

Also by Mark Myers

A Smarter Way
to Learn Python

Mark Myers

Copyright © 2017 Mark Myers

All rights reserved, including the right to reproduce this book, or any portions of it, in any
form.

1.0

http://www.ASmarterWayToLearn.com

Digital book(s) (epub and mobi) produced by Booknook.biz.

http://www.ASmarterWayToLearn.com
http://Booknook.biz

Table of Contents

Learn it faster. Remember it longer.
How to use this book
The language you're learning here
1: print
2: Variables for Strings
3: Variables for Numbers
4: Math expressions: Familiar operators
5: Variable Names Legal and Illegal
6: Math expressions: Unfamiliar operators
7: Math expressions: Eliminating ambiguity
8: Concatenating text strings
9: if statements
10: Comparison operators
11: else and elif statements
12: Testing sets of conditions
13: if statements nested
14: Comments
15: Lists
16: Lists: Adding and changing elements
17: Lists: Taking slices out of them
18: Lists: Deleting and removing elements
19: Lists: popping elements
20: Tuples
21: for loops
22: for loops nested

23: Getting information from the user and converting strings and
numbers
24: Changing case
25: Dictionaries: What they are
26: Dictionaries: How to code one
27: Dictionaries: How to pick information out of them
28: Dictionaries: The versatility of keys and values
29: Dictionaries: Adding items
30: Dictionaries: Removing and changing items
31: Dictionaries: Looping through values
32: Dictionaries: Looping through keys
33: Dictionaries: Looping through key-value pairs
34: Creating a list of dictionaries
35: How to pick information out of a list of dictionaries
36: How to append a new dictionary to a list of dictionaries
37: Creating a dictionary that contains lists
38: How to get information out of a list within a dictionary
39: Creating a dictionary that contains a dictionary
40: How to get information out of a dictionary within another dictionary
41: Functions
42: Functions: Passing them information
43: Functions: Passing information to them a different way
44: Functions: Assigning a default value to a parameter
45: Functions: Mixing positional and keyword arguments
46: Functions: Dealing with an unknown number of arguments
47: Functions: Passing information back from them
48: Using functions as variables (which is what they really are)
49: Functions: Local vs. global variables
50: Functions within functions
51: While loops
52: While loops: Setting a flag

53: Classes
54: Classes: Starting to build the structure
55: Classes: A bit of housekeeping
56: Classes: Creating an instance
57: Classes: A little more complexity
58: Classes: Getting info out of instances
59: Classes: Building functions into them
60: Classes: Coding a method
61: Classes: Changing an attribute's value
62: Data files
63: Data files: Storing data
64: Data files: Retrieving data
65: Data files: Appending data
66: Modules
67: CSV files
68: CSV files: Reading them
69: CSV files: Picking information out of them
70: CSV files: Loading information into them. Part 1
71: CSV files: Loading information into them. Part 2
72: CSV files: Loading information into them. Part 3
73: CSV files: Appending rows to them.
74: How to save a Python list or dictionary in a file: JSON
75: How to retrieve a Python list or dictionary from a JSON file
76: Planning for things to go wrong
77: A more practical example of exception handling
Guide to the appendices

Appendix A: An easy way to run Python
Appendix B: How to install Python on your computer
Appendix C: How to run Python in the terminal
Appendix D: How to create a Python program that you can save
Appendix E: How to run a saved Python program in the terminal

Learn it faster.
Remember it longer.

If you embrace this method of learning, you’ll get the hang of Python in less
time than you might expect. And the knowledge will stick.

You’ll catch onto concepts quickly.
You’ll be less bored, and might even be excited. You’ll certainly be

motivated.
You’ll feel confident instead of frustrated.
You’ll remember the lessons long after you close the book.
Is all this too much for a book to promise? Yes, it is. Yet I can make these

promises and keep them, because this isn’t just a book. It’s a book plus almost a
thousand interactive online exercises.

You’re going to learn by doing. You'll read a chapter, then practice with the
exercises. That way, the knowledge gets embedded in your memory so you don't
forget it. Instant feedback corrects your mistakes like a one-on-one teacher.

I’ve done my best to write each chapter so it’s easy for anyone to
understand, but it’s the exercises that are going to turn you into a real Python
coder.

Cognitive research shows that reading alone doesn’t buy you much long-
term retention. Even if you read a book a second or even a third time, things
won’t improve much, according to research.

And forget highlighting or underlining. Marking up a book gives us the
illusion that we’re engaging with the material, but studies show that it’s an
exercise in self-deception. It doesn’t matter how much yellow you paint on the
pages, or how many times you review the highlighted material. By the time you
get to Chapter 50, you’ll have forgotten most of what you highlighted in
Chapter 1.

This all changes if you read less and do more—if you read a short passage
and then immediately put it into practice. Washington University researchers say
that being asked to retrieve information increases long-term retention by four

hundred percent. That may seem implausible, but by the time you finish this
book, I think you’ll believe it.

Practice also makes learning more interesting.
Trying to absorb long passages of technical material puts you to sleep and

kills your motivation. Ten minutes of reading followed by fifteen minutes of
challenging practice keeps you awake and spurs you on.

And it keeps you honest.
If you only read, it’s easy to kid yourself that you’re learning more than you

are. But when you’re challenged to produce the goods, there’s a moment of
truth. You know that you know—or that you don’t. When you find out that
you’re a little shaky on this point or that, you can review the material, then re-do
the exercise. That’s all it takes to master this book from beginning to end—and
to build a solid foundation of Python knowledge.

I’ve talked with many readers who say they thought they had a problem
understanding technical concepts. But what looked like a comprehension
problem was really a retention problem. If you get to Chapter 50 and everything
you studied in Chapter 1 has faded from memory, how can you understand
Chapter 50, which depends on your knowing Chapter 1 cold? The read-then-
practice approach embeds the concepts of each chapter in your long-term
memory, so you’re prepared to tackle material in later chapters that builds on
top of those concepts. When you’re able to remember what you read, you’ll find
that you learn Python quite readily.

I hope you enjoy this learning approach. And I hope you build on it to
become a terrific coder.

How to use this book

This isn't a book quite like any you've ever owned before, so a brief user
manual might be helpful.

Study, practice, then rest. If you're intent on mastering the
fundamentals of Python, as opposed to just getting a feel for the
language, work with this book and the online exercises in a 15-to-25-
minute session, then take a break. Study a chapter for 5 to 10 minutes.
Immediately go to the online link given at the end of each chapter and
code for 10 to 15 minutes, practicing the lesson until you've coded
everything correctly. Then take a walk.

Do the coding exercises on a physical keyboard. A mobile device
can be ideal for reading, but it's no way to code. Very, very few Web
developers would attempt to do their work on a phone. The same thing
goes for learning to code. Theoretically, most of the interactive
exercises could be done on a mobile device. But the idea seems so
perverse that I've disabled online practice on tablets, readers, and
phones.

If you have an authority problem, try to get over it. When you start
doing the exercises, you'll find that I can be a pain about insisting that
you get every little detail right. For example, if you omit spaces where
spaces belong, the program monitoring your work will tell you the code
isn't correct, even though it might still run perfectly. Do I insist on
having everything just so because I'm a control freak? No, it's because I
have to place a limit on harmless maverick behavior in order to
automate the exercises. If I were to grant you as much freedom as you
might like, creating the algorithms that check your work would be, for
me, a project of frightening proportions. Besides, learning to write
code with fastidious precision helps you learn to pay close attention to

details, a fundamental requirement for coding in any language.

Subscribe, temporarily, to my formatting biases. Current code
formatting is like seventeenth-century spelling. Everyone does it his
own way. There are no universally accepted standards. But the
algorithms that check your work when you do the interactive exercises
need standards. They can't grant you the latitude that a human teacher
could, because, let's face it, algorithms aren't that bright. So I've had to
settle on certain conventions. All of the conventions I teach are
embraced by a large segment of the coding community, so you'll be in
good company. But that doesn't mean you'll be married to my
formatting biases forever. When you start coding projects, you'll soon
develop your own opinions or join an organization that has a
stylebook. Until then, I'll ask you to make your code look like my code.

The language you're learning here

Python is a popular, 30-year-old general purpose programming language
created by Guido van Rossum. Compared with some other languages, it's
reasonably easy to learn, and it's relatively easy to read. Python is often used to
teach beginners the fundamentals of programming.

1
print

In Python, the command print tells the program to display words or numbers
on the screen. Here's a line of code that tells Python to display the words
“Hello, World!”

print("Hello, World!")

print is a keyword—that is, a word that has special meaning for Python. It
means, "Display what’s inside the parentheses." Note that print isn't
capitalized. If you capitalize it, the program won’t run.

The parentheses are a special requirement of Python, one that you'll soon
get used to. You'll be typing parentheses over and over again, in all kinds of
Python statements.

In coding, the quoted text in the line above—"Hello, World!"—is called a
text string or simply a string. The name makes sense: it's a string of characters.

When Python displays a string on the screen, the quotation marks don't
display. They’re only in your code to tell Python that it’s dealing with a string.

Note that the opening parenthesis is jammed up against the keyword print,
and the opening quotation mark is hugging the opening parenthesis. You could
space it out, writing...

print ("Hello, World!")

But I want you to learn the style conventions of Python, so I'll ask you to
omit spaces when it’s the conventional thing to do.

Find the interactive coding exercises for this chapter at:
http://www.ASmarterWayToLearn.com/python/1.html

http://www.ASmarterWayToLearn.com/js/1.html

2
Variables for Strings

Please memorize the following facts.

My name is Mark.

My nationality is U.S.

Now that you've memorized my name and nationality, I won't have to
repeat them again. If I say to you, "You probably know other people who have
my name," you'll know I'm referring to "Mark."

If I ask you whether my nationality is the same as yours, I won't have to ask,
"Is your nationality the same as U.S.?" I'll ask, "Is your nationality the same as
my nationality?" You'll remember that when I say "my nationality," I'm referring
to "U.S.", and you'll compare your nationality with "U.S.", even though I haven't
said "U.S." explicitly.

In these examples, the terms my name and my nationality work the same
way Python variables do. my name refers to a particular value, "Mark." In the
same way, a variable refers to a particular value. You could say that my name is
a variable that refers to the string "Mark."

A variable is created this way:

name = "Mark"

Now the variable name refers to the text string "Mark".
Note that it was my choice to call it name. I could have called it my_name,

xyz, lol, or something else. It's up to me how to name my variables, within
limits. More on those limits later.

With the string "Mark" assigned to the variable name, my Python code
doesn't have to specify "Mark" again. Whenever Python encounters name,

Python knows that it's a variable that refers to "Mark".
For example, if you write...

name = "Mark"
print(name)

…Python displays…

Mark

The value that a variable refers to can change.
Let's go back to the original examples, the facts I asked you to memorize.

These facts can change, and if they do, the terms my name and my nationality
will refer to new values.

I could go to court and change my name to Ace. Then my name is no longer
Mark. If I want you to address me correctly, I'll have to tell you that my name is
now Ace. After I tell you that, you'll know that my name doesn't refer to the
value it used to refer to (Mark), but refers to a new value (Ace).

If I acquire U.K. citizenship, my nationality is no longer U.S. It's U.K. If I
want you to know my nationality, I'll have to tell you that it is now U.K. After I
tell you that, you'll know that my nationality doesn't refer to the original value,
"U.S.", but now refers to a new value, U.K.

Python variables can also change.
If I code...

name = "Mark"

…name refers to "Mark". Then I come along later and code the line...

name = "Ace"

Before I coded the new line, if I asked Python to print name, it displayed...

Mark

But that was then.
Now if, having written…

name = "Ace"

…if I write…

print(name)

…Python displays...

Ace

A variable can have any number of values, but only one at a time.
Python variable names have no inherent meaning to Python.
In English, words have meaning. You can't use just any word to

communicate. I can say, "My name is Mark," but, if I want to be understood, I
can't say, "My floogle is Mark." That's nonsense.

But with variables, Python is blind to semantics. You can use just any word
(as long as it doesn't break the rules of variable-naming, which I'll cover later).
From Python's point of view...

floogle = "Mark"

...is just as good as...

name = "Mark"

If you write...

floogle = "Mark"

...then write…

print(floogle)

…Python displays...

Mark

Within limits, you can name variables anything you want, and Python won't
care.

lesson_author = "Mark"
guy_who_keeps_saying_his_own_name = "Mark"
x = "Mark"

Python's blindness to meaning notwithstanding, when it comes to variable
names, you'll want to give your variables meaningful names, because it'll help
you and other coders understand your code.

Again, the syntactic difference between variables and text strings is that
variables are never enclosed in quotes, and text strings are always enclosed in
quotes.

It's always...

last_name = "Smith"
city_of_origin = "New Orleans"
aussie_greeting = "g'Day"

If it's an alphabet letter or word, and it isn't enclosed in quotes, and it isn't a
keyword that has special meaning for Python, like print, it's a variable.

If it's some characters enclosed in quotes, it's a text string.
If you haven't noticed, let me point out the spaces between the variable and

the equal sign, and between the equal sign and the value.

nickname = "Bub"

These spaces are a style choice rather than a legal requirement. But I'll ask
you to include them in your code throughout the practice exercises.

In the last chapter you learned to write...

print("Hello, World!")

When the code executes, Python displays Hello World! on the screen.
But what if you wrote these two statements instead (the line numbers are

added automatically by the editing program; they're not part of the code):

1 thanx = "Thanks for your input!"
2 print(thanx)

Instead of placing a text string inside the parentheses of the print statement,
the code above first assigns the text string to a variable, thanx. Then it places
the variable, not the string, inside the parentheses. Because Python always
substitutes the value for the variable, Python displays—not the variable name
thanx—but the text to which it refers, "Thanks for your input!" Thanks for
your input! displays.

In the example above, notice that each statement is on a separate line.
I mentioned that you have to follow certain rules for naming variables. One

that I've already covered: You can never enclose a variable name in quotation
marks.

Here's a second rule: Variable names can't have spaces in them.
country of origin is not a legal variable name.
It has to be…
countryoforigin
…or, better for readability…
country_of_origin
I'll cover a few more rules for naming variables shortly.
Find the interactive coding exercises for this chapter at

http://www.ASmarterWayToLearn.com/python/2.html

http://www.ASmarterWayToLearn.com/python/2.html

3
Variables for Numbers

A string isn't the only thing you can assign to a variable. You can also assign a
number.

weight = 150

Having coded the statement above, whenever you write weight in your
code, Python knows you mean 150. You can use this variable in math
calculations.

If you ask Python to add 25 to weight...

weight + 25

...Python, remembering that weight refers to 150, will come up with the
sum 175.

Unlike a string, a number is not enclosed in quotes. That's how Python
knows it's a number that it can do math on and not a text string, like a ZIP
code, that it handles as text.

But then, since it's not enclosed in quotes, how does Python know it's not a
variable? Well, because a number can't be used as a variable name. If it's a
number, Python rejects it as a variable. So it must be a number.

If you enclose a number in quotation marks, it's a string. Python can't do
addition on it. It can do addition only on numbers not enclosed in quotes.

Now look at this code.

1 original_num = 23
2 new_num = original_num + 7

In the second statement in the code above, Python substitutes the number
23 when it encounters the variable original_num. It adds 7 to 23. And it
assigns the result, 30, to the variable new_num.

Python can also do a calculation made up of nothing but variables. For
example...

1 original_num = 23
2 num_to_be_added = 7
3 new_num = original_num + num_to_be_added

The variable new_num now has a value of 30.
A variable can be used in calculating its own new value.

1 original_num = 90
2 original_num = original_num + 10

The variable original_num now has a value of 100.
If you enclose a number in quotation marks and add 7...

1 original_num = "23"
2 new_num = original_num + 7

...it won't work, because Python can't sum a string and a number..
Note that a variable name can be the name of a number variable or a string

variable. From Python's point of view, there's nothing in a name that denotes
one kind of variable or another. In fact, a variable can start out as one type of
variable, then become another type of variable.

You could write…

your_age = "21"

…and the variable your_age refers to a string. You can't do math on it.
But then if you write…

your_age = 21

..the variable your_age no longer refers to a string. It refers to a number.
You can do math on it.

I've told you that a variable name can't be a number. But you can include
numbers in a variable name — as long as you don't begin the name with a
number. The statement...

1st_prime_number = 2

...is illegal, thanks to that initial 1 in the variable name.
But this variable name, where the 1 comes later in the name, is legal...

prime_number_that_comes1st = 2

In this chapter's examples, the numbers I assigned to variables were integers
— whole numbers like 2, 47, 0, and -5. You can also assign floats to variables—
numbers like 1.7, -.005, and 1.00009.

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/3.html

http://www.ASmarterWayToLearn.com/python/3.html

4
Math expressions: Familiar operators

You've already used Python to make some simple calculations, like 2 + 2.
The programming term for a calculation is math expression. Familiar operators

in math expressions are + (add), - (subtract), * (multiply), and / (divide).
As you've seen, instead of assigning a number to a variable…

popular_number = 4

…you can assign the result of a math expression to the variable…

popular_number = 2 + 2

Python makes the calculation 2 + 2 and assigns the result to the variable. In
the statement above, popular_number is assigned the sum of 2 + 2—the
number 4.

You can write:

print(2 + 2)

This displays 4 on the screen.
Here's a statement that subtracts 24 from 12, assigning the result, -12, to the

variable.

loss = 12 - 24

This one assigns the product of 3 times 12—the result is 36—to the
variable.

dozens = 3 * 12

This one assigns 12 divided by 4—the result is 3—to the variable.

popular_number = 12 / 4

In the next one, the float .075 is assigned to the variable num. Then the
integer 200 is added to the variable, and the sum, 200.075, is assigned to a
second variable, total. As usual, you can mix variables and numbers.

1 num = .075
2 total = num + 200

You can also do a calculation using an expression containing nothing but
variables.

1 num = 10
2 another_num = 1.5
3 sum_of_numbers = num + another_num

In the statement above, the variable sum_of_numbers winds up with a
value of 11.5.

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/4.html

http://www.ASmarterWayToLearn.com/python/4.html

5
Variable Names Legal and Illegal

You've already learned three rules about naming a variable:
1. You can't enclose it in quotation marks.
2. You can't have any spaces in it.
3. It can't be a number or begin with a number.
In addition, a variable can't be any of Python's reserved words, also known as

keywords—the special words that act as programming instructions, like print.
Here’s a list of them.

and
as
assert
break
class
continue
def
del
elif
else
except

False
finally
for
from
global
if
import
in
is
lambda
None
nonlocal

not
or
pass
print
raise
return
True
try
while
with
yield

You don't need to memorize the list. If you accidentally try to use one of the
reserved words as a variable name, Python will refuse it and tell you that you've
made a syntax error. However, it won't specify that it's a variable-naming error,
so keep this list in mind.

Here are the rest of the rules for naming variables:

A variable name can contain only lowercase letters, uppercase letters,
numbers, and underscores.

Though a variable name can't be any of Python's keywords, it can
contain any of those keywords.

Capital letters are fine, but be careful. Variable names are case-
sensitive. A rose with a lowercase r is not a Rose with an uppercase
R. If you assign the string "Floribundas" to the variable rose, and
then ask Python for the value assigned to Rose, you'll come up empty.

Python's governing body recommends breaking up multi-word
variables with underscores. That's what I'll ask you to do with your
own variable names. It'll make them more readable, and you'll be less
likely to get variables mixed up.

Examples:

user_response
user_response_time
user_response_time_limit

Make your variable names descriptive so it's easier to figure out what your
code means when you or someone else comes back to it three weeks or a year
from now. Generally, user_name is better than x, and fave_breed is
better than fav_brd, though the shorter names are perfectly legal. You should
balance readability with conciseness, though.
best_supporting_actress_in_a_drama_or_comedy is a model
of clarity, but may be too much for most of us to type or read. You might want
to shorten it.

Note: In this book and the exercises, I sometimes use variable names like x,
y, and z to simplify teaching points.

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/5.html

http://www.ASmarterWayToLearn.com/python/5.html

6
Math expressions: Unfamiliar operators

Now we come to a couple of operators that may be new to you.
Check this out:

whats_left_over = 10 % 3

% is the modulo operator. It divides one number by another number, but
doesn't give you the result of the division. It gives you the remainder after the
first number is divided by the second number. If you divide 10 by 3, the
remainder is 1. So in the example above, whats_left_over has a value of
1.

If one number divides evenly into another, the modulo statement assigns 0
to the variable, since there is no remainder. In the following statement, 0 is
assigned to the variable.

whats_left_over = 9 % 3

Here's a second operator.
Suppose you want to increase the value of a variable by 1. You could

write…

age = age + 1

The statement increases the value of the variable age by 1. If the variable
started off with a value of 54, for example, it now has a value of 55.

Here's a shorthand way of doing the same thing…

age += 1

Again, if the original value of age was 54, its new value is 55.
In the following code, age winds up with a value of 62.

age = 12
age += 50

You can use the same kind of shorthand for other operators, too.
In the following code, age winds up with a value of 10.

1 age = 12
2 age -= 2

In the following code, age winds up with a value of 36.

1 age = 12
2 age *= 3

Don't forget that you can always use a variable instead of a number. In the
following code, age winds up with a value of 15.

1 age = 12
2 amount_to_increment = 3
3 age += amount_to_increment

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/6.html

http://www.ASmarterWayToLearn.com/python/6.html

7
Math expressions: Eliminating

ambiguity

Complex arithmetic expressions can pose a problem, one that students face in
high school algebra. Look at this example and tell me what the value of
total_cost is.

total_cost = 1 + 3 * 4

The value of total_cost varies, depending on the order in which you do
the arithmetic. If you begin by adding 1 + 3, then multiply the sum by 4,
total_cost has a value of 16. But if you go the other way and start by
multiplying 3 by 4, then add 1 to the product, you get 13.

In Python, as in algebra, the ambiguity is cleared up by precedence rules. As
in algebra, the rule that applies here is that multiplication operations are
completed before addition operations. So total_cost has the value of 13.

But you don't have to memorize Python's complex precedence rules. You
can finesse the issue by using parentheses to eliminate ambiguity. Parentheses
override all the other precedence rules. They force Python to complete
operations enclosed by parentheses before completing any other operations.

When you use parentheses to make your intentions clear to Python, it also
makes your code easier to grasp, both for other coders and for you when you're
trying to understand your own code a year down the road. In this statement, the
parentheses tell Python to first multiply 3 by 4, then add 1. The result: 13.

total_cost = 1 + (3 * 4)

If I move the parentheses, the arithmetic is done in a different order. In this
next statement, the placement of the parentheses tells Python to first add 1 and

3, then multiply by 4. The result is 16.

total_cost = (1 + 3) * 4

Here's another example.

result_of_computation = (2 * 4) * 4 + 2

By placing the first multiplication operation inside parentheses, you've told
Python to do that operation first. But then what? Is it…

Multiply 2 by 4—that's 8—by 4—that's 32—then add 2 to it to get 34?

Or is it...

Multiply 2 by 4—that's 8—by the sum of 4 and 2—that's 6—to get 48?

The solution is more parentheses.
If you want the second multiplication to be done before the 2 is added, write

this...

result_of_computation = ((2 * 4) * 4) + 2

But if you want the product of 2 times 4 to be multiplied by the number you
get when you total 4 and 2, write this...

result_of_computation = (2 * 4) * (4 + 2)

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/7.html

http://www.ASmarterWayToLearn.com/python/7.html

8
Concatenating text strings

In Chapter 1 you learned to display a string on the screen, coding it this way.

print("Hello, World!")

In Chapter 2, you learned that you could use a variable to do the same thing
.

1 greeting = "Hello, World!"
2 print(greeting)

But suppose you wanted to break the greeting into two parts, and assign
each part to a separate variable, like this:

1 greeting = "Hello"
2 addressee = "World"

You tell Python to combine the two strings this way:

whole_greeting = greeting + addressee

It's called concatenation. All it takes is a plus sign.
Now, if you code…

print(whole_greeting)

…Python displays HelloWorld
That's not quite what we want, so let's add some more concatenation…

1 greeting = "Hello"
2 separators = ", "
3 addressee = "World"
4 punc = "!"
5 whole_greeting = greeting + separators + addressee
+ punc
6 print(whole_greeting)

Python displays Hello, World!
In the code above, I assigned the four parts of the whole greeting to four

different variables. Then I concatenated them and assigned the combination to
the variable whole_greeting.

Python is happy to concatenate strings as well as variables…

whole_greeting = "Hello, " + "World!"

…or a combination of variables and strings…

whole_greeting = "Hello" + separators + "World" +
punc

You don't have to assign the result of a concatenation to a variable. This
would work:

print("Hello, " + "World!")

So would this:

print(greeting + separators + addressee + punc)

…or this:

print("Hello" + separators + "World" + punc)

You can use the plus sign to sum numbers, and you can use it to
concatenate strings. But you can't use the plus sign to combine strings and
numbers. If you write this code, you get an error message:

print("The sum of 2 plus 2 is " + 4)

However, if you make that number a string, it'll work…

print("The sum of 2 plus 2 is " + "4")

Python displays The sum of 2 plus 2 is 4
Find the interactive coding exercises for this chapter at

http://www.ASmarterWayToLearn.com/python/8.html

http://www.ASmarterWayToLearn.com/python/8.html

9
if statements

Suppose you want to know whether the string assigned to the variable
species is "cat."

This is the code.

1 if species == "cat":
2 print("Yep, it's cat.")

If the string "cat" has been assigned to the variable species, Python
displays the message Yep, it's cat. If the string "cat" hasn't been assigned to the
variable species, nothing happens.

Let's break down the code.
It begins with the keyword if. Note that if is all lowercase. If you write

If instead of if, it won't work. You'll get an error message.
Note that it's two equal signs, ==, not one. One equal sign, =, can only be

used to assign a value to a variable, as in…

species = "cat"

Whenever you're testing whether one thing is the same as another, the
operator has to be ==. Otherwise, you'll get an error message.

The first line ends with a colon.

1 if species == "cat":

If the test passes—if the string "cat" has been assigned to the variable
species—you tell Python what to do. You put this on its own line, and you
indent the line one tab:

1 if species == "cat":
2 print("Yep, it's cat.")

You can make any number of things happen when the answer to the if
question is "yes." Each thing that happens gets its own line. And each line is
indented.

1 if species == "cat":
2 status = "ok"
3 kingdom = "animal"
4 print("Yep, it's cat.")

There are other things you can test, including numbers. It works the same
way…

1 if 2 + 2 == 4:
2 print("Everything makes sense.")

That test, of course, will always come out true, and the message will be
displayed.

Here's another one, that might not always come out true.

1 if number_of_husbands == 1:
2 print("So far so good.")

In Python, indents aren't just for pretty formatting. They have meaning for
Python. They aren't optional. In general, any lines of code that take their orders
from a line that ends in a colon are indented. Example:

1 if number_of_husbands == 1:
2 print("So far so good.")
3 print("Congratulations.")
4 print("All done")

In the code above, lines 2 and 3 execute only if the if test in line 1 passes.
Their execution is dependent on what happens in line 1, so they're indented.
Line 4 executes no matter what. It runs independently of line 1, so it isn't
indented.

What I'm saying here isn't strictly accurate. Later on you'll see some code
that doesn't quite fit what I'm saying. But it's a handy way to think of indents in
Python. As a rule of thumb: indent after a colon.

Find the interactive coding exercises for this chapter at:
http://www.ASmarterWayToLearn.com/python/9.html

http://www.ASmarterWayToLearn.com/python/9.html

10
Comparison operators

Let's talk a little more about ==. It's a type of comparison operator, specifically it's
the equality operator. As you learned in the last chapter, you use it to compare two
things to see if they're equal.

You can use the equality operator to compare a variable with a string, a
variable with a number, a variable with a math expression, or a variable with a
variable. And you can use the equality operator to compare various
combinations. All of the following are legal first lines in if statements:

if full_name == "Mark" + " " + "Myers":
if full_name == first_name + " " + "Myers":
if full_name == first_name + " " + last_name:
if total_cost == 81.50 + 135:
if total_cost == materials_cost + 135:
if total_cost == materials_cost + labor_cost:
if x + y == a - b:

When you're comparing strings, the equality operator is case-sensitive.
"Rose" does not equal "rose."

Another comparison operator, !=, is the opposite of ==. It means is not
equal to.

1 if your_ticket_number != 487208:
2 print("Better luck next time.")

Like ==, the not-equal operator can be used to compare numbers, strings,
variables, math expressions, and combinations.

Like ==, string comparisons using the not-equal operator are case-sensitive.
It's true that "Rose" != "rose".

Here are 4 more comparison operators, usually used to compare numbers.

> is greater than

< is less than

>= is greater than or equal to

<= is less than or equal to

In the examples below, all the conditions are true.

if 1 > 0:
if 0 < 1:
if 1 >= 0:
if 1 >= 1:
if 0 <= 1:
if 1 <= 1:

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/10.html

http://www.ASmarterWayToLearn.com/python/10.html

11
else and elif statements

The if statements you've coded so far have been all-or-nothing. If the condition
tested true, something happened. If the condition tested false, nothing
happened.

Often, you want something to happen either way. For example:

1 if species == "cat":
2 print("Yep, it's cat.")
3 if species != "cat":
4 print("Nope, not cat.")

In this example, we have two if statements, one testing for "cat," and
another testing for not-"cat". So all cases are covered, with one message or
another displaying, depending on what the value of the variable species is.

The code works, but it's more verbose than necessary, and a little nutty. If
the variable species isn't assigned "cat," then of course it's not "cat." So
there's no reason to test for not "cat." The following code is more concise, less
goofy, and more readable.

1 if species == "cat":
2 print("Yep, it's cat.")
3 else:
4 print("Nope, not cat.")

If the test passes—if the string "cat" has been assigned to the variable
species—the first message displays. If the test fails—if the string "cat" hasn't
been assigned to the variable species—the second message displays.

Things to notice:

The keyword else gets its own line and a colon at the end.
Statements that execute in the else case are indented.
As in the if case, any number of statements can execute in the else
case.

Finally, there's elif. It's short for else if. If no test has been successful yet,
an elif tries something else.

1 if donut_condition == "fresh":
2 buy_score = 10
3 elif donut_price == "low":
4 buy_score = 5
5 else:
6 buy_score = 0

In the example above, if donuts are fresh, the score is 10, and Python stops
testing. If they aren't fresh (elif), Python takes the next step, testing for a low
price. If the test passes, the score is 5. If that test too fails (else), the score is
0.

You can have any number of elif statements. Each one tries a new test
when all the tests above it have failed. If any elif test succeeds, Python
executes any statements tied to it, and skips any tests that come afterward.

Since an else statement is a catchall, you would never have more than one
of them. It always comes last, stipulating what happens if all tests have failed.

In the example above, we're looking for only one test to pass. If donuts are
fresh, we don't do a second test, for price. The elif code runs only if the first
test fails. But sometimes you don't want to stop testing after one test passes.
Then you stick with if…

1 buy_score = 0
2 if donut_condition == "fresh":
3 buy_score += 10
4 if donut_filling == "chocolate":
5 buy_score += 5
6 if donut_price == "reasonable":
7 buy_score += 7

The code assigns an intial value of 0 to the variable buy_score. Then it
makes three tests. Each test that passes increases the value of buy_score. If
no test passes, buy_score keeps its original value, 0.

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/11.html

http://www.ASmarterWayToLearn.com/python/11.html

12
Testing sets of conditions

Using the if statement, you've learned to test for a condition. If the condition is
met, one or more statements execute. But suppose not one but two conditions
have to be met in order for a test to succeed.

For example, if a guy weighs more than 300 pounds, he's just a great big guy.
But if he weighs more than 300 pounds and runs 40 yards in under 6 seconds?
You're going to invite him to try out for the team. You can test for a
combination of conditions in Python by using the keyword and.

1 if weight > 300 and time < 6:
2 status = "try to recruit him"

The individual needs to meet both conditions—over 300 pounds and under
6 seconds—in order to qualify. If he meets only one of the conditions, the test
fails, and he doesn't get the invitation.

You can chain any number of conditions together.

1 if weight > 300 and time < 6 and age > 17 and
height < 72:
2 status = "try to recruit him"

You can also create a test that passes if any condition is met. The keyword is
or.

1 if SAT > avg or GPA > 2.5 or parent == "alum":
2 message = "Welcome to Leeds College!"

Only one of the conditions needs to be met in order for the welcome
message to be sent out—a high SAT score, a decent grade point average, or a

parent who attended the college. Any of them will do. Of course, line 2 executes
if more than one condition is met.

You can combine any number of and and or conditions. When you do,
you create ambiguities. Take this line...

if age > 65 or age < 21 and res == "U.K.":

This can be read in either of two ways.
The first way it can be read: If the person is over 65 or under 21 and, in

addition to either of these conditions, is also a resident of the U.K. Under this
interpretation, both columns in the following table need to be true in order for
the overall if statement to be true..

Over 65 or under 21 Resident of U.K.

The second way it can be read: If the person is over 65 and living anywhere
or is under 21 and a resident of the U.K. Under this interpretation, if either
column in the following table is true, the overall if statement is true.

Over 65 Under 21 and U.K. resident

It's the same problem you face when you combine mathematical
expressions. And you solve it the same way: with parentheses.

In the following code, if the subject is over 65 and a U.K. resident, it's a pass.
Or, if the subject is under 21 and a U.K. resident, it's a pass.

if (age > 65 or age < 21) and res == "U.K.":

In the following code, if the subject is over 65 and living anywhere, the
overall if statement is true. Or, if the subject is under 21 and living in the U.K.,
it's a pass.

if age > 65 or (age < 21 and res == "U.K."):

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/12.html

http://www.ASmarterWayToLearn.com/python/12.html

13
if statements nested

Check out this code.

1 if (x == y or a == b) and c == d:
2 g = h
3 else:
4 e = f

In the code above, if either of the first conditions is true—x has the same
value as y or a has the same value as b— and, in addition, the third condition is
true—c has the same value as d—then g is assigned the value of h. Otherwise,
e is assigned the value of f.

There's another way to code this, using nesting.

1 if c == d:
2 if x == y:
3 g = h
4 elif a == b:
5 g = h
6 else:
7 e = f
8 else:
9 e = f

Nest levels are communicated to Python by indentations. There are three
second-level blocks nested inside the top-level if.

1 if c == d:

2 if x == y:
3 g = h
4 elif a == b:
5 g = h
6 else:
7 e = f
8 else:
9 e = f

The un-nested first-level blocks begin with no indentation…

1 if c == d:
2 if x == y:
3 g = h
4 elif a == b:
5 g = h
6 else:
7 e = f
8 else:
9 e = f

If the condition tested by the top first-level if—that c has the same value
as d—is true…

1 if c == d:
2 if x == y:
3 g = h
4 elif a == b:
5 g = h
6 else:
7 e = f
8 else:
9 e = f

…the three second-level blocks determine what happens…

1 if c == d:
2 if x == y:
3 g = h
4 elif a == b:
5 g = h
6 else:
7 e = f
8 else:
9 e = f

If the condition tested by the top first-level if—that c has the same value
as d—is false…

1 if c == d:
2 if x == y:
3 g = h
4 elif a == b:
5 g = h
6 else:
7 e = f
8 else:
9 e = f

…the three second-level blocks are skipped…

1 if c == d:
2 if x == y:
3 g = h
4 elif a == b:
5 g = h
6 else:
7 e = f
8 else:
9 e = f

…and the second first-level block determines what happens…

1 if c == d:
2 if x == y:
3 g = h
4 elif a == b:
5 g = h
6 else:
7 e = f
8 else:
9 e = f

In the relatively simple set of tests and outcomes shown in this example, I
would prefer to use the more concise structure using and and or that you
learned in the last chapter. But when things get really complicated, nested ifs
can be a good way to go.

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/13.html

http://www.ASmarterWayToLearn.com/python/13.html

14
Comments

Comments are lines of text in your code that Python ignores.
Comments are for the human, not the machine. For example, a comment

can explain a section of code so another programmer can understand it. A
comment can help you figure out your code when you come back to it a month
or a year later.

1 # This is a comment.
2 # This is another comment.
3 # Python ignores these comments.
4 # The code that Python executes is next, on line
5.
5 print("Hello, world!")

To write a comment, begin with #. For readability, add a space after the #.
In addition to helping you and others understand your code later on,

comments can help you test and debug. You can use them to comment out
portions of your code and see what happens.

For example, suppose you have some code that doesn't run:

1 if first_name == "Harry":
2 if last_name == "Potter":
3 if interest == "wizardry"
4 print("Welcome back to Hogwarts, Harry!")

You suspect the problem might be line 3, so you comment it out and see
what happens:

1 if first_name == "Harry":

2 if last_name == "Potter":
3 # if interest == "wizardry"
4 print("Welcome back to Hogwarts, Harry!")

You try running the code again, with line 3 disabled. And it works!
So you look closely at line 3 and see that it's missing a colon at the end. You

add the colon…

1 if first_name == "Harry":
2 if last_name == "Potter":
3 if interest == "wizardry":
4 print("Welcome back to Hogwarts, Harry!")

…and run the code again. And it works!
In the example we started with, I commented entire lines:

1 # This is a comment.
2 # This is another comment.
3 # Python ignores these comments.
4 # The code that Python executes is next, on line
5.
5 print("Hello, world!")

You can also place comments to the right of working code:

print("Hello, world!") # Greet the world

In the code above, Python displays the message and ignores the comment.
If you want to write a multi-line comment, there's an alternative to starting

each line with #. You can enclose all the comment lines in three single quotation
marks:

1 '''
2 This is a comment.
3 This is another comment.

4 Python ignores these comments.
5 The code that Python executes is on line 7.
6 '''
7 print("Hello, world!")

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/14.html

http://www.ASmarterWayToLearn.com/python/14.html

15
Lists

Let's assign some string values to some variables.

city_0 = "Atlanta"
city_1 = "Baltimore"
city_2 = "Chicago"
city_3 = "Denver"
city_4 = "Los Angeles"
city_5 = "Seattle"

The variable names are all the same, except they end in different numbers. I
could have given the six variables completely different names if I'd wanted to
—a, b, c, d, y, and z or fee, fi, fo, fum, foo, and oof—if I'd wanted to,
but I chose to name them this particular way because of where this discussion is
going.

Now, having made these assignments, if I code...

print("Welcome to " + city_3)

...Python displays Welcome to Denver
I'm going to show you another type of variable, one that will come in handy

for many tasks that you'll learn about in later chapters. I'm talking about a type
of variable called a list. Whereas an ordinary variable has a single value assigned
to it—for example city_2 has a value of "Denver" and only "Denver"—a list
is a variable that can have a sequence of values assigned to it. In a list, these
values are known as elements.

You define a list this way:

cities = ["Atlanta", "Baltimore", "Chicago",
"Denver", "Los Angeles", "Seattle"]

The definition of a list begins the same way the definition of any variable
begins—in this case, cities =

But when you're defining a list, you enclose everything to the right of the
equal sign in square brackets:

cities = ["Atlanta", "Baltimore", "Chicago",
"Denver", "Los Angeles", "Seattle"]

Each element is separated by a comma and a space:

cities =
["Atlanta", "Baltimore", "Chicago", "Denver", "Los
Angeles", "Seattle"]

In the example at the beginning of this chapter, I ended each variable name
with a number. city_0 was "Atlanta", city_1 was "Baltimore", and so on.
The list I just defined is similar, but in the case of a list, Python numbers the
different elements automatically. And you refer to each element by writing the
list name—cities in this case—followed by a number enclosed in square
brackets. In the list cities defined above, cities[0] is "Atlanta",
cities[1] is "Baltimore", and so on.

The first element in a list always has an index of 0, the second element an
index of 1, and so on.

The following code is like the original statement I coded using the simple
variable city_3, but now I specify a list element instead of a simple variable:

print("Welcome to " + cities[3])

Since Denver is the fourth element in the list (remember, the numbering
starts at 0, so the fourth element has an index of 3), Python displays Welcome
to Denver.

A list element can be assigned any type of value that you can assign to
ordinary variables, for example a string or a number. You can even mix the
different types of values in the same list (not that you would ordinarily want to).

mixed_things = [1, "Bob", "Now is"]

In the example above, mixed_things[0] has a numerical value of 1,
mixed_things[1] has a value of "Bob", and mixed_things[2] has a
value of "Now is".

Things to keep in mind:

The first element in a list always has an index of 0, not 1. This means
that if the last element in the list has an index of 9, there are 10 items in
the list.

The same naming rules you learned for ordinary variables apply. Only
letters, numbers, and underscores are legal. The first character can't be
a number. No spaces.

It's a good idea to make list names plural—cities instead of city,
for example—since a list usually contains multiple things.

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/15.html

http://www.ASmarterWayToLearn.com/python/15.html

16
Lists: Adding and changing elements

In the last chapter, I declared this list:

cities = ["Atlanta", "Baltimore", "Chicago",
"Denver", "Los Angeles", "Seattle"]

The list contains six elements, "Atlanta"—cities[0]—through
"Seattle"— cities[5]. Suppose you want to add a seventh city, New York,
for example. This is the code:

cities.append("New York")

The code above tacks on the element "New York" to the end of the list. The
list now has seven elements. cities[6] has a value of "New York".

The statement begins with the list name:

cities.append("New York")

Next there's a dot:

cities.append("New York")

Then the keyword append:

cities.append("New York")

The value, in this case the string "New York," is enclosed in parentheses:

cities.append("New York")

If you're adding a number instead of a string, you don't enclose the number
in quotation marks:

scores.append(47)

There's an alternative way to append. It allows you to add one or more
elements to a list. The following code adds two new elements, "Dubuque" and
"New Orleans," to the cities list:

cities = cities + ["Dubuque", "New Orleans"]

You can use the same syntax to create a second list by adding on to an
existing list.

longer_list_of_cities = cities + ["Dubuque", "New
Orleans"]

You can create an empty list using square brackets with nothing in them…

todays_tasks = []

…then later add elements so the list is no longer empty…

todays_tasks = todays_tasks + ["Walk dog", "Buy
groceries"]

Instead of appending an element to the end of a list, you can insert it into
the list where you want it. This is the cities list as I originally defined it:

cities[0] is "Atlanta"
cities[1] is "Baltimore"
cities[2] is "Chicago"
cities[3] is "Denver"
cities[4] is "Los Angeles"

cities[5] is "Seattle"

If I want to insert "New York" at the beginning of the list, I write…

cities.insert(0, "New York")

Now "New York" has an index of 0. It's at the beginning of the list, and all
the other elements have moved down the list to make room for "New York":

cities[0] is "New York"
cities[1] is "Atlanta"
cities[2] is "Baltimore"
cities[3] is "Chicago"
cities[4] is "Denver"
cities[5] is "Los Angeles"
cities[6] is "Seattle"

As in the append statement, the insert statement begins with the list
name, followed by a dot:

cities.insert(0, "New York")

Then comes the keyword:

cities.insert(0, "New York")

The rest of it is enclosed in parentheses:

cities.insert(0, "New York")

But this time, there are two things to specify…the index that tells Python
where you want the element placed…

cities.insert(0, "New York")

…and, following a comma and space, the value of the element…

cities.insert(0, "New York")

Let's say you want to insert "Dallas" before "Baltimore". The index of
"Baltimore" is 2. You're going to take that index away from "Baltimore" and
give it to "Dallas"…

cities.insert(2, "Dallas")

"Baltimore" was the element with an index of 2. Now "Dallas" has it.
"Baltimore" and all the elements below it move down the list:

cities[0] is "New York"
cities[1] is "Atlanta"
cities[2] is "Dallas"
cities[3] is "Baltimore"
cities[4] is "Chicago"
cities[5] is "Denver"
cities[6] is "Los Angeles"
cities[7] is "Seattle"

Here's how to assign a new value to an element.
cities[2] is "Dallas." You want to change it to "Houston." This is the

code:

cities[2] = "Houston"

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/16.html

http://www.ASmarterWayToLearn.com/python/16.html

17
Lists: Taking slices out of them

You can copy consecutive elements of a list to build another list.
For example, if you have this list…

cities = ["Atlanta", "Baltimore", "Chicago",
"Denver", "Los Angeles", "Seattle"]

…you can copy elements 2 through 4 to create another list…

smaller_list_of_cities = cities[2:5]

…and you wind up with a list named smaller_list_of_cities that
comprises "Chicago," "Denver," and "Los Angeles."

When you slice from a list, the list is unchanged. Think "copy," not "cut."
Things to note:
The first number inside the brackets targets the first element in the slice:

smaller_list_of_cities = cities[2:5]

Then comes a colon:

smaller_list_of_cities = cities[2:5]

The number following the colon is the index number of the element that
comes after the last element in the slice:

smaller_list_of_cities = cities[2:5]

So if you want the last element to be the one with an index of 4, that second
number has to be 5.

When the first element of the slice is the first element of the original list—
the element with an index of 0—you can omit the first number altogether:

smaller_list_of_cities = cities[:5]

Now smaller_list_of_cities comprises "Atlanta," "Baltimore,"
"Chicago," "Denver," and "Los Angeles."

When the last element of the slice is the last element of the original list, you
can omit the second number:

smaller_list_of_cities = cities[2:]

Now smaller_list_of_cities comprises "Chicago," "Denver,"
"Los Angeles," and "Seattle."

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/17.html

http://www.ASmarterWayToLearn.com/python/17.html

18
Lists: Deleting and removing elements

Suppose you have a list of things to do:

tasks = ["email Frank", "call Sarah", "meet with
Zach"]

tasks[0] is "email Frank"
tasks[1] is "call Sarah"
tasks[2] is "meet with Zach"

Working through the list from top to bottom, you complete "email Frank",
the first of the tasks. To strike that element off the list, you write:

del tasks[0]

Now the list has just two remaining elements:

tasks[0] is "call Sarah"
tasks[1] is "meet with Zach"

Notice that when you delete the original tasks[0], "email Frank,"
Python adjusts the index numbers so there are no gaps. The new list begins with
tasks[0]. There is now no tasks[2].

You can delete any list element by specifying its index number. If the
original list is…

tasks[0] is "email Frank"
tasks[1] is "call Sarah"
tasks[2] is "meet with Zach"

…to delete "call Sarah", you write:

del tasks[1]

Again the list has just two remaining elements:

tasks[0] is "email Frank"
tasks[1] is "meet with Zach"

And again, Python adjusts the index numbers so there are no gaps. The new
list begins with tasks[0]. There is now no tasks[2].

Let's go over the syntax:
The statement begins with the keyword del, short for delete:

del tasks[1]

Next comes a space:

del tasks[1]

Then the usual way you specify the list element:

del tasks[1]

You can also strike an element off a list by specifying its value instead of its
index number:

tasks.remove("call Sarah")

Again, the two remaining elements are:

tasks[0] is "email Frank"
tasks[1] is "meet with Zach"

This operation begins with the list name:

tasks.remove("call Sarah")

Next, a dot:

tasks.remove("call Sarah")

Then the keyword remove:

tasks.remove("call Sarah")

The value is enclosed in parentheses:

tasks.remove("call Sarah")

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/18.html

http://www.ASmarterWayToLearn.com/python/18.html

19
Lists: popping elements

When you delete or remove a list element as I showed you in the last chapter,
that element disappears into oblivion. It's just gone. But sometimes, you want to
strike an element off a list but hang onto it for another purpose. For example,
you want to add the element to another list.

Again, here is the list of things to do:

tasks = ["email Frank", "call Sarah", "meet with
Zach"]

tasks[0] is "email Frank"
tasks[1] is "call Sarah"
tasks[2] is "meet with Zach"

After calling Sarah, you want to strike the element off the tasks list and
add it to the tasks_accomplished list. You begin by popping the element
into a variable:

latest_task_accomplished = tasks.pop(1)

Now the tasks list has been shortened to…

tasks[0] is "email Frank"
tasks[1] is "meet with Zach"

…and the value of latest_task_accomplished is "call Sarah."
Now you can use the variable latest_task_accomplished to

append "call Sarah" to the list tasks_accomplished:

tasks_accomplished.append(latest_task_accomplished)

Let's go over the syntax.

latest_task_accomplished = tasks.pop(1)

It begins with the variable that's going to hold the value that's being popped
off:

latest_task_accomplished = tasks.pop(1)

Then comes the equal sign that assigns the value to the variable:

latest_task_accomplished = tasks.pop(1)

Next, the name of the list:

latest_task_accomplished = tasks.pop(1)

…a dot…

latest_task_accomplished = tasks.pop(1)

…the keyword…

latest_task_accomplished = tasks.pop(1)

…and the index of the targeted element in parentheses:

latest_task_accomplished = tasks.pop(1)

By combining code segments you already know, you can pop an element off
a list and append it to another list:

tasks_accomplished.append(tasks.pop(1))

The code above strikes the second element off the tasks list and adds it to
the end of the tasks_accomplished list.

By combining code segments you already know, you can pop an element off
a list and insert it into another list:

tasks_accomplished.insert(1, tasks.pop(1))

The code above strikes the second element off the tasks list and inserts it
as the second element in the tasks_accomplished list.

A time-saver: To pop the last element in a list, skip the index number. Leave
the parentheses empty. Write:

latest_task_accomplished = tasks.pop()

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/19.html

http://www.ASmarterWayToLearn.com/python/19.html

20
Tuples

A tuple—pronounced "toople" by some people and "tupple" by others—is like a
list, but the elements are fixed. They can't be changed—unless you redefine the
whole tuple.

Let's say you want to put together a collection of U.S. states in the order in
which they were founded. If we limit the elements to the first four states to keep
things simple, it would be, in their order of founding…

Delaware
Pennsylvania
New Jersey
Georgia

We're confident these will always be the first four states, and their order
won't change. We'll never need to replace one of them with another state. We'll
never need to add another state. And, barring extraordinary events, we'll never
need to delete one of them. So we create a tuple—a list that's written in stone.

You code a tuple as you would a list, with one exception:

states_in_order_of_founding = ("Delaware",
"Pennsylvania", "New Jersey", "Georgia")

Do you see the one way a tuple definition is different from a list definition?
You use parentheses instead of square brackets.

You pick a particular element out of a tuple the same way you pick an
element out of a list:

1 second_state_founded =
states_in_order_of_founding[1]

2 print("The second state founded was " +
second_state_founded)

Like a list, a tuple starts numbering at 0, so
states_in_order_of_founding[1] is second in the series. It's
"Pennsylvania". That's the string assigned to second_state_founded.

Python displays:

The second state founded was Pennsylvania

As I said, a tuple doesn't allow you to make any changes in any of the ways
that a list allows. You can't add, modify, remove, delete, or pop. If you must
make a change, you have to define the tuple all over again. For example,
suppose Pennsylvians vote to change the name of their state to
Taylorswiftsylvania. You've got to recode the whole tuple:

states_in_order_of_founding = ("Delaware",
"Taylorswiftsylvania formerly known as
Pennsylvania", "New Jersey", "Georgia")

If the order of elements changes for any reason, you have to re-code the
whole tuple, too.

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/20.html

http://www.ASmarterWayToLearn.com/python/20.html

21
for loops

Suppose you want to check if a particular city is one of the 5 environmentally
cleanest in the U.S.

You've assigned the name of the city in question to the variable
city_to_check. For example, you wrote…

city_to_check = "Tucson"

And you've assigned the names of the 5 cleanest cities to the list
cleanest_cities.

cleanest_cities = ["Cheyenne", "Santa Fe", "Tucson",
"Great Falls", "Honolulu"]

Now you go through the list to see if the city in question is on the list. If it
is, you display the good news.

This is one way to do it:

1 if city_to_check == cleanest_cities[0]:
2 print("It's one of the cleanest cities")
3 elif city_to_check == cleanest_cities[1]:
4 print("It's one of the cleanest cities")
5 elif city_to_check == cleanest_cities[2]:
6 print("It's one of the cleanest cities")
7 elif city_to_check == cleanest_cities[3]:
8 print("It's one of the cleanest cities")
9 elif city_to_check == cleanest_cities[4]:
10 print("It's one of the cleanest cities")

That's a load of code.
Conveniently, Python provides a more concise approach. It's called a for

loop. It begins with the keyword for and it loops through the same steps again
and again:

1 for a_clean_city in cleanest_cities:
2 if city_to_check == a_clean_city:
3 print("It's one of the cleanest cities")

The code above pulls up each element in the list cleanest_cities,
one by one. With each iteration through the loop, it temporarily assigns the
current element in the list to the variable a_clean_city. It then checks this
value against the value of the variable city_to_check.

If Tucson is the city we're asking about, the string "Tucson" has been
assigned to city_to_check.

The for loop starts with the first element in the list. It asks, Is this first
element in the cleanest_cities list, "Cheyenne," equal to the city we're
checking, "Tucson"? No?

Then the loop moves to the second element in the list, Santa Fe. It repeats
the same question: Is this second element in the cleanest_cities list,
"Santa Fe," equal to "Tucson?" No?

The loop tries once again, moving to the third element in the list. It asks, Is
this third element in the cleanest_cities list, "Tucson," equal to
"Tucson"? Yes!

It displays the message "It's one of the cleanest cities."
There are three variables involved in this code. They are the ordinary

variables a_clean_city and city_to_check, and the list (a type of
variable) cleanest_cities.

With each iteration, the loop assigns a different list element, in this case
"Cheyenne" on pass 1, "Santa Fe" on pass 2, etc., to the variable
a_clean_city. That variable is then compared with city_to_check.

Of course, you could use any variable names you like. Python would be
happy with the following code, though humans might find it hard to read:

1 for x in y:

2 if x == z:
3 print("It's one of the cleanest cities")

In the first line, the variable that comes after for keeps track of the value
of the particular element being tested in each iteration. The name of the list that
contains all the elements follows in.

In plain English…

1 for each element, one at a time, in the list:
2 do something with that element

In this case, what we're doing with each element is testing it against the
variable whose value has been assigned to city_to_check, "Tucson."

Here it is again:

1 for a_clean_city in cleanest_cities:
2 if city_to_check == a_clean_city:
3 print("It's one of the cleanest cities")

Things to notice:

Line 1 ends in a colon.

Line 2 is indented, because it takes its orders from Line 1.

Line 3 has a deeper indent than Line 2, because it takes its orders from
Line 2.

In the course of comparing the city in question against the list of clean cities,
if Python finds a match, there's no point in continuing the loop. So you stop the
loop by adding a break statement:

1 for a_clean_city in cleanest_cities:
2 if city_to_check == a_clean_city:
3 print("It's one of the cleanest cities")
4 break

Find the interactive coding exercises for this chapter at:
http://www.ASmarterWayToLearn.com/python/21.html

http://www.ASmarterWayToLearn.com/python/21.html

22
for loops nested

Atlantic Records has hired you and me to generate a list of names for future rap
stars. To make things easy, we'll start by making separate lists of some first
names and last names.

First Names Last Names

BlueRay Zzz

Upchuck Burp

Lojack Dogbone

Gizmo Droop

Do-Rag

By combining each of the first names with each of the last names, we can
generate 20 different full names for rappers.

Starting with "BlueRay," we go through the list of last names, generating...

BlueRay Zzz
BlueRay Burp
BlueRay Dogbone
BlueRay Droop

We move to the next first name, "Upchuck." Again, we go through the list
of last names, generating...

Upchuck Zzz
Upchuck Burp
Upchuck Dogbone
Upchuck Droop

And so on, combining each first name with each last name.
But look, why not have Python do the repetitive work? We'll use nested for

statements.

1 first_names = ["BlueRay ", "Upchuck ", "Lojack ",
"Gizmo ", "Do-Rag "]
2 last_names = ["Zzz", "Burp", "Dogbone", "Droop"]
3 full_names = []
5 for a_first_name in first_names:
6 for a_last_name in last_names:
7 full_names.append(a_first_name + " " +
a_last_name)

This is how it works:
The second, or inner, loop runs a complete cycle of iterations on each

iteration of the first, or outer, loop. The outer loop begins with the first name,
BlueRay. The inner loop then runs four iterations, combining BlueRay with each
of the four last names—Zzz, Burp, etc. It appends each combination to the list
full_names. When that's finished, the program returns to the outer loop,
which moves to the next first name, Upchuck. Then it jumps to the inner loop,
which combines this name with each of the four last names and appends these
combinations to the list full_names. It keeps going like this until all 20
combinations have been added to the list of full names.

You can have as many levels of nesting as you like.
Each nested loop is indented beyond its outer loop.
Find the interactive coding exercises for this chapter at

http://www.ASmarterWayToLearn.com/python/22.html

http://www.ASmarterWayToLearn.com/python/22.html

23
Getting information from the user and

converting strings and numbers

Okay, we have a list of America's five environmentally cleanest cities. The user
wants to know if her city is on that list. She needs a way to tell us the name of
the city she wants us to check. That's what Python's input function is for.

Here's the code:

city_to_check = input("Enter the name of a city: ")

When the code above runs, the message Enter the name of a city: displays
on the user's screen. Python then waits for the user to type a city name and
press Enter. The name typed by the user is assigned to the variable
city_to_check. Then we can run the loop from the last chapter to give the
user an answer.

Let's break down the code.
It begins with the variable that's going to store the user's input. The name of

the variable is up to you.

city_to_check = input("Enter the name of a city: ")

The equal sign says, "Assign the user's input, whatever it is, to the variable
city_to_check."

city_to_check = input("Enter the name of a city: ")

Next comes the keyword input.

city_to_check = input("Enter the name of a city: ")

The message to be displayed on the user's screen—the prompt— is enclosed
in parentheses and quotation marks.

city_to_check = input("Enter the name of a city: ")

Note that you must provide a variable to hold the user's input. If you omit
it…

city_to_check = input("Enter the name of a city: ")

…Python breaks.
Python treats the value typed by the user as a string, even if it's a number.

For example, if you write…

monthly_income = input("Enter your monthly income:
")

…and the user enters 4000…
…and you try to multiply it by 12 to calculate the user's annual income…
…Python breaks.
That's because you've asked Python to multiply something that Python

considers a string—"4000" not 4000—so multiplication is impossible.
If you want it to be a number that Python can do math on, you must

convert it.
To convert the string to an integer, write…

monthly_income_as_an_integer = int(monthly_income)

monthly_income_as_an_integer is, as I think you know by now,
a variable name I made up. You can use any other legal variable name instead.

int is a keyword that's short for integer.
To convert a string to a float—a number with decimal places—use the

keyword float:

monthly_income_as_a_float = float(monthly_income)

Sometimes you need to convert a number to a string. For example, suppose
Python has looked up the minimum wage in your state. It's 15, a number. It's
stored in the variable min_wage. If you write…

print("The minimum wage in your state is $" +
min_wage)

…Python breaks, because you've asked it to concatenate a string with a
number, which it can't do. So you convert the number to a string:

min_wage = str(min_wage)

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/23.html

http://www.ASmarterWayToLearn.com/python/23.html

24
Changing case

Using input, you ask the user to enter her city. Then you check her city
against a list of the 5 cleanest cities.

If the user enters "Cheyenne" or any of the other cleanest cities, your code
displays a message telling her that it's one of the cleanest cities.

But what if she enters "cheyenne" instead of "Cheyenne"—as some users
inevitably will? When that happens, there will be no match. Python is literal-
minded. To Python, "cheyenne" is not "Cheyenne."

A human knows that in this context "cheyenne" means "Cheyenne." But
Python doesn't. We need some way to get Python to recognize the uncapitalized
version as a match.

One way would be to expand the cleanest_cities list to include the
uncapitalized versions of all the city names:

cleanest_cities = ["Cheyenne", "cheyenne", "Santa
Fe", "santa fe", "Tucson", "tucson", "Great Falls",
"great falls", "Honolulu", "honolulu"]

That's a lot of extra coding. Plus, if the user enters "santa Fe," "Santa fe," or
"sAnta Fe," we're back to the original problem. To cover all these possibilities
and others, it would take a mile of code.

The solution is to code the list elements in lowercase, and convert the user's
input, whatever it is, to lowercase as well, so we always have apples to compare
with apples.

1 city_to_check = input("Enter your city: ")
2 city_to_check = city_to_check.lower()
3 cleanest_cities = ["cheyenne", "santa fe",
"tucson", "great falls", "honolulu"]

4 for a_clean_city in cleanest_cities:
5 if city_to_check == a_clean_city:
6 print("It's one of the cleanest cities")

Line 2 coverts the user's input to all-lowercase.
Line 3 assigns the names of the cleanest cities—in all-lowercase—to the list

cleanest_cities. So now we can be sure we're comparing apples to
apples.

The conversion code begins with the variable for storing the converted
string:

2 city_to_check = city_to_check.lower()

I chose to use the same variable that I had used to store the user's entry,
city_to_check. If I wanted to preserve the user's entry, I could use a
different variable for the converted string, for example…

2 lowercase_city_to_check = city_to_check.lower()

The equal sign says, "Assign the result of the conversion that follows to the
variable that precedes me."

2 city_to_check = city_to_check.lower()

Next comes the variable where the user's entry is stored:

2 city_to_check = city_to_check.lower()

Finally, the conversion function—a dot, and the keyword lower followed
by empty parentheses.

2 city_to_check = city_to_check.lower()

You could go the other way and convert the user's entry to all-uppercase,
then test against "CHEYENNE," "SANTA FE, " etc. Most coders prefer the

lowercase approach. But to convert the string to all-uppercase, you'd write:

2 city_to_check = city_to_check.upper()

But suppose you've converted the user's input to all-lowercase, and now you
want to display a message using city_to_check. For example:

print("Great news! " + city_to_check + " is one of
the cleanest cities.")

Suppose you've converted the string stored in city_to_check to all-
lowercase for comparison with each lowercase list element. Now you want to
use the variable to display a message to the user. But this will produce a result
you don't want: the city name in all-lowercase: Great News! cheyenne is one
of the cleanest cities.

So you do another conversion to give the city name an initial capital letter:

city_to_check = city_to_check.title()

The title function converts "cheyenne" to "Chyenne" and "santa fe" to
"Santa Fe."

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/24.html

http://www.ASmarterWayToLearn.com/python/24.html

25
Dictionaries: What they are

Earlier in the book you learned to create a list:

my_cats = ["Draco", "Bellatrix", "Voldemort"]

To pick an element out of the list, you specify an index number:

print(my_cats[0])

The code above displays Draco, the first element in the list, the one with an
index of 0.

Lists are good when you're putting together a simple series of things—tasks
to do, cooking ingredients, the names of environmentally clean cities.

But sometimes you want to put together something more complicated. For
example:

Customer 29876's first name: David
Customer 29876's last name: Elliott
Customer 29876's address: 4803 Wellesley St.
Customer 29876's city: Toronto
Customer 29876's province: ON
Customer 29876's country: Canada
Customer 29876's postal code: M7A1N3

When you're working with Customer 29876's information, you want to be
able to pick something out of the series by asking, for example, "What's the
customer's province?" So you create a dictionary.

A dictionary works something like a list, but instead of a simple series of
things, a dictionary is a series of pairs of things. Each pair contains a key—"first

name", "last name" etc.—and a value—"David", "Elliott", etc.
To pick something out of a dictionary, you specify a particular key and ask

what value is paired with it. In other words, if the key is "first name," for
example, what is the value? Answer: "David."

In the next chapter, I'll show you how to create a dictionary.
Find the interactive coding exercises for this chapter at

http://www.ASmarterWayToLearn.com/python/25.html

http://www.ASmarterWayToLearn.com/python/25.html

26
Dictionaries: How to code one

In the last chapter you learned that a dictionary is a series of paired keys and
values.

Suppose we're creating a dictionary named customer_29876, with these
pairs:

key is "first name", value is "David"
key is "last name", value is "Elliott"
key is "address", value is "4803 Wellesley St."

This is the code:

customer_29876 = {"first name": "David", "last
name": "Elliott", "address": "4803 Wellesley St."}

This structure is similar to the code for creating a list.
Both begin with a variable name and equal sign:

jobs_to_do_1st = ["email", "texting", "calls"]

customer_29876 = {"first name": "David", "last
name": "Elliott", "address": "4803 Wellesley St."}

Things are separated by commas:

jobs_to_do_1st = ["email", "texting", "calls"]

customer_29876 = {"first name": "David", "last
name": "Elliott", "address": "4803 Wellesley St."}

The series is enclosed in brackets—but in a list, brackets are square brackets,
and in a dictionary, brackets are curly brackets.

jobs_to_do_1st = ["email", "texting", "calls"]

customer_29876 = {"first name": "David", "last
name": "Elliott", "address": "4803 Wellesley St."}

The big difference: In a list, each chunk is one thing. In a dictionary, each
chunk is a paired key and value:

jobs_to_do_1st = ["email", "texting", "calls"]
customer_29876 = {"first name": "David", "last
name": "Elliott", "address": "4803 Wellesley St."}

Notice that the key is followed by a colon:

customer_29876 = {"first name": "David", "last
name": "Elliott", "address": "4803 Wellesley St."}

Notice also that the variable name is singular, not plural. I told you in an
earlier chapter that you'd normally want to make a list name plural, because you
wouldn't say "Here's a list of holiday" or "Here's all my pet." But with a
dictionary, it often feels right to keep it singular. You could call the dictionary
something like customer_29876_details, but customer_29876 is
shorter.

Finally, notice that in this example, all the values are strings, enclosed in
quotation marks, and so are all the keys:

customer_29876 = {"first name": "David", "last
name": "Elliott", "address": "4803 Wellesley St."}

Neither keys nor values have to be strings. More about that later.
Find the interactive coding exercises for this chapter at

http://www.ASmarterWayToLearn.com/python/26.html

http://www.ASmarterWayToLearn.com/python/26.html

27
Dictionaries: How to pick information

out of them

In the last chapter I coded a dictionary named customer_29876.

customer_29876 = {"first name": "David", "last
name": "Elliott", "address": "4803 Wellesley St."}

The dictionary comprises three pairs:

key is "first name", value is "David"
key is "last name", value is "Elliott"
key is "address", value is "4803 Wellesley St."

The purpose of a dictionary is to store information that you can later lay
your hands on. For example, you might want to know what David Elliot's
address is. How do you find it?

Remember how to find information in a list?—

city_to_check = cities[3]

In a list, you pick out an element by specifying its index. In the code above,
the element in the list city_to_check that has an index of 3—that would
be the fourth element, since the numbering starts at 0—is picked out, then
placed into the variable city_to_check.

In a dictionary, the code is similar, except that you pick out an element by
specifying its key:

address_of_customer = customer_29876["address"]

In the code above, Python finds the value in the dictionary
customer_29876 that has the key "address" and assigns the string to the
variable address_of_customer. Now the string "4803 Wellesley St." is
stored in the variable address_of_customer.

If you write…

print(address_of_customer)

…Python displays 4803 Wellesley St.
The key in this case is a string, "address." But as I mentioned in the last

chapter, a key doesn't have to be a string. Nor does a value. Let's talk about that
next.

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/27.html

http://www.ASmarterWayToLearn.com/python/27.html

28
Dictionaries: The versatility of keys and

values

In the dictionary I've been using as an example, customer_29876, the keys
are strings, enclosed in quotation marks:

customer_29876 = {"first name": "David", "last
name": "Elliott", "address": "4803 Wellesley St."}

The values are strings, too:

customer_29876 = {"first name": "David", "last
name": "Elliott", "address": "4803 Wellesley St."}

But keys don't have to be strings. They can be numbers:

rankings = {5: "Finland", 2: "Norway", 3: "Sweden",
7: "Iceland"}

In each pair shown above, the key is a number, not enclosed in quotation
marks.

To pick out a value, you use the number:

second_ranking_country = rankings[2]
rankings[2] is "Norway."

Values can be numbers, too:

country_ranks_so_far = {"Finland": 5, "Norway": 2,
"Sweden": 3, "Iceland": 7}

To pick out a value, you use the key, a string in this case:

norway_ranking = country_ranks_so_far["Norway"]
country_ranks_so_far["Norway"] is 2.

You can mix strings and numbers any way you want.

things_to_remember = {0: "the lowest number", "a
dozen": 12, "snake eyes": "a pair of ones", 13: "a
baker's dozen"}

These are the pairs:

key is the number 0, value is the string "the lowest number"
key is the string "a dozen", value is the number 12
key is the string "snake eyes", value is the string "a pair of ones"
key is the number 13, value is the string "a baker's dozen"

When you're defining a dictionary that contains more than two or three key-
value pairs, it's a good idea to break the pairs into separate lines for readability:

1 things_to_remember = {
2 0: "the lowest number",
3 "a dozen": 12,
4 "snake eyes": "a pair of ones",
5 13: "a baker's dozen",
6 }

Things to notice:

Each pair is indented.

Though it isn't necessary, I added a comma after the last pair. Python

doesn't mind it, and it means I won't get into trouble by forgetting to
insert the comma if I add another key-value pair later. From now on,
I'll ask you to adopt this convention when you're doing the exercises.

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/28.html

http://www.ASmarterWayToLearn.com/python/28.html

29
Dictionaries: Adding items

Remember how to pick something out of a dictionary?

address_of_customer = customer_29876["address"]

You begin with the name of the dictionary…

address_of_customer = customer_29876["address"]

…then you write the key, enclosed in square brackets…

address_of_customer = customer_29876["address"]

…which retrieves the value "4803 Wellesley St." in our example.
Let me show you how to add a key-value pair to a dictionary.
The dictionary customer_29876 has these pairs…

key is "first name", value is "David"
key is "last name", value is "Elliott"
key is "address", value is "4803 Wellesley St."

You can add a new pair by writing…

customer_29876["city"] = "Toronto"

In the code above, you have those familiar pieces—the dictionary name, the
key in square brackets, and the value. They're just in a different order.

Now customer_29876 has these pairs…

key is "first name", value is "David"
key is "last name", value is "Elliott"
key is "address", value is "4803 Wellesley St."
key is "city", value is "Toronto"

Earlier, you learned how to define a dictionary by assigning it key-value
pairs:

1 things_to_remember = {
2 0: "the lowest number",
3 "a dozen": 12,
4 "snake eyes": "a pair of ones",
5 13: "a baker's dozen",
6 }

You can also define an empty dictionary, a dictionary with no key-value
pairs:

things_to_remember = {}

Later, you can fill the dictionary with pairs, adding one at a time:

1 things_to_remember[0] = "the lowest number"
2 things_to_remember["a dozen"] = 12
3 …etc.

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/29.html

http://www.ASmarterWayToLearn.com/python/29.html

30
Dictionaries: Removing and changing

items

If you remember how to delete an element from a list…

del tasks[0]

…you may be able to guess how to delete a key-value pair from a dictionary:

del customer_29876["address"]

It begins with the same keyword:

del tasks[0]
del customer_29876["address"]

Then comes the name of the list or dictionary:

del tasks[0]
del customer_29876["address"]

And the particular piece of information you're after is specified by the index
(in the list) or the key (in the dictionary), in square brackets:

del tasks[0]
del customer_29876["address"]

Changing the value of an element is similar to the same operation that you
learned for lists. It begins with the name of the list or dictionary:

cities[2] = "Houston"
customer_29876["city"] = "Winipeg"

Then comes the index (in the list) or the key (in the dictionary), in square
brackets:

cities[2] = "Houston"
customer_29876["city"] = "Winipeg"

Then the assignment of the new value:

cities[2] = "Houston"
customer_29876["city"] = "Winipeg"

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/30.html

http://www.ASmarterWayToLearn.com/python/30.html

31
Dictionaries: Looping through values

Let's say you want to display all the values in the customer_29876
dictionary. Using the abbreviated example from earlier chapters, you could
write:

1 print(customer_29876["first name"])
2 print(customer_29876["last name"])
3 print(customer_29876["address"])

Python displays:

David
Elliott
4803 Wellesley St.

This works, but suppose this were a more realistic dictionary containing
twenty or thirty pieces of information about David Elliott. We'd all prefer not to
write twenty or thirty lines of code to retrieve and display all the values.

To the rescue comes looping.
Recall how you learned to loop through a list. The following code loops

through a list named cleanest_cities and displays the name of each city:

1 for a_clean_city in cleanest_cities:
2 print(a_clean_city)

Following the instructions above, Python displays…

Cheyenne
Santa Fe

Tucson
Great Falls
Honolulu

The code for looping through a dictionary is similar.

1 for each_value in customer_29876.values():
2 print(each_value)

Following the instructions above, Python displays:

David
Elliott
4803 Wellesley St.

Let's break it down.
The loop begins with the familiar for:

1 for each_value in customer_29876.values():
2 print(each_value)

Next comes a variable to store the value for each iteration.

1 for each_value in customer_29876.values():
2 print(each_value)

Note: each_value is a variable. You can give it any legal variable name
you like.

Next, the keyword in followed by the name of the dictionary,
customer_29876:

1 for each_value in customer_29876.values():
2 print(each_value)

Then a dot…

1 for each_value in customer_29876.values():
2 print(each_value)

Then the keyword values…

1 for each_value in customer_29876.values():
2 print(each_value)

…then empty parentheses…

1 for each_value in customer_29876.values():
2 print(each_value)

…and a colon…

1 for each_value in customer_29876.values():
2 print(each_value)

Repeat it to yourself as many times as you need to, to memorize it:
"Dot values parentheses colon."
Got it?
As in a list loop, there's code that tells Python what action(s) to take each

time through the loop. This code is indented:

1 for each_value in customer_29876.values():
2 print(each_value)

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/31.html

http://www.ASmarterWayToLearn.com/python/31.html

32
Dictionaries: Looping through keys

In the last chapter you learned to loop through a dictionary, capturing all the
values in it:

1 for each_value in customer_29876.values():
2 print(each_value)

There may be times when you want to capture the keys instead.
This is the dictionary:

customer_29876 = {
 "first name": "David",
 "last name": "Elliott",
 "address": "4803 Wellesley St.",
}

This is the loop:

1 for each_key in customer_29876.keys():
2 print(each_key)

Python displays:

first name
last name
address

From Python's point of view, the only difference is that you write the
keyword keys…

1 for each_key in customer_29876.keys():
2 print(each_key)

…instead of the keyword values…

1 for each_value in customer_29876.values():
2 print(each_value)

Python doesn't care how you name variables as long as they're legal, but I
made one more change so the code would make sense to humans. I wrote…

1 for each_key etc.

…instead of…

1 for each_value etc.

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/32.html

http://www.ASmarterWayToLearn.com/python/32.html

33
Dictionaries: Looping through key-

value pairs

You've looped through a dictionary finding all its values, and you've looped
through a dictionary finding all its keys. Now I'll show you how to loop through
a dictionary finding both keys and values.

This is the dictionary we've been working with:

1 customer_29876 = {
2 "first name": "David",
3 "last name": "Elliott",
4 "address": "4803 Wellesley St.",
5 }

Here's the code for looping through the dictionary and printing all the keys
and values:

1 for each_key, each_value in
customer_29876.items():
2 print("The customer's " + each_key + " is " +
each_value)

Following the instructions above, Python displays:

The customer's first name is David
The customer's last name is Elliott
The customer's address is 4803 Wellesley St.

This loop looks like the loops you've been coding, with two exceptions.

First, instead of a single variable that comes after the keyword for…

1 for each_value in customer_29876.values():
2 print(each_value)

…you code 2 variables (your choice of names), one for keys and another for
values:

1 for each_key, each_value in
customer_29876.items():
2 print("The customer's " + each_key + " is " +
each_value)

Note that a comma and space separate the two variables:

1 for each_key, each_value in
customer_29876.items():
2 print("The customer's " + each_key + " is " +
each_value)

And the keyword that comes before the empty parentheses changes. Now
it's items.

1 for each_key, each_value in
customer_29876.items():
2 print("The customer's " + each_key + " is " +
each_value)

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/33.html

http://www.ASmarterWayToLearn.com/python/33.html

34
Creating a list of dictionaries

We've been working with a dictionary named customer_29876. In our
simplified example, the dictionary has three key-value pairs:

1 customer_29876 = {
2 "first name": "David",
3 "last name": "Elliott",
4 "address": "4803 Wellesley St.",
5 }

One would hope that a company has more than one customer. This means
you need more than one dictionary. You need one for each customer. In our
example, each dictionary represents a single customer and contains his or her
first name, last name, and address.

So instead of creating a single dictionary for customer_29876, let's
create a list of three dictionaries, one for each of three customers.

You already know how to create a list:

customer_ids = [101, 102, 103]

The code above creates a list of three integers.
Here's the code for creating a list of—not integers, not strings—but a list of

dictionaries. The code also creates the dictionaries themselves:

1 customers = [
2 {
3 "customer id": 0,
4 "first name":"John",
5 "last name": "Ogden",

6 "address": "301 Arbor Rd.",
7 },
8 {
9 "customer id": 1,
10 "first name":"Ann",
11 "last name": "Sattermyer",
12 "address": "PO Box 1145",
13 },
14 {
15 "customer id": 2,
16 "first name":"Jill",
17 "last name": "Somers",
18 "address": "3 Main St.",
19 },
20]

Some things about this code are already familiar to you. The code begins
with a standard list definition, starting with the list name, customers. The
name is followed by an equal sign. Then come the three elements of the list,
enclosed in square brackets.

What's new is that the three elements are neither strings nor numbers.
They're dictionaries.

As in any list, the three elements—the three dictionaries—are enclosed in
square brackets.

As in any dictionary, the three key-value pairs in these dictionaries are
enclosed in curly brackets and separated by commas.

One more thing that's new: the dictionaries don't have names. There is no
customer_29876. Each customer does have an identifying number, but the
number is no longer part of a dictionary name. Now the customer number is an
integer, a value like 101, 102, or 103 that's paired with a key, "customer id."

Note the formatting. The three elements of the list, the dictionaries, are
indented. The three items in each dictionary, the key-value pairs, are indented to
the second level.

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/34.html

http://www.ASmarterWayToLearn.com/python/34.html

35
How to pick information out of a list of

dictionaries

You know how to pick information out of a dictionary by specifying the
dictionary's name and the key that summons the value you want:

customer_first_name = customer_29876["first name"]

The code above says, "Look into the dictionary whose name is
customer_29876. In this dictionary find the value that is paired with the
key "first name."

But in our list of dictionaries we created in the last chapter, the dictionaries
have no name. How do we get any information out of them when we can't
specify a dictionary name? How do we tell Python which dictionary to look into
to find, for example, a particular customer's address?

In the example, I solved the problem by setting up the customer ids a
certain way:

customers = [
{
"customer id": 0,
"first name":"John",
"last name": "Ogden",
"address": "301 Arbor Rd.",
},
{
"customer id": 1,
"first name":"Ann",
"last name": "Sattermyer",

"address": "PO Box 1145",
},
{
"customer id": 2,
"first name":"Jill",
"last name": "Somers",
"address": "3 Main St.",
},
]

In a list of strings, numbers, dictionaries, or anything else, the first item on
the list gets an index of 0, provided automatically by Python. In the example
above, John Ogden's information is contained in the first dictionary in the list
customers. Python assigns this dictionary the index 0. John Ogden's
customer id is up to me. I can give him any customer id I want. I choose to
match his id to the index of the dictionary. I give him a customer id of 0, the
same as the dictionary's index.

The customer whose information is contained in the second dictionary in
the list, the dictionary with an index of 1, also gets a matching number—a
customer id of 1. The next customer gets an id of 2, etc. So all through the list
of dictionaries, the customer id always matches the index of the dictionary.

If I want to know which dictionary John Ogden's information is in, I don't
need a dictionary name. All I need is his customer id—0. This tells me where to
find his dictionary—at the 0 index in the list.

Let's say I want to know the address of a customer whose id is 2870. This is
the code that finds it:

1 dictionary_to_look_in = customers[2870]
2 customer_address =
dictionary_to_look_in["address"]

The code assigns the dictionary whose index number in the customers
list is 2870…

1 dictionary_to_look_in = customers[2870]

2 customer_address =
dictionary_to_look_in["address"]

…to the variable dictionary_to_look_in.

1 dictionary_to_look_in = customers[2870]
2 customer_address =
dictionary_to_look_in["address"]

This variable, dictionary_to_look_in, is used in line 2 to find the
address of the customer whose id is 2870:

1 dictionary_to_look_in = customers[2870]
2 customer_address =
dictionary_to_look_in["address"]

And the address is assigned to the variable customer_address:

1 dictionary_to_look_in = customers[2870]
2 customers_address =
dictionary_to_look_in["address"]

One constraint presented by this scheme: If you lose a customer, you can't
delete her dictionary from the list. If you do, index numbers of dictionaries will
change. They'll stop matching the customer ids inside them. For example, if you
delete the dictionary that has an index of 350 in the list, whose customer id is
also 350, the next dictionary, with an original index of 351, will now have an
index of 350. The customer's id in that dictionary will still be 351, but the
dictionary's position on the list will have moved up to 350. You'll no longer be
able to target the dictionary by using the customer id. And the same thing will
happen with all the dictionaries that come afterward.

The solution is to keep the original list of dictionaries intact, and create a
second list of customers who are no longer active. Then if, for example, you
want to mail all active customers, you use the second list to filter inactive
customers in the first list out of the mailing list.

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/35.html

http://www.ASmarterWayToLearn.com/python/35.html

36
How to append a new dictionary to a

list of dictionaries

In the simplified example we're using, the list is named customers. Each
dictionary in the list contains four key-value pairs that tell us the customer id,
first name, last name, and address of that particular customer.

We've acquired a new customer. So we need to add a new dictionary to the
end of the list.

Let's say we already have the first name, last name, and address of the new
customer. These values are stored in the variables new_first_name,
new_last_name, and new_address.

Using the scheme I showed you in the last chapter, we're going to make the
customer id match the index of the dictionary.

There's an easy way to find out what that index is going to be.
If we can find out how many dictionaries are already in the list, that number

will be the index number of the new dictionary. Remember, the number of
dictionaries in the list is 1 greater than the largest index number, since index
numbering starts at 0. If the number of dictionaries in the list is 1000, the last
dictionary in the list has an index of 999. So the index number of the new
dictionary will be 1000.

And if we know what that index number of the new dictionary on the list is,
we know what the new customer id is going to be, because it's going to be the
same number.

To learn how many dictionaries are in the list, we measure the list's length.
Using the keyword len, for length, we write…

new_customer_id = len(customers)

If the length of the customers list is 1000—if there are 1000 dictionaries
in the list—it means the index number of the last dictionary in the list is 999 – 1
since the count of dictionaries in the list starts at 1 and indexing starts at 0. So
the new customer id is the list length: 1000. That's the number assigned to the
variable new_customer_id.

Note how the code is structured:
It's the keyword len…

new_customer_id = len(customers)

…followed by the list name enclosed by parentheses…

new_customer_id = len(customers)

Now we've got all the values, including the new customer id, loaded into
variables. We can create the new dictionary:

new_dictionary = {
"customer id": new_customer_id,
"first name": new_first_name,
"last name": new_last_name,
"address": new_address,
}

Finally, we append this new dictionary to the list:

customers.append(new_dictionary)

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/36.html

http://www.ASmarterWayToLearn.com/python/36.html

37
Creating a dictionary that contains lists

Let's return to our favorite customer from an earlier chapter. His information is
held in the dictionary named customer_29876.

His first name, last name, and address are in three key-value pairs:

1 customer_29876 = {
2 "first name": "David",
3 "last name": "Elliott",
4 "address": "4803 Wellesley St.",
5 }

Let's say we offer our customers different discounts. David Elliott has
qualified for three of them: a standard discount, a volume discount, and a loyalty
discount. A good way to include this information in the dictionary is to code the
discounts as a list and put the list in the dictionary. This is the code:

1 customer_29876 = {
2 "first name": "David",
3 "last name": "Elliott",
4 "address": "4803 Wellesley St.",
5 "discounts": ["standard", "volume", "loyalty"],
6 }

Line 5 uses the syntax you already know for creating a list. It's the list name
followed by a colon…

5 "discounts": ["standard", "volume", "loyalty"],

…then the series of values, enclosed in square brackets…

5 "discounts": ["standard", "volume", "loyalty"],

But the list is created inside the dictionary definition.
And the name of the list, "discounts," is also the dictionary key paired with

the value, the series of three strings.
Find the interactive coding exercises for this chapter at

http://www.ASmarterWayToLearn.com/python/37.html

http://www.ASmarterWayToLearn.com/python/37.html

38
How to get information out of a list

within a dictionary

customer_29876 qualifies for three discounts, standard, volume, and
loyalty. He doesn't qualify for a fourth discount, brother-in-law.

When he makes a purchase, we want to give him the biggest discount he
qualifies for, but only that one discount. If we give him all the discounts he
qualifies for, we'll lose money.

These are the discounts:

brother-in-law – 30%
loyalty – 15%
volume – 10%
standard – 5%

To find out which discount to give customer_29876, we go through
the list of discounts named "discounts" in the dictionary customer_29876.
We look for each discount in turn, starting with the largest one, the brother-in-
law discount. When we find a discount, the search stops, and that's the discount
we apply.

This code introduces you to a new way to use the keyword in:

1 if "brother-in-law" in
customer_29876["discounts"]:
2 discount_amount = .30
3 elif "loyalty" in customer_29876["discounts"]:
4 discount_amount = .15
5 elif "volume" in customer_29876["discounts"]:
6 discount_amount = .10

7 elif "standard" in customer_29876["discounts"]:
8 discount_amount = .05

Since "loyalty" is found in the list within the customer_29876
dictionary, the 15% discount is applied.

The code above tells Python to check for a string…

1 if "brother-in-law" in
customer_29876["discounts"]:
2 discount_amount = .30

…in…

1 if "brother-in-law" in
customer_29876["discounts"]:
2 discount_amount = .30

…the "discounts" list…

1 if "brother-in-law" in
customer_29876["discounts"]:
2 discount_amount = .30

…within the customer_29876 dictionary…

1 if "brother-in-law" in
customer_29876["discounts"]:
2 discount_amount = .30

…and if it's in there, assign the correct value to the variable
discount_amount…

1 if "brother-in-law" in
customer_29876["discounts"]:
2 discount_amount = .30

If the string isn't found, check for the next discount…

3 elif "loyalty" in customer_29876["discounts"]:
4 discount_amount = .15

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/38.html

http://www.ASmarterWayToLearn.com/python/38.html

39
Creating a dictionary that contains a

dictionary

When we organized customer information as a list of dictionaries, it worked, but
we had to accept a constraint. The customer id, the first value in the dictionary,
had to match the index number of the dictionary in the list. That meant we
could never delete a customer. Otherwise, we'd throw the whole thing off.

But what if we turned the list of dictionaries into a dictionary of
dictionaries? By replacing index numbers with key-value pairs, we wouldn't be
locked in to a sequence of numbers that have to remain unbroken. We could
delete a customer without wrecking the whole thing.

Here's the list of dictionaries that we coded earlier:

1 customers = [
2 {
3 "customer id": 0,
4 "first name":"John",
5 "last name": "Ogden",
6 "address": "301 Arbor Rd.",
7 },
8 {
9 "customer id": 1,
10 "first name":"Ann",
11 "last name": "Sattermyer",
12 "address": "PO Box 1145",
13 },
14 {
15 "customer id": 2,
16 "first name":"Jill",

17 "last name": "Somers",
18 "address": "3 Main St.",
19 },
20]

In this list, there are three dictionaries. Each dictionary has four key-value
pairs. The opening square bracket on line 1 and the closing square bracket on
line 20 enclose the list.

Let's begin by replacing the pair of square brackets with a pair of curly
brackets:

1 customers = {
2 {
3 "customer id": 0,
4 "first name":"John",
5 "last name": "Ogden",
6 "address": "301 Arbor Rd.",
7 },
8 {
9 "customer id": 1,
10 "first name":"Ann",
11 "last name": "Sattermyer",
12 "address": "PO Box 1145",
13 },
14 {
15 "customer id": 2,
16 "first name":"Jill",
17 "last name": "Somers",
18 "address": "3 Main St.",
19 },
20 }

By replacing the square brackets with curly brackets, we're saying that
customers is a dictionary instead of a list. But a dictionary contains key-value
pairs. What are the values of this dictionary?

The dictionary has three values—the three inner dictionaries:

1 customers = {
2 {
3 "customer id": 0,
4 "first name":"John",
5 "last name": "Ogden",
6 "address": "301 Arbor Rd.",
7 },
8 {
9 "customer id": 1,
10 "first name":"Ann",
11 "last name": "Sattermyer",
12 "address": "PO Box 1145",
13 },
14 {
15 "customer id": 2,
16 "first name":"Jill",
17 "last name": "Somers",
18 "address": "3 Main St.",
19 },
20 }

But then what are the keys to these three values? In a dictionary you can't
have a value without a key.

So let's eliminate the customer id in each inner dictionary…

1 customers = {
2 {
3 "customer id": 0,
4 "first name":"John",
5 "last name": "Ogden",
6 "address": "301 Arbor Rd.",
7 },
8 {
9 "customer id": 1,

10 "first name":"Ann",
11 "last name": "Sattermyer",
12 "address": "PO Box 1145",
13 },
14 {
15 "customer id": 2,
16 "first name":"Jill",
17 "last name": "Somers",
18 "address": "3 Main St.",
19 },
20 }

…and use that value as the key for the dictionary itself…

1 customers = {
2 0: {
3 "first name":"John",
4 "last name": "Ogden",
5 "address": "301 Arbor Rd.",
6 },
7 1: {
8 "first name":"Ann",
9 "last name": "Sattermyer",
10 "address": "PO Box 1145",
11 },
12 2: {
13 "first name":"Jill",
14 "last name": "Somers",
15 "address": "3 Main St.",
16 },
17 }

Now in the customers dictionary, the first item has the key of 0. The
value paired with this key is the first inner dictionary. The second item has the
key of 1. The value is the second dictionary. Etc.

I've used sequential numbers as keys, but that's not necessary, because we're
no longer using the indexing approach that we'd use for a list. As long as the
keys are unique, it doesn't matter what they are. For example, they could be
strings that are user names:

1 customers = {
2 "johnog": {
3 "first name":"John",
4 "last name": "Ogden",
5 "address": "301 Arbor Rd.",
6 },
7 "coder1200": {
8 "first name":"Ann",
9 "last name": "Sattermyer",
10 "address": "PO Box 1145",
11 },
12 "madmaxine": {
13 "first name":"Jill",
14 "last name": "Somers",
15 "address": "3 Main St.",
16 },
17 }

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/39.html

http://www.ASmarterWayToLearn.com/python/39.html

40
How to get information out of a

dictionary within another dictionary

In the last chapter I coded a dictionary, customers, that contained three
inner dictionaries. The keys to the dictionaries were the integers 1, 2, and 3.
Each entire dictionary was the value that was paired with each key.

1 customers = {
2 0: {
3 "first name":"John",
4 "last name": "Ogden",
5 "address": "301 Arbor Rd.",
6 },
7 1: {
8 "first name":"Ann",
9 "last name": "Sattermyer",
11 "address": "PO Box 1145",
12 },
13 2: {
14 "first name":"Jill",
15 "last name": "Somers",
16 "address": "3 Main St.",
17 },
18 }

Previously you learned how to find the value in a dictionary by specifying its
key:

print(customers[2])

The code above tells Python to display the value of the item that has a key
of 2 in the customers dictionary. The value paired with 2 is an inner
dictionary. So this is what displays:

{'first name': 'Jill', 'last name': 'Somers',
'address': '3 Main St.'}

So how do we tell Python we want, say, the address in the 2 dictionary? We
say, Look in the dictionary whose key is 2…

print(customers[2]…

…and find within that dictionary the value whose key is "address"…

print(customers[2]["address"])

This displays:

3 Main St.

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/40.html

http://www.ASmarterWayToLearn.com/python/40.html

41
Functions

A function is a block of Python code that robotically does the same thing again
and again, whenever you invoke its name. It saves you repetitive coding and
makes your code easier to understand.

We'll start with a trivially simple example. Let's say you want to add two
numbers and display the result:

1 first_number = 2
2 second_number = 3
3 total = first_number + second_number

The code above assigns the integer 2 to the variable first_number and
the integer 3 to the variable second_number. Then it sums the values stored
in the two variables and assigns the total to the third variable, total.

If you add this line…

4 print(total)

…Python displays the number 5.
Now I'm going to turn this code into a function:

1 def add_numbers():
2 first_number = 2
3 second_number = 3
4 total = first_number + second_number
5 print(total)

The code above defines a function named add_numbers. This function
does exactly what the code at the beginning of this chapter does. The difference

is that a function doesn't do anything until it's called. This is how you call the
function:

add_numbers()

When Python sees the code above, it runs all the code in the function
named add_numbers. The number 5 is displayed.

When you use functions, you always have to think of both parts, the code
that defines the function and the code that calls the function. Without both
parts, nothing ever happens. A definition without a call never runs. A call
without a definition breaks the program.

The code that defines the function and the code that calls the function don't
have to be near each other. They can be thousands of lines apart. But note: the
function definition must come before the function call. When you call a
function, Python always looks for it in the code above the call. If the function
definition is below the call, Python won't find it, and you'll get an error.

Let's go over the syntax:
The definition begins with the keyword def (for define):

1 def add_numbers():

Then comes the name. It can be any legal variable name you like.
(Technically, a function is a variable. This will make more sense later.)

1 def add_numbers():

The function name is followed by parentheses…

1 def add_numbers():

The line ends with a colon…

1 def add_numbers():

You indent the code that runs within the function…

1 def add_numbers():
2 first_number = 2
3 second_number = 3
4 total = first_number + second_number
5 print(total)

To run the code within the function—that is, to call the function—you write
the name of the function followed by parentheses:

add_numbers()

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/41.html

http://www.ASmarterWayToLearn.com/python/41.html

42
Functions: Passing them information

As you learned in the last chapter, a function is a block of code that does
something robotically, whenever you invoke its name—that is, whenever you
call it. For example, when you write add_numbers(), a function named
add_numbers executes. To be clear: The kind of function I'm talking about is
one that you've written yourself, and named yourself.

This is the code I wrote to define the add_numbers function:

1 def add_numbers():
2 first_number = 2
3 second_number = 3
4 total = first_number + second_number
5 print(total)

This is the code I wrote to call the function:

add_numbers()

One of the really useful things about functions is that those parentheses in
the calling code…

add_numbers()

…don't have to be empty. If you put some information inside the
parentheses, that information is passed to the function. The function can then
use the information when it executes.

Suppose, instead of writing add_numbers() you write...

add_numbers(53, 109)

Now, instead of just calling the function, you're calling it and passing data to
it. Each of the numbers inside the parentheses is known as an argument. In this
example, you're passing two arguments to the function. Note that the two
arguments are separated by a comma.

The function is now more versatile, because now it can add any two
numbers you give it, not just two numbers that are hard-wired into it.

In order for a function to become a versatile robot rather than a one-job
robot, you have to set it up to receive the data you're passing. Here's how you
do it:

1 def add_numbers(first_number, second_number):
2 total = first_number + second_number
3 print(total)

So now we've inserted two things into the parentheses of the calling code,
and also inserted two things into the parentheses of the function definition. The
parentheses of the calling code contain two arguments, the numbers 53 and
109. And, as you can see in the example above, the parentheses of the function
definition contain two variables, first_number and second_number.
These variables store the data passed by the calling code, 53 and 109.

A variable inside the parentheses in a function definition is known as a
parameter. The parameter name is up to you. You can give it any name that
would be legal for a variable. Then you can use the variable to accomplish
something in the body of the function. On line 2 in the example, I use the two
parameters as the numbers to be added:

1 def add_numbers(first_number, second_number):
2 total = first_number + second_number
3 print(total)

The arguments in the function call —the numbers 53 and 109—are the
information that's passed to the function by the code that calls the function. The
parameters inside the parentheses in the function definition—first_number
and second_number—catch the data that's passed. These variables hold the

numbers 53 and 109. In other words, the numbers specified in the function call
are assigned to first_number and second_number in the function.
Then those parameters—i.e. those variables—are used in the body of the
function.

Note that the two parameters are separated by a comma.
In the example, the numbers 53 and 109 are passed to the function by the

calling code. The function adds them and displays the total, 162. Since the
function accepts any two numbers as arguments, you could, for example,
write…

add_numbers(1.11, 2.22)

…and Python would display the float 3.33.
But how does Python know that 1.11 goes into the parameter

first_number and 2.22 goes into the parameter second_number?
Simple: Since 1.11 is the first argument, it goes into the first parameter,
first_number. Since 2.22 is the second argument, it goes into the second
parameter, second_number.

Arguments like this are positional arguments—arguments that are loaded into
function parameters in order, like a line of customers loaded into the cars of a
theme park ride.

In the example, the arguments are two numbers, but you could put in a
string, a bunch of strings, or a combination of numbers and strings. You could
even put in a variable or several variables or a combination of variables,
numbers, and strings. In the following code, I declare the variable greeting
and assign it the value "Hello, there." Then, rather than using the string itself as
an argument in the function call, I use the variable.

1 greeting = "Hello, there."
2 greet_user(greeting)

This is the function definition:

1 def greet_user(greeting):
2 print(greeting)

Python displays…

Hello, there.

In the example, I named the argument in the calling code greeting, and
also named the parameter in the function code greeting. But this isn't
necessary. The argument name and the parameter name don't have to match.
No matter what an argument's name is, it is accepted by the parameter, no
matter what the parameter's name is. In the following code, the variable
whatever is the argument. The parameter greeting doesn't match the
name, but still catches the value.

Here's the function, once again, with the parameter greeting.

1 def greet_user(greeting):
2 print(greeting)

And here's the statement that calls the function, with the argument
whatever.

1 whatever = "Hello, there."
2 greetUser(whatever)

It's okay that the name of the argument and the name of the parameter don't
match. The parameter still catches the argument, the string "Hello, there."

Still, it often makes sense to give an argument and a parameter the same
name, for clarity.

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/42.html

http://www.ASmarterWayToLearn.com/python/42.html

43
Functions: Passing information to them

a different way

In the last chapter you learned that the code that calls a function can pass
information—one or more arguments—to the function. Each argument is
loaded into a corresponding parameter—a variable enclosed in parentheses in
the first line of the function definition—in order. This matching-by-order makes
the arguments positional arguments.

But you don't have to match arguments to parameters by order. You can
code keyword arguments. Then the order doesn't matter. Here's a function call with
two keyword arguments:

say_names_of_couple(husband_name="Bill",
wife_name="Zelda")

If you write…

1 def say_names_of_couple(husband_name, wife_name):
2 print("The names of the couple are " +
husband_name + " and " + wife_name)

Python displays…

The names of the couple are Bill and Zelda.

Each argument begins with a key—husband_name is the first one. The
key is followed by an equal sign, then the value that is paired with the key, "Bill."

The function definition loads that value into the correct parameter not
according to order, but by matching the key husband_name in the function

call with husband_name in the function definition.
This means the order doesn't matter. You can write…

1 def say_names_of_couple(husband_name, wife_name):

…or you can reverse the order of the parameters and write…

1 def say_names_of_couple(wife_name, husband_name):

All that matters is that the name of the key in the calling code argument
—wife_name—is the same as the parameter name in the function's definition
— wife_name.

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/43.html

http://www.ASmarterWayToLearn.com/python/43.html

44
Functions: Assigning a default value to

a parameter

Let's say you code a function that calculates state sales tax on a retail sale. Using
keyword arguments, you could write…

calc_tax(sales_total=101.37, tax_rate=.05)

The function would take it from there:

1 def calc_tax(sales_total, tax_rate):
2 print(sales_total * tax_rate)

When the function runs, Python displays…

5.0685

But suppose 98 percent of your sales take place in your state. Your state has
a tax rate of 4%. Python allows you to make that rate the default value for the
key tax_rate. Here's how:

1 def calc_tax(sales_total, tax_rate=.04):
2 print(sales_total * tax_rate)

Now you can skip the second argument in the function call…

calc_tax(sales_total=101.37, tax_rate=.05)

…and just write…

calc_tax(sales_total=101.37)

…and the function will have all it needs to make the calculation and display
the result.

Note: Only keyword parameters can have a default value. Positional
parameters can't.

In the rare case when you make a sale in another state with a different tax
rate, you just put the second argument back into the function call…

calc_tax(sales_total=101.37, tax_rate=.075)

…and the function replaces the default parameter, .04, with the value passed
to the function by the calling code, .075.

Note: Keyword parameters without defaults must come before keyword
parameters with defaults. In the following code, tax_rate=.04 must come
after sales_total.

1 def calc_tax(sales_total, tax_rate=.04):
2 print(sales_total * tax_rate)

You can use an empty default parameter value for an optional argument.
Let's say you have a function that prints out an order for a single product. The
information includes product name, color, size, and optional engraving.
Sometimes the calling code passes a string for the engraved text, and sometimes
it passes nothing, when engraving hasn't been ordered. So you code the final
parameter, engraving_text, with the default value of an empty string:

def print_order(product_name, color, size,
engraving_text=""):

If the calling code includes engraving text as an argument, the string passed
by the argument replaces the empty string. If the calling code doesn't include
engraving text as an argument, the function uses the empty string—no
engraving.

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/44.html

http://www.ASmarterWayToLearn.com/python/44.html

45
Functions: Mixing positional and

keyword arguments

You can mix positional arguments and keyword arguments. For example, you
can code…

give_greeting("Hello there", first_name="Al")

The first argument is positional, because there's no keyword. The second
argument is a keyword argument, because it pairs the keyword first_name
with the value "Al."

If you code this function…

1 def give_greeting(greeting, first_name):
2 print(greeting + ", " + first_name)

…Python displays…

Hello there, Al

Be careful mixing positional and keyword arguments.
Positional arguments must come before keyword arguments.
Keyword arguments don't have to line up with parameters, but positional

arguments do. If "Hello there" is the first argument and greeting is the
second parameter, it won't work. Since the positional argument "Hello there" is
the first argument, it can pass information only to the first parameter in the
function defintion. greeting has to come first in the parameter list.

You can also throw default values into the mix. You can write…

give_greeting("Hello there", first_name="Al")

…and the code calls this function…

1 def give_greeting(greeting, first_name,
flattering_nickname=" the wonder boy"):
2 print(greeting + ", " + first_name +
flattering_nickname)

Python displays…

Hello there, Al the wonder boy

When the calling code doesn't pass an argument for
flattering_nickname, the function uses the default, "the wonder boy".

Note: Positional arguments and parameters always come first, keyword
parameters without defaults always come second, and keyword parameters with
defaults always come last.

Lists and dictionaries, as well as strings and numbers, can be arguments
passed to a function. Here's our customers dictionary, a dictionary that
contains a dictionary:

1 customers = {
2 0: {
3 "first name":"John",
4 "last name": "Ogden",
5 "address": "301 Arbor Rd.",
6 },
7 1: {
8 "first name":"Ann",
9 "last name": "Sattermyer",
10 "address": "PO Box 1145",
11 },
12 2: {
13 "first name":"Jill",

14 "last name": "Somers",
15 "address": "3 Main St.",
16 },
17 }

Let's say we want to find the last name of customer 2.
This is the function call:

find_something(customers, 2, "last name")

This is the function definition:

1 def find_something(dict, inner_dict, target):
2 print(dict[inner_dict][target])

The argument customers—the name of the dictionary—goes into the
parameter dict…

find_something(customers, 2, "last name")
1 def find_something(dict, inner_dict, target):
2 print(dict[inner_dict][target])

The argument 2 goes into the parameter inner_dict. We're looking for
the inner dictionary named 2 within the outer dictionary named
customers…

find_something(customers, 2, "last name")
1 def find_something(dict, inner_dict, target):
2 print(dict[inner_dict][target])

The argument "last name" goes into the parameter target. We're looking
for the value whose key is "last name" in the inner dictionary…

find_something(customers, 2, "last name")
1 def find_something(dict, inner_dict, target):

2 print(dict[inner_dict][target])

The function uses the three parameters to find the value we want:

1 def find_something(dict, inner_dict, target):
2 print(dict[inner_dict][target])

Python displays…

Somers

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/45.html

http://www.ASmarterWayToLearn.com/python/45.html

46
Functions: Dealing with an unknown

number of arguments

You've learned to match arguments with parameters. For every argument in the
function call, you code a parameter in the function definition to store its value.

Here's a function that displays a soccer match result:

1 def display_result(winner, score):
2 print("The winner was " + winner)
3 print("The score was " + score)

If you call the function with these arguments…

display_result(winner="Real Madrid", score="1-0")

Python displays…

The winner was Real Madrid
The score was 1-0

But suppose there are times when you want to display other information
about the match—but not always. For example, you call the same function and
include these optional arguments:

display_result(winner="Real Madrid", score="1-0",
overtime ="yes", injuries="none")

The function can handle optional arguments with this code:

1 def display_result(winner, score, **other_info):

The two asterisks followed by a parameter name mean that there may or
may not be one or more extra arguments passed.

The parameter name, like any other parameter name, can be any legal
variable name. You could call it…

1 def display_result(winner, score, **whatever):

How does the function handle the optional arguments? It puts them in a
dictionary. The name of the dictionary is the parameter name—other_info,
whatever, or whatever name follows those two asterisks.

Here's the function with code that displays any additional information:

1 def display_result(winner, score, **other_info):
2 print("The winner was " + winner)
3 print("The score was " + score)
4 for key, value in other_info.items():
5 print(key + ": " + value)

The code loops through the dictionary named info, displaying each item
of optional information—if there is any optional information.

When Python executes the call…

display_result(winner="Real Madrid", score="1-0",
overtime ="yes", injuries="none")

…this displays…

The winner was Real Madrid
The score was 1-0
overtime: yes
injuries: none

Note: Optional arguments must come after regular arguments. Optional
parameters must come after regular parameters.

Positional arguments can be optional as well. To handle optional positional
arguments, you use a single asterisk:

1 def display_nums(first_num, second_num,
*opt_nums):
2 print(first_num)
3 print(second_num)
4 print(opt_nums)

If this is the calling code…

display_nums(100, 200, 300, 400, 500)

…100 goes into the parameter first_num, 200 goes into the parameter
second_num, and the last three numbers, the optional arguments, go into the
parameter *opt_nums. The function puts them into a tuple. I've named it
opt_nums. Line 4 displays the tuple.

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/46.html

http://www.ASmarterWayToLearn.com/python/46.html

47
Functions: Passing information back

from them

You've learned how a function becomes more versatile when you pass
information to it so it can deliver a custom job.

But a function can do even more. It can pass information back to the calling
code.

Here's a function that calculates and displays sales tax:

1 def calc_tax(sales_total, tax_rate):
2 tax = sales_total * tax_rate
3 print(tax)

The calling code passes two arguments to the function:

calc_tax(sales_total=101.37, tax_rate=.05)

The function accepts these values as parameters then uses the values to do
the calculation.

1 def calc_tax(sales_total, tax_rate):
2 tax = sales_total * tax_rate
3 print(tax)

When the function runs, Python displays…

5.0685

But you can remove the statement that tells Python to display the tax
amount from the function…

1 def calc_tax(sales_total, tax_rate):
2 tax = sales_total * tax_rate
3 print(tax)

…and replace it with a return statement:

1 def calc_tax(sales_total, tax_rate):
2 tax = sales_total * tax_rate
3 return tax

You rewrite the calling statement so it has a place to put the value passed to
it by the function…

sales_tax = calc_tax(sales_total=101.37,
tax_rate=.05)

The statement tells Python to run the function calc_tax and assign the
result to the variable sales_tax.

To display the result, you can add a print statement after the function call:

1 sales_tax = calc_tax(sales_total=101.37,
tax_rate=.05)
2 print(sales_tax)

Python displays…

5.0685

So in order to pass information back to the calling code, you need two
things. You need a final line in the function that sends the information back to
the calling code…

3 return tax

…and you need a way for the calling code to accept the information. In this
case, it's a variable:

sales_tax = calc_tax(sales_total=101.37,
tax_rate=.05)

For brevity, you could condense these two lines of code…

1 sales_tax = calc_tax(sales_total=101.37,
tax_rate=.05)
2 print(sales_tax)

…into one line of code:

1 print(calc_tax(sales_total=101.37, tax_rate=.05))

…and you could condense these three lines of code…

1 def calc_tax(sales_total, tax_rate):
2 tax = sales_total * tax_rate
3 return tax

…into two lines of code…

1 def calc_tax(sales_total, tax_rate):
2 return(sales_total * tax_rate)

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/47.html

http://www.ASmarterWayToLearn.com/python/47.html

48
Using functions as variables (which is

what they really are)

In the last chapter, I may have confused you when I said you could condense…

1 sales_tax = calc_tax(sales_total=101.37,
tax_rate=.05)
2 print(sales_tax)

…into…

print(calc_tax(sales_total=101.37, tax_rate=.05))

In the longer, two-line code, the variable sales_tax receives the value
returned by the function calc_tax. Then the variable is used in the print
statement to tell Python the value to display.

In the condensed statement, it appears that I'm telling Python to display the
function! But really, I'm telling Python to display the value that's returned by the
function. Instead of enclosing a variable in the parentheses, I'm enclosing the
function. This is legal, because a function is a variable.

Here's another example. Let's say I write a function that adds two
numbers…

1 def add_numbers(first_number, second_number):
2 return first_number + second_number

…and another function that subtracts two numbers…

1 def subtract_numbers(first_number, second_number):

2 return first_number - second_number

Suppose I write…

1 result_of_adding = add_numbers(1, 2)
2 result_of_subtracting = subtract_numbers(3, 2)
3 sum_of_results = result_of_adding +
result_of_subtracting

Line 1 calls the first function. The result, 3, is returned and placed in
result_of_adding.

Line 2 calls the second function. The result, 1, is returned and placed in
result_of_subtracting.

Line 3 totals the values stored in the two variables, 4, and assigns the sum to
sum_of_results.

This can all be condensed into one line by replacing the two variables with
the functions themselves:

1 sum_of_results = add_numbers(1, 2) +
subtract_numbers(3, 2)

Find the interactive coding exercises for this chapter at
http://www.ASmarterWayToLearn.com/python/48.html

http://www.ASmarterWayToLearn.com/python/48.html

49
Functions: Local vs. global variables

Now we come to the subject of variable scope. That is, the difference between
global and local variables. Some variables have global scope, which makes them
global variables. Other variables have local scope, which makes them local
variables.

A global variable is one you define in the main body of your code—that is,
not in a function.

what_to_say = "Hi"

A local variable is one that you define in a function.

1 def say_something():
2 what_to_say = "Hi"

What makes a global variable global is that it is recognized everywhere in
your code. Global scope is like global fame. Wherever you go in the world,
they've heard of the pope.

A local variable is one that's recognized only within the function that
introduces it. Local scope is like local fame. The mayor of Duluth is known only
in Duluth.

Let's say you write, in your main code…

what_to_say = "Hi"

… you can use the variable anywhere.
But if you write, in a function…

1 def say_something():

2 what_to_say = "Hi"

…and you try to use the variable what_to_say in your main code or in
another function…

print(what_to_say)

…Python doesn't recognize the variable. You get an error message:

NameError: name 'what_to_say' is not defined….

In the following code, b, c, and total are local.

1 def whatever(b, c):
2 total = b + c
3 return total

If, outside the function, you write…

print(b)

or…

print(c)

…or…

print(total)

…you'll get an error message.
On the other hand, if you write the print statements within the function

where they're defined…

1 def whatever(b, c):
2 total = b + c

3 print(b)
4 print(c)
5 print(total)

…Python has no problem. A variable defined in a function is recognized
inside the function—and only inside the function.

Code outside a function can't use variables defined inside the function, but
code inside the function can use variables defined in the main code. Remember,
variables defined in the main code are global, meaning that they're recognized
everywhere, including inside functions. So if you write…

a = 2

…then you write…

def display_number():
print(a)

…it'll work.
However, good coders avoid using global variables inside functions, because

it's confusing. It's better to pass values to functions using arguments. It's better
to keep all the variables used in functions local.

Now look at this code, a function definition and three statements outside
the function:

1 def whatever():
2 y = 2
3 print(y)
100 y = 1
101 whatever()
102 print(y)

The function defines y as 2. Later, the main code defines y as 1. Next, it
calls the function. After the function call, line 102 displays the value of y.

On line 3 the function displays the value of y as it's defined inside the
function—the value 2. After the function runs, you might think that line 102 of
the main code would display y as 2 also, because, after all, the function assigned
y the value 2, and it did this after the main code assigned y the value 1. But
that's not what happens.

The function displays the value 2, and then the main code displays the value
1. This is because y is two different variables that (confusingly) happen to have
the same name! Inside the function, y is a local variable because the function
assigns it a value. This variable called y is unknown outside the function. What
happens to the local variable y inside the function doesn't affect the global
variable y outside the function. The global variable retains the value of 1 that it
was assigned on line 100.

Find the interactive coding exercises for this chapter at:
http://www.ASmarterWayToLearn.com/python/49.html

http://www.ASmarterWayToLearn.com/python/49.html

50
Functions within functions

Within a function, you can call other functions.
Let's look at a trivial example, to keep things simple.
Recall the example in the last chapter:

100 def say_something():
200 what_to_say = "Hi"
300 print(what_to_say)

You could break this up into two functions. The function,
say_something, calls another function, now_say_it …

100 def say_something():
200 what_to_say = "Hi"
300 now_say_it()

This is the function that's called by say_something:

1 def now_say_it():
2 print(what_to_say)

Note: The function that is called must be earlier in your code than the
function that calls it.

But there's a problem with this code.
You learned in the last chapter that a variable assigned a value inside a

function—a local variable—is only recognized inside the function itself. Outside
the function, it isn't known.

Since the variable what_to_say is defined inside
say_something, the variable belongs to say_something and is known

only inside that function. So it isn't recognized inside the
now_say_it function.

When you write…

1 def now_say_it():
2 print(what_to_say)

…you get an error message.
You need to pass the value of say_something's

variable what_to_say to now_say_it as an argument:

100 def say_something():
200 what_to_say = "Hi"
300 now_say_it(what_to_say)

…and now_say_it must receive it as a parameter…

1 def now_say_it(content):
2 print(content)

I could have given the parameter in now_say_it the same name as the
argument, what_to_say, passed to it by say_something. But I gave the
parameter a different name, content, to emphasize that the argument passed
by say_something and the parameter that receives it in now_say_it
aren't the same variable, even though you might give them the same names.
That's because they're both local variables, known only inside their functions, no
matter what names you give them.

Find the interactive coding exercises for this chapter at:
http://www.ASmarterWayToLearn.com/python/50.html

http://www.ASmarterWayToLearn.com/python/50.html

51
While loops

A for loop, as you learned, cycles through a series of things, repeating itself
until it comes to the end of the series, or until it encounters a break statement.

For example, you have a list of clean cities:

cleanest_cities = ["Cheyenne", "Santa Fe", "Tucson",
"Great Falls", "Honolulu"]

The user enters the name of a city…

city_to_check = input("Enter the name of a city: ")

The loop then cycles through the list of clean cities, checking to see if there's
a match:

1 for a_clean_city in cleanest_cities:
2 if city_to_check == a_clean_city:
3 print("It's one of the cleanest cities")
4 break

But suppose you want the user to be able to check a city, and then if she
wants, check another city after that, and then another city after that, etc.

For this, you use a while loop:

1 user_input = ""
2 while user_input != "q":
3 user_input = input("Enter a city, or q to
quit:")
4 if user_input != "q":

5 for a_clean_city in cleanest_cities:
6 if user_input == a_clean_city:
7 print("It's one of the cleanest cities")
8 break

On line 1 the variable user_input is assigned an initial value of ""—an
empty string:

1 user_input = ""
2 while user_input != "q":
3 user_input = input("Enter a city, or q to
quit:")
4 if user_input != "q":
5 for a_clean_city in cleanest_cities:
6 if user_input == a_clean_city:
7 print("It's one of the cleanest cities")
8 break

Line 2 says, "For as long as the user hasn't entered "q," keep executing the
code that follows:"

1 user_input = ""
2 while user_input != "q":
3 user_input = input("Enter a city, or q to
quit:")
4 if user_input != "q":
5 for a_clean_city in cleanest_cities:
6 if user_input == a_clean_city:
7 print("It's one of the cleanest cities")
8 break

In Line 3 Python prompts for the user's input, and places it in the variable
user_input.

1 user_input = ""

2 while user_input != "q":
3 user_input = input("Enter a city, or q to
quit:")
4 if user_input != "q":
5 for a_clean_city in cleanest_cities:
6 if user_input == a_clean_city:
7 print("It's one of the cleanest cities")
8 break

If the user has entered anything other than "q"…

1 user_input = ""
2 while user_input != "q":
3 user_input = input("Enter a city, or q to
quit:")
4 if user_input != "q":
5 for a_clean_city in cleanest_cities:
6 if user_input == a_clean_city:
7 print("It's one of the cleanest cities")
8 break

…Python loops through the list of cleanest cities, trying to find a match
with the city that the user entered:

1 user_input = ""
2 while user_input != "q":
3 user_input = input("Enter a city, or q to
quit:")
4 if user_input != "q":
5 for a_clean_city in cleanest_cities:
6 if user_input == a_clean_city:
7 print("It's one of the cleanest cities")
8 break

The for loop either finds a match or it doesn't. In either case, Python goes
back to line 2, checking to see if "q" has been entered. If "q" hasn't been
entered, the prompt executes again. If "q" has been entered, the while loop
ends.

Things to remember:

You have to assign a value to the variable that the while loop
depends on, in this case user_input, before you start the while
loop. Otherwise, the first time through, before the user has entered
anything, Python doesn't recognize the variable when you ask it to
check its value in line 2. In this example, the value is an empty string.

As always, when a block of code is controlled by code above it, the
dependent block is indented. All the statements below line 2 are
controlled by line 2's while statement, so they're indented. All the
statements below line 4 are controlled by line 4's if statement, so
they're indented. All the statements below line 5 are controlled by line
5's for statement, so they're indented. All the statements below line 6
are controlled by line 6's if statement, so they're indented.

Find the interactive coding exercises for this chapter at:
http://www.ASmarterWayToLearn.com/python/51.html

http://www.ASmarterWayToLearn.com/python/51.html

52
While loops: Setting a flag

In the last chapter you learned to use a while loop to keep repeating
something until the user enters "q" for "quit."

1 user_input = ""
2 while user_input != "q":
3 user_input = input("Enter a city, or q to
quit:")
4 if user_input != "q":
5 for a_clean_city in cleanest_cities:
6 if user_input == a_clean_city:
7 print("It's one of the cleanest cities")
8 break

I'm going to modify this code to show you how to use a flag. I'll highlight the
changed code:

1 keep_looping = True
2 while keep_looping == True:
3 user_input = input("Enter a city, or q to
quit:")
4 if user_input != "q":
5 for a_clean_city in cleanest_cities:
6 if user_input == a_clean_city:
7 print("It's one of the cleanest cities")
8 break
9 else:
10 keep_looping = False

Line 1 assigns True to the variable that I named keep_looping. True
is a special value known as a Boolean. I'll get back to that.

Line 2 says, "As long as the variable keep_looping stays True, keep
looping."

The code inside the loop is the same as it was in the last chapter.
Lines 9 and 10 say, "If the user has entered 'q,' change the value of

keep_looping to False."
Since the loop continues only as long as keep_looping has a value of

True, the loop ends.
There are only two Booleans, True and False.
Things to remember:

True and False aren't enclosed in quotation marks. They aren't
strings.

They must be capitalized.

Find the interactive coding exercises for this chapter at:
http://www.ASmarterWayToLearn.com/python/52.html

http://www.ASmarterWayToLearn.com/python/52.html

53
Classes

On your first visit to a health clinic, the receptionist hands you a clipboard with
a form clipped to it. You fill out the form to provide your personal information.

Why a form? Why doesn't she just give you a blank sheet of paper with the
instructions, "Tell us about yourself"?

You know the answer. The clinic wants a standard set of information
organized the same way for each patient. The form is a template that makes
things easier for both you and the clinic. It standardizes and organizes
information so the information is easier to access and easier to work with.

In Python, classes are templates. They help you standardize and organize
information.

When you write the first line of code creating a class …

1 class Patient():
2 etc…

…you're saying to Python, "I'm creating a class that I'm naming Patient.
Use this class as the template for each virtual sheet of information about a
bunch of different patients. Each patient will have her own instance of this form,
but the information for all patients is to be structured the same way."

A class is like the health clinic receptionist's tablet of forms. Before it's filled
out, each sheet in the tablet is identical to all the others. When a patient fills out
a copy, it still has the same structure as all the others but contains unique
particulars.

Coding the first line of a class definition is like creating a title at the top of a
form:

Things to notice about this first line of code that defines a class:
It begins with the keyword class.

1 class Patient():
2 etc…

Then comes the name you're giving it. Naming rules here follow those for
variables. The only difference is that by custom, a class name begins with a
capital letter:

1 class Patient():
2 etc…

The class name is followed by a pair of parentheses and a colon:

1 class Patient():
2 etc…

Find the interactive coding exercises for this chapter at:
http://www.ASmarterWayToLearn.com/python/53.html

http://www.ASmarterWayToLearn.com/python/53.html

54
Classes: Starting to build the structure

The first line of code…

1 class Patient():

…tells Python that we're creating a class, a kind of template. The template
will structure each instance, that is, each individual patient record.

To begin with, we know that each patient's record contains a last name. So
let's start there:

1 class Patient():
2 def __init__(self, last_name):

Line 2 creates an attribute—a chunk of information to be provided about
each patient:

When you become a full-fledged computer scientist, you can come back and
explain to me the deeper meaning of

def __init__(self,…. In the meantime, let's just say that it's always
the same abracadabra:

It's the keyword def…

1 class Patient():
2 def __init__(self, last_name):

…followed by 2 underscores, the keyword init, then 2 more
underscores…

1 class Patient():
2 def __init__(self, last_name):

…an opening parenthesis, the keyword self, and a comma…

1 class Patient():
2 def __init__(self, last_name):

Then comes the name of an attribute to include in each individual patient
record. In this case, it's the last name of the patient:

1 class Patient():
2 def __init__(self, last_name):

Line 2 ends with a closing parenthesis and colon:

1 class Patient():
2 def __init__(self, last_name):

Note that line 2 is indented.
Find the interactive coding exercises for this chapter at:

http://www.ASmarterWayToLearn.com/python/54.html

http://www.ASmarterWayToLearn.com/python/54.html

55
Classes: A bit of housekeeping

We've told Python we're defining a class named Patient…

1 class Patient():

…and we've started to structure the class, specifying that it is to contain an
attribute named last_name…

1 class Patient():
2 def __init__(self, last_name):

Next, we have to write a line that Python needs in order to keep things
straight. It's just housekeeping. We need to tell Python that in each instance that
we create using the class as a template, there will be a variable that has the same
value as the attribute we're talking about in line 2, last_name.

You can give this attribute any name you like, as long as it's legal...

1 class Patient():
2 def __init__(self, last_name):
3 self.whatever_dude = last_name

But the easy thing to do is to duplicate the attribute name. That's what I'll
ask you to do in the exercises.

1 class Patient():
2 def __init__(self, last_name):
3 self.last_name = last_name

You may wonder why it's necessary to tell Python that the last_name in

line 3 has the same value as the last_name in line 2. That's another one you
can explain to me when you're teaching at Stanford.

Note that line 3 has to start with that mysterious self, followed by a dot…

1 class Patient():
2 def __init__(self, last_name):
3 self.last_name = last_name

Note also that line 3 is indented one level deeper than line 2.
Find the interactive coding exercises for this chapter at:

http://www.ASmarterWayToLearn.com/python/55.html

http://www.ASmarterWayToLearn.com/python/55.html

56
Classes: Creating an instance

We've created a class called Patient…

1 class Patient():
2 def __init__(self, last_name):
3 self.last_name = last_name

A class is analogous to the blank form a healthcare receptionist hands you to
fill out. The form is the same for everyone. What differs from copy to copy is
what you write in the blanks.

For learning purposes, our paper form has only one blank to fill, Last
Name.

Similarly, our class, Patient, has only one attribute to fill in,
last_name.

One more thing, though. In addition to the single blank for the last name,
the paper form includes a unique identifier for each patient. The printer might
have added this automatically, with a different number for each individual sheet.
This sheet's unique identifier, the patient ID, is pid4044.

So now we fill in the single blank for patient pid343:

Here's how we do the same thing by creating an instance of the class
Patient:

pid4343 = Patient("Taleb")

pid4343 is the unique identifier for this particular patient. It's just a
variable, which means I made it up. But it does need to be different for each
instance that we create for the class, because it's a unique identifier. No two
patients can share the same identifier.

When we write…

pid4343 = Patient("Taleb")

…we're saying, "Create a copy (instance) of the Patient form (class) that
has the unique identifier pid4343, and fill in the blank for last name
(last_name attribute) with "Taleb."

In this one-attribute class that we're starting with, we don't have to tell
Python which "blank" to fill in, because at this point, our class has only one
attribute, last_name.

When we create an instance of a class—a fresh sheet to fill out—we say we
instantiate the class.

We begin with the name of the instance—its unique identifier. In this
instance, it's pid4343.

pid4343 = Patient("Taleb")

Then comes the equal sign:

pid4343 = Patient("Taleb")

Then the name of the class:

pid4343 = Patient("Taleb")

Then the value to be assigned to the attribute, in parentheses:

pid4343 = Patient("Taleb")

We can use the class to create as many instances—as many filled-out forms
—as we need:

pid4344 = Patient("Anand")

pid4345 = Patient("Oppenheimer")

pid4346 = Patient("Lin")

pid12902 = Patient("Nilsson")

Now we have the equivalent of five filled-out forms for five different
patients. The particulars are different, but the structure is identical.

Instead of creating a class and then creating multiple instances of the class,
you could create a dictionary for each patient:

pid4343 = {"last name": "Taleb"}

pid4344 = {"last name": "Anand"}

pid4345 = {"last name": "Oppenheimer"}

pid4346 = {"last name": "Lin"}

pid12902 = {"last name": "Nilsson"}

This works, but it's the equivalent of the clinic receptionist creating a new
patient form from scratch for each patient. That might make sense for our
ridiculously simple form with only one piece of patient information in it, but the
slight extra effort required to create a class pays off in ways you'll appreciate
when you're working with more complex sets of data.

Find the interactive coding exercises for this chapter at:
http://www.ASmarterWayToLearn.com/python/56.html

http://www.ASmarterWayToLearn.com/python/56.html

57
Classes: A little more complexity

We created a class named Patient, with just a single attribute, last_name:

1 class Patient():
2 def __init__(self, last_name):
3 self.last_name = last_name

Then we instantiated the class five times. These were the instances we
created:

pid4343 = Patient("Taleb")

pid4344 = Patient("Anand")

pid4345 = Patient("Oppenheimer")

pid4346 = Patient("Lin")

pid12902 = Patient("Nilsson")

Let's add two more attributes to the class to make it slightly more realistic:

1 class Patient():
2 def __init__(self, last_name, first_name, age):
3 self.last_name = last_name
4 self.first_name = first_name
5 self.age = age

Here are five instances of this more complicated class:

pid4343 = Patient("Taleb", "Sue", 61)

pid4344 = Patient("Anand", "Punya", 29)

pid4345 = Patient("Oppenheimer", "Douglas", 15)

pid4346 = Patient("Lin", "Lilly", 48)

pid12902 = Patient("Nilsson", "Rhonda", 33)

Note that in each instance, there's a value that matches up with each
attribute in the class definition on line 2. "Taleb" matches up with
last_name, "Sue" matches up with first_name, 61 matches up with
age.

Python matches the values with the attributes according to their order. It
works like positional arguments—the arguments in a function call that match up
with the parameters in the function, according to their order.

last_name is the first attribute…

1 class Patient():
2 def __init__(self, last_name, first_name, age):

…and Python knows to match "Taleb" with it because "Taleb" is the first
value…

pid4343 = Patient("Taleb", "Sue", 61)

first_name is the second attribute…

1 class Patient():
2 def __init__(self, last_name, first_name, age):

…and "Sue" is the second value…

pid4343 = Patient("Taleb", "Sue", 61)

age is the third attribute…

1 class Patient():
2 def __init__(self, last_name, first_name, age):

…and 61 is the third value…

pid4343 = Patient("Taleb", "Sue", 61)

It's that simple.
Find the interactive coding exercises for this chapter at:

http://www.ASmarterWayToLearn.com/python/57.html

http://www.ASmarterWayToLearn.com/python/57.html

58
Classes: Getting info out of instances

We created an instance of the class Patient for pid4343 that had three
attributes: last_name, first_name, and age. The values matching these
attribute names were "Taleb", "Sue", and 61.

Here's how we get Sue Taleb's age out of her patient record:

age_of_patient = pid4343.age

The line above assigns Sue Taleb's age, 61, to a variable I've named
age_of_patient.

Note the syntax. It starts with the unique identifier of the instance…

age_of_patient = pid4343.age

Then there's a dot…

age_of_patient = pid4343.age

And the name of the attribute…

age_of_patient = pid4343.age

If I just wanted to display Sue Taleb's age, I could write…

print(pid4343.age)

Python displays…

61

Find the interactive coding exercises for this chapter at:
http://www.ASmarterWayToLearn.com/python/58.html

http://www.ASmarterWayToLearn.com/python/58.html

59
Classes: Building functions into them

Our Patient class has three attributes: last_name, first_name, and
age. Each instance of the class contains values that match these attributes…

pid4343 = Patient("Taleb", "Sue", 61)

Here's a function that checks the age of a patient and displays a message if
the patient is under 21:

1 def say_if_minor(patient_first_name,
patient_last_name, patient_age):
2 if patient_age < 21:
3 print(patient_first_name + " " +
patient_last_name + " is a minor")

This is the code that calls the function, passing the three attributes of patient
pid4343 as arguments:

say_if_minor(pid4343.first_name, pid4343.last_name,
pid4343.age)

Rather than coding a freestanding function, we can build the function into
the class itself. When we do that, the function is called a method. In the next
chapter I'll show you how to code it. But look how simple it is to call the
function when it's built-in:

pid4343.say_if_minor()

It starts with the name of the instance…

pid4343…

…which is connected by a dot to the name of the method…

pid4343.say_if_minor()

Without your specifying the attributes of pid4343, the method receives all
of them.

This code that calls a freestanding function…

say_if_minor(pid4343.first_name, pid4343.last_name,
pid4343.age)

…and this code that calls a method…

pid4343.say_if_minor()

…produce exactly the same result.
As I said, when you call a method, it receives all the attributes of an instance

without your having to explicitly pass those values to the method as arguments.
But in addition, you can pass arguments to a method the same way you'd pass
arguments to a freestanding function:

pid4343.say_if_minor("April", insured=True)

In the code above, there are two arguments: "April", a positional
argument, and insured=True, a keyword argument.

Find the interactive coding exercises for this chapter at:
http://www.ASmarterWayToLearn.com/python/59.html

http://www.ASmarterWayToLearn.com/python/59.html

60
Classes: Coding a method

This is the freestanding function that you saw in the last chapter:

1 def say_if_minor(patient_first_name,
patient_last_name, patient_age):
2 if patient_age < 21:
3 print(patient_first_name + " " +
patient_last_name + " is a minor")

The code that calls the function passes three arguments to it…

say_if_minor(pid4343.first_name, pid4343.last_name,
pid4343.age)

…and these arguments are loaded into the function's three parameters…

1 def say_if_minor(patient_first_name,
patient_last_name, patient_age):
2 if patient_age < 21:
3 print(patient_first_name + " " +
patient_last_name + " is a minor")

But when you call a method within a class, you don't pass attributes to the
method. Since the method is part of the instance definition that also includes the
attribute values, the method already knows those values.

pid4343.say_if_minor()

…yet the method receives all the attributes of the instance, in this case
pid4343.

Here's the Patient class with the method added:

1 class Patient():
2 def __init__(self, last_name, first_name, age):
3 self.last_name = last_name
4 self.first_name = first_name
5 self.age = age
6 def say_if_minor(self):
7 if self.age < 21:
8 print("This patient is a minor")

It's similar to the freestanding function, but instead of writing…

1 def say_if_minor(pid4343.first_name,
pid4343.last_name, pid4343.age)

…you write…

6 def say_if_minor(self):

self refers to the instance and all its attributes. In our example, it refers to
the instance pid4343 that the method call starts with…

pid4343.say_if_minor()

Since self refers to the instance pid4343, if you write
self.first_name, the method knows you're referring to the
first_name attribute of pid4343, "Sue". If you write
self.last_name, the method knows you're referring to the last_name
attribute of pid4343, "Taleb". If you write self.age, the method knows
you're referring to the age attribute of pid4343, 61.

See how lines 7 and 8 use those values:

1 class Patient():
2 def __init__(self, last_name, first_name, age):
3 self.last_name = last_name
4 self.first_name = first_name
5 self.age = age
6 def say_if_minor(self):
7 if self.age < 21:
8 print(self.first_name + " " + self.last_name
+ " is a minor")

About indentation: Note that the first line of the method definition is
indented two levels, like the attribute definitions on lines 3 through 6. The body
of the method definition is indented further.

To review:
The first line of a method definition always takes the same single parameter,

self:

6 def say_if_minor(self):

All of the attributes of the instance are available to the method when you
connect self by a dot with the attribute names:

7 if self.age < 21:
8 print(self.first_name + " " + self.last_name
+ " is a minor")

Find the interactive coding exercises for this chapter at:
http://www.ASmarterWayToLearn.com/python/60.html

http://www.ASmarterWayToLearn.com/python/60.html

61
Classes: Changing an attribute's value

pid4343, Sue Taleb, has remarried. Her new last name is Ortega. We need to
revise her record.

You already know how to target an attribute of a class instance:

pid4343.last_name

Changing the value of the patient's last_name attribute is as easy as this:

pid4343.last_name = "Ortega"

Here's a method that does the same thing:

1 class Patient():
2 def __init__(self, last_name, first_name, age):
3 self.last_name = last_name
4 self.first_name = first_name
5 self.age = age
6 def say_if_minor(self):
7 if self.age < 21:
8 print("This patient is a minor")
9 def change_last_name(self, new_last_name):
10 self.last_name = new_last_name

Lines 9 and 10 define a method named change_last_name.
Unlike the say_if_minor method defined in lines 6-8, this method

includes a parameter in addition to the required self. I've named this
parameter new_last_name…

1 class Patient():
2 def __init__(self, last_name, first_name, age):
3 self.last_name = last_name
4 self.first_name = first_name
5 self.age = age
6 def say_if_minor(self):
7 if self.age < 21:
8 print("This patient is a minor")
9 def change_last_name(self, new_last_name):
10 self.last_name = new_last_name

The calling code passes the value "Ortega" to the method. The value goes
into the parameter new_last_name. And the value is assigned to the
last_name attribute of the instance…

1 class Patient():
2 def __init__(self, last_name, first_name, age):
3 self.last_name = last_name
4 self.first_name = first_name
5 self.age = age
6 def say_if_minor(self):
7 if self.age < 21:
8 print("This patient is a minor")
9 def change_last_name(self, new_last_name):
10 self.last_name = new_last_name

This is the calling code:

pid4343.change_last_name("Ortega")

It starts with the name of the instance…

pid4343.change_last_name("Ortega")

There's a dot followed by the name of the method…

pid4343.change_last_name("Ortega")

…and, inside the parentheses, the argument to be passed to the method…

pid4343.change_last_name("Ortega")

Find the interactive coding exercises for this chapter at:
http://www.ASmarterWayToLearn.com/python/61.html

http://www.ASmarterWayToLearn.com/python/61.html

62
Data files

In all the coding so far in this book, none of the data has been preserved. We
created variables, lists, dictionaries, and class instances that contained
information, but as soon as the computer was turned off, all of it disappeared.

You know how to save a word processing document or spreadsheet, but
how do you save data processed by Python?

It starts with a line of Python code:

with open("whatever.txt", "w") as file_to_work_with:

This line opens the text file whatever.txt if such a file exists. If it doesn't exist,
Python creates it.

Here's the breakdown.
with is a puzzling (to me) way to tell Python to close the file after you

write to it…

with open("whatever.txt", "w") as file_to_work_with:

open is easy to remember…

with open("whatever.txt", "w") as file_to_work_with:

The first item inside the parentheses is the name of the text file, in quotes…

with open("whatever.txt", "w") as file_to_work_with:

Then a comma, followed by "w". It tells Python that you're opening the file
so you can write to it…

with open("whatever.txt", "w") as file_to_work_with:

as is a keyword meaning that you're assigning a file handle to the file. In
addition to the file name, "whatever.text," Python needs a handle in order to get
into the file. In this case, I've given it a handle of file_to_work_with.

with open("whatever.txt", "w") as file_to_work_with:

The line ends with a colon, promising that there's more code to come…

with open("whatever.txt", "w") as file_to_work_with:

You could open the file without the initial with, opting to close the file
yourself when you're ready…

file_to_work_with = open("whatever.txt", "w"):

…but I like the automatic-closing feature, because it's one less thing to
remember, and removes the possibility that you'll fail to close the door behind
you.

Note that the designation "whatever.txt" assumes that the file is in
the same folder as the Python program that's opening it. If it isn't in the same
folder, you must include the path. For example, if whatever.txt is in the data
subfolder of the Python folder and you're using Windows, you would write…

with open("data\whatever.txt", "w") as
file_to_work_with:

On OS X and Linux, you'd use a forward slash:

with open("data/whatever.txt", "w") as
file_to_work_with:

Note that the handle file_to_work_with is a name that I made up.
You can use any name you like, as long as it's a legal variable name…

with open("whatever.txt", "w") as f:

Find the interactive coding exercises for this chapter at:
http://www.ASmarterWayToLearn.com/python/62.html

http://www.ASmarterWayToLearn.com/python/62.html

63
Data files: Storing data

Let's store the string "Hello world!" in a file.
First we open a file:

with open("greet.txt", "w") as f:

"greet.txt" is the file name. f is the handle we're choosing to give it.
If the file greet.txt exists, the code above opens it. If the file greet.text doesn't

exist, the code above creates it.
Now we write a second line that stores the string in the file:

1 with open("greet.txt", "w") as f:
2 f.write("Hello, world!")

In these two lines of code, we've opened (or created) a file named greet.txt,
stored the string "Hello, world!" in it, and (automatically, thanks to with on
line 1) closed it.

Note that if the greet.txt is an existing file, any text in the file is overwritten
with "Hello world!" Later, you'll learn how to append data to an existing file, but
when you specify "w" in line 1…

1 with open("greet.txt", "w") as f:
2 f.write("Hello, world!")

…you're telling Python to replace any data that's already in the file.
Line 2 begins with the file handle you specified in line 1…

1 with open("greet.txt", "w") as f:
2 f.write("Hello, world!")

Then a dot followed by the keywork write…

1 with open("greet.txt", "w") as f:
2 f.write("Hello, world!")

The string that we're storing in the file is in parentheses…

1 with open("greet.txt", "w") as f:
2 f.write("Hello, world!")

It also works if the string is stored in a variable:

1 greeting = "Hello, world!"
2 with open("greet.txt", "w") as f:
3 f.write(greeting)

Find the interactive coding exercises for this chapter at:
http://www.ASmarterWayToLearn.com/python/63.html

http://www.ASmarterWayToLearn.com/python/63.html

64
Data files: Retrieving data

There's a text file, greet.txt. Its entire contents: the string "Hello world!"
How do we retrieve those contents? First we open the file:

1 with open("greet.txt", "r") as f:

Note that the only difference between opening a file to write to it and
opening a file to read from it is this…

1 with open("greet.txt", "r") as f:

We specify "r" for "read" instead of "w" for "write."
Then we read the file, loading its contents into a variable…

1 with open("greet.txt", "r") as f:
2 text_of_file = f.read()

The string "Hello, World!" is now stored in the variable text_of_file.
Note that text_of_file is a name I made up. You could use any legal

variable name.

If you write…

print(text_of_file)

…Python displays…

Hello, World!

The read-file mode is the default for the open statement, so if you're
opening a file to read data, you can, if you like, skip the "r" and just write…

1 with open("greet.txt", "r") as f:

Find the interactive coding exercises for this chapter at:
http://www.ASmarterWayToLearn.com/python/64.html

http://www.ASmarterWayToLearn.com/python/64.html

65
Data files: Appending data

When you specify "w"…

with open("greet.txt", "w") as f:

…the data that you write to the file overwrites any data that the file already
contains.

To append data to a file while preserving existing data in the file, you
write…

with open("greet.txt", "a") as f:

So let's say the data in the greet.txt file is, in its entirety, "Hello, World!"
If you write…

1 with open("greet.txt", "a") as f:
2 f.write("\nHave a nice day!")

…the contents of the file are now "Hello, World!\nHave a nice day!"
\n is the new-line character. The text that follows \n is placed on a new

line. So if you write..

1 with open("greet.txt") as f:
2 message = f.read()
3 print(message)

…Python displays…

Hello, World!

Have a nice day!

Find the interactive coding exercises for this chapter at:
http://www.ASmarterWayToLearn.com/python/65.html

http://www.ASmarterWayToLearn.com/python/65.html

66
Modules

In the chapters dealing with functions, you learned how to define a function and
how to call it. The function definitions were in the same Python file as the
function calls. That is, they were in your main Python program.

An alternative is to store some or all functions in separate Python files.
These files are called modules.

Like any Python file, a module has a filename extension of .py. For example,
calculations.py.

You can store functions, classes, and more in a module. Most commonly,
modules are used to store functions.

What's good about modules:

Write a function once, call it from any Python program.

Keep your main programs shorter and simpler to read.

Use code written by other people by importing their modules.

It takes just one line in your main program to make all the code in
calculations.py available to your main program:

import calculations

Note that you omit the filename extension .py.
Let's say you have a function in your main program that calculates tax from

your main code…

1 def calc_tax(sales_total, tax_rate):
2 tax = sales_total * tax_rate

3 return tax

You remove the function from your main program and place it in a module
named calculations.py.

The function code remains the same. But instead of the calling code you
would use if the function were in the main program…

tax_for_this_order = calc_tax(sales_total=101.37,
tax_rate=.05)

You let Python know that the function is in the module named
calculations.py…

tax_for_this_order =
calculations.calc_tax(sales_total=101.37,
tax_rate=.05)

You've already imported the module, so Python knows exactly what to do.
Find the interactive coding exercises for this chapter at:

http://www.ASmarterWayToLearn.com/python/66.html

http://www.ASmarterWayToLearn.com/python/66.html

67
CSV files

CSV files are text-only files that are simplified versions of a spreadsheet or
database. "CSV" stands for "Comma-Separated Values."

If you have an Excel file…

…you can export it from Excel as a CSV file.
The CSV file looks like this…

Year,Event,Winner
1995,Best-Kept Lawn,None
1999,Gobstones,Welch National
2006,World Cup,Burkina Faso

Each row of the spreadsheet is a separte line in the CSV file.
Within each row, each cell is separated by a comma.
Notice that the formatting in the Excel file has disappeared in the CSV file.

A CSV file is nothing but text.
To work with a CSV file in a Python program, you begin by importing

Python's built-in csv module:

import csv

This module is included in Python 3. If Python 3 is on your system, you've
got the module, ready to go.

So let's say you've exported the Excel spreadsheet above as competitions.csv.
To read the file in Python, you begin with the usual line 1:

1 with open("competitions.csv") as f:

This is the same syntax you learned for opening a text file.
Remember, f is a name I've chosen for the file handle. You could use any

legal variable name.
The following code…

1 with open("competitions.csv") as f:
2 contents_of_file = csv.reader(f)

…calls a function, reader, in the csv module and passes the argument f to
the function. f is the file handle we've chosen for the file we've opened,
competitions.csv. That's the file we're asking the function to read.

The function returns the contents of the file. I've named the variable that
receives the contents contents_of_file.

1 with open("competitions.csv") as f:
2 contents_of_file = csv.reader(f)

Find the interactive coding exercises for this chapter at:
http://www.ASmarterWayToLearn.com/python/67.html

http://www.ASmarterWayToLearn.com/python/67.html

68
CSV files: Reading them

You've opened the file competitions.csv and assigned it a file handle, f. Python will
use this handle to access the contents of the file:

1 with open("competitions.csv") as f:

You've called the function csv.reader, with the argument, (f), and
assigned the file content that comes back from the function to a variable,
contents_of_f.

2 contents_of_f = csv.reader(f)

The contents of the CSV file returned by the csv.reader function aren't
useable yet. You have to loop through the data stored in contents_of_f,
line by line, adding each line to a list.

Here's the code:

1 with open("competitions.csv") as f:
2 reader_of_f = csv.reader(f)
3 potter_competitions = []
4 for each_line in contents_of_f:
5 potter_competitions += each_line

First, you define potter_competitions as an empty list:

1 with open("competitions.csv") as f:
2 contents_of_f = csv.reader(f)
3 potter_competitions = []

4 for each_line in contents_of_f:
5 potter_competitions += each_line

Then comes the loop:

1 with open("competitions.csv") as f:
2 contents_of_f = csv.reader(f)
3 potter_competitions = []
4 for each_line in contents_of_f:
5 potter_competitions += each_line

The loop appends each line of the CSV file to the
potter_competitions list. When the loop ends, the list is complete:

1 with open("competitions.csv") as f:
2 contents_of_f = csv.reader(f)
3 potter_competitions = []
4 for each_line in contents_of_f:
5 potter_competitions += each_line

If you write…

print(potter_competitions)

…Python displays the list…

['Year', 'Event', 'Winner', '1995', 'Best-Kept Lawn', 'None', '1999',
'Gobstones', 'Welch National', '2006', 'World Cup', 'Burkina Faso']

Find the interactive coding exercises for this chapter at:
http://www.ASmarterWayToLearn.com/python/68.html

http://www.ASmarterWayToLearn.com/python/68.html

69
CSV files: Picking information out of

them

We exported an Excel spreadsheet…

…into a CSV file named competitions.csv…

Year,Event,Winner
1995,Best-Kept Lawn,None
1999,Gobstones,Welch Nationional
2006,World Cup,Burkina Faso

Using a function of the Python cvs module called reader, we read the
contents of the file. Looping through it line-by-line, we translated the contents
into a Python list named potter_competitions:

['Year', 'Event', 'Winner', '1995', 'Best-Kept Lawn', 'None', '1999', 'Gobstones',
'Welch National', '2006', 'World Cup', 'Burkina Faso']

Suppose a user wants to enter the name of a competition to find out the
winner. We can use the list to do that.

We'll need a Python method that's new to you.
You've learned how to find an element in a list by specifying its index

number. For example, in the list named potter_competitions, if you
write…

print(potter_competitions[4])

…Python displays…

Best-Kept Lawn

There's also a method for finding the index number of an element. If you
write…

index_number_of_target =
potter_competitions.index("Best-Kept Lawn")

…Python looks through the list and finds that the index number of "Best-
Kept Lawn" is 4.

Year,Event,Winner
1995,Best-Kept Lawn,None
1999,Gobstones,Welch Nationional
2006,World Cup,Burkina Faso

The number is stored in the variable named
index_number_of_target.

Let's say the user wants to know the winner of the Best-Kept Lawn
competition.

We begin by finding the index number of "Best-Kept Lawn" in the list—4.
Year,Event,Winner
1995,Best-Kept Lawn,None
1999,Gobstones,Welch Nationional

2006,World Cup,Burkina Faso
Then, knowing the winner of that competition is the next element in the list,

we can look it up by specifying an index number that's one more than the index
number of the competition—5.

Year,Event,Winner
1995,Best-Kept Lawn,None
1999,Gobstones,Welch Nationional
2006,World Cup,Burkina Faso

The element with an index number of 5 is None.
Line 1 gets the user's input and stores it in the variable named target:

1 target = input("Enter the name of a competition:
")
2 index_number_of_target =
potter_competitions.index(target)
3 index_number_of_winner = index_number_of_target +
1
4 the_winner =
potter_competitions[index_number_of_winner]
5 print("The winner was " + the_winner)

Line 2 looks up the index number of the string stored in target and
stores that index number in the variable named
index_number_of_target:

1 target = input("Enter the name of a competition:
")
2 index_number_of_target =
potter_competitions.index(target)
3 index_number_of_winner = index_number_of_target +
1
4 the_winner =
potter_competitions[index_number_of_winner]

5 print("The winner was " + the_winner)

Line 3 adds 1 to the index number of the competition. This is the index
number of the winner. It is stored in the variable named
index_number_of_winner:

1 target = input("Enter the name of a competition:
")
2 index_number_of_target =
potter_competitions.index(target)
3 index_number_of_winner = index_number_of_target +
1
4 the_winner =
potter_competitions[index_number_of_winner]
5 print("The winner was " + the_winner)

Line 4 looks up the name of the winner and stores it in the variable named
the_winner:

1 target = input("Enter the name of a competition:
")
2 index_number_of_target =
potter_competitions.index(target)
3 index_number_of_winner = index_number_of_target +
1
4 the_winner =
potter_competitions[index_number_of_winner]
5 print("The winner was " + the_winner)

Line 5 displays the name of the winner:

1 target = input("Enter the name of a competition:
")
2 index_number_of_target =
potter_competitions.index(target)

3 index_number_of_winner = index_number_of_target +
1
4 the_winner =
potter_competitions[index_number_of_winner]
5 print("The winner was " + the_winner)

If the user has entered "Best-Kept Lawn," the code finds that its index
number is 4, looks up the element whose index number is 5, and displays…

The winner was None

Find the interactive coding exercises for this chapter at:
http://www.ASmarterWayToLearn.com/python/69.html

http://www.ASmarterWayToLearn.com/python/69.html

70

CSV files: Loading information into
them.
Part 1

The csv module contains a function that reads a CSV file. It also contains a
function that allows you to write to a CSV file.

You start by importing the module:

1 import csv

If you've already imported the csv module for some other operation, you
don't have to do it again.

Then you open (or create) the file:

1 import csv
2 with open("whatever.csv", "w", newline="") as f:

This statement opens a file so you can write to it. The statement is similar to
the code you learned to open a text file for writing. It begins with open…

2 with open("whatever.csv", "w", newline="") as f:

…then the name of the file…

2 with open("whatever.csv", "w", newline="") as f:

…then "w" in quotation marks…

2 with open("whatever.csv", "w", newline="") as f:

And you specify a file handle at the end. Again, I've chosen to call it f…

2 with open("whatever.csv", "w", newline="") as f:

Here's something new: newline="".

2 with open("whatever.csv", "w", newline="") as f:

newline="" is a technical requirement. At this point, there's no need to
understand it. Just remember to include it.

Also important to remember:
If there's no such file as the file you specify…

2 with open("whatever.csv", "w", newline="") as f:

…Python will create the file.
If the file already exists, any information already in it will be overwritten by

the new information that you're loading into it. Later I'll show you how to
append information to an existing file, preserving any information that's already
in it.

Find the interactive coding exercises for this chapter at:
http://www.ASmarterWayToLearn.com/python/70.html

http://www.ASmarterWayToLearn.com/python/70.html

71

CSV files: Loading information into
them.
Part 2

At some point in your code you've imported the csv module. And you've opened
a CVS file (or created it if it doesn't already exist):

with open("whatever.csv", "w", newline="") as f:

Now you call the writer function in the csv module:

1 with open("whatever.csv", "w", newline="") as f:
2 data_handler = csv.writer(…

For technical reasons, you can't write data directly to the CSV file. You have
to create a special object that handles the data. You begin line 2 by creating this
object. Use any legal variable name:

1 with open("whatever.csv", "w", newline="") as f:
2 data_handler = csv.writer(…

Next, an equal sign…

1 with open("whatever.csv", "w", newline="") as f:
2 data_handler = csv.writer(…

Then the file handle from line 1…

1 with open("whatever.csv", "w", newline="") as f:
2 data_handler = csv.writer(f…

Finally, you tell Python what you're using as a delimiter:

1 with open("whatever.csv", "w", newline="") as f:
2 data_handler = csv.writer(f, delimiter=",")

The reason you have to specify a delimiter is that, although CSV files are
named for comma-separated values, the separators, or delimiters, can be tabs,
semicolons, pipes (|), or carets (^). So you need to tell Python which one to use.

Find the interactive coding exercises for this chapter at:
http://www.ASmarterWayToLearn.com/python/71.html

http://www.ASmarterWayToLearn.com/python/71.html

72

CSV files: Loading information into
them.
Part 3

We've opened the file competitions.csv (or created it if it doesn't already exist).
We've told Python we're opening the file to write to it. And we've called the
function:

1 with open("whatever.csv", "w", newline="") as f:
2 data_handler = csv.writer(f, delimiter=",")

Now we write some rows of data to the file, one row at a time:

1 with open("whatever.csv", "w", newline="") as f:
2 data_handler = csv.writer(f, delimiter=",")
3 data_handler.writerow(["Year", "Event",
"Winner"])
4 data_handler.writerow(["1995", "Best-Kept Lawn",
"None"])
5 data_handler.writerow(["1999", "Gobstones",
"Welch National"])

Things to remember:
It's the variable data_handler connected by a dot to the keyword

writerow…

3 data_handler.writerow(["Year", "Event",
"Winner"])
4 data_handler.writerow(["1995", "Best-Kept Lawn",
"None"])
5 data_handler.writerow(["1999", "Gobstones",
"Welch National"])

Each row is loaded into the handler as a list:

3 data_handler.writerow(["Year", "Event",
"Winner"])
4 data_handler.writerow(["1995", "Best-Kept Lawn",
"None"])
5 data_handler.writerow(["1999", "Gobstones",
"Welch National"])

Find the interactive coding exercises for this chapter at:
http://www.ASmarterWayToLearn.com/python/72.html

http://www.ASmarterWayToLearn.com/python/72.html

73
CSV files: Appending rows to them.

In previous chapters you learned that the cvs.writer function wipes out
any existing data in a CSV file and replaces it with the rows that you write to it.
But this happens only if you specify "w" in the line that opens the file…

1 with open("whatever.csv", "w", newline="") as f:

If you specify "a" instead…

1 with open("whatever.csv", "a", newline="") as f:

…you can append new data, preserving the data that's already in the file…

1 with open("whatever.csv", "a", newline="") as f:
2 data_handler = csv.writer(f, delimiter=",")
3 data_handler.writerow(["2006", "World Cup",
"Burkina Faso"])
4 data_handler.writerow(["2011", "Butter Cup",
"France"])
5 data_handler.writerow(["2012", "Coffee Cup",
"Brazil"])

Now the CSV file, which originally had three rows, looks like this when you
open it in Excel:

Find the interactive coding exercises for this chapter at:
http://www.ASmarterWayToLearn.com/python/73.html

http://www.ASmarterWayToLearn.com/python/73.html

74
How to save a Python list or dictionary

in a file:
JSON

In an earlier chapter you learned how to save text in a file…

1 with open("greet.txt", "w") as f:
2 f.write("Hello, world!")

…and how to retrieve the text from the file…

1 with open("greet.txt", "r") as f:
2 text_of_file = f.read()

Then if you write…

print(text_of_file)

…Python displays…

Hello, World!

Now suppose you want to save something besides a text string. Let's say you
want to save a Python list.

1 alphabet_letters = ["a", "b", "c"]
2 with open("alphabet_list.txt", "w") as f:
3 f.write(alphabet_letters)

The code above produces an error message:

TypeError: write() argument must be str, not list

You can't save a Python list in a text file. You can only save a text string.
You can save a list in a CSV file, but a more straightforward approach is to

use JSON. The four characters stand for JavaScript Object Notation. As the
name suggests, it was created for JavaScript developers. But Python coders can
use it, too.

It's pronounced JAY-sun.
The json module is included in the Python 3 package that you've installed on

your computer. You begin by importing it:

import json

You've defined a list:

1 alphabet_letters = ["a", "b", "c"]

To save the list, you open a file as usual (creating it if it doesn't exist):

1 alphabet_letters = ["a", "b", "c"]
2 with open("alphabet_list.json", "w") as f:

The next line writes the list to the file:

1 alphabet_letters = ["a", "b", "c"]
2 with open("alphabet_list.json", "w") as f:
3 json.dump(alphabet_letters, f)

The line begins with the name of the module…

1 alphabet_letters = ["a", "b", "c"]
2 with open("alphabet_list.json", "w") as f:
3 json.dump(alphabet_letters, f)

Then comes a dot followed by the name of the function we're calling,
dump…

1 alphabet_letters = ["a", "b", "c"]
2 with open("alphabet_list.json", "w") as f:
3 json.dump(alphabet_letters, f)

 The function call takes two arguments, the variable name of the list we're
storing …

1 alphabet_letters = ["a", "b", "c"]
2 with open("alphabet_list.json", "w") as f:
3 json.dump(alphabet_letters, f)

…and the file handle we've assigned for the file where we're storing the
list…

1 alphabet_letters = ["a", "b", "c"]
2 with open("alphabet_list.json", "w") as f:
3 json.dump(alphabet_letters, f)

If you've defined a dictionary…

1 customer_29876 = {
2 "first name": "David",
3 "last name": "Elliott",
4 "address": "4803 Wellesley St.",
5 }

…you save it the same way:

1 with open("customer_29876.json", "w") as f:
2 json.dump(customer_29876, f)

Find the interactive coding exercises for this chapter at:
http://www.ASmarterWayToLearn.com/python/74.html

http://www.ASmarterWayToLearn.com/python/74.html

75
How to retrieve a Python list or

dictionary from a JSON file

In the last chapter, you learned how to save a Python list or dictionary in a file
using the json module.

This is the dictionary:

1 customer_29876 = {
2 "first name": "David",
3 "last name": "Elliott",
4 "address": "4803 Wellesley St.",
5 }

You saved the dictionary in a file called customer_29876.json.
Now you want to retrieve it.
I'm assuming you've already imported the json module. If you haven't, you'd

do that.
You begin by opening the file for reading, as usual:

1 with open("customer_29876.json") as f:
2 customer_29876 = json.load(f)

Then you call the load function of the json module, specifying the file
handle I've assigned to customer_29876.json, f. The dictionary is
retrieved and stored in the variable I've named customer_29876.

1 with open("customer_29876.json") as f:
2 customer_29876 = json.load(f)

If you write…

print(customer_29876)

…Python displays the dictionary that you saved in the file and have now
retrieved…

{'first name': 'David', 'last name': 'Elliott', 'address': '4803 Wellesley
St.'}

If you write…

print(customer_29876["last name"])

…Python displays…

Elliott

In this chapter, we've retrieved a Python dictionary saved in a JSON file.
You'd use the same syntax to retrieve a Python list saved in a JSON file.

Find the interactive coding exercises for this chapter at:
http://www.ASmarterWayToLearn.com/python/75.html

http://www.ASmarterWayToLearn.com/python/75.html

76
Planning for things to go wrong

Bad things can happen to good programs. For example, your program invites
the user to enter the name of a file so she can access some information…

1 filename = input("What text file to open? ")
2 with open(filename) as f:
3 print(f.read())

Line 1 of the code above asks the user for the name of a text file and assigns
her answer to the variable filename. Line 2 opens the file. Line 3 reads the
file and displays the contents.

What do you suppose happens if the user enters the name of a file that
doesn't exist? Python stops cold, displaying this user-unfriendly message:

FileNotFoundError: [Errno 2] No such file or directory: 'abc.txt'

Reading this message, the user may be able to figure out what the problem is.
But it doesn't matter, because the program is no longer working.

When things go wrong, it doesn't have to be fatal, if you code an exception.
This gives the user a clearer error message and also keeps the program from
shutting down.

Here's how to adapt the code above:

1 try:
2 filename = input("What text file to open? ")
3 with open(filename) as f:
4 print(f.read())
5 except FileNotFoundError:
6 print("Sorry, " + filename + " not found.")

Lines 1 through 4 say, "Try getting a filename from the user, opening it, and
displaying its contents." Lines 5 and 6 say, "If there's no such file, display a
message, then carry on."

Note the syntax.
The code under try: is indented…

1 try:
2 filename = input("What text file to open? ")
3 with open(filename) as f:
4 print(f.read())
5 except FileNotFoundError:
6 print("Sorry, " + filename + " not found.")

Line 5 begins with the keyword except, followed by the keyword
FileNotFoundError and a colon…

1 try:
2 filename = input("What text file to open? ")
3 with open(filename) as f:
4 print(f.read())
5 except FileNotFoundError:
6 print("Sorry, " + filename + " not found.")

The line under the except statement is indented…

1 try:
2 filename = input("What text file to open? ")
3 with open(filename) as f:
4 print(f.read())
5 except FileNotFoundError:
6 print("Sorry, " + filename + " not found.")

FileNotFoundError is just one of dozens of errors you can handle
gracefully using try and except. Find a complete list of errors at
https://docs.python.org/3/library/exceptions.html.

https://docs.python.org/3/library/exceptions.html

Find the interactive coding exercises for this chapter at:
http://www.ASmarterWayToLearn.com/python/76.html

http://www.ASmarterWayToLearn.com/python/76.html

77
A more practical example of exception

handling

In the last chapter, we used try and except to handle a
FileNotFoundError if the user entered the name of a nonexistent file.
The code displayed a meaningful error message and kept the program from
dying. But normally, we would want to give the user another try after he inputs a
filename for a file that can't be found. For this, we need a while loop:

1 while True:
2 try:
3 filename = input("What text file to open? ")
4 with open(filename) as f:
5 print(f.read())
6 break
7 except FileNotFoundError:
8 print("Sorry, " + filename + " not found.")

The code above says, "If the FileNotFoundError occurs (line 7),
display the error message (line 8) and try again (line 2). If the file opens (line 4),
display its contents (line 5), and break out of the while loop (line 6).

A reminder: For practical purposes, while True means, "Keep repeating
the following statements until there's a break statement." As long as the user's
input causes an error, there's no break statement, and the code keeps going
back to line 3. When the user's input results in Python successfully opening a
file, the print statement executes and the break statement ends the loop.

Note the indents. As usual, every block of code that takes its orders from a
line above is indented one level beyond the line above.

Find the interactive coding exercises for this chapter at:
http://www.ASmarterWayToLearn.com/python/77.html

http://www.ASmarterWayToLearn.com/python/77.html

Guide to the appendices

Appendix A - An easy way to run Python

Appendix B - How to install Python on your computer

Appendix C - How to run Python in the terminal

Appendix D - How to create a Python program that you can save

Appendix E - How to run a saved Python program in the terminal

Appendix A
An easy way to run Python

There are many ways to run your Python code. For starters, you can run your
code in an online simulator.

The simulator I like is Trinket.
In the final exercises for each chapter, you've been running your code in

Trinket:

You can use Trinket yourself to run any Python code you like. Just sign up
for a Trinket account at https://trinket.io

The account is free if you are okay with using Python 2. This book teaches
the more recent version, Python 3, but the two versions are similar. My
recommendation is to sign up for a free account and take Trinket for a road test.
If you get serious about Python, you might want to upgrade to a paid Trinket
Connect account. It enables Python 3 and costs $9 per month or $72 per year.

https://trinket.io

Appendix B
How to install Python on your

computer

When the Python interpreter sees print("Hello, world!"), it
translates the text into a computer instruction and commands the computer to
execute it. The computer displays Hello, World! on the screen.

But it won't happen without the Python interpreter.
An easy way to run Python is to use an online simulator that incorporates a

Python interpreter, like Trinket, at at https://trinket.io. (See Appendix A.)
However, if you want to run Python on your computer, you need to have

the Python interpreter installed on your computer.
Windows doesn't come with Python preinstalled. You need to download it

and install it on your computer. It's free.
Macs do come with Python preinstalled, but at this writing, the preinstalled

version is Python 2.7, not the Python 3 that I'm teaching. Most of the Python
syntax you're learning here works with Python 2.7, but not all of it. You can
upgrade to Python 3, free.

Linux comes with Python installed. Recent Linux releases include Python 3,
but not necessarily the latest version. An earlier version of Python 3 is fine for
our purposes.

Python 3 is best for learning and for building new applications, but you may
need Python 2 if you're going to be working on existing programs that someone
else has created. You can install both versions on your computer and switch
between them. But here I'm focusing on Python 3.

I've posted online instructions for downloading and installing Python 3 on
your Windows, Mac, or Linux computer.

Install Python 3 for Windows

https://trinket.io

Go to http://www.ASmarterWayToLearn.com/python/python-for-
windows.html

Install Python 3 for a Mac
Go to http://www.ASmarterWayToLearn.com/python/python-for-

mac.html

Install Python 3 for Linux
Go to http://www.ASmarterWayToLearn.com/python/python-for-

linux.html

http://www.ASmarterWayToLearn.com/python/python-for-windows.html
http://www.ASmarterWayToLearn.com/python/python-for-mac.html
http://www.ASmarterWayToLearn.com/python/python-for-linux.html

Appendix C
How to run Python in the terminal

Your operating system comes with a terminal application. Among other things,
the terminal lets you enter Python code and run the code. (This is true only if
you have Python installed on your computer. If you don't have it installed, see
Appendix B.)

Note: In Windows, the terminal is called PowerShell.
The terminal is good for writing and running small Python snippets. Since

there's no straightforward way tot save the code that you write in the terminal,
you wouldn't use it to write a full Python program.

Open the Windows terminal (PowerShell)
Go to http://www.ASmarterWayToLearn.com/python/open-terminal-

windows.html

Open the terminal on a Mac
Go to http://www.ASmarterWayToLearn.com/python/open-terminal-

mac.html

Open the Linux terminal
Go to http://www.ASmarterWayToLearn.com/python/open-terminal-

linux.html

Let's write and run some Python. I'll demonstrate using Windows
PowerShell.

1 In Windows, enter python. On a Mac, enter python3. In Linux,
enter python3.6 (or whatever the latest version that you've installed

http://www.asmarterwaytolearn.com/python/open-terminal-windows.html
http://www.asmarterwaytolearn.com/python/open-terminal-mac.html
http://www.asmarterwaytolearn.com/python/open-terminal-linux.html

is).

2 Try it. Enter print("hi")

 When you press Enter, your Python code executes. Hi displays. And
you get a new prompt so you can enter another Python command if
you like.

3 You can write multi-line code in the terminal. Try it. Start by writing
greet = "hi" and press Enter.

4 Now write if greet == "hi": and press Enter. Notice that
you get a new type of prompt—three dots. This tells you to indent
the next line.

5 At the three-dot prompt, press Tab to indent. Then write
print(greet). Press Enter. Notice that you get another three-
dot prompt. This is in case you want to add another instruction based
on the if condition being met. You don't. So press Enter once
more.

6 Hi displays. And you get a new >>> prompt.

7 To close Python, enter exit(). Python closes, and you're returned
to the original terminal prompt.

Appendix D
How to create a Python program that

you can save

A Python program is just a text file with a file name ending in the file extension
.py (for Python). If you open a text editor and write…

print("Hello world")

…and you save that as, say, greeting.py, that's a Python program.
If you open a text editor and write ten thousand lines of Python and you

save it as, say save_the_world.py, that's a Python program.
When I say text editor, I mean a writing application that's not a word

processing program like Microsoft Word. Word processing programs format
text. Text editors don't format. Text editors produce pure, unformatted text. A
Python program must be pure text without formatting.

In Windows, you can create Python programs using the Notepad text editor
that comes preinstalled with Windows. On a Mac, you can write Python
programs using TextEdit (in plain text mode) that comes with a Mac.

Most serious coders use specialized text editors that include convenience
features for programming. According to a Sitepoint survey, the four most
popular editors for Python programming are:

1. Sublime Text. Works with Windows, Mac, and Ubuntu (Linux). Free
to try for an indefinite period (with reminders to buy), $70 for a single
user.

2. Vim. Included free with Mac and most Linux systems. A version for
Windows is free.

3. Emacs. Included free with most Linux systems. Windows and Mac
versions are free. Installation for these operating systems is
complicated.

4. Notepad++. Works only with Windows. Free.

These specialized editors, and many others, can be downloaded from their
respective websites.

Another option is IDLE (Integrated Development and Learning
Environment). IDLE is more than a text editor, but includes a text editor. As
Learning in the name suggests, IDLE is a good tool for learning Python. I'm
going to show you how to use it.

IDLE is bundled with Python 3. If you've installed Python 3 on your
computer, you've also got IDLE on your computer.

Let's check to be sure that you do have Python 3 on your computer, and that
it will load without a lot of fuss.

Check for Python 3 on Windows
Follow the instructions at

http://www.ASmarterWayToLearn.com/python/check-install-python-for-
windows.html

Check for Python 3 on a Mac
Follow the instructions at

http://www.ASmarterWayToLearn.com/python/check-install-python-for-
mac.html

Check for Python 3 on Linux
Follow the instructions at

http://www.ASmarterWayToLearn.com/python/check-install-python-for-
linux.html

If the test doesn't succeed, Python 3 may or may not be on your computer
somewhere. You could spend some time looking for it, but it may be simpler to
just install it fresh.

http://www.ASmarterWayToLearn.com/python/check-install-python-for-windows.html
http://www.ASmarterWayToLearn.com/python/check-install-python-for-mac.html
http://www.ASmarterWayToLearn.com/python/check-install-python-for-linux.html

Install Python 3 on Windows
Go to http://www.ASmarterWayToLearn.com/python/python-for-

windows.html

Install Python 3 on a Mac
Go to http://www.ASmarterWayToLearn.com/python/python-for-

mac.html

Install Python 3 for Linux
Go to http://www.ASmarterWayToLearn.com/python/python-for-

linux.html

With Python 3 installed on your computer, you're ready to fire up IDLE.

Run IDLE on Windows
Go to http://www.ASmarterWayToLearn.com/python/IDLE-for-

windows.html

Run IDLE on a Mac
Go to http://www.ASmarterWayToLearn.com/python/IDLE-for-

mac.html

Run IDLE on Linux
Go to http://www.ASmarterWayToLearn.com/python/IDLE-for-

linux.html

http://www.ASmarterWayToLearn.com/python/python-for-windows.html
http://www.ASmarterWayToLearn.com/python/python-for-mac.html
http://www.ASmarterWayToLearn.com/python/python-for-linux.html
http://www.asmarterwaytolearn.com/python/IDLE-for-windows.html
http://www.asmarterwaytolearn.com/python/IDLE-for-mac.html
http://www.asmarterwaytolearn.com/python/IDLE-for-linux.html

Appendix E
How to run a saved Python program in

the terminal

Let's say you've saved your program greet.py. Now you want to run it. If
you're using IDLE, you could run it in IDLE. But maybe you're using a text
editor that, unlike IDLE, doesn't include a shell that runs Python programs.

So you'll run the program in the terminal.

Open the Windows terminal (PowerShell)
Go to http://www.ASmarterWayToLearn.com/python/open-terminal-

windows.html

Open the terminal on a Mac
Go to http://www.ASmarterWayToLearn.com/python/open-terminal-

mac.html

Open the Linux terminal
Go to http://www.ASmarterWayToLearn.com/python/open-terminal-

linux.html

I'll demonstrate using Windows PowerShell.

1 Begin by changing the active directory to the directory in which you
saved your Python file. The instructions in Appendix D asked you to
save your Python file in the Desktop folder. If you followed those
directions, enter cd Desktop. If your Python file is in another
directory and you're not sure how to get to it in the terminal, go to

http://www.asmarterwaytolearn.com/python/open-terminal-windows.html
http://www.asmarterwaytolearn.com/python/open-terminal-mac.html
http://www.asmarterwaytolearn.com/python/open-terminal-linux.html

http://www.digitalcitizen.life/command-prompt-how-use-basic-
commands

 The active Directory is now Desktop.

2 In Windows, enter python greet.py. On a Mac and in Linux, enter
python3 greet.py.

 Python displays the string Hi.

http://www.digitalcitizen.life/command-prompt-how-use-basic-commands

	Title Page
	Copyright
	Table of Contents
	Learn it faster. Remember it longer.
	How to use this book
	The language you're learning here
	1: print
	2: Variables for Strings
	3: Variables for Numbers
	4: Math expressions: Familiar operators
	5: Variable Names Legal and Illegal
	6: Math expressions: Unfamiliar operators
	7: Math expressions: Eliminating ambiguity
	8: Concatenating text strings
	9: if statements
	10: Comparison operators
	11: else and elif statements
	12: Testing sets of conditions
	13: if statements nested
	14: Comments
	15: Lists
	16: Lists: Adding and changing elements
	17: Lists: Taking slices out of them
	18: Lists: Deleting and removing elements
	19: Lists: popping elements
	20: Tuples
	21: for loops
	22: for loops nested
	23: Getting information from the user and converting strings and numbers
	24: Changing case
	25: Dictionaries: What they are
	26: Dictionaries: How to code one
	27: Dictionaries: How to pick information out of them
	28: Dictionaries: The versatility of keys and values
	29: Dictionaries: Adding items
	30: Dictionaries: Removing and changing items
	31: Dictionaries: Looping through values
	32: Dictionaries: Looping through keys
	33: Dictionaries: Looping through key-value pairs
	34: Creating a list of dictionaries
	35: How to pick information out of a list of dictionaries
	36: How to append a new dictionary to a list of dictionaries
	37: Creating a dictionary that contains lists
	38: How to get information out of a list within a dictionary
	39: Creating a dictionary that contains a dictionary
	40: How to get information out of a dictionary within another dictionary
	41: Functions
	42: Functions: Passing them information
	43: Functions: Passing information to them a different way
	44: Functions: Assigning a default value to a parameter
	45: Functions: Mixing positional and keyword arguments
	46: Functions: Dealing with an unknown number of arguments
	47: Functions: Passing information back from them
	48: Using functions as variables (which is what they really are)
	49: Functions: Local vs. global variables
	50: Functions within functions
	51: While loops
	52: While loops: Setting a flag
	53: Classes
	54: Classes: Starting to build the structure
	55: Classes: A bit of housekeeping
	56: Classes: Creating an instance
	57: Classes: A little more complexity
	58: Classes: Getting info out of instances
	59: Classes: Building functions into them
	60: Classes: Coding a method
	61: Classes: Changing an attribute's value
	62: Data files
	63: Data files: Storing data
	64: Data files: Retrieving data
	65: Data files: Appending data
	66: Modules
	67: CSV files
	68: CSV files: Reading them
	69: CSV files: Picking information out of them
	70: CSV files: Loading information into them. Part 1
	71: CSV files: Loading information into them. Part 2
	72: CSV files: Loading information into them. Part 3
	73: CSV files: Appending rows to them.
	74: How to save a Python list or dictionary in a file: JSON
	75: How to retrieve a Python list or dictionary from a JSON file
	76: Planning for things to go wrong
	77: A more practical example of exception handling
	Guide to the appendices
	Appendix A: An easy way to run Python
	Appendix B: How to install Python on your computer
	Appendix C: How to run Python in the terminal
	Appendix D: How to create a Python program that you can save
	Appendix E: How to run a saved Python program in the terminal

