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It seems incredible to us that it is now 18 years since our book was first published. We have
been amazed at how well the book has been received and thankful for the kind words tutors and
students alike have said about it. In this seventh edition of the book we have kept true to our
vision for the book to provide conceptual explanations of statistical concepts without making
you suffer through the formulae. We have built upon the strengths of the previous editions and
updated our examples from the literature, updated some of the practical exercises, provided
reflections from authors of published research and responded, with revised explanations, to a
number of reviewers who kindly provided feedback on the sixth edition.

We wrote this book primarily for our students, most of whom disliked mathematics, and could
not understand why they had to learn mathematical formulae when their computer software
performed the calculations for them. They were not convinced by the argument that working
through calculations gave them an understanding of the test — neither were we. We wanted them
to have a conceptual understanding of statistics and to enjoy data analysis. Over the past 20 years
we have had to adapt our teaching to large groups of students, many of whom have no formal
training in mathematics. We found it was difficult to recommend some of the traditional statistics
textbooks — either they were full of mathematical formulae, and perceived by the students as dull
or boring, or they were simple, statistical cookbook recipes, which showed them how to perform
calculations, but gave them no real understanding of what the statistics meant. We therefore
decided to write this book, which seeks to give students a conceptual understanding of statistics
while avoiding the distraction of formulae and calculations.

Another problem we found with recommending statistics textbooks was the over-reliance on
the probability value in the interpretation of results. We found it difficult to convince them to
take effect size, and confidence intervals, into consideration when the textbooks that were
available made no mention of the debates around hypothesis testing, but simply instructed
students to say p < 0.05 is significant and p > 0.05 is not significant! We hope in writing this
book that students will become more aware of such issues.

We also wanted to show students how to incorporate the results of their analysis into
laboratory reports, and how to interpret results sections of journal articles. Until recently,
statistics books ignored this aspect of data analysis. Of course, we realise that the way we have
written our example ‘results sections’ will be different from the way that other psychologists
would write them. Students can use these sections to gain confidence in writing their own
results, and hopefully they will build on them, as they progress through their course.

We have tried to simplify complex, sometimes very complex, concepts. In simplifying, there
is a trade-off in accuracy. We were aware of this when writing the book, and have tried to be as
accurate as possible, while giving the simplest explanation. We are also aware that some students
do not use SPSS (an IBM company*) for their data analysis. IBM® SPSS® Statistics, however,

"SPSS was acquired by IBM in October 2009.
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is the most commonly used statistical package for the social sciences, and this is why the text
is tied so closely to SPSS. Students not using this package should find the book useful anyway.
This edition of the book has been updated for use with SPSS version 23 and earlier.

As with the sixth edition of the book we have included information about the authors of
articles which we have drawn upon in the writing of this book — and have included photos of
them where possible — strictly with their permission, of course. We also asked them why they
had chosen their particular research topic, and whether they had encountered any problems in
the running of the experiment/study. We thought this would enrich the text. Although we have
updated many examples from the literature, we have left in some early studies because they
illustrate exactly the points made in the text. Some reviewers thought there should be more
challenging activities and/or multiple choice questions. Therefore, we have added activities
which are based on examples from the literature, and require students to interpret the material,
in their own words. They can then compare their interpretation with the authors’
interpretation.

We hope that students who read the book will not only learn from it, but also enjoy our
explanations and examples. We also hope that as a result of reading this book students will feel
confident in their ability to perform their own statistical analyses.

How to use this book

To help you get the most from this book we thought that it would be useful to provide a brief
overview of the book and of the structure of the chapters. The best way to use the book if you
are new to statistics in psychology or if you have been away from statistics for a long while is
to work your way through the chapters from Chapter 1 onwards. The most important chapters
to read and ensure that you understand fully are the first five chapters as these provide you with
the core concepts for comprehending the main statistical techniques covered later in the book.
If you spend the time and effort on these opening chapters then you will be rewarded by having
a better understanding of what the statistical tests are able to tell us about our data. We cannot
stress enough the importance of such an understanding for appropriate use of statistical
techniques and for your ability to understand and critique others’ use of such techniques.

The chapters that follow these opening chapters generally explain the concepts underlying
specific types of tests as well as how to conduct and interpret the findings from these. We start
off with the more basic tests which look at the fewest possible variables (‘variables’ will be
explained in Chapter 1) and then using these as a basis we move on to the more complex tests
later in the book. In some ways it might be better to read about a basic type of test, say simple
correlations (see Chapter 6), and then move on to the more complex versions of these tests, say
regression and multiple regression (see Chapter 12). As another example, start with simple tests
of differences between two groups (in Chapter 7) and then move on to tests of differences
between more than two groups (Chapters 10 and 11). However, often statistics modules don’t
follow this sort of pattern but rather cover all of the basic tests first and only then move on to
the complex tests. In such a learning pattern there is the danger that to some extent some of the
links between the simple and complex tests may get lost.

Rather disappointingly we have read some reviews of the book which focus entirely on the
step-by-step guides we give to conducting the statistical analyses with SPSS for Windows (now
called SPSS Statistics). We would like to stress that this book is not simply a ‘cookbook’ for
how to run statistical tests. If used appropriately you should come out with a good understanding
of the statistical concepts covered in the book as well as the skills necessary to conduct the
analyses using SPSS Statistics. If you already have a conceptual understanding of the statistical
techniques covered in the book then by all means simply follow the step-by-step guide to
carrying out the analyses, but if you are relatively new to statistics you should ensure that you
read the text so that you understand what the statistical analyses are telling you.
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There are a number of features in this book to help you learn the concepts being covered
(in technical terms these are called ‘pedagogic’ features). These are explained below, but before
we explain these we will give you a general overview of what to expect in each chapter.

In each chapter we will highlight what is to come and then we will explain the statistical
concepts underlying the particular topics for that chapter. Once we have covered the statistical
concepts you will be given step-by-step guides to conducting analyses using SPSS Statistics.
Towards the end of each chapter you will be provided with a means of testing your knowledge,
followed by some pointers to further reading. We will now describe some of the features found
in the chapters in more detail.

At the beginning of every chapter there is a Chapter overview. These overviews provide you
with information about what is contained in each chapter and what you should have achieved
from working through it. Sometimes we will also highlight what you need to know beforehand
to be able to get the most from the chapter. You should make sure that you read these (it is very
easy to get into the habit of not doing this) as they will set the scene for you and prepare your
mind for the concepts coming up in the book.

At the end of each chapter there are Summaries which outline the main concepts that were
covered. These are important for consolidating what you have learnt and help put the concepts
learnt later in the chapter back in the context of the earlier concepts. You will also find SPSS
Statistics exercises, activities and multiple choice questions. We cannot stress enough the
importance of working through these when you finish each chapter. They are designed to test
your knowledge and to help you actively work with the information that you have learnt.
The best way to learn about things is to do them. The answers to the multiple choice questions
are also provided at the very end of each chapter so that you can check your progress. If you
have answered questions incorrectly go back and read the relevant part of the chapter to ensure
that you have a good understanding of the material. The answers to the SPSS Statistics exercises
are provided at the end of the book. Check these and if you have different answers go back and
try to work out where you might have gone wrong. Often it might be that you have input the
data incorrectly into SPSS Statistics. There are additional multiple choice questions and SPSS
Statistics exercises on the companion website and so please do make use of these also.

Within each chapter there are a number of features designed to get you thinking about what
you have been reading. There are Discussion points which help you to explore different ideas
or theories in more detail. There are also a number of Activity boxes which provide additional
opportunities for you to test your understanding of the theories and ideas being discussed. It is
important to complete the activities as we have placed these to ensure that you are actively
engaging with the material. Our experience has shown that actively working with material helps
learning (and makes reading more enjoyable). You will also find a number of Example boxes
where we provide a concrete example of what we are discussing. Providing such concrete
examples helps students understand the concepts more easily. There are also lots of examples
from the psychological literature which show how active psychology researchers use the
statistical techniques which have been covered in the chapters.

Where appropriate we have included as many diagrams and pictures as we can as these
will help you to understand (and remember) the text more easily. The thought of giving you
endless pages of text without breaking it up is not worth thinking about. This would probably
lead to a lot of Zzzzzz. On a serious note though, remember that the pictures are not there to
be pretty nor just to break up the text. Please consult these along with reading the text and this
will help you learn and understand the concept under discussion. Occasionally in the book you
will come across Caution boxes. These are there to warn you of possible problems or issues
related to certain techniques or statistical concepts. These are useful in many ways as they are
designed to help you to understand some of the limits of statistical tests and they serve as a
reminder that we have to think carefully about how we analyse our data.

Where in a chapter we want to show you how to use SPSS Statistics we provide annotated
screenshots. These will show you which buttons to click in SPSS Statistics as well as how and
where to move information around to get the analyses that you want. Finally, at the end of each
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chapter there is a Reference section. In this we will provide details of all the other authors’
works that we have mentioned within the chapter. This is pretty much what you should do when
writing up your own research. Some of the references will provide the details of the examples
from the literature that we have presented and some will be examples of potentially useful
further reading. You can follow up these as and when you choose to. Sometimes it is good to
follow up the examples from the research literature as you can then see the context to the exam-
ple analyses that we present. Also, by looking at how the experts present their research you can
better learn how to present your research.

Companion website

We would urge you to make as much use as possible of the resources available to you on the
companion website. When you get on to the site you will see that it is broken down into
resources for each chapter. For each chapter you will find SPSS Statistics dataset files which
are simply the data for the examples that we provide in each chapter. You can access these to
ensure that you have input data correctly or so that you can carry out the same analyses that we
present in each chapter to make sure that you get the same results. Also, on the website you will
find additional multiple choice questions. If you find that you have made mistakes in the
multiple choice questions provided in the book you should go back through the chapter and try
to make sure that you fully understand the concepts presented. It wouldn’t make sense for you
to then test yourself using the same multiple choice questions and so we have provided the
additional ones on the companion website. As another means of testing yourself and to help
you actively learn we provide additional SPSS Statistics exercises for each chapter and a
step-by-step guide to the analysis to conduct on this data and how to interpret the output.

Finally, you will find links to interesting and useful websites which are relevant to the
concepts being covered in each chapter.
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The chapter overview gives you a feel for what Caution boxes highlight possible problems you may
will be covered and what you should have learnt encounter or issues for consideration.
by the end of the topic.
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Personal reflection boxes bring statistics to life through
interviews with researchers, showing their important role
in psychological discoveries.
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University Medical Center Groningen, Department of Health Sciences, Com-
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Examples from the literature highlight a key piece
of research in the area.

Numerous examples in each chapter illustrate the
key points.
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Example

P
decided to use only two indices of well-being, Happiness and Optimism. We have then obtained the
appropriate data (see Table 15.1) from 12 peaple who are regular churchgoers and 12 who are atheists.

Table 151 Data for the well-being experiment

Churchgoers. Atheists
Happiness Optimism Happiness Optimism
400 300 500 300
500 400 400 400
500 800 800 500
600 700 900 400
600 600 700 200
600 500 600 300
700 600 700 400
700 600 500 300
700 500 600 200
800 500 400 400
800 700 500 500

900 400 600
X =650 F=ss X =600
D= 145 D= 145 D= 154 D= 100

950l = 558742 95%CI = 458-642  95%Cl = 502698  95%Cl = 286414

assumptions for MANOVA are not violated.

each DV for ibuted.
o stem and eaf plots. he data

inTable 151 are presented in Figure 15.1

mately normal. These findings,
condition, mean that we can cannnue with our ! MANOVA w\(h some confidence that we. ﬂo not have

he plots of the means and
152)

s around the means for

Guided tour

Multiple choice questions at the end of each chapter
allow you to test your knowledge.

CHAPTER 3 Descriptivestatitics 93

“The standard deviation is equal to:
(@) The variance

(b) The square root of the variance

(©) The variance squar

(@) The variance divided by the number of scores

‘What s the relationship between sample size and sampling error?

(a) The larger the sample size, the larger the sampling error
(b) The larger the sample size, the smaller the sampling error
(©) Sample size equals sampling error

(d) None of the above.

7. The mode is
(@) The frequency of the most common score divided by the total number of scores
(b) The middle score after allthe scores hase been ranked

(©) The mostfrequently oceurring score
(@) The sum of all the scores divided by the number of scores

In box plots, an extreme score is defined as

(@) A score that falls beyond the inner fence:
m & scor hat flls between hehinges andthe nnerfence
@ Arore ot s et o hinges.

9. A normal distribution should have which of the following properties?

(@) Bell-shaped
(b) Symmetrical

(€) The tails of the distribution should meet the x-asis at infinity
(@) Allof the above.

If you randomly select a sample of 20 pandas (sample A), then select a sample of 300 pandas
(sample B) and calculate the mean weight for each sample, which i likely 10 give a better estimate of
the population mean weight?

(@) Sample A

(b) Sample B

(©) Both will give equally good estinates of the population mean

(@) Neither will give a good estimate of the population mean

1. What sort of relationship i indicated by a scattergram where the points cluster around an imaginary
line th the bottom

(@ Positive
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o e toinput The

I you have a between-partcipants design, you need t0 let SPSS know what each participant’s

each
paricipant performs under two conditions and therefore has two scores. You need to let SPSS
Know what both of these scores are. Because each participant performs in both groups, you do
o nced ot SPSS ko hee goup with  groupin vre. You can thertore el e it
looking for a grouping variable.

I there is one, then it i a between-participants design.
You should noie frothe scrensol it wo avs st up w0 vaibls, one o the dog
for th because we do not g variable,
e donot have to give group “value' i any variables n the Variable View screen. Setting
up the variables with such a design is therefore more straightforward than with between-
paticipans designs.

mm
In this chapter * about the
statistical package. You have learnt; output clearer.
+ how to input data for correlational, within-
* howto use the tutorials participants and between-participants designs.
. part « that the use of a grouping variable is important
of the interface. for between-participants designs.
.

choice questions and actiities, discover more about topics using the links to relevant websites, and
explore the fesigned to help analysis

SPSS exercises

The answers to all he end of the book.
Exercise 1

or has conducted d h that for nouns. She randomly
allocates the groups of 10 participants a

list of 20 adjectives and to the g gwup alistof 20 nouns, Following this sheask each group o try
toremember as
Adjectives: 10,6.7,9,11,9,8,6,9,8
Nouns:12,13,16,15,9,7,14,12,11,13

1. Whatis the IV in this study?
2. Whatis the DV

SPSS exercises at the end of each chapter give you an
opportunity to test yourself using real data.

XXi

Chapter summaries enable you to revise the main points
of the chapter after you've read it.
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CHAPTER OVERVIEW

In trying to explain how to use and understand statistics it is perhaps best to start by outlining the
principal factors in designing research. We will therefore describe the most important aspects of
research design with a view to explaining how they influence the use of statistics. In this chapter,
therefore, we aim to teach you about the following:

m variables: continuous, discrete and categorical

m independent and dependent variables

m correlational, experimental and quasi-experimental designs
m between-participant and within-participant designs.

1.1

Why teach statistics without mathematical
formulae?

Statistics as a topic tends to strike fear into the hearts and minds of most social science students
and a good many lecturers too. Understanding statistical concepts should, however, be no more
difficult than understanding any other theoretical concept (for example, the concept of intelli-
gence). In fact, one would think that understanding a very concrete concept such as the arith-
metical mean would be a good deal easier than understanding a rather vague psychological
concept such as ‘an attitude’. Yet, every year, it seems that the majority of students, who appar-
ently grasp many non-statistical concepts with consummate ease, struggle to understand statis-
tics. Our view is that most people are fearful of statistics because the concepts are lost in the
mathematical formulae. We therefore seek to explain statistics in a conceptual way without
confusing students with unnecessary mathematical formulae — unnecessary, that is, in these
days of statistical computer packages. If students wish to learn these formulae to enhance their
knowledge, what better platform to have than a conceptual understanding of statistics?
Statistics tend to have a bad reputation, as this quote often attributed to former British Prime
Minister Benjamin Disraeli illustrates: ‘There are three sorts of lies: lies, damned lies and
statistics.” It is not the statistics that are at fault, however, but rather the way they are used.
After all, we do not usually blame the gun for killing someone but the person who pulled the
trigger. All too often, particularly in politics, statistics are quoted out of context or even used
selectively. This problem is clearly illustrated in a letter from Ed Humpherson, the Director
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General for regulations at the UK Statistics Authority to Siobhan Carey who was Head of
Profession for Statistics at the UK Government Department for Business, Innovation and
Skills, sent on 16 February 2016 (you can find this letter on the site by typing ‘Carey’ in the
search box on the homepage). In this letter Ed Humpherson is seen to reprimand the Minister
of State Joseph Johnson for the use of complex statistics relating to poor performing UK
universities which were not clearly defined and had not been previously published. Ed
Humpherson notes that because there was a lack of clarity with these statistics that it was not
clear that the proportion of poorly performing universities was high as was implied by Joseph
Johnson. The letter concludes with the following: ‘The Authority would ask that you raise this
with your colleagues and take steps to ensure that future such references to statistics are sup-
ported by publication with sufficient commentary and guidance as to enable informed debate.’
This clearly indicates an expectation that statistics be used within an appropriate context and
be clearly defined and explained. The letter from Ed Humpherson, along with other letters
relating to the official use of statistics in the UK, can be found at the UK Statistics Authority
website (www.statisticsauthority.gov.uk). This is a really good website as it provides insights
into how politicians use and often misuse statistics. Another good website about statistics and
research is ‘Sense About Science’ (www.senseaboutscience.org). This site provides lots of
useful information with the intention of helping people better understand science and scientific
findings. One part of the site, the ‘For the record’ section, highlights examples of poor repre-
sentations of scientific research in the news. A recent example of this was a study reported in
the national UK media (e.g. Daily Mail and The Daily Telegraph). The findings from the
original unpublished study were presented at an academic conference in the US and found
differences between mice born to mothers exposed to the vapours from e-cigarettes and those
born to mothers exposed just to clean air. The study was reported in the media as providing
evidence that using e-cigarettes during pregnancy is as bad as, or even worse than, smoking
cigarettes. On the ‘Sense About Science’ website, Professor Peter Hajek clearly outlines the
problems with the reporting of this study. He states that this was an unpublished study and so
the data cannot be checked and verified and, more fundamentally, the study did not compare
the mice exposed to e-cigarette vapour with those exposed to tobacco smoke, and so the com-
parisons with smoking cigarettes used in the headlines and the newspaper articles themselves
were unjustified.

These examples show some of the problems with understanding and reporting of research
based upon statistics. Yet politicians and the national media are happy to rely on poorly reported
statistics to help colour our judgments about a whole range of issues for their own purposes.
We should point out that this is not just a problem for politicians actually in government, it is
widespread among politicians. This is even acknowledged in a report by the UK’s Statistics
Commission which was the forerunner to the UK Statistics Authority. In this report (2008) the
Commission states:

Statistics have been, and always will be, used selectively by politicians and commentators in
the course of public debate. The selection and emphasis of particular statistical information
to favour, or contest, a policy argument has to be tolerated as part of the political process. It
is essential however that, to balance the politically selective use of statistics, the figures
themselves, with full explanation, should be equally accessible and understandable to every-
one. There should also be public corrections of manifestly misleading interpretations.

These examples clearly illustrate the importance of viewing statistics in the correct context. If
we say to you, for example, that the average (mean) height of the adult male is 5 ft 8 in (173 cm),
this may be meaningful for British men but not necessarily for men from African pygmy tribes
where the average height can be as low as 4 ft 9 in (145 cm). We believe that being able to inter-
pret statistics and whether or not they have been used appropriately is a very important life skill,
particularly in the age of the internet and the widespread availability of information (good and
bad in quality) about every aspect of life.


http://www.statisticsauthority.gov.uk
http://www.senseaboutscience.org
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CHAPTER 1 Variables and research design 3
Variables

We have explained a very important aspect of statistics: that they are only meaningful in a
context. But what is it that statistics actually do? Essentially, statistics give us information about
factors that we can measure. In research the things that we measure are called variables.

Variables are the main focus of research in science. A variable is simply something that can
vary: that is, it can take on many different values or categories. Examples of variables are
gender, typing speed, top speed of a car, number of reported symptoms of an illness, temperature,
attendances at rock festivals (e.g. the Download festival), level of anxiety, number of goals
scored in football matches, intelligence, number of social encounters while walking your dog,
amount of violence on television, occupation, number of cars owned, number of children per
family and favourite colours. These are all things that we can measure and record and that vary
from one situation or person to another.

But why are we interested in variables? We are generally interested in variables because we
want to understand why they vary as they do. In order to achieve such understanding we need
to be able to measure and record the changes in these variables in any given situation.

Characteristics of variables

You will notice from the examples of variables above that they have different characteristics.
Whereas you can measure temperature in terms of Fahrenheit or Celsius and put a number to it,
you cannot meaningfully do this for type of occupation. This represents one important
characteristic of variables: that is, how they actually change. At one end of the spectrum we have
variables that are said to be continuous: that is, they can take any value within a given range. Or,
more accurately, the variable itself doesn’t change in discrete jumps. A good example of a
continuous variable is temperature. This is because you could measure the temperature as, say,
40 °C or you could measure it more accurately as, say, 40.2558 °C. Another less obvious example
is the measurement of the amount of violence on television. We could measure this in terms of
the amount of time that violence appears on screen per day. If measured in this way, in terms of
time, the variable could take on any value in terms of seconds or parts of seconds (e.g. 1000 s
or 1000.1235672 s per day). The only limitation in the precision of measurement of such
variables is the accuracy of the measuring instrument. With continuous variables there is an
assumption that the underlying variable itself is continuous, even if the way in which we measure
it is not. Of the examples given earlier, temperature, level of anxiety, top speed of a car, typing
speed and intelligence could be regarded as continuous whereas the rest could not (see Table 1.1).

Table 1.1 Examples of continuous, discrete and categorical variables

Continuous Discrete Categorical

m Temperature m Number of reported symptoms of an illness m Gender

m Acarstopspeed = Number of cars owned m Occupation

m Typing speed m Number of goals scored in a football match m Favourite colour

m Intelligence m Number of social encounters while walking your = Type of fast food restaurant
m Level of anxiety dog

m Attendances at heavy rock festivals

m Number of children in a family
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A variable could also be discrete: that is, it can take on only certain discrete values within
the range. An example of such a variable is the reported number of symptoms of an illness that
a person has. These can only be recorded in terms of presence or absence of symptoms and
therefore in terms of whole symptoms present. Another example would be if we chose to meas-
ure the amount of violence on television in terms of the number of violent incidents per week.
In such a case, we could only report the number of discrete violent incidents. We could not use
it to measure in terms of fractions of a violent incident; therefore violence on television meas-
ured this way is termed a discrete variable. Of the examples given earlier, the most obvious
discrete variables are number of reported symptoms of an illness, number of social encounters
while walking your dog, attendance at a rock festival, number of cars owned, number of children
per family and number of goals scored in a game of football.

One problem that arises when thinking about continuous and discrete variables is confusing
the underlying variable with how it is measured. A variable may in theory be continuous, but
the way we measure it will always be discrete, no matter how accurate we are. We could measure
anxiety (a theoretically continuous variable) using a questionnaire (e.g. the State—Trait Anxiety
Inventory; Spielberger ef al., 1983) where the total score on the questionnaire gives an indica-
tion of a person’s level of anxiety. Total scores on this questionnaire can only increase in whole
units, say from 38 to 39 or from 61 to 62. Thus, the way we have measured anxiety is discrete
whereas the underlying variable is assumed to be continuous.

Additionally, often when analysing discrete variables they are treated as if they were continuous.
Many of the statistical tests that we use assume that we have continuous variables. Often when a
discrete variable can take on many different values within a range (e.g. attendances at heavy rock
festivals) they can reasonably be treated as if they were continuous for the sake of statistical testing.

Another type of variable is a categorical variable. This is where the values that the variables can
take are categories. A good example is gender, which has only two values that it can take: male or
female. Categorical variables can also sometimes have many possible values, as in type of occupa-
tion (e.g. judges, teachers, miners, grocers, civil servants). When dealing with categorical data we
have an infinite number of variables that we might wish to investigate. We could, if we wished to,
categorise people on the basis of whether or not they ate chocolate sponge with tomato ketchup at
6.30 this morning. The only obvious examples of categorical variables given in our list of variables
described at the beginning of this section are occupation, gender and favourite colour.

Try to ensure that you understand the different types of variable that you are measuring, as
this is important when deciding how to analyse data.

Definitions

Continuous variables can take on absolutely any value within a given range.

Discrete variables can only take on certain discrete values in a range.

Categorical variables are those in which we simply allocate people to categories.

1.2.2

Dichotomising continuous and discrete variables

It is often the case that researchers convert continuous or discrete variables into categorical vari-
ables. For example, we might wish to compare the spatial ability of tall and short people. We could
do this by comparing people who are over 6 ft 4 in (193 cm) with those under 4 ft 10 in (147 cm)
on a spatial ability test. Thus, we have chosen points on the continuous scale (height) and decided
to compare those participants who score above and below these points (see Figure 1.1).
Another example might be to compare the memory ability of anxious and non-anxious
individuals. We could measure anxiety levels using a questionnaire; this is a continuous variable
measured on a discrete scale. For example, the Hospital Anxiety and Depression Scale has an
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[ Categorical variable ]

Height (feet)

[ Continuous variable ]

Figure 1.1 lllustration of the conversion of continuous variables into categorical variables

anxiety scale that ranges from 0 to 21. To convert this to a categorical variable we would simply
compare those who score above a certain value (say, 11) with those who score below this value.

This dichotomising (dividing into two categories) of continuous and discrete variables is
quite common in psychology as it enables us to find out if there are differences between groups
who may be at the extremes of the continuous or discrete variables (e.g. tall and short people).
We do not, however, recommend such a practice as it reduces the sensitivity of your statistical
analyses. There is a good discussion of such problems in Streiner (2002), in Maxwell and
Delaney (1993) and more recently in Altman and Royston (2007). We mention this here only
so that you are aware that it happens in the research literature and so that you will understand
what the researchers have done.

Discussion point

Dichotomising continuous variables

Why do researchers dichotomise variables? Streiner (2002) highlights the point that many decisions in
psychology, psychiatry and medicine are binary decisions. Binary decisions are those where there are
two choices, such as whether or not a person has a mental disorder, whether or not a person has a
specific disease, whether a person should be hospitalised or whether a person should be released from
hospital. It is often argued that because clinicians have to make such binary decisions, it is legitimate
to investigate variables in a binary way. Such reasoning is used to support the widespread practice of
dichotomising continuous variables.

Streiner argues that we do not have to view the sorts of decision that clinicians make as binary. He
suggests that it would be better to think of mental iliness, for example, as being on a continuum: the
more symptoms you have, the more affected you are. We should then measure such constructs on
continua rather than dichotomising them. That is, rather than using questionnaires to categorise indi-
viduals we could use the questionnaires to get a measure of where they fall on a continuum. Such
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information can then be utilised in our decisions for treating individuals, etc. It is interesting to note
that the latest version of the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) has moved
much more to seeing mental disorders on a continuum rather than as categorical.

An example may illustrate dichotomisation better. We suggested earlier that we could categorise
individuals as anxious or non-anxious on the basis of their scores on a questionnaire. Researchers
investigating anxiety sometimes utilise questionnaires in this way. Those participants who score high
on the questionnaire are classed as high in anxiety whereas those who have low scores are classed as
low in anxiety. The ‘median-split’ method is often used in this regard, where those participants who
score above the median are categorised as anxious and those who score below the median as non-
anxious (e.qg. Takacs et al., 2015).

Streiner argues that the practice of dichotomising continuous variables tends to lead to research
that is low in power (we cover power further in Chapters 5 and 8). The reason for this is that it results
in us losing a lot of information about participants. For example, suppose two individuals score 20 and
38 on an anxiety inventory and that we come to classify them both as low in anxiety (they both fall
below the median). In any subsequent analyses based upon this categorisation, both of these partici-
pants are treated as being identical in terms of their anxiety levels (i.e. they are both non-anxious).
According to our questionnaire, however, there is a very large difference between them in terms of their
actual anxiety levels. Treating these two individuals as the same in terms of anxiety level does not seem
to make sense. It would be much more sensible to try to include their actual anxiety scores in any
statistical analyses that we conduct.

Additionally, we may find that there is a larger difference in terms of anxiety between the two
participants classed as non-anxious than there is between two participants where one is classed as
anxious and one is not. For example, suppose our median is 39: all those scoring above 39 are classed
as anxious and those who score below 39 are non-anxious. We can see here that the non-anxious person
who has a score of 38 has much more in common with an anxious person whose score is 41 than they
do with another non-anxious person who has a score of 20. Yet in any subsequent analyses the participants
with scores of 20 and 38 are classified as identical in terms of anxiety and these are classed as equally
different from the person who has a score of 41. This just does not make any sense.

Streiner also highlights research that has shown that analyses using dichotomous variables are about
67% as efficient as analyses using the original continuous/discrete measures. This is an incredible loss of
sensitivity in the study. It means that you are only two-thirds as likely to detect relationships among variables
if you dichotomise continuous variables. This is a serious handicap to conducting research. Moreover, loss
of power is not the only problem that arises when dichotomising variables. Maxwell and Delaney (1993)
have shown that such a practice can actually lead to spurious findings arising from statistical analyses.

Therefore, we advise you against dichotomising continuous variables.

Activity 1.1

Which of the following are continuous, which are discrete and which are categorical?

e Wind speed

* Types of degree offered by a university

* Level of extroversion

* Makes of car

e Division in which football teams play

* Number of chess pieces ‘captured’ in a chess game
* Weight of giant pandas

e Number of paintings hanging in art galleries

The correct answers can be found at the end of the book.
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1.3 Levels of measurement

Another way of distinguishing between variables or scales is in terms of the level of measure-
ment. There are four levels of measurement and these vary as a function of the way in which
the variables are measured. The four different levels are:

Nominal

u Ordinal
u Interval
u Ratio

At the lowest level of measurement are nominal scales. These are in effect categorical variables
in that they represent different categories, but they also have the characteristic that there is no
particular order that can be given to the categories. A good example of a nominal scale is gender,
which has two categories, male and female. You should be able to see that there is no logical way
of ordering these two categories in terms of magnitude. Another example would be ethnic group:
again we can categorise people in terms of their ethnic group but we could not put these groups
in any particular order — they are simply different categories. When dealing with nominal-level
measures, we are simply assigning people to categories and the data we obtain are in the form of
frequency counts. Frequency counts simply tell us how many people we have in each category.

At the next level of measurement we have ordinal scales. Quite often in psychology we use
ratings scales to measure participants’ responses. For example, we might want to know how
nervous a person is just before they take part in a study we are running. We could use a scale
like that presented below to gauge how nervous they are.

1 2 3 4 5
I'm cool, man! Whoa, this is I'm a quivering
getting serious! wreck!

Using such a scale we can place participants in some sort of order in terms of how nervous
they are prior to the study (hence ordinal scale). I would be able to say that someone who put
a circle around the ‘1’ was less nervous than someone who put a circle around the ‘3’ or around
the °5°. One of the drawbacks with such scales is that we cannot say that the difference between
‘1’ and 2’ on the scale is the same as the difference between ‘3’ and ‘4’ on the scale or that the
difference between ‘I’m cool, man!’ and ‘Whoa, this is getting serious!’ is the same as the dif-
ference between ‘Whoa, this is getting serious!” and ‘I’m a quivering wreck!” Thus we do not
have equal intervals on the scale.

At the interval level of measurement, we are able to put scores in some sort of order of
magnitude and we also have equal intervals between adjacent points on the scale (hence interval
scale). A good example of an interval scale is one of the commonly used scales to measure
temperature, such as Centigrade or Fahrenheit. On such scales we can say that the difference
between 1 and 2 degrees is the same as the difference between 9 and 10 degrees or between 99
and 100 degrees. We have equal intervals between adjacent points on the scales. The disadvan-
tage of such scales is that there is no absolute zero on them. Thus whilst there are zero points
on both the Centigrade and Fahrenheit scales these are arbitrary zero points — they do not equate
to zero temperature. The zero point on the Centigrade scale was chosen as it was the point at
which water freezes, and the zero point on the Fahrenheit scale is equally arbitrary. When we
reach zero on these scales we cannot say that there is no heat or no temperature.
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Because of this we cannot say that 4 °C is half as warm as 8 °C or that 40 °C is twice as hot
as 20 °C. In order to make such statements we would need a measuring scale that had an abso-
lute rather than an arbitrary zero point. A good example from the psychological literature is
anxiety which is usually measured through questionnaires such as the Spielberger State-Trait
Anxiety Inventory. A zero score on this questionnaire doesn’t mean that a person has absolutely
no anxiety and we cannot say that a person with a score of 40 is twice as anxious as a person
with a score of 20.

The final level of measurement is the ratio scale. Ratio scales have all the features of interval-
level data but with the addition of having an absolute zero point. For example, if I wanted to
measure how long it took you to read this paragraph, I would start the timer going when you
started at the beginning of the paragraph and then stop it when you had read the last word of
the paragraph. Here we have a scale where the intervals between adjacent points are equal: that
is, the difference between 1 and 2 seconds is the same as that between 79 and 80 seconds. We
also have a zero point which is an absolute zero. The point where you are just preparing to start
reading the paragraph is zero in terms of time spent reading the paragraph. Another example
of a ratio scale is speed of a car. When the car is not moving it has zero speed (an absolute zero
point) and the difference between 9 and 10 k.p.h. is the same as that between 29 and 30 k.p.h.
The useful point about having an absolute zero is that we can form ratios using such scales
(hence ratio scales). Thus, I can say that a car moving at 100 k.p.h. is moving twice as fast as
one moving at 50 k.p.h. Or a person who read this paragraph in 30 seconds read it twice as fast
as someone who read it in 60 seconds.

Levels of measurement are important as they can have an influence on what sorts of statisti-
cal test we can use to analyse our data. Usually, we can only use the most sensitive statistical
techniques (called parametric tests) when we have either interval- or ratio-level data. If we have
nominal- or ordinal-level data, we have to make do with the less sensitive non-parametric tests
(we cover the conditions for using different types of test in more detail in Chapter 5).

Definitions

Ratio scales have equal intervals between adjacent scores on the scale and an absolute zero.

Interval scales have equal intervals between adjacent scores but do not have an absolute zero.

Ordinal scales have some sort of order to the categories (e.g. in terms of magnitude) but the intervals
between adjacent points on the scale are not necessarily equal.

Nominal scales consist of categories that are not ordered in any particular way.

14

Research designs

There are many different statistical techniques that we use to analyse the data we have collected
in research. We will be introducing you to some of the most widely used in this book as well as
providing you with an understanding of the factors which determine which statistical technique
should be used in a given situation.

One of the biggest factors in determining which statistical tests you can use to analyse your
data is the way you have designed your study. There are several ways to design a study and the
way you do so can have a great influence on the sorts of statistical procedure that are available
to you. Sometimes researchers wish to look for differences between two groups of participants
on a particular variable and at other times they might want to see if two variables are related in
some way. An example of a study which investigated differences between conditions is the
research reported by Guéguen and Ciccotti (2008). In this study the researchers were interested
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in whether or not dogs facilitate social interactions and helping behaviours among adults. The
researchers ran four different studies where male and female researchers walked with and
without dogs. In two studies the researcher approached people and asked for some money, in
another study the researcher dropped some coins to see if people would help to pick them up
and in a final study a male researcher approached females in the street and asked them for their
phone numbers. In each study the researcher did the tasks both with and without dogs. In all
four studies they found that helping behaviours were higher when the researcher had a dog than
when they didn’t have a dog. An example of research looking for relationships would be the
study reported by Antonacopoulos and Pychyl (2014). In this research they were interested in
the relationship between dog walking and mental health. Through an online questionnaire they
discovered that talking with others whilst walking a dog was related to how lonely people felt
such that increases in talking to others was associated with decreased loneliness. The statistical
tests that we would use in these examples are called difference tests and correlational tests
respectively. The way you design your study will influence which of these sorts of test you can
use. In the following sections we will take you through several ways of designing studies and
indicate which sorts of test are available to the researcher conducting such studies.

1.4.1 Extraneous and confounding variables

Above we described a study by Guéguen and Ciccotti (2008) about the effects of walking with
a dog on social interactions and helping behaviours. If you think about this study you may
realise that there are factors other than owning a dog that could also affect the social encounters
people have when they are out with their dogs. Other factors might include shyness of the
walker, attractiveness of the walker, gender of the walker, breed of dog and a whole host of other
variables. These are all factors that the researcher might not have accounted for but which may
have influenced the social interactions; they are called extraneous variables. In any research
situation, whether in chemistry, physics or psychology, account has to be taken of extraneous
variables. If extraneous variables are overlooked, the conclusions that may be drawn from the
studies may be unreliable. Thus, in the dog-walking example, if the extraneous variables just
described had not been controlled, we would not be able to say for certain that any differences
in social interactions were due to the ownership of a dog. The differences may have been due
to any one or a combination of the extraneous variables just described. The main reason for
conducting research under laboratory conditions is to try to control extraneous variables as
much as possible. You will find that many of the research issues that we describe in this chapter
are designed to reduce extraneous variables.

You have to be aware that for any given variable that you measure there will be a number of
other variables that may be related to it (see Figure 1.2, for example). When we conduct a study
such as the dog and social interaction one, we cannot be certain that it is being with (or without)
a dog that has led to a change in social interactions. Thus we need to try to eliminate the other
variables (extraneous variables) as possible reasons for our observed changes in social interac-
tions. We do this by trying to control these other variables: for example, by trying to match our
dog and no dog participants as much as possible on shyness, attractiveness and gender. Also,
we could ensure that all participants are out with the same type of dog and that they are out at
the same time and on the same day of the week. Once we have controlled these other variables
then we may be more confident in our conclusions that being out with a dog influences the
number of social interactions a person will have.

Definition

Extraneous variables are those variables that might have an impact on the other variables that we are
interested in but we may have failed to take these into account when designing our study.
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Definition

Type of dog

you walk

Walking with

or without a
dog

Number of social
interactions while
walking in the park

Day of the week
and time of day

you walk

Attractiveness

Figure 1.2 lllustration of the variables that may influence the number of social interactions a
person has in the park

A specific type of extraneous variable is one that is correlated with both of the main variables
that we are interested in. Such a variable is called a confounding variable or simply a confound.
For example, let us suppose that we were interested in sex differences in the ability to throw a
ball successfully through a basketball hoop. Let us assume that we have run a study and found
that the males have scored more than the females. We might conclude from this that males are
better than females at scoring in basketball. One problem with this is that there could be a
potential relationship between both the sex of participants and ability to score in basketball and
height. It might be that tall people are better at scoring at basketball and it also tends to be the
case that males are taller than females. It thus could simply be the height of participants rather
than their sex that has determined their scoring ability in our study. Height would in this case
be a confounding variable.

A confounding variable is a specific type of extraneous variable that is related to both of the main
variables that we are interested in.

14.2

Correlational designs

We stated earlier that the major goal of science is to understand variables. More specifically,
we wish to understand how and why certain variables are related to each other. Perhaps the
simplest way to examine such relationships between variables is by use of correlational designs.
In such a design we measure the variables of interest and then see how each variable changes
in relation to the changes in the other variables. An example might help to illustrate this. A
recently published review by Gnambs (2015) examined the personality factors that related to
being good at computer programming. They found unsurprisingly that programming ability was
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related to intelligence and also introversion which perhaps conforms to the stereotypes for
computer programmers. However, the personality characteristics which were most strongly
related to programming ability were openness and conscientiousness. Thus, this research
showed that as personality (openness, conscientiousness and introversion) changed, so did
programming ability; these variables are said to co-vary. You should note that the terms ‘related’,
‘correlated’ and ‘co-varied’ are often used interchangeably.

Another excellent example of research conducted using correlational designs is that into the
relationship between smoking and cancer. It has generally been found that, as smoking increases,
so does the incidence of cancer. Therefore there is a relationship between number of cigarettes
smoked and the chances of getting cancer.

If you have used a correlational design then the sorts of statistical technique you will prob-
ably use will be the Pearson product moment correlation coefficient, or perhaps Spearman’s
rho correlation coefficient. (These are covered in Chapters 6 and 16 respectively.)

Correlational designs are those that investigate relationships between variables.

143

Causation

The issue of causation is a tricky one in science and even more so when we use correlational
designs. One of the important aims of science is to establish what causes things to happen. In
all branches of science, researchers are trying to discover causal relationships between variables.
For example, Newton produced an elegant theory to explain what causes apples to fall to the
ground: he established a causal relationship between the falling apple and gravity. In much
research in psychology we are also trying to establish such causal relationships. When we use
correlational designs, however, it is difficult to establish whether a change in one variable causes
a change in another variable. The reason for this is that in such designs we are simply observing
and recording changes in variables and trying to establish whether they co-vary in some mean-
ingful way. Because we are merely observing how variables change, it is difficult (though not
impossible) to establish the causal relationships among them. To be able to do this more easily
we need to be able to manipulate one variable (change it systematically) and then see what effect
this has on the other variables. We will discuss this approach further in the next section.

One of the golden rules of correlational designs is that we cannot infer causation from cor-
relations. The smoking industry has used this weakness of correlations to claim that there is no
direct evidence that smoking causes cancer. Strictly speaking, they may be correct, because the
studies have mainly been correlational. But given the amount of research that has substantiated
a relationship between smoking and cancer, one would be foolish to ignore the research and
trust the people who are making a profit from selling tobacco.

Finding that statistics anxiety and procrastination are related (see Figure 1.3), as did Dunn
(2014), does not tell us much about the causal relationship between these two variables. It could
be that increases in statistics anxiety cause increases in procrastination or maybe changes in
procrastination cause changes in statistics anxiety. Alternatively, there might be other variables,
such as neuroticism, that cause changes in both statistics anxiety and academic procrastination
(see Figure 1.4). You can see, therefore, that establishing that a relationship exists between two
variables does not necessarily tell us much about cause and effect.

Another example of this limitation in correlational designs is the relationship between
anxiety and depression. It has been found in a great many studies that anxiety and depression
are highly related (see Clark and Watson, 1991). People who report high levels of anxiety also
report high levels of depression. Could we say, then, that depression causes anxiety or anxiety
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Oh no! | think I'll read
that tomorrow.

Figure 1.3 Relationship between statistics anxiety and procrastination

~
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Statistics anxiety —= Procrastination

Figure 1.4 Possible causal relationships between neuroticism, statistics anxiety and procrastination

causes depression? No, we could not. It is quite likely that some intervening variable links these
two mood states. In fact, it has been found that anxiety and depression have a common general
distress element to them and it is this that explains the large relationship between them
(see Figure 1.5).

It is possible to assess causal relationships using correlational designs, but these situations
are much more complex than the simple correlational designs indicated in this section and
involve measuring the variables at various time points (e.g. cross-lagged designs).

The experimental design

In order for us to establish causal relationships between variables more easily we need to
manipulate one of the variables systematically and see what affect it has on the other variables.
Such a process is essentially that undertaken in experimental designs.

One of the most widely used designs in science is the experimental design, also called the
true experiment. If you think back to the typical experiment you conducted or read about in
chemistry or physics at school, this epitomises the experimental design. For example, we might
want to see what happens to sodium when we expose it to air and compare this with when it is
exposed to water. We would observe a slow reaction in the ‘air’ condition (the shiny surface of
the sodium becomes dull) and a rapid reaction in the ‘water’ condition (the sodium fizzes about
the surface of the water and may ignite). In an experiment we have one variable that we are
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No direct
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Figure 1.5 lllustration of the common elements shared by anxiety and depression and the
absence of a causal link between them

measuring (the state of the sodium, called the dependent variable), and we wish to find out what
effect another variable, called the independent variable (e.g. what sodium is exposed to), has
on it. The variable manipulated by the experimenter is called the independent variable (IV):
that is, its value is not dependent upon (is independent of) the other variables being investigated.
The other variable in such an experiment is called the dependent variable (DV). It is called the
dependent variable because it is assumed to be dependent upon the value of the IV. Indeed, the
purpose of the experiment is to establish or dismiss such dependence.

We can conduct such research in psychology: for example, we could find out whether dog
walking influences the number of social encounters. If we conducted this study we could get a
group of individuals and randomly allocate them to walking with a dog and walking alone. We
might predict that walking with a dog would lead to more social encounters than walking alone.
We have thus set up a hypothesis that we could test with statistics analyses.

Definition

A research hypothesis is our prediction of how specific variables might be related to one another or
how groups of participants might be different from each other.

Let us assume that we have conducted the above experiment and have found that the dog
walkers have more social encounters than the walkers without dogs. It thus looks like we will
have support for our prediction. However, there are a number of other factors that may have led
to a difference in the number of social encounters between the two conditions (see Figure 1.2).
How do we know that the difference we observe has been caused by our manipulation of the
independent variable rather than one of the possible extraneous variables? The answer is that
we don’t know. We can, though, limit the impact of the extraneous variables upon our study by
randomly allocating the participants to the conditions of our IV. By randomly allocating partici-
pants to conditions, we can reduce the probability that the two groups differ on things like
shyness, attractiveness and gender, and thus eliminate these as possible causes of the difference
in number of social encounters between our groups. If we randomly allocate participants to
conditions, we can be more confident in our ability to infer a causal relationship between the
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Definition

IV and the DV (walking with/without a dog and number of social encounters). It is this element
of random allocation that makes experimental designs so useful for determining causal relation-
ships among variables.

Thus, one of the major defining features of an experimental design is the random allocation
of participants to conditions. To employ random allocation in the dog-walking example above,
we could give each person who is participating a random number generated on a computer. We
could then ask all those students whose number is below a certain number to walk with a dog
and all those above the number to walk without a dog. In this way we would then have randomly
allocated the participants to each of the two conditions. A good example of a study that has
utilised an experimental design is one by Barner ef al. (2016), which investigated the effects of
using a ‘mental abacus’ technique on arithmetic task performance. They randomly allocated
five- to seven-year-old children to one of two conditions. They either had three hours per week
extra tuition in mathematics using the mental abacus technique or three hours of additional
traditional mathematics. They assessed mathematical performance over three years and found
that those children given the mental abacus training performed better on the arithmetic tasks
than those given the extra traditional tuition.

Of course, random allocation is most useful in controlling interpersonal factors such as shy-
ness. There are other factors relating to experimental design that cannot be controlled by random
allocation of participants to conditions. Take another look at Figure 1.2 and you will notice that
extraneous variables such as time of day and type of dog would not be controlled by random
allocation of participants to conditions of the IV. These are issues that would need to be
addressed through other aspects of experimental design, such as ensuring that a variety of types
of dog were used in the study and that both conditions were run at the same time of day and on
the same days of the week.

Experimental designs are those where the experimenter manipulates one variable called the independ-
ent variable (IV) to see what effect this has upon another variable called the dependent variable (DV).
In experimental designs we are usually looking for differences between conditions of the IV. A hallmark
of experimental designs is random allocation of participants to the conditions of the IV.

145

Quasi-experimental designs

Often in psychology we want to look at variables that we cannot directly manipulate. If we want
to compare males and females in some way, we cannot manipulate the group to which each
participant belongs. We cannot randomly allocate participants to the male and female condi-
tions; they are already either male or female. We therefore, strictly speaking, do not have an
experimental design. To highlight the fact that such designs are not strictly experimental, they
are called quasi-experimental designs.

As an example, suppose we conducted the dog-walking study above and we wanted to try to
remove gender as an extraneous variable. We could conduct a follow-up study where we try to
find out whether females have more social encounters when walking (without dogs) than males.
You can see that in this study the participants are not randomly allocated to conditions; they
were already either female or male. We thus have a quasi-experimental design. If we found that
the females had more social encounters than males, then we could argue that being female is
more likely to encourage social interaction than being male.

One of the problems with quasi-experiments is that, because participants are not randomly
allocated to the various conditions that make up the I'V, we cannot be certain that our manipula-
tion of the IV (or, should we say, pseudo-manipulation) is responsible for any differences
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between the various conditions. That is, it is harder to infer causation from quasi-experimental
designs than from experimental designs. For instance, in the previous example, it could be that
there is some other factor beyond gender that distinguishes the two groups (size, for example).
It could be that females are seen as less threatening because they tend to be smaller than males.
Thus, an important confounding variable has crept into our study. Because of the increased risk
of extraneous and confounding variables associated with quasi-experimental designs, experi-
mental studies are to be preferred whenever they are possible.

If you are ever unsure whether you are dealing with an experimental or a quasi-experimental
design, then look for random allocation of participants to conditions. If it is not a feature of the
design, then you are most likely dealing with a quasi-experimental design.

If you have used an experimental or a quasi-experimental design then some of the statistical
techniques that are available to you are the t-test, the Mann—Whitney U test, the Wilcoxon test
and analysis of variance (ANOVA). These are all covered later in this book.

Quasi-experimental designs involve seeing if there are differences on the dependent variable (DV)
between conditions of the independent variable (IV). Unlike experimental designs there is not random
allocation of participants to the various conditions of the IV.

146

Overview of research designs

We have now described three major research designs and how they influence the different types
of statistical analysis we can use. Table 1.2 gives a brief summary of the main features of these
designs along with the types of statistical test that would be appropriate to use with such
designs.

Activity 1.2

The following is an extract from the abstract of a paper published by van Elk (2015):

Previous studies have shown that one’s prior beliefs have a strong effect on
perceptual decision making and attentional processing. The present study extends
these findings by investigating how individual differences in paranormal and con-
spiracy beliefs are related to perceptual and attentional biases. Two field studies
were conducted in which visitors of a paranormal fair conducted a perceptual
decision-making task (i.e. the face/house categorization task; Experiment 1) or a
visual attention task (i.e. the global/local processing task; Experiment 2). In the first
experiment it was found that skeptics compared to believers more often incorrectly
categorized ambiguous face stimuli as representing a house, indicating that
disbelief rather than belief in the paranormal is driving the bias observed for the
categorization of ambiguous stimuli. In the second experiment, it was found that
skeptics showed a classical ‘global-to-local’ interference effect, whereas believers
in conspiracy theories were characterized by a stronger ‘local-to-global interfer-
ence effect’. The present study shows that individual differences in paranormal and
conspiracy beliefs are associated with perceptual and attentional biases, thereby
extending the growing body of work in this field indicating effects of cultural
learning on basic perceptual processes.

What sort of design is this study?
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Table 1.2 Overview of the main features of the various research designs

Designs Characteristics Statistical test

Experimental = Manipulated IV m t-tests

m Random allocation of participantsto = ANOVA

groups m Mann-Whitney U test
m Analysis by comparison between
groups
Quasi-experimental = Pseudo-manipulation of IV m t-tests
m Non-random allocation of = ANOVA

participants m Mann-Whitney U test

m Analysis by comparison between = Wilcoxon
groups
Correlational m Investigates the degree to which m Linear Regression

variables co-var ,
y m Pearson’s product

m Cannot infer causation from moment correlation

correlations ,
m Spearman’s rho

m Analysed using correlation tests

Between-participants and within-participants designs

Another important feature of research designs is whether you get each participant to take part
in more than one condition. Suppose we return to our example of dog walking and social
encounters. Here we have an experiment where the IV is whether the participants are walking
a dog and the DV is the number of social encounters.

How would you allocate participants to the conditions in such an experiment? You will recall
that we suggested that the best thing to do would be to allocate participants randomly to the
dog-walking and no-dog conditions. There is an alternative, however, and that is to get each
participant to walk both with a dog and again without a dog.

The former procedure is called a between-participants design (also sometimes known as an
independent or unrelated design); the latter is called a within-participants design (sometimes
called a repeated measures or related design). When deciding which of these designs to use,
you should bear in mind the advantages and disadvantages of each.

Within-participants designs

The main advantage of using within-participants designs is that you are able to control for many
inter-individual confounding variables. When you use different groups of people in each condi-
tion, you run the risk of there being some variable other than your IV that also distinguishes
between your groups. You would, if this happened, potentially have a confounding variable.
When you use a within-participants design, you have much greater control over such variables.
Because you have the same people in all your conditions of the IV, there will be much less
confounding variation between your conditions. By and large the same person will bring the
same problems or qualities to all conditions of your IV.
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A second very attractive point about using within-participants designs is that you need to
find fewer participants in order to complete your research. For example, if you have two condi-
tions and you would like a minimum of 12 people per condition, you would need 24 people if
you used a between-participants design, but only 12 with a within-participants design. As you
can probably imagine, if you are conducting a costly piece of research, this is an important
consideration.

A final positive for within-participant designs is related to a topic that we cover in more
detail in Chapter 8. Within-participant designs tend to have more statistical power than between-
participant designs. That is they are more likely to detect an effect that we are looking for in the
population.

Within-participant designs have the same participants in every condition of the independent variable
(IV). Each participant performs under all conditions in the study.

Definition

It is not, however, all rosy in the within-participants garden. If you think about the dog-
walking study being run as a within-participants design, you might be able to identify some
possible problems. It could be the case that, if you use the same people in both conditions, other
people out walking may recognise the walkers in the study and may feel more able to approach
and interact with them. Thus, in the second condition the participants may have more social
encounters because of familiarity rather than whether they had a dog. They may also start to
get bored or tired when completing the walk in the second condition, which may also have an
effect on the number of social encounters they have. These factors are thus confounding vari-
ables and could make the data difficult to interpret. Any differences in social encounters that
you find between your two conditions may be due to these factors rather than the experimental
manipulation of the IV. These are called order effects.

Order effects are a consequence of within-participants designs whereby completing the conditions in
a particular order leads to differences in the dependent variable that are not a result of the manipula-
tion of the independent variable (IV). Differences between the conditions of the IV might be due to
practice, fatigue or boredom rather than to the experimenter’s manipulation of the IV.

One way to eliminate order effects is to introduce counterbalancing into your design. In
counterbalancing you get one half of your participants to complete the first condition followed
by the second condition. You then get the other half of your participants to do the two condi-
tions in the opposite order, second condition followed by the first condition. To introduce
counterbalancing in the dog-walking study, you could get half of the participants to walk with
a dog first and then without the dog. You could then get the other half of the participants to
walk first without the dog and then with the dog. Any practice, fatigue or boredom effects
would thus be spread across both conditions of the IV and would therefore no longer constitute
a confounding variable (see Figure 1.6). You also still have each participant undertaking the
walk under both conditions and have therefore retained all the advantages of using a within-
participants design.

A good example of a study which used counterbalancing was one reported by Chernyak
and Sobel (2016). In this study the authors were interested in whether or not young children
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Figure 1.6 lllustration of the way order effects can be eliminated using counterbalancing

blindly accept the punishments for naughty behaviour by adults. In a lovely design they got
children to build towers out of bricks along with a puppet. The children and the puppet were
both supposed to receive an award of stickers for building the towers. The puppet then either
knocked over the tower by accident or did so on purpose. The adult experimenter had their
back to the child and puppet when the towers were knocked over and punished the puppet by
giving all of the reward stickers to the children. What they found was that when the puppet
knocked over the tower by accident the children were more likely to share their stickers with
the puppet than when the tower was knocked over on purpose. This was a within-participants
design and the researchers counterbalanced the order in which the puppets knocked over the
towers such that one group of children had the tower knocked over on purpose first followed
by accidentally and another group had the tower knocked over accidentally first followed by
on purpose.

One half of |:> Tower knocked over |:> Tower knocked over
children on purpose accidentally

Other half of |:> Tower knocked over |:> Tower knocked over
children accidentally on purpose

Another limitation of within-participants designs is that having participants take part in both
conditions means that they are more likely to realise the purpose of the experiment. This is a
problem because participants usually want to do what the experimenter wants them to and so
may perform how they believe they should do rather than how they would normally have done.
These are called demand effects. The reason why this is more likely in a within-participants
design is that each participant is exposed to more of the experimental procedure than in the
equivalent between-participants design. To a certain extent counterbalancing can also reduce
but not necessarily eliminate such demand effects.

A further problem associated with within-participants designs is that you cannot use them
in many quasi-experimental designs. For example, if you wanted to compare social encounters
experienced by males and females while out walking, you could not use a within-participants
design. You cannot have one person being both male and female on two separate occasions, and
so one person cannot take part in both conditions (unless, of course, they have a sex change
between taking part in the two conditions).
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Activity 1.3

How would you introduce counterbalancing into the following study?

A study is conducted that tests the effects of instructions emphasising speed or those
emphasising accuracy on performance in a mirror drawing task. Participants are asked
to trace the outline of a star using mirror drawing equipment. The time taken to com-
plete the tracing of the star and the number of errors are recorded. Participants are
required to undertake the mirror drawing task under both sets of instructions.

Counterbalancing is where you systematically vary the order in which participants take part in the
various conditions of the independent variable (IV). Counterbalancing would be introduced into a
study where you have a within-participants design.

1.5.2

Definition

Between-participants designs

One of the important features of between-participants designs is that because you have different
groups of participants in each condition of the IV, each participant is less likely to get bored,
tired or frustrated with the study. As a result, they are more likely to perform at an optimum
level throughout. In a similar vein, your research is going to be less susceptible to practice
effects and the participants are less likely to work out the rationale for the study. Between-
participants designs therefore reduce order and demand effects, and you can, to a large extent,
eliminate these factors as extraneous variables from your study.

On the negative side, you will need more participants than you would for a completely
within-participants design. Also, if you use different participants in each condition, you lose a
certain degree of control over the inter-participant confounding variables. For example, suppose
we conducted the dog-walking study described in the previous section as a between-participants
design. What if we did find that walking a dog leads to more social encounters? Before we can
accept this at face value, we have to ensure that there are no confounding variables. An impor-
tant confounding variable in such a study might be the shyness of the walkers. It could be the
case that, by chance, those in the no-dog condition were more shy and therefore it could be this
variable that led to the lack of social encounters. If we had done this experiment as a within-
participants design, we would have been able to control this confounding variable as each person
walks with and without a dog. This means that the overall level of shyness is the same under
both conditions and is thus not a confounding variable.

From the above discussion it can be seen that one of the problems of between-participants
designs is that different people bring different characteristics to the experimental setting. When
we are randomly allocating participants to conditions, we might, by chance, allocate all partici-
pants with one characteristic to one group, and this might confound our results. The statistical
techniques that we describe in this book allow us to make decisions as to whether or not we can
eliminate such confounds as explanations for our findings.

Between-participants designs have different groups of participants in each condition of the independent
variable (IV). Thus, the group of participants in one condition of the IV is different from the participants
in another condition of the IV.



20 Statistics without maths for psychology

Table 1.3 Summary of the advantages and disadvantages of between- and within-participants designs

Design

Between-participants =

Within-participants [

Advantages

Relative absence of practice and
fatigue effects

Participants less likely to work out the
purpose of the study

Need fewer participants

Greater control of confounding
variables between conditions

Disadvantages

Need more participants

There is not as much control of
confounding variables between
conditions

Increased likelihood of practice or
fatigue effects

Participants more likely to guess the
purpose of the study

Table 1.3 gives a summary of the advantages and disadvantages of within- and between-
participants designs. It should be apparent that the advantages of within-participants designs tend
to be disadvantages in between-participants designs and vice versa. When deciding upon a design
for some research, your decision about which to use needs to take these factors into account.

Activity 1.4

How would you design a study to investigate a causal relationship between caffeine
and mathematical ability?

Summary

In this first chapter we have introduced you to the
basic concepts for an understanding of research
and research design. You have learnt that:

* Variables vary in terms of precision. That is, they -

can be:

- continuous, taking on any value within a given
range (e.g. 10 or 10.2365)

- Experimental designs involve the random
allocation of participants to the conditions
of the IV.

Quasi-experimental designs involve

investigating intact groups such as males

and females and therefore do not use
random allocation of participants to

conditions.

- discrete, able to take on only certain specified

values within a given range (e.g. 9 or 10)

- categorical, where the values that a variable
can take on are categories rather than purely
numerical values (e.g. gender, male or female).

* There are three main research designs:
- Correlational designs examine relationships
between variables and do not, strictly .

speaking, have Vs and DVs. You cannot infer
causation from correlations.

* In experiments the independent variable (V) is
manipulated by the experimenter to see how it
affects the dependent variable (DV).

Between-participants designs are those where
we have different participants allocated to each
condition of the IV.

Within-participants designs are those where
each participant is measured under all
conditions of the IV.

—
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Discover the website at www.pearsoned.co.uk/dancey where you can test your knowledge with multiple
choice questions and activities, discover more about topics using the links to relevant websites, and
explore the interactive flowchart designed to help you find the right method of analysis.

Multiple choice questions

1. Which of the following constitute continuous variables?

(a) Number of times a score of 180 is achieved in a darts match
(b) Gender

(c) Temperature

(d) All of the above

2. Experimental designs are characterised by:

(a) Fewer than two conditions

(b) No control condition

(¢) Random allocation of participants to conditions
(d) None of the above

3. Ina study with gender as the manipulated variable, the 1V is:

(a) Within participants
(b) Correlational

(c) Between participants
(d) None of the above

4. Which of the following are true of correlational designs?

(a) They have no IV or DV

(b) They look at relationships between variables
(¢) You cannot infer causation from correlations
(d) All of the above

5. Which of the following could be considered as categorical variables?

(a) Gender

(b) Brand of baked beans
(¢) Hair colour

(d) All of the above

6. Between-participants designs can be:

(a) Either quasi-experimental or experimental
(b) Only experimental

(c) Only quasi-experimental

(d) Only correlational
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-
7. Which of the following statements are true of experiments?
(a) The IV is manipulated by the experimenter
(b) The DV is assumed to be dependent upon the IV
(¢) They are difficult to conduct
(d) Both (a) and (b) above
8. Quasi-experimental designs have:
(a) AnlV anda DV
(b) Non-random allocation of participants to conditions
(c) NolIVorDV
(d) Both (a) and (b) above
9. A continuous variable can be described as:
(a) Able to take only certain discrete values within a range of scores
(b) Able to take any value within a range of scores
(¢) Being made up of categories
(d) None of the above

10. Which of the following are problems associated with within-participants designs?
(a) There is an increased likelihood of practice or fatigue effects
(b) Participants are more likely to guess the nature of the experiment
(¢) They cannot be used with quasi-experimental designs
(d) All of the above

11. According to Streiner (2002), how efficient are studies that dichotimise continuous variables when
compared with studies that do not?
(a) 100%

(b) 95%
(c) 67%
(d) 50%

12. A researcher has just conducted a correlational study investigating the relationship between the amount
of alcohol drunk by fans of the home team before a football match and the number of goals scored by
the home team. They found that there was a relationship between the two variables. Which of the
following statements are valid?

(a) The amount of alcohol drunk was related to the home team’s ability to score goals, but we cannot
say it caused the team to score the goals
(b) The home team’s ability to score goals is related not to the amount of alcohol but to the amount
of cheering by the drunken fans
(¢) The increase in the amount of alcohol drunk caused an increase in the number of goals scored
(d) All of the above
13. In a within-participants design with two conditions, if you do not use counterbalancing of the condi-

tions then your study is likely to suffer from:

(a) Order effects

(b) Effects of time of day
(c) Lack of participants
(d) All of the above
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14. You have conducted a study that shows that the earlier people get up, the more work they get done.
Which of the following are valid conclusions?

(a) There is not necessarily a causal relationship between getting up early and amount of work done
(b) People who get up early have a need to get more work done

(c) Getting up early is the cause of getting more work done

(d) Both (b) and (c) above

15. Which of the following designs is least likely to enable us to establish causal relationships between
variables?

(a) Experimental design
(b) Quasi-experimental design
(c) Correlational design
(d) Within-participants design

16. Demand effects are possible confounding variables where:

(a) Participants behave in the way they think the experimenter wants them to behave
(b) Participants perform poorly because they are tired or bored

(c) Participants perform well because they have practised the experimental task

(d) None of the above

17. Suppose you wanted to conduct a study to see if depressed individuals bite their nails more than non-
depressed individuals. Which of the following would be the best way to proceed?

(a) Measure participants’ depression with a questionnaire and ask them to give a rating of how much
they bite their nails. Then classify participants as ‘depressed’ or ‘non-depressed’ on the basis of their
questionnaire scores. We could then see if there was a difference in how much they bit their nails

(b) As per (a) above but don’t divide the participants into two groups; use actual depression scores in
the analyses and see if there is a relationship between depression and biting nails

(c) This sort of study is impossible to carry out and so we couldn’t proceed with it

(d) None of the above

18. Which of the following might be suitable I'Vs in a quasi-experimental study?

(a) Gender

(b) Whether or not someone had Generalised Anxiety Disorder
(c) Students versus non-students

(d) All of the above

19. In within-participants designs, order effects occur when:

(a) Participants get tired in later conditions

(b) Participants perform equally well in all conditions

(c) Participants have trouble obtaining their drinks at the bar
(d) None of the above

20. Which of the following are problems associated with dichotomising continuous variables?

(a) Loss of experimental power

(b) Spurious effects may occur

(c) There is a serious loss of information
(d) All of the above
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oduction to SPSS

CHAPTER OVERVIEW

In this chapter we present a broad overview of the main features of SPSS. It is important that you
understand the main features of SPSS, as this will ensure that you are easily able to follow the SPSS
instructions we give later in the book. In this chapter, therefore, we aim to teach you about the
following:

starting SPSS

using the tutorials and help features
setting up variables and changing variable characteristics

saving data to data files.

2.1

2.2

Basics

One of the first things that you need to know is that the bulk of the SPSS instruction in this
edition of the book refers to version 23 of the software. However, you should not be too con-
cerned if you have an earlier version such as 22, 21, 20 or even as early as version 16, as there
are not too many differences between these older versions and the latest one in terms of running
analyses. Where there are important differences, we will alert you to these in the text. In fact,
one difference in regard to version 18 is that it is actually called PASW Statistics 18 rather than
SPSS version 18.

Starting SPSS

When you start up SPSS, you will be presented with a dialog box with a range of options for
what you want to do with SPSS.



26 Statistics without maths for psychology

- _ 17 Cront sbew fis dalog i Bue futn

IBM SPSS Statistics
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The first thing you need to decide is whether you want to open an existing datafile, input some
new data or run the tutorials available in SPSS. We recommend if you are new to SPSS that you
run a tutorial. To do this you should select a tutorial from the panel in the lower right of the
opening dialog box. We suggest that you select and run the /ntroduction tutorial and so you
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should select this and then click on the OK button. This will open an internet browser and send
you to the SPSS online help pages:

0 Cae Studies This guide will shew you how 1o use many of the available features. It is designed 10 provide a step-by-step,
= % Statistics Coscn hands-on guide. All of the n i with U 50 that you can follow
m:mﬂ— along, performing the came analyses and obtaining the same results shown here,
W aca-ons
T Integeation Bhag.in far Bythan Help. If you want detailed examples of various statistical analysis techniques, ry the step-by-step Case Studies, available
% Invegratien Plug-in for & Help from the Help menu. 52t
4 W tntegration Plug-in for Liva User Guide =
h:mmm:—mm Next
E P NET
159 Werking wih & Sample Flles

Opening a Data File

Bunning an Analvsis

Creating Chariy

You will notice that in the left-hand pane there is a list of help topics. The tutorials are listed

here. If you click on the Tutorial option it will expand the tutorial list:

B-0-2 8- hps they- T §- °

Tutorial >

- Introduction

This guide will show you how fo use many of the available features. It is designed to provide a step-by-step,
hands-on guide. All of the files shown in the examples are installed with the application so that you can follow
along, performing the same analyses and obtaining the same results shown here,

from the Help menu.

Sample Files
Opening a Data File
Running an Analysis
Creating Charts

mbo&_értlun

1f you want detailed les of various statistical asalysis techni try the step-by-step Cave Studies, available
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Wherever you see this icon: [14' you can expand the topic by clicking on it:

SFEN 2 W—

- A
&H ﬁ hittp:/7127.0.0.1:49662 help/index.jspTtopic= %2F com.ibm.spss.statistics.tut %2Fspssfel
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Expanding
the topics

54 &) http--www.sciencedirect....

S University Reporting m Google Scholar ';__j Academic Work

2 Opening a Data File
B Runining an Analysis
B Creating Chans

# [ Reading Data

# L Using the Data Editor
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—

= Examining Summary Statistics for Individual Var

Search: | | E Scope: All topics
\ | Contents & ¥ B § 08
+  Help Tutorial =
5 @ Reference Introduction
5 @ Tutorial
= L Introduction This guide will sl
N B Sample files hands-on guide. .

along, performin;

If you want dctai
from the Help me

Next

Sample Fi

In this way you can find the specific help topic or tutorial that you are after quickly.

The right-hand pane is the reading pane. Here will be the information provided about each
help topic. You will see that it has automatically opened the introductory tutorial. In the reading
pane, once you have read the information you can either click on the Next link or click on a
particular topic listed here to move through the tutorial:

Tutorial >
Introduction

This guide will show yon how to use man:
hands-on guide. All of the files shown in
along, performing the same analyses and ¢

If you want detailed examples of various s
from the Help menu.

Click the
Next g ‘Next' link or
e S a topic to
Sample Files ! move on in
//// the tutorial

Opening 1 Data File

Running an Analysis

Creating Charts

You will see that the tutorial system has a number of topics for you to run through. These are
all very useful and it will pay you to go through them as you get more familiar with SPSS. For
now we recommend that you run through the Introduction tutorial before moving on.
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Read the text on the first page and then click on the Next link to move forward to the next
page. You will be presented with a page that looks like this:

g (HI1 001 430600 hetpy e g tops W1 comibm. s statmes n e e 0+ © | 8 Melp - M P Statatey
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2 Opening a Data Fike
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1 [ Reacting Data
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1 24 mModifying Diata Values
# 24 Time Savng Festures
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# 3 Automated production
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Moltollh:awnplcsthﬂmplucm:dhutuc&:dailﬁledﬂm.m Thas data file 15 a fictitious survey of

several il d people, basic d See the topic Sample Files for
more mnformation.

If you are using the Student version, your version of demo.sav is a representative sample of the original data file,
reduced to meet the 1,500-case limit. Results that you obtain using that data file will differ from the results shown
here,

The sample files installed with the product can be found in the v of the i di
There is a separate folder within the Samples subdirectory for each o!ﬂu follow!.ns languages: English, aneh,
German, Ialian, Japanese, Korean, Polish, Russian, Simplified Chinese, Spanish, and Traditional Chinese.

Not all swnple files are available i all languages. 17 a sample file 1s not available in a langoage, that language
folder contaims an English version of the sample file

Next

¥ Parent topic: Introduction
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This explains about sample data files which you can use to practice using SPSS. Take a look
through these initial tutorial topics and some of the others listed in the left-hand pane.

You should bear in mind that you can also access the tutorials at any time during an SPSS
session by clicking on the Help menu and selecting the Tutorial from there.

tilities  Add-ons  Window  Help
I E i e @ Topics
: = i@ Tutorial JEp—
Case Studies
r | v | v Working with R =
Statistics Coach

Command Syntax Reference
SPSS Community

-About. ..
Algorithms
IBM SP33 Products Home
Programmability

Diagnose...
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2.3

When you click on the Help menu you will notice a number of other options that you can
choose: for example, Statistics Coach and Case Studies. These are very useful help features and
we will cover these in later chapters where it is more appropriate to introduce them.

Working with data

To open an existing file, select the file or click on the Open another file item in the Recent files
section from the initial SPSS dialogue box. You should then select the relevant file and press OK
to continue. If you are already in SPSS and you want to open a datafile, simply click on the File
menu and select Open and then Data (see below). You then select the relevant file and click
OK to continue.

Setup a new IBM'SPSS Statistics

datafileby |- p o
clickinghere | 1~ [15 vowommn -
I; Mew DEI::;SE Query...
Recent Files:
|- =3 Open anothe file... i
Openan s
existing file by |
clicking here

Mo-

Open Database
(2 Read Tent Data..
Read Cogros Data
[ Read Triple-8 Data
B
=S

B Save Al Data
Frport
.II_.-. File Read On
Edl Colledt Variable Information
B Rename Datasel
Display Data File information
B3 manage uaasers
ES Cache Data
® s

@ Swich Server...
Ropository

Bl 5et views Culput Gpiuns (Syntar)
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If you want to enter new data and have the initial SPSS dialogue box open, select the New
Dataset option in the New Files box and click on OK. Once you click on OK, you will be pre-
sented with the following screen:

Columns =
variables \

Rows =
participants

Data Viewand
Variable View
tabs

24

3l 50 Stabubes Proceasid B 1eady Linicesde OH

You may find that the active window is too small to display all the information available. You
can increase the size of the active window by clicking on the Minimise/Condense/Enlarge but-
tons (-/00/i) in the top right-hand corner of the active window. Here the - button will minimise
the active window, & will condense an enlarged window, and 0O will enlarge a condensed win-
dow. Minimising the active window changes it to an icon at the bottom of the screen, whereas
condensing the window will leave the window open but reduce its size. If the window is already
condensed, you can see more information in it if you enlarge it by clicking the O button. If the
window is already in its enlarged state and you need to see more information, you can scroll
through the contents of the active window by clicking on the up and down scrolling arrows.

Data entry

Before you can carry out any analysis, you need to enter your data. You will notice that there
are cells arranged in columns and rows. Each row of data that you input will represent the data
from one participant and each column represents the data from one variable. For example, sup-
pose we have run a study looking at the relationship of statistics anxiety to procrastination. Let
us assume that we have the following data to input:

Participants: P1 P2 P3 P4 PS5 Pé6
Statistics anxiety: 55 59 48 60 62 50
Procrastination: 125 132 94 110 140 96
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Each row
represents one
variable

1
Varble | - i bslue
[ ]

The first thing to do is to set up the variables in SPSS. To set up variable names and other fea-
tures of variables you need to select the Variable View tab at the bottom of the screen. The screen
will change so that you can set up the variables in your data file.

Columns represent
characteristics of

BA1 SFSS Saaeecy PIDCYIIOr S IeR0y Urscods DN

On the Variable View screen, the rows now represent variables and the columns some format-
ting feature of the variable. You need to input the name of each variable in the first column,
headed Name. Click on the first row in this column and type in the variable name. We have two
variables to set up: the statistics anxiety and procrastination variables. Type in the first variable
name: call it StatisticsAnxiety. You have to stick with the following rule when naming
variables:

e The name should not be longer than 32 characters (e.g. StatisticsAnxiety).

Once you have typed the variable name into the first cell, click on the next cell down and type
in the variable name for the procrastination variable.

ES BB M Dot Drametem s DG UMSH  ASTIM  WNelw  Hew
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You will notice that there are a number of other characteristics of variables that can be adjusted
and we will take you through more of these as we work through the book. In older versions of
SPSS, where there was a big restriction on the number of characters in the variable name, it was
important to make use of the Label feature in the variable view. In this column, for each variable
you can type in a much more meaningful description of the variables and these labels will be
printed on any statistical output. This feature is very useful as it makes the output much easier to
read. This is less important in the latest versions of SPSS (17 and later), as the length of variable
names allows you to create meaningful names. However, we would still recommend that you use
the Label option, as you can include spaces and other punctuation marks to make the names even
clearer. To use the Label feature, simply click on the relevant cell and type in your label. So, for
example, for the StatisticsAnxiety variable you could type in ‘Statistics Anxiety Score’:

QeSS

Fm

The variables have now been set up, so you can move on to entering the data. To be able to
do this you need to select the Data View tab and this will present you with the following screen:

I1fyou move the
mouse cursor over
the column
heading, the label
that you typed in
will be revealed
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You should notice that the first two columns are headed StatisticsAnxiety and Procrastina-
tion. In fact you will probably see that the variable names on this screen are printed across two
lines if they are long variable names. If you move the mouse cursor over one of the column
headings, the full variable name as typed by you in the Label column of the Variable View tab
will be displayed. If you want the column headings to be displayed in full, you will have to make
the columns wider. You do this by moving the mouse cursor over the right-hand edge of the
column heading box and then dragging the column edge so that it becomes wider and displays
the whole variable name.

Remember that in the Data View screen, columns refer to variables and rows refer to partici-
pants. Therefore all the data for StatisticsAnxiety will be input into the first column and that for
Procrastination into the second column. Go ahead and enter the data we presented earlier. Once
you have done this, the screen should resemble the one that follows:
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You can see here that the data have been input.

2.5 Saving your data

Once you have entered all of your data, it is a good idea to save it as a datafile. This will avoid
having to type it all in again should you wish to do more analyses later. To save your file, you
should move the mouse cursor over the File menu and click the left mouse button. The following
menu will then be displayed:
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Move the mouse pointer and click on the Save 4s . . . option, and the following dialogue box
will appear. It is called a dialogue box because this is where you tell SPSS what to do. You
should simply type the filename in the relevant box and click on the Save . . . button. Your file
will then be saved into this file.

Remember that your datafiles should be named in the following way:

e The first part is a name that is meaningful for you (e.g. Stats Anxiety & Procrastination).
e The second part should always be .sav for a datafile (this is called the file extension).
e The first and second parts are always separated by a full-stop.

Thus we have called our file Stats Anxiety & Procrastination.sav. Actually, you do not even
have to type in the .sav part of the name, as SPSS will automatically do this for you. Whenever
you see filenames ending in .sav you can be reasonably confident that they are SPSS datafiles.
If you forget what you have called a file, look for files with the .sav file extension.
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6 Inputting data for between-participants and
within-participants designs

We have just described how to input and save your data into SPSS. You should recall that in
Chapter 1 we introduced you to a number of different research designs. You need to be aware
that data from different research designs need to be input into SPSS in different ways. In the
previous section we have described the appropriate way of setting up variables and inputting
data for correlational designs. If you wish to input data for a between-participants design, you
should proceed as follows. Let us assume that we have just conducted a dog-walking study as
a between-participants design, where one group of participants go walking in the park with a
dog and another group go walking without a dog. Suppose we have recorded the following
numbers of social encounters in each condition:

Walking with a dog: 9 7 10 12 6 8
Walking withoutadog: 4 5 3 6 5 1

In this design, walking with or without a dog is the IV and the number of social encounters is the
DV. When entering the data into SPSS, we need to set up one variable for the IV and one for the
DV. The first thing you need to do then is to name the variables on the Variable View screen. When
setting up variables, the IV variable is the one you need to pay most attention to, as it is the one
that many students find hard to deal with. When we have different groups of people in each condi-
tion of the I'V, we need to set up a grouping variable in SPSS. This simply lets SPSS know which
of the two groups each participant was in. Set up the variables as in the following illustration:
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If we leave the variable set up as it stands, you might find the printouts difficult to interpret,
as they will not display any labels for the different conditions of the IV. It is therefore a good
idea to input details of the names of each condition of the IV. To provide SPSS with this
information, you simply click on the cell in the DogwalkingGroup row in the Values column.
You will be presented with the following dialogue box. (In earlier versions you should notice
that when you click on the cell in the column headed Values, an ellipsis (a grey box with three
dots in it) appears. This indicates that you can add further information to this column. Click on
the ellipsis and you will obtain the relevant dialogue box.)
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We have two conditions for the IV for which we need to assign group numbers. We will label
the ‘walking with a dog’ group as group 1 and the ‘walking without a dog’ group as group 2
(this is an arbitrary decision). Type a / into the Value box and Walking with a dog in the Value
Label box. Once you have done this, click Add and you will see that the details appear in the
bottom box. Now type a 2 in the Value box and Walking without a dog in the Value Label box
and click Add. The dialogue box should look like this:

i . B
Iﬁa Value Labels ﬁ

~Value Labels

v | (e

Label: | |

1.00 ="Walking with a dog”

200 = "walking without a dog”

Change

Remove
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Click on OK and you will be returned to the Data View screen. Whenever you want to let
SPSS know the names of your groups, you can do so by adding the information to the Values
column.

We have now set up the variables. To enter the actual data, click on the Data View tab. When
we come to input our data into the DogWalkingGroup column, if the person was in the with a
dog group then we input a / in the column, if the person was in the without a dog group we
input a 2 in the column. You can therefore see that our first column of data will contain only 1s
and 2s.

In the second column we simply input each person’s number of social encounters, as this is
our DV. You should be able to tell from looking at the input screen that participant number 4
was in the walking with a dog group (1) and had 12 social encounters. Participant number 12
was in the walking without a dog group (2) and had a lonely walk with only one social
encounter.
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If you wish, you can change the way that SPSS displays the information in the grouping
variable column. Once you have used the Jalues feature to indicate which group is which, you
can get SPSS to display the labels that you have given each group in the Data Entry window.
To do this you simply click on the icon that looks a bit like a road sign (:#) with the ‘1’ and ‘A’
in it towards the right-hand end of the toolbar:

Click on this
iconto
| display the
L8 “Unttied s [Datasers] - 158 3PS5 Statisics Gala LoD i value labels | o D i)
Fle ES Vew Data Transtrm Analze Graphs

m—mmr«gg I b S g“é'i---- Ao

When you do this, you will see that the data screen changes so that it displays the value labels
in the first column rather than the numbers that you typed in. You can change the display back
to numbers if you wish by clicking again on the Value Label icon.
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You should note that if you wish to add new data to this file, you should still type numbers into
the first column. SPSS will automatically change them to the relevant label for you.

2.7 Within-participants designs

When we have within-participants designs, we have to input the data in a different way. If we
stick with the dog-walking example above but think of it as a within-participants design, each
person would complete the walking in both the dog and no-dog conditions. The data for such a
study would look something like that shown below:

Each person
has a scorein
both conditions

?_H \ragi_.ggnﬁjgézg ;ﬁ%\-& |

12.00 GOI
5 6.00 500
== 800 100
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You might be wondering why we have to input the data differently for different designs. The
reason is that each row on the data input screen represents the information from one participant.
If you have a between-participants design, you need to let SPSS know what each participant’s
score was and also which group they were in. When you have a within-participants design, each
participant performs under two conditions and therefore has two scores. You need to let SPSS
know what both of these scores are. Because each participant performs in both groups, you do
not need to let SPSS know their group with a grouping variable. You can therefore tell the dif-
ference between within- and between-participants designs by looking for a grouping variable.
If there is one, then it is a between-participants design.

You should notice from the screenshot that we have set up two variables, one for the dog
condition and one for the no-dog condition. Also, because we do not have a grouping variable,
we do not have to give group “value’ labels for any variables in the Variable View screen. Setting
up the variables with such a design is therefore more straightforward than with between-
participants designs.

Summary

In this chapter we have introduced you to the SPSS ¢ about using Labels and Value Labels to make the
statistical package. You have learnt: output clearer.

* how to input data for correlational, within-
* how to use the tutorials participants and between-participants designs.

* how to set up variables in the Variable View part < that the use of a grouping variable is important
of the interface. for between-participants designs.

—

Discover the website at www.pearsoned.co.uk/dancey where you can test your knowledge with multiple
choice questions and activities, discover more about topics using the links to relevant websites, and
explore the interactive flowchart designed to help you find the right method of analysis.

SPSS exercises

The answers to all exercises in the book can be found in the Answers section at the end of the book.

Exercise 1

Dr Genius has conducted a study comparing memory for adjectives with that for nouns. She randomly
allocates 20 participants to two conditions. She then presents to one of the groups of 10 participants a
list of 20 adjectives and to the other group a list of 20 nouns. Following this, she asks each group to try
to remember as many of the words they were presented with as possible. She collects the following data:

Adjectives: 10,6,7,9,11,9,8,6,9, 8
Nouns: 12,13,16,15,9,7,14,12,11,13

1. What is the IV in this study?
2. What is the DV?
\ J
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( )

3. Is this a between- or within-participants design?

4. Is it an experimental, quasi-experimental or correlational design?

5. Enter the data into SPSS in the appropriate manner for the design of the experiment and save your
data to a file.

Exercise 2

Using the data from Exercise 1:

* If you input the data as a within-participants design, then input it now as a between-participants
design.

* If you input the data as a between-participants design, then input it now as a within-participants
design.

Save the data to a file using a different filename.

—




CHAPTER OVERVIEW

Earlier (in Chapter 1) we outlined some important factors in research design. In this chapter we will
be explaining the basic ways of handling and analysing data collected through quantitative research.
These are descriptive statistics. An important step for anyone trying to understand statistical analyses
is to gain a good grounding in the basics. Therefore, we will explain to you a number of basic statistical
concepts which will help you to understand the more complex analyses presented later in the book.
By the end of this chapter, you should have a good understanding of the following:

m samples and populations

m measures of central tendency (e.g. the mean)

m graphical techniques for describing your data (e.g. the histogram)
m the normal distribution

m measures of variability in data (e.g. the standard deviation).

These are all important concepts, which will pop up in various guises throughout the book, and so it
is important to try to understand them. Look at these as the initial building blocks for a conceptual
understanding of statistics.

3.1 Samples and populations

We have explained that statistics are essentially ways of describing, comparing and relating
variables (see Chapter 1). When producing such statistics, we have to be aware of an important
distinction between samples and populations. When psychologists talk about populations, they
do not necessarily mean the population of a country or town; they are generally referring to
distinct groups of people: for example, all individuals with autism or all men who are left-
footed. In statistical terms, a population can even refer to inanimate objects: for example, the
population of Ford cars.

Definitions

A population consists of all possible people or items who/which have a particular characteristic.

A sample refers to a selection of individual people or items from a population.
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Figure 3.1 lllustration of several samples of five faces taken from a population of faces

A sample is simply a selection of individuals from the population (see Figure 3.1). Research-
ers use samples for a number of reasons, chiefly that samples are cheaper, quicker and more
convenient to examine than the whole population. Imagine that we wanted to see if statistics
anxiety was related to procrastination, as Dunn (2014) has done. We could simply measure
everyone’s levels of statistics anxiety and procrastination and observe how strongly they were
related to each other. This would, however, be prohibitively expensive. A more convenient way
is to select a number of individuals randomly from the population and find the relationship
between their statistics anxiety and procrastination levels. We could then generalise the findings
from this sample to the population. We use statistics, more specifically inferential statistics, to
help us generalise from the sample to the whole population.

When conducting research, we have to ensure that we know which population is relevant and
choose our sample from that population. It is of no use conducting a study using a sample of
males if the target population includes both sexes, and it is pointless conducting a study using
a sample of tarantulas if the target population is zebras.

The ability to generalise findings from a sample to the population is vitally important in
research. Mostly when conducting studies researchers are more interested in the population
than they are the sample of participants in their particular study. They are usually only interested
in what their samples can tell them about the populations. Thus, Dunn (2014) was not especially
interested in the 101 people who took part in the study, but was interested in what these partici-
pants could tell them about statistics anxiety in the population. It is important therefore that we
ensure that any samples used in our research are truly representative of the target population.
A simple example will illustrate some of the problems. Imagine that some researchers want to
find out if walking a dog leads to more social encounters than walking without a dog. They
decide to go to their nearest park and follow a number of dog owners and non-owners to count
the number of social interactions they have. They find that non-owners tend to have more social
encounters than dog owners do. They conclude that having a dog is bad for your social life. Is
this correct? We do not really know the answer to this from the research as described. It might
be correct, but they may not have used an appropriate sample upon which to base their conclu-
sions: they may have a sampling problem. The problem with this is that the dog owners they
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Definition

followed may, for example, have all been very shy, and it is this rather than having a dog that
explains the difference in social encounters. There are many ways in which the researchers could
have failed to obtain representative samples. There could be experimenter bias, where the
experimenters subconsciously chose to follow people who help support their hypothesis.
There could be issues to do with the time of day at which people walk their dogs: for example,
people walking dogs early in the morning may be in a hurry in order to get to work and thus
may be less sociable. Certain dogs may lead to fewer social interactions (e.g. walking with a pit
bull terrier).

As researchers we have to be aware of all these possibilities when designing our research in
order to ensure such problems do not arise. We want to be able to generalise from our sample
to the wider populations and therefore we want to avoid problems with the design that reduce
our ability to do this. Many of the finer points of research design are attempts to ensure that we
are able to generalise. The researchers in the above example could, of course, have gone to many
different parks and followed many people on many occasions. In this way they would ensure
that their samples are much more representative of the population.

The previous example illustrates a very important point, which is that our ability to gener-
alise from samples to populations is dependent upon selecting samples that are truly representa-
tive of the target population.

We have now introduced you to the distinction between samples and populations. You will
find when you read textbooks on statistics that statisticians have different ways of describing
samples and populations. Strictly speaking, statistics describe samples. So if you calculate an
average or mean for a sample, it is a statistic. If you calculate the mean for a population, how-
ever, you should call it a parameter. While statistics describe samples, parameters describe
populations. Thus a population mean is a parameter and a sample mean is a statistic. This is a
technical distinction and one that need not worry you unduly, as long as you realise that there
are differences between the statistical techniques that describe samples and those that describe
populations. Typically, we use sample statistics to estimate population parameters. More specifi-
cally, however, we tend to use descriptive statistics to describe our samples and inferential
statistics to generalise from our samples to the wider populations.

Parameters are descriptions of populations whereas statistics are descriptions of samples. We often
use sample statistics as estimations of population parameters. For example, we often try to estimate
the population mean (a parameter) from the sample mean (a statistic).

Activity 3.1

If you wanted to find out which group, football fans or rugby fans, were least intelli-
gent, which of the following samples would be most suitable?

* A group of people who are both football and rugby fans

* Arandom sample of people from the general population
* One group of football fans and one group of rugby fans

* One group of males and one group of females

* A group of psychology students

* A group of chimpanzees
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Measures of central tendency

The first and perhaps most common form of descriptive statistics that you will come across are
measures of central tendency. A measure of central tendency of a set of data gives us an indica-
tion of the typical score in that dataset. There are three different measures of central tendency
that are typically used to describe our data. We will begin with the most popular of these, the
mean, which may be known to many of you as the average.

Measures of central tendency give us an indication of the typical score in our sample. It is effectively an
estimate of the middle point of our distribution of scores.

3.21

Definition

Mean

The mean is easily calculated by summing (adding up) all the scores in the sample and then
dividing by the number of scores in the sample. The mean of the sample of these four scores
5,6,9,2 will be:

5+6+9+2
TZS.S

As another example, if we obtained the following dataset, 2, 20, 20, 12, 12, 19, 19, 25, 20,
we would calculate the mean as follows:

e We would add the scores to get 149.
e We would then divide this by 9 (which is the number of scores we have in the sample) to get
a mean of 16.56.

2+20+20+12+12+19+19+25+20
9

=16.56

This gives us an indication of the typical score in our sample. It is quite difficult simply to use
the mean of a sample as an estimate of the population mean. The reason for this is that we are
never certain how near to the population mean is our sample mean, although there are techniques
we can use to help us in this regard, e.g. confidence intervals (see section 4.5).

The mean is the sum of all the scores in a sample divided by the number of scores in that sample.

3.2.2

Median

A second measure of central tendency is the median, which is officially defined as the value
that lies in the middle of the sample: that is, it has the same number of scores above as below it.
The median is calculated by ranking all the scores and taking the one in the middle. For the data
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Definition

used above to illustrate the calculation of the mean (2, 20, 20, 12, 12, 19, 19, 25, 20), we rank

the data by putting them in ascending order, from lowest to highest score thus:

The median score

Scores: 2 12 12 19 (19) 20 20 20 25
Ranks: 1 2 3 4@{7 8 9

The middle rank

You can see that we have arranged the scores in ascending order (top row) and assigned each score
a rank (bottom row). Thus, the lowest score gets a rank of 1, the next lowest a rank of 2, and so on.

Ranking is where we arrange a set of scores in ascending order and then assign a position number
(rank) to each one.

Strictly speaking, however, when we have two or more scores the same (as in the above
example), the ranks we assign to the equal scores should be the same. Therefore, ranks given
to the data presented above should actually be as follows:

Scores: 2 12 12 19 19 20 20 20 25
Ranks: 25 25 45 45
Ranking positions: @ @ Q@) } 9
The mean of these The mean of these
two gives a rank of 2.5 three gives a rank of 7

You can see here that all the scores that are equal have the same rank as each other. We work
out the ranking in such cases by taking the mean of the ranking positions that these scores
occupy, as illustrated above.

In order to find the median, we need to locate the score that is in the middle of this ranked
list. We have nine scores, therefore the middle score here is the fifth one (it has four scores
below it and four scores above). The median is thus 19, which is the fifth score in the list.

In the above example, it was easy to work out the median as we had an odd number of scores.
When you have an odd number of scores there is always one score that is the middle one. This
is not the case, however, when we have an even number of scores. If we add the score of 26 to
the above list, we now have an even number of scores.

We therefore have to
take the average of
these two middle scores

Scores: 2 12 12 19 20 20 25 26

Ranks: 1 25 25 45 @ % 7 7 9 10

Ranking positions: 1 2 3 4 S5XN6\N7 8 9 10
The mid-point is

between these two ranks
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In such a situation the median will be between the two middle scores: that is, between the
fifth and sixth scores. Our median is, in this case, the average of the two scores in the fifth and
sixth positions: (19 +20) +2=19.5.

The median is the middle score/value once all scores in the sample have been put in rank order.

3.2.3

Definition

Mode

A third measure of central tendency is the mode, which is simply the most frequently occurring
score. In the set of scores given above to illustrate the mean and median, the mode would be
20, which is the most frequently occurring score.

Most frequently occurring score is the mode

2 12 12 19 25 26

The mode is the most frequently occurring score in a sample.

3.24

Activity 3.2

For practice work out the mean, median and mode for the following sets of scores:

(@) 12,23,9,6,14,14,12, 25,9, 12
(b) 1,4,5,6,19,1,5,3,16,12,5, 4
(c) 32,56,91,16,32,5,14,62,19,12

Which measure of central tendency should you use?

We have described to you three different measures of central tendency: that is, three measures
of the typical score in a sample. The question remains, however, which of these should you use
when describing your data? The answer to this question is that it depends upon your data.

The important point to keep in mind when choosing a measure of central tendency is that it
should give you a good indication of the typical score in your sample. If you have reason to
suspect that the measure of central tendency you have used does not give a good indication of
the typical score, then you have probably chosen the wrong one. After you have calculated your
measure of central tendency compare it to the scores in your sample and satisfy yourself that it
looks representative of the scores as a whole.

The mean is the most frequently used measure of central tendency and it is the one you
should use once you are satisfied that it gives a good indication of the typical score in your
sample. It is the measure of choice because it is calculated from the actual scores themselves,
not from the ranks, as is the case with the median, and not from frequency of occurrence, as is
the case with the mode.
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There is a problem with the mean, however. Because the mean uses all the actual scores in
its calculation, it is sensitive to extreme scores. Take a look at the following set of scores:

1 23 45 6 7 8 9 10

The mean from this set of data is 5.5 (as is the median). If we now change one of the scores and
make it slightly more extreme, we get the following:

1 23 45 6 78 9 2

The mean from this set of data is now 6.5, while the median has remained as 5.5. If we make
the final score even more extreme, we might get the following:

1 23 45 6 78 9 100

We now get a mean of 14.5, which is obviously not a good indication of the typical score in this
set of data (the majority of scores are considerably below 14.5). As we have the same number
of scores in each of these sets of data and we have changed only the highest score, the median
has remained as 5.5. The median is thus a better measure of central tendency in the latter two
cases. This example illustrates the need for you to check your data for extreme scores (we will
be introducing one way of doing this later in this chapter) before deciding upon which measure
of central tendency to use. In the majority of cases though you will probably find that it is
acceptable to use the mean as your measure of central tendency.

If you find that you have extreme scores and you are unable to use the mean, then you
should use the median. The median is not sensitive to extreme scores, as the above example
illustrated. The reason for this is that it is simply the score that is in the middle of the other
scores when they are put in ascending order. The procedure for locating the median score does
not depend upon the actual scores themselves beyond putting them in ascending order. So the
top score in our example could be 10, 20, 100 or 100 million and the median still would not
change. It is this insensitivity to extreme scores that makes the median useful when we cannot
use the mean.

As the mode is simply the most frequently occurring score, it does not involve any calcula-
tion or ordering of the data. It thus can be used with any type of data. One of the problems with
the median and mean is that there are certain types of data for which they cannot be used. When
we have categories such as occupation as a variable, it does not make sense to rank these in
order of magnitude. We therefore cannot use the mean or the median to find the typical occupa-
tion in our sample. If you have this sort of data, you have no choice but to use the mode. When
using the mode, however, you need to make sure that it really is giving you a good indication
of the typical score. Take a look at the following sets of data:

1

2 22 22 223 456 738
1 22 3 45 6 7 8 9 10 11 12
The mode in both of these cases would be 2°. You should note that the first set of data contains
many more 2s than any other score. The mode in this case would be a suitable measure
of the central tendency, as it is a reasonable indication of the typical score. In the second set of
data, 2 would again be the mode because it is the most frequently occurring score. In this case,
however, it is not such a good indicator of the typical score because its frequency of occurrence
is only just greater than all the other scores. So in this case we should probably not choose the
mode as our measure of central tendency. Sometimes you may find that none of the measures
of central tendency is appropriate. In such situations you will just have to accept that there are

no typical scores in your samples.
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Activity 3.3

Which measure of central tendency would be most suitable for each of the following
sets of data?

(@ 1 23 25 26 27 23 29 30

)1 1 1 1 1 1 1 11112 222233 4 50
1 1 2 3 4126583456 7
(d)1 101 104 106 111 108 109 200

The population mean

The measures of central tendency we have just described are useful for giving an indication of
the typical score in a sample. Suppose we wanted to get an indication of the typical score in a
population. We could in theory calculate the population mean (a parameter) in a similar way to
the calculation of a sample mean: obtain scores from everyone in the population, sum them and
divide by the number in the population. In practice, however, this is generally not possible. Can
you imagine trying to measure the levels of procrastination and statistics anxiety of everyone
in the world? We therefore have to estimate the population parameters from the sample
statistics.

One way of estimating the population mean is to calculate the means for a number of samples
and then calculate the mean of these sample means. Statisticians have found that this gives a
close approximation of the population mean.

Why does the mean of several sample means approximate the population mean? Imagine
randomly selecting a sample of people and measuring their 1Q. For many IQ tests it has been
found that the population mean for 1Q is 100. It could be that, by chance, when obtaining your
sample you have selected mainly geniuses and that the mean IQ of the sample is 150. This is
clearly way above the population mean of 100. We might select another sample that happens to
have a mean IQ of 75, again not near the population mean. It is evident from these examples
that the sample mean need not be a close approximation of the population mean. However, if
we calculate the mean of these two sample means, we get a much closer approximation to the
population mean:

75+ 150
—F—=1125

The mean of the sample means (112.5) is a better approximation of the population mean
(100) than either of the individual sample means (75 and 150). When we take several samples
of the same size from a population, some will have a mean higher than the population mean
and some will have a lower mean. If we calculated the mean of all these sample means, it would
be very close to 100, which is the population mean. This tendency of the mean of sample means
to closely approximate the population mean is extremely important for your understanding of
statistical techniques that we cover later in this book, so you should ensure that you understand
it well at this stage. (You should also bear this in mind when we discuss the Central Limits
Theorem in Chapter 4.) Knowing that the mean of the sample means gives a good approxima-
tion of the population mean is important, as it helps us generalise from our samples to our
population.
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3.3 Sampling error

Before reading this section you should complete Activity 3.4.

Activity 3.4

Above is a diagram containing pictures of many giant pandas. Each giant panda has a number that
indicates its 1Q score. To illustrate the problems associated with sampling error, you should complete
the following steps and then read the sampling error section. Imagine that this picture represents the
population of giant pandas. The mean IQ score of this population is 100. We want you to randomly select
ten samples from this population. Each sample should contain only two pandas. In order to do this, we
advise you to get a pencil and wave it over the picture with your eyes closed. With your free hand, move
the book around. When ready let the tip of the pencil hit the page of the book. See which panda the
pencil has selected (if you hit a blank space between pandas, select the panda nearest to where your
pencil falls). Make a note of the 1Q of the panda that you have selected and do this twice for each
sample. You should repeat this process ten times so that you have ten samples of two pandas drawn
from the population of pandas. We realise that this doesn't actually represent random selection from
the population, but it will do for now to illustrate a point we wish to make.

We would now like you to repeat this whole process, but this time selecting samples of ten pandas
each time. Once you have done this, calculate the mean for each of the samples that you have selected
(all the two-panda samples and all the ten-panda samples).

You may now continue to read the section relating to sampling error.
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One of the problems with sampling from populations is that systematic errors may affect our
research and, as a result, make it difficult to interpret. For this reason, statistical error due to
sampling is perhaps the biggest problem that we face when estimating population parameters
from sample statistics. Whenever we select a sample from a population, there will be some
degree of uncertainty about how representative the sample actually is of the population. Thus,
if we calculate a sample statistic, we can never be certain of the comparability of it to the
equivalent population parameter. The degree to which such sample statistics differ from the
equivalent population parameter is the degree of sampling error. Why should there be such an
error, and how can we minimise it?

Sampling error occurs simply because we are not using all the members of a target popu-
lation. Once you start to use samples, you will get some degree of sampling error. For
example, supposing we wanted to measure the [Qs of giant pandas. If we went out and
tested all the pandas in the world, we would calculate the mean population IQ directly. We
have tested the entire population and therefore the mean that we calculate will be the popu-
lation mean.

Now suppose we tested only 90% of the population. We have effectively selected a sample.
The mean we calculate from this sample will be a good estimate of the population mean, but it
will not necessarily be exactly the same. Because we have not tested all the pandas, we are likely
either to overestimate or to underestimate the population mean.

The fact that we have selected so many pandas means that, by chance, we are likely to select
pandas from both extremes of the distribution. That is, we are likely to select both clever and
not so clever pandas in the same sample. You should have seen from completing Activity 3.4
that when you selected samples containing ten pandas, all the samples contained pandas whose
IQs were above and below the mean. Thus with relatively large sample sizes (compared to the
population), our samples are highly likely to contain clever and not so clever pandas. The sam-
ple mean is therefore likely to be a fairly good estimate of the population mean. Consequently,
if we take lots of such samples, the degree of sampling error for each sample is likely to be
quite small.

Let us now assume that we are researchers with very little money and as a result we can
only afford to take sample sizes consisting of two pandas. What effect will this reduction
in sample size have on the degree of sampling error? Again referring to Activity 3.4, you
will probably have noticed that in some of the samples you selected, both of the pandas had
IQs greater than the population mean. This will lead to your sample mean being an
overestimation of the population mean. You will also have found that in some of your
samples both of your pandas had 1Qs lower than the population mean. Your sample mean
in these cases will be an underestimate of the population mean. With such small sample
sizes it is thus much more likely that the entire sample will be either more clever or less
clever than the population mean. In such cases the sample mean will be a poor estimate of
the population mean. We therefore have a much greater degree of sampling error with these
small sample sizes.

As you increase your sample size, you increase the probability that you will choose pandas
that fall both above and below the population mean within the same sample. You also decrease
the likelihood that all the selected pandas are from the extremes of the distribution. You there-
fore decrease the degree of sampling error. You should have noticed from Activity 3.4 that the
means calculated from the two-panda samples varied quite a lot, with some being considerably
different to the population mean, whereas for the ten-panda samples the sample means were
probably pretty good estimates of the population mean. Thus, in general, the larger the samples,
the closer the sample mean will be to the population mean.
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Definition

When we select a sample from a population and then try to estimate the population parameter from
the sample, we will not be entirely accurate. The difference between the population parameter and the
sample statistic is the sampling error.

A further example may make this point clearer. Suppose that everybody in the population
was classified as tall, medium height or short. Suppose that you randomly select two people
from the population. You should be able to see that there are a number of combinations possible
for the height of the people selected and these are:

Combination: 1 2 3 4 5 6 7 8 9
Person 1: Short Short Short Medium Medium Medium Tall Tall Tall
Person 2: Short Medium Tall Short Medium Tall Short Medium Tall

You should be able to see that the probability of randomly selecting two short people from the
population is 1 in 9 and the probability of selecting two people the same height is 1 in 3. Thus
it is quite likely with a sample size of two that both will be classified as the same height. Now
let us randomly select a sample of three people from the population. Here are the possible
combinations this time:

Personl Person2 Person3 Personl Person2 Person3 Personl Person2 Person3

Short Short Short Medium  Short Short Tall Short Short
Short Short Medium  Medium  Short Medium  Tall Short Medium
Short Short Tall Medium  Short Tall Tall Short Tall
Short Medium  Short Medium  Medium  Short Tall Medium  Short
Short Medium Medium Medium  Medium  Medium  Tall Medium Medium
Short Medium  Tall Medium  Medium  Tall Tall Medium  Tall
Short Tall Short Medium  Tall Short Tall Tall Short
Short Tall Medium  Medium  Tall Medium  Tall Tall Medium
Short Tall Tall Medium Tall Tall Tall Tall Tall

Now you can see that there are 27 different possible combinations of heights for a sample
of three people. In only one out of the 27 combinations are all the participants short and in
only three out of 27 (1 in 9) are all the participants the same size. You should, therefore, be
able to see that when you increase the sample size, the likelihood of all participants being
above the mean or all being below the mean is reduced and as a result so is the degree of
sampling error.
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SPSS: obtaining measures of central tendency

To obtain measures of central tendency from SPSS, you need to input your data as described in
section 2.7 and then click on the Analyze menu.

___ 1511 5PSS Sussbcs Processoris iadk

When you have displayed the Analyze menu, click on the Descriptive Statistics option and then select
the Explore ... option of the final menu. You will then get the following dialogue box:

(@ eplore R
Qn_pondnni List W
Li- || &” WalkinuwilnDog
ifflld,:wmw——@ (ros.. )
Highlight relevant i e
variable and elick | ‘Boolsirap.
on arrow E

w Label Cases by.

r Display
® Bolh O Stalistics © Plols ‘

[':'_“] Paste MMW

There are other options for displaying descriptive statistics, but the Explore option is more flexible. The
Explore option allows you to access a wider range of descriptive statistical techniques and so is a useful

J »
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r

option to get familiar with. You will notice that there are a number of features in this dialogue box,
including:

* variables list

* box for dependent variables (Dependent List)

* box for grouping variables (Factor List)

* Display options (at the bottom left)

* various option buttons (Statistics, Plots, Options).

To obtain measures of central tendency, move the two variables to the Dependent List box by high-
lighting them in the variables list box and then clicking on the right-facing arrow by the Dependent List
box. You will see the variables move over to this box. See below:

FE Explore
Dependent List
& WalkingWilhDog
@ & WalkingWithoutDog
Selectthe FaclorList
Statistics option \
oy
\\\ > Label Cases by,
Dls}m\
© Both @ Statistics © Plots

To obtain the relevant descriptive statistics, you should select the Statistics option (the middle one of
the set of Display options) and then click on the OK button to obtain the measures of central tendency.
When you do so, you will get the following output from SPSS:

Explore

Case Processing Summany

Cages
Walid Missing Tatal
I Fercent I Fercent M FPercent
WalkingwithDiog i 100.0% 0 0.0% g 100.0%
WiglkingwithoutDog i 100.0% 0 0.0% G 100.0%
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Descriptives

Statistic | Std. Error
WalkingWithDog Mean 8.6667 .88192
95% Confidence Interval Lower Bound 6.3996
for Mean Upper Bound 10.9337
5% Trimmed Mean 8.6296
Median 8.5000
Variance 4.667
Std. Deviation 2.16025
Minimum 6.00
Maximum 12.00
Range 6.00
Interquartile Range 3.75
Skewness 463 .845
Kurtosis -.300 1.741
WalkingWithoutDog Mean 4.0000 .73030
95% Confidence Interval Lower Bound 2.1227
for Mean Upper Bound 5.8773
5% Trimmed Mean 4.0556
Median 4.5000
Variance 3.200
Std. Deviation 1.78885
Minimum 1.00
Maximum 6.00
Range 5.00
Interquartile Range 2.75
Skewness -.943 .845
Kurtosis .586 1.741

You will notice from the SPSS printout that you are presented with a lot of information. Do not worry
too much if you do not understand most of it at this stage; we will explain it later in the book. For now,
you should notice that for the two variables you can see the mean and median displayed. If you want
the mode, you should try using the Frequencies ... option from the Analyze. .. Descriptives menus rather
than the Explore ... option. Once you get the Frequencies dialogue box open, highlight the two variables

and click on the arrow to move them to the Variable(s) box:

-
£2 Frequendies

Variable(s).
_&) WalkingWilthDuy

|&. WalkingWithoutDog ||

£

| Display frequency tables

~
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r

Then you need to click on the Statistics button and select the mode from the next dialogue box along
with any other measures of central tendency you require — see the screenshot below:

~

' Ty
ta_ Frequencies: Statistics M

r Percentile Values - Central Tendency —

] Quartiles [T] Mean

] Cut points for: equal groups [] Median

7] Percentile(s): dE

1 sum
[C] values are group midpoints

- Dispersion - Distribution —

[T std. deviation [~ Minimum [”] Skewness

[F] Variance 7] Maximum [7] Kurtosis

"] Range [C] SE mean

34

Definition

Graphically describing data

Once you have finished a piece of research, it is important that you get to know your data. One
of the best ways of doing this is through exploratory data analyses (EDA). EDA essentially con-
sists of exploring your data through graphical techniques. It is used to get a greater understanding
of how participants in your study have behaved. The importance of such graphical techniques
was highlighted by Tukey in 1977 in a classic text called Exploratory Data Analysis. Tukey con-
sidered exploring data to be so important that he wrote 688 pages about it! Graphically illustrating
your data should, therefore, be one of the first things you do with it once you have collected it.
In this section we will introduce you to the main techniques for exploring your data, starting with
the frequency histogram. We will then go on to explain stem and leaf plots and box plots.

Exploratory data analyses are where we explore the data that we have collected in order to describe it
in more detail. These techniques simply describe our data and do not try to draw conclusions about any
underlying populations.

34.1

Frequency histogram

The frequency histogram is a useful way of graphically illustrating your data. Often researchers are
interested in the frequency of occurrence of values in their sample data. For example, if you
collected information about individuals’ occupations, you might be interested in finding out how
many people were in each category of employment. To illustrate the histogram, consider a frequency
histogram for the set of data collected in a 2011 study by Armitage and Reidy (unpublished).
In this study investigating the fear of blood, the researchers asked participants to indicate from a
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Figure 3.2 Frequency histogram showing frequency with which people rated colours as being their
favourites (Armitage and Reidy, unpublished)

list of seven colours which was their favourite. The histogram representing the data is shown in
Figure 3.2. You should be able to see from Figure 3.2 that people in this sample rated blue as being
their favourite colour most often and white as their favourite least often.

The frequency histogram is a good way for us to inspect our data visually. Often we wish to
know if there are any scores that might look a bit out of place. The histogram in Figure 3.3
represents hypothetical scores on a depression questionnaire. You can see from the histogram
that the final score is much greater than the other scores. Given that the maximum score on this
particular depression scale is only 63, we can see from the histogram that we must have made
an error when inputting our data. Such problems are easier to spot when you have graphed your
data. You should, however, be aware that the interpretation of your histogram is dependent upon
the particular intervals that the bars represent. The histogram in Figure 3.3 has bars representing
intervals of 1 on the depression scale. That is, each bar represents one particular score on the
questionnaire (e.g. a score of 9 on the questionnaire). Figure 3.4 shows how the depression score
data would look with bars representing intervals of 5. The bars here represent groups of 5 scores,
e.g. scores of 1 to 5 or scores of 16 to 20. The width of bars is often referred to as the bin width.
We can adjust the width of the bins to ensure that the histogram provides a concise overview
of the distribution of scores in your sample. Thus, in Figure 3.4 we have adjusted the bins to
represent intervals of 5 rather than 1.

Definition

The frequency histogram is a graphical means of representing the frequency of occurrence of each
score on a variable in our sample. The x-axis contains details of each score on our variable and the y-axis
represents the frequency of occurrence of those scores.
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Figure 3.3 Histogram of the depression questionnaire data
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Figure 3.4 Histogram of the depression data grouped in intervals of 5

The frequency histogram is also useful for discovering other important characteristics of
your data. For example, you can easily see what the mode is by looking for the tallest bar in
your chart. Thus from Figure 3.3 we can see that the mode for the sample of depression scores
is 5. In addition, your histogram gives you some useful information about how the scores are
spread out: that is, how they are distributed. The way that data are distributed is important, as
you will see when we come to discuss the normal distribution later in this chapter. The distribu-
tion of data is also an important consideration in the use of the inferential statistics discussed
later in the book. We can see from the histogram of the depression questionnaire data (see
Figure 3.3) that there is a concentration of scores in the 5 to 7 region and then the scores tail
off above and below these points.
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The best way of generating a histogram by hand is to rank the data first, as described earlier
in the chapter for working out the median. You then simply count up the number of times each
score occurs in the data; this is the frequency of occurrence of each score. This frequency is
then plotted on a chart as above.

Activity 3.5

Given the following histogram, try to answer these questions:

( )

Std. Dev = 1.95
Mean = 4.6
N = 23.00
10 20 30 40 50 60 70 80
SCORE
\_ WV,

(a) What is the mode?

(b) What is the least frequent score?
(c) How many people had a score of 5?
(d) How many people had a score of 2?

This activity illustrates how useful histograms can be for getting to know, or exploring,
your data.

3.4.2 Stem and leaf plots

Stem and leaf plots are similar to frequency histograms in that they allow you to see how the
scores are distributed. However, they also retain the values of the individual observations.
Developed by Tukey (1977), they tend to be a lot easier to draw by hand than the histogram.
The stem and leaf plot for the data we used to illustrate the calculation of the mean, median and
mode (2, 12, 12, 19, 19, 20, 20, 20, 25) is presented in Figure 3.5.

Definition

Stem and leaf plots are similar to histograms but the frequency of occurrence of a particular score is
represented by repeatedly writing the particular score itself rather than drawing a bar on a chart.
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Stem Leaf
Tens Units
™~
0 2 —— Thescore of 2
1 2299
2 0005 —— The score of 25

Figure 3.5 Example of a stem and leaf plot

You can see that, in the example of Figure 3.5, the scores have been grouped in tens: the first
line contains the scores from 0 to 9, the next line from 10 to 19 and the last line 20 to 29. There-
fore, in this case the stem indicates the tens (this is called the stem width) and the leafthe units.
You can see that a score of 2 is represented as 0 in the tens column (the stem) and 2 in the units
column (the leaf), whilst 25 is represented as a stem of 2 and a leaf of 5.

The stem and leaf plot in Figure 3.6 comes from these scores: 1, 1, 2,2, 2, 5,5, 5, 12, 12,
12,12, 14, 14, 14, 14, 15, 15, 15, 18, 18, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 28,
28, 28, 28, 28, 28, 28, 32, 32, 33, 33, 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 42, 42,
42,43,43,44. You can see from Figure 3.6 that the stem and leaf plot provides us with a concise
way of presenting lots of data. Sometimes, however, the above system of blocking the tens is
not very informative. Take a look at Figure 3.7, which shows the stem and leaf plot for the
depression data that we presented in histogram form (Figure 3.3) earlier.

Figure 3.7 does not give us much information about the distribution of scores, apart from
the fact that they are mostly lower than 20. An alternative system of blocking the scores is to
do so in groups of five (e.g. 0—4, 5-9, 1014, 15-19, etc.). The stem and leaf plot for the depres-
sion data grouped this way is presented in Figure 3.8. This gives a much better indication of the
distribution of scores. You can see that we use a full stop (.) following the stem to signify the
first half of each block of ten scores (e.g. 0—4) and an asterisk (*) to signify the second half of
each block of ten scores (e.g. 5-9).

Stem Leaf

0 11222555

1 2222444455588

2 44444455555558888888
3 22333344444455555

4 222334

Figure 3.6 Stem and leaf plot for a larger set of data

Stem Leaf

0 0000022222222333333333555555555555555777777777777799999999
1 000000033333888

2 3

6 4

Figure 3.7 Stem and leaf plot for depression data grouped in blocks of ten
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These would not be shown on the

plots. They are presented
/ here for information only
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Score the shape of the distribution
Block Stem Leaf

0-4 0. 0000022222222333333333

5-9 0* 555555555555555777777777777799999999

10-14 1. 000000033333

15-19 1* 888
20-24 2. 3
60-64 6. 4

Figure 3.8 Stem and leaf plot for the depression data grouped in blocks of five
3.4.3 Boxplots

Even though we can see that there is an extreme score in the depression example, it is often the
case that the extreme scores are not so obvious. Tukey (1977), however, developed a graphical
technique called the box plot or box and whisker plot, which gives us a clear indication of
extreme scores and, like the stem and leaf plots and histogram, tells us how the scores are
distributed.

Definition

Box plots enable us to easily identify extreme scores as well as seeing how the scores in a sample are
distributed.

Although you can get the computer to produce box and whisker plots, we will describe to
you how to produce a box and whisker plot for the following data so that you know how to
interpret them (the box plot for these data is presented in Figure 3.9 later):

2 20 20 12 12 19 19 25 20

e First, find the median score as described above. This was position 5 (the actual median score
was 19, but once the data had been ranked, the score was in position 5).

2 12 12 19 20 20 25

Median score in 5th
ranked position

e Then calculate the Ainges. These are the scores that cut off the top and bottom 25% of the
data (which are called the upper and lower quartiles): thus 50% of the scores fall within
the hinges. The hinges form the outer boundaries of the box (see Figure 3.9). We work out
the position of the hinges by adding 1 to the median position and then dividing by 2
(remember that our median is in position 5) thus:

S+1

3
2
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e The upper and lower hinges are, therefore, the third score from the top and the third score
from the bottom of the ranked list, which in the above example are 20 and 12 respectively.

Hinges
Rank: 1 2 3 4 5 67 8 9
Score: 2 12 19 20 (20) 20 25
Median

e From these hinge scores we can work out the A-spread, which is the range of the scores
between the two hinges. The score on the upper hinge is 20 and the score on the lower hinge
is 12, therefore the h-spread is 8 (20 minus 12).

e We define extreme scores as those that fall one-and-a-half times the h-spread outside the
upper and lower hinges. The points one-and-half times the h-spread outside the upper and
lower hinges are called inner fences. One-and-a-half times the h-spread in this case is 12: that
is, 1.5 X 8. Therefore any score that falls below 0 (lower hinge, 12, minus 12) or above 32
(upper hinge, 20, plus 12) is classed as an extreme score.

e The scores that fall between the hinges and the inner fences and that are closest to the inner
fence are called adjacent scores. In our example, these scores are 2 and 25, as 2 is the closest
score to 0 (the lower inner fence) and 25 is closest to 32 (the upper inner fence). These are
illustrated by the cross-bars on each of the whiskers (see Figure 3.9).

e Any extreme scores (those that fall outside the upper and lower inner fences) are shown on
the box plot.

You can see from Figure 3.9 that the h-spread is indicated by the box width (from 12 to 20) and
that there are no extreme scores. The lines coming out from the edge of the box are called whisk-
ers, and these represent the range of scores that fall outside the hinges but are within the limits
defined by the inner fences. Any scores that fall outside the inner fences are classed as extreme
scores (also called outliers). You can also see from Figure 3.9 that we have no scores outside the
inner fences, which are 0 and 32. The inner fences are not necessarily shown on the plot.

This thick line
represents the median

30 \

- \\
\ Adjacent
20
values
P
Hinges ,<
\
Whiskers
10
The box —|
0 T
N= 9

DATA

Figure 3.9 Example of a box plot
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Figure 3.10 Box plot illustrating an extreme score

The lowest and highest scores that fall within the inner fences (adjacent scores 2 and 25) are
indicated on the plots by the cross-lines on each of the whiskers.

If we now add a score of 33 to the dataset illustrated in Figure 3.9, the box plot will resemble
that shown in Figure 3.10. You should notice that there is a score that is marked ‘10’. This is
telling us that the tenth score in our dataset (which has a value of 33) is an extreme score. That
is, it falls outside the inner fence of 32. We might want to look at this score to see why it is so
extreme; it could be that we have made an error in our data entry.

Definition

Outliers or extreme scores are those scores in our sample that are a considerable distance either higher
or lower than the majority of the other scores in the sample.

The box plot illustrated in Figure 3.11 represents the data from the hypothetical depression
scores presented earlier in the chapter. You can see from this that the obvious extreme score (the
score of 64) is represented as such; however, there are less obvious scores that are extreme, the
scores of 18 and 23. This clearly indicates that it is not always possible to spot which scores are
extreme, and thus the box plot is an incredibly useful technique for exploring your data.

Why is it important to identify outlying scores? You need to bear in mind that many of the
statistical techniques that we discuss in this book involve the calculation of means. You should
recall that earlier (see section 3.2.4) we discussed how the mean is sensitive to extreme scores.
We thus need to be aware of whether or not our data contain such extreme scores if we are to
draw the appropriate conclusions from the statistical analyses that we conduct.

Strictly speaking, we should not use most of the inferential statistical techniques in this book
if we have extreme scores in our data. There are, however, ways of dealing with extreme scores.
If you find that you have extreme scores, you should take the following steps:

e Check that you have entered the data correctly.

o Check that there is nothing unusual about the outlying (extreme) score. For example, do you
recall from testing the person whether they looked as though they understood the instructions
properly. Did they complete your questionnaire properly? Is there any reason to think that
they didn’t complete the task(s) properly?
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Figure 3.11 Box plot for the questionnaire data illustrating several extreme scores

If you have a good reason then you can remove the participant (case) from the analysis.
However, when you report your data analyses you should report the fact that you have
removed data and the reason why you have removed the data.

e [f there is nothing unusual about the participant that you can identify apart from their
extreme score, you should probably keep them in the analyses. It is legitimate, however, to
adjust their score so that it is not so extreme and thus doesn’t unduly influence the mean.
Why is this so?

Remember, if you are using the mean then you must be interested in the typical score in
a group. Clearly, an extreme score is not a typical score and so it is legitimate to adjust it
to bring it more in line with the rest of the group. To do this we adjust the extreme score
so that it is one unit above the next highest score in the sample which is not an extreme
score. In this way the participant is still recognised as having the highest score in the
sample, but their score is now having less of an impact upon the mean and thus less impact
on our inferential statistical analyses.

As an example, refer to the depression scores we presented earlier (see Figure 3.11). Let
us suppose that we had only one extreme score in this sample (the score of 64) and that
this is a valid score (for the sake of illustration we will ignore the other two outliers in this
sample). To adjust the extreme score we would find the highest score that is not extreme.
In this case that is a score of 13. We would therefore adjust the extreme score so that it is
one greater than 13. Our extreme score is therefore adjusted to 14.

e Of course, if you make such adjustments to the scores, you need to report exactly what you
have done when you come to write up the research, so that your readers know that your
analyses are based upon some adjusted scores.

We are not able to give a full discussion of this here but you can find a good account of it in
Tabachnick and Fidell (2013).

Activity 3.6

Given the following box plot:

(@) What is the median?
(b) How many extreme scores are there?
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Example from the literature

Perceptions of eye-gaze directions of rotated faces

It is rare for researchers to refer to box plots in their published articles, although we would presume
that they do examine them before using many of the statistical techniques covered in this book. It is
even rarer for researchers to actually present box plots in published articles. An exception to this is a
recent paper published by Otsuka et al. (2015). In this paper the authors report a study in which they
were interested in how participants perceive the eye-gaze direction of faces. They had a number of
conditions including a three-dimensional representation of upright and inverted faces and also condi-
tions which just had eyes with no face. The authors present box plots to illustrate the difference between
the perceived eye-gaze directions among the various conditions. The figure below represents an extract
of the box plots that they present. From this you can see that they had one high and one low outlier
for the upright normal faces condition and two high outliers for the inverted eye-only condition.

[] upright [ Inverted

15

Normal  Eyes-only
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SPSS: generating graphical descriptives

To obtain histograms, stem and leaf plots and box plots using SPSS, you can use the Explore dialogue
box. You should proceed as described earlier for obtaining measures of central tendency. If you wish to
obtain measures of central tendency and the graphical descriptive, you should select the Both option
at the bottom left of the dialogue box (Display options). If, however, you only want to obtain graphical
descriptives, you should select the Plots option (see below):

Dependent List Statishics
& WalkingWilhDo =
- &wamnuwmwéﬂﬂ Mm\
Eaclor List [ SelectPlois
(Bootstrap..| Select Plots
= option and then
L CIiCk on the
» [M_&Mr?,/f | Flofsbution. |
r Display =
© Both © Statistics &{Flots |
(o ) (easte ) | sosen | (cancer] _vetp )

You should then click on the Plots button to specify which plots you want displayed. When you click on
Plots, you will be presented with the following dialogue box:

" Selectthe
#2 Explore: Plots == Histogram
option
r Boxplots —— ~  Descriptive —— Y 7;“1
| @ Factor levels together | | [ Stem-ana-le
| © Dependents tageth o/ {Histagram
i © Mone W
|| MNarmality plots with tests

1 Spread vs Level with Levene Test
@ Mong

Matiral fng v

(Gontnue) |_cancel J _tolp |

L

The default selections are for Boxplots and Stem-and-leaf plots. To obtain frequency histograms too,
select the option in this dialogue box and click on the Continue button. You will then be returned to the
main dialogue box, where you should click on OK to obtain the plots. You will be presented with the
output shown in Figure 3.12.
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Figure 3.12 Graphical descriptives as part of the output when using the Explore command in SPSS.

You will be presented with a histogram, followed by the stem and leaf plot and finally the box plot. We have
only presented the output for the with a dog condition here. SPSS will also give you the output for the
without a dog condition. You should note that SPSS may be set up to give you different bar intervals from
those presented above, so you need to check what the bar intervals are on the output that SPSS gives you.
You should note that in Figure 3.12 SPSS has given us a histogram with bar intervals (bin widths) of 1.

—




68

Statistics without maths for psychology

3.5

Definition

Scattergrams

A useful technique for examining the relationship between two variables is to obtain a scat-
tergram. An example of a scattergram can be seen in Figure 3.13 for the statistics anxiety and
procrastination data presented in section 2.4. These data are presented again below:

Statistics anxiety score: 55 59 48 60 62 50
Procrastination score: 125 132 94 110 140 96

A scattergram plots the scores of one variable on the x-axis and the other variable on the
y-axis. Figure 3.13 gives scores for procrastination on the x-axis and statistics anxiety on
the y-axis. It gives a good illustration of how the two variables may be related. We can see
from the scattergram that, generally, as statistics anxiety increases so does procrastination. Thus
there seems to be a relationship between the two variables. The scores seem to fall quite close
to an imaginary line running from the bottom-left corner to the top-right corner of the
scattergram. We call this a positive relationship.

A scattergram gives a graphical representation of the relationship between two variables. The scores
on one variable are plotted on the x-axis and the scores on another variable are plotted on the y-axis.

Suppose that when you conducted your statistics anxiety study you found that, as statistics
anxiety increased, procrastination decreased. What do you think the resulting scattergram would
look like? You might find that it resembled the one presented in Figure 3.14.

You can now see from the scattergram in Figure 3.14 that, as procrastination increases, statistics
anxiety decreases. The scores appear to cluster around an imaginary line running from the top-left
corner to the bottom-right corner of the scattergram. We would call this a negative relationship.
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Figure 3.13 Scattergram for the statistics anxiety and procrastination data presented in Chapter 2
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Figure 3.14 Scattergram indicating that, as statistics anxiety decreases, procrastination increases

What would the scattergram look like if there were no discernible relationship between statistics
anxiety and procrastination? The scattergram presented in Figure 3.15 gives an indication of

what this might look like.

You can see that the arrangement of points in the scattergram illustrated in Figure 3.15
appears to be fairly random. Scattergrams are thus a very useful tool for examining relationships
between variables and will be discussed in more detail in Chapter 6.
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Figure 3.15 Scattergram indicating no relationship between statistics anxiety and procrastination
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Activity 3.7

Given the following scattergram, what would be the most sensible conclusion about
the relationship between the price of petrol and driver satisfaction?
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To obtain a scattergram using SPSS, you should click on the Graphs menu, select the Legacy Dialogs
option and then select the Scatter/Dot. .. option. You will be presented with the following option box:
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/il

You should select the Simple Scatter option (which is the default selection) and click on the Define button.
You will then be presented with a dialogue box where you can select various options for your scattergram.

~

3.6

Move one variable to the Y Axis box and one other variable to the X Axis box using the buttons and
then click on OK to obtain the scattergram. The graph should be similar to the one presented earlier
(see Figure 3.13).
—

(£ scatter/Dot ==
. ..o simpta Matrix [ = | simpie
Selectthe AT [ o scatter (5] | Scatter (| | Dot
Simple Scatter T -
option and then K lf.""'- gg::: L ;2ner
click on Define =

Sampling error and relationships between variables

You should recall that earlier in the chapter (see section 3.3) we explained the problems associated
with sampling error. There we indicated that because of sampling error our sample mean need
not necessarily be a good indicator of the population mean. You should note that sampling error is
not restricted to circumstances where we wish to estimate the population mean. It is also an important
concern when investigating relationships between variables. Suppose we conduct a study relating
statistics anxiety to procrastination, and suppose that (unknown to us) there is actually no relationship
between these two variables in the population. For the sake of illustration, let us assume that there
are only 50 people in the population. The scattergram in Figure 3.16, therefore, represents the pattern
of scores in the population. If we took two different samples from this population, one containing
only three people and one containing 20 people, we might get scattergrams that look like
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Figure 3.16 Scattergram of the population of procrastination and statistics anxiety scores
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Figure 3.17 Scattergrams illustrating no relationship between statistics anxiety and procrastination suggested by the
three- and 20-person samples

Figure 3.18 Scattergrams illustrating a negative relationship between statistics anxiety and procrastination
suggested by the three-person sample but not the 20-person sample

Statistics anxiety score

Figure 3.17(a) and (b). In these scattergrams we can see that there does not appear to be a relationship
between the two variables. As procrastination increases, there is no consistent pattern of change in
statistics anxiety. In this case, our samples are good representations of the underlying population.

If we now select two more samples (one containing three people and one containing 20
people), we might obtain the scattergrams shown in Figure 3.18(a) and 3.18(b). In this case, in
the three-person sample we might conclude that there is a negative relationship between the two
variables. As statistics anxiety decreases, procrastination increases. In the 20-person sample,
however, the suggestion is again that there is no real relationship between the two variables. You
can see that here the smaller sample does not accurately reflect the pattern of the underlying
population, whereas the larger sample does.

Finally, if we select two more samples we might get the pattern illustrated in Figure 3.19(b).
Here you should be able to see that there does not appear to be a relationship between statistics
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Figure 3.19 Scattergrams illustrating a positive relationship between statistics anxiety and procrastination suggested
by the 20-person sample but not the three-person sample

3.7

anxiety and procrastination in the three-person sample but there does appear to be a relationship
in the 20-person sample. If you look at Figure 3.19, you should see that there appears to be a
pattern for the 20-person sample that suggests as procrastination increases so does statistics
anxiety. In this case the larger sample does not accurately represent the underlying population,
whereas the smaller sample does.

You should note that you are much less likely to get the patterns indicated in Figure 3.19
than those in Figures 3.17 and 3.18. As we indicated earlier in the chapter, when you have larger
sample sizes the samples are much more likely to be accurate representations of the underlying
population. Although the scenario illustrated by Figure 3.19(b) is quite unlikely, it can occur
and therefore we have to be careful when trying to generalise from samples to populations.

The main point of the above illustration is that the conclusions we draw from sample data
are subject to sampling error. We can rarely be certain that what is happening in the sample
reflects what happens in the population. Indeed, as the above scattergrams illustrate, our sample
data can deceive us. They can show a pattern of scores that is completely different from the
pattern in the underlying population. The larger the sample we take from the population,
however, the more likely it is that it will reflect that population accurately.

The normal distribution

We have now presented you with four useful techniques for graphically illustrating your data. Why
is it so important to do this? It is certainly not so that software giants can sell you fancy computer
software. It is because the way that our data are distributed is important. Many of the statistical
tests you will be presented with in this book make assumptions about how your data are distrib-
uted. That is, the tests are valid only if your data are distributed in a certain way. One of the most
important patterns of data distribution that you will come across is the normal distribution.

The curves illustrated in Figure 3.20 are all normal distributions. In everyday life, many
variables such as height, weight, shoe size, anxiety levels and exam marks all tend to be nor-
mally distributed: that is, if they were plotted as a frequency histogram they would all tend to
look like the curves in Figure 3.20. In our research we can use this information to make assump-
tions about the way that populations are distributed. It is for this reason that many of the most
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Definition

Mean, median
and mode

These are the
tails of the
distributions

Figure 3.20 Normal distributions

powerful statistical tools we use assume that the populations from which our samples are drawn
are normally distributed.
For a distribution to be classed as normal it should have the following characteristics:

e [t should be symmetrical about the mean.
e The tails should meet the x-axis at infinity.
e [t should be bell-shaped.

All the distributions in Figure 3.20 are normal; even though they are not exactly the same, they
have the characteristics described above. You can see that they differ in terms of how spread out
the scores are and how peaked they are in the middle. You will also notice that, when you have
a normal distribution, the mean, median and mode are exactly the same. Another important
characteristic of the normal distribution is that it is a function of its mean and standard deviation
(we explain standard deviations later in this chapter). What this means is that, once we have the
mean and standard deviation, we can plot the normal distribution by putting these values into
a formula. We will not present the formula here; you just need to remember that the normal
distribution can be plotted by reference to its mean and standard deviation.

A normal distribution is a distribution of scores that is peaked in the middle and tails off symmetrically

on either side of the peak. The distribution is often said to be ‘bell-shaped’. For a perfectly normal
distribution, the mean, median and mode will be represented by the peak of the curve.
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As we pointed out earlier, when many naturally occurring variables are plotted, they are
found to be normally distributed. It is also generally found that the more scores from such
variables you plot, the more like the normal distribution they become. A simple example may
serve to illustrate this. If you randomly selected ten men and measured their heights in inches,
the frequency histogram might look something like Figure 3.21(a). It is clear that this does
not much resemble the normal distributions illustrated in Figure 3.20. If we select an addi-
tional ten men and plot all 20 heights, the resulting distribution might look like Figure 3.21(b),
again not too much like a normal distribution. You can see, however, that as we select more
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Figure 3.21 Histograms showing the progression to a normal distribution as more people are sampled
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3.8

Definition

and more men and plot the heights, the histogram becomes a closer approximation to the
normal distribution (Figures 3.21(c) to (e)). By the time we have selected 100 men, you can
see that we have a perfectly normal distribution. Obviously we have made these data up to
illustrate a point, but in general this is what happens with many variables that you will come
across.

We have given you an indication of what the normal distribution looks like; however, you
need to be aware that there is not just one single normal distribution. As indicated in
Figure 3.20, normal distributions represent a family of distributions. These distributions all
have the characteristics of normal distributions (bell-shaped, symmetrical about the mean,
etc.), but they differ from one another in terms of how spread out they are and how peaked or
flat they are.

Variation or spread of distributions

We have introduced you to measures of central tendency, which give us an indication of the
typical score in a sample. Another important aspect of a sample or population of scores is how
spread out they are. Or, to put it another way, how much variation there is in your sample or
population.

Variance or variation of scores indicates the degree to which the scores on a variable are different from

one another.

3.8.1

Definition

The range

One simple way of getting an indication of the spread of scores is to compare the minimum
score with the maximum score in the sample or population. This is known as the range. The
range is simply the difference between the minimum and maximum scores. For example, the
range for the depression scores in Figure 3.3 is 64: that is, 64 minus 0. In that example the low-
est score is 0 and the highest score is 64, so the range is 64.

Although the range tells us about the overall range of scores, it does not give us any
indication of what is happening in between these scores. For example, take a look at the two
distributions in Figure 3.22. These histograms were generated from two sets of data which
have the same mean (16) and the same minimum and maximum scores (5 and 27). They
both therefore have the same range, which is 22 (27 minus 5). They are, however, totally
different distributions; the scores in distribution B are packed tightly around the mean
whereas the scores in distribution A are generally more spread out. Ideally, we need to have
an indication of the overall shape of the distribution and how much the scores vary from
the mean. Therefore, although the range gives a crude indication of the spread of the scores,
it does not really tell us much about the overall shape of the distribution of the sample
of scores.

The range is the highest score in a sample minus the lowest score.
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Figure 3.22 Distributions with the same mean, minimum and maximum scores but which have very different
distributions around the mean

3.8.2

Standard deviation

A more informative measure of the variation in data is the standard deviation (SD). One of the
problems with the range is that it does not tell us what is happening with the scores between
the minimum and maximum scores. The SD, however, does give us an indication of what is
happening between the two extremes. The reason why the SD is able to do this is that it tells us
how much all the scores in a dataset vary around the mean. The SD is a very important concept,
so it is worth the effort spent now getting to understand it. It is important because it forms the
basis of many of the statistical techniques we use to analyse our data.

The SD is a measure of how much the scores in your sample vary around the mean. Each
score in a sample will deviate from the mean by some amount. If we subtract the mean from each
score, we get an indication of how far each score in the sample is from the mean. As with any
group of scores, we could then find the mean of the deviations from the mean. This mean, called
the mean deviation, gives us an indication of how much the group as a whole differs from the
sample mean. To calculate the mean deviation, we have to sum the individual deviations and
divide by the number of scores we have. There is a problem with such a procedure, however. The
problem relates to the fact that the mean is a measure of central tendency (middle or typical
score). As a result, approximately half of the deviations from the mean will be negative deviations
(the scores will be less than the mean) and half will be positive deviations (the scores will be
greater than the mean). If we sum these deviations, we will get zero. This is illustrated below:

Mean
1 4 5 9 11
Deviation of each
-5 -2 - score from the

1 0 3 5——
N\ |/
If we sum these
deviations we
get zero
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Definition

Definition

The variance is the average squared deviation of scores in a sample from the mean.

This is not a very informative indication of how the whole group is deviating from the mean,
as for every sample we will get zero. A way out of this dilemma is to square each of the devia-
tions from the mean; this eliminates all negative values (a negative number squared gives a
positive value, e.g. —5% = 25). We can then calculate the mean of these squared deviations to
give an indication of the spread of the whole group of scores. The resultant statistic is known
as the variance. The problem with the variance is that it is based upon the squares of the devia-
tions and thus it is not expressed in the same units as the actual scores themselves. It is expressed
in the square of the unit of measurement. For example, if we had a set of scores expressed in
seconds, the variance would be expressed in seconds®. To achieve a measure of deviation from
the mean in the original units of measurement, we have to take the square root of the variance,
which gives us the standard deviation.

The standard deviation is the degree to which the scores in a dataset deviate around the mean. It is an
estimate of the average deviation of the scores from the mean. The standard deviation is the square-

root of the variance.

A simple example will illustrate this. Suppose that we have the following group of scores
collected from a study into the number of chocolate bars eaten by people each week: 1, 4, 5, 6,
9, 11. To work out the standard deviation, we proceed as follows:

e First, calculate the mean, which is 6.

e The deviation of each score from the mean is: —5, —2, —1, 0, 3, 5 (if we add these up, you
see that we get zero).

e We therefore need to square these deviations to get rid of the negative values, which gives
us these scores: 25,4, 1,0, 9, 25.

e Next, we calculate the mean of these scores, which is 10.67, i.e. 64 + 6, which gives us our
variance.

e Finally, we work out the standard deviation by taking the square root of the variance, which
gives us 3.27.

Mean
1 4 5 9 11 ——— Actual scores
Deviations from -5 2 -1 0 3 5

the mean
25 4 1 0 9 25——— Ssquared deviations
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The standard deviation figure of 3.27 is useful as it gives us an indication of how closely the
scores are clustered around the mean. Generally, you will find that nearly 70% of all scores fall
within 1 standard deviation of the mean. In the above example the standard deviation is 3.27:
this tells us that the majority of the scores in this sample are within 3.27 units above or below
the mean. That is, nearly 70% of participants would eat between 2.73 (the mean, 6, minus 3.27)
and 9.27 (6 plus 3.27) chocolate bars per week. The standard deviation is useful when you want
to compare samples using the same scale. Suppose we took a second sample of scores and now
had a standard deviation of 6.14. If we compare this with the SD of 3.27 from the initial exam-
ple, it suggests that the participants in the initial sample tend to be more closely clustered around
the mean than those in the second sample.

If you calculate the standard deviation in the way just shown, you will obtain a standard
deviation that is specific to your sample. This is called a sample standard deviation. Usually,
however, we are interested in a measure of variation which is an estimate of the underlying
population. The problem with the sample standard deviation is that it tends to be an under
estimate of the population standard deviation. We therefore usually report a slightly modified
version of the sample standard deviation when we are trying to generalise from our sample
to the underlying population. The only difference between this modified standard deviation
and the sample standard deviation is that, instead of dividing the sum of the squared devia-
tions from the mean by the number of observations, we divide by the number of observations
minus 1. Thus, in the above example, instead of dividing 64 by 6, we would divide it by
5 (6 — 1). This would give us a standard deviation of 3.58. You will find when you use SPSS
that the standard deviation reported in the output is the modified version rather than the
sample standard deviation. Therefore, if you typed the data used in the above example into
SPSS and ran some descriptive statistics, you would find that the standard deviation is given
as 3.58 rather than 3.27.

Activity 3.8

Below is a table of means and standard deviations reported in a study by Latu
et al. (2013) in which they examined the length of time participants spoke to a
virtual audience when asked to do a persuasive speech against a proposed increase
in university student fees. The researchers were interested in whether or not
participants were influenced by the presence of powerful political figures in the
form of a poster on the wall. The overall mean length of speech in seconds and
standard deviation for three of the four conditions are presented below. Which of
these conditions has the greatest amount of variation around the mean? How
might you describe the pattern of variations around the mean across the three
conditions?

Poster: Mean (seconds) SD
Control (no poster) 210.05 7792
Angela Merkel 256.20 68.11

Bill Clinton 20294 78.88
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SPSS: obtaining measures of variation

To obtain measures of variation using SPSS, you should follow the instructions presented earlier for
generating measures of central tendency. If you use the Explore dialogue box as previously described,
you will generate a printout similar to that presented below:

Explore
Case Processing Summary
Cases
Valid Missing Total
N Percent N Percent N Percent
WalkingWithDog 6 100.0% 0 0.0% 6 100.0%
WalkingWithoutDog 6 100.0% 0 0.0% 6 100.0%
Descriptives
Statistic Std. Error
WalkingWithDog Mean 8.6667 0.88192
95% Confidence Interval Lower Bound 6.3996
for Mean Upper Bound 10.9337
5% Trimmed Mean 8.6296 Vari
. ariance,
Me.dlan 8.5000 /; D and
Variance 4,667 = / Range
Std. Deviation 2.16025 “4
Minimum 6.00
Maximum 12.00
Range 6.00 4
Interquartile Range 3.75
Skewness 0.463 0.845
Kurtosis —0.300 1.741
WalkingWithoutDog  Mean 4.0000 0.73030
95% Confidence Interval Lower Bound 21227
for Mean Upper Bound 5.8773
5% Trimmed Mean 4.0556
Median 4.5000
Variance 3.200
Std. Deviation 1.78885
Minimum 1.00
Maximum 6.00
Range 5.00
Interquartile Range 2.75
Skewness —0.943 0.845
Kurtosis 0.586 1.741

You can see that the printout contains the range, variance and standard deviation.

—
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Other characteristics of distributions

We have now covered ways to measure the spread of distributions. The other way in which
distributions can differ from one another is in terms of how peaked or flat they are. The degree
of peakedness or flatness is known as the kurtosis of the distribution. If a distribution is highly
peaked, it is said to be leptokurtic; if the distribution is flat it is said to platykurtic. A distribu-
tion that is between the more extremes of peakedness and flatness is said to be mesokurtic (see
Figure 3.23).

The kurtosis of a distribution is a measure of how peaked the distribution is. A flat distribution is called
platykurtic, a very peaked distribution is called leptokurtic, and a distribution between these extremes
is called mesokurtic.

You need not worry unduly about kurtosis at this stage of your statistical careers. We
introduce it here for two reasons. First, for completeness: we want you to have a fairly
comprehensive knowledge of the normal distributions and how they can differ from one
another. Second, when you get SPSS to run descriptive statistics, you will see a measure of
kurtosis on the output. When you come across this, you will now know what it refers to:
positive values of kurtosis on the output suggest that the distribution is leptokurtic, whereas
negative values suggest that it is platykurtic. A zero value tells you that you have a mesokurtic
distribution. If you take a look back at the SPSS output we presented on the previous page
you will see that for the WalkingWithDog condition there is a kurtosis value of -0.30, that is,
the distribution is slightly flat, whereas the value of the WalkingWithoutDog condition is
0.566, a slightly more peaked distribution.

Leptokurtic

Mesokurtic

Figure 3.23 Normal distributions varying in terms of their peakedness and flatness
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3.10

3.10.1

Non-normal distributions

Although many variables, when plotted, roughly approximate the normal distribution, you will
often find that variables deviate from this shape of distribution. Often such deviations from
normal are the result of sampling error. It is important to check the shape of your distributions,
as most of the statistical techniques described in this book make the assumption that the data
you are analysing are normally distributed. You can check the shape of the distributions by
generating histograms. If you find that your data deviate markedly from the normal distribu-
tion, you should consider using one of the statistical techniques that do not make the assump-
tion of normally distributed data. These are called distribution-free or non-parametric tests
(and are covered in Chapter 16). The following descriptions illustrate some of the more com-
mon ways in which a distribution you may come across will deviate from the normal
distribution.

Skewed distributions

The most often observed deviations from normality are the result of skewness. The distribu-
tions presented below are skewed distributions (Figure 3.24). You can see that in comparison
with the normal distribution they are not symmetrical. The distribution that has an extended
tail to the right is known as a positively skewed distribution (Figure 3.24(a)). The distribution
that has an extended tail to the left is known as a negatively skewed distribution
(Figure 3.24(b)).

Frequency

g

Positively
skewed
distribution

Histogram

Negatively
skewed
distribution

Histogram

Std. Dev=4.74
Mean = 6.6
N =20.00

Std. Dev=4.74
6 Mean= 135
N=20.00

0.0

Frequency

100 125 15.0\ 175
VAR00003
@

25/ 50 75

10.0 125 150
VAR00001

(b)

25 50 75 175 200

Extended
tails

Figure 3.24 Positively and negatively skewed distributions
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Skewed distributions are those where the peak is shifted away from the centre of the distribution and
there is an extended tail on one of the sides of the peak. A negatively skewed distribution is one where
the peak has been shifted to the right towards the high numbers on the scale and the tail is pointing
to the low number (or even pointing to the negative numbers). A positively skewed distribution has the
peak shifted left, towards the low numbers, and has the tailed extended towards the high numbers.

3.10.2

Definition

If you come across badly skewed distributions, you should be cautious about using the mean
as your measure of central tendency, as the scores in the extended tail will be distorting your
mean. In such cases you are advised to use the median or mode, as these will be more representative
of the typical score in your sample.

As with kurtosis, the output you get from SPSS for descriptive statistics also gives a measure
of skewness. Here a positive value suggests a positively skewed distribution, whereas a negative
value suggests a negatively skewed distribution. A value of zero tells you that your distribution
is not skewed in either direction. If you look back at the output shown above, you can see that
we have a skewness value of 0.46 for the ‘“WalkingWithDog’ condition, indicating a small posi-
tive skew. We also have a value of —0.94 for the ‘WalkingWithoutDog’ condition, indicating
quite a large negative skew for these data. Values of skewness around about 1 (or —1) suggest
deviations from normality which are too extreme for us to use many of the statistical techniques
covered in this book.

Bimodal distributions

Occasionally you may come across a distribution like the one represented in Figure 3.25. This
is known as a bimodal distribution. Essentially it has two modes, although in most cases the
two humps of the distribution will not be equal in height. This is clearly a non-normal distribu-
tion. If you come across such a distribution you should look closely at your sample, as there
may be some factor that is causing your scores to cluster around the two modal positions. It
might be the case that you have to treat these as two separate populations. If all seems in order,
you should report that the distribution is bimodal and report the two modes.

A bimodal distribution is one that has two pronounced peaks. It is suggestive of there being two distinct
populations underlying the data.

A nice recent example of bimodally distributed data is presented by Partington et al. (2013).
In this study the researchers were interested in the influence of being in a university sports
club on hazardous drinking. They recorded whether or not participants were in a university
sports club and measured alcohol consumption using the Alcohol Use Disorders Identification
Test (AUDIT; Saunders ef al., 1993). When the researchers examined the distribution of
AUDIT scores, they found that it was bimodal. There appeared to be two groups of partici-
pants; those with an AUDIT score of zero (light drinkers) and those with higher AUDIT scores
(i.e. heavier drinkers). Because of the bimodal distribution of AUDIT scores the researchers
correctly chose to use non-parametric statistical tests (we cover these sorts of tests in
Chapter 16).
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Figure 3.25 Bimodal distribution

Personal reflection

Dr Sarah Partington

Department of Sport, Exercise and Rehabilitation
Faculty of Health and Life Sciences

University of Northumbria

ARTICLE: The relationship between sport participation and drinking behaviour
among students at English Universities (Partington et al., 2013)

Dr Partington says:

€ GAlcohol has long been associated with sport, whether through alcohol sponsorship of sports events,
the consumption of alcohol during the celebration of victory or the drowning of sorrows after defeat.
As we work in Sport and Exercise Science, we were particularly interested in alcohol consumption
amongst athletes in general and student athletes in particular.

Research has shown that excessive alcohol consumption can be detrimental to athletic performance.
Logic would therefore dictate that university athletes would not engage in hazardous and harmful
drinking and would consume less alcohol than their non-athlete peers. Anecdotal evidence from our
own institution, in conjunction with anecdotal reports from our colleagues at other UK institutions,
seemed to indicate the opposite.

J
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Previous research into student athlete drinking in the US, New Zealand and France painted an ambigu-
ous picture. Some studies demonstrated that student athletes drank less than students not engaged in
university sport, whilst other studies found that student athletes drank significantly more. With no UK
data available we had no idea what the actual situation was for university athletes in England. These
ambiguous findings raised an interesting question for us in relation to alcohol intervention, namely, is
participation in university sport a protective factor against or a risk factor for hazardous and harmful
drinking?

The primary aim of our study was to compare alcohol consumption of university sport participants with
students not engaged in university sport participation. A secondary aim was to explore some sport
specific characteristics (type and level) which may have an impact on the alcohol-sport relationship.
We used the Alcohol Use Disorders Identification Test (AUDIT) to measure drinking behaviour and
alcohol-related problems.

The AUDIT scores for the whole sample were bimodal due to the fact that some students did not drink
at all, either because they were lifelong abstainers or were currently abstaining for a variety of reasons.
Those who participated in university sport had significantly higher AUDIT scores than those students
not participating in university sport. University sport participants consumed greater quantities of
alcohol, drank more frequently, consumed greater quantities of alcohol on a typical drinking occasion,
binge drank more often and were more at risk for alcohol-related harm than their non-athlete peers.
Interestingly, further analysis revealed that, while there were no significant differences in relation to
competitive level, there was a significant difference between team sports players and athletes who
participated in individual sports.

Team sports players were found to drink significantly more than those participating in individual sports.
In fact our results suggested that the difference in AUDIT scores and hence alcohol-related risk
between sport and non-sport participants can be explained mainly, although not entirely, by the
drinking behaviour of those playing team sports. Our findings led us to conclude that student athletes
in England and more specifically team sport athletes may be an ‘at risk group’ for alcohol-related
problems.9 9

We have now shown you what the normal distribution looks like and illustrated some of the

ways in which actual distributions can deviate from normality. Because the normal distribution
is so important in statistics, one of the main aims of illustrating your data graphically is to see
whether they are normally distributed. Perhaps the best graphical techniques for establishing
whether or not your data are normally distributed are histograms and stem and leaf plots. If
you take another look at Figure 3.21(e), you will see an example of a histogram showing a
normal distribution. On the other hand, Figure 3.3 is an example of a distribution that is
slightly positively skewed. Compare it with Figure 3.24(a) and you will see that they are
similar in shape.

One of the limitations of box plots is that it is often more difficult to tell when a distribution
deviates from normality, but as a guide Figures 3.26(a) to (c) give examples of box plots
illustrating normally and non-normally distributed data.

Figure 3.26(a) was generated from normally distributed data (1, 2, 2, 3, 3, 3,4,4,4,4,5, 5,
5, 6, 6, 7) and shows that the median is in the centre of the box and we have whiskers of equal
length coming from each side of the box. Also there are no outliers.

Figure 3.26(b) was generated from negatively skewed data (1, 2, 3, 3,3,4,4,4,5,5,5,5, 5,
5,5, 5,5) and shows that the median is shifted upwards in the box and is right near the top edge.
Also there is no whisker coming out of the top of the box. This is an extreme example but
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(a) Normally distributed data

6 \
Equal whiskers

4 1 - | coming from both
| edges of the box

DATA

(b) Negatively skewed data

6 -
\ No whisker

T coming from the
top of the box

DATA

(c) Bimodally distributed data

DATA

Figure 3.26 Box plots illustrating (a) normally distributed, (b) negatively skewed and (c) bimodally
distributed data

whenever the median is shifted towards one edge of the box and you have a shortened or no
whisker coming from that edge, you should suspect that you have skewed data.

Finally, Figure 3.26(c) was generated from bimodally distributed data (1, 2, 2, 3, 3, 3, 3, 3,
4,4,5,5,5,5,5, 6,6, 7). Surprisingly, it looks exactly like Figure 3.26(a) and is a good illustra-
tion of the caution you should exercise when trying to interpret whether you have normally
distributed data from box plots. This is why the histogram and, to a certain extent, stem and leaf
plots are better for assessing whether you have normally distributed data. Thankfully, bimodally
distributed data are not too common in research, so box plots can give a reasonable indication
of the way your data are distributed.
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Activity 3.9

Which of the following distributions are normal and which are not?

@

(d)

AN
VAN
A

Example from the literature

Maths anxiety and working memory in school children

Even though we would expect that all researchers using the statistical techniques covered in this book
would examine histograms, it is quite rare to find researchers referring to histograms in published
reports. A nice exception to this is an article published by Ramirez et al. (2013). In this paper the
researchers report a study investigating the influence of working memory and maths anxiety on maths
achievements in primary school children. They asked participants to undertake a number of working
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memory tasks and also complete a Child Maths Anxiety Questionnaire (CMAQ) developed by the
researchers. In their analysis of the CMAQ the researchers present a histogram of scores on this ques-
tionnaire and report that it is approximately normally distributed.

For a slightly more recent article take a look at the paper published by Haaker et al. (2015) in which
they present a histogram of Spielberger State-Trait Anxiety Inventory (STAI) scores for their sample of
377 participants.
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SPSS: displaying the normal curve on histograms

It is quite useful to get SPSS to display a normal distribution on your histograms to help you decide
whether your data are normally distributed. Unfortunately, it is not possible to do this using the Explore
dialogue box. In order to do this, you should generate histograms using the Graphs menu instead of the
Analyze menu. When you click on the Graphs menu and the select the Legacy Dialogs option you should
notice that there are options for all the graphical descriptive techniques that we have shown you:
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Select the Histogram .. . option and you will be presented with the following dialogue box. To generate
a histogram with a normal curve on it, you should move the relevant variable to the Variable box. You
should then select the option that states Display normal curve. When you have made the correct
selection, click on OK to generate the histogram. The resulting histogram will contain the normal curve,
as indicated in Figure 3.27.
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Figure 3.27 SPSS histogram showing the normal distribution curve

You can see from the histogram that the set of data that we have used is not very close to the
normal curve.

—
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3.11 Writing up your descriptive statistics

Although it is good practice to examine the distribution of your data, you will find that most
researchers do not routinely report the findings of such examinations. Typically, if your
distributions deviate from normality, it is a good idea to report this fact. If the distributions
are approximately normal in shape, it is up to you whether you report this. Whether or not
you report the shape of your distribution, you should always examine this, as the shape of
your distribution has a bearing on the sorts of statistical technique you can use to analyse
your data.

If you wish to mention the way that your data are distributed, the following is perhaps how
you should report your descriptive statistics. In a study conducted by Reidy and Keogh (1997),
anxious and non-anxious individuals were compared on their interpretation of ambiguous infor-
mation. There was also an examination of gender differences in such interpretations. We might
present the descriptive statistics as follows:

There were 98 students in the study. The mean numbers of positive and negative interpretations
were 10.06 and 7.95 respectively. The number of positive and negative interpretations given
by males and females was compared. Table 3.1 shows the means and standard deviations for
these two groups. The table shows that the males offered more negative interpretations than
the females and about the same number of positive interpretations. Both genders gave more
positive interpretations than they did negative interpretations. The standard deviations show
that the males had slightly more variability in terms of their positive and negative interpreta-
tions. Examination of box and whisker plots revealed that the distributions were approximately
normally distributed and that there were no extreme scores.

Table 3.1 Mean number of positive and negative interpretations shown by males and females
(standard deviations in parentheses)

Females Males
Positive interpretations 10.20 (2.32) 9.91 (3.01)
Negative interpretations 7.27 (2.99) 8.62 (3.55)

Summary
In this chapter we have introduced you to ways of we take, the lower will be the degree of sampling
exploring and describing your data. We have error.

highlighted the fact that it is important to become R
familiar with your data by using a number of

descriptive statistical techniques, and we explained
how to use and interpret such techniques. Thus,

you have learnt:

That there are a number of graphical techniques
that help us to become more familiar with how
our data are distributed, including:

frequency histograms

. . stem and leaf plots
¢ How to calculate means, medians and modes in

order to get an indication of the typical scorein a - box plots
sample (these are measures of central tendency). - scattergrams.
» Sampling errors occur when we take samples * What the normal distribution looks like and why

from populations, and the larger the samples it is important in statistics.
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* That there are a number of ways in which data e That an important feature of any distribution is
that you gather can deviate from the normal the degree to which the scores are spread out
distribution, including: and that the most important measure of this is
- negatively skewed distributions called the standard deviation.

- positively skewed distributions * That the standard deviation is the degree to which

- bimodal distributions. the scores in a distribution deviate from the mean.

—

choice questions and activities, discover more about topics using the links to relevant websites, and
explore the interactive flowchart designed to help you find the right method of analysis.

SPSS exercises

Exercise 1

@ Discover the website at www.pearsoned.co.uk/dancey where you can test your knowledge with multiple

You are given the job of finding out whether or not changing the lighting in an office from normal fluo-
rescent lighting to red lighting will increase the alertness of data inputters and thereby decrease the
number of errors they make. When you do this, you find that 20 data inputters decrease their number
of errors per day by the following amounts:

22,22,12,10,42,19, 20, 19, 20, 21, 21, 20, 30, 28, 26, 18, 18, 20, 21, 19

1. What is the IV in this study?
2. What is the DV in this study?
3. Use SPSS to generate a box plot for the above set of scores.

(a) Are the data normally distributed?
(b) Are there any outliers shown on the box plot? If yes, which score(s) is (are) the outlier(s)?
(c) Using SPSS, what is the mean of the above set of scores? What is the standard deviation?

Exercise 2

A group of final-year students decides to see if the lecture material in Dr Boering’s lectures can be made
more memorable. They decide that the best way to do this would be to take hallucinogenic drugs during
the lectures. At the end of term there was an exam and those students who took drugs during the
lecture obtained the following marks (%):

23,89,62,11,76,28,45,52,71, 28
Those students in the class who did not take hallucinogenic drugs obtained the following marks:
45,52, 68,74,55,62,58, 49,42, 57

1. What is the IV in this study?
2. What is the DV? Is the DV continuous, discrete or categorical?
3. Use SPSS to plot histograms for the two sets of data and then answer the following:

(a) Are the two sets of scores normally distributed?
(b) Use SPSS to calculate the mean and standard deviations for both sets of scores. Which group
has the highest mean? Which group has the greater variability in their scores?

—
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Multiple choice questions

1. Which one of the following represents the best estimate of the population mean?

(a) The sample mean

(b) The mean of several sample means
(c) The mode of several sample means
(d) The median of several sample means

2. If you obtained a sample of data that was relatively normally distributed and had no extreme scores,
which measure of central tendency would you opt for?

(a) Mode

(b) Median

(c) Mean

(d) None of the above

3. Which of the following measures of central tendency are sensitive to extreme scores?

(a) Mode

(b) Median

(c) Mean

(d) None of the above

4. Given the following graph, how would you describe the distribution?
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(a) Normal

(b) Positively skewed
(c) Negatively skewed
(d) Bimodal
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10.

11.

. The standard deviation is equal to:

(a) The variance

(b) The square root of the variance

(c) The variance squared

(d) The variance divided by the number of scores

. What is the relationship between sample size and sampling error?

(a) The larger the sample size, the larger the sampling error
(b) The larger the sample size, the smaller the sampling error
(c) Sample size equals sampling error

(d) None of the above

The mode is:

(a) The frequency of the most common score divided by the total number of scores
(b) The middle score after all the scores have been ranked

(c) The most frequently occurring score

(d) The sum of all the scores divided by the number of scores

In box plots, an extreme score is defined as:

(a) A score that falls beyond the inner fence

(b) A score that falls between the hinges and the inner fence

(c) A score that falls between the inner fence and the adjacent score
(d) A score that falls between the two hinges

. A normal distribution should have which of the following properties?

(a) Bell-shaped

(b) Symmetrical

(c) The tails of the distribution should meet the x-axis at infinity
(d) All of the above

If you randomly select a sample of 20 pandas (sample A), then select a sample of 300 pandas
(sample B) and calculate the mean weight for each sample, which is likely to give a better estimate of
the population mean weight?

(a) Sample A

(b) Sample B

(c) Both will give equally good estimates of the population mean
(d) Neither will give a good estimate of the population mean

What sort of relationship is indicated by a scattergram where the points cluster around an imaginary
line that goes from the bottom left-hand corner to the top right-hand corner?

(a) Positive
(b) Negative
(c) Bimodal
(d) Flat
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12.

13.

14.

15.

16.

17.

18.

What is the mean of the following set of scores: 5, 7, 10, 12, 18, 20, 24, 22, 24, 25?

(a) 145
(b) 172
(c) 16.7
(d) 167

If you have a negatively skewed distribution then:

(a) The mean, median and mode are equal
(b) The right-hand tail is extended

(¢c) The left-hand tail is extended

(d) None of the above

A perfectly normal distribution:

(a) Is bell-shaped, symmetrical and has tails that approach the x-axis at infinity
(b) Is only applicable for normal people

(¢) Has equal mean, median and modes

(d) (a) and (c) above

When you have categorical variables and are simply counting the frequency of occurrence of each
category, your measure of central tendency should be:

(a) Mode

(b) Median

(c) Mean

(d) None of the above

Given the following set of data (8, 7, 9, 12, 14, 10, 14, 11, 13, 14), what are the mean, median and
mode?

(a) 11.2,11.5, 14
(b) 112,12, 14
(c) 10,5, 14

(d) 10,12, 14

If a distribution is described as platykurtic, then it is:

(a) Very peaked
(b) Very flat
(¢) Bimodal
(d) Very thin

Having calculated the variance of a set of data with 12 participants to be 36, what would the standard
deviation be?

(a) 36
(b) 1296
(c) 6
(d 3
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s N
19. Which of the following statements are true?
(a) Parameters describe samples and statistics describe populations
(b) Statistics describe samples and populations
(c) Parameters describe populations and statistics describe samples
(d) Both (a) and (b) above
20. Given the following graph, how would you describe the distribution?
(a) Normal
(b) Positively skewed
(c) Negatively skewed
(d) Bimodal
e | 2
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CHAPTER OVERVIEW

In Chapters 1 and 3 we introduced you to the important aspects of experimental design and the initial
processes of data analysis. In this chapter we will start you off on the road to drawing conclusions
from your data. We will build upon your knowledge of samples and populations to explain how we
are able to generalise our findings from samples to populations. We will show you how we use sample
data to help us draw conclusions about our populations. That is, we will introduce you to inferential
statistics. First we will give a brief introduction to the world of probabilities. We will then show how
we can use probability distributions such as the standard normal distribution to draw inferences from
sample data. Therefore in this chapter you will learn about:

probability and conditional probability

applying probability to research

the standard normal distribution

sampling distributions

point and interval estimates of population parameters
the standard error and confidence intervals

error bar charts.

4.1 Probability

For an understanding of statistics you will need to understand the concept of probability. This
should not be as difficult as it may seem, as probability is a common element of everyday life.
Every time you toss a coin you are dealing with probabilities. Every time you roll a die or buy
a lottery ticket, you are involved with probabilities. We hear about probabilities all the time in
the news: for example, if you smoke cigarettes you greatly increase the probability that you will
contract lung cancer. Similarly (and this one I like — JR), if you drink beer in moderation, you
reduce the risk of coronary heart disease (e.g. see Klatsky, 2015).

Definition

Probability refers to the likelihood of a particular event of interest occurring.
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It is clear from the above examples that probabilities are an important aspect of everyday
life. Let us now take a look at some of these examples in more detail. If you toss a coin, what
is the probability of it landing with the heads side upwards? There is a 1 in 2 probability of
getting heads when you toss a coin. This means that one in every two tosses of the coin is likely
to turn out with heads being the exposed side of the coin. Usually, probabilities are expressed
in the form of a decimal number ranging from 0 to 1, where 0 means that the event definitely
will not happen and 1 means that the event definitely will happen.

Activity 4.1

Which of these events has a probability of 0 (or very close to 0) and which has a prob-
ability of 1 (or very close to 1)?

(a) Night following day

(b) All politicians telling us the truth all the time

(c) Your finding a cheque for a million pounds in the pages of this book

(d) A wood fire being extinguished if you pour water on it

(e) Authors having to extend the deadline for sending in manuscripts for books

To calculate the probability of an event occurring, such as tossing a coin, we simply divide the
number of occurrences of the desired outcomes by the total number of possible outcomes. Thus,
in the case of tossing the coin there is one desired outcome (heads) but two possible outcomes
(heads or tails). The probability of getting heads is therefore 1 < 2 (or 0.5). You will also some-
times see probabilities expressed in terms of percentages. Such a format is often more familiar
to people and helps them understand probabilities better. To calculate the percentage from the
decimal you simply multiply it by 100. Therefore, the probability of obtaining heads when tossing
a coin is 50% (0.5 X 100). The probability of 0 is 0% and a probability of 1 is 100%.

Activity 4.2

1. Express the following probabilities as percentages:

(@) 0.25
(b) 0.99
(c) 1+3
(d) 2+10

2. Express the following probabilities as decimals:

(@) 1+8
(b) 12+ 20
(c) 30%
(d) 14%

Let us now turn our attention to rolling the die. When we roll a die, what is the probability
of our rolling a 6? Here we have one desired outcome (a 6) and six possible outcomes (1, 2, 3,
4,5 or 6) and so we have a probability of 1 + 6 or 0.1667 of rolling a 6. What is the probability
of rolling a 1 or a 2? Here we have two desired outcomes (1 or 2) and six possible outcomes,
therefore the probability is 2 + 6 or 0.3333.

Try to work out the probability of rolling an even number (the answer is in the ‘Answers’
section of the book).
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Conditional probabilities

For the purpose of research in psychology, we need an understanding not only of probability
but also of conditional probability. A conditional probability is the probability of some event
taking place, which is dependent upon something else. For example, the probability of Arsenal
winning a cup final this year might be 70% if they had all their players fit, but might be only
30% if they had most of their strikers injured. These are conditional probabilities in that they
are dependent upon the fitness of the Arsenal team. Another example of a conditional probabil-
ity is the probability of someone buying this statistics book. Ordinarily, given that there are
probably at least 99 other texts on the market, the probability of someone buying this book
would be about 1 in 100 (or 1%). If a tutor recommends it, however, then the probability may
change to about 1 in 5 (or 20%). This latter probability is a conditional probability; it is the
probability of someone buying the book conditional upon a tutor recommending it. We men-
tioned two examples of conditional probabilities earlier in the chapter. The probability of con-
tracting cancer if you smoke cigarettes is a conditional probability, as is the probability of
coronary heart disease if you drink moderate amounts of beer. Try to ensure that you understand
what conditional probabilities are, as you will come across them more in Chapter 5 when we
explain hypothesis testing.

A conditional probability is the probability of a particular event happening if another event (or set of
conditions) has also happened.

4.1.2

Activity 4.3

Which of the following are conditional probabilities?

(a) The probability of being struck by lightning while playing golf

(b) The probability of winning the Lottery

(c) The probability of winning an Olympic gold medal if you do no training

(d) The probability of getting lung cancer if you smoke

(e) The probability of rolling a 6 on a die

(f) The probability of finding a ten pound note in the pages of this book

(g) The probability of manned flight to Mars within the next ten years

(h) The probability of having coronary heart disease if you drink moderate levels
of beer

Applying probabilities to data analyses: inferential statistics

Inferential statistics are techniques employed to draw conclusions from your data. When we
conduct research we typically want to draw some conclusions about what we are observing:
that is, we want to make inferences. The reason why we investigate the relationship between
mental health and procrastination or that between cigarette smoking and short-term memory is
to understand them better. Similarly, the reason why we would conduct a study on people who
eat chocolate sponge with tomato ketchup at 6.30 in the morning is that we want to know why
on earth they do it (the ‘munchies’ perhaps). To answer such questions we need to draw conclu-
sions from our research data.
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Given the following description of events, what conclusion are you likely to draw?

On a busy afternoon in the centre of Wolverhampton, a man was seen sprinting around a
corner and running along the High Street. He was obviously in a hurry and did not care that
he knocked people out of his way. About three seconds later a policewoman also came run-
ning around the corner and up the High Street.

One likely conclusion from this description is that the policewoman is trying to catch up with
and arrest the person running in front of her. In the majority of cases this would be a reasonable
conclusion to draw from the description above. However, it could be that the policewoman is
following a plain clothes officer and they are both rushing to the scene of a crime.

You can see how easy it is to jump to the wrong conclusion in real-life events. The same sorts
of error can arise in psychological research because we are trying to draw conclusions from
statistical analyses. Remember, when we test a sample of individuals we are generally doing so
to enable us to draw conclusions about the population from which the sample was drawn. If we
wanted to find out whether mental health was related to procrastination, we would randomly
select a sample of individuals and get measures of these two variables. From these data we
would then try to make some inferences about the relationship between the two variables in the
population. This is what we use inferential statistical techniques for. It is, however, possible that
we may draw the wrong conclusions from our statistical analyses. This is because the statistical
techniques we use in order to draw conclusions about underlying populations are based upon
probabilities. We therefore need to be constantly aware of the fallibility of such techniques.

Example from the literature

Psychology placements and career benefits

In a study published by Moores and Reddy (2012) they investigated the potential career benefits of
psychology students taking a placement year. For a part of the study the researchers contacted
psychology alumni and asked them to complete a questionnaire measuring career satisfaction and
career success. They also recorded whether or not the students had been on a placement whilst at the
university. The researchers used inferential statistical techniques to establish that for the psychology
students there was no association between taking a placement and the type of employment six months
after graduation. They did though show that graduates who went on placements reported higher levels
of career satisfaction than those who did not. This is a great paper because the authors take the time
to explain to the reader what the statistical tests mean, which is not that common in published papers.
(It is also a really good example of the use of some of the non-parametric statistical techniques that
we cover in Chapter 16.)

Personal reflection

Article: ‘No regrets? Measuring the career benefits of
a psychology placement year’

Dr Liz Moores and Mr Peter Reddy, School of Life and
Health Sciences, Aston University, Birmingham, UK
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Dr Moores and Mr Reddy say:

¢ GAlthough we are both strong proponents of the placement year, we were interested in conducting
this study to investigate whether it really was delivering what it promised for psychology students. A
previous study (Reddy and Moores, 2006) had illustrated the benefits of the placement year in terms
of academic performance, but what really matters in the longer term is whether students are successful
in obtaining good jobs and whether they feel satisfied with their own career progress. Firstly we ana-
lysed data obtained from the Destination of Leavers from Higher Education (DLHE) survey, which is
given to all graduates in the UK around six months post-graduation. These data showed that Aston
University psychology graduates obtaining 2.1 classified degrees were more likely to have found
graduate-level work if they had done a placement. In an additional survey of Aston University psychology
alumni (that we designed and conducted ourselves) this pattern of employment persisted from
18 months to six and a half years post-graduation. These survey data also showed that placement
programme alumni were more satisfied with their careers, but did not earn significantly more. We hope
that these findings will be useful both to policy makers and to individual students deciding whether or
not to invest in a placement year.9 9

4.2 The standard normal distribution

We have explained what we mean by probability and also, in Chapter 3, described to you the
family of distributions known as the normal distributions. We would now like to explain an
even more important distribution known as the standard normal distribution (see Figure 4.1).
As is indicated in Figure 4.1, the standard normal distribution (SND) is a normally shaped
distribution with a mean of zero and a standard deviation of 1. Because of these and other
characteristics, the SND is a very useful distribution. Using this distribution we are able to
compare scores from different samples, compare different scores from the same samples and
much, much more.

In order to use the standard normal distribution for analysing our data, we often transform
the scores in our samples to standard normal scores. This is achieved by subtracting the mean
from each score in your sample and then dividing by the standard deviation. The result is called

Mean of 0, standard
deviation of 1

-3 —2 -1 0 1 2 3

Figure 4.1 The standard normal distribution
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Definition

a z-score. The z-score is expressed in standard deviation units: that is, the z-score tells us how
many standard deviations above or below the mean our score is. If you have a negative z-score
then your score is below the mean; if you have a positive z-score then your score is above the
mean. Thus, a z-score of 1 tells us that it falls one standard deviation above the mean.

An example may help you to understand. The mean for 1Q scores for many 1Q tests is 100
and the standard deviation is 15. If you had an IQ score of 135, your z-score would be:

135 — 100

=233
15

This tells us that your score is 2.33 standard deviations above the mean.

z-scores are also called standardised scores. You can convert any score from a sample into a z-score
by subtracting the sample mean from the score and then dividing by the standard deviation.

Definition

Once we have converted our scores into z-scores, we can use the SND in a number of useful
ways. The SND is known as a probability distribution. The beauty of probability distributions
is that there is a probability associated with each particular score from the distribution. That
is, we know the probability of randomly selecting any particular score from the distribution.
We also know the probability of obtaining a score between any two values from the distribu-
tion (e.g. a score between —1 and +1). An important characteristic of probability distributions
is that the area under the curve between any specified points represents the probability of
obtaining scores within those specified points. For example, the probability of obtaining
scores between —1 and +1 from the standard normal distribution is about 68% (see Figure 4.2).
This means that 68% of the total area under the standard normal curve falls between —1 and
+1 standard deviations from the mean. We should emphasise that the probability being
referred to here is the probability of randomly selecting scores from the distribution. Thus,
there is a 68% probability of randomly selecting a score between —1 and +1. Similarly, the
probability of obtaining a score between —1.96 and +1.96 from the distribution is 95% (see
Figure 4.3).

A probability distribution is a mathematical distribution of scores where we know the probabilities
associated with the occurrence of every score in the distribution. We know what the probability is of
randomly selecting a particular score or set of scores from the distribution.

Because of these characteristics we can use the SND to work out the probability of obtaining
scores within any section of the distribution. We could work out the probability of obtaining a
z-score of 2 or above in the SND or we could find the probability of obtaining a z-score between
1 and 2. You will notice that extreme z-scores, say above 2 and below —2, have a much smaller
chance of being obtained than scores in the middle of the distribution. That is, the areas of the
curve above 2 and below —2 are small in comparison with the area between —1 and 1 (see
Figure 4.4). We can relate this to more concrete variables such as men’s height. If you think
about scores falling above 2 and below —2 as the extremes of men’s height, say above 6 ft 7 in
(about 2.0 m) and below 4 ft 7 in (1.4 m), it is clear that we are much less likely to find men
above and below these heights than, say, men between 5 ft 5 in (1.65 m) and 6 ft (1.83 m).
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—1 and +1 standard
deviations from the mean

Shaded area represents
68% of total area
under the curve

-3 -2 -1 0 1 2 3

68% probability of randomly
selecting a score between these scores

Figure 4.2 Percentage of the curve falling between —1 and +1 standard deviations

—196and +1.96
standard deviations
from the mean

Shaded area represents
95% of the total area
under the curve

95% probability of obtaining
a score between these scores

Figure 4.3 Percentage of the curve falling between —1.96 and +1.96 standard deviations
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Definition

Area in the middle portion is
greater than the extremes

Figure 4.4 Areas in the middle and the extremes of the standard normal distribution

Fortunately, when working with the standard normal distribution, we do not have to work
out the areas under the curve and convert them into probabilities; they have already been cal-
culated for us and are conveniently listed in statistical tables for us to use. (If you look at
Appendix 1 at the back of the book, you will see such a table.)

The standard normal distribution is the distribution of z-scores. It is a normally shaped probability
distribution which has a mean (as well as median and mode) of zero and a standard deviation of 1.

Another useful feature of the SND is that we can use it to calculate the proportion of the
population who would score above or below your score. Remember, when we are talking about
proportions here, we want to think about the area under the standard normal curve. This is where
we need to consult the standard normal distribution tables found in many statistical texts (see
Appendix 1). If we look at Figure 4.5, we can see that the IQ score of 135 is 2.33 standard
deviations above the mean, as we calculated earlier. The shaded area represents the proportion
of the population who would score less than someone with an IQ of 135. The unshaded area
represents those with an IQ greater than this.

To find out what proportion of the population would score less than you, we can consult the
standard normal distribution table. The normal distribution tables tend to come in different
formats but the information in them is essentially the same. (An extract from Appendix 1 can
be seen in Table 4.1.)

We can see from this that the values in the column headed ‘Proportion below score’ represent
the proportion of the area under the curve below any particular z-scores. The table shows us
that the proportion falling below the z-score of 2.33 is 0.9901. This means that 99.01% of the
area under the curve falls below the 1Q score of 135. If you wanted to know what proportion of
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Mean of 100

Proportion of the curve
below our score

2.33 SDs above
the mean

100 135

Figure 4.5 Normal distribution showing the proportion of the population with an IQ of less than 135
(z-score of 2.33)

Table 4.1 Extract from the statistical table giving details of the standard normal distribution

Details for the z-score of 2.33 Proportion of curve falling below your score

z-score Proportion below score Proportion above score
2.31 0.9896 0.0104
2.32 0.989 0.0102
2.33 0.9901 0.0099
2.34 0.9904 0.0096
2.35 0.9906 0.0094

the curve was above this 1Q score, you could simply subtract the above proportion from 1.
In this case you will find that 0.0099 of the curve is above your score, or less than 1%. This
value is presented in the table in the ‘Proportion above score’ column.

You should note that the tables tend to contain only details of positive z-scores: that is, those
that fall above the mean. If you have a negative z-score, you simply use the same tables but
disregard the negative sign of the z-score to find the relevant areas above and below your score.
However, because your score is below the mean, the proportion given in the ‘Proportion below
score’ column now tells you the proportion of the curve that is above your score (see
Figure 4.6).

Another example should help to make the calculation of such proportions clearer. Suppose
that you had an off-day when you took your IQ test and only scored 95. What percentage of the
population falls below your score?

We can convert this score to a z-score, thus:

95 = 100 _ 1
15 '
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Larger portion below Larger portion above
your z-score your z-score
99.01% 99.01%

IQ 2.33 —2.33 1Q
Positive z-score Negative z-score

Figure 4.6 lllustration of proportions of the curve below positive z-scores and above negative
z-scores

You can see here that we now have a negative z-score. If we consult the SND tables (see Table 4.2),
we find that the proportion below your score is 0.3707 (37.07%). If you look at Figure 4.7, you
can see that, as your score is below the mean, the smaller portion will be that which is below your
score. Therefore the tables tell us that 37.07% of the population score below and 62.93% score
above your IQ. (Remember when consulting Appendix 1 for negative z-scores that the proportion
below your score will be found in the ‘Proportion above score’ column and vice versa.)

Table 4.2 Extract from z-score table giving details of the proportion falling above and below a
z-score of 0.33
As your z-score is negative we have
z-score  Proportion Proportion to look in the ‘Proportion below
D T s S score’ column to find the proportion
of the distribution above your score
and vice versa.

0.31 06217
0.32 0.6255
0.33 0.6293 0.3707
0.34 0.6331 0.3669
0.35 0.6368 0.3632
37.07% falling Mean of 100

below your score

95 1Q

Figure 4.7 Proportion of the population scoring above and below an IQ score of 95
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Activity 4.4

If you have a negative z-score, does it fall above or below the mean? With a negative
z-score do the majority of the population score higher or lower than you?

Comparing across populations

Another way that we can use the standard normal distribution is to compare across different situ-
ations. For example, suppose you were unsure about your future career but knew you would like
to do pottery or weightlifting. You decide to take a course in each and see how you perform before
deciding which career to choose. At the end of the courses, you find that you were graded with
65% for pottery and 45% for weightlifting. On the face of it, you might feel justified in pursuing
a career as a potter rather than a weightlifter. Have you made the correct decision? To get a better
idea, you need to compare yourself with the others in your groups. You might find that you are
worse at pottery in comparison with the rest of the group than you are at weightlifting. To make
such comparisons you need to convert your grades to z-scores. Let us suppose that the mean and
standard deviation for pottery are 56% and 9% respectively and for weightlifting 40% and 4%.
Your z-score for pottery would work out to be 1 and for weightlifting it would be 1.25.

65-56_ 4540
9

z-score for pottery z-score for weightlifting

=1.25

This tells us that you were 1 standard deviation above the mean in pottery and 1.25 standard
deviations above the mean for weightlifting. You are, therefore, comparatively better at weightlift-
ing than pottery. Consequently, you would perhaps be better off choosing weightlifting as a career.

Example from the literature

Changes in children’s BMI predicts teachers’ perceptions of reading and
maths ability

In an interesting recent study by Kenney et al. (2015) researchers compared the children’s maths and
reading performance as well as teachers’ perceptions of maths and reading ability across a three-year
period (from fifth to eighth grade). They were interested in whether children’s body mass index (BMI)
across the three-year period was related to maths and reading performance as well as to teachers’
perceptions of maths and reading ability. As the study was over three years the researchers calculated
z-scores for BMI in each year. They found that a change in BMI z-scores across the three years was not
associated with any change in maths or reading ability. However, an increase in BMI z-scores across the
three years was associated with reduced teacher perceptions of maths ability for males and reading
ability for females.

Activity 4.5

Suppose that your marks in Mathematics and English are 65% and 71% respectively.
Which is your better subject in comparison with the others in your group if the group
means and SDs are 60 and 5 (Mathematics) and 65 and 7 (English)?
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4.3

4.4

Applying probability to research

We explained earlier in this chapter that the probability of some event happening can be
expressed as a decimal or as a percentage. For example, when you roll a die you have a 0.1667
(16.67%) probability of rolling a 1. Similarly, if there was a probability of 0.05 (or 5%) of hav-
ing an accident while driving your car, this would mean that in approximately one drive in every
20 you would probably have an accident. Such a probability may be dependent upon some other
factor, such as using a mobile phone while driving. If this were the case, we would state that
there was a probability of 5% of your having an accident while driving your car when you are
also using your mobile phone. This latter statement of probability is a conditional probability.
The probability of 5% of having an accident when driving your car is conditional upon your
driving while using the mobile phone.

You might be thinking, this is all very well but what has a knowledge of probability got to
do with applying statistics to research? In research we usually generalise from samples to popu-
lations. As discussed earlier (in section 3.3), whenever we use samples we are prone to sampling
error. This means that we do not know whether the pattern of results we find in our samples
accurately reflects what is happening in the populations or is simply the result of sampling error.
It would be useful if we were able to work out a probability which allows us to decide whether
our pattern of findings is likely to be a genuine effect in the population or simply arose due to
sampling error. If there is only a small chance that random sampling error by itself produced
our pattern of results, we may wish to conclude that the samples accurately reflect the
populations.

One of the simplest ways of applying probabilities to research and of estimating popula-
tion parameters from sample statistics is to calculate confidence intervals. In the following
sections we will explain the important concepts necessary for calculating confidence
intervals and explain why they are useful for drawing conclusions from research. We will
describe sampling distributions and highlight some important characteristics of these.
Following this, we will explain how we can use sampling distributions of the mean to work
out how good an estimate a sample mean is of a population mean, through the use of
confidence intervals.

Sampling distributions

If you think back to Chapter 3, we explained that you could use the mean of the sample as an
estimate of the mean of the population. We also explained that, if you took many samples and
took the mean of the means of these samples, then this would be a better estimate of the popula-
tion mean than the individual means (see section 3.2.5). Additionally, we observed that as larger
samples are more likely to include individuals who score above the mean as well as those who
score below the population mean that such samples give better estimates of the population
mean. Thus, the larger the samples we obtain, the better estimate we can get of the population
mean.

When you plot sample statistics from all of your samples as a frequency histogram, you
get something called the sampling distribution. Thus, if you plotted the sample means of
many samples from one particular population, you would have plotted the sampling distri-
bution of the mean. An interesting property of sampling distributions is that, if they are
plotted from enough samples, they are always approximately normal in shape. And, gener-
ally, the larger the samples we take, the nearer to normal the resulting sampling distribution
will be. This finding is encapsulated in the Central Limit Theorem, which states that as the
size of the samples we select increases, the nearer to the population mean will be the mean
of these sample means and the closer to normal will be the distribution of the sample
means.
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Definition

A sampling distribution is a hypothetical distribution. It is where you have selected an infinite number
of samples from a population and calculated a particular statistic (e.g. a mean) for each one. When you
plot all these calculated statistics as a frequency histogram, you have a sampling distribution.

Perhaps surprisingly, the sampling distribution of the mean will be normal in shape, no mat-
ter how the overall population is distributed. The population could be skewed in some way or
bimodally distributed or even be flat and we would still find that the sampling distributions
would be normally distributed.

The following example will serve to illustrate this. Imagine that, when you were born, some-
body started rolling a die and recording the numbers. This person rolled the die once every two
seconds for the whole of your life, which we will assume is about 80 years (not a particularly
interesting thing for someone to do, but there we go). Now if we plotted the distribution of all
the rolls of the die (the population of all the rolls of the die in your lifetime), it would probably
look something like the distribution in Figure 4.8.

Because each number on the die has an equal probability of occurring (1 in 6), we would
expect each number to have appeared with roughly equal frequency in your lifetime. Thus the
population of rolls of the die in your lifetime has a flat or uniform distribution. Assuming that
the numbers have occurred with equal frequency, the mean of the population of rolls is 3.5. If
we now randomly select five samples of ten rolls of the die from this population, we might
obtain the following:

1,5,1,2,6,6,4,1,4,6  mean = 3.6

/1,2,2,2,6,5,3,3,6,4 mean = 3.4
/

Rollsof 4 5 1.6,6,5.3.5.5.2 mean =39
the die
\ 3,5,2,4,2,2,1,4,3,4 mean = 3.0
4,2,1,1,2,6,6,5,3,4 mean = 3.4
4 2
Mean
320,000,000 v
210,000,000 1 '
<
s
g
100,000,000
1 2 3 4 5 6
Number on the die
- Y,

Figure 4.8 Histogram showing the distribution of the population of rolls of the die
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You can see that the means are relatively good approximations to the population mean of 3.5,
although they do vary quite considerably. However, if we calculate the mean of the means, we
find that it is an even better approximation of the population mean:

3.6+3.4+39+3+34
5
Now let us plot these sample means as a frequency distribution (or frequency histogram): that

is, plot a sampling distribution — see Figure 4.9.

You can see from Figure 4.9 that the distribution is not as flat as that of the population of
rolls of the die. This is better illustrated, however, if we take more samples of ten rolls of the
die. The graph in Figure 4.10 is the sampling distribution of 100 such sample means.
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Sample mean rolls on the die
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Figure 4.9 Histogram showing the distribution of the means from the five samples of ten rolls of
the die drawn from the population of rolls of the die
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Figure 4.10 Histogram showing the distribution of the means from the 100 samples of ten rolls of
the die drawn from the population of rolls of the die
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You can see that, even though the population has a flat distribution, the sampling distribution
of the mean is approximately normal in shape. This would be the case for any sampling distribu-
tion that you cared to plot.

Activity 4.6

Go to the UK National Lottery website (www.national-lottery.co.uk) and have a look at
the previous Lotto draw results. To find these click on the Check Results link at the top
of the homepage and then click on the Draw history link for the Lotto game. These
lottery draws represent random sampling from a population. The population consists
of the 49 balls in the draw and each draw represents a sample size of seven (six balls
plus the bonus ball). Look at the most recent five draws and for each calculate the
mean of the balls drawn. How do these compare with the mean from the population
of balls (the mean is 25)? Plot these as a frequency histogram. Is this flat? Now calcu-
late the means of each of the last 30 draws and plot these as a frequency histogram.
Does this look like a flat distribution?

Confidence intervals and the standard error

Although we know that the sample mean is an approximation of the population mean, generally
we are not sure how good an approximation it is. This is where confidence intervals help us.

Because the sample mean is a particular value or point along a variable, it is known as a point
estimate of the population mean. It represents one point on a variable and because of this we
do not know whether our sample mean is an underestimation or an overestimation of the popula-
tion mean. Also we do not really know how close to the population mean our mean is. It would
therefore be useful if we had some way of knowing approximately where on the variable the
population mean lies. Fortunately, we do have some way of working this out by the calculation
of confidence intervals. Confidence intervals of the mean are interval estimates of where the
population mean may lie. That is, they provide us with a range of scores (an interval) within
which we can be confident that the population mean lies.

A point estimate is a single figure estimate of an unknown number whereas an interval estimate is a
range within which we think the unknown number will fall. Usually in statistical terms the unknown
number that we are estimating is a population parameter such as the population mean. A confidence
interval is a statistically determined interval estimate of a population parameter.

For example, suppose we gave a sample of people the Beck Depression Inventory (BDI: Beck
et al., 1961). The questionnaire measures depression and scores can range from 0 to 63. Let us
suppose that the mean of our sample on the BDI is 10.72. We do not know from this information
how near our sample mean is to the population mean (see Figure 4.11(a)). It would be very
useful if we could give an indication of how near this figure was to the population mean. Let
us think about this situation logically. As the minimum score on the questionnaire is 0 and the
maximum is 63, we can be 100% confident that the population mean lies somewhere between
these two scores (see Figure 4.11(b)). This is a confidence interval. It is, though, not really that


http://www.national-lottery.co.uk
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Figure 4.11 lllustration of the way in which confidence intervals help in deciding where the
population may be in relation to the sample mean

informative. We can use characteristics of sampling distributions to narrow this range down
further, although we also reduce the degree of confidence that we can have concerning whether
the interval we specify is likely to contain the population mean. We usually set up 95%
confidence intervals and you will find that it is often the case that such intervals can be quite
narrow (depending upon the size of your samples). In our example, you can see that we are 95%
confident that the population mean lies somewhere between 2.72 and 18.72 (see Figure 4.11(c)).
This is considerably more precise than stating that it lies between 0 and 63. This gives us a much
better feel for where the population mean may lie in relation to our sample mean.

You should note, however, that because we are still only using estimates of population
parameters it is not guaranteed that the population mean will fall within this range. We therefore
have to give an expression of how confident we are that the range we calculate contains the
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population mean. Hence the term ‘confidence intervals’. Strictly speaking confidence intervals
don’t give us a range within which the population parameter lies but instead they tell us that if
we replicated a study say 100 times then in so many out of this 100 the confidence interval we
calculate would contain the population parameter.

Previously we described how sampling distributions tend to be normally distributed. We also
informed you that the mean of the sampling distribution of the mean is a very good approximation
of the population mean. Such knowledge ensures that, regardless of the shape of the population
distribution, we always know what the sampling distribution of the mean will look like. This is
important as it gives us some very important insights into the population from sample statistics.

You know that the normal distribution is a function of its mean and standard deviation (see
Chapter 3). This means that if we know the standard deviation and the mean, we can plot a
normal curve from this information by putting it into a formula. Given that the sampling
distribution of the mean is normally distributed, it must also be a function of its mean and
standard deviation. Consequently, once we know the mean and standard deviation of the sam-
pling distribution of the mean, we could easily plot it. We can then use this information to help
us calculate confidence intervals.

Suppose we have the sampling distribution shown in Figure 4.12. The question mark in
Figure 4.12 indicates that we do not know the value of the population mean (which is approxi-
mated by the mean of the sample means). Now, let’s say we selected a sample and obtained the
sample mean. Given that we do not know what the population mean is, we cannot be certain
where in the distribution our sample mean will fall; it could be above, below or even exactly
equal to the population mean (see Figure 4.13).

How do we go about tackling the difficult problem of identifying how close the population
mean is to the sample mean? First of all, we need to make use of the sampling distribution of
the mean. We have previously explained two important characteristics of the sampling distribu-
tion of the mean:

e [t is always approximately normally distributed.
e [ts mean is a very good approximation to the population mean.

These two features mean that we can plot a normal distribution that we know contains a good
approximation of the population mean. We can then use the characteristics of normal distribu-
tions to estimate how far our sample mean is from the population mean. Let us assume that
Figure 4.14 is an example of such a sampling distribution.

Figure 4.12 Sampling distribution with unknown mean of sample means
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Figure 4.13 Whereabouts of a sample mean in relation to the population mean is unknown

Sample mean could be above, below or
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Figure 4.14 Sample mean is a certain number of standard deviations above or below the
population mean

We can see from Figure 4.14 that the sample mean is going to be a certain number of standard
deviations above or below the population mean. Also, looking at the distribution, we can be
fairly confident that the sample mean will fall in the area between —3 and +3 standard devia-
tions, as this accounts for most of the scores in the distribution. In fact if we look at the z-scores
from the normal distribution, we can calculate the probability of a score falling in the area
within —3 and +3 standard deviations. This probability works out to be 99.74%. This suggests
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that we can be 99.74% confident that the sample mean will be in the area enclosed by —3 and
+3 standard deviations. Now suppose, as is usually the case, that we want to be 95% confident
that a certain area of the curve contains the sample mean. We work out this area again by refer-
ring to our z-scores. In section 4.2 we informed you that 95% of the area under the standard
normal distribution falls within —1.96 and +1.96 standard deviations (see Figure 4.15). Thus,
we can be 95% confident of the sample mean falling somewhere between —1.96 and +1.96
standard deviations from the population mean.

Now let us suppose for the sake of illustration that the sample mean is somewhere above the
population mean. If we draw the distribution around the sample mean instead of the population
mean, we see the situation illustrated in Figure 4.16.

95% confident that the sample
mean falls within this region

Figure 4.15 Percentage of curve (95%) falling between —1.96 and +1.96 standard deviations

Curve shifted up so that it
is around the sample mean

-3 -2? -1 X 1 2 3
Population mean Sample mean

Figure 4.16 Location of population mean where distribution is drawn around sample mean
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45.1

Curve shifted down so that it
is around the sample mean
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Figure 4.17 Distribution drawn around the sample mean when it falls below the population mean

We can now apply the same logic as we have just done for predicting where the sample
mean is in relation to the population mean. We can be fairly confident that the population
mean falls somewhere within 1.96 standard deviations below the sample mean. Similarly,
if the sample mean is below the population mean, we can be fairly confident that the popu-
lation mean is within 1.96 standard deviations above the sample mean (see Figure 4.17).
Consequently, we can be fairly confident (95% confident) that the population mean is
within the region 1.96 standard deviations above or below the sample mean. The trick here
is to find a normal distribution where we know what the standard deviation is and that also
has a mean that is equal to the population mean. Fortunately, we already know about a
sampling distribution which has the population mean as the mean and is normally distrib-
uted: it is the sampling distribution of the mean, if you recall from section 4.4. Remember,
if we take a large number of samples of equal size and for each sample calculate a mean,
when we plot these sample means they will be normally distributed. We also know that the
mean of all these sample means will be a very good estimate of the population mean. If
we also know the standard deviation of this normal distribution, we can then use the same
logic as we have applied earlier (see Figures 4.14 to 4.17) in order to try to estimate where
the population mean might be in relation to the sample mean. To do this, all we need to
know is the sample mean and the standard deviation of the sampling distribution of the
mean. So, how do we go about calculating the standard deviation of the sampling
distribution of the mean?

Standard error

The standard deviation of the sampling distribution of the mean is an extremely important
concept and is usually called the standard error. The standard error, therefore, is a measure
of the degree to which the sample means deviate from the mean of the sample means. Given
that the mean of the sample means is also a close approximation of the population mean, the
standard error of the mean must also tell us the degree to which the sample means deviate
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from the population mean. Consequently, once we are able to calculate the standard error,
we can use this information to find out how good an estimate our sample mean is of the
population mean.

Definition

The standard error refers to the standard deviation of a particular sampling distribution. In the context
of the sampling distribution of the mean, the standard error is the standard deviation of all of the
sample means.

The problem we face here is a bit like the chicken and egg situation. If we knew the standard
error then we could see how good an estimate our sample mean is of the population mean.
However, in order to calculate the standard error of the mean, we would have to select many
samples from the population and then calculate the standard deviation of the means of these
samples. This is not very helpful if we simply want to estimate the location of the population
mean from the mean of one sample. Fortunately, statisticians have found that we can estimate
the standard error quite easily from our sample statistics.

We explained earlier that sampling error is related to sample size (see section 3.3). The
larger the sample size, the lower the sampling error. We explained that large samples tend to
give means that are better estimates of population means. That is, they will not vary too much
from the population mean. The means of small samples tend to vary a lot from the population
mean. You should recall that the measure of the degree of variation around the mean is the
standard deviation. The standard deviation of sample means is called the standard error. Thus,
for large sample sizes the standard error will tend to be less than that for small sample sizes.
This means, therefore, that the standard error is also related to sample size. Consequently, for
any given population, the larger the samples that we select, the lower the standard error.
Conveniently, it has been shown that if, for any given sample, we divide the standard deviation
by the square root of the sample size, we get a good approximation of the standard error.

From any of our samples we can calculate a sample mean and standard deviation. Since we
know that the standard error is approximately the standard deviation divided by the square root
of the sample size, we can also calculate the standard error. The standard error is the standard
deviation of the sampling distribution of the mean. Consulting standard normal distribution
tables, we see that 95% of scores fall between 1.96 standard deviations above and below the
mean. Applying this to the sampling distribution of the mean, we can therefore be 95%
confident that the mean of the sampling distribution is within 1.96 standard deviations from
the sample mean. Therefore the mean of the sampling distribution must lie within the region
1.96 X the standard error away from the sample mean. Given that the mean of the sampling
distribution of the mean is a good approximation of the population mean, we can be 95%
confident also that the population mean lies within the region 1.96 X the standard error away
from the sample mean.'

' It should be noted that calculations of 95% confidence intervals are usually achieved by reference to the
t-distribution rather than the SND as we have done here (we cover the t-distribution in more detail in Chapter 7).
The reason for this is that when we have small sample sizes (which is often the case in psychology) the
sampling distribution of the mean more accurately reflects the t-distribution rather than the SND. We have
explained confidence intervals by reference to the SND here as this is the probability distribution that you are
so far most familiar with.
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An example may serve to clarify this for you. If we have the following sample data from
a study (2, 5, 6, 7, 10, 12), we can calculate the mean and standard deviation, which are 7
and 3.58 respectively. The first step is to work out the standard error. Recall that the standard
error is simply the standard deviation of the sample divided by the square root of the sample
size. The sample size here is 6 and thus the square root of this is 2.45. If we divide the
standard deviation (3.58) by this, we get 1.46. Our standard error is therefore 1.46. To
work out the 95% confidence interval, we now have to multiply the standard error by 1.96,
which gives us 2.86. Our confidence interval is calculated as the mean T the standard
error X 1.96, therefore in our example the confidence interval is 7+ 2.86 (or 4.14 to 9.86;
see Figure 4.18(a)).

Our 95% confidence interval is quite a large range considering that the scores themselves
only range from 2 to 12. The reason that our confidence interval is so large is that we have
a small sample size. For the sake of illustration, let us assume that we obtained the same
mean and standard deviation with a sample size of 100. In this case the square root of the
sample size would now be 10. If we divide our standard deviation (3.58) by this, we get the
standard error of 0.358. We can now multiply this standard error by 1.96 to set up our 95%
confidence interval. When we do this, we find that our population mean should fall in the
region that is 0.70 units above and below the mean (7). This now gives us a better estimate
of where the population mean may lie than the mean of the sample and that it is likely to fall
between 6.30 and 7.70. This represents a much narrower range of scores and gives us a much
clearer indication of where the population mean may be (see Figure 4.18(b)). Actually, what
the confidence interval tells us is that if we were to replicate our study 100 times then in 95
out of those 100 replications the confidence interval we calculate would contain the
population mean.

From this we can see the importance of sample size when trying to estimate population
parameters from sample statistics. Generally, the larger the sample size, the better the estimate
of the population we can get from it.

(a) Sample size of 6 Confidence
4~:14 interval 9.86

!

Sample
mean of 7

(b) Sample size of 100 Confidence
6.3 interval 7.7

Sample
mean of 7

Figure 4.18 Confidence intervals with sample sizes of 6 and 100
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It may help to clarify what we have just explained by summarising it here:

e A sample mean is a point estimate and we don’t know how close it is to the population mean.
o [fwe calculate confidence intervals around our sample mean, we can get a good idea of how
close it is to the population mean.

e To calculate confidence intervals, we need to make use of sampling distributions.

e [fwe take lots of samples from a population and plot the means of the samples as a frequency
histogram, we will have produced a sampling distribution of the mean.

e Sampling distributions tend to be normal in shape.

e The mean of the sampling distribution of the mean is a very good estimate of the population
mean.

The standard deviation of the sampling distribution of the mean tells us how much our samples
tend to vary around the population mean.

The standard deviation of the sampling distribution is called the standard error and is
approximately equal to the standard deviation of a sample divided by the square root of the
sample size.

We know that 1.96 standard deviations above and below the mean encompasses 95% of the
standard normal distribution.

Using this information, we can generalise to our sampling distributions, which tend to be
normal in shape.

Thus, we say that we are 95% confident that the population mean will be within 1.96 standard
deviations (sampling distribution standard deviations) from our sample mean.

The sampling distribution standard deviation is the standard error, so we multiply this by
1.96 to get our confidence interval.

We say that we are 95% confident that the population mean will be within the region 1.96 X
the standard error above and below our sample mean.

Remember though that the strict meaning of 95% confidence intervals is that if we replicated
our study 100 times then in 95 out those 100 the confidence interval we have calculated for
them would contain the population mean.

Activity 4.7

Below is an extract from a table presented in a paper by Sim (2015) in which they
investigated the impact of an intervention involving humour on behavioural problems
and a range of other variables for children with long-term ilinesses. The table contains
the means and SDs for the behavioural problems before and after the intervention for
the intervention group as well as a control group. Take a look at the table and for each
variable and each condition calculate the standard error. There were 17 participants
in the intervention group and 16 in the control group.

Intervention group Control group
Variable Mean SD Mean SD
Pre-intervention behavioural 65.06 12.15 63.81 13.10
problems
Post-intervention behavioural 58.12 8.57 63.56 1098

problems
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SPSS: obtaining confidence intervals

It is fairly simple to obtain confidence intervals for the mean from SPSS. You need to follow the advice
given earlier for descriptive techniques by selecting the Explore dialogue box:
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Move the relevant variables to the Dependent List box and click on the Display: Statistics option. To
ensure that you generate confidence intervals, you should click on the Statistics button. You will then
be presented with the following dialogue box:
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You should notice that SPSS is set up to generate 95% confidence intervals as the default. If you wish
to generate confidence intervals other than 95%, you should adjust the percentage to that which you
desire. Ordinarily, however, you will not have to adjust this as you will usually be expected to generate
95% confidence intervals. Once you are happy that you have selected all the correct options, click on
Continue followed by OK to generate the printout. An example printout can be seen below:

Explore
Case Processing Summary
Cases
Valid Missing Total
N Percent N Percent N Percent
Statistics Anxiety Score 6 100.0% 0 0.0% 6 100.0%
Procrastination Score 6 100.0% 0 0.0% 6 100.0%
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4.6

Definition

Descriptives
Statistic Std. Error

Statistics Anxiety Score  Mean 55.6667 2.31900
95% Confidence Lower Bound 49.7055 -~ ] Confidence
Interval for Mean Upper Bound 61.6279<~—FH— | — interval is
5% Trimmed Mean 55.7407 el IS
Median 57.0000
Variance 32.267
Std. Deviation 5.68038
Minimum 48.00
Maximum 62.00
Range 14.00
Interquartile Range 11.00
Skewness —.426 .845
Kurtosis —1.832 1.741

Procrastination Score Mean 116.1667 7.81629
95% Confidence Lower Bound 96.0742
Interval for Mean Upper Bound | 136.2591
5% Trimmed Mean 116.0741
Median 117.5000
Variance 366.567
Std. Deviation 19.14593
Minimum 94.00
Maximum 140.00
Range 46.00
Interquartile Range 38.50
Skewness —.048 .845
Kurtosis —2.083 1.741

—

Error bar charts

An extremely useful means of presenting confidence intervals in your research reports is to
generate error bar charts. These simply display your means as a point on a chart and a vertical
line through the mean point that represents the confidence interval. The larger the confidence
interval, the longer the line is through the mean. Figure 4.19 shows the error bar charts for the
confidence intervals that we have just calculated.

From Figure 4.19 it is easy to see the difference between the confidence intervals when the
sample size is increased from 6 to 100.

An error bar chart is a graphical representation of confidence intervals around the mean.
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Figure 4.19 Error bar chart showing the means and confidence intervals for sample sizes six and 100

Overlapping confidence intervals

Suppose we wanted to see if two population means differed from each other. We could use confidence
intervals to guide us. For example, imagine you wanted to see whether girls were better than boys in
mathematics exams. You give a sample of students of each gender a mathematics exam. From these
samples you calculate confidence intervals and obtain the error bar charts shown in Figure 4.20.

What would we be able to make of this? We can be 95% confident that the population means
are within the intervals indicated in the chart. As there is substantial overlap between the two sets
of confidence intervals, we cannot be sure whether there is a difference in the population means.
It seems likely that there is no real difference in the populations, or at the very least we cannot tell
from our samples if such a difference exists. It might be that boys have a higher population mean
than girls. Or it could be that girls have a higher population mean than boys. Or it could be that
the population means of girls and boys are equal. We just do not know from the confidence inter-
vals presented in Figure 4.20 and therefore we cannot draw any firm conclusions from these data.

Now suppose we obtained the confidence intervals shown in Figure 4.21. What should the con-
clusion be? In this case we can see that the confidence intervals do not overlap. We can be 95%
confident that both population means fall within the intervals indicated and therefore do not
overlap.

100

50

0 1 1
Boys Girls

Figure 4.20 Error bar chart showing overlapping confidence intervals for boys and girls in a
mathematics exam
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100

50

O 1 1
Boys Girls

Figure 4.21 Error bar chart illustrating non-overlapping confidence intervals for boys and girls in
the mathematics exam

This would suggest that there is a real difference between the population means. It would there-
fore appear that the population of girls do better at maths than the population of boys. You can
see that examining confidence intervals gives us a fair idea of the pattern of means in the popu-
lations. You should also have noticed here that in this section when describing these confidence
intervals we have been constantly referring to the population means rather than focusing on our
sample means. This clearly illustrates the magical nature of confidence intervals to draw our
attention back to what is of most interest to us the population parameters (in this case the popu-
lation means).

Activity 4.8

In which of the following error bar charts is there likely to be a real difference between the populations
from which the two groups displayed were sampled?

@ 10 (b) 10

0 L L 0 1 1
Cheetahs  Jaguars Athletes Couch
potatoes
(c) 10 (d) 10
5 5 -
0 1 1 0 1 1

People  Computers Rich Poor
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SPSS: generating error bar charts

To generate error bar charts in SPSS you should click on the Graphs and Legacy Dialogs menus and
then select the Error Bar . .. option. You will be presented with the following dialogue box:

I'a Error Bar w
For within-
participants ]h[ Simple
designs select
these two options
L : 4 Clusterad
| Dalat in Chiarl Are —
N, @ for groups of cases
\Ré of i
(Deine) | Conet] et |

From the dialogue box the options you choose will depend upon the design of your study. If you have
used a within-participants design and want to compare two (or more) variables, select the Simple and
the Summaries of separate variables options. Click on Define and you will be presented with the follow-
ing dialogue box:

ﬁmMs@EwéL&wumuﬁmE [~
Error Bars. E
& Stalislics Anviely Score [Sialish.
& Procrastinalion Score [Procras. | W

Template — = =
[”] Use chant specifications from:
Fil

| () o ) o '

Move the relevant variables over to the Error Bars box as shown and click on OK to generate the error
bar chart. The chart should resemble that shown in Figure 4.22.
You can see from the error bar chart that there are separate error bars for each condition of the

within-participants variable.
\. J
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Figure 4.22 Error bar chart for the statistics anxiety and procrastination example study

If you want to generate error bar charts and you have used a between-participants design,
you should select the Simple and Summaries for groups of cases options in the initial options screen

(see below):
For between- = = —
paftictpants ?:ﬁ:-“-:-n:wmn;:r Descilfurioiog ot UMSws  Fwssions _ fiodow oy =
designs select | - @-r-mh!llnﬁzllaaj JMQJ- :
these two options | g e s s === == [=1=1= e

Y asgdafdcoRIdeesvnesun=

1B BES Stabics Proces o i sty
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( )
Click on Define and you will be presented with a slightly different dialogue box from that presented for
within-participants designs:

Move DV to the
Variable box and
the IV to the
Category Axis box

e Limacase ol

You will notice that there is a box for the dependent variable (Variable) and a separate box for the
grouping variable (Category Axis). Move the dependent variable to the Variable box and the indepen-
dent variable to the Category Axis box and click on OK to generate the error bar chart. It should resemble
that shown in Figure 4.23.

( )

12.00+

10.00+

8.00+

6.00+

95% Cl Socialencounters

4.00+

2.00+

T T
Walking with a dog Walking without a dog
DogWalkingGroup

\. J

Figure 4.23 Error bar chart for the dog-walking study as a between-participants design

—
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4.8 Confidence intervals around other statistics

We have illustrated confidence intervals around the mean to demonstrate the use of this tech-
nique. You should note that we are not restricted to means when working with confidence
intervals. We can calculate confidence intervals for a number of different statistics, including
the actual size of a difference between two means, correlation coefficients and t-statistics. (We
will explain these in more detail in Chapters 6 and 7.) Basically, where a point estimate exists
it is usually possible to calculate an interval estimate.

You should note that if you are investigating differences between groups, the confidence
interval of the magnitude of the difference between the groups is very useful. If the confidence
interval includes zero, it suggests that there is likely to be no difference between your groups
in the population. (This is explained further in Chapter 7.)

Example from the literature

The effectiveness of relaxing music in controlling sports competitive anxiety

In a nicely presented study by Elliott et al. (2014) the researchers compared the effects of relaxing
music, non-relaxing music and no music on sports competitive anxiety. They recruited university
students and informed them that they would have to perform a sports task under competition condi-
tions in front of an audience. They measured anxiety twice before the intervention (relaxing music,
non-relaxing music or no music) and again after the intervention, just before the participants thought
that they would be undertaking the sports activity. Their statistical analyses found no differences
between the three conditions on the anxiety experienced by the participants prior to undertaking a
competitive task. All interventions lead to a reduction in anxiety prior to competing. The researchers
present 90% confidence intervals which demonstrate the positive effects the interventions had on
anxiety prior to competing.

Summary

In this chapter we have explained a number of
important concepts that form the foundation for a
thorough understanding of statistics. More
specifically, you have learnt that:

¢ If we take many samples from a population and
plot the means of these samples as a frequency
histogram, we have plotted a sampling
distribution of the mean.

* Probabilities can be represented in terms of odds ¢ The more samples we take and the larger the

(e.g. 1in 5), decimals (0.2) or percentages (20%).

Conditional probabilities are probabilities
associated with events which are conditional
upon other factors.

We can use the standard normal distribution and
z-scores to work out the proportion of a
population that falls above or below a certain
score or which falls between two scores.

sample sizes, the more likely the sampling
distribution of the mean is to approximate the
normal distribution, no matter how the
population itself is distributed.

* The standard deviation of the sampling

distribution of the mean is the standard error,
and this gives us an indication of how much the
sample means deviate from the population mean.
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* The standard error is roughly equal to the * Confidence intervals give an interval within
standard deviation of a sample divided by the which we can be, say, 95% confident that the
square root of the size of the sample, and it can population mean falls.
be used in conjunction with z-scores to calculate  « e can conveniently illustrate confidence
confidence intervals. intervals using error bar charts.

—

Discover the website at www.pearsoned.co.uk/dancey where you can test your knowledge with multiple
choice questions and activities, discover more about topics using the links to relevant websites, and
explore the interactive flowchart designed to help you find the right method of analysis.

SPSS exercises

Exercise 1

In the local dental surgery, Nurse Nasher and Dr Payne decide that they want to try to reduce the
anxiety levels of patients coming for treatment. They decide that the best way to do this would be
to soundproof both of their waiting rooms so that the waiting patients cannot hear the screams of
those being treated. They want to make sure that the soundproofing does reduce dental anxiety, so
they soundproof only one waiting room and compare the dental anxiety of patients put in that
waiting room with those sent to the non-soundproofed room. Patients are randomly allocated to
one of the waiting rooms when they arrive and are asked to fill in a dental anxiety questionnaire
while they are waiting. The dental anxiety questionnaire gives a score based on many aspects of
anxiety about going to the dentists: the higher the score, the higher the level of dental anxiety.
Nurse Nasher and Dr Payne predict that there will be a difference in anxiety scores between the
patients from the two waiting rooms. The following are the dental anxiety scores of the patients
from each of the waiting rooms:

Soundproofed Not soundproofed
12 16
11 26

8 20
4 21
3 19
13 20
10 22
10 18
9 20
11 17
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( )
1. Is this a between- or within-participants design?
2. Input the data from the table above into SPSS and obtain the following statistics for each group:

e the mean

 the standard deviation

* the standard error

95% confidence intervals.

3. (a) Use SPSS to generate error bar charts for each group.
(b) Convert the first score in each condition into a z-score.

Exercise 2

Dr Doolittle has finally given up all pretence of being able to speak to animals and has decided to
become an experimental animal psychologist. He is particularly interested in finding out whether or
not cats are more intelligent than dogs. He develops an intelligence test specifically for the task, and
tests samples of cats and dogs. He has been careful not to bias the test in any way and quite rightly
claims to have developed a test that is not species bound: that is, it could be used with any species.
Dr Doolittle predicts that there will be a difference between the intelligence scores of cats and dogs.
The scores for cats and dogs are given in the table below.

Cats Dogs
95 116
100 112
104 102
78 96
130 89
111 124
89 131
114 117
102 107
97 110

1. What sort of design is this study, quasi-experimental or experimental?

2.Is it a between-participants or a within-participants design?

3. Input the data above into SPSS and use the package to generate the following statistics for each
group:

e the mean

* the standard deviation

* the standard error

* 95% confidence intervals.

4. (a) Use SPSS to generate error bar charts for each group.
(b) Convert the first score in each condition into a z-score.

—
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Multiple choice questions

. What is the probability 1 in 5 expressed as a percentage?

(a) 14%
(b) 25%
(©) 20%
) 32%

. What is the relationship between sample size and sampling error?

(a) The larger the sample size, the larger the sampling error
(b) The larger the sample size, the smaller the sampling error
(¢c) Sample size equals sampling error

(d) None of the above

. If we have a 95% confidence interval of 3 =2, what does it mean?

(a) The population mean is definitely between 1 and 5

(b) We are 95% sure that the population mean falls between 3 and 2
(¢) We are 95% sure that the population mean falls between 1 and 5
(d) None of the above

. What are the scores in the standard normal distribution?

(a) Extreme scores

(b) z-scores

(¢) Scores in standard deviation units
(d) Both (b) and (c) above

. The standard error is:

(a) The square root of the mean

(b) The square of the standard deviation

(¢) The standard deviation divided by the mean

(d) The standard deviation divided by the square root of the number of participants in the sample

. If you have a probability of 33%, what is it expressed as a decimal?

(a) 0.033
(b) 0.33
(c) 0.23
(d) 0.133

. The standard error tells us:

(a) The degree to which our sample means differ from the mean of the sample means
(b) The degree to which our sample means differ from the population mean

(¢) The degree to which the standard deviation differs from the population mean

(d) Both (a) and (b) above
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10.

11.

12.

13.

14.

What would we multiply the standard error by to help us get our 95% confidence intervals?

(a) 95

(b) The square root of the sample size
(¢) The standard deviation

(d) 1.96

If you had a z-score of 2.33, this would tell you that:

(a) Your score was 2.33 standard deviations above the mean

(b) Your score was 2.33 standard deviations below the mean

(¢c) There was a probability of 2.33 of obtaining a score greater than your score
(d) There was a probability of 2.33 of obtaining a score less than your score

If an event has a probability of 95% of occurring, what does this mean?

(a) The event is likely to occur 5 times out of every 100
(b) The event is likely to occur 95 times out of every 100
(¢) The event is likely to occur 95 times out of every 95
(d) None of the above

Which career should you choose if your weightlifting and pottery scores are as follows?

Weightlifting: Your score is 52 (sample mean = 55, SD = 12)
Potter: Your score is 50 (sample mean = 58, SD = 32)

(a) Weightlifting

(b) Pottery

(c) Either as you are equally good compared with the populations
(d) Neither because you are useless at both

Which of the following statements are true in reference to inferential statistics?

(a) They merely describe our data

(b) We are able to use them to draw conclusions about populations from sample data
(¢) They are used simply to make psychology look scientific

(d) We are able to use them to draw conclusions about samples from populations

If you obtain a score of 13 on an anxiety questionnaire and you know that the population mean and
standard deviation are 20 and 5 respectively, what is your z-score?

(a) —2.33
(b) —1.4
(c) 133
(d 0

If you have a population of scores that has a flat (i.e. not normal) distribution, the distribution of many
sample means will be:

(a) Flat

(b) Bimodal

(c) Negatively skewed
(d) Normal
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15.

16.

17.

18.

19.

20.

Which of the following gives the best estimate of the population mean?

(a) Sample mean

(b) The mean of several sample means
(¢) The standard deviation

(d) The standard error

For a set of data we find that we have a standard deviation of 42 and a sample size of 16. What is the
standard error?

(a) 0.339
(b) 2.95
(c) 21.68
(d) 10.5

If you draw 100 samples from a population and plot all their means as a frequency histogram, then you
have a:

(a) Mean distribution

(b) Skewed distribution
(¢) Sampling distribution
(d) None of the above

Given a standard error of 5.2 with a sample size of 9, what is the standard deviation?

(a) 1.73
(b) 15.6
(c) 46.8
(d) 0.556

Which of these could you not generate confidence intervals for?

(a) A mean

(b) A correlation coefficient

(¢) The mean difference between scores
(d) None of the above

If we have a negatively skewed population, what shape will the sampling distribution of the mean of
samples drawn from this population be?

(a) Negatively skewed

(b) Positively skewed

(¢) Normal

(d) It is not possible to tell
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CHAPTER OVERVIEW

In Chapter 4 we started you off on the road to using inferential statistics. In this chapter we will move
a little further down the road and explain how we can apply our knowledge of probabilities and sam-
pling distributions to testing the hypotheses that we set up in our research. More specifically, we will
be explaining the following:

the logic of hypothesis testing

statistical significance and how it relates to probabilities

how probability distributions form the basis of statistical tests

the problems associated with basing conclusions on probabilities (i.e. Type | and Type Il errors)
one-tailed and two-tailed hypotheses

how to choose the appropriate test to analyse your data.

5.1

Another way of applying probabilities to research:
hypothesis testing

Suppose we were interested in examining the relationship between number of hours spent
studying per week and exam grades. We would perhaps predict that the more time spent studying
per week, the higher the exam grades. Here we have set up a prediction that we would then test
by conducting a study. In this study we could randomly select a number of students and record
how many hours they spent per week studying and find out if it is related to their final exam
grade. According to our prediction, we would expect the population of scores to resemble that
in the population illustrated in Figure 5.1. Here you can see there is a trend indicating that as
the number of hours studied increases, so do exam grades. Let us assume that this is the pattern
in the underlying population. One of the problems we face when conducting research is that
when we select samples from populations we might not get a sample that accurately reflects
that population. If you think back (to Chapter 3), we explained that due to sampling error the
samples might not resemble the population. Figure 5.1 illustrates three samples taken from the
population presented therein. You should notice that even though there is a positive relationship
in the population of scores, two of the samples do not reflect this. In fact, one of the samples
(sample (a)) actually suggests a negative relationship between hours studied and exam
performance (as number of hours spent studying increases, exam performance decreases).
Another of the samples (sample (b)) suggests that there is no relationship between the two
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Figure 5.1 Scattergrams illustrating possible samples selected from a population with a positive relationship between
number of hours spent studying and exam grades

variables. The remaining sample accurately reflects the underlying population by suggesting a
positive relationship between the two variables. The point to note here is that, even though there
is a relationship in the underlying population, the sample we select might not reflect this.
Now take a look at Figure 5.2. In this example there is no relationship between amount of time
spent studying and exam performance in the underlying population. Again, we have presented three
samples that have been selected from the population. Yet again, only one of the samples (sample (b))
accurately reflects the population. The fact is that, due to sampling error, the samples we select
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Figure 5.2 Scattergrams illustrating possible samples selected from a population with no relationship between
number of hours spent studying and exam grades

might not be a true reflection of the underlying population. From any particular population, each
of the patterns of sample scores we have presented will have a greater or lesser probability of being
selected and this probability will depend on the size of the sample we select. Thus, for the
population in Figure 5.1 we are more likely to get a pattern resembling that observed in sample (c)
than those in samples (a) and (b), particularly with reasonably large sample sizes. And for the
population presented in Figure 5.2 we are more likely to get the pattern resembling that in sample



CHAPTER 5 Hypothesis testing and statistical significance 137

(b) than the ones in samples (a) and (c). You need to be aware, though, that sometimes simply due
to sampling error we are likely to get patterns of scores in our samples that do not accurately reflect
the underlying population.

One of the problems we face when conducting research is that we do not know the pattern of
scores in the underlying population. In fact, our reason for conducting the research in the first place
is to try to establish the pattern in the underlying population. We are trying to draw conclusions
about the populations from our samples. Essentially, we are in a situation akin to that illustrated in
Figure 5.3. In this figure everything above the dashed line relates to what we have observed in our
study and everything below the line is unknown to us. From the pattern of data we observe in our
sample, we have to try to decide what the pattern may look like in the population. There may be
an infinite number of possible patterns that reflect the population; however, we have given only
two of these in the figure. From our sample we have to decide what we think the population is like.
This is where we would use inferential statistical tests. Effectively what we do is observe the pattern
of scores in the sample and decide which is the most plausible pattern in the population. Thus,
given the pattern observed in the sample in Figure 5.3 (the scattergram above the dashed line), we
might argue that the pattern in population (b) is much more plausible than that shown in population
(a). As is illustrated by Figures 5.1 and 5.2, however, the samples need not be an accurate reflection
of the population. We therefore need some means of deciding, from the evidence presented by our
sample data, what the most plausible pattern in the population might be.

Our statistical tests help us in this decision, but they do so in a way that is not very intuitive.
What our statistical tests do is calculate a probability value, called the p-value. This probability
tells us the likelihood of us obtaining our pattern of results due to sampling error if there is no
relationship between our variables in the population. For example, they would tell us the prob-
ability of our obtaining the pattern of scores in the sample in Figure 5.3 if they came from popu-
lation (a). If the pattern in our sample is highly unlikely to have arisen due to sampling error if
the population resembles (a), we might reasonably conclude that the population resembles that
in (b). You should note that this probability value is a conditional probability. It is the probability
of obtaining your sample data if there was no relationship between the variables in the popula-
tion (see section 4.1.1 for more on conditional probabilities).

Definition

The p-value is the probability of obtaining the pattern of results we found in our study if there was no
relationship between the variables in which we were interested in the population.

Hypothesis testing is often seen as a competition between two hypotheses. It is seen as a
competition between our research hypothesis (that there is a relationship between study hours
and exam grade in the population) and something called the null hypothesis (that there is no
relationship between the two variables in the population). Thus, the process of hypothesis testing
resembles Figure 5.3. We need to decide between populations (a) and (b). In this case, population
(a) represents the case if the null hypothesis were true and population (b) represents the case if
the research hypothesis were true. The statistical tests we use tell us how likely it is that we
would get our pattern of data if the null hypothesis were true. In Figure 5.3, we would probably
find that the pattern of data in the sample would be highly unlikely to occur as the result of
sampling error if they were drawn from a population resembling (a) where there is no relationship
between hours spent studying per week and exam grade. In fact, the probability turns out to be
less than 1 in 1000. In this case, it would make more sense to conclude that the data came from
a population that resembles that illustrated in (b).

Now, let’s have a look at the scenario represented by Figure 5.4. Remember that everything
above the dashed line is what we observe from our study and everything below the line is
unknown to us. Here you should be able to see that the sample appears to suggest that there is
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Figure 5.3 Scattergrams illustrating alternative underlying populations when a relationship is observed in a sample

no discernible relationship between number of hours spent studying and exam grade. Intuitively,
we would expect that this sample has come from a population resembling that shown in (a) rather
than that shown in (b). However, again referring to Figure 5.1, you should be able to see that even
when there is a relationship between two variables in the population we have the possibility that
one will not be observed in our sample. This absence of a relationship in the sample would be
the result of sampling error. So again in this case we could use inferential statistical tests to help
us choose between the two hypotheses: the null hypothesis represented by population (a) or the
research hypothesis represented by population (b). The statistical test would inform us of
the probability that we would obtain the pattern in our sample illustrated in Figure 5.4 if the
population resembled the pattern shown in (a): that is, if the null hypothesis were true. In this
case we would find that there is a high probability of obtaining the pattern observed in our sample
if the null hypothesis were true. In fact, there is a 61% probability of obtaining this pattern from
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Figure 5.4 Scattergrams illustrating alternative underlying populations when no relationship is observed in a sample

5.2

a population resembling that shown in (a). In this case we would probably decide that the
population does in fact resemble population (a) rather than population (b). There are other issues
that we would need to address, however, before we could come to this conclusion, such as

whether we had enough participants in our sample (see section 5.9 and Chapter 8).

Null hypothesis

We have just slipped a very important concept past you, which needs further explanation. The
null hypothesis is very important to the process of hypothesis testing. We explained earlier that
the probability we calculate in statistical testing is based upon the assumption that there is no
relationship between the two variables in the population. This assumption is the null hypothesis.
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Definition

The null hypothesis always states that there is no effect in the underlying population. By effect we might
mean a relationship between two or more variables, a difference between two or more different popula-
tions or a difference in the responses of one population under two or more different conditions.

Definition

If the research hypothesis (often called the experimental or alternate hypothesis) states that
there will be a relationship between two variables, then the null hypothesis states that there is
absolutely no relationship between the two variables. Similarly, if you are interested in
comparing groups of people, where the research hypothesis states that there will be a difference
between two groups, the null hypothesis states that there is no difference between them.

The research hypothesis is our prediction of how two variables might be related to each other. Alternatively,
it might be our prediction of how specified groups of participants might be different from each other or
how one group of participants might be different when performing under two or more conditions.

5.3

You may find when reading psychological journals that the authors suggest that the null
hypothesis could not be rejected. This simply indicates that the statistical probability they
calculated meant that it was likely that the null hypothesis was the more sensible conclusion. If
you read about researchers rejecting the null hypothesis, it means that the probability of
obtaining their findings if the null hypothesis were true is so small that it makes more sense to
believe in the research hypothesis. As we indicated earlier in this section, this illustrates the
competition between our null and research hypotheses. The importance of the null hypothesis
is reflected by the fact that this whole approach to conducting research is called null hypothesis
testing (NHT) or null hypothesis significance testing (NHST).

Logic of null hypothesis testing

If you understand the preceding sections, you should have no problems with grasping the
general logic behind hypothesis testing, which is as follows:

e Formulate a hypothesis.

e Measure the variables involved and examine the relationship between them.

e (Calculate the probability of obtaining such a relationship if there were no relationship in the
population (if the null hypothesis were true).

o [f this calculated probability is small enough, it suggests that the pattern of findings is
unlikely to have arisen by chance and so probably reflects a genuine relationship in the
population.

Put another way, if there is no real relationship in the population, you are unlikely to find a
relationship in your randomly selected sample. Therefore, if you do find a relationship in your
sample, it is likely to reflect a relationship in your population. It is important that you understand
this, so take your time and ensure that you follow what we have just said.

Hypothesis testing is not restricted to the investigation of relationships between variables. If we
are interested in studying differences between groups, we can also test hypotheses. The logic is
broadly the same as that outlined for relationships above. For example, suppose we set up a study
where we gave students two types of structured study, which differed only in the amount of time
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the students were required to study. In one group the students studied for 40 hours per week and
the other group studied for ten hours per week (this is the independent variable). We might hypoth-
esise that the 40-hour group would achieve higher exam marks than the ten-hour group. This would
be our research hypothesis. Our null hypothesis would be that there would be no difference between
the two groups in their exam grades in the population. Once we have collected the data, we could
then see if there is a difference between the two study groups. If a difference did exist, we would
then need to work out the probability of obtaining such a difference by sampling error alone: that
is, the probability of obtaining a difference of the size observed if the null hypothesis were true.
If this probability is low, then it makes more sense to assume that the difference was due to the
manipulation of the independent variable rather than to sampling error alone.

Activity 5.1

Take a look at this statement from a paper published by Nyroos et al. (2015):

How are these emotional-cognitive profiles related to mathematical achieve-
ment?

Try to work out what the null hypothesis would be in this case.

Discussion point

Criticisms against null hypothesis testing

Although null hypothesis testing is the dominant approach to research in psychology, today there is
growing concern that it is inadequate in terms of providing useful insights into the variables that
psychologists wish to investigate. For example, referring to hypothesis testing, Loftus (1991) says, ‘l find
it difficult to imagine a less insightful means of transiting from data to conclusions’. Loftus (1991, 1996)
describes many problems associated with the use of hypothesis testing, but we will highlight two here.
If you wish to read more, there are two references at the end of this chapter.

One of the main problems highlighted by Loftus relates to the null hypothesis. When we are looking
for a difference between two conditions, we have to calculate the probability of obtaining our difference
by chance if the null hypothesis is true. Remember, the null hypothesis states that there is no difference
between the two conditions. The problem with the null hypothesis is that in few instances, in any
science, will there be no difference between two conditions. It is quite unusual to find two things that
are exactly equal, even in physics, and so to base our probability judgements on such a null hypothesis
may be seriously misleading. This is just the gist of the point made by Loftus, but it serves to illustrate
one of the criticisms raised by him.

The second problem that Loftus highlights is that, although we may report with some confidence that
we have found a genuine difference between our two conditions and report the size of the difference,
psychologists usually say very little about the underlying population means of the two conditions. Loftus
argues that hypothesis testing lures us away from thinking about the population means. He suggests
that we can avoid this trap by routinely reporting confidence intervals in our research reports. For a more
recent contribution to the debate concerning null hypothesis testing and confidence intervals, see Denis
(2003). More recently still Cummings (2014) has gone on record as suggesting that we should abandon
NHST completely. He describes what he calls an eight-step ‘new statistics’ approach which has no place
for NHST. Although this paper has been quite heavily criticised (e.g. see Savalei and Dunn, 2015) it is a
really good paper as it has lots of useful guidance on how best to present your statistics to ensure that
they are clearly understood by your audience. Perhaps politicians should be made to read this!
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Even though there are such criticisms levelled at the process of hypothesis testing, it does not mean
that we should abandon this approach completely; rather, we need to have a thorough understanding
of what it means to engage in hypothesis testing. This is what we hope to give you in this book. There-
fore, alongside the statistical tests that help us test our hypothesis (e.g. the t-test) you should, as Loftus
suggests, routinely report descriptive statistics and confidence intervals. One useful way of presenting
confidence intervals is by generating error bar charts and presenting these in your reports. We have
shown you what these are like earlier (see Chapter 4).

In another more recent critique of NHST, Branch (2014) discusses what he sees as the malignant side
effects of relying on p-values for the advancement of psychological knowledge. One of his principal
criticisms (and there are many others) is that the p-value provides us with no evidence of the replicability
of the experimental findings and we agree with him on this point. The p-value only provides us with the
probability of obtaining our pattern of data if the null hypothesis were true. It doesn’t say anything directly
about how reliable or replicable the findings are. Branch suggests a number of ways for researchers to
evaluate this which are largely based upon much greater use of exploratory statistical techniques such as
those advocated by Tukey (1977). Interestingly, Branch highlights the importance of looking at individual
scores in samples and also comparing across individuals to see what they can tell us about the replicability
of the effect(s) were are examining. It is a really good paper and we advise you to have a read for yourself.

Activity 5.2

Which of the following descriptions represents a good summary of the logic behind
hypothesis testing?

(a) We measure the relationship between the variables from our sample data. If it is
large, there must be a genuine relationship in the population.

(b) We measure the relationship between the variables from our sample and then find
the probability that such a relationship will arise due to sampling error alone.
If such a probability is large, we can conclude that a genuine relationship exists in
the population.

(c) We measure the relationship between the variables from our sample and then find
the probability that such a relationship will arise due to sampling error alone. If
such a probability is small, we can conclude that a genuine relationship exists in
the population.

(d) We measure the relationship between the variables from our sample and then
work out the probability of obtaining such a relationship by sampling error alone
if the null hypothesis were true. If the probability is small, we can conclude that a
genuine relationship exists in the population.

5.4 The significance level

Many of you, at this point, may be thinking that this is all well and good but how do we decide
that the probability we calculate in null hypothesis testing is small enough for us to reject the
null hypothesis? This is an excellent question and one that does not have a definitive answer.
Most psychologists and indeed most reputable psychology journals use the convention that a
probability of 5% is small enough to be a useful cut-off point. That is, given that the null
hypothesis is true, if the probability of a given effect is less than 5% (0.05 or 1 in 20) then we
have provided reasonable support for our research hypothesis. This cut-off probability is often
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called alpha (o). What this means is that, if you conduct a study 20 times, only once in those 20
studies would a relationship (or difference) as large as the one you observe come out by chance,
if the null hypothesis were true. Given such a low probability, we can conclude with reasonable
confidence that a real relationship (or difference) exists in the populations under investigation.
The probability associated with each statistical test is often called the p-value. When this is
printed on your SPSS output, it will be printed as a decimal and, as with all probabilities
expressed as a decimal, it ranges from 0 to 1.

Definitions

The p-value for a particular inferential statistical test is the probability of finding the pattern of results
in a particular study if the relevant null hypothesis were true. This is a conditional probability.

Alpha () is the criterion for statistical significance that we set for our analyses. It is the probability
level that we use as a cut-off below which we are happy to assume that our pattern of results is so
unlikely as to render our research hypothesis as more plausible than the null hypothesis.

In many journals you will typically see researchers reporting their findings as significant or
not significant. On the assumption of the null hypothesis being true, if the probability of obtain-
ing an effect due to sampling error is less than 5%, then the findings are said to be ‘significant’.
If this probability is greater than 5%, then the findings are said to be ‘non-significant’. This
way of thinking about your analysis has, however, come in for a good deal of criticism in recent
years. One main problem is that usually significant results are more likely to be published in
peer-review journals than non-significant results. The significance of a test thus becomes very
important which leads to a focus on the p-value to the detriment of focusing on the size of the
effect we are looking for. For a fuller discussion of this please see the next discussion point.

Definition

When we find that our pattern of research results is so unlikely as to suggest that our research hypoth-
esis is more plausible than the null hypothesis, we state that our findings are statistically significant.
When we find that our pattern of data is highly probable if the null hypothesis were true, we state that
our findings are not significant.

The conventional view today is that we should report exact probability levels for our test
statistics (the exact p-value or o) and shift away from thinking in terms of whether or not the
findings are statistically significant. Therefore, when reporting the results of your analyses you
should report the exact probability values that are associated with your findings. We have pre-
sented the significant/non-significant view here so that you will know what it means when you
come across such statements in journal articles.

We recommend that you use the 5% level of a as a rough guide to what has traditionally been
seen as an acceptable probability of your findings being due to sampling error. Therefore, if you find
that your p-value is a lot less than the 5% level, you can be reasonably confident that this is generally
acceptable as indicating support for your research hypothesis. However, you should report the actual
p-value and evaluate your findings in terms of effect size (see Chapter 8) and your error bar charts.
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Activity 5.3

Suppose you have conducted a study looking for a difference between males and

females on preference for action films. When you run your study, you find that there

is a 0.005 probability of the difference you observe arising due to sampling error.
How often is such a difference likely to arise by sampling error alone?

(a) 1in 5000
(b) 1in 2000
(c) 1in500
(d) 1in 200
(e) 1in100

Suppose the probability was 0.01: which of the above is true in this situation?

Statistical significance

As suggested previously, when reading an article from a psychological journal or listening to
eminent and not-so-eminent psychologists describe their research, you will often hear/read the
word ‘significant’. Psychologists say things like:

.. . being married, having a HRO, and depression were significant correlates
(Polshkova et al., 2016)

As hypothesized, academic hope, academic self-efficacy, and engagement all demonstrated
significant associations with the number of semesters enrolled and annual cumulative GPAs
(Gallagher et al., 2016)

Among the relationship variables, only the number of close friends was found to be
significant.
(Chui and Wong, 2016)

What are we to make of statements such as these? In everyday life we interpret the word
‘significant’ to mean considerable, critical or important. Does this mean that Polshkova et al.
found considerable correlations among the variables of being married, having a high-risk
occupation (HRO) and depression? Or that Gallagher ef al. found critical relationships between
academic hope and number of semesters enrolled? Or perhaps Chui and Wong found that only
number of close friends was crucially related to happiness? In fact, they do not necessarily mean
this. They are merely stating that what they found was statistically significant. Statistical
significance is different from psychological significance. Just because a statistically significant
difference is found between two samples of scores, it does not mean that it is necessarily a large
or psychologically significant difference. For example, in the study by Reddy and Moores
(2006) cited in Chapter 4 there was a significant impact of a placement year on final-year
marks. However, the placement year only accounts for between 3% and 5% of the differences
between the two groups and this is not necessarily a psychologically significant difference
(we will explain this further in Chapter §).

As we have already explained, the probability we calculate in inferential statistics is simply
the probability that such an effect would arise if there were no difference between the underlying
populations. This does not necessarily have any bearing on the psychological importance of the
finding. The psychological importance of a finding will be related to the research question and
the theoretical basis of that research. One of the main problems with the p-value is that it is
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related to sample size. If, therefore, a study has a large number of participants, it could yield a
statistically significant finding with a very small effect (relationship between two variables or
difference between two groups). It is up to individual authors (and their audiences) to determine
the psychological significance of any findings. Remember, statistical significance does not
equal psychological significance.

Discussion point

Why report the exact p-value (o)?

There is quite a debate going on in psychology concerning the use of the alpha criterion of significance.
The generally accepted criterion of significance (p <0.05) is coming under increasing criticism. There
is nothing intrinsically wrong with the 5% cut-off, yet it has been argued that the pursuance of this as
the Holy Grail in psychology is distorting the legitimate goals of psychological research. The problem
with the 5% criterion is that we are often led to believe that just because some effect is statistically
significant then it is psychologically significant, or even that it is a large or important effect. In fact, if
we look at this criterion logically, we can see the folly of this way of thinking. Suppose, for example, that
you conducted a study looking at the relationship between statistics anxiety and procrastination. You
find that, as statistics anxiety increases, so does procrastination. You find that the probability of obtain-
ing such a relationship, if there really was no relationship in the population, is 4.9%. As this is less than
the traditional 5%, you conclude that this is a real relationship between statistics anxiety and procras-
tination. You then conduct a follow-up study (being the good researcher that you are) and again find
a relationship between statistics anxiety and procrastination. This time, however, you find that the
probability of such a relationship, given that the null hypothesis is true, is 5.1%. What are we to make
of this? Do you now conclude that there is no real relationship between statistics anxiety and procras-
tination? You can see that there is only 0.2% difference in the probability values between these two
studies. So it does not really make sense to argue that the sizes of the relationship in the two studies
are different. Yet, in all probability, the first of these would get published in a psychological journal and
the second would not.

One of the big problems with the p-value is that it is related to sample size. We could have two studies
where one has a very small p-value (say, 0.001) and one has quite a large p-value (say, 0.15). Yet we
would not be able to say that the first study shows a large effect (strong relationship or large difference
between conditions) and the second study a small effect. In fact it could be the reverse situation
because it might simply be the case that the first study has a very large sample size and the second a
small one. Even very small effects will lead to significant statistical results with very large sample sizes.

How can we get around this problem? The best approach to this is to try to get a measure of the
magnitude of the experimental effect: that is, to get information about the size of the relationship
between statistics anxiety and procrastination. If you were looking for differences between groups,
you would get a measure of the size of the difference between your groups. This is called the mag-
nitude of effect or effect size. A more detailed description of effect size can be found in Chapter 8.
The preferred course of action when reporting your research findings is to report the exact probabil-
ity level and the effect size. For example, you should report the probability level (e.g. p = 0.027) and
the effect size (e.g. r=0.70, r? = 0.49 or d = 0.50). In this way, whenever someone reads about your
research, he or she can get a fuller picture of what you have found. You should note that r is a cor-
relation coefficient and indicates the strength of a relationship between variables (we explain this
more in the next chapter); d is a measure of magnitude of effect used for differences between groups
(and is explained in Chapter 7). There is a very accessible discussion of effect sizes provided by Clark-
Carter (2003).
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5.6 The correct interpretation of the p-value

It is important to understand that the p-value is a conditional probability. That is, you are assessing
the probability of an event’s occurrence, given that the null hypothesis is true. The p-value that
you will observe on any computer printout represents this probability. It does not represent the
probability that the relationship you observed simply occurred by chance. It represents the
probability of the relationship occurring by chance if the null hypothesis were true. It is said to
be a conditional probability. It is conditional upon the null hypothesis being true. A good
discussion of the problems caused by misinterpreting what the p-value represents is given by
Dracup (1995); however, we have summarised the main points in the discussion below. If you
wish to read the original discussion, the reference is given at the end of the chapter.

Discussion point

Misinterpretation of the significance level (o)

Dracup (1995) has given a good discussion of the problems associated with the misinterpretation of
the rationale behind hypothesis testing.

Many students new to statistics, and indeed those who perhaps should know better, equate the sig-
nificance level (o) with the actual size of the experimental effect. The lower the significance level, the
stronger, for example, the relationship between two variables. This is not what is meant by the signifi-
cance of a finding. Alpha simply gives an indication of the likelihood of finding such a relationship if the
null hypothesis were true. It is perhaps true that the stronger the relationship, the lower the probability
that such a relationship would be found if the null hypothesis were true, but this is not necessarily so.

Dracup also highlights the fact that many statistical textbooks equate o with the probability that the
null hypothesis is true. This is incorrect, as is clearly illustrated by Dracup. Alpha is the probability that
we will get a relationship of an obtained magnitude if the null hypothesis were true. It is not the
probability of the null hypothesis being true.

Related to this latter point, once someone has fallen into the trap of interpreting o as the probability
of the null hypothesis being true, it is a relatively easy and convenient step to suggest that 1 — a must
be the probability that the research hypothesis is true. Thus, if we set « at the traditional 5% level and
find a significant relationship, these people would assume that there is a 95% probability that the
research hypothesis is true. This is incorrect. In fact, we do not know what the probability is that
the research hypothesis is correct; our « probability is conditional upon the null hypothesis being true
and has nothing to do with the truth or falsity of the research hypothesis.

It is important to remember that what we have just explained about relationships is also relevant
when looking for differences between groups. Thus, the p-value is the probability of finding a difference
between two groups if the null hypothesis (no difference in the population) were true.

Similar misunderstandings of the p-value have been more recently covered in the paper we referred
to earlier by Branch (2014).

Activity 5.4

Imagine that you have conducted two separate studies and found a relationship
between head size and 1Q in study 1 and head size and shoe size in study 2. The prob-
ability of observing the relationship in study 1 by chance if the null hypothesis were
true is found to be 0.04, whereas in study 2 the probability is 0.001. Which of these
findings is the more important psychologically?
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Statistical tests

Imagine you are investigating the relationship between number of hours spent studying and
exam performance. Now suppose you have conducted a study and have found a pattern of scores
similar to that given in the sample presented at the top of Figure 5.3. How do you go about
calculating the probability that such a relationship is due to sampling error if the null hypothesis
were true? This is where we need to use inferential statistical tests such as the Pearson product
moment correlation coefficient (see Chapter 6). If you had conducted a study that examined
the difference between two conditions of an independent variable, you would use a test such as
the t-test to calculate your probability. In the rest of this section we hope to give a conceptual
understanding of what statistical tests actually do.

When we look at the relationship between two variables (e.g. hours spent studying and exam
grade), we are able to calculate a measure of the size or strength of the relationship (this is covered
in more detail in the next chapter). Once we have a measure of the strength of a relationship, we
need to find out the probability of obtaining a relationship of such strength by sampling error
alone if the null hypothesis were true. In order to calculate the probability, we can make use of
the probability distributions (see Chapter 4). Earlier we told you that the probability of obtaining
any particular score from probability distributions is known. For example, the probability of
obtaining a z-score of 1.80 or higher is only 3.8%. If we are able to convert the information we
have about the strength of a relationship into a score from a probability distribution, we can then
find the probability of obtaining such a score by chance. This would then give us an indication
of the probability of obtaining the relationship we observe in our study by sampling error
(by chance) if no such relationship really existed in the population. This is basically what
significance testing involves. Converting the data from our samples into scores from probability
distributions enables us to work out the probability of obtaining such data by chance factors alone.
We can then use this probability to decide which of the null and experimental hypotheses is the
more sensible conclusion. It should be emphasised here that these probabilities we calculate are
based upon the assumption that our samples are randomly selected from the population.

Figure 5.5 shows the standard normal distribution and illustrates that the probability of obtaining
scores in the extremes of the distribution is very small. You should remember that when looking at
probability distributions the area under the graph represents probability. The larger the area above
a positive score, the greater the probability of obtaining such a score or one larger. Similarly, the
larger the area below a negative score, the greater the probability of obtaining that score or one
smaller. Thus, once we have converted the degree of relationship between the variables into a score
from a probability distribution, we can work out the probability of obtaining such a score by chance.
If the score is in either of the two regions indicated in Figure 5.5, then we can conclude that the
relationship is unlikely to have arisen by chance — that is, it is unlikely to have been the result of
sampling error if the null hypothesis were true.

Of course if we were investigating differences between groups we could also use probability
distributions to find out the probability of finding differences of the size we observe by chance
factors alone if the null hypothesis were true. In such a case we would convert the difference
between the two groups of the independent variable into a score from a probability distribution.
We could then find out the probability of obtaining such a score by sampling error if no
difference existed in the population. If this probability is small, then it makes little sense to
propose that there is no difference in the population and that the difference between our samples
is the result of sampling error alone. It makes more sense to suggest that the difference we
observed represents a real difference in the population. That is, the difference has arisen owing
to our manipulation of the independent variable.

It is important to note that when we convert our data into a score from a probability
distribution, the score we calculate is called the fest statistic. For example, if we were interested
in looking for a difference between two groups, we could convert our data into a t-value (from
the t-distribution). This t-value is called our test statistic. We then calculate the probability of
obtaining such a value by chance factors alone and this represents our p-value.
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5.8

Scores in the extremes of the distribution
have a low probability of occurring

Figure 5.5 Diagram illustrating the extreme scores in a distribution

Type | error

Suppose we conducted some research and found that, assuming the null hypothesis is true, the
probability of finding the effect we observe is small — as would be the case represented in Figure 5.3.
In this case we would feel confident that we could reject the null hypothesis. Now suppose there
really is no such effect in our population and we have stumbled across a chance happening. We have
obviously made a mistake if we conclude that we have support for our prediction. Statisticians would
say that in rejecting the null hypothesis in this case we have made a Type [ (one) error.

A Type | error is where you decide to reject the null hypothesis when it is in fact true in the underlying
population. That is, you conclude that there is an effect in the population when no such effect really exists.

If your p-value () is 5% then you will have a 1 in 20 chance of making a Type I error. This
is because the p-value is the probability of obtaining an observed effect, given that the null
hypothesis is true. It is the probability of obtaining an effect as a result of sampling error alone
if the null hypothesis were true. We argued that if this is small enough then it is unlikely that
the null hypothesis is true. But as the above case illustrates, we can be mistaken; we can make
a Type I error. Therefore the p-value also represents the probability of your making a Type |
error. If your p-value is 5%, it means that you have a 5% probability of making a Type I error
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if you reject the null hypothesis. Although this probability is small, it is still possible for it to
occur. We can relate this to the National Lottery. There is only about a 1 in 14 million probability
of your winning the Lottery if you pick one line of numbers. Even though this represents a tiny
chance of winning, the possibility still exists, which is why people keep playing it. So beware,
even if you find you have a p-value of only 0.001% there is still a very small probability of your

making a Type I error if you decide to reject the null hypothesis.

Example from the literature

Trustworthiness of politicians

A really nice example of authors considering the possibility that their results are due to a Type | error
is one published by Combs and Keller (2010). In this paper they published the findings from three stud-
ies which examined factors affecting the perceived trustworthiness of politicians. In particular the
authors examined the effects of politicians acting against their own self-interest (e.g. praising an oppo-
nent) on perceptions of trustworthiness. In their first study, as well as considering the issue of acting
against self-interest the authors included a measure of whether the politicians being considered (these
were hypothetical politicians) were affiliated to the political party supported by the participants.
Contrary to expectation it was found that party similarity was negatively related to trustworthiness. In
the discussion to this study the authors consider an explanation for this unexpected effect. They sug-
gested that in such hypothetical situations perhaps participants have higher standards for the politi-
cians than for real politicians. They also suggest that: ‘At the same time, it is also possible that the
significant negative association in Study 1 was a Type | error, and thus caution should be taken in
interpreting this finding’

This is refreshing as authors are usually very reluctant to consider the possibility that their findings
could be the result of Type | errors (not in public anyway).

5.8.1

Replication

Suppose you run a study and find a relationship that has an associated probability of occurring
if the null hypothesis were true of 0.01 (or 1%). In all likelihood you would be happy to reject
the null hypothesis and claim that you had support for your research hypothesis. How confident
could you be that there was a genuine relationship in the population? The answer to this question
is difficult and in some respects depends upon the background to your research. If your study
was the first in its field, you might be wise to treat your findings with a degree of caution.
Remember, we are dealing with probabilities here, not certainties. Even if your findings had a
small probability of occurring if the null hypothesis were true, that possibility is still there.
When we take samples from populations each sample will be slightly different, and the
differences between them are down to sampling error (we came across this previously in
Chapter 3). It could be that you have been unfortunate enough that, owing to sampling error,
the pattern you found is that 1 time in 100 when this arises. In other words, you would have
been wrong to reject the null hypothesis. How should we proceed in such a situation? What you
should do is try to replicate your findings by running another study. If you find the same sort
of pattern and a similar probability of obtaining such a pattern if the null hypothesis were true,
then you could be much more confident in your findings. Replication is one of the cornerstones
of science. If you observe a phenomenon once, it may be a chance occurrence; if you see it on
two, three, four or more occasions, you can be more certain that it is a genuine phenomenon.
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5.9

Definition

Type Il error

There is another sort of error that you can make when using the hypothesis testing approach to
research and it is called a Type II (two) error. A Type 11 error is where you fail to reject the null
hypothesis when it is, in fact, false.

A Type ll error is where you conclude that there is no effect in the population when in reality there is an
effect in the population. It represents the case when you do not reject the null hypothesis when in fact
you should do because in the underlying population the null hypothesis is not true.

Suppose you wanted to see if there was a relationship between the amount of alcohol consumed
and a person’s coordination. You conduct a study and find that there is a large probability, say
0.8 (80%), that the relationship you observed in your sample arose by chance. You would,
therefore, have to conclude that there is no relationship between alcohol and coordination. Would
this be the correct conclusion? Clearly, this is an incorrect finding, as most evidence tells us that
alcohol impairs our coordination. This is why we have drink—driving laws. In this case we would
have made a Type II error: we have rejected the research hypothesis when it is in fact true.

The same sorts of error can occur when investigating differences between groups. Suppose
that you conducted a study to see if people can cover 100m faster in a swimming pool or on a
running track. Once you have analysed your data, you find that there is a large probability that,
if the null hypothesis were true, the difference you found was the result of sampling error. You
therefore conclude that there is no difference in the times taken to complete 100m on land or
in water in the general population. You would clearly have made a Type II error.

In our research, because we are never 100% certain that we can reject the null hypothesis or
100% certain that we can accept the null hypothesis, we are likely to make errors some of the time.
These are our Type I and Type II errors. You should recall from earlier that the probability of making
a Type I error is denoted as «.. The probability of making a Type II error is denoted as 3 (beta).

If you found yourself in the situations described above where you have made Type II errors,
you might ask yourself why, if there is a real relationship or difference in the population, you
failed to detect it in your study. There are a number of reasons for this sort of outcome. The first
is that, owing to chance factors, you may have selected people who have an unnatural tolerance
of alcohol (or people who were truly as quick in the pool as on the track). More than likely,
however, you will have had a poorly designed study or the sample sizes were too small. Factors
such as these affect the sensitivity of your research to detect real differences in populations. The
ability of a study to reject a null hypothesis when it is, in fact, false is said to be the power of
the study and is calculated as 1 — 3. (We say a lot more about power in Chapter 8.)

Activity 5.5

Which of the following represent Type | and which represent Type Il errors?

(a) You find in your study that a relationship exists between amount of tea drunk per
day and amount of money won on the Lottery. You conclude that to win the
Lottery you need to drink lots of cups of tea

(b) You find in a study that there is no difference between the speed at which
cheetahs and tortoises run. You conclude that tortoises are as fast as cheetahs

(c) Youfindin astudy that there is a relationship between standard of living and annual
income. However, because the probability associated with the relationship is 0.5, you
conclude that there is no relationship between standard of living and annual income.
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Why set o at 0.05?

You may be wondering why we have a cut-off for a of 0.05. Who determined that 0.05 was an
appropriate cut-off for allowing us to reject the null hypothesis, rather than say 0.2 or 0.001?
Although this is a fairly arbitrary cut-off, there is a rationale behind it. Let us have a look at the
situations where we set o at 0.2 and 0.001 respectively. If we set o at 0.2, we would be tolerating
a Type I error in one case in every five. This is a very liberal criterion for significance. In one
case in every five we would reject the null hypothesis when it is in fact true. On the positive
side, we would be much less likely to make a Type II error. That is, we would be much less likely
to accept the null hypothesis when it is false. With such a liberal criterion for significance, we
are generally going to reject the null hypothesis more often and therefore are more likely to
reject it when it is false (as well as more likely to reject it when it is true). This means a lower
probability of a Type II error.

So, how about setting our « at 0.001? Here we are much less likely to make a Type I error.
We are only likely to reject the null hypothesis when it is true one time in every thousand. This
is a very conservative criterion for significance. On the face of it, this would appear to be a very
good thing. After all, we don’t want to incorrectly reject the null hypothesis, and so why not set
a conservative criterion for significance? The problem here is that, although we reduce the
probability of making a Type I error, we also increase the probability of not rejecting the null
hypothesis when it is false. We increase the probability of making a Type II error. The reason
for this is that with such a conservative criterion for significance, there are going to be fewer
times when we reject the null hypothesis. Therefore, we are going to increase the likelihood of
not rejecting the null hypothesis when it is false.

When setting our criterion for significance, we therefore need to strike the right balance
between making Type I and Type II errors. In most situations an a of 0.05 provides this balance.
You should note that there are sometimes other considerations which should determine the level
at which you set your criterion for significance. For example, if we were testing a new drug, we
should be much more conservative, as the consequence of making a Type I error could be very
serious indeed. People may be given drugs that have nasty side-effects and yet not be effective
in treating what they are supposed to treat. Another situation where you may want to set a
different criterion for significance is where you conduct many statistical analyses on the same
set of data. (This is covered in more detail in section 10.5.)

One-tailed and two-tailed hypotheses

Earlier in this chapter we described a possible study investigating the relationship between
number of hours spent studying per week and final examination grade (see section 5.1). We made
the prediction (hypothesised) that, as hours of study increased, so would exam grades. Here we
have made what we call a directional hypothesis. We have specified the exact direction of the
relationship between the two variables: we suggested that, as study hours increased, so would
exam grades. This is also called a one-tailed hypothesis. In this case we were sure of the nature
of the relationship and we could thus make a prediction as to the direction of the relationship.
However, it is often the case in psychology (and other disciplines) that we are not sure of the
exact nature of the relationships we wish to examine. For example, suppose we wanted to
investigate the relationship between anxiety and memory for negative information. Previous
research in this area has yielded a number of contradictory findings. Mogg, Mathews and
Weinman (1987) found that anxious individuals remember fewer negative words than non-
anxious individuals, whereas Reidy (2004) found that anxious individuals tend to remember more
negative than positive information. Here, then, we are not quite sure of the nature of the
relationship between anxiety and memory for negative words. We therefore would want to predict
only that there was a relationship between the two variables without specifying the exact nature
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of this relationship. In making such a prediction, we are stating that we think there will be a
relationship, but are not sure whether as anxiety increases memory for negative words will
increase or decrease. Here we have made what we call a bi-directional prediction, better known
as a two-tailed hypothesis.

Definition

A one-tailed hypothesis is one where you have specified the direction of the relationship between
variables or the difference between two conditions. It is also called a directional hypothesis.

A two-tailed hypothesis is one where you have predicted that there will be a relationship between variables
or a difference between conditions, but you have not predicted the direction of the relationship between
the variables or the difference between the conditions. It is also called a bi-directional hypothesis.

You might be thinking to yourselves that these are bizarre terms to associate with these forms
of hypotheses. Hopefully, all will become clear in the following explanation. To understand why
we use the terms one- and two-tailed hypotheses you need to refer back to what we have taught
you about distributions.

Previously we explained that a normal distribution and other probability distributions have
tails at their extremes (see Figure 5.5). The probability of obtaining scores from these extremes
(from the tails) is small compared with that of obtaining scores from the middle of the
distribution (see Figure 5.6). For example, coming across a man who is 8ft (244cm) tall is highly
unlikely, and this would thus be in the upper tail of the distribution of men’s height.

You now need to think back to what we told you about statistical tests. We explained that we
can use probability distributions to help us calculate the probability of a difference or a relationship
occurring as a result of sampling error if one does not exist in the population. As an example, we
showed you how we can use the standard normal distribution in such cases. We pointed out that,
after we have transformed our sample details into a score from the distribution (remember, this is
called our test statistic), we could work out the probability of obtaining such a score as a result of
sampling error. If this probability is small, we could argue with some confidence that we have a
genuine relationship between our variables: that is, the relationship was not due to sampling error.

Area in the middle portion is
greater than the extremes

Figure 5.6 Scores in the extremes have lower probability of occurrence than scores in the middle
of the distribution
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If you look at Figure 5.7, you will see that we have indicated the areas within the distribution
where the probability of obtaining such a score is small. These scores are located in the extremes
(the tails) of the distribution.

When we go through the process of calculating the relevant score from our sample
information, we are working with some measure of the strength of the relationship between the
two. Suppose we have two studies, Study 1 and Study 2, both investigating the relationship
between statistics anxiety and procrastination (see Table 5.1).

In both of these studies we might want to see if statistics anxiety and procrastination are
related in some way. You should notice from the table that in each study there appears to be a
relationship between statistics anxiety and procrastination. In Study 1, as the scores for statistics
anxiety increase, so do those for procrastination. In this case when we calculate the score from
the probability distribution, we would probably obtain a value from the right-hand tail of the

Scores in the tails
of the distribution

Low scores in High scores in
stats anxiety stats anxiety
associated with associated with
high scores in high scores in
procrastination procrastination
result in a score result in a score
in this tail in this tail
-3 -2 -1 0 1 2 3
Lower tail Upper tail

Figure 5.7 lllustration of scores in the tails of the distribution

Table 5.1 Data for statistics anxiety and procrastination in Studies 1 and 2

Study 1 Study 2
Statistics anxiety Procrastination Statistics anxiety Procrastination
1 2 1 18
2 4 2 16
3 6 3 14
4 8 4 12
5 10 5 10
6 12 6 8
7 14 7 6
8 16 8 4
9 18 9 2
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distribution (see Figure 5.7). If, on the other hand, as the values for statistics anxiety increased,
the values for procrastination decreased (as in Study 2), then the resulting score we calculated
would be in the left-hand tail of the distribution. This example illustrates the fact that the
direction of the relationship between your variables determines the tail of the distribution in
which the resulting score will be located.

When we do not predict the direction of the relationship between statistics anxiety and
procrastination, we are simply predicting that the score we calculate will fall in either one of
the two tails. Hence, we have made a two-tailed prediction. If, on the other hand, we predict
that, as the scores for statistics anxiety increase, so would the scores for procrastination, then
we are predicting that the score we calculate will fall in the right-hand tail only. We have made
a one-tailed prediction. That is, we are predicting the tail from which the score we calculate will
be obtained.

If you make a two-tailed prediction, the calculated score can fall in either tail. Now suppose
that we are sticking with convention and using the 5% significance level as our cut-off for
rejecting the null hypothesis (we do not recommend that you use such a cut-off; we are merely
using this to illustrate a point). We will be able to reject the null hypothesis only if there is 5%
probability or less of obtaining our calculated score. Figure 5.8 shows that in either tail we take
calculated scores that have a 2.5% probability of being obtained: that is, 5% divided between
the two tails.

If we make a one-tailed prediction, we accept scores in only one of the tails and therefore
our 5% probability region is all in the one tail: that is, it is not divided between the two tails.
This effectively means that we can reject the null hypothesis for a greater number of scores in
that tail than we can for a two-tailed test (see Figure 5.9).

Figures 5.8 and 5.9 illustrate the importance of being sure whether you have made a one- or
two-tailed prediction. In the following chapters, when we come to describe how to carry out
the various statistical tests using SPSS you will notice that there are options that allow us to
calculate one- and two-tailed probabilities (p-values) for these statistics. If, however, you have
obtained a p-value for a two-tailed test and you want to know the corresponding probability for
a one-tailed test, all you need to do is halve your p-value. For example, if you obtained a p-value
of 0.03 for a two-tailed test, the equivalent value for a one-tailed test would be 0.015. Similarly,
if you obtained a p-value for a one-tailed test, to work out the equivalent probability for a two-
tailed test you simply double the one-tailed probability. Note that you double the p-value, not

2.5% 2.5%

Figure 5.8 Areas (coloured) representing the regions where scores may fall for two-tailed hypotheses
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5%

-3 -2 -1 0 1 2 3

Figure 5.9 Area (coloured) representing the region where scores may fall for one-tailed hypotheses

the actual test statistic (e.g. correlation coefficient or t-value). The test statistic remains the same
for both one- and two-tailed tests on the same set of data.

We should point out that, although we have illustrated the distinction between one-tailed and
two-tailed predictions with reference to relationships between variables, you can also have both
types of prediction when investigating differences between conditions. Essentially, there are
two ways that any two conditions (conditions A and B) can be different: that is, condition A has
higher scores than condition B, or condition B has higher scores than condition A.

When making a two-tailed prediction about differences between two conditions, we have
only to specify that a difference exists between them. We do not have to specify which condi-
tion will have the higher scores. If we make a one-tailed prediction, we would predict which
of the above scenarios is most appropriate: that is, which condition will have the higher scores.
(We do not intend to go into any more detail here, as this is covered in greater depth in
Chapter 7.)

Activity 5.6

Which of the following are one-tailed hypotheses and which are two-tailed?

(a) Itis predicted that females will have higher empathy scores than males

(b) It is predicted that, as annual salary increases, so will the number of tomatoes
eaten per week

(c) Itis predicted that there will be a relationship between length of hair in males and
number of criminal offences committed

(d) Itis predicted that football fans will have lower |IQ scores than opera fans

(e) Itis predicted that there will be a relationship between the number of books read
per week and range of vocabulary

(f) Itis predicted that there will be a difference between middle-class parents and
working-class parents in their preferences for children wearing school uniforms

(g) Itis predicted that as anxiety increases the number of units of alcohol drank per
week will also increase
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5.12 Assumptions underlying the use of statistical tests

In the preceding sections and chapters of the book, we have introduced the basic concepts
underlying statistical testing. In the remainder of the book we will be explaining a wide range
of statistical tests suitable for a number of different research designs. However, many of these
tests require that a number of assumptions be met before they can be legitimately applied to
sample data. When our data do not meet these assumptions we usually have to use the tests that
do not require such assumptions to be met.

Definition

Many statistical tests that we use require that our data have certain characteristics. These characteristics
are called assumptions.

Most of the statistical techniques that we describe in this book make assumptions about the
populations from which our data are drawn. Because population characteristics are called
parameters (see Chapter 3), these tests are sometimes called parametric tests. Because the tests
make these assumptions, we have to ensure that our data also meet certain assumptions before
we can use such statistical techniques. The assumptions are described in the following sections.

Definition

Many statistical tests are based upon the estimation of certain parameters relating to the underlying
populations in which we are interested. These sorts of test are called parametric tests. These tests make
assumptions that our samples are similar to underlying probability distributions such as the standard
normal distribution.

There are statistical techniques that do not make assumptions about the populations from
which our data are drawn, but these are not used as frequently as the parametric tests. Because
they do not make assumptions about the populations, they are called non-parametric tests. They
are also often called distribution-free tests. (We cover such tests in Chapter 16 of this book.)

Definition

Where statistical tests do not make assumptions about the underlying distributions or estimate the
particular population parameters, these are called non-parametric or distribution-free tests.

Assumptions underlying parametric tests

1. The scale upon which we measure the outcome or dependent variable should be at least
interval level. This assumption means that any dependent variables that we have should be
measured on an interval- or ratio-level scale or, if we are interested in relationships between
variables, the variables of interest need to measured using either interval- or ratio-level scales
of measurement. Remember we covered levels of measurement in Chapter 1 (see section 1.3).
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2. The populations from which the samples are drawn should be normally distributed. Parametric
tests assume that we are dealing with normally distributed data. Essentially this assumption
means that we should always check that the data from our samples are roughly normally dis-
tributed before deciding to use parametric tests. We have already told you how to do this using
box plots, histograms or stem and leaf plots. If you find that you have a large violation of this
assumption, there are ways to transform your data legitimately so that you can still make use
of parametric tests. For example, if you have positively skewed data you can transform all the
scores in your skewed variable by calculating the square-root of each score. It has been shown
that when we do this it can eliminate positive skew and leave your variable much more nor-
mally distributed. Some students think that this is simply changing your data and so cheating.
However, this is not the case. All you are doing is converting the variable to a different scale
of measurement. It is akin to converting temperature scores from Centigrade to Fahrenheit. As
you are doing the same transformation for all scores on the variable it is entirely legitimate.
Let us try a transformation using the statistics anxiety and procrastination data that we have
used in previous chapters. To transform a variable using SPSS you need to use the Transform
and Compute Variable option. When you select these you will be presented with the following

dialog box:
3 “Stats Anwiety & Procrastination.sav [DataSet5] - IBM SPSS Statistics Data Edétor - - T h r =8 B8
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3 | AT o Pr Turget Variuine. var var ar ar
= 59.00 ] -
i .00 SR
- z= || —— —
G 50,00 F
= T -
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1
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You will notice that there are two boxes of interest; the Target Variable box and the Numeric
Expression box. What we are going to do is take the square-root of each score of a variable
(we will use the procrastination variable here) and then record this in a new variable (the target
variable). Thus first of all we need to give the new variable a name. One useful way to keep
track of the transformations that you have done on a variable is to call the target variable the
same name as the original variable but just put ‘Sqrt’ at the beginning. So if our original
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variable is called ‘Procrastination’ the target variable will be called ‘SqrtProcrastination’. So
type the new variable name into the target variable box:

& Cormpuute Variable |

o

(| Targat =

[Sqifrocrastination I =

o Statistics Amviety Sc... | | g
| " .‘ o

Function group:

r |
Arithmeafic

CDF & Moncentral COF
Conversion

Current Date/Time
Date Arithmetic

Date Creation

Eunctions and Special

| | ﬁ{omlonai case selection conaition) ‘

I !
| UK | Easta w w " w -

We then need to focus on the Numeric Expression box. In this box we are going to tell SPSS
how to transform the original variable. In our case we need to tell SPSS to take the square-root
of the original variable. You can do this in two ways. If you not sure then follow these steps. You
should notice that down the right-hand side of the dialog box there is box of Function groups.
If you click on the Arithmetic one you will see a list of functions appear in the box below:
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If'you scroll down you will see a function called Sgrz. Select it and then click on the up arrow next
to the box. You will notice in the Numeric Expression box that the expression ‘SQRT(?)’ appears.
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Now you can select the variable that you want to transform from the variable list and click
on the arrow next to that list. You will then see that the numeric expression changes so that
your variable name is now inside the brackets, e.g. ‘SQRT(Procrastination)’. Instead of doing
all the clicking though you can simply type the ‘SQRT(Procrastination)’ expression directly.
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Once you have done this click on OK and take a look at the data file. You should see that
SPSS has set up a new variable which contains scores that are square-roots of the original
scores. You can then check these square-roots to see if they are normally distributed. If they
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are you can proceed with the parametric tests. If they are not you might have to consider an
alternative transformation or use one of the non-parametric tests covered in Chapter 16. The
other transformations are beyond the scope of this book, however, you should consult other
more advanced texts. Howell (2013) gives a very good overview of such transformations.
For your guidance, the distributions in Figure 5.10(a) and (b) are probably close enough to
normal for you to use parametric tests. If your distributions are more like those in
Figure 5.10(c) and (d), however, you should consider transforming your data.

Our new
transformed
variable
18 “Stats Arsiety . 5] TN 55 d ——— o i el
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4 60,00 110.00 1043
5 6200 14000 18
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3. The third assumption that we cover here is only relevant for designs where you are looking
at differences between conditions. This assumption is that the variances of the populations
should be approximately equal. This is sometimes referred to as the assumption of
homogeneity of variances. If you remember, when we explained how to calculate the standard
deviation (in Chapter 3), we told you that you calculate the variance as a step on the way to
calculating the standard deviation. More specifically, we informed you that the standard
deviation is the square root of the variance. In practice, we cannot check to see if our
populations have equal variances and so we have to be satisfied with ensuring that the
variances of our samples are approximately equal. You might ask: what do you mean by
approximately equal? The general rule of thumb for this is that, as long as the largest variance
that you are testing is not more than three times the smallest, we have roughly equal variances.
We realise that this is like saying that a man and a giraffe are roughly the same height, but
this does illustrate the reasonable amount of flexibility involved in some of these assumptions.
Generally, a violation of this assumption is not considered to be too catastrophic as long as
you have equal numbers of participants in each condition. If you have unequal sample sizes
and a violation of the assumption of homogeneity of variance, you should definitely use a
distribution-free test (see Chapter 16).
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Figure 5.10 Examples of distributions which could be considered approximately normal ((a) and (b)) and those that
probably cannot ((c) and (d))

4. The final assumption is that we have no extreme scores. The reason for this assumption is
easy to understand when you consider that many parametric tests involve the calculation of
the mean as a measure of central tendency. If you think back to Chapter 3, you will recall
that we explained that the mean is very sensitive to extreme scores and when these are present
it is best to use some other measure of central tendency. If extreme scores distort the mean,
it follows that any parametric test that uses the mean will also be distorted. We thus need to
ensure that we do not have extreme scores. (If you find that you have extreme scores, you
should see Chapter 3 for a discussion of what to do about them.)

Given that there are these assumptions underlying the use of parametric tests, you might ask:
why bother with them? Parametric tests are used very often in psychological research because
they are more powerful tests. That is, if there is a difference in your populations, or a relation-
ship between two variables, the parametric tests are more likely to find it, provided that the
assumptions for their use are met. Parametric tests are more powerful because they use more
of the information from your data. Their formulae involve the calculation of means, standard
deviations and some measure of error variance (these will be explained in the relevant chapters).
Distribution-free or non-parametric tests, however, are based upon the rankings or frequency
of occurrence of your data rather than the actual data themselves. Because of their greater
power, parametric tests are preferred whenever the assumptions have not been grossly
violated.

In this and previous chapters we have explained the important basic concepts for a good
understanding of the most frequently used statistical tests. In addition to this we have presented
you with a number of descriptive statistical techniques and some advice about when to use
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them. The preceding paragraphs have also presented advice on the criteria for choosing
between various inferential statistical techniques. Before you move on to the nitty-gritty of
the various inferential statistics, it is perhaps a good idea to review all such advice and
therefore we present it here in summary form. Figure 5.11 gives a rough pictorial guide to the
way your design will affect your choice of statistics. It should be stressed that this flowchart
represents a general overview of the issues we have covered in the preceding chapters and
should be used as such. Whenever you are uncertain as to which tests your data legitimately
allow you to use, we recommend that you use the flowchart in conjunction with the advice
given previously.

SPSS: Statistics Coach

Another useful feature of SPSS is the Statistics Coach. You can use the Statistics Coach (in place of the
decision chart on page 162) to find out which sorts of analysis you should be doing on your data. You
start the Statistics Coach through the Help menu:
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When you select the Statistics Coach it will open a new web browser. Once the Statistics Coach starts,
you will be presented with a screen that asks you what you want to do. You are given a number of
options to choose from, such as Summarize, describe, or present data, and Compare groups for
significant differences.
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On the left-hand side of the screen you will be presented with the contents of the Statistics Coach.
You can navigate through the coach by topic if you wish, or you can simply click on the option in the
right-hand pane. Towards the top right-hand part of the screen are buttons to navigate your way through
the Statistics Coach. Be careful with these buttons, as they can throw you out of the sequence of
questions you are answering to find out which analysis you need to carry out. To query the coach, you
simply click on one of the options in the right-hand pane. As an example, we have selected the Compare
groups for significant differences option.
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You should then answer the relevant questions presented on the screens. You do this simply by clicking
on the relevant option in the right-hand pane and this will take you to the next question.

\.
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There will be a series of such screens for each type of analysis that you might want to carry out. Keep

answering the questions presented to you.
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Once you have answered the final question for a particular test, the coach will present a screen which
tells you which test you need and how to run the test. It will also tell you whether there are any particular
assumptions underlying the use of the test, such as having normally distributed data.
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Summary
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In this chapter we have gone further into the
realms of inferential statistics and have laid the
final foundations for you to tackle the most
frequently used inferential statistical techniques in
psychology today. You have learnt the following:

* The logic behind hypothesis testing and
statistical significance.

* The null hypothesis represents no effect and
as such represents the converse of the
experimental hypothesis.

* How we can use probability distributions to work
out the probability that the effects in our
research are due to sampling error if the null
hypothesis were true.

 Although hypothesis testing is the major
research method in psychology there is growing
concern over its inability to establish meaningful
conclusions from our data.

* As a result of this we have suggested several ways
of supplementing the results of your hypothesis
testing with more meaningful statistics, for
example effects sizes and confidence intervals.

* In hypothesis testing there are two general sorts of
errors (Type | and Type Il errors) that you could make
when drawing conclusions from your analyses:

- Type | errors are when you reject the null
hypothesis when it is, in fact, true.

- Type Il errors are when you fail to reject the
null hypothesis when it is false.

e What it means to make directional (one-tailed)
and non-directional (two-tailed) predictions and
how these are related to probability distributions.

- Two-tailed predictions are those where we
predict a difference between two conditions
(or a relationship between two variables) but
do not specify the direction of the difference
(or relationship).

— One-tailed predictions are those where we
specify the direction of a predicted difference
(or relationship).

We hope that by this stage you have a good
conceptual understanding of descriptive and
inferential statistical approaches to analysing your
data. In the remaining chapters, with the
exception of Chapter 8, we will describe specific
statistical tests in much more detail. However, you
should always bear in mind when reading these
chapters that these tests are based upon the
concepts we have introduced to you in these
opening chapters.

—

Discover the website at www.pearsoned.co.uk/dancey where you can test your knowledge with multiple
choice questions and activities, discover more about topics using the links to relevant websites, and
explore the interactive flowchart designed to help you find the right method of analysis.

SPSS exercises

Exercise 1

Professor Yob is interested in crowd violence during football matches. She thinks that crowd violence
is the result of uncomfortable seating in stadia. She therefore modifies two different stadia in England.
In one stadium she puts in seating that is tightly packed and generally uncomfortable. In the other
stadium she installs seating that is very comfortable, with lots of leg room and plenty of space between
adjacent seats. She organises it so that one football club plays half of its games at one stadium and half
of its games at the other stadium. She follows a group of 12 yobs who support the club and records
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the number of times each one gets arrested or thrown out of each stadium. She predicts that there will
be more arrests and ejections from the stadium with uncomfortable seating and obtains the data shown
in Table 5.2.

Table 5.2 Number of arrests for each yob at the comfortable and uncomfortable stadia

Yob Uncomfortable seating Comfortable seating
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1. Is this a between-participants or a within-participants design?
2. What sort of variable has Professor Yob measured: discrete or continuous?

(a) What is the IV?
(b) What is the DV?

3. Is the prediction one-tailed or two-tailed?
. What is the null hypothesis?
5. Input the data into SPSS and generate the following for each condition:

IS

e error bar charts

¢ the mean

¢ the standard deviation

¢ the standard error

95% confidence intervals.

6. Convert the first score from each condition into a z-score.

Exercise 2

Dr Pedantic has a passion for language and his particular dislike is the use of split infinitives (e.g. ‘to boldly
go where no man has gone before’ contains a split infinitive, whereas ‘to go boldly where no man has gone
before’ does not). He blames the popularity of Star Trek in the 1970s for the proliferation of split infinitives
in journals reporting research. He therefore selects 12 researchers in psychology who have published
research in journals before and after the Star Trek series was first televised. He goes through the last 20
publications of each researcher before Star Trek was televised and the first 20 publications after Star Trek
was televised and counts the number of split infinitives used. He predicts that the number of split infinitives
will be greatest in the journals published after Star Trek was televised and obtains the data shown in Table 5.3.

~

J
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1. Is this a between-participants or a within-participants design?
2. What sort of variable has Dr Pedantic measured: categorical, discrete or continuous?

(a) Whatis the IV?
(b) What is the DV?

3. Is the prediction one-tailed or two-tailed?
. What is the null hypothesis?
5. Input the data into SPSS and generate the following for each condition:

IS

e error bar charts

* the mean

e the standard deviation

* the standard error

* 95% confidence intervals.

6. Convert the first score from each condition into a z-score.

Table 5.3 Number of split infinitives used by researchers before and after the Star Trek series was originally shown

Researcher Before Star Trek After Star Trek
1 2 2
2 3 5
3 1 6
4 0 2
5 1 1
6 2 2
7 1 3
8 0 1
9 3 2

10 0 3
11 1 4
12 1 2

Multiple choice questions

1. A Type Il error occurs when:

(a) The null hypothesis is not rejected when it should be

(b) The null hypothesis is rejected when it should be

(¢) The null hypothesis is rejected when it should not have been

(d) The null hypothesis is not rejected when it should not have been
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2. What is the basis or logic of inferential statistical tests?

(a) To work out the probability of obtaining an effect due to sampling error when the null hypothesis
is true

(b) To work out the probability of obtaining an effect due to sampling error when the null hypothesis
is false

(c) To work out the probability of making a Type II error

(d) All of the above

. If you obtain a one-tailed p-value of 0.02, the equivalent two-tailed p-value is:

(a) 0.01
(b) 0.04
(c) 0.02
(d) 0.4

. If you predict that two variables A and B will be related, what is the null hypothesis?

(a) That there is no relationship between A and B
(b) That A will be greater than B

(¢) That there is no difference between A and B
(d) None of the above

. The power of an experiment is:

(@) «

(b) The ability of the experiment to reject the null hypothesis if it is, in fact, false
(c) The sensitivity of participants to your experimental manipulation

(d) All of the above

. When we predict that condition A will be greater than condition B, we have made:

(a) A one-tailed prediction

(b) A two-tailed prediction

(¢) A uni-directional prediction
(d) Both (a) and (c¢) above

. The probability that an effect has arisen due to sampling error given that the null hypothesis is true is

denoted as:

(a) Negligible

(b) B

(c) o

(d) None of the above

. If you obtain a two-tailed p-value of 0.02, the equivalent one-tailed p-value would be:

(a) 0.01
(b) 0.04
(c) 0.02
(d) 0.4
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10.

11.

12.

13.

14.

15.

If we predict that there will be a difference between condition A and condition B, we have made:

(a) A one-tailed prediction
(b) A two-tailed prediction
(c) A null prediction

(d) Both (b) and (c) above

If you obtain a p-value of 4%, what does this mean?

(a) The probability that the null hypothesis is true is 4%

(b) The probability that the null hypothesis is false is 4%

(c) The probability of obtaining the effect you have due to sampling error if the null hypothesis were
true is 4%

(d) All of the above

If you predict that there will be a difference between condition A and condition B, what is the null
hypothesis?

(a) That condition A will be greater than condition B

(b) That condition B will be greater than condition A

(c) That condition A will be related to condition B

(d) That there will be no difference between conditions A and B

If we reject the null hypothesis when it is, in fact, true then we have:

(a) Made a Type I error

(b) Made a Type II error

(c) Made scientific progress
(d) Both (b) and (c) above

Which of the following are the assumptions underlying the use of parametric tests?

(a) The data should be normally distributed

(b) The samples being tested should have approximately equal variances
(c) You should have no extreme scores

(d) All of the above

A Type II error means:

(a) We have rejected the null hypothesis when it is, in fact, true
(b) We have accepted the experimental hypothesis when it is false
(c) We have accepted the null hypothesis when it is, in fact, false
(d) None of the above

A researcher has conducted a study on reaction times with 20 participants in each of two conditions.
She finds that the variance for the first condition is 2 seconds and for the second condition is
14 seconds. Which of the following statements is true?

(a) She should not use parametric tests because she has failed to meet the assumption of homogeneity
of variance

(b) She has completely met all of the assumptions underlying the use of parametric tests

(c) She has failed to meet the assumption of homogeneity of variance but could use parametric tests
because she has equal sample sizes

(d) None of the above
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16. How do we denote power?

(a) «
() B
) 1 -«
(d1-8

17. Why do we usually set our criterion for significance at 0.05?

(a) This is the traditional level used by most psychologists

(b) This represents a good balance between making Type I and Type II errors
(c) Itis easier to get significant results with this o

(d) Both (a) and (b) above

18. When we convert our data into a score from a probability distribution, what do we call the value we
obtain?

(a) Significant

(b) Not significant

(c) The test statistic

(d) The power of the study

19. Imagine we conduct two studies. In study A we have 1000 participants and obtain a p-value of 0.01,
whereas in study B we have only 20 participants and a p-value of 0.05. In which of these two studies
is there the larger effect?

(a) Study A

(b) Study B

(c) The effect is the same in each study

(d) We cannot answer this question from the information we have been given

20. If you find in a study that your p-value is 0.05, what is the probability of the alternative hypothesis
being true?

(a) 0.05

(b) 1 minus 0.05

(c) We cannot work out the probability of the alternative hypothesis being true
(d) None of the above
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| analysis:

CHAPTER OVERVIEW

In the first five chapters we have given you the basic building blocks that you will need to understand
the statistical analyses presented in the remainder of the book. It is important that you understand
all the concepts presented in those chapters, and you can get a good measure of your understanding
by trying the activities and multiple choice questions presented throughout the text and at the end
of each chapter. If you find that there are certain things that you do not understand, it is very much
worth your while going back to the relevant chapter and making sure that you have grasped each
concept fully. Once you feel confident that you have mastered these concepts, you will be ready to
tackle the more demanding statistical analyses presented from now on. Having a thorough
understanding of these earlier concepts will smooth the way through the remainder of the book. In
the first five chapters, you were introduced to the idea of looking at relationships between variables:
for example, the relationship between hours spent studying and performance in examinations.
Psychologists often wish to know whether there is a significant relationship or association between
two variables. This is the topic of this chapter. You will need to have an understanding of the following:

m one- and two-tailed hypotheses (Chapter 5)
m statistical significance (Chapter 5)
m confidence intervals (Chapter 4).

In this chapter we will discuss ways in which we can analyse relationships or associations between
variables. In the previous chapter we talked about the relationship between time spent studying and
exam performance. The way to find out whether such a relationship exists is to take a number of
students and record how many hours per unit of time (e.g. per week) they spend studying, and then
later take a measure of their performance in the examinations. We would then have two sets of data
(or two variables). Correlational analysis gives us a measure of the relationship between them. In the
previous chapter we suggested that we are able to calculate a measure of the strength of a relation-
ship: correlational analysis gives such a measure.

Here we will discuss the following:

m the analysis and reporting of studies using correlational analysis
m r - anatural effect size
m confidence limits around r.
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Bivariate correlations

When we are considering the relationship between two variables, this is called bivariate
correlation. If the two variables are associated, they are said to be co-related (correlated). This
means they co-vary; as the scores on one variable change, scores on the other variable change
in a predictable way. In other words, the two variables are not independent.

Drawing conclusions from correlational analyses

A correlational relationship cannot automatically be regarded as implying causation. Recall that
in Chapter 1 we suggested that you cannot imply causation from correlations. That is, if a
significant association exists between the two variables, this does not mean that x causes y or,
alternatively, that y causes x. For instance, consider the following. It has been shown that there
is a significant positive relationship between the salaries of Presbyterian ministers in
Massachusetts and the price of rum in Havana. Now it is clearly inappropriate in this case to
argue that one variable causes the other. Indeed, as Huff (1973), who supplied this example,
observed, it is not necessary to infer causation because the more obvious explanation is that
both figures are growing because of the influence of a third factor — the worldwide rise in the
price level of practically everything!

Statistical analysis can show us whether two variables are correlated, but the analysis itself
cannot tell us the reasons why they are correlated — we have to do this work ourselves! Let’s
assume that two variables, x and y, are correlated. This could be because:

e the variation in scores on y have been caused by the variation in scores on x (i.e. x has
caused y)

e the variation in scores on x have been caused by the variation in scores on y (i.e. y has
caused x)

e the correlation between x and y can be explained by the influence of a third variable, z (or
even by several variables)

e the correlation between them is purely chance.

As an example of the last, on one occasion we asked our students to perform a correlational
analysis on several variables. When doing this on the computer, it is very easy mistakenly to
include variables that are not relevant. One of our students included ‘participant number’ with
the other variables, in error of course. She then showed us that ‘participant number’ had a high
positive correlation with self-esteem, one of the other variables. Now there was no real relation-
ship between these variables. It is as well, therefore, always to bear in mind the possibility that
the relationship revealed by a correlational analysis may be spurious. Francis Galton (1822—
1911) was a cousin of Charles Darwin. Although Galton invented correlation, Karl Pearson
(1857-1936) developed it, discovering spurious correlations (a statistical relationship only —not
due to a real relationship between the two variables, as just explained). He found many instances
of spurious correlations. It is up to the researcher to determine whether statistically significant
correlations are meaningful and important (rather than just statistically significant) — and to
rule out chance factors.

The exploration of relationships between variables may include the following steps:

. Inspection of scattergrams (see below).

. A statistical test called Pearson’s r, which shows us the magnitude and degree of the relation-
ship, and the likelihood of such a relationship occurring by sampling error, given the truth
of the null hypothesis.

. Confidence limits around the test statistic », where appropriate.

4. Interpretation of the resullts.

o =

w
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6.1.2

6.1.3

6.1.4

Purpose of correlational analysis

The purpose, then, of performing a correlational analysis is to discover whether there is a
meaningful relationship between variables, which is unlikely to have occurred by sampling
error (assuming the null hypothesis to be true), and unlikely to be spurious. The null hypoth-
esis is that there is no real relationship between the two variables. This is not the only informa-
tion, however, that a correlational analysis provides. It also enables us to determine the
following:

e the direction of the relationship — whether it is positive, negative or zero

e the strength or magnitude of the relationship between the two variables — the test statistic,
called the correlation coefficient, varies from 0 (no relationship between the variables) to 1
(perfect relationship between the variables).

These two points are discussed in greater detail below.

Direction of the relationship

Positive

High scores on one variable (which we call x) tend to be associated with high scores on the
other variable (which we call y); conversely, low scores on variable x tend to be associated with
low scores on variable y.

Negative

High scores on one variable are associated with low scores on the other variable.

Zero

Zero relationships are where there is no linear (straight-line) relationship between the two

variables. (What precisely is meant by the term ‘linear relationship’ will be explained later. For

now, just assume that no linear relationship means no relationship between the two variables.)
Now think about the direction of the relationships in the examples given above.

Number of hours spent studying and performance in examinations

You would expect that the number of hours spent studying would have a positive relationship
with examination performance — the more hours a student spends studying, the better the
performance.

Cigarette smoking in ecstasy users

Fisk, Montgomery and Murphy (2009) found that in a sample of ecstasy users, there was a
positive correlation between the number of cigarettes smoked and the number of reported
adverse reactions.

Perfect positive relationships

We have already said that, in positive relationships, high scores on one variable are associ-
ated with high scores on the other, and vice versa. This can be seen by plotting the scores on
a graph called a scattergram, or scatterplot. When performing a bivariate correlation, we
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Figure 6.1 Sister’s age and your age

have two sets of scores. When we plot the scores on a scattergram, we assign one variable
to the horizontal axis — this is always called x. We assign the other variable to the vertical
axis — this is always called y. It does not matter which variable we assign to x or which
variable to y.

To construct a scattergram, we take each person’s score on x and y, and plot where the two
meet. Each datapoint consists of two scores (x and y). You were introduced to the construction
of scattergrams (using SPSS) (in section 3.5) here we go into greater detail.

A perfect positive relationship is depicted in the scattergram in Figure 6.1. A perfect
relationship is where all the points on the scattergram would fall on a straight line. For
instance, think of your age plotted against your sister’s age. (Of course, this is an unrealistic
example. No one would really want to correlate their age with their sister’s age — it is just an
example.) In the example above, we have assumed that your sister is four years older than
you. We have allotted your sister’s age to the vertical axis (y) and your age to the horizontal
axis (x), and for each pair of ages we have put one point on the scattergram. It should be
immediately obvious that the relationship is positive: as you grow older, so does your sister.
The relationship must be perfect as well: for every year that you age, your sister ages one year
as well.

An important point to note is that the above example shows that you cannot draw any
inferences about cause when performing a correlation. After all, your age increase does not
cause your sister’s age to increase; neither does her growing older cause you to age!

Imperfect positive relationships

Imagine that we have a number of students whom we have measured on IQ and percentage
marks in an exam. We want to see whether there is a relationship between 1Q and exam marks.
This does not mean that we are saying I1Q causes students’ exam marks; nor does it mean that
the exam marks they achieved somehow had an effect on their IQ. Both high (or low) IQ and
high (or low) exam marks could have been ‘caused’ by all sorts of factors — crammer courses,
IQ practice tests, motivation, to mention just a few.

We decide to allot IQ to the vertical axis (y) and exam marks to the horizontal axis (x). Each
student has two scores, an IQ score and an exam mark. However, each student contributes only
one ‘point’ on the scattergram, as you can see in Figure 6.2.
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6.1.6

6.1.7
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Figure 6.2 Scattergram of IQ and exam marks

You can see from this scattergram that high 1Qs tend to be associated with high exam scores,
and low 1Q scores tend to be associated with low exam scores. Of course, in this instance the
correlation is not perfect. But the trend is there, and that is what is important. That is, although
the dots do not fall on a straight line, this is still a positive linear relationship because they form
a discernible pattern going from the bottom left-hand corner to the top right-hand corner.

Activity 6.1

Try to think of some bivariate positive relationships. Are your examples likely to be
perfect relationships? Discuss your examples with others. Do you agree with each
other on whether your examples are good ones?

Perfect negative relationships

Again, because this relationship is perfect, the points on the scattergram would fall on a straight
line. Each time x increases by a certain amount, y decreases by a certain, constant, amount.

Imagine a vending machine, selling coffee. Each drink costs £1.00. Assume that at the begin-
ning of the day, the machine is filled with just ten paper cups. Assuming, of course, that the
vending machine works as it should (that is, the machine accepts your money, the cup actually
descends properly, the money stays in, it gives you the right change, etc.) then each time some-
one puts in £1.00, a cup is ejected (and hopefully filled with coffee), and one fewer cup remains.
This can be seen in Figure 6.3.

As you can see, with a perfect negative linear relationship the dots still fall on a straight line,
but this time they go from the top left-hand corner down to the bottom right-hand corner.

Imperfect negative relationships

With an imperfect negative linear relationship the dots do not fall on a straight line, but they
still form a discernible pattern going from the top left-hand corner down to the bottom right-
hand corner. For example, suppose we had collected data on attendances at cricket matches and
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Figure 6.4 Scattergram of attendance at cricket matches and rainfall

the amount of rainfall. The resulting scattergram might look something like Figure 6.4.
Generally, the trend is for attendance at cricket matches to be lower when rainfall is higher.

6.1.8 Non-linear relationships

Note that, if a relationship is not statistically significant, it may not be appropriate to infer that
there is no relationship between the two variables. This is because, as we have said before, a cor-
relational analysis tests to see whether there is a linear relationship. Some relationships are not
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linear. An example of such a relationship is that between arousal and performance. Although we
would expect a certain level of arousal to improve sports performance, too much arousal could
lead to a detriment in performance. Such a relation is described by the Yerkes—Dodson law (Yerkes
and Dodson, 1908). This law predicts an inverted curvilinear relationship between arousal and
performance. At low levels of arousal, performance (e.g. athletic performance) will be lower than
if arousal was a bit higher. There is an ‘optimum’ level of arousal, at which performance will be
highest. Beyond that, arousal actually decreases performance. This can be represented as shown
in Figure 6.5.

The same relationship can be represented by the scattergram in Figure 6.6, which shows a
curvilinear relationship: that is, x increases with y up to a certain extent, and then decreases
with y. The point we are trying to make is that here there is undoubtedly a relationship between
x and y, but the correlation coefficient would not be statistically significant because there is
not a linear (straight-line) relationship. For this reason, you should really always look at a scat-
tergram before you carry out your analysis, to make sure that your variables are not related in
this way, because, if they are, there is not much point in using the techniques we are describing
in this chapter.



6.1.9

CHAPTER 6 Correlational analysis: Pearson’sr 181

Activity 6.2

Which is the most sensible conclusion? The correlation between beginning salary and
current salary is:
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(a) Negative
(b) Positive
(c) Zerov

The strength or magnitude of the relationship

The strength of a linear relationship between the two variables is measured by a statistic called
the correlation coefficient, also known as 7, which varies from 0 to —1, and from 0 to +1. There
are, in fact, several types of correlational test. The most widely used are Pearson’s » (named
after Karl Pearson, who devised the test) and Spearman’s rho (Eta> and Cramer’s V are two we
mention in passing). The full name of Pearson’s  is Pearson’s product moment correlation; this
is a parametric test and the one we will be discussing in this chapter. You will remember that,
in order to use a parametric test, we must meet certain assumptions (see section 5.12). The most
important assumption is that data are drawn from a normally distributed population. If you
have large numbers of participants, this assumption is likely to be met. If you have reason to
believe that this is not the case, you should use the non-parametric equivalent of Pearson’s r,
which is called Spearman’s rho (see section 16.1).

In Figure 6.1 above, the relationship is represented by +1: plus because the relationship is
positive, and 1 because the relationship is perfect. In Figure 6.3 above, the relationship is —1:
minus because the relationship is negative, and 1 because the relationship is perfect.

Remember: +1 = perfect positive relationship
—1 = perfect negative relationship

Figure 6.7 shows you the various strengths of the correlation coefficients.

Figure 6.7 puts over the idea that —1 is just as strong as + 1. Just because a relationship is
negative does not mean that it is less important, or less strong, than a positive one. As we have
said before (but repetition helps), a positive relationship simply means that high scores on x
tend to go with high scores on y, and low scores on x tend to go with low scores on y, whereas
a negative relationship means that high scores on x tend to go with low scores on y.
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\_

Figure 6.7 lllustration of the strength of positive and negative correlation coefficients

You can see that we have assigned verbal labels to the numbers — these are only guides.
A correlation of 0.9 is a strong one. Obviously the nearer to 1 (+ or —) a correlation coefficient
is, the stronger the relationship. The nearer to 0 (meaning no relationship), the weaker the
correlation. Correlations of 0.4 to 0.6 are moderate. The correlation coefficient measures how
closely the dots cluster together.

Activity 6.3

A correlation coefficient of +0.2 is considered:

(a) Zero

(b) Weak

(c) Moderate
(d) Strong

The scattergrams in Figures 6.8 and 6.9 give you some idea of what the correlation
coefficients mean.

Walsh et al. (2009) used correlational analyses in order to see whether attachment anxiety
and attachment avoidance were related to mindfulness. Mindfulness is a state of mind whereby
a person attends to the present (rather than the past or the future). A person who is mindful tries
to ‘live in the present’ and focus on the immediate experience. This should reduce worry and
rumination.

The scattergram in Figure 6.8 shows that as attachment anxiety increases, attachment
avoidance increases. The correlation is weak—moderate.
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Figure 6.8 Scattergram showing the correlation between attachment anxiety and attachment

avoidance (n =127,r=+0.363, p < 0.001
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Figure 6.9 Scattergram showing the correlation between trait anxiety and mindfulness

(n=132,r=—0.542, p <0.001)

The correlation between trait anxiety and mindfulness shows that there is a moderate negative
association between trait anxiety and mindfulness (see Figure 6.9).

If a correlation is zero, the dots may appear to be random, and there is no discernible pattern.
Thus there is no relationship between x and y.
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Figure 6.10 Scattergram showing the correlation between parental nurturance (mother) and

openness (n =136, r= +0.080)

Figure 6.10 shows that there is no association between parental nurturance (mother) and
openness (n = 136; » = 0.080; p = 0.355).

Data correlating (n = 136; r = +0.473; p <0.001) scores for parental nurturance (mother)
and parental nurturance (father) are represented in Figure 6.11. There is a moderately strong
positive relationship between these two variables.
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Figure 6.11 Scattergram showing the correlation between mother’s nurturance and father’s

nurturance (n = 136; r= +0.473)
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There is a moderate negative association between trait anxiety and attentional control and
(n=136; r=—0.445; p <0.001) (see Figure 6.12).
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Figure 6.12 Scattergram showing the correlation between attentional control and trait anxiety
(n=136; r=—0.445)

Activity 6.4

Have a look at the following scattergrams. Consider whether, just by looking at them,
you can tell:

(a) The direction of the relationship (positive, negative or zero)
(b) The magnitude of the relationship (perfect, strong, weak or zero)

It is sometimes difficult to tell - which is when a test statistic like Pearson’s r comes in handy!
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Think about this. Does going to church stop you getting pregnant?

There are about 118,000 teenage pregnancies a year, and half of all single parents are under
25. The UK has the highest divorce rate in Europe and the most teenage pregnancies, though
other countries are coming up fast. The only reason detectable by statistics is connected to
church-going. Britain’s attendance figures began to drop before other countries, and every-
where as church attendance falls, divorce and single parenthood rise.

(Polly Toynbee, Radio Times, 20-26 March 1993)

Let’s look at a perfect relationship again (Figure 6.13). Imagine that this represents the
relationship between the scores on two tests, Test 1 and Test 2. The fact that this is a perfect
correlation means that the relative position of the participants is exactly the same for each test.
In other words, if Sharmini has the top score on Test 1 (in the above example it is 23) she will
also have scored the top score on Test 2 (130). Conversely, the participant who has the lowest
score on Test 1 will also have the lowest score on Test 2.

Now, as we said previously, perfect relationships are rare, but the same reasoning applies
with imperfect relationships. That is, in order to calculate a correlation coefficient it is necessary
to relate the relative position of each participant on one variable to their relative position on the
second variable.



Figure 6.13 Perfect linear relationship

Test 2

y
140 1

120 A

100 A

80 A

60 A

40 A

20 A

CHAPTER 6 Correlational analysis: Pearson’s r

20
Test 1

Example: temperature and ice-cream sales

T X
30

Sharmini’s
score

187

Let’s imagine that we have carried out a correlational analysis on a number of ice-cream cones bought
from a van outside your college, and temperature. We ask the vendor, called Sellalot, how many ice-
cream cones have been sold each day. We take the measurements over 20 days. Now we need to know
whether the number of ice-cream cones sold varies along with the temperature. We would expect that,
according to previous literature, ice-cream sales would increase as temperature rises. This is a one-tailed

hypothesis. The data are given in Table 6.1.

Now is it quite easy to see how to plot scattergrams by hand, although when you have many scores
this could be tedious. Naturally, SPSS performs this task better than we can! (Instructions for how to
obtain scattergrams were given to you in section 3.5.)

Table 6.1 Data for the number of ice-cream comes sold on days with different temperatures

Ice-cream cones sold

1000
950
870
890
886
900
560
550
400

500

26
22
19
20
19
21
17
16
12

13

Temperature

Ice-cream cones sold

550
600
700
750
800
850
950
1050
1000

1000

Temperature

14
19
21
22
22
24
22
26
26

26
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From the scattergram in Figure 6.14 we can see that temperature and number of ice-cream cones
sold are related. It is obviously not a perfect correlation, but just by looking at the data we can see that
it is positive.
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Figure 6.14 Scatterplot of the ice-cream cone data

SPSS: bivariate correlations — Pearson’s r

Now we want to know the value of the correlation coefficient and the associated probability, so again we
turn to SPSS. Our data have already been entered into SPSS, so now we select Analyze, Correlate, Bivariate:

Beanate 1801 SPES Seaabes Processar is ready Linicode 0N
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r

This brings you to the following dialogue box:
B ; Move
@ Bivariate Correlations mriables Of
Variables: interest to the
& Ice cream (iceCream] Variablesbox

i Temperature [Temp.

(<)

Corelation Coeflicients
W/ Pearson [ Kendall's tau-b [ | Spearman

Test of Significance
@ Two-tallea O One-aijed

¥ Elag significant corelalions

L

Move both variables from the left-hand side to the right-hand side. Make sure the Pearson and One-
tailed options are selected. Then click on OK. This will obtain your results.
Let’s look at the output from SPSS. The important results for your write-ups are:

* the correlation coefficient r; this shows us how strongly our variables relate to each other, and in
what direction

* the associated probability level, letting us know the likelihood of our correlation coefficient arising
by sampling error, assuming the null hypothesis to be true.

Results are given in the form of a matrix. A matrix is simply a set of numbers arranged in rows and
columns. The correlation matrix is an example of a square symmetric matrix. You should find that each
variable correlates perfectly with itself (otherwise something is amiss!). You will also note that results
are given twice: each half of the matrix is a mirror image of itself. This means you have to look at one
half (of the diagonal) only. SPSS also lets us know the number of pairs for each variable. You can see
from the output below that the point where our variable ICECREAM meets our variable TEMP gives us
the information we need. The first line gives us the correlation coefficient - it is usual for us to give this
correct to two decimal places. The achieved significance level is given on the second line, and the third
line confirms how many pairs we have in the analysis. Remember that, when SPSS gives a row of zeros,
change the last zero to a 1 and use the <<sign (i.e. p < 0.001, n = 2(). Note that our correlation coef-
ficient is positive — as temperature rises, so does the sale of ice-creams.

The correlation coefficient (r) is given in the cell where
‘ice cream’ meets ‘temperature’, ie.r = +0.89

Correlations \

Ice cream Temperature

Ice cream Pearson Correlation 1 .’893**
Sig. (2-tailed) . .000

N 20 / 20

Temperature Pearson Correlation .893** 1
Sig. (2-tailed) .000 .

N 20 20

**_Correlation is significant at the 0.01 level (2-tailed).

This is the achieved significance level. Remember that, when SPSS gives a row
of zeros, change the last one to a ‘1" and use the <sign, i.e. p <.001

~
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( )
These results tell us that the sales of ice-cream cones are positively and strongly related to the
temperature. The textual part of our analysis might therefore read as follows:

The relationship between sales of ice-cream and outside temperature was found to be positively and
strongly related (r = +0.89, p < 0.001). Thus as temperature rises, so does the sale of ice-cream.

This is all we can say at the moment, but as the chapter progresses you will see that we can add to this.

—

Activity 6.5

Look at the following output from SPSS:

Correlations

Attachment | Attachment

anxiety avoidance | Mindfulness | Trait Anxiety age
Attachment anxiety Pearson Correlation 1 .353 =317 .310 211
Sig. (2-tailed) .000 .000 .000 .019
N 127 127 127 127 123
Attachment Pearson Correlation .353 1 —.247 223 129
avoidance Sig. (2-tailed) .000 .005 .012 155
N 127 127 127 127 123
Mindfulness Pearson Correlation -.317 -.247 1 -.328 -.083
Sig. (2-tailed) .000 .005 .000 .359
N 127 127 127 127 123
Trait Anxiety Pearson Correlation .310 223 -.328 1 .004
Sig. (2-tailed) .000 .012 .000 962
N 127 127 127 127 123
age Pearson Correlation 21 129 -.083 .004 1

Sig. (2-tailed) .019 155 .359 .962
N 123 123 123 123 123

Which association is the strongest?

(a) Attachment avoidance and attachment anxiety
(b) Mindfulness and trait anxiety
(c) Mindfulness and attachment anxiety

6.1.10 Variance explanation of the correlation coefficient

The correlation coefficient (r) is a ratio between the covariance (variance shared by the two
variables) and a measure of the separate variances.

By now you should have a good idea of what a correlation coefficient means. For instance,
if we tell you that two variables are associated at 0.9, you could probably draw the scattergram
pretty well. Similarly, if we tell you to draw a scattergram representing a 0.1 association, you
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could probably do that fairly accurately as well. But there is another way of visualising what these
coefficients mean, a way that will be very useful to you later on, when we go on to regression
analysis. Let’s take an example of number of hours of sunshine, and temperature (this example
originated from Alt, 1990). These two variables are positively associated: the more hours of
sunshine, the higher the temperature. When two variables are correlated, we say that they ‘share’
variance. For instance, the following circles represent sunshine hours and temperature.

Temperature

We have drawn these circles, representing sunshine and temperature, as if they are independent,
but they are not independent. They share a lot of variance. How much variance do they share?
The test statistic, a correlation coefficient, will give us the answer. We have already said that
the correlation coefficient goes from 0 to +1, and 0 to —1. By squaring the correlation coef-
ficient, you know how much variance, in percentage terms, the two variables share. Look at
Table 6.2.

Remember, negative correlations, when squared, give a positive answer. So —0.4 squared
(—0.4 X —0.4)=0.16. So 16% of the variance has been accounted for by a correlation of —0.4,
just the same as if the correlation is +0.4. If you have a correlation of 0.9, you have accounted
for (explained) 81% of the variance. A Venn diagram will make this clearer. If two variables
were perfectly correlated, they would not be independent at all. The two circles for x and y
would lie on top of each other, just as if you had two coins on top of each other:

=

Table 6.2 Table demonstrating the relationship between correlations and squared correlations

Correlation (r) Correlation squared (r?) Variance accounted for
0.0 0.0 0.00 (0%)
0.1 0.12 001 (1%)
0.2 0.22 0.04 (4%)
0.3 0.32 0.09 (9%)
0.4 0.42 0.16 (16%)
0.5 0.52 0.25 (25%)
0.6 0.62 0.36  (36%)
0.7 0.72 0.49 (49%)
0.8 0.8? 0.64 (64%)
0.9 0.92 0.81 (81%)

1.0 1.02 1.00  (100%)
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The two variables would correlate +1.00, and all the variability in the scores of one variable
could be accounted for by the variability in the scores of the other variable. Take sunshine
hours and temperature, which we can assume to be correlated 0.9 (81%). The two circles look
like this:

9.5% 81% 9.5%

Remember, if 81% is shared variance, then 19% is not shared: it is what is known as unique
variance —9.5% is unique to sunshine, and 9.5% is unique to temperature. If the shared variance
is significantly greater than the unique variances, » will be high. If the unique variances are
significantly greater than the shared variance, » will be low.

a measure of shared variance

a measure of the separate variances

The shaded part (81%) is the variance they share. In other words, 81% of the variation in
number of hours of sunshine can be explained by the variation in temperature. Conversely, 81%
of the variation in temperature can be accounted for by reference to the variation in number of
hours of sunshine —19% is ‘unexplained’: that is, the variation in scores must be due to other
factors as well.

Activity 6.6

Look at the scattergram below:
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Which is the most sensible conclusion? The two variables show a:

(a) Moderate positive correlation
(b) Moderate negative correlation
(c) Strong negative correlation
(d) Zero correlation
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9% (r?)

number of
rainfall — 45.5% people — 45.5%

Figure 6.15 Diagram illustrating the amount of shared variance between two variables

figures always
add up to 100%

r? = 49%

height, 25.5% weight, 25.5%

Figure 6.16 A further illustration of shared variance

Take the case of number of inches of rainfall and attendance at cricket matches. Here we
would expect a negative relationship: the more rain, the fewer people attending. Assume that
the relationship is —0.3. This means that 9% (—0.3 X —0.3 = +0.09) of the variance has been
explained (see Figure 6.15).

As another example (see Figure 6.16), assume that we measure and weigh a class of
schoolchildren, and that height and weight correlate by 0.7. How much of the variance has
been accounted for? We multiply 0.7 by 0.7 = 0.49 (49%): this means that nearly half of the
variation in the scores of height can be explained by the variation in weight. Conversely,
nearly half of the variation in weight can be accounted for by reference to the variation in
height.

This means, of course, that 51% is unexplained: that is, 51% is explainable by reference to
other factors, perhaps age, genetics and environmental factors. A correlation coefficient can
always be squared to give you the ‘variance explained’ (+ squared). Similarly, if you know 72,
you can use the square-root button on your calculator to give you the correlation coefficient,
r (although this will not tell you the direction of the relationship). You should be able to see
by this that a correlation of 0.4 is not twice as strong as a correlation of 0.2. A correlation of
0.4 means that 16% of the variance has been explained, whereas 0.2 means that only 4% has
been explained. So a correlation of 0.4 is, in fact, four times as strong as 0.2. A correlation
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coefficient is a good measure of effect size and can always be squared in order to see how
much of the variation in scores on one variable can be explained by reference to the other
variable.

Activity 6.7

When you are assessing the strength and significance of a correlation coefficient, it
is important to look at:

() The significance level

(b) The value of the correlation coefficient
(c) Both (a) and (b)

(d) Neither (a) nor (b)

There is a (perhaps fictitious!) correlation between amount of ice-cream eaten and feelings
of great happiness (+0.85). How much variation in the happiness scores can be explained by
the amount of ice-cream eaten? How much variance is left unexplained?

6.1.11 Statistical significance and psychological importance

In the past, some people were more concerned about ‘significance’ than about the size of the
correlation or the amount of variance explained. Sometimes people used to say that they had a
highly significant correlation: they remembered the probability value (for instance, 0.005) but
forgot the size of the correlation. The probability value means very little without reporting the
r value. The correlation coefficient tells you how well the variables are related, and the
probability value is the probability of that value occurring by sampling error.

So when you report your findings, report the correlation coefficient and think about whether
r is meaningful in your particular study, as well as the probability value. Do not use the
probability value on its own. Remember, statistical significance does not necessarily equal
psychological significance (see Chapters 5 and 8 for further information).

Example: ice-creams and temperature revisited

Now you know about variance explained, we can adjust the textual part of our results to include it. The
textual part of our analysis might now read as follows:

The sale of ice-cream cones was strongly associated with temperature; as temperature rises, so does
the sale of ice-creams. The r of 0.89 showed that 79% of the variation in ice-cream sales was
accounted for by the variation in the temperature. The associated probability level of p < .001
showed that such a result is highly unlikely to have arisen by sampling error alone.!

' This really means ‘by sampling error, assuming the null hypothesis to be true’. Although you probably won’t
want to say this in your lab reports, you should always bear in mind that this is what the probability value
means.
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Activity 6.8
Look at the following scattergram:
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This shows that the variables show a:

(a) Strong negative association
(b) Moderate positive association
(c) Moderate negative association

Example: cognitive function in people with chronic illness

A study was carried out in which correlations between cognitive measures and illness variables were
obtained. The measures were: IQ (both verbal and performance); a Stroop? score, duration of illness in
years and a depression measure. The hypotheses were two-tailed. Seventy participants provided data,
and the results were as shown in the table.

The first row gives the r values, the second line gives the associated probability values, and the third
gives the numbers of participants in each condition.

The textual part of your report might be written as follows:

As expected, verbal and performance 1Q were strongly and positively related and a moderate correla-
tion was found between duration of illness and depression. More interesting, however, was the find-
ing that depression was related to verbal IQ (r= —0.33,p = 0.006) but not performance 1Q
(r=—0.09, p = 0.44). Depression was also related to the Stroop measure - the more depressed the
participant was, the more incongruent their scores (r = 0.27, p = 0.022).

You can also obtain a matrix of scattergrams through SPSS (see Figure 6.17). At a first glance, this
looks confusing. However, it is interpreted in the same way as the correlational table above.

You really need to look at one half of the matrix only, as one half is a mirror image of the other. The
scattergram for any two variables is shown at the square where they meet. So follow an imaginary verti-
cal line upwards from ‘duration of illness’ and follow an imaginary horizontal line from ‘verbal IQ" and
this will result in the scattergram which plots ‘duration of illness” against ‘verbal 1Q".

% The traditional Stroop test involves colour words (red, blue, yellow, green) being written in either a congruent
colour (e.g. the word ‘red’ is printed in red ink) or an incongruent colour (e.g. the word ‘red’ is printed in blue
ink). Participants typically take longer to name colours in the incongruent condition. Taking the difference in
the reaction times between the two conditions gives the Stroop score reported in this study.
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Cognitive | Prospective |Retrospective
Depression | Anxiety failures mem. mem. |Fatigue
Depression Pearson Correlation 1 —.237* —.039 —.011 —.051 —.110
Sig. (2-tailed) .033 729 .920 .651 .327
N 81 81 81 81 81 81
Anxiety Pearson Correlation —.237* 1 —.225% —.169 —.234* 142
Sig. (2-tailed) .033 .043 131 .035 .205
N 81 81 81 81 81 81
Cognitive failures Pearson Correlation —.039 —.225* 1 .829** .807** 162
Sig. (2-tailed) 729 .043 .000 .000 147
N 81 81 81 81 81 81
Prospective Pearson Correlation —.011 —.169 .829** 1 .861** .258*
mem. Sig. (2-tailed) .920 A31 .000 .000 .020
N 81 81 81 81 81 81
Retrospective Pearson Correlation —.051 —.234* .807** .861** 1 .246*
mem. Sig. (2-tailed) .651 .035 .000 .000 .027
N 81 81 81 81 81 81
Fatigue Pearson Correlation —.110 142 162 .258* .246* 1
Sig. (2-tailed) .327 205 47 .020 .027
N 81 81 81 81 81 81
* Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).
depression oot | oBem | 0 S, | 13EEe | 0 B
e aue | .o | e | L
anxiety | eg.g° gda SUE, | fREs | ESHY | o
e a nggﬂuuu ] E:HEEE
cog.nltlve DEEEEBEEE DEEEEEEEEE
failures oHiEs o0REEe
8 R a0n
prospective DEEESEEEE “Dggggﬂg’ .
mem HEEEE °8 EEEEEE
L) :]
t i Dugug :““gﬂs
retrospective | “Egfgg°e® | ° = B.aEE
mem | ghelgih. | Rl
sBNEGRE° | - “ERE - AT
fatigue L g o g
depression  anxiety cognitive  prospective retrospective  fatigue
failures mem mem

Figure 6.17
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SPSS: obtaining a scattergram matrix

To obtain matrices, open up your data file, then select Graphs, Scatter:
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Move the variables that you wish to be included from the left-hand side of the dialogue box to the right
by using the button. Click OK.
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Columns:
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Press OK: this will obtain the matrices.

—

Example: 1Q and test scores

If you run a correlational analysis on several variables, you will obtain output such as that below, which
is in the form of a correlational matrix:

Correlations

iq mathemat score1 score2 score3

1Q Pearson Correlation 1.000 5741 .0641 .0143 1428
Sig. (1-tailed) . .002 .383 474 .253

N 24 24 24 24 24

mathemat | Pearson Correlation 5741 1.000 .0598 .0281 .2502
Sig. (1-tailed) .002 . .391 .448 119

N 24 24 24 24 24

score Pearson Correlation .0641 .0598 1.000 .9952 —-.2153
Sig. (1-tailed) .383 .391 . .000 156

N 24 24 24 24 24

score2 Pearson Correlation .0143 .0281 .9952 1.000 .2188
Sig. (1-tailed) 474 448 .000 . 152

N 24 24 24 24 24

score3 Pearson Correlation —.1428 -.2502 -.2153 -.2188 1.000
Sig. (1-tailed) .253 119 .156 .156 .

N 24 24 24 24 24
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Although we have correlated five variables with each other, we have only ten correlations to look at.
This is because we ignore the correlations along the diagonals: these are r = 1.00, as each variable
correlates perfectly with itself. Also, each half is a mirror image of the other, so we need only look at
one half. We have emboldened the top half so that it is easier for you to see.

The output shows r and the exact probability of that particular correlation coefficient occurring by
sampling error, assuming the null hypothesis to be true. It also gives the number of pairs of observations.

In this example, the mathematics score has a positive association with 1Q (r = 0.57). This is a moderate
correlation, but the association has an exact probability of p = 0.002: that is, there is only a small chance
(0.2%) that this correlation has arisen by sampling error. The number of observations was 24.

If you look along the top row of the matrix, you will see that scorel, score2 and score3 have rs that
are all approximately zero. This means that there is no linear relationship between the variables, and
this is confirmed by the probability values.

If you now look at the point at which scorel meets score2, you will see that there is a very strong,
almost perfect relationship between them, showing that scorel and score2 must be measuring a very
similar ability (r = 0.9952). The associated probability level (o < 0.001 shows that this result is unlikely
to have arisen by sampling error, assuming the null hypothesis to be true. SPSS calculates the p-values
to a number of decimal places (the user can change the settings so that the values are given to four
decimal places as above (r = 0.9952) or to three decimal places (e.g. r = 0.995) or to any number). This
is the same with p-values. (Remember that, when SPSS gives p as p < 0.000, you need to change the
last zero to 1, and use the < sign as follows: p < 0.001)

6.1.12 Confidence intervals around r

Rosnow and Rosenthal (1996) give the procedure for constructing 95% confidence limits (two-
tailed p = 0.05) around r. The following is based on their text:

1. Consult a table to transform 7 to Fisher’s Z, (see Appendix 2).

2. Multiply 1/{(n — 3) by 1.96.

3. Find the lower limit of the confidence interval by subtracting the result in 2 above from the
figure in 1.

4. Find the upper limit of the confidence interval by adding the result of 2 above to the figure in 1.

5. Consult a similar table to transform the lower and upper Z, values back to r values.

So far we have been talking about the correlation between two variables, without taking any
other variables into account. This sort of correlation is called a zero-order correlation.

Example

Let’s try it for a correlation coefficient of +0.29 for an analysis with 133 people: thatis, r=0.29,n = 133.

1. We consult the table, which shows an r of 0.29 converts to Z, of 0.299.
2. Multiply 1//130 by 1.96.
Thus multiply 1 +11.40 by 1.96.
Thus multiply 0.0877 by 1.96 =0.1719.
. Subtract 0.1719 from 0.299 = 0.1271 - this is the Z, lower confidence limit.
. Add 0.1719 to 0.299 = 0.4709 - this is the Z, upper confidence limit.
5. Convert the figures in 3 and 4 to r (from Z,). From tables,
Z,=0.1271 —>r=0.126
Z,=0.4709 — r=0.440

Although the sample correlation coefficient is +0.29, we are 95% confident that the true population
correlation coefficient is somewhere between 0.126 and 0.440.

H W
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6.2

First- and second-order correlations

Take our example of height and weight being highly correlated in children. A moment’s thought
will show you that age is correlated with both of these variables. We could run a correlational
analysis on these three variables, to confirm this.

Correlations

HEIGHT WEIGHT AGE

HEIGHT Pearson Correlation 1.000 .834 970
Sig. (1-tailed) . .001 .000

N 10 10 10

WEIGHT Pearson Correlation .834 1.000 .802
Sig. (1-tailed) .001 . .003

N 10 10 10

AGE Pearson Correlation .970 .802 1.000
Sig. (1-tailed) .000 .003 .

N 10 10 10

** Correlation is significant at the 0.01 level (1-tailed).

We have emboldened the three correlation coefficients. You can see that all three variables are
strongly related to each other.

If we want to discover the association between height and weight without the effect of age,
we would have to find a sample of children who were all born on exactly the same day. If this
was not possible, we could get rid of the age effect by ‘partialling out’ (removing the influence
of) age, by statistical means. This is also known as ‘holding age constant’. We correlate height
and weight while getting rid of the effects of age; » would then be showing us the correlation
between height and weight when the influence of age is removed.

A Scotsman, G. Udny Yule (1871-1951), developed partial correlations. Conceptually, par-
tial correlations can be explained by looking at overlapping circles of variance. In the following
diagram you can see that the relationship between height and weight (with age not partialled

out) is a + b.
oa

This relates to the full correlation between height and weight. However, part of the relationship
between height and weight is due to age — the part represented by b alone. If the influence of
age were removed (the area b), the correlation between height and weight would be reduced, as
it would then be represented by a alone. This is a partial correlation — a correlation between two
variables, with one (in this case) partialled out.?

* This is a conceptual explanation, rather than a mathematical one. Thus mathematical accuracy is lost in the
interests of conceptual understanding. The actual formula for calculating partial correlations is given by
r? = al(a + height) or a/(a + weight).
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SPSS: partial correlations — Pearson’s r

It is easy in SPSS to partial out a variable. The instructions are as follows.
After entering your data, choose Analyze, Correlate, Partial:
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The following dialogue box is obtained:
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We move height and weight to the right-hand Variables box, and move the variable that we wish to
partial out (in this case, age) to the Controlling for box.

It would also be useful for us to know the value of the correlation coefficient for age and weight
without controlling for age, so that we can compare the two. This is achieved by selecting Options, which
gives you the dialogue box below. Check Zero-order correlations and press Continue.
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( )

F B
2 Partial Correlations: Options ﬂ

Rememberto

[] Means and standard deviations =

|3 :iZero-order correlations b ]|

r Missing Values
@ Exclude cases listwise

@) Exclude cases pairwise

This brings you back to the Partial Correlations dialogue box, where you can click OK.

When partial correlations are obtained, the degrees of freedom (normally N—2) are given instead of
N. As there are ten children in the study, the degrees of freedom for the correlation between height
and weight would be 8. However, note that for height and weight with age partialled out, the degrees
of freedom are reduced by 1.

There are two parts to the table. The first part gives the relationship between the variables, without
partialling out any other variable. The second part gives the correlation between height and weight
with age partialled out.

You can see that the correlation between height and weight has been reduced from 0.94 to 0.55
(correct to two decimal places). Thus we can see that, in this small sample, the association between
height and weight was partially due to age. If the correlation of 0.94 had not been reduced when we
partialled out age, this would have suggested that the association between height and weight is not
affected by age.

In this case, we have partialled out one variable. This is called a first-order correlation. If we partialled
out the effects of two variables, we would be performing a second-order correlation, and so on.

How does the program (the formula) do this? Basically, it correlates age with height. Then it correlates
age with weight. Then these figures are ‘removed’ from the height-weight correlation. This removes
the influence of age from the correlation coefficient.

—




Activity 6.9

Look at the following results, taken from a study by Arroll et al. (2012):

CHAPTER 6 Correlational analysis: Pearson’s r

(@) What is the zero-order correlation between Dizziness and Depression?
(b) What is the value of the correlation between Dizziness and Depression with lliness

Intrusiveness partialled out?
(c) What can you conclude from this?

Correlations

203

Control Variables Depression | Dizziness | lliness intrusiveness
-none-? Depression Correlation 1.000 .822 420
Significance (2-tailed) . .000 .000
df 0 72 72
Dizziness Correlation 522 1.000 212
Significance (2-tailed) .000 . .000
df 72 0 72
lliness intrusiveness Correlation 410 .002 1.000
Significance (2-tailed) .000 .000 .
df 72 72 0
total of illness  Depression Correlation 1.000 .330
intrusiveness Significance (2-tailed) . 001
df 0 71
Dizziness Correlation .339 1.000
Significance (2-tailed) .001 .
df 71 0

a. Cells contain zero-order (Pearson) correla

Example from the literature

tions.

Sexting as an intervention: relationship; satisfaction and motivation

considerations

Parker et al. (2013) wanted to research the effects of sexting (sending explicitly sexual texts) on
relationship satisfaction, and the conditions under which sexting occurs in adult romantic
relationships. Their sample was 86 people, 44 of whom were married or living together and 42 who
were in a dating relationship. They took various measures (see below) and carried out different

analyses.

For the purposes of this correlational analysis, however, we reproduce the paragraph below, which

relates to the correlational analysis (p.

Pearson correlation was used to determine the relation, if any, between age of the participant,

7):

relationship length, sexting, and sexual motivations. Some significant correlations emerged. Age of
the participant was negatively correlated with hedonism (r=—.35p=.03), intimacy

(r=—.33,p=.05), coping (r = —.35, p = .04), and insecurity (r = —.32, p = .05). Additionally, length

of the relationship was negatively correlated with sexting (r= —.25, p =.03).
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The authors also state (p. 9):

A few findings from the current investigation were surprising. Age of the participant was found to
be negatively correlated with hedonism, intimacy, coping, and insecurity. Additionally, the length of
the relationship was found to be negatively correlated with sexting behaviors. These results may be
explained in part by the relatively small sample size of the study.

Personal reflection

Dr Karina L. Allen, MPsych (Clinical), PhD

School of Psychology, The University of Western Australia, and Centre for Child
Health Research, Telethon Institute for Child Health Research, The University of
Western Australia

ARTICLE: Evaluation of a new measure of mood intolerance, the Tolerance of
Mood States Scale (TOMS): Psychometric properties and associations with eat-
ing disorder symptoms, in Eating Behaviors (Allen, McLean and Byrne, 2012).

Dr Allen says:

¢ C¢Mood intolerance (also referred to as distress intolerance) has received a considerable amount of
attention in the theoretical literature. In the eating disorder field, mood intolerance is cited as a possible
contributor to eating disorder symptoms and it is targeted in some forms of cognitive-behaviour ther-
apy for eating disorders. However, this theoretical attention has not been matched by empirical
research: very few studies have tested the hypothesised associations between mood intolerance and
eating disorder symptoms directly. When we set about addressing this, we were confronted with the
lack of empirically validated mood intolerance measures. This informed our decision to develop a new
measure of the construct. The final TOMS was the result of a process of item development, exploratory
factor analysis, confirmatory factor analysis, and correlational analysis. To our surprise, we failed to
provide support for the reliability or validity of a scale focusing on self-reported ability to tolerate
intense mood states. Self-reported tolerance of mood did not relate to level of emotional distress, dif-
ficulties with impulsivity, or the tendency to eat in response to emotions. Instead, our final measure
focuses on how an individual reacts to intense moods, particularly their tendency to react by engaging
in maladaptive behaviours. Scores on this final measure correlated moderately and significantly with
depressive, anxiety and stress symptoms, impulsivity, and emotional eating. We are now using the TOMS
in research on eating disorders, as well as research on alcohol misuse and perfectionism.9 9

Example from the literature

Evaluation of a new measure of mood intolerance, the Tolerance of Mood
States Scale (TOMS): Psychometric properties and associations with
eating disorder symptoms

Allen, McLean and Byrne (2012) carried out research on eating disorder symptoms in which they aimed
to validate a new measure, the Tolerance of Mood States (TOMS). There were two TOMS scales, which
relate to the different ways people react to a range of mood states, e.qg. sadness, anxiety, quilt etc. As
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part of this study, they examined relationships between TOMS scores and different measures of eating
disorder symptoms. Their sample consisted of 227 first-year psychology students.

Table 6.3 reproduces some of the variables they included in their table of correlations.

Table 6.3 Correlations between scores on the TOMS Scale 2 and those on the Emotional Eating Scale Il and
Depression Anxiety Stress Scales (DASS)

TOMS Scale 2

General Eating
Emotional Eating Scale-II:
Depression —.04 A45*
Anger —.14 .24*
Anxiety —.18 14
Positive effect .06 —.14
DASS
Depression 48* .34*
Anxiety 45* .26%
Stress 43 31
Eating Disorder Inventory 51 .23%

* Alpha was set at <.0023, in light of the multiple correlations

Notice that the researchers have decided to use a criterion p value of <.0023, instead of p < .05.
This practice reduces the likelihood of a Type | error, and is used when multiple comparisons are made
(see pp. 307-8).

Example from the literature

The influence of Facebook addiction on study habits of
college students.

Lacida, A. P and Murcia, ). V. B (2015) investigated whether there was a significant relationship between
Facebook addiction and the study habits of 252 students. The researchers used the Bergen Facebook
Addiction Scale (BFAS), which had six core features of addiction: salience, mood modification, tolerance,
withdrawal, conflict and relapse. They correlated these scales with five core features of the Study Habits
questionnaire. The five features were time-management, test-taking, note-taking, reading and writing.
(Electronic copy available at: http://ssrn.com/abstract=2617158)


http://ssrn.com/abstract=2617158
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The table of correlations is reproduced below:

Table 6.4 Correlation analysis showing the relationship between the elements of Facebook addiction
and study habits of college students

Study habits

Time management Test-taking Note-taking Reading Writing  Overall

Facebook —0.151* —0.206 —0.254* —0.161* 0.121* —0.230*
addiction

Salience —0.142 —0.124* —0.178* 0.063 —0.115 —0.161*
Tolerance 0.081 —0.191* —0.197* —0.107 —0.136* —0.183*
Mood —0.146* —0.193* —0.196* —0.140* —0.118* —0.204*
modification

Relapse —0.145* —0.161* —0.227* —0.153* 0.063 —0.193*
Withdrawal —0.125* —0.161* —0.215* —0.169* 0.098 —0.196*
Conflict —0.130* —0.208* —0.267* —0.169* 0.089 —0.222*
*p < 0.0

The authors also calculated an overall correlation coefficient between addiction to Facebook and
study habits.

Activity 6.10

Look at Table 6.4 above.

(a) Which of the six BFAS scales has the weakest correlation of the overall study
habits score with salience/tolerance/mood modfication/relapse/withdrawal/
conflict.

(b) Overall, which of the six BFAS scales has the strongest relationship with overall
study habits? Is the relationship positive or negative. State what this means.

(c) Complete the following:

The authors calculated an overall coefficient between Facebook addiction and
study habits (r=..... ), which shows that the higher the addiction to Face-
book, the..... (worse/better) the study habits of the students.

Example from the literature

Age-related differences in recognition memory for items and associations:
contribution of individual differences in working memory and metamemory

Bender and Raz (2012) carried out a study on memory (working memory and meta memory) and ageing.
They studied 100 healthy adults aged 21 to 79 to examine the role of working memory and beliefs about
memory strategies on differential relations of age with recognition of items and associations. As part of
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the study, participants were presented with a list of 26 word-pairs, followed by recognition testing.
Participants could try to memorise the word pairs by various techniques, some of which were ‘shallow’
(e.g. using rhyming, reading or saying the pairs in their mind, or simple repetition). Others used deep
encoding techniques (e.g. giving words a personal meaning, using visual imagery). Bender and Raz
measured the preference for these different techniques (memory strategy efficacy beliefs).

The authors produce the table below, which shows zero-order (full) correlations between the
variables under the diagonal, and partial correlations about the diagonal.

So, for instance, the full correlation between Association Hit Rate (Assoc.HR) and Working Memory
(WM) is shown below the diagonal, and is +.44. With age partialled out (above the diagonal) this
correlation reduces to +.33, which shows some of the relationship between Association Hit Rate and

Working Memory is due to age.

Table 6.5 Zero-order and partial correlations among age, working memory, strategy beliefs, and memory

Variable Age

Age -
WM —.48***
Shallow 15
strategy

Deep -.19
strategy

Item HR —.16
Assoc. HR —.36™*
Item FAR 21%
Association .26%*
FAR

Shallow Deep
.26* 17
- —.02

—.05 -

—.24 —.05

—.33" .30*
.08 —.16
.26 —.34*

Item  Association

HR HR
17 33%
—.22" —.31*
.02 35"
- 27
.30™* -
—.16 —.21*
—.09 —.40**

Item
FAR

—.03
.05

—.09

0.13
—.15

.24

Association
FAR

—.31*
.24*

—.31*

—.06
— 35
20

Note. Zero-order correlations are below the main diagonal; partial correlations (controlling for age) are below the
main diagonal. WM = working memory; HR = hit rate; FAR = false alarm rate.

*p<.05.**p<.01.** p< .00l

They concluded that maladaptive beliefs about memory combined with reduced cognitive function
accounted for the differences in memory which was commonly attributed to ageing. They say (p. 695):

Partialing out age from all variables resulted in minor reduction of correlations between two indices
of memory for associations and endorsement of deep and shallow encoding strategies (see Table
for partial correlations). Somewhat greater reduction was observed in associations between WM
and memory variables, although in that case, the correlations remain significant.

Thus, even with age variance removed, WM and beliefs about strategy effectiveness were indepen-
dently associated with recognition memory for word associations.
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6.3 Patterns of correlations

You should be able to see just by looking at a correlational matrix that patterns of correlations
arise. For instance, look at the following correlational matrix:

Two variables that

Variables relate to each other but

that ‘hang’ not to the others

Correlations

relationship | [ family other social satisfied had crying
with spouse relationships | relationships | felt sad with life spells
relationship with spouse 1.000 .672 .547 .321 .500 119
family relationships 1.000 .689 .236 .508 .072
other social relationships N 1.000 165 .584 —-.010
felt sad 1.000 224 442
less satisfied with life 1.000 =117
had crying spells 1.000

If you look carefully, you can see that the variables that share most variance with each other
have to do with quality of life — satisfaction with relationships and life. This is one pattern that
you can see emerging from the data. These variables have correlated with each other; they form
anatural ‘group’. The other two variables, ‘felt sad’ and ‘had crying spells’, also correlate with
each other (0.442) — but not with the other variables — so this shows a second pattern. So, from
these six variables, we can distinguish two distinct patterns. Obviously in this example, with so
few variables, the patterns are relatively easy to distinguish.

Psychologists who are designing or checking the properties of questionnaires make use of
this ‘patterning’ to cluster variables together into groups. This is useful where a questionnaire
has been designed to measure different aspects of, say, personality or quality of life. In the
example above, the variables in the first group are questions that made up a subscale of a quality
of life (QOL) questionnaire. A questionnaire might have several questions relating to ‘family
life’ (i.e. one subscale) and several others relating to ‘financial situation’ and perhaps another
that could be called ‘sex life’. The QOL questionnaire consists of these different subscales.

Using patterns of correlations to check that each set of questions ‘hangs together’ gives them
confidence in their questionnaires. Psychologists do not, of course, simply look at correlational
matrices. They use a technique called factor analysis, which effectively does the same thing,
only better! (This is discussed in greater detail in Chapter 14.)
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* If two variables are correlated, then they are not
independent - as the scores on one variable
change, scores on the other variable change in a
predictable way.

Correlations can be positive (high scores on x
tend to be associated with high scores on y, and
low scores on x tend to be associated with low
scores on y); negative (high scores on x are
associated with low scores on y); or zero (no
linear relationship).

Correlation coefficients range from —1 (perfect
negative correlation) through zero to +1
(perfect positive correlation).

* Pearson’s ris a parametric correlation

coefficient; r is a natural effect size; r can be
squared in order to give a measure of the
variance explained, expressed in percentage
terms.

Confidence limits can be constructed around
Pearson’s r. If the sample ris found to be 0.5, and
the confidence limits are 0.4 to 0.6 (95% limits),
we can be 95% confident that, in the population,
rwould be found to be within the range 0.4 to 0.6.
Looking at patterns of correlations within a

matrix can show us which variables ‘hang
together’ - this is important in psychometrics.

—

Discover the website at www.pearsoned.co.uk/dancey where you can test your knowledge with multiple
choice questions and activities, discover more about topics using the links to relevant websites, and
explore the interactive flowchart designed to help you find the right method of analysis.


http://www.pearsoned.co.uk/dancey
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SPSS exercise

Enter the following data into SPSS:

Case Summaries

QOL lliness intrusiveness STIGMA

1 48.00 5.00 26.00
2 99.00 1.00 30.00
3 78.00 2.00 23.00
4 47.00 4.00 43.00
5 87.00 3.00 48.00
6 68.00 2.00 20.00
7 94.00 1.00 39.00
8 66.00 6.00 40.00
9 70.00 3.00 25.00
10 67.00 3.00 28.00
11 62.00 4.00 64.00
12 85.00 2.00 33.00
13 78.00 2.00 33.00
14 87.00 3.00 34.00
15 53.00 7.00 73.00
16 79.00 1.00 20.00
17 62.00 5.00 37.00
18 79.00 6.00 20.00
19 83.00 2.00 40.00
20 86.00 2.00 21.00
Total N 20 20 20

Analyse the data:

1. Obtain a zero-order correlation between STIGMA and QOL.
2. Obtain a correlation between STIGMA and QOL, partialling out the effects of illness intrusiveness.
Use a one-tailed hypothesis.

—
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Multiple choice questions

1. If 36% of the variation in scores on y has been accounted for by scores on x, how much variance is
unexplained?

(a) 64%
(b) 36%
(c) 6%

(d) 0.6%

2. If two variables are totally independent, then the correlation between them is:

(a) —0.1
(b) —1.00
(¢) +1.00
(d) zero

Questions 3 to 5 relate to the following table of results:

Correlations

age mood qol family relationships

age Pearson Correlation 1.000 -0M1 —-.093 -.106
Sig. (2-tailed) . 912 .332 .264

N 113 112 111 112

mood Pearson Correlation -.011 1.000 463 —-.328
Sig. (2-tailed) 912 . .000 .000

N 112 118 115 17

QOL Pearson Correlation —-.093 463 1.000 —-.598
Sig. (2-tailed) .332 .000 . .000

N 111 115 116 115

family relationships Pearson Correlation —-.106 -.328 -.598 1.000
Sig. (2-tailed) 264 .000 .000 .

N 112 17 115 118

3. Of those below, which two variables show the strongest relationship?

(a) ‘QOL and ‘family relationships’
(b) ‘QOL and ‘age’

(¢) ‘mood’and ‘QOL

(d) ‘mood’and ‘age’

4. Which correlation is the weakest?

(a) ‘QOL and ‘age’

(b) ‘mood’ and ‘age’

(c) ‘family relationships’ and ‘age’
(d) ‘family relationships’ and ‘mood’

5. What is the achieved significance level of ‘family relationships’ and ‘mood’?

(a) <0.001
(b) =0.011
(c) =0912
(d) <0.01
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6. If you have a correlation coefficient of 0.5, how much variance is left unexplained?
(a) 25%
(b) 50%
(c) 75%
(d) None of the above
7. Someone who runs a correlational analysis says that an effect size of 64% has been found. What value
of r did they obtain?
(a) +0.8
(b) —0.8
(c) 0.8, but we cannot tell whether the value is positive or negative
(d) 0.04
8. If you have a correlation coefficient of 0.4, how much variance is left unexplained?
(a) 16%
(b) 40%
(c) 84%
(d) None of the above
9. Length of time working at the computer and poor eyesight are negatively correlated. What should we
conclude?
(a) People with poor eyesight are more likely to spend long hours working at the computer
(b) Working for long hours is likely to cause a deterioration of eyesight
(c) A particular type of personality may be more likely both to have poor eyesight and to work long
hours at the computer
(d) Any of the above are possible — correlation does not imply causation
10. Look at the following scattergram:
140
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Which is the most sensible answer? The variables show a correlation of:

(a) +1.00
(b) —1.00
c) +0.7
d) —0.7
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11. Look at the following scattergram:
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Which is the most sensible answer? The variables show a correlation of:

(a) —1.0
(b) —0.1
(c) +1.00
(d +0.1

Questions 12 and 13 relate to the following table of results:

Correlations

relationship family other social felt satisfied had crying
with spouse relationships relationships sad with life spells
relationship 1.000 672 547 .321 .500 119
with spouse
family 1.000 .689 .236 .508 .072
relationships
other social 1.000 165 .584 -.010
relationships
felt sad 1.000 224 442
satisfied 1.000 - 117
with life
had crying 1.000
spells

12. Of the following, which two variables show the strongest relationship?

(a) ‘family relationships’ and ‘relationship with spouse’
(b) ‘satisfied with life” and ‘family relationships’

(c) ‘family relationships’ and ‘other social relationships’
(d) ‘felt sad’ and ‘had crying spells’
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13. Which correlation is the weakest?

(a) ‘family relationships’ and ‘relationship with spouse’
(b) ‘family relationships’ and ‘other social relationships’
(c) ‘other social relationships’ and ‘had crying spells’
(d) ‘satisfied with life’ and ‘had crying spells’

14. A correlation of —0.5 has been found between height and weight in a group of schoolchildren. How
much of the variance in height can be explained by weight, in percentage terms?

(a) 5%
(b) 50%
(c) 25%
(d) None of the above

15. A researcher wishes to look at the relationship between motivation and examination performance.
However, she has reason to believe that IQ influences both of these variables and decides to obtain
partial correlations. Which of the following options is most sensible? She should perform a correlation
between:

(a) Motivation and IQ controlling for examination performance
(b) Motivation and examination performance controlling for IQ
(c) IQ and examination performance controlling for motivation
(d) None of the above options is sensible

Questions 16 and 17 relate to the following matrix. The cells have been labelled:

a b c d
Cell a1
symptoms
1
depression
2
intrusiveness
3
Scattergram
relating to
symptoms and
depression .
internal
beliefs 4
external
beliefs
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16. Which cell relates to the scattergram between ‘internal beliefs’ and ‘external beliefs’?

(a) dl
(b) d2
(c) d3
(d) d4

17. The cell ¢3 relates to:

(a) Intrusiveness and internal beliefs
(b) Intrusiveness and external beliefs
(¢) Intrusiveness and symptoms

(d) Depression and symptoms

18. A positive relationship means:

(a) An important relationship exists

(b) As scores on x rise, scores on y fall

(c) As scores on x rise, so do those on y
(d) High scores are frequent on x and y

19. If a correlation coefficient has an associated probability value of 0.02, then:

(a) Our hypothesis is obviously true

(b) Our results are important

(c) There is only a 2% chance that our results are due to sampling error, assuming the null hypothesis
to be true

(d) There is only a 2% chance that our results are correct

20. SPSS prints the following: p = .0000. How should this be reported?

(a) <0.001
(b) <0.0001
(c) >0.001
(d) >0.0001
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differences

o conditions:

CHAPTER OVERVIEW ‘\’

In the previous chapter, you were introduced to the idea of looking at how scores on one variable
related to scores on another variable, and for this analysis you learnt about the parametric statistical
test, Pearson’s r. In this chapter, however, we will be looking at the differences between scores in two
conditions. For instance, you could compare the memory ability of spider-phobics and non-phobics
to see how they differ. Such a design is called a between-participants, independent or unrelated
design, since one group of participants gives scores in one condition and a different group of people
gives scores in a different condition. On the other hand, one group of participants may perform in
both conditions: for instance, one group of participants learn both high-frequency words and low-
frequency words. They are then measured by the amount of recalled words. This is called a within-
participants, repeated measures or related design, because the same people perform in both
conditions. In this chapter we are going to discuss the analyses of two conditions by using the para-
metric test called the t-test. We are particularly interested in the differences between the two groups:
specifically, the difference between the mean of the two groups.

In this chapter we are going to show you how to analyse the data from such designs. Since the
t-test is a parametric test, you must remember that your data need to meet the normal assumptions
for parametric tests - that is, the data have been drawn from a population that is normally distributed.
We tend to assume this is the case when your sample data are normally distributed. If you have reason
to think this is not the case, then you need to use the non-parametric equivalents of the t-test
(described in Chapter 16).

To enable you to understand the tests presented in this chapter you will need to have an under-
standing of the following concepts:

the mean, standard deviation and standard error (Chapter 3)
z-scores and the normal distribution (Chapter 4)

assumptions underlying the use of parametric tests (Chapter 5)
probability distributions like the t-distribution (Chapter 5)

one- and two-tailed hypotheses (Chapter 5)

statistical significance (Chapter 5)

confidence intervals (Chapter 4).
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Analysis of two conditions

The analysis of two conditions includes the following:

1. Descriptive statistics, such as means or medians, and standard deviations; confidence inter-
vals around the mean of both groups separately, where this is appropriate; graphical illustra-
tions such as box and whisker plots and error bars.

2. Effect size — this is a measure of the degree to which differences in a dependent variable are

attributed to the independent variable.

. Confidence limits around the difference between the means.

4. Inferential tests — t-tests discover how likely it is that the difference between the conditions
could be attributable to sampling error, assuming the null hypothesis to be true.

W

Analysis of differences between two independent groups

Twenty-four people were involved in an experiment to determine whether background noise
(music, slamming of doors, people making coffee, etc.) affects short-term memory (recall of
words). Half of the sample were randomly allocated to the NOISE condition, and half to the
NO NOISE condition. The participants in the NOISE condition tried to memorise a list of 20
words in two minutes, while listening to pre-recorded noise through earphones. The other par-
ticipants wore earphones but heard no noise as they attempted to memorise the words. Imme-
diately after this, they were tested to see how many words they recalled. The numbers of words
recalled by each person in each condition are as shown in Table 7.1.

Table 7.1 Raw data for NOISE/NO NOISE conditions

NOISE NO NOISE

5.00 15.00
10.00 9.00
6.00 16.00
6.00 15.00
7.00 16.00
3.00 18.00
6.00 17.00
9.00 13.00
5.00 11.00
10.00 12.00
11.00 13.00
9.00 11.00

> =8r7° > =166

X=173b X=138
SD=2.5 sD=28

> represents the total of the column
® X represents the mean (average)



1.1.2

71.3

1714

CHAPTER 7 Analyses of differences between two conditions: the t-test 219

Table 7.2 Mean, standard deviation and 95% confidence limits for NOISE/NO NOISE conditions

NOISE NO NOISE
X SD 95% Cl X SD 95% Cl
7.3 2.5 5.7-8.8 13.8 2.8 12.1-15.6

Descriptive statistics for two-group design

The first thing to do is to obtain descriptive statistics through the Explore procedure in SPSS
(see section 3.3). You can then gain insight into the data by looking at graphical illustrations,
such as box and whisker plots and/or histograms. Summary statistics such as the means, stand-
ard deviations and confidence intervals are available through SPSS, which gives you the results
in the form of tables. (These statistics are also given as part of the output when you analyse the
data by using the t-test procedure.)

You can see in Table 7.2 that the means differ, in the expected direction. Participants in the
NO NOISE condition recalled a mean of 13.8 words, while those in the NOISE condition
recalled a mean of 7.3. People in the NO NOISE condition showed slightly more variability, as
indicated by the standard deviations.

Confidence limits around the mean

The means you have obtained, for your sample, are point estimates. These sample means are
the best estimates of the population means. If, however, we repeated the experiment many times,
we would find that the mean varied from experiment to experiment. For example, the sample
mean for the NO NOISE condition is 13.8. If we repeat the experiment, we might find that the
sample mean is 13.3. If you repeated the experiment many times, the best estimate of the popu-
lation mean would then be the mean of all the sample means. It should be obvious, however,
that our estimate could be slightly different from the real population mean difference: thus it
would be better, instead of giving a point estimate, to give a range. This is more realistic than
giving a point estimate.

The interval is bounded by a lower limit (12.1 in this case) and an upper limit (15.6 in the
above example). These are called confidence limits, and the interval that the limits enclose is
called the confidence interval. (You came across these in Chapter 4.) The confidence limits let
you know how confident you are that the population mean is within a certain interval: that is,
it is an interval estimate for the population (not just your sample).

Why are confidence limits important? When we carry out experiments or studies, we want
to be able to generalise from our particular sample to the population. We also want to let our
readers have a full and accurate picture of our results. Although our sample mean of the NOISE
condition is 7.3, telling the reader that ‘we are 95% confident that the population mean falls
between 5.7 and 8.8’ gives more information, and is more realistic, than simply reporting our
sample mean. Confidence intervals are being reported more and more in journal articles, so it
is important for you to be able to understand them.

Confidence intervals between NOISE and NO NOISE conditions

For the noise condition, we estimate (with 95% confidence) that the population mean is within
the range (interval) of 5.7 and 8.8. This can be represented graphically, as shown in
Figure 7.1.
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Figure 7.1 95% confidence limits for NOISE and NO NOISE conditions

Measure of effect

We can also take one (sample) mean from the other, to see how much they differ:
7.3 — 13.8=-6.5

This score on its own, however, tells us very little. If we converted this score to a standardised
score, it would be much more useful. The raw score (the original score) is converted into a
z-score. The z-score is a standardised score, giving a measure of effect which everyone can
easily understand. This measure of effect is called d; d measures the extent to which the two

means differ, in terms of standard deviations. This is how we calculate it:
X1 T X

"~ mean SD

This means that we take one mean away from the other (it does not matter which is which —
ignore the sign) and divide it by the mean standard deviation.

Step 1: find mean sample SD

SD of condition1 + SD of condition2  2.5+2.8
2 2

2.65
Step 2: find d

X1 —x 73-138 65
= =" =245
mean SD 2.65 2.65

In this case, our means differ by 2.45 standard deviations. This is a very large effect size, an
effect size not often found in psychological research.

The size of the effect

The effect size here, d, is expressed in standard deviations. Think of the normal curve of
distribution:
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Z-scores are standardised so that the mean is zero and the standard deviation is 1. You can
see that, if the means differed by 0.1, they would differ by only a tenth of a standard deviation.
That is quite small, on our scale of 0 to 3. If the means differed by 3 standard deviations, that
would be a lot, using the scale of 0 to 3. There is no hard and fast rule about what constitutes
small and large effects. Cohen (1988) gave the following guidelines:

Effect size d Percentage of overlap (%)
Small 0.2 85
Medium 0.5 67
Large 0.8 53

When there is little difference between our groups, the scores will overlap substantially. The
scores for the groups can be plotted separately: for instance, scores for the NOISE condition
can be plotted and will tend to be normally distributed. Scores for the NO NOISE condition

can also be plotted, and will tend to be normally distributed. If there is little difference between
them, the distributions will overlap:

If there is a large difference between the two groups, then the distributions will be further apart:

This is what is meant by the percentage of overlap. This measure of effect enables us to interpret
our findings in a meaningful way. The exact extent of the overlap is given in the table below:
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d Percentage of overlap (%)
0.1 92
0.2 85
0.3 79
0.4 73
0.5 67
0.6 62
0.7 57
0.8 53
09 48
1.0 45
1.1 42
1.2 37
1.3 35
14 32
1.5 29

Effect sizes are discussed further in Chapter 8.

Activity 7.1

Calculate the effect size of a two-group test using the following figures:

e Group 1: mean =50,SD =10
e Group 2: mean=70,SD=5

Inferential statistics: the t-test

The t-test is used when we have two conditions. The t-test assesses whether there is a statistically
significant difference between the means of the two conditions.

The independent t-test is used when the participants perform in only one of two conditions:
that is, an independent, between-participants or unrelated design. The related or paired t-test is
used when the participants perform in both conditions: that is, a related, within-participants or
repeated measures design.

The t-test was devised by William Gossett in 1908. Gossett worked for Guinness, whose
scientists were not allowed to publish results of their scientific work, so Gossett published
results using his new test under the name of Student, which is why, of course, you will see it
referred to in statistical books as Student’s t.

Look again at our raw data for the NOISE/NO NOISE condition (Table 7.3). The first thing
you should note is that participants vary within conditions. In the NOISE condition, the scores
range from 3 through to 11. In the NO NOISE condition, the scores range from 9 to 18 (this
within-participants variance can be thought of as variance within each column). You should recall
(from Chapter 3) that the standard deviation is a measure of variance — the larger the standard
deviation, the more the scores vary, within the condition. The participants differ between the
conditions too. You can see that scores of the NO NOISE condition, in general, are higher than
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Table 7.3 Raw data for NOISE/NO NOISE conditions

NOISE NO NOISE
5.00 15.00

10.00 9.00
6.00 16.00
6.00 15.00
700 16.00
3.00 18.00
6.00 17.00
9.00 13.00
5.00 11.00

10.00 12.00

11.00 13.00
9.00 11.00

> =87 > =166
X=13 X=138

SD=25 SD=28

those in the NOISE condition — the means confirm our visual experience of the data. This is the
between-participants variance, and can be thought of as the variance befween the columns.

We want to know whether the differences between the means of our groups are large enough
for us to be able to conclude that the differences are due to our independent variable — that is,
our NOISE/NO NOISE manipulation. This is accomplished by performing mathematical cal-
culations on our data. The formula for the t-test (not given here) results in a test statistic, which
we call ‘t’. The t-test is basically a ratio between a measure of the between-groups variance and
the within-groups variance. The larger the variance between the groups (columns), compared
with the variance within the groups (rows), the larger the t-value.

Once we have calculated the t-value, we (or rather the computer) can find the probability of
obtaining such a t-value by chance (sampling error) if the null hypothesis were true. That is, if
there were no differences between the NOISE condition and the NO NOISE condition, how
likely is it that our value of # would be found?

If there were no real differences between the NOISE and the NO NOISE conditions, and we
took repeated samples, most of the differences would fall around the zero mark (mean of NOISE
condition and mean of NO NOISE condition would be almost the same). Sometimes, however,
we would find a value larger than zero (maybe, for instance, participants in the NOISE condi-
tion would actually do better than participants in the NO NOISE condition). Sometimes we
would find a very large difference. These differences are often chance differences, which arise
just because we have used different samples each time — we say that these differences arise due
to sampling error. The differences that we might find if we took repeated samples can be plotted
as shown in Figure 7.2 (this is another example of a sampling distribution).

If there were no difference between the means of our particular experiment, it would be more
likely that our # would fall in the middle region than in one of the ‘tails’ of the sampling distribu-
tion. This is because we know, through the Central Limit Theorem, that most of our obtained
values will fall in the middle range (see section 4.4). It would be rare (but possible) for our ¢ to
be found in the extreme edges of the tail as shown above. That is, if we performed 100 repeated
NOISE/NO NOISE experiments, using different samples, in a small percentage of experiments
we would find a 7 that falls in the extreme edges of the distribution. If, in practice, we obtain a
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that is found in one of these tails, then we conclude that it is unlikely to have arisen purely by
sampling error. We can put a figure on this ‘unlikeliness’ as well. Each obtained t-value comes
with an exact associated probability level. If, for instance, our obtained t has an associated prob-
ability level of 0.03,' we can say that, assuming the null hypothesis to be true, a t-value such as
the one we obtained in our experiment would be likely to have arisen in only 3 occasions out of
100. Therefore we conclude that there is a difference between conditions that cannot be explained
by sampling error. As you have seen in Chapter 5, this is what is meant by ‘statistical signifi-
cance’. This does not necessarily mean that our finding is psychologically important, or that we
have found a large effect size. We have to take into consideration our descriptive statistics and
any measure of effect sizes, confidence intervals, etc. that we have also computed.

Activity 7.2

What does the independent t-test examine?

(a) The difference between the median values for each condition
(b) The differences between the variances for each condition
(c) The differences between the mean scores for each condition

Output for independent t-test

In our experiment, the dependent variable is the number of words correctly recalled, and the
independent variable is NOISE (either NOISE condition, or NO NOISE condition). All good
computer packages, such as SPSS, will give the following information:

® Means of the two conditions and the difference between them. What you want to know is
whether the difference between the two means is large enough to be important (not only
‘statistically significant’, which tells you the likelihood of your test statistic being obtained,
given that the null hypothesis is true).

e Confidence intervals: SPSS, using the t-test procedure, gives you confidence limits for the
difference between the means.” The difference between means, for your sample, is a point

! Often psychologists call this achieved significance level (ASL), and we use these terms interchangeably in
this book.

* It is more important for you to report the confidence interval for the difference between the means than it is
for you to report the confidence interval for both means separately.
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estimate. This sample mean difference is the best estimate of the population mean difference.
If, however, we repeated the experiment many times, we would find that the mean difference
varied from experiment to experiment. The best estimate of the population mean would then
be the mean of all these mean differences. It is obviously better to give an interval estimate,
as explained before. Confidence limits let you know how confident you are that the popula-
tion mean difference is within a certain interval. That is, it is an interval estimate for the
population (not just for your sample).

t-value: the higher the t-value, the more likely it is that the difference between groups is not
the result of sampling error. A negative value is just as important as a positive value. The
positive/negative direction depends on how you have coded the groups. For instance, we have
called condition 1 NOISE and condition 2 NO NOISE. This was obviously an arbitrary deci-
sion; we could just as well have called condition 1 NO NOISE and condition 2 NOISE — this
would result in exactly the same t-value, but it would have a different sign (plus or minus).

p-value: this is the probability of your obtained t-value having arisen by sampling variation,
or error, given that the null hypothesis is true. This means that your obtained ¢ is under an
area of the curve that is uncommon — by chance, you would not expect your obtained t-value
to fall in this area. The p-value shows you the likelihood of this arising by sampling error.
For instance, p = 0.001 means that there is only one chance in a thousand of this result aris-
ing from sampling error, given that the null hypothesis is true.

Degrees of freedom (DF): for most purposes and tests (but not all), degrees of freedom
roughly equate to sample size. For a related t-test, DF are always 1 less than the number of
participants. For an independent t-test, DF are (n — 1)+ (n — 1),’ so for a sample size of
20 (10 participants in each group) DF = 18 (i.e. 9 + 9). For a within-participants design with
sample size of 20, DF = 19. DF should always be reported in your laboratory reports or
projects, along with the t-value, p-value and confidence limits for the difference between
means. Degrees of freedom are usually reported in brackets, as follows: ¢ (87) = 0.78. This
means that the t-value was 0.78, and the degrees of freedom 87.

e Standard deviations: this gives you the standard deviation for your sample (see Chapter 3).
e Standard error of the mean (SEM): this is used in the construction of confidence intervals

(see Chapter 4).

Degrees of freedom

This is a mathematical term that is often used in formulae for our statistical tests. There are mathematical
definitions that are not useful for most psychologists, and there are working definitions: for example, DF
refers to the number of individual scores that can vary without changing the sample mean. Examples can
help illustrate the concept. For instance, if we ask you to choose two numbers at random, with no con-
straints, then you have two degrees of freedom. If we ask you to choose two numbers that must add up to
10, however, then once you have chosen the first number, e.g. 7, the other is fixed: it is 3, and you have
no choice in the matter. Thus the degrees of freedom are reduced to 1.

Let’s take a non-mathematical example. Imagine you are hosting an important dinner party and you need
to seat ten people; a knowledge of where the first nine sit will determine where the tenth person sits — you
would be free to decide where the first nine sit, and the tenth would be known, by a knowledge of the first
nine (DF, then, is 10 — 1 =9). Imagine now that you are hosting a very old-fashioned formal dinner party,
where you have five women and five men, and you need to sit each woman next to a man. In this case a
knowledge of where the first four pairs sit (eight people) leads to the last pair (a man and a woman) being
determined (DF, then, is 10 — 2 = 8).

® n is the number of participants in each group.
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This is because, as can be seen in our dinner party example, we are free to vary all the
numbers but one, in order to estimate the mean. The last number is determined by a knowl-
edge of the others. The formulae we use in calculations often incorporate this restriction.

Of course, psychologists are usually busy doing psychology, not going to dinner parties.
So a more useful way of thinking about degrees of freedom is to say that DF are the number
of observations made, minus the number of parameters which are estimated. When calculat-
ing statistical tests, we often have to ‘estimate’ figures. Once we have to estimate a mean,
we lose one degree of freedom. (This is why you often have to divide by n—1 rather than
n.) The more measures you have to estimate, the more you reduce your degrees of freedom.
DF is a result of both the number of participants in the analysis, and the number of variables.
It’s not easy to find a statistical textbook that explains DF well, or shows you the relevance
of DF. Dr Chong Ho Yu gives one of the best explanations of DF that we have seen, but
much of the explanation is based on concepts which you will learn in Chapter 12, so we
will be talking more about DF there. If you wish to hear and see Dr Chong Ho Yu’s Degrees
of Freedom tutorial on the web, the site address is given at the end of this chapter (Yu, 2003).

N

Activity 7.3

It is easy to become confused sometimes when psychologists use several different
names for the same thing. What are the alternative names for within-participants
designs? What are the alternative names for between-participants designs?

Assumptions to be met in using t-tests

The t-test is a parametric test, which means that certain conditions about the distribution of the
data need to be in force: that is, data should be drawn from a normally distributed population
of scores. We assume this is the case if our sample scores are normally distributed. You can tell
whether your data are skewed by looking at histograms. In the past, in order to be able to use a
t-test you would have been instructed to use interval data only. However, for many years now
psychologists have used t-tests for the analysis of data from Likert-type scales (where variables
have been rated on a scale of, say, 1 to 7).

The t-test is based on the normal curve of distribution. Thus, we assume that the scores of
our groups, or conditions, are each normally distributed. The larger the sample size, the more
likely you are to have a normal distribution. As long as your data are reasonably normally
distributed, you do not need to worry, but if they are severely skewed, you need to use a non-
parametric test (see Chapter 16).

At this stage, we recommend a simple eyeballing of the histograms for each variable (these
can be obtained from the SPSS Frequencies program). You should do this for each group sepa-
rately. Figures 7.3 to 7.6 are guidelines.

Remember that in using the t-test we compare a difference in means, and if our data are
skewed, the mean may not be the best measure of central tendency.

In the past, psychologists were advised to perform a t-test only when the variances between
the two groups were similar. This is because, in calculating part of the formula (for the t-test),
the variances for the two groups are added together and averaged. If the variances are very
unequal, the ‘average’ obtained will not be representative of either of the conditions. SPSS,
however, uses a slightly different method of calculating a t-value when the variances are
unequal, allowing you therefore to use the t-test under these conditions.

When we have different numbers of participants in the two groups, taking a simple average
of the two variances might be misleading because the formula would give the two groups equal
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weighting, when in fact one group might consist of more participants. In this case we would
use a weighted average. The weighted average for the sample (called the pooled variance esti-
mate) is used in order to obtain a more accurate estimate of the population variance.

If your data are extremely skewed and you have very small participant numbers, you will
need to consider a non-parametric test (see Chapter 16). This is because non-parametric tests
do not make assumptions about normality.

7.1.10 t-test for independent samples

Let’s use our example of the NOISE/NO NOISE experiment to go through the SPSS instruc-
tions and output for a t-test for independent samples.

SPSS: for an independent t-test

Open your datafile. First you should set up a file suitable for independent designs. You have been shown
how to do this in the SPSS section in Chapter 1, so please refer back to this.

Eée EMl Yew Dala  Jansfm  Anstie  DiecMaieliog  Graphs  UWdes  Addges  Window  Help

SR8l ed . |EERLAEGOS. S

Cuttom Tagies *
I Fep L Comears Usana * | [ means a vt e bt o vt
I ; | :: 1:: Geereral Liwas odel |l O Gampte T Tast
Swtacipng Lioear Mcels " | ndepandent Bamples T Test
] 100 60 | umeoucons 3
1 100 L | e o | I summany maepencers-sampies 1 Test
5 100 7.00 Ragrsia ) | i Eareatameles T Test
[3 1.00 300 it y |l ane way siovA.
7 1: :u F
8 1 ] sy
(] 100 500
0 108 wea | U
Scge

This opens the Independent-Samples T Test dialogue box, as follows:

Move the dependent
variable(s) over to the
. /{ Test Variable(s) box
{13 Independent-Samples 1 Test
TestVariable(s): ——
Bomn ] Choose Options
if required
*
W Grouping Variable: < Move the
baern —J || | independentvariable
{Dstue Groups | to the Grouping
oK | Pasle NWM Variable box
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This gives the Define Groups dialogue box:
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= | ot
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You then have to give the value you have assigned to the groups: that is, if you have coded women as
0 and men as 1, then sex (0, 1) is the correct format. In our example, however, our groups are coded as
1 and 2. Click on Continue. This brings you back to the previous dialogue box; you can then click on
Options. This gives you the following options box. It is here that you can change your confidence level,
from 95% to 90%, for instance.

Click on Continue, and then OK.
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The results will appear in the output window. Most outputs give you more information than you need;
at first glance, it might look like a jumble of numbers. However, you will soon learn to pick out what
really matters for your particular experiment or study. Some of the output will simply tell you what you
already know. For instance, in the first section of the output below we are given the following:

¢ the name of the two conditions

¢ the number of cases in each condition
\ J
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r

¢ the mean of each condition
¢ the standard deviation and standard error of the mean of the two conditions.

The above information can be scanned quite quickly; this information is already known to us. Once we
know what to disregard, our output is fairly easy to read. These are the group statistics that appear first
in the output:

Group Statistics
Group N Mean Std. Deviation Std. Error Mean
Score noise 12 7.2500 2.49089 .71906
no noise 12 13.8333 2.75791 79614

The next section of the output is what really interests us:

Independent Samples Test

Levene’s
Test for
Equality of
Variances t-test for Equality of Means
95% Confidence
Std. Interval of the
Sig. Mean Error Difference
F| Sig. t df | (2-tailed) | Difference | Difference
Lower Upper
SCORE | Equal A77| 678 |—6.137 22 .000 | —6.58333 1.07279 | —8.80817 | —4.35850
variances
assumed /
Equal —6.137 | 21.776 .000 | —6.58333 1.07279 | —8.80950 | —4.35717
variances
not assumed
|
This shows that the variances Usually we give exact This is the
are not significantly different probabilities. When SPSS difference
(p = 0.678) so we use the prints a row of zeros, however, between
equal variances assumed change the last figure to the means
part of the output, a'l'and use the
as indicated by SPSS 'p<<'sign. Thus p < 0.001

One of the things you will notice is that SPSS uses a test called Levene’s Test for Equality of Variances.
This is used to test whether the conditions have equal variances. Equal variances across conditions is
called ‘homogeneity of variance’. Some statistical tests such as the t-test assume that variances are
equal across groups or samples. Levene’s test can be used to verify that assumption. The t-test gives
two sets of results — one to use when we have met the assumption (i.e. variances are similar) and one
to use when we have failed to meet this assumption (i.e. variances are different). Levene’s test provides
us with an F-value, which you have not come across yet, but it is a test statistic just like t — in fact when
DF=1,t?=Fort=\/F.Soift= 3, then you know that this is equal to an F-value of 9. (You will come
across the F-test statistic later, in Chapter 10.)

Levene’s test is a test of homogeneity of variances that does not rely on the assumption of normality.
In making our decision as to whether we have met the assumption of equal variances, we need to look
at the p-value given alongside the F-value. Consistent with the traditional convention, we should con-
clude that our variances are different (unequal) if this p-value is less than 0.05. If the p-value is greater
than 0.05 then we assume that our variances are roughly equal. SPSS uses a criterion value of p <0.05
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( )
to decide whether the variances are equal. Obviously this decision is subject to the same constraints
outlined for hypothesis testing (in Chapter 5). For simplicity, however, we will adhere to the SPSS crite-
rion, as explained above.

The textual part of the results might be reported as follows:

Participants in the NOISE condition recalled fewer words (X=7.3 = 7.3, SD = 2.5) than in the NO
NOISE condition (X = 7.8, SD = 2.8). The mean difference between conditions was 6.58, which is a
large effect size (d = 2.45); the 95% confidence interval for the estimated population mean differ-
ence is between 4.36 and 8.81. An independent t-test revealed that, if the null hypothesis were true,
such a result would be highly unlikely to have arisen (t(22) =6.14; p < 0.001). It was therefore
concluded that noise affects short-term memory, at least in respect of recall of words.

Example: need for cognition

Some people spend a lot of time actively engaged in problem solving. Others do not. There are large
individual differences in people’s tendency to engage in and enjoy this ‘cognitive activity’. This individual
difference dimension is called need for cognition (NEEDCOG). In the following section of the output,
men and women were compared on this dimension. There were far more men in the study. The means
look similar, as do the standard deviation and the standard error of the mean.

Group Statistics

Men and women N Mean Std. Deviation Std. Error Mean
NEEDCOG Men 440 62.4886 9.942 AT4
Women 290 63.1586 8.484 498

Here is the next section of the output:

Independent Samples Test

Levene's
Test for
Equality of
Variances t-test for Equality of Means
95%
Confidence
Std. Interval
Sig. Mean Error of the
F | Sig. t df | (2-tailed) | Difference | Difference Difference
NEEDCOG | Equal —.94 728 .346 —.6700 710 | —2.064 724
variances
assumed
Equal 14.577 | .000 | —.97 | 631.39 .330 —.6700 .688 | —2.020 .680
variances
not / \
assumed
The variances here are significantly p = 0.33 - thus there is a 33% chance of these
different, i.e. not equal, so we use the results being obtained by sampling error alone,

‘equal variances not assumed’ row assuming the null hypothesis to be true
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You can see that the mean difference between conditions is 0.67. The variances between the two
groups differ significantly, so we use the ‘equal variances not assumed’ row. This shows a t-value of
—0.97. The confidence interval shows that we are 95% confident that the population mean difference
is between —2.02 and 0.68: in other words, a very large range. The confidence interval includes zero,
which means, if we repeat the study with a different sample, the women might score higher than the
men (as in this case, where the mean difference is —0.67), the men might score higher than the women,
or there might be absolutely no difference at all (zero). This is obviously not good enough for us, and
we have to conclude that the groups do not differ on NEEDCOG. This is borne out by the small t-value
(0.97) and the associated significance level of p = 0.33. This means that, assuming the null hypothesis
to be true, we have a 33% chance of finding the t-value of 0.97.

CAUTION! Remember that the minus sign when obtaining a ¢ is equivalent to a plus sign. In other words,
a t of, say, —5 is equivalent to a value of +5.

Example from the literature

The effect of deception on specific hand gestures

This study (Hillman, Vrij and Mann, 2012) comes under the area of Forensic Psychology, and focuses on
whether truth tellers (N = 20) and liars (N = 20) differ in the frequency of speech prompting and
rhythmic pulsing gestures. Speech prompting gestures occur when the person is trying to think of what
to say next. These gestures might accompany filler words such as ‘um’ or ‘so . .. ". Rhythmic pulsing
gestures are not linked to speech content itself, but flow with the pitch and tone of speech. The research-
ers state that these flowing movements can be described as fidgeting or fiddling with one’s own hands.

The study was complex and it is not possible to go into a lot of detail here. In order to understand
the textual explanation below, however, it is important to know the hypotheses that the researchers
wanted to test. These are (p. 339):

We expect liars to make more speech prompting movements than truth tellers (Hypothesis 1).
... we expect truth tellers to make more rhythmic pulsing gestures than liars (Hypothesis 2).

However, note that in the researchers’ explanation of the differences between liars and truth tellers,
they have given us a wealth of information: means, standard deviations, p values and, more importantly,
effect sizes (see Chapter 8).

In support of Hypothesis 1, liars (M = 4.32, SD = 6.77) used significantly more speech prompting
gestures than truth tellers (M = 0.97, SD = 2.31), t (23) = 2.09, p <.05 (one-tailed), d = .66. In align-
ment with Hypothesis 2, truth tellers (M = 9.99, SD = 13.34) made more rhythmic pulsing gestures
than liars (M = 5.24, SD = 7.4). The difference was not statistically significant, t (30) = 1.39, p =.087
(one-tailed) (p. 342).

You can see then, that Hypothesis 1 was confirmed. The groups differed by 0.66 of a standard devia-
tion, and that the difference was statistically significant at less than p <.05. Although the difference
between means in the statistics relating to Hypothesis 2 was not statistically significant at p <.05. (it
was .087), the authors tell us why they think the differences between the two groups are important:

However, since statistical power was low (.39), there is a risk of a Type Il error. In such cases, examin-
ing effect sizes becomes relevant. The effect size was moderate (d =.44), which means that the
difference between liars and truth tellers was meaningful (Cohen, 1988).

What the authors are really saying is that although the difference in means is not statistically signifi-
cant, the effect size is good enough for us to conclude that the difference is meaningful, especially as the
study is not likely to have a Type | error (concluding that there is a real finding when really there is not).
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Example from the literature

A comparative study on the attitudes and uses of music by adults with
visual impairments and those who are sighted

This study, carried out in South Korea by Hye Young Park et al. (2015), investigated attitudes towards,
and uses of, music among people with visual impairments compared with those who are sighted.

Sixty-three visually impaired and 74 sighted people completed a 30-question survey on music atti-
tudes and use. The researchers carried out independent t-tests to discover whether the visually impaired
participants differed significantly from the sighted participants on measures of ‘intrapersonal attitude’,
‘interpersonal attitude’ and ‘communal attitude’.

As part of the study, the authors state that, ‘Significant differences in attitudes toward music between
visually impaired and sighted participants were shown via a t-test. For total score of attitudes toward
music, the visually impaired participants demonstrated significantly higher (more positive) values than
sighted participants (t = 2.11, df = 135, p = .01). In the interpersonal (t = 1.74, df = 135, p = .04) and
communal (t=1.79, df = 135, p = .03) categqories, there were significant differences between the two
groups’ (p. 311).

71.11

Activity 7.4

The article above included some demographic characteristics of the participants. Look
at the characteristics and statistical information for ‘age’.
Look at the following information, then calculate the effect size for ‘age’.

Visually impaired Not visually impaired statistics
M SD m SD t p
31.00 6.96 28.01 5.68 1.058 0.29

Related t-test

The related t-test is also known as the paired t-test; these terms are interchangeable. The related
t-test is used when the same participants perform under both conditions (see earlier in the
chapter). The formula for this test is similar, not surprisingly, to the independent t-test. However,
the related t-test is more sensitive than the independent t-test. This is because each participant
performs in both conditions, and so each participant can be tested against him- or herself. If we
have 20 people in a related design (20 people taking part in both conditions), we would need
40 in an unrelated design (20 in each condition). So the formula for the related t-test takes into
account the fact that we are using the same participants. If you compare an independent and
related t-test using the same dataset, you will find that the related t-test gives a result with a
higher associated probability value — this is because the comparison of participants with them-
selves gives rise to a reduced within-participants variance, leading to a larger value of 7.

Imagine that we want to find out whether different types of visualisation help pain control.
To make it simple, assume there are two types of visualisation:

e imagine performing an exciting t-test (statistics condition)
e imagine lying on a sunny beach, drinking cocktails (beach condition).

Participants sit down, and are taken through the visualisation as they plunge their hands into ice-
cold water. Although we have not tried this, we are assured it is very painful. The dependent vari-
able is the number of seconds that our participants are able to keep their hands in the iced water.
Now, as we are running this as a within-participants design (because it is more sensitive), we
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cannot simply have the participants doing one condition, then the other (this might lead to order
effects, or it might be that no one returns for the second condition!). Therefore half the participants
do condition A, then condition B, and half do condition B, then A (see counterbalancing, Chap-
ter 1). Now some people might think that our hypothesis is one-tailed, because they might think
that visualising lying on a sunny beach would help with pain control more than thinking about
statistics. However, we advise you to determine whether your hypothesis is one- or two-tailed on
the basis of previous research, not just a hunch you have! Since there is no research on this topic
(as far as we know), we are going to have a two-tailed hypothesis. The data are shown in Table 7.4.

Table 7.4 Time (seconds) hands kept in water for each condition

Participant Statistics condition Beach condition
1 5 7
2 7 15
3 3 6
4 6
5 10 12
6 4 12
7 10
8 14
9 13

10 15 7

SPSS: two sampl