope of the line). Knowing 
the value of the slope, b, is essential, but you also want to know whether the height of the slope 
is significantly different from that which you would expect by sampling error. This is 
accomplished by an ANOVA summary table – which you are used to working with. The slope 
of the line, b, is also converted into a standardised score (beta). This answers the question, ‘If x 
changes by one standard deviation, by how many standard deviations (or parts of standard 
deviations) will y change?’ (standardised scores were discussed in Chapter 4).

SPSS: linear regression analysis

Select Analyze, Regression, Linear:
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Make sure the variable to be predicted (the criterion variable) is moved from the left-hand side to the 
Dependent box, and the predictor variable is moved to the Independent(s) box. The Method box should 
read Enter. Then click on OK.

You need to check the Confidence intervals option; you may also want descriptives – if so, make sure 
that the appropriate box is checked.

This brings you back to the Regression dialogue box; click on OK.
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 12.1.6 Important parts of the output

Since the output for linear regression is quite long, we are going to break it down into more 
manageable chunks, and explain each part as we go along. The model summary is as follows:

Std. Error of  the Estimate

Model Summary

14.87368

R Square

.937

Adjusted R Square

.932

R

.968a

Model

1

a. Predictors: (Constant), price

The correlation between x and y

The correlation between x and y is a simple Pearson’s r, and is represented on the output by R 
(also known as Multiple R). In our case, this is 0.968, which is a strong correlation.2 We would 
report this as 0.97 (it is usual to round to two decimal places). This correlation is important 
because it shows how well the datapoints cluster around the line of best fit. The prediction will 
obviously be better when the correlation is high. If the datapoints are further from the line, 
prediction will not be so good.

Variance explained

We have advised you to square a correlation coefficient, in order to obtain a measure of 
explained variance. However, in a linear regression analysis you do not have to tax yourself, 
as SPSS has done it for you. This is, as you can see, about 0.937. So 94% of the variation in 
sales of Burpacoke can be explained by the variation in price, for our sample.

Adjusted R Square

The R2 is adjusted by SPSS to account for the number of participants and variables in the 
analysis. R2 is too optimistic, as the line of best fit is based on a sample, not the population. 
We want our results to generalise to the population, so Adjusted R Square adjusts the figure to 
give a more realistic estimate. In our example, the variance explained is reported to be 93%.

Standard error

Remember that our statistics are not free from error. We analyse our results with a particular 
sample and it may be that a sample on another day would give slightly different results. With 
repeated samples, we would find a range of values; the standard deviations of such distributions 
are called the standard error (see Chapter 4). The standard error gives us a measure of how 
accurate our estimation is likely to be. Standard errors are estimated. This figure is an estimate 
of the variance of y, for each value of x.

2 Multiple R is never given as a negative value, for reasons that will not concern us here. The sign of the slope 
of the line will let you know whether the relationship is negative or positive, however; in our case it is 
negative.
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Analysis of variance

ANOVAa

221.2262875.943

45829.600

13

14

Residual

.000b42953.657 194.16242953.657 11 Regression

Sig.Mean Square FSum of  Squares dfModel

Total

a. Dependent Variable: sales in thousands

b. Predictors: (Constant), price

The summary table, which you are used to, shows you whether your regression line (line of best 
fit) is significantly different from 0: that is, it predicts better than would be expected by chance. 
Remember, if the slope b = 0, then the line of best fit is horizontal. In this case, the F-value is 
194.16, with an associated probability of 6  0.001. This means that such a result is highly 
unlikely to have arisen by sampling error, assuming the null hypothesis to be true.

Coefficientsa

.000

.000

77.427

.889 2.968

19.553

213.934

1 (Constant)

price

1513.957

Std.

Error BetaModel B

Unstandardized

Coefficients

Standardized

Coefficients t Sig.

212.386

a. Dependent Variable:  sales in thousands

This is b, the slope of the lineThis is a

The slope, b – unstandardised and standardised co-efficent

You can see that the value of b is -12.39. This is what is known as the ‘unstandardised’ 
coefficient, and in this example means that, for every one pence rise in price, sales drop by 12.39 
(thousands). If we wanted to compare the magnitude of the slope with another very similar study 
which used euros as their currency, we wouldn’t be able to make a valid comparison, simply 
because our study used pounds and the other study used euros. In order to make valid 
comparisons, we would need to look at the standardised coefficients. In order to obtain the 
standardised coefficients, the unstandardised ones are converted into beta scores – standard 
deviations which you interpret by saying that for every 1SD increase in price, sales figures 
decrease by almost 1 standard deviation. (In this example, the slope, b, has been converted into 
a standardised score, Beta, at the end of the line. The value is -0.97.)

While the standard error could be used as a measure of error of prediction, SPSS gives us 
the confidence limits, which are based on the standard error. The confidence limits show us 
that we are 95% confident that our population slope can be found within the interval -14.31 
and -10.47. This is a fairly narrow interval, giving us confidence in our findings.

The intercept, a

The value of the intercept (1513.96) is also given, along with the standard error (77.43). In the 
output given by SPSS, the value of a is given in the row labelled ‘Constant’. Confidence limits 
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are also given. The values of a and b allow us to state the regression equation. We translate the 
algebraic formula

ŷ = bx + α

into the specific formula for this example, using the following:

• ŷ = sales

• x = price

• a = 1513.96

• b = -12.39

• sales = (-12.39 * x) + 1513.96.

The t-value above and achieved significance level show the statistical significance of the 
predictor variable.

 12.1.7 Graphical illustration

We have said that the regression line, b, is -12.39. However, confidence limits allow us to state 
that we are 95% confident that the population regression line could be anywhere between 
-10.47 and -14.31. It is quite useful to see this graphically, and luckily it is easily accomplished 
in SPSS (Figure 12.10).

The slope for our sample is in the middle; this is b = -12.39. We are 95% confident that the 
population mean slope is somewhere between the lower line and the upper line.

 12.1.8 Reporting your results

For your laboratory reports and projects, you will probably want to report the whole of the SPSS 
output. However, the textual part of the results section might say something like this:

Linear regression was carried out to determine the effect of price change on sales of Burpa-
coke. It was found that, for every one pence increase in price, sales decreased by 12 390, 
which represented almost 1 standard deviation. Confidence limits were narrow, showing that 
we are 95% confident that the population slope is between -14.31 and -10.47 (F   (1,13)  =

194.16, p 6 0.001).

Figure 12.10 Regression line with lower and upper confidence limits
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 12.1.9 Non-linearity

It is no good trying to do linear regression if the data are not linear. Remember what linear means: 
every time the value of x increases, y changes by a constant amount; a straight line can adequately 
describe the relationship between x and y. Look back at Chapter 6 if you have forgotten about this.

Study adds weight to old midwives’ tale
The size of the box of chocolates given to midwives by parents of newborns rises in line with the baby’s 
birthweight, according to research that confirms an age-old canon of obstetrics folklore. The correlation 
has been discovered by Andrew Nordin, a junior doctor in Taunton, Somerset. His six-month study involving 
midwives on the delivery suite and two postnatal wards at Musgrove Park Hospital is published in the 
American medical journal Obstetrics and Gynecology. Midwives were asked to record the weight of 
confectionery received from grateful parents and the birthweight of the baby.

Australian-born Dr Nordin, a registrar in obstetrics and gynaecology, dreamed up the chocolate study 
as part of routine medical auditing work. ‘We take audit very seriously, but by tradition we try to have a bit 
of fun with the Christmas audit,’ he said.

In his paper for the journal, Dr Nordin helpfully points out: ‘Regression analysis found an association 
between birth weight and net chocolate weight, with a linear correlation equation of Y = 3349 + 0.52058x.’

Dr Nordin is preparing a presentation on his paper, for the autumn meeting of South West England’s 
obstetricians and gynaecologists at the end of next month. He hopes his paper may inspire a more wide-
ranging investigation of the links between parental gifts and babies’ birthweights, perhaps involving the 
use of bottles of wine and tins of biscuits.

(From a national newspaper, 1993)

Activity 12.4

Look at this graph:

 1. Which is the correct answer?

(a) b = 0
(b) b = 5
(c) b = 1

 2. In regression analysis, the predicted y scores are labelled:

(a) y
(b) x
(c) ŷ
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Degrees of freedom3

The concept of degrees of freedom (DF) is com-
plicated, and there are different ways of explaining 
it. Here we talk about DF in terms of sample size. 
Remember, this is a conceptual explanation of DF.4 
Dr Chong Ho Yu (Yu, Lo and Stockford, 2001) 
uses linear regression to explain degrees of free-
dom. Now that you have a good grounding in lin-
ear regression, his explanation will help you 
understand DF. Dr Yu shows that, in a linear 
regression scatterplot with only one datapoint, you 
have no degrees of freedom – you can’t actually 
estimate the regression line.

This diagram shows just one datapoint – if you try to draw a regression line, any line is as good as any 
other line. This isn’t very useful! The degrees of freedom for regression are n - 1 (where n is the number 
of datapoints). So here, DF = 0 (1 - 1 = 0). As Dr Yu says ‘. . . the data has no “freedom” to vary, and you 
don’t have any “freedom” to conduct research with this data set’. In fact, if you try carrying out such an 
analysis in SPSS, you will obtain an error message.

Now imagine you have two datapoints for your 
linear regression.

When there are only two points, a straight line 
will always be a perfect fit. In this case, there is one 
degree of freedom for estimation. DF = 1
(2 - 1 = 1). If you try this in SPSS, you will obtain 
output. However, the results mean nothing because 
we already know the fit is perfect. With just two 
datapoints, it couldn’t be any other way.

Now look at this scatterplot. Here the best fitting 
line is shown between three datapoints, so the 
degrees of freedom are 2. This time the line has 
more freedom to vary, since the line of best fit is not 
restricted to the path between two datapoints.

Dr Yu explains degrees of freedom as ‘the num-
ber of pieces of useful information’. When we had 
DF = 0, there was no useful information. When we 
had DF = 1, there was not enough information to be 
useful to us. Even with DF = 2, there was still not 
enough useful information for us to perform a use-
ful analysis.

Dr Yu has an online audio-visual explanation of 
degrees of freedom, with interactive activities. We 
have provided you with his website address so that 
you can learn more while having fun (Yu, 2003).

3 See also the box on degrees of freedom (Chapter 7).
4 Caution: DF are not always N - 1.
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 12.2 Multiple regression

Multiple regression is an extension of linear regression. Psychologists are interested in using 
this technique in order to discover the ways in which several variables (called explanatory or 
predictor variables) are related to another (called the dependent or criterion variable). For 
instance:

• Psychologists want to discover the variables that predict ‘burnout’ in teachers.

• Researchers want to discover the ways in which gender, parenting style and fathers’ education 
relate to health locus of control.

The criterion variable is still called y, but this time we have several explanatory variables, 
denoted x1, x2, x3 and so on. Multiple regression is able to give us information on the ways in 
which the explanatory variables combined relate to the criterion variable, and it is also able to 
give us information on how each of the variables relates to the criterion variable, separately.

The equation is just an extension of the linear regression:

y = b1x1 + b2x2 + b3x3c + a

All this means is that y (the criterion variable) can be calculated by the slope of the first variable 
(multiplied by the score on the first variable), together with the slope of the second variable 
(multiplied by the score on the second variable), together with the slope of the third variable 
(multiplied by the score on the third variable) (and so on) plus the constant.

Remember that you could use the regression equation to predict y scores from a set of 
explanatory variables in a new population. However, psychologists do not usually set out to 
produce an equation that they can use to predict in a new sample (although this might be the 
case). They usually wish to discover the way in which variables they have selected relate to the 
criterion variable, and to see the relative contribution of each of these variables.

Multiple regression is a common technique – if you look through a selection of journal 
articles, you will find many examples of multiple regression being used. There are several ways 
of performing a multiple regression, and we are going to use one of them – called the standard 
model. A discussion of other models is beyond the scope of this book (if you are interested in 
pursuing this further, see Tabachnick and Fidell, 2012).

 12.2.1 Predicting the criterion variables from several explanatory 
variables

IQ alone might not predict examination success very well. Motivation, on its own, might not 
predict examination success either. However, together these two variables might predict exami-
nation success much better. In life, it is rare to find simple relationships where one variable 
predicts another, without the influence of anything else. It is more realistic to use multiple vari-
ables in statistical analyses.

Example from the literature

Association between depression and aggression in rural women

Meyrueix and colleagues (2015) carried out research on the potential role of aggression in fifty-four 
depressed rural women. The women completed questionnaires on depression and aggression. The authors 
state that: ‘Linear regression indicated that aggression was significantly associated with depression, with 
aggression explaining 16% of variance in depression (β = .399, r 2

= .159, p = 0.003).’ (p. 139)



CHAPTER 12 Regression analysis 399

Let’s say you have collected information on examination success – percentage marks, for 
instance. You have also measured IQ and given a questionnaire on motivation levels. You could 
have more than two explanatory variables, of course, but for the purposes of explanation, it is 
easier to keep to two explanatory variables. How well does the combination of these two vari-
ables predict examination success? Multiple regression not only enables us to answer this ques-
tion, it also allows us to discover the relative contribution of each separate variable.

So multiple regression shows us the cumulative effects of a set of explanatory variables 
(x1, x2, etc.) on a dependent variable (called y), and also the separate effects of these explanatory 
variables.

Let’s say we wanted to do a simple linear regression, predicting exam success from IQ. We 
would obtain a scattergram, putting exam success on the y-axis, as it is the criterion variable, 
and IQ on the x-axis, as it is the explanatory variable. The scattergram, with line of best fit, 
might look like Figure 12.11.

The scattergram of motivation and examination, with line of best fit, might look like 
F igure 12.12. Both might predict examination success separately, but the prediction may be 
even better using both together.

In Figure 12.13, both IQ and motivation are shown (in 3D form) relating to examination 
success (on the y-axis). In this case, instead of a line of best fit, we have a plane of best fit. We 
can imagine this as a sheet of Perspex, cutting through the cube. The best-fitting plane is one 
that has the dots closest to the Perspex. It is not possible to imagine, or draw, in more than three 
dimensions, but SPSS has no problem in analysing data using many explanatory variables.

Multiple regression analysis is, not surprisingly, similar to the regression analysis using one 
explanatory variable. The following are the statistics that result from a multiple regression 
analysis.

Figure 12.11 Plot of examination success against IQ
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Figure 12.12 Plot of examination success against motivation

Motivation

E
xa

m

20 9030 40 50 60 70 80
10

20

30

40

50

60

70

80

90



Statistics without maths for psychology400

Important parts of the output

The first section confirms that both IQ and Motivation are entered, and that the criterion vari-
able is EXAM. The method ‘enter’ means that both IQ and Motivation were entered together 
in order to predict exam success.

Figure 12.13 Plot of examination success against motivation and IQ
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Variables RemovedModel

1

a. All requested variables entered

b. Dependent Variable: EXAM

Model summary

The R-value (0.762) is the correlation between EXAM and both of the explanatory variables. 
The R2 (0.579) has been adjusted downwards to 0.52.

Std. Error of  the Estimate

Model Summary

11.906

R Square

.579

Adjusted R Square

.515

R

.762a

Model

1

a. Predictors: (Constant), IQ, MOTIV

In section 12.1.6, you had only one variable listed in the model summary. Remember that 
r = b in that case. Here, however, we have two explanatory variables.

Remember that in linear regression this was simply Pearson’s r, the correlation between x 
and y. In multiple regression, however, r becomes R, and it is the correlation between all the xs 
and y.5 So in this case, it is the correlation between examination success, and IQ and motivation, 
y. In this study, R is 0.76.

5 Multiple R actually represents the correlation between the actual y scores and the predicted y scores.
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R2

If you square 0.76 you will obtain 0.58. R2 represents the correlation between all the exploratory 
variables together with the criterion variable. This means all the variance (both shared and 
unique) of the exploratory variables in relation to the criterion variable. In our particular sample, 
58% of the variance in exam success can be accounted for by IQ and motivation. However, 
SPSS adjusts this figure downwards to give an estimate of the population R2, otherwise our r 
is too optimistic. This is because the sample regression line will always fit the sample better 
than it will the population (since it is the best-fitting line for the sample). So we adjust down-
wards. The formula for this takes into account the number of participants and variables. Thus 
we can say we have accounted for 52% of the variance in y, by our explanatory variables.

 12.2.2 The ANOVA summary table

This shows you that the explanatory variables together predict the criterion variable. The chance 
of the obtained results having been obtained by sampling error, assuming the null hypothesis 
to be true, is only 0.004.

The ANOVA shows us that the regression plane for these variables departs significantly from 
0 – in other words, we can predict y (exam success) from IQ and motivation together. Our predic-
tion will not be perfect, of course, but it is better than chance alone (F (2,13) = 8.97, p = 0.004).

ANOVAb

141.768241842.98709

4388.000

13

15

Residual

.004a1272.50646 8.975962545.01291 21 Regression

Sig.Mean Square FSum of  Squares dfModel

Total

a. Predictors: (Constant), IQ, MOTIV

b. Dependent Variable: EXAM

For the simple regression that we showed earlier in the chapter, you had only one variable 
listed under the Coefficients column (see page 393). Remember that r = b in that case. Here, 
however, we have two explanatory variables.

The coefficients

The following section gives the unstandardised (B) and standardised (Beta) weights for the 
variables IQ and motivation, along with t-values, probability values and the 95% confidence 
limits around B.

16.849405

Coefficientsa

1.086455

.1435

.0147

2103.781988

.142561

27.919170

.218457 .526770

21.557

2.813

(Constant)

MOTIV

243.466292

Upper

Bound

Lower

Bound

Std.

Error BetaModel B

95% Confidence

Interval for B

Unstandardised

Coefficients

Standardised

Coefficients t Sig.

.614508

1.159095.0422 .024075.262691 .421726 2.252IQ .591585

a. Dependent Variable: EXAM



Statistics without maths for psychology402

Motivation

Motivation has a regression coefficient of 0.61. Thus, as motivation increases by 1 unit, exam 
success increases by 0.61. We can be 95% confident that the population coefficient is between 
0.14 and 1.09. The t-value is 2.81 with an associated probability of 0.01, thus our regression 
coefficient is unlikely to have arisen by sampling error.

IQ

IQ has an unstandardised weight of 0.59, meaning that, as IQ increases by 1 unit, examination 
success rises by 0.59. The confidence limits show us that we are 95% confident that the true 
population regression coefficient is between 0.02 and 1.16. This is a fairly wide interval, but at 
least it does not include zero, or encompass a negative figure. Therefore, we can accept that the 
population regression slope is positive, although it could vary from 0.02 (almost horizontal) to 
1.16. The t-value of 2.25 and associated probability of 0.04 tell us that the likelihood of such a 
result arising by sampling error, assuming that the null hypothesis is true, is only 4 in 100.

Comparison of explanatory variables

You can have a good idea of the importance of the explanatory variables by looking at the 
standardised weights (beta). It is no good comparing the unstandardised weights because they 
are generally measured in different units (such as grams and inches). Thus the weights are 
converted into the usual z-scores. This means, for IQ, that as IQ increases by 1 SD, examina-
tion success increases by 0.42 of a standard deviation.6 As motivation increases by 1 SD, 
examination success increases by just over half a standard deviation (0.53). Thus motivation 
appears to contribute more to examination success than IQ. Remember to look at the sign of 
the regression coefficients. (If a coefficient is negative, it is interpreted in the same way as 
you would interpret a negative correlation coefficient.) We have no negative regression coef-
ficients in our example.

6 This is conditional on the other explanatory variables remaining constant.

Activity 12.5

In a multiple regression analysis, Multiple R represents:

(a) The correlation between the first predictor variable and the criterion variable
(b) The correlation between all the predictor variables
(c) The correlation between the criterion variable and the entire set of predictor 

variables

 12.2.3 The equation

You will remember that, in linear regression, the equation was:

y = bx + a

Our formula for multiple regression is similar. If you wanted to use the formula to predict 
examination success from IQ and motivation, you would need to use the unstandardised regres-
sion coefficients (b) and the constant (a). Thus
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ŷ (predicted examination success) = (0.591585 * IQ)
+ (0.614508 * MOTIVATION)
- 43.466292

In hand calculations, two 
or three decimal places 
would be sufficient for 
our calculations

The formula enables us to hand calculate a predicted score: for example, we can work out 
the examination mark that we predict the students to achieve, by using the scores they attained 
on their IQ and motivation tests. SPSS has calculated a value by which their individual motiva-
tion scores must be multiplied. In the SPSS output, the value is labelled B in the unstandardised 
coefficients column. You can see that, for motivation, b = 0.614508. For IQ, the score by which 
their individual IQ scores must be multiplied is 0.591585. So we calculate examination success 
by multiplying a person’s motivation score by 0.614508, and then adding this to their IQ score, 
which has been multiplied by 0.591585. We then add or subtract a constant (which in this case 
is -43.466292). The resulting figure is their predicted examination score.

So, if you did want to predict a person’s exam success, in a new sample, you would use the 
above equation. You would predict exam success with both variables, since they both contribute 
to examination success.

 12.2.4 Textual part of the analysis

Remember that, as psychologists, most of us do not want to use the formula to predict in a new 
sample. We use multiple regression to see how certain variables (explanatory or predictor) relate 
to another variable (dependent or criterion).

Let’s see how we might report the textual part of our analysis. This assumes that you have 
given your readers a table of results, much as they are printed above.

The association between the criterion and explanatory variables is moderately strong 
( Multiple R = 0.76). Together, IQ and motivation accounted for 51% of the variation in 
examination success (adjusted R2). Both IQ and motivation positively related to examination 
success. The regression coefficient for IQ was 0.59 (95% CI = 0.02 - 1.16); and for motiva-
tion it was 0.61 (95% CI = 0.14 -  1.09). Since the confidence limits did not encompass a 
negative value, it can be concluded that the population regression coefficients for both IQ 
and motivation are positive (IQ - t = 2.252; p = 0.04/motivation - t = 2.813; p = 0.01). 
The standardised regression coefficients show that motivation is a stronger predictor than IQ. 
Both variables, however, are positively and significantly related to examination success.

Always remember that your results are specific to your sample. While we always have prob-
lems of how far we can generalise in any inferential statistical analysis, multiple regression is 
a mathematical maximisation technique – our plane of best fit is the best plane we can possibly 
have – for our sample. We do not know how well our results would generalise to the population. 
If you have enough participants and a few, good explanatory variables, the chances of generali-
sation are better than if you have not met these conditions (see below).

 12.2.5 Assumptions to be met when using multiple regression

1. Make sure you have enough participants: psychologists have different opinions as to the 
numbers of participants required for using multiple regression. Often authors of statistical 
textbooks will recommend a participant/variable ratio. Assume you have four explanatory 
variables. The participant/variable ratio given in books tends to range from 15 participants 
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per variable (which means you should have 60 participants in the analysis) to 40 participants 
per variable (which means you should have 160 participants in the analysis) – quite a differ-
ence. Tabachnick and Fidell (2012) say that the simplest way of determining sample size is:

N Ú 50 + 8M

where M is the number of explanatory variables. Thus if you have four explanatory variables, 
and simply wish to look at the combined effects of the explanatory variables (Multiple R) 
you should have at least:

50 + (8 * 4) =
50 + (32) =
7  82 participants

Often, however, researchers wish to look at the significance of each variable separately. In 
this case, Tabachnick and Fidell recommend the following calculation:

N Ú 104 + m
=104 + 4
= 7 108

If you are looking at both the combined and separate results, choose the higher number. In this 
case, you need at least 110 participants. If you do not use enough participants, your results will 
be over-optimistic, and you would not know whether your results would be generalisable.

2. The criterion variable should be drawn from a normally distributed population of scores: 
the explanatory variables do not need to be normally distributed. It is the distribution of the 
criterion variable, y (conditional on the explanatory variables), which should be drawn from 
a normal distribution.

3. Variables should be linearly related to the criterion variable: just as in linear regression, the 
explanatory variables should be linearly related to the criterion variable – otherwise there is 
not much point in doing multiple regression. Inspecting the scattergrams for your variables 
will let you know whether you have linear relationships (as compared with curvilinear 
relationships).

4. Outliers may need to be eliminated: you learnt about outliers (extreme scores) in Chapter 3. 
Outliers can have a big influence on regression analysis. Univariate outliers (unusual and 
extreme scores on one variable) are easy to spot, but multivariate outliers (extreme on two 
variables together) are more difficult. To give you an example of a multivariate outlier, a 
person aged 17 is not unusual, and earning a salary of £50,000 is not unusual (except for 
lecturers who write statistics books; they earn much less than this). However, to find a 
17-year-old who earns such a salary is unusual. Sometimes it is quite hard to spot these sorts 
of outliers (SPSS can do this for you, although we do not cover it in this book).

However, if you have a small dataset, simply looking at the data might be enough. Then 
you might want to consider deleting extreme outliers from the analysis. However, it is obvi-
ous you cannot just delete outliers simply because they are outliers. It requires careful con-
sideration, especially when you have 6100 participants. Some students have asked us 
whether removing outliers is cheating, but we want the regression line (or plane) to reflect 
the ‘average’ subject, not somebody incredibly different from the rest.

5. Multicollinearity: the best situation occurs when the explanatory variables have high correla-
tions with the criterion variable, but not with each other. You can inspect your correlational 
matrix before you perform multiple regression. You may find that some variables correlate 
highly with each other (0.8 and above). Having such high intercorrelated variables is called 
multicollinearity. Your variables are obviously measuring much the same thing. Sometimes 
you can combine highly correlated variables, or you can omit one. This has the benefit of 
reducing the number of variables, of course, which helps with (1) above.
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Example from the literature

The impact of work setting, demographic characteristics and personality 
factors related to burnout among professional counsellors

Lent and Schwartz (2012) investigated burnout (physical and emotional depletion after job-related 
stress) in professional counsellors. As part of this study, they looked at whether personality factors could 
predict the degree of burnout in counsellors. The predictor variables (also called ‘exploratory variables’) 
were assessed using the 50-item International Personality Pool Big Five (IPIP) (Goldberg, 1999) which 
consists of neuroticism, openness to experience, agreeableness, extraversion and conscientiousness. 
Items are scored from 1 to 5. Burnout was assessed by the Maslach Burnout Inventory; the subscales 
which form the inventory are emotional exhaustion, depersonalisation, and personal accomplishment 
(these are the criterion variables). The authors carried out three separate standard multiple regressions, 
one for each criterion variable. All three regressions are summarised in the table below.

The authors say: ‘all five independent [exploratory; predictor] variables significantly predicted emo-
tional exhaustion, F  (5 , 336) = 48 . 05 ,  p  6  . 001 ;  depersonalization,  F  (5 , 336) = 17 . 15 ,  p  6  . 001 ;  
and personal accomplishment, F  (5 , 336) = 20 . 50 ,  p  6  . 001 .  A large effect size was found for pre-
dictions of emotional exhaustion (R2

= .41). . . . Emotional exhaustion was predicted only by neuroticism 
(t = 11.36, p 6 .001); as neuroticism increases, so does emotional exhaustion’.

Personal reflection

Jonathan Lent Ph.D., Assistant Professor, Marshall University, USA

ARTICLE: The impact of work setting, demographic characteristics, and 
 personality factors related to burnout among professional counsellors

Professor Lent says:

“I have always been interested in understanding what factors contribute to burnout among counsel-
lors because of the impact this can have on the effectiveness and wellness of counsellors. In that 
paper, I wanted to explore if factors such as work setting, demographics, or personality had an influ-
ence on the level of burnout experienced. One of the main issues when studying personality factors 
and burnout is that both personality factors and burnout are multidimensional. Burnout consists of 
three separate components: depersonalization, emotional exhaustion, and personal accomplishment. 
Personality was defined using the ‘Big Five’ personality factors: extraversion, neuroticism, agreeable-
ness, openness to experience, and conscientiousness. This required a more complicated analysis than 
when looking at the other factors being examined. The results demonstrated that low neuroticism, 
high extraversion, high agreeableness, and high conscientiousness led to the experience of higher 
personal accomplishment, lower depersonalization, and lower emotional exhaustion. The results, while 
not surprising, were interesting because little research had been conducted on personality and burn-
out at the time.”
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The following table is reproduced from the article:

Summary of Multiple Regression analysis for variables predicting emotional exhaustion, depersonalization, and 
personal accomplishment (N = 340)

B B T p

Emotional Exhaustion

Neuroticism 2.31 .59 11.36 6 .001

Extraversion .07 .04 .88 .38

Openness .18 .08 1.81 .07

Agreeableness - .15 - .06 -1.18 .24

Depersonalization

Neuroticism .15 .24 3.83 6 .001

Extraversion .01 .02 .33 .74

Openness .07 .07 1.44 .15

Agreeableness - .32 - .27 -5.06 6 .001

Conscientiousness - .06 - .08 -1.41 .16

Personal Accomplishment

Neuroticism - .21 - .30 -5.03 6 .001

Extraversion - .02 - .01 - .01 .99

Openness - .01 - .01 - .07 .95

Agreeableness .26 .21 4.04 6 .001

Consciousness .08 .10 1.80 .07

Activity 12.6

Look at the part of the table above which relates to the criterion variables Deperson-
alization and Personal Accomplishment. Using the authors’ explanation relation to 
Emotional Exhaustion (above), complete their explanation relating to Depersonaliza-
tion and Personal Accomplishment by filling in the gaps:

Depersonalization was predicted by .......... t = ......, p 6 0.001) and .......... (t = ......, 
p 6 0.001): as ............. increases and ............... decreases, depersonalization ............ 
Personal accomplishment was predicted by ............ t = ......, p ..........) and agreeableness 
(t = ....., p .........); as neuroticism decreases and agreeableness increases, personal 
accomplishment ....................
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Discover the website at www.pearsoned.co.uk/dancey where you can test your knowledge with multiple 
choice questions and activities, discover more about topics using the links to relevant websites, and explore 
the interactive flowchart designed to help you find the right method of analysis.

Summary

• Regression analysis allows us to predict scores 
on a dependent variable from a knowledge of 
the scores on one or more explanatory variables.

• Psychologists use regression to assess 
relationships between variables.

• The dependent variable is also called the 
criterion variable, and the exploratory variables 
are called the predictor variables.

• The line of best fit (the slope, b) can be used to 
determine how the criterion (y) changes as a 
result of changes in the predictor variable(s) (x).

• Confidence limits around b allow you to estimate 
the population slope with a certain degree of 
confidence.

 

SPSS exercises

Exercise 1

Enter the following data into SPSS and analyse it using the regression procedure: x is the score on 
examination anxiety and y is number of hours spent revising for examinations, in one week before the 
exam.

x y x y

33 45 56 79

64 68 44 44

33 100 22 16

22 44 44 61

70 62 80 60

66 61 66 61

59 52 79 60

84 66

Is anxiety about exams related to number of hours studied? How well does the regression equation 
predict?

http://www.pearsoned.co.uk/dancey
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Exercise 2

Professor Lemon wants to analyse the contribution made by social support (SOCSUP) and outgoing 
personality (OUTGO) to contentment at work (CONTENT), using his own colleagues as the 
participants.

Perform a multiple regression on the data below. Interpret the output for Professor Lemon, in the 
form of a written report, making sure that you let him know the contribution made by each of the 
predictor variables to the criterion variable.

SOCSUP OUTGO CONTENT

20.00 15.00 20.00

10.00 30.00 15.00

4.00 5.00 5.00

17.00 16.00 20.00

10.00 14.00 15.00

11.00 8.00 10.00

7.00 7.00 8.00

4.00 4.00 5.00

15.00 10.00 17.00

17.00 5.00 17.00

18.00 6.00 15.00

11.00 12.00 18.00

12.00 10.00 15.00

16.00 16.00 17.00

18.00 12.00 20.00

14.00 13.00 14.00

12.00 14.00 15.00

10.00 4.00 5.00

11.00 6.00 7.00

10.00 10.00 11.00
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 1. The line of best fit:

(a) Minimises the distance between the scores and the regression line
(b) Is the best of all possible lines
(c) Maximises the correlation between x and y
(d) All of these

 2. In linear regression, where only one variable predicts y, and F is statistically significant at p = 0.049, 
then:

(a) The value of p for t = 0.049
(b) The value of p for t = 0.0245
(c) The value of p for t = 0.098
(d) Cannot tell

 3. In a linear regression analysis, the residuals are:

(a) Actual scores minus the predicted scores
(b) Actual scores plus the predicted scores
(c) The correlation between the actual and predicted scores
(d) None of the above

Questions 4 to 7 relate to the following output:

Multiple choice questions

Std. Error of  the Estimate

Model Summary

.639

R Square

.102

Adjusted R Square

.078

R

.319a

Model

1

a. Predictors: (Constant), MRL

ANOVAb

.4088115.12589

16.84279

37

38

Residual

.048a1.71690 4.1991.71690 11 Regression

Sig.Mean Square FSum of  Squares dfModel

Total

a. Predictors: (Constant), MRL

b. Dependent Variable: PAIN

Coefficientsa

1.757722

.01659

.15455

8.09626E-03

11.373

2.049.31928

.000

.0476

(Constant)

BetaB Std. ErrorModel

Sig.

Standardized

Coefficient t

Unstandardized

Coefficients

MRL

1

a. Dependent Variable: PAIN
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 4. Marks on MRL would be called:

(a) The predictor variable
(b) The criterion variable
(c) The covariate
(d) The constant

 5. The exact probability value of the results having occurred by sampling error, assuming the null hypoth-
esis to be true, is:

(a) 0.0000
(b) 0.05
(c) 4.19978
(d) 0.048

 6. b is:

(a) 2.049
(b) 0.31928
(c) 0.01659
(d) None of these

 7. a is:

(a) 1.75772
(b) 1.5455
(c) 4.19978
(d) 0.01659

 8. How many degrees of freedom would you have where the linear regression scatterplot had only ONE 
datapoint? (very unrealistic we know . . . )

(a) Zero
(b) One
(c) Two
(d) Three

 9. Psychologists use regression mainly to:

(a) Assess relationships between variables
(b) Use the regression formula for further research
(c) Look at differences between groups
(d) None of the above

Questions 10 to 15 relate to the partial output of the multiple regression analysis below:

Std. Error of  the Estimate

Model Summary

3.2388

R Square

.752

Adjusted R Square

.711

R

.867a

Model

1

a. Predictors: (Constant), age, previous history rating
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 10. The correlation between credit rating and the other variables is:

(a) 0.867
(b) 0.752
(c) 0.711
(d) 1.32

 11. For every 1 standard deviation rise in previous history rating, credit rating:

(a) Decreases by 0.5 of a standard deviation
(b) Increases by 0.5 of a standard deviation
(c) Decreases by 0.3 of a standard deviation
(d) Increases by 0.3 of a standard deviation

 12. The predictor variables are called:

(a) Credit rating and age
(b) Credit rating and previous history rating
(c) Previous history and age
(d) The criterion variables

 13. The achieved significance level associated with the F-value of 18.182 is:

(a) 0.824
(b) 0.36
(c) 6  0.001
(d) None of these

Coefficientsa

.571

.276

.241

.145

2.368

1.904.413

.514 1.096

.592

previous

history

rating

BetaB

Std.

ErrorModel

95% Confidence

Interval for B

Standardized

Coefficient t

Unstandardized

Coefficients

age

.790 3.471 .228 8.353

Upper

Bound

(Constant)1

a. Dependent Variable: credit rating

.046

2.040

26.774

Lower

Bound

.036

.081

Sig.

.824

ANOVAb

10.490125.876

507.333

12

14

Residual

.000a190.729 18.182381.457 21 Regression

Sig.Mean Square FSum of  Squares dfModel

Total

a. Predictors: (Constant), age, previous history rating

b. Dependent Variable: credit rating
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 14. The slope of the line (b) for previous history rating is:

(a) 0.514
(b) 0.790
(c) 0.276
(d) 0.571

 15. a is:

(a) 0.514
(b) 0.790
(c) 0.276
(d) 0.571

 16. Multicollinearity means:

(a) There are high intercorrelations among the predictor variables
(b) The predictor variables are positively correlated with the criterion variable
(c) The variables show a skewed distribution
(d) The variables show a peaked distribution

 17. Kieran wants to perform a standard multiple regression using six explanatory variables. He is only 
interested in the overall R2. According to Tabachnick and Fidell’s formula, how many participants 
should he recruit?

(a) 98
(b) 56
(c) 240
(d) 120

 18. Saeeda doesn’t know about the necessity for large participant numbers in multiple regression. She’s 
only got 20 participants in her study, and she has 10 explanatory variables. Which is the most appropri-
ate statement? Compared with an analysis using 100 participants, Multiple R will be:

(a) Conflated
(b) Inflated
(c) Deflated
(d) No different

Questions 19 and 20 relate to the following, which is an extract from a results section in a journal:

‘All predictors significantly predicted blood pressure (adj. r2
= .42; p = .002). Stress during the inter-

view was the strongest predictor of increased blood pressure (beta = 0.49, p = .001) followed by age 
(beta = 0.18, p = .002).’

 19. Which is the most appropriate statement? The explanatory variables predicted

(a) 6.5% of the variation in blood pressure
(b) 42% of the variation in blood pressure
(c) 6.5% of the variation in stress
(d) 18% of the variation in age
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 20. Which is the most appropriate statement?

(a) As stress increased by 1 standard deviation, blood pressure increased by nearly half a standard 
deviation

(b) As stress increased by 1 standard deviation, age increased by 0.18 of a standard deviation
(c) As age increased by 1 year, blood pressure fell by 0.18 of a standard deviation
(d) As age increased by 1 standard deviation, blood pressure increased by 18%
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CHAPTER OVERVIEW

This chapter will introduce you to a technique that is based on both analysis of variance (ANOVA) 

and linear regression. This technique is called analysis of covariance (ANCOVA) and it builds on the 

material you have learnt in previous chapters. A simple ANCOVA shows you whether your groups 

differ on a dependent variable, while partialling out the effects of another variable, called the covari-

ate. A covariate is a variable that has a linear relationship with the dependent variable. You have 

already learnt about removing (partialling out) the effects of a variable, in Chapter 6, on correlational 

analysis. In ANCOVA, the variable that is partialled out is called the covariate. In this chapter, we are 

going to discuss the analysis of a one-way, between-participants design, and the use of one 

covariate.

As the material in this chapter is based on the one-way ANOVA, everything we talked about in 

relation to the analysis of a one-way, between-participants design (in Chapter 10) applies here. In 

other words, the analysis of a one-way design includes the following:

■ Descriptive statistics, such as means, standard deviations, graphical illustrations such as box and whisker 
plots, and error bars.

■ Effect size – either the magnitude of the difference between the conditions (d), and/or an overall 
measure of effect such as partial eta2 (η2).

■ An inferential test: in this case ANCOVA, which shows us (assuming the null hypothesis to be true) how 
likely it is, after partialling out the effects of the covariate, that differences between the conditions are 
due to sampling error.

In this chapter you will:

■ gain a conceptual understanding of ANCOVA

■ learn the conditions under which it is appropriate to use ANCOVA

■ understand the assumptions that you must meet in order to perform ANCOVA

■ learn how to present results using graphical techniques.

There are two main reasons for using ANCOVA:

1. To reduce error variance.

2. To adjust the means on the covariate, so that the mean covariate score is the same for all groups.

Analysis of three or more 

groups partialling out 

effects of a covariate 13
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Example

Imagine that new students are assigned at random to three different introductory statistics groups, 
using three different teaching methods. They have an hour’s session.

1. Group 1 has an hour of traditional ‘chalk ‘n’ talk’.
2. Group 2 has an hour of the same, only the lecture is interactive in that students can interrupt and 

ask questions, and the lecturer will encourage this. This is traditional plus interactive.
3. Group 3 is highly interactive in that the students work in groups with guidance from the lecturer.

In order to discover which method has worked best, we give the students a 20-question test to see 
which group has retained the most material from the one-hour session. Let’s say we expect Group 3 to 
retain the most material (i.e. the highly interactive method is expected to be the most effective teaching 
method).

We could perform a simple one-way ANOVA, using teaching method as the independent variable 
(three levels). This would show us whether there were differences between the groups, in retention of 
the statistics material. However, assume that the ability to retain material in the lecture is related to IQ, 
irrespective of teaching method. If IQ and ability to retain such material are associated, we would expect 
the association to be positive: that is, IQ and scores on the statistics test should be positively 
correlated.

Imagine that we have collected data on IQ and marks in a statistics test; the scattergram might look 
something like Figure 13.1.

Although the correlation is positive, it is a moderate one: +0.49 in fact.
What happens in ANCOVA is that IQ (called the covariate because it varies with the dependent vari-

able) is taken into account in the mathematical calculations. What the formula does is to remove the 
variance due to the association between statistics performance and IQ. As we have said above, this will 
reduce our error variance.

A good way to visualise what is happening is with a graph (Figure 13.2). This shows you our three 
different teaching method groups (called traditional, mixed and interactive). The instructions on how 
to obtain a chart of regression lines such as the ones in Figure 13.2 follow.

Figure 13.1 Scattergram of IQ and marks in statistics test
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Figure 13.2 Graph showing scattergrams and lines of best fit for three teaching groups
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SPSS: obtaining a chart of regression lines

Select Graphs, Legacy Dialogs then Scatter/Dot as follows:
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This gives you the following dialogue box:

Ensure that the Simple Scatter box is selected, then click on Define. This gives you the simple scatterplot 
dialogue box as follows:

The variables are moved from the left-hand side to the right. Score is moved to the Y Axis box, Motiva-
tion to the X Axis box, and Group to the Set Markers by box. This is important because it enables you to 
obtain separate regression lines for each group.
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Click on OK. This leads to the following:

Once you have done this, you double-click on the graph and obtain the following. Click on the X icon. 
You can now change the numbers on the x axis, so that the x axis begins at zero and goes up in incre-
ments of 5, and shows the range of scores (0 to 20)
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You can maximise the window if you want to. Then choose Elements and the Fit Line at Subgroups option 
as follows. Press APPLY and this is what you get

Now click on the Y icon, and do the same thing.
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This leads to the following:

Make sure that the Linear option has been checked, then click on the None option in the Confidence 
Intervals section to proceed to the following:

Click on Continue, then OK. This will give you the regression line for the three groups, separately.
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You are used to seeing a line of best fit, for one group of participants. In Figure 13.2, however, 
we have drawn a separate line of best fit for each group (1, 2 and 3). In this fictional example 
you can see that interactive students have higher scores on their statistics tests than the mixed 
group, who have higher scores than the traditional students. For all three groups, however, 
scores on the statistics test are positively related to IQ (the covariate) – you can see this because 
the regression lines are positive for all three groups. In other words, students who have low IQs 
tend to score low marks in their statistics test, and students who have high IQs tend to score 
highly in the statistics test. However, Group 3 has obviously done better on the statistics test 
than Group 2, who have performed better, on average, than Group 1.

Notice, however, that the mean of the groups on IQ (x, the covariate) is the same. This is 
what we would expect, as we allocated our students randomly to the three teaching methods. 
Obviously, we have no reason to think that our three groups will differ in their IQ scores. It 
would be a bit unusual, however, to find the means being exactly the same, because even when 
there are no basic differences between groups, you expect there to be slight variations in the 
figures. For our example, however, we have used this unlikely event – all three groups have a 
mean IQ of 111.1 If you draw a horizontal line from each group’s mean IQ to the y-axis, you 
will see that the interactive group has a mean of 16 on the statistics test, the mixed group a 
mean of 12 and the traditional group a mean of 7. These are the means that ANOVA would 
work on. ANCOVA does not work on these means, however, because ANCOVA adjusts the 
means to take into account the relationship between IQ and statistics ability. This is explained 
below.

Figure 13.2 shows clearly that, for all three groups, IQ is related to statistics retention (meas-
ured by this test anyway). All we are really interested in is whether the three groups differ on 
the statistics test because of the teaching method they were under, so we would like to get rid 
of (partial out) the effects due to IQ.

This is the ideal situation in which to use ANCOVA because ANCOVA gets rid of the effects 
due to the covariate (in this case IQ): that is, it reduces error variance, which, as we have said 
previously, leads to a larger F-value. Therefore the first purpose of ANCOVA is to reduce error 
variance.

Assume that we have a situation where the means on the covariate differ significantly. 
ANCOVA is still useful in that it adjusts the means on y (the statistics marks) to what they would 
be, had the groups had exactly the same means on IQ. So this is the second purpose: ANCOVA 
adjusts the means on the covariate for all of the groups, which leads to an adjustment in the 
means of the y variable – in this case, statistics marks.

We will now explain this further, using the example of groups that are pre-existing: that is, 
we have not randomly allocated participants to groups. These are also called non-equivalent 
or intact groups. In such cases, we may find that the groups differ significantly on the 
covariate.

1 All figures in this example are rounded to the nearest whole number.

Activity 13.1

A covariate is a variable that has a:

(a) Curvilinear relationship with the dependent variable
(b) Linear relationship with the dependent variable
(c) Curvilinear relationship with the independent variable
(d) Linear relationship with the independent variable
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 13.1 Pre-existing groups

Imagine a case where there are three groups of women (nightclub hostesses, part-time secretar-
ies and full-time high-powered scientists). These are naturally occurring groups (i.e. we cannot 
allot participants to these groups; they are in them already). We wish to test the hypothesis that 
the more complex the occupation, the higher the testosterone level. Testosterone is known as a 
‘male’ hormone, but although men do have a much higher level of testosterone, women produce 
testosterone too. There has, in fact, been research that shows a weak association between occu-
pational level and testosterone. Can you think of other variables that might be related to the 
dependent variable (testosterone level)? Remember, these variables are called the covariates. 
You can probably think of several – the timing of the menstrual cycle for one: hormones fluctu-
ate according to the day of the cycle. If we were measuring testosterone in the groups, we would 
like them to be measured on the same day of the cycle. Age is another. But in order to keep it 
simple, we will stick to one covariate – age. Assume that age is positively related to testosterone 
levels.

The scattergram in Figure 13.3 (fictional data) shows this relationship for all three groups 
combined.

Now think of your three groups. Is it likely that the mean age of the three groups would be 
the same? Why not?

It is not likely, of course. It is more likely that the high-powered scientists would be signifi-
cantly older than the nightclub hostesses. So now if we use ANCOVA, we are using it in a 
slightly different way. Not only does ANCOVA reduce the error variance by removing the vari-
ance due to the relationship between age (covariate) and the DV (testosterone) (the first pur-
pose), it also adjusts the means on the covariate for all of the groups, leading to the adjustment 
of the y means (testosterone).

In other words, what ANCOVA does is to answer the question: ‘What would the means of 
the groups be (on y) if the means of the three groups (on x) were all the same?’ The formula 
adjusts the y means to what they would be if the three groups had the same mean on age (x). 
The analysis goes on to answer: ‘How likely is it that differences among the groups on the 
adjusted statistics means have occurred by sampling error?’

First, look at Figure 13.4, which shows regression lines for each group separately.
Look to see how each group differs on mean age. The scientists, for instance, have a mean 

age of 38. If you use your ruler to go across to the y-axis, you will see that this shows you that 
the mean testosterone level of this group is 5. Have a look at the mean ages and mean testos-
terone levels of the other two groups. It is probably obvious to you that part of the differences 
in the mean testosterone is due to the groups having a different mean age.

Figure 13.3 Scattergram showing the relationship between age and testosterone levels
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Before we go any further, remember how you obtain a grand mean? This is the mean of the 
means. The means of the ages for the three groups are as follows:

• Group 1 scientists = 38

• Group 2 secretaries = 34

• Group 3 hostesses = 23

Therefore the grand mean is 38 + 34 + 23 divided by 3, which equals 31.6. We will round this 
up to 32 for the purposes of the example. Now we can see how far each mean is from the grand 
mean (Figure 13.5).

Look at the mean of the scientists – the dot labelled a. A vertical line upwards shows the 
grand mean, p. If you look along to the y-axis (or use your ruler), you can see that scientists 
have a mean testosterone level of 5. These are the unadjusted means: that is, we have not yet 
adjusted the means in the light of the relationship between age and testosterone. What ANCOVA 
does is use the grand mean for each of the groups, instead of the ‘real’ mean. So, for the scien-
tists, ANCOVA does not use the mean age of 38, in order to find the mean testosterone level.

Look at Figure 13.6 and imagine pulling this dot along the regression line until it meets the 
grand mean.

Imagine doing the same thing with the mean of the secretaries (Figure 13.7) and the night-
club hostesses (Figure 13.8).

If you look at the new position of your dots, they are all ‘set’ at the grand mean (i.e. treated 
as if the groups have the same mean age). Use your ruler to go along from the new dots (the 
dots set at the same mean age) to confirm the new y means (i.e. the adjusted testosterone 
means). Figure 13.9 shows what it looks like.

It should be clear that ANCOVA has given you an estimate of what the mean testosterone 
levels would be, if age were held constant (i.e. the mean ages of the groups were the same). The 
unadjusted and adjusted means are shown in Table 13.1.

Using ANCOVA for the first purpose – reducing error variance – is uncontroversial. This is 
because when you randomly allocate participants to conditions (groups), ANCOVA meets the 
assumptions for ANCOVA, described below. First, in using ANCOVA you must make sure you meet 
the same assumptions as those for ANOVA (look back to Chapter 10 if you have forgotten these).

Figure 13.4 Regression lines for each separate group
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Figure 13.5 Regression lines for each separate group, showing adjusted and unadjusted means for 
scientists
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scientists (38) you can see that this group will

have a mean testosterone level of 4.98 (5)
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Figure 13.6 Regression line for scientists, showing adjusted and unadjusted means
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Figure 13.7 Regression line for part-time secretaries, showing adjusted and unadjusted means
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Figure 13.9 Regression lines for all three groups, showing adjusted means on y
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Figure 13.8 Regression line for nightclub hostesses, showing adjusted and unadjusted means

Age

Te
st

o
st

e
ro

n
e

 le
ve

ls

16 18 20 22 24 26 28 30 32 34 36 38
0.0

1.0

2.0

3.0

4.0

5.0

6.0
GROUP: 3.00 Nightclub hostesses 

The mean age of hostesses,

before adjustment, is 23, this

leads to a mean testosterone

level of 1.4

Pull the mean age up from 23

to the grand mean (32), this

leads to a new, adjusted mean

on testosterone of 2.00



Statistics without maths for psychology426

Group Mean age Mean testosterone Adjusted mean testosterone

1 38 5.0 4.5

2 34 2.8 2.7

3 23 1.4 2.0

Table 13.1 Unadjusted and adjusted means

ANOVA would look at the 
difference between means

ANCOVA looks at the 
differences in adjusted means

Figure 13.10 Zero relationship between x and y
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In addition, for most purposes:

• the covariate must be linearly related to the dependent variable

• the covariate should be measured without error (i.e. reliably)

• the regression lines for the different groups must be parallel to each other.

 13.1.1 The covariate must be linearly related to the dependent variable

Stop to think about this. There is not much point in performing ANCOVA if this is not the case. 
The graph in Figure 13.10 shows what would happen if there was no linear relationship between 
these two variables.

You can adjust your means so that the dots are set on the line marked grand mean – but the 
mean y values (testosterone) would be the same.

 13.1.2 The covariate should be measured without error (i.e. reliably)

This means that, if you were to measure your participants’ scores on the covariate on different 
occasions, there should be a high correlation between the scores they obtain on those differ-
ent occasions. So IQ, for example, is a reliable covariate; it is made without significant 
measurement error: there is a high correlation between your IQ score this week and your IQ 
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score on the next week. If you score 110 this week, you probably will not score exactly the 
same next week; remember, this is not what is implied by a high correlation. It does mean 
that people who have low scores this week will have low scores next week, and people who 
have high scores this week will have high scores next week. Age is measured without error: 
your age this week is perfectly correlated with your age next week. In your work at college, 
at some time, you may design your own questionnaires. Let’s say you decide to use the data 
from such a questionnaire as a covariate. Do you know how reliable they are? Unless you 
have tested the questionnaire and know it to be reliable, you could be measuring your covari-
ate with error.

 13.1.3 The regression lines for the different groups must be parallel to 
each other

This makes sense. If the slopes are not parallel, using a procedure that adjusts the means of the 
groups to an ‘average’ (the grand mean) does not make sense. Is it possible to have a sensible 
grand mean, from three very different slopes, such as those shown in Figure 13.11?

The answer is no: the differences between the groups are not the same, for each value of the 
covariate. So in this case, ANCOVA would not be sensible.

Luckily you do not have to draw (or get the computer program to draw) the regression lines 
for all your groups, in order to see whether you have met the assumption of parallelism. The 
computer program you are using (e.g. SPSS) can do this for you.

Activity 13.2

ANCOVA:

(a) Reduces between-groups variance
(b) Reduces the F-ratio
(c) Reduces error variance

Figure 13.11 Regression lines for three groups
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Example from the literature

Self-esteem, dependency, self-efficacy and self-criticism in  
social anxiety disorder (SAD)

Iancu et al. (2015) carried out a study on 32 people with SAD. They hypothesised that people with SAD 
would display more dependency than healthy controls, and that people with SAD would also have a 
negative bias, and not a positive bias which non-anxious people have. The authors stated that people 
with SAD would have lower self-efficacy and self-esteem scores, and that they would show higher levels 
of self-criticism.

They compared the SAD group and healthy control group on the dependent variables above. How-
ever, as they wished to remove the affect of confounding variables, demographic variables such as age, 
gender, religiosity, marriage status, and other relevant variables were entered in the analyses as 
covariates.

The results of the ANCOVA are reproduced below (p. 169):

Scores Group Ma SD F H2

Self-esteem Social anxiety 2.62 0.67 13.18*** 0.19

Healthy controls 3.23 0.38

Dependency Society anxiety 4.35 0.72 19.53*** 0.26

Healthy controls 3.39 0.70

Self-criticism Social anxiety 4.41 0.89 21.88*** 0.28

Healthy controls 3.33 0.68

Self-efficacy Social anxiety 4.51 0.72  3.08, ns 0.05

Healthy controls 4.84 0.45

ns = non significant
a = Reported means are adjusted means, due to covariates
*** p 6 .001

Table 13.2 ANCOVA results of dependent variables by groups

 13.2 Pretest–posttest designs

One of the most common designs in which ANCOVA is used is the pretest–posttest design. This 
consists of a test given before an experimental condition is carried out, followed by the same 
test after the experimental condition. In this case, the pretest scores are used as the covariate. 
Students often ask us why we use ANCOVA on these designs. They suggest taking the posttest 
scores from the pretest scores, and using the difference scores as the dependent variable in a 
one-way ANOVA (or t-test, for two groups). Although this is simple, it may not be the best way 
to analyse such data. Dugard and Todman (1995) demonstrated that change score analyses are 
usually unsatisfactory for such designs. When carrying out a pretest–posttest study, researchers 
often wish to partial out (remove, hold constant) the effect of the pretest, in order to focus on 
possible change following the intervention. Using difference scores does not achieve this, since 
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the pretest score will normally be correlated with the change (difference) score (thus the vari-
ation in pretest scores is not removed).

The following is a dataset for two groups on a pretest and, following an intervention, a post-
test. Subtracting the posttest scores from the pretest scores gives each participant a difference 
score. A simple independent-groups t-test will be performed using the difference scores as the 
dependent variable:

Pre Post Group Difference

150.00 51.00 1.00  99.00

130.00 50.00 1.00  80.00

125.00 40.00 1.00  85.00

152.00 45.00 1.00 107.00

160.00 60.00 1.00 100.00

174.00 75.00 2.00  99.00

110.00 41.00 2.00  69.00

180.00 80.00 2.00 100.00

145.00 60.00 2.00  85.00

140.00 55.00 2.00  85.00

First, however, note that, as expected, pretest scores correlate with posttest scores. Since the 
pre- and posttest scores are highly correlated, it is usual to find the pretest score highly corre-
lated with the difference score:

Correlations

A high correlation

exists between the

pretest scores and

the difference scores

PreTest Pearson Correlation

Sig. (2-tailed)

N

PreTest

1

10

PostTest

.875**

.001

10

Diff

.834**

.003

10

PostTest Pearson Correlation .875** 1 .267

Sig. (2-tailed) .001 .179

N 10 10 10

Diff Pearson Correlation .834** .462 1

Sig. (2-tailed) .003 .179

N 10 10 10

**. Correlation is significant at the 0.01 level (2-tailed).

There is a difference between the pre- and posttest scores, if the participants are considered 
as one group. However, the idea here is to see whether the two groups differ.
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An independent groups t-test analysis gives the following output:
Here you can see that t (8) = 0.850, p = 0.420. There are no significant differences between 

the two groups on the difference scores (the confidence intervals confirm this). The researcher 
would conclude, then, that the intervention affected the two groups similarly.

However, performing an ANCOVA using the posttest scores as the dependent variable and 
the pretest scores as a covariate gives the following:

Independent Samples Test

Diff Equal

variances

assumed

Equal

variances

not assumed

F

.002

Levene’s

Test for

Equality of

Variances

Sig.

.966

t

.870

.870

df

8

7.889

Sig.

(2-tailed)

.409

.410

Mean

Difference

6.60000

6.60000

Std.

Error

Difference

7.58288

7.58288

210.88614

210.92905

t-test for Equality of Means

95% Confidence

Interval of the

Difference

UpperLower

24.08614

24.12905

Tests of  Between-Subjects Effects

Dependent Variable: PostTest

10

9

Total

Corrected Total

32657.000

 21.6557Error 151.584

.014232.054 10.7161Group 232.054

.0001058.016 48.8581PreTest 1058.016

.126 65.387 3.0191Intercept 65.387

.000740.258 34.1842Corrected Model 1480.516a

Sig.Mean Square FdfSource Type III Sum of  Squares

1632.100

a. R Squared = .907 (Adjusted R Squared 5 .881)

We can conclude here that the two groups differ on the posttest measure, after adjustment for 
the pretest scores. In general, ANCOVA tends to provide a more powerful test of the hypothesis 
than difference scores.
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 13.2.1 What can you do if your study does not conform to the conditions 
necessary for ANCOVA?

First, think of controlling experimentally as well as, or instead of, controlling statistically (which 
is what we are doing when performing an ANCOVA). In our example, we could (although it 
might be difficult!) manage to find some younger high-powered scientists, and/or older night-
club hostesses or secretaries. In this way, we could match the groups on age (Table 13.3).

Of course, here it would not be possible to match 19-year-old secretaries or nightclub host-
esses with high-powered scientists of the same age. However, if you have thought about your 
design carefully before carrying out your studies, you should not find yourself in this sort of 
awkward situation.

Let’s imagine you have matched your participants on age. This will mean that your groups 
have the same mean age on the covariate. You can still use ANCOVA profitably: in this case it 
will be for the first purpose we mentioned – in order to reduce error variance, which is error 
due to the correlation between the dependent variable and the covariate.

Activity 13.3

ANCOVA adjusts the means of the group on the covariate to:

(a) The grand mean
(b) The harmonic mean
(c) The arithmetic mean

At this point we will show you how to obtain output for an ANCOVA on SPSS.

Nightclub hostesses Secretaries Scientists

25 25 25

30 30 31

50 50 50

41 41 42

39 39 39

Table 13.3 Matching participants on age



Statistics without maths for psychology432

SPSS: obtaining output for an ANCOVA

Open your datafile. Choose Analyze, General Linear Model, Univariate:

This gives you the following dialogue box:

This brings you back to the General Factorial ANOVA dialogue box. Click on Options, and the following 
dialogue box appears:
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Moving the grouping variable to the Display Means will give you both the unadjusted and adjusted 
(estimated marginal) means. You can also check the boxes for descriptive statistics and estimates of 
effect size. The Observed power option can be selected if wanted. Notice that the confidence intervals 
will be given automatically.

Click on Continue, then press OK. This obtains your output.
Also, you do not have to use ANCOVA on three groups, of course. As you know, you can use ANOVA, 

or ANCOVA, on more than three groups, but sometimes students do not realise that they can use these 
techniques on two groups. Normally there is no point in performing ANOVA on two groups; you may 
just as well use a t-test. However, what if you had two groups and you wanted to control for a covariate? 
Here, of course, you could use ANCOVA.

Tests of  Between-Subjects Effects

Dependent Variable: testosterone

30

29

Total

Corrected Total

353.320

7.358E-0226Error 1.913

.0007.133 96.9332GROUP 14.265

.0002.981 40.5091AGE 2.981

.3556.521E-02 .8861Intercept 6.521E-02

.000a23.091  313.8063Corrected Model 69.273b

Sig.

Eta

SquaredMean Square FdfSource

Type III Sum

of  Squares

71.187

a. Computed using alpha 5 .05

b. R Squared 5 .973 (Adjusted R Squared 5 .970)

.882

.609

.033

.973



Statistics without maths for psychology434

The relationship between age and testosterone is unlikely to be explained by sampling error, assum-
ing the null hypothesis to be true (F (1,26) = 40.5, p 6 0.001). The groups differ on testosterone, once 
the effects of age are partialled out (F (2,26) = 96.9, p 6 0.001).

The above output clearly shows that age is related to testosterone, therefore an ANCOVA is 
appropriate.

21.928

Pairwise Comparisons

Dependent Variable: testosterone

2.214

.000

.003

22.863

2.969

22.395*

2.592*

.227

.184

hostesses scientists

.969.003 .214.592* .184hostesses

21.530.000 22.07721.804* .133secretaries scientists

2.863.000 1.9282.395* .227hostesses

2.077.000 1.5301.804* .133scientists secretaries

Upper BoundLower Bound(I) profession (J) profession

Sig.a

95%

Confidence

Interval for

Difference

Mean

Difference

(I–J)

Std.

Error

secretaries

Based on estimated marginal means

* The mean difference is significant at the .05 level.

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

2.848

Estimates

Dependent Variable: testosterone

2.358

2.477

1.784

2.663

2.071

.090

.140

secretaries

4.7114.2224.466 .119scientists

Upper BoundLower Boundprofession

95% Confidence IntervalMean Std. Error

hostesses

a. Evaluated at covariates appeared in the model: AGE 5 31.6000.

Example

Think back to the example used earlier (in Chapter 10). This was an experiment designed to discover 
whether alcohol (placebo, low alcohol, high alcohol) affected driving, measured by errors made on a 
driving simulator. For the independent-groups design, we found that the high alcohol group differed 
from the placebo and low alcohol groups. The F-ratio was found to be 9.91, with an associated probabil-
ity of 0.004.
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Placebo Low alcohol High alcohol

Errors Experience Errors Experience Errors Experience

 5 12  5 21  8 29

10  5  7 16 10  8

 7  9  9  7  8 26

 3 24  8 15  9 20

 5 15  2 30 11 18

 7  6  5 21 15  6

11  3  6 12  7 12

 2 30  6 13 11  7

 3 20  4 26  8 15

 5 10  4 24  8  9

 6  7  8  9 17  3

 6  8 10  6 11  7

Σ1 = 70 Σ2 = 149 Σ3 = 74 Σ4 = 200 Σ5 = 123 Σ6 = 160

yn1 = 5.83 yn2 = 12.417 yn3 = 6.17 yn4 = 16.666 yn5 = 10.25 yn6 = 13.333

SD1 = 2.69 SD2 = 8.306 SD3 = 2.35 SD4 = 7.704 SD5 = 3.05 SD6 = 8.338

Table 13.4 Driving experience and driving errors

Now we may make the perfectly reasonable assumption that driving experience relates to errors 
made in driving, even on a driving simulator. The more experienced the driver, the fewer the errors. Thus 
driving experience is negatively associated with driving errors. Assume that we have found out how 
many months the participants (all drivers) had been driving. The data are as recorded in Table 13.4.

A Pearson’s r calculated between driving errors and experience results in r = -0.62.  Although the 
means of the three groups do differ on driving experience, this could have been due to sampling error 
(a one-way ANOVA would show you this).

If we plot the regression lines, separately for each group, we obtain Figure 13.12.
This time we have also obtained horizontal lines: the point where the horizontal line meets the 

regression line (for each separate group) is the mean of x and y. You can see that driving experience is 
negatively related to driving errors, for all groups. We meet the assumptions for ANCOVA quite easily.

The covariate is measured reliably, the lines are (more or less) parallel. Performing the ANCOVA, we 
obtain the output – much of this is not needed for our simple analysis. Make sure you focus on the 
following parts of the output:
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Tests of Between-Subjects Effects

Dependent Variable: testosterone

36

35

Total

Corrected Total

2367.000

2.87732Error 92.053

.00068.167 23.6972GROUP 136.334

.000149.531 51.9811Experience 149.531

.0001035.760 360.0581Intercept 1035.760

.00098.232 34.1483Corrected Model 294.697b

Sig.a
Eta

SquaredMean Square FdfSource

Type III Sum

of  Squares

386.750

a. Computed using alpha 5 .05

b. R Squared 5 .762 (Adjusted R Squared 5 .740)

.597

.918

.918

.762

The source labelled ‘Experience’

shows that driving experience is

related (negatively) to errors made, and

that this relationship is unlikely to have

arisen by sampling error, assuming the

null hypothesis to be true.

The GROUP line shows that

our three groups differ on the

adjusted means. This difference

is unlikely to have arisen by

sampling error, assuming

the null hypothesis to be true.

Figure 13.12 Regression lines for each group
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The SPSS output gives a table giving the actual, observed (unadjusted) means:

A separate table is given for the estimated marginal means (these are the adjusted means):

The confidence limits around the adjusted means are also given. Thus the adjusted sample mean for 
the placebo group is 5.838. We are 95% confident that the true population adjusted mean is between 
4.38 and 6.39 (correct to two decimal places).

ANOVA would have shown the difference between the observed means, but by performing ANCOVA 
we have looked at the differences between the adjusted means.

Because we have partialled out the effects of driving experience, we have a more sensitive design. 
The F-ratio is now 51.91. Our overall η2 was originally 0.375; it is now 0.584. Thus 58% of the variation 
in driving errors can be explained by differing levels of alcohol, once driving experience is controlled 
for (held constant, partialled out).

The textual part of our analysis might read as follows (the first and last parts of the following are 
simply a repetition of page 310):

Descriptive statistics (Table X)2 show that there were more errors made in the high alcohol condition 
than in the other two conditions. The observed and adjusted means are shown in Table X.2 Although 
the mean errors made in the low alcohol group were higher than those made in the placebo condi-
tion, the difference was slight and, in fact, confidence limits around the means show that the inter-
vals in which the population means for these two conditions are likely to be found overlap 
substantially. It was found that driving experience was negatively associated with driving errors 
(r = -0.64);  a one-way analysis of covariance, using driving experience as the covariate, showed 

2 You should refer your readers to the table where you give your descriptive statistics.

7.843

Estimates

2. alcohol

Dependent Variable: errors made

11.038

5.813

9.040

6.828a

10.039a

.498

.490

Low

6.3884.3775.383a .494Placebo

Upper BoundLower Boundalcohol

95% Confidence IntervalMean Std. Error

High

a.  Evaluated at covariates appeared in the model: driving experience 5 14.1389.

Descriptive Statistics

Dependent Variable: errors made

12

36

10.2500

7.4167

3.0488

3.3242

High

126.1667

5.8333 2.6912

2.3290Low

12Placebo

NMeanAlcohol Std. Deviation

Total
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Example from the literature

The Believability of Anxious Feelings and Thoughts Questionnaire (BAFT): 
a psychometric evaluation of cognitive fusion in a nonclinical and highly 
anxious community sample (2012)

Herzberg et al. (2012) reported the development and validation of a new measure (the Believability of 
Anxious Feelings and Thoughts Questionnaire (BAFT)). Their participants for the part of the study which 
we report here consists of a highly anxious community sample. The participants completed a range of 
psychometric tests (Time 1). Examples of tests include Anxiety Sensitivity Index (ASI; Peterson and Reiss, 
1993; Reiss et al., 1986); Acceptance and Action Questionnaire–16 (AAQ–16; Hayes et al., 2004); and 
Spielberger State–Trait Anxiety Inventory, Trait Version, Form Y (STAI–T; Spielberger, 1983). They were 
then randomised into two groups, one which received acceptance and commitment therapy (N = 256) 
and one which served as a waiting list control. After 12 weeks both groups were assessed with the 
psychometric tests again (Time 2).

The authors compared differences in the two groups in BAFT scores (both total and subscales) by 
comparing scores at Time 2, after controlling for scores at Time 1. The BAFT consists of items such as 
‘My anxious thoughts and feelings are not normal’ and ‘My happiness and success depends on how 
good I feel’, so that if the ACT intervention is successful, participants in the treatment group will have 
lower scores after the intervention than the control group.

The authors conducted a one-way between-group ANCOVA to assess the impact of the ACT interven-
tion (responsiveness to change).

The researchers first looked at the total BAFT scores, then, after finding a statistically significant 
overall difference, they used ANCOVAs to investigate differences between the groups for the individual 
subscales, as shown below. They used Bonferroni corrections for follow-up comparisons to control for 
Type I error.

that there was a significant difference between condition(s) (F (2,32) = 23.7, p = 0.001); this rep-
resented an effect size of 0.584, showing that, once driving experience was held constant, 58% of 
the variation in driving errors can be accounted for by differing levels of alcohol. A post-hoc test 
(Newman–Keuls) confirmed that significant differences existed between conditions 1 and 3, and 2 
and 3 (both effect sizes (d  ) = 1.54). There was no significant difference between the placebo and 
low alcohol conditions (effect size (d  ) = 0.14).

Activity 13.4

ANCOVA assumes that:

(a) The covariate must be linearly related to the dependent variable
(b) The regression lines must not be parallel
(c) The covariate need not be reliable
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This is their table of means and standard deviations:

Means and Standard Deviations of the Overall Believability of Anxious Feelings and Thoughts Questionnaire (BAFT) 
and subscales.

Variable Treatment condition Control condition

Mean SD Mean SD

BAFT overall scale

Time 1 83.4 17.3 81.9 19.1

Time 2 51.2 25.1 79.1 19.9

Somatic Concerns

Time 1 21.9  7.7 20.7  8.0

Time 2 13.2  7.6 19.9  8.0

Emotion Regulation

Time 1 27.4  5.9 26.7  6.4

Time 2 16.5  8.8 25.9  6.8

Negative Evaluation

Time 1 34.4  6.5 34.4  7.3

Time 2 21.5 10.6 33.3  7.8

The authors say (p. 886): ‘After adjusting for Time 1 BAFT total scores, there was a significant difference 
between the treatment and control groups at Time 2, F (1, 302)6173.44, p6 .001, Cohen’s d = 1.22 
(large effect size). Moreover, after adjusting for Time 1 BAFT subscale scores, we found a significant 
omnibus effect of treatment condition at Time 2, Wilk>s= .93, F (3, 735)=19.98, p6 .001. Follow-up 
ANCOVAs revealed significant between-group differences for the Somatic Concerns, Emotion Regula-
tion, and Negative Evaluation subscales, Fs (1, 302) = 96.26, 150.27, and 159.21; ps 6 .001; Cohen’s 
ds = .85, 1.19, and 1.27, respectively’.

As you can see, in both the overall BAFT scale and the subscales, people in the ACT treatment group 
significantly reduced their scores from Time 1 to Time 2, whereas people in the waiting list control did 
not. The authors give us not only the probability values, but give Cohen’s Effect Size, which is the 
strength of the difference in means, in standard deviations. Their effect sizes are large, according to 
Cohen’s guidelines.

Activity 13.5

In the above article, the authors said: ‘Follow-up ANCOVAs revealed significant 
between-group differences for the Somatic Concerns, Emotion Regulation, and Nega-
tive Evaluation subscales, Fs (1, 302) = 96.26, 150.27, and 159.21; ps 6 .001; Cohen’s 
ds = .85, 1.19, and 1.27, respectively’.

Give an interpretation of the effect sizes of the above variables, comparing them 
with each other. Check your answers with those in the Answers section.
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Summary

In this chapter you have learnt that:

• a one-way independent-groups ANCOVA is 
used to discover whether there are 
differences between conditions while partialling 
out the effects of another variable, called the 
covariate

• the covariate is a variable that has a linear 
relationship with the dependent variable

• the ANCOVA reduces error variance, and so gives 
a more powerful test

• in order for us to have confidence in the results 
produced by ANCOVA, the assumptions of 
ANCOVA must be met.

Discover the website at www.pearsoned.co.uk/dancey where you can test your knowledge with multiple 
choice questions and activities, discover more about topics using the links to relevant websites, and explore 
the interactive flowchart designed to help you find the right method of analysis.

SPSS exercise

Open the datafile that you used earlier (Chapter 10, page 320). These were the data you used for a 
one-way ANOVA, on three groups of students, allotted to morning, afternoon or evening laboratory 
groups. As part of a student project, you have decided to analyse differences between the groups, once 
motivation has been controlled. The data are as follows. Remember, you probably already have these 
data in a file – you just need to add in the motivation scores.

Group Score Motivation Group Score Motivation

1.00 15.00 10.00 2.00 15.00 14.00

1.00 10.00  8.00 2.00 15.00 14.00

1.00 14.00 10.00 2.00 18.00 17.00

1.00 15.00 11.00 2.00 19.00 18.00

1.00 17.00 14.00 2.00 13.00 11.00

1.00 13.00 10.00 3.00 13.00 11.00

1.00 13.00 10.00 3.00 12.00 11.00

1.00 19.00 17.00 3.00 11.00 11.00

1.00 16.00 15.00 3.00 11.00 10.00

1.00 16.00 15.00 3.00 14.00 14.00

2.00 14.00 14.00 3.00 11.00 10.00

2.00 13.00 11.00 3.00 10.00  9.00

2.00 15.00 14.00 3.00  9.00  8.00

2.00 14.00 13.00 3.00  8.00  7.00

2.00 16.00 15.00 3.00 10.00 11.00

http://www.pearsoned.co.uk/dancey


CHAPTER 13 Analysis of three or more groups partialling out effects of a covariate 441

 1. Obtain a scattergram with three separate regression lines for the groups. Do you meet the assump-
tions for ANCOVA?

 2. Perform ANCOVA on the data. How is this different from the one-way ANOVA that you performed 
earlier (in Chapter 10)? Write down your interpretation of the results.

Tests of Between-Subjects Effects

Dependent Variable: Beginning Salary

474

473

Total

Corrected Total

166546277625.000

23475385.059470Error 11033430977.848

.0009103890727.876 387.8062JOBCAT 18207781455.753

.000341929455.308 14.5651PREVEXP 341929455.308

.00029047525437.055 1237.3611Intercept 29047525437.055

.0006089157995.868 259.3853Corrected Model 18267473987.605

Sig. Eta SquaredMean Square FdfSource Type III Sum of  Squares

29300904965.454

.623

.030

.725

.623

 1. ANCOVA shows us how likely it is that differences between conditions are due to sampling error, once 
means have been adjusted for the relationship between:

(a) The dependent variable and the covariate
(b) The independent variable and the covariate
(c) The dependent variable and the independent variable
(d) All of the above

 2. ANCOVA adjusts the means on the covariate, so that the mean covariate score is:

(a) The same for all groups
(b) Different for all groups
(c) The same for all participants
(d) It depends

 3. The use of ANCOVA is sometimes controversial when:

(a) Randomly allocating participants to conditions
(b) Assumptions have not been met
(c) Using intact groups
(d) (b) and (c)

Questions 4 to 6 relate to the following output:

Multiple choice questions
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 4. The dependent variable is:

(a) Beginning Salary
(b) PREVEXP
(c) JOBCAT
(d) None of the above

 5. The covariate is:

(a) Beginning Salary
(b) PREVEXP
(c) JOBCAT
(d) None of the above

 6. The difference between the groups is:

(a)  Unlikely to have occurred by sampling error, assuming the null hypothesis to be true (F (2,470) =  
387.806; p 60.001)

(b)  Unlikely to have occurred by sampling error, assuming the null hypothesis to be true (F (2,470) =
14.565; p 60.001)

(c)  Likely to have occurred by sampling error, assuming the null hypothesis to be true (F (2,470) =
387.806; p 60.001)

(d)  Likely to have occurred by sampling error, assuming the null hypothesis to be true (F (2,470) =
14.565; p 60.001)

 7. Four groups have the following means on the covariate: 35, 42, 28, 65. What is the grand mean?

(a) 43.5
(b) 42.5
(c) 56.7
(d) None of the above

 8. You can perform ANCOVA on:

(a) Two groups
(b) Three groups
(c) Four groups
(d) All of the above

 9. When carrying out a pretest–posttest study, researchers often wish to:

(a) Partial out the effect of the dependent variable
(b) Partial out the effect of the pretest
(c) Reduce the correlation between the pretest and posttest scores
(d) None of the above

Questions 10 and 11 relate to the following:

Dr Ozzy Oak is analysing scores on a memory test for four groups of people who have taken different 
amounts of alcohol. He has an idea that memory is related to IQ, so he decides to control for that and 
chooses ANCOVA for his inferential test.
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 10. Which is the covariate?

(a) Scores on the memory test
(b) The amounts of alcohol
(c) IQ
(d) None of the above

 11. His analysis would show:

(a) Differences between groups on the memory test, partialling out the effects of IQ
(b) Differences on IQ, partialling out the effects of IQ
(c) Differences on IQ, partialling out the effects of alcohol
(d) Differences between groups on the memory test, partialling out the effects of alcohol

Questions 12 to 14 relate to the following output:

 12. The independent variable is:

(a) Reaction time
(b) Group
(c) Age
(d) None of the above

 13. The covariate is:

(a) Reaction time
(b) Group
(c) Age
(d) None of the above

 14. The dependent variable is:

(a) Reaction time
(b) Group
(c) Age
(d) None of the above

Tests of Between-Subjects Effects

Dependent Variable: reaction time

12

11

Total

Corrected Total

1860.000

6.9698Error 55.748

.10620.987 3.0122GROUP 41.974

.4574.252 .6101AGE 4.252

.4314.792 .6881Intercept 4.792

.06425.417 3.6473Corrected Model 76.252

Sig.

Eta

Squared

Mean

Square FdfSource

Type III Sum

of  Squares

132.000

.430

.071

.079

.578
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 15. Using difference scores in a pretest–posttest design does not partial out the effect of the pretest for the 
following reason:

(a) The pretest scores are not normally correlated with the posttest scores
(b) The pretest scores are normally correlated with the difference scores
(c) The posttest scores are normally correlated with the difference scores
(d) None of the above

Questions 16 to 20 relate to the following output:

 16. The highest level of verbal ability is shown by:

(a) Group 1
(b) Group 2
(c) Group 3
(d) They are all identical

 17. Which is the most appropriate statement? The differences between the groups are:

(a) Likely to have arisen by sampling error alone F (1,65) = 150.46, p 60.001
(b) Likely to have arisen by sampling error alone F (1,65) = 1.22, p 60.273
(c) Unlikely to have arisen by sampling error alone F (2,65) = 4.29, p 60.018
(d) Unlikely to have arisen by sampling error alone F (4,65) = 4.28, p 60.0004

2. iv conditions

Dependent Variable: vocabulary, verbal knowledge, fund of  information

a. Evaluated at covariates appeared in the model: age of  participant 5 43.0000, depression 5 15.3286.

Std. Error

1.908

2.521

2.017

95% Confidence Interval

Lower BoundMean

46.725a

46.246a

54.425a

42.915

41.210

50.398

Upper Bound

50.536

51.281

58.453

iv conditions

1.00

2.00

3.00

Tests of Between-Subjects Effects

Dependent Variable: vocabulary, verbal knowledge, fund of  information

a. R Squared 5 .208 (Adjusted R Squared 5 .160)

.004

.000

.299

.273

.018

400.911

14104.574

102.805

114.653

402.492

93.744

4.277

150.459

1.097

1.223

4.294

4

1

1

1

2

65

70

69

Corrected Model

Intercept

AGE

CESD

GROUPS

Error

Total

Corrected Total

14104.574

102.805

114.653

804.984

6093.341

179809.000

7696.986

Sig.

Partial Eta

Squared

Mean

Square FdfSource

Type III Sum

of  Squares

.208

.698

.017

.018

.117

1603.644a
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 18. The effect size for the differences between the groups is approximately:

(a) 2%
(b) 12%
(c) 21%
(d) 70%

 19. The strongest difference between the groups is between:

(a) 1 + 2 versus 3
(b) 2 + 3 versus 1
(c) 1 + 3 versus 2
(d) They are all identical

 20. The group with the widest confidence interval around the mean level of verbal ability is:

(a) Group 1
(b) Group 2
(c) Group 3
(d) They are all identical

1. a, 2. a, 3. d, 4. a, 5. b, 6. a, 7. b, 8. d, 9. b, 10. c, 11. a, 12. b, 13. c, 14. a, 15. b, 16. c, 17. c, 18. b,  
19. a, 20. b
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 14.1 What is the purpose of factor analysis?

The main methods of factor analysis were first used to study the structure of the mind, 
intelligence and, later, personality, although now it has much wider applications. Factor analysis 
deals with patterns of correlations (see section 6.3). So, for instance, in the 1950s psychologists 
noted that people who tended to do well on writing tests also tended to do well on arithmetic, 
science and other tests. These variables were thus correlated with each other. Psychologists 
believed that there was a general factor that caused the observed patterns on correlations. The 
factor itself, which was called ‘intelligence’, could not be observed, but was revealed only 
through looking at the patterns of correlations for the observed variables.

The usual way of performing factor analysis is to take a sample of individuals, each of whom 
has given scores on a number of variables: for example, they may have taken a battery of tests 
or answered some questionnaires. A matrix of correlation coefficients is calculated (in the same 
way as you learnt in section 6.3). Let’s say that we have measured participants on six tests of 
ability. If we believe that each test we give to our participants calls for one specific ability, then 
what we are really saying is that none of the tests is related to any of the other tests.

CHAPTER OVERVIEW

You have made it this far and we hope that you now have a good conceptual understanding of the 

most widely used statistical techniques in psychology. In this and the next two chapters we would like 

to introduce you to another class of techniques, which are an extension of multiple regression and 

ANOVA. These tests come under the general heading of multivariate statistics. The particular statistical 

technique that we are going to introduce here is factor analysis. We gave a very brief idea of this 

technique in section 6.3.

In this chapter we will:

■ give a conceptual understanding of factor analysis, using one example from the psychological literature 
throughout

■ show how to enter a dataset into SPSS and analyse it by factor analysis

■ show how to interpret the statistical output from such an analysis

■ give examples from the literature to help you understand how factor analysis has been used in 
psychology.

Introduction to factor 

analysis 14
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Arithmetic  
test

Chemistry  
test

Art  
test

Written  
test

German 
language test

Music  
test

Arithmetic test 1 0.01 0.01 -0.01 0.001 -0.01

Chemistry test 1 -0.02 0.01 -0.000 0.02

Art test 1 0.00 0.01 0.11

Written test 1 0.00 -0.00

German 
language test

1 0.00

Music test 1

Table 14.1 Hypothetical correlations between tests if we believe that each test calls for a specific ability

Arithmetic  
test

Chemistry  
test

Art  
test

Written  
test

German 
language test

Music  
test

Arithmetic test 1 0.99 0.98 1.00 0.99 0.99

Chemistry test 1 0.99 0.99 0.98 1.00

Art test 1 0.99 1.00 0.99

Written test 1 0.99 0.98

German 
language test

1 1.00

Music test 1

Table 14.2 Hypothetical correlations between tests when we believe that each test calls for the same ability

Theoretically, all the correlations should be zero. In practice, however, this is very unlikely 
to happen. Some variables that are unrelated to each other would tend to show some correlation. 
In Table 14.1, the correlation coefficients hover around zero.

Now let’s take the opposite view, and say that we believe that all tests call for the same ability. 
What we are really saying here is that each variable is related to all the others, and in Table 14.2 all 
the correlation coefficients would be, theoretically, 1. Here the correlations hover near the 1 mark.

These are two extremes. Normally some variables are related to others, and some are not. Factor 
analysis looks at the patterns of correlations. Groups of variables that relate highly to each other 
constitute a factor. A factor is conceived to be an underlying latent (hypothetical) variable along 
which individuals differ, just as they differ along a test scale. It is possible to perform factor analysis 
by working on either the correlation or the variance–covariance matrix.1 At this stage we advise you 
to make sure that you choose the correlation matrix option when performing these techniques on 
your computer package, simply because it is safer. This is because working on the correlation matrix 
is equivalent to standardising the data – if your variables are not measured in the same units or at 
least comparable, using the correlation matrix will standardise them so that they are comparable. 
Further discussion of this topic is beyond the scope of this book. The aim of factor analysis is to 
account for a large number of variables, in terms of a minimal number of primary factors.

1 A variance–covariance matrix is like a correlational matrix, except that the scores are not standardised. 
Standardised scores were covered in Chapter 4.
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 14.2 The two main types of factor analysis

There are different kinds of factor analysis – here we are going to concentrate on the most familiar 
ones. One is called principal components analysis (PCA) and the other is usually referred to simply 
as factor analysis (although this usually means ‘principal axis factoring’). Many people, including 
us, use these terms interchangeably. However, there are differences between them, and although you 
can treat them as if they are the same, we will spend just a few minutes discussing the differences.

 14.2.1 Differences and similarities between PCA and factor analysis

Both PCA and factor analysis reduce datasets containing a larger number of variables into a smaller 
number of variables called components or factors respectively. The difference has mainly to do with 
the way variance is dealt with. In PCA, all the variance in the data is analysed, both shared and 
unique (see section 6.1.10). This assumes, of course, that there is no error. PCA actually transforms 
the original variables into a smaller set of uncorrelated components. With factor analysis, only the 
shared variance is analysed – unique variance is excluded, and some error variance is assumed.

It has been said that PCA is exploratory in nature – carried out simply in order to reduce a 
large dataset to a smaller set. Often a researcher wants to perform a further analysis: for 
example, multiple regression. To be reliable, multiple regression needs a good participant/
variable ratio (see Chapter 12). Thus PCA is sometimes performed in order to reduce a large 
set of variables to a more manageable set so that multiple regression can be performed. Factor 
analysis, on the other hand, has typically been used where researchers believe there is a smaller 
set of ‘factors’ that cause or in some way influence the observed variables. Factor analysis has 
thus been used in a confirmatory sense, in order to test hypotheses. In practice, however, 
researchers use both PCA and factor analysis as a means of exploring the data, and also to 
confirm hypotheses. Research has shown that, although factor analysis and PCA are not 
equivalent, the differences are relatively unimportant. This is especially so with large datasets 
and participant numbers. So when performing factor analysis, the advice is to try to use at least 
100 participants in the analysis, and to have five times as many participants as variables. From 
now on we shall refer to both factor analysis–principal axis factoring and PCA as factor analysis.

 14.3 Use of factor analysis in psychometrics

In psychometrics, factor analysis is particularly relevant to construct validity. When researchers 
design questionnaires, they usually have several questions relating to one construct or idea: that 
is, certain questions correlate with each other because they are measuring the same construct. 
We could just look at the correlation matrix and try to see such patterns ourselves. However, 
this is very subjective and rather unreliable. Factor analysis can identify such patterns of 
correlations. The constructs, called factors (or sometimes components), can be used in 
describing the scales of a test. Factor analysis allows researchers to discover the factorial 

validity of the questions that make up each scale or construct. (We shall be looking further at 
later in this chapter.) The use of factor analysis is not limited to looking at cognitive abilities – it 
has also been used in other fields, as we will see from the examples that follow.

Activity 14.1

It is not easy to explain the concept of factor analysis. If you were trying to explain 
what a factor analysis meant to a friend, what would you say?
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 14.4 Visualising factors

You know how to visualise scatterplots, and know that a correlation coefficient of 0.7 means 
that 49% (that is, 0.7 * 0.7 = 49) of the variation in scores on x can be accounted for by the 
variation in scores on y. You could draw overlapping circles to represent the correlation. In the 
example here, the original ten variables can be split up into two distinct patterns (see Figures 14.1 
and 14.2).

Of course, when you perform a statistical analysis on your computer, you do not obtain such 
diagrams from your output. However, performing factor analysis allows you to see the patterns 
anyway, from the output. In this example, Alexander et al. (1999) found that the ten variables 
listed above could be accounted for by two distinct ‘factors’. Shame was influencing the scores 
on five of the variables, and guilt was influencing the scores of the other five variables. Note 
that we have not measured guilt or shame directly – but we assume they are there, by the scores 
on the observed variables. Also note that it is worth performing factor analysis only if the 
variables are correlated with each other. If they are not, there would be no patterns of correlations 
to analyse.

Example from the literature

Shame and guilt

Alexander et al. (1999) investigated shame and guilt in a sample of depressed patients. They had 86 
patients and used a ten-item scale by Gilbert, Pehl and Allan (1994). Five of these items were said to 
measure shame (reliability 0.74),2 and five were said to measure guilt (reliability = 0.75). Alexander  et al. 
decided to carry out a psychometric investigation of this scale.

We are going to use this study in order to explain factor analysis. This is because it is fairly easy to 
understand, as the questionnaire has only ten items, and Alexander et al. wanted to check that there 
were two scales (shame and guilt) as suggested by Gilbert et al. These were the items on the 
questionnaire. You can see that items 1, 4, 5, 7 and 8 are said to measure SHAME (S) and 2, 3, 6, 9 and 
10 are said to measure GUILT (G).

1. To do something embarrassing in public (S)
2. Secretly cheating on something you know will not be found out (G)
3. To hurt someone’s feelings (G)
4. To be the centre of attention (S)
5. To appear inadequate to other people (S)
6. To behave in an uncaring way to others (G)
7. To have something unfavourable revealed about you (S)
8. To feel self-conscious in front of others (S)
9. To behave unkindly (G)

10. Not saying anything when a shop assistant gives you too much change (G)

2 The reliability of scales within questionnaires is measured by a correlation coefficient. Any coefficient 7 0.70 
is strong, showing that these two scales can be considered reliable ones.
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 14.5 Conceptualising factor analysis

One way to understand factor analysis is graphically. You already know that the relationship 
between variables can be represented by correlation coefficients, overlapping circles and 
scatterplots. However, there is another way of representing the relationship between variables, 
and that is by calculating the degree of angle between them.

Sticking with our example, let’s assume that two of our variables, ‘to feel self-conscious’ and 
‘to do something embarrassing in public’, are correlated, to the tune of 0.9. We can represent 
this relationship geometrically, by converting the 0.9 to the degree of angle between the two 
variables. To convert 0.9 to the degree of angle, you need to look at Table 14.3.

You can see that a correlation of 0.9 converts to a 26-degree angle. Use a horizontal line to 
represent one of the variables, such as ‘to do something embarrassing in public’. You then use 
your protractor to measure 26 degrees, and to draw another line, which we can label ‘to feel 
self-conscious’ (see Figure 14.3).

This angle represents the degree of relationship between them. The lines we have drawn, 
with an arrow on them, are called vectors. A vector is simply a straight line that has a definite 
starting point, a definite direction and a definite length.

If our two variables were measuring absolutely the same thing, and they were perfectly 
correlated with each other, the angle between them would be zero, and both variables would lie 
along the same vector (see Figure 14.4).

Figure 14.1 Ten correlated variables

Figure 14.2 Two sets of five correlated variables
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r
Degree of 

angle r
Degree of 

angle r
Degree of 

angle r
Degree of 

angle r
Degree of 

angle

0.00 90 0.30 72 0.50 60 0.70 46 0.90 26

0.11 84 0.31 72 0.51 59 0.71 45 0.91 25

0.12 83 0.32 71 0.52 59 0.72 44 0.92 23

0.13 83 0.33 71 0.53 58 0.73 43 0.93 22

0.14 82 0.34 70 0.54 57 0.74 42 0.94 20

0.15 82 0.35 70 0.55 57 0.75 41 0.95 18

0.16 81 0.36 69 0.56 56 0.76 41 0.96 16

0.17 80 0.37 68 0.57 55 0.77 40 0.97 14

0.18 80 0.38 68 0.58 54 0.78 39 0.98 11

0.19 79 0.39 67 0.59 54 0.79 38 0.99 08

0.20 78 0.40 66 0.60 53 0.80 37 1.00 00

0.21 78 0.41 66 0.61 52 0.81 36

0.22 77 0.42 65 0.62 52 0.82 35

0.23 77 0.43 65 0.63 51 0.83 34

0.24 76 0.44 64 0.64 50 0.84 33

0.25 76 0.45 63 0.65 49 0.85 32

0.26 75 0.46 63 0.66 49 0.86 31

0.27 74 0.47 62 0.67 48 0.87 30

0.28 74 0.48 61 0.68 47 0.88 28

0.29 73 0.49 61 0.69 46 0.89 27

* Figures in this table computed by the authors.

Table 14.3 Conversion table from r to degree of angle (figures rounded to whole numbers)*

Figure 14.3 Diagram showing 26° angle between ‘to feel self-conscious’ and ‘to do something 
embarrassing in public’

26°

90°

Use protractor

To feel self-conscious

To do something 

embarrassing in public

If, on the other hand, the two variables were totally unrelated, then they would lie at right 
angles to each other. The degree of relationship would be 90 degrees, which represents zero 
correlation (see Figure 14.5).

In order to perform factor analysis on these two variables (of course, not likely, but an easy 
example to start off with) we need to find a new vector, which best represents the variables. 
We do this by drawing a new vector straight through the middle of x and y (see Figure 14.6).
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 14.6 Naming the factors

The dotted line is the new factor, which we could call ‘shame’. People ‘name’ factors by 
deciding what the related variables have in common. In this case, both of these variables have 
‘shame’ in common. Since ‘to feel self-conscious’ and ‘to do something embarrassing in public’ 
could be represented by a 26-degree angle, you can see that the angle between ‘to feel self-
conscious’ and the new vector must be 13, and the angle between ‘to do some-thing embarrassing 
in public’ and the new vector must be 13 degrees. This can be seen in Figure 14.6.

Figure 14.4 Diagram showing 0° angle between ‘to feel self-conscious’ and ‘to do something 
embarrassing in public’

90°

To feel self-conscious

To do something 

embarrassing in public

Figure 14.5 Diagram showing 90° angle between ‘to feel self-conscious’ and ‘to do something 
embarrassing in public’

90°

To feel self-conscious

To do something 

embarrassing in public

Figure 14.6 Diagram showing 26° angle between ‘to feel self-conscious’ and ‘to do something 
embarrassing in public’ with resultant factor

90°

To feel self-conscious

To do something 

embarrassing in public
26° 13°

13°
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 14.7 Loadings of variables on factors

We can convert these angles back to correlation coefficients. Look at Table 14.4.
You will see that an angle of 13 degrees is equal to a correlation coefficient of 0.97. This is 

the correlation coefficient between ‘to feel self-conscious’ and the new resultant factor, and 
also between ‘to do something embarrassing in public’ and the new resultant factor. We say that 
both of these ‘load highly’ on SHAME. In fact, the new factor represents 94% of the relationship 
between them (0.97). The new factor groups together variables that are related (mathematically) 
to each other, but are different from other variables.

In our diagrams above, we have drawn only two variables, but factor analysis works in 
n-dimensional space. We cannot even adequately draw in 3D space, although we can try to 
explain by visualising such space. The example above used two variables in order to show how 

Degree of 
angle r

Degree of 
angle r

Degree of 
angle r

Degree of 
angle r

0 1.00 24 0.91 48 0.67 72 0.31

1 0.99 25 0.91 49 0.66 73 0.29

2 0.99 26 0.90 50 0.64 74 0.28

3 0.99 27 0.89 51 0.63 75 0.26

4 0.99 28 0.88 52 0.62 76 0.24

5 0.99 29 0.87 53 0.62 77 0.22

6 0.99 30 0.86 54 0.59 78 0.21

7 0.99 31 0.86 55 0.57 79 0.19

8 0.99 32 0.85 56 0.56 80 0.17

9 0.99 33 0.84 57 0.55 81 0.16

10 0.98 34 0.83 58 0.53 82 0.14

11 0.98 35 0.82 59 0.52 83 0.12

12 0.98 36 0.81 60 0.50 84 0.10

13 0.97 37 0.80 61 0.48 85 0.09

14 0.97 38 0.79 62 0.47 86 0.07

15 0.97 39 0.78 63 0.45 87 0.05

16 0.96 40 0.77 64 0.44 88 0.03

17 0.96 41 0.75 65 0.42 89 0.02

18 0.95 42 0.74 66 0.41 90 0.00

19 0.95 43 0.73 67 0.39

20 0.94 44 0.72 68 0.37

21 0.93 45 0.71 69 0.36

22 0.93 46 0.69 70 0.34

23 0.92 47 0.68 71 0.33

* Figures in this table computed by the authors.

Table 14.4 Conversion table from degrees of angle to correlation coefficients*
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to obtain a new factor. There are, however, ten variables. Factor analysis looks at the patterns 
of correlations, and groups together the variables that explain most of the variation in scores.

Via matrix algebra,3 vectors are then drawn in n-dimensional space, and a resultant vector (factor) 
is found, much the same as in our example in Figure 14.6. Once this factor (provisionally named 
Factor 1) has been found (extracted) then Factor 2 groups together a different set of variables, normally 
unrelated to the first. Each factor ‘represents’ a set of variables (the variables that are strongly related 
to the factor). We ‘name’ the factors by looking to see what such variables have in common.

Imagine that we have factor analysed 20 variables and that the program has obtained the 
correlation coefficients, converted them into degrees of angles, and found the resultant first 
factor for the first pattern of correlations. (This is calculated by using matrix algebra.) Although 
we cannot represent that here, the following diagram shows one way of visualising what is 
happening, although it is approximate. You can imagine the factor as an umbrella handle 
(upturned) with broken spokes. The spokes are the variables.

3 You have heard of matrices: a data matrix, a correlation matrix and a variance–covariance matrix, for instance. 
Matrix algebra is a special mathematical method by which these matrices are manipulated. In multivariate 
techniques such as factor analysis and MANOVA, matrix algebra is the method by which the matrices are analysed.

Activity 14.2

Look at the following diagram, which represents variables correlating with Factor 1. 
What name would you give to this factor?

I often feel

nauseous

I feel panicky

I suffer from

headaches

People are

looking at me

Thoughts just pop

into my head

I feel anxious

In our SHAME and GUILT example, we have ten variables.

Some variables (the vectors furthest away from the handle) are hardly related to the new 
resultant factor at all, and these are not used for naming the factor. Other variables (the ones 
closest to the handle) are strongly related to the factor, and these are the ones we use for naming 
purposes. Variables that load highly on a factor are closer to the resultant factor. Although we 
do not see diagrams such as the ones above in our output, we do obtain a table of factor loadings 
(these are the correlation coefficients between the variables and the factors).
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 14.8 The correlational matrix

The first thing the program does is obtain a matrix of correlation coefficients.
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 14.9 The unrotated and rotated matrices

The statistical program (e.g. SPSS) then performs matrix algebra on the figures, which results 
in a matrix showing the correlations of variables with factors. This first matrix is an unrotated 
matrix. We will be explaining the significance of this later. Matrix algebra is then used to rotate 
the matrix. The rotated matrix contains the factor loadings (correlations of variables with factors), 
which are used in interpreting the results, and the figures, which are used in reporting such 
results. The correlation coefficients in the rotated matrix (see Table 14.5) are also used in the 
construction of the diagrams below. The first diagram shows the relationship of the variables to 
the first resultant factor (see Figure 14.7).

You can see that all the variables closest to the handle have to do with items that relate to 
SHAME. Factor 1 is named ‘shame’. The other variables that are not close to the handle have 
to do with something different.

Now the program looks at these other variables, the ones that were not related to Factor 1 
(SHAME). It takes those variables and finds the resultant factor (see Figure 14.8).

You can see this time that all the variables close to the handle are to do with GUILT. Arising 
from the ten variables, then, there were two factors.

Looking at Table 14.5, then, we can see that the five items that loaded most highly on Factor 
1 are grouped together, and that this factor can be named ‘shame’. The other items load more 
highly on Factor 2, and these can be represented by ‘guilt’. Alexander et al. (1999) mentioned 
in their article that the criterion that they used in deciding whether the factor loading was high 
was 0.5. You should note that this is a fairly arbitrary figure, and that other researchers might 
choose 0.4 or even 0.3. It is always good when an item loads highly on one factor only.

In Table 14.5 we have converted each factor loading into the degree of angle, so that you can 
check for yourselves (with your protractor) that we have drawn Figures 14.7 and 14.8 correctly.

Item Description

Factor 1 Factor 2

r Degree of angle r Degree of angle

 1 To do something embarrassing in public 0.75 41 0.15 82

 2 Secretly cheating on something you 
know will not be found out

0.30 72 0.57 55

 3 To hurt someone’s feelings 0.11 84 0.88 28

 4 To be the centre of attention 0.71 45 0.11 84

 5 To appear inadequate to other people 0.76 41 0.32 71

 6 To behave in an uncaring way to others 0.12 83 0.87 30

 7 To have something unfavourable 
revealed about you

0.71 45 0.11 84

 8 To feel self-conscious in front of others 0.82 35 0.21 78

 9 To behave unkindly 0.20 78 0.88 28

10 Not saying anything when a shop 
assistant gives you too much change

0.15 82 0.56 56

Variance% 43.9 17.5

Table 14.5 Rotated factor loadings
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We have emboldened all correlations above 0.5. All the emboldened figures in Factor 1 have 
to do with shame, and all the emboldened figures in Factor 2 have to do with guilt. Alexander 
et al. therefore confirmed that the Shame and Guilt Scale consisted of two scales, which could 
be called Guilt and Shame.

 14.10 Plotting the variables in factor space

Another way of visualising the clusters of variables that form the factors is by drawing the factors 
as in Figure 14.9 and plotting the variables in the factor space. Look at the first item, which loads 
0.75 on F1 and 0.15 on F2. Go along to 0.75 on the horizontal axis (SHAME, F1) and then go up 
to 0.15 on F2, and write the item number where the two meet. The dotted lines show this for item 1.

Of course, we can never draw more than Factor 1 plotted against Factor 2, so we are lucky 
in this example! You can see that there are clearly two clusters of variables, both by looking at 
the diagram (Figure 14.10) and by the rotated component matrix (Table 14.5). This is clear 
because we are working on the rotated matrix. This was what the matrix looked like before it 
was rotated.

Figure 14.7 Degrees of angle represent relationship between Factor 1 and the variable
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Figure 14.8 Diagram showing the relationship between all variables and Factor 2 – GUILT4
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Activity 14.3

Complete the rest of Figure 14.10 yourself, in pencil. Check your results against the diagram given in 
the Answers section.

Figure 14.10 To be completed as part of the activity
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Figure 14.9 Diagram showing variable ‘to do something embarrassing in public’ plotted in factor space
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It is hard to see the clusters using this matrix – we cannot see which items relate to SHAME 
and which relate to GUILT because all variables load significantly on the first factor. However, 
if we replot the variables in factor space using the unrotated component matrix, we can see that 
there are two clusters of variables, but that they are moderately correlated with both factors – 
you can see this both from the diagram (Figure 14.10) and from the output above.

 14.11 Rotating the matrix

In order to aid interpretation, the axes are rotated.5 There are several ways of rotating axes, but 
the most common is a method called varimax, the goal of which is to maximise high correla-
tions and minimise low ones. The computer program rotates the matrix as long as you have 
selected the appropriate option. Rotation is a well-established technique that makes interpreta-
tion easier, because the differences in the loadings (of the variable with each factor) are empha-
sised.6 When the data are strong and the patterns clear, then the choice of rotation doesn’t matter 
so much, as the conclusions are similar.

5 This is achieved by multiplying the unrotated component matrix by something called the component 
transformation matrix – also achieved by matrix algebra.

6 Varimax ensures that every factor is independent from the other factors. In real life, most psychological 
variables are intercorrelated. Varimax is therefore artificial – even though it is a very common way of rotating.
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Example from the literature

Testing the validity of a five-factor model of personality on horses

Kristiansen and Kuczaj (2013) used a Principal Components Analysis to determine whether a five-factor 
personality model used in human research, could be used in animals. Horse owners were asked to rate 
their horses on a questionnaire which covered all of the five personality scales. The ratings were from 1 
strongly agree through to 5 strongly disagree.

For instance, ‘he/she is suspicious of others’ and ‘he/she is very curious and likes to explore’.
There were 827 horses in the study, and a PCA was conducted on 43 items with varimax rotation.
According to the criteria of eigenvalues over 1 and the scree diagram, the authors retained eight 

components, and accounted for 59.7% of the variance.
The rotated component matrix is given below:

Table 14.6 

Component

FFM
Dimension Item 1 2 3 4 5 6 7 8

Neuroticism Worries a lot 0.783

Neuroticism Feels fearful quite a 
lot

0.769

Neuroticism Often feels helpless 
and needs support

0.717

Neuroticism Is often tense and 
jittery

0.694

Neuroticism Has very low 
self-esteem

0.670

Neuroticism When stressed can 
be very anxious

0.529

Agreeableness Is suspicious of 
others

0.503

Extraversion Often seems bursting 
with energy

0.810

Extraversion Is very active 0.797

Extraversion Life is fast paced 0.665

Extraversion Is cheerful and 
high-spirited

0.659

Conscientiousness Is reliable and won’t 
let you down

0.784

Conscientiousness Will always get the 
job done

0.767

Conscientiousness Is dependable and 
reliable

0.718

Conscientiousness Is a hard worker 0.669
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Table 14.6 

Component

FFM
Dimension Item 1 2 3 4 5 6 7 8

Agreeableness Is selfish and 
egotistical

 0.709

Agreeableness Is thoughtful and 
considerate

-0.659

Agreeableness Rather cold and 
calculating

 0.610

Agreeableness Is well-mannered -0.602

Agreeableness and 
tough-minded

Is hard-headed  0.580

Extraversion Has a good sense of 
humour

0.741

Extraversion Is rather light-
hearted and cheerful

0.644

Openness Is very curious and 
likes to explore

0.627

Openness Will try new foods 0.497

Extraversion Enjoys interacting 
with others

0.803

Extraversion Would rather go their 
own way

0.656

Extraversion Prefers to do things 
on their own

0.603

Prefers to be on their 
own

-0.598

Agreeableness If s/he doesn’t like 
you, you’ll soon know 
it

0.745

He/she gets angry 
with the way people 
treat him/her

0.731

Openness Sticks to established 
habits

0.801

Conscientiousness Is methodical 0.597

Total Eigenvalue  3.60 2.96 2.68 2.68 2.28 1.97 1.66 1.26

Pecentage of variance 11.23 9.25 8.38 8.37 7.14 6.16 5.20 3.94
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 14.12 Steps taken in performing a factor analysis

These are the steps taken to perform factor analysis:

1. First a correlation matrix is produced: the researchers themselves do not need to look at 
the correlational matrix, although the program uses the information from this matrix to 
perform further calculations. In our example, however, the researchers say ‘before perform-
ing factor analysis, we inspected the correlational matrix to check the strength of the 
correlations’.

2. Then a set of factors is extracted: in practice it is possible to extract as many factors as 
variables (if each variable was not highly correlated with any other), but this would defeat 
the object of factor analysis. We want to account for as much variance as possible, while 
keeping the number of factors extracted as small as possible. Although in our first example 
there were two clear factors, often things are not as simple as this, and the decision on how 
many factors to ‘keep’ is decided by the researchers on the basis of both statistical and 
theoretical criteria.

3. Number of factors to retain: when factor analysis is performed in SPSS, the program decides 
how many factors to keep on the basis of statistical criteria. Each factor that is extracted 
accounts for a certain amount of variance.

(a) Eigenvalues show the proportion of variance accounted for by each factor. The sum of 
the eigenvalues is the number of variables in the analysis. Any factor that has an 
eigenvalue of 1.00 is kept.

  It is a useful rule, but what happens if one of the factors has an eigenvalue of 0.99? 
Using this rule blindly would mean that the factor would not emerge, and yet it could be 
theoretically important. It is here that the researcher would consider whether to keep 
such a factor. If it is decided that the factor should be kept, then SPSS needs to be 
overruled.

(b) Scree plot. This is simply the number of factors plotted against variance accounted for. 
Here is a scree plot:
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  The idea is that factors drop off to some level and then plateau. The rule is that you 
look at the plot and see where the plateau levels out, and then choose the number of 
factors just before this point. Here we would choose two components. This is fine if your 
scree plot looks like the one above, but not if it looks like this:
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 It is harder to say here how many components ‘should’ be kept.
(c) The third criterion is to look at how much variance the factors account for. It is good 

practice to try to account for approximately 75% of the variance. However, you need to 
try to explain the most variance with the least number of factors. Thus, all the criteria 
must be used together to decide how many factors to keep. A good researcher needs to 
take everything into consideration in coming to a decision on how many factors to retain.

 Kristiansen and Kuczaj (2013) tell us that they used the criterion of eigenvalues over 1, which 
agreed with the scree plot which suggested that eight factors/components should be retained. 
They tell us that these factors explained 59.7% of the total variance.

4. Unrotated factor loadings: the program gives information on the strength of the relationships 
between the items and the factors. However, researchers are usually interested only in the 
rotated factor matrix – this tends to be easier to interpret (see above). Kristiansen and Kuczaj 
tell us that they used varimax rotation (the default on SPSS).

5. Naming the factors: the researcher then looks at the rotated factor loadings, to see what the 
clusters of variables have in common. To do this, a decision must be taken on how strong a 
loading must be for it to be included in the naming process. As mentioned above, this tends 
to be fairly arbitrary and varies between 0.3 and 0.5. Factor 1 will normally account for the 
largest amount of variance, followed by Factor 2, and so on.

In the study on horses, the authors have told us which item relates to which dimension of the 
questionnaire. So for the first factor, the items are all to do with the horse feeling anxious or 
nervous. This is the strongest factor, and apart from one item ‘s/he is suspicious of others’, the 
items tally with the dimension from which they are drawn: it is clear that ‘neuroticism’ is a good 
label for Factor 1. This is, in fact, the label given by the authors.

They give the total eigenvalues for each factor/component and show us the amount of 
variance explained by each factor. So neuroticism accounts for 11.23% of the variation in scores.

Activity 14.4

Look at the rotated matrix above (Table 14.6). You already know that the authors have named Factor 1 
as ‘neuroticism’. Have a go at naming the other seven factors. Of course there are no ‘right’ answers, 
but you might want to check whether your Factor names are similar to those of the authors. (See the 
Answers to exercises at the end of the book.)
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Personal reflection

Ellen Boddington and Professor Mark McDermott
University of East London

ARTICLE: Predicting resistance to health education 
 messages for cannabis use: the role of rebelliousness, 
autic mastery health value and ethnicity

Professor Mark McDermott says:

“I have a long-standing interest in the psychology of rebelliousness – the desire to oppose perceived require-
ments. I was involved in a large-scale study published in 2009 of the relationship between rebelliousness and 
health behaviour. Afterward, it occurred to me that rebelliousness might be associated with young people’s 
resistance to health persuasion messages. So, Ellen and I embarked on a study to find out if this was the case. 
We thought resistance to health persuasion messages about cannabis use, and in particular about smoking 
cannabis, was an appropriate variable to study in this context. It seemed clear to us that many people, irrespec-
tive of age, are of the view that cannabis use is relatively harmless, when compared against the effects, for 
example, of alcohol consumption. However, we were aware of a growing scientific literature which shows that 
the recreational use of non-medicinal cannabis is associated with a variety of undesirable mental and physical 
health consequences, both in the short and longer term. With this background in mind, we were of the view 
that the range of psychological constructs in Reversal Theory (RT) would provide a rich theoretical framework 
in which to test our hypotheses, since rebelliousness is included as a key component of the theory.

Equipped with our independent RT, we needed a psychometrically sound dependent variable. As part 
of the study we designed and developed our own measure of resistance to health persuasion messages 
about cannabis use. As we suspected, it turned out there is more than one dimension to such resistance, 
with two being identified from our principal components analysis, one component being about the 
perceived risks to health from cannabis use, and the other being about the perceived need for society 
to take steps to reduce cannabis use within the general population.

Perhaps unsurprisingly, we found that self-reported frequency of cannabis use was most predictive of resist-
ance to health persuasions messages about the risks associated with such activity: after all, people who are 
most frequently engaged in a behaviour are not likely to be receptive to reasons for giving it up. What did 
surprise us though, was that it is the proactive form of rebelliousness (or, ‘negativism’, as RT calls it), the 
sensation-seeking form of rebelliousness, that was predictive of resistance to messages, and not reactive 
rebelliousness, the latter form of negativism taking its impetus from disaffection. So, it is not the disaffected 
oppositional individual who rejects health messages about cannabis use. Rather, it is the user who is more 
disposed to excitement seeking forms of rebellion – who enjoys the thrill of engaging in something illicit – 
that predicts resistance to accepting the risks of cannabis use. Not wanting control or power over others 
(called ‘autic mastery’ in RT) was also found to be predictive, as was placing little value on health.”
Example from the literature

Predicting resistance to health education messages for cannabis use: the 
role of rebelliousness, autic mastery health value and ethnicity

Boddington and McDermott (2013) carried out a factor analysis (principal components analysis, PCA) 
on 28 items as part of their study into resistance to health messages. They carried out a scree analysis 
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to determine how many factors to extract; this showed a two-factor solution. They then carried out a 
PCA specifying two factors and varimax rotation. The authors say: ‘In order to produce two concise 
subscales, only items that had a factor analysis weighting of 7 .6 were included in each. This cut-off 
meant that factor one consisted of 12 items and factor two six items’ (p. 4).

Their table of results is reproduced below:

Health messages resistance scale (for cannabis) items and associated loadings on the two factors

Scale item Factor loading

Factor 1.

Cannabis contains many cancer causing agents .76

Smoking cannabis can shorten your life .73

Some psychological problems are made worse by the use of cannabis .72

Long-term cannabis users have greater impairment in learning, memory and 
attention than non-users

.69

Cannabis smoke contains many harmful chemicals .69

Smoking cannabis can lead to fatal diseases .68

Breathing air which contains cannabis smoke can be bad for your health .67

The longer the individual has been using cannabis the greater the likelihood of illness .64

I believe the claims made by the cannabis literature which states the possible 
adverse side-effects

.64

People who smoke cannabis are more likely to develop coronary heart disease than 
non-cannabis smokers

.62

Heavy cannabis use can cause panic and paranoia through the disturbance of 
perception caused by the drug

.62

People who take cannabis are more likely to suffer from psychological problems than 
non-users

.62

Factor 2.

The Government should be more active in discouraging the smoking of cannabis .84

There needs to be more advertisements trying to persuade people not to smoke 
cannabis

.84

A lot more needs to be done to prevent people from starting to use cannabis .75

Penalties for first-time possession of cannabis should be more severe .74

Breathing other people’s smoke does not worry me .68

Advertisements trying to persuade me not to use cannabis would make me more 
aware of the dangers of cannabis smoking

.64

These two factors (components) were then used in further analyses, i.e. Pearson’s correlations and 
multiple regression.

Activity 14.5

Give sensible names for the two factors extracted by Boddington and McDermott.
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 14.13 Use of factors or components in further analyses

Once PCA has been performed, each participant has a score on the components (as well as their 
scores on the initial variables). The components can therefore be used in a further analysis – 
perhaps the researchers want to compare groups of participants on the components, using 
ANOVA. Or perhaps they wish to see if the components predict an outcome variable.

The examples below show how researchers might use the factors/components in further 
analyses.

For instance, Alexander et al. (1999) confirmed that there were two factors in the Shame and 
Guilt Questionnaire that they used. The scores achieved by participants on these factors (actually 
a composite score made up of the variables that made up the scales) were correlated with a 
measure of depression (Becks Depression Inventory – BDI) and a questionnaire measuring 
submissive behaviour. Here are the (partial) results:

Shame Guilt

BDI 0.07 0.28**

Submissive behaviour 0.53*** 0.35***

** p 6 0.01 *** p 6 0.001

Activity 14.6

What can you conclude from the results above?

Engel de Abreu et al. (2014) carried out a study on executive functioning and reading achievement 
in 6- to 8-year-old Brazilian children. They used 12 executive function tasks which they 
submitted to a principal components analysis with varimax rotation. Four factors were extracted, 
accounting for 62.5% of the total variance. They used loadings above .4 as the criterion for 
interpreting the factors. After carrying out the PCA, they named the factors as follows:

• Factor 1 = working memory/cognitive flexibility

• Factor 2 = interference suppression

• Factor 3 = selective attention

• Factor 4 = response inhibition

They then used the factor scores (these are produced by SPSS) as dependent variables for 
subsequent analyses. One analysis was to carry out partial correlations (controlling for age in 
months) between the executive function factor scores and teach ratings using Pearson’s 
correlational analysis (see below).

Teacher ratings Factor 1 Factor 2 Factor 3 Factor 4

1 Decoding .35* .20 .22 .22

2 Reading comprehension .36* .20 .25* .18

3 Writing .29* .25 .18 .22

4 Mathematics .43* .29* .18 .14

5 Oral language .42* .18 .25 .13

6 Sciences .40* .19 .19 .17

7 Composite .41* .23 .22 .18

* p 6 .05
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This showed that Factor 1 scores (working memory/cognitive flexibility) correlated 
significantly with all the teacher ratings of achievement.

It is possible to use the factor scores for other types of analysis. These researchers carried out a 
series of ANCOVAs and regressions using the Factor 1 scores as dependent variables (not shown here).

Activity 14.7

Look at the above table. Have a go an interpreting Factors 2 to 4. Check your 
interpretation with that of the authors (see Answers to exercises at the end of the book).

 14.14 The meaning of negative loadings

Negative loadings mean that the variable in question is negatively correlated with the factor. 
Sometimes it could be difficult to interpret negative loadings. For instance, if you found that 
an arithmetic test was negatively correlated with a factor called ‘MENTAL ABILITY’, you 
would suspect you had done something wrong. Usually a negative loading simply means that 
the variable in question was worded in the negative. For example, look at the following items, 
which made up a factor that we called ‘EXTREME HAPPINESS’:

Item Description Loading

1 I feel content +0.75

2 I feel like singing in the rain +0.68

3 Work is wonderful +0.62

4 I feel like I love everyone +0.61

5 I feel absolutely awful -0.61

All the above load highly on the factor, except that the first four items load positively, and the 
last one loads negatively. This makes sense because ‘I feel absolutely awful’ is a negative 
statement. The first four items are clustered with what is actually the opposite of ‘I feel absolutely 
awful’. If the loading of item 5 had been positive, we would suspect we had made a mistake.

Activity 14.8

Look at the following:

Item Description Loading

1 I have a sore throat + .70

2 I am sneezing a lot + .66

3 I have a high temperature + .65

4 My legs do not ache - .64

5 I am not tired - .63

6 I feel really bad + .62

You will see that these are symptoms of a cold or influenza. Imagine a friend of yours 
is confused about the negative loadings. How would you (briefly) explain the negative 
loadings to them. (See Answers to exercises at the end of the book.)
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Activity 14.9

The following table represents correlations between three test scores:

1 2 3

1 – 0.866 0.6428

2 – 0.1736

3 – –

(a) Convert these to degrees of angle using Table 14.3.
(b) Using a ruler and a protractor, draw one diagram to represent the relationship 

between the three tests.

SPSS: factor analysis – principal components analysis

Load up your data. Choose Analyze, Dimension Reduction, then Factor:
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This gives you the following dialogue box:

The variables that you wish to factor analyse should be moved from the left into the Variables box on 
the right. Make sure you choose only the variables that should be factor analysed – it is very easy to 
make a mistake and move irrelevant variables over (e.g. group number).

In order to obtain descriptives, you click on the Descriptives option to obtain the following dialogue box:

Click on Continue to return to the previous dialogue box, then click on Extraction. The Extraction option 
gives you the following dialogue box:
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You can change the Method from PCA to one of the other ways of factor analysing your data – but PCA is the 
default. You could also choose to have the program analyse the covariance matrix rather than the correlation 
matrix. You may want to deselect the unrotated solution – at this stage, this may not be of interest to you.

The first thing we want to do is to look at the initial solution – that is, the default. We can defer 
choosing how many factors to keep until we have seen that. Thus we do not, at this stage, select how 
many factors we wish to retain. Press Continue.

Choosing Rotation will give you the following dialogue box:

Here you can select which method of rotation you require – Varimax is probably the one you would 
need. Make sure the Rotated solution option is selected. Press Continue.

Selecting Scores will give you the following:

This is where we can ask for the factor scores (the composite score made up from the variables 
correlated with the factor) to be saved; we can then use these scores in a further analysis, such a 
regression or a correlation.

Choosing Options gives the following:



CHAPTER 14 Introduction to factor analysis 471

Here the SPSS program has chosen six factors, on the basis of eigenvalues above 1; 69.9% of the variation 
in scores can be explained by these six factors. However, a seventh component has an initial eigenvalue 
of 0.94 – perhaps the researcher would want to look at that component to see if it was useful or meaningful.

Total Variance Explained

2.346 93.17312 .399

1.982 95.15513 .337

1.672 96.82714 .284

1.440 98.26715 .245

1.151 99.41816 .196

.582 100.00017 .099

2.722 90.82711 .463

3.699 88.10410 .629

4.244 84.4059 .722

4.732 80.1618 .805

5.542 75.4297 .942

5.986 69.8876 1.018

7.007 63.9005 1.191

8.057 56.8934 1.370

8.783 48.8363 1.493

38.6992.851

1.421

16.77112.766 40.0542 2.170

21.9283.728 21.92827.288 27.2881 4.639

Cumulative

%

Total % of

Variance

% of

Variance

Cumulative

%

Component Total

Rotation Sums of  Squared

Loadings
Initial Eigenvalues

Extraction Method: Principal Component Analysis.

47.0568.357

63.1441.357

1.146

7.982

55.1631.378 8.107

69.8876.742

40.0542.170

1.493

12.766

27.2884.639 27.288

Cumulative

%

Total % of

Variance

Extraction Sums of  Squared

Loadings

48.8368.783

63.9001.191

1.018

7.007

56.8931.370 8.057

69.8875.986
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Here we can see that there are six factors. Factor 1 has the most variables loading onto it. Factor 1 
might be called ‘perceived well-being’ as the items (all self-ratings) relate to how well the participants 
rate their functioning, both emotionally and physically. Stigma and self-efficacy are also included in 
this factor.

Retrospective and prospective memory and cognitive failures (CFQ) make up Factor 2, so we might call 
this factor ‘cognitive function’.

Perceived stress (pss) and anxiety load onto Factor 3.
Three measures of fatigue load onto Factor 4: reduced motivation, physical fatigue and reduced 

activity.

Rotated Component Matrixa

TOTALprospectivemem

TOTAL_retromem

.610TOTAL_selfefficacy

2.617TOTALmentalhealth

.699

TOTAL_illnessintrusive 2.705

TOTALphysicfunction

.713TOTALroleemotional

2.719TOTAL_SSCI

.864TOTAL rolephysical

3 4 5 61

Component

TOTALCFQ

2.681

2.368

.633

.724

.902

.814

.412

.405

.465

.386

.584

.809

2

.828

.912

.934

TOTALredactivity_fatigue

TOTALmental_fatigue

TOTALphysicall_fatigue

TOTALredmotiv_fatigue

TOTALHADSdepress

TOTAL_pss

TOTALHADSanxiety

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 7 iterations.
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Although there are two loadings onto Factor 5, Anxiety (.465) has already been loaded onto 
Factor 3 (- .681). As .465 is lower than .681, and there is only one other variable loading on this factor, 
we may decide not to keep this factor, or indeed Factor 6.

As SPSS recalculates the variance when we change the number of factors to keep, let’s try keeping 
5 Factors.
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Here we have gone back via Analyze, Dimension Reduction and Factor, and we have chosen the 
Extraction option. We have changed the number of factors to five. Then we press Continue.

We have also chosen to ask the program to display the factor scores by choosing Scores and selecting 
the appropriate option:

Total Variance Explained

2.346 93.17312 .399

1.982 95.15513 .337

1.672 96.82714 .284

1.440 98.26715 .245

1.151 99.41816 .196

.582 100.00017 .099

2.722 90.82711 .463

3.699 88.10410 .629

4.244 84.4059 .722

4.732 80.1618 .805

5.542 75.4297 .942

5.986 69.8876 1.018

7.007 63.9005 1.191

8.057 56.8934 1.370

8.783 48.8363 1.493

38.8232.809

1.467

16.52512.766 40.0542 2.170

22.2993.791 22.29927.288 27.2881 4.639

Cumulative

%

Total % of

Variance

% of

Variance

Cumulative

%

Component Total

Rotation Sums of  Squared

Loadings
Initial Eigenvalues

Extraction Method: Principal Component Analysis.

47.4508.627

63.9001.390 8.175

55.7251.407 8.275

40.0542.170

1.493

12.766

27.2884.639 27.288

Cumulative

%

Total % of

Variance

Extraction Sums of  Squared

Loadings

48.8368.783

63.9001.191 7.007

56.8931.370 8.057
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Then press Continue. This time the output shows us the components with five factors:
The amount of variance explained by keeping five factors is 63.9%. We could go back and look at other 
factor solutions, but we wouldn’t want a solution where the amount of variance accounted for was 
lower than 63%. We now look carefully at the rotated component matrix and ensure that we have given 
each factor an appropriate name.
Note that mental fatigue doesn’t show as loading onto a factor because it is lower than our criterion 
value which we set at .45.

Anxiety has loaded onto Factors 4 and 5. We might say that Factor 4 is depression, and Factor 5 is 
stress-anxiety.

You can see, then, that the researchers need to be able to use their skill and judgement in interpreting 
the results from a factor analysis.

Rotated Component Matrixa

TOTALprospectivemem

TOTAL_retromem

.565TOTAL_selfefficacy

2.678TOTALmentalhealth

2.681TOTAL_illnessintrusive

.710TOTALroleemotional

.711TOTALphysicfunction

2.738TOTAL_SSCI

.863TOTAL rolephysical

3 4 51

Component

TOTALCFQ

.613

.587

.407

.552 2.585

.832

.873

.432

.714

2

.836

2.304

.347

.901

.923

TOTALredactivity_fatigue

TOTALredmotiv_fatigue

TOTALphysicall_fatigue

TOTALmental_fatigue

TOTALHADSdepress

TOTAL_pss

TOTALHADSanxiety

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 6 iterations.

Discover the website at www.pearsoned.co.uk/dancey where you can test your knowledge with multiple 
choice questions and activities, discover more about topics using the links to relevant websites, and explore 
the interactive flowchart designed to help you find the right method of analysis.

http://www.pearsoned.co.uk/dancey
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 1. In order to name factors that have been extracted, researchers look at:

(a) The rotated factor loadings
(b) The unrotated factor loadings
(c) The table of eigenvalues
(d) None of the above

 2. The differences between factor analysis and principal components analysis are relatively unimportant 
when the dataset is:

(a) Large and the participant numbers are high
(b) Large and the participant numbers are low
(c) Small and the participant numbers are high
(d) Small and the participant numbers are low

 3. A factor is thought of as an underlying latent variable:

(a) That is influenced by observed variables
(b) That is unexplained by unobserved variables
(c) Along which individuals differ
(d) Along which individuals are homogeneous

 4. Look at the following diagram.

Multiple choice questions

Variable 1

Variable 2

Summary

In this chapter we have given you a brief 
introduction to factor analysis/principal components 
analysis. We have:

• given you a conceptual understanding of factor 
analysis

• explained the similarities and differences of the 
most common form of factor analysis (principal 
axis factoring) and principal components analysis

• explained how to carry out a factor analysis on 
SPSS

• shown you how to interpret the output from 
such an analysis

• taken you through one example from the psycho-
logical literature in detail (Alexander et al., 1999)

• used several other examples in order to illustrate 
this important statistical technique.
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These variables are:

(a) Perfectly related to each other
(b) Totally unrelated to each other
(c) Share a moderate correlation with each other
(d) None of the above applies

 5. A vector is:

(a) A curved line with an indefinite length
(b) A straight line with an indefinite length
(c) A straight line with a definite length
(d) A curved line with a definite length

 6. Factor analysis deals with:

(a) Patterns of correlations
(b) Patterns of mean values
(c) Frequency counts
(d) None of the above

 7. Factor analysis requires that variables:

(a) Are not related to each other
(b) Are related to each other
(c) Have only a weak relationship with each other
(d) Are measured in the same units

 8. Using the correlational matrix to perform factor analysis rather than the variance–covariance matrix 
ensures that the data:

(a) Will be statistically significant
(b) Are standardised
(c) Are unstandardised
(d) None of these

 9. The decision on how many factors to keep is decided on:

(a) Statistical criteria
(b) Theoretical criteria
(c) Both (a) and (b)
(d) Neither (a) nor (b)

 10. The original unrotated matrix is usually rotated so that:

(a) The factors are more significant
(b) The mathematical calculations are easier
(c) Interpretation is easier
(d) All of these

 11. A scree plot is a number of:

(a) Variables plotted against variance accounted for
(b) Variables plotted against factor loadings
(c) Factors plotted against correlation coefficients
(d) None of the above
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 12. It is possible to extract:

(a) As many factors as variables
(b) More factors than variables
(c) More variables than factors
(d) None of the above

Questions 13 to 15 relate to the following output:

 13. How many components have an eigenvalue above 1?

(a) 3
(b) 4
(c) 5
(d) 6

Total Variance Explained

22 .240

11 .717

10 .752

12 .671

13 .615

14 .561

15 .524

16 .488

17 .462

18 .412

19 .364

20 .315

21 .299

9 .779

8 .863

7 .972

6 1.139

5 1.176

4 1.305

3 1.511

2 2.030

1 5.804

Cumulative

%Total

% of

Variance

% of

Variance

Cumulative

%Component Total

Rotation Sums of  Squared LoadingsInitial Eigenvalues

Extraction Method: Principal Component Analysis.

3.051 80.546

2.795 83.341

2.552 85.893

2.382 88.275

2.218 90.493

2.099 92.593

1.872 94.465

1.656 96.120

1.431 97.551

1.357 98.908

1.092 100.000

3.259 77.495

3.419 74.236

3.541 70.817

3.925 67.276

4.420 63.351

5.177 58.931

5.344 53.754

5.930 48.410

6.869 42.480

34.8772.438 11.081

42.4801.673 7.603

9.227 35.611

23.7955.235 23.79526.383 26.383
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 14. If a three-factor solution is retained, approximately how much variance has been accounted for?

(a) 43%
(b) 35%
(c) 24%
(d) 10%

 15. How many variables were in this analysis?

(a) 3
(b) 10
(c) 22
(d) Impossible to tell

 16. What is the minimum number of participants recommended for a factor analysis?

(a) 50
(b) 70
(c) 100
(d) 500

Questions 17 to 20 relate to the table and text below.

Romero et al. (2003) investigated the components of self-control construct in the general theory of crime, 
evaluated by various questionnaires. They found that the analysis ‘extracted 4 factors with eigenvalues 
greater than 1, which together explained 57.31% of the variance. The factors resulting from the rotation 
are listed in the table below (F1–F4)’.

F1 F2 F3 F4

I like to take chances 0.78

The things I like to do best are dangerous 0.75

I enjoy roller coaster rides 0.63

Even when I’m not in a hurry, I like to drive at high speeds 0.62 0.40

I enjoy activities where there is a lot of physical contact 0.54

The best way to solve an argument is to sit down and talk 
things out, even if it takes an hour

-0.80

If someone insulted me, I would be likely to hit or slap them 0.61

I like to read books -0.57

I’d rather spend my money on something I wanted now 
than to put it in the bank

0.79

If I see something in a store that I want, I just buy it 0.77

I don’t deal well with anything that frustrates me 0.81

I really get angry when I ride behind a slow driver 0.72

 17. Which factor represents ‘risk seeking’?

(a) Factor 1
(b) Factor 2
(c) Factor 3
(d) Factor 4

CHAPTER 14 Introduction to factor analysis
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 18. Which factor represents ‘non-verbal orientation’?

(a) Factor 1
(b) Factor 2
(c) Factor 3
(d) Factor 4

 19. On Factor 2, only one of the items is positive. This is because:

(a) The authors have made a mistake
(b) The positive item is coded in the opposite way to the other two items
(c) The three items are coded in the same direction
(d) There is no significance in the direction of the loadings

 20. Only the most ‘significant’ loadings are shown in this table. This is because it is customary to blank 
out loadings below:

(a) 0.4
(b) 0.5
(c) 0.6
(d) 0.7

Alexander, B., Brewin, C. R., Vearnals, S., Wolff, G. and 
Leff, J. (1999) ‘An investigation of shame and guilt in a 
depressed sample’, British Journal of Medical Psychol-

ogy, 72: 323–38.

Boddington, E. and McDermott, M. (2013) ‘Predicting 
resistance to health education messages for cannabis use: 
the role of rebelliousness, autic mastery health value and 
ethnicity’, Journal of Health Psychology, 18(2): 157–66.

Engel de Abreu, P. M. J., Abreu, N., Nikeado, C., Puglisi, M., 
Tourinho, C., Miranda, M., Befi-Lopes, D., Bueno, O. and 
Martin, R. (2014) ‘Executive functioning and reading 
achievement in school: a study of Brazilian children 

assessed by their teachers as “poor readers”’, Frontiers in 

Psychology, 5, Article 550.

Gilbert, P., Pehl, J. B. and Allan, S. (1994) ‘The phenomenology 
of shame and guilt: an empirical investigation’, British 

Journal of Medical Psychology, 67(1): 23–36.

Kristiansen, R.E. and Kuczaj II, S.A. (2013) ‘The use of a 
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 15.1 Multivariate statistics

We introduced the concept of multivariate statistics when explaining factor analysis. As dis-
cussed, in Chapter 14, multivariate statistics are extensions of the simpler univariate (and bivari-
ate) techniques to the situations where we have more than one DV as well as one or more IVs. 
In this chapter we will give a brief introduction to multivariate analysis of variance (MANOVA). 
The reasons for this are twofold. First, this technique is a logical extension of the ANOVA 
models we have already described (in Chapters 10 and 11) – in fact, ANOVA is really a special 
case of MANOVA. Second, SPSS uses MANOVA as the basis of its within-participants 
ANOVA; therefore it will be useful for you to have some idea of the logic and rationale behind 
such analyses. It will also help you understand the various details on the printout of both 
MANOVA and within-participants ANOVA.

CHAPTER OVERVIEW

So far all of the analyses we have covered in this book, with the exception of factor analysis, have 

been univariate analyses. In this chapter we will describe another multivariate technique that is an 

extension of ANOVA: this is multivariate analysis of variance. It is not our intention in this chapter to 

give you a thorough grounding in multivariate analysis of variance (MANOVA); rather we wish to give 

you a feel for what such methods offer us.

In this chapter we will explain:

■ what MANOVA is

■ the assumptions underlying the use of MANOVA, including:

– multivariate normality

– homogeneity of variance–covariance matrices

■ MANOVA with:

– one between-participants IV and two DVs

– one within-participants IV and two DVs

– each of these will be IVs with two conditions

– post-hoc testing of the contribution of each individual DV to the multivariate difference between 
conditions of the IV.

Introduction to 

multivariate analysis of 

variance (MANOVA) 15
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 15.2 Why use multivariate analyses of variance?

Why should we use multivariate analysis of variance when we have perfectly adequate univari-
ate ANOVA to use? Quite often we may have research questions where univariate ANOVA is 
not adequate. For example, suppose like Van Cappellen et al. (2016) you were interested in the 
effects of religion on well-being. You might want to compare the well-being of churchgoers 
with that for atheists. Here we have an IV of belief (churchgoers vs atheists) and a DV of well-
being. But what do we mean by well-being and, perhaps more importantly, how do we measure 
it? There are many possible answers to this question: for example, well-being might be meas-
ured using a number of possible indices, including:

• optimism about the future

• happiness

• enthusiasm for life

• satisfaction with personal relationships.

Which of these indices of well-being is the most suitable? There is no right or wrong answer 
to such a question: to a certain extent it depends on the particular circumstances of the people 
you may ask. However, if you did use these indices as a guide to well-being, you would prob-
ably find that each index would give you a different pattern of findings. For example, someone 
with a terminal illness might not be optimistic about the future but might have high levels of 
satisfaction with personal relationships and high enthusiasm for life, whereas another person 
might feel optimistic about the future but might have low satisfaction with personal 
relationships.

Because well-being has many facets, the sensible thing to do is to look at all such indices 
and then see whether churchgoers will be different overall from atheists. If we were to collect 
all this information, we could then conduct several t-tests to see which group had higher levels 
of well-being. If we opted for this approach, we would conduct a separate t-test with each of 
our measures of well-being as a DV and see if there were any differences between the two 
groups (IV) on these separately. We could then look at the overall pattern of these t-tests to give 
us an indication of which group, if any, came out best in terms of well-being.

Can you identify any problems with such an approach? The main problem was described 
to you earlier (see page 309) when we discussed post-hoc testing. If we take all these 
measures and conduct separate t-tests, we increase the familywise error rate and as a result 
we increase the likelihood of making a Type I error. Remember, the more t-tests you do on 
a set of data, the more likely it is you will make a Type I error. What we really need is to be 
able to analyse all these indices (DVs) in one analysis. Fortunately, this is where multivariate 
statistics are useful. Multivariate statistics will allow us to analyse all our indices (DVs) in 
one analysis.

 15.3 Multivariate analysis of variance

In Chapters 10 and 11 we explained ANOVA to you. In all the examples we gave in those chap-
ters, we had one or more IVs with only one DV. MANOVA allows us to have more than one IV 
along with more than one DV. You can see that in this book we have progressed from tests that 
allow one IV and one DV, through those that have one DV and one or more IV, to MANOVA, 
where we can have more than one IV and more than one DV:
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 15.4 Logic of MANOVA

The logic of MANOVA is quite simple when thought of in the context of ANOVA. In ANOVA 
we partition the variability in the DV into that attributable to the IVs and their interaction plus 
that attributable to error. Obviously in MANOVA, because we have multiple DVs, things are 
not quite as straightforward. When we have multiple DVs, MANOVA simply forms a linear 
combination of the DVs and then uses this linear combination in the analysis in place of the 
individual DVs. That is, it combines the DVs into a new variable and then uses this new variable 
as the single DV in the analyses. Consequently, the analysis tells us whether there is any effect 
of the IVs on the linear combination of the DVs. This is obviously an oversimplification but is 
in essence all that MANOVA does.

Using our example of the well-being of churchgoers and atheists, we would put all of the 
indices of well-being into the analysis as DVs and have an IV of belief (churchgoers or atheists). 

one DV and one IV with two conditions (t-test)

one DV and one IV with more than two conditions (one-way ANOVA)

one DV and one or more IVs, each with two or more conditions (factorial ANOVA)

one DV with two or more IVs (multiple regression)

two or more DVs with one or more IVs (MANOVA)

Activity 15.1

For which of the following studies would MANOVA be the appropriate analyses?

(a) A researcher, interested in the effects of overcrowding on trains, conducts a study 
comparing the stress experienced by commuters with that experienced by leisure 
travellers. Stress is measured using a heart-rate monitor at the end of each 
journey.

(b) A researcher wants to find out if ‘a bit of naughtiness’ is good for your health. He 
compares one group who are allowed to have treats (e.g. eating chocolate or 
drinking beer) during one year and one group who are to abstain from such treats. 
Health is measured by number of illnesses in that year and a full fitness check at 
the end of the year.

(c) A researcher wants to find out if males or females are more anxious about statis-
tics. Groups of male and female students are given a questionnaire that measures 
several components of statistics anxiety (e.g. fear of statistics teachers, fear of 
asking questions in class).

(d) Researchers are trying to find out whether listening to music is good for revision. 
They think that listening to classical music will be better than rock music. They 
compare two groups of students, one listening to classical music and one listening 
to rock while revising for exams. They want to see whether there is a difference 
between the two groups in terms of overall exam performance.
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MANOVA would then combine the DVs and assess the amount of variability in this combined 
score that is attributable to the IV.

We have stated that MANOVA assesses the degree to which the IVs account for the variance 
of a linear combination of the DVs. A linear combination is a simple additive combination of 
the DVs. For example:

Well-being = Happiness + Enthusiasm + Optimism + Relationships

or perhaps:

Well-being = (3 *  Happiness) + Enthusiasm + (Optimism *  2) + Relationships

Hence, we are simply combining the variables (adding them) in the ways illustrated above. 
A common instance of a linear combination of variables is when psychologists combine subtest 
scores on a questionnaire to form a total test score. For example, the Profile of Mood States 
questionnaire measures a number of mainly negative mood states as subtests (e.g. depression 
and anxiety) and then sums these to get an overall measure of mood disturbance. The total score 
on the questionnaire is simply a linear combination of the subtest scores. Thus:

Mood Disturbance = Depression score + Anxiety score + c

You are also already familiar with linear combinations in multiple regression. The linear 
regression equations we introduced in Chapter  12 are excellent examples of linear 
combinations:

y = b1x1 + b2 x2 + b3  x3 c +  a

In this equation we are predicting y from a linear combination of the IVs (x1, x2 and x3).
You may, at this point, be wondering how MANOVA decides, from all the possible combina-

tions of the DVs, which is the most appropriate combination for the analysis. This is a good 
question, given that for any set of DVs there will be an infinite number of ways of combining 
them. Essentially, MANOVA uses the combination of the DVs that maximises the differences 
between the various conditions of the IVs. In order to find such a combination, MANOVA uses 
a number of heuristics (rules of thumb). When you see your output for MANOVA in SPSS you 
will notice that there are four different statistics that are computed in order to calculate the 
F-value. These are:

1. Wilks’ lambda (l)
2. Pillai’s trace
3. Hotelling’s trace
4. Roy’s largest root.

These tests use different rules of thumb for combining the DVs in order to maximise the 
 differences between the conditions of the IVs, and then calculate an F-value. We will discuss 
these further when we go through the MANOVA printout.

Activity 15.2

Which of the following are linear combinations?

(a) a + b + c + d + e
(b) A * B * C * D * E
(c) (a + b + c + d + e)/2
(d) Extroversion + (2 * Neuroticism) - (3 * Psychoticism)
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 15.5 Assumptions of MANOVA

As with any parametric statistics there are a number of assumptions associated with MANOVA 
that have to be met in order for the analysis to be meaningful in any way.

 15.5.1 Multivariate normality

If you think back to the assumptions underlying the use of ANOVA, you should recall that one 
of these is that we have normally distributed data. Not surprisingly, we have a similar assump-
tion underlying the use of MANOVA. However, the assumption for MANOVA is a little more 
complex. In this case we have to ensure that we have multivariate normality: that is, each of the 
individual DVs and all linear combinations of these DVs should be normally distributed.

In practice, assessment of multivariate normality is difficult because we would have to look 
at the distributions of each DV and all possible linear combinations of these to check that they 
are normal. Given that there are an infinite number of ways to form linear combinations of the 
DVs, it would be extremely difficult to check all of them to ensure that they are all normally 
distributed. It is, therefore, recommended that we at least check each DV to ensure they are 
normally distributed. It is worth noting that MANOVA is still a valid test even with modest 
violations of the assumption of multivariate normality, particularly when we have equal sample 
sizes and a reasonable number of participants in each group. By ‘reasonable’ we mean that for 
a completely between-participants design you have at least 12 participants per group and for a 
completely within-participants design at least 22 participants overall. It therefore makes sense, 
when planning to use MANOVA, to ensure that you have at least satisfied these conditions; you 
will then not need to worry too much if you have modest violations of this assumption.

 15.5.2 Homogeneity of variance–covariance matrices

The second assumption underlying the use of MANOVA is that we should have equal variance–

covariance matrices. Put simply, this assumption is equivalent to the assumption of homogeneity 
of variance for the univariate statistics we have covered earlier in the book. The variance– covariance 
matrix is like the correlation matrices that we showed you in Chapter 6. In a correlation matrix 
the values off the diagonal are correlation coefficients. In a variance–covariance matrix the off-
diagonal elements are called covariances. Covariances are essentially correlations but are calcu-
lated from the raw scores in the sample rather than from standardised scores as is the case with 
Pearson’s Product Moment Correlation. The elements along the diagonal are variances. Variance–
covariance matrices are the inputs for a number of the multivariate statistical techniques that are 
commonly used in psychological research. We will not attempt to explain this much further as it 
means going into matrix algebra, and you would never forgive us if we did that. It is enough for 
you to know that this assumption is equivalent to the homogeneity of variance assumption appli-
cable with other parametric tests. If you are interested in reading more about this, however, there 
are good explanations in the texts listed at the end of this chapter. If you think of this assumption 
as being similar to the assumption of homogeneity of variance, that should suffice for now.

In general, when you have equal sample sizes this assumption is not too much of a problem. 
However, if you do find that you have unequal sample sizes, you will need to consult a more 
advanced text for guidance.

There is a test of the assumption of homogeneity of variance–covariance matrices that can 
be run in SPSS called Box’s M test. If this test is significant (p 6 0.05), you have a violation 
of this assumption and you need to consider the various options to ensure that your MANOVA 
is reliable. In practice, however, Box’s M test is a conservative test and so it is of most use when 
you have unequal and small sample sizes.
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Example

Let us assume that we have conducted the well-being study described earlier in this chapter but we have 
decided to use only two indices of well-being, Happiness and Optimism. We have then obtained the 
appropriate data (see Table 15.1) from 12 people who are regular churchgoers and 12 who are atheists.

Churchgoers Atheists

Happiness Optimism Happiness Optimism

4.00 3.00 5.00 3.00

5.00 4.00 4.00 4.00

5.00 8.00 8.00 5.00

6.00 7.00 9.00 4.00

6.00 6.00 7.00 2.00

6.00 5.00 6.00 3.00

7.00 6.00 7.00 4.00

7.00 6.00 5.00 3.00

7.00 5.00 6.00 2.00

8.00 5.00 4.00 4.00

8.00 7.00 5.00 5.00

9.00 4.00 6.00 3.00

X
-
= 6.50 X

-
= 5.5 X

-
= 6.00 X

-
= 3.50

SD = 1.45 SD = 1.45 SD = 1.54 SD = 1.00

95% CI = 5.58–7.42 95% CI = 4.58–6.42 95  % CI = 5.02–6.98 95% CI = 2.86–4.14

Table 15.1 Data for the well-being experiment

Before we conduct the MANOVA we need to look at descriptive statistics in order to ensure that the 
assumptions for MANOVA are not violated.

We should initially establish that the data for each DV for each sample are normally distributed. For 
this we can get SPSS to produce box plots, histograms or stem and leaf plots. The box plots for the data 
in Table 15.1 are presented in Figure 15.1.

You can see from these box plots that for both DVs in both conditions the distributions are approxi-
mately normal. These findings, along with the fact that we have equal numbers of participants in each 
condition, mean that we can continue with our MANOVA with some confidence that we do not have 
serious violations of the assumption of multivariate normality.

The second assumption, that of homogeneity of variance–covariance matrices, is assessed by looking 
at the MANOVA printout, and therefore we will go through this shortly.

Before we conduct the MANOVA it is instructive to look at the plots of the means and 95% confidence 
intervals around the means for the two DVs separately (see Figure 15.2).
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Figure 15.1 Box plots for the Happiness and Optimism ratings for churchgoers and atheists
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Figure 15.2 Means and 95% CI around the means for the Happiness and Optimism ratings for churchgoers  
and atheists
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Figure 15.2 suggests that there is a real difference between the two groups in terms of their 
Optimism, but not necessarily in terms of Happiness ratings. You should be able to see that there 
is no overlap of the 95% CI for Optimism, but there is a large overlap for Happiness.

When we conduct the MANOVA on these data we get the following printout from SPSS:

Belief 1.00

2.00

NValue Label

Churchgoers

Atheists

12

12

Between-Subjects Factors

Box’s Test of Equality of Covariance Matricesa

Tests the null hypothesis that the observed covariance

matrices of  the dependent variables are equal across groups.

a. Design: Intercept 1 Belief

Box’s M

F

df1

df2

Sig.

1.508

.453

3

87120.000

.715

Multivariate Testsa

a. Design: Intercept 1 Belief

b. Exact statistic

Pillai’s Trace

Wilks’ Lambda

Hotelling’s Trace

Roy’s Largest Root

Pillai’s Trace

Wilks’ Lambda

Hotelling’s Trace

Roy’s Largest Root

Value

.969

.031

31.164

31.164

.418

.582

.719

.719

Hypothesis df

2.000

2.000

2.000

2.000

2.000

2.000

2.000

2.000

Error df

21.000

21.000

21.000

21.000

21.000

21.000

21.000

21.000

Effect

Intercept

Belief

Sig.

.000

.000

.000

.000

.003

.003

.003

.003

327.224b

327.224b

327.224b

327.224b

7.547b

7.547b

7.547b

7.547b

F

Levene’s Test of Equality of Error Variancesa

Happiness

F df1 df2 Sig.

.000 1 22

22 .223

1.000

1

Tests the null hypothesis that the error variance of  the

dependent variable is equal across groups.

a. Design: Intercept 1 Belief

1.571Optimism

Activity 15.3

What do the error bars in Figure 15.2 suggest to you?
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The first part of the printout gives us a test of the assumptions that we outlined earlier. We are 
given a test of the assumptions of homogeneity of the variance–covariance matrices (Box’s M). If 
this has an associated p-value of less than 0.05, we have violations of the assumption of homogeneity 
of the variance–covariance matrices. Given that this test, in the above printout, has a p-value that 
is greater than 0.05, we can assume that we have not violated this assumption. If you get a violation 
of this assumption and you have unequal sample sizes, you should use alternative analyses and 
perhaps consult one of the recommended statistical texts detailed at the end of the chapter.

The rest of the printout relates to the actual analyses. You can see that SPSS gives us both 
multivariate and univariate analyses for the IVs and DVs. The multivariate statistics inform us 
of the effects of the IV on a linear combination of the DVs, whereas the univariate statistics give 
us the ANOVA results of the IV with each DV separately.

 15.6 Which F-value?

As we explained earlier, SPSS gives us several different multivariate tests: that is, it uses several 
different ways of combining the DVs and calculating the F-value. These tests are:

• Wilks’ lambda (l)

• Pillai’s trace

• Hotelling’s trace

• Roy’s largest root.

Ordinarily you will find that these different tests give you F-values that are the same as or 
at least very similar to each other, and so it does not really matter which of these you report. 
However, if you conduct an analysis and get different F-values from these tests, you need to 
decide which one to use. As is often the case in statistics, there is some debate as to which is 
the most appropriate statistic to report. For example, Olson (1976) has argued strongly that we 
should report Pillai’s trace whereas Stevens (1979) argues that any apart from Roy’s largest root 
is appropriate. In fact Steven’s seems to prefer Wilk’s lambda. You will probably see in the 

Tests of Between-Subjects Effects

a. R Squared 5 .030 (Adjusted R Squared 5 2.014)

b. R Squared 5 .414 (Adjusted R Squared 5 .387)

Dependent Variable

Happiness

Optimism

Happiness

Optimism

Happiness

Optimism

Happiness

Optimism

Happiness

Optimism

Happiness

Optimism

Type III Sum

of Squares

1.500

24.000

937.500

486.000

1.500

24.000

49.000

34.000

988.000

544.000

50.500

58.000

Mean

Square

1.500

24.000

937.500

486.000

1.500

24.000

2.227

1.545

F

.673

15.529

420.918

314.471

.673

15.529

Source

Corrected Model

Intercept

Belief

Error

Total

Corrected Total

Sig.

.421

.001

.000

.000

.421

.001

df

1

1

1

1

1

1

22

22

24

24

23

23

a

b
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literature that Wilk’s lambda is reported the most often and thus this is the one that we suggest 
you report.

The Wilks’ lambda F-value reported in the above printout shows that the combined DVs 
 significantly distinguish between the two belief groups. That is, given that the null hypothesis is 
true, the probability of finding a multivariate difference between the two belief groups as large as 
that observed with these data is so small that it is unlikely to be the result of sampling error. When 
we say multivariate difference, we simply mean a difference in terms of the linear combination of 
the DVs. Consequently, if we are to assume that these DVs measure well-being, we would conclude 
that there was a difference between the well-being of churchgoers and atheists.

Activity 15.4

Which of the following represents a method of calculating multivariate F-values in 
SPSS?

(a) Hotelling’s trace
(b) Phil’s mark
(c) Seth’s weakest link
(d) Wilks’ lambda (l)
(e) Hayley’s gamma
(f) Pillai’s trace
(g) Crossroad’s track
(h) Roy’s largest root

 15.7 Post-hoc analyses of individual DVs

It is apparent from the above SPSS printout that we have a significant multivariate difference 
between our two belief groups. What does this actually mean? The problem we face in answer-
ing this question is similar to that which we face with ANOVA when we find a main effect of 
an IV with three or more conditions. The ANOVA simply tells us that there is a difference due 
to our IV. We subsequently have to carry out post-hoc (or a priori) analyses to find out where 
the difference(s) is (are). In the multivariate analyses, where we have more than one DV, once 
we find a multivariate difference, we need to find out which DVs are contributing to this dif-
ference. We need to do this because it is likely, especially if we have many DVs, that not every 
DV will contribute to the overall difference that we have observed.

In order to establish which DVs are contributing to this effect, we have to conduct post-hoc 
univariate analysis of the individual DVs. As with post-hoc analyses of ANOVA designs, there 
is a variety of ways in which we can proceed with post-hoc analysis, and different authors prefer 
different techniques. If we get a multivariate difference for a two-group IV design, as we have, 
one approach recommended by Stevens (2001) is simply to conduct univariate t-tests and adjust 
the α to take account of the number of analyses we are conducting. Such an adjustment of α is 
necessary to control the familywise error rate. You came across this problem in Chapters 7, 10 
and 11. This is the approach that we will take; however, for a fuller discussion on this topic you 
are advised to consult one of the texts suggested at the end of the chapter.

The approach recommended by Stevens (2001) is to set a level for your overall α (we will 
set ours at 5%) and then divide this by the number of comparisons that you are going to make. 
We have two DVs, therefore we will need two t-tests, and thus our α for each t-test should be:

0.05 , 2 = 0.025
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We then conduct our t-test analyses on both our Optimism and Happiness DVs separately with 
belief area as the IV in each case, setting our alpha for each at 0.025. If we find the probabilities 
associated with our t-tests are at or around the 0.025 level then we can feel relatively confident 
that our findings are unlikely to have arisen due to sampling error.

If we had five DVs we would need to conduct five t-tests (one for each DV). We would 
therefore divide the 5% α by 5:

0.05 , 5 = 0.01

In this case we would need to set our α for each t-test at 1% (remember that 5% is equal to a 
probability of 0.05 and 1% is equivalent to 0.01).

When we conduct the post-hoc analyses of our DVs we get the following results:

T-TEST

Group Statistics

Happiness

Optimism

Std. Deviation

1.44600

1.53741

1.44600

1.00000

Std. Error Mean

.41742

.44381

.41742

.28868

Mean

6.5000

6.0000

5.5000

3.5000

N

12

12

12

12

Belief

Churchgoers

Atheists

Churchgoers

Atheists

Happiness

Optimism

Equal variances

assumed

Equal variances

not assumed

Equal variances

assumed

Equal variances

not assumed

.000 1.000 .821

.821

22

21.918

.421

.421

.50000

.50000

.60927

.60927

1.571 .223 3.941

3.941

22

19.563

.001

.001

2.00000

2.00000

.50752

.50752

Independent Samples Test

Levene’s

Test for

Equality of

Variances t-test for Equality of Means

Std. Error

Difference

Mean

Difference

Sig.

(2-tailed)dftSig.F

You can see from these t-tests that only the Optimism DV has an associated probability of being 
due to sampling error if the null hypothesis was true that is less than the 2.5% level of α. We 
should, therefore, conclude that the two groups (churchgoers and atheists) differ only in terms 
of their level of optimism. If you look back at the error bar charts that were presented in 
 Figure 15.2 you will see that these analyses confirm the impression we gained from those. If 
we are to assume that this is a valid measure of well-being, it appears that there is a difference 
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between these two groups in terms of their well-being. This point illustrates that even though 
we have conducted some quite sophisticated analyses on our data, we still have to relate our 
findings to the real world; we have to make the judgement of whether or not optimism on its 
own is a sufficient indicator of well-being. If the answer to such a question is ‘no’, our analyses 
suggest that overall there is no difference in well-being between the two communities beyond 
that which is attributable to differences in optimism.

You should note that the univariate F-values reported in the original analyses are equivalent 
to the t-tests (the F-values are simply the t-values squared). You could, therefore, use these to 
establish which DVs are contributing to the multivariate effects, but you should still set your α 
at 0.025. There is, though, some debate about whether we need to include such a Bonferroni 
adjustment of the post-hoc univariate tests. Some have argued that the follow-up univariate 
analyses are protected Fs: that is, they are protected against Type I errors because we need to 
obtain a significant overall multivariate effect before we look at them. However, the consensus 
of opinion now seems to be that this is not the case and we should make some form of adjust-
ment to our criterion for significance to guard against inflating Type I errors in these univariate 
follow-ups (e.g. see Bray and Maxwell, 1982).

 15.8 Correlated DVs

The above post-hoc procedure is recommended when we have DVs that are not correlated with 
each other. Problems arise, however, when the DVs are correlated. The reason why such prob-
lems arise is not hard to explain. When we get a multivariate difference in our DVs, we then 
have to evaluate the contribution of each DV to this overall effect (as we have just done). If we 
have uncorrelated DVs, this means that there is no overlap between their contribution to the 
linear combination of the DVs. In such a situation, the univariate tests give a pure indication of 
the contribution of each DV to the overall difference. A simple analogy should help you under-
stand what we mean here. Suppose that you find some oil and water in a container and you want 
to know how much of each liquid you have. If you poured this into a measuring beaker, you 
would probably find that the oil and water did not mix. The oil would separate out on top of the 
water. Therefore you could tell simply by looking how much each liquid contributed to the total 
in the beaker (see Figure 15.3(a)). This is similar to the case when you have uncorrelated DVs: 
because they do not mix (they are uncorrelated) we can tell the relative contribution of each to 
the combined DVs by looking at the individual t-tests.

When we have correlated DVs, however, it is a bit like having a mixture of alcohol and water 
rather than oil and water. If you had unknown quantities of alcohol and water in a beaker, you 
could not tell by looking how much of each liquid you had because they mix (Figure 15.3(b)). 

Figure 15.3 Illustration of the way (a) oil and water and (b) alcohol and water mix

(a) (b)

Oil and water

separate out

Alcohol and

water not

separated out
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In order to calculate how much of each liquid you had, you would have to use some complex 
procedure for separating the liquids (e.g. distillation). The same applies when you have corre-
lated DVs. We cannot tell by looking at the t-tests what is the relative contribution of each 
because the contributions of the DVs are mixed up, rather like the alcohol and water. Therefore, 
to calculate the relative contribution of each DV you need to use rather complicated procedures 
for separating out the contribution of each DV (e.g. discriminant functions analysis or stepdown 
analysis). Such analyses are beyond the scope of this introduction to MANOVA but the two 
recommended texts give good discussions of this issue. We have highlighted the problem here 
so that you are aware that it exists.

The DVs in our example are not correlated (see SPSS output below) and therefore we can 
use t-tests to calculate the relative contribution of each DV to the combined DVs.

CORRELATIONS

.166

.437

24

Correlations

1

24

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

Happiness

Optimism

1

24

.166

.437

24

Happiness

Optimism

 15.9 How to write up these analyses

The textual part of your analysis might look like this:

Box plots showed that the data for each DV in each condition of the IV were approximately 
normally distributed and therefore, given that there were equal sample sizes, we can be rea-
sonably confident that we have no major violations of the assumption of multivariate normal-
ity. Box’s M test indicated that there was also no violation of the assumption of homogeneity 
of the variance–covariance matrices. Error bar charts showed that there was quite a large 
difference, with no overlap of the 95% CIs, between the two groups in terms of their opti-
mism but the difference in terms of happiness was relatively small and this was associated 
with a large overlap of the 95% CIs.

The well-being data were analysed with a one-factor belief (religious vs atheist) MANOVA 
with Optimism and Happiness scores as DVs. The analysis revealed that there was a signifi-
cant multivariate difference between the two groups (F (2,21) = 7.55, p = 0.003;
Wilks> l = 0.582). As the two dependent variables were not significantly correlated 
(r = 0.17, n = 24, p = 0.44), independent t-tests were conducted on the DVs separately. These 
analyses showed that there was a significant difference between the two groups in terms of 
optimism (t (22) = 3.94, p = 0.001) but no such difference in terms of happiness ratings 
(t (22) = 0.82, p = 0.42).

Note: You could, if you wish, simply report the univariate F details instead of the t-tests when 
reporting the analysis of the individual DVs. Reporting the univariate Fs is the best approach 
when you have more than three conditions in your IVs.
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Example from the literature

Narcissistic personality disorder and self-esteem

In a study reported by Marissen et al. (2016) they examined the mask model of narcissism which states 
that low implicit self-esteem in narcissistic individuals is masked by high explicit self-esteem. They tested 
this model by comparing naricissistic personality disorder (NPD) patients with cluster C personality 
disorder (CPD) patients and a group of age and education matched healthy controls on three measures 
of self-esteem; implicit, explicit and discrepant self-esteem. They conducted a one-way MANOVA with 
patient group as the IV and the self-esteem scores as the three DVs. Here is how they reported their 
MANOVA:

Scores on explicit and implicit self-esteem were compared between NPD, cluster C PD and healthy 
controls. MANOVA’s Pillai’s Trace statistic revealed a significant difference between groups on implicit, 
explicit, and discrepant self-esteem [V = 0.26, F (4, 114) = 4.33, p = 0.003]. Levene’s test of equality 
indicated that for the self-esteem IAT and discrepancy scores variance in groups was differently 
distributed (respectively p = 0.01, p = 0.004). To follow up the results from the MANOVA, separate 
one-way ANOVAs were conducted on implicit and explicit self-esteem. Analysis indicated a significant 
difference between groups on RSES (F (2, 57) = 9.26, p 6 0.001). Post-hoc Bonferroni corrected 
tests revealed a significant difference on RSES scores between cluster C PD and healthy controls 
(p 6 0.001), but no significant differences between cluster C and NPD patients. Also, there were no 
differences between NPD and healthy controls on RSES scores. Hence, patients with cluster CPD 
showed lower explicit self-esteem compared to healthy men, but not compared to NPD patients. Also, 
NPD patients exhibited explicit self-esteem levels similar to the healthy controls. Most importantly, 
groups did not differ on SE-IAT scores [F (2, 57) = 0.49, p = 0.62]; both patient groups report similar 
implicit self-esteem levels compared to a healthy control group. However, the one-way ANOVA of 
discrepancy scores did show a significant effect [F (2, 57) = 4.15, p = 0.02]. The Bonferroni post-hoc 
test showed that this effect was due to a significant difference on discrepancy scores between 
cluster CPD and healthy controls (p = 0.02). There was no difference between NPD and cluster CPD, 
or between NPD and healthy controls. Hence, the effect was largely caused by larger discrepancy 
score of cluster CPD patients. This indicated that cluster CPD patients exhibited a greater difference 
between self-reported self-esteem versus implicit self-esteem.

This is a good example as they indicate that they have used appropriate Bonferroni adjustments for the 
follow-up univariate ANOVAs.

SPSS: conducting MANOVA with one between-
participants IV and two DVs

To conduct a MANOVA on our data for optimism and happiness from earlier in the chapter, you need 
to set up three variables in the data window. The first will be the grouping variable (IV) and the two 
remaining variables will contain the information about Optimism and Happiness rating for each person 
(DVs).

Once you have input the data, you should click on the Analyze and General Linear Model options. 
When you are conducting an analysis for a completely between-participants MANOVA, you then need 
to click on the Multivariate option:
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The following dialogue box should then appear:

You should move the variables across to the relevant boxes. The two DVs should be moved to the 
Dependent Variables box and the IV should be moved to the Fixed Factor(s) box.
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In order to get SPSS to display tests of homogeneity of variance, etc., you need to click on the Options 
button. You will be presented with the following dialogue box:

If you want SPSS to give you a test of homogeneity of the variance–covariance matrices (Box’s M 
test), you should check the Homogeneity tests option. It is useful to get measures of the effect size, 
therefore you should also select this option. Once you have made your selections, click on Continue 
and you will get back to the previous screen. You then need to click on the OK button to proceed with 
the analysis. The output will be similar to that presented earlier.

 15.10 Within-participants designs

One point we should clarify is that multivariate analyses of variance are not simply within-
participants ANOVAs. Although the multiple DVs are, strictly speaking, within-participants 
measures, the analyses of these are different from the analyses of within-participants IVs. The 
key distinction here is between DVs and IVs. Remember that MANOVA deals with multiple 
DVs whereas within-participants ANOVA deals with within-participants IVs.

For example, suppose we wanted to find out whether a new therapy for spider phobia was 
effective. We could measure participants’ fear of spiders, give them the new therapy and then 
measure their fear of spiders after the therapy. If the therapy were effective, we would expect 
the participants’ fear of spiders after therapy to be lower than before therapy. An important 
consideration in such a study is how we measure fear of spiders. There are a number of ques-
tionnaires that may be useful, such as the Fear of Spiders Questionnaire (FSQ: Szymanski and 
O’Donohue, 1995). The FSQ is an 18-item questionnaire designed to assess spider phobia. 
Szymanski and O’Donohue found that the questionnaire was able to discriminate successfully 
between spider-phobics and non-phobics and was more sensitive than other questionnaires to 
decrements in fear following treatment. This then would seem an ideal candidate for measuring 
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fear of spiders. The total score on the questionnaire gives an indication of a person’s level of 
fear of spiders. The higher the score on the questionnaire, the higher the fear.

In our study we could, therefore, give participants the FSQ before and after treatment. We 
could then compare the two scores using a t-test to see if there was any decrease in FSQ score 
after treatment. Although this study would be fine, it would be good to include a different 
measure of spider fear. One such measure is the Behavioural Approach Test (BAT), which 
involves participants being asked to move nearer a live spider in stages until eventually the 
spider is placed in the palm of their hand (see Öst, Stridh and Wolf, 1998). Participants can 
stop this process at any stage and we thus get a behavioural measure of their fear of spiders. 
Öst et al. had 13 stages in their procedure and participants were given a score depending upon 
how near they got to the spider. A score of 0 was given if the participant refused to enter the 
room where the spider was (maximum fear) and a score of 12 was given if the participants 
were able to have the spider in the palm of their hand for at least 20 seconds (minimum fear). 
In our study we could include both of the FSQ and the BAT as measures of fear of spiders in 
order to assess as many aspects of fear as possible. We have a self-report measure (FSQ) where 
a high score equals high fear and a behavioural measure (BAT) where a high score equals low 
fear.

Clearly this is a within-participants design as we are testing the same participants before and 
after their treatment for spider phobia. The data for 22 participants from such a study along 
with the means, SDs and 95% confidence intervals are presented in Table 15.2.

Our initial step in analysing the data should be to ensure that our data do not violate the basic 
assumptions underlying the use of MANOVA. The SPSS box plots are presented in Fig-
ures 15.4(a) and (b).

Figures 15.4(a) and (b) show that we have no obvious outliers and that our data are reason-
ably normally distributed. We can therefore assume that we have not violated the assumption 
of multivariate normality.

We can also get SPSS to produce the error bar graphs for the 95% confidence intervals 
around the mean (Figures 15.5(a) and (b)).

Figure 15.4 Box plots for (a) scores on the FSQ and (b) scores from the BAT in the pre- and posttreatment conditions
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Pretreatment Posttreatment

FSQ BAT FSQ BAT

 92  8  51 11

126  2 120  5

126  7 111  8

121 10  84  8

 84  4  67  6

 67  4  45  6

 19 10  21 11

 65  5  96  7

 73  1  55  7

107  5  91  6

101  0  72  3

 83  6  63  6

110  7 109  8

 21 11  31 11

 68  8  69  9

 42  4  67  3

106  9 110  9

 89  6  75 10

 88  5  91  6

 33 10  41 10

 55  6  56  5

 33  7  42 10

X
-
=77.68, SD=33.19 X

-
=  6.14, SD  =  2.96 X

-
=  71.23, SD  =  27.67 X

-
=7.50, SD  =  2.44

95% CI  =  62.97–92.40 95% CI  =  4.82–7.45 95% CI =  58.96–83.49 95% CI  =  6.42–8.58

Table 15.2 Possible data for the study investigating the effects of treatment on fear of spiders

It can be seen from Figures 15.5(a) and (b) that there is a substantial overlap of the 95% CIs 
for the FSQs pre- and posttreatment. We would probably find that there is no significant 
difference between these two measures. The overlap in 95% CIs for the BAT scores is a good 
deal less, but we could still not tell from these whether or not there is likely to be a significant 
difference between these two measures. We thus appear to have a possible difference in the 
behavioural measure of fear of spiders but not the self-report measure.
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 15.10.1 MANOVA printout

The MANOVA printout for the fear of spiders data is presented below:

Figure 15.5 Error bar graphs for (a) the FSQ scores and (b) the BAT scores pre- and posttreatment
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BAT_PostTreatment

1

2

1

2
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Dependent VariableBefore_and_AfterMeasure

BAT

b. Exact statistic

a. Design: Intercept

 Within Subjects Design: Before_and_After

Multivariate Testsa

Pillai’s Trace

Wilks’ Lambda

Hotelling’s Trace

Roy’s Largest Root

Pillai’s Trace

Wilks’ Lambda

Hotelling’s Trace

Roy’s Largest Root

Between Subjects Intercept 

Within Subjects Before_

and_After

ValueEffect
Hypothesis

df
Error df Sig.

Partial Eta

Squared
F

20.000

20.000

20.000

20.000

.008

.008

.008

.008

.000

.000

.000

.000

.379

.379

.379

.379

.956

.956

.956

.956

2.000

2.000

2.000

2.000

.379

.621

.611

.611

.956

.044

21.680

21.680

216.797b

216.797b

216.797b

216.797b

6.110b

6.110b

6.110b

6.110b

2.000

2.000

2.000

2.000

20.000

20.000

20.000

20.000
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Mauchly’s Test of Sphericitya

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is

proportional to an identity matrix.

b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are

 displayed in the Tests of Within-Subjects Effects table.

a. Design: Intercept

 Within Subjects Design: Before_and_After

Within Subjects Effect

Before_and_After

Measure

FSQ

BAT

Lower-bound

1.000

1.000

Huynh-Feldt

1.000

1.000

Epsilonb

Greenhouse-

Geisser

1.000

1.000

Sig.

.

.

df

0

0

Approx.

Chi-Square

.000

.000

Mauchly’s

W

1.000

1.000

Multivariatea,b

c. Exact statistic

a. Design: Intercept

 Within Subjects Design: Before_and_After

b. Tests are based on averaged variables.

Pillai’s Trace

Wilks’ Lambda

Hotelling’s Trace

Roy’s Largest Root

Value

.379

.621

.611

.611

Hypothesis df

2.000

2.000

2.000

2.000

Error df

20.000

20.000

20.000

20.000

Within Subjects Effect

Before_and_After

Sig.

.008

.008

.008

.008

Partial Eta

Squared

.379

.379

.379

.379

6.110c

6.110c

6.110c

6.110c

F

Univariate Tests

Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Source

Before_and_After

Error

(Before_and_After)

Measure

FSQ

BAT

FSQ

BAT

Sig.
Partial Eta

Squared

.113

.113

.113

.113

.002

.002

.002

.002

.115

.115

.115

.115

.365

.365

.365

.365

F

2.731

2.731

2.731

2.731

12.084

12.084

12.084

12.084

Mean

Square

458.273

458.273

458.273

458.273

20.455

20.455

20.455

20.455

167.797

167.797

167.797

167.797

1.693

1.693

1.693

1.693

df

1

1.000

1.000

1.000

1

1.000

1.000

1.000

21

21.000

21.000

21.000

21

21.000

21.000

21.000

Type III Sum

of Squares

458.273

458.273

458.273

458.273

20.455

20.455

20.455

20.455

3523.727

3523.727

3523.727

3523.727

35.545

35.545

35.545

35.545
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We can see from this analysis that we have an effect of the within-participants IV on the linear 
combination of the DVs, which is unlikely to have arisen by sampling error. We can see this by 
looking at the ‘Multivariate’ table in the ‘Tests of Within-Subjects Effects’ section of the print-
out. Thus, we have a multivariate difference between the pre- and posttreatment conditions. You 
should be able to see that we have a Wilks’ l of 0.621, which equates to an F-value of 6.11 and 
a p-value of 0.008. As with the between-participants analysis presented previously, we now need 
to examine the relative contribution of each of the DVs to this multivariate difference.

 15.10.2 Evaluation of each DV

In order to evaluate each DV, we first need to see whether they are correlated; we can check this 
by conducting Pearson’s product moment correlations. The correlations are shown below (the 
ones we are interested in are those in the shaded boxes):

It is evident from the above correlation coefficients that there is no correlation between the two 
DVs beyond that attributable to sampling error. We can therefore investigate the relative contri-
bution of each DV to the linear combination of the DVs examining the ‘Univariate Tests’ table 

Tests of Within-Subjects Contrasts

Source

Before_and_After

Error

(Before_and_After)

Measure

FSQ

BAT

FSQ

BAT

Before_and_After

Linear

Linear

Linear

Linear

Sig.

.113

.00

.115

.3652

F

Partial Eta

Squared

2.731

12.084

Mean

Square

458.273

20.455

167.797

1.693

df

1

1

21

21

Type III Sum

of Squares

458.273

20.455

3523.727

35.545

Tests of Between-Subjects Effects

Transformed Variable: Average

Source

Intercept

Error

Measure

FSQ

BAT

FSQ

BAT

Sig.

Partial Eta

Squared

.000

.000

.872

.882

F

143.555

156.457

Mean Square

243913.091

2045.455

1699.091

13.074

df

1

1

21

21

Type III Sum

of Squares

243913.091

2045.455

35680.909

274.545

Correlations

FSQ_PreTreatment Pearson Correlation

BAT_Pre

Treat ment

BAT_Post

Treat ment

Sig. (2-tailed)

N

2.315

.154

22

2.305

.168

22

2.352

.108

22

2.270

.224

22

Pearson Correlation

Sig. (2-tailed)

N

FSQ_PostTreatment



Statistics without maths for psychology502

which comes as part of the MANOVA output (remember, if you get correlated DVs, you should 
consult a more advanced text). We can consult these instead of conducting t-tests as they give 
us the same results.

From the univariate tests printout it is clear that only the behavioural measure of fear (BAT) 
significantly contributes to the difference in the combined DVs, and that there is no difference 
in the self-report measure of fear (FSQ) pre- and posttreatment beyond that attributable to 
sampling error.

You might write up these analyses as follows:

Box plots showed that the data for each DV in each condition of the IV were approximately 
normally distributed and therefore we can be reasonably confident that we have no major 
violations of the assumption of multivariate normality. Error bar charts showed that there 
was substantial overlap of the 95% CIs for the FSQ pre- and posttreatment, suggesting no 
real effect of treatment on this measure of fear. The overlap in CIs for the BAT measure was 
not nearly as large and so there may have been more effect of treatment on the behavioural 
measure of fear.

A repeated-measures MANOVA with one within-participants factor of treatment (pre- vs 
post-) was conducted with FSQ and BAT scores as the dependent variables. This revealed 
that there was a significant multivariate difference between the pre- and posttreatment condi-
tions (F(2,20) = 6.11, p = 0.008, Wilks> l = 0.621). As the two dependent variables were 
uncorrelated, separate univariate ANOVAs were conducted on each of the dependent varia-
bles. These analyses suggested that there was a contribution of the behavioural measure of 
fear (BAT) to the multivariate difference between the pre- and posttreatment conditions 
(F(1,21) = 12.08, p = 0.002). However, there was no contribution of the scores on the FSQ 
to the multivariate difference between the pre- and posttreatment conditions 
(F(1,21) = 2.73, p = 0.113). The confidence interval for the difference between the pre- and 
posttreatment conditions for the BAT showed that the population mean difference is likely 
(95%) to fall between -2.18 and -0.55.

Note: As with the between-participants design, you could report t-test details here instead 
of the univariate F analyses.

Example from the literature

Secret Agent Society social and emotional skills intervention for autism 
spectrum disorder children

In a study reported by Sofronoff et al. (2015) they evaluated the impacted of an intervention to improve 
the social and emotional skills of autism spectrum disorder children. As part of the intervention the 
children play with a computer game called the Secret Agent Society which draws on CBT techniques to 
help improve children’s social and emotional skills. The researchers tested the social and emotional skills 
of the children before the intervention, immediately post-intervention and then again at six-week follow 
up. Here is how they report one of their MANOVAs which evaluated the impact of the intervention on 
child behaviour problems and parents self-efficacy:

A one-way repeated-measures MANOVA was conducted on the CAPESDD Total Score and Total Parent 
Efficacy Score. CAPES-DD and Total Parent Efficacy were the two dependent variables, and Time of 
Assessment (Time 1, Time 2, and Time 3) was the within-subjects factor. The results showed a sig-
nificant multivariate effect of Time on the combined dependent variables, F (4, 37) = 4.28,
p 6 .001; Pillai>s Trace = 0.32; ηp2 = .32, indicating a large effect size observed power = .89. Uni-
variate follow-up analyses indicating a significant effect for Time for the CAPES-DD with the 
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Huynh–Feldt correction applied,  F (1.63, 65.40) = 11.16, p 6 .001, ηp2 = .22; observed power =
.98; and a significant effect of Time for Total Parent Efficacy with Sphericity Assumed, 
F (2, 80) = 7.59, p = .001, ηp2 = .16; observed power = .94. Pairwise comparisons showed that the 
mean score for CAPES-DD Time 3 was significantly lower than Time 1, p = .001, and Time 2, p = .007, 
indicating a decrease in parent-reported child problem behaviors when compared with baseline. 
There was no significant difference between the scores on the CAPES-DD at Time 1 and Time 2, 
indicating that child problem behaviors did not decrease during baseline. Pairwise comparisons indi-
cated that the mean score for post-intervention data (Time 3) on the Total Parent Efficacy score was 
significantly different from Time 1, p = .008, and Time 2, p = .006, with scores on Time 3 significantly 
higher indicating a significant increase in parents’ self-reported efficacy to manage child problem 
behaviors. There was no significant difference between the scores on Total Parent Efficacy at Time 1 
and Time 2 (see Table 4).

Although this is generally well reported it is not clear from the paper whether or not they utilised a 
Bonferroni adjustment of α for the follow-up analyses.

SPSS: one within-participants IV and two DVs

In order to analyse the fear of spiders study data, we need to set up four variables:

1. Pretreatment FSQ score
2. Posttreatment FSQ score
3. Pretreatment BAT score
4. Post-treatment BAT score.

Once you have set up the variables and entered your data, you should click on Analyze followed by 
General Linear Model, and then select the Repeated Measures option:
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You should be presented with the following dialogue box. This box is exactly the same as the boxes 
we showed you earlier (Chapters 10 and 11) – when we explained how to use repeated-measures 
ANOVA. As before, you need to define your repeated-measures variables. You can see below that we 
have simply called the repeated-measures variable in our study Before_and_After and that it has two 
conditions.

Earlier (Chapters 10 and 11) we told you that after defining the within-participants variables you 
should click on the Define button. When we are using multivariate analyses, however, we need to specify 
how the DVs are to be recognised. We have two DVs, each measured in both conditions of the IV. In the 
Measure Name box we need to indicate what the two DVs are to be called. Remember that the names 
you input here should be different from any of the variable names that you have already set up. You can 
see from the diagram that we have called the first DV FSQ and the second DV BAT. When you have the 
correct details in this dialogue box, you should click on the Define button.
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You will notice that in the Within-Subjects Variables box you have two slots available for the FSQ DV 
and two slots available for the BAT DV. You should move the relevant variables across from the variable 
list to fill these slots. We have two variables set up for each DV and so you need to move the FSQ vari-
ables (FSQ_PreTreatment and FSQ_PostTreatment) across to fill the FSQ slots and the two BAT variables 
(BAT_PreTreatment and BAT_PostTreatment) across to fill the BAT slots. You should then select the 
Options button to request effect-size calculations (see below).

Once you have set up the options to your satisfaction, you should click on Continue and OK to run the 
analysis. The resulting printout should resemble the one we presented earlier.
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SPSS exercises

Exercise 1

An oil company has invented two new forms of fuel that are compatible with petrol engined cars. One 
of the fuels is made out of carrot juice (of course, this will also help the driver to see better at night); 
the other is made from mushy peas (not as useful for night driving but very green). Before the company 
markets the fuel, it wishes to find out which fuel is the best. The company decides to conduct some 
road trials with 12 cars running on the carrot juice fuel and 12 cars running on the mushy pea fuel. Each 
car is driven non-stop for 12 hours at a constant 70 kilometres per hour. The company decides that it 
should compare the fuel using several different indices, two of which are ratings out of 10 for damage 
to the engine of the cars (as assessed by a mechanic) and number of kilometres travelled per litre of 
fuel. The following are the data from this study:

Summary

In this chapter we have given you a brief 
introduction to multivariate statistical techniques. 
We have explained:

• that multivariate analyses are used where we 
have one or more IVs with more than one DV

• how MANOVA is an extension of ANOVA

• that MANOVA forms a linear combination of your 
DVs and then looks for a difference between the 
conditions of your IV in terms of this linear 
combination of DVs

• the assumptions that underlie the use of 
MANOVA:

• that multivariate normality means we have 
normally distributed DVs and all linear 
combinations of the DVs

• that homogeneity of the variance–covariance 
matrices is equivalent to the homogeneity of 
variance assumption underlying ANOVA and it is 
assessed by generating the Box’s M test

• that SPSS has several ways of working out the 
multivariate F, which are:

– Wilks’ lambda

– Pillai’s trace

– Hotelling’s trace

– Roy’s largest root

• that the most commonly reported value is Wilks’ 
lambda

• that when you get a significant multivariate 
F-value you need to find out which DVs are 
contributing to this by conducting univariate 
analyses on each of the DVs

• that you need to adjust your α when you 
conduct more than one univariate test after your 
MANOVA

• that you have to be careful when you have 
correlated DVs, as this makes the task of 
examining the individual DVs with univariate 
statistics more complicated.

Discover the website at www.pearsoned.co.uk/dancey where you can test your knowledge with multiple 
choice questions and activities, discover more about topics using the links to relevant websites, and explore 
the interactive flowchart designed to help you find the right method of analysis.

http://www.pearsoned.co.uk/dancey
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Carrot juice fuel Mushy pea fuel

Engine condition rating km per litre Engine condition rating km per litre

4 10 3 14

5 10 6 14

8  9 4 14

5  9 5 12

6  7 5 12

2 11 9 11

4 12 6 11

7 11 2  9

3 10 7 15

6  6 7 15

7 12 8 16

5 13 6 17

Enter these data into SPSS. Conduct a MANOVA on the data and answer the following questions:

 1. Is the assumption of homogeneity of variance–covariance violated?
 2. What is the F-value as calculated by Wilks’ lambda?
 3. Is there a multivariate difference, beyond that attributable to sampling error, between the two types 

of fuel?
 4. According to the univariate F-tests, which DV(s) is (are) contributing to the multivariate difference 

between the two fuel types?
 5. Conduct correlational analyses to ensure that the univariate ANOVAs are the most appropriate way 

of examining the contribution of each DV to the combined effect of the DVs.
 6. What is the effect size of each DV separately?

Exercise 2

A beer company has formulated a new alcoholic drink that it thinks is going to revolutionise the drinking 
habits of young men. The drink is brewed like a stout but is stored and fermented like a lager and thus 
the company has called it Lout. They decide to do some testing of the drink before launching it (not 
literally) across Europe. They ask a group of 12 young men to compare the new drink with the most 
popular lager and give ratings on a number of characteristics of the drinks. On the first day of testing, 
half of the group are given six pints of Lout to drink and then give their ratings. The rest of the group 
are given the lager to drink. On the second day of testing the six men who were given Lout to drink are 
now given lager and the group who were given lager are now given Lout to drink and rate. Two of the 
rated characteristics (taste and pleasurable effects) are presented in the following table. The ratings 
are all out of a maximum of 15.
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Lager Lout

Taste Pleasurable effects Taste Pleasurable effects

 5 8  8 9

11 7 11 8

 9 2 14 7

11 3 14 7

10 4 15 2

12 7 10 3

 9 6 10 4

 6 6 15 5

 8 5 11 5

10 5 13 6

 9 5 13 6

 8 4 13 6

Enter the data into SPSS. Conduct a MANOVA on the data and answer the following questions:

 1. Is there a multivariate difference, beyond that attributable to sampling error, between the two drinks?
 2. How would you examine the relative contribution of the two DVs to the difference of the combined 

DVs? Conduct these analyses.
 3. Which DV(s) is (are) contributing to the difference in the combined DVs?

Questions 1 to 3 refer to the following study and printout:

Researchers were interested in the difference between males and females in their verbal ability. They 
thus measured writing skills and comprehension ability in a group of male and female students. The 
DVs were found not to be correlated. The following printout represents the output from a MANOVA 
conducted with their data:

GENERAL LINEAR MODEL

Multiple choice questions

GENDER 1.00

2.00

Value Label

female

male

N

10

10

Between-Subjects Factors
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Box’s Test of  Equality of  Covariance Matricesa

Tests the null hypothesis that the observed covariance

matrices of  the dependent variables are equal across groups.

a. Design: Intercept1GENDER

Box’s M

F

df1

df2

Sig.

8.486

2.488

3

58320

.058

Levene’s Test of  Equality of  Error Variancesa

Comprehension

Writing skills

F

.012

.611

Sig.

.915

.444

Tests the null hypothesis that the error variance of  the dependent variable is

equal across groups.

a. Design: Intercept1GENDER

df1

1

1

df2

18

18

Tests of Between-Subjects Effects

a. R Squared 5 .058 (Adjusted R Squared 5 .005)

b. R Squared 5 .424 (Adjusted R Squared 5 .392)

Dependent

Variable

Comprehension

Writing skills

Comprehension

Writing skills

Comprehension

Writing skills

Comprehension

Writing skills

Comprehension

Writing skills

Comprehension

Writing skills

Type III Sum

of  Squares

2.450

20.000

572.450

460.800

2.450

20.000

40.100

27.200

615.000

508.000

42.550

47.200

Mean

Square

2.450

20.000

572.450

460.800

2.450

20.000

2.228

1.511

F

1.100

13.235

256.960

304.941

1.100

13.235

Source

Corrected Model

Intercept

GENDER

Error

Total

Corrected Total

Sig.

.308

.002

.000

.000

.308

.002

df

1

1

1

1

1

1

18

18

20

20

19

19

a

b

Multivariate Testsa

a. Design: Intercept1GENDER

b. Exact statistic

Pillai’s Trace

Wilks’ Lambda

Hotelling’s Trace

Roy’s Largest Root

Pillai’s Trace

Wilks’ Lambda

Hotelling’s Trace

Roy’s Largest Root

Value

.963

.037

26.172

26.172

.426

.574

.742

.742

Hypothesis df

2.000

2.000

2.000

2.000

2.000

2.000

2.000

2.000

Error df

17.000

17.000

17.000

17.000

17.000

17.000

17.000

17.000

Effect

Intercept

GENDER

Sig.

.000

.000

.000

.000

.009

.009

.009

.009

222.465b

222.465b

222.465b

222.465b

6.308b

6.308b

6.308b

6.308b

F
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 1. What is the value of Box’s M?

(a) 8.49
(b) 58320
(c) 0.058
(d) 3

 2. What is the value of Wilks’ lambda?

(a) 9
(b) 0.574
(c) 0.742
(d) None of the above

 3. What is the most appropriate conclusion to be drawn from the above printout?

(a) There is a multivariate difference, not attributable to sampling error, between males and females
(b) Writing skills but not comprehension contributes to the difference in the combined DVs
(c) The assumption of homogeneity of variance–covariance matrices is not violated
(d) All of the above

 4. Which of the following is true of MANOVA?

(a) It analyses multiple IVs only
(b) It analyses multiple DVs with one or more IVs
(c) It can be used only with categorical data
(d) All of the above

 5. Which of the following are multivariate methods of calculating F?

(a) Wilks’ lambda
(b) Pillai’s trace
(c) Hotelling’s trace
(d) All of the above

 6. Box’s M test:

(a) Is a test of the homogeneity of variance assumption underlying ANOVA
(b) Should be ignored at all times
(c) Is a test of the homogeneity of variance–covariance matrices
(d) Is applicable only for split-plot designs

 7. If you have correlated DVs in a MANOVA with a two-group IV, you should:

(a) Cry
(b) Conduct t-test analyses of the single DVs
(c) Conduct x2 analyses of the DVs followed by t-tests
(d) None of the above

 8. For uncorrelated DVs, how do we examine the relative contributions of the individual DVs to the com-
bined DVs when our IV has only two conditions?

(a) Conduct separate t-tests and adjust α to keep down the familywise error rate
(b) Look at the multivariate effect size of the combined DVs
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(c) Check that Box’s M is significant
(d) Both (a) and (b) above

 9. If we had three DVs and found a multivariate difference, what level of α would we set for each t-test 
to keep the overall α at 5%?

(a) 5%
(b) 1%
(c) 1.67%
(d) 3.33%

 10. Which of the following are true of MANOVA?

(a) It forms a linear combination of the IVs
(b) It forms a linear combination of the DVs
(c) It is an extension of x2 
(d) It correlates the IVs with all of the DVs

 11. The assumption of multivariate normality means that:

(a) Only the DVs should be normally distributed
(b) All DVs and all IVs should be normally distributed
(c) All DVs and all possible linear combinations of the DVs should be normally distributed
(d) All of the above

 12. Which of the following are linear combinations?

(a) A + B + C + D

(b) b1x1 + b2x2 + b3x3 c + a

(c) The Lottery numbers
(d) Both (a) and (b) above

 13. Which of the following are assumptions underlying the use of multivariate statistics?

(a) Homogeneity of variance–covariance matrices
(b) That we have equal sample sizes
(c) That we have nominal-level data
(d) None of the above

 14. Which part of the MANOVA printout gives us information about differences between the conditions 
of the IVs in terms of the linear combination of the DVs?

(a) The Box’s M tests
(b) The univariate F-statistics
(c) The multivariate F-statistics
(d) All of the above

 15. If you have correlated DVs, which of the following are applicable?

(a) You should use t-tests to examine the contribution of the individual DVs to the linear combination 
of the DVs

(b) You should not use t-tests to examine the contribution of the individual DVs to the linear combina-
tion of the DVs

(c) You should not water down your alcohol
(d) Both (a) and (b) above
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Questions 16 to 20 refer to the following printout:

Mauchly’s Test of Sphericityb

Tests the null hypothesis that the error covariance matrix of  the orthonormalised transformed dependent

variables is proportional to an identity matrix.

a. May be used to adjust the degrees of  freedom for the averaged tests of  significance. Corrected tests are

 displayed in the Tests of  Within-Subjects Effects table.

b. Design: Intercept

 Within Subjects Design: condition

Within

Subjects

Effect

condition

Measure

anxiety

depress

Lower-

bound

1.000

1.000

Huynh-

Feldt

1.000

1.000

Epsilona

Greenhouse-

Geisser

1.000

1.000

Sig.

.

.

df

0

0

Approx.

Chi-Square

.000

.000

Mauchly’s

W

1.000

1.000

Within-Subjects Factors

Measure

anxiety

depress

condtion

1

2

1

2

Dependent Variable

anxiety1

anxiety2

depression1

depression2

Descriptive Statistics

Anxiety1

Anxiety2

Depression2

Depression1

Mean

39.5455

56.3636

5.8182

8.0000

Std. Deviation

16.75518

15.79797

4.17060

3.03942

N

22

22

22

22

Multivariate Testsb

a. Exact statistic

b. Design: Intercept

 Within Subjects Design: condtion

Pillai’s Trace

Wilks’ Lambda

Hotelling’s Trace

Roy’s Largest Root

Pillai’s Trace

Wilks’ Lambda

Hotelling’s Trace

Roy’s Largest Root

Intercept

condtion

Value

.964

.036

26.476

26.476

.497

.503

.989

.989

Hypothesis df

2.000

2.000

2.000

2.000

2.000

2.000

2.000

2.000

Error df

20.000

20.000

20.000

20.000

20.000

20.000

20.000

20.000

Effect

Between Subjects

Within Subjects

Sig.

.000

.000

.000

.000

.001

.001

.001

.001

264.762a

264.762a

264.762a

264.762a

9.889a

9.889a

9.889a

9.889a

F
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Multivariateb,c

a. Exact statistic

b. Design: Intercept

 Within Subjects Design: condition

c. Tests are based on averaged variables.

Pillai’s Trace

Wilks’ Lambda

Hotelling’s Trace

Roy’s Largest Root

Value

.497

.503

.989

.989

Hypothesis df

2.000

2.000

2.000

2.000

Error df

20.000

20.000

20.000

20.000

Within Subjects Effect

condition

Sig.

.001

.001

.001

.001

9.889a

9.889a

9.889a

9.889a

F

TESTS OF WITHIN-SUBJECTS EFFECTS

Tests of Within-Subjects Contrasts

Source

condition

(condition)

Measure

anxiety

depress

anxiety

depress

condition

Linear

Linear

Linear

Linear

Sig.

.006

.019

F

9.410

6.407

Mean Square

3111.364

52.364

330.649

8.173

df

1

1

21

21

Type III Sum of

Squares

3111.364

52.364

6943.636

171.636

Univariate Tests

Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Source

condition

Error(condition)

Measure

anxiety

depress

anxiety

depress

Sig.

.006

.006

.006

.006

.019

.019

.019

.019

F

9.410

9.410

9.410

9.410

6.407

6.407

6.407

6.407

Mean

Square

3111.364

3111.364

3111.364

3111.364

52.364

52.364

52.364

52.364

330.649

330.649

330.649

330.649

8.173

8.173

8.173

8.173

df

1

1.000

1.000

1.000

1

1.000

1.000

1.000

21

21.000

21.000

21.000

21

21.000

21.000

21.000

Type III Sum

of  Squares

3111.364

3111.364

3111.364

3111.364

52.364

52.364

52.364

52.364

6943.636

6943.636

6943.636

6943.636

171.636

171.636

171.636

171.636
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 16. What are the DVs in this study?

(a) Condition and intercept
(b) Anxiety and depression
(c) Greenhouse and Geisser
(d) None of the above

 17. How many conditions are there in the IV?

(a) 1
(b) 2
(c) 3
(d) 4

 18. Is there a multivariate difference between the conditions of the IV?

(a) Yes
(b) No
(c) Can’t tell from the above printout
(d) Yes but none of the DVs individually contribute significantly to the multivariate difference

 19. Which of the following would you report in a write-up?

(a) Pillai>s trace = 0.497
(b) Wilks> lambda = 0.503
(c) Hotelling>s trace = 0.989
(d) Roy>s largest root = 0.989

 20. Are there any univariate differences present?

(a) Yes, for anxiety only
(b) Yes, for depression only
(c) Yes, for anxiety and depression
(d) There are no univariate differences present

Tests of Between-Subjects Effects

Transformed Variable: Average

Intercept

Error

anxiety

depress

anxiety

depress

Type III Sum of

Squares

101184.091

2100.364

4192.909

387.636

Mean Square

101184.091

2100.364

199.662

18.459

df

1

1

21

21

Sig.

.000

.000

F

506.776

113.786

MeasureSource
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CHAPTER OVERVIEW

In previous chapters you were introduced to parametric tests. Parametric tests, as you know, have 

certain assumptions. Data need to be drawn from a normally distributed population (see Chapter 5). 

When you meet the assumptions of parametric tests, they are more powerful than non-parametric 

tests, and psychologists prefer them. In many research situations we cannot use parametric tests 

because our data do not meet the assumptions underlying their use. For example, we might have 

skewed data with very small or unequal sample sizes – we would then be unsure as to whether our 

data were drawn from a normally distributed population. Non-parametric tests make no assumptions 

about the data and you can safely use the tests described in this chapter to analyse data when you 

think you might not be able to meet the assumptions for parametric tests.

In this chapter, you will learn about alternatives to:

■ Pearson’s r (Spearman’s rho)

■ t-test (Mann–Whitney for independent samples and Wilcoxon Signed Rank Test (Wilcoxon) for related 
samples)

■ ANOVA (Kruskal–Wallis for independent samples and Friedman for related samples).

To enable you to understand the tests presented in this chapter, you will need to have an understanding 

of the following concepts:

■ one- and two-tailed hypotheses (Chapter 5)

■ statistical significance (Chapter 5)

■ confidence intervals (Chapter 4)

■ Pearson’s r (Chapter 6)

■ t-test (Chapter 7)

■ ANOVA (Chapter 10).

Non-parametric 

statistics 16
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 16.1 Alternative to Pearson’s r  : Spearman’s rho

Pearson’s r and Spearman’s rho are very similar, not surprisingly. They are both correlation 
coefficients, interpreted in the same way. Pearson’s r is used when your data meet the 
assumptions for a parametric test. Spearman’s rho is used when your data do not conform to 
these assumptions – perhaps one or more variables are ratings given by participants (e.g. the 
attractiveness of a person), or they have to put pictures in rank order of preference. In these 
cases, data might not be normally distributed. When you have small participant numbers and 
are uncertain as to whether you meet the assumptions for Pearson’s r, use Spearman’s rho. 
Spearman’s rho transforms the original scores into ranks before performing further calculations.

Look at the following data. Nine people were asked to rate the attractiveness of a target 
person, and then rate themselves (myattract) on a 10-point scale from 1 (awful) to 10 (wonderful). 
Small participant numbers, the nature of the data and the fact that many participants rated 
themselves as near-wonderful should make you suspicious about such data conforming to the 
assumptions for a parametric test.

attract myattract attract myattract

7.00 9.00 6.00 8.00

5.00 4.00 1.00 3.00

5.00 5.00 2.00 5.00

8.00 9.00 8.00 9.00

9.00 9.00

SPSS: correlational analysis – Spearman’s rho

Open your datafile. Choose Analyze, Correlate, Bivariate:



Statistics without maths for psychology518

This brings you to the bivariate correlations dialogue box, just as you learnt in Chapter 6:

However, this time you must make sure that you check the Spearman option.
Move the variables of interest from the left-hand side to the variable list on the right. To obtain 

descriptive statistics, choose Options. However, these may not be relevant. Clicking on OK obtains the 
following output:

As in the matrix from Pearson’s r, we only need to focus on one half of the matrix. You can see here that 
there are nine sets of scores, and that the correlation between the ratings given to a target person and 
oneself is 0.92. Such a strong correlation has only a very tiny chance of arising by sampling error 
(p 6 0.001) assuming the null hypothesis to be true. The way we rate others according to their 
attractiveness is related to how attractive we believe ourselves to be.

.

Correlations

9

.000

9

Sig. (2-tailed)

N

1.000.921**My attractiveness Correlation

Coefficient

99N

.000.Sig. (2-tailed)

.921**1.000Attractive of other

person

Correlation

Coefficient

Spearman’s rho

My attractivenessAttractive of

other person

** Correlation is significant at the 0.01 level (2-tailed).
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Example from the literature

Evaluation of a new measure of mood intolerance, the Tolerance of Mood 
States Scale (TOMS): psychometric properties and associations with 
eating disorder symptoms

Allen, McLean and Byrne (2012) carried out research on eating disorder symptoms in which they aimed 
to validate a new measure, the Tolerance of Mood States (TOMS). There were two TOMS scales, which 
related to the different ways people reacted to a range of mood states, e.g. sadness, anxiety, guilt etc. 
As part of this study, they examined relationships between TOMS scores and different measures of 
eating disorder symptoms. Their sample consisted of 227 first-year psychology students. Part of their 
table of correlations is reproduced below:

Spearman’s rho correlations between scores on mood intolerance measures and those on the EDE-Q.

TOMS

General Eating

Brief EDEQ .37** .31**

Binge Eating .14 .32**

Purging .18** .13

Note. Binge eating refers to the number of episodes of objective binge eating (consuming an objectively large 
amount of food and feeling out of control of one’s eating) over the past month. Purging refers to the number of 
episodes of self-induced vomiting, laxative misuse and diuretic misuse over the past month.
p 6 .05; ** p 6 .01.

The authors say: ‘Current theories of eating pathology propose that mood intolerance may account for 
the persistence of binge eating and purging in some individuals. In the current sample, TOMS scores 
correlated significantly and positively with binge eating and purging’ (p. 331).

Activity 16.1

Look at the following table, from the same article described above. In this table, the 
authors have correlated the mood states with three subscales of the Distress Tolerance 
Scale (DTS-C). The full names of these subscales were ‘Anticipate and Distract’, ‘Avoid-
ance of Affect’ and ‘Accept and Manage’. In an article by the authors of the DTS-C, it 
had been found that women with diagnosed eating disorders scored significantly higher 
on the Avoidance scale and significantly lower on the Accept scale than a control group.

Spearman’s rho correlations between scores on mood intolerance and those of the EDE-Q

DTS-C 14-item

Anticipate Avoid Accept

Brief EDEQ .15* .23** .10

Binge Eating .08 .15* .12

Purging .08 .09 .06

* p 6 .05; ** p 6 .01.

Now try interpreting the above table. Check your interpretation with ours in the 
Answers section.
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SPSS exercise

Exercise 1

A German language teacher takes a group of five students. She hypothesises that the higher the 
confidence, the better the performance. She ranks them in order of how confident they are when 
speaking (1 – extremely confident, 3 – not at all confident) and wants to correlate this with performance 
in the oral examination. A different teacher has given ratings of how well the students spoke in the oral 
exam (1 – hopeless, 5 – excellent).

Person Confidence Oral exam performance

Ahmed 2 5

Bella 3 3

Carol 1 5

Darren 4 4

Elke 5 1

Enter the data into SPSS, perform the appropriate analysis and then answer the following questions. 
Use a one-tailed hypothesis.

1. What is the value of the correlation coefficient?
2. What is the achieved significance level?
3. What can you conclude from this analysis?

 16.2 Alternatives to the t-test: Mann–Whitney and 
Wilcoxon

The Mann–Whitney and Wilcoxon tests assess whether there is a statistically significant 
difference between the mean ranks of the two conditions. The Mann–Whitney test is used when 
you have different participants in each condition. The Wilcoxon test is used when you have the 
same or matched participants in both conditions.

The Wilcoxon is equivalent to the Mann–Whitney, although the formulae for the two tests 
are slightly different, because in the Wilcoxon we can make use of the fact that the same 
participants are performing in both conditions. These tests are far simpler than the t-tests in that 
they do not involve calculations of means, standard deviations and standard errors. Both tests 
involve scores from the two conditions being ranked, and then the test statistic is calculated 
from these rankings.

 16.2.1 Mann–Whitney (independent design)

Consider the following study. Twelve participants took part in an experiment to rate the 
attractiveness of a woman and a man who were shown on a video in either a good mood or a bad 
mood. Since the participants performed under one condition only, the design is a between-
participants, or independent, design. The data given in Table 16.1 are ratings given by participants 
(out of 20) for a woman in either a good mood or a bad mood. The woman, an actor, was the 
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same individual in both conditions. There were meant to be six participants in each group, but 
unfortunately an error occurred, and one participant who was meant to be in the GOOD MOOD 
condition was accidentally placed in the BAD MOOD condition. Our experimental hypothesis 
is that there will be a significant difference between the ratings given by participants in the 
GOOD MOOD and BAD MOOD conditions. Note, for the purposes of this example, that the 
hypothesis is two-tailed: that is, we have not predicted the direction of the difference.

 16.2.2 Descriptive statistics

From the Explore procedure in SPSS, the statistics shown in Table 16.2 have been obtained.
It can be seen from Table 16.2 that ratings in the GOOD MOOD condition are higher than 

those in the BAD MOOD condition; scores in the GOOD MOOD have greater variability, as 
shown by the standard deviation. Inspection of histograms (not shown here) shows us that data 
are not normally distributed, and we have a small sample as well. Therefore the most appropriate 
measure of central tendency is the median rather than the mean. Additionally, we should not 
use the t-test, using instead its non-parametric equivalent, which in this case is the 
Mann–Whitney.

In the case of Mann–Whitney, all the participants’ scores are ranked from lowest to highest, 
and then the test calculates the number of times one condition is ranked higher than the other.

The table below shows the ratings given for the two conditions, and the ranks given to the 
scores. Although there are two conditions, both sets of scores are considered together in the 
ranking process. You have learnt how to rank scores in Chapter 3. Here the lowest score is 3 
(in the GOOD MOOD condition) and therefore this is given the first rank. The second lowest 
score is 4 (which occurs twice in the BAD MOOD condition). Therefore we have to share ranks 
2 and 3 between the two scores (2 + 3 , 2 = 2.5). Once we have ranked all the data, we add the 
ranks, separately for each condition.

GOOD MOOD BAD MOOD

7.00 4.00

15.00 6.00

14.00 11.00

3.00 7.00

17.00 9.00

4.00

7.00

Table 16.1 Ratings given by participants watching someone in a good mood or bad mood

GOOD MOOD BAD MOOD

Mean SD Median Mean SD Median

11.2 5.9 14.0 6.9 2.5 7.0

Table 16.2 Descriptive statistics obtained from the Explore procedure for participants in GOOD 
MOOD and BAD MOOD conditions
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If there is no difference between the two groups, then high ranks and low ranks will occur 
roughly equally in the two groups, and then the sum of the ranks will be similar. As you can 
see above, most of the high ranks are in one group (i.e. the GOOD MOOD group), and most 
of the low ranks in the other (the BAD MOOD group). Therefore the sum of the ranks is higher 
in the GOOD MOOD group. However, since there are different numbers of participants in the 
two conditions, we need to find the mean rank. Just looking at the data is often quite useful, but 
it is quite difficult to see whether the high and low ranks are equally distributed throughout both 
conditions just by looking at the raw data. It can be seen that the mean rank of the GOOD 
MOOD group (8) is higher than the mean rank of the BAD MOOD group (5). This tells us that 
the groups are different, and the statistic (U) that is calculated (based on the number of 
participants in each group, and the sum of the ranks) will be associated with a low probability 
value. This will tell us the likelihood of such a result occurring by sampling error. So how likely 
is it that our difference in ranks has arisen by sampling error?

GOOD MOOD

Score Rank 1

BAD MOOD

Score Rank 2

n2 5 7     S 5 38

Mean rank 5 5.4

n1 5 5    S 5 40

Mean rank 5 8

Lowest score, so

we rank this 1

6

11

10

1

12

 7.00

15.00

14.00

 3.00

17.00

 4.00

 6.00

11.00

 7.00

 9.00

 4.00

 7.00

2.5

4

9

6

8

2.5

6

SPSS: two-sample test for independent groups —  
Mann–Whitney

Choose Analyze, Nonparametric Tests, Legacy Dialogs and 2 Independent Samples:
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This opens up the Two-Independent Samples dialogue box:

Define the groups in the same way as you did for the t-test and press Continue. Make sure the Mann–
Whitney U option is checked:

Press Continue, then OK. This gives you your output.
Look at the following output from SPSS. The first section of the output shows the mean ranks of 

both groups, and the sum of ranks. You can check the number of participants in each condition:

The next section shows the value of the test statistic, in this case the Mann–Whitney U, which is 10.00.

Wilcoxon W

Mann–Whitney U

Z

Asymp. Sig. (2-tailed)

Exact Sig. [2*(1-tailed Sig.)]

b. Not corrected for ties.

a. Grouping Variable: Mood

38.000

21.229

.219

.268b

Test Statisticsa

10.000

Score

This is the probability level associated with

our two-tailed hypothesis. SPSS gives two

sorts of significance for Crosstabs and

non-parametric tests. Asymp. Sig. stands for

Asymptotic Significance and is based upon

large samples. Exact Sig. is used when the

samples are small, unbalanced or do not meet

the assumptions of normality.

38.00

Ranks

7

12

5.432.00

Total

40.005 8.001.00Score

Sum of  RanksN Mean RankMood
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 16.2.3 Important parts of the output

The output shows you the value of Mann–Whitney U, which is 10 (and also the equivalent value 
of W). We are only interested in U, however, although the conversion to a z-score is useful to 
us, because a z-score gives us a measure of effect size (see Chapter 4). The associated probability 
level is 0.22. This means that, assuming the null hypothesis to be true, there is a 22% chance 
of finding a U-value of 10. We are not willing to take such a risk, and so we conclude that we 
do not have enough evidence to conclude that participants’ ratings of attractiveness are 
influenced by whether the actor is in a good or bad mood.

The textual part of the results might read as follows:

Histograms for the two conditions were inspected separately. As data were skewed, and 
participant numbers were small, the most appropriate statistical test was Mann–Whitney. 
Descriptive statistics showed that participants who rated the attractiveness of an actor in a 
GOOD MOOD gave higher ratings (median = 14) than participants who rated her in a BAD 
MOOD (median = 7). However, the Mann–Whitney U was found to be 10 (z = -1.23) with 
an associated probability of 0.22, which shows that it is possible that the higher ratings in the 
GOOD MOOD condition were due to sampling error. There is not enough evidence, then, to 
conclude that participants are influenced by the mood of actors when making judgments on 
their attractiveness.

Example from the literature

Burnout and coping in adult and young offender centre correctional officers

Gould et al. (2013) investigated burnout and coping mechanisms in 208 correctional officers from adult 
and young offender centres. They used the Maslach Burnout Inventory, which has three subscales, and 
the COPE which also has three subscales (emotion-focused, problem-focused and dysfunction coping).

The authors say (p. 43):

Adult center and young offender center officers were compared on type of coping strategies 
employed when dealing with stress.

Independent sample t tests were used on the normally distributed data (emotion-focused coping) 
and Mann–Whitney nonparametric tests were used on skewed data (problem-focused coping and 
dysfunctional coping).

The authors are therefore using non-parametric statistics, in this case the Mann–Whitney, because the 
data for problem-focused and dysfunctional coping were not normally distributed. In respect of these 
two variables, they say:

A t test failed to indicate significant differences between the two groups of officers on the use of 
emotion-focused coping strategies, t (206) = - .935, p = .35, d = 0.16. Mann–Whitney nonparamet-
ric tests failed to indicate significant differences between the two groups of officers on the use of 
problem-focused coping strategies (U = 2867, p = .075, r = .12) and the use of dysfunctional coping 
strategies (U = 2834, p = .061, r = .13). Therefore, the two groups of correctional officers did not 
differ significantly on the type of coping mechanisms that they employed to deal with stress of the 
work environment.

Note that the authors have used t-tests for the normally distributed variables, and they have given the 
test statistic with DF, the p value, and the effect size ‘d’.

For the non-normally distributed variables, they have given the value of Mann–Whitney U, the p value, 
and the effect size ‘r’. So for dysfunctional coping strategies, U = 2834, p = 0.06,  and r = 0.13. As we 
normally think in terms of r 2 as an effect size, you need to square 0.13, which is 0.017, a weak effect.
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Example from the literature

Grief and joy: emotion word comprehension in the dementias

Hsieh et al. (2012) studied the comprehension of emotional words in people with three types of 
dementia: semantic dementia, behavioural-variant front-temporal dementia, and Alzheimer’s disease, 
as well as a healthy control group. Participant numbers ranged from 8 in the dementia groups to 15 in 
the healthy control group. They tested group differences on Cognitive, Concrete, Abstract, and Emotion 
Word Tests by a Kruskal–Wallis test and found that there were differences between the groups 
on concrete and abstract synonyms, and on components of the Graded Synonyms Test. They then used 
the Mann–Whitney test for post-hoc comparisons. They say (p. 626): ‘Post hoc comparisons revealed 
that the SD group was significantly impaired on this measure of word comprehension in comparison 
with the other dementia groups and controls (  p 6  .001 for all comparisons). No other pairwise group 
comparisons were significant (  p 7  .20)’.

Activity 16.2

Look at the following output for a Mann–Whitney analysis carried out on an experimental group vs a 
control group. The dependent variable was a rating called SCORE. The researcher hypothesises that the 
experimental group will score significantly higher.

What can you conclude from this analysis?

Wilcoxon W

Mann-Whitney U

Z

Asymp. Sig. (2-tailed)

Exact Sig. [2*(1-tailed Sig.)]

a. Not corrected for ties.

b. Grouping Variable: GROUP

31.500

22.298

.022

.018a

Test Statisticsb

3.500

SCORE SPSS gives two sorts of significance

tests for crosstabs and non-parametric

tests. Asymp. Sig. stands for Asymptotic

Significance and is based on large samples.

Exact Sig. is used when the data are small,

unbalanced or do not meet the

assumption of normality.

31.50

Mann–Whitney

Ranks

7

12

4.50control

Total

46.505 9.30experimentalSCORE

Sum of  RanksN Mean RankGROUP
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 16.2.4 Alternative to the paired t-test: the Wilcoxon

The Wilcoxon test also transforms scores to ranks before calculating the test statistic (see later 
in this chapter).

Consider the following study: general nurses were given a questionnaire that measured how 
sympathetic they were to ME sufferers; for each nurse, a total score (out of 10) was calculated. 
They then took part in an hour’s discussion group, which included ME sufferers. Later, a similar 
questionnaire was given to them. This is obviously a within-participants design, as the same 
participants are being measured in both the ‘before’ and ‘after’ conditions. We will make a 
directional hypothesis here. A directional hypothesis should be made when there is evidence to 
support such a direction (e.g. from past research). Our hypothesis is that there will be a 
significant difference between the scores before and after the discussion, such that scores after 
the discussion will be higher. Note that this is a one-tailed hypothesis because we have specified 
the direction of the difference. The nurses’ scores on the questionnaires are shown in Table 16.3.

With small samples, sometimes data are skewed and the mean may not be appropriate – in 
which case, report the median. You will need to look at histograms to discover whether this is 
the case.

Although the histogram for the BEFORE condition does not look too skewed (see  Figure 16.1), 
the AFTER condition shows negative skew (see Figure 16.2). However, the means and medians 
are very similar. Summary statistics are shown in Table 16.4.

SPSS exercise

Exercise 2

A psychology lecturer is carrying out a small pilot study to discover whether students prefer learning 
her advanced statistics module by means of traditional lectures or a problem-based learning (PBL) 
approach. There are only 12 people in the group. Six are allocated to the ‘traditional’ group and six to 
the PBL group. She thus delivers the module twice on different days (she is very keen!). As she wants 
to know what the students feel about their learning, as well as taking performance measures she asks 
them to rate their enjoyment of the course (1–7, where 1 is not at all enjoyable and 7 is extremely 
enjoyable), along with various other measures. She does not make a prediction as to which approach 
will be the more enjoyable for students. Here are the data:

PBL Traditional

5 4

7 6

4 4

5 4

7 1

6 2

Enter the data into SPSS and perform a Mann–Whitney test. Give a written explanation of the  meaning 
of the results.
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Before discussion After discussion

5.00 7.00

6.00 6.00

2.00 3.00

4.00 8.00

6.00 7.00

7.00 6.00

3.00 7.00

5.00 8.00

5.00 5.00

5.00 8.00

Table 16.3 Nurses’ sympathy scores before and after discussion

Figure 16.1 Histogram showing frequency distribution for scores in the BEFORE condition
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SD 5 1.48

Mean 5 4.8

N 5 10.00

Figure 16.2 Histogram showing frequency distribution for scores in the AFTER condition
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SD 5 1.58

Mean 5 6.5

N 5 10.00
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Box and whisker plots, again, can give you a good feel for your data (see Figure 16.3). In 
this case, the box and whisker plot confirms what we have seen from the histograms: the median 
of the AFTER condition is higher than the BEFORE condition and the BEFORE condition has 
a larger spread.

Inspection of the descriptive statistics told us that the data in the AFTER condition were 
negatively skewed. Given that this is the case and we have only ordinal data and a relatively 
small sample, we would be wise to use a non-parametric test. The most appropriate for this 
study would thus be the Wilcoxon test. There are essentially two stages in calculating the 
Wilcoxon test: (a) differences between each set of scores are obtained, and (b) the differences 
are ranked from lowest to highest. We could not do this in the case of the independent design 
because it would not make sense to find differences using different participants. Here we have 
the same participants in both conditions, and so finding the differences between the conditions 
before ranking gives us a more sensitive test. If we take the second score from the first score 
for each participant, some will have a negative difference (their rating was higher in the AFTER 
condition) and some will have a positive difference (their rating was lower in the AFTER 
condition). Some will be zero, so we ignore these because they do not give us any information. 
If there were no significant differences between the two conditions, there would be a similar 
number of pluses and minuses, as the differences between one participant and another (some 
positive, some negative) would tend to cancel each other out.

You can see from the table below that there are far more negative signs than positive. The 
test also takes into account the strength of the differences – by ranking the differences. Once 
we have found the difference between scores, we rank the scores in the same way as before, 
ignoring the signs. (Of course, we keep talking about ‘we’ doing this, and ‘we’ doing that, but 

BEFORE condition AFTER condition

X
-

SD Media X
-

SD Median

4.8 1.48 5 6.5 1.58 7

Table 16.4 Summary statistics

Figure 16.3 Box and whisker plot for BEFORE and AFTER conditions

1
N 5 10 10

BEFORE AFTER

2

3

4

5

6

7

8

9

3
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in reality it will be the statistical package that is doing it – we are only going into this detail in 
order to help you conceptualise what is happening when the test is performed.) We ignore ties 
where the difference between the two scores is zero – these are not ranked at all. The lowest 
score is 1, and there are three of them. So the mean of ranks 1, 2 and 3 is 2 ((1 + 2 + 3) , 3 = 2).

diff rank

4

2
2

7.5

2

2

7.5

5.5

2
5.5

least occurring sign (1)

22

0

21

24

21

1

24

23

0

23

This is the only

positive difference

in this dataset

The rank of the

positive sign is 2

The sum of the ranks of the least occurring sign (in the above case, the pluses) gives us our 
test statistic, which we call t. In this case, a positive rank has occurred once only. There are 
seven negative ranks. Therefore the ‘least occurring sign’ is positive. We then add up the ranks 
of the positive differences. (If there had been three participants who had scored lower in the 
AFTER condition, there would have been three positive scores; then we would have added up 
the ranks of the three pluses.) There is only one plus sign, and this has the rank of 2. Therefore, 
t = 2. What we want now is for our computer package to confirm our hand calculations and to 
give us the likelihood of t = 2 having occurred by sampling error.

SPSS: two-sample test for repeated measures —  
Wilcoxon

Choose Analyze, Nonparametric Tests, Legacy Dialogs and 2 Related Samples:
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This gives the Two-Related-Samples Test dialogue box:

Move the two variables of interest from the left-hand side to the Test Pair(s) List on the right-hand side. 
Make sure the Wilcoxon option is checked.

If you want descriptive statistics, you will need to press the Options button. Then press OK. This will 
give you the following SPSS output:

There were two ties

(we ranked these as zero)

Ranks

After Discussion – Before Discussion Negative Ranks

Positive Ranks

Ties

Total

N

1a

7b

2c

Mean Rank

2.00

4.86

Sum of Ranks

2.00

34.00

a. After Discussion , Before Discussion

b. After Discussion . Before Discussion

c. After Discussion 5 Before Discussion

10

Mean rank of the

positive cases
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The next part of our output gives the test statistics:

The two-tailed ASL is .031. This is a two-tailed probability level, however, and since we made a definite 
directional prediction, we use a one-tailed probability. To obtain this, the two-tailed probability level is 
divided by 2. Also:

1. The mean rank of the positive and negative ranks can be obtained. In our example, the mean positive 
rank = 2. This represents the smallest rank total (t) and the mean negative rank = 4.86. Verify this 
for yourself from the information above.

2. The t-score is converted into a standardised score (z-score) by SPSS. This enables you to visualise 
how large the t-score is, relative to the mean of the distribution. In our case (see output above) the 
t-score is over two standard deviations away from the mean of the sampling distribution (which is 
always 0). The ASL is given, in this case 0.016 (Exact Sig.) one-tailed.

The textual part of your results might say:

Since the sample size was small, the appropriate measure of central tendency was the median, and 
the appropriate statistical test was the Wilcoxon test. From Table X [refer your readers to the table 
where you give your descriptive statistics] it can be seen that the median of the AFTER condition 
(7.00) is higher than that of the BEFORE condition (5). The Wilcoxon test (t = 2) was converted into 
a z-score of -2.24 with an associated one-tailed probability of 0.01. It can therefore be concluded 
that the attitude towards ME by nurses is more sympathetic after the nurses have participated in a 
discussion group.

Test Statisticsa

Z

Asymp. Sig. (2-tailed)

After Discussion –

Before Discussion

22.257b

.024

b. Based on negative ranks.

a. Wilcoxon Signed Ranks Test

The t-score (which you can calculate

by hand – see above) is converted

into a z-score by SPSS

This is the two-tailed probability level

Activity 16.3

Look at the following output, where participants performed in both of the two conditions. The 
researcher hypothesised that the groups would differ, but did not make a specific prediction of direction 
of the difference:

Wilcoxon

Ranks

0c

7

Ties

Total

26.006b 4.33Positive Ranks

COND2 – COND1 2.001a 2.00Negative Ranks

Sum of  RanksN Mean Rank

a. COND2 , COND1

b. COND2 . COND1

c. COND1 5 COND2
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Example from the literature

Help-seeking attitudes and masculine norms in monozygotic male twins

Sánchez, Bocklandt and Vilain (2013) studied MZ male twins who were discordant for sexual orientation. 
MZ twins develop from the same egg and share the same genetic code. They say that in general 
heterosexual men are less favourable to asking for help compared to women and gay men, but we do 
not know the extent to which such attitudes are due to nature or nurture. One way to study this is to 
look at twins. The authors recruited 38 pairs of MZ male twins, each pair had one straight twin and one 
gay one. When comparing two independent groups, the Mann–Whitney is appropriate. However, 
MZ twins are not independent, and so it is usual to use a within-participants design for MZ twins.

The authors say:

Given the small sample size and that univariate distributions significantly deviated from normality, 
we employed nonparametric statistical tests . . . Our first aim was to compare the scores within each 
twin pair using the Wilcoxon signed-rank test. For each test pair, we entered the gay twin’s score first 
and the heterosexual co-twin’s score second.

The authors gave questionnaires measuring psychological distress, masculine norms (all of these had 
subscales) and attitude towards help-seeking.

The following (partial) table is taken from their table (p. 54):

Paired differences for SCL-90-R dimensions

Measure

Paired  
difference  
(median)

Wilcoxon signed-rank test

z p r

Somatization 0.00 -1.13 .259 .13

Obsessive-compulsive - .20 -1.66 .096 .19

Interpersonal sensitivity -0.11 -1.49 .138 .17

Depression -0.04 -0.65 .516 .07

Anxiety -0.05 -1.13 .257 .13

Hostility -0.16 -2.60 .009 .30

Phobic anxiety 0.00 -0.46 .643 .05

What can you conclude from the analysis?

a. Based on negative ranks.

b. Wilcoxon Signed Ranks Test

Z

Exact Sig. (2-tailed)

22.028a

.043

Test Statisticsb

COND2 – COND1
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Measure

Paired  
difference  
(median)

Wilcoxon signed-rank test

z p r

Paranoid ideation -0.17 -2.25 .025 .26

Psychoticism -0.10 -2.06 .040 .24

Note. Each heterosexual twin’s score was subtracted from his gay co-twin’s score. The positive r values (effect size 
estimate) mean that the heterosexual twins tended to score higher on the measure.
(Mdn (Median) is the middle value of the 38 paired differences for each measure.
For the median difference: the negative value means that the heterosexual twin scored higher.

In relation to this (partial) table of results, the authors say:

When comparing symptoms of psychological distress, the heterosexual twins scored significantly 
higher on three dimensions – hostility (Mdn = 0.34), paranoid ideation (Mdn = 0.42), and psychoticism 
(Mdn = 0.26) – than their gay co-twin (Mdn = 0.26, 0.34 and .11, respectively). As a group, the  
gay twins did not score significantly higher than their heterosexual co-twins on any of the 
SCL–90–R  . . . indices.

Note that they give the median values as text; in the table, the values are the differences between the 
two medians (paired differences).

Look at the statistically significant results in the table. Note that the r values are effect sizes.

Activity 16.4

Look at the following (partial) table of results relating to the study above.

Paired differences for Gender Role Conflict Scale (masculine norms)

Measure

Paired 
difference 
(median)

Wilcoxon signed-rank test

z p r

Gender Role Conflict Scale Total -9.00 -2.29 0.022 0.26

Success, power and competition subscale 1.00  –.01 0.922 –0.10

Restrictive emotionality subscale -2.00 -0.74 0.460 0.08

Restrictive affectionate behaviour between 
men subscale

-0.700 -4.51 0.000 0.52

Note. Each heterosexual twin’s score was subtracted from his gay co-twin’s score. The positive r values (effect size 
estimate) mean that the heterosexual twins tended to score higher on the measure. Median is the middle value of 
the 38 paired differences for each measure.
For the median difference: the negative value means that the heterosexual twin scored higher.

The following paragraph is taken from the article (p. 54). Using the information from the table above, 
choose the most appropriate word (emboldened text):

The final set of comparisons was on the scores assessing emphasis of traditional masculine roles. 
Overall, the heterosexual twins reported greater/lesser emphasis with masculine roles than their 
gay co-twins. More specifically, heterosexual twins were more comfortable/uncomfortable being 
emotionally affectionate with other men than their gay co-twins.
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SPSS exercise

Exercise 3

Six students who had a phobia about mice rated their fear (1 – no fear; 5 – extreme fear) both before 
and after a behavioural programme designed to overcome that fear. The hypothesis was one-tailed: fear 
would be reduced after the programme.

Participant Before After

1 5 3

2 4 4

3 4 2

4 3 1

5 5 3

6 5 4

Enter the data into SPSS and perform a Wilcoxon test. Give a written explanation of the meaning of the 
results to your friend.

 16.3  Alternatives to ANOVA

 16.3.1 Kruskal–Wallis one-way analysis of variance (for independent 
groups)

Kruskal–Wallis is the non-parametric equivalent of ANOVA, and is a generalisation of the Mann–
Whitney test. In other words, it is like a Mann–Whitney, but is used when you have more than 
two groups. The Kruskal–Wallis is used when your data do not meet the assumptions required 
for the parametric ANOVA. You do not have to worry about the shape of the distribution of scores 
for Kruskal–Wallis; they do not need to be normally distributed. All the conditions should have 
a similar shape, however. The formula for Kruskal–Wallis is based on the ranks of the scores, 
rather than the scores themselves. The test looks for a significant difference between the mean 
ranks of some or all of the conditions (similar to ANOVA above). Again, this test will not tell you 
which conditions are different from each other – just that there is a difference, somewhere.

Just as in the Mann–Whitney, the scores are ranked across the groups. Then the mean rank for 
each group is calculated. If there are no significant differences between the groups, the mean ranks 
will tend to be similar. So far we have discussed cases where we have randomly allotted participants 
to groups. This is the best situation for us, as psychologists, because then we are more certain that our 
experimental manipulation caused the observed effect, if one is found. Sometimes, however, we want 
to find differences between already existing groups (e.g. police officers, firefighters and paramedics). 
These are sometimes called intact groups. If we wanted to find differences between people in different 
occupations, we would have to find intact groups, as it would not be possible to allocate randomly.

If you hand-calculated Kruskal–Wallis, you would arrive at a test statistic called H. Statistical 
packages often convert test statistics into another statistic – for instance, into z, or x2, and this is 
just what SPSS does. In the following example, the intact groups were: security officers (coded 3), 
college trainees (coded 4) and cooks (coded 5). Kruskal–Wallis was used here because such small 
participant numbers, and unequal groups of participants, meant that the scores on the dependent 
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variable (work experience) were unlikely to be normally distributed. The question to be answered 
was: did they differ on a measure of work experience?

Group Experience

3.00 13.00

3.00 15.00

3.00 11.00

3.00 12.00

4.00 4.00

4.00 4.00

4.00 6.00

4.00 2.00

4.00 5.00

4.00 3.00

4.00 4.00

5.00 9.00

5.00 10.00

5.00 10.00

5.00 5.00

SPSS: independent samples test for more than two 
conditions — Kruskal–Wallis

Select Analyze, Nonparametric Tests, Legacy Dialogs and K Independent Samples:
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This brings you to the following dialogue box:

Move the dependent variable from the left-hand side to the Test Variable List on the right-hand side. 
Move the independent variable (the grouping variable) from the left-hand side to the Grouping Variable 
box on the right-hand side. Then press the Define Range button. This enables you to define the range 
of the groups. Here, our groups are coded 3, 4 and 5, so the range is 3–5.
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Enter the range into the dialogue box and press Continue. Ensure that the Kruskal–Wallis H box is 
checked. If you require descriptives, press the Options button and select those you require. Otherwise, 
press OK. This gives the following output:

The first part of the output shows the mean rank of work experience for each job category. Here, secu-
rity officers have the most experience.

The test statistics show that x2 is 11.44. The achieved significance level, using the exact significance, 
is p 6 0.001.

Test Statisticsa,b

.003Asymp. Sig.

.000Exact Sig.

.000Point Probability

2df

11.442Chi-Square

Experience

a. Kruskal–Wallis Test

b. Grouping Variable: Group

Ranks

4

15

5.00

Total

7 4.21

9.13

4.00

Experience 4 13.503.00

Group N Mean Rank

 16.3.2 Pairwise comparisons

Just as in the parametric ANOVA, you cannot tell where the significant differences lie. In the 
example above, it looks clear that security officers differ from college trainees. Do they differ 
from cooks, though? What about college trainees and cooks? Unlike ANOVA, there are no 
post-hoc tests following naturally from Kruskal–Wallis or Friedman’s. You can, however, decide 
to make two comparisons by performing pairwise comparisons by Mann–Whitney tests. 
Remember that you will need to assess the value of your achieved significance level in the light 
of your knowledge of multiple testing (see Chapter 7).
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Now we come to our write-up. There is no easy way to construct confidence intervals, 
or effect sizes, because our measure of central tendency is the median rather than the mean. 
Still, you must do the best you can by reporting the descriptive statistics and giving graphical 
illustrations where appropriate. The textual part of the analysis might read as follows:

Since sample size was small, and data were not normally distributed, a Kruskal–Wallis one-
way ANOVA was performed on the three occupational groups. As expected, college trainees 
had the least work experience (median = 4 years) and security officers had the most 
(median = 12.5 years). Cooks had a median of 9.5 years. Results gave a x2 of 11.44 with an 
associated probability value of 0.003. Thus it was concluded that there are significant differ-
ences in the work experience of security officers, college trainees and cooks.

Activity 16.5

Look at the following output, which has been run on three groups of participants. The 
researcher expects that there will be a difference between the three groups, and that 
participants in condition 3 will score significantly lower than participants in the other 
two groups.

What can you conclude from this analysis?

Test Statisticsa,b

.274Exact Sig.

2df

2.586Chi-Square

RATING

a. Kruskal–Wallis Test

b. Grouping Variable: GROUP

Kruskal–Wallis

Ranks

5

16

condition 3

Total

5 9.10

5.80

condition 2

RATING 6 10.25condition 1

GROUP N Mean Rank

Example from the literature

Throat hit in users of the e-cigarette

Etter (2016) carried out a study on the use of e-cigarettes in relation to the ‘throat hit’. This is the 
specific sensation in the throat which users feel. Etter stated that the strongest throat hit was obtained 
by using e-cigarettes which had high nicotine content. Etter analysed the characteristics of the 
e-cigarette users in relation to the strength of the throat hit.

There were many comparisons, the study used ANOVAs, t-tests and chi-square tests where appropriate. 
However, Etter used Kruskal–Wallis tests for some of the variables, where medians rather than means 
were appropriate.
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Here, we reproduce the results for the Kruskal–Wallis tests:

Strength of the throat hit–current smokers (dual users)

Variable Very weak
Rather 
weak Average

Rather 
strong

Very 
strong

K-W 
test p

Tobacco cigarettes/
day nowa

8 5 5 3 9 7.0 .28

Cigarettes per day 
before they started 
using e-cigarettea

20 20 20 23 20 3.0 .69

Minutes to first 
cigarette of the day

18 18 20 15 10 2.0 .88

Strength of the throat hit–former smokers

Days since quit 
smoking

72 107 134 144 285 19.4 .001

Cigarettes per day 
before they quit 
smoking

25 20 20 22 25 10.6 .021

Minutes to first 
cigarette of the day, 
before they quit

15 10 10 10 10 3.7 .73

Numbers indicate the median for each throat hit category. For example, current (dual) smokers who 
reported a very strong throat hit smoked on average nine cigarettes a day now. The p-value shows this 
is not statistically significant (p. 95).

SPSS exercise

Exercise 4

As part of their joint year project on the usefulness of therapy for sufferers of migraine, Nyashia and 
George have randomly allotted 18 migraine sufferers to three groups. Group 1 has six one-hour sessions 
of group counselling with a trainee counsellor; group 2 has six one-hour self-help sessions (not led by 
a facilitator; the agenda is determined by the group members themselves); and group 3 consists of 
migraine sufferers who would like to take part in the group therapy or self-help, but who have to wait. 
Nyashia and George expect that the counselling and self-help groups will rate themselves as suffering 
less than the waiting list control group when they rate themselves at the second time point. At the 
beginning of the study, sufferers rate their symptoms, over the past month, from 0 (not suffering) to 5 
(terrible suffering). Fourteen weeks later, they rate their symptoms (in the past month) again. The data 
follow. Enter the data in SPSS and save this as a datafile.

Since the group sizes are small the scores are self-ratings and the data are not normally distributed; 
non-parametric tests are recommended. Perform two Kruskal–Wallis, one on the symptoms at the 
beginning of the study, and one on the symptoms 14 weeks later.

Write up the results in the form of a short paragraph, explaining the meaning of the results in terms 
of the study.
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 16.3.3 Friedman’s analysis of variance test: repeated-measures design

Friedman’s ANOVA is the non-parametric equivalent of the repeated-measures ANOVA, and is 
a generalisation of the Wilcoxon test. In other words, it is the Wilcoxon test applied to more 
than two groups. As in the Kruskal–Wallis, the formula for this test involves the ranks of the 
scores rather than the scores themselves.

The test, confusingly, is called a two-way ANOVA. This is because some people consider the 
participants as a factor, in a repeated-measures design, as we have mentioned previously 
(see  section  10.1). It is, however, what we know as a one-way. In the following output, 
participants rated how alert they felt at various times of the day (on a scale of 1–5).

Morning Lunchtime Afternoon

1.00 2.00 3.00

2.00 4.00 5.00

1.00 2.00 2.00

2.00 1.00 3.00

1.00 3.00 3.00

2.00 5.00 5.00

1.00 2.00 3.00

2.00 2.00 2.00

1.00 3.00 3.00

2.00 1.00 3.00

Group Symptom 1 Symptom 2 Group Symptom 1 Symptom 2

1.00 3.00 1.00 2.00 3.00 5.00

1.00 4.00 3.00 2.00 2.00 2.00

1.00 5.00 4.00 3.00 4.00 5.00

1.00 2.00 2.00 3.00 5.00 3.00

1.00 3.00 1.00 3.00 4.00 4.00

2.00 4.00 2.00 3.00 2.00 4.00

2.00 5.00 5.00 3.00 3.00 6.00

2.00 4.00 3.00 3.00 2.00 2.00

2.00 2.00 2.00 3.00 3.00 3.00
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SPSS: repeated-measures test for more than two 
conditions – Friedman’s test

Select Analyze, Nonparametric Tests, Legacy Dialogs and Related Samples:

This brings you to the following dialogue box:
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Move the test variables from the left-hand side to the right-hand side. Ensure that the Friedman box is 
checked. Choosing the Statistics option will enable you to obtain descriptives. Press OK. This obtains the 
following output:

The x2 value is 12.25, with an associated probability of 0.001 (Exact Sig.). The differences found between 
participants at different times of the day are unlikely to be due to sampling error.

Test Statisticsa

a. Friedman Test

.002Asymp. Sig.

.001Exact Sig.

.000Point Probability

2df

12.250Chi-Square

N 10

Activity 16.6

Look at the following output from a three-group analysis. Participants were people 
with a chronic illness, who declined to take part in a behavioural intervention designed 
to help them. Measures of depression were taken at three timepoints for all partici-
pants. The researcher predicted that there would be significant differences between 
scores at the three different timepoints, but he did not predict the direction of the 
difference.

What can you conclude from this analysis?

Friedman

Ranks

2.81TIME3

1.88TIME2

1.31TIME1

Mean Rank

Ranks

2.70Afternoon

2.00Lunch

1.30Morning

Mean Rank

Test Statisticsa

a. Friedman Test

.002Exact Sig.

2df

12.250Chi-Square

N 8
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Example from the literature

Pre-operative distress factors predicting postoperative pain

Ferland and colleagues (2016) carried out a study of pain in adolescents undergoing surgery. They 
wanted to determine whether preoperative distress factors could predict postoperative pain. As part 
of this study, they assessed the change in cortisol over time. The authors say that because levels of 
cortisol does not have a parametric distribution, a non parametric analysis of variance, i.e. Friedman’s 
ANOVA, was used to assess cortisol changes over time.

The changes were assessed at baseline, day of surgery, postoperative day 1, postoperative day 2, and 
at follow up. The authors showed that differences were observed in cortisol concentrations 
(Friedman test = 53.64, p 6 .0001).

The authors say that cortisol levels increased just before entering the operating room in comparison 
with baseline levels.

SPSS exercise

Exercise 5

Ten participants in a cognitive experiment learn low-, medium- and high-frequency words. Later they 
repeat as many words as they can remember in three minutes. The undergraduate student carrying out 
this project hypothesises that there will be a greater number of words recalled in the high-frequency 
condition. The scores under the three conditions are as follows:

Low Medium High

10.00 15.00 25.00

5.00 8.00 17.00

7.00 9.00 18.00

8.00 16.00 25.00

10.00 9.00 8.00

15.00 18.00 20.00

21.00 29.00 31.00

18.00 25.00 31.00

20.00 36.00 40.00

8.00 16.00 30.00

Perform a Friedman’s ANOVA for participants at the three timepoints. Was the hypothesis supported? 
Give your results, making sure you explain them in terms of the experiment.
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Discover the website at www.pearsoned.co.uk/dancey where you can test your knowledge with multiple 
choice questions and activities, discover more about topics using the links to relevant websites, and explore 
the interactive flowchart designed to help you find the right method of analysis.

 1. The Wilcoxon matched-pairs signed-ranks test (the Wilcoxon) is appropriate for:

(a) Within-participants designs
(b) Between-participants designs
(c) Matched-participants designs
(d) Both (a) and (c) above

 2. To assess the difference in scores from two conditions of a between-participants design, with ranked 
data, you would use:

(a) The independent t-test
(b) The Wilcoxon
(c) The Related t-test
(d) Mann–Whitney

 3. Look at the following partial printout of a Mann–Whitney U analysis from SPSS:

Multiple choice questions

68

Ranks

8

16

8.50Group 1

Total

688 8.50Group 1SCORE

Sum of  RanksN Mean Rankgroup

Summary

• The tests used in this chapter are non-parametric 
tests, to be used when it is not possible to use 
parametric tests.

• Non-parametric tests transform the data as a 
first stage in calculating the test statistic.

• Non-parametric tests do not require normally 
distributed data or large samples.

• The non-parametric equivalent of Pearson’s r is 
Spearman’s rho.

• The non-parametric equivalents of the t-test are 
Mann–Whitney for independent samples, and 
Wilcoxon for related samples.

• The non-parametric equivalents of ANOVA are 
Kruskal–Wallis for independent samples, and 
Friedman’s ANOVA for related samples.

http://www.pearsoned.co.uk/dancey
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Test Statisticsa

Mann–Whitney U

Wilcoxon W

SCORE

32.0

68.0

The above information suggests that:

(a) There will be a statistically significant difference between conditions
(b) There will not be a statistically significant difference between conditions
(c) The results are indeterminate
(d) None of the above

 4. The Wilcoxon matched-pairs signed-ranks test can be used when:

(a) There are two conditions
(b) The same participants take part in both conditions
(c) There is at least ordinal-level data
(d) All of the above

 5. The Mann–Whitney U involves:

(a) The difference in the means for each condition
(b) The sum of the ranks for each condition
(c) Finding the difference in scores across conditions, then ranking these differences
(d) The difference in ranks across conditions

 6. A Mann–Whitney test gives the following result:

U = 9, p = 0.1726 (2-tailed probability)

The researcher, however, made a prediction of the direction of the difference, and therefore needs to 
know the one-tailed probability. This is:

(a) 0.0863
(b) 0.863
(c) 0.1726
(d) Indeterminate

 7. If, in a repeated-measures design with two conditions, you have a small number of participants, with 
skewed, ordinal data, the most appropriate inferential test is:

(a) Unrelated t-test
(b) Related t-test
(c) Mann–Whitney U test
(d) Wilcoxon

 8. If a Wilcoxon test shows that t = 3 with an associated probability of 0.02, this means:

(a) Assuming the null hypothesis to be true, a t-value of 3 would occur 2% of the time through 
sampling variation

(b) We are 98% certain that our results are statistically significant
(c) Given our data, we expect to find a t-value of 3 occurring 2% of the time through chance
(d) If the null hypothesis is not true, then a t-value of 3 would occur 2% of the time through sampling 

variation
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 9. A t-value of 3 has been converted into a z-score of -3.2. This means:

(a) The calculations are incorrect
(b) There is not likely to be a statistically significant difference between conditions
(c) There is likely to be a statistically significant difference between conditions
(d) The results are indeterminate

Questions 10 to 12 relate to the following output:

 10. Which is the most sensible conclusion?

(a) There are no significant differences between the three groups, p 7  0.05
(b) There are significant differences between the groups, p = 0.003
(c) There are no significant differences between the groups, p = 0.003
(d) Impossible to tell

 11. Which group had the highest scores?

(a) Group 1
(b) Group 2
(c) Group 3
(d) Cannot tell

 12. How many participants were in the study?

(a) 5
(b) 10
(c) 15
(d) 20

Kruskal–Wallis

Ranks

5

15

3.00

Total

5 7.30

12.70

2.00

SCORE 5 4.001.00

GROUP N Mean Rank

Test Statisticsa,b

.008Asymp. Sig.

.003Exact Sig.

.003Point Probability

2df

9.785Chi-Square

SCORE

a. Kruskal–Wallis Test

b. Grouping Variable: GROUP
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Test Statisticsa

.228Asymp. Sig.

.210Exact Sig.

.210Point Probability

2df

2.960Chi-Square

N 7

a. Friedman Test

Questions 13 to 15 relate to the following output:

 13. Which is the most sensible conclusion?

(a) There are differences between the groups, but these stand a 21% chance of being due to sampling 
error

(b) There are differences between the groups, and these are unlikely to be due to sampling error
(c) There are no differences between the three groups at all
(d) None of the above

 14. How many participants were in the study?

(a) 7
(b) 14
(c) 21
(d) Cannot tell

 15. The participants were measured:

(a) At two timepoints
(b) At three timepoints
(c) At four timepoints
(d) Cannot tell

Questions 16 to 17 relate to the following table, taken from Holdcroft et al. (2003):

Friedmans

Ranks

2.21FOLLOWUP

2.29AFTER

1.50BEFORE

Mean Rank

0.3620.13

20.24

0.5520.09

0.780.04Tension

Spearman rank correlation coefficients for affective measures and pain

P valuePain

Autonomic

Fear

Punishment 0.09
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 16. Which is the most appropriate statement? In general terms, the affective measures and pain show a:

(a) Weak relationship
(b) Moderate relationship
(c) Strong relationship
(d) Perfect relationship

 17. The strongest relationship is between pain and:

(a) Tension
(b) Autonomic
(c) Fear
(d) Punishment

 18. Look at the following text, taken from Daley, Sonuga-Barke and Thompson (2003). They were making 
comparisons between mothers of children with and without behavioural problems.

Mann–Whitney U tests were used . . . significant differences indicated that mothers of children with 
behavioural problems displayed less positive initial statements (z = -4.24) and relationships 
(z = -4.25), less warmth (z = -5.08) and fewer positive comments (z = -2.82),  all p>s 6  .01 Of the 
four comparisons, which was the strongest?

(a) Initial statements
(b) Relationships
(c) Warmth
(d) Positive comments

 19. Look at the output below.

Which is the most appropriate statement? The relationship between the two ratings is

(a) Strong (rho = 0.7, p 60.000)
(b) Strong (rho = 0.6, p 60.001)
(c) Moderate (r = 0.7, p 60.001)
(d) Moderate (r = 0.6, p 60.000)

 20. Look at the following table. Professor Green predicted that strength would relate positively to 
motivation. Unfortunately the professor meant to obtain one-tailed p-values. Professor Green wants 
you to interpret the results below, for a one-tailed hypothesis.

.

Correlations

70

.000

70

Sig. (2-tailed)

N

1.000.600Rating2 Correlation

Coefficient

7070N

.000.Sig. (2-tailed)

.6001.000Rating1 Correlation

Coefficient

Spearman’s rho

Rating2Rating1
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.

Correlations

16

.094

16

Sig. (2-tailed)

N

1.000.347Motivation Correlation

Coefficient

1616N

.094.Sig. (2-tailed)

.3471.000Strength Correlation

Coefficient

Spearman’s rho

MotivationStrength

The relationship between Strength and Motivation is:

(a) Strong (rho = 0.35, p = 0.094)
(b) Strong (rho = 0.35, p = 0.047)
(c) Moderate (rho = 0.35, p = 0.094)
(d) Moderate (rho = 0.35, p = 0.047)
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Answers to multiple choice questions



Answers to activities and 

SPSS exercises

Chapter 1

Activity 1.1

• Wind speed – continuous

• Degrees offered by a university – categorical

• Level of extroversion – continuous

• Makes of car – categorical

• Division in which football teams play – categorical

• Number of chess pieces ‘captured’ in a chess game – discrete

• Weight of giant pandas – continuous

• Number of paintings hanging in art galleries – discrete

Activity 1.2

The study is a quasi-experimental design. The researcher was interested in differences between 
believers and non-believers (skeptics) in the paranormal in terms of their perceptual biases. 
The researchers have not randomly allocated the participants to the conditions of the IV (they 
were already either paranormal believers or skeptics). Thus this is quasi-experimental.

Activity 1.3

In the mirror drawing study you would introduce counterbalancing by dividing the 
participants into two groups. One group would receive the instructions emphasising accuracy 
the first time they completed the mirror drawing task, and then they would have instructions 
emphasising speed the second time. The second group of participants would complete the 
mirror drawing task first with instructions emphasising speed and then a second time with 
instructions emphasising accuracy.

Activity 1.4

To examine the causal relationship between caffeine and mathematical ability, you should 
have several groups that differ in terms of the amount of caffeine taken by participants. You 
could, for example, have four groups: one group has no caffeine, one group low levels of 
caffeine, one group moderate levels of caffeine and the final group high levels of caffeine. 
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You would then give each group the same mathematics test to complete. You could then 
compare the performance of each in the maths test to try to establish a causal relationship 
between the variables. You could also conduct the study as a within-participants design with 
each person taking part under all four conditions. Obviously in such a case you would need 
to use different but equivalent maths tests each time they completed it.

Chapter 2

SPSS exercises

Exercise 1

1. The IV in Dr Genius’s study is whether the participants were presented with adjectives 
or nouns.

2. The DV in this study is the number of words correctly remembered by each 
participant.

3. This is a between-participants design because the adjectives were presented to one group 
and the nouns to another group.

4. This is an experimental design because Dr Genius has randomly allocated the 20 partici-
pants to the two conditions.

5. The data for this particular study should be set up as shown below. There should be two 
variables. The first one should be a grouping variable and contain just a series of 1s 
and 2s. In our case, 1 might represent the adjective condition and 2 the noun condition. 
The second variable would contain the number of words remembered by each 
participant.
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Exercise 2

The data from the adjective/noun study should be input as follows if it were a within-partic-
ipants design:

When we input the data for a within-participants design we need to set up two variables, one 
for each of the conditions. The first variable we have set up is for the adjectives condition 
and the second one for the nouns condition.

Chapter 3

Activity 3.1

The most suitable sample for the rugby vs football fans study would be one group of football 
fans and one group of rugby fans (although perhaps some would argue that the group of 
chimpanzees is just as appropriate).

Activity 3.2

The means, medians and modes are as follows:

(a) Mean = 13.6, median = 12, mode = 12
(b) Mean = 6.75, median = 5, mode = 5
(c) Mean = 33.9, median = 25.5, mode = 32

Activity 3.3

The most appropriate measures of central tendency are as follows:

(a) Median
(b) Mode
(c) Mean
(d) Median
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Activity 3.4

No answers needed for this activity.

Activity 3.5

The following are the answers to the questions about the histogram:

(a) The mode is 4.
(b) The least frequent score is 8.
(c) Four people had a score of 5.
(d) Two people had a score of 2.

Activity 3.6

The following are the answers to the questions about the box plot:

(a) The median is 30.
(b) There are three extreme scores below the box plot itself.

Activity 3.7

The scattergram suggests that there is no real relationship between petrol prices and driver 
satisfaction. The dots in the scattergram appear to be randomly scattered between the axes.

Activity 3.8

The condition which has the greatest variation around the mean is the one with the poster 
of Bill Clinton. We would suggest that overall the variation around the mean for the control 
and Bill Clinton conditions are of similar magnitude. There appears to be quite a bit less 
variation around the mean in the Angela Merkel poster condition than in the other two 
conditions.

Activity 3.9

The only one of the examples given that is a normal distribution is (b).

SPSS exercises

Exercise 1

1. The IV in the lighting study is the presence or absence of red lighting.
2. The DV is the number of errors made by each data inputter.
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3. The box plot for the difference in errors between the two conditions is presented below:

(a) The shortened whisker extending from the lower edge of the box plus the fact that 
the median is nearer this edge than the middle suggests that the distribution is posi-
tively skewed.

(b) The box plot shows several outliers both above and below the inner fences. The outli-
ers are from scores 3, 4, 5, 13 and 14.

(c) The mean and standard deviation of the above set of scores can be obtained using 
the Explore option from the Summarize menu: the mean is 21.40 and the standard 
deviation 6.61.

Exercise 2

1. The IV in the drug study is whether or not the students took drugs during Dr Boering’s 
lectures.

2. The DV is the marks obtained in the end-of-term exam and this is a continuous variable 
measured with a discrete scale. It is continuous because the underlying knowledge of 
students of the subject tested in the exam is assumed to be continuous. It is simply meas-
ured on a discrete scale (%).
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3. The histograms for the data from each condition are as follows:

(a) One could perhaps argue the case for both sets of scores being approximately nor-
mally distributed. The most frequently occurring scores are in the middle of the 
distributions and they tail off above and below the modes.

(b) Fortunately, the means and standard deviations for both sets of scores are presented 
with the histograms. Ordinarily we would have used the Explore command to gen-
erate both the histograms and the descriptive statistics. The mean and standard 
deviation for the drugs condition are 48.5 and 25.83 respectively. The mean and 
standard deviation for the no-drugs conditions are 56.2 and 9.95 respectively. You 
should be able to see from these that taking drugs has led to a slightly lower exam 
score than the no drug group and has led to a much greater variability of scores. 
The standard deviation of the drugs condition is over 2.5 times that for the no-drugs 
condition.



Answers to activities and SPSS exercises 557

Chapter 4

Activity 4.1

(a) Night following day: 1
(b) All politicians telling us the truth all the time: 0
(c) Your finding a cheque for a million pounds in the pages of this book: 0
(d) A wood fire being extinguished if you pour water on it: 1
(e) Authors having to extend the deadline for sending in manuscripts for books: 1

Activity 4.2

1. (a) 0.25 = 25%
(b) 0.99 = 99%
(c) 1 , 3 = 33.33%
(d) 2 , 10 = 20%

2. (a) 1 , 8 = 0.125
(b) 12 , 20 = 0.60
(c) 30% = 0.30
(d) 14% = 0.14

The probability of rolling an even number on a dice is 0.5.

Activity 4.3

(a) The probability of being struck by lightning while playing golf – conditional 
probability

(b) The probability of winning the Lottery – not conditional
(c) The probability of winning an Olympic gold medal if you do no training – conditional 

probability
(d) The probability of getting lung cancer if you smoke – conditional probability
(e) The probability of rolling a six on a die – not conditional
(f) The probability of finding a ten pound note in the pages of this book – not conditional
(g) The probability of manned flight to Mars within the next ten years – not conditional
(h) The probability of having coronary heart disease if you drink moderate levels of beer – 

conditional probability

Activity 4.4

If you have a negative z-score, it will be below the mean. With negative z-scores the majority 
of the population will score above you.

Activity 4.5

Your z-score for Mathematics would be 1 ((65 - 60)/5). For English it would be 0.86 
((71 - 65)/7). Therefore, your better subject in comparison with the others in your group is 
Mathematics.
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Activity 4.6

We looked at the National Lottery draws on 19 June 2016 and below are the details of the 
last 30 draws:

Date Ball 1 Ball 2 Ball 3 Ball 4 Ball 5 Ball 6 Ball 7 Mean

18-Jun-16 17 26 10 35 38 31 47 29.14

15-Jun-16 19 38 20 2 14 29 27 21.29

11-Jun-16 4 55 30 38 17 47 3 27.71

08-Jun-16 49 28 58 33 43 55 21 41.00

04-Jun-16 7 58 55 34 32 48 30 37.71

01-Jun-16 39 27 41 49 36 23 6 31.57

28-May-16 57 10 52 36 8 40 59 37.43

25-May-16 6 55 45 44 33 20 16 31.29

21-May-16 6 28 52 19 30 7 46 26.86

18-May-16 28 34 1 3 37 46 59 29.71

14-May-16 9 24 51 12 23 32 16 23.86

11-May-16 49 23 33 54 22 13 53 35.29

07-May-16 4 34 14 27 36 17 28 22.86

04-May-16 20 3 4 21 1 2 22 10.43

30-Apr-16 1 5 2 56 38 53 31 26.57

27-Apr-16 24 34 57 12 29 39 28 31.86

23-Apr-16 44 14 26 2 59 35 24 29.14

20-Apr-16 9 12 31 7 1 10 28 14.00

16-Apr-16 42 14 2 5 55 51 54 31.86

13-Apr-16 17 15 13 19 35 57 21 25.29

09-Apr-16 20 51 47 34 25 22 18 31.00

06-Apr-16 50 57 31 17 41 15 5 30.86

02-Apr-16 14 7 55 20 47 33 15 27.29

30-Mar-16 24 5 40 13 31 41 7 23.00

26-Mar-16 5 57 51 53 12 43 28 35.57

23-Mar-16 14 21 42 35 7 41 43 29.00

19-Mar-16 54 27 34 21 40 31 22 32.71

16-Mar-16 44 31 42 13 14 58 1 29.00

12-Mar-16 13 56 30 21 39 51 1 30.14

09-Mar-16 40 49 26 37 35 31 36 36.29
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The histogram for the means of most recent five draws looks like this:

You should be able to see that this looks a little positively skewed (the extended tail towards 
the right). The histogram for the means of the most recent 30 draws looks like this:

You should be able to readily see that this histogram is much more normal in shape.
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Activity 4.7

The standard errors are as follows:

Intervention group Control group

Variable Standard error Standard error

Pre-intervention behavioural problems 2.95 3.28

Post-intervention behavioural problems 2.08 2.75

Remember you should divide the SD by the square root of the sample size.

Activity 4.8

Of the error bar charts presented, only in (a) and (d) are there likely to be real differences 
between the two groups.

SPSS exercises

Exercise 1

1. The dental surgery study is a between-participants design.
2. The descriptive statistics for each group are as follows:

Soundproofed Not soundproofed

Mean 9.10 19.90

Standard deviation 3.28 2.81

Standard error 1.04 0.89

95% CIs 6.75–11.45 17.89–21.91

3. (a) The error bar chart for this study is presented below:
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 The error bar chart shows that the anxiety scores for the soundproofed waiting room are 
considerably lower than for the non-soundproofed waiting room. There is also no overlap 
of the 95% CIs of the two conditions.

(b) Z-score for the first score in the Soundproofed condition = 0.88. Z-score for the first 

score in Not soundproofed condition = -1.39.

Exercise 2

1. The study conducted by Dr Doolittle is a quasi-experimental design because he has not 

randomly allocated the participants to the conditions. The conditions consist of natural 

categories (cats and dogs), therefore he cannot use random allocation.

2. The design is also between-participants because each animal cannot be in both the dog 

and cat conditions. They are either a cat or a dog, not both.

3. The descriptive statistics for the two species are presented in the following table:

Dogs Cats

Mean 110.40 102.00

Standard deviation 12.62 14.28

Standard error 3.99 4.52

95% CIs 101.37–119.43 91.78–112.22

4. (a) The error bar chart is presented below.

 The error bar chart shows that dogs have a higher mean IQ score than do cats; however, 

there is also a considerable overlap of the 95% CIs of the two species. This might suggest 

that there is no real difference between the two species because the population means 

may, in fact, be equal. Remember, with these CIs we are saying that we are 95% confident 

that the population means fall within the CIs. Therefore, the population means could be 

the same.

(b) Z-score for the first score for cats = -0.49. Z-score for the first score for dogs = 0.44.
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Chapter 5

Activity 5.1

The null hypotheses in the Nyroos et al. (2015) study would be:

That there is absolutely no relationship between emotional-cognitive profiles and 
mathematical achievement.

Activity 5.2

The descriptions in both (c) and (d) represent the best summaries of the logic of hypothesis 
testing.

(c) We measure the relationship between the variables from our sample and then find the 
probability that such a relationship will arise due to sampling error alone. If such a 
probability is small, we can conclude that a genuine relationship exists in the population.

(d) We measure the relationship between the variables from one sample and then work out 
the probability of obtaining such a relationship by sampling error alone if the null 
hypothesis were true. If the probability is small, we can conclude that a genuine 
difference exists in the populations.

Activity 5.3

(d) If you have a 0.005 probability, then it is likely that one time in 200 will turn out this way 
by chance (answer d). If the probability was 0.01, then there would be a 1 in 100 
probability of it turning out by chance (answer e).

Activity 5.4

We cannot really tell from the information given which of the two findings is the more 
important psychologically. Remember, statistical significance does not equal psychological 
significance. Even though study 2 has a much lower p-value it might have had a very large 
sample size. We need much more information before we can determine which study is more 
important psychologically, such as sample size and effect size.

Activity 5.5

(a) You find in your study that a relationship exists between amount of tea drunk per day 
and amount of money won on the Lottery. You conclude that to win the Lottery you need 
to drink lots of cups of tea – Type I error

(b) You find in a study that there is no difference between the speed at which cheetahs and 
tortoises run. You conclude that tortoises are as fast as cheetahs – Type II error

(c) You find in a study that there is a relationship between standard of living and annual 
income. However, because the probability associated with the relationship is 0.5, you 
conclude that there is no relationship between standard of living and annual income – 
Type II error

Activity 5.6

(a) It is predicted that females will have higher empathy scores than males – one-tailed
(b) It is predicted that, as annual salary increases, so will number of tomatoes eaten per 

week – one-tailed
(c) It is predicted that there will be a relationship between length of hair in males and 

number of criminal offences committed – two-tailed
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(d) It is predicted that football fans will have lower IQ scores than opera fans – one-tailed
(e) It is predicted that there will be a relationship between the number of books read per 

week and range of vocabulary – two-tailed
(f) It is predicted that there will be a difference between middle-class parents and 

working-class parents in their preference for children wearing school uniforms –  
two-tailed

(g) It is predicted that as anxiety increases the number of units of alcohol drank per week 
will also increase – one-tailed

SPSS exercises

Exercise 1

1. Professor Yob has conducted a within-participants design as she collects data from each 
yob at both stadia.

2. Professor Yob has measured the number of arrests, which is a discrete variable (someone 
cannot be half-arrested).

(a) The IV in this study is the change of seating conditions (comfortable vs 
uncomfortable).

(b) The DV is the number of arrests and ejections from the stadia.

3. The prediction is one-tailed because, not only has Professor Yob predicted that there will 
be a difference between the two stadia, she has also predicted the direction of the differ-
ence (i.e. that the comfortable stadium will have fewer arrests/ejections).

4. The null hypothesis would state that there will be no difference between the two stadia 
in terms of the number of arrests/ejections.

5. The error bar chart will be as follows:
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 The descriptive statistics for the two stadia are presented in the following table:

Uncomfortable seating Comfortable seating

Mean 6.83 3.25

Standard deviation 1.90 1.66

Standard error 0.55 0.48

95% CIs 5.63–8.04 2.20–4.30

6. Converting the first scores in each condition into z-scores gives us a score of 0.62 for 
the uncomfortable seating condition and a score of -0.15 for the comfortable seating 
condition.

Exercise 2

1. Dr Pedantic has designed a within-participants study as he is comparing number of split 
infinitives used by each author before and after Star Trek.

2. Dr Pedantic has measured number of whole split infinitives written and is thus examining 
a discrete variable.

 (a) The IV in this study is before and after the first showing of Star Trek.

 (b) The DV is the number of split infinitives written by the authors.

3. The prediction is one-tailed because Dr Pedantic has predicted the direction of the 

difference (i.e. that the number of split infinitives will be greatest after showing Star Trek).

4. The null hypothesis is that there will be no difference in the number of split infinitives 

written before and after Star Trek.

5. The error bar chart will look like this:
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 The relevant descriptive statistics are as follows:

Before Star Trek After Star Trek

Mean 1.25 2.75

Standard deviation 1.06 1.54

Standard error 0.30 0.45

95% CIs 0.58–1.92 1.77–3.73

6. Converting the first scores in each condition into z-scores gives us a score of 0.71 for 
the before-Star Trek condition and a score of -0.49 for the after-Star Trek condition.

Chapter 6

Activity 6.1

It is hard to find perfect relationships, but you should be able to think of many non-perfect ones.

Activity 6.2

(b) Positive

Activity 6.3

(b) Weak

Activity 6.4

(a) Negative and weak
(b) Positive and strong

Activity 6.5

(a) Attachment avoidance and attachment anxiety

Activity 6.6

(d) Zero correlation

Activity 6.7

(c) Both (a) and (b)

Activity 6.8

(a) Strong negative association

Activity 6.9

(a) 0.522.
(b) 0.399.
(c) The relationship between depression and dizziness is lower after partialling out illness 

intrusiveness. This shows that the relationship between depression and dizziness is 
affected (or mediated) by illness intrusiveness.
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Activity 6.10

(a) mood modification
(b) mood-modification, negative
(c) -0.230, the worse

SPSS exercise

1. The correlation between STIGMA and QOL is a weak-to-moderate negative association 
(r = -0.32), which may be due to sampling error (0.088).

2. Once illness intrusiveness is partialled out, the correlation between STIGMA and QOL 
reduces considerably (r = -0.01, p = 0.476), showing that the observed relationship 
between STIGMA and QOL was almost totally due to their relationship with illness 
intrusiveness.

Chapter 7

Activity 7.1

(70 - 50)/7.5 = 20 , 7.5 = 2.66

Activity 7.2

(c) The differences between the mean scores for each condition

Activity 7.3

Within participants – repeated measures; related design.
Between participants – independent groups; unrelated design.

Activity 7.4

1. Take one mean from the other (it doesn’t matter which comes first).

 Thus: 31.00 - 28.01 = 2.99

2. Find out the mean standard deviation, by adding the 2 standard deviations and dividing 
by 2.

 Thus: 6.96 + 5.68 = 12.64
 12.64 , 2 = 6.32

3. Then divide the result from (1) by the result from (2)

 Thus: 2.99 , 6.32 = 0.47
 Thus the effect size is 0.47, so the groups differ by 0.47 standard deviations.

Activity 7.5

1. -3.47
2. -8.30 – although the sign does not matter: it could easily have been positive if we had 

coded/labelled the groups in the reverse order.

Activity 7.6

(a) tiredness (which became worse)
(b) diet showed the strongest improvement
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SPSS exercise

1. An independent groups t-test is suitable for the end-of-year test and episodes of illness.



Statistics without maths for psychology568

2. The effect sizes are as follows. Means and standard deviations have been obtained from 
the above printouts.

Episodes of illness:

14.5 - 12.9

(8.96 + 8.046)/2
= 1.6/8.504 = 0.19

End-of-year test:

20 - 11.7

(9.189 + 5.638)/2
= 8.3/7.414 = 1.12

3, 4. This is the sort of thing you would tell your friend:

We wanted to see whether there were any significant differences between boys and girls 
on episodes of illness and the end-of-year test. For the episodes of illness, the difference 
between the two means was very small, only 1.6, which represented 0.19 of a standard 
deviation. The 95% CI showed that, in the population, the mean difference was likely 
to lie anywhere between -6.40 and 9.6, which means that if the study were to be 
replicated, we might find boys to have more episodes of illness, girls to have more 
episodes of illness, or they would both have the same number of episodes. The t-value 
of 0.42 gives an associated probability level of 0.679, showing that this result was 
highly likely to have arisen by sampling error, given that the null hypothesis is true.

On the end-of-year test, however, the boys have performed significantly better than 
the girls (means of 20 and 11.7 respectively). The difference (8.3) represents an effect 
size of 1.12 standard deviations – a large effect size. The 95% confidence interval 
shows that the mean population difference is likely to fall somewhere between 1.14 and 
15.46. Assuming the null hypothesis to be true, our t-value of 2.43 is unlikely to have 
arisen by sampling error (p = 0.026). We therefore conclude that boys are likely to do 
better in this test than girls. We might also conclude test bias!

The group as a whole performed better in the end of year test (mean 15.85) than they did at 
the beginning of the year (mean 13.4). This difference stood a 2.6% chance of having arisen 
by sampling error, assuming the null hypothesis to be true.
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Chapter 8

Activity 8.1

Rosenthal believes that it is more important to report an effect size than the test statistic and 
a probability value.

Activity 8.2

(c) 70% chance of finding an effect

Activity 8.3

(b) She had enough power to find an effect, so it seems likely that there really is no effect.

Activity 8.4

This requires you to use the internet to find some power programs.

Chapter 9

Activity 9.1

(c) Correlational

Activity 9.2

The numbers do not add up to 100.

Activity 9.3

(a) Height (cm) and weight (kg) – Pearson’s r
(b) Distance run (metres) and time taken (minutes and seconds) – Pearson’s r
(c) A person’s body shape and occupational level (professional, clerical, manual) – x2

(d) Length of finger and length of toe (cm) – Pearson’s r
(e) Handedness (right or left) and spatial ability (excellent, average, hopeless) – x2

Activity 9.4

(c) One-variable x2

Activity 9.5

(b) A correlation coefficient

Activity 9.6

None of these is true.

Activity 9.8

The authors say: Total utterances of occupational therapists. The 5,511 utterances coded were 
distributed almost homogeneously in the groups. The one-variable chi-square was not sig-
nificant (c2 = 5.745, df = 2, p = 0.057).
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SPSS exercises

Exercise 1

Chi2 = 10.40, p = .006.

Exercise 2

This is based on your own data.

Exercise 3

1. 8.25
2. x2

= 3.48
3. p = 0.32
4. Although the results look as if people have a significant preference for certain animals, 

our results show that a x2 result of 3.48 is quite likely to arise from sampling error alone, 
assuming there are no preferences for particular animals.

Exercise 4

The x2 value is 1.26, df = 1, p = 0.26. The relationship between smoking and drinking can 
be explained by sampling error alone. There is no evidence from this study to suggest a 
relationship between drinking and smoking.

Chapter 10

Activity 10.1

Reasons why scores vary between groups:

• manipulation of the independent variable: people differ because of the different conditions 
which they are in

• individual differences

• experimental error.

Reasons for participants varying within a condition:

• individual differences

• experimental error.

Activity 10.2

(a) About half a standard deviation

Activity 10.3

(a) cancer patients

Activity 10.4

The difference between the two sample means for our particular study is a point estimate. 
If we repeated the study with a different sample, we would find the mean difference was a bit 
higher, or lower. The confidence limits tell us that we can be confident (expressed as a 
percentage, e.g. 95%) that the population mean difference will fall somewhere between the 
lower limit and the upper limit.
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Activity 10.5

The authors state: The one-way repeated measures ANOVA (see Table) showed statistical 
significant differences for three of the five outcome measures. Large intervention effects 
were found for adaptation to vision loss (η2

= 0.24, p 6  .001) (p.10) and self-efficacy 
(η2

= 0.16, p 6  .004) and a medium effect for helplessness (η2
= 0.10, p 6  .046). There 

were medium effects for mental health (η2
= 0.07, p 6  .15), a generic fear of falling 

(η2
= 0.06, p 6  .22), and a vision-specific fear of falling (η2

= 0.07, p 6  .13), although not 
statistically significant.

SPSS exercises

Exercise 1

ONE-WAY ANOVA

MULTIPLE COMPARISONS

The overall ANOVA shows that there are differences between some or all of the groups that 
are unlikely to be attributable to sampling error (F (2,27) = 12.7, p 6  0.001); Tukey post-hoc 
comparisons show that there are no significant or important differences between morning 
and afternoon groups. However, the evening group differs from the other two groups.
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Exercise 2

REPEATED-MEASURES ANOVA

An inspection of the means showed that means for all conditions were in the expected direction. 
There was a trend downwards; participants scored highest in the placebo condition and lowest 
in the high dose condition. These differences in scores were unlikely to have arisen by sampling 
error, assuming the null hypothesis to be true (F (2,13) = 4.28, p = 0.036). It is concluded that 
the more cannabis is smoked, the less well students will perform in arithmetic tests.

Chapter 11

Activity 11.1

With four variables you would have the following sources of variance:

• Main effects: A, B, C and D

• Interactions: AB, AC, AD, BC, BD, CD, ABC, ABD, ACD, BCD, ABCD

• Error

Activity 11.2

(a) A 6 * 2 ANOVA – one IV with six conditions and one with two conditions
(b) A 3 * 3 * 3 ANOVA – three IVs each with three conditions
(c) A 4 * 2 * 4 * 2 ANOVA – two IVs with four conditions and two with two conditions
(d) A 2 * 2 * 2 * 2 * 2 ANOVA – five IVs with two conditions
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Activity 11.3

Referring to Table 11.4, for the non-anxious participants there is considerable overlap of 
confidence intervals for negative and neutral words whereas for the anxious participants there 
is no overlap in the confidence intervals. This suggests that there may be a real difference in 
the population in the recall of negative and neutral words for anxious people but not for non-
anxious people.

Activity 11.4

Of the graphs shown, those in (a) and (b) suggest that an interaction is present.

Activity 11.5

(a) The difference between chewing gum and no chewing gum in the talking condition – 
simple effect

(b) The overall difference between the tea and non-tea drinking groups – main effect
(c) The effects of noise in only the mathematics exam – simple effect
(d) The effects of cognitive behaviour therapy on the fear responses of all groups of 

participants – main effect

Activity 11.6

Partial η2 is calculated as follows:

• For the main effect of revision: 80/(80 + 391.5)

• For the main effect of exam: 4.50/(4.5 + 228.45)

• For the interaction:   192.2/(192.2 + 144.3)

Activity 11.7

The d for the differences between the two anxiety groups are:

• Neutral words – 0.93

• Negative words – 0.73

The d for the differences between the two word types are:

• Non-anxious participants – 0.27

• Anxious participants – 1.50

SPSS exercises

Exercise 1

1. The study conducted by Dr Bod is a split-plot design with the year of taking exam being 
a between-participants variable and the subject taken the within-participants variable.

2. One IV is the year of taking the exam (1996 or 2016); the other IV is the subject taken 
(Maths or English). The DV is the mark given by the examiner for each exam.

3. The ANOVA output is presented below:
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GENERAL LINEAR MODEL
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4. The F-values and associated p-values are:

Effect F-value p-value

Main effect of year 5.83 0.025

Main effect of subject 0.001 0.982

Interaction 0.09 0.769

5. These analyses show that only the main effect of year is probably not attributable to 
sampling error, if the null hypothesis were true. The main effect of subjects and the 
interaction have associated probabilities, which suggests that these effects probably are 
attributable to sampling error.
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6. We can see from the ANOVA printout that partial η2 for the year main effect (0.209) is 
much larger than the partial η2 for the main effect of subjects (0.000) and that for the 
interaction (0.004).

Exercise 2

1. The study carried out by Dr Kid is a completely between-participants design.
2. One IV of age of child (5- and 11-year-olds) and one IV of gender (boys and girls). 

The DV in this study is the score of each participant on the colour perception test.
3. The printout for the ANOVA is presented below:

UNIVARIATE ANALYSIS OF VARIANCE

4. The F-values and associated p-values are:

Effect F-value p-value

Main effect of age 10.72 0.002

Main effect of gender 48.86 0.000

Interaction 8.53 0.006

5. The p-values shown above suggest that the main effects of age and gender and the 
interaction between these two IVs were unlikely to have arisen from sampling error if the 
null hypotheses were true.

6. The partial η2 for the main effects of age and gender and the interaction are 0.196, 0.526 
and 0.162 respectively. Thus, the magnitude of the effect due to gender is largest.
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7. The interaction can be examined using individual t-tests. The results of such analysis are 
presented below:

T-TEST GENDER = BOYS

GENDER = GIRLS
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These t-tests show that for the boys there is no difference in colour perception scores between 
the 5- and 11-year-olds, beyond that attributable to sampling error (t (22) = -0.21, p = 0.834). 
The difference in colour perception scores between 5- and 11-year-old girls is, however, 
probably not due to sampling error (t (22) = -5.59, p 6  0.001).

Chapter 12

Activity 12.1

Correlational analysis gives us a measure of how closely the datapoints cluster around an 
imaginary line (r). With linear regression a real line is drawn through the datapoints, in the 
place where total error is minimised. The line fits the data in the best place possible. The line 
can therefore be used to assess exactly how much y will change, as a result of change in x.

Activity 12.2

5 + (2 * 20) = 5 + 40 = 45

Activity 12.3

The line in the second diagram will predict best, since the datapoints in diagram (b) are 
nearer to the line of best fit than the datapoints in diagram (a).

Activity 12.4

1. b = 0
2. yn

Activity 12.5

(c) The correlation between the criterion variable and the entire set of predictor variables

Activity 12.6

Depersonalisation was predicted by neuroticism (t = 3.83, p 6 .001) and agreeableness 
(t = -5.06, p 6 .001): as neuroticism increases and agreeableness decreases, depersonaliza-
tion increases. Personal accomplishment was predicted by neuroticism (t = -5.04, p 6 .001) 
and agreeableness (t = 4.04, p 6 .001); as neuroticism decreases and agreeableness increases, 
personal accomplishment increases.
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SPSS exercises

Exercise 1

The researcher wanted to find out whether anxiety about examinations was related to the 
number of hours studied – perhaps people with examination anxiety study less (because 
studying increases anxiety) or maybe, being anxious, they would study more. The correlation 
coefficient between the two variables was moderate (0.35). The adjusted R2 value (0.055) 
showed that only a small amount in the variation in hours studied could be accounted for by 
anxiety. The F-value of 1.822 had an associated probability level of 0.20. The slope of the 
regression line was 0.393. The confidence limits around the line were -0.236 to +1.021. 
Thus, in the population, we cannot be sure whether the regression line would be negative or 
positive. There is no evidence, then, to suggest that anxiety and hours studied are related.

Exercise 2

Professor Lemon wants to see whether Social Support and Personality predict Contentment. 
Social Support and Personality combined show a very strong relationship with Contentment 
(0.90). Adjusted R2 shows that 78% of the variation in Contentment scores can be explained 
by Social Support and Personality. The F-value of 35.29 shows this result is unlikely to have 
arisen by sampling error, given that the null hypothesis is true (p 6 0.001). Both Personality 
and Social Support contribute to the prediction of Contentment. For every 1 standard 
deviation (SD) rise in Social Support, Contentment rises by 0.73 SD and, for every 1 SD rise 
in Personality, Contentment rises by 0.38 SD. Thus both Personality and Social Support 
contribute strongly to Contentment.

Chapter 13

Activity 13.1

(b) Linear relationship with the dependent variable

Activity 13.2

(c) Reduces error variance

Activity 13.3

(a) The grand mean
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Activity 13.4

(a) The covariate must be linearly related to the dependent variable

Activity 13.5

The difference between time 1 and time 2 in Somatic Concerns was large, 0.85. However, 
the difference between the two timepoints was larger in both the Emotion Regulation subscale 
(1.19) and Negative Evaluation subscale (1.27), these latter two differing by more than 1 SD 
between the two timepoints.

SPSS exercise

1. The scattergram shows that the lines for all three groups are parallel; we therefore meet 
the assumptions for ANCOVA.

2. Motivation is clearly related to scores, and so ANCOVA is appropriate. The analysis 
shows that the differences between conditions (η2

= 0.61) are large, and unlikely to have 
arisen by sampling error (F = 20.085, p 6 0.001).

Chapter 14

Activity 14.1

There are several ways of explaining a factor. A factor is a hypothetical entity, an underlying 
construct, of a composite measure that includes a number of correlated variables.

Activity 14.2

Possible names are ‘Fearful’, ‘Agitated’ or ‘Afraid’. You might have others.
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Activity 14.3

Activity 14.4

The authors named the remaining Factors as follows:

• Active

• Conscientiousness

• Agreeableness

• Openness

• Social extraversion

• Temperamental

• Disciplined

Activity 14.5

The factor names given by the authors are: 1. Perceived risk to health from cannabis and 2. 
Reduction of cannabis use.

Activity 14.6

Both shame and guilt are moderately related to submissive behaviour. Guilt shows a weak–
moderate association with depression; shame does not.

Activity 14.7

The authors say: ‘Factor 2 was significantly related to reading, writing and mathematics (r’s 
ranging from of .20 to .29) and Factor 3 was significantly linked to ratings in reading (r’s 
of .22 and .25) and oral language (r of .25). Weak associations emerged beween Factor 4 and 
ratings of decoding and writing (r’s of .22).’

Activity 14.8

A negative loading simply means that the variable in question was worded in the negative. 
This is the case for items 4 and 5.
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Activity 14.9

(a) 

(b) 

Chapter 15

Activity 15.1

Of the studies described, those from (b) and (c) are suitable for analysis using MANOVA.

Activity 15.2

(a) a + b + c + d + e: linear combination
(b) A * B * C * D * E: not a linear combination
(c) (a + b + c + d + e)/2: linear combination
(d) Extroversion + (2 * Neuroticism) - (3 * Psychoticism): linear combination

Activity 15.3

An interpretation of Figure 15.2 is given in the text after the figure.

Activity 15.4

(a) Hotelling’s trace – yes
(b) Phil’s mark – no
(c) Seth’s weakest link – no
(d) Wilks’ lambda – yes
(e) Hayley’s gamma – no
(f) Pillai’s trace – yes
(g) Crossroad’s track – no
(h) Roy’s largest root – yes

1 2 3

1 – 30 50

2 – 80

3 – –
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SPSS exercises

Exercise 1

1. The assumption of homogeneity of variance–covariance matrices is tested using Box’s 
M test. The details of this are presented below.

If the p-value associated with Box’s M is less than 0.05 then we have a violation of the 
assumption of variance–covariance matrices. In this case the p-value is much greater than 
0.05 and so we do not have a violation of this assumption.

The multivariate statistics for this study are as follows:

GENERAL LINEAR MODEL
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2. The F-value as calculated using Wilks’ lambda is 6.598.
3. As the associated p-value is only 0.006, we can be reasonably confident that the observed 

multivariate difference between the two fuels is unlikely to have arisen due to sampling 
error, given that the null hypothesis is true.

4. The univariate ANOVA tests are presented below:
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 The univariate F-tests suggest that only the number of kilometres per litre contributes to 
the multivariate difference. If we set our overall α; at 0.05, we need to divide this by 2 
because we have two univariate tests. We therefore need to check the p-values associated 
with each of our univariate tests to see if they are in the region of 0.025 or less. If they 
are in this region then we can be reasonably confident that they are contributing to the 
multivariate difference. In this case only kilometres per litre has a p-value in this region 
and therefore this is the only DV that is contributing to the multivariate difference.

5. The correlational analyses are presented below and suggest that there is no correlation 
between the two variables beyond that attributable to sampling error.

CORRELATIONS

6. The effect size for each DV is shown with the univariate analyses. The η2 for fuel con-
sumption is 0.39 and that for engine condition is 0.02. These suggest that, when fuel 
consumption is the DV in the univariate analyses, 39% of the variation in fuel consump-
tion is attributable to differences in fuel type. When engine condition is the DV, then only 
2% of the variation in engine condition is attributable to differences in fuel type.

Exercise 2

1. The multivariate analyses for the drinks study are presented below:

GENERAL LINEAR MODEL
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 These analyses show that there is a multivariate difference between the two drinks beyond 
that attributable to sampling error. The F-value of 7.516 has an associated probability of 
p = 0.010.

2. The decision about how to evaluate the relative contribution of the individual DVs to the 
multivariate difference is dependent upon whether or not the DVs are correlated. The 
correlation coefficients for the two DVs are shown below:

CORRELATIONS

CORRELATIONS
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These correlational analyses show that there are no correlations beyond that attributable to 
sampling error between the taste and pleasure effects of lager and the taste and pleasure 
effects of Lout. We could therefore use the univariate tests on the MANOVA printout to 
examine the relative contribution of each DV to the multivariate difference. This printout is 
presented below:

3. These univariate tests suggest that only the taste DV is contributing to the multivariate 
difference between the two drinks. The difference in the ratings for pleasurable effects 
between the two drinks is probably attributable to sampling error (p = 0.509). The dif-
ference in taste ratings is probably not due to sampling error (p = 0.002), suggesting that 
the young men preferred the taste of Lout to lager.

Chapter 16

Activity 16.1

The brief EDEQ showed a very weak but statistically significant correlation (p 6 0.05) with 
Anticipate and Distract, and also with Avoidance of Affect. This was a weak correlation, 
statistically significant p 6 0.01. The Avoidance of Affect also showed a weak relationship 
with binge eating (p 6 0.05).

Activity 16.2

The experimental group did score significantly higher than the control group (mean rank 
9.30 and 4.50 respectively). The Mann–Whitney value was 3.5 with an associated probability 
value (one-tailed) of 0.018. The likelihood of this result occurring as a result of sampling 
error is 6 2%.
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Activity 16.3

There was a difference in scores between the two conditions – the two-tailed p-value was 
0.043. The likelihood of these results occurring by sampling error is less than 5%.

Activity 16.4

Overall, the heterosexual twins reported greater emphasis with masculine roles than their 
gay co-twins. More specifically, heterosexual twins were more uncomfortable being emo-
tionally affectionate with other men than their gay co-twins (note the item to which this refers 
is ‘restrictive affectionate behaviour’).

Activity 16.5

It looks as though the researcher’s predictions have been confirmed – the mean rank in condi-
tion 3 (5.8) is lower than the mean rank of condition 1 (10.25) and condition 2 (9.10). The 
likelihood of these results being due to sampling error is, however, higher than we are willing 
to accept (p = 0.274).

Activity 16.6

Depression seems to have increased over the three timepoints (mean ranks 1.31, 1.88 and 
2.81). The chi-square value is 12.25. The likelihood of this value occurring by sampling 
error, given the truth of the null hypothesis, is 0.002. We conclude that the people who 
declined to take part in the behavioural intervention programme became significantly more 
depressed over the three timepoints.

SPSS exercises

Exercise 1: Spearman’s rho

The correlation between confidence and performance in the oral examination is 
-0.872 (p = 0.027). Although this is a negative correlation, note that confidence has been 
coded in the opposite way from performance in the oral examination. Thus the positive 
relationship between these two variables is confirmed – the more confident the student, the 
better their performance. The relationship is strong, and is unlikely to have arisen by 
 sampling error.
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Exercise 2: Mann–Whitney

As the lecturer did not make a prediction as to which approach would be the most enjoyable 
for the students, she uses a two-tailed significance level.

The PBL group has scored higher on enjoyment than the traditional group 
(U = 5, z = -2.13, p = 0.041). Her small pilot study shows it might be worth trying out the 
PBL approach with students taking an advanced statistics module.

Exercise 3: Wilcoxon

WILCOXON SIGNED RANKS TEST
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Levels of fear were reduced after the programme (z = 2.12, p = 0.031). It can be seen that 
the mean rank before the programme (3.00) was reduced to zero after the programme. A 
z-score of 2.12 has less than a 2% likelihood of arising by sampling error, assuming the null 
hypothesis to be true (one-tailed hypothesis). We can conclude, then, that the programme 
was effective in reducing fear.

Exercise 4: Kruskal–Wallis

KRUSKAL–WALLIS

Ranks are very similar in the three groups, in respect of symptom 1. The chi-square value 
of 0.029 has an associated probability value of 0.994 – these results, then, can be attributed 
to sampling error. We conclude that there are no significant differences in symptom 1 among 
the three groups.

For symptom 2, the ranks are more dissimilar – the mean rank for group 3 is 12.00, 
whereas the mean rank for group 1 is 6.10. For this analysis, the value of chi-square is 3.7 
and the associated probability level is 0.157. This means that there is a 15.7% likelihood of 
the results being due to sampling error. For this analysis as well, we conclude that there are 
no significant differences between the groups.
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Exercise 5: Friedman’s

The Friedman test shows that the difference between ranks was significantly greater than 
would be expected by sampling error, assuming the null hypothesis to be true 
(chi-square = 12.8, p = 0.002).



 Table of z-scores and the proportion of the standard normal distribution falling above and below each score 

 z-score 

 Proportion 

below score 

 Proportion 

above score  z-score 

 Proportion 

below score 

 Proportion 

above score  z-score 

 Proportion 

below score 

 Proportion 

above score 

  0.00   0.5000  0.5000   1.01   0.8438  0.1562   2.01   0.9778  0.0222 

  0.01   0.5040  0.4960   1.02   0.8461  0.1539   2.02   0.9783  0.0217 

  0.02   0.5080  0.4920   1.03   0.8485  0.1515   2.03   0.9788  0.0212 

  0.03   0.5120  0.4880   1.04   0.8508  0.1492   2.04   0.9793  0.0207 

  0.04   0.5160  0.4840   1.05   0.8531  0.1469   2.05   0.9798  0.0202 

  0.05   0.5199  0.4801   1.06   0.8554  0.1446   2.06   0.9803  0.0197 

  0.06   0.5239  0.4761   1.07   0.8577  0.1423   2.07   0.9808  0.0192 

  0.07   0.5279  0.4721   1.08   0.8599  0.1401   2.08   0.9812  0.0188 

  0.08   0.5319  0.4681   1.09   0.8621  0.1379   2.09   0.9817  0.0183 

  0.09   0.5359  0.4641   1.10   0.8643  0.1357   2.10   0.9821  0.0179 

  0.10   0.5398  0.4602   1.11   0.8665  0.1335   2.11   0.9826  0.0174 

  0.11   0.5438  0.4562   1.12   0.8686  0.1314   2.12   0.9830  0.0170 

  0.12   0.5478  0.4522   1.13   0.8708  0.1292   2.13   0.9834  0.0166 

  0.13   0.5517  0.4483   1.14   0.8729  0.1271   2.14   0.9838  0.0162 

  0.14   0.5557  0.4443   1.15   0.8749  0.1251   2.15   0.9842  0.0158 

  0.15   0.5596  0.4404   1.16   0.8770  0.1230   2.16   0.9846  0.0154 

  0.16   0.5636  0.4364   1.17   0.8790  0.1210   2.17   0.9850  0.0150 

  0.17   0.5675  0.4325   1.18   0.8810  0.1190   2.18   0.9854  0.0146 

  0.18   0.5714  0.4286   1.19   0.8830  0.1170   2.19   0.9857  0.0143 

  0.19   0.5753  0.4247   1.20   0.8849  0.1151   2.20   0.9861  0.0139 

  0.20   0.5793  0.4207   1.21   0.8869  0.1131   2.21   0.9864  0.0136 

  0.21   0.5832  0.4168   1.22   0.8888  0.1112   2.22   0.9868  0.0132 

  0.22   0.5871  0.4129   1.23   0.8907  0.1093   2.23   0.9871  0.0129 

  0.23   0.5910  0.4090   1.24   0.8925  0.1075   2.24   0.9875  0.0125 

  0.24   0.5948  0.4052   1.25   0.8944  0.1056   2.25   0.9878  0.0122 

  0.25   0.5987  0.4013   1.26   0.8962  0.1038   2.26   0.9881  0.0119 

     Appendix 1 
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 z-score 

 Proportion 

below score 

 Proportion 

above score  z-score 

 Proportion 

below score 

 Proportion 

above score  z-score 

 Proportion 

below score 

 Proportion 

above score 

  0.26   0.6026  0.3974   1.27   0.8980  0.1020   2.27   0.9884  0.0116 

  0.27   0.6064  0.3936   1.28   0.8997  0.1003   2.28   0.9887  0.0113 

  0.28   0.6103  0.3897   1.29   0.9015  0.0985   2.29   0.9890  0.0110 

  0.29   0.6141  0.3859   1.30   0.9032  0.0968   2.30   0.9893  0.0107 

  0.30   0.6179  0.3821   1.31   0.9049  0.0951   2.31   0.9896  0.0104 

  0.31   0.6217  0.3783   1.32   0.9066  0.0934   2.32   0.9898  0.0102 

  0.32   0.6255  0.3745   1.33   0.9082  0.0918   2.33   0.9901  0.0099 

  0.33   0.6293  0.3707   1.34   0.9099  0.0901   2.34   0.9904  0.0096 

  0.34   0.6331  0.3669   1.35   0.9115  0.0885   2.35   0.9906  0.0094 

  0.35   0.6368  0.3632   1.36   0.9131  0.0869   2.36   0.9909  0.0091 

  0.36   0.6406  0.3594   1.37   0.9147  0.0853   2.37   0.9911  0.0089 

  0.37   0.6443  0.3557   1.38   0.9162  0.0838   2.38   0.9913  0.0087 

  0.38   0.6480  0.3520   1.39   0.9177  0.0823   2.39   0.9916  0.0084 

  0.39   0.6517  0.3483   1.40   0.9192  0.0808   2.40   0.9918  0.0082 

  0.40   0.6554  0.3446   1.41   0.9207  0.0793   2.41   0.9920  0.0080 

  0.41   0.6591  0.3409   1.42   0.9222  0.0778   2.42   0.9922  0.0078 

  0.42   0.6628  0.3372   1.43   0.9236  0.0764   2.43   0.9925  0.0075 

  0.43   0.6664  0.3336   1.44   0.9251  0.0749   2.44   0.9927  0.0073 

  0.44   0.6700  0.3300   1.45   0.9265  0.0735   2.45   0.9929  0.0071 

  0.45   0.6736  0.3264   1.46   0.9279  0.0721   2.46   0.9931  0.0069 

  0.46   0.6772  0.3228   1.47   0.9292  0.0708   2.47   0.9932  0.0068 

  0.47   0.6808  0.3192   1.48   0.9306  0.0694   2.48   0.9934  0.0066 

  0.48   0.6844  0.3156   1.49   0.9319  0.0681   2.49   0.9936  0.0064 

  0.49   0.6879  0.3121   1.50   0.9332  0.0668   2.50   0.9938  0.0062 

  0.50   0.6915  0.3085   1.51   0.9345  0.0655   2.51   0.9940  0.0060 

  0.51   0.6950  0.3050   1.52   0.9357  0.0643   2.52   0.9941  0.0059 

  0.52   0.6985  0.3015   1.53   0.9370  0.0630   2.53   0.9943  0.0057 

  0.53   0.7019  0.2981   1.54   0.9382  0.0618   2.54   0.9945  0.0055 

  0.54   0.7054  0.2946   1.55   0.9394  0.0606   2.55   0.9946  0.0054 

  0.55   0.7088  0.2912   1.56   0.9406  0.0594   2.56   0.9948  0.0052 

  0.56   0.7123  0.2877   1.57   0.9418  0.0582   2.57   0.9949  0.0051 

  0.57   0.7157  0.2843   1.58   0.9429  0.0571   2.58   0.9951  0.0049 

  0.58   0.7190  0.2810   1.59   0.9441  0.0559   2.59   0.9952  0.0048 

  0.59   0.7224  0.2776   1.60   0.9452  0.0548   2.60   0.9953  0.0047 

  0.60   0.7257  0.2743   1.61   0.9463  0.0537   2.61   0.9955  0.0045 

  0.61   0.7291  0.2709   1.62   0.9474  0.0526   2.62   0.9956  0.0044 

  0.62   0.7324  0.2676   1.63   0.9484  0.0516   2.63   0.9957  0.0043 

  0.63   0.7357  0.2643   1.64   0.9495  0.0505   2.64   0.9959  0.0041 
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 z-score 

 Proportion 

below score 

 Proportion 

above score  z-score 

 Proportion 

below score 

 Proportion 

above score  z-score 

 Proportion 

below score 

 Proportion 

above score 

  0.64   0.7389  0.2611   1.65   0.9505  0.0495   2.65   0.9960  0.0040 

  0.65   0.7422  0.2578   1.66   0.9515  0.0485   2.66   0.9961  0.0039 

  0.66   0.7454  0.2546   1.67   0.9525  0.0475   2.67   0.9962  0.0038 

  0.67   0.7486  0.2514   1.68   0.9535  0.0465   2.68   0.9963  0.0037 

  0.68   0.7517  0.2483   1.69   0.9545  0.0455   2.69   0.9964  0.0036 

  0.69   0.7549  0.2451   1.70   0.9554  0.0446   2.70   0.9965  0.0035 

  0.70   0.7580  0.2420   1.71   0.9564  0.0436   2.71   0.9966  0.0034 

  0.71   0.7611  0.2389   1.72   0.9573  0.0427   2.72   0.9967  0.0033 

  0.72   0.7642  0.2358   1.73   0.9582  0.0418   2.73   0.9968  0.0032 

  0.73   0.7673  0.2327   1.74   0.9591  0.0409   2.74   0.9969  0.0031 

  0.74   0.7704  0.2296   1.75   0.9599  0.0401   2.75   0.9970  0.0030 

  0.75   0.7734  0.2266   1.76   0.9608  0.0392   2.76   0.9971  0.0029 

  0.76   0.7764  0.2236   1.77   0.9616  0.0384   2.77   0.9972  0.0028 

  0.77   0.7794  0.2206   1.78   0.9625  0.0375   2.78   0.9973  0.0027 

  0.78   0.7823  0.2177   1.79   0.9633  0.0367   2.79   0.9974  0.0026 

  0.79   0.7852  0.2148   1.80   0.9641  0.0359   2.80   0.9974  0.0026 

  0.80   0.7881  0.2119   1.81   0.9649  0.0351   2.81   0.9975  0.0025 

  0.81   0.7910  0.2090   1.82   0.9656  0.0344   2.82   0.9976  0.0024 

  0.82   0.7939  0.2061   1.83   0.9664  0.0336   2.83   0.9977  0.0023 

  0.83   0.7967  0.2033   1.84   0.9671  0.0329   2.84   0.9977  0.0023 

  0.84   0.7995  0.2005   1.85   0.9678  0.0322   2.85   0.9978  0.0022 

  0.85   0.8023  0.1977   1.86   0.9686  0.0314   2.86   0.9979  0.0021 

  0.86   0.8051  0.1949   1.87   0.9693  0.0307   2.87   0.9979  0.0021 

  0.87   0.8078  0.1922   1.88   0.9699  0.0301   2.88   0.9980  0.0020 

  0.88   0.8106  0.1894   1.89   0.9706  0.0294   2.89   0.9981  0.0019 

  0.89   0.8133  0.1867   1.90   0.9713  0.0287   2.90   0.9981  0.0019 

  0.90   0.8159  0.1841   1.91   0.9719  0.0281   2.91   0.9982  0.0018 

  0.91   0.8186  0.1814   1.92   0.9726  0.0274   2.92   0.9982  0.0018 

  0.92   0.8212  0.1788   1.93   0.9732  0.0268   2.93   0.9983  0.0017 

  0.93   0.8238  0.1762   1.94   0.9738  0.0262   2.94   0.9984  0.0016 

  0.94   0.8264  0.1736   1.95   0.9744  0.0256   2.95   0.9984  0.0016 

  0.95   0.8289  0.1711   1.96   0.9750  0.0250   2.96   0.9985  0.0015 

  0.96   0.8315  0.1685   1.97   0.9756  0.0244   2.97   0.9985  0.0015 

  0.97   0.8340  0.1660   1.98   0.9761  0.0239   2.98   0.9986  0.0014 

  0.98   0.8365  0.1635   1.99   0.9767  0.0233   2.99   0.9986  0.0014 

  0.99   0.8389  0.1611   2.00   0.9772  0.0228   3.00   0.9987  0.0013 

  1.00   0.8413  0.1587             

  Figures generated using Microsoft Excel 97.  



 Table  r  to  zr  

     Appendix 2 

  r    zr    r    zr    r    zr    r    zr    r    zr  

 .0000  .000  .2000  .203  .4000  .424  .6000  .693  .8000  1.099 

 .0050  .005  .2050  .208  .4050  .430  .6050  .701  .8050  1.113 

 .0100  .010  .2100  .213  .4100  .436  .6100  .709  .8100  1.127 

 .0150  .015  .2150  .218  .4150  .442  .6150  .717  .8150  1.142 

 .0200  .020  .2200  .224  .4200  .448  .6200  .725  .8200  1.157 

 .0250  .025  .2250  .229  .4250  .454  .6250  .733  .8250  1.172 

 .0300  .030  .2300  .234  .4300  .460  .6300  .741  .8300  1.188 

 .0350  .035  .2350  .239  .4350  .466  .6350  .750  .8350  1.204 

 .0400  .040  .2400  .245  .4400  .472  .6400  .758  .8400  1.221 

 .0450  .045  .2450  .250  .4450  .478  .6450  .767  .8450  1.238 

 .0500  .050  .2500  .255  .4500  .485  .6500  .775  .8500  1.256 

 .0550  .055  .2550  .261  .4550  .491  .6550  .784  .8550  1.274 

 .0600  .060  .2600  .266  .4600  .497  .6600  .793  .8600  1.293 

 .0650  .065  .2650  .271  .4650  .504  .6650  .802  .8650  1.313 

 .0700  .070  .2700  .277  .4700  .510  .6700  .811  .8700  1.333 

 .0750  .075  .2750  .282  .4750  .517  .6750  .820  .8750  1.354 

 .0800  .080  .2800  .288  .4800  .523  .6800  .829  .8800  1.376 

 .0850  .085  .2850  .293  .4850  .530  .6850  .838  .8850  1.398 

 .0900  .090  .2900  .299  .4900  .536  .6900  .848  .8900  1.422 

 .0950  .095  .2950  .304  .4950  .537  .6950  .858  .8950  1.447 

 .1000  .100  .3000  .310  .5000  .549  .7000  .867  .9000  1.472 

 .1050  .105  .3050  .315  .5050  .556  .7050  .877  .9050  1.499 

 .1100  .110  .3100  .321  .5100  .563  .7100  .887  .9100  1.528 

 .1150  .116  .3150  .326  .5150  .570  .7150  .897  .9150  1.557 

 .1200  .121  .3200  .332  .5200  .576  .7200  .908  .9200  1.589 

 .1250  .126  .3250  .337  .5250  .583  .7250  .918  .9250  1.623 

 .1300  .131  .3300  .343  .5300  .590  .7300  .929  .9300  1.658 



Statistics without maths for psychology596

  r    zr    r    zr    r    zr    r    zr    r    zr  

 .1350  .136  .3350  .348  .5350  .597  .7350  .940  .9350  1.697 

 .1400  .141  .3400  .354  .5400  .604  .7400  .950  .9400  1.738 

 .1450  .146  .3450  .360  .5450  .611  .7450  .962  .9450  1.783 

 .1500  .151  .3500  .365  .5500  .618  .7500  .973  .9500  1.832 

 .1550  .156  .3550  .371  .5550  .626  .7550  .984  .9550  1.886 

 .1600  .161  .3600  .377  .5600  .633  .7600  .996  .9600  1.946 

 .1650  .167  .3650  .383  .5650  .640  .7650  1.008  .9650  2.014 

 .1700  .172  .3700  .388  .5700  .648  .7700  1.020  .9700  2.092 

 .1750  .177  .3750  .394  .5750  .655  .7750  1.033  .9750  2.185 

 .1800  .182  .3800  .400  .5800  .662  .7800  1.045  .9800  2.298 

 .1850  .187  .3850  .406  .5850  .670  .7850  1.058  .9850  2.443 

 .1900  .192  .3900  .412  .5900  .678  .7900  1.071  .9900  2.647 

 .1950  .198  .3950  .418  .5950  .685  .7950  1.085  .9950  2.994 

  Figures in this table were computed by the authors.  
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